1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all paths through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns either pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 static bool bpf_pseudo_call(const struct bpf_insn *insn) 232 { 233 return insn->code == (BPF_JMP | BPF_CALL) && 234 insn->src_reg == BPF_PSEUDO_CALL; 235 } 236 237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 238 { 239 return insn->code == (BPF_JMP | BPF_CALL) && 240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 241 } 242 243 struct bpf_call_arg_meta { 244 struct bpf_map *map_ptr; 245 bool raw_mode; 246 bool pkt_access; 247 int regno; 248 int access_size; 249 int mem_size; 250 u64 msize_max_value; 251 int ref_obj_id; 252 int map_uid; 253 int func_id; 254 struct btf *btf; 255 u32 btf_id; 256 struct btf *ret_btf; 257 u32 ret_btf_id; 258 u32 subprogno; 259 }; 260 261 struct btf *btf_vmlinux; 262 263 static DEFINE_MUTEX(bpf_verifier_lock); 264 265 static const struct bpf_line_info * 266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 267 { 268 const struct bpf_line_info *linfo; 269 const struct bpf_prog *prog; 270 u32 i, nr_linfo; 271 272 prog = env->prog; 273 nr_linfo = prog->aux->nr_linfo; 274 275 if (!nr_linfo || insn_off >= prog->len) 276 return NULL; 277 278 linfo = prog->aux->linfo; 279 for (i = 1; i < nr_linfo; i++) 280 if (insn_off < linfo[i].insn_off) 281 break; 282 283 return &linfo[i - 1]; 284 } 285 286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 287 va_list args) 288 { 289 unsigned int n; 290 291 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 292 293 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 294 "verifier log line truncated - local buffer too short\n"); 295 296 n = min(log->len_total - log->len_used - 1, n); 297 log->kbuf[n] = '\0'; 298 299 if (log->level == BPF_LOG_KERNEL) { 300 pr_err("BPF:%s\n", log->kbuf); 301 return; 302 } 303 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 304 log->len_used += n; 305 else 306 log->ubuf = NULL; 307 } 308 309 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 310 { 311 char zero = 0; 312 313 if (!bpf_verifier_log_needed(log)) 314 return; 315 316 log->len_used = new_pos; 317 if (put_user(zero, log->ubuf + new_pos)) 318 log->ubuf = NULL; 319 } 320 321 /* log_level controls verbosity level of eBPF verifier. 322 * bpf_verifier_log_write() is used to dump the verification trace to the log, 323 * so the user can figure out what's wrong with the program 324 */ 325 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 326 const char *fmt, ...) 327 { 328 va_list args; 329 330 if (!bpf_verifier_log_needed(&env->log)) 331 return; 332 333 va_start(args, fmt); 334 bpf_verifier_vlog(&env->log, fmt, args); 335 va_end(args); 336 } 337 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 338 339 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 340 { 341 struct bpf_verifier_env *env = private_data; 342 va_list args; 343 344 if (!bpf_verifier_log_needed(&env->log)) 345 return; 346 347 va_start(args, fmt); 348 bpf_verifier_vlog(&env->log, fmt, args); 349 va_end(args); 350 } 351 352 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 353 const char *fmt, ...) 354 { 355 va_list args; 356 357 if (!bpf_verifier_log_needed(log)) 358 return; 359 360 va_start(args, fmt); 361 bpf_verifier_vlog(log, fmt, args); 362 va_end(args); 363 } 364 365 static const char *ltrim(const char *s) 366 { 367 while (isspace(*s)) 368 s++; 369 370 return s; 371 } 372 373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 374 u32 insn_off, 375 const char *prefix_fmt, ...) 376 { 377 const struct bpf_line_info *linfo; 378 379 if (!bpf_verifier_log_needed(&env->log)) 380 return; 381 382 linfo = find_linfo(env, insn_off); 383 if (!linfo || linfo == env->prev_linfo) 384 return; 385 386 if (prefix_fmt) { 387 va_list args; 388 389 va_start(args, prefix_fmt); 390 bpf_verifier_vlog(&env->log, prefix_fmt, args); 391 va_end(args); 392 } 393 394 verbose(env, "%s\n", 395 ltrim(btf_name_by_offset(env->prog->aux->btf, 396 linfo->line_off))); 397 398 env->prev_linfo = linfo; 399 } 400 401 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 402 struct bpf_reg_state *reg, 403 struct tnum *range, const char *ctx, 404 const char *reg_name) 405 { 406 char tn_buf[48]; 407 408 verbose(env, "At %s the register %s ", ctx, reg_name); 409 if (!tnum_is_unknown(reg->var_off)) { 410 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 411 verbose(env, "has value %s", tn_buf); 412 } else { 413 verbose(env, "has unknown scalar value"); 414 } 415 tnum_strn(tn_buf, sizeof(tn_buf), *range); 416 verbose(env, " should have been in %s\n", tn_buf); 417 } 418 419 static bool type_is_pkt_pointer(enum bpf_reg_type type) 420 { 421 return type == PTR_TO_PACKET || 422 type == PTR_TO_PACKET_META; 423 } 424 425 static bool type_is_sk_pointer(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_SOCKET || 428 type == PTR_TO_SOCK_COMMON || 429 type == PTR_TO_TCP_SOCK || 430 type == PTR_TO_XDP_SOCK; 431 } 432 433 static bool reg_type_not_null(enum bpf_reg_type type) 434 { 435 return type == PTR_TO_SOCKET || 436 type == PTR_TO_TCP_SOCK || 437 type == PTR_TO_MAP_VALUE || 438 type == PTR_TO_MAP_KEY || 439 type == PTR_TO_SOCK_COMMON; 440 } 441 442 static bool reg_type_may_be_null(enum bpf_reg_type type) 443 { 444 return type == PTR_TO_MAP_VALUE_OR_NULL || 445 type == PTR_TO_SOCKET_OR_NULL || 446 type == PTR_TO_SOCK_COMMON_OR_NULL || 447 type == PTR_TO_TCP_SOCK_OR_NULL || 448 type == PTR_TO_BTF_ID_OR_NULL || 449 type == PTR_TO_MEM_OR_NULL || 450 type == PTR_TO_RDONLY_BUF_OR_NULL || 451 type == PTR_TO_RDWR_BUF_OR_NULL; 452 } 453 454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 455 { 456 return reg->type == PTR_TO_MAP_VALUE && 457 map_value_has_spin_lock(reg->map_ptr); 458 } 459 460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 461 { 462 return type == PTR_TO_SOCKET || 463 type == PTR_TO_SOCKET_OR_NULL || 464 type == PTR_TO_TCP_SOCK || 465 type == PTR_TO_TCP_SOCK_OR_NULL || 466 type == PTR_TO_MEM || 467 type == PTR_TO_MEM_OR_NULL; 468 } 469 470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 471 { 472 return type == ARG_PTR_TO_SOCK_COMMON; 473 } 474 475 static bool arg_type_may_be_null(enum bpf_arg_type type) 476 { 477 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 478 type == ARG_PTR_TO_MEM_OR_NULL || 479 type == ARG_PTR_TO_CTX_OR_NULL || 480 type == ARG_PTR_TO_SOCKET_OR_NULL || 481 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL || 482 type == ARG_PTR_TO_STACK_OR_NULL; 483 } 484 485 /* Determine whether the function releases some resources allocated by another 486 * function call. The first reference type argument will be assumed to be 487 * released by release_reference(). 488 */ 489 static bool is_release_function(enum bpf_func_id func_id) 490 { 491 return func_id == BPF_FUNC_sk_release || 492 func_id == BPF_FUNC_ringbuf_submit || 493 func_id == BPF_FUNC_ringbuf_discard; 494 } 495 496 static bool may_be_acquire_function(enum bpf_func_id func_id) 497 { 498 return func_id == BPF_FUNC_sk_lookup_tcp || 499 func_id == BPF_FUNC_sk_lookup_udp || 500 func_id == BPF_FUNC_skc_lookup_tcp || 501 func_id == BPF_FUNC_map_lookup_elem || 502 func_id == BPF_FUNC_ringbuf_reserve; 503 } 504 505 static bool is_acquire_function(enum bpf_func_id func_id, 506 const struct bpf_map *map) 507 { 508 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 509 510 if (func_id == BPF_FUNC_sk_lookup_tcp || 511 func_id == BPF_FUNC_sk_lookup_udp || 512 func_id == BPF_FUNC_skc_lookup_tcp || 513 func_id == BPF_FUNC_ringbuf_reserve) 514 return true; 515 516 if (func_id == BPF_FUNC_map_lookup_elem && 517 (map_type == BPF_MAP_TYPE_SOCKMAP || 518 map_type == BPF_MAP_TYPE_SOCKHASH)) 519 return true; 520 521 return false; 522 } 523 524 static bool is_ptr_cast_function(enum bpf_func_id func_id) 525 { 526 return func_id == BPF_FUNC_tcp_sock || 527 func_id == BPF_FUNC_sk_fullsock || 528 func_id == BPF_FUNC_skc_to_tcp_sock || 529 func_id == BPF_FUNC_skc_to_tcp6_sock || 530 func_id == BPF_FUNC_skc_to_udp6_sock || 531 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 532 func_id == BPF_FUNC_skc_to_tcp_request_sock; 533 } 534 535 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 536 { 537 return BPF_CLASS(insn->code) == BPF_STX && 538 BPF_MODE(insn->code) == BPF_ATOMIC && 539 insn->imm == BPF_CMPXCHG; 540 } 541 542 /* string representation of 'enum bpf_reg_type' */ 543 static const char * const reg_type_str[] = { 544 [NOT_INIT] = "?", 545 [SCALAR_VALUE] = "inv", 546 [PTR_TO_CTX] = "ctx", 547 [CONST_PTR_TO_MAP] = "map_ptr", 548 [PTR_TO_MAP_VALUE] = "map_value", 549 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 550 [PTR_TO_STACK] = "fp", 551 [PTR_TO_PACKET] = "pkt", 552 [PTR_TO_PACKET_META] = "pkt_meta", 553 [PTR_TO_PACKET_END] = "pkt_end", 554 [PTR_TO_FLOW_KEYS] = "flow_keys", 555 [PTR_TO_SOCKET] = "sock", 556 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 557 [PTR_TO_SOCK_COMMON] = "sock_common", 558 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 559 [PTR_TO_TCP_SOCK] = "tcp_sock", 560 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 561 [PTR_TO_TP_BUFFER] = "tp_buffer", 562 [PTR_TO_XDP_SOCK] = "xdp_sock", 563 [PTR_TO_BTF_ID] = "ptr_", 564 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 565 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 566 [PTR_TO_MEM] = "mem", 567 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 568 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 569 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 570 [PTR_TO_RDWR_BUF] = "rdwr_buf", 571 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 572 [PTR_TO_FUNC] = "func", 573 [PTR_TO_MAP_KEY] = "map_key", 574 }; 575 576 static char slot_type_char[] = { 577 [STACK_INVALID] = '?', 578 [STACK_SPILL] = 'r', 579 [STACK_MISC] = 'm', 580 [STACK_ZERO] = '0', 581 }; 582 583 static void print_liveness(struct bpf_verifier_env *env, 584 enum bpf_reg_liveness live) 585 { 586 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 587 verbose(env, "_"); 588 if (live & REG_LIVE_READ) 589 verbose(env, "r"); 590 if (live & REG_LIVE_WRITTEN) 591 verbose(env, "w"); 592 if (live & REG_LIVE_DONE) 593 verbose(env, "D"); 594 } 595 596 static struct bpf_func_state *func(struct bpf_verifier_env *env, 597 const struct bpf_reg_state *reg) 598 { 599 struct bpf_verifier_state *cur = env->cur_state; 600 601 return cur->frame[reg->frameno]; 602 } 603 604 static const char *kernel_type_name(const struct btf* btf, u32 id) 605 { 606 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 607 } 608 609 /* The reg state of a pointer or a bounded scalar was saved when 610 * it was spilled to the stack. 611 */ 612 static bool is_spilled_reg(const struct bpf_stack_state *stack) 613 { 614 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 615 } 616 617 static void scrub_spilled_slot(u8 *stype) 618 { 619 if (*stype != STACK_INVALID) 620 *stype = STACK_MISC; 621 } 622 623 static void print_verifier_state(struct bpf_verifier_env *env, 624 const struct bpf_func_state *state) 625 { 626 const struct bpf_reg_state *reg; 627 enum bpf_reg_type t; 628 int i; 629 630 if (state->frameno) 631 verbose(env, " frame%d:", state->frameno); 632 for (i = 0; i < MAX_BPF_REG; i++) { 633 reg = &state->regs[i]; 634 t = reg->type; 635 if (t == NOT_INIT) 636 continue; 637 verbose(env, " R%d", i); 638 print_liveness(env, reg->live); 639 verbose(env, "=%s", reg_type_str[t]); 640 if (t == SCALAR_VALUE && reg->precise) 641 verbose(env, "P"); 642 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 643 tnum_is_const(reg->var_off)) { 644 /* reg->off should be 0 for SCALAR_VALUE */ 645 verbose(env, "%lld", reg->var_off.value + reg->off); 646 } else { 647 if (t == PTR_TO_BTF_ID || 648 t == PTR_TO_BTF_ID_OR_NULL || 649 t == PTR_TO_PERCPU_BTF_ID) 650 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 651 verbose(env, "(id=%d", reg->id); 652 if (reg_type_may_be_refcounted_or_null(t)) 653 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 654 if (t != SCALAR_VALUE) 655 verbose(env, ",off=%d", reg->off); 656 if (type_is_pkt_pointer(t)) 657 verbose(env, ",r=%d", reg->range); 658 else if (t == CONST_PTR_TO_MAP || 659 t == PTR_TO_MAP_KEY || 660 t == PTR_TO_MAP_VALUE || 661 t == PTR_TO_MAP_VALUE_OR_NULL) 662 verbose(env, ",ks=%d,vs=%d", 663 reg->map_ptr->key_size, 664 reg->map_ptr->value_size); 665 if (tnum_is_const(reg->var_off)) { 666 /* Typically an immediate SCALAR_VALUE, but 667 * could be a pointer whose offset is too big 668 * for reg->off 669 */ 670 verbose(env, ",imm=%llx", reg->var_off.value); 671 } else { 672 if (reg->smin_value != reg->umin_value && 673 reg->smin_value != S64_MIN) 674 verbose(env, ",smin_value=%lld", 675 (long long)reg->smin_value); 676 if (reg->smax_value != reg->umax_value && 677 reg->smax_value != S64_MAX) 678 verbose(env, ",smax_value=%lld", 679 (long long)reg->smax_value); 680 if (reg->umin_value != 0) 681 verbose(env, ",umin_value=%llu", 682 (unsigned long long)reg->umin_value); 683 if (reg->umax_value != U64_MAX) 684 verbose(env, ",umax_value=%llu", 685 (unsigned long long)reg->umax_value); 686 if (!tnum_is_unknown(reg->var_off)) { 687 char tn_buf[48]; 688 689 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 690 verbose(env, ",var_off=%s", tn_buf); 691 } 692 if (reg->s32_min_value != reg->smin_value && 693 reg->s32_min_value != S32_MIN) 694 verbose(env, ",s32_min_value=%d", 695 (int)(reg->s32_min_value)); 696 if (reg->s32_max_value != reg->smax_value && 697 reg->s32_max_value != S32_MAX) 698 verbose(env, ",s32_max_value=%d", 699 (int)(reg->s32_max_value)); 700 if (reg->u32_min_value != reg->umin_value && 701 reg->u32_min_value != U32_MIN) 702 verbose(env, ",u32_min_value=%d", 703 (int)(reg->u32_min_value)); 704 if (reg->u32_max_value != reg->umax_value && 705 reg->u32_max_value != U32_MAX) 706 verbose(env, ",u32_max_value=%d", 707 (int)(reg->u32_max_value)); 708 } 709 verbose(env, ")"); 710 } 711 } 712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 713 char types_buf[BPF_REG_SIZE + 1]; 714 bool valid = false; 715 int j; 716 717 for (j = 0; j < BPF_REG_SIZE; j++) { 718 if (state->stack[i].slot_type[j] != STACK_INVALID) 719 valid = true; 720 types_buf[j] = slot_type_char[ 721 state->stack[i].slot_type[j]]; 722 } 723 types_buf[BPF_REG_SIZE] = 0; 724 if (!valid) 725 continue; 726 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 727 print_liveness(env, state->stack[i].spilled_ptr.live); 728 if (is_spilled_reg(&state->stack[i])) { 729 reg = &state->stack[i].spilled_ptr; 730 t = reg->type; 731 verbose(env, "=%s", reg_type_str[t]); 732 if (t == SCALAR_VALUE && reg->precise) 733 verbose(env, "P"); 734 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 735 verbose(env, "%lld", reg->var_off.value + reg->off); 736 } else { 737 verbose(env, "=%s", types_buf); 738 } 739 } 740 if (state->acquired_refs && state->refs[0].id) { 741 verbose(env, " refs=%d", state->refs[0].id); 742 for (i = 1; i < state->acquired_refs; i++) 743 if (state->refs[i].id) 744 verbose(env, ",%d", state->refs[i].id); 745 } 746 if (state->in_callback_fn) 747 verbose(env, " cb"); 748 if (state->in_async_callback_fn) 749 verbose(env, " async_cb"); 750 verbose(env, "\n"); 751 } 752 753 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 754 * small to hold src. This is different from krealloc since we don't want to preserve 755 * the contents of dst. 756 * 757 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 758 * not be allocated. 759 */ 760 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 761 { 762 size_t bytes; 763 764 if (ZERO_OR_NULL_PTR(src)) 765 goto out; 766 767 if (unlikely(check_mul_overflow(n, size, &bytes))) 768 return NULL; 769 770 if (ksize(dst) < bytes) { 771 kfree(dst); 772 dst = kmalloc_track_caller(bytes, flags); 773 if (!dst) 774 return NULL; 775 } 776 777 memcpy(dst, src, bytes); 778 out: 779 return dst ? dst : ZERO_SIZE_PTR; 780 } 781 782 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 783 * small to hold new_n items. new items are zeroed out if the array grows. 784 * 785 * Contrary to krealloc_array, does not free arr if new_n is zero. 786 */ 787 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 788 { 789 if (!new_n || old_n == new_n) 790 goto out; 791 792 arr = krealloc_array(arr, new_n, size, GFP_KERNEL); 793 if (!arr) 794 return NULL; 795 796 if (new_n > old_n) 797 memset(arr + old_n * size, 0, (new_n - old_n) * size); 798 799 out: 800 return arr ? arr : ZERO_SIZE_PTR; 801 } 802 803 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 804 { 805 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 806 sizeof(struct bpf_reference_state), GFP_KERNEL); 807 if (!dst->refs) 808 return -ENOMEM; 809 810 dst->acquired_refs = src->acquired_refs; 811 return 0; 812 } 813 814 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 815 { 816 size_t n = src->allocated_stack / BPF_REG_SIZE; 817 818 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 819 GFP_KERNEL); 820 if (!dst->stack) 821 return -ENOMEM; 822 823 dst->allocated_stack = src->allocated_stack; 824 return 0; 825 } 826 827 static int resize_reference_state(struct bpf_func_state *state, size_t n) 828 { 829 state->refs = realloc_array(state->refs, state->acquired_refs, n, 830 sizeof(struct bpf_reference_state)); 831 if (!state->refs) 832 return -ENOMEM; 833 834 state->acquired_refs = n; 835 return 0; 836 } 837 838 static int grow_stack_state(struct bpf_func_state *state, int size) 839 { 840 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 841 842 if (old_n >= n) 843 return 0; 844 845 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 846 if (!state->stack) 847 return -ENOMEM; 848 849 state->allocated_stack = size; 850 return 0; 851 } 852 853 /* Acquire a pointer id from the env and update the state->refs to include 854 * this new pointer reference. 855 * On success, returns a valid pointer id to associate with the register 856 * On failure, returns a negative errno. 857 */ 858 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 859 { 860 struct bpf_func_state *state = cur_func(env); 861 int new_ofs = state->acquired_refs; 862 int id, err; 863 864 err = resize_reference_state(state, state->acquired_refs + 1); 865 if (err) 866 return err; 867 id = ++env->id_gen; 868 state->refs[new_ofs].id = id; 869 state->refs[new_ofs].insn_idx = insn_idx; 870 871 return id; 872 } 873 874 /* release function corresponding to acquire_reference_state(). Idempotent. */ 875 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 876 { 877 int i, last_idx; 878 879 last_idx = state->acquired_refs - 1; 880 for (i = 0; i < state->acquired_refs; i++) { 881 if (state->refs[i].id == ptr_id) { 882 if (last_idx && i != last_idx) 883 memcpy(&state->refs[i], &state->refs[last_idx], 884 sizeof(*state->refs)); 885 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 886 state->acquired_refs--; 887 return 0; 888 } 889 } 890 return -EINVAL; 891 } 892 893 static void free_func_state(struct bpf_func_state *state) 894 { 895 if (!state) 896 return; 897 kfree(state->refs); 898 kfree(state->stack); 899 kfree(state); 900 } 901 902 static void clear_jmp_history(struct bpf_verifier_state *state) 903 { 904 kfree(state->jmp_history); 905 state->jmp_history = NULL; 906 state->jmp_history_cnt = 0; 907 } 908 909 static void free_verifier_state(struct bpf_verifier_state *state, 910 bool free_self) 911 { 912 int i; 913 914 for (i = 0; i <= state->curframe; i++) { 915 free_func_state(state->frame[i]); 916 state->frame[i] = NULL; 917 } 918 clear_jmp_history(state); 919 if (free_self) 920 kfree(state); 921 } 922 923 /* copy verifier state from src to dst growing dst stack space 924 * when necessary to accommodate larger src stack 925 */ 926 static int copy_func_state(struct bpf_func_state *dst, 927 const struct bpf_func_state *src) 928 { 929 int err; 930 931 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 932 err = copy_reference_state(dst, src); 933 if (err) 934 return err; 935 return copy_stack_state(dst, src); 936 } 937 938 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 939 const struct bpf_verifier_state *src) 940 { 941 struct bpf_func_state *dst; 942 int i, err; 943 944 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 945 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 946 GFP_USER); 947 if (!dst_state->jmp_history) 948 return -ENOMEM; 949 dst_state->jmp_history_cnt = src->jmp_history_cnt; 950 951 /* if dst has more stack frames then src frame, free them */ 952 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 953 free_func_state(dst_state->frame[i]); 954 dst_state->frame[i] = NULL; 955 } 956 dst_state->speculative = src->speculative; 957 dst_state->curframe = src->curframe; 958 dst_state->active_spin_lock = src->active_spin_lock; 959 dst_state->branches = src->branches; 960 dst_state->parent = src->parent; 961 dst_state->first_insn_idx = src->first_insn_idx; 962 dst_state->last_insn_idx = src->last_insn_idx; 963 for (i = 0; i <= src->curframe; i++) { 964 dst = dst_state->frame[i]; 965 if (!dst) { 966 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 967 if (!dst) 968 return -ENOMEM; 969 dst_state->frame[i] = dst; 970 } 971 err = copy_func_state(dst, src->frame[i]); 972 if (err) 973 return err; 974 } 975 return 0; 976 } 977 978 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 979 { 980 while (st) { 981 u32 br = --st->branches; 982 983 /* WARN_ON(br > 1) technically makes sense here, 984 * but see comment in push_stack(), hence: 985 */ 986 WARN_ONCE((int)br < 0, 987 "BUG update_branch_counts:branches_to_explore=%d\n", 988 br); 989 if (br) 990 break; 991 st = st->parent; 992 } 993 } 994 995 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 996 int *insn_idx, bool pop_log) 997 { 998 struct bpf_verifier_state *cur = env->cur_state; 999 struct bpf_verifier_stack_elem *elem, *head = env->head; 1000 int err; 1001 1002 if (env->head == NULL) 1003 return -ENOENT; 1004 1005 if (cur) { 1006 err = copy_verifier_state(cur, &head->st); 1007 if (err) 1008 return err; 1009 } 1010 if (pop_log) 1011 bpf_vlog_reset(&env->log, head->log_pos); 1012 if (insn_idx) 1013 *insn_idx = head->insn_idx; 1014 if (prev_insn_idx) 1015 *prev_insn_idx = head->prev_insn_idx; 1016 elem = head->next; 1017 free_verifier_state(&head->st, false); 1018 kfree(head); 1019 env->head = elem; 1020 env->stack_size--; 1021 return 0; 1022 } 1023 1024 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 1025 int insn_idx, int prev_insn_idx, 1026 bool speculative) 1027 { 1028 struct bpf_verifier_state *cur = env->cur_state; 1029 struct bpf_verifier_stack_elem *elem; 1030 int err; 1031 1032 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1033 if (!elem) 1034 goto err; 1035 1036 elem->insn_idx = insn_idx; 1037 elem->prev_insn_idx = prev_insn_idx; 1038 elem->next = env->head; 1039 elem->log_pos = env->log.len_used; 1040 env->head = elem; 1041 env->stack_size++; 1042 err = copy_verifier_state(&elem->st, cur); 1043 if (err) 1044 goto err; 1045 elem->st.speculative |= speculative; 1046 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1047 verbose(env, "The sequence of %d jumps is too complex.\n", 1048 env->stack_size); 1049 goto err; 1050 } 1051 if (elem->st.parent) { 1052 ++elem->st.parent->branches; 1053 /* WARN_ON(branches > 2) technically makes sense here, 1054 * but 1055 * 1. speculative states will bump 'branches' for non-branch 1056 * instructions 1057 * 2. is_state_visited() heuristics may decide not to create 1058 * a new state for a sequence of branches and all such current 1059 * and cloned states will be pointing to a single parent state 1060 * which might have large 'branches' count. 1061 */ 1062 } 1063 return &elem->st; 1064 err: 1065 free_verifier_state(env->cur_state, true); 1066 env->cur_state = NULL; 1067 /* pop all elements and return */ 1068 while (!pop_stack(env, NULL, NULL, false)); 1069 return NULL; 1070 } 1071 1072 #define CALLER_SAVED_REGS 6 1073 static const int caller_saved[CALLER_SAVED_REGS] = { 1074 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1075 }; 1076 1077 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1078 struct bpf_reg_state *reg); 1079 1080 /* This helper doesn't clear reg->id */ 1081 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1082 { 1083 reg->var_off = tnum_const(imm); 1084 reg->smin_value = (s64)imm; 1085 reg->smax_value = (s64)imm; 1086 reg->umin_value = imm; 1087 reg->umax_value = imm; 1088 1089 reg->s32_min_value = (s32)imm; 1090 reg->s32_max_value = (s32)imm; 1091 reg->u32_min_value = (u32)imm; 1092 reg->u32_max_value = (u32)imm; 1093 } 1094 1095 /* Mark the unknown part of a register (variable offset or scalar value) as 1096 * known to have the value @imm. 1097 */ 1098 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1099 { 1100 /* Clear id, off, and union(map_ptr, range) */ 1101 memset(((u8 *)reg) + sizeof(reg->type), 0, 1102 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1103 ___mark_reg_known(reg, imm); 1104 } 1105 1106 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1107 { 1108 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1109 reg->s32_min_value = (s32)imm; 1110 reg->s32_max_value = (s32)imm; 1111 reg->u32_min_value = (u32)imm; 1112 reg->u32_max_value = (u32)imm; 1113 } 1114 1115 /* Mark the 'variable offset' part of a register as zero. This should be 1116 * used only on registers holding a pointer type. 1117 */ 1118 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1119 { 1120 __mark_reg_known(reg, 0); 1121 } 1122 1123 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1124 { 1125 __mark_reg_known(reg, 0); 1126 reg->type = SCALAR_VALUE; 1127 } 1128 1129 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1130 struct bpf_reg_state *regs, u32 regno) 1131 { 1132 if (WARN_ON(regno >= MAX_BPF_REG)) { 1133 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1134 /* Something bad happened, let's kill all regs */ 1135 for (regno = 0; regno < MAX_BPF_REG; regno++) 1136 __mark_reg_not_init(env, regs + regno); 1137 return; 1138 } 1139 __mark_reg_known_zero(regs + regno); 1140 } 1141 1142 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 1143 { 1144 switch (reg->type) { 1145 case PTR_TO_MAP_VALUE_OR_NULL: { 1146 const struct bpf_map *map = reg->map_ptr; 1147 1148 if (map->inner_map_meta) { 1149 reg->type = CONST_PTR_TO_MAP; 1150 reg->map_ptr = map->inner_map_meta; 1151 /* transfer reg's id which is unique for every map_lookup_elem 1152 * as UID of the inner map. 1153 */ 1154 if (map_value_has_timer(map->inner_map_meta)) 1155 reg->map_uid = reg->id; 1156 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 1157 reg->type = PTR_TO_XDP_SOCK; 1158 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 1159 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 1160 reg->type = PTR_TO_SOCKET; 1161 } else { 1162 reg->type = PTR_TO_MAP_VALUE; 1163 } 1164 break; 1165 } 1166 case PTR_TO_SOCKET_OR_NULL: 1167 reg->type = PTR_TO_SOCKET; 1168 break; 1169 case PTR_TO_SOCK_COMMON_OR_NULL: 1170 reg->type = PTR_TO_SOCK_COMMON; 1171 break; 1172 case PTR_TO_TCP_SOCK_OR_NULL: 1173 reg->type = PTR_TO_TCP_SOCK; 1174 break; 1175 case PTR_TO_BTF_ID_OR_NULL: 1176 reg->type = PTR_TO_BTF_ID; 1177 break; 1178 case PTR_TO_MEM_OR_NULL: 1179 reg->type = PTR_TO_MEM; 1180 break; 1181 case PTR_TO_RDONLY_BUF_OR_NULL: 1182 reg->type = PTR_TO_RDONLY_BUF; 1183 break; 1184 case PTR_TO_RDWR_BUF_OR_NULL: 1185 reg->type = PTR_TO_RDWR_BUF; 1186 break; 1187 default: 1188 WARN_ONCE(1, "unknown nullable register type"); 1189 } 1190 } 1191 1192 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1193 { 1194 return type_is_pkt_pointer(reg->type); 1195 } 1196 1197 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1198 { 1199 return reg_is_pkt_pointer(reg) || 1200 reg->type == PTR_TO_PACKET_END; 1201 } 1202 1203 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1204 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1205 enum bpf_reg_type which) 1206 { 1207 /* The register can already have a range from prior markings. 1208 * This is fine as long as it hasn't been advanced from its 1209 * origin. 1210 */ 1211 return reg->type == which && 1212 reg->id == 0 && 1213 reg->off == 0 && 1214 tnum_equals_const(reg->var_off, 0); 1215 } 1216 1217 /* Reset the min/max bounds of a register */ 1218 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1219 { 1220 reg->smin_value = S64_MIN; 1221 reg->smax_value = S64_MAX; 1222 reg->umin_value = 0; 1223 reg->umax_value = U64_MAX; 1224 1225 reg->s32_min_value = S32_MIN; 1226 reg->s32_max_value = S32_MAX; 1227 reg->u32_min_value = 0; 1228 reg->u32_max_value = U32_MAX; 1229 } 1230 1231 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1232 { 1233 reg->smin_value = S64_MIN; 1234 reg->smax_value = S64_MAX; 1235 reg->umin_value = 0; 1236 reg->umax_value = U64_MAX; 1237 } 1238 1239 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1240 { 1241 reg->s32_min_value = S32_MIN; 1242 reg->s32_max_value = S32_MAX; 1243 reg->u32_min_value = 0; 1244 reg->u32_max_value = U32_MAX; 1245 } 1246 1247 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1248 { 1249 struct tnum var32_off = tnum_subreg(reg->var_off); 1250 1251 /* min signed is max(sign bit) | min(other bits) */ 1252 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1253 var32_off.value | (var32_off.mask & S32_MIN)); 1254 /* max signed is min(sign bit) | max(other bits) */ 1255 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1256 var32_off.value | (var32_off.mask & S32_MAX)); 1257 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1258 reg->u32_max_value = min(reg->u32_max_value, 1259 (u32)(var32_off.value | var32_off.mask)); 1260 } 1261 1262 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1263 { 1264 /* min signed is max(sign bit) | min(other bits) */ 1265 reg->smin_value = max_t(s64, reg->smin_value, 1266 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1267 /* max signed is min(sign bit) | max(other bits) */ 1268 reg->smax_value = min_t(s64, reg->smax_value, 1269 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1270 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1271 reg->umax_value = min(reg->umax_value, 1272 reg->var_off.value | reg->var_off.mask); 1273 } 1274 1275 static void __update_reg_bounds(struct bpf_reg_state *reg) 1276 { 1277 __update_reg32_bounds(reg); 1278 __update_reg64_bounds(reg); 1279 } 1280 1281 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1282 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1283 { 1284 /* Learn sign from signed bounds. 1285 * If we cannot cross the sign boundary, then signed and unsigned bounds 1286 * are the same, so combine. This works even in the negative case, e.g. 1287 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1288 */ 1289 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1290 reg->s32_min_value = reg->u32_min_value = 1291 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1292 reg->s32_max_value = reg->u32_max_value = 1293 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1294 return; 1295 } 1296 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1297 * boundary, so we must be careful. 1298 */ 1299 if ((s32)reg->u32_max_value >= 0) { 1300 /* Positive. We can't learn anything from the smin, but smax 1301 * is positive, hence safe. 1302 */ 1303 reg->s32_min_value = reg->u32_min_value; 1304 reg->s32_max_value = reg->u32_max_value = 1305 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1306 } else if ((s32)reg->u32_min_value < 0) { 1307 /* Negative. We can't learn anything from the smax, but smin 1308 * is negative, hence safe. 1309 */ 1310 reg->s32_min_value = reg->u32_min_value = 1311 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1312 reg->s32_max_value = reg->u32_max_value; 1313 } 1314 } 1315 1316 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1317 { 1318 /* Learn sign from signed bounds. 1319 * If we cannot cross the sign boundary, then signed and unsigned bounds 1320 * are the same, so combine. This works even in the negative case, e.g. 1321 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1322 */ 1323 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1324 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1325 reg->umin_value); 1326 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1327 reg->umax_value); 1328 return; 1329 } 1330 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1331 * boundary, so we must be careful. 1332 */ 1333 if ((s64)reg->umax_value >= 0) { 1334 /* Positive. We can't learn anything from the smin, but smax 1335 * is positive, hence safe. 1336 */ 1337 reg->smin_value = reg->umin_value; 1338 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1339 reg->umax_value); 1340 } else if ((s64)reg->umin_value < 0) { 1341 /* Negative. We can't learn anything from the smax, but smin 1342 * is negative, hence safe. 1343 */ 1344 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1345 reg->umin_value); 1346 reg->smax_value = reg->umax_value; 1347 } 1348 } 1349 1350 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1351 { 1352 __reg32_deduce_bounds(reg); 1353 __reg64_deduce_bounds(reg); 1354 } 1355 1356 /* Attempts to improve var_off based on unsigned min/max information */ 1357 static void __reg_bound_offset(struct bpf_reg_state *reg) 1358 { 1359 struct tnum var64_off = tnum_intersect(reg->var_off, 1360 tnum_range(reg->umin_value, 1361 reg->umax_value)); 1362 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1363 tnum_range(reg->u32_min_value, 1364 reg->u32_max_value)); 1365 1366 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1367 } 1368 1369 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1370 { 1371 reg->umin_value = reg->u32_min_value; 1372 reg->umax_value = reg->u32_max_value; 1373 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1374 * but must be positive otherwise set to worse case bounds 1375 * and refine later from tnum. 1376 */ 1377 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1378 reg->smax_value = reg->s32_max_value; 1379 else 1380 reg->smax_value = U32_MAX; 1381 if (reg->s32_min_value >= 0) 1382 reg->smin_value = reg->s32_min_value; 1383 else 1384 reg->smin_value = 0; 1385 } 1386 1387 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1388 { 1389 /* special case when 64-bit register has upper 32-bit register 1390 * zeroed. Typically happens after zext or <<32, >>32 sequence 1391 * allowing us to use 32-bit bounds directly, 1392 */ 1393 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1394 __reg_assign_32_into_64(reg); 1395 } else { 1396 /* Otherwise the best we can do is push lower 32bit known and 1397 * unknown bits into register (var_off set from jmp logic) 1398 * then learn as much as possible from the 64-bit tnum 1399 * known and unknown bits. The previous smin/smax bounds are 1400 * invalid here because of jmp32 compare so mark them unknown 1401 * so they do not impact tnum bounds calculation. 1402 */ 1403 __mark_reg64_unbounded(reg); 1404 __update_reg_bounds(reg); 1405 } 1406 1407 /* Intersecting with the old var_off might have improved our bounds 1408 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1409 * then new var_off is (0; 0x7f...fc) which improves our umax. 1410 */ 1411 __reg_deduce_bounds(reg); 1412 __reg_bound_offset(reg); 1413 __update_reg_bounds(reg); 1414 } 1415 1416 static bool __reg64_bound_s32(s64 a) 1417 { 1418 return a >= S32_MIN && a <= S32_MAX; 1419 } 1420 1421 static bool __reg64_bound_u32(u64 a) 1422 { 1423 return a >= U32_MIN && a <= U32_MAX; 1424 } 1425 1426 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1427 { 1428 __mark_reg32_unbounded(reg); 1429 1430 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1431 reg->s32_min_value = (s32)reg->smin_value; 1432 reg->s32_max_value = (s32)reg->smax_value; 1433 } 1434 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 1435 reg->u32_min_value = (u32)reg->umin_value; 1436 reg->u32_max_value = (u32)reg->umax_value; 1437 } 1438 1439 /* Intersecting with the old var_off might have improved our bounds 1440 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1441 * then new var_off is (0; 0x7f...fc) which improves our umax. 1442 */ 1443 __reg_deduce_bounds(reg); 1444 __reg_bound_offset(reg); 1445 __update_reg_bounds(reg); 1446 } 1447 1448 /* Mark a register as having a completely unknown (scalar) value. */ 1449 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1450 struct bpf_reg_state *reg) 1451 { 1452 /* 1453 * Clear type, id, off, and union(map_ptr, range) and 1454 * padding between 'type' and union 1455 */ 1456 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1457 reg->type = SCALAR_VALUE; 1458 reg->var_off = tnum_unknown; 1459 reg->frameno = 0; 1460 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1461 __mark_reg_unbounded(reg); 1462 } 1463 1464 static void mark_reg_unknown(struct bpf_verifier_env *env, 1465 struct bpf_reg_state *regs, u32 regno) 1466 { 1467 if (WARN_ON(regno >= MAX_BPF_REG)) { 1468 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1469 /* Something bad happened, let's kill all regs except FP */ 1470 for (regno = 0; regno < BPF_REG_FP; regno++) 1471 __mark_reg_not_init(env, regs + regno); 1472 return; 1473 } 1474 __mark_reg_unknown(env, regs + regno); 1475 } 1476 1477 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1478 struct bpf_reg_state *reg) 1479 { 1480 __mark_reg_unknown(env, reg); 1481 reg->type = NOT_INIT; 1482 } 1483 1484 static void mark_reg_not_init(struct bpf_verifier_env *env, 1485 struct bpf_reg_state *regs, u32 regno) 1486 { 1487 if (WARN_ON(regno >= MAX_BPF_REG)) { 1488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1489 /* Something bad happened, let's kill all regs except FP */ 1490 for (regno = 0; regno < BPF_REG_FP; regno++) 1491 __mark_reg_not_init(env, regs + regno); 1492 return; 1493 } 1494 __mark_reg_not_init(env, regs + regno); 1495 } 1496 1497 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1498 struct bpf_reg_state *regs, u32 regno, 1499 enum bpf_reg_type reg_type, 1500 struct btf *btf, u32 btf_id) 1501 { 1502 if (reg_type == SCALAR_VALUE) { 1503 mark_reg_unknown(env, regs, regno); 1504 return; 1505 } 1506 mark_reg_known_zero(env, regs, regno); 1507 regs[regno].type = PTR_TO_BTF_ID; 1508 regs[regno].btf = btf; 1509 regs[regno].btf_id = btf_id; 1510 } 1511 1512 #define DEF_NOT_SUBREG (0) 1513 static void init_reg_state(struct bpf_verifier_env *env, 1514 struct bpf_func_state *state) 1515 { 1516 struct bpf_reg_state *regs = state->regs; 1517 int i; 1518 1519 for (i = 0; i < MAX_BPF_REG; i++) { 1520 mark_reg_not_init(env, regs, i); 1521 regs[i].live = REG_LIVE_NONE; 1522 regs[i].parent = NULL; 1523 regs[i].subreg_def = DEF_NOT_SUBREG; 1524 } 1525 1526 /* frame pointer */ 1527 regs[BPF_REG_FP].type = PTR_TO_STACK; 1528 mark_reg_known_zero(env, regs, BPF_REG_FP); 1529 regs[BPF_REG_FP].frameno = state->frameno; 1530 } 1531 1532 #define BPF_MAIN_FUNC (-1) 1533 static void init_func_state(struct bpf_verifier_env *env, 1534 struct bpf_func_state *state, 1535 int callsite, int frameno, int subprogno) 1536 { 1537 state->callsite = callsite; 1538 state->frameno = frameno; 1539 state->subprogno = subprogno; 1540 init_reg_state(env, state); 1541 } 1542 1543 /* Similar to push_stack(), but for async callbacks */ 1544 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 1545 int insn_idx, int prev_insn_idx, 1546 int subprog) 1547 { 1548 struct bpf_verifier_stack_elem *elem; 1549 struct bpf_func_state *frame; 1550 1551 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 1552 if (!elem) 1553 goto err; 1554 1555 elem->insn_idx = insn_idx; 1556 elem->prev_insn_idx = prev_insn_idx; 1557 elem->next = env->head; 1558 elem->log_pos = env->log.len_used; 1559 env->head = elem; 1560 env->stack_size++; 1561 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 1562 verbose(env, 1563 "The sequence of %d jumps is too complex for async cb.\n", 1564 env->stack_size); 1565 goto err; 1566 } 1567 /* Unlike push_stack() do not copy_verifier_state(). 1568 * The caller state doesn't matter. 1569 * This is async callback. It starts in a fresh stack. 1570 * Initialize it similar to do_check_common(). 1571 */ 1572 elem->st.branches = 1; 1573 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 1574 if (!frame) 1575 goto err; 1576 init_func_state(env, frame, 1577 BPF_MAIN_FUNC /* callsite */, 1578 0 /* frameno within this callchain */, 1579 subprog /* subprog number within this prog */); 1580 elem->st.frame[0] = frame; 1581 return &elem->st; 1582 err: 1583 free_verifier_state(env->cur_state, true); 1584 env->cur_state = NULL; 1585 /* pop all elements and return */ 1586 while (!pop_stack(env, NULL, NULL, false)); 1587 return NULL; 1588 } 1589 1590 1591 enum reg_arg_type { 1592 SRC_OP, /* register is used as source operand */ 1593 DST_OP, /* register is used as destination operand */ 1594 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1595 }; 1596 1597 static int cmp_subprogs(const void *a, const void *b) 1598 { 1599 return ((struct bpf_subprog_info *)a)->start - 1600 ((struct bpf_subprog_info *)b)->start; 1601 } 1602 1603 static int find_subprog(struct bpf_verifier_env *env, int off) 1604 { 1605 struct bpf_subprog_info *p; 1606 1607 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1608 sizeof(env->subprog_info[0]), cmp_subprogs); 1609 if (!p) 1610 return -ENOENT; 1611 return p - env->subprog_info; 1612 1613 } 1614 1615 static int add_subprog(struct bpf_verifier_env *env, int off) 1616 { 1617 int insn_cnt = env->prog->len; 1618 int ret; 1619 1620 if (off >= insn_cnt || off < 0) { 1621 verbose(env, "call to invalid destination\n"); 1622 return -EINVAL; 1623 } 1624 ret = find_subprog(env, off); 1625 if (ret >= 0) 1626 return ret; 1627 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1628 verbose(env, "too many subprograms\n"); 1629 return -E2BIG; 1630 } 1631 /* determine subprog starts. The end is one before the next starts */ 1632 env->subprog_info[env->subprog_cnt++].start = off; 1633 sort(env->subprog_info, env->subprog_cnt, 1634 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1635 return env->subprog_cnt - 1; 1636 } 1637 1638 #define MAX_KFUNC_DESCS 256 1639 #define MAX_KFUNC_BTFS 256 1640 1641 struct bpf_kfunc_desc { 1642 struct btf_func_model func_model; 1643 u32 func_id; 1644 s32 imm; 1645 u16 offset; 1646 }; 1647 1648 struct bpf_kfunc_btf { 1649 struct btf *btf; 1650 struct module *module; 1651 u16 offset; 1652 }; 1653 1654 struct bpf_kfunc_desc_tab { 1655 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 1656 u32 nr_descs; 1657 }; 1658 1659 struct bpf_kfunc_btf_tab { 1660 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 1661 u32 nr_descs; 1662 }; 1663 1664 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 1665 { 1666 const struct bpf_kfunc_desc *d0 = a; 1667 const struct bpf_kfunc_desc *d1 = b; 1668 1669 /* func_id is not greater than BTF_MAX_TYPE */ 1670 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 1671 } 1672 1673 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 1674 { 1675 const struct bpf_kfunc_btf *d0 = a; 1676 const struct bpf_kfunc_btf *d1 = b; 1677 1678 return d0->offset - d1->offset; 1679 } 1680 1681 static const struct bpf_kfunc_desc * 1682 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 1683 { 1684 struct bpf_kfunc_desc desc = { 1685 .func_id = func_id, 1686 .offset = offset, 1687 }; 1688 struct bpf_kfunc_desc_tab *tab; 1689 1690 tab = prog->aux->kfunc_tab; 1691 return bsearch(&desc, tab->descs, tab->nr_descs, 1692 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 1693 } 1694 1695 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 1696 s16 offset, struct module **btf_modp) 1697 { 1698 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 1699 struct bpf_kfunc_btf_tab *tab; 1700 struct bpf_kfunc_btf *b; 1701 struct module *mod; 1702 struct btf *btf; 1703 int btf_fd; 1704 1705 tab = env->prog->aux->kfunc_btf_tab; 1706 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 1707 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 1708 if (!b) { 1709 if (tab->nr_descs == MAX_KFUNC_BTFS) { 1710 verbose(env, "too many different module BTFs\n"); 1711 return ERR_PTR(-E2BIG); 1712 } 1713 1714 if (bpfptr_is_null(env->fd_array)) { 1715 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 1716 return ERR_PTR(-EPROTO); 1717 } 1718 1719 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 1720 offset * sizeof(btf_fd), 1721 sizeof(btf_fd))) 1722 return ERR_PTR(-EFAULT); 1723 1724 btf = btf_get_by_fd(btf_fd); 1725 if (IS_ERR(btf)) { 1726 verbose(env, "invalid module BTF fd specified\n"); 1727 return btf; 1728 } 1729 1730 if (!btf_is_module(btf)) { 1731 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 1732 btf_put(btf); 1733 return ERR_PTR(-EINVAL); 1734 } 1735 1736 mod = btf_try_get_module(btf); 1737 if (!mod) { 1738 btf_put(btf); 1739 return ERR_PTR(-ENXIO); 1740 } 1741 1742 b = &tab->descs[tab->nr_descs++]; 1743 b->btf = btf; 1744 b->module = mod; 1745 b->offset = offset; 1746 1747 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1748 kfunc_btf_cmp_by_off, NULL); 1749 } 1750 if (btf_modp) 1751 *btf_modp = b->module; 1752 return b->btf; 1753 } 1754 1755 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 1756 { 1757 if (!tab) 1758 return; 1759 1760 while (tab->nr_descs--) { 1761 module_put(tab->descs[tab->nr_descs].module); 1762 btf_put(tab->descs[tab->nr_descs].btf); 1763 } 1764 kfree(tab); 1765 } 1766 1767 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, 1768 u32 func_id, s16 offset, 1769 struct module **btf_modp) 1770 { 1771 if (offset) { 1772 if (offset < 0) { 1773 /* In the future, this can be allowed to increase limit 1774 * of fd index into fd_array, interpreted as u16. 1775 */ 1776 verbose(env, "negative offset disallowed for kernel module function call\n"); 1777 return ERR_PTR(-EINVAL); 1778 } 1779 1780 return __find_kfunc_desc_btf(env, offset, btf_modp); 1781 } 1782 return btf_vmlinux ?: ERR_PTR(-ENOENT); 1783 } 1784 1785 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 1786 { 1787 const struct btf_type *func, *func_proto; 1788 struct bpf_kfunc_btf_tab *btf_tab; 1789 struct bpf_kfunc_desc_tab *tab; 1790 struct bpf_prog_aux *prog_aux; 1791 struct bpf_kfunc_desc *desc; 1792 const char *func_name; 1793 struct btf *desc_btf; 1794 unsigned long addr; 1795 int err; 1796 1797 prog_aux = env->prog->aux; 1798 tab = prog_aux->kfunc_tab; 1799 btf_tab = prog_aux->kfunc_btf_tab; 1800 if (!tab) { 1801 if (!btf_vmlinux) { 1802 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 1803 return -ENOTSUPP; 1804 } 1805 1806 if (!env->prog->jit_requested) { 1807 verbose(env, "JIT is required for calling kernel function\n"); 1808 return -ENOTSUPP; 1809 } 1810 1811 if (!bpf_jit_supports_kfunc_call()) { 1812 verbose(env, "JIT does not support calling kernel function\n"); 1813 return -ENOTSUPP; 1814 } 1815 1816 if (!env->prog->gpl_compatible) { 1817 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 1818 return -EINVAL; 1819 } 1820 1821 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 1822 if (!tab) 1823 return -ENOMEM; 1824 prog_aux->kfunc_tab = tab; 1825 } 1826 1827 /* func_id == 0 is always invalid, but instead of returning an error, be 1828 * conservative and wait until the code elimination pass before returning 1829 * error, so that invalid calls that get pruned out can be in BPF programs 1830 * loaded from userspace. It is also required that offset be untouched 1831 * for such calls. 1832 */ 1833 if (!func_id && !offset) 1834 return 0; 1835 1836 if (!btf_tab && offset) { 1837 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 1838 if (!btf_tab) 1839 return -ENOMEM; 1840 prog_aux->kfunc_btf_tab = btf_tab; 1841 } 1842 1843 desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL); 1844 if (IS_ERR(desc_btf)) { 1845 verbose(env, "failed to find BTF for kernel function\n"); 1846 return PTR_ERR(desc_btf); 1847 } 1848 1849 if (find_kfunc_desc(env->prog, func_id, offset)) 1850 return 0; 1851 1852 if (tab->nr_descs == MAX_KFUNC_DESCS) { 1853 verbose(env, "too many different kernel function calls\n"); 1854 return -E2BIG; 1855 } 1856 1857 func = btf_type_by_id(desc_btf, func_id); 1858 if (!func || !btf_type_is_func(func)) { 1859 verbose(env, "kernel btf_id %u is not a function\n", 1860 func_id); 1861 return -EINVAL; 1862 } 1863 func_proto = btf_type_by_id(desc_btf, func->type); 1864 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 1865 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 1866 func_id); 1867 return -EINVAL; 1868 } 1869 1870 func_name = btf_name_by_offset(desc_btf, func->name_off); 1871 addr = kallsyms_lookup_name(func_name); 1872 if (!addr) { 1873 verbose(env, "cannot find address for kernel function %s\n", 1874 func_name); 1875 return -EINVAL; 1876 } 1877 1878 desc = &tab->descs[tab->nr_descs++]; 1879 desc->func_id = func_id; 1880 desc->imm = BPF_CALL_IMM(addr); 1881 desc->offset = offset; 1882 err = btf_distill_func_proto(&env->log, desc_btf, 1883 func_proto, func_name, 1884 &desc->func_model); 1885 if (!err) 1886 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1887 kfunc_desc_cmp_by_id_off, NULL); 1888 return err; 1889 } 1890 1891 static int kfunc_desc_cmp_by_imm(const void *a, const void *b) 1892 { 1893 const struct bpf_kfunc_desc *d0 = a; 1894 const struct bpf_kfunc_desc *d1 = b; 1895 1896 if (d0->imm > d1->imm) 1897 return 1; 1898 else if (d0->imm < d1->imm) 1899 return -1; 1900 return 0; 1901 } 1902 1903 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog) 1904 { 1905 struct bpf_kfunc_desc_tab *tab; 1906 1907 tab = prog->aux->kfunc_tab; 1908 if (!tab) 1909 return; 1910 1911 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 1912 kfunc_desc_cmp_by_imm, NULL); 1913 } 1914 1915 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 1916 { 1917 return !!prog->aux->kfunc_tab; 1918 } 1919 1920 const struct btf_func_model * 1921 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 1922 const struct bpf_insn *insn) 1923 { 1924 const struct bpf_kfunc_desc desc = { 1925 .imm = insn->imm, 1926 }; 1927 const struct bpf_kfunc_desc *res; 1928 struct bpf_kfunc_desc_tab *tab; 1929 1930 tab = prog->aux->kfunc_tab; 1931 res = bsearch(&desc, tab->descs, tab->nr_descs, 1932 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm); 1933 1934 return res ? &res->func_model : NULL; 1935 } 1936 1937 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 1938 { 1939 struct bpf_subprog_info *subprog = env->subprog_info; 1940 struct bpf_insn *insn = env->prog->insnsi; 1941 int i, ret, insn_cnt = env->prog->len; 1942 1943 /* Add entry function. */ 1944 ret = add_subprog(env, 0); 1945 if (ret) 1946 return ret; 1947 1948 for (i = 0; i < insn_cnt; i++, insn++) { 1949 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 1950 !bpf_pseudo_kfunc_call(insn)) 1951 continue; 1952 1953 if (!env->bpf_capable) { 1954 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1955 return -EPERM; 1956 } 1957 1958 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 1959 ret = add_subprog(env, i + insn->imm + 1); 1960 else 1961 ret = add_kfunc_call(env, insn->imm, insn->off); 1962 1963 if (ret < 0) 1964 return ret; 1965 } 1966 1967 /* Add a fake 'exit' subprog which could simplify subprog iteration 1968 * logic. 'subprog_cnt' should not be increased. 1969 */ 1970 subprog[env->subprog_cnt].start = insn_cnt; 1971 1972 if (env->log.level & BPF_LOG_LEVEL2) 1973 for (i = 0; i < env->subprog_cnt; i++) 1974 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1975 1976 return 0; 1977 } 1978 1979 static int check_subprogs(struct bpf_verifier_env *env) 1980 { 1981 int i, subprog_start, subprog_end, off, cur_subprog = 0; 1982 struct bpf_subprog_info *subprog = env->subprog_info; 1983 struct bpf_insn *insn = env->prog->insnsi; 1984 int insn_cnt = env->prog->len; 1985 1986 /* now check that all jumps are within the same subprog */ 1987 subprog_start = subprog[cur_subprog].start; 1988 subprog_end = subprog[cur_subprog + 1].start; 1989 for (i = 0; i < insn_cnt; i++) { 1990 u8 code = insn[i].code; 1991 1992 if (code == (BPF_JMP | BPF_CALL) && 1993 insn[i].imm == BPF_FUNC_tail_call && 1994 insn[i].src_reg != BPF_PSEUDO_CALL) 1995 subprog[cur_subprog].has_tail_call = true; 1996 if (BPF_CLASS(code) == BPF_LD && 1997 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1998 subprog[cur_subprog].has_ld_abs = true; 1999 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 2000 goto next; 2001 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 2002 goto next; 2003 off = i + insn[i].off + 1; 2004 if (off < subprog_start || off >= subprog_end) { 2005 verbose(env, "jump out of range from insn %d to %d\n", i, off); 2006 return -EINVAL; 2007 } 2008 next: 2009 if (i == subprog_end - 1) { 2010 /* to avoid fall-through from one subprog into another 2011 * the last insn of the subprog should be either exit 2012 * or unconditional jump back 2013 */ 2014 if (code != (BPF_JMP | BPF_EXIT) && 2015 code != (BPF_JMP | BPF_JA)) { 2016 verbose(env, "last insn is not an exit or jmp\n"); 2017 return -EINVAL; 2018 } 2019 subprog_start = subprog_end; 2020 cur_subprog++; 2021 if (cur_subprog < env->subprog_cnt) 2022 subprog_end = subprog[cur_subprog + 1].start; 2023 } 2024 } 2025 return 0; 2026 } 2027 2028 /* Parentage chain of this register (or stack slot) should take care of all 2029 * issues like callee-saved registers, stack slot allocation time, etc. 2030 */ 2031 static int mark_reg_read(struct bpf_verifier_env *env, 2032 const struct bpf_reg_state *state, 2033 struct bpf_reg_state *parent, u8 flag) 2034 { 2035 bool writes = parent == state->parent; /* Observe write marks */ 2036 int cnt = 0; 2037 2038 while (parent) { 2039 /* if read wasn't screened by an earlier write ... */ 2040 if (writes && state->live & REG_LIVE_WRITTEN) 2041 break; 2042 if (parent->live & REG_LIVE_DONE) { 2043 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 2044 reg_type_str[parent->type], 2045 parent->var_off.value, parent->off); 2046 return -EFAULT; 2047 } 2048 /* The first condition is more likely to be true than the 2049 * second, checked it first. 2050 */ 2051 if ((parent->live & REG_LIVE_READ) == flag || 2052 parent->live & REG_LIVE_READ64) 2053 /* The parentage chain never changes and 2054 * this parent was already marked as LIVE_READ. 2055 * There is no need to keep walking the chain again and 2056 * keep re-marking all parents as LIVE_READ. 2057 * This case happens when the same register is read 2058 * multiple times without writes into it in-between. 2059 * Also, if parent has the stronger REG_LIVE_READ64 set, 2060 * then no need to set the weak REG_LIVE_READ32. 2061 */ 2062 break; 2063 /* ... then we depend on parent's value */ 2064 parent->live |= flag; 2065 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 2066 if (flag == REG_LIVE_READ64) 2067 parent->live &= ~REG_LIVE_READ32; 2068 state = parent; 2069 parent = state->parent; 2070 writes = true; 2071 cnt++; 2072 } 2073 2074 if (env->longest_mark_read_walk < cnt) 2075 env->longest_mark_read_walk = cnt; 2076 return 0; 2077 } 2078 2079 /* This function is supposed to be used by the following 32-bit optimization 2080 * code only. It returns TRUE if the source or destination register operates 2081 * on 64-bit, otherwise return FALSE. 2082 */ 2083 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 2084 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 2085 { 2086 u8 code, class, op; 2087 2088 code = insn->code; 2089 class = BPF_CLASS(code); 2090 op = BPF_OP(code); 2091 if (class == BPF_JMP) { 2092 /* BPF_EXIT for "main" will reach here. Return TRUE 2093 * conservatively. 2094 */ 2095 if (op == BPF_EXIT) 2096 return true; 2097 if (op == BPF_CALL) { 2098 /* BPF to BPF call will reach here because of marking 2099 * caller saved clobber with DST_OP_NO_MARK for which we 2100 * don't care the register def because they are anyway 2101 * marked as NOT_INIT already. 2102 */ 2103 if (insn->src_reg == BPF_PSEUDO_CALL) 2104 return false; 2105 /* Helper call will reach here because of arg type 2106 * check, conservatively return TRUE. 2107 */ 2108 if (t == SRC_OP) 2109 return true; 2110 2111 return false; 2112 } 2113 } 2114 2115 if (class == BPF_ALU64 || class == BPF_JMP || 2116 /* BPF_END always use BPF_ALU class. */ 2117 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 2118 return true; 2119 2120 if (class == BPF_ALU || class == BPF_JMP32) 2121 return false; 2122 2123 if (class == BPF_LDX) { 2124 if (t != SRC_OP) 2125 return BPF_SIZE(code) == BPF_DW; 2126 /* LDX source must be ptr. */ 2127 return true; 2128 } 2129 2130 if (class == BPF_STX) { 2131 /* BPF_STX (including atomic variants) has multiple source 2132 * operands, one of which is a ptr. Check whether the caller is 2133 * asking about it. 2134 */ 2135 if (t == SRC_OP && reg->type != SCALAR_VALUE) 2136 return true; 2137 return BPF_SIZE(code) == BPF_DW; 2138 } 2139 2140 if (class == BPF_LD) { 2141 u8 mode = BPF_MODE(code); 2142 2143 /* LD_IMM64 */ 2144 if (mode == BPF_IMM) 2145 return true; 2146 2147 /* Both LD_IND and LD_ABS return 32-bit data. */ 2148 if (t != SRC_OP) 2149 return false; 2150 2151 /* Implicit ctx ptr. */ 2152 if (regno == BPF_REG_6) 2153 return true; 2154 2155 /* Explicit source could be any width. */ 2156 return true; 2157 } 2158 2159 if (class == BPF_ST) 2160 /* The only source register for BPF_ST is a ptr. */ 2161 return true; 2162 2163 /* Conservatively return true at default. */ 2164 return true; 2165 } 2166 2167 /* Return the regno defined by the insn, or -1. */ 2168 static int insn_def_regno(const struct bpf_insn *insn) 2169 { 2170 switch (BPF_CLASS(insn->code)) { 2171 case BPF_JMP: 2172 case BPF_JMP32: 2173 case BPF_ST: 2174 return -1; 2175 case BPF_STX: 2176 if (BPF_MODE(insn->code) == BPF_ATOMIC && 2177 (insn->imm & BPF_FETCH)) { 2178 if (insn->imm == BPF_CMPXCHG) 2179 return BPF_REG_0; 2180 else 2181 return insn->src_reg; 2182 } else { 2183 return -1; 2184 } 2185 default: 2186 return insn->dst_reg; 2187 } 2188 } 2189 2190 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 2191 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 2192 { 2193 int dst_reg = insn_def_regno(insn); 2194 2195 if (dst_reg == -1) 2196 return false; 2197 2198 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 2199 } 2200 2201 static void mark_insn_zext(struct bpf_verifier_env *env, 2202 struct bpf_reg_state *reg) 2203 { 2204 s32 def_idx = reg->subreg_def; 2205 2206 if (def_idx == DEF_NOT_SUBREG) 2207 return; 2208 2209 env->insn_aux_data[def_idx - 1].zext_dst = true; 2210 /* The dst will be zero extended, so won't be sub-register anymore. */ 2211 reg->subreg_def = DEF_NOT_SUBREG; 2212 } 2213 2214 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 2215 enum reg_arg_type t) 2216 { 2217 struct bpf_verifier_state *vstate = env->cur_state; 2218 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2219 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 2220 struct bpf_reg_state *reg, *regs = state->regs; 2221 bool rw64; 2222 2223 if (regno >= MAX_BPF_REG) { 2224 verbose(env, "R%d is invalid\n", regno); 2225 return -EINVAL; 2226 } 2227 2228 reg = ®s[regno]; 2229 rw64 = is_reg64(env, insn, regno, reg, t); 2230 if (t == SRC_OP) { 2231 /* check whether register used as source operand can be read */ 2232 if (reg->type == NOT_INIT) { 2233 verbose(env, "R%d !read_ok\n", regno); 2234 return -EACCES; 2235 } 2236 /* We don't need to worry about FP liveness because it's read-only */ 2237 if (regno == BPF_REG_FP) 2238 return 0; 2239 2240 if (rw64) 2241 mark_insn_zext(env, reg); 2242 2243 return mark_reg_read(env, reg, reg->parent, 2244 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 2245 } else { 2246 /* check whether register used as dest operand can be written to */ 2247 if (regno == BPF_REG_FP) { 2248 verbose(env, "frame pointer is read only\n"); 2249 return -EACCES; 2250 } 2251 reg->live |= REG_LIVE_WRITTEN; 2252 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 2253 if (t == DST_OP) 2254 mark_reg_unknown(env, regs, regno); 2255 } 2256 return 0; 2257 } 2258 2259 /* for any branch, call, exit record the history of jmps in the given state */ 2260 static int push_jmp_history(struct bpf_verifier_env *env, 2261 struct bpf_verifier_state *cur) 2262 { 2263 u32 cnt = cur->jmp_history_cnt; 2264 struct bpf_idx_pair *p; 2265 2266 cnt++; 2267 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 2268 if (!p) 2269 return -ENOMEM; 2270 p[cnt - 1].idx = env->insn_idx; 2271 p[cnt - 1].prev_idx = env->prev_insn_idx; 2272 cur->jmp_history = p; 2273 cur->jmp_history_cnt = cnt; 2274 return 0; 2275 } 2276 2277 /* Backtrack one insn at a time. If idx is not at the top of recorded 2278 * history then previous instruction came from straight line execution. 2279 */ 2280 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 2281 u32 *history) 2282 { 2283 u32 cnt = *history; 2284 2285 if (cnt && st->jmp_history[cnt - 1].idx == i) { 2286 i = st->jmp_history[cnt - 1].prev_idx; 2287 (*history)--; 2288 } else { 2289 i--; 2290 } 2291 return i; 2292 } 2293 2294 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 2295 { 2296 const struct btf_type *func; 2297 struct btf *desc_btf; 2298 2299 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 2300 return NULL; 2301 2302 desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL); 2303 if (IS_ERR(desc_btf)) 2304 return "<error>"; 2305 2306 func = btf_type_by_id(desc_btf, insn->imm); 2307 return btf_name_by_offset(desc_btf, func->name_off); 2308 } 2309 2310 /* For given verifier state backtrack_insn() is called from the last insn to 2311 * the first insn. Its purpose is to compute a bitmask of registers and 2312 * stack slots that needs precision in the parent verifier state. 2313 */ 2314 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 2315 u32 *reg_mask, u64 *stack_mask) 2316 { 2317 const struct bpf_insn_cbs cbs = { 2318 .cb_call = disasm_kfunc_name, 2319 .cb_print = verbose, 2320 .private_data = env, 2321 }; 2322 struct bpf_insn *insn = env->prog->insnsi + idx; 2323 u8 class = BPF_CLASS(insn->code); 2324 u8 opcode = BPF_OP(insn->code); 2325 u8 mode = BPF_MODE(insn->code); 2326 u32 dreg = 1u << insn->dst_reg; 2327 u32 sreg = 1u << insn->src_reg; 2328 u32 spi; 2329 2330 if (insn->code == 0) 2331 return 0; 2332 if (env->log.level & BPF_LOG_LEVEL) { 2333 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 2334 verbose(env, "%d: ", idx); 2335 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 2336 } 2337 2338 if (class == BPF_ALU || class == BPF_ALU64) { 2339 if (!(*reg_mask & dreg)) 2340 return 0; 2341 if (opcode == BPF_MOV) { 2342 if (BPF_SRC(insn->code) == BPF_X) { 2343 /* dreg = sreg 2344 * dreg needs precision after this insn 2345 * sreg needs precision before this insn 2346 */ 2347 *reg_mask &= ~dreg; 2348 *reg_mask |= sreg; 2349 } else { 2350 /* dreg = K 2351 * dreg needs precision after this insn. 2352 * Corresponding register is already marked 2353 * as precise=true in this verifier state. 2354 * No further markings in parent are necessary 2355 */ 2356 *reg_mask &= ~dreg; 2357 } 2358 } else { 2359 if (BPF_SRC(insn->code) == BPF_X) { 2360 /* dreg += sreg 2361 * both dreg and sreg need precision 2362 * before this insn 2363 */ 2364 *reg_mask |= sreg; 2365 } /* else dreg += K 2366 * dreg still needs precision before this insn 2367 */ 2368 } 2369 } else if (class == BPF_LDX) { 2370 if (!(*reg_mask & dreg)) 2371 return 0; 2372 *reg_mask &= ~dreg; 2373 2374 /* scalars can only be spilled into stack w/o losing precision. 2375 * Load from any other memory can be zero extended. 2376 * The desire to keep that precision is already indicated 2377 * by 'precise' mark in corresponding register of this state. 2378 * No further tracking necessary. 2379 */ 2380 if (insn->src_reg != BPF_REG_FP) 2381 return 0; 2382 if (BPF_SIZE(insn->code) != BPF_DW) 2383 return 0; 2384 2385 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 2386 * that [fp - off] slot contains scalar that needs to be 2387 * tracked with precision 2388 */ 2389 spi = (-insn->off - 1) / BPF_REG_SIZE; 2390 if (spi >= 64) { 2391 verbose(env, "BUG spi %d\n", spi); 2392 WARN_ONCE(1, "verifier backtracking bug"); 2393 return -EFAULT; 2394 } 2395 *stack_mask |= 1ull << spi; 2396 } else if (class == BPF_STX || class == BPF_ST) { 2397 if (*reg_mask & dreg) 2398 /* stx & st shouldn't be using _scalar_ dst_reg 2399 * to access memory. It means backtracking 2400 * encountered a case of pointer subtraction. 2401 */ 2402 return -ENOTSUPP; 2403 /* scalars can only be spilled into stack */ 2404 if (insn->dst_reg != BPF_REG_FP) 2405 return 0; 2406 if (BPF_SIZE(insn->code) != BPF_DW) 2407 return 0; 2408 spi = (-insn->off - 1) / BPF_REG_SIZE; 2409 if (spi >= 64) { 2410 verbose(env, "BUG spi %d\n", spi); 2411 WARN_ONCE(1, "verifier backtracking bug"); 2412 return -EFAULT; 2413 } 2414 if (!(*stack_mask & (1ull << spi))) 2415 return 0; 2416 *stack_mask &= ~(1ull << spi); 2417 if (class == BPF_STX) 2418 *reg_mask |= sreg; 2419 } else if (class == BPF_JMP || class == BPF_JMP32) { 2420 if (opcode == BPF_CALL) { 2421 if (insn->src_reg == BPF_PSEUDO_CALL) 2422 return -ENOTSUPP; 2423 /* regular helper call sets R0 */ 2424 *reg_mask &= ~1; 2425 if (*reg_mask & 0x3f) { 2426 /* if backtracing was looking for registers R1-R5 2427 * they should have been found already. 2428 */ 2429 verbose(env, "BUG regs %x\n", *reg_mask); 2430 WARN_ONCE(1, "verifier backtracking bug"); 2431 return -EFAULT; 2432 } 2433 } else if (opcode == BPF_EXIT) { 2434 return -ENOTSUPP; 2435 } 2436 } else if (class == BPF_LD) { 2437 if (!(*reg_mask & dreg)) 2438 return 0; 2439 *reg_mask &= ~dreg; 2440 /* It's ld_imm64 or ld_abs or ld_ind. 2441 * For ld_imm64 no further tracking of precision 2442 * into parent is necessary 2443 */ 2444 if (mode == BPF_IND || mode == BPF_ABS) 2445 /* to be analyzed */ 2446 return -ENOTSUPP; 2447 } 2448 return 0; 2449 } 2450 2451 /* the scalar precision tracking algorithm: 2452 * . at the start all registers have precise=false. 2453 * . scalar ranges are tracked as normal through alu and jmp insns. 2454 * . once precise value of the scalar register is used in: 2455 * . ptr + scalar alu 2456 * . if (scalar cond K|scalar) 2457 * . helper_call(.., scalar, ...) where ARG_CONST is expected 2458 * backtrack through the verifier states and mark all registers and 2459 * stack slots with spilled constants that these scalar regisers 2460 * should be precise. 2461 * . during state pruning two registers (or spilled stack slots) 2462 * are equivalent if both are not precise. 2463 * 2464 * Note the verifier cannot simply walk register parentage chain, 2465 * since many different registers and stack slots could have been 2466 * used to compute single precise scalar. 2467 * 2468 * The approach of starting with precise=true for all registers and then 2469 * backtrack to mark a register as not precise when the verifier detects 2470 * that program doesn't care about specific value (e.g., when helper 2471 * takes register as ARG_ANYTHING parameter) is not safe. 2472 * 2473 * It's ok to walk single parentage chain of the verifier states. 2474 * It's possible that this backtracking will go all the way till 1st insn. 2475 * All other branches will be explored for needing precision later. 2476 * 2477 * The backtracking needs to deal with cases like: 2478 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 2479 * r9 -= r8 2480 * r5 = r9 2481 * if r5 > 0x79f goto pc+7 2482 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 2483 * r5 += 1 2484 * ... 2485 * call bpf_perf_event_output#25 2486 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 2487 * 2488 * and this case: 2489 * r6 = 1 2490 * call foo // uses callee's r6 inside to compute r0 2491 * r0 += r6 2492 * if r0 == 0 goto 2493 * 2494 * to track above reg_mask/stack_mask needs to be independent for each frame. 2495 * 2496 * Also if parent's curframe > frame where backtracking started, 2497 * the verifier need to mark registers in both frames, otherwise callees 2498 * may incorrectly prune callers. This is similar to 2499 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 2500 * 2501 * For now backtracking falls back into conservative marking. 2502 */ 2503 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 2504 struct bpf_verifier_state *st) 2505 { 2506 struct bpf_func_state *func; 2507 struct bpf_reg_state *reg; 2508 int i, j; 2509 2510 /* big hammer: mark all scalars precise in this path. 2511 * pop_stack may still get !precise scalars. 2512 */ 2513 for (; st; st = st->parent) 2514 for (i = 0; i <= st->curframe; i++) { 2515 func = st->frame[i]; 2516 for (j = 0; j < BPF_REG_FP; j++) { 2517 reg = &func->regs[j]; 2518 if (reg->type != SCALAR_VALUE) 2519 continue; 2520 reg->precise = true; 2521 } 2522 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2523 if (!is_spilled_reg(&func->stack[j])) 2524 continue; 2525 reg = &func->stack[j].spilled_ptr; 2526 if (reg->type != SCALAR_VALUE) 2527 continue; 2528 reg->precise = true; 2529 } 2530 } 2531 } 2532 2533 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2534 int spi) 2535 { 2536 struct bpf_verifier_state *st = env->cur_state; 2537 int first_idx = st->first_insn_idx; 2538 int last_idx = env->insn_idx; 2539 struct bpf_func_state *func; 2540 struct bpf_reg_state *reg; 2541 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2542 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2543 bool skip_first = true; 2544 bool new_marks = false; 2545 int i, err; 2546 2547 if (!env->bpf_capable) 2548 return 0; 2549 2550 func = st->frame[st->curframe]; 2551 if (regno >= 0) { 2552 reg = &func->regs[regno]; 2553 if (reg->type != SCALAR_VALUE) { 2554 WARN_ONCE(1, "backtracing misuse"); 2555 return -EFAULT; 2556 } 2557 if (!reg->precise) 2558 new_marks = true; 2559 else 2560 reg_mask = 0; 2561 reg->precise = true; 2562 } 2563 2564 while (spi >= 0) { 2565 if (!is_spilled_reg(&func->stack[spi])) { 2566 stack_mask = 0; 2567 break; 2568 } 2569 reg = &func->stack[spi].spilled_ptr; 2570 if (reg->type != SCALAR_VALUE) { 2571 stack_mask = 0; 2572 break; 2573 } 2574 if (!reg->precise) 2575 new_marks = true; 2576 else 2577 stack_mask = 0; 2578 reg->precise = true; 2579 break; 2580 } 2581 2582 if (!new_marks) 2583 return 0; 2584 if (!reg_mask && !stack_mask) 2585 return 0; 2586 for (;;) { 2587 DECLARE_BITMAP(mask, 64); 2588 u32 history = st->jmp_history_cnt; 2589 2590 if (env->log.level & BPF_LOG_LEVEL) 2591 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2592 for (i = last_idx;;) { 2593 if (skip_first) { 2594 err = 0; 2595 skip_first = false; 2596 } else { 2597 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2598 } 2599 if (err == -ENOTSUPP) { 2600 mark_all_scalars_precise(env, st); 2601 return 0; 2602 } else if (err) { 2603 return err; 2604 } 2605 if (!reg_mask && !stack_mask) 2606 /* Found assignment(s) into tracked register in this state. 2607 * Since this state is already marked, just return. 2608 * Nothing to be tracked further in the parent state. 2609 */ 2610 return 0; 2611 if (i == first_idx) 2612 break; 2613 i = get_prev_insn_idx(st, i, &history); 2614 if (i >= env->prog->len) { 2615 /* This can happen if backtracking reached insn 0 2616 * and there are still reg_mask or stack_mask 2617 * to backtrack. 2618 * It means the backtracking missed the spot where 2619 * particular register was initialized with a constant. 2620 */ 2621 verbose(env, "BUG backtracking idx %d\n", i); 2622 WARN_ONCE(1, "verifier backtracking bug"); 2623 return -EFAULT; 2624 } 2625 } 2626 st = st->parent; 2627 if (!st) 2628 break; 2629 2630 new_marks = false; 2631 func = st->frame[st->curframe]; 2632 bitmap_from_u64(mask, reg_mask); 2633 for_each_set_bit(i, mask, 32) { 2634 reg = &func->regs[i]; 2635 if (reg->type != SCALAR_VALUE) { 2636 reg_mask &= ~(1u << i); 2637 continue; 2638 } 2639 if (!reg->precise) 2640 new_marks = true; 2641 reg->precise = true; 2642 } 2643 2644 bitmap_from_u64(mask, stack_mask); 2645 for_each_set_bit(i, mask, 64) { 2646 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2647 /* the sequence of instructions: 2648 * 2: (bf) r3 = r10 2649 * 3: (7b) *(u64 *)(r3 -8) = r0 2650 * 4: (79) r4 = *(u64 *)(r10 -8) 2651 * doesn't contain jmps. It's backtracked 2652 * as a single block. 2653 * During backtracking insn 3 is not recognized as 2654 * stack access, so at the end of backtracking 2655 * stack slot fp-8 is still marked in stack_mask. 2656 * However the parent state may not have accessed 2657 * fp-8 and it's "unallocated" stack space. 2658 * In such case fallback to conservative. 2659 */ 2660 mark_all_scalars_precise(env, st); 2661 return 0; 2662 } 2663 2664 if (!is_spilled_reg(&func->stack[i])) { 2665 stack_mask &= ~(1ull << i); 2666 continue; 2667 } 2668 reg = &func->stack[i].spilled_ptr; 2669 if (reg->type != SCALAR_VALUE) { 2670 stack_mask &= ~(1ull << i); 2671 continue; 2672 } 2673 if (!reg->precise) 2674 new_marks = true; 2675 reg->precise = true; 2676 } 2677 if (env->log.level & BPF_LOG_LEVEL) { 2678 print_verifier_state(env, func); 2679 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2680 new_marks ? "didn't have" : "already had", 2681 reg_mask, stack_mask); 2682 } 2683 2684 if (!reg_mask && !stack_mask) 2685 break; 2686 if (!new_marks) 2687 break; 2688 2689 last_idx = st->last_insn_idx; 2690 first_idx = st->first_insn_idx; 2691 } 2692 return 0; 2693 } 2694 2695 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2696 { 2697 return __mark_chain_precision(env, regno, -1); 2698 } 2699 2700 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2701 { 2702 return __mark_chain_precision(env, -1, spi); 2703 } 2704 2705 static bool is_spillable_regtype(enum bpf_reg_type type) 2706 { 2707 switch (type) { 2708 case PTR_TO_MAP_VALUE: 2709 case PTR_TO_MAP_VALUE_OR_NULL: 2710 case PTR_TO_STACK: 2711 case PTR_TO_CTX: 2712 case PTR_TO_PACKET: 2713 case PTR_TO_PACKET_META: 2714 case PTR_TO_PACKET_END: 2715 case PTR_TO_FLOW_KEYS: 2716 case CONST_PTR_TO_MAP: 2717 case PTR_TO_SOCKET: 2718 case PTR_TO_SOCKET_OR_NULL: 2719 case PTR_TO_SOCK_COMMON: 2720 case PTR_TO_SOCK_COMMON_OR_NULL: 2721 case PTR_TO_TCP_SOCK: 2722 case PTR_TO_TCP_SOCK_OR_NULL: 2723 case PTR_TO_XDP_SOCK: 2724 case PTR_TO_BTF_ID: 2725 case PTR_TO_BTF_ID_OR_NULL: 2726 case PTR_TO_RDONLY_BUF: 2727 case PTR_TO_RDONLY_BUF_OR_NULL: 2728 case PTR_TO_RDWR_BUF: 2729 case PTR_TO_RDWR_BUF_OR_NULL: 2730 case PTR_TO_PERCPU_BTF_ID: 2731 case PTR_TO_MEM: 2732 case PTR_TO_MEM_OR_NULL: 2733 case PTR_TO_FUNC: 2734 case PTR_TO_MAP_KEY: 2735 return true; 2736 default: 2737 return false; 2738 } 2739 } 2740 2741 /* Does this register contain a constant zero? */ 2742 static bool register_is_null(struct bpf_reg_state *reg) 2743 { 2744 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2745 } 2746 2747 static bool register_is_const(struct bpf_reg_state *reg) 2748 { 2749 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2750 } 2751 2752 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2753 { 2754 return tnum_is_unknown(reg->var_off) && 2755 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2756 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2757 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2758 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2759 } 2760 2761 static bool register_is_bounded(struct bpf_reg_state *reg) 2762 { 2763 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2764 } 2765 2766 static bool __is_pointer_value(bool allow_ptr_leaks, 2767 const struct bpf_reg_state *reg) 2768 { 2769 if (allow_ptr_leaks) 2770 return false; 2771 2772 return reg->type != SCALAR_VALUE; 2773 } 2774 2775 static void save_register_state(struct bpf_func_state *state, 2776 int spi, struct bpf_reg_state *reg, 2777 int size) 2778 { 2779 int i; 2780 2781 state->stack[spi].spilled_ptr = *reg; 2782 if (size == BPF_REG_SIZE) 2783 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2784 2785 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 2786 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 2787 2788 /* size < 8 bytes spill */ 2789 for (; i; i--) 2790 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 2791 } 2792 2793 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 2794 * stack boundary and alignment are checked in check_mem_access() 2795 */ 2796 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 2797 /* stack frame we're writing to */ 2798 struct bpf_func_state *state, 2799 int off, int size, int value_regno, 2800 int insn_idx) 2801 { 2802 struct bpf_func_state *cur; /* state of the current function */ 2803 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2804 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2805 struct bpf_reg_state *reg = NULL; 2806 2807 err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE)); 2808 if (err) 2809 return err; 2810 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2811 * so it's aligned access and [off, off + size) are within stack limits 2812 */ 2813 if (!env->allow_ptr_leaks && 2814 state->stack[spi].slot_type[0] == STACK_SPILL && 2815 size != BPF_REG_SIZE) { 2816 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2817 return -EACCES; 2818 } 2819 2820 cur = env->cur_state->frame[env->cur_state->curframe]; 2821 if (value_regno >= 0) 2822 reg = &cur->regs[value_regno]; 2823 if (!env->bypass_spec_v4) { 2824 bool sanitize = reg && is_spillable_regtype(reg->type); 2825 2826 for (i = 0; i < size; i++) { 2827 if (state->stack[spi].slot_type[i] == STACK_INVALID) { 2828 sanitize = true; 2829 break; 2830 } 2831 } 2832 2833 if (sanitize) 2834 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 2835 } 2836 2837 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 2838 !register_is_null(reg) && env->bpf_capable) { 2839 if (dst_reg != BPF_REG_FP) { 2840 /* The backtracking logic can only recognize explicit 2841 * stack slot address like [fp - 8]. Other spill of 2842 * scalar via different register has to be conservative. 2843 * Backtrack from here and mark all registers as precise 2844 * that contributed into 'reg' being a constant. 2845 */ 2846 err = mark_chain_precision(env, value_regno); 2847 if (err) 2848 return err; 2849 } 2850 save_register_state(state, spi, reg, size); 2851 } else if (reg && is_spillable_regtype(reg->type)) { 2852 /* register containing pointer is being spilled into stack */ 2853 if (size != BPF_REG_SIZE) { 2854 verbose_linfo(env, insn_idx, "; "); 2855 verbose(env, "invalid size of register spill\n"); 2856 return -EACCES; 2857 } 2858 if (state != cur && reg->type == PTR_TO_STACK) { 2859 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2860 return -EINVAL; 2861 } 2862 save_register_state(state, spi, reg, size); 2863 } else { 2864 u8 type = STACK_MISC; 2865 2866 /* regular write of data into stack destroys any spilled ptr */ 2867 state->stack[spi].spilled_ptr.type = NOT_INIT; 2868 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2869 if (is_spilled_reg(&state->stack[spi])) 2870 for (i = 0; i < BPF_REG_SIZE; i++) 2871 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 2872 2873 /* only mark the slot as written if all 8 bytes were written 2874 * otherwise read propagation may incorrectly stop too soon 2875 * when stack slots are partially written. 2876 * This heuristic means that read propagation will be 2877 * conservative, since it will add reg_live_read marks 2878 * to stack slots all the way to first state when programs 2879 * writes+reads less than 8 bytes 2880 */ 2881 if (size == BPF_REG_SIZE) 2882 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2883 2884 /* when we zero initialize stack slots mark them as such */ 2885 if (reg && register_is_null(reg)) { 2886 /* backtracking doesn't work for STACK_ZERO yet. */ 2887 err = mark_chain_precision(env, value_regno); 2888 if (err) 2889 return err; 2890 type = STACK_ZERO; 2891 } 2892 2893 /* Mark slots affected by this stack write. */ 2894 for (i = 0; i < size; i++) 2895 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2896 type; 2897 } 2898 return 0; 2899 } 2900 2901 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 2902 * known to contain a variable offset. 2903 * This function checks whether the write is permitted and conservatively 2904 * tracks the effects of the write, considering that each stack slot in the 2905 * dynamic range is potentially written to. 2906 * 2907 * 'off' includes 'regno->off'. 2908 * 'value_regno' can be -1, meaning that an unknown value is being written to 2909 * the stack. 2910 * 2911 * Spilled pointers in range are not marked as written because we don't know 2912 * what's going to be actually written. This means that read propagation for 2913 * future reads cannot be terminated by this write. 2914 * 2915 * For privileged programs, uninitialized stack slots are considered 2916 * initialized by this write (even though we don't know exactly what offsets 2917 * are going to be written to). The idea is that we don't want the verifier to 2918 * reject future reads that access slots written to through variable offsets. 2919 */ 2920 static int check_stack_write_var_off(struct bpf_verifier_env *env, 2921 /* func where register points to */ 2922 struct bpf_func_state *state, 2923 int ptr_regno, int off, int size, 2924 int value_regno, int insn_idx) 2925 { 2926 struct bpf_func_state *cur; /* state of the current function */ 2927 int min_off, max_off; 2928 int i, err; 2929 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 2930 bool writing_zero = false; 2931 /* set if the fact that we're writing a zero is used to let any 2932 * stack slots remain STACK_ZERO 2933 */ 2934 bool zero_used = false; 2935 2936 cur = env->cur_state->frame[env->cur_state->curframe]; 2937 ptr_reg = &cur->regs[ptr_regno]; 2938 min_off = ptr_reg->smin_value + off; 2939 max_off = ptr_reg->smax_value + off + size; 2940 if (value_regno >= 0) 2941 value_reg = &cur->regs[value_regno]; 2942 if (value_reg && register_is_null(value_reg)) 2943 writing_zero = true; 2944 2945 err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE)); 2946 if (err) 2947 return err; 2948 2949 2950 /* Variable offset writes destroy any spilled pointers in range. */ 2951 for (i = min_off; i < max_off; i++) { 2952 u8 new_type, *stype; 2953 int slot, spi; 2954 2955 slot = -i - 1; 2956 spi = slot / BPF_REG_SIZE; 2957 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2958 2959 if (!env->allow_ptr_leaks 2960 && *stype != NOT_INIT 2961 && *stype != SCALAR_VALUE) { 2962 /* Reject the write if there's are spilled pointers in 2963 * range. If we didn't reject here, the ptr status 2964 * would be erased below (even though not all slots are 2965 * actually overwritten), possibly opening the door to 2966 * leaks. 2967 */ 2968 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 2969 insn_idx, i); 2970 return -EINVAL; 2971 } 2972 2973 /* Erase all spilled pointers. */ 2974 state->stack[spi].spilled_ptr.type = NOT_INIT; 2975 2976 /* Update the slot type. */ 2977 new_type = STACK_MISC; 2978 if (writing_zero && *stype == STACK_ZERO) { 2979 new_type = STACK_ZERO; 2980 zero_used = true; 2981 } 2982 /* If the slot is STACK_INVALID, we check whether it's OK to 2983 * pretend that it will be initialized by this write. The slot 2984 * might not actually be written to, and so if we mark it as 2985 * initialized future reads might leak uninitialized memory. 2986 * For privileged programs, we will accept such reads to slots 2987 * that may or may not be written because, if we're reject 2988 * them, the error would be too confusing. 2989 */ 2990 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 2991 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 2992 insn_idx, i); 2993 return -EINVAL; 2994 } 2995 *stype = new_type; 2996 } 2997 if (zero_used) { 2998 /* backtracking doesn't work for STACK_ZERO yet. */ 2999 err = mark_chain_precision(env, value_regno); 3000 if (err) 3001 return err; 3002 } 3003 return 0; 3004 } 3005 3006 /* When register 'dst_regno' is assigned some values from stack[min_off, 3007 * max_off), we set the register's type according to the types of the 3008 * respective stack slots. If all the stack values are known to be zeros, then 3009 * so is the destination reg. Otherwise, the register is considered to be 3010 * SCALAR. This function does not deal with register filling; the caller must 3011 * ensure that all spilled registers in the stack range have been marked as 3012 * read. 3013 */ 3014 static void mark_reg_stack_read(struct bpf_verifier_env *env, 3015 /* func where src register points to */ 3016 struct bpf_func_state *ptr_state, 3017 int min_off, int max_off, int dst_regno) 3018 { 3019 struct bpf_verifier_state *vstate = env->cur_state; 3020 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3021 int i, slot, spi; 3022 u8 *stype; 3023 int zeros = 0; 3024 3025 for (i = min_off; i < max_off; i++) { 3026 slot = -i - 1; 3027 spi = slot / BPF_REG_SIZE; 3028 stype = ptr_state->stack[spi].slot_type; 3029 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 3030 break; 3031 zeros++; 3032 } 3033 if (zeros == max_off - min_off) { 3034 /* any access_size read into register is zero extended, 3035 * so the whole register == const_zero 3036 */ 3037 __mark_reg_const_zero(&state->regs[dst_regno]); 3038 /* backtracking doesn't support STACK_ZERO yet, 3039 * so mark it precise here, so that later 3040 * backtracking can stop here. 3041 * Backtracking may not need this if this register 3042 * doesn't participate in pointer adjustment. 3043 * Forward propagation of precise flag is not 3044 * necessary either. This mark is only to stop 3045 * backtracking. Any register that contributed 3046 * to const 0 was marked precise before spill. 3047 */ 3048 state->regs[dst_regno].precise = true; 3049 } else { 3050 /* have read misc data from the stack */ 3051 mark_reg_unknown(env, state->regs, dst_regno); 3052 } 3053 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3054 } 3055 3056 /* Read the stack at 'off' and put the results into the register indicated by 3057 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 3058 * spilled reg. 3059 * 3060 * 'dst_regno' can be -1, meaning that the read value is not going to a 3061 * register. 3062 * 3063 * The access is assumed to be within the current stack bounds. 3064 */ 3065 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 3066 /* func where src register points to */ 3067 struct bpf_func_state *reg_state, 3068 int off, int size, int dst_regno) 3069 { 3070 struct bpf_verifier_state *vstate = env->cur_state; 3071 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3072 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 3073 struct bpf_reg_state *reg; 3074 u8 *stype, type; 3075 3076 stype = reg_state->stack[spi].slot_type; 3077 reg = ®_state->stack[spi].spilled_ptr; 3078 3079 if (is_spilled_reg(®_state->stack[spi])) { 3080 u8 spill_size = 1; 3081 3082 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 3083 spill_size++; 3084 3085 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 3086 if (reg->type != SCALAR_VALUE) { 3087 verbose_linfo(env, env->insn_idx, "; "); 3088 verbose(env, "invalid size of register fill\n"); 3089 return -EACCES; 3090 } 3091 3092 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3093 if (dst_regno < 0) 3094 return 0; 3095 3096 if (!(off % BPF_REG_SIZE) && size == spill_size) { 3097 /* The earlier check_reg_arg() has decided the 3098 * subreg_def for this insn. Save it first. 3099 */ 3100 s32 subreg_def = state->regs[dst_regno].subreg_def; 3101 3102 state->regs[dst_regno] = *reg; 3103 state->regs[dst_regno].subreg_def = subreg_def; 3104 } else { 3105 for (i = 0; i < size; i++) { 3106 type = stype[(slot - i) % BPF_REG_SIZE]; 3107 if (type == STACK_SPILL) 3108 continue; 3109 if (type == STACK_MISC) 3110 continue; 3111 verbose(env, "invalid read from stack off %d+%d size %d\n", 3112 off, i, size); 3113 return -EACCES; 3114 } 3115 mark_reg_unknown(env, state->regs, dst_regno); 3116 } 3117 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3118 return 0; 3119 } 3120 3121 if (dst_regno >= 0) { 3122 /* restore register state from stack */ 3123 state->regs[dst_regno] = *reg; 3124 /* mark reg as written since spilled pointer state likely 3125 * has its liveness marks cleared by is_state_visited() 3126 * which resets stack/reg liveness for state transitions 3127 */ 3128 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 3129 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 3130 /* If dst_regno==-1, the caller is asking us whether 3131 * it is acceptable to use this value as a SCALAR_VALUE 3132 * (e.g. for XADD). 3133 * We must not allow unprivileged callers to do that 3134 * with spilled pointers. 3135 */ 3136 verbose(env, "leaking pointer from stack off %d\n", 3137 off); 3138 return -EACCES; 3139 } 3140 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3141 } else { 3142 for (i = 0; i < size; i++) { 3143 type = stype[(slot - i) % BPF_REG_SIZE]; 3144 if (type == STACK_MISC) 3145 continue; 3146 if (type == STACK_ZERO) 3147 continue; 3148 verbose(env, "invalid read from stack off %d+%d size %d\n", 3149 off, i, size); 3150 return -EACCES; 3151 } 3152 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 3153 if (dst_regno >= 0) 3154 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 3155 } 3156 return 0; 3157 } 3158 3159 enum stack_access_src { 3160 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 3161 ACCESS_HELPER = 2, /* the access is performed by a helper */ 3162 }; 3163 3164 static int check_stack_range_initialized(struct bpf_verifier_env *env, 3165 int regno, int off, int access_size, 3166 bool zero_size_allowed, 3167 enum stack_access_src type, 3168 struct bpf_call_arg_meta *meta); 3169 3170 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 3171 { 3172 return cur_regs(env) + regno; 3173 } 3174 3175 /* Read the stack at 'ptr_regno + off' and put the result into the register 3176 * 'dst_regno'. 3177 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 3178 * but not its variable offset. 3179 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 3180 * 3181 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 3182 * filling registers (i.e. reads of spilled register cannot be detected when 3183 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 3184 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 3185 * offset; for a fixed offset check_stack_read_fixed_off should be used 3186 * instead. 3187 */ 3188 static int check_stack_read_var_off(struct bpf_verifier_env *env, 3189 int ptr_regno, int off, int size, int dst_regno) 3190 { 3191 /* The state of the source register. */ 3192 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3193 struct bpf_func_state *ptr_state = func(env, reg); 3194 int err; 3195 int min_off, max_off; 3196 3197 /* Note that we pass a NULL meta, so raw access will not be permitted. 3198 */ 3199 err = check_stack_range_initialized(env, ptr_regno, off, size, 3200 false, ACCESS_DIRECT, NULL); 3201 if (err) 3202 return err; 3203 3204 min_off = reg->smin_value + off; 3205 max_off = reg->smax_value + off; 3206 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 3207 return 0; 3208 } 3209 3210 /* check_stack_read dispatches to check_stack_read_fixed_off or 3211 * check_stack_read_var_off. 3212 * 3213 * The caller must ensure that the offset falls within the allocated stack 3214 * bounds. 3215 * 3216 * 'dst_regno' is a register which will receive the value from the stack. It 3217 * can be -1, meaning that the read value is not going to a register. 3218 */ 3219 static int check_stack_read(struct bpf_verifier_env *env, 3220 int ptr_regno, int off, int size, 3221 int dst_regno) 3222 { 3223 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3224 struct bpf_func_state *state = func(env, reg); 3225 int err; 3226 /* Some accesses are only permitted with a static offset. */ 3227 bool var_off = !tnum_is_const(reg->var_off); 3228 3229 /* The offset is required to be static when reads don't go to a 3230 * register, in order to not leak pointers (see 3231 * check_stack_read_fixed_off). 3232 */ 3233 if (dst_regno < 0 && var_off) { 3234 char tn_buf[48]; 3235 3236 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3237 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 3238 tn_buf, off, size); 3239 return -EACCES; 3240 } 3241 /* Variable offset is prohibited for unprivileged mode for simplicity 3242 * since it requires corresponding support in Spectre masking for stack 3243 * ALU. See also retrieve_ptr_limit(). 3244 */ 3245 if (!env->bypass_spec_v1 && var_off) { 3246 char tn_buf[48]; 3247 3248 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3249 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n", 3250 ptr_regno, tn_buf); 3251 return -EACCES; 3252 } 3253 3254 if (!var_off) { 3255 off += reg->var_off.value; 3256 err = check_stack_read_fixed_off(env, state, off, size, 3257 dst_regno); 3258 } else { 3259 /* Variable offset stack reads need more conservative handling 3260 * than fixed offset ones. Note that dst_regno >= 0 on this 3261 * branch. 3262 */ 3263 err = check_stack_read_var_off(env, ptr_regno, off, size, 3264 dst_regno); 3265 } 3266 return err; 3267 } 3268 3269 3270 /* check_stack_write dispatches to check_stack_write_fixed_off or 3271 * check_stack_write_var_off. 3272 * 3273 * 'ptr_regno' is the register used as a pointer into the stack. 3274 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 3275 * 'value_regno' is the register whose value we're writing to the stack. It can 3276 * be -1, meaning that we're not writing from a register. 3277 * 3278 * The caller must ensure that the offset falls within the maximum stack size. 3279 */ 3280 static int check_stack_write(struct bpf_verifier_env *env, 3281 int ptr_regno, int off, int size, 3282 int value_regno, int insn_idx) 3283 { 3284 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 3285 struct bpf_func_state *state = func(env, reg); 3286 int err; 3287 3288 if (tnum_is_const(reg->var_off)) { 3289 off += reg->var_off.value; 3290 err = check_stack_write_fixed_off(env, state, off, size, 3291 value_regno, insn_idx); 3292 } else { 3293 /* Variable offset stack reads need more conservative handling 3294 * than fixed offset ones. 3295 */ 3296 err = check_stack_write_var_off(env, state, 3297 ptr_regno, off, size, 3298 value_regno, insn_idx); 3299 } 3300 return err; 3301 } 3302 3303 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 3304 int off, int size, enum bpf_access_type type) 3305 { 3306 struct bpf_reg_state *regs = cur_regs(env); 3307 struct bpf_map *map = regs[regno].map_ptr; 3308 u32 cap = bpf_map_flags_to_cap(map); 3309 3310 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 3311 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 3312 map->value_size, off, size); 3313 return -EACCES; 3314 } 3315 3316 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 3317 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 3318 map->value_size, off, size); 3319 return -EACCES; 3320 } 3321 3322 return 0; 3323 } 3324 3325 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 3326 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 3327 int off, int size, u32 mem_size, 3328 bool zero_size_allowed) 3329 { 3330 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 3331 struct bpf_reg_state *reg; 3332 3333 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 3334 return 0; 3335 3336 reg = &cur_regs(env)[regno]; 3337 switch (reg->type) { 3338 case PTR_TO_MAP_KEY: 3339 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 3340 mem_size, off, size); 3341 break; 3342 case PTR_TO_MAP_VALUE: 3343 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 3344 mem_size, off, size); 3345 break; 3346 case PTR_TO_PACKET: 3347 case PTR_TO_PACKET_META: 3348 case PTR_TO_PACKET_END: 3349 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 3350 off, size, regno, reg->id, off, mem_size); 3351 break; 3352 case PTR_TO_MEM: 3353 default: 3354 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 3355 mem_size, off, size); 3356 } 3357 3358 return -EACCES; 3359 } 3360 3361 /* check read/write into a memory region with possible variable offset */ 3362 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 3363 int off, int size, u32 mem_size, 3364 bool zero_size_allowed) 3365 { 3366 struct bpf_verifier_state *vstate = env->cur_state; 3367 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3368 struct bpf_reg_state *reg = &state->regs[regno]; 3369 int err; 3370 3371 /* We may have adjusted the register pointing to memory region, so we 3372 * need to try adding each of min_value and max_value to off 3373 * to make sure our theoretical access will be safe. 3374 */ 3375 if (env->log.level & BPF_LOG_LEVEL) 3376 print_verifier_state(env, state); 3377 3378 /* The minimum value is only important with signed 3379 * comparisons where we can't assume the floor of a 3380 * value is 0. If we are using signed variables for our 3381 * index'es we need to make sure that whatever we use 3382 * will have a set floor within our range. 3383 */ 3384 if (reg->smin_value < 0 && 3385 (reg->smin_value == S64_MIN || 3386 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 3387 reg->smin_value + off < 0)) { 3388 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3389 regno); 3390 return -EACCES; 3391 } 3392 err = __check_mem_access(env, regno, reg->smin_value + off, size, 3393 mem_size, zero_size_allowed); 3394 if (err) { 3395 verbose(env, "R%d min value is outside of the allowed memory range\n", 3396 regno); 3397 return err; 3398 } 3399 3400 /* If we haven't set a max value then we need to bail since we can't be 3401 * sure we won't do bad things. 3402 * If reg->umax_value + off could overflow, treat that as unbounded too. 3403 */ 3404 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 3405 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 3406 regno); 3407 return -EACCES; 3408 } 3409 err = __check_mem_access(env, regno, reg->umax_value + off, size, 3410 mem_size, zero_size_allowed); 3411 if (err) { 3412 verbose(env, "R%d max value is outside of the allowed memory range\n", 3413 regno); 3414 return err; 3415 } 3416 3417 return 0; 3418 } 3419 3420 /* check read/write into a map element with possible variable offset */ 3421 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 3422 int off, int size, bool zero_size_allowed) 3423 { 3424 struct bpf_verifier_state *vstate = env->cur_state; 3425 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3426 struct bpf_reg_state *reg = &state->regs[regno]; 3427 struct bpf_map *map = reg->map_ptr; 3428 int err; 3429 3430 err = check_mem_region_access(env, regno, off, size, map->value_size, 3431 zero_size_allowed); 3432 if (err) 3433 return err; 3434 3435 if (map_value_has_spin_lock(map)) { 3436 u32 lock = map->spin_lock_off; 3437 3438 /* if any part of struct bpf_spin_lock can be touched by 3439 * load/store reject this program. 3440 * To check that [x1, x2) overlaps with [y1, y2) 3441 * it is sufficient to check x1 < y2 && y1 < x2. 3442 */ 3443 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 3444 lock < reg->umax_value + off + size) { 3445 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 3446 return -EACCES; 3447 } 3448 } 3449 if (map_value_has_timer(map)) { 3450 u32 t = map->timer_off; 3451 3452 if (reg->smin_value + off < t + sizeof(struct bpf_timer) && 3453 t < reg->umax_value + off + size) { 3454 verbose(env, "bpf_timer cannot be accessed directly by load/store\n"); 3455 return -EACCES; 3456 } 3457 } 3458 return err; 3459 } 3460 3461 #define MAX_PACKET_OFF 0xffff 3462 3463 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 3464 { 3465 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 3466 } 3467 3468 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 3469 const struct bpf_call_arg_meta *meta, 3470 enum bpf_access_type t) 3471 { 3472 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 3473 3474 switch (prog_type) { 3475 /* Program types only with direct read access go here! */ 3476 case BPF_PROG_TYPE_LWT_IN: 3477 case BPF_PROG_TYPE_LWT_OUT: 3478 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 3479 case BPF_PROG_TYPE_SK_REUSEPORT: 3480 case BPF_PROG_TYPE_FLOW_DISSECTOR: 3481 case BPF_PROG_TYPE_CGROUP_SKB: 3482 if (t == BPF_WRITE) 3483 return false; 3484 fallthrough; 3485 3486 /* Program types with direct read + write access go here! */ 3487 case BPF_PROG_TYPE_SCHED_CLS: 3488 case BPF_PROG_TYPE_SCHED_ACT: 3489 case BPF_PROG_TYPE_XDP: 3490 case BPF_PROG_TYPE_LWT_XMIT: 3491 case BPF_PROG_TYPE_SK_SKB: 3492 case BPF_PROG_TYPE_SK_MSG: 3493 if (meta) 3494 return meta->pkt_access; 3495 3496 env->seen_direct_write = true; 3497 return true; 3498 3499 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 3500 if (t == BPF_WRITE) 3501 env->seen_direct_write = true; 3502 3503 return true; 3504 3505 default: 3506 return false; 3507 } 3508 } 3509 3510 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 3511 int size, bool zero_size_allowed) 3512 { 3513 struct bpf_reg_state *regs = cur_regs(env); 3514 struct bpf_reg_state *reg = ®s[regno]; 3515 int err; 3516 3517 /* We may have added a variable offset to the packet pointer; but any 3518 * reg->range we have comes after that. We are only checking the fixed 3519 * offset. 3520 */ 3521 3522 /* We don't allow negative numbers, because we aren't tracking enough 3523 * detail to prove they're safe. 3524 */ 3525 if (reg->smin_value < 0) { 3526 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3527 regno); 3528 return -EACCES; 3529 } 3530 3531 err = reg->range < 0 ? -EINVAL : 3532 __check_mem_access(env, regno, off, size, reg->range, 3533 zero_size_allowed); 3534 if (err) { 3535 verbose(env, "R%d offset is outside of the packet\n", regno); 3536 return err; 3537 } 3538 3539 /* __check_mem_access has made sure "off + size - 1" is within u16. 3540 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 3541 * otherwise find_good_pkt_pointers would have refused to set range info 3542 * that __check_mem_access would have rejected this pkt access. 3543 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 3544 */ 3545 env->prog->aux->max_pkt_offset = 3546 max_t(u32, env->prog->aux->max_pkt_offset, 3547 off + reg->umax_value + size - 1); 3548 3549 return err; 3550 } 3551 3552 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 3553 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 3554 enum bpf_access_type t, enum bpf_reg_type *reg_type, 3555 struct btf **btf, u32 *btf_id) 3556 { 3557 struct bpf_insn_access_aux info = { 3558 .reg_type = *reg_type, 3559 .log = &env->log, 3560 }; 3561 3562 if (env->ops->is_valid_access && 3563 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 3564 /* A non zero info.ctx_field_size indicates that this field is a 3565 * candidate for later verifier transformation to load the whole 3566 * field and then apply a mask when accessed with a narrower 3567 * access than actual ctx access size. A zero info.ctx_field_size 3568 * will only allow for whole field access and rejects any other 3569 * type of narrower access. 3570 */ 3571 *reg_type = info.reg_type; 3572 3573 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 3574 *btf = info.btf; 3575 *btf_id = info.btf_id; 3576 } else { 3577 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 3578 } 3579 /* remember the offset of last byte accessed in ctx */ 3580 if (env->prog->aux->max_ctx_offset < off + size) 3581 env->prog->aux->max_ctx_offset = off + size; 3582 return 0; 3583 } 3584 3585 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 3586 return -EACCES; 3587 } 3588 3589 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 3590 int size) 3591 { 3592 if (size < 0 || off < 0 || 3593 (u64)off + size > sizeof(struct bpf_flow_keys)) { 3594 verbose(env, "invalid access to flow keys off=%d size=%d\n", 3595 off, size); 3596 return -EACCES; 3597 } 3598 return 0; 3599 } 3600 3601 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 3602 u32 regno, int off, int size, 3603 enum bpf_access_type t) 3604 { 3605 struct bpf_reg_state *regs = cur_regs(env); 3606 struct bpf_reg_state *reg = ®s[regno]; 3607 struct bpf_insn_access_aux info = {}; 3608 bool valid; 3609 3610 if (reg->smin_value < 0) { 3611 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 3612 regno); 3613 return -EACCES; 3614 } 3615 3616 switch (reg->type) { 3617 case PTR_TO_SOCK_COMMON: 3618 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 3619 break; 3620 case PTR_TO_SOCKET: 3621 valid = bpf_sock_is_valid_access(off, size, t, &info); 3622 break; 3623 case PTR_TO_TCP_SOCK: 3624 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 3625 break; 3626 case PTR_TO_XDP_SOCK: 3627 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 3628 break; 3629 default: 3630 valid = false; 3631 } 3632 3633 3634 if (valid) { 3635 env->insn_aux_data[insn_idx].ctx_field_size = 3636 info.ctx_field_size; 3637 return 0; 3638 } 3639 3640 verbose(env, "R%d invalid %s access off=%d size=%d\n", 3641 regno, reg_type_str[reg->type], off, size); 3642 3643 return -EACCES; 3644 } 3645 3646 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 3647 { 3648 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 3649 } 3650 3651 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 3652 { 3653 const struct bpf_reg_state *reg = reg_state(env, regno); 3654 3655 return reg->type == PTR_TO_CTX; 3656 } 3657 3658 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 3659 { 3660 const struct bpf_reg_state *reg = reg_state(env, regno); 3661 3662 return type_is_sk_pointer(reg->type); 3663 } 3664 3665 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 3666 { 3667 const struct bpf_reg_state *reg = reg_state(env, regno); 3668 3669 return type_is_pkt_pointer(reg->type); 3670 } 3671 3672 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 3673 { 3674 const struct bpf_reg_state *reg = reg_state(env, regno); 3675 3676 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 3677 return reg->type == PTR_TO_FLOW_KEYS; 3678 } 3679 3680 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 3681 const struct bpf_reg_state *reg, 3682 int off, int size, bool strict) 3683 { 3684 struct tnum reg_off; 3685 int ip_align; 3686 3687 /* Byte size accesses are always allowed. */ 3688 if (!strict || size == 1) 3689 return 0; 3690 3691 /* For platforms that do not have a Kconfig enabling 3692 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 3693 * NET_IP_ALIGN is universally set to '2'. And on platforms 3694 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 3695 * to this code only in strict mode where we want to emulate 3696 * the NET_IP_ALIGN==2 checking. Therefore use an 3697 * unconditional IP align value of '2'. 3698 */ 3699 ip_align = 2; 3700 3701 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 3702 if (!tnum_is_aligned(reg_off, size)) { 3703 char tn_buf[48]; 3704 3705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3706 verbose(env, 3707 "misaligned packet access off %d+%s+%d+%d size %d\n", 3708 ip_align, tn_buf, reg->off, off, size); 3709 return -EACCES; 3710 } 3711 3712 return 0; 3713 } 3714 3715 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 3716 const struct bpf_reg_state *reg, 3717 const char *pointer_desc, 3718 int off, int size, bool strict) 3719 { 3720 struct tnum reg_off; 3721 3722 /* Byte size accesses are always allowed. */ 3723 if (!strict || size == 1) 3724 return 0; 3725 3726 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 3727 if (!tnum_is_aligned(reg_off, size)) { 3728 char tn_buf[48]; 3729 3730 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3731 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 3732 pointer_desc, tn_buf, reg->off, off, size); 3733 return -EACCES; 3734 } 3735 3736 return 0; 3737 } 3738 3739 static int check_ptr_alignment(struct bpf_verifier_env *env, 3740 const struct bpf_reg_state *reg, int off, 3741 int size, bool strict_alignment_once) 3742 { 3743 bool strict = env->strict_alignment || strict_alignment_once; 3744 const char *pointer_desc = ""; 3745 3746 switch (reg->type) { 3747 case PTR_TO_PACKET: 3748 case PTR_TO_PACKET_META: 3749 /* Special case, because of NET_IP_ALIGN. Given metadata sits 3750 * right in front, treat it the very same way. 3751 */ 3752 return check_pkt_ptr_alignment(env, reg, off, size, strict); 3753 case PTR_TO_FLOW_KEYS: 3754 pointer_desc = "flow keys "; 3755 break; 3756 case PTR_TO_MAP_KEY: 3757 pointer_desc = "key "; 3758 break; 3759 case PTR_TO_MAP_VALUE: 3760 pointer_desc = "value "; 3761 break; 3762 case PTR_TO_CTX: 3763 pointer_desc = "context "; 3764 break; 3765 case PTR_TO_STACK: 3766 pointer_desc = "stack "; 3767 /* The stack spill tracking logic in check_stack_write_fixed_off() 3768 * and check_stack_read_fixed_off() relies on stack accesses being 3769 * aligned. 3770 */ 3771 strict = true; 3772 break; 3773 case PTR_TO_SOCKET: 3774 pointer_desc = "sock "; 3775 break; 3776 case PTR_TO_SOCK_COMMON: 3777 pointer_desc = "sock_common "; 3778 break; 3779 case PTR_TO_TCP_SOCK: 3780 pointer_desc = "tcp_sock "; 3781 break; 3782 case PTR_TO_XDP_SOCK: 3783 pointer_desc = "xdp_sock "; 3784 break; 3785 default: 3786 break; 3787 } 3788 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3789 strict); 3790 } 3791 3792 static int update_stack_depth(struct bpf_verifier_env *env, 3793 const struct bpf_func_state *func, 3794 int off) 3795 { 3796 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3797 3798 if (stack >= -off) 3799 return 0; 3800 3801 /* update known max for given subprogram */ 3802 env->subprog_info[func->subprogno].stack_depth = -off; 3803 return 0; 3804 } 3805 3806 /* starting from main bpf function walk all instructions of the function 3807 * and recursively walk all callees that given function can call. 3808 * Ignore jump and exit insns. 3809 * Since recursion is prevented by check_cfg() this algorithm 3810 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3811 */ 3812 static int check_max_stack_depth(struct bpf_verifier_env *env) 3813 { 3814 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3815 struct bpf_subprog_info *subprog = env->subprog_info; 3816 struct bpf_insn *insn = env->prog->insnsi; 3817 bool tail_call_reachable = false; 3818 int ret_insn[MAX_CALL_FRAMES]; 3819 int ret_prog[MAX_CALL_FRAMES]; 3820 int j; 3821 3822 process_func: 3823 /* protect against potential stack overflow that might happen when 3824 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3825 * depth for such case down to 256 so that the worst case scenario 3826 * would result in 8k stack size (32 which is tailcall limit * 256 = 3827 * 8k). 3828 * 3829 * To get the idea what might happen, see an example: 3830 * func1 -> sub rsp, 128 3831 * subfunc1 -> sub rsp, 256 3832 * tailcall1 -> add rsp, 256 3833 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3834 * subfunc2 -> sub rsp, 64 3835 * subfunc22 -> sub rsp, 128 3836 * tailcall2 -> add rsp, 128 3837 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3838 * 3839 * tailcall will unwind the current stack frame but it will not get rid 3840 * of caller's stack as shown on the example above. 3841 */ 3842 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3843 verbose(env, 3844 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3845 depth); 3846 return -EACCES; 3847 } 3848 /* round up to 32-bytes, since this is granularity 3849 * of interpreter stack size 3850 */ 3851 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3852 if (depth > MAX_BPF_STACK) { 3853 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3854 frame + 1, depth); 3855 return -EACCES; 3856 } 3857 continue_func: 3858 subprog_end = subprog[idx + 1].start; 3859 for (; i < subprog_end; i++) { 3860 int next_insn; 3861 3862 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 3863 continue; 3864 /* remember insn and function to return to */ 3865 ret_insn[frame] = i + 1; 3866 ret_prog[frame] = idx; 3867 3868 /* find the callee */ 3869 next_insn = i + insn[i].imm + 1; 3870 idx = find_subprog(env, next_insn); 3871 if (idx < 0) { 3872 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3873 next_insn); 3874 return -EFAULT; 3875 } 3876 if (subprog[idx].is_async_cb) { 3877 if (subprog[idx].has_tail_call) { 3878 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 3879 return -EFAULT; 3880 } 3881 /* async callbacks don't increase bpf prog stack size */ 3882 continue; 3883 } 3884 i = next_insn; 3885 3886 if (subprog[idx].has_tail_call) 3887 tail_call_reachable = true; 3888 3889 frame++; 3890 if (frame >= MAX_CALL_FRAMES) { 3891 verbose(env, "the call stack of %d frames is too deep !\n", 3892 frame); 3893 return -E2BIG; 3894 } 3895 goto process_func; 3896 } 3897 /* if tail call got detected across bpf2bpf calls then mark each of the 3898 * currently present subprog frames as tail call reachable subprogs; 3899 * this info will be utilized by JIT so that we will be preserving the 3900 * tail call counter throughout bpf2bpf calls combined with tailcalls 3901 */ 3902 if (tail_call_reachable) 3903 for (j = 0; j < frame; j++) 3904 subprog[ret_prog[j]].tail_call_reachable = true; 3905 if (subprog[0].tail_call_reachable) 3906 env->prog->aux->tail_call_reachable = true; 3907 3908 /* end of for() loop means the last insn of the 'subprog' 3909 * was reached. Doesn't matter whether it was JA or EXIT 3910 */ 3911 if (frame == 0) 3912 return 0; 3913 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3914 frame--; 3915 i = ret_insn[frame]; 3916 idx = ret_prog[frame]; 3917 goto continue_func; 3918 } 3919 3920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3921 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3922 const struct bpf_insn *insn, int idx) 3923 { 3924 int start = idx + insn->imm + 1, subprog; 3925 3926 subprog = find_subprog(env, start); 3927 if (subprog < 0) { 3928 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3929 start); 3930 return -EFAULT; 3931 } 3932 return env->subprog_info[subprog].stack_depth; 3933 } 3934 #endif 3935 3936 int check_ctx_reg(struct bpf_verifier_env *env, 3937 const struct bpf_reg_state *reg, int regno) 3938 { 3939 /* Access to ctx or passing it to a helper is only allowed in 3940 * its original, unmodified form. 3941 */ 3942 3943 if (reg->off) { 3944 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3945 regno, reg->off); 3946 return -EACCES; 3947 } 3948 3949 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3950 char tn_buf[48]; 3951 3952 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3953 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3954 return -EACCES; 3955 } 3956 3957 return 0; 3958 } 3959 3960 static int __check_buffer_access(struct bpf_verifier_env *env, 3961 const char *buf_info, 3962 const struct bpf_reg_state *reg, 3963 int regno, int off, int size) 3964 { 3965 if (off < 0) { 3966 verbose(env, 3967 "R%d invalid %s buffer access: off=%d, size=%d\n", 3968 regno, buf_info, off, size); 3969 return -EACCES; 3970 } 3971 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3972 char tn_buf[48]; 3973 3974 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3975 verbose(env, 3976 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3977 regno, off, tn_buf); 3978 return -EACCES; 3979 } 3980 3981 return 0; 3982 } 3983 3984 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3985 const struct bpf_reg_state *reg, 3986 int regno, int off, int size) 3987 { 3988 int err; 3989 3990 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3991 if (err) 3992 return err; 3993 3994 if (off + size > env->prog->aux->max_tp_access) 3995 env->prog->aux->max_tp_access = off + size; 3996 3997 return 0; 3998 } 3999 4000 static int check_buffer_access(struct bpf_verifier_env *env, 4001 const struct bpf_reg_state *reg, 4002 int regno, int off, int size, 4003 bool zero_size_allowed, 4004 const char *buf_info, 4005 u32 *max_access) 4006 { 4007 int err; 4008 4009 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 4010 if (err) 4011 return err; 4012 4013 if (off + size > *max_access) 4014 *max_access = off + size; 4015 4016 return 0; 4017 } 4018 4019 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 4020 static void zext_32_to_64(struct bpf_reg_state *reg) 4021 { 4022 reg->var_off = tnum_subreg(reg->var_off); 4023 __reg_assign_32_into_64(reg); 4024 } 4025 4026 /* truncate register to smaller size (in bytes) 4027 * must be called with size < BPF_REG_SIZE 4028 */ 4029 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 4030 { 4031 u64 mask; 4032 4033 /* clear high bits in bit representation */ 4034 reg->var_off = tnum_cast(reg->var_off, size); 4035 4036 /* fix arithmetic bounds */ 4037 mask = ((u64)1 << (size * 8)) - 1; 4038 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 4039 reg->umin_value &= mask; 4040 reg->umax_value &= mask; 4041 } else { 4042 reg->umin_value = 0; 4043 reg->umax_value = mask; 4044 } 4045 reg->smin_value = reg->umin_value; 4046 reg->smax_value = reg->umax_value; 4047 4048 /* If size is smaller than 32bit register the 32bit register 4049 * values are also truncated so we push 64-bit bounds into 4050 * 32-bit bounds. Above were truncated < 32-bits already. 4051 */ 4052 if (size >= 4) 4053 return; 4054 __reg_combine_64_into_32(reg); 4055 } 4056 4057 static bool bpf_map_is_rdonly(const struct bpf_map *map) 4058 { 4059 /* A map is considered read-only if the following condition are true: 4060 * 4061 * 1) BPF program side cannot change any of the map content. The 4062 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 4063 * and was set at map creation time. 4064 * 2) The map value(s) have been initialized from user space by a 4065 * loader and then "frozen", such that no new map update/delete 4066 * operations from syscall side are possible for the rest of 4067 * the map's lifetime from that point onwards. 4068 * 3) Any parallel/pending map update/delete operations from syscall 4069 * side have been completed. Only after that point, it's safe to 4070 * assume that map value(s) are immutable. 4071 */ 4072 return (map->map_flags & BPF_F_RDONLY_PROG) && 4073 READ_ONCE(map->frozen) && 4074 !bpf_map_write_active(map); 4075 } 4076 4077 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 4078 { 4079 void *ptr; 4080 u64 addr; 4081 int err; 4082 4083 err = map->ops->map_direct_value_addr(map, &addr, off); 4084 if (err) 4085 return err; 4086 ptr = (void *)(long)addr + off; 4087 4088 switch (size) { 4089 case sizeof(u8): 4090 *val = (u64)*(u8 *)ptr; 4091 break; 4092 case sizeof(u16): 4093 *val = (u64)*(u16 *)ptr; 4094 break; 4095 case sizeof(u32): 4096 *val = (u64)*(u32 *)ptr; 4097 break; 4098 case sizeof(u64): 4099 *val = *(u64 *)ptr; 4100 break; 4101 default: 4102 return -EINVAL; 4103 } 4104 return 0; 4105 } 4106 4107 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 4108 struct bpf_reg_state *regs, 4109 int regno, int off, int size, 4110 enum bpf_access_type atype, 4111 int value_regno) 4112 { 4113 struct bpf_reg_state *reg = regs + regno; 4114 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 4115 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 4116 u32 btf_id; 4117 int ret; 4118 4119 if (off < 0) { 4120 verbose(env, 4121 "R%d is ptr_%s invalid negative access: off=%d\n", 4122 regno, tname, off); 4123 return -EACCES; 4124 } 4125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4126 char tn_buf[48]; 4127 4128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4129 verbose(env, 4130 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 4131 regno, tname, off, tn_buf); 4132 return -EACCES; 4133 } 4134 4135 if (env->ops->btf_struct_access) { 4136 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 4137 off, size, atype, &btf_id); 4138 } else { 4139 if (atype != BPF_READ) { 4140 verbose(env, "only read is supported\n"); 4141 return -EACCES; 4142 } 4143 4144 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 4145 atype, &btf_id); 4146 } 4147 4148 if (ret < 0) 4149 return ret; 4150 4151 if (atype == BPF_READ && value_regno >= 0) 4152 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 4153 4154 return 0; 4155 } 4156 4157 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 4158 struct bpf_reg_state *regs, 4159 int regno, int off, int size, 4160 enum bpf_access_type atype, 4161 int value_regno) 4162 { 4163 struct bpf_reg_state *reg = regs + regno; 4164 struct bpf_map *map = reg->map_ptr; 4165 const struct btf_type *t; 4166 const char *tname; 4167 u32 btf_id; 4168 int ret; 4169 4170 if (!btf_vmlinux) { 4171 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 4172 return -ENOTSUPP; 4173 } 4174 4175 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 4176 verbose(env, "map_ptr access not supported for map type %d\n", 4177 map->map_type); 4178 return -ENOTSUPP; 4179 } 4180 4181 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 4182 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 4183 4184 if (!env->allow_ptr_to_map_access) { 4185 verbose(env, 4186 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 4187 tname); 4188 return -EPERM; 4189 } 4190 4191 if (off < 0) { 4192 verbose(env, "R%d is %s invalid negative access: off=%d\n", 4193 regno, tname, off); 4194 return -EACCES; 4195 } 4196 4197 if (atype != BPF_READ) { 4198 verbose(env, "only read from %s is supported\n", tname); 4199 return -EACCES; 4200 } 4201 4202 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 4203 if (ret < 0) 4204 return ret; 4205 4206 if (value_regno >= 0) 4207 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 4208 4209 return 0; 4210 } 4211 4212 /* Check that the stack access at the given offset is within bounds. The 4213 * maximum valid offset is -1. 4214 * 4215 * The minimum valid offset is -MAX_BPF_STACK for writes, and 4216 * -state->allocated_stack for reads. 4217 */ 4218 static int check_stack_slot_within_bounds(int off, 4219 struct bpf_func_state *state, 4220 enum bpf_access_type t) 4221 { 4222 int min_valid_off; 4223 4224 if (t == BPF_WRITE) 4225 min_valid_off = -MAX_BPF_STACK; 4226 else 4227 min_valid_off = -state->allocated_stack; 4228 4229 if (off < min_valid_off || off > -1) 4230 return -EACCES; 4231 return 0; 4232 } 4233 4234 /* Check that the stack access at 'regno + off' falls within the maximum stack 4235 * bounds. 4236 * 4237 * 'off' includes `regno->offset`, but not its dynamic part (if any). 4238 */ 4239 static int check_stack_access_within_bounds( 4240 struct bpf_verifier_env *env, 4241 int regno, int off, int access_size, 4242 enum stack_access_src src, enum bpf_access_type type) 4243 { 4244 struct bpf_reg_state *regs = cur_regs(env); 4245 struct bpf_reg_state *reg = regs + regno; 4246 struct bpf_func_state *state = func(env, reg); 4247 int min_off, max_off; 4248 int err; 4249 char *err_extra; 4250 4251 if (src == ACCESS_HELPER) 4252 /* We don't know if helpers are reading or writing (or both). */ 4253 err_extra = " indirect access to"; 4254 else if (type == BPF_READ) 4255 err_extra = " read from"; 4256 else 4257 err_extra = " write to"; 4258 4259 if (tnum_is_const(reg->var_off)) { 4260 min_off = reg->var_off.value + off; 4261 if (access_size > 0) 4262 max_off = min_off + access_size - 1; 4263 else 4264 max_off = min_off; 4265 } else { 4266 if (reg->smax_value >= BPF_MAX_VAR_OFF || 4267 reg->smin_value <= -BPF_MAX_VAR_OFF) { 4268 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 4269 err_extra, regno); 4270 return -EACCES; 4271 } 4272 min_off = reg->smin_value + off; 4273 if (access_size > 0) 4274 max_off = reg->smax_value + off + access_size - 1; 4275 else 4276 max_off = min_off; 4277 } 4278 4279 err = check_stack_slot_within_bounds(min_off, state, type); 4280 if (!err) 4281 err = check_stack_slot_within_bounds(max_off, state, type); 4282 4283 if (err) { 4284 if (tnum_is_const(reg->var_off)) { 4285 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 4286 err_extra, regno, off, access_size); 4287 } else { 4288 char tn_buf[48]; 4289 4290 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4291 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 4292 err_extra, regno, tn_buf, access_size); 4293 } 4294 } 4295 return err; 4296 } 4297 4298 /* check whether memory at (regno + off) is accessible for t = (read | write) 4299 * if t==write, value_regno is a register which value is stored into memory 4300 * if t==read, value_regno is a register which will receive the value from memory 4301 * if t==write && value_regno==-1, some unknown value is stored into memory 4302 * if t==read && value_regno==-1, don't care what we read from memory 4303 */ 4304 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 4305 int off, int bpf_size, enum bpf_access_type t, 4306 int value_regno, bool strict_alignment_once) 4307 { 4308 struct bpf_reg_state *regs = cur_regs(env); 4309 struct bpf_reg_state *reg = regs + regno; 4310 struct bpf_func_state *state; 4311 int size, err = 0; 4312 4313 size = bpf_size_to_bytes(bpf_size); 4314 if (size < 0) 4315 return size; 4316 4317 /* alignment checks will add in reg->off themselves */ 4318 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 4319 if (err) 4320 return err; 4321 4322 /* for access checks, reg->off is just part of off */ 4323 off += reg->off; 4324 4325 if (reg->type == PTR_TO_MAP_KEY) { 4326 if (t == BPF_WRITE) { 4327 verbose(env, "write to change key R%d not allowed\n", regno); 4328 return -EACCES; 4329 } 4330 4331 err = check_mem_region_access(env, regno, off, size, 4332 reg->map_ptr->key_size, false); 4333 if (err) 4334 return err; 4335 if (value_regno >= 0) 4336 mark_reg_unknown(env, regs, value_regno); 4337 } else if (reg->type == PTR_TO_MAP_VALUE) { 4338 if (t == BPF_WRITE && value_regno >= 0 && 4339 is_pointer_value(env, value_regno)) { 4340 verbose(env, "R%d leaks addr into map\n", value_regno); 4341 return -EACCES; 4342 } 4343 err = check_map_access_type(env, regno, off, size, t); 4344 if (err) 4345 return err; 4346 err = check_map_access(env, regno, off, size, false); 4347 if (!err && t == BPF_READ && value_regno >= 0) { 4348 struct bpf_map *map = reg->map_ptr; 4349 4350 /* if map is read-only, track its contents as scalars */ 4351 if (tnum_is_const(reg->var_off) && 4352 bpf_map_is_rdonly(map) && 4353 map->ops->map_direct_value_addr) { 4354 int map_off = off + reg->var_off.value; 4355 u64 val = 0; 4356 4357 err = bpf_map_direct_read(map, map_off, size, 4358 &val); 4359 if (err) 4360 return err; 4361 4362 regs[value_regno].type = SCALAR_VALUE; 4363 __mark_reg_known(®s[value_regno], val); 4364 } else { 4365 mark_reg_unknown(env, regs, value_regno); 4366 } 4367 } 4368 } else if (reg->type == PTR_TO_MEM) { 4369 if (t == BPF_WRITE && value_regno >= 0 && 4370 is_pointer_value(env, value_regno)) { 4371 verbose(env, "R%d leaks addr into mem\n", value_regno); 4372 return -EACCES; 4373 } 4374 err = check_mem_region_access(env, regno, off, size, 4375 reg->mem_size, false); 4376 if (!err && t == BPF_READ && value_regno >= 0) 4377 mark_reg_unknown(env, regs, value_regno); 4378 } else if (reg->type == PTR_TO_CTX) { 4379 enum bpf_reg_type reg_type = SCALAR_VALUE; 4380 struct btf *btf = NULL; 4381 u32 btf_id = 0; 4382 4383 if (t == BPF_WRITE && value_regno >= 0 && 4384 is_pointer_value(env, value_regno)) { 4385 verbose(env, "R%d leaks addr into ctx\n", value_regno); 4386 return -EACCES; 4387 } 4388 4389 err = check_ctx_reg(env, reg, regno); 4390 if (err < 0) 4391 return err; 4392 4393 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 4394 if (err) 4395 verbose_linfo(env, insn_idx, "; "); 4396 if (!err && t == BPF_READ && value_regno >= 0) { 4397 /* ctx access returns either a scalar, or a 4398 * PTR_TO_PACKET[_META,_END]. In the latter 4399 * case, we know the offset is zero. 4400 */ 4401 if (reg_type == SCALAR_VALUE) { 4402 mark_reg_unknown(env, regs, value_regno); 4403 } else { 4404 mark_reg_known_zero(env, regs, 4405 value_regno); 4406 if (reg_type_may_be_null(reg_type)) 4407 regs[value_regno].id = ++env->id_gen; 4408 /* A load of ctx field could have different 4409 * actual load size with the one encoded in the 4410 * insn. When the dst is PTR, it is for sure not 4411 * a sub-register. 4412 */ 4413 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 4414 if (reg_type == PTR_TO_BTF_ID || 4415 reg_type == PTR_TO_BTF_ID_OR_NULL) { 4416 regs[value_regno].btf = btf; 4417 regs[value_regno].btf_id = btf_id; 4418 } 4419 } 4420 regs[value_regno].type = reg_type; 4421 } 4422 4423 } else if (reg->type == PTR_TO_STACK) { 4424 /* Basic bounds checks. */ 4425 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 4426 if (err) 4427 return err; 4428 4429 state = func(env, reg); 4430 err = update_stack_depth(env, state, off); 4431 if (err) 4432 return err; 4433 4434 if (t == BPF_READ) 4435 err = check_stack_read(env, regno, off, size, 4436 value_regno); 4437 else 4438 err = check_stack_write(env, regno, off, size, 4439 value_regno, insn_idx); 4440 } else if (reg_is_pkt_pointer(reg)) { 4441 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 4442 verbose(env, "cannot write into packet\n"); 4443 return -EACCES; 4444 } 4445 if (t == BPF_WRITE && value_regno >= 0 && 4446 is_pointer_value(env, value_regno)) { 4447 verbose(env, "R%d leaks addr into packet\n", 4448 value_regno); 4449 return -EACCES; 4450 } 4451 err = check_packet_access(env, regno, off, size, false); 4452 if (!err && t == BPF_READ && value_regno >= 0) 4453 mark_reg_unknown(env, regs, value_regno); 4454 } else if (reg->type == PTR_TO_FLOW_KEYS) { 4455 if (t == BPF_WRITE && value_regno >= 0 && 4456 is_pointer_value(env, value_regno)) { 4457 verbose(env, "R%d leaks addr into flow keys\n", 4458 value_regno); 4459 return -EACCES; 4460 } 4461 4462 err = check_flow_keys_access(env, off, size); 4463 if (!err && t == BPF_READ && value_regno >= 0) 4464 mark_reg_unknown(env, regs, value_regno); 4465 } else if (type_is_sk_pointer(reg->type)) { 4466 if (t == BPF_WRITE) { 4467 verbose(env, "R%d cannot write into %s\n", 4468 regno, reg_type_str[reg->type]); 4469 return -EACCES; 4470 } 4471 err = check_sock_access(env, insn_idx, regno, off, size, t); 4472 if (!err && value_regno >= 0) 4473 mark_reg_unknown(env, regs, value_regno); 4474 } else if (reg->type == PTR_TO_TP_BUFFER) { 4475 err = check_tp_buffer_access(env, reg, regno, off, size); 4476 if (!err && t == BPF_READ && value_regno >= 0) 4477 mark_reg_unknown(env, regs, value_regno); 4478 } else if (reg->type == PTR_TO_BTF_ID) { 4479 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 4480 value_regno); 4481 } else if (reg->type == CONST_PTR_TO_MAP) { 4482 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 4483 value_regno); 4484 } else if (reg->type == PTR_TO_RDONLY_BUF) { 4485 if (t == BPF_WRITE) { 4486 verbose(env, "R%d cannot write into %s\n", 4487 regno, reg_type_str[reg->type]); 4488 return -EACCES; 4489 } 4490 err = check_buffer_access(env, reg, regno, off, size, false, 4491 "rdonly", 4492 &env->prog->aux->max_rdonly_access); 4493 if (!err && value_regno >= 0) 4494 mark_reg_unknown(env, regs, value_regno); 4495 } else if (reg->type == PTR_TO_RDWR_BUF) { 4496 err = check_buffer_access(env, reg, regno, off, size, false, 4497 "rdwr", 4498 &env->prog->aux->max_rdwr_access); 4499 if (!err && t == BPF_READ && value_regno >= 0) 4500 mark_reg_unknown(env, regs, value_regno); 4501 } else { 4502 verbose(env, "R%d invalid mem access '%s'\n", regno, 4503 reg_type_str[reg->type]); 4504 return -EACCES; 4505 } 4506 4507 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 4508 regs[value_regno].type == SCALAR_VALUE) { 4509 /* b/h/w load zero-extends, mark upper bits as known 0 */ 4510 coerce_reg_to_size(®s[value_regno], size); 4511 } 4512 return err; 4513 } 4514 4515 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 4516 { 4517 int load_reg; 4518 int err; 4519 4520 switch (insn->imm) { 4521 case BPF_ADD: 4522 case BPF_ADD | BPF_FETCH: 4523 case BPF_AND: 4524 case BPF_AND | BPF_FETCH: 4525 case BPF_OR: 4526 case BPF_OR | BPF_FETCH: 4527 case BPF_XOR: 4528 case BPF_XOR | BPF_FETCH: 4529 case BPF_XCHG: 4530 case BPF_CMPXCHG: 4531 break; 4532 default: 4533 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 4534 return -EINVAL; 4535 } 4536 4537 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 4538 verbose(env, "invalid atomic operand size\n"); 4539 return -EINVAL; 4540 } 4541 4542 /* check src1 operand */ 4543 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4544 if (err) 4545 return err; 4546 4547 /* check src2 operand */ 4548 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4549 if (err) 4550 return err; 4551 4552 if (insn->imm == BPF_CMPXCHG) { 4553 /* Check comparison of R0 with memory location */ 4554 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 4555 if (err) 4556 return err; 4557 } 4558 4559 if (is_pointer_value(env, insn->src_reg)) { 4560 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 4561 return -EACCES; 4562 } 4563 4564 if (is_ctx_reg(env, insn->dst_reg) || 4565 is_pkt_reg(env, insn->dst_reg) || 4566 is_flow_key_reg(env, insn->dst_reg) || 4567 is_sk_reg(env, insn->dst_reg)) { 4568 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 4569 insn->dst_reg, 4570 reg_type_str[reg_state(env, insn->dst_reg)->type]); 4571 return -EACCES; 4572 } 4573 4574 if (insn->imm & BPF_FETCH) { 4575 if (insn->imm == BPF_CMPXCHG) 4576 load_reg = BPF_REG_0; 4577 else 4578 load_reg = insn->src_reg; 4579 4580 /* check and record load of old value */ 4581 err = check_reg_arg(env, load_reg, DST_OP); 4582 if (err) 4583 return err; 4584 } else { 4585 /* This instruction accesses a memory location but doesn't 4586 * actually load it into a register. 4587 */ 4588 load_reg = -1; 4589 } 4590 4591 /* check whether we can read the memory */ 4592 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4593 BPF_SIZE(insn->code), BPF_READ, load_reg, true); 4594 if (err) 4595 return err; 4596 4597 /* check whether we can write into the same memory */ 4598 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 4599 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 4600 if (err) 4601 return err; 4602 4603 return 0; 4604 } 4605 4606 /* When register 'regno' is used to read the stack (either directly or through 4607 * a helper function) make sure that it's within stack boundary and, depending 4608 * on the access type, that all elements of the stack are initialized. 4609 * 4610 * 'off' includes 'regno->off', but not its dynamic part (if any). 4611 * 4612 * All registers that have been spilled on the stack in the slots within the 4613 * read offsets are marked as read. 4614 */ 4615 static int check_stack_range_initialized( 4616 struct bpf_verifier_env *env, int regno, int off, 4617 int access_size, bool zero_size_allowed, 4618 enum stack_access_src type, struct bpf_call_arg_meta *meta) 4619 { 4620 struct bpf_reg_state *reg = reg_state(env, regno); 4621 struct bpf_func_state *state = func(env, reg); 4622 int err, min_off, max_off, i, j, slot, spi; 4623 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 4624 enum bpf_access_type bounds_check_type; 4625 /* Some accesses can write anything into the stack, others are 4626 * read-only. 4627 */ 4628 bool clobber = false; 4629 4630 if (access_size == 0 && !zero_size_allowed) { 4631 verbose(env, "invalid zero-sized read\n"); 4632 return -EACCES; 4633 } 4634 4635 if (type == ACCESS_HELPER) { 4636 /* The bounds checks for writes are more permissive than for 4637 * reads. However, if raw_mode is not set, we'll do extra 4638 * checks below. 4639 */ 4640 bounds_check_type = BPF_WRITE; 4641 clobber = true; 4642 } else { 4643 bounds_check_type = BPF_READ; 4644 } 4645 err = check_stack_access_within_bounds(env, regno, off, access_size, 4646 type, bounds_check_type); 4647 if (err) 4648 return err; 4649 4650 4651 if (tnum_is_const(reg->var_off)) { 4652 min_off = max_off = reg->var_off.value + off; 4653 } else { 4654 /* Variable offset is prohibited for unprivileged mode for 4655 * simplicity since it requires corresponding support in 4656 * Spectre masking for stack ALU. 4657 * See also retrieve_ptr_limit(). 4658 */ 4659 if (!env->bypass_spec_v1) { 4660 char tn_buf[48]; 4661 4662 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4663 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 4664 regno, err_extra, tn_buf); 4665 return -EACCES; 4666 } 4667 /* Only initialized buffer on stack is allowed to be accessed 4668 * with variable offset. With uninitialized buffer it's hard to 4669 * guarantee that whole memory is marked as initialized on 4670 * helper return since specific bounds are unknown what may 4671 * cause uninitialized stack leaking. 4672 */ 4673 if (meta && meta->raw_mode) 4674 meta = NULL; 4675 4676 min_off = reg->smin_value + off; 4677 max_off = reg->smax_value + off; 4678 } 4679 4680 if (meta && meta->raw_mode) { 4681 meta->access_size = access_size; 4682 meta->regno = regno; 4683 return 0; 4684 } 4685 4686 for (i = min_off; i < max_off + access_size; i++) { 4687 u8 *stype; 4688 4689 slot = -i - 1; 4690 spi = slot / BPF_REG_SIZE; 4691 if (state->allocated_stack <= slot) 4692 goto err; 4693 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4694 if (*stype == STACK_MISC) 4695 goto mark; 4696 if (*stype == STACK_ZERO) { 4697 if (clobber) { 4698 /* helper can write anything into the stack */ 4699 *stype = STACK_MISC; 4700 } 4701 goto mark; 4702 } 4703 4704 if (is_spilled_reg(&state->stack[spi]) && 4705 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 4706 goto mark; 4707 4708 if (is_spilled_reg(&state->stack[spi]) && 4709 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 4710 env->allow_ptr_leaks)) { 4711 if (clobber) { 4712 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 4713 for (j = 0; j < BPF_REG_SIZE; j++) 4714 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 4715 } 4716 goto mark; 4717 } 4718 4719 err: 4720 if (tnum_is_const(reg->var_off)) { 4721 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 4722 err_extra, regno, min_off, i - min_off, access_size); 4723 } else { 4724 char tn_buf[48]; 4725 4726 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4727 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 4728 err_extra, regno, tn_buf, i - min_off, access_size); 4729 } 4730 return -EACCES; 4731 mark: 4732 /* reading any byte out of 8-byte 'spill_slot' will cause 4733 * the whole slot to be marked as 'read' 4734 */ 4735 mark_reg_read(env, &state->stack[spi].spilled_ptr, 4736 state->stack[spi].spilled_ptr.parent, 4737 REG_LIVE_READ64); 4738 } 4739 return update_stack_depth(env, state, min_off); 4740 } 4741 4742 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 4743 int access_size, bool zero_size_allowed, 4744 struct bpf_call_arg_meta *meta) 4745 { 4746 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4747 4748 switch (reg->type) { 4749 case PTR_TO_PACKET: 4750 case PTR_TO_PACKET_META: 4751 return check_packet_access(env, regno, reg->off, access_size, 4752 zero_size_allowed); 4753 case PTR_TO_MAP_KEY: 4754 return check_mem_region_access(env, regno, reg->off, access_size, 4755 reg->map_ptr->key_size, false); 4756 case PTR_TO_MAP_VALUE: 4757 if (check_map_access_type(env, regno, reg->off, access_size, 4758 meta && meta->raw_mode ? BPF_WRITE : 4759 BPF_READ)) 4760 return -EACCES; 4761 return check_map_access(env, regno, reg->off, access_size, 4762 zero_size_allowed); 4763 case PTR_TO_MEM: 4764 return check_mem_region_access(env, regno, reg->off, 4765 access_size, reg->mem_size, 4766 zero_size_allowed); 4767 case PTR_TO_RDONLY_BUF: 4768 if (meta && meta->raw_mode) 4769 return -EACCES; 4770 return check_buffer_access(env, reg, regno, reg->off, 4771 access_size, zero_size_allowed, 4772 "rdonly", 4773 &env->prog->aux->max_rdonly_access); 4774 case PTR_TO_RDWR_BUF: 4775 return check_buffer_access(env, reg, regno, reg->off, 4776 access_size, zero_size_allowed, 4777 "rdwr", 4778 &env->prog->aux->max_rdwr_access); 4779 case PTR_TO_STACK: 4780 return check_stack_range_initialized( 4781 env, 4782 regno, reg->off, access_size, 4783 zero_size_allowed, ACCESS_HELPER, meta); 4784 default: /* scalar_value or invalid ptr */ 4785 /* Allow zero-byte read from NULL, regardless of pointer type */ 4786 if (zero_size_allowed && access_size == 0 && 4787 register_is_null(reg)) 4788 return 0; 4789 4790 verbose(env, "R%d type=%s expected=%s\n", regno, 4791 reg_type_str[reg->type], 4792 reg_type_str[PTR_TO_STACK]); 4793 return -EACCES; 4794 } 4795 } 4796 4797 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 4798 u32 regno, u32 mem_size) 4799 { 4800 if (register_is_null(reg)) 4801 return 0; 4802 4803 if (reg_type_may_be_null(reg->type)) { 4804 /* Assuming that the register contains a value check if the memory 4805 * access is safe. Temporarily save and restore the register's state as 4806 * the conversion shouldn't be visible to a caller. 4807 */ 4808 const struct bpf_reg_state saved_reg = *reg; 4809 int rv; 4810 4811 mark_ptr_not_null_reg(reg); 4812 rv = check_helper_mem_access(env, regno, mem_size, true, NULL); 4813 *reg = saved_reg; 4814 return rv; 4815 } 4816 4817 return check_helper_mem_access(env, regno, mem_size, true, NULL); 4818 } 4819 4820 /* Implementation details: 4821 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 4822 * Two bpf_map_lookups (even with the same key) will have different reg->id. 4823 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 4824 * value_or_null->value transition, since the verifier only cares about 4825 * the range of access to valid map value pointer and doesn't care about actual 4826 * address of the map element. 4827 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 4828 * reg->id > 0 after value_or_null->value transition. By doing so 4829 * two bpf_map_lookups will be considered two different pointers that 4830 * point to different bpf_spin_locks. 4831 * The verifier allows taking only one bpf_spin_lock at a time to avoid 4832 * dead-locks. 4833 * Since only one bpf_spin_lock is allowed the checks are simpler than 4834 * reg_is_refcounted() logic. The verifier needs to remember only 4835 * one spin_lock instead of array of acquired_refs. 4836 * cur_state->active_spin_lock remembers which map value element got locked 4837 * and clears it after bpf_spin_unlock. 4838 */ 4839 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 4840 bool is_lock) 4841 { 4842 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4843 struct bpf_verifier_state *cur = env->cur_state; 4844 bool is_const = tnum_is_const(reg->var_off); 4845 struct bpf_map *map = reg->map_ptr; 4846 u64 val = reg->var_off.value; 4847 4848 if (!is_const) { 4849 verbose(env, 4850 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 4851 regno); 4852 return -EINVAL; 4853 } 4854 if (!map->btf) { 4855 verbose(env, 4856 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 4857 map->name); 4858 return -EINVAL; 4859 } 4860 if (!map_value_has_spin_lock(map)) { 4861 if (map->spin_lock_off == -E2BIG) 4862 verbose(env, 4863 "map '%s' has more than one 'struct bpf_spin_lock'\n", 4864 map->name); 4865 else if (map->spin_lock_off == -ENOENT) 4866 verbose(env, 4867 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 4868 map->name); 4869 else 4870 verbose(env, 4871 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 4872 map->name); 4873 return -EINVAL; 4874 } 4875 if (map->spin_lock_off != val + reg->off) { 4876 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 4877 val + reg->off); 4878 return -EINVAL; 4879 } 4880 if (is_lock) { 4881 if (cur->active_spin_lock) { 4882 verbose(env, 4883 "Locking two bpf_spin_locks are not allowed\n"); 4884 return -EINVAL; 4885 } 4886 cur->active_spin_lock = reg->id; 4887 } else { 4888 if (!cur->active_spin_lock) { 4889 verbose(env, "bpf_spin_unlock without taking a lock\n"); 4890 return -EINVAL; 4891 } 4892 if (cur->active_spin_lock != reg->id) { 4893 verbose(env, "bpf_spin_unlock of different lock\n"); 4894 return -EINVAL; 4895 } 4896 cur->active_spin_lock = 0; 4897 } 4898 return 0; 4899 } 4900 4901 static int process_timer_func(struct bpf_verifier_env *env, int regno, 4902 struct bpf_call_arg_meta *meta) 4903 { 4904 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4905 bool is_const = tnum_is_const(reg->var_off); 4906 struct bpf_map *map = reg->map_ptr; 4907 u64 val = reg->var_off.value; 4908 4909 if (!is_const) { 4910 verbose(env, 4911 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 4912 regno); 4913 return -EINVAL; 4914 } 4915 if (!map->btf) { 4916 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 4917 map->name); 4918 return -EINVAL; 4919 } 4920 if (!map_value_has_timer(map)) { 4921 if (map->timer_off == -E2BIG) 4922 verbose(env, 4923 "map '%s' has more than one 'struct bpf_timer'\n", 4924 map->name); 4925 else if (map->timer_off == -ENOENT) 4926 verbose(env, 4927 "map '%s' doesn't have 'struct bpf_timer'\n", 4928 map->name); 4929 else 4930 verbose(env, 4931 "map '%s' is not a struct type or bpf_timer is mangled\n", 4932 map->name); 4933 return -EINVAL; 4934 } 4935 if (map->timer_off != val + reg->off) { 4936 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 4937 val + reg->off, map->timer_off); 4938 return -EINVAL; 4939 } 4940 if (meta->map_ptr) { 4941 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 4942 return -EFAULT; 4943 } 4944 meta->map_uid = reg->map_uid; 4945 meta->map_ptr = map; 4946 return 0; 4947 } 4948 4949 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 4950 { 4951 return type == ARG_PTR_TO_MEM || 4952 type == ARG_PTR_TO_MEM_OR_NULL || 4953 type == ARG_PTR_TO_UNINIT_MEM; 4954 } 4955 4956 static bool arg_type_is_mem_size(enum bpf_arg_type type) 4957 { 4958 return type == ARG_CONST_SIZE || 4959 type == ARG_CONST_SIZE_OR_ZERO; 4960 } 4961 4962 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 4963 { 4964 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 4965 } 4966 4967 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 4968 { 4969 return type == ARG_PTR_TO_INT || 4970 type == ARG_PTR_TO_LONG; 4971 } 4972 4973 static int int_ptr_type_to_size(enum bpf_arg_type type) 4974 { 4975 if (type == ARG_PTR_TO_INT) 4976 return sizeof(u32); 4977 else if (type == ARG_PTR_TO_LONG) 4978 return sizeof(u64); 4979 4980 return -EINVAL; 4981 } 4982 4983 static int resolve_map_arg_type(struct bpf_verifier_env *env, 4984 const struct bpf_call_arg_meta *meta, 4985 enum bpf_arg_type *arg_type) 4986 { 4987 if (!meta->map_ptr) { 4988 /* kernel subsystem misconfigured verifier */ 4989 verbose(env, "invalid map_ptr to access map->type\n"); 4990 return -EACCES; 4991 } 4992 4993 switch (meta->map_ptr->map_type) { 4994 case BPF_MAP_TYPE_SOCKMAP: 4995 case BPF_MAP_TYPE_SOCKHASH: 4996 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 4997 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 4998 } else { 4999 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 5000 return -EINVAL; 5001 } 5002 break; 5003 case BPF_MAP_TYPE_BLOOM_FILTER: 5004 if (meta->func_id == BPF_FUNC_map_peek_elem) 5005 *arg_type = ARG_PTR_TO_MAP_VALUE; 5006 break; 5007 default: 5008 break; 5009 } 5010 return 0; 5011 } 5012 5013 struct bpf_reg_types { 5014 const enum bpf_reg_type types[10]; 5015 u32 *btf_id; 5016 }; 5017 5018 static const struct bpf_reg_types map_key_value_types = { 5019 .types = { 5020 PTR_TO_STACK, 5021 PTR_TO_PACKET, 5022 PTR_TO_PACKET_META, 5023 PTR_TO_MAP_KEY, 5024 PTR_TO_MAP_VALUE, 5025 }, 5026 }; 5027 5028 static const struct bpf_reg_types sock_types = { 5029 .types = { 5030 PTR_TO_SOCK_COMMON, 5031 PTR_TO_SOCKET, 5032 PTR_TO_TCP_SOCK, 5033 PTR_TO_XDP_SOCK, 5034 }, 5035 }; 5036 5037 #ifdef CONFIG_NET 5038 static const struct bpf_reg_types btf_id_sock_common_types = { 5039 .types = { 5040 PTR_TO_SOCK_COMMON, 5041 PTR_TO_SOCKET, 5042 PTR_TO_TCP_SOCK, 5043 PTR_TO_XDP_SOCK, 5044 PTR_TO_BTF_ID, 5045 }, 5046 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5047 }; 5048 #endif 5049 5050 static const struct bpf_reg_types mem_types = { 5051 .types = { 5052 PTR_TO_STACK, 5053 PTR_TO_PACKET, 5054 PTR_TO_PACKET_META, 5055 PTR_TO_MAP_KEY, 5056 PTR_TO_MAP_VALUE, 5057 PTR_TO_MEM, 5058 PTR_TO_RDONLY_BUF, 5059 PTR_TO_RDWR_BUF, 5060 }, 5061 }; 5062 5063 static const struct bpf_reg_types int_ptr_types = { 5064 .types = { 5065 PTR_TO_STACK, 5066 PTR_TO_PACKET, 5067 PTR_TO_PACKET_META, 5068 PTR_TO_MAP_KEY, 5069 PTR_TO_MAP_VALUE, 5070 }, 5071 }; 5072 5073 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 5074 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 5075 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 5076 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 5077 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 5078 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 5079 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 5080 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 5081 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 5082 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 5083 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 5084 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 5085 5086 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 5087 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 5088 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 5089 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 5090 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 5091 [ARG_CONST_SIZE] = &scalar_types, 5092 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 5093 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 5094 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 5095 [ARG_PTR_TO_CTX] = &context_types, 5096 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 5097 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 5098 #ifdef CONFIG_NET 5099 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 5100 #endif 5101 [ARG_PTR_TO_SOCKET] = &fullsock_types, 5102 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 5103 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 5104 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 5105 [ARG_PTR_TO_MEM] = &mem_types, 5106 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 5107 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 5108 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 5109 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 5110 [ARG_PTR_TO_INT] = &int_ptr_types, 5111 [ARG_PTR_TO_LONG] = &int_ptr_types, 5112 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 5113 [ARG_PTR_TO_FUNC] = &func_ptr_types, 5114 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types, 5115 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 5116 [ARG_PTR_TO_TIMER] = &timer_types, 5117 }; 5118 5119 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 5120 enum bpf_arg_type arg_type, 5121 const u32 *arg_btf_id) 5122 { 5123 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5124 enum bpf_reg_type expected, type = reg->type; 5125 const struct bpf_reg_types *compatible; 5126 int i, j; 5127 5128 compatible = compatible_reg_types[arg_type]; 5129 if (!compatible) { 5130 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 5131 return -EFAULT; 5132 } 5133 5134 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 5135 expected = compatible->types[i]; 5136 if (expected == NOT_INIT) 5137 break; 5138 5139 if (type == expected) 5140 goto found; 5141 } 5142 5143 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 5144 for (j = 0; j + 1 < i; j++) 5145 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 5146 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 5147 return -EACCES; 5148 5149 found: 5150 if (type == PTR_TO_BTF_ID) { 5151 if (!arg_btf_id) { 5152 if (!compatible->btf_id) { 5153 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 5154 return -EFAULT; 5155 } 5156 arg_btf_id = compatible->btf_id; 5157 } 5158 5159 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5160 btf_vmlinux, *arg_btf_id)) { 5161 verbose(env, "R%d is of type %s but %s is expected\n", 5162 regno, kernel_type_name(reg->btf, reg->btf_id), 5163 kernel_type_name(btf_vmlinux, *arg_btf_id)); 5164 return -EACCES; 5165 } 5166 5167 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5168 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 5169 regno); 5170 return -EACCES; 5171 } 5172 } 5173 5174 return 0; 5175 } 5176 5177 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 5178 struct bpf_call_arg_meta *meta, 5179 const struct bpf_func_proto *fn) 5180 { 5181 u32 regno = BPF_REG_1 + arg; 5182 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 5183 enum bpf_arg_type arg_type = fn->arg_type[arg]; 5184 enum bpf_reg_type type = reg->type; 5185 int err = 0; 5186 5187 if (arg_type == ARG_DONTCARE) 5188 return 0; 5189 5190 err = check_reg_arg(env, regno, SRC_OP); 5191 if (err) 5192 return err; 5193 5194 if (arg_type == ARG_ANYTHING) { 5195 if (is_pointer_value(env, regno)) { 5196 verbose(env, "R%d leaks addr into helper function\n", 5197 regno); 5198 return -EACCES; 5199 } 5200 return 0; 5201 } 5202 5203 if (type_is_pkt_pointer(type) && 5204 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 5205 verbose(env, "helper access to the packet is not allowed\n"); 5206 return -EACCES; 5207 } 5208 5209 if (arg_type == ARG_PTR_TO_MAP_VALUE || 5210 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 5211 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 5212 err = resolve_map_arg_type(env, meta, &arg_type); 5213 if (err) 5214 return err; 5215 } 5216 5217 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 5218 /* A NULL register has a SCALAR_VALUE type, so skip 5219 * type checking. 5220 */ 5221 goto skip_type_check; 5222 5223 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 5224 if (err) 5225 return err; 5226 5227 if (type == PTR_TO_CTX) { 5228 err = check_ctx_reg(env, reg, regno); 5229 if (err < 0) 5230 return err; 5231 } 5232 5233 skip_type_check: 5234 if (reg->ref_obj_id) { 5235 if (meta->ref_obj_id) { 5236 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5237 regno, reg->ref_obj_id, 5238 meta->ref_obj_id); 5239 return -EFAULT; 5240 } 5241 meta->ref_obj_id = reg->ref_obj_id; 5242 } 5243 5244 if (arg_type == ARG_CONST_MAP_PTR) { 5245 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 5246 if (meta->map_ptr) { 5247 /* Use map_uid (which is unique id of inner map) to reject: 5248 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 5249 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 5250 * if (inner_map1 && inner_map2) { 5251 * timer = bpf_map_lookup_elem(inner_map1); 5252 * if (timer) 5253 * // mismatch would have been allowed 5254 * bpf_timer_init(timer, inner_map2); 5255 * } 5256 * 5257 * Comparing map_ptr is enough to distinguish normal and outer maps. 5258 */ 5259 if (meta->map_ptr != reg->map_ptr || 5260 meta->map_uid != reg->map_uid) { 5261 verbose(env, 5262 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 5263 meta->map_uid, reg->map_uid); 5264 return -EINVAL; 5265 } 5266 } 5267 meta->map_ptr = reg->map_ptr; 5268 meta->map_uid = reg->map_uid; 5269 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 5270 /* bpf_map_xxx(..., map_ptr, ..., key) call: 5271 * check that [key, key + map->key_size) are within 5272 * stack limits and initialized 5273 */ 5274 if (!meta->map_ptr) { 5275 /* in function declaration map_ptr must come before 5276 * map_key, so that it's verified and known before 5277 * we have to check map_key here. Otherwise it means 5278 * that kernel subsystem misconfigured verifier 5279 */ 5280 verbose(env, "invalid map_ptr to access map->key\n"); 5281 return -EACCES; 5282 } 5283 err = check_helper_mem_access(env, regno, 5284 meta->map_ptr->key_size, false, 5285 NULL); 5286 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 5287 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 5288 !register_is_null(reg)) || 5289 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 5290 /* bpf_map_xxx(..., map_ptr, ..., value) call: 5291 * check [value, value + map->value_size) validity 5292 */ 5293 if (!meta->map_ptr) { 5294 /* kernel subsystem misconfigured verifier */ 5295 verbose(env, "invalid map_ptr to access map->value\n"); 5296 return -EACCES; 5297 } 5298 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 5299 err = check_helper_mem_access(env, regno, 5300 meta->map_ptr->value_size, false, 5301 meta); 5302 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 5303 if (!reg->btf_id) { 5304 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 5305 return -EACCES; 5306 } 5307 meta->ret_btf = reg->btf; 5308 meta->ret_btf_id = reg->btf_id; 5309 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 5310 if (meta->func_id == BPF_FUNC_spin_lock) { 5311 if (process_spin_lock(env, regno, true)) 5312 return -EACCES; 5313 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 5314 if (process_spin_lock(env, regno, false)) 5315 return -EACCES; 5316 } else { 5317 verbose(env, "verifier internal error\n"); 5318 return -EFAULT; 5319 } 5320 } else if (arg_type == ARG_PTR_TO_TIMER) { 5321 if (process_timer_func(env, regno, meta)) 5322 return -EACCES; 5323 } else if (arg_type == ARG_PTR_TO_FUNC) { 5324 meta->subprogno = reg->subprogno; 5325 } else if (arg_type_is_mem_ptr(arg_type)) { 5326 /* The access to this pointer is only checked when we hit the 5327 * next is_mem_size argument below. 5328 */ 5329 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 5330 } else if (arg_type_is_mem_size(arg_type)) { 5331 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 5332 5333 /* This is used to refine r0 return value bounds for helpers 5334 * that enforce this value as an upper bound on return values. 5335 * See do_refine_retval_range() for helpers that can refine 5336 * the return value. C type of helper is u32 so we pull register 5337 * bound from umax_value however, if negative verifier errors 5338 * out. Only upper bounds can be learned because retval is an 5339 * int type and negative retvals are allowed. 5340 */ 5341 meta->msize_max_value = reg->umax_value; 5342 5343 /* The register is SCALAR_VALUE; the access check 5344 * happens using its boundaries. 5345 */ 5346 if (!tnum_is_const(reg->var_off)) 5347 /* For unprivileged variable accesses, disable raw 5348 * mode so that the program is required to 5349 * initialize all the memory that the helper could 5350 * just partially fill up. 5351 */ 5352 meta = NULL; 5353 5354 if (reg->smin_value < 0) { 5355 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 5356 regno); 5357 return -EACCES; 5358 } 5359 5360 if (reg->umin_value == 0) { 5361 err = check_helper_mem_access(env, regno - 1, 0, 5362 zero_size_allowed, 5363 meta); 5364 if (err) 5365 return err; 5366 } 5367 5368 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 5369 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 5370 regno); 5371 return -EACCES; 5372 } 5373 err = check_helper_mem_access(env, regno - 1, 5374 reg->umax_value, 5375 zero_size_allowed, meta); 5376 if (!err) 5377 err = mark_chain_precision(env, regno); 5378 } else if (arg_type_is_alloc_size(arg_type)) { 5379 if (!tnum_is_const(reg->var_off)) { 5380 verbose(env, "R%d is not a known constant'\n", 5381 regno); 5382 return -EACCES; 5383 } 5384 meta->mem_size = reg->var_off.value; 5385 } else if (arg_type_is_int_ptr(arg_type)) { 5386 int size = int_ptr_type_to_size(arg_type); 5387 5388 err = check_helper_mem_access(env, regno, size, false, meta); 5389 if (err) 5390 return err; 5391 err = check_ptr_alignment(env, reg, 0, size, true); 5392 } else if (arg_type == ARG_PTR_TO_CONST_STR) { 5393 struct bpf_map *map = reg->map_ptr; 5394 int map_off; 5395 u64 map_addr; 5396 char *str_ptr; 5397 5398 if (!bpf_map_is_rdonly(map)) { 5399 verbose(env, "R%d does not point to a readonly map'\n", regno); 5400 return -EACCES; 5401 } 5402 5403 if (!tnum_is_const(reg->var_off)) { 5404 verbose(env, "R%d is not a constant address'\n", regno); 5405 return -EACCES; 5406 } 5407 5408 if (!map->ops->map_direct_value_addr) { 5409 verbose(env, "no direct value access support for this map type\n"); 5410 return -EACCES; 5411 } 5412 5413 err = check_map_access(env, regno, reg->off, 5414 map->value_size - reg->off, false); 5415 if (err) 5416 return err; 5417 5418 map_off = reg->off + reg->var_off.value; 5419 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 5420 if (err) { 5421 verbose(env, "direct value access on string failed\n"); 5422 return err; 5423 } 5424 5425 str_ptr = (char *)(long)(map_addr); 5426 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 5427 verbose(env, "string is not zero-terminated\n"); 5428 return -EINVAL; 5429 } 5430 } 5431 5432 return err; 5433 } 5434 5435 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 5436 { 5437 enum bpf_attach_type eatype = env->prog->expected_attach_type; 5438 enum bpf_prog_type type = resolve_prog_type(env->prog); 5439 5440 if (func_id != BPF_FUNC_map_update_elem) 5441 return false; 5442 5443 /* It's not possible to get access to a locked struct sock in these 5444 * contexts, so updating is safe. 5445 */ 5446 switch (type) { 5447 case BPF_PROG_TYPE_TRACING: 5448 if (eatype == BPF_TRACE_ITER) 5449 return true; 5450 break; 5451 case BPF_PROG_TYPE_SOCKET_FILTER: 5452 case BPF_PROG_TYPE_SCHED_CLS: 5453 case BPF_PROG_TYPE_SCHED_ACT: 5454 case BPF_PROG_TYPE_XDP: 5455 case BPF_PROG_TYPE_SK_REUSEPORT: 5456 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5457 case BPF_PROG_TYPE_SK_LOOKUP: 5458 return true; 5459 default: 5460 break; 5461 } 5462 5463 verbose(env, "cannot update sockmap in this context\n"); 5464 return false; 5465 } 5466 5467 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 5468 { 5469 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 5470 } 5471 5472 static int check_map_func_compatibility(struct bpf_verifier_env *env, 5473 struct bpf_map *map, int func_id) 5474 { 5475 if (!map) 5476 return 0; 5477 5478 /* We need a two way check, first is from map perspective ... */ 5479 switch (map->map_type) { 5480 case BPF_MAP_TYPE_PROG_ARRAY: 5481 if (func_id != BPF_FUNC_tail_call) 5482 goto error; 5483 break; 5484 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5485 if (func_id != BPF_FUNC_perf_event_read && 5486 func_id != BPF_FUNC_perf_event_output && 5487 func_id != BPF_FUNC_skb_output && 5488 func_id != BPF_FUNC_perf_event_read_value && 5489 func_id != BPF_FUNC_xdp_output) 5490 goto error; 5491 break; 5492 case BPF_MAP_TYPE_RINGBUF: 5493 if (func_id != BPF_FUNC_ringbuf_output && 5494 func_id != BPF_FUNC_ringbuf_reserve && 5495 func_id != BPF_FUNC_ringbuf_query) 5496 goto error; 5497 break; 5498 case BPF_MAP_TYPE_STACK_TRACE: 5499 if (func_id != BPF_FUNC_get_stackid) 5500 goto error; 5501 break; 5502 case BPF_MAP_TYPE_CGROUP_ARRAY: 5503 if (func_id != BPF_FUNC_skb_under_cgroup && 5504 func_id != BPF_FUNC_current_task_under_cgroup) 5505 goto error; 5506 break; 5507 case BPF_MAP_TYPE_CGROUP_STORAGE: 5508 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 5509 if (func_id != BPF_FUNC_get_local_storage) 5510 goto error; 5511 break; 5512 case BPF_MAP_TYPE_DEVMAP: 5513 case BPF_MAP_TYPE_DEVMAP_HASH: 5514 if (func_id != BPF_FUNC_redirect_map && 5515 func_id != BPF_FUNC_map_lookup_elem) 5516 goto error; 5517 break; 5518 /* Restrict bpf side of cpumap and xskmap, open when use-cases 5519 * appear. 5520 */ 5521 case BPF_MAP_TYPE_CPUMAP: 5522 if (func_id != BPF_FUNC_redirect_map) 5523 goto error; 5524 break; 5525 case BPF_MAP_TYPE_XSKMAP: 5526 if (func_id != BPF_FUNC_redirect_map && 5527 func_id != BPF_FUNC_map_lookup_elem) 5528 goto error; 5529 break; 5530 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5531 case BPF_MAP_TYPE_HASH_OF_MAPS: 5532 if (func_id != BPF_FUNC_map_lookup_elem) 5533 goto error; 5534 break; 5535 case BPF_MAP_TYPE_SOCKMAP: 5536 if (func_id != BPF_FUNC_sk_redirect_map && 5537 func_id != BPF_FUNC_sock_map_update && 5538 func_id != BPF_FUNC_map_delete_elem && 5539 func_id != BPF_FUNC_msg_redirect_map && 5540 func_id != BPF_FUNC_sk_select_reuseport && 5541 func_id != BPF_FUNC_map_lookup_elem && 5542 !may_update_sockmap(env, func_id)) 5543 goto error; 5544 break; 5545 case BPF_MAP_TYPE_SOCKHASH: 5546 if (func_id != BPF_FUNC_sk_redirect_hash && 5547 func_id != BPF_FUNC_sock_hash_update && 5548 func_id != BPF_FUNC_map_delete_elem && 5549 func_id != BPF_FUNC_msg_redirect_hash && 5550 func_id != BPF_FUNC_sk_select_reuseport && 5551 func_id != BPF_FUNC_map_lookup_elem && 5552 !may_update_sockmap(env, func_id)) 5553 goto error; 5554 break; 5555 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 5556 if (func_id != BPF_FUNC_sk_select_reuseport) 5557 goto error; 5558 break; 5559 case BPF_MAP_TYPE_QUEUE: 5560 case BPF_MAP_TYPE_STACK: 5561 if (func_id != BPF_FUNC_map_peek_elem && 5562 func_id != BPF_FUNC_map_pop_elem && 5563 func_id != BPF_FUNC_map_push_elem) 5564 goto error; 5565 break; 5566 case BPF_MAP_TYPE_SK_STORAGE: 5567 if (func_id != BPF_FUNC_sk_storage_get && 5568 func_id != BPF_FUNC_sk_storage_delete) 5569 goto error; 5570 break; 5571 case BPF_MAP_TYPE_INODE_STORAGE: 5572 if (func_id != BPF_FUNC_inode_storage_get && 5573 func_id != BPF_FUNC_inode_storage_delete) 5574 goto error; 5575 break; 5576 case BPF_MAP_TYPE_TASK_STORAGE: 5577 if (func_id != BPF_FUNC_task_storage_get && 5578 func_id != BPF_FUNC_task_storage_delete) 5579 goto error; 5580 break; 5581 case BPF_MAP_TYPE_BLOOM_FILTER: 5582 if (func_id != BPF_FUNC_map_peek_elem && 5583 func_id != BPF_FUNC_map_push_elem) 5584 goto error; 5585 break; 5586 default: 5587 break; 5588 } 5589 5590 /* ... and second from the function itself. */ 5591 switch (func_id) { 5592 case BPF_FUNC_tail_call: 5593 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 5594 goto error; 5595 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 5596 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 5597 return -EINVAL; 5598 } 5599 break; 5600 case BPF_FUNC_perf_event_read: 5601 case BPF_FUNC_perf_event_output: 5602 case BPF_FUNC_perf_event_read_value: 5603 case BPF_FUNC_skb_output: 5604 case BPF_FUNC_xdp_output: 5605 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 5606 goto error; 5607 break; 5608 case BPF_FUNC_ringbuf_output: 5609 case BPF_FUNC_ringbuf_reserve: 5610 case BPF_FUNC_ringbuf_query: 5611 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 5612 goto error; 5613 break; 5614 case BPF_FUNC_get_stackid: 5615 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 5616 goto error; 5617 break; 5618 case BPF_FUNC_current_task_under_cgroup: 5619 case BPF_FUNC_skb_under_cgroup: 5620 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 5621 goto error; 5622 break; 5623 case BPF_FUNC_redirect_map: 5624 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 5625 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 5626 map->map_type != BPF_MAP_TYPE_CPUMAP && 5627 map->map_type != BPF_MAP_TYPE_XSKMAP) 5628 goto error; 5629 break; 5630 case BPF_FUNC_sk_redirect_map: 5631 case BPF_FUNC_msg_redirect_map: 5632 case BPF_FUNC_sock_map_update: 5633 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 5634 goto error; 5635 break; 5636 case BPF_FUNC_sk_redirect_hash: 5637 case BPF_FUNC_msg_redirect_hash: 5638 case BPF_FUNC_sock_hash_update: 5639 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 5640 goto error; 5641 break; 5642 case BPF_FUNC_get_local_storage: 5643 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 5644 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 5645 goto error; 5646 break; 5647 case BPF_FUNC_sk_select_reuseport: 5648 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 5649 map->map_type != BPF_MAP_TYPE_SOCKMAP && 5650 map->map_type != BPF_MAP_TYPE_SOCKHASH) 5651 goto error; 5652 break; 5653 case BPF_FUNC_map_pop_elem: 5654 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5655 map->map_type != BPF_MAP_TYPE_STACK) 5656 goto error; 5657 break; 5658 case BPF_FUNC_map_peek_elem: 5659 case BPF_FUNC_map_push_elem: 5660 if (map->map_type != BPF_MAP_TYPE_QUEUE && 5661 map->map_type != BPF_MAP_TYPE_STACK && 5662 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 5663 goto error; 5664 break; 5665 case BPF_FUNC_sk_storage_get: 5666 case BPF_FUNC_sk_storage_delete: 5667 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 5668 goto error; 5669 break; 5670 case BPF_FUNC_inode_storage_get: 5671 case BPF_FUNC_inode_storage_delete: 5672 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 5673 goto error; 5674 break; 5675 case BPF_FUNC_task_storage_get: 5676 case BPF_FUNC_task_storage_delete: 5677 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 5678 goto error; 5679 break; 5680 default: 5681 break; 5682 } 5683 5684 return 0; 5685 error: 5686 verbose(env, "cannot pass map_type %d into func %s#%d\n", 5687 map->map_type, func_id_name(func_id), func_id); 5688 return -EINVAL; 5689 } 5690 5691 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 5692 { 5693 int count = 0; 5694 5695 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 5696 count++; 5697 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 5698 count++; 5699 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 5700 count++; 5701 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 5702 count++; 5703 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 5704 count++; 5705 5706 /* We only support one arg being in raw mode at the moment, 5707 * which is sufficient for the helper functions we have 5708 * right now. 5709 */ 5710 return count <= 1; 5711 } 5712 5713 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 5714 enum bpf_arg_type arg_next) 5715 { 5716 return (arg_type_is_mem_ptr(arg_curr) && 5717 !arg_type_is_mem_size(arg_next)) || 5718 (!arg_type_is_mem_ptr(arg_curr) && 5719 arg_type_is_mem_size(arg_next)); 5720 } 5721 5722 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 5723 { 5724 /* bpf_xxx(..., buf, len) call will access 'len' 5725 * bytes from memory 'buf'. Both arg types need 5726 * to be paired, so make sure there's no buggy 5727 * helper function specification. 5728 */ 5729 if (arg_type_is_mem_size(fn->arg1_type) || 5730 arg_type_is_mem_ptr(fn->arg5_type) || 5731 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 5732 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 5733 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 5734 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 5735 return false; 5736 5737 return true; 5738 } 5739 5740 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 5741 { 5742 int count = 0; 5743 5744 if (arg_type_may_be_refcounted(fn->arg1_type)) 5745 count++; 5746 if (arg_type_may_be_refcounted(fn->arg2_type)) 5747 count++; 5748 if (arg_type_may_be_refcounted(fn->arg3_type)) 5749 count++; 5750 if (arg_type_may_be_refcounted(fn->arg4_type)) 5751 count++; 5752 if (arg_type_may_be_refcounted(fn->arg5_type)) 5753 count++; 5754 5755 /* A reference acquiring function cannot acquire 5756 * another refcounted ptr. 5757 */ 5758 if (may_be_acquire_function(func_id) && count) 5759 return false; 5760 5761 /* We only support one arg being unreferenced at the moment, 5762 * which is sufficient for the helper functions we have right now. 5763 */ 5764 return count <= 1; 5765 } 5766 5767 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 5768 { 5769 int i; 5770 5771 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 5772 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 5773 return false; 5774 5775 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 5776 return false; 5777 } 5778 5779 return true; 5780 } 5781 5782 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 5783 { 5784 return check_raw_mode_ok(fn) && 5785 check_arg_pair_ok(fn) && 5786 check_btf_id_ok(fn) && 5787 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 5788 } 5789 5790 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 5791 * are now invalid, so turn them into unknown SCALAR_VALUE. 5792 */ 5793 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 5794 struct bpf_func_state *state) 5795 { 5796 struct bpf_reg_state *regs = state->regs, *reg; 5797 int i; 5798 5799 for (i = 0; i < MAX_BPF_REG; i++) 5800 if (reg_is_pkt_pointer_any(®s[i])) 5801 mark_reg_unknown(env, regs, i); 5802 5803 bpf_for_each_spilled_reg(i, state, reg) { 5804 if (!reg) 5805 continue; 5806 if (reg_is_pkt_pointer_any(reg)) 5807 __mark_reg_unknown(env, reg); 5808 } 5809 } 5810 5811 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 5812 { 5813 struct bpf_verifier_state *vstate = env->cur_state; 5814 int i; 5815 5816 for (i = 0; i <= vstate->curframe; i++) 5817 __clear_all_pkt_pointers(env, vstate->frame[i]); 5818 } 5819 5820 enum { 5821 AT_PKT_END = -1, 5822 BEYOND_PKT_END = -2, 5823 }; 5824 5825 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 5826 { 5827 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5828 struct bpf_reg_state *reg = &state->regs[regn]; 5829 5830 if (reg->type != PTR_TO_PACKET) 5831 /* PTR_TO_PACKET_META is not supported yet */ 5832 return; 5833 5834 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 5835 * How far beyond pkt_end it goes is unknown. 5836 * if (!range_open) it's the case of pkt >= pkt_end 5837 * if (range_open) it's the case of pkt > pkt_end 5838 * hence this pointer is at least 1 byte bigger than pkt_end 5839 */ 5840 if (range_open) 5841 reg->range = BEYOND_PKT_END; 5842 else 5843 reg->range = AT_PKT_END; 5844 } 5845 5846 static void release_reg_references(struct bpf_verifier_env *env, 5847 struct bpf_func_state *state, 5848 int ref_obj_id) 5849 { 5850 struct bpf_reg_state *regs = state->regs, *reg; 5851 int i; 5852 5853 for (i = 0; i < MAX_BPF_REG; i++) 5854 if (regs[i].ref_obj_id == ref_obj_id) 5855 mark_reg_unknown(env, regs, i); 5856 5857 bpf_for_each_spilled_reg(i, state, reg) { 5858 if (!reg) 5859 continue; 5860 if (reg->ref_obj_id == ref_obj_id) 5861 __mark_reg_unknown(env, reg); 5862 } 5863 } 5864 5865 /* The pointer with the specified id has released its reference to kernel 5866 * resources. Identify all copies of the same pointer and clear the reference. 5867 */ 5868 static int release_reference(struct bpf_verifier_env *env, 5869 int ref_obj_id) 5870 { 5871 struct bpf_verifier_state *vstate = env->cur_state; 5872 int err; 5873 int i; 5874 5875 err = release_reference_state(cur_func(env), ref_obj_id); 5876 if (err) 5877 return err; 5878 5879 for (i = 0; i <= vstate->curframe; i++) 5880 release_reg_references(env, vstate->frame[i], ref_obj_id); 5881 5882 return 0; 5883 } 5884 5885 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 5886 struct bpf_reg_state *regs) 5887 { 5888 int i; 5889 5890 /* after the call registers r0 - r5 were scratched */ 5891 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5892 mark_reg_not_init(env, regs, caller_saved[i]); 5893 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5894 } 5895 } 5896 5897 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 5898 struct bpf_func_state *caller, 5899 struct bpf_func_state *callee, 5900 int insn_idx); 5901 5902 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 5903 int *insn_idx, int subprog, 5904 set_callee_state_fn set_callee_state_cb) 5905 { 5906 struct bpf_verifier_state *state = env->cur_state; 5907 struct bpf_func_info_aux *func_info_aux; 5908 struct bpf_func_state *caller, *callee; 5909 int err; 5910 bool is_global = false; 5911 5912 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 5913 verbose(env, "the call stack of %d frames is too deep\n", 5914 state->curframe + 2); 5915 return -E2BIG; 5916 } 5917 5918 caller = state->frame[state->curframe]; 5919 if (state->frame[state->curframe + 1]) { 5920 verbose(env, "verifier bug. Frame %d already allocated\n", 5921 state->curframe + 1); 5922 return -EFAULT; 5923 } 5924 5925 func_info_aux = env->prog->aux->func_info_aux; 5926 if (func_info_aux) 5927 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5928 err = btf_check_subprog_arg_match(env, subprog, caller->regs); 5929 if (err == -EFAULT) 5930 return err; 5931 if (is_global) { 5932 if (err) { 5933 verbose(env, "Caller passes invalid args into func#%d\n", 5934 subprog); 5935 return err; 5936 } else { 5937 if (env->log.level & BPF_LOG_LEVEL) 5938 verbose(env, 5939 "Func#%d is global and valid. Skipping.\n", 5940 subprog); 5941 clear_caller_saved_regs(env, caller->regs); 5942 5943 /* All global functions return a 64-bit SCALAR_VALUE */ 5944 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5945 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5946 5947 /* continue with next insn after call */ 5948 return 0; 5949 } 5950 } 5951 5952 if (insn->code == (BPF_JMP | BPF_CALL) && 5953 insn->imm == BPF_FUNC_timer_set_callback) { 5954 struct bpf_verifier_state *async_cb; 5955 5956 /* there is no real recursion here. timer callbacks are async */ 5957 env->subprog_info[subprog].is_async_cb = true; 5958 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 5959 *insn_idx, subprog); 5960 if (!async_cb) 5961 return -EFAULT; 5962 callee = async_cb->frame[0]; 5963 callee->async_entry_cnt = caller->async_entry_cnt + 1; 5964 5965 /* Convert bpf_timer_set_callback() args into timer callback args */ 5966 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5967 if (err) 5968 return err; 5969 5970 clear_caller_saved_regs(env, caller->regs); 5971 mark_reg_unknown(env, caller->regs, BPF_REG_0); 5972 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5973 /* continue with next insn after call */ 5974 return 0; 5975 } 5976 5977 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 5978 if (!callee) 5979 return -ENOMEM; 5980 state->frame[state->curframe + 1] = callee; 5981 5982 /* callee cannot access r0, r6 - r9 for reading and has to write 5983 * into its own stack before reading from it. 5984 * callee can read/write into caller's stack 5985 */ 5986 init_func_state(env, callee, 5987 /* remember the callsite, it will be used by bpf_exit */ 5988 *insn_idx /* callsite */, 5989 state->curframe + 1 /* frameno within this callchain */, 5990 subprog /* subprog number within this prog */); 5991 5992 /* Transfer references to the callee */ 5993 err = copy_reference_state(callee, caller); 5994 if (err) 5995 return err; 5996 5997 err = set_callee_state_cb(env, caller, callee, *insn_idx); 5998 if (err) 5999 return err; 6000 6001 clear_caller_saved_regs(env, caller->regs); 6002 6003 /* only increment it after check_reg_arg() finished */ 6004 state->curframe++; 6005 6006 /* and go analyze first insn of the callee */ 6007 *insn_idx = env->subprog_info[subprog].start - 1; 6008 6009 if (env->log.level & BPF_LOG_LEVEL) { 6010 verbose(env, "caller:\n"); 6011 print_verifier_state(env, caller); 6012 verbose(env, "callee:\n"); 6013 print_verifier_state(env, callee); 6014 } 6015 return 0; 6016 } 6017 6018 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 6019 struct bpf_func_state *caller, 6020 struct bpf_func_state *callee) 6021 { 6022 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 6023 * void *callback_ctx, u64 flags); 6024 * callback_fn(struct bpf_map *map, void *key, void *value, 6025 * void *callback_ctx); 6026 */ 6027 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 6028 6029 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6030 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6031 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6032 6033 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6034 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6035 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 6036 6037 /* pointer to stack or null */ 6038 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 6039 6040 /* unused */ 6041 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6042 return 0; 6043 } 6044 6045 static int set_callee_state(struct bpf_verifier_env *env, 6046 struct bpf_func_state *caller, 6047 struct bpf_func_state *callee, int insn_idx) 6048 { 6049 int i; 6050 6051 /* copy r1 - r5 args that callee can access. The copy includes parent 6052 * pointers, which connects us up to the liveness chain 6053 */ 6054 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 6055 callee->regs[i] = caller->regs[i]; 6056 return 0; 6057 } 6058 6059 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6060 int *insn_idx) 6061 { 6062 int subprog, target_insn; 6063 6064 target_insn = *insn_idx + insn->imm + 1; 6065 subprog = find_subprog(env, target_insn); 6066 if (subprog < 0) { 6067 verbose(env, "verifier bug. No program starts at insn %d\n", 6068 target_insn); 6069 return -EFAULT; 6070 } 6071 6072 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state); 6073 } 6074 6075 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 6076 struct bpf_func_state *caller, 6077 struct bpf_func_state *callee, 6078 int insn_idx) 6079 { 6080 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 6081 struct bpf_map *map; 6082 int err; 6083 6084 if (bpf_map_ptr_poisoned(insn_aux)) { 6085 verbose(env, "tail_call abusing map_ptr\n"); 6086 return -EINVAL; 6087 } 6088 6089 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 6090 if (!map->ops->map_set_for_each_callback_args || 6091 !map->ops->map_for_each_callback) { 6092 verbose(env, "callback function not allowed for map\n"); 6093 return -ENOTSUPP; 6094 } 6095 6096 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 6097 if (err) 6098 return err; 6099 6100 callee->in_callback_fn = true; 6101 return 0; 6102 } 6103 6104 static int set_timer_callback_state(struct bpf_verifier_env *env, 6105 struct bpf_func_state *caller, 6106 struct bpf_func_state *callee, 6107 int insn_idx) 6108 { 6109 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 6110 6111 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 6112 * callback_fn(struct bpf_map *map, void *key, void *value); 6113 */ 6114 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 6115 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 6116 callee->regs[BPF_REG_1].map_ptr = map_ptr; 6117 6118 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 6119 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 6120 callee->regs[BPF_REG_2].map_ptr = map_ptr; 6121 6122 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 6123 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 6124 callee->regs[BPF_REG_3].map_ptr = map_ptr; 6125 6126 /* unused */ 6127 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 6128 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 6129 callee->in_async_callback_fn = true; 6130 return 0; 6131 } 6132 6133 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 6134 { 6135 struct bpf_verifier_state *state = env->cur_state; 6136 struct bpf_func_state *caller, *callee; 6137 struct bpf_reg_state *r0; 6138 int err; 6139 6140 callee = state->frame[state->curframe]; 6141 r0 = &callee->regs[BPF_REG_0]; 6142 if (r0->type == PTR_TO_STACK) { 6143 /* technically it's ok to return caller's stack pointer 6144 * (or caller's caller's pointer) back to the caller, 6145 * since these pointers are valid. Only current stack 6146 * pointer will be invalid as soon as function exits, 6147 * but let's be conservative 6148 */ 6149 verbose(env, "cannot return stack pointer to the caller\n"); 6150 return -EINVAL; 6151 } 6152 6153 state->curframe--; 6154 caller = state->frame[state->curframe]; 6155 if (callee->in_callback_fn) { 6156 /* enforce R0 return value range [0, 1]. */ 6157 struct tnum range = tnum_range(0, 1); 6158 6159 if (r0->type != SCALAR_VALUE) { 6160 verbose(env, "R0 not a scalar value\n"); 6161 return -EACCES; 6162 } 6163 if (!tnum_in(range, r0->var_off)) { 6164 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 6165 return -EINVAL; 6166 } 6167 } else { 6168 /* return to the caller whatever r0 had in the callee */ 6169 caller->regs[BPF_REG_0] = *r0; 6170 } 6171 6172 /* Transfer references to the caller */ 6173 err = copy_reference_state(caller, callee); 6174 if (err) 6175 return err; 6176 6177 *insn_idx = callee->callsite + 1; 6178 if (env->log.level & BPF_LOG_LEVEL) { 6179 verbose(env, "returning from callee:\n"); 6180 print_verifier_state(env, callee); 6181 verbose(env, "to caller at %d:\n", *insn_idx); 6182 print_verifier_state(env, caller); 6183 } 6184 /* clear everything in the callee */ 6185 free_func_state(callee); 6186 state->frame[state->curframe + 1] = NULL; 6187 return 0; 6188 } 6189 6190 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 6191 int func_id, 6192 struct bpf_call_arg_meta *meta) 6193 { 6194 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 6195 6196 if (ret_type != RET_INTEGER || 6197 (func_id != BPF_FUNC_get_stack && 6198 func_id != BPF_FUNC_get_task_stack && 6199 func_id != BPF_FUNC_probe_read_str && 6200 func_id != BPF_FUNC_probe_read_kernel_str && 6201 func_id != BPF_FUNC_probe_read_user_str)) 6202 return; 6203 6204 ret_reg->smax_value = meta->msize_max_value; 6205 ret_reg->s32_max_value = meta->msize_max_value; 6206 ret_reg->smin_value = -MAX_ERRNO; 6207 ret_reg->s32_min_value = -MAX_ERRNO; 6208 __reg_deduce_bounds(ret_reg); 6209 __reg_bound_offset(ret_reg); 6210 __update_reg_bounds(ret_reg); 6211 } 6212 6213 static int 6214 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6215 int func_id, int insn_idx) 6216 { 6217 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6218 struct bpf_map *map = meta->map_ptr; 6219 6220 if (func_id != BPF_FUNC_tail_call && 6221 func_id != BPF_FUNC_map_lookup_elem && 6222 func_id != BPF_FUNC_map_update_elem && 6223 func_id != BPF_FUNC_map_delete_elem && 6224 func_id != BPF_FUNC_map_push_elem && 6225 func_id != BPF_FUNC_map_pop_elem && 6226 func_id != BPF_FUNC_map_peek_elem && 6227 func_id != BPF_FUNC_for_each_map_elem && 6228 func_id != BPF_FUNC_redirect_map) 6229 return 0; 6230 6231 if (map == NULL) { 6232 verbose(env, "kernel subsystem misconfigured verifier\n"); 6233 return -EINVAL; 6234 } 6235 6236 /* In case of read-only, some additional restrictions 6237 * need to be applied in order to prevent altering the 6238 * state of the map from program side. 6239 */ 6240 if ((map->map_flags & BPF_F_RDONLY_PROG) && 6241 (func_id == BPF_FUNC_map_delete_elem || 6242 func_id == BPF_FUNC_map_update_elem || 6243 func_id == BPF_FUNC_map_push_elem || 6244 func_id == BPF_FUNC_map_pop_elem)) { 6245 verbose(env, "write into map forbidden\n"); 6246 return -EACCES; 6247 } 6248 6249 if (!BPF_MAP_PTR(aux->map_ptr_state)) 6250 bpf_map_ptr_store(aux, meta->map_ptr, 6251 !meta->map_ptr->bypass_spec_v1); 6252 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 6253 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 6254 !meta->map_ptr->bypass_spec_v1); 6255 return 0; 6256 } 6257 6258 static int 6259 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 6260 int func_id, int insn_idx) 6261 { 6262 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 6263 struct bpf_reg_state *regs = cur_regs(env), *reg; 6264 struct bpf_map *map = meta->map_ptr; 6265 struct tnum range; 6266 u64 val; 6267 int err; 6268 6269 if (func_id != BPF_FUNC_tail_call) 6270 return 0; 6271 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 6272 verbose(env, "kernel subsystem misconfigured verifier\n"); 6273 return -EINVAL; 6274 } 6275 6276 range = tnum_range(0, map->max_entries - 1); 6277 reg = ®s[BPF_REG_3]; 6278 6279 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 6280 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6281 return 0; 6282 } 6283 6284 err = mark_chain_precision(env, BPF_REG_3); 6285 if (err) 6286 return err; 6287 6288 val = reg->var_off.value; 6289 if (bpf_map_key_unseen(aux)) 6290 bpf_map_key_store(aux, val); 6291 else if (!bpf_map_key_poisoned(aux) && 6292 bpf_map_key_immediate(aux) != val) 6293 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 6294 return 0; 6295 } 6296 6297 static int check_reference_leak(struct bpf_verifier_env *env) 6298 { 6299 struct bpf_func_state *state = cur_func(env); 6300 int i; 6301 6302 for (i = 0; i < state->acquired_refs; i++) { 6303 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 6304 state->refs[i].id, state->refs[i].insn_idx); 6305 } 6306 return state->acquired_refs ? -EINVAL : 0; 6307 } 6308 6309 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 6310 struct bpf_reg_state *regs) 6311 { 6312 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 6313 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 6314 struct bpf_map *fmt_map = fmt_reg->map_ptr; 6315 int err, fmt_map_off, num_args; 6316 u64 fmt_addr; 6317 char *fmt; 6318 6319 /* data must be an array of u64 */ 6320 if (data_len_reg->var_off.value % 8) 6321 return -EINVAL; 6322 num_args = data_len_reg->var_off.value / 8; 6323 6324 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 6325 * and map_direct_value_addr is set. 6326 */ 6327 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 6328 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 6329 fmt_map_off); 6330 if (err) { 6331 verbose(env, "verifier bug\n"); 6332 return -EFAULT; 6333 } 6334 fmt = (char *)(long)fmt_addr + fmt_map_off; 6335 6336 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 6337 * can focus on validating the format specifiers. 6338 */ 6339 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args); 6340 if (err < 0) 6341 verbose(env, "Invalid format string\n"); 6342 6343 return err; 6344 } 6345 6346 static int check_get_func_ip(struct bpf_verifier_env *env) 6347 { 6348 enum bpf_attach_type eatype = env->prog->expected_attach_type; 6349 enum bpf_prog_type type = resolve_prog_type(env->prog); 6350 int func_id = BPF_FUNC_get_func_ip; 6351 6352 if (type == BPF_PROG_TYPE_TRACING) { 6353 if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT && 6354 eatype != BPF_MODIFY_RETURN) { 6355 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 6356 func_id_name(func_id), func_id); 6357 return -ENOTSUPP; 6358 } 6359 return 0; 6360 } else if (type == BPF_PROG_TYPE_KPROBE) { 6361 return 0; 6362 } 6363 6364 verbose(env, "func %s#%d not supported for program type %d\n", 6365 func_id_name(func_id), func_id, type); 6366 return -ENOTSUPP; 6367 } 6368 6369 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 6370 int *insn_idx_p) 6371 { 6372 const struct bpf_func_proto *fn = NULL; 6373 struct bpf_reg_state *regs; 6374 struct bpf_call_arg_meta meta; 6375 int insn_idx = *insn_idx_p; 6376 bool changes_data; 6377 int i, err, func_id; 6378 6379 /* find function prototype */ 6380 func_id = insn->imm; 6381 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 6382 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 6383 func_id); 6384 return -EINVAL; 6385 } 6386 6387 if (env->ops->get_func_proto) 6388 fn = env->ops->get_func_proto(func_id, env->prog); 6389 if (!fn) { 6390 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 6391 func_id); 6392 return -EINVAL; 6393 } 6394 6395 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 6396 if (!env->prog->gpl_compatible && fn->gpl_only) { 6397 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 6398 return -EINVAL; 6399 } 6400 6401 if (fn->allowed && !fn->allowed(env->prog)) { 6402 verbose(env, "helper call is not allowed in probe\n"); 6403 return -EINVAL; 6404 } 6405 6406 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 6407 changes_data = bpf_helper_changes_pkt_data(fn->func); 6408 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 6409 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 6410 func_id_name(func_id), func_id); 6411 return -EINVAL; 6412 } 6413 6414 memset(&meta, 0, sizeof(meta)); 6415 meta.pkt_access = fn->pkt_access; 6416 6417 err = check_func_proto(fn, func_id); 6418 if (err) { 6419 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 6420 func_id_name(func_id), func_id); 6421 return err; 6422 } 6423 6424 meta.func_id = func_id; 6425 /* check args */ 6426 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6427 err = check_func_arg(env, i, &meta, fn); 6428 if (err) 6429 return err; 6430 } 6431 6432 err = record_func_map(env, &meta, func_id, insn_idx); 6433 if (err) 6434 return err; 6435 6436 err = record_func_key(env, &meta, func_id, insn_idx); 6437 if (err) 6438 return err; 6439 6440 /* Mark slots with STACK_MISC in case of raw mode, stack offset 6441 * is inferred from register state. 6442 */ 6443 for (i = 0; i < meta.access_size; i++) { 6444 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 6445 BPF_WRITE, -1, false); 6446 if (err) 6447 return err; 6448 } 6449 6450 if (func_id == BPF_FUNC_tail_call) { 6451 err = check_reference_leak(env); 6452 if (err) { 6453 verbose(env, "tail_call would lead to reference leak\n"); 6454 return err; 6455 } 6456 } else if (is_release_function(func_id)) { 6457 err = release_reference(env, meta.ref_obj_id); 6458 if (err) { 6459 verbose(env, "func %s#%d reference has not been acquired before\n", 6460 func_id_name(func_id), func_id); 6461 return err; 6462 } 6463 } 6464 6465 regs = cur_regs(env); 6466 6467 /* check that flags argument in get_local_storage(map, flags) is 0, 6468 * this is required because get_local_storage() can't return an error. 6469 */ 6470 if (func_id == BPF_FUNC_get_local_storage && 6471 !register_is_null(®s[BPF_REG_2])) { 6472 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 6473 return -EINVAL; 6474 } 6475 6476 if (func_id == BPF_FUNC_for_each_map_elem) { 6477 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6478 set_map_elem_callback_state); 6479 if (err < 0) 6480 return -EINVAL; 6481 } 6482 6483 if (func_id == BPF_FUNC_timer_set_callback) { 6484 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno, 6485 set_timer_callback_state); 6486 if (err < 0) 6487 return -EINVAL; 6488 } 6489 6490 if (func_id == BPF_FUNC_snprintf) { 6491 err = check_bpf_snprintf_call(env, regs); 6492 if (err < 0) 6493 return err; 6494 } 6495 6496 /* reset caller saved regs */ 6497 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6498 mark_reg_not_init(env, regs, caller_saved[i]); 6499 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6500 } 6501 6502 /* helper call returns 64-bit value. */ 6503 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 6504 6505 /* update return register (already marked as written above) */ 6506 if (fn->ret_type == RET_INTEGER) { 6507 /* sets type to SCALAR_VALUE */ 6508 mark_reg_unknown(env, regs, BPF_REG_0); 6509 } else if (fn->ret_type == RET_VOID) { 6510 regs[BPF_REG_0].type = NOT_INIT; 6511 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 6512 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6513 /* There is no offset yet applied, variable or fixed */ 6514 mark_reg_known_zero(env, regs, BPF_REG_0); 6515 /* remember map_ptr, so that check_map_access() 6516 * can check 'value_size' boundary of memory access 6517 * to map element returned from bpf_map_lookup_elem() 6518 */ 6519 if (meta.map_ptr == NULL) { 6520 verbose(env, 6521 "kernel subsystem misconfigured verifier\n"); 6522 return -EINVAL; 6523 } 6524 regs[BPF_REG_0].map_ptr = meta.map_ptr; 6525 regs[BPF_REG_0].map_uid = meta.map_uid; 6526 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 6527 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 6528 if (map_value_has_spin_lock(meta.map_ptr)) 6529 regs[BPF_REG_0].id = ++env->id_gen; 6530 } else { 6531 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 6532 } 6533 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 6534 mark_reg_known_zero(env, regs, BPF_REG_0); 6535 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 6536 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 6537 mark_reg_known_zero(env, regs, BPF_REG_0); 6538 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 6539 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 6540 mark_reg_known_zero(env, regs, BPF_REG_0); 6541 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 6542 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 6543 mark_reg_known_zero(env, regs, BPF_REG_0); 6544 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 6545 regs[BPF_REG_0].mem_size = meta.mem_size; 6546 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 6547 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 6548 const struct btf_type *t; 6549 6550 mark_reg_known_zero(env, regs, BPF_REG_0); 6551 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 6552 if (!btf_type_is_struct(t)) { 6553 u32 tsize; 6554 const struct btf_type *ret; 6555 const char *tname; 6556 6557 /* resolve the type size of ksym. */ 6558 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 6559 if (IS_ERR(ret)) { 6560 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 6561 verbose(env, "unable to resolve the size of type '%s': %ld\n", 6562 tname, PTR_ERR(ret)); 6563 return -EINVAL; 6564 } 6565 regs[BPF_REG_0].type = 6566 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6567 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 6568 regs[BPF_REG_0].mem_size = tsize; 6569 } else { 6570 regs[BPF_REG_0].type = 6571 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 6572 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 6573 regs[BPF_REG_0].btf = meta.ret_btf; 6574 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 6575 } 6576 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 6577 fn->ret_type == RET_PTR_TO_BTF_ID) { 6578 int ret_btf_id; 6579 6580 mark_reg_known_zero(env, regs, BPF_REG_0); 6581 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 6582 PTR_TO_BTF_ID : 6583 PTR_TO_BTF_ID_OR_NULL; 6584 ret_btf_id = *fn->ret_btf_id; 6585 if (ret_btf_id == 0) { 6586 verbose(env, "invalid return type %d of func %s#%d\n", 6587 fn->ret_type, func_id_name(func_id), func_id); 6588 return -EINVAL; 6589 } 6590 /* current BPF helper definitions are only coming from 6591 * built-in code with type IDs from vmlinux BTF 6592 */ 6593 regs[BPF_REG_0].btf = btf_vmlinux; 6594 regs[BPF_REG_0].btf_id = ret_btf_id; 6595 } else { 6596 verbose(env, "unknown return type %d of func %s#%d\n", 6597 fn->ret_type, func_id_name(func_id), func_id); 6598 return -EINVAL; 6599 } 6600 6601 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 6602 regs[BPF_REG_0].id = ++env->id_gen; 6603 6604 if (is_ptr_cast_function(func_id)) { 6605 /* For release_reference() */ 6606 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 6607 } else if (is_acquire_function(func_id, meta.map_ptr)) { 6608 int id = acquire_reference_state(env, insn_idx); 6609 6610 if (id < 0) 6611 return id; 6612 /* For mark_ptr_or_null_reg() */ 6613 regs[BPF_REG_0].id = id; 6614 /* For release_reference() */ 6615 regs[BPF_REG_0].ref_obj_id = id; 6616 } 6617 6618 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 6619 6620 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 6621 if (err) 6622 return err; 6623 6624 if ((func_id == BPF_FUNC_get_stack || 6625 func_id == BPF_FUNC_get_task_stack) && 6626 !env->prog->has_callchain_buf) { 6627 const char *err_str; 6628 6629 #ifdef CONFIG_PERF_EVENTS 6630 err = get_callchain_buffers(sysctl_perf_event_max_stack); 6631 err_str = "cannot get callchain buffer for func %s#%d\n"; 6632 #else 6633 err = -ENOTSUPP; 6634 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 6635 #endif 6636 if (err) { 6637 verbose(env, err_str, func_id_name(func_id), func_id); 6638 return err; 6639 } 6640 6641 env->prog->has_callchain_buf = true; 6642 } 6643 6644 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 6645 env->prog->call_get_stack = true; 6646 6647 if (func_id == BPF_FUNC_get_func_ip) { 6648 if (check_get_func_ip(env)) 6649 return -ENOTSUPP; 6650 env->prog->call_get_func_ip = true; 6651 } 6652 6653 if (changes_data) 6654 clear_all_pkt_pointers(env); 6655 return 0; 6656 } 6657 6658 /* mark_btf_func_reg_size() is used when the reg size is determined by 6659 * the BTF func_proto's return value size and argument. 6660 */ 6661 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 6662 size_t reg_size) 6663 { 6664 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 6665 6666 if (regno == BPF_REG_0) { 6667 /* Function return value */ 6668 reg->live |= REG_LIVE_WRITTEN; 6669 reg->subreg_def = reg_size == sizeof(u64) ? 6670 DEF_NOT_SUBREG : env->insn_idx + 1; 6671 } else { 6672 /* Function argument */ 6673 if (reg_size == sizeof(u64)) { 6674 mark_insn_zext(env, reg); 6675 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 6676 } else { 6677 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 6678 } 6679 } 6680 } 6681 6682 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn) 6683 { 6684 const struct btf_type *t, *func, *func_proto, *ptr_type; 6685 struct bpf_reg_state *regs = cur_regs(env); 6686 const char *func_name, *ptr_type_name; 6687 u32 i, nargs, func_id, ptr_type_id; 6688 struct module *btf_mod = NULL; 6689 const struct btf_param *args; 6690 struct btf *desc_btf; 6691 int err; 6692 6693 /* skip for now, but return error when we find this in fixup_kfunc_call */ 6694 if (!insn->imm) 6695 return 0; 6696 6697 desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod); 6698 if (IS_ERR(desc_btf)) 6699 return PTR_ERR(desc_btf); 6700 6701 func_id = insn->imm; 6702 func = btf_type_by_id(desc_btf, func_id); 6703 func_name = btf_name_by_offset(desc_btf, func->name_off); 6704 func_proto = btf_type_by_id(desc_btf, func->type); 6705 6706 if (!env->ops->check_kfunc_call || 6707 !env->ops->check_kfunc_call(func_id, btf_mod)) { 6708 verbose(env, "calling kernel function %s is not allowed\n", 6709 func_name); 6710 return -EACCES; 6711 } 6712 6713 /* Check the arguments */ 6714 err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs); 6715 if (err) 6716 return err; 6717 6718 for (i = 0; i < CALLER_SAVED_REGS; i++) 6719 mark_reg_not_init(env, regs, caller_saved[i]); 6720 6721 /* Check return type */ 6722 t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL); 6723 if (btf_type_is_scalar(t)) { 6724 mark_reg_unknown(env, regs, BPF_REG_0); 6725 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 6726 } else if (btf_type_is_ptr(t)) { 6727 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, 6728 &ptr_type_id); 6729 if (!btf_type_is_struct(ptr_type)) { 6730 ptr_type_name = btf_name_by_offset(desc_btf, 6731 ptr_type->name_off); 6732 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n", 6733 func_name, btf_type_str(ptr_type), 6734 ptr_type_name); 6735 return -EINVAL; 6736 } 6737 mark_reg_known_zero(env, regs, BPF_REG_0); 6738 regs[BPF_REG_0].btf = desc_btf; 6739 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 6740 regs[BPF_REG_0].btf_id = ptr_type_id; 6741 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 6742 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */ 6743 6744 nargs = btf_type_vlen(func_proto); 6745 args = (const struct btf_param *)(func_proto + 1); 6746 for (i = 0; i < nargs; i++) { 6747 u32 regno = i + 1; 6748 6749 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 6750 if (btf_type_is_ptr(t)) 6751 mark_btf_func_reg_size(env, regno, sizeof(void *)); 6752 else 6753 /* scalar. ensured by btf_check_kfunc_arg_match() */ 6754 mark_btf_func_reg_size(env, regno, t->size); 6755 } 6756 6757 return 0; 6758 } 6759 6760 static bool signed_add_overflows(s64 a, s64 b) 6761 { 6762 /* Do the add in u64, where overflow is well-defined */ 6763 s64 res = (s64)((u64)a + (u64)b); 6764 6765 if (b < 0) 6766 return res > a; 6767 return res < a; 6768 } 6769 6770 static bool signed_add32_overflows(s32 a, s32 b) 6771 { 6772 /* Do the add in u32, where overflow is well-defined */ 6773 s32 res = (s32)((u32)a + (u32)b); 6774 6775 if (b < 0) 6776 return res > a; 6777 return res < a; 6778 } 6779 6780 static bool signed_sub_overflows(s64 a, s64 b) 6781 { 6782 /* Do the sub in u64, where overflow is well-defined */ 6783 s64 res = (s64)((u64)a - (u64)b); 6784 6785 if (b < 0) 6786 return res < a; 6787 return res > a; 6788 } 6789 6790 static bool signed_sub32_overflows(s32 a, s32 b) 6791 { 6792 /* Do the sub in u32, where overflow is well-defined */ 6793 s32 res = (s32)((u32)a - (u32)b); 6794 6795 if (b < 0) 6796 return res < a; 6797 return res > a; 6798 } 6799 6800 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 6801 const struct bpf_reg_state *reg, 6802 enum bpf_reg_type type) 6803 { 6804 bool known = tnum_is_const(reg->var_off); 6805 s64 val = reg->var_off.value; 6806 s64 smin = reg->smin_value; 6807 6808 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 6809 verbose(env, "math between %s pointer and %lld is not allowed\n", 6810 reg_type_str[type], val); 6811 return false; 6812 } 6813 6814 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 6815 verbose(env, "%s pointer offset %d is not allowed\n", 6816 reg_type_str[type], reg->off); 6817 return false; 6818 } 6819 6820 if (smin == S64_MIN) { 6821 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 6822 reg_type_str[type]); 6823 return false; 6824 } 6825 6826 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 6827 verbose(env, "value %lld makes %s pointer be out of bounds\n", 6828 smin, reg_type_str[type]); 6829 return false; 6830 } 6831 6832 return true; 6833 } 6834 6835 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 6836 { 6837 return &env->insn_aux_data[env->insn_idx]; 6838 } 6839 6840 enum { 6841 REASON_BOUNDS = -1, 6842 REASON_TYPE = -2, 6843 REASON_PATHS = -3, 6844 REASON_LIMIT = -4, 6845 REASON_STACK = -5, 6846 }; 6847 6848 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 6849 u32 *alu_limit, bool mask_to_left) 6850 { 6851 u32 max = 0, ptr_limit = 0; 6852 6853 switch (ptr_reg->type) { 6854 case PTR_TO_STACK: 6855 /* Offset 0 is out-of-bounds, but acceptable start for the 6856 * left direction, see BPF_REG_FP. Also, unknown scalar 6857 * offset where we would need to deal with min/max bounds is 6858 * currently prohibited for unprivileged. 6859 */ 6860 max = MAX_BPF_STACK + mask_to_left; 6861 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 6862 break; 6863 case PTR_TO_MAP_VALUE: 6864 max = ptr_reg->map_ptr->value_size; 6865 ptr_limit = (mask_to_left ? 6866 ptr_reg->smin_value : 6867 ptr_reg->umax_value) + ptr_reg->off; 6868 break; 6869 default: 6870 return REASON_TYPE; 6871 } 6872 6873 if (ptr_limit >= max) 6874 return REASON_LIMIT; 6875 *alu_limit = ptr_limit; 6876 return 0; 6877 } 6878 6879 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 6880 const struct bpf_insn *insn) 6881 { 6882 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 6883 } 6884 6885 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 6886 u32 alu_state, u32 alu_limit) 6887 { 6888 /* If we arrived here from different branches with different 6889 * state or limits to sanitize, then this won't work. 6890 */ 6891 if (aux->alu_state && 6892 (aux->alu_state != alu_state || 6893 aux->alu_limit != alu_limit)) 6894 return REASON_PATHS; 6895 6896 /* Corresponding fixup done in do_misc_fixups(). */ 6897 aux->alu_state = alu_state; 6898 aux->alu_limit = alu_limit; 6899 return 0; 6900 } 6901 6902 static int sanitize_val_alu(struct bpf_verifier_env *env, 6903 struct bpf_insn *insn) 6904 { 6905 struct bpf_insn_aux_data *aux = cur_aux(env); 6906 6907 if (can_skip_alu_sanitation(env, insn)) 6908 return 0; 6909 6910 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 6911 } 6912 6913 static bool sanitize_needed(u8 opcode) 6914 { 6915 return opcode == BPF_ADD || opcode == BPF_SUB; 6916 } 6917 6918 struct bpf_sanitize_info { 6919 struct bpf_insn_aux_data aux; 6920 bool mask_to_left; 6921 }; 6922 6923 static struct bpf_verifier_state * 6924 sanitize_speculative_path(struct bpf_verifier_env *env, 6925 const struct bpf_insn *insn, 6926 u32 next_idx, u32 curr_idx) 6927 { 6928 struct bpf_verifier_state *branch; 6929 struct bpf_reg_state *regs; 6930 6931 branch = push_stack(env, next_idx, curr_idx, true); 6932 if (branch && insn) { 6933 regs = branch->frame[branch->curframe]->regs; 6934 if (BPF_SRC(insn->code) == BPF_K) { 6935 mark_reg_unknown(env, regs, insn->dst_reg); 6936 } else if (BPF_SRC(insn->code) == BPF_X) { 6937 mark_reg_unknown(env, regs, insn->dst_reg); 6938 mark_reg_unknown(env, regs, insn->src_reg); 6939 } 6940 } 6941 return branch; 6942 } 6943 6944 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 6945 struct bpf_insn *insn, 6946 const struct bpf_reg_state *ptr_reg, 6947 const struct bpf_reg_state *off_reg, 6948 struct bpf_reg_state *dst_reg, 6949 struct bpf_sanitize_info *info, 6950 const bool commit_window) 6951 { 6952 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 6953 struct bpf_verifier_state *vstate = env->cur_state; 6954 bool off_is_imm = tnum_is_const(off_reg->var_off); 6955 bool off_is_neg = off_reg->smin_value < 0; 6956 bool ptr_is_dst_reg = ptr_reg == dst_reg; 6957 u8 opcode = BPF_OP(insn->code); 6958 u32 alu_state, alu_limit; 6959 struct bpf_reg_state tmp; 6960 bool ret; 6961 int err; 6962 6963 if (can_skip_alu_sanitation(env, insn)) 6964 return 0; 6965 6966 /* We already marked aux for masking from non-speculative 6967 * paths, thus we got here in the first place. We only care 6968 * to explore bad access from here. 6969 */ 6970 if (vstate->speculative) 6971 goto do_sim; 6972 6973 if (!commit_window) { 6974 if (!tnum_is_const(off_reg->var_off) && 6975 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 6976 return REASON_BOUNDS; 6977 6978 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 6979 (opcode == BPF_SUB && !off_is_neg); 6980 } 6981 6982 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 6983 if (err < 0) 6984 return err; 6985 6986 if (commit_window) { 6987 /* In commit phase we narrow the masking window based on 6988 * the observed pointer move after the simulated operation. 6989 */ 6990 alu_state = info->aux.alu_state; 6991 alu_limit = abs(info->aux.alu_limit - alu_limit); 6992 } else { 6993 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 6994 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 6995 alu_state |= ptr_is_dst_reg ? 6996 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 6997 6998 /* Limit pruning on unknown scalars to enable deep search for 6999 * potential masking differences from other program paths. 7000 */ 7001 if (!off_is_imm) 7002 env->explore_alu_limits = true; 7003 } 7004 7005 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 7006 if (err < 0) 7007 return err; 7008 do_sim: 7009 /* If we're in commit phase, we're done here given we already 7010 * pushed the truncated dst_reg into the speculative verification 7011 * stack. 7012 * 7013 * Also, when register is a known constant, we rewrite register-based 7014 * operation to immediate-based, and thus do not need masking (and as 7015 * a consequence, do not need to simulate the zero-truncation either). 7016 */ 7017 if (commit_window || off_is_imm) 7018 return 0; 7019 7020 /* Simulate and find potential out-of-bounds access under 7021 * speculative execution from truncation as a result of 7022 * masking when off was not within expected range. If off 7023 * sits in dst, then we temporarily need to move ptr there 7024 * to simulate dst (== 0) +/-= ptr. Needed, for example, 7025 * for cases where we use K-based arithmetic in one direction 7026 * and truncated reg-based in the other in order to explore 7027 * bad access. 7028 */ 7029 if (!ptr_is_dst_reg) { 7030 tmp = *dst_reg; 7031 *dst_reg = *ptr_reg; 7032 } 7033 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 7034 env->insn_idx); 7035 if (!ptr_is_dst_reg && ret) 7036 *dst_reg = tmp; 7037 return !ret ? REASON_STACK : 0; 7038 } 7039 7040 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 7041 { 7042 struct bpf_verifier_state *vstate = env->cur_state; 7043 7044 /* If we simulate paths under speculation, we don't update the 7045 * insn as 'seen' such that when we verify unreachable paths in 7046 * the non-speculative domain, sanitize_dead_code() can still 7047 * rewrite/sanitize them. 7048 */ 7049 if (!vstate->speculative) 7050 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 7051 } 7052 7053 static int sanitize_err(struct bpf_verifier_env *env, 7054 const struct bpf_insn *insn, int reason, 7055 const struct bpf_reg_state *off_reg, 7056 const struct bpf_reg_state *dst_reg) 7057 { 7058 static const char *err = "pointer arithmetic with it prohibited for !root"; 7059 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 7060 u32 dst = insn->dst_reg, src = insn->src_reg; 7061 7062 switch (reason) { 7063 case REASON_BOUNDS: 7064 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 7065 off_reg == dst_reg ? dst : src, err); 7066 break; 7067 case REASON_TYPE: 7068 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 7069 off_reg == dst_reg ? src : dst, err); 7070 break; 7071 case REASON_PATHS: 7072 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 7073 dst, op, err); 7074 break; 7075 case REASON_LIMIT: 7076 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 7077 dst, op, err); 7078 break; 7079 case REASON_STACK: 7080 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 7081 dst, err); 7082 break; 7083 default: 7084 verbose(env, "verifier internal error: unknown reason (%d)\n", 7085 reason); 7086 break; 7087 } 7088 7089 return -EACCES; 7090 } 7091 7092 /* check that stack access falls within stack limits and that 'reg' doesn't 7093 * have a variable offset. 7094 * 7095 * Variable offset is prohibited for unprivileged mode for simplicity since it 7096 * requires corresponding support in Spectre masking for stack ALU. See also 7097 * retrieve_ptr_limit(). 7098 * 7099 * 7100 * 'off' includes 'reg->off'. 7101 */ 7102 static int check_stack_access_for_ptr_arithmetic( 7103 struct bpf_verifier_env *env, 7104 int regno, 7105 const struct bpf_reg_state *reg, 7106 int off) 7107 { 7108 if (!tnum_is_const(reg->var_off)) { 7109 char tn_buf[48]; 7110 7111 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7112 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 7113 regno, tn_buf, off); 7114 return -EACCES; 7115 } 7116 7117 if (off >= 0 || off < -MAX_BPF_STACK) { 7118 verbose(env, "R%d stack pointer arithmetic goes out of range, " 7119 "prohibited for !root; off=%d\n", regno, off); 7120 return -EACCES; 7121 } 7122 7123 return 0; 7124 } 7125 7126 static int sanitize_check_bounds(struct bpf_verifier_env *env, 7127 const struct bpf_insn *insn, 7128 const struct bpf_reg_state *dst_reg) 7129 { 7130 u32 dst = insn->dst_reg; 7131 7132 /* For unprivileged we require that resulting offset must be in bounds 7133 * in order to be able to sanitize access later on. 7134 */ 7135 if (env->bypass_spec_v1) 7136 return 0; 7137 7138 switch (dst_reg->type) { 7139 case PTR_TO_STACK: 7140 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 7141 dst_reg->off + dst_reg->var_off.value)) 7142 return -EACCES; 7143 break; 7144 case PTR_TO_MAP_VALUE: 7145 if (check_map_access(env, dst, dst_reg->off, 1, false)) { 7146 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 7147 "prohibited for !root\n", dst); 7148 return -EACCES; 7149 } 7150 break; 7151 default: 7152 break; 7153 } 7154 7155 return 0; 7156 } 7157 7158 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 7159 * Caller should also handle BPF_MOV case separately. 7160 * If we return -EACCES, caller may want to try again treating pointer as a 7161 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 7162 */ 7163 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 7164 struct bpf_insn *insn, 7165 const struct bpf_reg_state *ptr_reg, 7166 const struct bpf_reg_state *off_reg) 7167 { 7168 struct bpf_verifier_state *vstate = env->cur_state; 7169 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7170 struct bpf_reg_state *regs = state->regs, *dst_reg; 7171 bool known = tnum_is_const(off_reg->var_off); 7172 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 7173 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 7174 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 7175 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 7176 struct bpf_sanitize_info info = {}; 7177 u8 opcode = BPF_OP(insn->code); 7178 u32 dst = insn->dst_reg; 7179 int ret; 7180 7181 dst_reg = ®s[dst]; 7182 7183 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 7184 smin_val > smax_val || umin_val > umax_val) { 7185 /* Taint dst register if offset had invalid bounds derived from 7186 * e.g. dead branches. 7187 */ 7188 __mark_reg_unknown(env, dst_reg); 7189 return 0; 7190 } 7191 7192 if (BPF_CLASS(insn->code) != BPF_ALU64) { 7193 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 7194 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 7195 __mark_reg_unknown(env, dst_reg); 7196 return 0; 7197 } 7198 7199 verbose(env, 7200 "R%d 32-bit pointer arithmetic prohibited\n", 7201 dst); 7202 return -EACCES; 7203 } 7204 7205 switch (ptr_reg->type) { 7206 case PTR_TO_MAP_VALUE_OR_NULL: 7207 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 7208 dst, reg_type_str[ptr_reg->type]); 7209 return -EACCES; 7210 case CONST_PTR_TO_MAP: 7211 /* smin_val represents the known value */ 7212 if (known && smin_val == 0 && opcode == BPF_ADD) 7213 break; 7214 fallthrough; 7215 case PTR_TO_PACKET_END: 7216 case PTR_TO_SOCKET: 7217 case PTR_TO_SOCKET_OR_NULL: 7218 case PTR_TO_SOCK_COMMON: 7219 case PTR_TO_SOCK_COMMON_OR_NULL: 7220 case PTR_TO_TCP_SOCK: 7221 case PTR_TO_TCP_SOCK_OR_NULL: 7222 case PTR_TO_XDP_SOCK: 7223 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 7224 dst, reg_type_str[ptr_reg->type]); 7225 return -EACCES; 7226 default: 7227 break; 7228 } 7229 7230 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 7231 * The id may be overwritten later if we create a new variable offset. 7232 */ 7233 dst_reg->type = ptr_reg->type; 7234 dst_reg->id = ptr_reg->id; 7235 7236 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 7237 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 7238 return -EINVAL; 7239 7240 /* pointer types do not carry 32-bit bounds at the moment. */ 7241 __mark_reg32_unbounded(dst_reg); 7242 7243 if (sanitize_needed(opcode)) { 7244 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 7245 &info, false); 7246 if (ret < 0) 7247 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7248 } 7249 7250 switch (opcode) { 7251 case BPF_ADD: 7252 /* We can take a fixed offset as long as it doesn't overflow 7253 * the s32 'off' field 7254 */ 7255 if (known && (ptr_reg->off + smin_val == 7256 (s64)(s32)(ptr_reg->off + smin_val))) { 7257 /* pointer += K. Accumulate it into fixed offset */ 7258 dst_reg->smin_value = smin_ptr; 7259 dst_reg->smax_value = smax_ptr; 7260 dst_reg->umin_value = umin_ptr; 7261 dst_reg->umax_value = umax_ptr; 7262 dst_reg->var_off = ptr_reg->var_off; 7263 dst_reg->off = ptr_reg->off + smin_val; 7264 dst_reg->raw = ptr_reg->raw; 7265 break; 7266 } 7267 /* A new variable offset is created. Note that off_reg->off 7268 * == 0, since it's a scalar. 7269 * dst_reg gets the pointer type and since some positive 7270 * integer value was added to the pointer, give it a new 'id' 7271 * if it's a PTR_TO_PACKET. 7272 * this creates a new 'base' pointer, off_reg (variable) gets 7273 * added into the variable offset, and we copy the fixed offset 7274 * from ptr_reg. 7275 */ 7276 if (signed_add_overflows(smin_ptr, smin_val) || 7277 signed_add_overflows(smax_ptr, smax_val)) { 7278 dst_reg->smin_value = S64_MIN; 7279 dst_reg->smax_value = S64_MAX; 7280 } else { 7281 dst_reg->smin_value = smin_ptr + smin_val; 7282 dst_reg->smax_value = smax_ptr + smax_val; 7283 } 7284 if (umin_ptr + umin_val < umin_ptr || 7285 umax_ptr + umax_val < umax_ptr) { 7286 dst_reg->umin_value = 0; 7287 dst_reg->umax_value = U64_MAX; 7288 } else { 7289 dst_reg->umin_value = umin_ptr + umin_val; 7290 dst_reg->umax_value = umax_ptr + umax_val; 7291 } 7292 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 7293 dst_reg->off = ptr_reg->off; 7294 dst_reg->raw = ptr_reg->raw; 7295 if (reg_is_pkt_pointer(ptr_reg)) { 7296 dst_reg->id = ++env->id_gen; 7297 /* something was added to pkt_ptr, set range to zero */ 7298 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7299 } 7300 break; 7301 case BPF_SUB: 7302 if (dst_reg == off_reg) { 7303 /* scalar -= pointer. Creates an unknown scalar */ 7304 verbose(env, "R%d tried to subtract pointer from scalar\n", 7305 dst); 7306 return -EACCES; 7307 } 7308 /* We don't allow subtraction from FP, because (according to 7309 * test_verifier.c test "invalid fp arithmetic", JITs might not 7310 * be able to deal with it. 7311 */ 7312 if (ptr_reg->type == PTR_TO_STACK) { 7313 verbose(env, "R%d subtraction from stack pointer prohibited\n", 7314 dst); 7315 return -EACCES; 7316 } 7317 if (known && (ptr_reg->off - smin_val == 7318 (s64)(s32)(ptr_reg->off - smin_val))) { 7319 /* pointer -= K. Subtract it from fixed offset */ 7320 dst_reg->smin_value = smin_ptr; 7321 dst_reg->smax_value = smax_ptr; 7322 dst_reg->umin_value = umin_ptr; 7323 dst_reg->umax_value = umax_ptr; 7324 dst_reg->var_off = ptr_reg->var_off; 7325 dst_reg->id = ptr_reg->id; 7326 dst_reg->off = ptr_reg->off - smin_val; 7327 dst_reg->raw = ptr_reg->raw; 7328 break; 7329 } 7330 /* A new variable offset is created. If the subtrahend is known 7331 * nonnegative, then any reg->range we had before is still good. 7332 */ 7333 if (signed_sub_overflows(smin_ptr, smax_val) || 7334 signed_sub_overflows(smax_ptr, smin_val)) { 7335 /* Overflow possible, we know nothing */ 7336 dst_reg->smin_value = S64_MIN; 7337 dst_reg->smax_value = S64_MAX; 7338 } else { 7339 dst_reg->smin_value = smin_ptr - smax_val; 7340 dst_reg->smax_value = smax_ptr - smin_val; 7341 } 7342 if (umin_ptr < umax_val) { 7343 /* Overflow possible, we know nothing */ 7344 dst_reg->umin_value = 0; 7345 dst_reg->umax_value = U64_MAX; 7346 } else { 7347 /* Cannot overflow (as long as bounds are consistent) */ 7348 dst_reg->umin_value = umin_ptr - umax_val; 7349 dst_reg->umax_value = umax_ptr - umin_val; 7350 } 7351 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 7352 dst_reg->off = ptr_reg->off; 7353 dst_reg->raw = ptr_reg->raw; 7354 if (reg_is_pkt_pointer(ptr_reg)) { 7355 dst_reg->id = ++env->id_gen; 7356 /* something was added to pkt_ptr, set range to zero */ 7357 if (smin_val < 0) 7358 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 7359 } 7360 break; 7361 case BPF_AND: 7362 case BPF_OR: 7363 case BPF_XOR: 7364 /* bitwise ops on pointers are troublesome, prohibit. */ 7365 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 7366 dst, bpf_alu_string[opcode >> 4]); 7367 return -EACCES; 7368 default: 7369 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 7370 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 7371 dst, bpf_alu_string[opcode >> 4]); 7372 return -EACCES; 7373 } 7374 7375 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 7376 return -EINVAL; 7377 7378 __update_reg_bounds(dst_reg); 7379 __reg_deduce_bounds(dst_reg); 7380 __reg_bound_offset(dst_reg); 7381 7382 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 7383 return -EACCES; 7384 if (sanitize_needed(opcode)) { 7385 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 7386 &info, true); 7387 if (ret < 0) 7388 return sanitize_err(env, insn, ret, off_reg, dst_reg); 7389 } 7390 7391 return 0; 7392 } 7393 7394 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 7395 struct bpf_reg_state *src_reg) 7396 { 7397 s32 smin_val = src_reg->s32_min_value; 7398 s32 smax_val = src_reg->s32_max_value; 7399 u32 umin_val = src_reg->u32_min_value; 7400 u32 umax_val = src_reg->u32_max_value; 7401 7402 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 7403 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 7404 dst_reg->s32_min_value = S32_MIN; 7405 dst_reg->s32_max_value = S32_MAX; 7406 } else { 7407 dst_reg->s32_min_value += smin_val; 7408 dst_reg->s32_max_value += smax_val; 7409 } 7410 if (dst_reg->u32_min_value + umin_val < umin_val || 7411 dst_reg->u32_max_value + umax_val < umax_val) { 7412 dst_reg->u32_min_value = 0; 7413 dst_reg->u32_max_value = U32_MAX; 7414 } else { 7415 dst_reg->u32_min_value += umin_val; 7416 dst_reg->u32_max_value += umax_val; 7417 } 7418 } 7419 7420 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 7421 struct bpf_reg_state *src_reg) 7422 { 7423 s64 smin_val = src_reg->smin_value; 7424 s64 smax_val = src_reg->smax_value; 7425 u64 umin_val = src_reg->umin_value; 7426 u64 umax_val = src_reg->umax_value; 7427 7428 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 7429 signed_add_overflows(dst_reg->smax_value, smax_val)) { 7430 dst_reg->smin_value = S64_MIN; 7431 dst_reg->smax_value = S64_MAX; 7432 } else { 7433 dst_reg->smin_value += smin_val; 7434 dst_reg->smax_value += smax_val; 7435 } 7436 if (dst_reg->umin_value + umin_val < umin_val || 7437 dst_reg->umax_value + umax_val < umax_val) { 7438 dst_reg->umin_value = 0; 7439 dst_reg->umax_value = U64_MAX; 7440 } else { 7441 dst_reg->umin_value += umin_val; 7442 dst_reg->umax_value += umax_val; 7443 } 7444 } 7445 7446 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 7447 struct bpf_reg_state *src_reg) 7448 { 7449 s32 smin_val = src_reg->s32_min_value; 7450 s32 smax_val = src_reg->s32_max_value; 7451 u32 umin_val = src_reg->u32_min_value; 7452 u32 umax_val = src_reg->u32_max_value; 7453 7454 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 7455 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 7456 /* Overflow possible, we know nothing */ 7457 dst_reg->s32_min_value = S32_MIN; 7458 dst_reg->s32_max_value = S32_MAX; 7459 } else { 7460 dst_reg->s32_min_value -= smax_val; 7461 dst_reg->s32_max_value -= smin_val; 7462 } 7463 if (dst_reg->u32_min_value < umax_val) { 7464 /* Overflow possible, we know nothing */ 7465 dst_reg->u32_min_value = 0; 7466 dst_reg->u32_max_value = U32_MAX; 7467 } else { 7468 /* Cannot overflow (as long as bounds are consistent) */ 7469 dst_reg->u32_min_value -= umax_val; 7470 dst_reg->u32_max_value -= umin_val; 7471 } 7472 } 7473 7474 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 7475 struct bpf_reg_state *src_reg) 7476 { 7477 s64 smin_val = src_reg->smin_value; 7478 s64 smax_val = src_reg->smax_value; 7479 u64 umin_val = src_reg->umin_value; 7480 u64 umax_val = src_reg->umax_value; 7481 7482 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 7483 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 7484 /* Overflow possible, we know nothing */ 7485 dst_reg->smin_value = S64_MIN; 7486 dst_reg->smax_value = S64_MAX; 7487 } else { 7488 dst_reg->smin_value -= smax_val; 7489 dst_reg->smax_value -= smin_val; 7490 } 7491 if (dst_reg->umin_value < umax_val) { 7492 /* Overflow possible, we know nothing */ 7493 dst_reg->umin_value = 0; 7494 dst_reg->umax_value = U64_MAX; 7495 } else { 7496 /* Cannot overflow (as long as bounds are consistent) */ 7497 dst_reg->umin_value -= umax_val; 7498 dst_reg->umax_value -= umin_val; 7499 } 7500 } 7501 7502 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 7503 struct bpf_reg_state *src_reg) 7504 { 7505 s32 smin_val = src_reg->s32_min_value; 7506 u32 umin_val = src_reg->u32_min_value; 7507 u32 umax_val = src_reg->u32_max_value; 7508 7509 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 7510 /* Ain't nobody got time to multiply that sign */ 7511 __mark_reg32_unbounded(dst_reg); 7512 return; 7513 } 7514 /* Both values are positive, so we can work with unsigned and 7515 * copy the result to signed (unless it exceeds S32_MAX). 7516 */ 7517 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 7518 /* Potential overflow, we know nothing */ 7519 __mark_reg32_unbounded(dst_reg); 7520 return; 7521 } 7522 dst_reg->u32_min_value *= umin_val; 7523 dst_reg->u32_max_value *= umax_val; 7524 if (dst_reg->u32_max_value > S32_MAX) { 7525 /* Overflow possible, we know nothing */ 7526 dst_reg->s32_min_value = S32_MIN; 7527 dst_reg->s32_max_value = S32_MAX; 7528 } else { 7529 dst_reg->s32_min_value = dst_reg->u32_min_value; 7530 dst_reg->s32_max_value = dst_reg->u32_max_value; 7531 } 7532 } 7533 7534 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 7535 struct bpf_reg_state *src_reg) 7536 { 7537 s64 smin_val = src_reg->smin_value; 7538 u64 umin_val = src_reg->umin_value; 7539 u64 umax_val = src_reg->umax_value; 7540 7541 if (smin_val < 0 || dst_reg->smin_value < 0) { 7542 /* Ain't nobody got time to multiply that sign */ 7543 __mark_reg64_unbounded(dst_reg); 7544 return; 7545 } 7546 /* Both values are positive, so we can work with unsigned and 7547 * copy the result to signed (unless it exceeds S64_MAX). 7548 */ 7549 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 7550 /* Potential overflow, we know nothing */ 7551 __mark_reg64_unbounded(dst_reg); 7552 return; 7553 } 7554 dst_reg->umin_value *= umin_val; 7555 dst_reg->umax_value *= umax_val; 7556 if (dst_reg->umax_value > S64_MAX) { 7557 /* Overflow possible, we know nothing */ 7558 dst_reg->smin_value = S64_MIN; 7559 dst_reg->smax_value = S64_MAX; 7560 } else { 7561 dst_reg->smin_value = dst_reg->umin_value; 7562 dst_reg->smax_value = dst_reg->umax_value; 7563 } 7564 } 7565 7566 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 7567 struct bpf_reg_state *src_reg) 7568 { 7569 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7570 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7571 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7572 s32 smin_val = src_reg->s32_min_value; 7573 u32 umax_val = src_reg->u32_max_value; 7574 7575 if (src_known && dst_known) { 7576 __mark_reg32_known(dst_reg, var32_off.value); 7577 return; 7578 } 7579 7580 /* We get our minimum from the var_off, since that's inherently 7581 * bitwise. Our maximum is the minimum of the operands' maxima. 7582 */ 7583 dst_reg->u32_min_value = var32_off.value; 7584 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 7585 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7586 /* Lose signed bounds when ANDing negative numbers, 7587 * ain't nobody got time for that. 7588 */ 7589 dst_reg->s32_min_value = S32_MIN; 7590 dst_reg->s32_max_value = S32_MAX; 7591 } else { 7592 /* ANDing two positives gives a positive, so safe to 7593 * cast result into s64. 7594 */ 7595 dst_reg->s32_min_value = dst_reg->u32_min_value; 7596 dst_reg->s32_max_value = dst_reg->u32_max_value; 7597 } 7598 } 7599 7600 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 7601 struct bpf_reg_state *src_reg) 7602 { 7603 bool src_known = tnum_is_const(src_reg->var_off); 7604 bool dst_known = tnum_is_const(dst_reg->var_off); 7605 s64 smin_val = src_reg->smin_value; 7606 u64 umax_val = src_reg->umax_value; 7607 7608 if (src_known && dst_known) { 7609 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7610 return; 7611 } 7612 7613 /* We get our minimum from the var_off, since that's inherently 7614 * bitwise. Our maximum is the minimum of the operands' maxima. 7615 */ 7616 dst_reg->umin_value = dst_reg->var_off.value; 7617 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 7618 if (dst_reg->smin_value < 0 || smin_val < 0) { 7619 /* Lose signed bounds when ANDing negative numbers, 7620 * ain't nobody got time for that. 7621 */ 7622 dst_reg->smin_value = S64_MIN; 7623 dst_reg->smax_value = S64_MAX; 7624 } else { 7625 /* ANDing two positives gives a positive, so safe to 7626 * cast result into s64. 7627 */ 7628 dst_reg->smin_value = dst_reg->umin_value; 7629 dst_reg->smax_value = dst_reg->umax_value; 7630 } 7631 /* We may learn something more from the var_off */ 7632 __update_reg_bounds(dst_reg); 7633 } 7634 7635 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 7636 struct bpf_reg_state *src_reg) 7637 { 7638 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7639 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7640 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7641 s32 smin_val = src_reg->s32_min_value; 7642 u32 umin_val = src_reg->u32_min_value; 7643 7644 if (src_known && dst_known) { 7645 __mark_reg32_known(dst_reg, var32_off.value); 7646 return; 7647 } 7648 7649 /* We get our maximum from the var_off, and our minimum is the 7650 * maximum of the operands' minima 7651 */ 7652 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 7653 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7654 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 7655 /* Lose signed bounds when ORing negative numbers, 7656 * ain't nobody got time for that. 7657 */ 7658 dst_reg->s32_min_value = S32_MIN; 7659 dst_reg->s32_max_value = S32_MAX; 7660 } else { 7661 /* ORing two positives gives a positive, so safe to 7662 * cast result into s64. 7663 */ 7664 dst_reg->s32_min_value = dst_reg->u32_min_value; 7665 dst_reg->s32_max_value = dst_reg->u32_max_value; 7666 } 7667 } 7668 7669 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 7670 struct bpf_reg_state *src_reg) 7671 { 7672 bool src_known = tnum_is_const(src_reg->var_off); 7673 bool dst_known = tnum_is_const(dst_reg->var_off); 7674 s64 smin_val = src_reg->smin_value; 7675 u64 umin_val = src_reg->umin_value; 7676 7677 if (src_known && dst_known) { 7678 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7679 return; 7680 } 7681 7682 /* We get our maximum from the var_off, and our minimum is the 7683 * maximum of the operands' minima 7684 */ 7685 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 7686 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7687 if (dst_reg->smin_value < 0 || smin_val < 0) { 7688 /* Lose signed bounds when ORing negative numbers, 7689 * ain't nobody got time for that. 7690 */ 7691 dst_reg->smin_value = S64_MIN; 7692 dst_reg->smax_value = S64_MAX; 7693 } else { 7694 /* ORing two positives gives a positive, so safe to 7695 * cast result into s64. 7696 */ 7697 dst_reg->smin_value = dst_reg->umin_value; 7698 dst_reg->smax_value = dst_reg->umax_value; 7699 } 7700 /* We may learn something more from the var_off */ 7701 __update_reg_bounds(dst_reg); 7702 } 7703 7704 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 7705 struct bpf_reg_state *src_reg) 7706 { 7707 bool src_known = tnum_subreg_is_const(src_reg->var_off); 7708 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 7709 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 7710 s32 smin_val = src_reg->s32_min_value; 7711 7712 if (src_known && dst_known) { 7713 __mark_reg32_known(dst_reg, var32_off.value); 7714 return; 7715 } 7716 7717 /* We get both minimum and maximum from the var32_off. */ 7718 dst_reg->u32_min_value = var32_off.value; 7719 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 7720 7721 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 7722 /* XORing two positive sign numbers gives a positive, 7723 * so safe to cast u32 result into s32. 7724 */ 7725 dst_reg->s32_min_value = dst_reg->u32_min_value; 7726 dst_reg->s32_max_value = dst_reg->u32_max_value; 7727 } else { 7728 dst_reg->s32_min_value = S32_MIN; 7729 dst_reg->s32_max_value = S32_MAX; 7730 } 7731 } 7732 7733 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 7734 struct bpf_reg_state *src_reg) 7735 { 7736 bool src_known = tnum_is_const(src_reg->var_off); 7737 bool dst_known = tnum_is_const(dst_reg->var_off); 7738 s64 smin_val = src_reg->smin_value; 7739 7740 if (src_known && dst_known) { 7741 /* dst_reg->var_off.value has been updated earlier */ 7742 __mark_reg_known(dst_reg, dst_reg->var_off.value); 7743 return; 7744 } 7745 7746 /* We get both minimum and maximum from the var_off. */ 7747 dst_reg->umin_value = dst_reg->var_off.value; 7748 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 7749 7750 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 7751 /* XORing two positive sign numbers gives a positive, 7752 * so safe to cast u64 result into s64. 7753 */ 7754 dst_reg->smin_value = dst_reg->umin_value; 7755 dst_reg->smax_value = dst_reg->umax_value; 7756 } else { 7757 dst_reg->smin_value = S64_MIN; 7758 dst_reg->smax_value = S64_MAX; 7759 } 7760 7761 __update_reg_bounds(dst_reg); 7762 } 7763 7764 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7765 u64 umin_val, u64 umax_val) 7766 { 7767 /* We lose all sign bit information (except what we can pick 7768 * up from var_off) 7769 */ 7770 dst_reg->s32_min_value = S32_MIN; 7771 dst_reg->s32_max_value = S32_MAX; 7772 /* If we might shift our top bit out, then we know nothing */ 7773 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 7774 dst_reg->u32_min_value = 0; 7775 dst_reg->u32_max_value = U32_MAX; 7776 } else { 7777 dst_reg->u32_min_value <<= umin_val; 7778 dst_reg->u32_max_value <<= umax_val; 7779 } 7780 } 7781 7782 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 7783 struct bpf_reg_state *src_reg) 7784 { 7785 u32 umax_val = src_reg->u32_max_value; 7786 u32 umin_val = src_reg->u32_min_value; 7787 /* u32 alu operation will zext upper bits */ 7788 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7789 7790 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7791 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 7792 /* Not required but being careful mark reg64 bounds as unknown so 7793 * that we are forced to pick them up from tnum and zext later and 7794 * if some path skips this step we are still safe. 7795 */ 7796 __mark_reg64_unbounded(dst_reg); 7797 __update_reg32_bounds(dst_reg); 7798 } 7799 7800 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 7801 u64 umin_val, u64 umax_val) 7802 { 7803 /* Special case <<32 because it is a common compiler pattern to sign 7804 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 7805 * positive we know this shift will also be positive so we can track 7806 * bounds correctly. Otherwise we lose all sign bit information except 7807 * what we can pick up from var_off. Perhaps we can generalize this 7808 * later to shifts of any length. 7809 */ 7810 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 7811 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 7812 else 7813 dst_reg->smax_value = S64_MAX; 7814 7815 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 7816 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 7817 else 7818 dst_reg->smin_value = S64_MIN; 7819 7820 /* If we might shift our top bit out, then we know nothing */ 7821 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 7822 dst_reg->umin_value = 0; 7823 dst_reg->umax_value = U64_MAX; 7824 } else { 7825 dst_reg->umin_value <<= umin_val; 7826 dst_reg->umax_value <<= umax_val; 7827 } 7828 } 7829 7830 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 7831 struct bpf_reg_state *src_reg) 7832 { 7833 u64 umax_val = src_reg->umax_value; 7834 u64 umin_val = src_reg->umin_value; 7835 7836 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 7837 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 7838 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 7839 7840 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 7841 /* We may learn something more from the var_off */ 7842 __update_reg_bounds(dst_reg); 7843 } 7844 7845 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 7846 struct bpf_reg_state *src_reg) 7847 { 7848 struct tnum subreg = tnum_subreg(dst_reg->var_off); 7849 u32 umax_val = src_reg->u32_max_value; 7850 u32 umin_val = src_reg->u32_min_value; 7851 7852 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7853 * be negative, then either: 7854 * 1) src_reg might be zero, so the sign bit of the result is 7855 * unknown, so we lose our signed bounds 7856 * 2) it's known negative, thus the unsigned bounds capture the 7857 * signed bounds 7858 * 3) the signed bounds cross zero, so they tell us nothing 7859 * about the result 7860 * If the value in dst_reg is known nonnegative, then again the 7861 * unsigned bounds capture the signed bounds. 7862 * Thus, in all cases it suffices to blow away our signed bounds 7863 * and rely on inferring new ones from the unsigned bounds and 7864 * var_off of the result. 7865 */ 7866 dst_reg->s32_min_value = S32_MIN; 7867 dst_reg->s32_max_value = S32_MAX; 7868 7869 dst_reg->var_off = tnum_rshift(subreg, umin_val); 7870 dst_reg->u32_min_value >>= umax_val; 7871 dst_reg->u32_max_value >>= umin_val; 7872 7873 __mark_reg64_unbounded(dst_reg); 7874 __update_reg32_bounds(dst_reg); 7875 } 7876 7877 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 7878 struct bpf_reg_state *src_reg) 7879 { 7880 u64 umax_val = src_reg->umax_value; 7881 u64 umin_val = src_reg->umin_value; 7882 7883 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 7884 * be negative, then either: 7885 * 1) src_reg might be zero, so the sign bit of the result is 7886 * unknown, so we lose our signed bounds 7887 * 2) it's known negative, thus the unsigned bounds capture the 7888 * signed bounds 7889 * 3) the signed bounds cross zero, so they tell us nothing 7890 * about the result 7891 * If the value in dst_reg is known nonnegative, then again the 7892 * unsigned bounds capture the signed bounds. 7893 * Thus, in all cases it suffices to blow away our signed bounds 7894 * and rely on inferring new ones from the unsigned bounds and 7895 * var_off of the result. 7896 */ 7897 dst_reg->smin_value = S64_MIN; 7898 dst_reg->smax_value = S64_MAX; 7899 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 7900 dst_reg->umin_value >>= umax_val; 7901 dst_reg->umax_value >>= umin_val; 7902 7903 /* Its not easy to operate on alu32 bounds here because it depends 7904 * on bits being shifted in. Take easy way out and mark unbounded 7905 * so we can recalculate later from tnum. 7906 */ 7907 __mark_reg32_unbounded(dst_reg); 7908 __update_reg_bounds(dst_reg); 7909 } 7910 7911 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 7912 struct bpf_reg_state *src_reg) 7913 { 7914 u64 umin_val = src_reg->u32_min_value; 7915 7916 /* Upon reaching here, src_known is true and 7917 * umax_val is equal to umin_val. 7918 */ 7919 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 7920 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 7921 7922 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 7923 7924 /* blow away the dst_reg umin_value/umax_value and rely on 7925 * dst_reg var_off to refine the result. 7926 */ 7927 dst_reg->u32_min_value = 0; 7928 dst_reg->u32_max_value = U32_MAX; 7929 7930 __mark_reg64_unbounded(dst_reg); 7931 __update_reg32_bounds(dst_reg); 7932 } 7933 7934 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 7935 struct bpf_reg_state *src_reg) 7936 { 7937 u64 umin_val = src_reg->umin_value; 7938 7939 /* Upon reaching here, src_known is true and umax_val is equal 7940 * to umin_val. 7941 */ 7942 dst_reg->smin_value >>= umin_val; 7943 dst_reg->smax_value >>= umin_val; 7944 7945 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 7946 7947 /* blow away the dst_reg umin_value/umax_value and rely on 7948 * dst_reg var_off to refine the result. 7949 */ 7950 dst_reg->umin_value = 0; 7951 dst_reg->umax_value = U64_MAX; 7952 7953 /* Its not easy to operate on alu32 bounds here because it depends 7954 * on bits being shifted in from upper 32-bits. Take easy way out 7955 * and mark unbounded so we can recalculate later from tnum. 7956 */ 7957 __mark_reg32_unbounded(dst_reg); 7958 __update_reg_bounds(dst_reg); 7959 } 7960 7961 /* WARNING: This function does calculations on 64-bit values, but the actual 7962 * execution may occur on 32-bit values. Therefore, things like bitshifts 7963 * need extra checks in the 32-bit case. 7964 */ 7965 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 7966 struct bpf_insn *insn, 7967 struct bpf_reg_state *dst_reg, 7968 struct bpf_reg_state src_reg) 7969 { 7970 struct bpf_reg_state *regs = cur_regs(env); 7971 u8 opcode = BPF_OP(insn->code); 7972 bool src_known; 7973 s64 smin_val, smax_val; 7974 u64 umin_val, umax_val; 7975 s32 s32_min_val, s32_max_val; 7976 u32 u32_min_val, u32_max_val; 7977 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 7978 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 7979 int ret; 7980 7981 smin_val = src_reg.smin_value; 7982 smax_val = src_reg.smax_value; 7983 umin_val = src_reg.umin_value; 7984 umax_val = src_reg.umax_value; 7985 7986 s32_min_val = src_reg.s32_min_value; 7987 s32_max_val = src_reg.s32_max_value; 7988 u32_min_val = src_reg.u32_min_value; 7989 u32_max_val = src_reg.u32_max_value; 7990 7991 if (alu32) { 7992 src_known = tnum_subreg_is_const(src_reg.var_off); 7993 if ((src_known && 7994 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 7995 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 7996 /* Taint dst register if offset had invalid bounds 7997 * derived from e.g. dead branches. 7998 */ 7999 __mark_reg_unknown(env, dst_reg); 8000 return 0; 8001 } 8002 } else { 8003 src_known = tnum_is_const(src_reg.var_off); 8004 if ((src_known && 8005 (smin_val != smax_val || umin_val != umax_val)) || 8006 smin_val > smax_val || umin_val > umax_val) { 8007 /* Taint dst register if offset had invalid bounds 8008 * derived from e.g. dead branches. 8009 */ 8010 __mark_reg_unknown(env, dst_reg); 8011 return 0; 8012 } 8013 } 8014 8015 if (!src_known && 8016 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 8017 __mark_reg_unknown(env, dst_reg); 8018 return 0; 8019 } 8020 8021 if (sanitize_needed(opcode)) { 8022 ret = sanitize_val_alu(env, insn); 8023 if (ret < 0) 8024 return sanitize_err(env, insn, ret, NULL, NULL); 8025 } 8026 8027 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 8028 * There are two classes of instructions: The first class we track both 8029 * alu32 and alu64 sign/unsigned bounds independently this provides the 8030 * greatest amount of precision when alu operations are mixed with jmp32 8031 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 8032 * and BPF_OR. This is possible because these ops have fairly easy to 8033 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 8034 * See alu32 verifier tests for examples. The second class of 8035 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 8036 * with regards to tracking sign/unsigned bounds because the bits may 8037 * cross subreg boundaries in the alu64 case. When this happens we mark 8038 * the reg unbounded in the subreg bound space and use the resulting 8039 * tnum to calculate an approximation of the sign/unsigned bounds. 8040 */ 8041 switch (opcode) { 8042 case BPF_ADD: 8043 scalar32_min_max_add(dst_reg, &src_reg); 8044 scalar_min_max_add(dst_reg, &src_reg); 8045 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 8046 break; 8047 case BPF_SUB: 8048 scalar32_min_max_sub(dst_reg, &src_reg); 8049 scalar_min_max_sub(dst_reg, &src_reg); 8050 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 8051 break; 8052 case BPF_MUL: 8053 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 8054 scalar32_min_max_mul(dst_reg, &src_reg); 8055 scalar_min_max_mul(dst_reg, &src_reg); 8056 break; 8057 case BPF_AND: 8058 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 8059 scalar32_min_max_and(dst_reg, &src_reg); 8060 scalar_min_max_and(dst_reg, &src_reg); 8061 break; 8062 case BPF_OR: 8063 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 8064 scalar32_min_max_or(dst_reg, &src_reg); 8065 scalar_min_max_or(dst_reg, &src_reg); 8066 break; 8067 case BPF_XOR: 8068 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 8069 scalar32_min_max_xor(dst_reg, &src_reg); 8070 scalar_min_max_xor(dst_reg, &src_reg); 8071 break; 8072 case BPF_LSH: 8073 if (umax_val >= insn_bitness) { 8074 /* Shifts greater than 31 or 63 are undefined. 8075 * This includes shifts by a negative number. 8076 */ 8077 mark_reg_unknown(env, regs, insn->dst_reg); 8078 break; 8079 } 8080 if (alu32) 8081 scalar32_min_max_lsh(dst_reg, &src_reg); 8082 else 8083 scalar_min_max_lsh(dst_reg, &src_reg); 8084 break; 8085 case BPF_RSH: 8086 if (umax_val >= insn_bitness) { 8087 /* Shifts greater than 31 or 63 are undefined. 8088 * This includes shifts by a negative number. 8089 */ 8090 mark_reg_unknown(env, regs, insn->dst_reg); 8091 break; 8092 } 8093 if (alu32) 8094 scalar32_min_max_rsh(dst_reg, &src_reg); 8095 else 8096 scalar_min_max_rsh(dst_reg, &src_reg); 8097 break; 8098 case BPF_ARSH: 8099 if (umax_val >= insn_bitness) { 8100 /* Shifts greater than 31 or 63 are undefined. 8101 * This includes shifts by a negative number. 8102 */ 8103 mark_reg_unknown(env, regs, insn->dst_reg); 8104 break; 8105 } 8106 if (alu32) 8107 scalar32_min_max_arsh(dst_reg, &src_reg); 8108 else 8109 scalar_min_max_arsh(dst_reg, &src_reg); 8110 break; 8111 default: 8112 mark_reg_unknown(env, regs, insn->dst_reg); 8113 break; 8114 } 8115 8116 /* ALU32 ops are zero extended into 64bit register */ 8117 if (alu32) 8118 zext_32_to_64(dst_reg); 8119 8120 __update_reg_bounds(dst_reg); 8121 __reg_deduce_bounds(dst_reg); 8122 __reg_bound_offset(dst_reg); 8123 return 0; 8124 } 8125 8126 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 8127 * and var_off. 8128 */ 8129 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 8130 struct bpf_insn *insn) 8131 { 8132 struct bpf_verifier_state *vstate = env->cur_state; 8133 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 8134 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 8135 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 8136 u8 opcode = BPF_OP(insn->code); 8137 int err; 8138 8139 dst_reg = ®s[insn->dst_reg]; 8140 src_reg = NULL; 8141 if (dst_reg->type != SCALAR_VALUE) 8142 ptr_reg = dst_reg; 8143 else 8144 /* Make sure ID is cleared otherwise dst_reg min/max could be 8145 * incorrectly propagated into other registers by find_equal_scalars() 8146 */ 8147 dst_reg->id = 0; 8148 if (BPF_SRC(insn->code) == BPF_X) { 8149 src_reg = ®s[insn->src_reg]; 8150 if (src_reg->type != SCALAR_VALUE) { 8151 if (dst_reg->type != SCALAR_VALUE) { 8152 /* Combining two pointers by any ALU op yields 8153 * an arbitrary scalar. Disallow all math except 8154 * pointer subtraction 8155 */ 8156 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 8157 mark_reg_unknown(env, regs, insn->dst_reg); 8158 return 0; 8159 } 8160 verbose(env, "R%d pointer %s pointer prohibited\n", 8161 insn->dst_reg, 8162 bpf_alu_string[opcode >> 4]); 8163 return -EACCES; 8164 } else { 8165 /* scalar += pointer 8166 * This is legal, but we have to reverse our 8167 * src/dest handling in computing the range 8168 */ 8169 err = mark_chain_precision(env, insn->dst_reg); 8170 if (err) 8171 return err; 8172 return adjust_ptr_min_max_vals(env, insn, 8173 src_reg, dst_reg); 8174 } 8175 } else if (ptr_reg) { 8176 /* pointer += scalar */ 8177 err = mark_chain_precision(env, insn->src_reg); 8178 if (err) 8179 return err; 8180 return adjust_ptr_min_max_vals(env, insn, 8181 dst_reg, src_reg); 8182 } 8183 } else { 8184 /* Pretend the src is a reg with a known value, since we only 8185 * need to be able to read from this state. 8186 */ 8187 off_reg.type = SCALAR_VALUE; 8188 __mark_reg_known(&off_reg, insn->imm); 8189 src_reg = &off_reg; 8190 if (ptr_reg) /* pointer += K */ 8191 return adjust_ptr_min_max_vals(env, insn, 8192 ptr_reg, src_reg); 8193 } 8194 8195 /* Got here implies adding two SCALAR_VALUEs */ 8196 if (WARN_ON_ONCE(ptr_reg)) { 8197 print_verifier_state(env, state); 8198 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 8199 return -EINVAL; 8200 } 8201 if (WARN_ON(!src_reg)) { 8202 print_verifier_state(env, state); 8203 verbose(env, "verifier internal error: no src_reg\n"); 8204 return -EINVAL; 8205 } 8206 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 8207 } 8208 8209 /* check validity of 32-bit and 64-bit arithmetic operations */ 8210 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 8211 { 8212 struct bpf_reg_state *regs = cur_regs(env); 8213 u8 opcode = BPF_OP(insn->code); 8214 int err; 8215 8216 if (opcode == BPF_END || opcode == BPF_NEG) { 8217 if (opcode == BPF_NEG) { 8218 if (BPF_SRC(insn->code) != 0 || 8219 insn->src_reg != BPF_REG_0 || 8220 insn->off != 0 || insn->imm != 0) { 8221 verbose(env, "BPF_NEG uses reserved fields\n"); 8222 return -EINVAL; 8223 } 8224 } else { 8225 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 8226 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 8227 BPF_CLASS(insn->code) == BPF_ALU64) { 8228 verbose(env, "BPF_END uses reserved fields\n"); 8229 return -EINVAL; 8230 } 8231 } 8232 8233 /* check src operand */ 8234 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8235 if (err) 8236 return err; 8237 8238 if (is_pointer_value(env, insn->dst_reg)) { 8239 verbose(env, "R%d pointer arithmetic prohibited\n", 8240 insn->dst_reg); 8241 return -EACCES; 8242 } 8243 8244 /* check dest operand */ 8245 err = check_reg_arg(env, insn->dst_reg, DST_OP); 8246 if (err) 8247 return err; 8248 8249 } else if (opcode == BPF_MOV) { 8250 8251 if (BPF_SRC(insn->code) == BPF_X) { 8252 if (insn->imm != 0 || insn->off != 0) { 8253 verbose(env, "BPF_MOV uses reserved fields\n"); 8254 return -EINVAL; 8255 } 8256 8257 /* check src operand */ 8258 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8259 if (err) 8260 return err; 8261 } else { 8262 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8263 verbose(env, "BPF_MOV uses reserved fields\n"); 8264 return -EINVAL; 8265 } 8266 } 8267 8268 /* check dest operand, mark as required later */ 8269 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8270 if (err) 8271 return err; 8272 8273 if (BPF_SRC(insn->code) == BPF_X) { 8274 struct bpf_reg_state *src_reg = regs + insn->src_reg; 8275 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 8276 8277 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8278 /* case: R1 = R2 8279 * copy register state to dest reg 8280 */ 8281 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 8282 /* Assign src and dst registers the same ID 8283 * that will be used by find_equal_scalars() 8284 * to propagate min/max range. 8285 */ 8286 src_reg->id = ++env->id_gen; 8287 *dst_reg = *src_reg; 8288 dst_reg->live |= REG_LIVE_WRITTEN; 8289 dst_reg->subreg_def = DEF_NOT_SUBREG; 8290 } else { 8291 /* R1 = (u32) R2 */ 8292 if (is_pointer_value(env, insn->src_reg)) { 8293 verbose(env, 8294 "R%d partial copy of pointer\n", 8295 insn->src_reg); 8296 return -EACCES; 8297 } else if (src_reg->type == SCALAR_VALUE) { 8298 *dst_reg = *src_reg; 8299 /* Make sure ID is cleared otherwise 8300 * dst_reg min/max could be incorrectly 8301 * propagated into src_reg by find_equal_scalars() 8302 */ 8303 dst_reg->id = 0; 8304 dst_reg->live |= REG_LIVE_WRITTEN; 8305 dst_reg->subreg_def = env->insn_idx + 1; 8306 } else { 8307 mark_reg_unknown(env, regs, 8308 insn->dst_reg); 8309 } 8310 zext_32_to_64(dst_reg); 8311 } 8312 } else { 8313 /* case: R = imm 8314 * remember the value we stored into this reg 8315 */ 8316 /* clear any state __mark_reg_known doesn't set */ 8317 mark_reg_unknown(env, regs, insn->dst_reg); 8318 regs[insn->dst_reg].type = SCALAR_VALUE; 8319 if (BPF_CLASS(insn->code) == BPF_ALU64) { 8320 __mark_reg_known(regs + insn->dst_reg, 8321 insn->imm); 8322 } else { 8323 __mark_reg_known(regs + insn->dst_reg, 8324 (u32)insn->imm); 8325 } 8326 } 8327 8328 } else if (opcode > BPF_END) { 8329 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 8330 return -EINVAL; 8331 8332 } else { /* all other ALU ops: and, sub, xor, add, ... */ 8333 8334 if (BPF_SRC(insn->code) == BPF_X) { 8335 if (insn->imm != 0 || insn->off != 0) { 8336 verbose(env, "BPF_ALU uses reserved fields\n"); 8337 return -EINVAL; 8338 } 8339 /* check src1 operand */ 8340 err = check_reg_arg(env, insn->src_reg, SRC_OP); 8341 if (err) 8342 return err; 8343 } else { 8344 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 8345 verbose(env, "BPF_ALU uses reserved fields\n"); 8346 return -EINVAL; 8347 } 8348 } 8349 8350 /* check src2 operand */ 8351 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 8352 if (err) 8353 return err; 8354 8355 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 8356 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 8357 verbose(env, "div by zero\n"); 8358 return -EINVAL; 8359 } 8360 8361 if ((opcode == BPF_LSH || opcode == BPF_RSH || 8362 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 8363 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 8364 8365 if (insn->imm < 0 || insn->imm >= size) { 8366 verbose(env, "invalid shift %d\n", insn->imm); 8367 return -EINVAL; 8368 } 8369 } 8370 8371 /* check dest operand */ 8372 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 8373 if (err) 8374 return err; 8375 8376 return adjust_reg_min_max_vals(env, insn); 8377 } 8378 8379 return 0; 8380 } 8381 8382 static void __find_good_pkt_pointers(struct bpf_func_state *state, 8383 struct bpf_reg_state *dst_reg, 8384 enum bpf_reg_type type, int new_range) 8385 { 8386 struct bpf_reg_state *reg; 8387 int i; 8388 8389 for (i = 0; i < MAX_BPF_REG; i++) { 8390 reg = &state->regs[i]; 8391 if (reg->type == type && reg->id == dst_reg->id) 8392 /* keep the maximum range already checked */ 8393 reg->range = max(reg->range, new_range); 8394 } 8395 8396 bpf_for_each_spilled_reg(i, state, reg) { 8397 if (!reg) 8398 continue; 8399 if (reg->type == type && reg->id == dst_reg->id) 8400 reg->range = max(reg->range, new_range); 8401 } 8402 } 8403 8404 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 8405 struct bpf_reg_state *dst_reg, 8406 enum bpf_reg_type type, 8407 bool range_right_open) 8408 { 8409 int new_range, i; 8410 8411 if (dst_reg->off < 0 || 8412 (dst_reg->off == 0 && range_right_open)) 8413 /* This doesn't give us any range */ 8414 return; 8415 8416 if (dst_reg->umax_value > MAX_PACKET_OFF || 8417 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 8418 /* Risk of overflow. For instance, ptr + (1<<63) may be less 8419 * than pkt_end, but that's because it's also less than pkt. 8420 */ 8421 return; 8422 8423 new_range = dst_reg->off; 8424 if (range_right_open) 8425 new_range--; 8426 8427 /* Examples for register markings: 8428 * 8429 * pkt_data in dst register: 8430 * 8431 * r2 = r3; 8432 * r2 += 8; 8433 * if (r2 > pkt_end) goto <handle exception> 8434 * <access okay> 8435 * 8436 * r2 = r3; 8437 * r2 += 8; 8438 * if (r2 < pkt_end) goto <access okay> 8439 * <handle exception> 8440 * 8441 * Where: 8442 * r2 == dst_reg, pkt_end == src_reg 8443 * r2=pkt(id=n,off=8,r=0) 8444 * r3=pkt(id=n,off=0,r=0) 8445 * 8446 * pkt_data in src register: 8447 * 8448 * r2 = r3; 8449 * r2 += 8; 8450 * if (pkt_end >= r2) goto <access okay> 8451 * <handle exception> 8452 * 8453 * r2 = r3; 8454 * r2 += 8; 8455 * if (pkt_end <= r2) goto <handle exception> 8456 * <access okay> 8457 * 8458 * Where: 8459 * pkt_end == dst_reg, r2 == src_reg 8460 * r2=pkt(id=n,off=8,r=0) 8461 * r3=pkt(id=n,off=0,r=0) 8462 * 8463 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 8464 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 8465 * and [r3, r3 + 8-1) respectively is safe to access depending on 8466 * the check. 8467 */ 8468 8469 /* If our ids match, then we must have the same max_value. And we 8470 * don't care about the other reg's fixed offset, since if it's too big 8471 * the range won't allow anything. 8472 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 8473 */ 8474 for (i = 0; i <= vstate->curframe; i++) 8475 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 8476 new_range); 8477 } 8478 8479 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 8480 { 8481 struct tnum subreg = tnum_subreg(reg->var_off); 8482 s32 sval = (s32)val; 8483 8484 switch (opcode) { 8485 case BPF_JEQ: 8486 if (tnum_is_const(subreg)) 8487 return !!tnum_equals_const(subreg, val); 8488 break; 8489 case BPF_JNE: 8490 if (tnum_is_const(subreg)) 8491 return !tnum_equals_const(subreg, val); 8492 break; 8493 case BPF_JSET: 8494 if ((~subreg.mask & subreg.value) & val) 8495 return 1; 8496 if (!((subreg.mask | subreg.value) & val)) 8497 return 0; 8498 break; 8499 case BPF_JGT: 8500 if (reg->u32_min_value > val) 8501 return 1; 8502 else if (reg->u32_max_value <= val) 8503 return 0; 8504 break; 8505 case BPF_JSGT: 8506 if (reg->s32_min_value > sval) 8507 return 1; 8508 else if (reg->s32_max_value <= sval) 8509 return 0; 8510 break; 8511 case BPF_JLT: 8512 if (reg->u32_max_value < val) 8513 return 1; 8514 else if (reg->u32_min_value >= val) 8515 return 0; 8516 break; 8517 case BPF_JSLT: 8518 if (reg->s32_max_value < sval) 8519 return 1; 8520 else if (reg->s32_min_value >= sval) 8521 return 0; 8522 break; 8523 case BPF_JGE: 8524 if (reg->u32_min_value >= val) 8525 return 1; 8526 else if (reg->u32_max_value < val) 8527 return 0; 8528 break; 8529 case BPF_JSGE: 8530 if (reg->s32_min_value >= sval) 8531 return 1; 8532 else if (reg->s32_max_value < sval) 8533 return 0; 8534 break; 8535 case BPF_JLE: 8536 if (reg->u32_max_value <= val) 8537 return 1; 8538 else if (reg->u32_min_value > val) 8539 return 0; 8540 break; 8541 case BPF_JSLE: 8542 if (reg->s32_max_value <= sval) 8543 return 1; 8544 else if (reg->s32_min_value > sval) 8545 return 0; 8546 break; 8547 } 8548 8549 return -1; 8550 } 8551 8552 8553 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 8554 { 8555 s64 sval = (s64)val; 8556 8557 switch (opcode) { 8558 case BPF_JEQ: 8559 if (tnum_is_const(reg->var_off)) 8560 return !!tnum_equals_const(reg->var_off, val); 8561 break; 8562 case BPF_JNE: 8563 if (tnum_is_const(reg->var_off)) 8564 return !tnum_equals_const(reg->var_off, val); 8565 break; 8566 case BPF_JSET: 8567 if ((~reg->var_off.mask & reg->var_off.value) & val) 8568 return 1; 8569 if (!((reg->var_off.mask | reg->var_off.value) & val)) 8570 return 0; 8571 break; 8572 case BPF_JGT: 8573 if (reg->umin_value > val) 8574 return 1; 8575 else if (reg->umax_value <= val) 8576 return 0; 8577 break; 8578 case BPF_JSGT: 8579 if (reg->smin_value > sval) 8580 return 1; 8581 else if (reg->smax_value <= sval) 8582 return 0; 8583 break; 8584 case BPF_JLT: 8585 if (reg->umax_value < val) 8586 return 1; 8587 else if (reg->umin_value >= val) 8588 return 0; 8589 break; 8590 case BPF_JSLT: 8591 if (reg->smax_value < sval) 8592 return 1; 8593 else if (reg->smin_value >= sval) 8594 return 0; 8595 break; 8596 case BPF_JGE: 8597 if (reg->umin_value >= val) 8598 return 1; 8599 else if (reg->umax_value < val) 8600 return 0; 8601 break; 8602 case BPF_JSGE: 8603 if (reg->smin_value >= sval) 8604 return 1; 8605 else if (reg->smax_value < sval) 8606 return 0; 8607 break; 8608 case BPF_JLE: 8609 if (reg->umax_value <= val) 8610 return 1; 8611 else if (reg->umin_value > val) 8612 return 0; 8613 break; 8614 case BPF_JSLE: 8615 if (reg->smax_value <= sval) 8616 return 1; 8617 else if (reg->smin_value > sval) 8618 return 0; 8619 break; 8620 } 8621 8622 return -1; 8623 } 8624 8625 /* compute branch direction of the expression "if (reg opcode val) goto target;" 8626 * and return: 8627 * 1 - branch will be taken and "goto target" will be executed 8628 * 0 - branch will not be taken and fall-through to next insn 8629 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 8630 * range [0,10] 8631 */ 8632 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 8633 bool is_jmp32) 8634 { 8635 if (__is_pointer_value(false, reg)) { 8636 if (!reg_type_not_null(reg->type)) 8637 return -1; 8638 8639 /* If pointer is valid tests against zero will fail so we can 8640 * use this to direct branch taken. 8641 */ 8642 if (val != 0) 8643 return -1; 8644 8645 switch (opcode) { 8646 case BPF_JEQ: 8647 return 0; 8648 case BPF_JNE: 8649 return 1; 8650 default: 8651 return -1; 8652 } 8653 } 8654 8655 if (is_jmp32) 8656 return is_branch32_taken(reg, val, opcode); 8657 return is_branch64_taken(reg, val, opcode); 8658 } 8659 8660 static int flip_opcode(u32 opcode) 8661 { 8662 /* How can we transform "a <op> b" into "b <op> a"? */ 8663 static const u8 opcode_flip[16] = { 8664 /* these stay the same */ 8665 [BPF_JEQ >> 4] = BPF_JEQ, 8666 [BPF_JNE >> 4] = BPF_JNE, 8667 [BPF_JSET >> 4] = BPF_JSET, 8668 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 8669 [BPF_JGE >> 4] = BPF_JLE, 8670 [BPF_JGT >> 4] = BPF_JLT, 8671 [BPF_JLE >> 4] = BPF_JGE, 8672 [BPF_JLT >> 4] = BPF_JGT, 8673 [BPF_JSGE >> 4] = BPF_JSLE, 8674 [BPF_JSGT >> 4] = BPF_JSLT, 8675 [BPF_JSLE >> 4] = BPF_JSGE, 8676 [BPF_JSLT >> 4] = BPF_JSGT 8677 }; 8678 return opcode_flip[opcode >> 4]; 8679 } 8680 8681 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 8682 struct bpf_reg_state *src_reg, 8683 u8 opcode) 8684 { 8685 struct bpf_reg_state *pkt; 8686 8687 if (src_reg->type == PTR_TO_PACKET_END) { 8688 pkt = dst_reg; 8689 } else if (dst_reg->type == PTR_TO_PACKET_END) { 8690 pkt = src_reg; 8691 opcode = flip_opcode(opcode); 8692 } else { 8693 return -1; 8694 } 8695 8696 if (pkt->range >= 0) 8697 return -1; 8698 8699 switch (opcode) { 8700 case BPF_JLE: 8701 /* pkt <= pkt_end */ 8702 fallthrough; 8703 case BPF_JGT: 8704 /* pkt > pkt_end */ 8705 if (pkt->range == BEYOND_PKT_END) 8706 /* pkt has at last one extra byte beyond pkt_end */ 8707 return opcode == BPF_JGT; 8708 break; 8709 case BPF_JLT: 8710 /* pkt < pkt_end */ 8711 fallthrough; 8712 case BPF_JGE: 8713 /* pkt >= pkt_end */ 8714 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 8715 return opcode == BPF_JGE; 8716 break; 8717 } 8718 return -1; 8719 } 8720 8721 /* Adjusts the register min/max values in the case that the dst_reg is the 8722 * variable register that we are working on, and src_reg is a constant or we're 8723 * simply doing a BPF_K check. 8724 * In JEQ/JNE cases we also adjust the var_off values. 8725 */ 8726 static void reg_set_min_max(struct bpf_reg_state *true_reg, 8727 struct bpf_reg_state *false_reg, 8728 u64 val, u32 val32, 8729 u8 opcode, bool is_jmp32) 8730 { 8731 struct tnum false_32off = tnum_subreg(false_reg->var_off); 8732 struct tnum false_64off = false_reg->var_off; 8733 struct tnum true_32off = tnum_subreg(true_reg->var_off); 8734 struct tnum true_64off = true_reg->var_off; 8735 s64 sval = (s64)val; 8736 s32 sval32 = (s32)val32; 8737 8738 /* If the dst_reg is a pointer, we can't learn anything about its 8739 * variable offset from the compare (unless src_reg were a pointer into 8740 * the same object, but we don't bother with that. 8741 * Since false_reg and true_reg have the same type by construction, we 8742 * only need to check one of them for pointerness. 8743 */ 8744 if (__is_pointer_value(false, false_reg)) 8745 return; 8746 8747 switch (opcode) { 8748 case BPF_JEQ: 8749 case BPF_JNE: 8750 { 8751 struct bpf_reg_state *reg = 8752 opcode == BPF_JEQ ? true_reg : false_reg; 8753 8754 /* JEQ/JNE comparison doesn't change the register equivalence. 8755 * r1 = r2; 8756 * if (r1 == 42) goto label; 8757 * ... 8758 * label: // here both r1 and r2 are known to be 42. 8759 * 8760 * Hence when marking register as known preserve it's ID. 8761 */ 8762 if (is_jmp32) 8763 __mark_reg32_known(reg, val32); 8764 else 8765 ___mark_reg_known(reg, val); 8766 break; 8767 } 8768 case BPF_JSET: 8769 if (is_jmp32) { 8770 false_32off = tnum_and(false_32off, tnum_const(~val32)); 8771 if (is_power_of_2(val32)) 8772 true_32off = tnum_or(true_32off, 8773 tnum_const(val32)); 8774 } else { 8775 false_64off = tnum_and(false_64off, tnum_const(~val)); 8776 if (is_power_of_2(val)) 8777 true_64off = tnum_or(true_64off, 8778 tnum_const(val)); 8779 } 8780 break; 8781 case BPF_JGE: 8782 case BPF_JGT: 8783 { 8784 if (is_jmp32) { 8785 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 8786 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 8787 8788 false_reg->u32_max_value = min(false_reg->u32_max_value, 8789 false_umax); 8790 true_reg->u32_min_value = max(true_reg->u32_min_value, 8791 true_umin); 8792 } else { 8793 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 8794 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 8795 8796 false_reg->umax_value = min(false_reg->umax_value, false_umax); 8797 true_reg->umin_value = max(true_reg->umin_value, true_umin); 8798 } 8799 break; 8800 } 8801 case BPF_JSGE: 8802 case BPF_JSGT: 8803 { 8804 if (is_jmp32) { 8805 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 8806 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 8807 8808 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 8809 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 8810 } else { 8811 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 8812 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 8813 8814 false_reg->smax_value = min(false_reg->smax_value, false_smax); 8815 true_reg->smin_value = max(true_reg->smin_value, true_smin); 8816 } 8817 break; 8818 } 8819 case BPF_JLE: 8820 case BPF_JLT: 8821 { 8822 if (is_jmp32) { 8823 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 8824 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 8825 8826 false_reg->u32_min_value = max(false_reg->u32_min_value, 8827 false_umin); 8828 true_reg->u32_max_value = min(true_reg->u32_max_value, 8829 true_umax); 8830 } else { 8831 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 8832 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 8833 8834 false_reg->umin_value = max(false_reg->umin_value, false_umin); 8835 true_reg->umax_value = min(true_reg->umax_value, true_umax); 8836 } 8837 break; 8838 } 8839 case BPF_JSLE: 8840 case BPF_JSLT: 8841 { 8842 if (is_jmp32) { 8843 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 8844 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 8845 8846 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 8847 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 8848 } else { 8849 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 8850 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 8851 8852 false_reg->smin_value = max(false_reg->smin_value, false_smin); 8853 true_reg->smax_value = min(true_reg->smax_value, true_smax); 8854 } 8855 break; 8856 } 8857 default: 8858 return; 8859 } 8860 8861 if (is_jmp32) { 8862 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 8863 tnum_subreg(false_32off)); 8864 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 8865 tnum_subreg(true_32off)); 8866 __reg_combine_32_into_64(false_reg); 8867 __reg_combine_32_into_64(true_reg); 8868 } else { 8869 false_reg->var_off = false_64off; 8870 true_reg->var_off = true_64off; 8871 __reg_combine_64_into_32(false_reg); 8872 __reg_combine_64_into_32(true_reg); 8873 } 8874 } 8875 8876 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 8877 * the variable reg. 8878 */ 8879 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 8880 struct bpf_reg_state *false_reg, 8881 u64 val, u32 val32, 8882 u8 opcode, bool is_jmp32) 8883 { 8884 opcode = flip_opcode(opcode); 8885 /* This uses zero as "not present in table"; luckily the zero opcode, 8886 * BPF_JA, can't get here. 8887 */ 8888 if (opcode) 8889 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 8890 } 8891 8892 /* Regs are known to be equal, so intersect their min/max/var_off */ 8893 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 8894 struct bpf_reg_state *dst_reg) 8895 { 8896 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 8897 dst_reg->umin_value); 8898 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 8899 dst_reg->umax_value); 8900 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 8901 dst_reg->smin_value); 8902 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 8903 dst_reg->smax_value); 8904 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 8905 dst_reg->var_off); 8906 /* We might have learned new bounds from the var_off. */ 8907 __update_reg_bounds(src_reg); 8908 __update_reg_bounds(dst_reg); 8909 /* We might have learned something about the sign bit. */ 8910 __reg_deduce_bounds(src_reg); 8911 __reg_deduce_bounds(dst_reg); 8912 /* We might have learned some bits from the bounds. */ 8913 __reg_bound_offset(src_reg); 8914 __reg_bound_offset(dst_reg); 8915 /* Intersecting with the old var_off might have improved our bounds 8916 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 8917 * then new var_off is (0; 0x7f...fc) which improves our umax. 8918 */ 8919 __update_reg_bounds(src_reg); 8920 __update_reg_bounds(dst_reg); 8921 } 8922 8923 static void reg_combine_min_max(struct bpf_reg_state *true_src, 8924 struct bpf_reg_state *true_dst, 8925 struct bpf_reg_state *false_src, 8926 struct bpf_reg_state *false_dst, 8927 u8 opcode) 8928 { 8929 switch (opcode) { 8930 case BPF_JEQ: 8931 __reg_combine_min_max(true_src, true_dst); 8932 break; 8933 case BPF_JNE: 8934 __reg_combine_min_max(false_src, false_dst); 8935 break; 8936 } 8937 } 8938 8939 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 8940 struct bpf_reg_state *reg, u32 id, 8941 bool is_null) 8942 { 8943 if (reg_type_may_be_null(reg->type) && reg->id == id && 8944 !WARN_ON_ONCE(!reg->id)) { 8945 /* Old offset (both fixed and variable parts) should 8946 * have been known-zero, because we don't allow pointer 8947 * arithmetic on pointers that might be NULL. 8948 */ 8949 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 8950 !tnum_equals_const(reg->var_off, 0) || 8951 reg->off)) { 8952 __mark_reg_known_zero(reg); 8953 reg->off = 0; 8954 } 8955 if (is_null) { 8956 reg->type = SCALAR_VALUE; 8957 /* We don't need id and ref_obj_id from this point 8958 * onwards anymore, thus we should better reset it, 8959 * so that state pruning has chances to take effect. 8960 */ 8961 reg->id = 0; 8962 reg->ref_obj_id = 0; 8963 8964 return; 8965 } 8966 8967 mark_ptr_not_null_reg(reg); 8968 8969 if (!reg_may_point_to_spin_lock(reg)) { 8970 /* For not-NULL ptr, reg->ref_obj_id will be reset 8971 * in release_reg_references(). 8972 * 8973 * reg->id is still used by spin_lock ptr. Other 8974 * than spin_lock ptr type, reg->id can be reset. 8975 */ 8976 reg->id = 0; 8977 } 8978 } 8979 } 8980 8981 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 8982 bool is_null) 8983 { 8984 struct bpf_reg_state *reg; 8985 int i; 8986 8987 for (i = 0; i < MAX_BPF_REG; i++) 8988 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 8989 8990 bpf_for_each_spilled_reg(i, state, reg) { 8991 if (!reg) 8992 continue; 8993 mark_ptr_or_null_reg(state, reg, id, is_null); 8994 } 8995 } 8996 8997 /* The logic is similar to find_good_pkt_pointers(), both could eventually 8998 * be folded together at some point. 8999 */ 9000 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 9001 bool is_null) 9002 { 9003 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9004 struct bpf_reg_state *regs = state->regs; 9005 u32 ref_obj_id = regs[regno].ref_obj_id; 9006 u32 id = regs[regno].id; 9007 int i; 9008 9009 if (ref_obj_id && ref_obj_id == id && is_null) 9010 /* regs[regno] is in the " == NULL" branch. 9011 * No one could have freed the reference state before 9012 * doing the NULL check. 9013 */ 9014 WARN_ON_ONCE(release_reference_state(state, id)); 9015 9016 for (i = 0; i <= vstate->curframe; i++) 9017 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 9018 } 9019 9020 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 9021 struct bpf_reg_state *dst_reg, 9022 struct bpf_reg_state *src_reg, 9023 struct bpf_verifier_state *this_branch, 9024 struct bpf_verifier_state *other_branch) 9025 { 9026 if (BPF_SRC(insn->code) != BPF_X) 9027 return false; 9028 9029 /* Pointers are always 64-bit. */ 9030 if (BPF_CLASS(insn->code) == BPF_JMP32) 9031 return false; 9032 9033 switch (BPF_OP(insn->code)) { 9034 case BPF_JGT: 9035 if ((dst_reg->type == PTR_TO_PACKET && 9036 src_reg->type == PTR_TO_PACKET_END) || 9037 (dst_reg->type == PTR_TO_PACKET_META && 9038 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9039 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 9040 find_good_pkt_pointers(this_branch, dst_reg, 9041 dst_reg->type, false); 9042 mark_pkt_end(other_branch, insn->dst_reg, true); 9043 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9044 src_reg->type == PTR_TO_PACKET) || 9045 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9046 src_reg->type == PTR_TO_PACKET_META)) { 9047 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 9048 find_good_pkt_pointers(other_branch, src_reg, 9049 src_reg->type, true); 9050 mark_pkt_end(this_branch, insn->src_reg, false); 9051 } else { 9052 return false; 9053 } 9054 break; 9055 case BPF_JLT: 9056 if ((dst_reg->type == PTR_TO_PACKET && 9057 src_reg->type == PTR_TO_PACKET_END) || 9058 (dst_reg->type == PTR_TO_PACKET_META && 9059 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9060 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 9061 find_good_pkt_pointers(other_branch, dst_reg, 9062 dst_reg->type, true); 9063 mark_pkt_end(this_branch, insn->dst_reg, false); 9064 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9065 src_reg->type == PTR_TO_PACKET) || 9066 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9067 src_reg->type == PTR_TO_PACKET_META)) { 9068 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 9069 find_good_pkt_pointers(this_branch, src_reg, 9070 src_reg->type, false); 9071 mark_pkt_end(other_branch, insn->src_reg, true); 9072 } else { 9073 return false; 9074 } 9075 break; 9076 case BPF_JGE: 9077 if ((dst_reg->type == PTR_TO_PACKET && 9078 src_reg->type == PTR_TO_PACKET_END) || 9079 (dst_reg->type == PTR_TO_PACKET_META && 9080 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9081 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 9082 find_good_pkt_pointers(this_branch, dst_reg, 9083 dst_reg->type, true); 9084 mark_pkt_end(other_branch, insn->dst_reg, false); 9085 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9086 src_reg->type == PTR_TO_PACKET) || 9087 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9088 src_reg->type == PTR_TO_PACKET_META)) { 9089 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 9090 find_good_pkt_pointers(other_branch, src_reg, 9091 src_reg->type, false); 9092 mark_pkt_end(this_branch, insn->src_reg, true); 9093 } else { 9094 return false; 9095 } 9096 break; 9097 case BPF_JLE: 9098 if ((dst_reg->type == PTR_TO_PACKET && 9099 src_reg->type == PTR_TO_PACKET_END) || 9100 (dst_reg->type == PTR_TO_PACKET_META && 9101 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 9102 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 9103 find_good_pkt_pointers(other_branch, dst_reg, 9104 dst_reg->type, false); 9105 mark_pkt_end(this_branch, insn->dst_reg, true); 9106 } else if ((dst_reg->type == PTR_TO_PACKET_END && 9107 src_reg->type == PTR_TO_PACKET) || 9108 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 9109 src_reg->type == PTR_TO_PACKET_META)) { 9110 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 9111 find_good_pkt_pointers(this_branch, src_reg, 9112 src_reg->type, true); 9113 mark_pkt_end(other_branch, insn->src_reg, false); 9114 } else { 9115 return false; 9116 } 9117 break; 9118 default: 9119 return false; 9120 } 9121 9122 return true; 9123 } 9124 9125 static void find_equal_scalars(struct bpf_verifier_state *vstate, 9126 struct bpf_reg_state *known_reg) 9127 { 9128 struct bpf_func_state *state; 9129 struct bpf_reg_state *reg; 9130 int i, j; 9131 9132 for (i = 0; i <= vstate->curframe; i++) { 9133 state = vstate->frame[i]; 9134 for (j = 0; j < MAX_BPF_REG; j++) { 9135 reg = &state->regs[j]; 9136 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9137 *reg = *known_reg; 9138 } 9139 9140 bpf_for_each_spilled_reg(j, state, reg) { 9141 if (!reg) 9142 continue; 9143 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 9144 *reg = *known_reg; 9145 } 9146 } 9147 } 9148 9149 static int check_cond_jmp_op(struct bpf_verifier_env *env, 9150 struct bpf_insn *insn, int *insn_idx) 9151 { 9152 struct bpf_verifier_state *this_branch = env->cur_state; 9153 struct bpf_verifier_state *other_branch; 9154 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 9155 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 9156 u8 opcode = BPF_OP(insn->code); 9157 bool is_jmp32; 9158 int pred = -1; 9159 int err; 9160 9161 /* Only conditional jumps are expected to reach here. */ 9162 if (opcode == BPF_JA || opcode > BPF_JSLE) { 9163 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 9164 return -EINVAL; 9165 } 9166 9167 if (BPF_SRC(insn->code) == BPF_X) { 9168 if (insn->imm != 0) { 9169 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9170 return -EINVAL; 9171 } 9172 9173 /* check src1 operand */ 9174 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9175 if (err) 9176 return err; 9177 9178 if (is_pointer_value(env, insn->src_reg)) { 9179 verbose(env, "R%d pointer comparison prohibited\n", 9180 insn->src_reg); 9181 return -EACCES; 9182 } 9183 src_reg = ®s[insn->src_reg]; 9184 } else { 9185 if (insn->src_reg != BPF_REG_0) { 9186 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 9187 return -EINVAL; 9188 } 9189 } 9190 9191 /* check src2 operand */ 9192 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9193 if (err) 9194 return err; 9195 9196 dst_reg = ®s[insn->dst_reg]; 9197 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 9198 9199 if (BPF_SRC(insn->code) == BPF_K) { 9200 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 9201 } else if (src_reg->type == SCALAR_VALUE && 9202 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 9203 pred = is_branch_taken(dst_reg, 9204 tnum_subreg(src_reg->var_off).value, 9205 opcode, 9206 is_jmp32); 9207 } else if (src_reg->type == SCALAR_VALUE && 9208 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 9209 pred = is_branch_taken(dst_reg, 9210 src_reg->var_off.value, 9211 opcode, 9212 is_jmp32); 9213 } else if (reg_is_pkt_pointer_any(dst_reg) && 9214 reg_is_pkt_pointer_any(src_reg) && 9215 !is_jmp32) { 9216 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 9217 } 9218 9219 if (pred >= 0) { 9220 /* If we get here with a dst_reg pointer type it is because 9221 * above is_branch_taken() special cased the 0 comparison. 9222 */ 9223 if (!__is_pointer_value(false, dst_reg)) 9224 err = mark_chain_precision(env, insn->dst_reg); 9225 if (BPF_SRC(insn->code) == BPF_X && !err && 9226 !__is_pointer_value(false, src_reg)) 9227 err = mark_chain_precision(env, insn->src_reg); 9228 if (err) 9229 return err; 9230 } 9231 9232 if (pred == 1) { 9233 /* Only follow the goto, ignore fall-through. If needed, push 9234 * the fall-through branch for simulation under speculative 9235 * execution. 9236 */ 9237 if (!env->bypass_spec_v1 && 9238 !sanitize_speculative_path(env, insn, *insn_idx + 1, 9239 *insn_idx)) 9240 return -EFAULT; 9241 *insn_idx += insn->off; 9242 return 0; 9243 } else if (pred == 0) { 9244 /* Only follow the fall-through branch, since that's where the 9245 * program will go. If needed, push the goto branch for 9246 * simulation under speculative execution. 9247 */ 9248 if (!env->bypass_spec_v1 && 9249 !sanitize_speculative_path(env, insn, 9250 *insn_idx + insn->off + 1, 9251 *insn_idx)) 9252 return -EFAULT; 9253 return 0; 9254 } 9255 9256 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 9257 false); 9258 if (!other_branch) 9259 return -EFAULT; 9260 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 9261 9262 /* detect if we are comparing against a constant value so we can adjust 9263 * our min/max values for our dst register. 9264 * this is only legit if both are scalars (or pointers to the same 9265 * object, I suppose, but we don't support that right now), because 9266 * otherwise the different base pointers mean the offsets aren't 9267 * comparable. 9268 */ 9269 if (BPF_SRC(insn->code) == BPF_X) { 9270 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 9271 9272 if (dst_reg->type == SCALAR_VALUE && 9273 src_reg->type == SCALAR_VALUE) { 9274 if (tnum_is_const(src_reg->var_off) || 9275 (is_jmp32 && 9276 tnum_is_const(tnum_subreg(src_reg->var_off)))) 9277 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9278 dst_reg, 9279 src_reg->var_off.value, 9280 tnum_subreg(src_reg->var_off).value, 9281 opcode, is_jmp32); 9282 else if (tnum_is_const(dst_reg->var_off) || 9283 (is_jmp32 && 9284 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 9285 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 9286 src_reg, 9287 dst_reg->var_off.value, 9288 tnum_subreg(dst_reg->var_off).value, 9289 opcode, is_jmp32); 9290 else if (!is_jmp32 && 9291 (opcode == BPF_JEQ || opcode == BPF_JNE)) 9292 /* Comparing for equality, we can combine knowledge */ 9293 reg_combine_min_max(&other_branch_regs[insn->src_reg], 9294 &other_branch_regs[insn->dst_reg], 9295 src_reg, dst_reg, opcode); 9296 if (src_reg->id && 9297 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 9298 find_equal_scalars(this_branch, src_reg); 9299 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 9300 } 9301 9302 } 9303 } else if (dst_reg->type == SCALAR_VALUE) { 9304 reg_set_min_max(&other_branch_regs[insn->dst_reg], 9305 dst_reg, insn->imm, (u32)insn->imm, 9306 opcode, is_jmp32); 9307 } 9308 9309 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 9310 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 9311 find_equal_scalars(this_branch, dst_reg); 9312 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 9313 } 9314 9315 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 9316 * NOTE: these optimizations below are related with pointer comparison 9317 * which will never be JMP32. 9318 */ 9319 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 9320 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 9321 reg_type_may_be_null(dst_reg->type)) { 9322 /* Mark all identical registers in each branch as either 9323 * safe or unknown depending R == 0 or R != 0 conditional. 9324 */ 9325 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 9326 opcode == BPF_JNE); 9327 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 9328 opcode == BPF_JEQ); 9329 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 9330 this_branch, other_branch) && 9331 is_pointer_value(env, insn->dst_reg)) { 9332 verbose(env, "R%d pointer comparison prohibited\n", 9333 insn->dst_reg); 9334 return -EACCES; 9335 } 9336 if (env->log.level & BPF_LOG_LEVEL) 9337 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 9338 return 0; 9339 } 9340 9341 /* verify BPF_LD_IMM64 instruction */ 9342 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 9343 { 9344 struct bpf_insn_aux_data *aux = cur_aux(env); 9345 struct bpf_reg_state *regs = cur_regs(env); 9346 struct bpf_reg_state *dst_reg; 9347 struct bpf_map *map; 9348 int err; 9349 9350 if (BPF_SIZE(insn->code) != BPF_DW) { 9351 verbose(env, "invalid BPF_LD_IMM insn\n"); 9352 return -EINVAL; 9353 } 9354 if (insn->off != 0) { 9355 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 9356 return -EINVAL; 9357 } 9358 9359 err = check_reg_arg(env, insn->dst_reg, DST_OP); 9360 if (err) 9361 return err; 9362 9363 dst_reg = ®s[insn->dst_reg]; 9364 if (insn->src_reg == 0) { 9365 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 9366 9367 dst_reg->type = SCALAR_VALUE; 9368 __mark_reg_known(®s[insn->dst_reg], imm); 9369 return 0; 9370 } 9371 9372 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 9373 mark_reg_known_zero(env, regs, insn->dst_reg); 9374 9375 dst_reg->type = aux->btf_var.reg_type; 9376 switch (dst_reg->type) { 9377 case PTR_TO_MEM: 9378 dst_reg->mem_size = aux->btf_var.mem_size; 9379 break; 9380 case PTR_TO_BTF_ID: 9381 case PTR_TO_PERCPU_BTF_ID: 9382 dst_reg->btf = aux->btf_var.btf; 9383 dst_reg->btf_id = aux->btf_var.btf_id; 9384 break; 9385 default: 9386 verbose(env, "bpf verifier is misconfigured\n"); 9387 return -EFAULT; 9388 } 9389 return 0; 9390 } 9391 9392 if (insn->src_reg == BPF_PSEUDO_FUNC) { 9393 struct bpf_prog_aux *aux = env->prog->aux; 9394 u32 subprogno = find_subprog(env, 9395 env->insn_idx + insn->imm + 1); 9396 9397 if (!aux->func_info) { 9398 verbose(env, "missing btf func_info\n"); 9399 return -EINVAL; 9400 } 9401 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 9402 verbose(env, "callback function not static\n"); 9403 return -EINVAL; 9404 } 9405 9406 dst_reg->type = PTR_TO_FUNC; 9407 dst_reg->subprogno = subprogno; 9408 return 0; 9409 } 9410 9411 map = env->used_maps[aux->map_index]; 9412 mark_reg_known_zero(env, regs, insn->dst_reg); 9413 dst_reg->map_ptr = map; 9414 9415 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 9416 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 9417 dst_reg->type = PTR_TO_MAP_VALUE; 9418 dst_reg->off = aux->map_off; 9419 if (map_value_has_spin_lock(map)) 9420 dst_reg->id = ++env->id_gen; 9421 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 9422 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 9423 dst_reg->type = CONST_PTR_TO_MAP; 9424 } else { 9425 verbose(env, "bpf verifier is misconfigured\n"); 9426 return -EINVAL; 9427 } 9428 9429 return 0; 9430 } 9431 9432 static bool may_access_skb(enum bpf_prog_type type) 9433 { 9434 switch (type) { 9435 case BPF_PROG_TYPE_SOCKET_FILTER: 9436 case BPF_PROG_TYPE_SCHED_CLS: 9437 case BPF_PROG_TYPE_SCHED_ACT: 9438 return true; 9439 default: 9440 return false; 9441 } 9442 } 9443 9444 /* verify safety of LD_ABS|LD_IND instructions: 9445 * - they can only appear in the programs where ctx == skb 9446 * - since they are wrappers of function calls, they scratch R1-R5 registers, 9447 * preserve R6-R9, and store return value into R0 9448 * 9449 * Implicit input: 9450 * ctx == skb == R6 == CTX 9451 * 9452 * Explicit input: 9453 * SRC == any register 9454 * IMM == 32-bit immediate 9455 * 9456 * Output: 9457 * R0 - 8/16/32-bit skb data converted to cpu endianness 9458 */ 9459 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 9460 { 9461 struct bpf_reg_state *regs = cur_regs(env); 9462 static const int ctx_reg = BPF_REG_6; 9463 u8 mode = BPF_MODE(insn->code); 9464 int i, err; 9465 9466 if (!may_access_skb(resolve_prog_type(env->prog))) { 9467 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 9468 return -EINVAL; 9469 } 9470 9471 if (!env->ops->gen_ld_abs) { 9472 verbose(env, "bpf verifier is misconfigured\n"); 9473 return -EINVAL; 9474 } 9475 9476 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 9477 BPF_SIZE(insn->code) == BPF_DW || 9478 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 9479 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 9480 return -EINVAL; 9481 } 9482 9483 /* check whether implicit source operand (register R6) is readable */ 9484 err = check_reg_arg(env, ctx_reg, SRC_OP); 9485 if (err) 9486 return err; 9487 9488 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 9489 * gen_ld_abs() may terminate the program at runtime, leading to 9490 * reference leak. 9491 */ 9492 err = check_reference_leak(env); 9493 if (err) { 9494 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 9495 return err; 9496 } 9497 9498 if (env->cur_state->active_spin_lock) { 9499 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 9500 return -EINVAL; 9501 } 9502 9503 if (regs[ctx_reg].type != PTR_TO_CTX) { 9504 verbose(env, 9505 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 9506 return -EINVAL; 9507 } 9508 9509 if (mode == BPF_IND) { 9510 /* check explicit source operand */ 9511 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9512 if (err) 9513 return err; 9514 } 9515 9516 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 9517 if (err < 0) 9518 return err; 9519 9520 /* reset caller saved regs to unreadable */ 9521 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9522 mark_reg_not_init(env, regs, caller_saved[i]); 9523 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 9524 } 9525 9526 /* mark destination R0 register as readable, since it contains 9527 * the value fetched from the packet. 9528 * Already marked as written above. 9529 */ 9530 mark_reg_unknown(env, regs, BPF_REG_0); 9531 /* ld_abs load up to 32-bit skb data. */ 9532 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 9533 return 0; 9534 } 9535 9536 static int check_return_code(struct bpf_verifier_env *env) 9537 { 9538 struct tnum enforce_attach_type_range = tnum_unknown; 9539 const struct bpf_prog *prog = env->prog; 9540 struct bpf_reg_state *reg; 9541 struct tnum range = tnum_range(0, 1); 9542 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9543 int err; 9544 struct bpf_func_state *frame = env->cur_state->frame[0]; 9545 const bool is_subprog = frame->subprogno; 9546 9547 /* LSM and struct_ops func-ptr's return type could be "void" */ 9548 if (!is_subprog && 9549 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 9550 prog_type == BPF_PROG_TYPE_LSM) && 9551 !prog->aux->attach_func_proto->type) 9552 return 0; 9553 9554 /* eBPF calling convention is such that R0 is used 9555 * to return the value from eBPF program. 9556 * Make sure that it's readable at this time 9557 * of bpf_exit, which means that program wrote 9558 * something into it earlier 9559 */ 9560 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 9561 if (err) 9562 return err; 9563 9564 if (is_pointer_value(env, BPF_REG_0)) { 9565 verbose(env, "R0 leaks addr as return value\n"); 9566 return -EACCES; 9567 } 9568 9569 reg = cur_regs(env) + BPF_REG_0; 9570 9571 if (frame->in_async_callback_fn) { 9572 /* enforce return zero from async callbacks like timer */ 9573 if (reg->type != SCALAR_VALUE) { 9574 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 9575 reg_type_str[reg->type]); 9576 return -EINVAL; 9577 } 9578 9579 if (!tnum_in(tnum_const(0), reg->var_off)) { 9580 verbose_invalid_scalar(env, reg, &range, "async callback", "R0"); 9581 return -EINVAL; 9582 } 9583 return 0; 9584 } 9585 9586 if (is_subprog) { 9587 if (reg->type != SCALAR_VALUE) { 9588 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 9589 reg_type_str[reg->type]); 9590 return -EINVAL; 9591 } 9592 return 0; 9593 } 9594 9595 switch (prog_type) { 9596 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 9597 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 9598 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 9599 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 9600 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 9601 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 9602 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 9603 range = tnum_range(1, 1); 9604 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 9605 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 9606 range = tnum_range(0, 3); 9607 break; 9608 case BPF_PROG_TYPE_CGROUP_SKB: 9609 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 9610 range = tnum_range(0, 3); 9611 enforce_attach_type_range = tnum_range(2, 3); 9612 } 9613 break; 9614 case BPF_PROG_TYPE_CGROUP_SOCK: 9615 case BPF_PROG_TYPE_SOCK_OPS: 9616 case BPF_PROG_TYPE_CGROUP_DEVICE: 9617 case BPF_PROG_TYPE_CGROUP_SYSCTL: 9618 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 9619 break; 9620 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9621 if (!env->prog->aux->attach_btf_id) 9622 return 0; 9623 range = tnum_const(0); 9624 break; 9625 case BPF_PROG_TYPE_TRACING: 9626 switch (env->prog->expected_attach_type) { 9627 case BPF_TRACE_FENTRY: 9628 case BPF_TRACE_FEXIT: 9629 range = tnum_const(0); 9630 break; 9631 case BPF_TRACE_RAW_TP: 9632 case BPF_MODIFY_RETURN: 9633 return 0; 9634 case BPF_TRACE_ITER: 9635 break; 9636 default: 9637 return -ENOTSUPP; 9638 } 9639 break; 9640 case BPF_PROG_TYPE_SK_LOOKUP: 9641 range = tnum_range(SK_DROP, SK_PASS); 9642 break; 9643 case BPF_PROG_TYPE_EXT: 9644 /* freplace program can return anything as its return value 9645 * depends on the to-be-replaced kernel func or bpf program. 9646 */ 9647 default: 9648 return 0; 9649 } 9650 9651 if (reg->type != SCALAR_VALUE) { 9652 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 9653 reg_type_str[reg->type]); 9654 return -EINVAL; 9655 } 9656 9657 if (!tnum_in(range, reg->var_off)) { 9658 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 9659 return -EINVAL; 9660 } 9661 9662 if (!tnum_is_unknown(enforce_attach_type_range) && 9663 tnum_in(enforce_attach_type_range, reg->var_off)) 9664 env->prog->enforce_expected_attach_type = 1; 9665 return 0; 9666 } 9667 9668 /* non-recursive DFS pseudo code 9669 * 1 procedure DFS-iterative(G,v): 9670 * 2 label v as discovered 9671 * 3 let S be a stack 9672 * 4 S.push(v) 9673 * 5 while S is not empty 9674 * 6 t <- S.pop() 9675 * 7 if t is what we're looking for: 9676 * 8 return t 9677 * 9 for all edges e in G.adjacentEdges(t) do 9678 * 10 if edge e is already labelled 9679 * 11 continue with the next edge 9680 * 12 w <- G.adjacentVertex(t,e) 9681 * 13 if vertex w is not discovered and not explored 9682 * 14 label e as tree-edge 9683 * 15 label w as discovered 9684 * 16 S.push(w) 9685 * 17 continue at 5 9686 * 18 else if vertex w is discovered 9687 * 19 label e as back-edge 9688 * 20 else 9689 * 21 // vertex w is explored 9690 * 22 label e as forward- or cross-edge 9691 * 23 label t as explored 9692 * 24 S.pop() 9693 * 9694 * convention: 9695 * 0x10 - discovered 9696 * 0x11 - discovered and fall-through edge labelled 9697 * 0x12 - discovered and fall-through and branch edges labelled 9698 * 0x20 - explored 9699 */ 9700 9701 enum { 9702 DISCOVERED = 0x10, 9703 EXPLORED = 0x20, 9704 FALLTHROUGH = 1, 9705 BRANCH = 2, 9706 }; 9707 9708 static u32 state_htab_size(struct bpf_verifier_env *env) 9709 { 9710 return env->prog->len; 9711 } 9712 9713 static struct bpf_verifier_state_list **explored_state( 9714 struct bpf_verifier_env *env, 9715 int idx) 9716 { 9717 struct bpf_verifier_state *cur = env->cur_state; 9718 struct bpf_func_state *state = cur->frame[cur->curframe]; 9719 9720 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 9721 } 9722 9723 static void init_explored_state(struct bpf_verifier_env *env, int idx) 9724 { 9725 env->insn_aux_data[idx].prune_point = true; 9726 } 9727 9728 enum { 9729 DONE_EXPLORING = 0, 9730 KEEP_EXPLORING = 1, 9731 }; 9732 9733 /* t, w, e - match pseudo-code above: 9734 * t - index of current instruction 9735 * w - next instruction 9736 * e - edge 9737 */ 9738 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 9739 bool loop_ok) 9740 { 9741 int *insn_stack = env->cfg.insn_stack; 9742 int *insn_state = env->cfg.insn_state; 9743 9744 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 9745 return DONE_EXPLORING; 9746 9747 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 9748 return DONE_EXPLORING; 9749 9750 if (w < 0 || w >= env->prog->len) { 9751 verbose_linfo(env, t, "%d: ", t); 9752 verbose(env, "jump out of range from insn %d to %d\n", t, w); 9753 return -EINVAL; 9754 } 9755 9756 if (e == BRANCH) 9757 /* mark branch target for state pruning */ 9758 init_explored_state(env, w); 9759 9760 if (insn_state[w] == 0) { 9761 /* tree-edge */ 9762 insn_state[t] = DISCOVERED | e; 9763 insn_state[w] = DISCOVERED; 9764 if (env->cfg.cur_stack >= env->prog->len) 9765 return -E2BIG; 9766 insn_stack[env->cfg.cur_stack++] = w; 9767 return KEEP_EXPLORING; 9768 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 9769 if (loop_ok && env->bpf_capable) 9770 return DONE_EXPLORING; 9771 verbose_linfo(env, t, "%d: ", t); 9772 verbose_linfo(env, w, "%d: ", w); 9773 verbose(env, "back-edge from insn %d to %d\n", t, w); 9774 return -EINVAL; 9775 } else if (insn_state[w] == EXPLORED) { 9776 /* forward- or cross-edge */ 9777 insn_state[t] = DISCOVERED | e; 9778 } else { 9779 verbose(env, "insn state internal bug\n"); 9780 return -EFAULT; 9781 } 9782 return DONE_EXPLORING; 9783 } 9784 9785 static int visit_func_call_insn(int t, int insn_cnt, 9786 struct bpf_insn *insns, 9787 struct bpf_verifier_env *env, 9788 bool visit_callee) 9789 { 9790 int ret; 9791 9792 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 9793 if (ret) 9794 return ret; 9795 9796 if (t + 1 < insn_cnt) 9797 init_explored_state(env, t + 1); 9798 if (visit_callee) { 9799 init_explored_state(env, t); 9800 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env, 9801 /* It's ok to allow recursion from CFG point of 9802 * view. __check_func_call() will do the actual 9803 * check. 9804 */ 9805 bpf_pseudo_func(insns + t)); 9806 } 9807 return ret; 9808 } 9809 9810 /* Visits the instruction at index t and returns one of the following: 9811 * < 0 - an error occurred 9812 * DONE_EXPLORING - the instruction was fully explored 9813 * KEEP_EXPLORING - there is still work to be done before it is fully explored 9814 */ 9815 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 9816 { 9817 struct bpf_insn *insns = env->prog->insnsi; 9818 int ret; 9819 9820 if (bpf_pseudo_func(insns + t)) 9821 return visit_func_call_insn(t, insn_cnt, insns, env, true); 9822 9823 /* All non-branch instructions have a single fall-through edge. */ 9824 if (BPF_CLASS(insns[t].code) != BPF_JMP && 9825 BPF_CLASS(insns[t].code) != BPF_JMP32) 9826 return push_insn(t, t + 1, FALLTHROUGH, env, false); 9827 9828 switch (BPF_OP(insns[t].code)) { 9829 case BPF_EXIT: 9830 return DONE_EXPLORING; 9831 9832 case BPF_CALL: 9833 if (insns[t].imm == BPF_FUNC_timer_set_callback) 9834 /* Mark this call insn to trigger is_state_visited() check 9835 * before call itself is processed by __check_func_call(). 9836 * Otherwise new async state will be pushed for further 9837 * exploration. 9838 */ 9839 init_explored_state(env, t); 9840 return visit_func_call_insn(t, insn_cnt, insns, env, 9841 insns[t].src_reg == BPF_PSEUDO_CALL); 9842 9843 case BPF_JA: 9844 if (BPF_SRC(insns[t].code) != BPF_K) 9845 return -EINVAL; 9846 9847 /* unconditional jump with single edge */ 9848 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 9849 true); 9850 if (ret) 9851 return ret; 9852 9853 /* unconditional jmp is not a good pruning point, 9854 * but it's marked, since backtracking needs 9855 * to record jmp history in is_state_visited(). 9856 */ 9857 init_explored_state(env, t + insns[t].off + 1); 9858 /* tell verifier to check for equivalent states 9859 * after every call and jump 9860 */ 9861 if (t + 1 < insn_cnt) 9862 init_explored_state(env, t + 1); 9863 9864 return ret; 9865 9866 default: 9867 /* conditional jump with two edges */ 9868 init_explored_state(env, t); 9869 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 9870 if (ret) 9871 return ret; 9872 9873 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 9874 } 9875 } 9876 9877 /* non-recursive depth-first-search to detect loops in BPF program 9878 * loop == back-edge in directed graph 9879 */ 9880 static int check_cfg(struct bpf_verifier_env *env) 9881 { 9882 int insn_cnt = env->prog->len; 9883 int *insn_stack, *insn_state; 9884 int ret = 0; 9885 int i; 9886 9887 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9888 if (!insn_state) 9889 return -ENOMEM; 9890 9891 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 9892 if (!insn_stack) { 9893 kvfree(insn_state); 9894 return -ENOMEM; 9895 } 9896 9897 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 9898 insn_stack[0] = 0; /* 0 is the first instruction */ 9899 env->cfg.cur_stack = 1; 9900 9901 while (env->cfg.cur_stack > 0) { 9902 int t = insn_stack[env->cfg.cur_stack - 1]; 9903 9904 ret = visit_insn(t, insn_cnt, env); 9905 switch (ret) { 9906 case DONE_EXPLORING: 9907 insn_state[t] = EXPLORED; 9908 env->cfg.cur_stack--; 9909 break; 9910 case KEEP_EXPLORING: 9911 break; 9912 default: 9913 if (ret > 0) { 9914 verbose(env, "visit_insn internal bug\n"); 9915 ret = -EFAULT; 9916 } 9917 goto err_free; 9918 } 9919 } 9920 9921 if (env->cfg.cur_stack < 0) { 9922 verbose(env, "pop stack internal bug\n"); 9923 ret = -EFAULT; 9924 goto err_free; 9925 } 9926 9927 for (i = 0; i < insn_cnt; i++) { 9928 if (insn_state[i] != EXPLORED) { 9929 verbose(env, "unreachable insn %d\n", i); 9930 ret = -EINVAL; 9931 goto err_free; 9932 } 9933 } 9934 ret = 0; /* cfg looks good */ 9935 9936 err_free: 9937 kvfree(insn_state); 9938 kvfree(insn_stack); 9939 env->cfg.insn_state = env->cfg.insn_stack = NULL; 9940 return ret; 9941 } 9942 9943 static int check_abnormal_return(struct bpf_verifier_env *env) 9944 { 9945 int i; 9946 9947 for (i = 1; i < env->subprog_cnt; i++) { 9948 if (env->subprog_info[i].has_ld_abs) { 9949 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 9950 return -EINVAL; 9951 } 9952 if (env->subprog_info[i].has_tail_call) { 9953 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 9954 return -EINVAL; 9955 } 9956 } 9957 return 0; 9958 } 9959 9960 /* The minimum supported BTF func info size */ 9961 #define MIN_BPF_FUNCINFO_SIZE 8 9962 #define MAX_FUNCINFO_REC_SIZE 252 9963 9964 static int check_btf_func(struct bpf_verifier_env *env, 9965 const union bpf_attr *attr, 9966 bpfptr_t uattr) 9967 { 9968 const struct btf_type *type, *func_proto, *ret_type; 9969 u32 i, nfuncs, urec_size, min_size; 9970 u32 krec_size = sizeof(struct bpf_func_info); 9971 struct bpf_func_info *krecord; 9972 struct bpf_func_info_aux *info_aux = NULL; 9973 struct bpf_prog *prog; 9974 const struct btf *btf; 9975 bpfptr_t urecord; 9976 u32 prev_offset = 0; 9977 bool scalar_return; 9978 int ret = -ENOMEM; 9979 9980 nfuncs = attr->func_info_cnt; 9981 if (!nfuncs) { 9982 if (check_abnormal_return(env)) 9983 return -EINVAL; 9984 return 0; 9985 } 9986 9987 if (nfuncs != env->subprog_cnt) { 9988 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 9989 return -EINVAL; 9990 } 9991 9992 urec_size = attr->func_info_rec_size; 9993 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 9994 urec_size > MAX_FUNCINFO_REC_SIZE || 9995 urec_size % sizeof(u32)) { 9996 verbose(env, "invalid func info rec size %u\n", urec_size); 9997 return -EINVAL; 9998 } 9999 10000 prog = env->prog; 10001 btf = prog->aux->btf; 10002 10003 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 10004 min_size = min_t(u32, krec_size, urec_size); 10005 10006 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 10007 if (!krecord) 10008 return -ENOMEM; 10009 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 10010 if (!info_aux) 10011 goto err_free; 10012 10013 for (i = 0; i < nfuncs; i++) { 10014 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 10015 if (ret) { 10016 if (ret == -E2BIG) { 10017 verbose(env, "nonzero tailing record in func info"); 10018 /* set the size kernel expects so loader can zero 10019 * out the rest of the record. 10020 */ 10021 if (copy_to_bpfptr_offset(uattr, 10022 offsetof(union bpf_attr, func_info_rec_size), 10023 &min_size, sizeof(min_size))) 10024 ret = -EFAULT; 10025 } 10026 goto err_free; 10027 } 10028 10029 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 10030 ret = -EFAULT; 10031 goto err_free; 10032 } 10033 10034 /* check insn_off */ 10035 ret = -EINVAL; 10036 if (i == 0) { 10037 if (krecord[i].insn_off) { 10038 verbose(env, 10039 "nonzero insn_off %u for the first func info record", 10040 krecord[i].insn_off); 10041 goto err_free; 10042 } 10043 } else if (krecord[i].insn_off <= prev_offset) { 10044 verbose(env, 10045 "same or smaller insn offset (%u) than previous func info record (%u)", 10046 krecord[i].insn_off, prev_offset); 10047 goto err_free; 10048 } 10049 10050 if (env->subprog_info[i].start != krecord[i].insn_off) { 10051 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 10052 goto err_free; 10053 } 10054 10055 /* check type_id */ 10056 type = btf_type_by_id(btf, krecord[i].type_id); 10057 if (!type || !btf_type_is_func(type)) { 10058 verbose(env, "invalid type id %d in func info", 10059 krecord[i].type_id); 10060 goto err_free; 10061 } 10062 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 10063 10064 func_proto = btf_type_by_id(btf, type->type); 10065 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 10066 /* btf_func_check() already verified it during BTF load */ 10067 goto err_free; 10068 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 10069 scalar_return = 10070 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 10071 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 10072 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 10073 goto err_free; 10074 } 10075 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 10076 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 10077 goto err_free; 10078 } 10079 10080 prev_offset = krecord[i].insn_off; 10081 bpfptr_add(&urecord, urec_size); 10082 } 10083 10084 prog->aux->func_info = krecord; 10085 prog->aux->func_info_cnt = nfuncs; 10086 prog->aux->func_info_aux = info_aux; 10087 return 0; 10088 10089 err_free: 10090 kvfree(krecord); 10091 kfree(info_aux); 10092 return ret; 10093 } 10094 10095 static void adjust_btf_func(struct bpf_verifier_env *env) 10096 { 10097 struct bpf_prog_aux *aux = env->prog->aux; 10098 int i; 10099 10100 if (!aux->func_info) 10101 return; 10102 10103 for (i = 0; i < env->subprog_cnt; i++) 10104 aux->func_info[i].insn_off = env->subprog_info[i].start; 10105 } 10106 10107 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 10108 sizeof(((struct bpf_line_info *)(0))->line_col)) 10109 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 10110 10111 static int check_btf_line(struct bpf_verifier_env *env, 10112 const union bpf_attr *attr, 10113 bpfptr_t uattr) 10114 { 10115 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 10116 struct bpf_subprog_info *sub; 10117 struct bpf_line_info *linfo; 10118 struct bpf_prog *prog; 10119 const struct btf *btf; 10120 bpfptr_t ulinfo; 10121 int err; 10122 10123 nr_linfo = attr->line_info_cnt; 10124 if (!nr_linfo) 10125 return 0; 10126 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 10127 return -EINVAL; 10128 10129 rec_size = attr->line_info_rec_size; 10130 if (rec_size < MIN_BPF_LINEINFO_SIZE || 10131 rec_size > MAX_LINEINFO_REC_SIZE || 10132 rec_size & (sizeof(u32) - 1)) 10133 return -EINVAL; 10134 10135 /* Need to zero it in case the userspace may 10136 * pass in a smaller bpf_line_info object. 10137 */ 10138 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 10139 GFP_KERNEL | __GFP_NOWARN); 10140 if (!linfo) 10141 return -ENOMEM; 10142 10143 prog = env->prog; 10144 btf = prog->aux->btf; 10145 10146 s = 0; 10147 sub = env->subprog_info; 10148 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 10149 expected_size = sizeof(struct bpf_line_info); 10150 ncopy = min_t(u32, expected_size, rec_size); 10151 for (i = 0; i < nr_linfo; i++) { 10152 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 10153 if (err) { 10154 if (err == -E2BIG) { 10155 verbose(env, "nonzero tailing record in line_info"); 10156 if (copy_to_bpfptr_offset(uattr, 10157 offsetof(union bpf_attr, line_info_rec_size), 10158 &expected_size, sizeof(expected_size))) 10159 err = -EFAULT; 10160 } 10161 goto err_free; 10162 } 10163 10164 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 10165 err = -EFAULT; 10166 goto err_free; 10167 } 10168 10169 /* 10170 * Check insn_off to ensure 10171 * 1) strictly increasing AND 10172 * 2) bounded by prog->len 10173 * 10174 * The linfo[0].insn_off == 0 check logically falls into 10175 * the later "missing bpf_line_info for func..." case 10176 * because the first linfo[0].insn_off must be the 10177 * first sub also and the first sub must have 10178 * subprog_info[0].start == 0. 10179 */ 10180 if ((i && linfo[i].insn_off <= prev_offset) || 10181 linfo[i].insn_off >= prog->len) { 10182 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 10183 i, linfo[i].insn_off, prev_offset, 10184 prog->len); 10185 err = -EINVAL; 10186 goto err_free; 10187 } 10188 10189 if (!prog->insnsi[linfo[i].insn_off].code) { 10190 verbose(env, 10191 "Invalid insn code at line_info[%u].insn_off\n", 10192 i); 10193 err = -EINVAL; 10194 goto err_free; 10195 } 10196 10197 if (!btf_name_by_offset(btf, linfo[i].line_off) || 10198 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 10199 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 10200 err = -EINVAL; 10201 goto err_free; 10202 } 10203 10204 if (s != env->subprog_cnt) { 10205 if (linfo[i].insn_off == sub[s].start) { 10206 sub[s].linfo_idx = i; 10207 s++; 10208 } else if (sub[s].start < linfo[i].insn_off) { 10209 verbose(env, "missing bpf_line_info for func#%u\n", s); 10210 err = -EINVAL; 10211 goto err_free; 10212 } 10213 } 10214 10215 prev_offset = linfo[i].insn_off; 10216 bpfptr_add(&ulinfo, rec_size); 10217 } 10218 10219 if (s != env->subprog_cnt) { 10220 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 10221 env->subprog_cnt - s, s); 10222 err = -EINVAL; 10223 goto err_free; 10224 } 10225 10226 prog->aux->linfo = linfo; 10227 prog->aux->nr_linfo = nr_linfo; 10228 10229 return 0; 10230 10231 err_free: 10232 kvfree(linfo); 10233 return err; 10234 } 10235 10236 static int check_btf_info(struct bpf_verifier_env *env, 10237 const union bpf_attr *attr, 10238 bpfptr_t uattr) 10239 { 10240 struct btf *btf; 10241 int err; 10242 10243 if (!attr->func_info_cnt && !attr->line_info_cnt) { 10244 if (check_abnormal_return(env)) 10245 return -EINVAL; 10246 return 0; 10247 } 10248 10249 btf = btf_get_by_fd(attr->prog_btf_fd); 10250 if (IS_ERR(btf)) 10251 return PTR_ERR(btf); 10252 if (btf_is_kernel(btf)) { 10253 btf_put(btf); 10254 return -EACCES; 10255 } 10256 env->prog->aux->btf = btf; 10257 10258 err = check_btf_func(env, attr, uattr); 10259 if (err) 10260 return err; 10261 10262 err = check_btf_line(env, attr, uattr); 10263 if (err) 10264 return err; 10265 10266 return 0; 10267 } 10268 10269 /* check %cur's range satisfies %old's */ 10270 static bool range_within(struct bpf_reg_state *old, 10271 struct bpf_reg_state *cur) 10272 { 10273 return old->umin_value <= cur->umin_value && 10274 old->umax_value >= cur->umax_value && 10275 old->smin_value <= cur->smin_value && 10276 old->smax_value >= cur->smax_value && 10277 old->u32_min_value <= cur->u32_min_value && 10278 old->u32_max_value >= cur->u32_max_value && 10279 old->s32_min_value <= cur->s32_min_value && 10280 old->s32_max_value >= cur->s32_max_value; 10281 } 10282 10283 /* If in the old state two registers had the same id, then they need to have 10284 * the same id in the new state as well. But that id could be different from 10285 * the old state, so we need to track the mapping from old to new ids. 10286 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 10287 * regs with old id 5 must also have new id 9 for the new state to be safe. But 10288 * regs with a different old id could still have new id 9, we don't care about 10289 * that. 10290 * So we look through our idmap to see if this old id has been seen before. If 10291 * so, we require the new id to match; otherwise, we add the id pair to the map. 10292 */ 10293 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap) 10294 { 10295 unsigned int i; 10296 10297 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 10298 if (!idmap[i].old) { 10299 /* Reached an empty slot; haven't seen this id before */ 10300 idmap[i].old = old_id; 10301 idmap[i].cur = cur_id; 10302 return true; 10303 } 10304 if (idmap[i].old == old_id) 10305 return idmap[i].cur == cur_id; 10306 } 10307 /* We ran out of idmap slots, which should be impossible */ 10308 WARN_ON_ONCE(1); 10309 return false; 10310 } 10311 10312 static void clean_func_state(struct bpf_verifier_env *env, 10313 struct bpf_func_state *st) 10314 { 10315 enum bpf_reg_liveness live; 10316 int i, j; 10317 10318 for (i = 0; i < BPF_REG_FP; i++) { 10319 live = st->regs[i].live; 10320 /* liveness must not touch this register anymore */ 10321 st->regs[i].live |= REG_LIVE_DONE; 10322 if (!(live & REG_LIVE_READ)) 10323 /* since the register is unused, clear its state 10324 * to make further comparison simpler 10325 */ 10326 __mark_reg_not_init(env, &st->regs[i]); 10327 } 10328 10329 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 10330 live = st->stack[i].spilled_ptr.live; 10331 /* liveness must not touch this stack slot anymore */ 10332 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 10333 if (!(live & REG_LIVE_READ)) { 10334 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 10335 for (j = 0; j < BPF_REG_SIZE; j++) 10336 st->stack[i].slot_type[j] = STACK_INVALID; 10337 } 10338 } 10339 } 10340 10341 static void clean_verifier_state(struct bpf_verifier_env *env, 10342 struct bpf_verifier_state *st) 10343 { 10344 int i; 10345 10346 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 10347 /* all regs in this state in all frames were already marked */ 10348 return; 10349 10350 for (i = 0; i <= st->curframe; i++) 10351 clean_func_state(env, st->frame[i]); 10352 } 10353 10354 /* the parentage chains form a tree. 10355 * the verifier states are added to state lists at given insn and 10356 * pushed into state stack for future exploration. 10357 * when the verifier reaches bpf_exit insn some of the verifer states 10358 * stored in the state lists have their final liveness state already, 10359 * but a lot of states will get revised from liveness point of view when 10360 * the verifier explores other branches. 10361 * Example: 10362 * 1: r0 = 1 10363 * 2: if r1 == 100 goto pc+1 10364 * 3: r0 = 2 10365 * 4: exit 10366 * when the verifier reaches exit insn the register r0 in the state list of 10367 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 10368 * of insn 2 and goes exploring further. At the insn 4 it will walk the 10369 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 10370 * 10371 * Since the verifier pushes the branch states as it sees them while exploring 10372 * the program the condition of walking the branch instruction for the second 10373 * time means that all states below this branch were already explored and 10374 * their final liveness marks are already propagated. 10375 * Hence when the verifier completes the search of state list in is_state_visited() 10376 * we can call this clean_live_states() function to mark all liveness states 10377 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 10378 * will not be used. 10379 * This function also clears the registers and stack for states that !READ 10380 * to simplify state merging. 10381 * 10382 * Important note here that walking the same branch instruction in the callee 10383 * doesn't meant that the states are DONE. The verifier has to compare 10384 * the callsites 10385 */ 10386 static void clean_live_states(struct bpf_verifier_env *env, int insn, 10387 struct bpf_verifier_state *cur) 10388 { 10389 struct bpf_verifier_state_list *sl; 10390 int i; 10391 10392 sl = *explored_state(env, insn); 10393 while (sl) { 10394 if (sl->state.branches) 10395 goto next; 10396 if (sl->state.insn_idx != insn || 10397 sl->state.curframe != cur->curframe) 10398 goto next; 10399 for (i = 0; i <= cur->curframe; i++) 10400 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 10401 goto next; 10402 clean_verifier_state(env, &sl->state); 10403 next: 10404 sl = sl->next; 10405 } 10406 } 10407 10408 /* Returns true if (rold safe implies rcur safe) */ 10409 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 10410 struct bpf_reg_state *rcur, struct bpf_id_pair *idmap) 10411 { 10412 bool equal; 10413 10414 if (!(rold->live & REG_LIVE_READ)) 10415 /* explored state didn't use this */ 10416 return true; 10417 10418 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 10419 10420 if (rold->type == PTR_TO_STACK) 10421 /* two stack pointers are equal only if they're pointing to 10422 * the same stack frame, since fp-8 in foo != fp-8 in bar 10423 */ 10424 return equal && rold->frameno == rcur->frameno; 10425 10426 if (equal) 10427 return true; 10428 10429 if (rold->type == NOT_INIT) 10430 /* explored state can't have used this */ 10431 return true; 10432 if (rcur->type == NOT_INIT) 10433 return false; 10434 switch (rold->type) { 10435 case SCALAR_VALUE: 10436 if (env->explore_alu_limits) 10437 return false; 10438 if (rcur->type == SCALAR_VALUE) { 10439 if (!rold->precise && !rcur->precise) 10440 return true; 10441 /* new val must satisfy old val knowledge */ 10442 return range_within(rold, rcur) && 10443 tnum_in(rold->var_off, rcur->var_off); 10444 } else { 10445 /* We're trying to use a pointer in place of a scalar. 10446 * Even if the scalar was unbounded, this could lead to 10447 * pointer leaks because scalars are allowed to leak 10448 * while pointers are not. We could make this safe in 10449 * special cases if root is calling us, but it's 10450 * probably not worth the hassle. 10451 */ 10452 return false; 10453 } 10454 case PTR_TO_MAP_KEY: 10455 case PTR_TO_MAP_VALUE: 10456 /* If the new min/max/var_off satisfy the old ones and 10457 * everything else matches, we are OK. 10458 * 'id' is not compared, since it's only used for maps with 10459 * bpf_spin_lock inside map element and in such cases if 10460 * the rest of the prog is valid for one map element then 10461 * it's valid for all map elements regardless of the key 10462 * used in bpf_map_lookup() 10463 */ 10464 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 10465 range_within(rold, rcur) && 10466 tnum_in(rold->var_off, rcur->var_off); 10467 case PTR_TO_MAP_VALUE_OR_NULL: 10468 /* a PTR_TO_MAP_VALUE could be safe to use as a 10469 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 10470 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 10471 * checked, doing so could have affected others with the same 10472 * id, and we can't check for that because we lost the id when 10473 * we converted to a PTR_TO_MAP_VALUE. 10474 */ 10475 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 10476 return false; 10477 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 10478 return false; 10479 /* Check our ids match any regs they're supposed to */ 10480 return check_ids(rold->id, rcur->id, idmap); 10481 case PTR_TO_PACKET_META: 10482 case PTR_TO_PACKET: 10483 if (rcur->type != rold->type) 10484 return false; 10485 /* We must have at least as much range as the old ptr 10486 * did, so that any accesses which were safe before are 10487 * still safe. This is true even if old range < old off, 10488 * since someone could have accessed through (ptr - k), or 10489 * even done ptr -= k in a register, to get a safe access. 10490 */ 10491 if (rold->range > rcur->range) 10492 return false; 10493 /* If the offsets don't match, we can't trust our alignment; 10494 * nor can we be sure that we won't fall out of range. 10495 */ 10496 if (rold->off != rcur->off) 10497 return false; 10498 /* id relations must be preserved */ 10499 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 10500 return false; 10501 /* new val must satisfy old val knowledge */ 10502 return range_within(rold, rcur) && 10503 tnum_in(rold->var_off, rcur->var_off); 10504 case PTR_TO_CTX: 10505 case CONST_PTR_TO_MAP: 10506 case PTR_TO_PACKET_END: 10507 case PTR_TO_FLOW_KEYS: 10508 case PTR_TO_SOCKET: 10509 case PTR_TO_SOCKET_OR_NULL: 10510 case PTR_TO_SOCK_COMMON: 10511 case PTR_TO_SOCK_COMMON_OR_NULL: 10512 case PTR_TO_TCP_SOCK: 10513 case PTR_TO_TCP_SOCK_OR_NULL: 10514 case PTR_TO_XDP_SOCK: 10515 /* Only valid matches are exact, which memcmp() above 10516 * would have accepted 10517 */ 10518 default: 10519 /* Don't know what's going on, just say it's not safe */ 10520 return false; 10521 } 10522 10523 /* Shouldn't get here; if we do, say it's not safe */ 10524 WARN_ON_ONCE(1); 10525 return false; 10526 } 10527 10528 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 10529 struct bpf_func_state *cur, struct bpf_id_pair *idmap) 10530 { 10531 int i, spi; 10532 10533 /* walk slots of the explored stack and ignore any additional 10534 * slots in the current stack, since explored(safe) state 10535 * didn't use them 10536 */ 10537 for (i = 0; i < old->allocated_stack; i++) { 10538 spi = i / BPF_REG_SIZE; 10539 10540 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 10541 i += BPF_REG_SIZE - 1; 10542 /* explored state didn't use this */ 10543 continue; 10544 } 10545 10546 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 10547 continue; 10548 10549 /* explored stack has more populated slots than current stack 10550 * and these slots were used 10551 */ 10552 if (i >= cur->allocated_stack) 10553 return false; 10554 10555 /* if old state was safe with misc data in the stack 10556 * it will be safe with zero-initialized stack. 10557 * The opposite is not true 10558 */ 10559 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 10560 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 10561 continue; 10562 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 10563 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 10564 /* Ex: old explored (safe) state has STACK_SPILL in 10565 * this stack slot, but current has STACK_MISC -> 10566 * this verifier states are not equivalent, 10567 * return false to continue verification of this path 10568 */ 10569 return false; 10570 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 10571 continue; 10572 if (!is_spilled_reg(&old->stack[spi])) 10573 continue; 10574 if (!regsafe(env, &old->stack[spi].spilled_ptr, 10575 &cur->stack[spi].spilled_ptr, idmap)) 10576 /* when explored and current stack slot are both storing 10577 * spilled registers, check that stored pointers types 10578 * are the same as well. 10579 * Ex: explored safe path could have stored 10580 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 10581 * but current path has stored: 10582 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 10583 * such verifier states are not equivalent. 10584 * return false to continue verification of this path 10585 */ 10586 return false; 10587 } 10588 return true; 10589 } 10590 10591 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 10592 { 10593 if (old->acquired_refs != cur->acquired_refs) 10594 return false; 10595 return !memcmp(old->refs, cur->refs, 10596 sizeof(*old->refs) * old->acquired_refs); 10597 } 10598 10599 /* compare two verifier states 10600 * 10601 * all states stored in state_list are known to be valid, since 10602 * verifier reached 'bpf_exit' instruction through them 10603 * 10604 * this function is called when verifier exploring different branches of 10605 * execution popped from the state stack. If it sees an old state that has 10606 * more strict register state and more strict stack state then this execution 10607 * branch doesn't need to be explored further, since verifier already 10608 * concluded that more strict state leads to valid finish. 10609 * 10610 * Therefore two states are equivalent if register state is more conservative 10611 * and explored stack state is more conservative than the current one. 10612 * Example: 10613 * explored current 10614 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 10615 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 10616 * 10617 * In other words if current stack state (one being explored) has more 10618 * valid slots than old one that already passed validation, it means 10619 * the verifier can stop exploring and conclude that current state is valid too 10620 * 10621 * Similarly with registers. If explored state has register type as invalid 10622 * whereas register type in current state is meaningful, it means that 10623 * the current state will reach 'bpf_exit' instruction safely 10624 */ 10625 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 10626 struct bpf_func_state *cur) 10627 { 10628 int i; 10629 10630 memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch)); 10631 for (i = 0; i < MAX_BPF_REG; i++) 10632 if (!regsafe(env, &old->regs[i], &cur->regs[i], 10633 env->idmap_scratch)) 10634 return false; 10635 10636 if (!stacksafe(env, old, cur, env->idmap_scratch)) 10637 return false; 10638 10639 if (!refsafe(old, cur)) 10640 return false; 10641 10642 return true; 10643 } 10644 10645 static bool states_equal(struct bpf_verifier_env *env, 10646 struct bpf_verifier_state *old, 10647 struct bpf_verifier_state *cur) 10648 { 10649 int i; 10650 10651 if (old->curframe != cur->curframe) 10652 return false; 10653 10654 /* Verification state from speculative execution simulation 10655 * must never prune a non-speculative execution one. 10656 */ 10657 if (old->speculative && !cur->speculative) 10658 return false; 10659 10660 if (old->active_spin_lock != cur->active_spin_lock) 10661 return false; 10662 10663 /* for states to be equal callsites have to be the same 10664 * and all frame states need to be equivalent 10665 */ 10666 for (i = 0; i <= old->curframe; i++) { 10667 if (old->frame[i]->callsite != cur->frame[i]->callsite) 10668 return false; 10669 if (!func_states_equal(env, old->frame[i], cur->frame[i])) 10670 return false; 10671 } 10672 return true; 10673 } 10674 10675 /* Return 0 if no propagation happened. Return negative error code if error 10676 * happened. Otherwise, return the propagated bit. 10677 */ 10678 static int propagate_liveness_reg(struct bpf_verifier_env *env, 10679 struct bpf_reg_state *reg, 10680 struct bpf_reg_state *parent_reg) 10681 { 10682 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 10683 u8 flag = reg->live & REG_LIVE_READ; 10684 int err; 10685 10686 /* When comes here, read flags of PARENT_REG or REG could be any of 10687 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 10688 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 10689 */ 10690 if (parent_flag == REG_LIVE_READ64 || 10691 /* Or if there is no read flag from REG. */ 10692 !flag || 10693 /* Or if the read flag from REG is the same as PARENT_REG. */ 10694 parent_flag == flag) 10695 return 0; 10696 10697 err = mark_reg_read(env, reg, parent_reg, flag); 10698 if (err) 10699 return err; 10700 10701 return flag; 10702 } 10703 10704 /* A write screens off any subsequent reads; but write marks come from the 10705 * straight-line code between a state and its parent. When we arrive at an 10706 * equivalent state (jump target or such) we didn't arrive by the straight-line 10707 * code, so read marks in the state must propagate to the parent regardless 10708 * of the state's write marks. That's what 'parent == state->parent' comparison 10709 * in mark_reg_read() is for. 10710 */ 10711 static int propagate_liveness(struct bpf_verifier_env *env, 10712 const struct bpf_verifier_state *vstate, 10713 struct bpf_verifier_state *vparent) 10714 { 10715 struct bpf_reg_state *state_reg, *parent_reg; 10716 struct bpf_func_state *state, *parent; 10717 int i, frame, err = 0; 10718 10719 if (vparent->curframe != vstate->curframe) { 10720 WARN(1, "propagate_live: parent frame %d current frame %d\n", 10721 vparent->curframe, vstate->curframe); 10722 return -EFAULT; 10723 } 10724 /* Propagate read liveness of registers... */ 10725 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 10726 for (frame = 0; frame <= vstate->curframe; frame++) { 10727 parent = vparent->frame[frame]; 10728 state = vstate->frame[frame]; 10729 parent_reg = parent->regs; 10730 state_reg = state->regs; 10731 /* We don't need to worry about FP liveness, it's read-only */ 10732 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 10733 err = propagate_liveness_reg(env, &state_reg[i], 10734 &parent_reg[i]); 10735 if (err < 0) 10736 return err; 10737 if (err == REG_LIVE_READ64) 10738 mark_insn_zext(env, &parent_reg[i]); 10739 } 10740 10741 /* Propagate stack slots. */ 10742 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 10743 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 10744 parent_reg = &parent->stack[i].spilled_ptr; 10745 state_reg = &state->stack[i].spilled_ptr; 10746 err = propagate_liveness_reg(env, state_reg, 10747 parent_reg); 10748 if (err < 0) 10749 return err; 10750 } 10751 } 10752 return 0; 10753 } 10754 10755 /* find precise scalars in the previous equivalent state and 10756 * propagate them into the current state 10757 */ 10758 static int propagate_precision(struct bpf_verifier_env *env, 10759 const struct bpf_verifier_state *old) 10760 { 10761 struct bpf_reg_state *state_reg; 10762 struct bpf_func_state *state; 10763 int i, err = 0; 10764 10765 state = old->frame[old->curframe]; 10766 state_reg = state->regs; 10767 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 10768 if (state_reg->type != SCALAR_VALUE || 10769 !state_reg->precise) 10770 continue; 10771 if (env->log.level & BPF_LOG_LEVEL2) 10772 verbose(env, "propagating r%d\n", i); 10773 err = mark_chain_precision(env, i); 10774 if (err < 0) 10775 return err; 10776 } 10777 10778 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 10779 if (!is_spilled_reg(&state->stack[i])) 10780 continue; 10781 state_reg = &state->stack[i].spilled_ptr; 10782 if (state_reg->type != SCALAR_VALUE || 10783 !state_reg->precise) 10784 continue; 10785 if (env->log.level & BPF_LOG_LEVEL2) 10786 verbose(env, "propagating fp%d\n", 10787 (-i - 1) * BPF_REG_SIZE); 10788 err = mark_chain_precision_stack(env, i); 10789 if (err < 0) 10790 return err; 10791 } 10792 return 0; 10793 } 10794 10795 static bool states_maybe_looping(struct bpf_verifier_state *old, 10796 struct bpf_verifier_state *cur) 10797 { 10798 struct bpf_func_state *fold, *fcur; 10799 int i, fr = cur->curframe; 10800 10801 if (old->curframe != fr) 10802 return false; 10803 10804 fold = old->frame[fr]; 10805 fcur = cur->frame[fr]; 10806 for (i = 0; i < MAX_BPF_REG; i++) 10807 if (memcmp(&fold->regs[i], &fcur->regs[i], 10808 offsetof(struct bpf_reg_state, parent))) 10809 return false; 10810 return true; 10811 } 10812 10813 10814 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 10815 { 10816 struct bpf_verifier_state_list *new_sl; 10817 struct bpf_verifier_state_list *sl, **pprev; 10818 struct bpf_verifier_state *cur = env->cur_state, *new; 10819 int i, j, err, states_cnt = 0; 10820 bool add_new_state = env->test_state_freq ? true : false; 10821 10822 cur->last_insn_idx = env->prev_insn_idx; 10823 if (!env->insn_aux_data[insn_idx].prune_point) 10824 /* this 'insn_idx' instruction wasn't marked, so we will not 10825 * be doing state search here 10826 */ 10827 return 0; 10828 10829 /* bpf progs typically have pruning point every 4 instructions 10830 * http://vger.kernel.org/bpfconf2019.html#session-1 10831 * Do not add new state for future pruning if the verifier hasn't seen 10832 * at least 2 jumps and at least 8 instructions. 10833 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 10834 * In tests that amounts to up to 50% reduction into total verifier 10835 * memory consumption and 20% verifier time speedup. 10836 */ 10837 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 10838 env->insn_processed - env->prev_insn_processed >= 8) 10839 add_new_state = true; 10840 10841 pprev = explored_state(env, insn_idx); 10842 sl = *pprev; 10843 10844 clean_live_states(env, insn_idx, cur); 10845 10846 while (sl) { 10847 states_cnt++; 10848 if (sl->state.insn_idx != insn_idx) 10849 goto next; 10850 10851 if (sl->state.branches) { 10852 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 10853 10854 if (frame->in_async_callback_fn && 10855 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 10856 /* Different async_entry_cnt means that the verifier is 10857 * processing another entry into async callback. 10858 * Seeing the same state is not an indication of infinite 10859 * loop or infinite recursion. 10860 * But finding the same state doesn't mean that it's safe 10861 * to stop processing the current state. The previous state 10862 * hasn't yet reached bpf_exit, since state.branches > 0. 10863 * Checking in_async_callback_fn alone is not enough either. 10864 * Since the verifier still needs to catch infinite loops 10865 * inside async callbacks. 10866 */ 10867 } else if (states_maybe_looping(&sl->state, cur) && 10868 states_equal(env, &sl->state, cur)) { 10869 verbose_linfo(env, insn_idx, "; "); 10870 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 10871 return -EINVAL; 10872 } 10873 /* if the verifier is processing a loop, avoid adding new state 10874 * too often, since different loop iterations have distinct 10875 * states and may not help future pruning. 10876 * This threshold shouldn't be too low to make sure that 10877 * a loop with large bound will be rejected quickly. 10878 * The most abusive loop will be: 10879 * r1 += 1 10880 * if r1 < 1000000 goto pc-2 10881 * 1M insn_procssed limit / 100 == 10k peak states. 10882 * This threshold shouldn't be too high either, since states 10883 * at the end of the loop are likely to be useful in pruning. 10884 */ 10885 if (env->jmps_processed - env->prev_jmps_processed < 20 && 10886 env->insn_processed - env->prev_insn_processed < 100) 10887 add_new_state = false; 10888 goto miss; 10889 } 10890 if (states_equal(env, &sl->state, cur)) { 10891 sl->hit_cnt++; 10892 /* reached equivalent register/stack state, 10893 * prune the search. 10894 * Registers read by the continuation are read by us. 10895 * If we have any write marks in env->cur_state, they 10896 * will prevent corresponding reads in the continuation 10897 * from reaching our parent (an explored_state). Our 10898 * own state will get the read marks recorded, but 10899 * they'll be immediately forgotten as we're pruning 10900 * this state and will pop a new one. 10901 */ 10902 err = propagate_liveness(env, &sl->state, cur); 10903 10904 /* if previous state reached the exit with precision and 10905 * current state is equivalent to it (except precsion marks) 10906 * the precision needs to be propagated back in 10907 * the current state. 10908 */ 10909 err = err ? : push_jmp_history(env, cur); 10910 err = err ? : propagate_precision(env, &sl->state); 10911 if (err) 10912 return err; 10913 return 1; 10914 } 10915 miss: 10916 /* when new state is not going to be added do not increase miss count. 10917 * Otherwise several loop iterations will remove the state 10918 * recorded earlier. The goal of these heuristics is to have 10919 * states from some iterations of the loop (some in the beginning 10920 * and some at the end) to help pruning. 10921 */ 10922 if (add_new_state) 10923 sl->miss_cnt++; 10924 /* heuristic to determine whether this state is beneficial 10925 * to keep checking from state equivalence point of view. 10926 * Higher numbers increase max_states_per_insn and verification time, 10927 * but do not meaningfully decrease insn_processed. 10928 */ 10929 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 10930 /* the state is unlikely to be useful. Remove it to 10931 * speed up verification 10932 */ 10933 *pprev = sl->next; 10934 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 10935 u32 br = sl->state.branches; 10936 10937 WARN_ONCE(br, 10938 "BUG live_done but branches_to_explore %d\n", 10939 br); 10940 free_verifier_state(&sl->state, false); 10941 kfree(sl); 10942 env->peak_states--; 10943 } else { 10944 /* cannot free this state, since parentage chain may 10945 * walk it later. Add it for free_list instead to 10946 * be freed at the end of verification 10947 */ 10948 sl->next = env->free_list; 10949 env->free_list = sl; 10950 } 10951 sl = *pprev; 10952 continue; 10953 } 10954 next: 10955 pprev = &sl->next; 10956 sl = *pprev; 10957 } 10958 10959 if (env->max_states_per_insn < states_cnt) 10960 env->max_states_per_insn = states_cnt; 10961 10962 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 10963 return push_jmp_history(env, cur); 10964 10965 if (!add_new_state) 10966 return push_jmp_history(env, cur); 10967 10968 /* There were no equivalent states, remember the current one. 10969 * Technically the current state is not proven to be safe yet, 10970 * but it will either reach outer most bpf_exit (which means it's safe) 10971 * or it will be rejected. When there are no loops the verifier won't be 10972 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 10973 * again on the way to bpf_exit. 10974 * When looping the sl->state.branches will be > 0 and this state 10975 * will not be considered for equivalence until branches == 0. 10976 */ 10977 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 10978 if (!new_sl) 10979 return -ENOMEM; 10980 env->total_states++; 10981 env->peak_states++; 10982 env->prev_jmps_processed = env->jmps_processed; 10983 env->prev_insn_processed = env->insn_processed; 10984 10985 /* add new state to the head of linked list */ 10986 new = &new_sl->state; 10987 err = copy_verifier_state(new, cur); 10988 if (err) { 10989 free_verifier_state(new, false); 10990 kfree(new_sl); 10991 return err; 10992 } 10993 new->insn_idx = insn_idx; 10994 WARN_ONCE(new->branches != 1, 10995 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 10996 10997 cur->parent = new; 10998 cur->first_insn_idx = insn_idx; 10999 clear_jmp_history(cur); 11000 new_sl->next = *explored_state(env, insn_idx); 11001 *explored_state(env, insn_idx) = new_sl; 11002 /* connect new state to parentage chain. Current frame needs all 11003 * registers connected. Only r6 - r9 of the callers are alive (pushed 11004 * to the stack implicitly by JITs) so in callers' frames connect just 11005 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 11006 * the state of the call instruction (with WRITTEN set), and r0 comes 11007 * from callee with its full parentage chain, anyway. 11008 */ 11009 /* clear write marks in current state: the writes we did are not writes 11010 * our child did, so they don't screen off its reads from us. 11011 * (There are no read marks in current state, because reads always mark 11012 * their parent and current state never has children yet. Only 11013 * explored_states can get read marks.) 11014 */ 11015 for (j = 0; j <= cur->curframe; j++) { 11016 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 11017 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 11018 for (i = 0; i < BPF_REG_FP; i++) 11019 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 11020 } 11021 11022 /* all stack frames are accessible from callee, clear them all */ 11023 for (j = 0; j <= cur->curframe; j++) { 11024 struct bpf_func_state *frame = cur->frame[j]; 11025 struct bpf_func_state *newframe = new->frame[j]; 11026 11027 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 11028 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 11029 frame->stack[i].spilled_ptr.parent = 11030 &newframe->stack[i].spilled_ptr; 11031 } 11032 } 11033 return 0; 11034 } 11035 11036 /* Return true if it's OK to have the same insn return a different type. */ 11037 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 11038 { 11039 switch (type) { 11040 case PTR_TO_CTX: 11041 case PTR_TO_SOCKET: 11042 case PTR_TO_SOCKET_OR_NULL: 11043 case PTR_TO_SOCK_COMMON: 11044 case PTR_TO_SOCK_COMMON_OR_NULL: 11045 case PTR_TO_TCP_SOCK: 11046 case PTR_TO_TCP_SOCK_OR_NULL: 11047 case PTR_TO_XDP_SOCK: 11048 case PTR_TO_BTF_ID: 11049 case PTR_TO_BTF_ID_OR_NULL: 11050 return false; 11051 default: 11052 return true; 11053 } 11054 } 11055 11056 /* If an instruction was previously used with particular pointer types, then we 11057 * need to be careful to avoid cases such as the below, where it may be ok 11058 * for one branch accessing the pointer, but not ok for the other branch: 11059 * 11060 * R1 = sock_ptr 11061 * goto X; 11062 * ... 11063 * R1 = some_other_valid_ptr; 11064 * goto X; 11065 * ... 11066 * R2 = *(u32 *)(R1 + 0); 11067 */ 11068 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 11069 { 11070 return src != prev && (!reg_type_mismatch_ok(src) || 11071 !reg_type_mismatch_ok(prev)); 11072 } 11073 11074 static int do_check(struct bpf_verifier_env *env) 11075 { 11076 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11077 struct bpf_verifier_state *state = env->cur_state; 11078 struct bpf_insn *insns = env->prog->insnsi; 11079 struct bpf_reg_state *regs; 11080 int insn_cnt = env->prog->len; 11081 bool do_print_state = false; 11082 int prev_insn_idx = -1; 11083 11084 for (;;) { 11085 struct bpf_insn *insn; 11086 u8 class; 11087 int err; 11088 11089 env->prev_insn_idx = prev_insn_idx; 11090 if (env->insn_idx >= insn_cnt) { 11091 verbose(env, "invalid insn idx %d insn_cnt %d\n", 11092 env->insn_idx, insn_cnt); 11093 return -EFAULT; 11094 } 11095 11096 insn = &insns[env->insn_idx]; 11097 class = BPF_CLASS(insn->code); 11098 11099 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 11100 verbose(env, 11101 "BPF program is too large. Processed %d insn\n", 11102 env->insn_processed); 11103 return -E2BIG; 11104 } 11105 11106 err = is_state_visited(env, env->insn_idx); 11107 if (err < 0) 11108 return err; 11109 if (err == 1) { 11110 /* found equivalent state, can prune the search */ 11111 if (env->log.level & BPF_LOG_LEVEL) { 11112 if (do_print_state) 11113 verbose(env, "\nfrom %d to %d%s: safe\n", 11114 env->prev_insn_idx, env->insn_idx, 11115 env->cur_state->speculative ? 11116 " (speculative execution)" : ""); 11117 else 11118 verbose(env, "%d: safe\n", env->insn_idx); 11119 } 11120 goto process_bpf_exit; 11121 } 11122 11123 if (signal_pending(current)) 11124 return -EAGAIN; 11125 11126 if (need_resched()) 11127 cond_resched(); 11128 11129 if (env->log.level & BPF_LOG_LEVEL2 || 11130 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 11131 if (env->log.level & BPF_LOG_LEVEL2) 11132 verbose(env, "%d:", env->insn_idx); 11133 else 11134 verbose(env, "\nfrom %d to %d%s:", 11135 env->prev_insn_idx, env->insn_idx, 11136 env->cur_state->speculative ? 11137 " (speculative execution)" : ""); 11138 print_verifier_state(env, state->frame[state->curframe]); 11139 do_print_state = false; 11140 } 11141 11142 if (env->log.level & BPF_LOG_LEVEL) { 11143 const struct bpf_insn_cbs cbs = { 11144 .cb_call = disasm_kfunc_name, 11145 .cb_print = verbose, 11146 .private_data = env, 11147 }; 11148 11149 verbose_linfo(env, env->insn_idx, "; "); 11150 verbose(env, "%d: ", env->insn_idx); 11151 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 11152 } 11153 11154 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11155 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 11156 env->prev_insn_idx); 11157 if (err) 11158 return err; 11159 } 11160 11161 regs = cur_regs(env); 11162 sanitize_mark_insn_seen(env); 11163 prev_insn_idx = env->insn_idx; 11164 11165 if (class == BPF_ALU || class == BPF_ALU64) { 11166 err = check_alu_op(env, insn); 11167 if (err) 11168 return err; 11169 11170 } else if (class == BPF_LDX) { 11171 enum bpf_reg_type *prev_src_type, src_reg_type; 11172 11173 /* check for reserved fields is already done */ 11174 11175 /* check src operand */ 11176 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11177 if (err) 11178 return err; 11179 11180 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 11181 if (err) 11182 return err; 11183 11184 src_reg_type = regs[insn->src_reg].type; 11185 11186 /* check that memory (src_reg + off) is readable, 11187 * the state of dst_reg will be updated by this func 11188 */ 11189 err = check_mem_access(env, env->insn_idx, insn->src_reg, 11190 insn->off, BPF_SIZE(insn->code), 11191 BPF_READ, insn->dst_reg, false); 11192 if (err) 11193 return err; 11194 11195 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11196 11197 if (*prev_src_type == NOT_INIT) { 11198 /* saw a valid insn 11199 * dst_reg = *(u32 *)(src_reg + off) 11200 * save type to validate intersecting paths 11201 */ 11202 *prev_src_type = src_reg_type; 11203 11204 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 11205 /* ABuser program is trying to use the same insn 11206 * dst_reg = *(u32*) (src_reg + off) 11207 * with different pointer types: 11208 * src_reg == ctx in one branch and 11209 * src_reg == stack|map in some other branch. 11210 * Reject it. 11211 */ 11212 verbose(env, "same insn cannot be used with different pointers\n"); 11213 return -EINVAL; 11214 } 11215 11216 } else if (class == BPF_STX) { 11217 enum bpf_reg_type *prev_dst_type, dst_reg_type; 11218 11219 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 11220 err = check_atomic(env, env->insn_idx, insn); 11221 if (err) 11222 return err; 11223 env->insn_idx++; 11224 continue; 11225 } 11226 11227 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 11228 verbose(env, "BPF_STX uses reserved fields\n"); 11229 return -EINVAL; 11230 } 11231 11232 /* check src1 operand */ 11233 err = check_reg_arg(env, insn->src_reg, SRC_OP); 11234 if (err) 11235 return err; 11236 /* check src2 operand */ 11237 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11238 if (err) 11239 return err; 11240 11241 dst_reg_type = regs[insn->dst_reg].type; 11242 11243 /* check that memory (dst_reg + off) is writeable */ 11244 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11245 insn->off, BPF_SIZE(insn->code), 11246 BPF_WRITE, insn->src_reg, false); 11247 if (err) 11248 return err; 11249 11250 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 11251 11252 if (*prev_dst_type == NOT_INIT) { 11253 *prev_dst_type = dst_reg_type; 11254 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 11255 verbose(env, "same insn cannot be used with different pointers\n"); 11256 return -EINVAL; 11257 } 11258 11259 } else if (class == BPF_ST) { 11260 if (BPF_MODE(insn->code) != BPF_MEM || 11261 insn->src_reg != BPF_REG_0) { 11262 verbose(env, "BPF_ST uses reserved fields\n"); 11263 return -EINVAL; 11264 } 11265 /* check src operand */ 11266 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 11267 if (err) 11268 return err; 11269 11270 if (is_ctx_reg(env, insn->dst_reg)) { 11271 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 11272 insn->dst_reg, 11273 reg_type_str[reg_state(env, insn->dst_reg)->type]); 11274 return -EACCES; 11275 } 11276 11277 /* check that memory (dst_reg + off) is writeable */ 11278 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 11279 insn->off, BPF_SIZE(insn->code), 11280 BPF_WRITE, -1, false); 11281 if (err) 11282 return err; 11283 11284 } else if (class == BPF_JMP || class == BPF_JMP32) { 11285 u8 opcode = BPF_OP(insn->code); 11286 11287 env->jmps_processed++; 11288 if (opcode == BPF_CALL) { 11289 if (BPF_SRC(insn->code) != BPF_K || 11290 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 11291 && insn->off != 0) || 11292 (insn->src_reg != BPF_REG_0 && 11293 insn->src_reg != BPF_PSEUDO_CALL && 11294 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 11295 insn->dst_reg != BPF_REG_0 || 11296 class == BPF_JMP32) { 11297 verbose(env, "BPF_CALL uses reserved fields\n"); 11298 return -EINVAL; 11299 } 11300 11301 if (env->cur_state->active_spin_lock && 11302 (insn->src_reg == BPF_PSEUDO_CALL || 11303 insn->imm != BPF_FUNC_spin_unlock)) { 11304 verbose(env, "function calls are not allowed while holding a lock\n"); 11305 return -EINVAL; 11306 } 11307 if (insn->src_reg == BPF_PSEUDO_CALL) 11308 err = check_func_call(env, insn, &env->insn_idx); 11309 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 11310 err = check_kfunc_call(env, insn); 11311 else 11312 err = check_helper_call(env, insn, &env->insn_idx); 11313 if (err) 11314 return err; 11315 } else if (opcode == BPF_JA) { 11316 if (BPF_SRC(insn->code) != BPF_K || 11317 insn->imm != 0 || 11318 insn->src_reg != BPF_REG_0 || 11319 insn->dst_reg != BPF_REG_0 || 11320 class == BPF_JMP32) { 11321 verbose(env, "BPF_JA uses reserved fields\n"); 11322 return -EINVAL; 11323 } 11324 11325 env->insn_idx += insn->off + 1; 11326 continue; 11327 11328 } else if (opcode == BPF_EXIT) { 11329 if (BPF_SRC(insn->code) != BPF_K || 11330 insn->imm != 0 || 11331 insn->src_reg != BPF_REG_0 || 11332 insn->dst_reg != BPF_REG_0 || 11333 class == BPF_JMP32) { 11334 verbose(env, "BPF_EXIT uses reserved fields\n"); 11335 return -EINVAL; 11336 } 11337 11338 if (env->cur_state->active_spin_lock) { 11339 verbose(env, "bpf_spin_unlock is missing\n"); 11340 return -EINVAL; 11341 } 11342 11343 if (state->curframe) { 11344 /* exit from nested function */ 11345 err = prepare_func_exit(env, &env->insn_idx); 11346 if (err) 11347 return err; 11348 do_print_state = true; 11349 continue; 11350 } 11351 11352 err = check_reference_leak(env); 11353 if (err) 11354 return err; 11355 11356 err = check_return_code(env); 11357 if (err) 11358 return err; 11359 process_bpf_exit: 11360 update_branch_counts(env, env->cur_state); 11361 err = pop_stack(env, &prev_insn_idx, 11362 &env->insn_idx, pop_log); 11363 if (err < 0) { 11364 if (err != -ENOENT) 11365 return err; 11366 break; 11367 } else { 11368 do_print_state = true; 11369 continue; 11370 } 11371 } else { 11372 err = check_cond_jmp_op(env, insn, &env->insn_idx); 11373 if (err) 11374 return err; 11375 } 11376 } else if (class == BPF_LD) { 11377 u8 mode = BPF_MODE(insn->code); 11378 11379 if (mode == BPF_ABS || mode == BPF_IND) { 11380 err = check_ld_abs(env, insn); 11381 if (err) 11382 return err; 11383 11384 } else if (mode == BPF_IMM) { 11385 err = check_ld_imm(env, insn); 11386 if (err) 11387 return err; 11388 11389 env->insn_idx++; 11390 sanitize_mark_insn_seen(env); 11391 } else { 11392 verbose(env, "invalid BPF_LD mode\n"); 11393 return -EINVAL; 11394 } 11395 } else { 11396 verbose(env, "unknown insn class %d\n", class); 11397 return -EINVAL; 11398 } 11399 11400 env->insn_idx++; 11401 } 11402 11403 return 0; 11404 } 11405 11406 static int find_btf_percpu_datasec(struct btf *btf) 11407 { 11408 const struct btf_type *t; 11409 const char *tname; 11410 int i, n; 11411 11412 /* 11413 * Both vmlinux and module each have their own ".data..percpu" 11414 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 11415 * types to look at only module's own BTF types. 11416 */ 11417 n = btf_nr_types(btf); 11418 if (btf_is_module(btf)) 11419 i = btf_nr_types(btf_vmlinux); 11420 else 11421 i = 1; 11422 11423 for(; i < n; i++) { 11424 t = btf_type_by_id(btf, i); 11425 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 11426 continue; 11427 11428 tname = btf_name_by_offset(btf, t->name_off); 11429 if (!strcmp(tname, ".data..percpu")) 11430 return i; 11431 } 11432 11433 return -ENOENT; 11434 } 11435 11436 /* replace pseudo btf_id with kernel symbol address */ 11437 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 11438 struct bpf_insn *insn, 11439 struct bpf_insn_aux_data *aux) 11440 { 11441 const struct btf_var_secinfo *vsi; 11442 const struct btf_type *datasec; 11443 struct btf_mod_pair *btf_mod; 11444 const struct btf_type *t; 11445 const char *sym_name; 11446 bool percpu = false; 11447 u32 type, id = insn->imm; 11448 struct btf *btf; 11449 s32 datasec_id; 11450 u64 addr; 11451 int i, btf_fd, err; 11452 11453 btf_fd = insn[1].imm; 11454 if (btf_fd) { 11455 btf = btf_get_by_fd(btf_fd); 11456 if (IS_ERR(btf)) { 11457 verbose(env, "invalid module BTF object FD specified.\n"); 11458 return -EINVAL; 11459 } 11460 } else { 11461 if (!btf_vmlinux) { 11462 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 11463 return -EINVAL; 11464 } 11465 btf = btf_vmlinux; 11466 btf_get(btf); 11467 } 11468 11469 t = btf_type_by_id(btf, id); 11470 if (!t) { 11471 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 11472 err = -ENOENT; 11473 goto err_put; 11474 } 11475 11476 if (!btf_type_is_var(t)) { 11477 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id); 11478 err = -EINVAL; 11479 goto err_put; 11480 } 11481 11482 sym_name = btf_name_by_offset(btf, t->name_off); 11483 addr = kallsyms_lookup_name(sym_name); 11484 if (!addr) { 11485 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 11486 sym_name); 11487 err = -ENOENT; 11488 goto err_put; 11489 } 11490 11491 datasec_id = find_btf_percpu_datasec(btf); 11492 if (datasec_id > 0) { 11493 datasec = btf_type_by_id(btf, datasec_id); 11494 for_each_vsi(i, datasec, vsi) { 11495 if (vsi->type == id) { 11496 percpu = true; 11497 break; 11498 } 11499 } 11500 } 11501 11502 insn[0].imm = (u32)addr; 11503 insn[1].imm = addr >> 32; 11504 11505 type = t->type; 11506 t = btf_type_skip_modifiers(btf, type, NULL); 11507 if (percpu) { 11508 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 11509 aux->btf_var.btf = btf; 11510 aux->btf_var.btf_id = type; 11511 } else if (!btf_type_is_struct(t)) { 11512 const struct btf_type *ret; 11513 const char *tname; 11514 u32 tsize; 11515 11516 /* resolve the type size of ksym. */ 11517 ret = btf_resolve_size(btf, t, &tsize); 11518 if (IS_ERR(ret)) { 11519 tname = btf_name_by_offset(btf, t->name_off); 11520 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 11521 tname, PTR_ERR(ret)); 11522 err = -EINVAL; 11523 goto err_put; 11524 } 11525 aux->btf_var.reg_type = PTR_TO_MEM; 11526 aux->btf_var.mem_size = tsize; 11527 } else { 11528 aux->btf_var.reg_type = PTR_TO_BTF_ID; 11529 aux->btf_var.btf = btf; 11530 aux->btf_var.btf_id = type; 11531 } 11532 11533 /* check whether we recorded this BTF (and maybe module) already */ 11534 for (i = 0; i < env->used_btf_cnt; i++) { 11535 if (env->used_btfs[i].btf == btf) { 11536 btf_put(btf); 11537 return 0; 11538 } 11539 } 11540 11541 if (env->used_btf_cnt >= MAX_USED_BTFS) { 11542 err = -E2BIG; 11543 goto err_put; 11544 } 11545 11546 btf_mod = &env->used_btfs[env->used_btf_cnt]; 11547 btf_mod->btf = btf; 11548 btf_mod->module = NULL; 11549 11550 /* if we reference variables from kernel module, bump its refcount */ 11551 if (btf_is_module(btf)) { 11552 btf_mod->module = btf_try_get_module(btf); 11553 if (!btf_mod->module) { 11554 err = -ENXIO; 11555 goto err_put; 11556 } 11557 } 11558 11559 env->used_btf_cnt++; 11560 11561 return 0; 11562 err_put: 11563 btf_put(btf); 11564 return err; 11565 } 11566 11567 static int check_map_prealloc(struct bpf_map *map) 11568 { 11569 return (map->map_type != BPF_MAP_TYPE_HASH && 11570 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 11571 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 11572 !(map->map_flags & BPF_F_NO_PREALLOC); 11573 } 11574 11575 static bool is_tracing_prog_type(enum bpf_prog_type type) 11576 { 11577 switch (type) { 11578 case BPF_PROG_TYPE_KPROBE: 11579 case BPF_PROG_TYPE_TRACEPOINT: 11580 case BPF_PROG_TYPE_PERF_EVENT: 11581 case BPF_PROG_TYPE_RAW_TRACEPOINT: 11582 return true; 11583 default: 11584 return false; 11585 } 11586 } 11587 11588 static bool is_preallocated_map(struct bpf_map *map) 11589 { 11590 if (!check_map_prealloc(map)) 11591 return false; 11592 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 11593 return false; 11594 return true; 11595 } 11596 11597 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 11598 struct bpf_map *map, 11599 struct bpf_prog *prog) 11600 11601 { 11602 enum bpf_prog_type prog_type = resolve_prog_type(prog); 11603 /* 11604 * Validate that trace type programs use preallocated hash maps. 11605 * 11606 * For programs attached to PERF events this is mandatory as the 11607 * perf NMI can hit any arbitrary code sequence. 11608 * 11609 * All other trace types using preallocated hash maps are unsafe as 11610 * well because tracepoint or kprobes can be inside locked regions 11611 * of the memory allocator or at a place where a recursion into the 11612 * memory allocator would see inconsistent state. 11613 * 11614 * On RT enabled kernels run-time allocation of all trace type 11615 * programs is strictly prohibited due to lock type constraints. On 11616 * !RT kernels it is allowed for backwards compatibility reasons for 11617 * now, but warnings are emitted so developers are made aware of 11618 * the unsafety and can fix their programs before this is enforced. 11619 */ 11620 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 11621 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 11622 verbose(env, "perf_event programs can only use preallocated hash map\n"); 11623 return -EINVAL; 11624 } 11625 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 11626 verbose(env, "trace type programs can only use preallocated hash map\n"); 11627 return -EINVAL; 11628 } 11629 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 11630 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 11631 } 11632 11633 if (map_value_has_spin_lock(map)) { 11634 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 11635 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 11636 return -EINVAL; 11637 } 11638 11639 if (is_tracing_prog_type(prog_type)) { 11640 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 11641 return -EINVAL; 11642 } 11643 11644 if (prog->aux->sleepable) { 11645 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 11646 return -EINVAL; 11647 } 11648 } 11649 11650 if (map_value_has_timer(map)) { 11651 if (is_tracing_prog_type(prog_type)) { 11652 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 11653 return -EINVAL; 11654 } 11655 } 11656 11657 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 11658 !bpf_offload_prog_map_match(prog, map)) { 11659 verbose(env, "offload device mismatch between prog and map\n"); 11660 return -EINVAL; 11661 } 11662 11663 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 11664 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 11665 return -EINVAL; 11666 } 11667 11668 if (prog->aux->sleepable) 11669 switch (map->map_type) { 11670 case BPF_MAP_TYPE_HASH: 11671 case BPF_MAP_TYPE_LRU_HASH: 11672 case BPF_MAP_TYPE_ARRAY: 11673 case BPF_MAP_TYPE_PERCPU_HASH: 11674 case BPF_MAP_TYPE_PERCPU_ARRAY: 11675 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 11676 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 11677 case BPF_MAP_TYPE_HASH_OF_MAPS: 11678 if (!is_preallocated_map(map)) { 11679 verbose(env, 11680 "Sleepable programs can only use preallocated maps\n"); 11681 return -EINVAL; 11682 } 11683 break; 11684 case BPF_MAP_TYPE_RINGBUF: 11685 break; 11686 default: 11687 verbose(env, 11688 "Sleepable programs can only use array, hash, and ringbuf maps\n"); 11689 return -EINVAL; 11690 } 11691 11692 return 0; 11693 } 11694 11695 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 11696 { 11697 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 11698 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 11699 } 11700 11701 /* find and rewrite pseudo imm in ld_imm64 instructions: 11702 * 11703 * 1. if it accesses map FD, replace it with actual map pointer. 11704 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 11705 * 11706 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 11707 */ 11708 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 11709 { 11710 struct bpf_insn *insn = env->prog->insnsi; 11711 int insn_cnt = env->prog->len; 11712 int i, j, err; 11713 11714 err = bpf_prog_calc_tag(env->prog); 11715 if (err) 11716 return err; 11717 11718 for (i = 0; i < insn_cnt; i++, insn++) { 11719 if (BPF_CLASS(insn->code) == BPF_LDX && 11720 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 11721 verbose(env, "BPF_LDX uses reserved fields\n"); 11722 return -EINVAL; 11723 } 11724 11725 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 11726 struct bpf_insn_aux_data *aux; 11727 struct bpf_map *map; 11728 struct fd f; 11729 u64 addr; 11730 u32 fd; 11731 11732 if (i == insn_cnt - 1 || insn[1].code != 0 || 11733 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 11734 insn[1].off != 0) { 11735 verbose(env, "invalid bpf_ld_imm64 insn\n"); 11736 return -EINVAL; 11737 } 11738 11739 if (insn[0].src_reg == 0) 11740 /* valid generic load 64-bit imm */ 11741 goto next_insn; 11742 11743 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 11744 aux = &env->insn_aux_data[i]; 11745 err = check_pseudo_btf_id(env, insn, aux); 11746 if (err) 11747 return err; 11748 goto next_insn; 11749 } 11750 11751 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 11752 aux = &env->insn_aux_data[i]; 11753 aux->ptr_type = PTR_TO_FUNC; 11754 goto next_insn; 11755 } 11756 11757 /* In final convert_pseudo_ld_imm64() step, this is 11758 * converted into regular 64-bit imm load insn. 11759 */ 11760 switch (insn[0].src_reg) { 11761 case BPF_PSEUDO_MAP_VALUE: 11762 case BPF_PSEUDO_MAP_IDX_VALUE: 11763 break; 11764 case BPF_PSEUDO_MAP_FD: 11765 case BPF_PSEUDO_MAP_IDX: 11766 if (insn[1].imm == 0) 11767 break; 11768 fallthrough; 11769 default: 11770 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 11771 return -EINVAL; 11772 } 11773 11774 switch (insn[0].src_reg) { 11775 case BPF_PSEUDO_MAP_IDX_VALUE: 11776 case BPF_PSEUDO_MAP_IDX: 11777 if (bpfptr_is_null(env->fd_array)) { 11778 verbose(env, "fd_idx without fd_array is invalid\n"); 11779 return -EPROTO; 11780 } 11781 if (copy_from_bpfptr_offset(&fd, env->fd_array, 11782 insn[0].imm * sizeof(fd), 11783 sizeof(fd))) 11784 return -EFAULT; 11785 break; 11786 default: 11787 fd = insn[0].imm; 11788 break; 11789 } 11790 11791 f = fdget(fd); 11792 map = __bpf_map_get(f); 11793 if (IS_ERR(map)) { 11794 verbose(env, "fd %d is not pointing to valid bpf_map\n", 11795 insn[0].imm); 11796 return PTR_ERR(map); 11797 } 11798 11799 err = check_map_prog_compatibility(env, map, env->prog); 11800 if (err) { 11801 fdput(f); 11802 return err; 11803 } 11804 11805 aux = &env->insn_aux_data[i]; 11806 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 11807 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 11808 addr = (unsigned long)map; 11809 } else { 11810 u32 off = insn[1].imm; 11811 11812 if (off >= BPF_MAX_VAR_OFF) { 11813 verbose(env, "direct value offset of %u is not allowed\n", off); 11814 fdput(f); 11815 return -EINVAL; 11816 } 11817 11818 if (!map->ops->map_direct_value_addr) { 11819 verbose(env, "no direct value access support for this map type\n"); 11820 fdput(f); 11821 return -EINVAL; 11822 } 11823 11824 err = map->ops->map_direct_value_addr(map, &addr, off); 11825 if (err) { 11826 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 11827 map->value_size, off); 11828 fdput(f); 11829 return err; 11830 } 11831 11832 aux->map_off = off; 11833 addr += off; 11834 } 11835 11836 insn[0].imm = (u32)addr; 11837 insn[1].imm = addr >> 32; 11838 11839 /* check whether we recorded this map already */ 11840 for (j = 0; j < env->used_map_cnt; j++) { 11841 if (env->used_maps[j] == map) { 11842 aux->map_index = j; 11843 fdput(f); 11844 goto next_insn; 11845 } 11846 } 11847 11848 if (env->used_map_cnt >= MAX_USED_MAPS) { 11849 fdput(f); 11850 return -E2BIG; 11851 } 11852 11853 /* hold the map. If the program is rejected by verifier, 11854 * the map will be released by release_maps() or it 11855 * will be used by the valid program until it's unloaded 11856 * and all maps are released in free_used_maps() 11857 */ 11858 bpf_map_inc(map); 11859 11860 aux->map_index = env->used_map_cnt; 11861 env->used_maps[env->used_map_cnt++] = map; 11862 11863 if (bpf_map_is_cgroup_storage(map) && 11864 bpf_cgroup_storage_assign(env->prog->aux, map)) { 11865 verbose(env, "only one cgroup storage of each type is allowed\n"); 11866 fdput(f); 11867 return -EBUSY; 11868 } 11869 11870 fdput(f); 11871 next_insn: 11872 insn++; 11873 i++; 11874 continue; 11875 } 11876 11877 /* Basic sanity check before we invest more work here. */ 11878 if (!bpf_opcode_in_insntable(insn->code)) { 11879 verbose(env, "unknown opcode %02x\n", insn->code); 11880 return -EINVAL; 11881 } 11882 } 11883 11884 /* now all pseudo BPF_LD_IMM64 instructions load valid 11885 * 'struct bpf_map *' into a register instead of user map_fd. 11886 * These pointers will be used later by verifier to validate map access. 11887 */ 11888 return 0; 11889 } 11890 11891 /* drop refcnt of maps used by the rejected program */ 11892 static void release_maps(struct bpf_verifier_env *env) 11893 { 11894 __bpf_free_used_maps(env->prog->aux, env->used_maps, 11895 env->used_map_cnt); 11896 } 11897 11898 /* drop refcnt of maps used by the rejected program */ 11899 static void release_btfs(struct bpf_verifier_env *env) 11900 { 11901 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 11902 env->used_btf_cnt); 11903 } 11904 11905 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 11906 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 11907 { 11908 struct bpf_insn *insn = env->prog->insnsi; 11909 int insn_cnt = env->prog->len; 11910 int i; 11911 11912 for (i = 0; i < insn_cnt; i++, insn++) { 11913 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 11914 continue; 11915 if (insn->src_reg == BPF_PSEUDO_FUNC) 11916 continue; 11917 insn->src_reg = 0; 11918 } 11919 } 11920 11921 /* single env->prog->insni[off] instruction was replaced with the range 11922 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 11923 * [0, off) and [off, end) to new locations, so the patched range stays zero 11924 */ 11925 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 11926 struct bpf_insn_aux_data *new_data, 11927 struct bpf_prog *new_prog, u32 off, u32 cnt) 11928 { 11929 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 11930 struct bpf_insn *insn = new_prog->insnsi; 11931 u32 old_seen = old_data[off].seen; 11932 u32 prog_len; 11933 int i; 11934 11935 /* aux info at OFF always needs adjustment, no matter fast path 11936 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 11937 * original insn at old prog. 11938 */ 11939 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 11940 11941 if (cnt == 1) 11942 return; 11943 prog_len = new_prog->len; 11944 11945 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 11946 memcpy(new_data + off + cnt - 1, old_data + off, 11947 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 11948 for (i = off; i < off + cnt - 1; i++) { 11949 /* Expand insni[off]'s seen count to the patched range. */ 11950 new_data[i].seen = old_seen; 11951 new_data[i].zext_dst = insn_has_def32(env, insn + i); 11952 } 11953 env->insn_aux_data = new_data; 11954 vfree(old_data); 11955 } 11956 11957 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 11958 { 11959 int i; 11960 11961 if (len == 1) 11962 return; 11963 /* NOTE: fake 'exit' subprog should be updated as well. */ 11964 for (i = 0; i <= env->subprog_cnt; i++) { 11965 if (env->subprog_info[i].start <= off) 11966 continue; 11967 env->subprog_info[i].start += len - 1; 11968 } 11969 } 11970 11971 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 11972 { 11973 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 11974 int i, sz = prog->aux->size_poke_tab; 11975 struct bpf_jit_poke_descriptor *desc; 11976 11977 for (i = 0; i < sz; i++) { 11978 desc = &tab[i]; 11979 if (desc->insn_idx <= off) 11980 continue; 11981 desc->insn_idx += len - 1; 11982 } 11983 } 11984 11985 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 11986 const struct bpf_insn *patch, u32 len) 11987 { 11988 struct bpf_prog *new_prog; 11989 struct bpf_insn_aux_data *new_data = NULL; 11990 11991 if (len > 1) { 11992 new_data = vzalloc(array_size(env->prog->len + len - 1, 11993 sizeof(struct bpf_insn_aux_data))); 11994 if (!new_data) 11995 return NULL; 11996 } 11997 11998 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 11999 if (IS_ERR(new_prog)) { 12000 if (PTR_ERR(new_prog) == -ERANGE) 12001 verbose(env, 12002 "insn %d cannot be patched due to 16-bit range\n", 12003 env->insn_aux_data[off].orig_idx); 12004 vfree(new_data); 12005 return NULL; 12006 } 12007 adjust_insn_aux_data(env, new_data, new_prog, off, len); 12008 adjust_subprog_starts(env, off, len); 12009 adjust_poke_descs(new_prog, off, len); 12010 return new_prog; 12011 } 12012 12013 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 12014 u32 off, u32 cnt) 12015 { 12016 int i, j; 12017 12018 /* find first prog starting at or after off (first to remove) */ 12019 for (i = 0; i < env->subprog_cnt; i++) 12020 if (env->subprog_info[i].start >= off) 12021 break; 12022 /* find first prog starting at or after off + cnt (first to stay) */ 12023 for (j = i; j < env->subprog_cnt; j++) 12024 if (env->subprog_info[j].start >= off + cnt) 12025 break; 12026 /* if j doesn't start exactly at off + cnt, we are just removing 12027 * the front of previous prog 12028 */ 12029 if (env->subprog_info[j].start != off + cnt) 12030 j--; 12031 12032 if (j > i) { 12033 struct bpf_prog_aux *aux = env->prog->aux; 12034 int move; 12035 12036 /* move fake 'exit' subprog as well */ 12037 move = env->subprog_cnt + 1 - j; 12038 12039 memmove(env->subprog_info + i, 12040 env->subprog_info + j, 12041 sizeof(*env->subprog_info) * move); 12042 env->subprog_cnt -= j - i; 12043 12044 /* remove func_info */ 12045 if (aux->func_info) { 12046 move = aux->func_info_cnt - j; 12047 12048 memmove(aux->func_info + i, 12049 aux->func_info + j, 12050 sizeof(*aux->func_info) * move); 12051 aux->func_info_cnt -= j - i; 12052 /* func_info->insn_off is set after all code rewrites, 12053 * in adjust_btf_func() - no need to adjust 12054 */ 12055 } 12056 } else { 12057 /* convert i from "first prog to remove" to "first to adjust" */ 12058 if (env->subprog_info[i].start == off) 12059 i++; 12060 } 12061 12062 /* update fake 'exit' subprog as well */ 12063 for (; i <= env->subprog_cnt; i++) 12064 env->subprog_info[i].start -= cnt; 12065 12066 return 0; 12067 } 12068 12069 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 12070 u32 cnt) 12071 { 12072 struct bpf_prog *prog = env->prog; 12073 u32 i, l_off, l_cnt, nr_linfo; 12074 struct bpf_line_info *linfo; 12075 12076 nr_linfo = prog->aux->nr_linfo; 12077 if (!nr_linfo) 12078 return 0; 12079 12080 linfo = prog->aux->linfo; 12081 12082 /* find first line info to remove, count lines to be removed */ 12083 for (i = 0; i < nr_linfo; i++) 12084 if (linfo[i].insn_off >= off) 12085 break; 12086 12087 l_off = i; 12088 l_cnt = 0; 12089 for (; i < nr_linfo; i++) 12090 if (linfo[i].insn_off < off + cnt) 12091 l_cnt++; 12092 else 12093 break; 12094 12095 /* First live insn doesn't match first live linfo, it needs to "inherit" 12096 * last removed linfo. prog is already modified, so prog->len == off 12097 * means no live instructions after (tail of the program was removed). 12098 */ 12099 if (prog->len != off && l_cnt && 12100 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 12101 l_cnt--; 12102 linfo[--i].insn_off = off + cnt; 12103 } 12104 12105 /* remove the line info which refer to the removed instructions */ 12106 if (l_cnt) { 12107 memmove(linfo + l_off, linfo + i, 12108 sizeof(*linfo) * (nr_linfo - i)); 12109 12110 prog->aux->nr_linfo -= l_cnt; 12111 nr_linfo = prog->aux->nr_linfo; 12112 } 12113 12114 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 12115 for (i = l_off; i < nr_linfo; i++) 12116 linfo[i].insn_off -= cnt; 12117 12118 /* fix up all subprogs (incl. 'exit') which start >= off */ 12119 for (i = 0; i <= env->subprog_cnt; i++) 12120 if (env->subprog_info[i].linfo_idx > l_off) { 12121 /* program may have started in the removed region but 12122 * may not be fully removed 12123 */ 12124 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 12125 env->subprog_info[i].linfo_idx -= l_cnt; 12126 else 12127 env->subprog_info[i].linfo_idx = l_off; 12128 } 12129 12130 return 0; 12131 } 12132 12133 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 12134 { 12135 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12136 unsigned int orig_prog_len = env->prog->len; 12137 int err; 12138 12139 if (bpf_prog_is_dev_bound(env->prog->aux)) 12140 bpf_prog_offload_remove_insns(env, off, cnt); 12141 12142 err = bpf_remove_insns(env->prog, off, cnt); 12143 if (err) 12144 return err; 12145 12146 err = adjust_subprog_starts_after_remove(env, off, cnt); 12147 if (err) 12148 return err; 12149 12150 err = bpf_adj_linfo_after_remove(env, off, cnt); 12151 if (err) 12152 return err; 12153 12154 memmove(aux_data + off, aux_data + off + cnt, 12155 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 12156 12157 return 0; 12158 } 12159 12160 /* The verifier does more data flow analysis than llvm and will not 12161 * explore branches that are dead at run time. Malicious programs can 12162 * have dead code too. Therefore replace all dead at-run-time code 12163 * with 'ja -1'. 12164 * 12165 * Just nops are not optimal, e.g. if they would sit at the end of the 12166 * program and through another bug we would manage to jump there, then 12167 * we'd execute beyond program memory otherwise. Returning exception 12168 * code also wouldn't work since we can have subprogs where the dead 12169 * code could be located. 12170 */ 12171 static void sanitize_dead_code(struct bpf_verifier_env *env) 12172 { 12173 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12174 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 12175 struct bpf_insn *insn = env->prog->insnsi; 12176 const int insn_cnt = env->prog->len; 12177 int i; 12178 12179 for (i = 0; i < insn_cnt; i++) { 12180 if (aux_data[i].seen) 12181 continue; 12182 memcpy(insn + i, &trap, sizeof(trap)); 12183 aux_data[i].zext_dst = false; 12184 } 12185 } 12186 12187 static bool insn_is_cond_jump(u8 code) 12188 { 12189 u8 op; 12190 12191 if (BPF_CLASS(code) == BPF_JMP32) 12192 return true; 12193 12194 if (BPF_CLASS(code) != BPF_JMP) 12195 return false; 12196 12197 op = BPF_OP(code); 12198 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 12199 } 12200 12201 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 12202 { 12203 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12204 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12205 struct bpf_insn *insn = env->prog->insnsi; 12206 const int insn_cnt = env->prog->len; 12207 int i; 12208 12209 for (i = 0; i < insn_cnt; i++, insn++) { 12210 if (!insn_is_cond_jump(insn->code)) 12211 continue; 12212 12213 if (!aux_data[i + 1].seen) 12214 ja.off = insn->off; 12215 else if (!aux_data[i + 1 + insn->off].seen) 12216 ja.off = 0; 12217 else 12218 continue; 12219 12220 if (bpf_prog_is_dev_bound(env->prog->aux)) 12221 bpf_prog_offload_replace_insn(env, i, &ja); 12222 12223 memcpy(insn, &ja, sizeof(ja)); 12224 } 12225 } 12226 12227 static int opt_remove_dead_code(struct bpf_verifier_env *env) 12228 { 12229 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 12230 int insn_cnt = env->prog->len; 12231 int i, err; 12232 12233 for (i = 0; i < insn_cnt; i++) { 12234 int j; 12235 12236 j = 0; 12237 while (i + j < insn_cnt && !aux_data[i + j].seen) 12238 j++; 12239 if (!j) 12240 continue; 12241 12242 err = verifier_remove_insns(env, i, j); 12243 if (err) 12244 return err; 12245 insn_cnt = env->prog->len; 12246 } 12247 12248 return 0; 12249 } 12250 12251 static int opt_remove_nops(struct bpf_verifier_env *env) 12252 { 12253 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 12254 struct bpf_insn *insn = env->prog->insnsi; 12255 int insn_cnt = env->prog->len; 12256 int i, err; 12257 12258 for (i = 0; i < insn_cnt; i++) { 12259 if (memcmp(&insn[i], &ja, sizeof(ja))) 12260 continue; 12261 12262 err = verifier_remove_insns(env, i, 1); 12263 if (err) 12264 return err; 12265 insn_cnt--; 12266 i--; 12267 } 12268 12269 return 0; 12270 } 12271 12272 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 12273 const union bpf_attr *attr) 12274 { 12275 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 12276 struct bpf_insn_aux_data *aux = env->insn_aux_data; 12277 int i, patch_len, delta = 0, len = env->prog->len; 12278 struct bpf_insn *insns = env->prog->insnsi; 12279 struct bpf_prog *new_prog; 12280 bool rnd_hi32; 12281 12282 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 12283 zext_patch[1] = BPF_ZEXT_REG(0); 12284 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 12285 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 12286 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 12287 for (i = 0; i < len; i++) { 12288 int adj_idx = i + delta; 12289 struct bpf_insn insn; 12290 int load_reg; 12291 12292 insn = insns[adj_idx]; 12293 load_reg = insn_def_regno(&insn); 12294 if (!aux[adj_idx].zext_dst) { 12295 u8 code, class; 12296 u32 imm_rnd; 12297 12298 if (!rnd_hi32) 12299 continue; 12300 12301 code = insn.code; 12302 class = BPF_CLASS(code); 12303 if (load_reg == -1) 12304 continue; 12305 12306 /* NOTE: arg "reg" (the fourth one) is only used for 12307 * BPF_STX + SRC_OP, so it is safe to pass NULL 12308 * here. 12309 */ 12310 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 12311 if (class == BPF_LD && 12312 BPF_MODE(code) == BPF_IMM) 12313 i++; 12314 continue; 12315 } 12316 12317 /* ctx load could be transformed into wider load. */ 12318 if (class == BPF_LDX && 12319 aux[adj_idx].ptr_type == PTR_TO_CTX) 12320 continue; 12321 12322 imm_rnd = get_random_int(); 12323 rnd_hi32_patch[0] = insn; 12324 rnd_hi32_patch[1].imm = imm_rnd; 12325 rnd_hi32_patch[3].dst_reg = load_reg; 12326 patch = rnd_hi32_patch; 12327 patch_len = 4; 12328 goto apply_patch_buffer; 12329 } 12330 12331 /* Add in an zero-extend instruction if a) the JIT has requested 12332 * it or b) it's a CMPXCHG. 12333 * 12334 * The latter is because: BPF_CMPXCHG always loads a value into 12335 * R0, therefore always zero-extends. However some archs' 12336 * equivalent instruction only does this load when the 12337 * comparison is successful. This detail of CMPXCHG is 12338 * orthogonal to the general zero-extension behaviour of the 12339 * CPU, so it's treated independently of bpf_jit_needs_zext. 12340 */ 12341 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 12342 continue; 12343 12344 if (WARN_ON(load_reg == -1)) { 12345 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 12346 return -EFAULT; 12347 } 12348 12349 zext_patch[0] = insn; 12350 zext_patch[1].dst_reg = load_reg; 12351 zext_patch[1].src_reg = load_reg; 12352 patch = zext_patch; 12353 patch_len = 2; 12354 apply_patch_buffer: 12355 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 12356 if (!new_prog) 12357 return -ENOMEM; 12358 env->prog = new_prog; 12359 insns = new_prog->insnsi; 12360 aux = env->insn_aux_data; 12361 delta += patch_len - 1; 12362 } 12363 12364 return 0; 12365 } 12366 12367 /* convert load instructions that access fields of a context type into a 12368 * sequence of instructions that access fields of the underlying structure: 12369 * struct __sk_buff -> struct sk_buff 12370 * struct bpf_sock_ops -> struct sock 12371 */ 12372 static int convert_ctx_accesses(struct bpf_verifier_env *env) 12373 { 12374 const struct bpf_verifier_ops *ops = env->ops; 12375 int i, cnt, size, ctx_field_size, delta = 0; 12376 const int insn_cnt = env->prog->len; 12377 struct bpf_insn insn_buf[16], *insn; 12378 u32 target_size, size_default, off; 12379 struct bpf_prog *new_prog; 12380 enum bpf_access_type type; 12381 bool is_narrower_load; 12382 12383 if (ops->gen_prologue || env->seen_direct_write) { 12384 if (!ops->gen_prologue) { 12385 verbose(env, "bpf verifier is misconfigured\n"); 12386 return -EINVAL; 12387 } 12388 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 12389 env->prog); 12390 if (cnt >= ARRAY_SIZE(insn_buf)) { 12391 verbose(env, "bpf verifier is misconfigured\n"); 12392 return -EINVAL; 12393 } else if (cnt) { 12394 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 12395 if (!new_prog) 12396 return -ENOMEM; 12397 12398 env->prog = new_prog; 12399 delta += cnt - 1; 12400 } 12401 } 12402 12403 if (bpf_prog_is_dev_bound(env->prog->aux)) 12404 return 0; 12405 12406 insn = env->prog->insnsi + delta; 12407 12408 for (i = 0; i < insn_cnt; i++, insn++) { 12409 bpf_convert_ctx_access_t convert_ctx_access; 12410 bool ctx_access; 12411 12412 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 12413 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 12414 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 12415 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) { 12416 type = BPF_READ; 12417 ctx_access = true; 12418 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 12419 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 12420 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 12421 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 12422 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 12423 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 12424 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 12425 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 12426 type = BPF_WRITE; 12427 ctx_access = BPF_CLASS(insn->code) == BPF_STX; 12428 } else { 12429 continue; 12430 } 12431 12432 if (type == BPF_WRITE && 12433 env->insn_aux_data[i + delta].sanitize_stack_spill) { 12434 struct bpf_insn patch[] = { 12435 *insn, 12436 BPF_ST_NOSPEC(), 12437 }; 12438 12439 cnt = ARRAY_SIZE(patch); 12440 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 12441 if (!new_prog) 12442 return -ENOMEM; 12443 12444 delta += cnt - 1; 12445 env->prog = new_prog; 12446 insn = new_prog->insnsi + i + delta; 12447 continue; 12448 } 12449 12450 if (!ctx_access) 12451 continue; 12452 12453 switch (env->insn_aux_data[i + delta].ptr_type) { 12454 case PTR_TO_CTX: 12455 if (!ops->convert_ctx_access) 12456 continue; 12457 convert_ctx_access = ops->convert_ctx_access; 12458 break; 12459 case PTR_TO_SOCKET: 12460 case PTR_TO_SOCK_COMMON: 12461 convert_ctx_access = bpf_sock_convert_ctx_access; 12462 break; 12463 case PTR_TO_TCP_SOCK: 12464 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 12465 break; 12466 case PTR_TO_XDP_SOCK: 12467 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 12468 break; 12469 case PTR_TO_BTF_ID: 12470 if (type == BPF_READ) { 12471 insn->code = BPF_LDX | BPF_PROBE_MEM | 12472 BPF_SIZE((insn)->code); 12473 env->prog->aux->num_exentries++; 12474 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 12475 verbose(env, "Writes through BTF pointers are not allowed\n"); 12476 return -EINVAL; 12477 } 12478 continue; 12479 default: 12480 continue; 12481 } 12482 12483 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 12484 size = BPF_LDST_BYTES(insn); 12485 12486 /* If the read access is a narrower load of the field, 12487 * convert to a 4/8-byte load, to minimum program type specific 12488 * convert_ctx_access changes. If conversion is successful, 12489 * we will apply proper mask to the result. 12490 */ 12491 is_narrower_load = size < ctx_field_size; 12492 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 12493 off = insn->off; 12494 if (is_narrower_load) { 12495 u8 size_code; 12496 12497 if (type == BPF_WRITE) { 12498 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 12499 return -EINVAL; 12500 } 12501 12502 size_code = BPF_H; 12503 if (ctx_field_size == 4) 12504 size_code = BPF_W; 12505 else if (ctx_field_size == 8) 12506 size_code = BPF_DW; 12507 12508 insn->off = off & ~(size_default - 1); 12509 insn->code = BPF_LDX | BPF_MEM | size_code; 12510 } 12511 12512 target_size = 0; 12513 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12514 &target_size); 12515 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 12516 (ctx_field_size && !target_size)) { 12517 verbose(env, "bpf verifier is misconfigured\n"); 12518 return -EINVAL; 12519 } 12520 12521 if (is_narrower_load && size < target_size) { 12522 u8 shift = bpf_ctx_narrow_access_offset( 12523 off, size, size_default) * 8; 12524 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 12525 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 12526 return -EINVAL; 12527 } 12528 if (ctx_field_size <= 4) { 12529 if (shift) 12530 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 12531 insn->dst_reg, 12532 shift); 12533 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 12534 (1 << size * 8) - 1); 12535 } else { 12536 if (shift) 12537 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12538 insn->dst_reg, 12539 shift); 12540 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 12541 (1ULL << size * 8) - 1); 12542 } 12543 } 12544 12545 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12546 if (!new_prog) 12547 return -ENOMEM; 12548 12549 delta += cnt - 1; 12550 12551 /* keep walking new program and skip insns we just inserted */ 12552 env->prog = new_prog; 12553 insn = new_prog->insnsi + i + delta; 12554 } 12555 12556 return 0; 12557 } 12558 12559 static int jit_subprogs(struct bpf_verifier_env *env) 12560 { 12561 struct bpf_prog *prog = env->prog, **func, *tmp; 12562 int i, j, subprog_start, subprog_end = 0, len, subprog; 12563 struct bpf_map *map_ptr; 12564 struct bpf_insn *insn; 12565 void *old_bpf_func; 12566 int err, num_exentries; 12567 12568 if (env->subprog_cnt <= 1) 12569 return 0; 12570 12571 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12572 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 12573 continue; 12574 12575 /* Upon error here we cannot fall back to interpreter but 12576 * need a hard reject of the program. Thus -EFAULT is 12577 * propagated in any case. 12578 */ 12579 subprog = find_subprog(env, i + insn->imm + 1); 12580 if (subprog < 0) { 12581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 12582 i + insn->imm + 1); 12583 return -EFAULT; 12584 } 12585 /* temporarily remember subprog id inside insn instead of 12586 * aux_data, since next loop will split up all insns into funcs 12587 */ 12588 insn->off = subprog; 12589 /* remember original imm in case JIT fails and fallback 12590 * to interpreter will be needed 12591 */ 12592 env->insn_aux_data[i].call_imm = insn->imm; 12593 /* point imm to __bpf_call_base+1 from JITs point of view */ 12594 insn->imm = 1; 12595 if (bpf_pseudo_func(insn)) 12596 /* jit (e.g. x86_64) may emit fewer instructions 12597 * if it learns a u32 imm is the same as a u64 imm. 12598 * Force a non zero here. 12599 */ 12600 insn[1].imm = 1; 12601 } 12602 12603 err = bpf_prog_alloc_jited_linfo(prog); 12604 if (err) 12605 goto out_undo_insn; 12606 12607 err = -ENOMEM; 12608 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 12609 if (!func) 12610 goto out_undo_insn; 12611 12612 for (i = 0; i < env->subprog_cnt; i++) { 12613 subprog_start = subprog_end; 12614 subprog_end = env->subprog_info[i + 1].start; 12615 12616 len = subprog_end - subprog_start; 12617 /* bpf_prog_run() doesn't call subprogs directly, 12618 * hence main prog stats include the runtime of subprogs. 12619 * subprogs don't have IDs and not reachable via prog_get_next_id 12620 * func[i]->stats will never be accessed and stays NULL 12621 */ 12622 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 12623 if (!func[i]) 12624 goto out_free; 12625 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 12626 len * sizeof(struct bpf_insn)); 12627 func[i]->type = prog->type; 12628 func[i]->len = len; 12629 if (bpf_prog_calc_tag(func[i])) 12630 goto out_free; 12631 func[i]->is_func = 1; 12632 func[i]->aux->func_idx = i; 12633 /* Below members will be freed only at prog->aux */ 12634 func[i]->aux->btf = prog->aux->btf; 12635 func[i]->aux->func_info = prog->aux->func_info; 12636 func[i]->aux->poke_tab = prog->aux->poke_tab; 12637 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 12638 12639 for (j = 0; j < prog->aux->size_poke_tab; j++) { 12640 struct bpf_jit_poke_descriptor *poke; 12641 12642 poke = &prog->aux->poke_tab[j]; 12643 if (poke->insn_idx < subprog_end && 12644 poke->insn_idx >= subprog_start) 12645 poke->aux = func[i]->aux; 12646 } 12647 12648 /* Use bpf_prog_F_tag to indicate functions in stack traces. 12649 * Long term would need debug info to populate names 12650 */ 12651 func[i]->aux->name[0] = 'F'; 12652 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 12653 func[i]->jit_requested = 1; 12654 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 12655 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 12656 func[i]->aux->linfo = prog->aux->linfo; 12657 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 12658 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 12659 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 12660 num_exentries = 0; 12661 insn = func[i]->insnsi; 12662 for (j = 0; j < func[i]->len; j++, insn++) { 12663 if (BPF_CLASS(insn->code) == BPF_LDX && 12664 BPF_MODE(insn->code) == BPF_PROBE_MEM) 12665 num_exentries++; 12666 } 12667 func[i]->aux->num_exentries = num_exentries; 12668 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 12669 func[i] = bpf_int_jit_compile(func[i]); 12670 if (!func[i]->jited) { 12671 err = -ENOTSUPP; 12672 goto out_free; 12673 } 12674 cond_resched(); 12675 } 12676 12677 /* at this point all bpf functions were successfully JITed 12678 * now populate all bpf_calls with correct addresses and 12679 * run last pass of JIT 12680 */ 12681 for (i = 0; i < env->subprog_cnt; i++) { 12682 insn = func[i]->insnsi; 12683 for (j = 0; j < func[i]->len; j++, insn++) { 12684 if (bpf_pseudo_func(insn)) { 12685 subprog = insn->off; 12686 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 12687 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 12688 continue; 12689 } 12690 if (!bpf_pseudo_call(insn)) 12691 continue; 12692 subprog = insn->off; 12693 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 12694 } 12695 12696 /* we use the aux data to keep a list of the start addresses 12697 * of the JITed images for each function in the program 12698 * 12699 * for some architectures, such as powerpc64, the imm field 12700 * might not be large enough to hold the offset of the start 12701 * address of the callee's JITed image from __bpf_call_base 12702 * 12703 * in such cases, we can lookup the start address of a callee 12704 * by using its subprog id, available from the off field of 12705 * the call instruction, as an index for this list 12706 */ 12707 func[i]->aux->func = func; 12708 func[i]->aux->func_cnt = env->subprog_cnt; 12709 } 12710 for (i = 0; i < env->subprog_cnt; i++) { 12711 old_bpf_func = func[i]->bpf_func; 12712 tmp = bpf_int_jit_compile(func[i]); 12713 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 12714 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 12715 err = -ENOTSUPP; 12716 goto out_free; 12717 } 12718 cond_resched(); 12719 } 12720 12721 /* finally lock prog and jit images for all functions and 12722 * populate kallsysm 12723 */ 12724 for (i = 0; i < env->subprog_cnt; i++) { 12725 bpf_prog_lock_ro(func[i]); 12726 bpf_prog_kallsyms_add(func[i]); 12727 } 12728 12729 /* Last step: make now unused interpreter insns from main 12730 * prog consistent for later dump requests, so they can 12731 * later look the same as if they were interpreted only. 12732 */ 12733 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12734 if (bpf_pseudo_func(insn)) { 12735 insn[0].imm = env->insn_aux_data[i].call_imm; 12736 insn[1].imm = insn->off; 12737 insn->off = 0; 12738 continue; 12739 } 12740 if (!bpf_pseudo_call(insn)) 12741 continue; 12742 insn->off = env->insn_aux_data[i].call_imm; 12743 subprog = find_subprog(env, i + insn->off + 1); 12744 insn->imm = subprog; 12745 } 12746 12747 prog->jited = 1; 12748 prog->bpf_func = func[0]->bpf_func; 12749 prog->aux->func = func; 12750 prog->aux->func_cnt = env->subprog_cnt; 12751 bpf_prog_jit_attempt_done(prog); 12752 return 0; 12753 out_free: 12754 /* We failed JIT'ing, so at this point we need to unregister poke 12755 * descriptors from subprogs, so that kernel is not attempting to 12756 * patch it anymore as we're freeing the subprog JIT memory. 12757 */ 12758 for (i = 0; i < prog->aux->size_poke_tab; i++) { 12759 map_ptr = prog->aux->poke_tab[i].tail_call.map; 12760 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 12761 } 12762 /* At this point we're guaranteed that poke descriptors are not 12763 * live anymore. We can just unlink its descriptor table as it's 12764 * released with the main prog. 12765 */ 12766 for (i = 0; i < env->subprog_cnt; i++) { 12767 if (!func[i]) 12768 continue; 12769 func[i]->aux->poke_tab = NULL; 12770 bpf_jit_free(func[i]); 12771 } 12772 kfree(func); 12773 out_undo_insn: 12774 /* cleanup main prog to be interpreted */ 12775 prog->jit_requested = 0; 12776 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 12777 if (!bpf_pseudo_call(insn)) 12778 continue; 12779 insn->off = 0; 12780 insn->imm = env->insn_aux_data[i].call_imm; 12781 } 12782 bpf_prog_jit_attempt_done(prog); 12783 return err; 12784 } 12785 12786 static int fixup_call_args(struct bpf_verifier_env *env) 12787 { 12788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12789 struct bpf_prog *prog = env->prog; 12790 struct bpf_insn *insn = prog->insnsi; 12791 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 12792 int i, depth; 12793 #endif 12794 int err = 0; 12795 12796 if (env->prog->jit_requested && 12797 !bpf_prog_is_dev_bound(env->prog->aux)) { 12798 err = jit_subprogs(env); 12799 if (err == 0) 12800 return 0; 12801 if (err == -EFAULT) 12802 return err; 12803 } 12804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 12805 if (has_kfunc_call) { 12806 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 12807 return -EINVAL; 12808 } 12809 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 12810 /* When JIT fails the progs with bpf2bpf calls and tail_calls 12811 * have to be rejected, since interpreter doesn't support them yet. 12812 */ 12813 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 12814 return -EINVAL; 12815 } 12816 for (i = 0; i < prog->len; i++, insn++) { 12817 if (bpf_pseudo_func(insn)) { 12818 /* When JIT fails the progs with callback calls 12819 * have to be rejected, since interpreter doesn't support them yet. 12820 */ 12821 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 12822 return -EINVAL; 12823 } 12824 12825 if (!bpf_pseudo_call(insn)) 12826 continue; 12827 depth = get_callee_stack_depth(env, insn, i); 12828 if (depth < 0) 12829 return depth; 12830 bpf_patch_call_args(insn, depth); 12831 } 12832 err = 0; 12833 #endif 12834 return err; 12835 } 12836 12837 static int fixup_kfunc_call(struct bpf_verifier_env *env, 12838 struct bpf_insn *insn) 12839 { 12840 const struct bpf_kfunc_desc *desc; 12841 12842 if (!insn->imm) { 12843 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 12844 return -EINVAL; 12845 } 12846 12847 /* insn->imm has the btf func_id. Replace it with 12848 * an address (relative to __bpf_base_call). 12849 */ 12850 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 12851 if (!desc) { 12852 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 12853 insn->imm); 12854 return -EFAULT; 12855 } 12856 12857 insn->imm = desc->imm; 12858 12859 return 0; 12860 } 12861 12862 /* Do various post-verification rewrites in a single program pass. 12863 * These rewrites simplify JIT and interpreter implementations. 12864 */ 12865 static int do_misc_fixups(struct bpf_verifier_env *env) 12866 { 12867 struct bpf_prog *prog = env->prog; 12868 bool expect_blinding = bpf_jit_blinding_enabled(prog); 12869 enum bpf_prog_type prog_type = resolve_prog_type(prog); 12870 struct bpf_insn *insn = prog->insnsi; 12871 const struct bpf_func_proto *fn; 12872 const int insn_cnt = prog->len; 12873 const struct bpf_map_ops *ops; 12874 struct bpf_insn_aux_data *aux; 12875 struct bpf_insn insn_buf[16]; 12876 struct bpf_prog *new_prog; 12877 struct bpf_map *map_ptr; 12878 int i, ret, cnt, delta = 0; 12879 12880 for (i = 0; i < insn_cnt; i++, insn++) { 12881 /* Make divide-by-zero exceptions impossible. */ 12882 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 12883 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 12884 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 12885 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 12886 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 12887 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 12888 struct bpf_insn *patchlet; 12889 struct bpf_insn chk_and_div[] = { 12890 /* [R,W]x div 0 -> 0 */ 12891 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12892 BPF_JNE | BPF_K, insn->src_reg, 12893 0, 2, 0), 12894 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 12895 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12896 *insn, 12897 }; 12898 struct bpf_insn chk_and_mod[] = { 12899 /* [R,W]x mod 0 -> [R,W]x */ 12900 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 12901 BPF_JEQ | BPF_K, insn->src_reg, 12902 0, 1 + (is64 ? 0 : 1), 0), 12903 *insn, 12904 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 12905 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 12906 }; 12907 12908 patchlet = isdiv ? chk_and_div : chk_and_mod; 12909 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 12910 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 12911 12912 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 12913 if (!new_prog) 12914 return -ENOMEM; 12915 12916 delta += cnt - 1; 12917 env->prog = prog = new_prog; 12918 insn = new_prog->insnsi + i + delta; 12919 continue; 12920 } 12921 12922 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 12923 if (BPF_CLASS(insn->code) == BPF_LD && 12924 (BPF_MODE(insn->code) == BPF_ABS || 12925 BPF_MODE(insn->code) == BPF_IND)) { 12926 cnt = env->ops->gen_ld_abs(insn, insn_buf); 12927 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 12928 verbose(env, "bpf verifier is misconfigured\n"); 12929 return -EINVAL; 12930 } 12931 12932 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12933 if (!new_prog) 12934 return -ENOMEM; 12935 12936 delta += cnt - 1; 12937 env->prog = prog = new_prog; 12938 insn = new_prog->insnsi + i + delta; 12939 continue; 12940 } 12941 12942 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 12943 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 12944 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 12945 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 12946 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 12947 struct bpf_insn *patch = &insn_buf[0]; 12948 bool issrc, isneg, isimm; 12949 u32 off_reg; 12950 12951 aux = &env->insn_aux_data[i + delta]; 12952 if (!aux->alu_state || 12953 aux->alu_state == BPF_ALU_NON_POINTER) 12954 continue; 12955 12956 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 12957 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 12958 BPF_ALU_SANITIZE_SRC; 12959 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 12960 12961 off_reg = issrc ? insn->src_reg : insn->dst_reg; 12962 if (isimm) { 12963 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12964 } else { 12965 if (isneg) 12966 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12967 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 12968 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 12969 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 12970 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 12971 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 12972 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 12973 } 12974 if (!issrc) 12975 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 12976 insn->src_reg = BPF_REG_AX; 12977 if (isneg) 12978 insn->code = insn->code == code_add ? 12979 code_sub : code_add; 12980 *patch++ = *insn; 12981 if (issrc && isneg && !isimm) 12982 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 12983 cnt = patch - insn_buf; 12984 12985 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12986 if (!new_prog) 12987 return -ENOMEM; 12988 12989 delta += cnt - 1; 12990 env->prog = prog = new_prog; 12991 insn = new_prog->insnsi + i + delta; 12992 continue; 12993 } 12994 12995 if (insn->code != (BPF_JMP | BPF_CALL)) 12996 continue; 12997 if (insn->src_reg == BPF_PSEUDO_CALL) 12998 continue; 12999 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 13000 ret = fixup_kfunc_call(env, insn); 13001 if (ret) 13002 return ret; 13003 continue; 13004 } 13005 13006 if (insn->imm == BPF_FUNC_get_route_realm) 13007 prog->dst_needed = 1; 13008 if (insn->imm == BPF_FUNC_get_prandom_u32) 13009 bpf_user_rnd_init_once(); 13010 if (insn->imm == BPF_FUNC_override_return) 13011 prog->kprobe_override = 1; 13012 if (insn->imm == BPF_FUNC_tail_call) { 13013 /* If we tail call into other programs, we 13014 * cannot make any assumptions since they can 13015 * be replaced dynamically during runtime in 13016 * the program array. 13017 */ 13018 prog->cb_access = 1; 13019 if (!allow_tail_call_in_subprogs(env)) 13020 prog->aux->stack_depth = MAX_BPF_STACK; 13021 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 13022 13023 /* mark bpf_tail_call as different opcode to avoid 13024 * conditional branch in the interpreter for every normal 13025 * call and to prevent accidental JITing by JIT compiler 13026 * that doesn't support bpf_tail_call yet 13027 */ 13028 insn->imm = 0; 13029 insn->code = BPF_JMP | BPF_TAIL_CALL; 13030 13031 aux = &env->insn_aux_data[i + delta]; 13032 if (env->bpf_capable && !expect_blinding && 13033 prog->jit_requested && 13034 !bpf_map_key_poisoned(aux) && 13035 !bpf_map_ptr_poisoned(aux) && 13036 !bpf_map_ptr_unpriv(aux)) { 13037 struct bpf_jit_poke_descriptor desc = { 13038 .reason = BPF_POKE_REASON_TAIL_CALL, 13039 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 13040 .tail_call.key = bpf_map_key_immediate(aux), 13041 .insn_idx = i + delta, 13042 }; 13043 13044 ret = bpf_jit_add_poke_descriptor(prog, &desc); 13045 if (ret < 0) { 13046 verbose(env, "adding tail call poke descriptor failed\n"); 13047 return ret; 13048 } 13049 13050 insn->imm = ret + 1; 13051 continue; 13052 } 13053 13054 if (!bpf_map_ptr_unpriv(aux)) 13055 continue; 13056 13057 /* instead of changing every JIT dealing with tail_call 13058 * emit two extra insns: 13059 * if (index >= max_entries) goto out; 13060 * index &= array->index_mask; 13061 * to avoid out-of-bounds cpu speculation 13062 */ 13063 if (bpf_map_ptr_poisoned(aux)) { 13064 verbose(env, "tail_call abusing map_ptr\n"); 13065 return -EINVAL; 13066 } 13067 13068 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13069 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 13070 map_ptr->max_entries, 2); 13071 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 13072 container_of(map_ptr, 13073 struct bpf_array, 13074 map)->index_mask); 13075 insn_buf[2] = *insn; 13076 cnt = 3; 13077 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13078 if (!new_prog) 13079 return -ENOMEM; 13080 13081 delta += cnt - 1; 13082 env->prog = prog = new_prog; 13083 insn = new_prog->insnsi + i + delta; 13084 continue; 13085 } 13086 13087 if (insn->imm == BPF_FUNC_timer_set_callback) { 13088 /* The verifier will process callback_fn as many times as necessary 13089 * with different maps and the register states prepared by 13090 * set_timer_callback_state will be accurate. 13091 * 13092 * The following use case is valid: 13093 * map1 is shared by prog1, prog2, prog3. 13094 * prog1 calls bpf_timer_init for some map1 elements 13095 * prog2 calls bpf_timer_set_callback for some map1 elements. 13096 * Those that were not bpf_timer_init-ed will return -EINVAL. 13097 * prog3 calls bpf_timer_start for some map1 elements. 13098 * Those that were not both bpf_timer_init-ed and 13099 * bpf_timer_set_callback-ed will return -EINVAL. 13100 */ 13101 struct bpf_insn ld_addrs[2] = { 13102 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 13103 }; 13104 13105 insn_buf[0] = ld_addrs[0]; 13106 insn_buf[1] = ld_addrs[1]; 13107 insn_buf[2] = *insn; 13108 cnt = 3; 13109 13110 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 13111 if (!new_prog) 13112 return -ENOMEM; 13113 13114 delta += cnt - 1; 13115 env->prog = prog = new_prog; 13116 insn = new_prog->insnsi + i + delta; 13117 goto patch_call_imm; 13118 } 13119 13120 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 13121 * and other inlining handlers are currently limited to 64 bit 13122 * only. 13123 */ 13124 if (prog->jit_requested && BITS_PER_LONG == 64 && 13125 (insn->imm == BPF_FUNC_map_lookup_elem || 13126 insn->imm == BPF_FUNC_map_update_elem || 13127 insn->imm == BPF_FUNC_map_delete_elem || 13128 insn->imm == BPF_FUNC_map_push_elem || 13129 insn->imm == BPF_FUNC_map_pop_elem || 13130 insn->imm == BPF_FUNC_map_peek_elem || 13131 insn->imm == BPF_FUNC_redirect_map || 13132 insn->imm == BPF_FUNC_for_each_map_elem)) { 13133 aux = &env->insn_aux_data[i + delta]; 13134 if (bpf_map_ptr_poisoned(aux)) 13135 goto patch_call_imm; 13136 13137 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 13138 ops = map_ptr->ops; 13139 if (insn->imm == BPF_FUNC_map_lookup_elem && 13140 ops->map_gen_lookup) { 13141 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 13142 if (cnt == -EOPNOTSUPP) 13143 goto patch_map_ops_generic; 13144 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 13145 verbose(env, "bpf verifier is misconfigured\n"); 13146 return -EINVAL; 13147 } 13148 13149 new_prog = bpf_patch_insn_data(env, i + delta, 13150 insn_buf, cnt); 13151 if (!new_prog) 13152 return -ENOMEM; 13153 13154 delta += cnt - 1; 13155 env->prog = prog = new_prog; 13156 insn = new_prog->insnsi + i + delta; 13157 continue; 13158 } 13159 13160 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 13161 (void *(*)(struct bpf_map *map, void *key))NULL)); 13162 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 13163 (int (*)(struct bpf_map *map, void *key))NULL)); 13164 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 13165 (int (*)(struct bpf_map *map, void *key, void *value, 13166 u64 flags))NULL)); 13167 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 13168 (int (*)(struct bpf_map *map, void *value, 13169 u64 flags))NULL)); 13170 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 13171 (int (*)(struct bpf_map *map, void *value))NULL)); 13172 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 13173 (int (*)(struct bpf_map *map, void *value))NULL)); 13174 BUILD_BUG_ON(!__same_type(ops->map_redirect, 13175 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL)); 13176 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 13177 (int (*)(struct bpf_map *map, 13178 bpf_callback_t callback_fn, 13179 void *callback_ctx, 13180 u64 flags))NULL)); 13181 13182 patch_map_ops_generic: 13183 switch (insn->imm) { 13184 case BPF_FUNC_map_lookup_elem: 13185 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 13186 continue; 13187 case BPF_FUNC_map_update_elem: 13188 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 13189 continue; 13190 case BPF_FUNC_map_delete_elem: 13191 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 13192 continue; 13193 case BPF_FUNC_map_push_elem: 13194 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 13195 continue; 13196 case BPF_FUNC_map_pop_elem: 13197 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 13198 continue; 13199 case BPF_FUNC_map_peek_elem: 13200 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 13201 continue; 13202 case BPF_FUNC_redirect_map: 13203 insn->imm = BPF_CALL_IMM(ops->map_redirect); 13204 continue; 13205 case BPF_FUNC_for_each_map_elem: 13206 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 13207 continue; 13208 } 13209 13210 goto patch_call_imm; 13211 } 13212 13213 /* Implement bpf_jiffies64 inline. */ 13214 if (prog->jit_requested && BITS_PER_LONG == 64 && 13215 insn->imm == BPF_FUNC_jiffies64) { 13216 struct bpf_insn ld_jiffies_addr[2] = { 13217 BPF_LD_IMM64(BPF_REG_0, 13218 (unsigned long)&jiffies), 13219 }; 13220 13221 insn_buf[0] = ld_jiffies_addr[0]; 13222 insn_buf[1] = ld_jiffies_addr[1]; 13223 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 13224 BPF_REG_0, 0); 13225 cnt = 3; 13226 13227 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 13228 cnt); 13229 if (!new_prog) 13230 return -ENOMEM; 13231 13232 delta += cnt - 1; 13233 env->prog = prog = new_prog; 13234 insn = new_prog->insnsi + i + delta; 13235 continue; 13236 } 13237 13238 /* Implement bpf_get_func_ip inline. */ 13239 if (prog_type == BPF_PROG_TYPE_TRACING && 13240 insn->imm == BPF_FUNC_get_func_ip) { 13241 /* Load IP address from ctx - 8 */ 13242 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 13243 13244 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 13245 if (!new_prog) 13246 return -ENOMEM; 13247 13248 env->prog = prog = new_prog; 13249 insn = new_prog->insnsi + i + delta; 13250 continue; 13251 } 13252 13253 patch_call_imm: 13254 fn = env->ops->get_func_proto(insn->imm, env->prog); 13255 /* all functions that have prototype and verifier allowed 13256 * programs to call them, must be real in-kernel functions 13257 */ 13258 if (!fn->func) { 13259 verbose(env, 13260 "kernel subsystem misconfigured func %s#%d\n", 13261 func_id_name(insn->imm), insn->imm); 13262 return -EFAULT; 13263 } 13264 insn->imm = fn->func - __bpf_call_base; 13265 } 13266 13267 /* Since poke tab is now finalized, publish aux to tracker. */ 13268 for (i = 0; i < prog->aux->size_poke_tab; i++) { 13269 map_ptr = prog->aux->poke_tab[i].tail_call.map; 13270 if (!map_ptr->ops->map_poke_track || 13271 !map_ptr->ops->map_poke_untrack || 13272 !map_ptr->ops->map_poke_run) { 13273 verbose(env, "bpf verifier is misconfigured\n"); 13274 return -EINVAL; 13275 } 13276 13277 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 13278 if (ret < 0) { 13279 verbose(env, "tracking tail call prog failed\n"); 13280 return ret; 13281 } 13282 } 13283 13284 sort_kfunc_descs_by_imm(env->prog); 13285 13286 return 0; 13287 } 13288 13289 static void free_states(struct bpf_verifier_env *env) 13290 { 13291 struct bpf_verifier_state_list *sl, *sln; 13292 int i; 13293 13294 sl = env->free_list; 13295 while (sl) { 13296 sln = sl->next; 13297 free_verifier_state(&sl->state, false); 13298 kfree(sl); 13299 sl = sln; 13300 } 13301 env->free_list = NULL; 13302 13303 if (!env->explored_states) 13304 return; 13305 13306 for (i = 0; i < state_htab_size(env); i++) { 13307 sl = env->explored_states[i]; 13308 13309 while (sl) { 13310 sln = sl->next; 13311 free_verifier_state(&sl->state, false); 13312 kfree(sl); 13313 sl = sln; 13314 } 13315 env->explored_states[i] = NULL; 13316 } 13317 } 13318 13319 static int do_check_common(struct bpf_verifier_env *env, int subprog) 13320 { 13321 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 13322 struct bpf_verifier_state *state; 13323 struct bpf_reg_state *regs; 13324 int ret, i; 13325 13326 env->prev_linfo = NULL; 13327 env->pass_cnt++; 13328 13329 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 13330 if (!state) 13331 return -ENOMEM; 13332 state->curframe = 0; 13333 state->speculative = false; 13334 state->branches = 1; 13335 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 13336 if (!state->frame[0]) { 13337 kfree(state); 13338 return -ENOMEM; 13339 } 13340 env->cur_state = state; 13341 init_func_state(env, state->frame[0], 13342 BPF_MAIN_FUNC /* callsite */, 13343 0 /* frameno */, 13344 subprog); 13345 13346 regs = state->frame[state->curframe]->regs; 13347 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 13348 ret = btf_prepare_func_args(env, subprog, regs); 13349 if (ret) 13350 goto out; 13351 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 13352 if (regs[i].type == PTR_TO_CTX) 13353 mark_reg_known_zero(env, regs, i); 13354 else if (regs[i].type == SCALAR_VALUE) 13355 mark_reg_unknown(env, regs, i); 13356 else if (regs[i].type == PTR_TO_MEM_OR_NULL) { 13357 const u32 mem_size = regs[i].mem_size; 13358 13359 mark_reg_known_zero(env, regs, i); 13360 regs[i].mem_size = mem_size; 13361 regs[i].id = ++env->id_gen; 13362 } 13363 } 13364 } else { 13365 /* 1st arg to a function */ 13366 regs[BPF_REG_1].type = PTR_TO_CTX; 13367 mark_reg_known_zero(env, regs, BPF_REG_1); 13368 ret = btf_check_subprog_arg_match(env, subprog, regs); 13369 if (ret == -EFAULT) 13370 /* unlikely verifier bug. abort. 13371 * ret == 0 and ret < 0 are sadly acceptable for 13372 * main() function due to backward compatibility. 13373 * Like socket filter program may be written as: 13374 * int bpf_prog(struct pt_regs *ctx) 13375 * and never dereference that ctx in the program. 13376 * 'struct pt_regs' is a type mismatch for socket 13377 * filter that should be using 'struct __sk_buff'. 13378 */ 13379 goto out; 13380 } 13381 13382 ret = do_check(env); 13383 out: 13384 /* check for NULL is necessary, since cur_state can be freed inside 13385 * do_check() under memory pressure. 13386 */ 13387 if (env->cur_state) { 13388 free_verifier_state(env->cur_state, true); 13389 env->cur_state = NULL; 13390 } 13391 while (!pop_stack(env, NULL, NULL, false)); 13392 if (!ret && pop_log) 13393 bpf_vlog_reset(&env->log, 0); 13394 free_states(env); 13395 return ret; 13396 } 13397 13398 /* Verify all global functions in a BPF program one by one based on their BTF. 13399 * All global functions must pass verification. Otherwise the whole program is rejected. 13400 * Consider: 13401 * int bar(int); 13402 * int foo(int f) 13403 * { 13404 * return bar(f); 13405 * } 13406 * int bar(int b) 13407 * { 13408 * ... 13409 * } 13410 * foo() will be verified first for R1=any_scalar_value. During verification it 13411 * will be assumed that bar() already verified successfully and call to bar() 13412 * from foo() will be checked for type match only. Later bar() will be verified 13413 * independently to check that it's safe for R1=any_scalar_value. 13414 */ 13415 static int do_check_subprogs(struct bpf_verifier_env *env) 13416 { 13417 struct bpf_prog_aux *aux = env->prog->aux; 13418 int i, ret; 13419 13420 if (!aux->func_info) 13421 return 0; 13422 13423 for (i = 1; i < env->subprog_cnt; i++) { 13424 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 13425 continue; 13426 env->insn_idx = env->subprog_info[i].start; 13427 WARN_ON_ONCE(env->insn_idx == 0); 13428 ret = do_check_common(env, i); 13429 if (ret) { 13430 return ret; 13431 } else if (env->log.level & BPF_LOG_LEVEL) { 13432 verbose(env, 13433 "Func#%d is safe for any args that match its prototype\n", 13434 i); 13435 } 13436 } 13437 return 0; 13438 } 13439 13440 static int do_check_main(struct bpf_verifier_env *env) 13441 { 13442 int ret; 13443 13444 env->insn_idx = 0; 13445 ret = do_check_common(env, 0); 13446 if (!ret) 13447 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 13448 return ret; 13449 } 13450 13451 13452 static void print_verification_stats(struct bpf_verifier_env *env) 13453 { 13454 int i; 13455 13456 if (env->log.level & BPF_LOG_STATS) { 13457 verbose(env, "verification time %lld usec\n", 13458 div_u64(env->verification_time, 1000)); 13459 verbose(env, "stack depth "); 13460 for (i = 0; i < env->subprog_cnt; i++) { 13461 u32 depth = env->subprog_info[i].stack_depth; 13462 13463 verbose(env, "%d", depth); 13464 if (i + 1 < env->subprog_cnt) 13465 verbose(env, "+"); 13466 } 13467 verbose(env, "\n"); 13468 } 13469 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 13470 "total_states %d peak_states %d mark_read %d\n", 13471 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 13472 env->max_states_per_insn, env->total_states, 13473 env->peak_states, env->longest_mark_read_walk); 13474 } 13475 13476 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 13477 { 13478 const struct btf_type *t, *func_proto; 13479 const struct bpf_struct_ops *st_ops; 13480 const struct btf_member *member; 13481 struct bpf_prog *prog = env->prog; 13482 u32 btf_id, member_idx; 13483 const char *mname; 13484 13485 if (!prog->gpl_compatible) { 13486 verbose(env, "struct ops programs must have a GPL compatible license\n"); 13487 return -EINVAL; 13488 } 13489 13490 btf_id = prog->aux->attach_btf_id; 13491 st_ops = bpf_struct_ops_find(btf_id); 13492 if (!st_ops) { 13493 verbose(env, "attach_btf_id %u is not a supported struct\n", 13494 btf_id); 13495 return -ENOTSUPP; 13496 } 13497 13498 t = st_ops->type; 13499 member_idx = prog->expected_attach_type; 13500 if (member_idx >= btf_type_vlen(t)) { 13501 verbose(env, "attach to invalid member idx %u of struct %s\n", 13502 member_idx, st_ops->name); 13503 return -EINVAL; 13504 } 13505 13506 member = &btf_type_member(t)[member_idx]; 13507 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 13508 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 13509 NULL); 13510 if (!func_proto) { 13511 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 13512 mname, member_idx, st_ops->name); 13513 return -EINVAL; 13514 } 13515 13516 if (st_ops->check_member) { 13517 int err = st_ops->check_member(t, member); 13518 13519 if (err) { 13520 verbose(env, "attach to unsupported member %s of struct %s\n", 13521 mname, st_ops->name); 13522 return err; 13523 } 13524 } 13525 13526 prog->aux->attach_func_proto = func_proto; 13527 prog->aux->attach_func_name = mname; 13528 env->ops = st_ops->verifier_ops; 13529 13530 return 0; 13531 } 13532 #define SECURITY_PREFIX "security_" 13533 13534 static int check_attach_modify_return(unsigned long addr, const char *func_name) 13535 { 13536 if (within_error_injection_list(addr) || 13537 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 13538 return 0; 13539 13540 return -EINVAL; 13541 } 13542 13543 /* list of non-sleepable functions that are otherwise on 13544 * ALLOW_ERROR_INJECTION list 13545 */ 13546 BTF_SET_START(btf_non_sleepable_error_inject) 13547 /* Three functions below can be called from sleepable and non-sleepable context. 13548 * Assume non-sleepable from bpf safety point of view. 13549 */ 13550 BTF_ID(func, __filemap_add_folio) 13551 BTF_ID(func, should_fail_alloc_page) 13552 BTF_ID(func, should_failslab) 13553 BTF_SET_END(btf_non_sleepable_error_inject) 13554 13555 static int check_non_sleepable_error_inject(u32 btf_id) 13556 { 13557 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 13558 } 13559 13560 int bpf_check_attach_target(struct bpf_verifier_log *log, 13561 const struct bpf_prog *prog, 13562 const struct bpf_prog *tgt_prog, 13563 u32 btf_id, 13564 struct bpf_attach_target_info *tgt_info) 13565 { 13566 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 13567 const char prefix[] = "btf_trace_"; 13568 int ret = 0, subprog = -1, i; 13569 const struct btf_type *t; 13570 bool conservative = true; 13571 const char *tname; 13572 struct btf *btf; 13573 long addr = 0; 13574 13575 if (!btf_id) { 13576 bpf_log(log, "Tracing programs must provide btf_id\n"); 13577 return -EINVAL; 13578 } 13579 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 13580 if (!btf) { 13581 bpf_log(log, 13582 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 13583 return -EINVAL; 13584 } 13585 t = btf_type_by_id(btf, btf_id); 13586 if (!t) { 13587 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 13588 return -EINVAL; 13589 } 13590 tname = btf_name_by_offset(btf, t->name_off); 13591 if (!tname) { 13592 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 13593 return -EINVAL; 13594 } 13595 if (tgt_prog) { 13596 struct bpf_prog_aux *aux = tgt_prog->aux; 13597 13598 for (i = 0; i < aux->func_info_cnt; i++) 13599 if (aux->func_info[i].type_id == btf_id) { 13600 subprog = i; 13601 break; 13602 } 13603 if (subprog == -1) { 13604 bpf_log(log, "Subprog %s doesn't exist\n", tname); 13605 return -EINVAL; 13606 } 13607 conservative = aux->func_info_aux[subprog].unreliable; 13608 if (prog_extension) { 13609 if (conservative) { 13610 bpf_log(log, 13611 "Cannot replace static functions\n"); 13612 return -EINVAL; 13613 } 13614 if (!prog->jit_requested) { 13615 bpf_log(log, 13616 "Extension programs should be JITed\n"); 13617 return -EINVAL; 13618 } 13619 } 13620 if (!tgt_prog->jited) { 13621 bpf_log(log, "Can attach to only JITed progs\n"); 13622 return -EINVAL; 13623 } 13624 if (tgt_prog->type == prog->type) { 13625 /* Cannot fentry/fexit another fentry/fexit program. 13626 * Cannot attach program extension to another extension. 13627 * It's ok to attach fentry/fexit to extension program. 13628 */ 13629 bpf_log(log, "Cannot recursively attach\n"); 13630 return -EINVAL; 13631 } 13632 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 13633 prog_extension && 13634 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 13635 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 13636 /* Program extensions can extend all program types 13637 * except fentry/fexit. The reason is the following. 13638 * The fentry/fexit programs are used for performance 13639 * analysis, stats and can be attached to any program 13640 * type except themselves. When extension program is 13641 * replacing XDP function it is necessary to allow 13642 * performance analysis of all functions. Both original 13643 * XDP program and its program extension. Hence 13644 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 13645 * allowed. If extending of fentry/fexit was allowed it 13646 * would be possible to create long call chain 13647 * fentry->extension->fentry->extension beyond 13648 * reasonable stack size. Hence extending fentry is not 13649 * allowed. 13650 */ 13651 bpf_log(log, "Cannot extend fentry/fexit\n"); 13652 return -EINVAL; 13653 } 13654 } else { 13655 if (prog_extension) { 13656 bpf_log(log, "Cannot replace kernel functions\n"); 13657 return -EINVAL; 13658 } 13659 } 13660 13661 switch (prog->expected_attach_type) { 13662 case BPF_TRACE_RAW_TP: 13663 if (tgt_prog) { 13664 bpf_log(log, 13665 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 13666 return -EINVAL; 13667 } 13668 if (!btf_type_is_typedef(t)) { 13669 bpf_log(log, "attach_btf_id %u is not a typedef\n", 13670 btf_id); 13671 return -EINVAL; 13672 } 13673 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 13674 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 13675 btf_id, tname); 13676 return -EINVAL; 13677 } 13678 tname += sizeof(prefix) - 1; 13679 t = btf_type_by_id(btf, t->type); 13680 if (!btf_type_is_ptr(t)) 13681 /* should never happen in valid vmlinux build */ 13682 return -EINVAL; 13683 t = btf_type_by_id(btf, t->type); 13684 if (!btf_type_is_func_proto(t)) 13685 /* should never happen in valid vmlinux build */ 13686 return -EINVAL; 13687 13688 break; 13689 case BPF_TRACE_ITER: 13690 if (!btf_type_is_func(t)) { 13691 bpf_log(log, "attach_btf_id %u is not a function\n", 13692 btf_id); 13693 return -EINVAL; 13694 } 13695 t = btf_type_by_id(btf, t->type); 13696 if (!btf_type_is_func_proto(t)) 13697 return -EINVAL; 13698 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13699 if (ret) 13700 return ret; 13701 break; 13702 default: 13703 if (!prog_extension) 13704 return -EINVAL; 13705 fallthrough; 13706 case BPF_MODIFY_RETURN: 13707 case BPF_LSM_MAC: 13708 case BPF_TRACE_FENTRY: 13709 case BPF_TRACE_FEXIT: 13710 if (!btf_type_is_func(t)) { 13711 bpf_log(log, "attach_btf_id %u is not a function\n", 13712 btf_id); 13713 return -EINVAL; 13714 } 13715 if (prog_extension && 13716 btf_check_type_match(log, prog, btf, t)) 13717 return -EINVAL; 13718 t = btf_type_by_id(btf, t->type); 13719 if (!btf_type_is_func_proto(t)) 13720 return -EINVAL; 13721 13722 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 13723 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 13724 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 13725 return -EINVAL; 13726 13727 if (tgt_prog && conservative) 13728 t = NULL; 13729 13730 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 13731 if (ret < 0) 13732 return ret; 13733 13734 if (tgt_prog) { 13735 if (subprog == 0) 13736 addr = (long) tgt_prog->bpf_func; 13737 else 13738 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 13739 } else { 13740 addr = kallsyms_lookup_name(tname); 13741 if (!addr) { 13742 bpf_log(log, 13743 "The address of function %s cannot be found\n", 13744 tname); 13745 return -ENOENT; 13746 } 13747 } 13748 13749 if (prog->aux->sleepable) { 13750 ret = -EINVAL; 13751 switch (prog->type) { 13752 case BPF_PROG_TYPE_TRACING: 13753 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 13754 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 13755 */ 13756 if (!check_non_sleepable_error_inject(btf_id) && 13757 within_error_injection_list(addr)) 13758 ret = 0; 13759 break; 13760 case BPF_PROG_TYPE_LSM: 13761 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 13762 * Only some of them are sleepable. 13763 */ 13764 if (bpf_lsm_is_sleepable_hook(btf_id)) 13765 ret = 0; 13766 break; 13767 default: 13768 break; 13769 } 13770 if (ret) { 13771 bpf_log(log, "%s is not sleepable\n", tname); 13772 return ret; 13773 } 13774 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 13775 if (tgt_prog) { 13776 bpf_log(log, "can't modify return codes of BPF programs\n"); 13777 return -EINVAL; 13778 } 13779 ret = check_attach_modify_return(addr, tname); 13780 if (ret) { 13781 bpf_log(log, "%s() is not modifiable\n", tname); 13782 return ret; 13783 } 13784 } 13785 13786 break; 13787 } 13788 tgt_info->tgt_addr = addr; 13789 tgt_info->tgt_name = tname; 13790 tgt_info->tgt_type = t; 13791 return 0; 13792 } 13793 13794 BTF_SET_START(btf_id_deny) 13795 BTF_ID_UNUSED 13796 #ifdef CONFIG_SMP 13797 BTF_ID(func, migrate_disable) 13798 BTF_ID(func, migrate_enable) 13799 #endif 13800 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 13801 BTF_ID(func, rcu_read_unlock_strict) 13802 #endif 13803 BTF_SET_END(btf_id_deny) 13804 13805 static int check_attach_btf_id(struct bpf_verifier_env *env) 13806 { 13807 struct bpf_prog *prog = env->prog; 13808 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 13809 struct bpf_attach_target_info tgt_info = {}; 13810 u32 btf_id = prog->aux->attach_btf_id; 13811 struct bpf_trampoline *tr; 13812 int ret; 13813 u64 key; 13814 13815 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 13816 if (prog->aux->sleepable) 13817 /* attach_btf_id checked to be zero already */ 13818 return 0; 13819 verbose(env, "Syscall programs can only be sleepable\n"); 13820 return -EINVAL; 13821 } 13822 13823 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 13824 prog->type != BPF_PROG_TYPE_LSM) { 13825 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 13826 return -EINVAL; 13827 } 13828 13829 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 13830 return check_struct_ops_btf_id(env); 13831 13832 if (prog->type != BPF_PROG_TYPE_TRACING && 13833 prog->type != BPF_PROG_TYPE_LSM && 13834 prog->type != BPF_PROG_TYPE_EXT) 13835 return 0; 13836 13837 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 13838 if (ret) 13839 return ret; 13840 13841 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 13842 /* to make freplace equivalent to their targets, they need to 13843 * inherit env->ops and expected_attach_type for the rest of the 13844 * verification 13845 */ 13846 env->ops = bpf_verifier_ops[tgt_prog->type]; 13847 prog->expected_attach_type = tgt_prog->expected_attach_type; 13848 } 13849 13850 /* store info about the attachment target that will be used later */ 13851 prog->aux->attach_func_proto = tgt_info.tgt_type; 13852 prog->aux->attach_func_name = tgt_info.tgt_name; 13853 13854 if (tgt_prog) { 13855 prog->aux->saved_dst_prog_type = tgt_prog->type; 13856 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 13857 } 13858 13859 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 13860 prog->aux->attach_btf_trace = true; 13861 return 0; 13862 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 13863 if (!bpf_iter_prog_supported(prog)) 13864 return -EINVAL; 13865 return 0; 13866 } 13867 13868 if (prog->type == BPF_PROG_TYPE_LSM) { 13869 ret = bpf_lsm_verify_prog(&env->log, prog); 13870 if (ret < 0) 13871 return ret; 13872 } else if (prog->type == BPF_PROG_TYPE_TRACING && 13873 btf_id_set_contains(&btf_id_deny, btf_id)) { 13874 return -EINVAL; 13875 } 13876 13877 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 13878 tr = bpf_trampoline_get(key, &tgt_info); 13879 if (!tr) 13880 return -ENOMEM; 13881 13882 prog->aux->dst_trampoline = tr; 13883 return 0; 13884 } 13885 13886 struct btf *bpf_get_btf_vmlinux(void) 13887 { 13888 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 13889 mutex_lock(&bpf_verifier_lock); 13890 if (!btf_vmlinux) 13891 btf_vmlinux = btf_parse_vmlinux(); 13892 mutex_unlock(&bpf_verifier_lock); 13893 } 13894 return btf_vmlinux; 13895 } 13896 13897 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr) 13898 { 13899 u64 start_time = ktime_get_ns(); 13900 struct bpf_verifier_env *env; 13901 struct bpf_verifier_log *log; 13902 int i, len, ret = -EINVAL; 13903 bool is_priv; 13904 13905 /* no program is valid */ 13906 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 13907 return -EINVAL; 13908 13909 /* 'struct bpf_verifier_env' can be global, but since it's not small, 13910 * allocate/free it every time bpf_check() is called 13911 */ 13912 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 13913 if (!env) 13914 return -ENOMEM; 13915 log = &env->log; 13916 13917 len = (*prog)->len; 13918 env->insn_aux_data = 13919 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 13920 ret = -ENOMEM; 13921 if (!env->insn_aux_data) 13922 goto err_free_env; 13923 for (i = 0; i < len; i++) 13924 env->insn_aux_data[i].orig_idx = i; 13925 env->prog = *prog; 13926 env->ops = bpf_verifier_ops[env->prog->type]; 13927 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 13928 is_priv = bpf_capable(); 13929 13930 bpf_get_btf_vmlinux(); 13931 13932 /* grab the mutex to protect few globals used by verifier */ 13933 if (!is_priv) 13934 mutex_lock(&bpf_verifier_lock); 13935 13936 if (attr->log_level || attr->log_buf || attr->log_size) { 13937 /* user requested verbose verifier output 13938 * and supplied buffer to store the verification trace 13939 */ 13940 log->level = attr->log_level; 13941 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 13942 log->len_total = attr->log_size; 13943 13944 ret = -EINVAL; 13945 /* log attributes have to be sane */ 13946 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 13947 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 13948 goto err_unlock; 13949 } 13950 13951 if (IS_ERR(btf_vmlinux)) { 13952 /* Either gcc or pahole or kernel are broken. */ 13953 verbose(env, "in-kernel BTF is malformed\n"); 13954 ret = PTR_ERR(btf_vmlinux); 13955 goto skip_full_check; 13956 } 13957 13958 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 13959 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 13960 env->strict_alignment = true; 13961 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 13962 env->strict_alignment = false; 13963 13964 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 13965 env->allow_uninit_stack = bpf_allow_uninit_stack(); 13966 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 13967 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 13968 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 13969 env->bpf_capable = bpf_capable(); 13970 13971 if (is_priv) 13972 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 13973 13974 env->explored_states = kvcalloc(state_htab_size(env), 13975 sizeof(struct bpf_verifier_state_list *), 13976 GFP_USER); 13977 ret = -ENOMEM; 13978 if (!env->explored_states) 13979 goto skip_full_check; 13980 13981 ret = add_subprog_and_kfunc(env); 13982 if (ret < 0) 13983 goto skip_full_check; 13984 13985 ret = check_subprogs(env); 13986 if (ret < 0) 13987 goto skip_full_check; 13988 13989 ret = check_btf_info(env, attr, uattr); 13990 if (ret < 0) 13991 goto skip_full_check; 13992 13993 ret = check_attach_btf_id(env); 13994 if (ret) 13995 goto skip_full_check; 13996 13997 ret = resolve_pseudo_ldimm64(env); 13998 if (ret < 0) 13999 goto skip_full_check; 14000 14001 if (bpf_prog_is_dev_bound(env->prog->aux)) { 14002 ret = bpf_prog_offload_verifier_prep(env->prog); 14003 if (ret) 14004 goto skip_full_check; 14005 } 14006 14007 ret = check_cfg(env); 14008 if (ret < 0) 14009 goto skip_full_check; 14010 14011 ret = do_check_subprogs(env); 14012 ret = ret ?: do_check_main(env); 14013 14014 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 14015 ret = bpf_prog_offload_finalize(env); 14016 14017 skip_full_check: 14018 kvfree(env->explored_states); 14019 14020 if (ret == 0) 14021 ret = check_max_stack_depth(env); 14022 14023 /* instruction rewrites happen after this point */ 14024 if (is_priv) { 14025 if (ret == 0) 14026 opt_hard_wire_dead_code_branches(env); 14027 if (ret == 0) 14028 ret = opt_remove_dead_code(env); 14029 if (ret == 0) 14030 ret = opt_remove_nops(env); 14031 } else { 14032 if (ret == 0) 14033 sanitize_dead_code(env); 14034 } 14035 14036 if (ret == 0) 14037 /* program is valid, convert *(u32*)(ctx + off) accesses */ 14038 ret = convert_ctx_accesses(env); 14039 14040 if (ret == 0) 14041 ret = do_misc_fixups(env); 14042 14043 /* do 32-bit optimization after insn patching has done so those patched 14044 * insns could be handled correctly. 14045 */ 14046 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 14047 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 14048 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 14049 : false; 14050 } 14051 14052 if (ret == 0) 14053 ret = fixup_call_args(env); 14054 14055 env->verification_time = ktime_get_ns() - start_time; 14056 print_verification_stats(env); 14057 env->prog->aux->verified_insns = env->insn_processed; 14058 14059 if (log->level && bpf_verifier_log_full(log)) 14060 ret = -ENOSPC; 14061 if (log->level && !log->ubuf) { 14062 ret = -EFAULT; 14063 goto err_release_maps; 14064 } 14065 14066 if (ret) 14067 goto err_release_maps; 14068 14069 if (env->used_map_cnt) { 14070 /* if program passed verifier, update used_maps in bpf_prog_info */ 14071 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 14072 sizeof(env->used_maps[0]), 14073 GFP_KERNEL); 14074 14075 if (!env->prog->aux->used_maps) { 14076 ret = -ENOMEM; 14077 goto err_release_maps; 14078 } 14079 14080 memcpy(env->prog->aux->used_maps, env->used_maps, 14081 sizeof(env->used_maps[0]) * env->used_map_cnt); 14082 env->prog->aux->used_map_cnt = env->used_map_cnt; 14083 } 14084 if (env->used_btf_cnt) { 14085 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 14086 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 14087 sizeof(env->used_btfs[0]), 14088 GFP_KERNEL); 14089 if (!env->prog->aux->used_btfs) { 14090 ret = -ENOMEM; 14091 goto err_release_maps; 14092 } 14093 14094 memcpy(env->prog->aux->used_btfs, env->used_btfs, 14095 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 14096 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 14097 } 14098 if (env->used_map_cnt || env->used_btf_cnt) { 14099 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 14100 * bpf_ld_imm64 instructions 14101 */ 14102 convert_pseudo_ld_imm64(env); 14103 } 14104 14105 adjust_btf_func(env); 14106 14107 err_release_maps: 14108 if (!env->prog->aux->used_maps) 14109 /* if we didn't copy map pointers into bpf_prog_info, release 14110 * them now. Otherwise free_used_maps() will release them. 14111 */ 14112 release_maps(env); 14113 if (!env->prog->aux->used_btfs) 14114 release_btfs(env); 14115 14116 /* extension progs temporarily inherit the attach_type of their targets 14117 for verification purposes, so set it back to zero before returning 14118 */ 14119 if (env->prog->type == BPF_PROG_TYPE_EXT) 14120 env->prog->expected_attach_type = 0; 14121 14122 *prog = env->prog; 14123 err_unlock: 14124 if (!is_priv) 14125 mutex_unlock(&bpf_verifier_lock); 14126 vfree(env->insn_aux_data); 14127 err_free_env: 14128 kfree(env); 14129 return ret; 14130 } 14131