xref: /openbmc/linux/kernel/bpf/verifier.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all paths through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns either pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_JMP | BPF_CALL) &&
240 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int map_uid;
253 	int func_id;
254 	struct btf *btf;
255 	u32 btf_id;
256 	struct btf *ret_btf;
257 	u32 ret_btf_id;
258 	u32 subprogno;
259 };
260 
261 struct btf *btf_vmlinux;
262 
263 static DEFINE_MUTEX(bpf_verifier_lock);
264 
265 static const struct bpf_line_info *
266 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
267 {
268 	const struct bpf_line_info *linfo;
269 	const struct bpf_prog *prog;
270 	u32 i, nr_linfo;
271 
272 	prog = env->prog;
273 	nr_linfo = prog->aux->nr_linfo;
274 
275 	if (!nr_linfo || insn_off >= prog->len)
276 		return NULL;
277 
278 	linfo = prog->aux->linfo;
279 	for (i = 1; i < nr_linfo; i++)
280 		if (insn_off < linfo[i].insn_off)
281 			break;
282 
283 	return &linfo[i - 1];
284 }
285 
286 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
287 		       va_list args)
288 {
289 	unsigned int n;
290 
291 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
292 
293 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
294 		  "verifier log line truncated - local buffer too short\n");
295 
296 	n = min(log->len_total - log->len_used - 1, n);
297 	log->kbuf[n] = '\0';
298 
299 	if (log->level == BPF_LOG_KERNEL) {
300 		pr_err("BPF:%s\n", log->kbuf);
301 		return;
302 	}
303 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
304 		log->len_used += n;
305 	else
306 		log->ubuf = NULL;
307 }
308 
309 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
310 {
311 	char zero = 0;
312 
313 	if (!bpf_verifier_log_needed(log))
314 		return;
315 
316 	log->len_used = new_pos;
317 	if (put_user(zero, log->ubuf + new_pos))
318 		log->ubuf = NULL;
319 }
320 
321 /* log_level controls verbosity level of eBPF verifier.
322  * bpf_verifier_log_write() is used to dump the verification trace to the log,
323  * so the user can figure out what's wrong with the program
324  */
325 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
326 					   const char *fmt, ...)
327 {
328 	va_list args;
329 
330 	if (!bpf_verifier_log_needed(&env->log))
331 		return;
332 
333 	va_start(args, fmt);
334 	bpf_verifier_vlog(&env->log, fmt, args);
335 	va_end(args);
336 }
337 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
338 
339 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
340 {
341 	struct bpf_verifier_env *env = private_data;
342 	va_list args;
343 
344 	if (!bpf_verifier_log_needed(&env->log))
345 		return;
346 
347 	va_start(args, fmt);
348 	bpf_verifier_vlog(&env->log, fmt, args);
349 	va_end(args);
350 }
351 
352 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
353 			    const char *fmt, ...)
354 {
355 	va_list args;
356 
357 	if (!bpf_verifier_log_needed(log))
358 		return;
359 
360 	va_start(args, fmt);
361 	bpf_verifier_vlog(log, fmt, args);
362 	va_end(args);
363 }
364 
365 static const char *ltrim(const char *s)
366 {
367 	while (isspace(*s))
368 		s++;
369 
370 	return s;
371 }
372 
373 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
374 					 u32 insn_off,
375 					 const char *prefix_fmt, ...)
376 {
377 	const struct bpf_line_info *linfo;
378 
379 	if (!bpf_verifier_log_needed(&env->log))
380 		return;
381 
382 	linfo = find_linfo(env, insn_off);
383 	if (!linfo || linfo == env->prev_linfo)
384 		return;
385 
386 	if (prefix_fmt) {
387 		va_list args;
388 
389 		va_start(args, prefix_fmt);
390 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
391 		va_end(args);
392 	}
393 
394 	verbose(env, "%s\n",
395 		ltrim(btf_name_by_offset(env->prog->aux->btf,
396 					 linfo->line_off)));
397 
398 	env->prev_linfo = linfo;
399 }
400 
401 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
402 				   struct bpf_reg_state *reg,
403 				   struct tnum *range, const char *ctx,
404 				   const char *reg_name)
405 {
406 	char tn_buf[48];
407 
408 	verbose(env, "At %s the register %s ", ctx, reg_name);
409 	if (!tnum_is_unknown(reg->var_off)) {
410 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
411 		verbose(env, "has value %s", tn_buf);
412 	} else {
413 		verbose(env, "has unknown scalar value");
414 	}
415 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
416 	verbose(env, " should have been in %s\n", tn_buf);
417 }
418 
419 static bool type_is_pkt_pointer(enum bpf_reg_type type)
420 {
421 	return type == PTR_TO_PACKET ||
422 	       type == PTR_TO_PACKET_META;
423 }
424 
425 static bool type_is_sk_pointer(enum bpf_reg_type type)
426 {
427 	return type == PTR_TO_SOCKET ||
428 		type == PTR_TO_SOCK_COMMON ||
429 		type == PTR_TO_TCP_SOCK ||
430 		type == PTR_TO_XDP_SOCK;
431 }
432 
433 static bool reg_type_not_null(enum bpf_reg_type type)
434 {
435 	return type == PTR_TO_SOCKET ||
436 		type == PTR_TO_TCP_SOCK ||
437 		type == PTR_TO_MAP_VALUE ||
438 		type == PTR_TO_MAP_KEY ||
439 		type == PTR_TO_SOCK_COMMON;
440 }
441 
442 static bool reg_type_may_be_null(enum bpf_reg_type type)
443 {
444 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
445 	       type == PTR_TO_SOCKET_OR_NULL ||
446 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
447 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
448 	       type == PTR_TO_BTF_ID_OR_NULL ||
449 	       type == PTR_TO_MEM_OR_NULL ||
450 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
451 	       type == PTR_TO_RDWR_BUF_OR_NULL;
452 }
453 
454 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
455 {
456 	return reg->type == PTR_TO_MAP_VALUE &&
457 		map_value_has_spin_lock(reg->map_ptr);
458 }
459 
460 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
461 {
462 	return type == PTR_TO_SOCKET ||
463 		type == PTR_TO_SOCKET_OR_NULL ||
464 		type == PTR_TO_TCP_SOCK ||
465 		type == PTR_TO_TCP_SOCK_OR_NULL ||
466 		type == PTR_TO_MEM ||
467 		type == PTR_TO_MEM_OR_NULL;
468 }
469 
470 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
471 {
472 	return type == ARG_PTR_TO_SOCK_COMMON;
473 }
474 
475 static bool arg_type_may_be_null(enum bpf_arg_type type)
476 {
477 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
478 	       type == ARG_PTR_TO_MEM_OR_NULL ||
479 	       type == ARG_PTR_TO_CTX_OR_NULL ||
480 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
481 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
482 	       type == ARG_PTR_TO_STACK_OR_NULL;
483 }
484 
485 /* Determine whether the function releases some resources allocated by another
486  * function call. The first reference type argument will be assumed to be
487  * released by release_reference().
488  */
489 static bool is_release_function(enum bpf_func_id func_id)
490 {
491 	return func_id == BPF_FUNC_sk_release ||
492 	       func_id == BPF_FUNC_ringbuf_submit ||
493 	       func_id == BPF_FUNC_ringbuf_discard;
494 }
495 
496 static bool may_be_acquire_function(enum bpf_func_id func_id)
497 {
498 	return func_id == BPF_FUNC_sk_lookup_tcp ||
499 		func_id == BPF_FUNC_sk_lookup_udp ||
500 		func_id == BPF_FUNC_skc_lookup_tcp ||
501 		func_id == BPF_FUNC_map_lookup_elem ||
502 	        func_id == BPF_FUNC_ringbuf_reserve;
503 }
504 
505 static bool is_acquire_function(enum bpf_func_id func_id,
506 				const struct bpf_map *map)
507 {
508 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
509 
510 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
511 	    func_id == BPF_FUNC_sk_lookup_udp ||
512 	    func_id == BPF_FUNC_skc_lookup_tcp ||
513 	    func_id == BPF_FUNC_ringbuf_reserve)
514 		return true;
515 
516 	if (func_id == BPF_FUNC_map_lookup_elem &&
517 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
518 	     map_type == BPF_MAP_TYPE_SOCKHASH))
519 		return true;
520 
521 	return false;
522 }
523 
524 static bool is_ptr_cast_function(enum bpf_func_id func_id)
525 {
526 	return func_id == BPF_FUNC_tcp_sock ||
527 		func_id == BPF_FUNC_sk_fullsock ||
528 		func_id == BPF_FUNC_skc_to_tcp_sock ||
529 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
530 		func_id == BPF_FUNC_skc_to_udp6_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
532 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
533 }
534 
535 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
536 {
537 	return BPF_CLASS(insn->code) == BPF_STX &&
538 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
539 	       insn->imm == BPF_CMPXCHG;
540 }
541 
542 /* string representation of 'enum bpf_reg_type' */
543 static const char * const reg_type_str[] = {
544 	[NOT_INIT]		= "?",
545 	[SCALAR_VALUE]		= "inv",
546 	[PTR_TO_CTX]		= "ctx",
547 	[CONST_PTR_TO_MAP]	= "map_ptr",
548 	[PTR_TO_MAP_VALUE]	= "map_value",
549 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
550 	[PTR_TO_STACK]		= "fp",
551 	[PTR_TO_PACKET]		= "pkt",
552 	[PTR_TO_PACKET_META]	= "pkt_meta",
553 	[PTR_TO_PACKET_END]	= "pkt_end",
554 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
555 	[PTR_TO_SOCKET]		= "sock",
556 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
557 	[PTR_TO_SOCK_COMMON]	= "sock_common",
558 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
559 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
560 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
561 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
562 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
563 	[PTR_TO_BTF_ID]		= "ptr_",
564 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
565 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
566 	[PTR_TO_MEM]		= "mem",
567 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
568 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
569 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
570 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
571 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
572 	[PTR_TO_FUNC]		= "func",
573 	[PTR_TO_MAP_KEY]	= "map_key",
574 };
575 
576 static char slot_type_char[] = {
577 	[STACK_INVALID]	= '?',
578 	[STACK_SPILL]	= 'r',
579 	[STACK_MISC]	= 'm',
580 	[STACK_ZERO]	= '0',
581 };
582 
583 static void print_liveness(struct bpf_verifier_env *env,
584 			   enum bpf_reg_liveness live)
585 {
586 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
587 	    verbose(env, "_");
588 	if (live & REG_LIVE_READ)
589 		verbose(env, "r");
590 	if (live & REG_LIVE_WRITTEN)
591 		verbose(env, "w");
592 	if (live & REG_LIVE_DONE)
593 		verbose(env, "D");
594 }
595 
596 static struct bpf_func_state *func(struct bpf_verifier_env *env,
597 				   const struct bpf_reg_state *reg)
598 {
599 	struct bpf_verifier_state *cur = env->cur_state;
600 
601 	return cur->frame[reg->frameno];
602 }
603 
604 static const char *kernel_type_name(const struct btf* btf, u32 id)
605 {
606 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
607 }
608 
609 /* The reg state of a pointer or a bounded scalar was saved when
610  * it was spilled to the stack.
611  */
612 static bool is_spilled_reg(const struct bpf_stack_state *stack)
613 {
614 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
615 }
616 
617 static void scrub_spilled_slot(u8 *stype)
618 {
619 	if (*stype != STACK_INVALID)
620 		*stype = STACK_MISC;
621 }
622 
623 static void print_verifier_state(struct bpf_verifier_env *env,
624 				 const struct bpf_func_state *state)
625 {
626 	const struct bpf_reg_state *reg;
627 	enum bpf_reg_type t;
628 	int i;
629 
630 	if (state->frameno)
631 		verbose(env, " frame%d:", state->frameno);
632 	for (i = 0; i < MAX_BPF_REG; i++) {
633 		reg = &state->regs[i];
634 		t = reg->type;
635 		if (t == NOT_INIT)
636 			continue;
637 		verbose(env, " R%d", i);
638 		print_liveness(env, reg->live);
639 		verbose(env, "=%s", reg_type_str[t]);
640 		if (t == SCALAR_VALUE && reg->precise)
641 			verbose(env, "P");
642 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
643 		    tnum_is_const(reg->var_off)) {
644 			/* reg->off should be 0 for SCALAR_VALUE */
645 			verbose(env, "%lld", reg->var_off.value + reg->off);
646 		} else {
647 			if (t == PTR_TO_BTF_ID ||
648 			    t == PTR_TO_BTF_ID_OR_NULL ||
649 			    t == PTR_TO_PERCPU_BTF_ID)
650 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
651 			verbose(env, "(id=%d", reg->id);
652 			if (reg_type_may_be_refcounted_or_null(t))
653 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
654 			if (t != SCALAR_VALUE)
655 				verbose(env, ",off=%d", reg->off);
656 			if (type_is_pkt_pointer(t))
657 				verbose(env, ",r=%d", reg->range);
658 			else if (t == CONST_PTR_TO_MAP ||
659 				 t == PTR_TO_MAP_KEY ||
660 				 t == PTR_TO_MAP_VALUE ||
661 				 t == PTR_TO_MAP_VALUE_OR_NULL)
662 				verbose(env, ",ks=%d,vs=%d",
663 					reg->map_ptr->key_size,
664 					reg->map_ptr->value_size);
665 			if (tnum_is_const(reg->var_off)) {
666 				/* Typically an immediate SCALAR_VALUE, but
667 				 * could be a pointer whose offset is too big
668 				 * for reg->off
669 				 */
670 				verbose(env, ",imm=%llx", reg->var_off.value);
671 			} else {
672 				if (reg->smin_value != reg->umin_value &&
673 				    reg->smin_value != S64_MIN)
674 					verbose(env, ",smin_value=%lld",
675 						(long long)reg->smin_value);
676 				if (reg->smax_value != reg->umax_value &&
677 				    reg->smax_value != S64_MAX)
678 					verbose(env, ",smax_value=%lld",
679 						(long long)reg->smax_value);
680 				if (reg->umin_value != 0)
681 					verbose(env, ",umin_value=%llu",
682 						(unsigned long long)reg->umin_value);
683 				if (reg->umax_value != U64_MAX)
684 					verbose(env, ",umax_value=%llu",
685 						(unsigned long long)reg->umax_value);
686 				if (!tnum_is_unknown(reg->var_off)) {
687 					char tn_buf[48];
688 
689 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
690 					verbose(env, ",var_off=%s", tn_buf);
691 				}
692 				if (reg->s32_min_value != reg->smin_value &&
693 				    reg->s32_min_value != S32_MIN)
694 					verbose(env, ",s32_min_value=%d",
695 						(int)(reg->s32_min_value));
696 				if (reg->s32_max_value != reg->smax_value &&
697 				    reg->s32_max_value != S32_MAX)
698 					verbose(env, ",s32_max_value=%d",
699 						(int)(reg->s32_max_value));
700 				if (reg->u32_min_value != reg->umin_value &&
701 				    reg->u32_min_value != U32_MIN)
702 					verbose(env, ",u32_min_value=%d",
703 						(int)(reg->u32_min_value));
704 				if (reg->u32_max_value != reg->umax_value &&
705 				    reg->u32_max_value != U32_MAX)
706 					verbose(env, ",u32_max_value=%d",
707 						(int)(reg->u32_max_value));
708 			}
709 			verbose(env, ")");
710 		}
711 	}
712 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
713 		char types_buf[BPF_REG_SIZE + 1];
714 		bool valid = false;
715 		int j;
716 
717 		for (j = 0; j < BPF_REG_SIZE; j++) {
718 			if (state->stack[i].slot_type[j] != STACK_INVALID)
719 				valid = true;
720 			types_buf[j] = slot_type_char[
721 					state->stack[i].slot_type[j]];
722 		}
723 		types_buf[BPF_REG_SIZE] = 0;
724 		if (!valid)
725 			continue;
726 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
727 		print_liveness(env, state->stack[i].spilled_ptr.live);
728 		if (is_spilled_reg(&state->stack[i])) {
729 			reg = &state->stack[i].spilled_ptr;
730 			t = reg->type;
731 			verbose(env, "=%s", reg_type_str[t]);
732 			if (t == SCALAR_VALUE && reg->precise)
733 				verbose(env, "P");
734 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
735 				verbose(env, "%lld", reg->var_off.value + reg->off);
736 		} else {
737 			verbose(env, "=%s", types_buf);
738 		}
739 	}
740 	if (state->acquired_refs && state->refs[0].id) {
741 		verbose(env, " refs=%d", state->refs[0].id);
742 		for (i = 1; i < state->acquired_refs; i++)
743 			if (state->refs[i].id)
744 				verbose(env, ",%d", state->refs[i].id);
745 	}
746 	if (state->in_callback_fn)
747 		verbose(env, " cb");
748 	if (state->in_async_callback_fn)
749 		verbose(env, " async_cb");
750 	verbose(env, "\n");
751 }
752 
753 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
754  * small to hold src. This is different from krealloc since we don't want to preserve
755  * the contents of dst.
756  *
757  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
758  * not be allocated.
759  */
760 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
761 {
762 	size_t bytes;
763 
764 	if (ZERO_OR_NULL_PTR(src))
765 		goto out;
766 
767 	if (unlikely(check_mul_overflow(n, size, &bytes)))
768 		return NULL;
769 
770 	if (ksize(dst) < bytes) {
771 		kfree(dst);
772 		dst = kmalloc_track_caller(bytes, flags);
773 		if (!dst)
774 			return NULL;
775 	}
776 
777 	memcpy(dst, src, bytes);
778 out:
779 	return dst ? dst : ZERO_SIZE_PTR;
780 }
781 
782 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
783  * small to hold new_n items. new items are zeroed out if the array grows.
784  *
785  * Contrary to krealloc_array, does not free arr if new_n is zero.
786  */
787 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
788 {
789 	if (!new_n || old_n == new_n)
790 		goto out;
791 
792 	arr = krealloc_array(arr, new_n, size, GFP_KERNEL);
793 	if (!arr)
794 		return NULL;
795 
796 	if (new_n > old_n)
797 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
798 
799 out:
800 	return arr ? arr : ZERO_SIZE_PTR;
801 }
802 
803 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
804 {
805 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
806 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
807 	if (!dst->refs)
808 		return -ENOMEM;
809 
810 	dst->acquired_refs = src->acquired_refs;
811 	return 0;
812 }
813 
814 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
815 {
816 	size_t n = src->allocated_stack / BPF_REG_SIZE;
817 
818 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
819 				GFP_KERNEL);
820 	if (!dst->stack)
821 		return -ENOMEM;
822 
823 	dst->allocated_stack = src->allocated_stack;
824 	return 0;
825 }
826 
827 static int resize_reference_state(struct bpf_func_state *state, size_t n)
828 {
829 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
830 				    sizeof(struct bpf_reference_state));
831 	if (!state->refs)
832 		return -ENOMEM;
833 
834 	state->acquired_refs = n;
835 	return 0;
836 }
837 
838 static int grow_stack_state(struct bpf_func_state *state, int size)
839 {
840 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
841 
842 	if (old_n >= n)
843 		return 0;
844 
845 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
846 	if (!state->stack)
847 		return -ENOMEM;
848 
849 	state->allocated_stack = size;
850 	return 0;
851 }
852 
853 /* Acquire a pointer id from the env and update the state->refs to include
854  * this new pointer reference.
855  * On success, returns a valid pointer id to associate with the register
856  * On failure, returns a negative errno.
857  */
858 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
859 {
860 	struct bpf_func_state *state = cur_func(env);
861 	int new_ofs = state->acquired_refs;
862 	int id, err;
863 
864 	err = resize_reference_state(state, state->acquired_refs + 1);
865 	if (err)
866 		return err;
867 	id = ++env->id_gen;
868 	state->refs[new_ofs].id = id;
869 	state->refs[new_ofs].insn_idx = insn_idx;
870 
871 	return id;
872 }
873 
874 /* release function corresponding to acquire_reference_state(). Idempotent. */
875 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
876 {
877 	int i, last_idx;
878 
879 	last_idx = state->acquired_refs - 1;
880 	for (i = 0; i < state->acquired_refs; i++) {
881 		if (state->refs[i].id == ptr_id) {
882 			if (last_idx && i != last_idx)
883 				memcpy(&state->refs[i], &state->refs[last_idx],
884 				       sizeof(*state->refs));
885 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
886 			state->acquired_refs--;
887 			return 0;
888 		}
889 	}
890 	return -EINVAL;
891 }
892 
893 static void free_func_state(struct bpf_func_state *state)
894 {
895 	if (!state)
896 		return;
897 	kfree(state->refs);
898 	kfree(state->stack);
899 	kfree(state);
900 }
901 
902 static void clear_jmp_history(struct bpf_verifier_state *state)
903 {
904 	kfree(state->jmp_history);
905 	state->jmp_history = NULL;
906 	state->jmp_history_cnt = 0;
907 }
908 
909 static void free_verifier_state(struct bpf_verifier_state *state,
910 				bool free_self)
911 {
912 	int i;
913 
914 	for (i = 0; i <= state->curframe; i++) {
915 		free_func_state(state->frame[i]);
916 		state->frame[i] = NULL;
917 	}
918 	clear_jmp_history(state);
919 	if (free_self)
920 		kfree(state);
921 }
922 
923 /* copy verifier state from src to dst growing dst stack space
924  * when necessary to accommodate larger src stack
925  */
926 static int copy_func_state(struct bpf_func_state *dst,
927 			   const struct bpf_func_state *src)
928 {
929 	int err;
930 
931 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
932 	err = copy_reference_state(dst, src);
933 	if (err)
934 		return err;
935 	return copy_stack_state(dst, src);
936 }
937 
938 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
939 			       const struct bpf_verifier_state *src)
940 {
941 	struct bpf_func_state *dst;
942 	int i, err;
943 
944 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
945 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
946 					    GFP_USER);
947 	if (!dst_state->jmp_history)
948 		return -ENOMEM;
949 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
950 
951 	/* if dst has more stack frames then src frame, free them */
952 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
953 		free_func_state(dst_state->frame[i]);
954 		dst_state->frame[i] = NULL;
955 	}
956 	dst_state->speculative = src->speculative;
957 	dst_state->curframe = src->curframe;
958 	dst_state->active_spin_lock = src->active_spin_lock;
959 	dst_state->branches = src->branches;
960 	dst_state->parent = src->parent;
961 	dst_state->first_insn_idx = src->first_insn_idx;
962 	dst_state->last_insn_idx = src->last_insn_idx;
963 	for (i = 0; i <= src->curframe; i++) {
964 		dst = dst_state->frame[i];
965 		if (!dst) {
966 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
967 			if (!dst)
968 				return -ENOMEM;
969 			dst_state->frame[i] = dst;
970 		}
971 		err = copy_func_state(dst, src->frame[i]);
972 		if (err)
973 			return err;
974 	}
975 	return 0;
976 }
977 
978 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
979 {
980 	while (st) {
981 		u32 br = --st->branches;
982 
983 		/* WARN_ON(br > 1) technically makes sense here,
984 		 * but see comment in push_stack(), hence:
985 		 */
986 		WARN_ONCE((int)br < 0,
987 			  "BUG update_branch_counts:branches_to_explore=%d\n",
988 			  br);
989 		if (br)
990 			break;
991 		st = st->parent;
992 	}
993 }
994 
995 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
996 		     int *insn_idx, bool pop_log)
997 {
998 	struct bpf_verifier_state *cur = env->cur_state;
999 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1000 	int err;
1001 
1002 	if (env->head == NULL)
1003 		return -ENOENT;
1004 
1005 	if (cur) {
1006 		err = copy_verifier_state(cur, &head->st);
1007 		if (err)
1008 			return err;
1009 	}
1010 	if (pop_log)
1011 		bpf_vlog_reset(&env->log, head->log_pos);
1012 	if (insn_idx)
1013 		*insn_idx = head->insn_idx;
1014 	if (prev_insn_idx)
1015 		*prev_insn_idx = head->prev_insn_idx;
1016 	elem = head->next;
1017 	free_verifier_state(&head->st, false);
1018 	kfree(head);
1019 	env->head = elem;
1020 	env->stack_size--;
1021 	return 0;
1022 }
1023 
1024 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1025 					     int insn_idx, int prev_insn_idx,
1026 					     bool speculative)
1027 {
1028 	struct bpf_verifier_state *cur = env->cur_state;
1029 	struct bpf_verifier_stack_elem *elem;
1030 	int err;
1031 
1032 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1033 	if (!elem)
1034 		goto err;
1035 
1036 	elem->insn_idx = insn_idx;
1037 	elem->prev_insn_idx = prev_insn_idx;
1038 	elem->next = env->head;
1039 	elem->log_pos = env->log.len_used;
1040 	env->head = elem;
1041 	env->stack_size++;
1042 	err = copy_verifier_state(&elem->st, cur);
1043 	if (err)
1044 		goto err;
1045 	elem->st.speculative |= speculative;
1046 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1047 		verbose(env, "The sequence of %d jumps is too complex.\n",
1048 			env->stack_size);
1049 		goto err;
1050 	}
1051 	if (elem->st.parent) {
1052 		++elem->st.parent->branches;
1053 		/* WARN_ON(branches > 2) technically makes sense here,
1054 		 * but
1055 		 * 1. speculative states will bump 'branches' for non-branch
1056 		 * instructions
1057 		 * 2. is_state_visited() heuristics may decide not to create
1058 		 * a new state for a sequence of branches and all such current
1059 		 * and cloned states will be pointing to a single parent state
1060 		 * which might have large 'branches' count.
1061 		 */
1062 	}
1063 	return &elem->st;
1064 err:
1065 	free_verifier_state(env->cur_state, true);
1066 	env->cur_state = NULL;
1067 	/* pop all elements and return */
1068 	while (!pop_stack(env, NULL, NULL, false));
1069 	return NULL;
1070 }
1071 
1072 #define CALLER_SAVED_REGS 6
1073 static const int caller_saved[CALLER_SAVED_REGS] = {
1074 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1075 };
1076 
1077 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1078 				struct bpf_reg_state *reg);
1079 
1080 /* This helper doesn't clear reg->id */
1081 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082 {
1083 	reg->var_off = tnum_const(imm);
1084 	reg->smin_value = (s64)imm;
1085 	reg->smax_value = (s64)imm;
1086 	reg->umin_value = imm;
1087 	reg->umax_value = imm;
1088 
1089 	reg->s32_min_value = (s32)imm;
1090 	reg->s32_max_value = (s32)imm;
1091 	reg->u32_min_value = (u32)imm;
1092 	reg->u32_max_value = (u32)imm;
1093 }
1094 
1095 /* Mark the unknown part of a register (variable offset or scalar value) as
1096  * known to have the value @imm.
1097  */
1098 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1099 {
1100 	/* Clear id, off, and union(map_ptr, range) */
1101 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1102 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1103 	___mark_reg_known(reg, imm);
1104 }
1105 
1106 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1107 {
1108 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1109 	reg->s32_min_value = (s32)imm;
1110 	reg->s32_max_value = (s32)imm;
1111 	reg->u32_min_value = (u32)imm;
1112 	reg->u32_max_value = (u32)imm;
1113 }
1114 
1115 /* Mark the 'variable offset' part of a register as zero.  This should be
1116  * used only on registers holding a pointer type.
1117  */
1118 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1119 {
1120 	__mark_reg_known(reg, 0);
1121 }
1122 
1123 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1124 {
1125 	__mark_reg_known(reg, 0);
1126 	reg->type = SCALAR_VALUE;
1127 }
1128 
1129 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1130 				struct bpf_reg_state *regs, u32 regno)
1131 {
1132 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1133 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1134 		/* Something bad happened, let's kill all regs */
1135 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1136 			__mark_reg_not_init(env, regs + regno);
1137 		return;
1138 	}
1139 	__mark_reg_known_zero(regs + regno);
1140 }
1141 
1142 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1143 {
1144 	switch (reg->type) {
1145 	case PTR_TO_MAP_VALUE_OR_NULL: {
1146 		const struct bpf_map *map = reg->map_ptr;
1147 
1148 		if (map->inner_map_meta) {
1149 			reg->type = CONST_PTR_TO_MAP;
1150 			reg->map_ptr = map->inner_map_meta;
1151 			/* transfer reg's id which is unique for every map_lookup_elem
1152 			 * as UID of the inner map.
1153 			 */
1154 			if (map_value_has_timer(map->inner_map_meta))
1155 				reg->map_uid = reg->id;
1156 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1157 			reg->type = PTR_TO_XDP_SOCK;
1158 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1159 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1160 			reg->type = PTR_TO_SOCKET;
1161 		} else {
1162 			reg->type = PTR_TO_MAP_VALUE;
1163 		}
1164 		break;
1165 	}
1166 	case PTR_TO_SOCKET_OR_NULL:
1167 		reg->type = PTR_TO_SOCKET;
1168 		break;
1169 	case PTR_TO_SOCK_COMMON_OR_NULL:
1170 		reg->type = PTR_TO_SOCK_COMMON;
1171 		break;
1172 	case PTR_TO_TCP_SOCK_OR_NULL:
1173 		reg->type = PTR_TO_TCP_SOCK;
1174 		break;
1175 	case PTR_TO_BTF_ID_OR_NULL:
1176 		reg->type = PTR_TO_BTF_ID;
1177 		break;
1178 	case PTR_TO_MEM_OR_NULL:
1179 		reg->type = PTR_TO_MEM;
1180 		break;
1181 	case PTR_TO_RDONLY_BUF_OR_NULL:
1182 		reg->type = PTR_TO_RDONLY_BUF;
1183 		break;
1184 	case PTR_TO_RDWR_BUF_OR_NULL:
1185 		reg->type = PTR_TO_RDWR_BUF;
1186 		break;
1187 	default:
1188 		WARN_ONCE(1, "unknown nullable register type");
1189 	}
1190 }
1191 
1192 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1193 {
1194 	return type_is_pkt_pointer(reg->type);
1195 }
1196 
1197 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1198 {
1199 	return reg_is_pkt_pointer(reg) ||
1200 	       reg->type == PTR_TO_PACKET_END;
1201 }
1202 
1203 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1204 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1205 				    enum bpf_reg_type which)
1206 {
1207 	/* The register can already have a range from prior markings.
1208 	 * This is fine as long as it hasn't been advanced from its
1209 	 * origin.
1210 	 */
1211 	return reg->type == which &&
1212 	       reg->id == 0 &&
1213 	       reg->off == 0 &&
1214 	       tnum_equals_const(reg->var_off, 0);
1215 }
1216 
1217 /* Reset the min/max bounds of a register */
1218 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1219 {
1220 	reg->smin_value = S64_MIN;
1221 	reg->smax_value = S64_MAX;
1222 	reg->umin_value = 0;
1223 	reg->umax_value = U64_MAX;
1224 
1225 	reg->s32_min_value = S32_MIN;
1226 	reg->s32_max_value = S32_MAX;
1227 	reg->u32_min_value = 0;
1228 	reg->u32_max_value = U32_MAX;
1229 }
1230 
1231 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1232 {
1233 	reg->smin_value = S64_MIN;
1234 	reg->smax_value = S64_MAX;
1235 	reg->umin_value = 0;
1236 	reg->umax_value = U64_MAX;
1237 }
1238 
1239 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1240 {
1241 	reg->s32_min_value = S32_MIN;
1242 	reg->s32_max_value = S32_MAX;
1243 	reg->u32_min_value = 0;
1244 	reg->u32_max_value = U32_MAX;
1245 }
1246 
1247 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1248 {
1249 	struct tnum var32_off = tnum_subreg(reg->var_off);
1250 
1251 	/* min signed is max(sign bit) | min(other bits) */
1252 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1253 			var32_off.value | (var32_off.mask & S32_MIN));
1254 	/* max signed is min(sign bit) | max(other bits) */
1255 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1256 			var32_off.value | (var32_off.mask & S32_MAX));
1257 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1258 	reg->u32_max_value = min(reg->u32_max_value,
1259 				 (u32)(var32_off.value | var32_off.mask));
1260 }
1261 
1262 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1263 {
1264 	/* min signed is max(sign bit) | min(other bits) */
1265 	reg->smin_value = max_t(s64, reg->smin_value,
1266 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1267 	/* max signed is min(sign bit) | max(other bits) */
1268 	reg->smax_value = min_t(s64, reg->smax_value,
1269 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1270 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1271 	reg->umax_value = min(reg->umax_value,
1272 			      reg->var_off.value | reg->var_off.mask);
1273 }
1274 
1275 static void __update_reg_bounds(struct bpf_reg_state *reg)
1276 {
1277 	__update_reg32_bounds(reg);
1278 	__update_reg64_bounds(reg);
1279 }
1280 
1281 /* Uses signed min/max values to inform unsigned, and vice-versa */
1282 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1283 {
1284 	/* Learn sign from signed bounds.
1285 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1286 	 * are the same, so combine.  This works even in the negative case, e.g.
1287 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1288 	 */
1289 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1290 		reg->s32_min_value = reg->u32_min_value =
1291 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1292 		reg->s32_max_value = reg->u32_max_value =
1293 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1294 		return;
1295 	}
1296 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1297 	 * boundary, so we must be careful.
1298 	 */
1299 	if ((s32)reg->u32_max_value >= 0) {
1300 		/* Positive.  We can't learn anything from the smin, but smax
1301 		 * is positive, hence safe.
1302 		 */
1303 		reg->s32_min_value = reg->u32_min_value;
1304 		reg->s32_max_value = reg->u32_max_value =
1305 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1306 	} else if ((s32)reg->u32_min_value < 0) {
1307 		/* Negative.  We can't learn anything from the smax, but smin
1308 		 * is negative, hence safe.
1309 		 */
1310 		reg->s32_min_value = reg->u32_min_value =
1311 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1312 		reg->s32_max_value = reg->u32_max_value;
1313 	}
1314 }
1315 
1316 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1317 {
1318 	/* Learn sign from signed bounds.
1319 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1320 	 * are the same, so combine.  This works even in the negative case, e.g.
1321 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1322 	 */
1323 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1324 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1325 							  reg->umin_value);
1326 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1327 							  reg->umax_value);
1328 		return;
1329 	}
1330 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1331 	 * boundary, so we must be careful.
1332 	 */
1333 	if ((s64)reg->umax_value >= 0) {
1334 		/* Positive.  We can't learn anything from the smin, but smax
1335 		 * is positive, hence safe.
1336 		 */
1337 		reg->smin_value = reg->umin_value;
1338 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1339 							  reg->umax_value);
1340 	} else if ((s64)reg->umin_value < 0) {
1341 		/* Negative.  We can't learn anything from the smax, but smin
1342 		 * is negative, hence safe.
1343 		 */
1344 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1345 							  reg->umin_value);
1346 		reg->smax_value = reg->umax_value;
1347 	}
1348 }
1349 
1350 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1351 {
1352 	__reg32_deduce_bounds(reg);
1353 	__reg64_deduce_bounds(reg);
1354 }
1355 
1356 /* Attempts to improve var_off based on unsigned min/max information */
1357 static void __reg_bound_offset(struct bpf_reg_state *reg)
1358 {
1359 	struct tnum var64_off = tnum_intersect(reg->var_off,
1360 					       tnum_range(reg->umin_value,
1361 							  reg->umax_value));
1362 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1363 						tnum_range(reg->u32_min_value,
1364 							   reg->u32_max_value));
1365 
1366 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1367 }
1368 
1369 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1370 {
1371 	reg->umin_value = reg->u32_min_value;
1372 	reg->umax_value = reg->u32_max_value;
1373 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1374 	 * but must be positive otherwise set to worse case bounds
1375 	 * and refine later from tnum.
1376 	 */
1377 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1378 		reg->smax_value = reg->s32_max_value;
1379 	else
1380 		reg->smax_value = U32_MAX;
1381 	if (reg->s32_min_value >= 0)
1382 		reg->smin_value = reg->s32_min_value;
1383 	else
1384 		reg->smin_value = 0;
1385 }
1386 
1387 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1388 {
1389 	/* special case when 64-bit register has upper 32-bit register
1390 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1391 	 * allowing us to use 32-bit bounds directly,
1392 	 */
1393 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1394 		__reg_assign_32_into_64(reg);
1395 	} else {
1396 		/* Otherwise the best we can do is push lower 32bit known and
1397 		 * unknown bits into register (var_off set from jmp logic)
1398 		 * then learn as much as possible from the 64-bit tnum
1399 		 * known and unknown bits. The previous smin/smax bounds are
1400 		 * invalid here because of jmp32 compare so mark them unknown
1401 		 * so they do not impact tnum bounds calculation.
1402 		 */
1403 		__mark_reg64_unbounded(reg);
1404 		__update_reg_bounds(reg);
1405 	}
1406 
1407 	/* Intersecting with the old var_off might have improved our bounds
1408 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1409 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1410 	 */
1411 	__reg_deduce_bounds(reg);
1412 	__reg_bound_offset(reg);
1413 	__update_reg_bounds(reg);
1414 }
1415 
1416 static bool __reg64_bound_s32(s64 a)
1417 {
1418 	return a >= S32_MIN && a <= S32_MAX;
1419 }
1420 
1421 static bool __reg64_bound_u32(u64 a)
1422 {
1423 	return a >= U32_MIN && a <= U32_MAX;
1424 }
1425 
1426 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1427 {
1428 	__mark_reg32_unbounded(reg);
1429 
1430 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1431 		reg->s32_min_value = (s32)reg->smin_value;
1432 		reg->s32_max_value = (s32)reg->smax_value;
1433 	}
1434 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1435 		reg->u32_min_value = (u32)reg->umin_value;
1436 		reg->u32_max_value = (u32)reg->umax_value;
1437 	}
1438 
1439 	/* Intersecting with the old var_off might have improved our bounds
1440 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1441 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1442 	 */
1443 	__reg_deduce_bounds(reg);
1444 	__reg_bound_offset(reg);
1445 	__update_reg_bounds(reg);
1446 }
1447 
1448 /* Mark a register as having a completely unknown (scalar) value. */
1449 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1450 			       struct bpf_reg_state *reg)
1451 {
1452 	/*
1453 	 * Clear type, id, off, and union(map_ptr, range) and
1454 	 * padding between 'type' and union
1455 	 */
1456 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1457 	reg->type = SCALAR_VALUE;
1458 	reg->var_off = tnum_unknown;
1459 	reg->frameno = 0;
1460 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1461 	__mark_reg_unbounded(reg);
1462 }
1463 
1464 static void mark_reg_unknown(struct bpf_verifier_env *env,
1465 			     struct bpf_reg_state *regs, u32 regno)
1466 {
1467 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1468 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1469 		/* Something bad happened, let's kill all regs except FP */
1470 		for (regno = 0; regno < BPF_REG_FP; regno++)
1471 			__mark_reg_not_init(env, regs + regno);
1472 		return;
1473 	}
1474 	__mark_reg_unknown(env, regs + regno);
1475 }
1476 
1477 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1478 				struct bpf_reg_state *reg)
1479 {
1480 	__mark_reg_unknown(env, reg);
1481 	reg->type = NOT_INIT;
1482 }
1483 
1484 static void mark_reg_not_init(struct bpf_verifier_env *env,
1485 			      struct bpf_reg_state *regs, u32 regno)
1486 {
1487 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1488 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1489 		/* Something bad happened, let's kill all regs except FP */
1490 		for (regno = 0; regno < BPF_REG_FP; regno++)
1491 			__mark_reg_not_init(env, regs + regno);
1492 		return;
1493 	}
1494 	__mark_reg_not_init(env, regs + regno);
1495 }
1496 
1497 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1498 			    struct bpf_reg_state *regs, u32 regno,
1499 			    enum bpf_reg_type reg_type,
1500 			    struct btf *btf, u32 btf_id)
1501 {
1502 	if (reg_type == SCALAR_VALUE) {
1503 		mark_reg_unknown(env, regs, regno);
1504 		return;
1505 	}
1506 	mark_reg_known_zero(env, regs, regno);
1507 	regs[regno].type = PTR_TO_BTF_ID;
1508 	regs[regno].btf = btf;
1509 	regs[regno].btf_id = btf_id;
1510 }
1511 
1512 #define DEF_NOT_SUBREG	(0)
1513 static void init_reg_state(struct bpf_verifier_env *env,
1514 			   struct bpf_func_state *state)
1515 {
1516 	struct bpf_reg_state *regs = state->regs;
1517 	int i;
1518 
1519 	for (i = 0; i < MAX_BPF_REG; i++) {
1520 		mark_reg_not_init(env, regs, i);
1521 		regs[i].live = REG_LIVE_NONE;
1522 		regs[i].parent = NULL;
1523 		regs[i].subreg_def = DEF_NOT_SUBREG;
1524 	}
1525 
1526 	/* frame pointer */
1527 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1528 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1529 	regs[BPF_REG_FP].frameno = state->frameno;
1530 }
1531 
1532 #define BPF_MAIN_FUNC (-1)
1533 static void init_func_state(struct bpf_verifier_env *env,
1534 			    struct bpf_func_state *state,
1535 			    int callsite, int frameno, int subprogno)
1536 {
1537 	state->callsite = callsite;
1538 	state->frameno = frameno;
1539 	state->subprogno = subprogno;
1540 	init_reg_state(env, state);
1541 }
1542 
1543 /* Similar to push_stack(), but for async callbacks */
1544 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
1545 						int insn_idx, int prev_insn_idx,
1546 						int subprog)
1547 {
1548 	struct bpf_verifier_stack_elem *elem;
1549 	struct bpf_func_state *frame;
1550 
1551 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1552 	if (!elem)
1553 		goto err;
1554 
1555 	elem->insn_idx = insn_idx;
1556 	elem->prev_insn_idx = prev_insn_idx;
1557 	elem->next = env->head;
1558 	elem->log_pos = env->log.len_used;
1559 	env->head = elem;
1560 	env->stack_size++;
1561 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1562 		verbose(env,
1563 			"The sequence of %d jumps is too complex for async cb.\n",
1564 			env->stack_size);
1565 		goto err;
1566 	}
1567 	/* Unlike push_stack() do not copy_verifier_state().
1568 	 * The caller state doesn't matter.
1569 	 * This is async callback. It starts in a fresh stack.
1570 	 * Initialize it similar to do_check_common().
1571 	 */
1572 	elem->st.branches = 1;
1573 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1574 	if (!frame)
1575 		goto err;
1576 	init_func_state(env, frame,
1577 			BPF_MAIN_FUNC /* callsite */,
1578 			0 /* frameno within this callchain */,
1579 			subprog /* subprog number within this prog */);
1580 	elem->st.frame[0] = frame;
1581 	return &elem->st;
1582 err:
1583 	free_verifier_state(env->cur_state, true);
1584 	env->cur_state = NULL;
1585 	/* pop all elements and return */
1586 	while (!pop_stack(env, NULL, NULL, false));
1587 	return NULL;
1588 }
1589 
1590 
1591 enum reg_arg_type {
1592 	SRC_OP,		/* register is used as source operand */
1593 	DST_OP,		/* register is used as destination operand */
1594 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1595 };
1596 
1597 static int cmp_subprogs(const void *a, const void *b)
1598 {
1599 	return ((struct bpf_subprog_info *)a)->start -
1600 	       ((struct bpf_subprog_info *)b)->start;
1601 }
1602 
1603 static int find_subprog(struct bpf_verifier_env *env, int off)
1604 {
1605 	struct bpf_subprog_info *p;
1606 
1607 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1608 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1609 	if (!p)
1610 		return -ENOENT;
1611 	return p - env->subprog_info;
1612 
1613 }
1614 
1615 static int add_subprog(struct bpf_verifier_env *env, int off)
1616 {
1617 	int insn_cnt = env->prog->len;
1618 	int ret;
1619 
1620 	if (off >= insn_cnt || off < 0) {
1621 		verbose(env, "call to invalid destination\n");
1622 		return -EINVAL;
1623 	}
1624 	ret = find_subprog(env, off);
1625 	if (ret >= 0)
1626 		return ret;
1627 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1628 		verbose(env, "too many subprograms\n");
1629 		return -E2BIG;
1630 	}
1631 	/* determine subprog starts. The end is one before the next starts */
1632 	env->subprog_info[env->subprog_cnt++].start = off;
1633 	sort(env->subprog_info, env->subprog_cnt,
1634 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1635 	return env->subprog_cnt - 1;
1636 }
1637 
1638 #define MAX_KFUNC_DESCS 256
1639 #define MAX_KFUNC_BTFS	256
1640 
1641 struct bpf_kfunc_desc {
1642 	struct btf_func_model func_model;
1643 	u32 func_id;
1644 	s32 imm;
1645 	u16 offset;
1646 };
1647 
1648 struct bpf_kfunc_btf {
1649 	struct btf *btf;
1650 	struct module *module;
1651 	u16 offset;
1652 };
1653 
1654 struct bpf_kfunc_desc_tab {
1655 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1656 	u32 nr_descs;
1657 };
1658 
1659 struct bpf_kfunc_btf_tab {
1660 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
1661 	u32 nr_descs;
1662 };
1663 
1664 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
1665 {
1666 	const struct bpf_kfunc_desc *d0 = a;
1667 	const struct bpf_kfunc_desc *d1 = b;
1668 
1669 	/* func_id is not greater than BTF_MAX_TYPE */
1670 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
1671 }
1672 
1673 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
1674 {
1675 	const struct bpf_kfunc_btf *d0 = a;
1676 	const struct bpf_kfunc_btf *d1 = b;
1677 
1678 	return d0->offset - d1->offset;
1679 }
1680 
1681 static const struct bpf_kfunc_desc *
1682 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
1683 {
1684 	struct bpf_kfunc_desc desc = {
1685 		.func_id = func_id,
1686 		.offset = offset,
1687 	};
1688 	struct bpf_kfunc_desc_tab *tab;
1689 
1690 	tab = prog->aux->kfunc_tab;
1691 	return bsearch(&desc, tab->descs, tab->nr_descs,
1692 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
1693 }
1694 
1695 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
1696 					 s16 offset, struct module **btf_modp)
1697 {
1698 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
1699 	struct bpf_kfunc_btf_tab *tab;
1700 	struct bpf_kfunc_btf *b;
1701 	struct module *mod;
1702 	struct btf *btf;
1703 	int btf_fd;
1704 
1705 	tab = env->prog->aux->kfunc_btf_tab;
1706 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
1707 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
1708 	if (!b) {
1709 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
1710 			verbose(env, "too many different module BTFs\n");
1711 			return ERR_PTR(-E2BIG);
1712 		}
1713 
1714 		if (bpfptr_is_null(env->fd_array)) {
1715 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
1716 			return ERR_PTR(-EPROTO);
1717 		}
1718 
1719 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
1720 					    offset * sizeof(btf_fd),
1721 					    sizeof(btf_fd)))
1722 			return ERR_PTR(-EFAULT);
1723 
1724 		btf = btf_get_by_fd(btf_fd);
1725 		if (IS_ERR(btf)) {
1726 			verbose(env, "invalid module BTF fd specified\n");
1727 			return btf;
1728 		}
1729 
1730 		if (!btf_is_module(btf)) {
1731 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
1732 			btf_put(btf);
1733 			return ERR_PTR(-EINVAL);
1734 		}
1735 
1736 		mod = btf_try_get_module(btf);
1737 		if (!mod) {
1738 			btf_put(btf);
1739 			return ERR_PTR(-ENXIO);
1740 		}
1741 
1742 		b = &tab->descs[tab->nr_descs++];
1743 		b->btf = btf;
1744 		b->module = mod;
1745 		b->offset = offset;
1746 
1747 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1748 		     kfunc_btf_cmp_by_off, NULL);
1749 	}
1750 	if (btf_modp)
1751 		*btf_modp = b->module;
1752 	return b->btf;
1753 }
1754 
1755 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
1756 {
1757 	if (!tab)
1758 		return;
1759 
1760 	while (tab->nr_descs--) {
1761 		module_put(tab->descs[tab->nr_descs].module);
1762 		btf_put(tab->descs[tab->nr_descs].btf);
1763 	}
1764 	kfree(tab);
1765 }
1766 
1767 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env,
1768 				       u32 func_id, s16 offset,
1769 				       struct module **btf_modp)
1770 {
1771 	if (offset) {
1772 		if (offset < 0) {
1773 			/* In the future, this can be allowed to increase limit
1774 			 * of fd index into fd_array, interpreted as u16.
1775 			 */
1776 			verbose(env, "negative offset disallowed for kernel module function call\n");
1777 			return ERR_PTR(-EINVAL);
1778 		}
1779 
1780 		return __find_kfunc_desc_btf(env, offset, btf_modp);
1781 	}
1782 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
1783 }
1784 
1785 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
1786 {
1787 	const struct btf_type *func, *func_proto;
1788 	struct bpf_kfunc_btf_tab *btf_tab;
1789 	struct bpf_kfunc_desc_tab *tab;
1790 	struct bpf_prog_aux *prog_aux;
1791 	struct bpf_kfunc_desc *desc;
1792 	const char *func_name;
1793 	struct btf *desc_btf;
1794 	unsigned long addr;
1795 	int err;
1796 
1797 	prog_aux = env->prog->aux;
1798 	tab = prog_aux->kfunc_tab;
1799 	btf_tab = prog_aux->kfunc_btf_tab;
1800 	if (!tab) {
1801 		if (!btf_vmlinux) {
1802 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1803 			return -ENOTSUPP;
1804 		}
1805 
1806 		if (!env->prog->jit_requested) {
1807 			verbose(env, "JIT is required for calling kernel function\n");
1808 			return -ENOTSUPP;
1809 		}
1810 
1811 		if (!bpf_jit_supports_kfunc_call()) {
1812 			verbose(env, "JIT does not support calling kernel function\n");
1813 			return -ENOTSUPP;
1814 		}
1815 
1816 		if (!env->prog->gpl_compatible) {
1817 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1818 			return -EINVAL;
1819 		}
1820 
1821 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1822 		if (!tab)
1823 			return -ENOMEM;
1824 		prog_aux->kfunc_tab = tab;
1825 	}
1826 
1827 	/* func_id == 0 is always invalid, but instead of returning an error, be
1828 	 * conservative and wait until the code elimination pass before returning
1829 	 * error, so that invalid calls that get pruned out can be in BPF programs
1830 	 * loaded from userspace.  It is also required that offset be untouched
1831 	 * for such calls.
1832 	 */
1833 	if (!func_id && !offset)
1834 		return 0;
1835 
1836 	if (!btf_tab && offset) {
1837 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
1838 		if (!btf_tab)
1839 			return -ENOMEM;
1840 		prog_aux->kfunc_btf_tab = btf_tab;
1841 	}
1842 
1843 	desc_btf = find_kfunc_desc_btf(env, func_id, offset, NULL);
1844 	if (IS_ERR(desc_btf)) {
1845 		verbose(env, "failed to find BTF for kernel function\n");
1846 		return PTR_ERR(desc_btf);
1847 	}
1848 
1849 	if (find_kfunc_desc(env->prog, func_id, offset))
1850 		return 0;
1851 
1852 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
1853 		verbose(env, "too many different kernel function calls\n");
1854 		return -E2BIG;
1855 	}
1856 
1857 	func = btf_type_by_id(desc_btf, func_id);
1858 	if (!func || !btf_type_is_func(func)) {
1859 		verbose(env, "kernel btf_id %u is not a function\n",
1860 			func_id);
1861 		return -EINVAL;
1862 	}
1863 	func_proto = btf_type_by_id(desc_btf, func->type);
1864 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1865 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1866 			func_id);
1867 		return -EINVAL;
1868 	}
1869 
1870 	func_name = btf_name_by_offset(desc_btf, func->name_off);
1871 	addr = kallsyms_lookup_name(func_name);
1872 	if (!addr) {
1873 		verbose(env, "cannot find address for kernel function %s\n",
1874 			func_name);
1875 		return -EINVAL;
1876 	}
1877 
1878 	desc = &tab->descs[tab->nr_descs++];
1879 	desc->func_id = func_id;
1880 	desc->imm = BPF_CALL_IMM(addr);
1881 	desc->offset = offset;
1882 	err = btf_distill_func_proto(&env->log, desc_btf,
1883 				     func_proto, func_name,
1884 				     &desc->func_model);
1885 	if (!err)
1886 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1887 		     kfunc_desc_cmp_by_id_off, NULL);
1888 	return err;
1889 }
1890 
1891 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1892 {
1893 	const struct bpf_kfunc_desc *d0 = a;
1894 	const struct bpf_kfunc_desc *d1 = b;
1895 
1896 	if (d0->imm > d1->imm)
1897 		return 1;
1898 	else if (d0->imm < d1->imm)
1899 		return -1;
1900 	return 0;
1901 }
1902 
1903 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1904 {
1905 	struct bpf_kfunc_desc_tab *tab;
1906 
1907 	tab = prog->aux->kfunc_tab;
1908 	if (!tab)
1909 		return;
1910 
1911 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1912 	     kfunc_desc_cmp_by_imm, NULL);
1913 }
1914 
1915 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1916 {
1917 	return !!prog->aux->kfunc_tab;
1918 }
1919 
1920 const struct btf_func_model *
1921 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1922 			 const struct bpf_insn *insn)
1923 {
1924 	const struct bpf_kfunc_desc desc = {
1925 		.imm = insn->imm,
1926 	};
1927 	const struct bpf_kfunc_desc *res;
1928 	struct bpf_kfunc_desc_tab *tab;
1929 
1930 	tab = prog->aux->kfunc_tab;
1931 	res = bsearch(&desc, tab->descs, tab->nr_descs,
1932 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1933 
1934 	return res ? &res->func_model : NULL;
1935 }
1936 
1937 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1938 {
1939 	struct bpf_subprog_info *subprog = env->subprog_info;
1940 	struct bpf_insn *insn = env->prog->insnsi;
1941 	int i, ret, insn_cnt = env->prog->len;
1942 
1943 	/* Add entry function. */
1944 	ret = add_subprog(env, 0);
1945 	if (ret)
1946 		return ret;
1947 
1948 	for (i = 0; i < insn_cnt; i++, insn++) {
1949 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1950 		    !bpf_pseudo_kfunc_call(insn))
1951 			continue;
1952 
1953 		if (!env->bpf_capable) {
1954 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1955 			return -EPERM;
1956 		}
1957 
1958 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
1959 			ret = add_subprog(env, i + insn->imm + 1);
1960 		else
1961 			ret = add_kfunc_call(env, insn->imm, insn->off);
1962 
1963 		if (ret < 0)
1964 			return ret;
1965 	}
1966 
1967 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1968 	 * logic. 'subprog_cnt' should not be increased.
1969 	 */
1970 	subprog[env->subprog_cnt].start = insn_cnt;
1971 
1972 	if (env->log.level & BPF_LOG_LEVEL2)
1973 		for (i = 0; i < env->subprog_cnt; i++)
1974 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1975 
1976 	return 0;
1977 }
1978 
1979 static int check_subprogs(struct bpf_verifier_env *env)
1980 {
1981 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
1982 	struct bpf_subprog_info *subprog = env->subprog_info;
1983 	struct bpf_insn *insn = env->prog->insnsi;
1984 	int insn_cnt = env->prog->len;
1985 
1986 	/* now check that all jumps are within the same subprog */
1987 	subprog_start = subprog[cur_subprog].start;
1988 	subprog_end = subprog[cur_subprog + 1].start;
1989 	for (i = 0; i < insn_cnt; i++) {
1990 		u8 code = insn[i].code;
1991 
1992 		if (code == (BPF_JMP | BPF_CALL) &&
1993 		    insn[i].imm == BPF_FUNC_tail_call &&
1994 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1995 			subprog[cur_subprog].has_tail_call = true;
1996 		if (BPF_CLASS(code) == BPF_LD &&
1997 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1998 			subprog[cur_subprog].has_ld_abs = true;
1999 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2000 			goto next;
2001 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2002 			goto next;
2003 		off = i + insn[i].off + 1;
2004 		if (off < subprog_start || off >= subprog_end) {
2005 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2006 			return -EINVAL;
2007 		}
2008 next:
2009 		if (i == subprog_end - 1) {
2010 			/* to avoid fall-through from one subprog into another
2011 			 * the last insn of the subprog should be either exit
2012 			 * or unconditional jump back
2013 			 */
2014 			if (code != (BPF_JMP | BPF_EXIT) &&
2015 			    code != (BPF_JMP | BPF_JA)) {
2016 				verbose(env, "last insn is not an exit or jmp\n");
2017 				return -EINVAL;
2018 			}
2019 			subprog_start = subprog_end;
2020 			cur_subprog++;
2021 			if (cur_subprog < env->subprog_cnt)
2022 				subprog_end = subprog[cur_subprog + 1].start;
2023 		}
2024 	}
2025 	return 0;
2026 }
2027 
2028 /* Parentage chain of this register (or stack slot) should take care of all
2029  * issues like callee-saved registers, stack slot allocation time, etc.
2030  */
2031 static int mark_reg_read(struct bpf_verifier_env *env,
2032 			 const struct bpf_reg_state *state,
2033 			 struct bpf_reg_state *parent, u8 flag)
2034 {
2035 	bool writes = parent == state->parent; /* Observe write marks */
2036 	int cnt = 0;
2037 
2038 	while (parent) {
2039 		/* if read wasn't screened by an earlier write ... */
2040 		if (writes && state->live & REG_LIVE_WRITTEN)
2041 			break;
2042 		if (parent->live & REG_LIVE_DONE) {
2043 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2044 				reg_type_str[parent->type],
2045 				parent->var_off.value, parent->off);
2046 			return -EFAULT;
2047 		}
2048 		/* The first condition is more likely to be true than the
2049 		 * second, checked it first.
2050 		 */
2051 		if ((parent->live & REG_LIVE_READ) == flag ||
2052 		    parent->live & REG_LIVE_READ64)
2053 			/* The parentage chain never changes and
2054 			 * this parent was already marked as LIVE_READ.
2055 			 * There is no need to keep walking the chain again and
2056 			 * keep re-marking all parents as LIVE_READ.
2057 			 * This case happens when the same register is read
2058 			 * multiple times without writes into it in-between.
2059 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2060 			 * then no need to set the weak REG_LIVE_READ32.
2061 			 */
2062 			break;
2063 		/* ... then we depend on parent's value */
2064 		parent->live |= flag;
2065 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2066 		if (flag == REG_LIVE_READ64)
2067 			parent->live &= ~REG_LIVE_READ32;
2068 		state = parent;
2069 		parent = state->parent;
2070 		writes = true;
2071 		cnt++;
2072 	}
2073 
2074 	if (env->longest_mark_read_walk < cnt)
2075 		env->longest_mark_read_walk = cnt;
2076 	return 0;
2077 }
2078 
2079 /* This function is supposed to be used by the following 32-bit optimization
2080  * code only. It returns TRUE if the source or destination register operates
2081  * on 64-bit, otherwise return FALSE.
2082  */
2083 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2084 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2085 {
2086 	u8 code, class, op;
2087 
2088 	code = insn->code;
2089 	class = BPF_CLASS(code);
2090 	op = BPF_OP(code);
2091 	if (class == BPF_JMP) {
2092 		/* BPF_EXIT for "main" will reach here. Return TRUE
2093 		 * conservatively.
2094 		 */
2095 		if (op == BPF_EXIT)
2096 			return true;
2097 		if (op == BPF_CALL) {
2098 			/* BPF to BPF call will reach here because of marking
2099 			 * caller saved clobber with DST_OP_NO_MARK for which we
2100 			 * don't care the register def because they are anyway
2101 			 * marked as NOT_INIT already.
2102 			 */
2103 			if (insn->src_reg == BPF_PSEUDO_CALL)
2104 				return false;
2105 			/* Helper call will reach here because of arg type
2106 			 * check, conservatively return TRUE.
2107 			 */
2108 			if (t == SRC_OP)
2109 				return true;
2110 
2111 			return false;
2112 		}
2113 	}
2114 
2115 	if (class == BPF_ALU64 || class == BPF_JMP ||
2116 	    /* BPF_END always use BPF_ALU class. */
2117 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
2118 		return true;
2119 
2120 	if (class == BPF_ALU || class == BPF_JMP32)
2121 		return false;
2122 
2123 	if (class == BPF_LDX) {
2124 		if (t != SRC_OP)
2125 			return BPF_SIZE(code) == BPF_DW;
2126 		/* LDX source must be ptr. */
2127 		return true;
2128 	}
2129 
2130 	if (class == BPF_STX) {
2131 		/* BPF_STX (including atomic variants) has multiple source
2132 		 * operands, one of which is a ptr. Check whether the caller is
2133 		 * asking about it.
2134 		 */
2135 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
2136 			return true;
2137 		return BPF_SIZE(code) == BPF_DW;
2138 	}
2139 
2140 	if (class == BPF_LD) {
2141 		u8 mode = BPF_MODE(code);
2142 
2143 		/* LD_IMM64 */
2144 		if (mode == BPF_IMM)
2145 			return true;
2146 
2147 		/* Both LD_IND and LD_ABS return 32-bit data. */
2148 		if (t != SRC_OP)
2149 			return  false;
2150 
2151 		/* Implicit ctx ptr. */
2152 		if (regno == BPF_REG_6)
2153 			return true;
2154 
2155 		/* Explicit source could be any width. */
2156 		return true;
2157 	}
2158 
2159 	if (class == BPF_ST)
2160 		/* The only source register for BPF_ST is a ptr. */
2161 		return true;
2162 
2163 	/* Conservatively return true at default. */
2164 	return true;
2165 }
2166 
2167 /* Return the regno defined by the insn, or -1. */
2168 static int insn_def_regno(const struct bpf_insn *insn)
2169 {
2170 	switch (BPF_CLASS(insn->code)) {
2171 	case BPF_JMP:
2172 	case BPF_JMP32:
2173 	case BPF_ST:
2174 		return -1;
2175 	case BPF_STX:
2176 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
2177 		    (insn->imm & BPF_FETCH)) {
2178 			if (insn->imm == BPF_CMPXCHG)
2179 				return BPF_REG_0;
2180 			else
2181 				return insn->src_reg;
2182 		} else {
2183 			return -1;
2184 		}
2185 	default:
2186 		return insn->dst_reg;
2187 	}
2188 }
2189 
2190 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
2191 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
2192 {
2193 	int dst_reg = insn_def_regno(insn);
2194 
2195 	if (dst_reg == -1)
2196 		return false;
2197 
2198 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
2199 }
2200 
2201 static void mark_insn_zext(struct bpf_verifier_env *env,
2202 			   struct bpf_reg_state *reg)
2203 {
2204 	s32 def_idx = reg->subreg_def;
2205 
2206 	if (def_idx == DEF_NOT_SUBREG)
2207 		return;
2208 
2209 	env->insn_aux_data[def_idx - 1].zext_dst = true;
2210 	/* The dst will be zero extended, so won't be sub-register anymore. */
2211 	reg->subreg_def = DEF_NOT_SUBREG;
2212 }
2213 
2214 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2215 			 enum reg_arg_type t)
2216 {
2217 	struct bpf_verifier_state *vstate = env->cur_state;
2218 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2219 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2220 	struct bpf_reg_state *reg, *regs = state->regs;
2221 	bool rw64;
2222 
2223 	if (regno >= MAX_BPF_REG) {
2224 		verbose(env, "R%d is invalid\n", regno);
2225 		return -EINVAL;
2226 	}
2227 
2228 	reg = &regs[regno];
2229 	rw64 = is_reg64(env, insn, regno, reg, t);
2230 	if (t == SRC_OP) {
2231 		/* check whether register used as source operand can be read */
2232 		if (reg->type == NOT_INIT) {
2233 			verbose(env, "R%d !read_ok\n", regno);
2234 			return -EACCES;
2235 		}
2236 		/* We don't need to worry about FP liveness because it's read-only */
2237 		if (regno == BPF_REG_FP)
2238 			return 0;
2239 
2240 		if (rw64)
2241 			mark_insn_zext(env, reg);
2242 
2243 		return mark_reg_read(env, reg, reg->parent,
2244 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2245 	} else {
2246 		/* check whether register used as dest operand can be written to */
2247 		if (regno == BPF_REG_FP) {
2248 			verbose(env, "frame pointer is read only\n");
2249 			return -EACCES;
2250 		}
2251 		reg->live |= REG_LIVE_WRITTEN;
2252 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2253 		if (t == DST_OP)
2254 			mark_reg_unknown(env, regs, regno);
2255 	}
2256 	return 0;
2257 }
2258 
2259 /* for any branch, call, exit record the history of jmps in the given state */
2260 static int push_jmp_history(struct bpf_verifier_env *env,
2261 			    struct bpf_verifier_state *cur)
2262 {
2263 	u32 cnt = cur->jmp_history_cnt;
2264 	struct bpf_idx_pair *p;
2265 
2266 	cnt++;
2267 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2268 	if (!p)
2269 		return -ENOMEM;
2270 	p[cnt - 1].idx = env->insn_idx;
2271 	p[cnt - 1].prev_idx = env->prev_insn_idx;
2272 	cur->jmp_history = p;
2273 	cur->jmp_history_cnt = cnt;
2274 	return 0;
2275 }
2276 
2277 /* Backtrack one insn at a time. If idx is not at the top of recorded
2278  * history then previous instruction came from straight line execution.
2279  */
2280 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2281 			     u32 *history)
2282 {
2283 	u32 cnt = *history;
2284 
2285 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
2286 		i = st->jmp_history[cnt - 1].prev_idx;
2287 		(*history)--;
2288 	} else {
2289 		i--;
2290 	}
2291 	return i;
2292 }
2293 
2294 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2295 {
2296 	const struct btf_type *func;
2297 	struct btf *desc_btf;
2298 
2299 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2300 		return NULL;
2301 
2302 	desc_btf = find_kfunc_desc_btf(data, insn->imm, insn->off, NULL);
2303 	if (IS_ERR(desc_btf))
2304 		return "<error>";
2305 
2306 	func = btf_type_by_id(desc_btf, insn->imm);
2307 	return btf_name_by_offset(desc_btf, func->name_off);
2308 }
2309 
2310 /* For given verifier state backtrack_insn() is called from the last insn to
2311  * the first insn. Its purpose is to compute a bitmask of registers and
2312  * stack slots that needs precision in the parent verifier state.
2313  */
2314 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2315 			  u32 *reg_mask, u64 *stack_mask)
2316 {
2317 	const struct bpf_insn_cbs cbs = {
2318 		.cb_call	= disasm_kfunc_name,
2319 		.cb_print	= verbose,
2320 		.private_data	= env,
2321 	};
2322 	struct bpf_insn *insn = env->prog->insnsi + idx;
2323 	u8 class = BPF_CLASS(insn->code);
2324 	u8 opcode = BPF_OP(insn->code);
2325 	u8 mode = BPF_MODE(insn->code);
2326 	u32 dreg = 1u << insn->dst_reg;
2327 	u32 sreg = 1u << insn->src_reg;
2328 	u32 spi;
2329 
2330 	if (insn->code == 0)
2331 		return 0;
2332 	if (env->log.level & BPF_LOG_LEVEL) {
2333 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2334 		verbose(env, "%d: ", idx);
2335 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2336 	}
2337 
2338 	if (class == BPF_ALU || class == BPF_ALU64) {
2339 		if (!(*reg_mask & dreg))
2340 			return 0;
2341 		if (opcode == BPF_MOV) {
2342 			if (BPF_SRC(insn->code) == BPF_X) {
2343 				/* dreg = sreg
2344 				 * dreg needs precision after this insn
2345 				 * sreg needs precision before this insn
2346 				 */
2347 				*reg_mask &= ~dreg;
2348 				*reg_mask |= sreg;
2349 			} else {
2350 				/* dreg = K
2351 				 * dreg needs precision after this insn.
2352 				 * Corresponding register is already marked
2353 				 * as precise=true in this verifier state.
2354 				 * No further markings in parent are necessary
2355 				 */
2356 				*reg_mask &= ~dreg;
2357 			}
2358 		} else {
2359 			if (BPF_SRC(insn->code) == BPF_X) {
2360 				/* dreg += sreg
2361 				 * both dreg and sreg need precision
2362 				 * before this insn
2363 				 */
2364 				*reg_mask |= sreg;
2365 			} /* else dreg += K
2366 			   * dreg still needs precision before this insn
2367 			   */
2368 		}
2369 	} else if (class == BPF_LDX) {
2370 		if (!(*reg_mask & dreg))
2371 			return 0;
2372 		*reg_mask &= ~dreg;
2373 
2374 		/* scalars can only be spilled into stack w/o losing precision.
2375 		 * Load from any other memory can be zero extended.
2376 		 * The desire to keep that precision is already indicated
2377 		 * by 'precise' mark in corresponding register of this state.
2378 		 * No further tracking necessary.
2379 		 */
2380 		if (insn->src_reg != BPF_REG_FP)
2381 			return 0;
2382 		if (BPF_SIZE(insn->code) != BPF_DW)
2383 			return 0;
2384 
2385 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
2386 		 * that [fp - off] slot contains scalar that needs to be
2387 		 * tracked with precision
2388 		 */
2389 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2390 		if (spi >= 64) {
2391 			verbose(env, "BUG spi %d\n", spi);
2392 			WARN_ONCE(1, "verifier backtracking bug");
2393 			return -EFAULT;
2394 		}
2395 		*stack_mask |= 1ull << spi;
2396 	} else if (class == BPF_STX || class == BPF_ST) {
2397 		if (*reg_mask & dreg)
2398 			/* stx & st shouldn't be using _scalar_ dst_reg
2399 			 * to access memory. It means backtracking
2400 			 * encountered a case of pointer subtraction.
2401 			 */
2402 			return -ENOTSUPP;
2403 		/* scalars can only be spilled into stack */
2404 		if (insn->dst_reg != BPF_REG_FP)
2405 			return 0;
2406 		if (BPF_SIZE(insn->code) != BPF_DW)
2407 			return 0;
2408 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2409 		if (spi >= 64) {
2410 			verbose(env, "BUG spi %d\n", spi);
2411 			WARN_ONCE(1, "verifier backtracking bug");
2412 			return -EFAULT;
2413 		}
2414 		if (!(*stack_mask & (1ull << spi)))
2415 			return 0;
2416 		*stack_mask &= ~(1ull << spi);
2417 		if (class == BPF_STX)
2418 			*reg_mask |= sreg;
2419 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2420 		if (opcode == BPF_CALL) {
2421 			if (insn->src_reg == BPF_PSEUDO_CALL)
2422 				return -ENOTSUPP;
2423 			/* regular helper call sets R0 */
2424 			*reg_mask &= ~1;
2425 			if (*reg_mask & 0x3f) {
2426 				/* if backtracing was looking for registers R1-R5
2427 				 * they should have been found already.
2428 				 */
2429 				verbose(env, "BUG regs %x\n", *reg_mask);
2430 				WARN_ONCE(1, "verifier backtracking bug");
2431 				return -EFAULT;
2432 			}
2433 		} else if (opcode == BPF_EXIT) {
2434 			return -ENOTSUPP;
2435 		}
2436 	} else if (class == BPF_LD) {
2437 		if (!(*reg_mask & dreg))
2438 			return 0;
2439 		*reg_mask &= ~dreg;
2440 		/* It's ld_imm64 or ld_abs or ld_ind.
2441 		 * For ld_imm64 no further tracking of precision
2442 		 * into parent is necessary
2443 		 */
2444 		if (mode == BPF_IND || mode == BPF_ABS)
2445 			/* to be analyzed */
2446 			return -ENOTSUPP;
2447 	}
2448 	return 0;
2449 }
2450 
2451 /* the scalar precision tracking algorithm:
2452  * . at the start all registers have precise=false.
2453  * . scalar ranges are tracked as normal through alu and jmp insns.
2454  * . once precise value of the scalar register is used in:
2455  *   .  ptr + scalar alu
2456  *   . if (scalar cond K|scalar)
2457  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2458  *   backtrack through the verifier states and mark all registers and
2459  *   stack slots with spilled constants that these scalar regisers
2460  *   should be precise.
2461  * . during state pruning two registers (or spilled stack slots)
2462  *   are equivalent if both are not precise.
2463  *
2464  * Note the verifier cannot simply walk register parentage chain,
2465  * since many different registers and stack slots could have been
2466  * used to compute single precise scalar.
2467  *
2468  * The approach of starting with precise=true for all registers and then
2469  * backtrack to mark a register as not precise when the verifier detects
2470  * that program doesn't care about specific value (e.g., when helper
2471  * takes register as ARG_ANYTHING parameter) is not safe.
2472  *
2473  * It's ok to walk single parentage chain of the verifier states.
2474  * It's possible that this backtracking will go all the way till 1st insn.
2475  * All other branches will be explored for needing precision later.
2476  *
2477  * The backtracking needs to deal with cases like:
2478  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2479  * r9 -= r8
2480  * r5 = r9
2481  * if r5 > 0x79f goto pc+7
2482  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2483  * r5 += 1
2484  * ...
2485  * call bpf_perf_event_output#25
2486  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2487  *
2488  * and this case:
2489  * r6 = 1
2490  * call foo // uses callee's r6 inside to compute r0
2491  * r0 += r6
2492  * if r0 == 0 goto
2493  *
2494  * to track above reg_mask/stack_mask needs to be independent for each frame.
2495  *
2496  * Also if parent's curframe > frame where backtracking started,
2497  * the verifier need to mark registers in both frames, otherwise callees
2498  * may incorrectly prune callers. This is similar to
2499  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2500  *
2501  * For now backtracking falls back into conservative marking.
2502  */
2503 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2504 				     struct bpf_verifier_state *st)
2505 {
2506 	struct bpf_func_state *func;
2507 	struct bpf_reg_state *reg;
2508 	int i, j;
2509 
2510 	/* big hammer: mark all scalars precise in this path.
2511 	 * pop_stack may still get !precise scalars.
2512 	 */
2513 	for (; st; st = st->parent)
2514 		for (i = 0; i <= st->curframe; i++) {
2515 			func = st->frame[i];
2516 			for (j = 0; j < BPF_REG_FP; j++) {
2517 				reg = &func->regs[j];
2518 				if (reg->type != SCALAR_VALUE)
2519 					continue;
2520 				reg->precise = true;
2521 			}
2522 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2523 				if (!is_spilled_reg(&func->stack[j]))
2524 					continue;
2525 				reg = &func->stack[j].spilled_ptr;
2526 				if (reg->type != SCALAR_VALUE)
2527 					continue;
2528 				reg->precise = true;
2529 			}
2530 		}
2531 }
2532 
2533 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2534 				  int spi)
2535 {
2536 	struct bpf_verifier_state *st = env->cur_state;
2537 	int first_idx = st->first_insn_idx;
2538 	int last_idx = env->insn_idx;
2539 	struct bpf_func_state *func;
2540 	struct bpf_reg_state *reg;
2541 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2542 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2543 	bool skip_first = true;
2544 	bool new_marks = false;
2545 	int i, err;
2546 
2547 	if (!env->bpf_capable)
2548 		return 0;
2549 
2550 	func = st->frame[st->curframe];
2551 	if (regno >= 0) {
2552 		reg = &func->regs[regno];
2553 		if (reg->type != SCALAR_VALUE) {
2554 			WARN_ONCE(1, "backtracing misuse");
2555 			return -EFAULT;
2556 		}
2557 		if (!reg->precise)
2558 			new_marks = true;
2559 		else
2560 			reg_mask = 0;
2561 		reg->precise = true;
2562 	}
2563 
2564 	while (spi >= 0) {
2565 		if (!is_spilled_reg(&func->stack[spi])) {
2566 			stack_mask = 0;
2567 			break;
2568 		}
2569 		reg = &func->stack[spi].spilled_ptr;
2570 		if (reg->type != SCALAR_VALUE) {
2571 			stack_mask = 0;
2572 			break;
2573 		}
2574 		if (!reg->precise)
2575 			new_marks = true;
2576 		else
2577 			stack_mask = 0;
2578 		reg->precise = true;
2579 		break;
2580 	}
2581 
2582 	if (!new_marks)
2583 		return 0;
2584 	if (!reg_mask && !stack_mask)
2585 		return 0;
2586 	for (;;) {
2587 		DECLARE_BITMAP(mask, 64);
2588 		u32 history = st->jmp_history_cnt;
2589 
2590 		if (env->log.level & BPF_LOG_LEVEL)
2591 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2592 		for (i = last_idx;;) {
2593 			if (skip_first) {
2594 				err = 0;
2595 				skip_first = false;
2596 			} else {
2597 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2598 			}
2599 			if (err == -ENOTSUPP) {
2600 				mark_all_scalars_precise(env, st);
2601 				return 0;
2602 			} else if (err) {
2603 				return err;
2604 			}
2605 			if (!reg_mask && !stack_mask)
2606 				/* Found assignment(s) into tracked register in this state.
2607 				 * Since this state is already marked, just return.
2608 				 * Nothing to be tracked further in the parent state.
2609 				 */
2610 				return 0;
2611 			if (i == first_idx)
2612 				break;
2613 			i = get_prev_insn_idx(st, i, &history);
2614 			if (i >= env->prog->len) {
2615 				/* This can happen if backtracking reached insn 0
2616 				 * and there are still reg_mask or stack_mask
2617 				 * to backtrack.
2618 				 * It means the backtracking missed the spot where
2619 				 * particular register was initialized with a constant.
2620 				 */
2621 				verbose(env, "BUG backtracking idx %d\n", i);
2622 				WARN_ONCE(1, "verifier backtracking bug");
2623 				return -EFAULT;
2624 			}
2625 		}
2626 		st = st->parent;
2627 		if (!st)
2628 			break;
2629 
2630 		new_marks = false;
2631 		func = st->frame[st->curframe];
2632 		bitmap_from_u64(mask, reg_mask);
2633 		for_each_set_bit(i, mask, 32) {
2634 			reg = &func->regs[i];
2635 			if (reg->type != SCALAR_VALUE) {
2636 				reg_mask &= ~(1u << i);
2637 				continue;
2638 			}
2639 			if (!reg->precise)
2640 				new_marks = true;
2641 			reg->precise = true;
2642 		}
2643 
2644 		bitmap_from_u64(mask, stack_mask);
2645 		for_each_set_bit(i, mask, 64) {
2646 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2647 				/* the sequence of instructions:
2648 				 * 2: (bf) r3 = r10
2649 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2650 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2651 				 * doesn't contain jmps. It's backtracked
2652 				 * as a single block.
2653 				 * During backtracking insn 3 is not recognized as
2654 				 * stack access, so at the end of backtracking
2655 				 * stack slot fp-8 is still marked in stack_mask.
2656 				 * However the parent state may not have accessed
2657 				 * fp-8 and it's "unallocated" stack space.
2658 				 * In such case fallback to conservative.
2659 				 */
2660 				mark_all_scalars_precise(env, st);
2661 				return 0;
2662 			}
2663 
2664 			if (!is_spilled_reg(&func->stack[i])) {
2665 				stack_mask &= ~(1ull << i);
2666 				continue;
2667 			}
2668 			reg = &func->stack[i].spilled_ptr;
2669 			if (reg->type != SCALAR_VALUE) {
2670 				stack_mask &= ~(1ull << i);
2671 				continue;
2672 			}
2673 			if (!reg->precise)
2674 				new_marks = true;
2675 			reg->precise = true;
2676 		}
2677 		if (env->log.level & BPF_LOG_LEVEL) {
2678 			print_verifier_state(env, func);
2679 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2680 				new_marks ? "didn't have" : "already had",
2681 				reg_mask, stack_mask);
2682 		}
2683 
2684 		if (!reg_mask && !stack_mask)
2685 			break;
2686 		if (!new_marks)
2687 			break;
2688 
2689 		last_idx = st->last_insn_idx;
2690 		first_idx = st->first_insn_idx;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2696 {
2697 	return __mark_chain_precision(env, regno, -1);
2698 }
2699 
2700 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2701 {
2702 	return __mark_chain_precision(env, -1, spi);
2703 }
2704 
2705 static bool is_spillable_regtype(enum bpf_reg_type type)
2706 {
2707 	switch (type) {
2708 	case PTR_TO_MAP_VALUE:
2709 	case PTR_TO_MAP_VALUE_OR_NULL:
2710 	case PTR_TO_STACK:
2711 	case PTR_TO_CTX:
2712 	case PTR_TO_PACKET:
2713 	case PTR_TO_PACKET_META:
2714 	case PTR_TO_PACKET_END:
2715 	case PTR_TO_FLOW_KEYS:
2716 	case CONST_PTR_TO_MAP:
2717 	case PTR_TO_SOCKET:
2718 	case PTR_TO_SOCKET_OR_NULL:
2719 	case PTR_TO_SOCK_COMMON:
2720 	case PTR_TO_SOCK_COMMON_OR_NULL:
2721 	case PTR_TO_TCP_SOCK:
2722 	case PTR_TO_TCP_SOCK_OR_NULL:
2723 	case PTR_TO_XDP_SOCK:
2724 	case PTR_TO_BTF_ID:
2725 	case PTR_TO_BTF_ID_OR_NULL:
2726 	case PTR_TO_RDONLY_BUF:
2727 	case PTR_TO_RDONLY_BUF_OR_NULL:
2728 	case PTR_TO_RDWR_BUF:
2729 	case PTR_TO_RDWR_BUF_OR_NULL:
2730 	case PTR_TO_PERCPU_BTF_ID:
2731 	case PTR_TO_MEM:
2732 	case PTR_TO_MEM_OR_NULL:
2733 	case PTR_TO_FUNC:
2734 	case PTR_TO_MAP_KEY:
2735 		return true;
2736 	default:
2737 		return false;
2738 	}
2739 }
2740 
2741 /* Does this register contain a constant zero? */
2742 static bool register_is_null(struct bpf_reg_state *reg)
2743 {
2744 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2745 }
2746 
2747 static bool register_is_const(struct bpf_reg_state *reg)
2748 {
2749 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2750 }
2751 
2752 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2753 {
2754 	return tnum_is_unknown(reg->var_off) &&
2755 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2756 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2757 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2758 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2759 }
2760 
2761 static bool register_is_bounded(struct bpf_reg_state *reg)
2762 {
2763 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2764 }
2765 
2766 static bool __is_pointer_value(bool allow_ptr_leaks,
2767 			       const struct bpf_reg_state *reg)
2768 {
2769 	if (allow_ptr_leaks)
2770 		return false;
2771 
2772 	return reg->type != SCALAR_VALUE;
2773 }
2774 
2775 static void save_register_state(struct bpf_func_state *state,
2776 				int spi, struct bpf_reg_state *reg,
2777 				int size)
2778 {
2779 	int i;
2780 
2781 	state->stack[spi].spilled_ptr = *reg;
2782 	if (size == BPF_REG_SIZE)
2783 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2784 
2785 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
2786 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
2787 
2788 	/* size < 8 bytes spill */
2789 	for (; i; i--)
2790 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
2791 }
2792 
2793 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2794  * stack boundary and alignment are checked in check_mem_access()
2795  */
2796 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2797 				       /* stack frame we're writing to */
2798 				       struct bpf_func_state *state,
2799 				       int off, int size, int value_regno,
2800 				       int insn_idx)
2801 {
2802 	struct bpf_func_state *cur; /* state of the current function */
2803 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2804 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2805 	struct bpf_reg_state *reg = NULL;
2806 
2807 	err = grow_stack_state(state, round_up(slot + 1, BPF_REG_SIZE));
2808 	if (err)
2809 		return err;
2810 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2811 	 * so it's aligned access and [off, off + size) are within stack limits
2812 	 */
2813 	if (!env->allow_ptr_leaks &&
2814 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2815 	    size != BPF_REG_SIZE) {
2816 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2817 		return -EACCES;
2818 	}
2819 
2820 	cur = env->cur_state->frame[env->cur_state->curframe];
2821 	if (value_regno >= 0)
2822 		reg = &cur->regs[value_regno];
2823 	if (!env->bypass_spec_v4) {
2824 		bool sanitize = reg && is_spillable_regtype(reg->type);
2825 
2826 		for (i = 0; i < size; i++) {
2827 			if (state->stack[spi].slot_type[i] == STACK_INVALID) {
2828 				sanitize = true;
2829 				break;
2830 			}
2831 		}
2832 
2833 		if (sanitize)
2834 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
2835 	}
2836 
2837 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
2838 	    !register_is_null(reg) && env->bpf_capable) {
2839 		if (dst_reg != BPF_REG_FP) {
2840 			/* The backtracking logic can only recognize explicit
2841 			 * stack slot address like [fp - 8]. Other spill of
2842 			 * scalar via different register has to be conservative.
2843 			 * Backtrack from here and mark all registers as precise
2844 			 * that contributed into 'reg' being a constant.
2845 			 */
2846 			err = mark_chain_precision(env, value_regno);
2847 			if (err)
2848 				return err;
2849 		}
2850 		save_register_state(state, spi, reg, size);
2851 	} else if (reg && is_spillable_regtype(reg->type)) {
2852 		/* register containing pointer is being spilled into stack */
2853 		if (size != BPF_REG_SIZE) {
2854 			verbose_linfo(env, insn_idx, "; ");
2855 			verbose(env, "invalid size of register spill\n");
2856 			return -EACCES;
2857 		}
2858 		if (state != cur && reg->type == PTR_TO_STACK) {
2859 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2860 			return -EINVAL;
2861 		}
2862 		save_register_state(state, spi, reg, size);
2863 	} else {
2864 		u8 type = STACK_MISC;
2865 
2866 		/* regular write of data into stack destroys any spilled ptr */
2867 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2868 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2869 		if (is_spilled_reg(&state->stack[spi]))
2870 			for (i = 0; i < BPF_REG_SIZE; i++)
2871 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
2872 
2873 		/* only mark the slot as written if all 8 bytes were written
2874 		 * otherwise read propagation may incorrectly stop too soon
2875 		 * when stack slots are partially written.
2876 		 * This heuristic means that read propagation will be
2877 		 * conservative, since it will add reg_live_read marks
2878 		 * to stack slots all the way to first state when programs
2879 		 * writes+reads less than 8 bytes
2880 		 */
2881 		if (size == BPF_REG_SIZE)
2882 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2883 
2884 		/* when we zero initialize stack slots mark them as such */
2885 		if (reg && register_is_null(reg)) {
2886 			/* backtracking doesn't work for STACK_ZERO yet. */
2887 			err = mark_chain_precision(env, value_regno);
2888 			if (err)
2889 				return err;
2890 			type = STACK_ZERO;
2891 		}
2892 
2893 		/* Mark slots affected by this stack write. */
2894 		for (i = 0; i < size; i++)
2895 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2896 				type;
2897 	}
2898 	return 0;
2899 }
2900 
2901 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2902  * known to contain a variable offset.
2903  * This function checks whether the write is permitted and conservatively
2904  * tracks the effects of the write, considering that each stack slot in the
2905  * dynamic range is potentially written to.
2906  *
2907  * 'off' includes 'regno->off'.
2908  * 'value_regno' can be -1, meaning that an unknown value is being written to
2909  * the stack.
2910  *
2911  * Spilled pointers in range are not marked as written because we don't know
2912  * what's going to be actually written. This means that read propagation for
2913  * future reads cannot be terminated by this write.
2914  *
2915  * For privileged programs, uninitialized stack slots are considered
2916  * initialized by this write (even though we don't know exactly what offsets
2917  * are going to be written to). The idea is that we don't want the verifier to
2918  * reject future reads that access slots written to through variable offsets.
2919  */
2920 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2921 				     /* func where register points to */
2922 				     struct bpf_func_state *state,
2923 				     int ptr_regno, int off, int size,
2924 				     int value_regno, int insn_idx)
2925 {
2926 	struct bpf_func_state *cur; /* state of the current function */
2927 	int min_off, max_off;
2928 	int i, err;
2929 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2930 	bool writing_zero = false;
2931 	/* set if the fact that we're writing a zero is used to let any
2932 	 * stack slots remain STACK_ZERO
2933 	 */
2934 	bool zero_used = false;
2935 
2936 	cur = env->cur_state->frame[env->cur_state->curframe];
2937 	ptr_reg = &cur->regs[ptr_regno];
2938 	min_off = ptr_reg->smin_value + off;
2939 	max_off = ptr_reg->smax_value + off + size;
2940 	if (value_regno >= 0)
2941 		value_reg = &cur->regs[value_regno];
2942 	if (value_reg && register_is_null(value_reg))
2943 		writing_zero = true;
2944 
2945 	err = grow_stack_state(state, round_up(-min_off, BPF_REG_SIZE));
2946 	if (err)
2947 		return err;
2948 
2949 
2950 	/* Variable offset writes destroy any spilled pointers in range. */
2951 	for (i = min_off; i < max_off; i++) {
2952 		u8 new_type, *stype;
2953 		int slot, spi;
2954 
2955 		slot = -i - 1;
2956 		spi = slot / BPF_REG_SIZE;
2957 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2958 
2959 		if (!env->allow_ptr_leaks
2960 				&& *stype != NOT_INIT
2961 				&& *stype != SCALAR_VALUE) {
2962 			/* Reject the write if there's are spilled pointers in
2963 			 * range. If we didn't reject here, the ptr status
2964 			 * would be erased below (even though not all slots are
2965 			 * actually overwritten), possibly opening the door to
2966 			 * leaks.
2967 			 */
2968 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2969 				insn_idx, i);
2970 			return -EINVAL;
2971 		}
2972 
2973 		/* Erase all spilled pointers. */
2974 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2975 
2976 		/* Update the slot type. */
2977 		new_type = STACK_MISC;
2978 		if (writing_zero && *stype == STACK_ZERO) {
2979 			new_type = STACK_ZERO;
2980 			zero_used = true;
2981 		}
2982 		/* If the slot is STACK_INVALID, we check whether it's OK to
2983 		 * pretend that it will be initialized by this write. The slot
2984 		 * might not actually be written to, and so if we mark it as
2985 		 * initialized future reads might leak uninitialized memory.
2986 		 * For privileged programs, we will accept such reads to slots
2987 		 * that may or may not be written because, if we're reject
2988 		 * them, the error would be too confusing.
2989 		 */
2990 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2991 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2992 					insn_idx, i);
2993 			return -EINVAL;
2994 		}
2995 		*stype = new_type;
2996 	}
2997 	if (zero_used) {
2998 		/* backtracking doesn't work for STACK_ZERO yet. */
2999 		err = mark_chain_precision(env, value_regno);
3000 		if (err)
3001 			return err;
3002 	}
3003 	return 0;
3004 }
3005 
3006 /* When register 'dst_regno' is assigned some values from stack[min_off,
3007  * max_off), we set the register's type according to the types of the
3008  * respective stack slots. If all the stack values are known to be zeros, then
3009  * so is the destination reg. Otherwise, the register is considered to be
3010  * SCALAR. This function does not deal with register filling; the caller must
3011  * ensure that all spilled registers in the stack range have been marked as
3012  * read.
3013  */
3014 static void mark_reg_stack_read(struct bpf_verifier_env *env,
3015 				/* func where src register points to */
3016 				struct bpf_func_state *ptr_state,
3017 				int min_off, int max_off, int dst_regno)
3018 {
3019 	struct bpf_verifier_state *vstate = env->cur_state;
3020 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3021 	int i, slot, spi;
3022 	u8 *stype;
3023 	int zeros = 0;
3024 
3025 	for (i = min_off; i < max_off; i++) {
3026 		slot = -i - 1;
3027 		spi = slot / BPF_REG_SIZE;
3028 		stype = ptr_state->stack[spi].slot_type;
3029 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
3030 			break;
3031 		zeros++;
3032 	}
3033 	if (zeros == max_off - min_off) {
3034 		/* any access_size read into register is zero extended,
3035 		 * so the whole register == const_zero
3036 		 */
3037 		__mark_reg_const_zero(&state->regs[dst_regno]);
3038 		/* backtracking doesn't support STACK_ZERO yet,
3039 		 * so mark it precise here, so that later
3040 		 * backtracking can stop here.
3041 		 * Backtracking may not need this if this register
3042 		 * doesn't participate in pointer adjustment.
3043 		 * Forward propagation of precise flag is not
3044 		 * necessary either. This mark is only to stop
3045 		 * backtracking. Any register that contributed
3046 		 * to const 0 was marked precise before spill.
3047 		 */
3048 		state->regs[dst_regno].precise = true;
3049 	} else {
3050 		/* have read misc data from the stack */
3051 		mark_reg_unknown(env, state->regs, dst_regno);
3052 	}
3053 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3054 }
3055 
3056 /* Read the stack at 'off' and put the results into the register indicated by
3057  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
3058  * spilled reg.
3059  *
3060  * 'dst_regno' can be -1, meaning that the read value is not going to a
3061  * register.
3062  *
3063  * The access is assumed to be within the current stack bounds.
3064  */
3065 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
3066 				      /* func where src register points to */
3067 				      struct bpf_func_state *reg_state,
3068 				      int off, int size, int dst_regno)
3069 {
3070 	struct bpf_verifier_state *vstate = env->cur_state;
3071 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3072 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
3073 	struct bpf_reg_state *reg;
3074 	u8 *stype, type;
3075 
3076 	stype = reg_state->stack[spi].slot_type;
3077 	reg = &reg_state->stack[spi].spilled_ptr;
3078 
3079 	if (is_spilled_reg(&reg_state->stack[spi])) {
3080 		u8 spill_size = 1;
3081 
3082 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
3083 			spill_size++;
3084 
3085 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
3086 			if (reg->type != SCALAR_VALUE) {
3087 				verbose_linfo(env, env->insn_idx, "; ");
3088 				verbose(env, "invalid size of register fill\n");
3089 				return -EACCES;
3090 			}
3091 
3092 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3093 			if (dst_regno < 0)
3094 				return 0;
3095 
3096 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
3097 				/* The earlier check_reg_arg() has decided the
3098 				 * subreg_def for this insn.  Save it first.
3099 				 */
3100 				s32 subreg_def = state->regs[dst_regno].subreg_def;
3101 
3102 				state->regs[dst_regno] = *reg;
3103 				state->regs[dst_regno].subreg_def = subreg_def;
3104 			} else {
3105 				for (i = 0; i < size; i++) {
3106 					type = stype[(slot - i) % BPF_REG_SIZE];
3107 					if (type == STACK_SPILL)
3108 						continue;
3109 					if (type == STACK_MISC)
3110 						continue;
3111 					verbose(env, "invalid read from stack off %d+%d size %d\n",
3112 						off, i, size);
3113 					return -EACCES;
3114 				}
3115 				mark_reg_unknown(env, state->regs, dst_regno);
3116 			}
3117 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3118 			return 0;
3119 		}
3120 
3121 		if (dst_regno >= 0) {
3122 			/* restore register state from stack */
3123 			state->regs[dst_regno] = *reg;
3124 			/* mark reg as written since spilled pointer state likely
3125 			 * has its liveness marks cleared by is_state_visited()
3126 			 * which resets stack/reg liveness for state transitions
3127 			 */
3128 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
3129 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
3130 			/* If dst_regno==-1, the caller is asking us whether
3131 			 * it is acceptable to use this value as a SCALAR_VALUE
3132 			 * (e.g. for XADD).
3133 			 * We must not allow unprivileged callers to do that
3134 			 * with spilled pointers.
3135 			 */
3136 			verbose(env, "leaking pointer from stack off %d\n",
3137 				off);
3138 			return -EACCES;
3139 		}
3140 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3141 	} else {
3142 		for (i = 0; i < size; i++) {
3143 			type = stype[(slot - i) % BPF_REG_SIZE];
3144 			if (type == STACK_MISC)
3145 				continue;
3146 			if (type == STACK_ZERO)
3147 				continue;
3148 			verbose(env, "invalid read from stack off %d+%d size %d\n",
3149 				off, i, size);
3150 			return -EACCES;
3151 		}
3152 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
3153 		if (dst_regno >= 0)
3154 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
3155 	}
3156 	return 0;
3157 }
3158 
3159 enum stack_access_src {
3160 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
3161 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
3162 };
3163 
3164 static int check_stack_range_initialized(struct bpf_verifier_env *env,
3165 					 int regno, int off, int access_size,
3166 					 bool zero_size_allowed,
3167 					 enum stack_access_src type,
3168 					 struct bpf_call_arg_meta *meta);
3169 
3170 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
3171 {
3172 	return cur_regs(env) + regno;
3173 }
3174 
3175 /* Read the stack at 'ptr_regno + off' and put the result into the register
3176  * 'dst_regno'.
3177  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
3178  * but not its variable offset.
3179  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
3180  *
3181  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
3182  * filling registers (i.e. reads of spilled register cannot be detected when
3183  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
3184  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
3185  * offset; for a fixed offset check_stack_read_fixed_off should be used
3186  * instead.
3187  */
3188 static int check_stack_read_var_off(struct bpf_verifier_env *env,
3189 				    int ptr_regno, int off, int size, int dst_regno)
3190 {
3191 	/* The state of the source register. */
3192 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3193 	struct bpf_func_state *ptr_state = func(env, reg);
3194 	int err;
3195 	int min_off, max_off;
3196 
3197 	/* Note that we pass a NULL meta, so raw access will not be permitted.
3198 	 */
3199 	err = check_stack_range_initialized(env, ptr_regno, off, size,
3200 					    false, ACCESS_DIRECT, NULL);
3201 	if (err)
3202 		return err;
3203 
3204 	min_off = reg->smin_value + off;
3205 	max_off = reg->smax_value + off;
3206 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3207 	return 0;
3208 }
3209 
3210 /* check_stack_read dispatches to check_stack_read_fixed_off or
3211  * check_stack_read_var_off.
3212  *
3213  * The caller must ensure that the offset falls within the allocated stack
3214  * bounds.
3215  *
3216  * 'dst_regno' is a register which will receive the value from the stack. It
3217  * can be -1, meaning that the read value is not going to a register.
3218  */
3219 static int check_stack_read(struct bpf_verifier_env *env,
3220 			    int ptr_regno, int off, int size,
3221 			    int dst_regno)
3222 {
3223 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3224 	struct bpf_func_state *state = func(env, reg);
3225 	int err;
3226 	/* Some accesses are only permitted with a static offset. */
3227 	bool var_off = !tnum_is_const(reg->var_off);
3228 
3229 	/* The offset is required to be static when reads don't go to a
3230 	 * register, in order to not leak pointers (see
3231 	 * check_stack_read_fixed_off).
3232 	 */
3233 	if (dst_regno < 0 && var_off) {
3234 		char tn_buf[48];
3235 
3236 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3237 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3238 			tn_buf, off, size);
3239 		return -EACCES;
3240 	}
3241 	/* Variable offset is prohibited for unprivileged mode for simplicity
3242 	 * since it requires corresponding support in Spectre masking for stack
3243 	 * ALU. See also retrieve_ptr_limit().
3244 	 */
3245 	if (!env->bypass_spec_v1 && var_off) {
3246 		char tn_buf[48];
3247 
3248 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3249 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3250 				ptr_regno, tn_buf);
3251 		return -EACCES;
3252 	}
3253 
3254 	if (!var_off) {
3255 		off += reg->var_off.value;
3256 		err = check_stack_read_fixed_off(env, state, off, size,
3257 						 dst_regno);
3258 	} else {
3259 		/* Variable offset stack reads need more conservative handling
3260 		 * than fixed offset ones. Note that dst_regno >= 0 on this
3261 		 * branch.
3262 		 */
3263 		err = check_stack_read_var_off(env, ptr_regno, off, size,
3264 					       dst_regno);
3265 	}
3266 	return err;
3267 }
3268 
3269 
3270 /* check_stack_write dispatches to check_stack_write_fixed_off or
3271  * check_stack_write_var_off.
3272  *
3273  * 'ptr_regno' is the register used as a pointer into the stack.
3274  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3275  * 'value_regno' is the register whose value we're writing to the stack. It can
3276  * be -1, meaning that we're not writing from a register.
3277  *
3278  * The caller must ensure that the offset falls within the maximum stack size.
3279  */
3280 static int check_stack_write(struct bpf_verifier_env *env,
3281 			     int ptr_regno, int off, int size,
3282 			     int value_regno, int insn_idx)
3283 {
3284 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3285 	struct bpf_func_state *state = func(env, reg);
3286 	int err;
3287 
3288 	if (tnum_is_const(reg->var_off)) {
3289 		off += reg->var_off.value;
3290 		err = check_stack_write_fixed_off(env, state, off, size,
3291 						  value_regno, insn_idx);
3292 	} else {
3293 		/* Variable offset stack reads need more conservative handling
3294 		 * than fixed offset ones.
3295 		 */
3296 		err = check_stack_write_var_off(env, state,
3297 						ptr_regno, off, size,
3298 						value_regno, insn_idx);
3299 	}
3300 	return err;
3301 }
3302 
3303 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3304 				 int off, int size, enum bpf_access_type type)
3305 {
3306 	struct bpf_reg_state *regs = cur_regs(env);
3307 	struct bpf_map *map = regs[regno].map_ptr;
3308 	u32 cap = bpf_map_flags_to_cap(map);
3309 
3310 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3311 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3312 			map->value_size, off, size);
3313 		return -EACCES;
3314 	}
3315 
3316 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3317 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3318 			map->value_size, off, size);
3319 		return -EACCES;
3320 	}
3321 
3322 	return 0;
3323 }
3324 
3325 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3326 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3327 			      int off, int size, u32 mem_size,
3328 			      bool zero_size_allowed)
3329 {
3330 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3331 	struct bpf_reg_state *reg;
3332 
3333 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3334 		return 0;
3335 
3336 	reg = &cur_regs(env)[regno];
3337 	switch (reg->type) {
3338 	case PTR_TO_MAP_KEY:
3339 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3340 			mem_size, off, size);
3341 		break;
3342 	case PTR_TO_MAP_VALUE:
3343 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3344 			mem_size, off, size);
3345 		break;
3346 	case PTR_TO_PACKET:
3347 	case PTR_TO_PACKET_META:
3348 	case PTR_TO_PACKET_END:
3349 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3350 			off, size, regno, reg->id, off, mem_size);
3351 		break;
3352 	case PTR_TO_MEM:
3353 	default:
3354 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3355 			mem_size, off, size);
3356 	}
3357 
3358 	return -EACCES;
3359 }
3360 
3361 /* check read/write into a memory region with possible variable offset */
3362 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3363 				   int off, int size, u32 mem_size,
3364 				   bool zero_size_allowed)
3365 {
3366 	struct bpf_verifier_state *vstate = env->cur_state;
3367 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3368 	struct bpf_reg_state *reg = &state->regs[regno];
3369 	int err;
3370 
3371 	/* We may have adjusted the register pointing to memory region, so we
3372 	 * need to try adding each of min_value and max_value to off
3373 	 * to make sure our theoretical access will be safe.
3374 	 */
3375 	if (env->log.level & BPF_LOG_LEVEL)
3376 		print_verifier_state(env, state);
3377 
3378 	/* The minimum value is only important with signed
3379 	 * comparisons where we can't assume the floor of a
3380 	 * value is 0.  If we are using signed variables for our
3381 	 * index'es we need to make sure that whatever we use
3382 	 * will have a set floor within our range.
3383 	 */
3384 	if (reg->smin_value < 0 &&
3385 	    (reg->smin_value == S64_MIN ||
3386 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3387 	      reg->smin_value + off < 0)) {
3388 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3389 			regno);
3390 		return -EACCES;
3391 	}
3392 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3393 				 mem_size, zero_size_allowed);
3394 	if (err) {
3395 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3396 			regno);
3397 		return err;
3398 	}
3399 
3400 	/* If we haven't set a max value then we need to bail since we can't be
3401 	 * sure we won't do bad things.
3402 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3403 	 */
3404 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3405 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3406 			regno);
3407 		return -EACCES;
3408 	}
3409 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3410 				 mem_size, zero_size_allowed);
3411 	if (err) {
3412 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3413 			regno);
3414 		return err;
3415 	}
3416 
3417 	return 0;
3418 }
3419 
3420 /* check read/write into a map element with possible variable offset */
3421 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3422 			    int off, int size, bool zero_size_allowed)
3423 {
3424 	struct bpf_verifier_state *vstate = env->cur_state;
3425 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3426 	struct bpf_reg_state *reg = &state->regs[regno];
3427 	struct bpf_map *map = reg->map_ptr;
3428 	int err;
3429 
3430 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3431 				      zero_size_allowed);
3432 	if (err)
3433 		return err;
3434 
3435 	if (map_value_has_spin_lock(map)) {
3436 		u32 lock = map->spin_lock_off;
3437 
3438 		/* if any part of struct bpf_spin_lock can be touched by
3439 		 * load/store reject this program.
3440 		 * To check that [x1, x2) overlaps with [y1, y2)
3441 		 * it is sufficient to check x1 < y2 && y1 < x2.
3442 		 */
3443 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3444 		     lock < reg->umax_value + off + size) {
3445 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3446 			return -EACCES;
3447 		}
3448 	}
3449 	if (map_value_has_timer(map)) {
3450 		u32 t = map->timer_off;
3451 
3452 		if (reg->smin_value + off < t + sizeof(struct bpf_timer) &&
3453 		     t < reg->umax_value + off + size) {
3454 			verbose(env, "bpf_timer cannot be accessed directly by load/store\n");
3455 			return -EACCES;
3456 		}
3457 	}
3458 	return err;
3459 }
3460 
3461 #define MAX_PACKET_OFF 0xffff
3462 
3463 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3464 {
3465 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3466 }
3467 
3468 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3469 				       const struct bpf_call_arg_meta *meta,
3470 				       enum bpf_access_type t)
3471 {
3472 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3473 
3474 	switch (prog_type) {
3475 	/* Program types only with direct read access go here! */
3476 	case BPF_PROG_TYPE_LWT_IN:
3477 	case BPF_PROG_TYPE_LWT_OUT:
3478 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3479 	case BPF_PROG_TYPE_SK_REUSEPORT:
3480 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3481 	case BPF_PROG_TYPE_CGROUP_SKB:
3482 		if (t == BPF_WRITE)
3483 			return false;
3484 		fallthrough;
3485 
3486 	/* Program types with direct read + write access go here! */
3487 	case BPF_PROG_TYPE_SCHED_CLS:
3488 	case BPF_PROG_TYPE_SCHED_ACT:
3489 	case BPF_PROG_TYPE_XDP:
3490 	case BPF_PROG_TYPE_LWT_XMIT:
3491 	case BPF_PROG_TYPE_SK_SKB:
3492 	case BPF_PROG_TYPE_SK_MSG:
3493 		if (meta)
3494 			return meta->pkt_access;
3495 
3496 		env->seen_direct_write = true;
3497 		return true;
3498 
3499 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3500 		if (t == BPF_WRITE)
3501 			env->seen_direct_write = true;
3502 
3503 		return true;
3504 
3505 	default:
3506 		return false;
3507 	}
3508 }
3509 
3510 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3511 			       int size, bool zero_size_allowed)
3512 {
3513 	struct bpf_reg_state *regs = cur_regs(env);
3514 	struct bpf_reg_state *reg = &regs[regno];
3515 	int err;
3516 
3517 	/* We may have added a variable offset to the packet pointer; but any
3518 	 * reg->range we have comes after that.  We are only checking the fixed
3519 	 * offset.
3520 	 */
3521 
3522 	/* We don't allow negative numbers, because we aren't tracking enough
3523 	 * detail to prove they're safe.
3524 	 */
3525 	if (reg->smin_value < 0) {
3526 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3527 			regno);
3528 		return -EACCES;
3529 	}
3530 
3531 	err = reg->range < 0 ? -EINVAL :
3532 	      __check_mem_access(env, regno, off, size, reg->range,
3533 				 zero_size_allowed);
3534 	if (err) {
3535 		verbose(env, "R%d offset is outside of the packet\n", regno);
3536 		return err;
3537 	}
3538 
3539 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3540 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3541 	 * otherwise find_good_pkt_pointers would have refused to set range info
3542 	 * that __check_mem_access would have rejected this pkt access.
3543 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3544 	 */
3545 	env->prog->aux->max_pkt_offset =
3546 		max_t(u32, env->prog->aux->max_pkt_offset,
3547 		      off + reg->umax_value + size - 1);
3548 
3549 	return err;
3550 }
3551 
3552 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3553 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3554 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3555 			    struct btf **btf, u32 *btf_id)
3556 {
3557 	struct bpf_insn_access_aux info = {
3558 		.reg_type = *reg_type,
3559 		.log = &env->log,
3560 	};
3561 
3562 	if (env->ops->is_valid_access &&
3563 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3564 		/* A non zero info.ctx_field_size indicates that this field is a
3565 		 * candidate for later verifier transformation to load the whole
3566 		 * field and then apply a mask when accessed with a narrower
3567 		 * access than actual ctx access size. A zero info.ctx_field_size
3568 		 * will only allow for whole field access and rejects any other
3569 		 * type of narrower access.
3570 		 */
3571 		*reg_type = info.reg_type;
3572 
3573 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3574 			*btf = info.btf;
3575 			*btf_id = info.btf_id;
3576 		} else {
3577 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3578 		}
3579 		/* remember the offset of last byte accessed in ctx */
3580 		if (env->prog->aux->max_ctx_offset < off + size)
3581 			env->prog->aux->max_ctx_offset = off + size;
3582 		return 0;
3583 	}
3584 
3585 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3586 	return -EACCES;
3587 }
3588 
3589 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3590 				  int size)
3591 {
3592 	if (size < 0 || off < 0 ||
3593 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3594 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3595 			off, size);
3596 		return -EACCES;
3597 	}
3598 	return 0;
3599 }
3600 
3601 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3602 			     u32 regno, int off, int size,
3603 			     enum bpf_access_type t)
3604 {
3605 	struct bpf_reg_state *regs = cur_regs(env);
3606 	struct bpf_reg_state *reg = &regs[regno];
3607 	struct bpf_insn_access_aux info = {};
3608 	bool valid;
3609 
3610 	if (reg->smin_value < 0) {
3611 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3612 			regno);
3613 		return -EACCES;
3614 	}
3615 
3616 	switch (reg->type) {
3617 	case PTR_TO_SOCK_COMMON:
3618 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3619 		break;
3620 	case PTR_TO_SOCKET:
3621 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3622 		break;
3623 	case PTR_TO_TCP_SOCK:
3624 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3625 		break;
3626 	case PTR_TO_XDP_SOCK:
3627 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3628 		break;
3629 	default:
3630 		valid = false;
3631 	}
3632 
3633 
3634 	if (valid) {
3635 		env->insn_aux_data[insn_idx].ctx_field_size =
3636 			info.ctx_field_size;
3637 		return 0;
3638 	}
3639 
3640 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3641 		regno, reg_type_str[reg->type], off, size);
3642 
3643 	return -EACCES;
3644 }
3645 
3646 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3647 {
3648 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3649 }
3650 
3651 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3652 {
3653 	const struct bpf_reg_state *reg = reg_state(env, regno);
3654 
3655 	return reg->type == PTR_TO_CTX;
3656 }
3657 
3658 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3659 {
3660 	const struct bpf_reg_state *reg = reg_state(env, regno);
3661 
3662 	return type_is_sk_pointer(reg->type);
3663 }
3664 
3665 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3666 {
3667 	const struct bpf_reg_state *reg = reg_state(env, regno);
3668 
3669 	return type_is_pkt_pointer(reg->type);
3670 }
3671 
3672 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3673 {
3674 	const struct bpf_reg_state *reg = reg_state(env, regno);
3675 
3676 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3677 	return reg->type == PTR_TO_FLOW_KEYS;
3678 }
3679 
3680 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3681 				   const struct bpf_reg_state *reg,
3682 				   int off, int size, bool strict)
3683 {
3684 	struct tnum reg_off;
3685 	int ip_align;
3686 
3687 	/* Byte size accesses are always allowed. */
3688 	if (!strict || size == 1)
3689 		return 0;
3690 
3691 	/* For platforms that do not have a Kconfig enabling
3692 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3693 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3694 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3695 	 * to this code only in strict mode where we want to emulate
3696 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3697 	 * unconditional IP align value of '2'.
3698 	 */
3699 	ip_align = 2;
3700 
3701 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3702 	if (!tnum_is_aligned(reg_off, size)) {
3703 		char tn_buf[48];
3704 
3705 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3706 		verbose(env,
3707 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3708 			ip_align, tn_buf, reg->off, off, size);
3709 		return -EACCES;
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3716 				       const struct bpf_reg_state *reg,
3717 				       const char *pointer_desc,
3718 				       int off, int size, bool strict)
3719 {
3720 	struct tnum reg_off;
3721 
3722 	/* Byte size accesses are always allowed. */
3723 	if (!strict || size == 1)
3724 		return 0;
3725 
3726 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3727 	if (!tnum_is_aligned(reg_off, size)) {
3728 		char tn_buf[48];
3729 
3730 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3731 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3732 			pointer_desc, tn_buf, reg->off, off, size);
3733 		return -EACCES;
3734 	}
3735 
3736 	return 0;
3737 }
3738 
3739 static int check_ptr_alignment(struct bpf_verifier_env *env,
3740 			       const struct bpf_reg_state *reg, int off,
3741 			       int size, bool strict_alignment_once)
3742 {
3743 	bool strict = env->strict_alignment || strict_alignment_once;
3744 	const char *pointer_desc = "";
3745 
3746 	switch (reg->type) {
3747 	case PTR_TO_PACKET:
3748 	case PTR_TO_PACKET_META:
3749 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3750 		 * right in front, treat it the very same way.
3751 		 */
3752 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3753 	case PTR_TO_FLOW_KEYS:
3754 		pointer_desc = "flow keys ";
3755 		break;
3756 	case PTR_TO_MAP_KEY:
3757 		pointer_desc = "key ";
3758 		break;
3759 	case PTR_TO_MAP_VALUE:
3760 		pointer_desc = "value ";
3761 		break;
3762 	case PTR_TO_CTX:
3763 		pointer_desc = "context ";
3764 		break;
3765 	case PTR_TO_STACK:
3766 		pointer_desc = "stack ";
3767 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3768 		 * and check_stack_read_fixed_off() relies on stack accesses being
3769 		 * aligned.
3770 		 */
3771 		strict = true;
3772 		break;
3773 	case PTR_TO_SOCKET:
3774 		pointer_desc = "sock ";
3775 		break;
3776 	case PTR_TO_SOCK_COMMON:
3777 		pointer_desc = "sock_common ";
3778 		break;
3779 	case PTR_TO_TCP_SOCK:
3780 		pointer_desc = "tcp_sock ";
3781 		break;
3782 	case PTR_TO_XDP_SOCK:
3783 		pointer_desc = "xdp_sock ";
3784 		break;
3785 	default:
3786 		break;
3787 	}
3788 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3789 					   strict);
3790 }
3791 
3792 static int update_stack_depth(struct bpf_verifier_env *env,
3793 			      const struct bpf_func_state *func,
3794 			      int off)
3795 {
3796 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3797 
3798 	if (stack >= -off)
3799 		return 0;
3800 
3801 	/* update known max for given subprogram */
3802 	env->subprog_info[func->subprogno].stack_depth = -off;
3803 	return 0;
3804 }
3805 
3806 /* starting from main bpf function walk all instructions of the function
3807  * and recursively walk all callees that given function can call.
3808  * Ignore jump and exit insns.
3809  * Since recursion is prevented by check_cfg() this algorithm
3810  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3811  */
3812 static int check_max_stack_depth(struct bpf_verifier_env *env)
3813 {
3814 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3815 	struct bpf_subprog_info *subprog = env->subprog_info;
3816 	struct bpf_insn *insn = env->prog->insnsi;
3817 	bool tail_call_reachable = false;
3818 	int ret_insn[MAX_CALL_FRAMES];
3819 	int ret_prog[MAX_CALL_FRAMES];
3820 	int j;
3821 
3822 process_func:
3823 	/* protect against potential stack overflow that might happen when
3824 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3825 	 * depth for such case down to 256 so that the worst case scenario
3826 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3827 	 * 8k).
3828 	 *
3829 	 * To get the idea what might happen, see an example:
3830 	 * func1 -> sub rsp, 128
3831 	 *  subfunc1 -> sub rsp, 256
3832 	 *  tailcall1 -> add rsp, 256
3833 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3834 	 *   subfunc2 -> sub rsp, 64
3835 	 *   subfunc22 -> sub rsp, 128
3836 	 *   tailcall2 -> add rsp, 128
3837 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3838 	 *
3839 	 * tailcall will unwind the current stack frame but it will not get rid
3840 	 * of caller's stack as shown on the example above.
3841 	 */
3842 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3843 		verbose(env,
3844 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3845 			depth);
3846 		return -EACCES;
3847 	}
3848 	/* round up to 32-bytes, since this is granularity
3849 	 * of interpreter stack size
3850 	 */
3851 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3852 	if (depth > MAX_BPF_STACK) {
3853 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3854 			frame + 1, depth);
3855 		return -EACCES;
3856 	}
3857 continue_func:
3858 	subprog_end = subprog[idx + 1].start;
3859 	for (; i < subprog_end; i++) {
3860 		int next_insn;
3861 
3862 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3863 			continue;
3864 		/* remember insn and function to return to */
3865 		ret_insn[frame] = i + 1;
3866 		ret_prog[frame] = idx;
3867 
3868 		/* find the callee */
3869 		next_insn = i + insn[i].imm + 1;
3870 		idx = find_subprog(env, next_insn);
3871 		if (idx < 0) {
3872 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3873 				  next_insn);
3874 			return -EFAULT;
3875 		}
3876 		if (subprog[idx].is_async_cb) {
3877 			if (subprog[idx].has_tail_call) {
3878 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
3879 				return -EFAULT;
3880 			}
3881 			 /* async callbacks don't increase bpf prog stack size */
3882 			continue;
3883 		}
3884 		i = next_insn;
3885 
3886 		if (subprog[idx].has_tail_call)
3887 			tail_call_reachable = true;
3888 
3889 		frame++;
3890 		if (frame >= MAX_CALL_FRAMES) {
3891 			verbose(env, "the call stack of %d frames is too deep !\n",
3892 				frame);
3893 			return -E2BIG;
3894 		}
3895 		goto process_func;
3896 	}
3897 	/* if tail call got detected across bpf2bpf calls then mark each of the
3898 	 * currently present subprog frames as tail call reachable subprogs;
3899 	 * this info will be utilized by JIT so that we will be preserving the
3900 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3901 	 */
3902 	if (tail_call_reachable)
3903 		for (j = 0; j < frame; j++)
3904 			subprog[ret_prog[j]].tail_call_reachable = true;
3905 	if (subprog[0].tail_call_reachable)
3906 		env->prog->aux->tail_call_reachable = true;
3907 
3908 	/* end of for() loop means the last insn of the 'subprog'
3909 	 * was reached. Doesn't matter whether it was JA or EXIT
3910 	 */
3911 	if (frame == 0)
3912 		return 0;
3913 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3914 	frame--;
3915 	i = ret_insn[frame];
3916 	idx = ret_prog[frame];
3917 	goto continue_func;
3918 }
3919 
3920 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3921 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3922 				  const struct bpf_insn *insn, int idx)
3923 {
3924 	int start = idx + insn->imm + 1, subprog;
3925 
3926 	subprog = find_subprog(env, start);
3927 	if (subprog < 0) {
3928 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3929 			  start);
3930 		return -EFAULT;
3931 	}
3932 	return env->subprog_info[subprog].stack_depth;
3933 }
3934 #endif
3935 
3936 int check_ctx_reg(struct bpf_verifier_env *env,
3937 		  const struct bpf_reg_state *reg, int regno)
3938 {
3939 	/* Access to ctx or passing it to a helper is only allowed in
3940 	 * its original, unmodified form.
3941 	 */
3942 
3943 	if (reg->off) {
3944 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3945 			regno, reg->off);
3946 		return -EACCES;
3947 	}
3948 
3949 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3950 		char tn_buf[48];
3951 
3952 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3953 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3954 		return -EACCES;
3955 	}
3956 
3957 	return 0;
3958 }
3959 
3960 static int __check_buffer_access(struct bpf_verifier_env *env,
3961 				 const char *buf_info,
3962 				 const struct bpf_reg_state *reg,
3963 				 int regno, int off, int size)
3964 {
3965 	if (off < 0) {
3966 		verbose(env,
3967 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3968 			regno, buf_info, off, size);
3969 		return -EACCES;
3970 	}
3971 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3972 		char tn_buf[48];
3973 
3974 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3975 		verbose(env,
3976 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3977 			regno, off, tn_buf);
3978 		return -EACCES;
3979 	}
3980 
3981 	return 0;
3982 }
3983 
3984 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3985 				  const struct bpf_reg_state *reg,
3986 				  int regno, int off, int size)
3987 {
3988 	int err;
3989 
3990 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3991 	if (err)
3992 		return err;
3993 
3994 	if (off + size > env->prog->aux->max_tp_access)
3995 		env->prog->aux->max_tp_access = off + size;
3996 
3997 	return 0;
3998 }
3999 
4000 static int check_buffer_access(struct bpf_verifier_env *env,
4001 			       const struct bpf_reg_state *reg,
4002 			       int regno, int off, int size,
4003 			       bool zero_size_allowed,
4004 			       const char *buf_info,
4005 			       u32 *max_access)
4006 {
4007 	int err;
4008 
4009 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
4010 	if (err)
4011 		return err;
4012 
4013 	if (off + size > *max_access)
4014 		*max_access = off + size;
4015 
4016 	return 0;
4017 }
4018 
4019 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
4020 static void zext_32_to_64(struct bpf_reg_state *reg)
4021 {
4022 	reg->var_off = tnum_subreg(reg->var_off);
4023 	__reg_assign_32_into_64(reg);
4024 }
4025 
4026 /* truncate register to smaller size (in bytes)
4027  * must be called with size < BPF_REG_SIZE
4028  */
4029 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
4030 {
4031 	u64 mask;
4032 
4033 	/* clear high bits in bit representation */
4034 	reg->var_off = tnum_cast(reg->var_off, size);
4035 
4036 	/* fix arithmetic bounds */
4037 	mask = ((u64)1 << (size * 8)) - 1;
4038 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
4039 		reg->umin_value &= mask;
4040 		reg->umax_value &= mask;
4041 	} else {
4042 		reg->umin_value = 0;
4043 		reg->umax_value = mask;
4044 	}
4045 	reg->smin_value = reg->umin_value;
4046 	reg->smax_value = reg->umax_value;
4047 
4048 	/* If size is smaller than 32bit register the 32bit register
4049 	 * values are also truncated so we push 64-bit bounds into
4050 	 * 32-bit bounds. Above were truncated < 32-bits already.
4051 	 */
4052 	if (size >= 4)
4053 		return;
4054 	__reg_combine_64_into_32(reg);
4055 }
4056 
4057 static bool bpf_map_is_rdonly(const struct bpf_map *map)
4058 {
4059 	/* A map is considered read-only if the following condition are true:
4060 	 *
4061 	 * 1) BPF program side cannot change any of the map content. The
4062 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
4063 	 *    and was set at map creation time.
4064 	 * 2) The map value(s) have been initialized from user space by a
4065 	 *    loader and then "frozen", such that no new map update/delete
4066 	 *    operations from syscall side are possible for the rest of
4067 	 *    the map's lifetime from that point onwards.
4068 	 * 3) Any parallel/pending map update/delete operations from syscall
4069 	 *    side have been completed. Only after that point, it's safe to
4070 	 *    assume that map value(s) are immutable.
4071 	 */
4072 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
4073 	       READ_ONCE(map->frozen) &&
4074 	       !bpf_map_write_active(map);
4075 }
4076 
4077 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
4078 {
4079 	void *ptr;
4080 	u64 addr;
4081 	int err;
4082 
4083 	err = map->ops->map_direct_value_addr(map, &addr, off);
4084 	if (err)
4085 		return err;
4086 	ptr = (void *)(long)addr + off;
4087 
4088 	switch (size) {
4089 	case sizeof(u8):
4090 		*val = (u64)*(u8 *)ptr;
4091 		break;
4092 	case sizeof(u16):
4093 		*val = (u64)*(u16 *)ptr;
4094 		break;
4095 	case sizeof(u32):
4096 		*val = (u64)*(u32 *)ptr;
4097 		break;
4098 	case sizeof(u64):
4099 		*val = *(u64 *)ptr;
4100 		break;
4101 	default:
4102 		return -EINVAL;
4103 	}
4104 	return 0;
4105 }
4106 
4107 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
4108 				   struct bpf_reg_state *regs,
4109 				   int regno, int off, int size,
4110 				   enum bpf_access_type atype,
4111 				   int value_regno)
4112 {
4113 	struct bpf_reg_state *reg = regs + regno;
4114 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
4115 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
4116 	u32 btf_id;
4117 	int ret;
4118 
4119 	if (off < 0) {
4120 		verbose(env,
4121 			"R%d is ptr_%s invalid negative access: off=%d\n",
4122 			regno, tname, off);
4123 		return -EACCES;
4124 	}
4125 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4126 		char tn_buf[48];
4127 
4128 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4129 		verbose(env,
4130 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
4131 			regno, tname, off, tn_buf);
4132 		return -EACCES;
4133 	}
4134 
4135 	if (env->ops->btf_struct_access) {
4136 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
4137 						  off, size, atype, &btf_id);
4138 	} else {
4139 		if (atype != BPF_READ) {
4140 			verbose(env, "only read is supported\n");
4141 			return -EACCES;
4142 		}
4143 
4144 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
4145 					atype, &btf_id);
4146 	}
4147 
4148 	if (ret < 0)
4149 		return ret;
4150 
4151 	if (atype == BPF_READ && value_regno >= 0)
4152 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
4153 
4154 	return 0;
4155 }
4156 
4157 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
4158 				   struct bpf_reg_state *regs,
4159 				   int regno, int off, int size,
4160 				   enum bpf_access_type atype,
4161 				   int value_regno)
4162 {
4163 	struct bpf_reg_state *reg = regs + regno;
4164 	struct bpf_map *map = reg->map_ptr;
4165 	const struct btf_type *t;
4166 	const char *tname;
4167 	u32 btf_id;
4168 	int ret;
4169 
4170 	if (!btf_vmlinux) {
4171 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
4172 		return -ENOTSUPP;
4173 	}
4174 
4175 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
4176 		verbose(env, "map_ptr access not supported for map type %d\n",
4177 			map->map_type);
4178 		return -ENOTSUPP;
4179 	}
4180 
4181 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
4182 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
4183 
4184 	if (!env->allow_ptr_to_map_access) {
4185 		verbose(env,
4186 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
4187 			tname);
4188 		return -EPERM;
4189 	}
4190 
4191 	if (off < 0) {
4192 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
4193 			regno, tname, off);
4194 		return -EACCES;
4195 	}
4196 
4197 	if (atype != BPF_READ) {
4198 		verbose(env, "only read from %s is supported\n", tname);
4199 		return -EACCES;
4200 	}
4201 
4202 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
4203 	if (ret < 0)
4204 		return ret;
4205 
4206 	if (value_regno >= 0)
4207 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
4208 
4209 	return 0;
4210 }
4211 
4212 /* Check that the stack access at the given offset is within bounds. The
4213  * maximum valid offset is -1.
4214  *
4215  * The minimum valid offset is -MAX_BPF_STACK for writes, and
4216  * -state->allocated_stack for reads.
4217  */
4218 static int check_stack_slot_within_bounds(int off,
4219 					  struct bpf_func_state *state,
4220 					  enum bpf_access_type t)
4221 {
4222 	int min_valid_off;
4223 
4224 	if (t == BPF_WRITE)
4225 		min_valid_off = -MAX_BPF_STACK;
4226 	else
4227 		min_valid_off = -state->allocated_stack;
4228 
4229 	if (off < min_valid_off || off > -1)
4230 		return -EACCES;
4231 	return 0;
4232 }
4233 
4234 /* Check that the stack access at 'regno + off' falls within the maximum stack
4235  * bounds.
4236  *
4237  * 'off' includes `regno->offset`, but not its dynamic part (if any).
4238  */
4239 static int check_stack_access_within_bounds(
4240 		struct bpf_verifier_env *env,
4241 		int regno, int off, int access_size,
4242 		enum stack_access_src src, enum bpf_access_type type)
4243 {
4244 	struct bpf_reg_state *regs = cur_regs(env);
4245 	struct bpf_reg_state *reg = regs + regno;
4246 	struct bpf_func_state *state = func(env, reg);
4247 	int min_off, max_off;
4248 	int err;
4249 	char *err_extra;
4250 
4251 	if (src == ACCESS_HELPER)
4252 		/* We don't know if helpers are reading or writing (or both). */
4253 		err_extra = " indirect access to";
4254 	else if (type == BPF_READ)
4255 		err_extra = " read from";
4256 	else
4257 		err_extra = " write to";
4258 
4259 	if (tnum_is_const(reg->var_off)) {
4260 		min_off = reg->var_off.value + off;
4261 		if (access_size > 0)
4262 			max_off = min_off + access_size - 1;
4263 		else
4264 			max_off = min_off;
4265 	} else {
4266 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4267 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
4268 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4269 				err_extra, regno);
4270 			return -EACCES;
4271 		}
4272 		min_off = reg->smin_value + off;
4273 		if (access_size > 0)
4274 			max_off = reg->smax_value + off + access_size - 1;
4275 		else
4276 			max_off = min_off;
4277 	}
4278 
4279 	err = check_stack_slot_within_bounds(min_off, state, type);
4280 	if (!err)
4281 		err = check_stack_slot_within_bounds(max_off, state, type);
4282 
4283 	if (err) {
4284 		if (tnum_is_const(reg->var_off)) {
4285 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4286 				err_extra, regno, off, access_size);
4287 		} else {
4288 			char tn_buf[48];
4289 
4290 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4291 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4292 				err_extra, regno, tn_buf, access_size);
4293 		}
4294 	}
4295 	return err;
4296 }
4297 
4298 /* check whether memory at (regno + off) is accessible for t = (read | write)
4299  * if t==write, value_regno is a register which value is stored into memory
4300  * if t==read, value_regno is a register which will receive the value from memory
4301  * if t==write && value_regno==-1, some unknown value is stored into memory
4302  * if t==read && value_regno==-1, don't care what we read from memory
4303  */
4304 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4305 			    int off, int bpf_size, enum bpf_access_type t,
4306 			    int value_regno, bool strict_alignment_once)
4307 {
4308 	struct bpf_reg_state *regs = cur_regs(env);
4309 	struct bpf_reg_state *reg = regs + regno;
4310 	struct bpf_func_state *state;
4311 	int size, err = 0;
4312 
4313 	size = bpf_size_to_bytes(bpf_size);
4314 	if (size < 0)
4315 		return size;
4316 
4317 	/* alignment checks will add in reg->off themselves */
4318 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4319 	if (err)
4320 		return err;
4321 
4322 	/* for access checks, reg->off is just part of off */
4323 	off += reg->off;
4324 
4325 	if (reg->type == PTR_TO_MAP_KEY) {
4326 		if (t == BPF_WRITE) {
4327 			verbose(env, "write to change key R%d not allowed\n", regno);
4328 			return -EACCES;
4329 		}
4330 
4331 		err = check_mem_region_access(env, regno, off, size,
4332 					      reg->map_ptr->key_size, false);
4333 		if (err)
4334 			return err;
4335 		if (value_regno >= 0)
4336 			mark_reg_unknown(env, regs, value_regno);
4337 	} else if (reg->type == PTR_TO_MAP_VALUE) {
4338 		if (t == BPF_WRITE && value_regno >= 0 &&
4339 		    is_pointer_value(env, value_regno)) {
4340 			verbose(env, "R%d leaks addr into map\n", value_regno);
4341 			return -EACCES;
4342 		}
4343 		err = check_map_access_type(env, regno, off, size, t);
4344 		if (err)
4345 			return err;
4346 		err = check_map_access(env, regno, off, size, false);
4347 		if (!err && t == BPF_READ && value_regno >= 0) {
4348 			struct bpf_map *map = reg->map_ptr;
4349 
4350 			/* if map is read-only, track its contents as scalars */
4351 			if (tnum_is_const(reg->var_off) &&
4352 			    bpf_map_is_rdonly(map) &&
4353 			    map->ops->map_direct_value_addr) {
4354 				int map_off = off + reg->var_off.value;
4355 				u64 val = 0;
4356 
4357 				err = bpf_map_direct_read(map, map_off, size,
4358 							  &val);
4359 				if (err)
4360 					return err;
4361 
4362 				regs[value_regno].type = SCALAR_VALUE;
4363 				__mark_reg_known(&regs[value_regno], val);
4364 			} else {
4365 				mark_reg_unknown(env, regs, value_regno);
4366 			}
4367 		}
4368 	} else if (reg->type == PTR_TO_MEM) {
4369 		if (t == BPF_WRITE && value_regno >= 0 &&
4370 		    is_pointer_value(env, value_regno)) {
4371 			verbose(env, "R%d leaks addr into mem\n", value_regno);
4372 			return -EACCES;
4373 		}
4374 		err = check_mem_region_access(env, regno, off, size,
4375 					      reg->mem_size, false);
4376 		if (!err && t == BPF_READ && value_regno >= 0)
4377 			mark_reg_unknown(env, regs, value_regno);
4378 	} else if (reg->type == PTR_TO_CTX) {
4379 		enum bpf_reg_type reg_type = SCALAR_VALUE;
4380 		struct btf *btf = NULL;
4381 		u32 btf_id = 0;
4382 
4383 		if (t == BPF_WRITE && value_regno >= 0 &&
4384 		    is_pointer_value(env, value_regno)) {
4385 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
4386 			return -EACCES;
4387 		}
4388 
4389 		err = check_ctx_reg(env, reg, regno);
4390 		if (err < 0)
4391 			return err;
4392 
4393 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4394 		if (err)
4395 			verbose_linfo(env, insn_idx, "; ");
4396 		if (!err && t == BPF_READ && value_regno >= 0) {
4397 			/* ctx access returns either a scalar, or a
4398 			 * PTR_TO_PACKET[_META,_END]. In the latter
4399 			 * case, we know the offset is zero.
4400 			 */
4401 			if (reg_type == SCALAR_VALUE) {
4402 				mark_reg_unknown(env, regs, value_regno);
4403 			} else {
4404 				mark_reg_known_zero(env, regs,
4405 						    value_regno);
4406 				if (reg_type_may_be_null(reg_type))
4407 					regs[value_regno].id = ++env->id_gen;
4408 				/* A load of ctx field could have different
4409 				 * actual load size with the one encoded in the
4410 				 * insn. When the dst is PTR, it is for sure not
4411 				 * a sub-register.
4412 				 */
4413 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4414 				if (reg_type == PTR_TO_BTF_ID ||
4415 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
4416 					regs[value_regno].btf = btf;
4417 					regs[value_regno].btf_id = btf_id;
4418 				}
4419 			}
4420 			regs[value_regno].type = reg_type;
4421 		}
4422 
4423 	} else if (reg->type == PTR_TO_STACK) {
4424 		/* Basic bounds checks. */
4425 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4426 		if (err)
4427 			return err;
4428 
4429 		state = func(env, reg);
4430 		err = update_stack_depth(env, state, off);
4431 		if (err)
4432 			return err;
4433 
4434 		if (t == BPF_READ)
4435 			err = check_stack_read(env, regno, off, size,
4436 					       value_regno);
4437 		else
4438 			err = check_stack_write(env, regno, off, size,
4439 						value_regno, insn_idx);
4440 	} else if (reg_is_pkt_pointer(reg)) {
4441 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4442 			verbose(env, "cannot write into packet\n");
4443 			return -EACCES;
4444 		}
4445 		if (t == BPF_WRITE && value_regno >= 0 &&
4446 		    is_pointer_value(env, value_regno)) {
4447 			verbose(env, "R%d leaks addr into packet\n",
4448 				value_regno);
4449 			return -EACCES;
4450 		}
4451 		err = check_packet_access(env, regno, off, size, false);
4452 		if (!err && t == BPF_READ && value_regno >= 0)
4453 			mark_reg_unknown(env, regs, value_regno);
4454 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4455 		if (t == BPF_WRITE && value_regno >= 0 &&
4456 		    is_pointer_value(env, value_regno)) {
4457 			verbose(env, "R%d leaks addr into flow keys\n",
4458 				value_regno);
4459 			return -EACCES;
4460 		}
4461 
4462 		err = check_flow_keys_access(env, off, size);
4463 		if (!err && t == BPF_READ && value_regno >= 0)
4464 			mark_reg_unknown(env, regs, value_regno);
4465 	} else if (type_is_sk_pointer(reg->type)) {
4466 		if (t == BPF_WRITE) {
4467 			verbose(env, "R%d cannot write into %s\n",
4468 				regno, reg_type_str[reg->type]);
4469 			return -EACCES;
4470 		}
4471 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4472 		if (!err && value_regno >= 0)
4473 			mark_reg_unknown(env, regs, value_regno);
4474 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4475 		err = check_tp_buffer_access(env, reg, regno, off, size);
4476 		if (!err && t == BPF_READ && value_regno >= 0)
4477 			mark_reg_unknown(env, regs, value_regno);
4478 	} else if (reg->type == PTR_TO_BTF_ID) {
4479 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4480 					      value_regno);
4481 	} else if (reg->type == CONST_PTR_TO_MAP) {
4482 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4483 					      value_regno);
4484 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4485 		if (t == BPF_WRITE) {
4486 			verbose(env, "R%d cannot write into %s\n",
4487 				regno, reg_type_str[reg->type]);
4488 			return -EACCES;
4489 		}
4490 		err = check_buffer_access(env, reg, regno, off, size, false,
4491 					  "rdonly",
4492 					  &env->prog->aux->max_rdonly_access);
4493 		if (!err && value_regno >= 0)
4494 			mark_reg_unknown(env, regs, value_regno);
4495 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4496 		err = check_buffer_access(env, reg, regno, off, size, false,
4497 					  "rdwr",
4498 					  &env->prog->aux->max_rdwr_access);
4499 		if (!err && t == BPF_READ && value_regno >= 0)
4500 			mark_reg_unknown(env, regs, value_regno);
4501 	} else {
4502 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4503 			reg_type_str[reg->type]);
4504 		return -EACCES;
4505 	}
4506 
4507 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4508 	    regs[value_regno].type == SCALAR_VALUE) {
4509 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4510 		coerce_reg_to_size(&regs[value_regno], size);
4511 	}
4512 	return err;
4513 }
4514 
4515 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4516 {
4517 	int load_reg;
4518 	int err;
4519 
4520 	switch (insn->imm) {
4521 	case BPF_ADD:
4522 	case BPF_ADD | BPF_FETCH:
4523 	case BPF_AND:
4524 	case BPF_AND | BPF_FETCH:
4525 	case BPF_OR:
4526 	case BPF_OR | BPF_FETCH:
4527 	case BPF_XOR:
4528 	case BPF_XOR | BPF_FETCH:
4529 	case BPF_XCHG:
4530 	case BPF_CMPXCHG:
4531 		break;
4532 	default:
4533 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4534 		return -EINVAL;
4535 	}
4536 
4537 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4538 		verbose(env, "invalid atomic operand size\n");
4539 		return -EINVAL;
4540 	}
4541 
4542 	/* check src1 operand */
4543 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4544 	if (err)
4545 		return err;
4546 
4547 	/* check src2 operand */
4548 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4549 	if (err)
4550 		return err;
4551 
4552 	if (insn->imm == BPF_CMPXCHG) {
4553 		/* Check comparison of R0 with memory location */
4554 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4555 		if (err)
4556 			return err;
4557 	}
4558 
4559 	if (is_pointer_value(env, insn->src_reg)) {
4560 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4561 		return -EACCES;
4562 	}
4563 
4564 	if (is_ctx_reg(env, insn->dst_reg) ||
4565 	    is_pkt_reg(env, insn->dst_reg) ||
4566 	    is_flow_key_reg(env, insn->dst_reg) ||
4567 	    is_sk_reg(env, insn->dst_reg)) {
4568 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4569 			insn->dst_reg,
4570 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4571 		return -EACCES;
4572 	}
4573 
4574 	if (insn->imm & BPF_FETCH) {
4575 		if (insn->imm == BPF_CMPXCHG)
4576 			load_reg = BPF_REG_0;
4577 		else
4578 			load_reg = insn->src_reg;
4579 
4580 		/* check and record load of old value */
4581 		err = check_reg_arg(env, load_reg, DST_OP);
4582 		if (err)
4583 			return err;
4584 	} else {
4585 		/* This instruction accesses a memory location but doesn't
4586 		 * actually load it into a register.
4587 		 */
4588 		load_reg = -1;
4589 	}
4590 
4591 	/* check whether we can read the memory */
4592 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4593 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4594 	if (err)
4595 		return err;
4596 
4597 	/* check whether we can write into the same memory */
4598 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4599 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4600 	if (err)
4601 		return err;
4602 
4603 	return 0;
4604 }
4605 
4606 /* When register 'regno' is used to read the stack (either directly or through
4607  * a helper function) make sure that it's within stack boundary and, depending
4608  * on the access type, that all elements of the stack are initialized.
4609  *
4610  * 'off' includes 'regno->off', but not its dynamic part (if any).
4611  *
4612  * All registers that have been spilled on the stack in the slots within the
4613  * read offsets are marked as read.
4614  */
4615 static int check_stack_range_initialized(
4616 		struct bpf_verifier_env *env, int regno, int off,
4617 		int access_size, bool zero_size_allowed,
4618 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4619 {
4620 	struct bpf_reg_state *reg = reg_state(env, regno);
4621 	struct bpf_func_state *state = func(env, reg);
4622 	int err, min_off, max_off, i, j, slot, spi;
4623 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4624 	enum bpf_access_type bounds_check_type;
4625 	/* Some accesses can write anything into the stack, others are
4626 	 * read-only.
4627 	 */
4628 	bool clobber = false;
4629 
4630 	if (access_size == 0 && !zero_size_allowed) {
4631 		verbose(env, "invalid zero-sized read\n");
4632 		return -EACCES;
4633 	}
4634 
4635 	if (type == ACCESS_HELPER) {
4636 		/* The bounds checks for writes are more permissive than for
4637 		 * reads. However, if raw_mode is not set, we'll do extra
4638 		 * checks below.
4639 		 */
4640 		bounds_check_type = BPF_WRITE;
4641 		clobber = true;
4642 	} else {
4643 		bounds_check_type = BPF_READ;
4644 	}
4645 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4646 					       type, bounds_check_type);
4647 	if (err)
4648 		return err;
4649 
4650 
4651 	if (tnum_is_const(reg->var_off)) {
4652 		min_off = max_off = reg->var_off.value + off;
4653 	} else {
4654 		/* Variable offset is prohibited for unprivileged mode for
4655 		 * simplicity since it requires corresponding support in
4656 		 * Spectre masking for stack ALU.
4657 		 * See also retrieve_ptr_limit().
4658 		 */
4659 		if (!env->bypass_spec_v1) {
4660 			char tn_buf[48];
4661 
4662 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4663 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4664 				regno, err_extra, tn_buf);
4665 			return -EACCES;
4666 		}
4667 		/* Only initialized buffer on stack is allowed to be accessed
4668 		 * with variable offset. With uninitialized buffer it's hard to
4669 		 * guarantee that whole memory is marked as initialized on
4670 		 * helper return since specific bounds are unknown what may
4671 		 * cause uninitialized stack leaking.
4672 		 */
4673 		if (meta && meta->raw_mode)
4674 			meta = NULL;
4675 
4676 		min_off = reg->smin_value + off;
4677 		max_off = reg->smax_value + off;
4678 	}
4679 
4680 	if (meta && meta->raw_mode) {
4681 		meta->access_size = access_size;
4682 		meta->regno = regno;
4683 		return 0;
4684 	}
4685 
4686 	for (i = min_off; i < max_off + access_size; i++) {
4687 		u8 *stype;
4688 
4689 		slot = -i - 1;
4690 		spi = slot / BPF_REG_SIZE;
4691 		if (state->allocated_stack <= slot)
4692 			goto err;
4693 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4694 		if (*stype == STACK_MISC)
4695 			goto mark;
4696 		if (*stype == STACK_ZERO) {
4697 			if (clobber) {
4698 				/* helper can write anything into the stack */
4699 				*stype = STACK_MISC;
4700 			}
4701 			goto mark;
4702 		}
4703 
4704 		if (is_spilled_reg(&state->stack[spi]) &&
4705 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4706 			goto mark;
4707 
4708 		if (is_spilled_reg(&state->stack[spi]) &&
4709 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4710 		     env->allow_ptr_leaks)) {
4711 			if (clobber) {
4712 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4713 				for (j = 0; j < BPF_REG_SIZE; j++)
4714 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
4715 			}
4716 			goto mark;
4717 		}
4718 
4719 err:
4720 		if (tnum_is_const(reg->var_off)) {
4721 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4722 				err_extra, regno, min_off, i - min_off, access_size);
4723 		} else {
4724 			char tn_buf[48];
4725 
4726 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4727 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4728 				err_extra, regno, tn_buf, i - min_off, access_size);
4729 		}
4730 		return -EACCES;
4731 mark:
4732 		/* reading any byte out of 8-byte 'spill_slot' will cause
4733 		 * the whole slot to be marked as 'read'
4734 		 */
4735 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4736 			      state->stack[spi].spilled_ptr.parent,
4737 			      REG_LIVE_READ64);
4738 	}
4739 	return update_stack_depth(env, state, min_off);
4740 }
4741 
4742 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4743 				   int access_size, bool zero_size_allowed,
4744 				   struct bpf_call_arg_meta *meta)
4745 {
4746 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4747 
4748 	switch (reg->type) {
4749 	case PTR_TO_PACKET:
4750 	case PTR_TO_PACKET_META:
4751 		return check_packet_access(env, regno, reg->off, access_size,
4752 					   zero_size_allowed);
4753 	case PTR_TO_MAP_KEY:
4754 		return check_mem_region_access(env, regno, reg->off, access_size,
4755 					       reg->map_ptr->key_size, false);
4756 	case PTR_TO_MAP_VALUE:
4757 		if (check_map_access_type(env, regno, reg->off, access_size,
4758 					  meta && meta->raw_mode ? BPF_WRITE :
4759 					  BPF_READ))
4760 			return -EACCES;
4761 		return check_map_access(env, regno, reg->off, access_size,
4762 					zero_size_allowed);
4763 	case PTR_TO_MEM:
4764 		return check_mem_region_access(env, regno, reg->off,
4765 					       access_size, reg->mem_size,
4766 					       zero_size_allowed);
4767 	case PTR_TO_RDONLY_BUF:
4768 		if (meta && meta->raw_mode)
4769 			return -EACCES;
4770 		return check_buffer_access(env, reg, regno, reg->off,
4771 					   access_size, zero_size_allowed,
4772 					   "rdonly",
4773 					   &env->prog->aux->max_rdonly_access);
4774 	case PTR_TO_RDWR_BUF:
4775 		return check_buffer_access(env, reg, regno, reg->off,
4776 					   access_size, zero_size_allowed,
4777 					   "rdwr",
4778 					   &env->prog->aux->max_rdwr_access);
4779 	case PTR_TO_STACK:
4780 		return check_stack_range_initialized(
4781 				env,
4782 				regno, reg->off, access_size,
4783 				zero_size_allowed, ACCESS_HELPER, meta);
4784 	default: /* scalar_value or invalid ptr */
4785 		/* Allow zero-byte read from NULL, regardless of pointer type */
4786 		if (zero_size_allowed && access_size == 0 &&
4787 		    register_is_null(reg))
4788 			return 0;
4789 
4790 		verbose(env, "R%d type=%s expected=%s\n", regno,
4791 			reg_type_str[reg->type],
4792 			reg_type_str[PTR_TO_STACK]);
4793 		return -EACCES;
4794 	}
4795 }
4796 
4797 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4798 		   u32 regno, u32 mem_size)
4799 {
4800 	if (register_is_null(reg))
4801 		return 0;
4802 
4803 	if (reg_type_may_be_null(reg->type)) {
4804 		/* Assuming that the register contains a value check if the memory
4805 		 * access is safe. Temporarily save and restore the register's state as
4806 		 * the conversion shouldn't be visible to a caller.
4807 		 */
4808 		const struct bpf_reg_state saved_reg = *reg;
4809 		int rv;
4810 
4811 		mark_ptr_not_null_reg(reg);
4812 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4813 		*reg = saved_reg;
4814 		return rv;
4815 	}
4816 
4817 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4818 }
4819 
4820 /* Implementation details:
4821  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4822  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4823  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4824  * value_or_null->value transition, since the verifier only cares about
4825  * the range of access to valid map value pointer and doesn't care about actual
4826  * address of the map element.
4827  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4828  * reg->id > 0 after value_or_null->value transition. By doing so
4829  * two bpf_map_lookups will be considered two different pointers that
4830  * point to different bpf_spin_locks.
4831  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4832  * dead-locks.
4833  * Since only one bpf_spin_lock is allowed the checks are simpler than
4834  * reg_is_refcounted() logic. The verifier needs to remember only
4835  * one spin_lock instead of array of acquired_refs.
4836  * cur_state->active_spin_lock remembers which map value element got locked
4837  * and clears it after bpf_spin_unlock.
4838  */
4839 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4840 			     bool is_lock)
4841 {
4842 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4843 	struct bpf_verifier_state *cur = env->cur_state;
4844 	bool is_const = tnum_is_const(reg->var_off);
4845 	struct bpf_map *map = reg->map_ptr;
4846 	u64 val = reg->var_off.value;
4847 
4848 	if (!is_const) {
4849 		verbose(env,
4850 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4851 			regno);
4852 		return -EINVAL;
4853 	}
4854 	if (!map->btf) {
4855 		verbose(env,
4856 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4857 			map->name);
4858 		return -EINVAL;
4859 	}
4860 	if (!map_value_has_spin_lock(map)) {
4861 		if (map->spin_lock_off == -E2BIG)
4862 			verbose(env,
4863 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4864 				map->name);
4865 		else if (map->spin_lock_off == -ENOENT)
4866 			verbose(env,
4867 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4868 				map->name);
4869 		else
4870 			verbose(env,
4871 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4872 				map->name);
4873 		return -EINVAL;
4874 	}
4875 	if (map->spin_lock_off != val + reg->off) {
4876 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4877 			val + reg->off);
4878 		return -EINVAL;
4879 	}
4880 	if (is_lock) {
4881 		if (cur->active_spin_lock) {
4882 			verbose(env,
4883 				"Locking two bpf_spin_locks are not allowed\n");
4884 			return -EINVAL;
4885 		}
4886 		cur->active_spin_lock = reg->id;
4887 	} else {
4888 		if (!cur->active_spin_lock) {
4889 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4890 			return -EINVAL;
4891 		}
4892 		if (cur->active_spin_lock != reg->id) {
4893 			verbose(env, "bpf_spin_unlock of different lock\n");
4894 			return -EINVAL;
4895 		}
4896 		cur->active_spin_lock = 0;
4897 	}
4898 	return 0;
4899 }
4900 
4901 static int process_timer_func(struct bpf_verifier_env *env, int regno,
4902 			      struct bpf_call_arg_meta *meta)
4903 {
4904 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4905 	bool is_const = tnum_is_const(reg->var_off);
4906 	struct bpf_map *map = reg->map_ptr;
4907 	u64 val = reg->var_off.value;
4908 
4909 	if (!is_const) {
4910 		verbose(env,
4911 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
4912 			regno);
4913 		return -EINVAL;
4914 	}
4915 	if (!map->btf) {
4916 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
4917 			map->name);
4918 		return -EINVAL;
4919 	}
4920 	if (!map_value_has_timer(map)) {
4921 		if (map->timer_off == -E2BIG)
4922 			verbose(env,
4923 				"map '%s' has more than one 'struct bpf_timer'\n",
4924 				map->name);
4925 		else if (map->timer_off == -ENOENT)
4926 			verbose(env,
4927 				"map '%s' doesn't have 'struct bpf_timer'\n",
4928 				map->name);
4929 		else
4930 			verbose(env,
4931 				"map '%s' is not a struct type or bpf_timer is mangled\n",
4932 				map->name);
4933 		return -EINVAL;
4934 	}
4935 	if (map->timer_off != val + reg->off) {
4936 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
4937 			val + reg->off, map->timer_off);
4938 		return -EINVAL;
4939 	}
4940 	if (meta->map_ptr) {
4941 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
4942 		return -EFAULT;
4943 	}
4944 	meta->map_uid = reg->map_uid;
4945 	meta->map_ptr = map;
4946 	return 0;
4947 }
4948 
4949 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4950 {
4951 	return type == ARG_PTR_TO_MEM ||
4952 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4953 	       type == ARG_PTR_TO_UNINIT_MEM;
4954 }
4955 
4956 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4957 {
4958 	return type == ARG_CONST_SIZE ||
4959 	       type == ARG_CONST_SIZE_OR_ZERO;
4960 }
4961 
4962 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4963 {
4964 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4965 }
4966 
4967 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4968 {
4969 	return type == ARG_PTR_TO_INT ||
4970 	       type == ARG_PTR_TO_LONG;
4971 }
4972 
4973 static int int_ptr_type_to_size(enum bpf_arg_type type)
4974 {
4975 	if (type == ARG_PTR_TO_INT)
4976 		return sizeof(u32);
4977 	else if (type == ARG_PTR_TO_LONG)
4978 		return sizeof(u64);
4979 
4980 	return -EINVAL;
4981 }
4982 
4983 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4984 				 const struct bpf_call_arg_meta *meta,
4985 				 enum bpf_arg_type *arg_type)
4986 {
4987 	if (!meta->map_ptr) {
4988 		/* kernel subsystem misconfigured verifier */
4989 		verbose(env, "invalid map_ptr to access map->type\n");
4990 		return -EACCES;
4991 	}
4992 
4993 	switch (meta->map_ptr->map_type) {
4994 	case BPF_MAP_TYPE_SOCKMAP:
4995 	case BPF_MAP_TYPE_SOCKHASH:
4996 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4997 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4998 		} else {
4999 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
5000 			return -EINVAL;
5001 		}
5002 		break;
5003 	case BPF_MAP_TYPE_BLOOM_FILTER:
5004 		if (meta->func_id == BPF_FUNC_map_peek_elem)
5005 			*arg_type = ARG_PTR_TO_MAP_VALUE;
5006 		break;
5007 	default:
5008 		break;
5009 	}
5010 	return 0;
5011 }
5012 
5013 struct bpf_reg_types {
5014 	const enum bpf_reg_type types[10];
5015 	u32 *btf_id;
5016 };
5017 
5018 static const struct bpf_reg_types map_key_value_types = {
5019 	.types = {
5020 		PTR_TO_STACK,
5021 		PTR_TO_PACKET,
5022 		PTR_TO_PACKET_META,
5023 		PTR_TO_MAP_KEY,
5024 		PTR_TO_MAP_VALUE,
5025 	},
5026 };
5027 
5028 static const struct bpf_reg_types sock_types = {
5029 	.types = {
5030 		PTR_TO_SOCK_COMMON,
5031 		PTR_TO_SOCKET,
5032 		PTR_TO_TCP_SOCK,
5033 		PTR_TO_XDP_SOCK,
5034 	},
5035 };
5036 
5037 #ifdef CONFIG_NET
5038 static const struct bpf_reg_types btf_id_sock_common_types = {
5039 	.types = {
5040 		PTR_TO_SOCK_COMMON,
5041 		PTR_TO_SOCKET,
5042 		PTR_TO_TCP_SOCK,
5043 		PTR_TO_XDP_SOCK,
5044 		PTR_TO_BTF_ID,
5045 	},
5046 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5047 };
5048 #endif
5049 
5050 static const struct bpf_reg_types mem_types = {
5051 	.types = {
5052 		PTR_TO_STACK,
5053 		PTR_TO_PACKET,
5054 		PTR_TO_PACKET_META,
5055 		PTR_TO_MAP_KEY,
5056 		PTR_TO_MAP_VALUE,
5057 		PTR_TO_MEM,
5058 		PTR_TO_RDONLY_BUF,
5059 		PTR_TO_RDWR_BUF,
5060 	},
5061 };
5062 
5063 static const struct bpf_reg_types int_ptr_types = {
5064 	.types = {
5065 		PTR_TO_STACK,
5066 		PTR_TO_PACKET,
5067 		PTR_TO_PACKET_META,
5068 		PTR_TO_MAP_KEY,
5069 		PTR_TO_MAP_VALUE,
5070 	},
5071 };
5072 
5073 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
5074 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
5075 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
5076 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
5077 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
5078 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
5079 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
5080 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
5081 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
5082 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
5083 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
5084 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
5085 
5086 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
5087 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
5088 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
5089 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
5090 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
5091 	[ARG_CONST_SIZE]		= &scalar_types,
5092 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
5093 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
5094 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
5095 	[ARG_PTR_TO_CTX]		= &context_types,
5096 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
5097 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
5098 #ifdef CONFIG_NET
5099 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
5100 #endif
5101 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
5102 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
5103 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
5104 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
5105 	[ARG_PTR_TO_MEM]		= &mem_types,
5106 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
5107 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
5108 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
5109 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
5110 	[ARG_PTR_TO_INT]		= &int_ptr_types,
5111 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
5112 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
5113 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
5114 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
5115 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
5116 	[ARG_PTR_TO_TIMER]		= &timer_types,
5117 };
5118 
5119 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
5120 			  enum bpf_arg_type arg_type,
5121 			  const u32 *arg_btf_id)
5122 {
5123 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5124 	enum bpf_reg_type expected, type = reg->type;
5125 	const struct bpf_reg_types *compatible;
5126 	int i, j;
5127 
5128 	compatible = compatible_reg_types[arg_type];
5129 	if (!compatible) {
5130 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
5131 		return -EFAULT;
5132 	}
5133 
5134 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
5135 		expected = compatible->types[i];
5136 		if (expected == NOT_INIT)
5137 			break;
5138 
5139 		if (type == expected)
5140 			goto found;
5141 	}
5142 
5143 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
5144 	for (j = 0; j + 1 < i; j++)
5145 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
5146 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
5147 	return -EACCES;
5148 
5149 found:
5150 	if (type == PTR_TO_BTF_ID) {
5151 		if (!arg_btf_id) {
5152 			if (!compatible->btf_id) {
5153 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
5154 				return -EFAULT;
5155 			}
5156 			arg_btf_id = compatible->btf_id;
5157 		}
5158 
5159 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5160 					  btf_vmlinux, *arg_btf_id)) {
5161 			verbose(env, "R%d is of type %s but %s is expected\n",
5162 				regno, kernel_type_name(reg->btf, reg->btf_id),
5163 				kernel_type_name(btf_vmlinux, *arg_btf_id));
5164 			return -EACCES;
5165 		}
5166 
5167 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5168 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
5169 				regno);
5170 			return -EACCES;
5171 		}
5172 	}
5173 
5174 	return 0;
5175 }
5176 
5177 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
5178 			  struct bpf_call_arg_meta *meta,
5179 			  const struct bpf_func_proto *fn)
5180 {
5181 	u32 regno = BPF_REG_1 + arg;
5182 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
5183 	enum bpf_arg_type arg_type = fn->arg_type[arg];
5184 	enum bpf_reg_type type = reg->type;
5185 	int err = 0;
5186 
5187 	if (arg_type == ARG_DONTCARE)
5188 		return 0;
5189 
5190 	err = check_reg_arg(env, regno, SRC_OP);
5191 	if (err)
5192 		return err;
5193 
5194 	if (arg_type == ARG_ANYTHING) {
5195 		if (is_pointer_value(env, regno)) {
5196 			verbose(env, "R%d leaks addr into helper function\n",
5197 				regno);
5198 			return -EACCES;
5199 		}
5200 		return 0;
5201 	}
5202 
5203 	if (type_is_pkt_pointer(type) &&
5204 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
5205 		verbose(env, "helper access to the packet is not allowed\n");
5206 		return -EACCES;
5207 	}
5208 
5209 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5210 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
5211 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
5212 		err = resolve_map_arg_type(env, meta, &arg_type);
5213 		if (err)
5214 			return err;
5215 	}
5216 
5217 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
5218 		/* A NULL register has a SCALAR_VALUE type, so skip
5219 		 * type checking.
5220 		 */
5221 		goto skip_type_check;
5222 
5223 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
5224 	if (err)
5225 		return err;
5226 
5227 	if (type == PTR_TO_CTX) {
5228 		err = check_ctx_reg(env, reg, regno);
5229 		if (err < 0)
5230 			return err;
5231 	}
5232 
5233 skip_type_check:
5234 	if (reg->ref_obj_id) {
5235 		if (meta->ref_obj_id) {
5236 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5237 				regno, reg->ref_obj_id,
5238 				meta->ref_obj_id);
5239 			return -EFAULT;
5240 		}
5241 		meta->ref_obj_id = reg->ref_obj_id;
5242 	}
5243 
5244 	if (arg_type == ARG_CONST_MAP_PTR) {
5245 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
5246 		if (meta->map_ptr) {
5247 			/* Use map_uid (which is unique id of inner map) to reject:
5248 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
5249 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
5250 			 * if (inner_map1 && inner_map2) {
5251 			 *     timer = bpf_map_lookup_elem(inner_map1);
5252 			 *     if (timer)
5253 			 *         // mismatch would have been allowed
5254 			 *         bpf_timer_init(timer, inner_map2);
5255 			 * }
5256 			 *
5257 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
5258 			 */
5259 			if (meta->map_ptr != reg->map_ptr ||
5260 			    meta->map_uid != reg->map_uid) {
5261 				verbose(env,
5262 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
5263 					meta->map_uid, reg->map_uid);
5264 				return -EINVAL;
5265 			}
5266 		}
5267 		meta->map_ptr = reg->map_ptr;
5268 		meta->map_uid = reg->map_uid;
5269 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
5270 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
5271 		 * check that [key, key + map->key_size) are within
5272 		 * stack limits and initialized
5273 		 */
5274 		if (!meta->map_ptr) {
5275 			/* in function declaration map_ptr must come before
5276 			 * map_key, so that it's verified and known before
5277 			 * we have to check map_key here. Otherwise it means
5278 			 * that kernel subsystem misconfigured verifier
5279 			 */
5280 			verbose(env, "invalid map_ptr to access map->key\n");
5281 			return -EACCES;
5282 		}
5283 		err = check_helper_mem_access(env, regno,
5284 					      meta->map_ptr->key_size, false,
5285 					      NULL);
5286 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
5287 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
5288 		    !register_is_null(reg)) ||
5289 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
5290 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
5291 		 * check [value, value + map->value_size) validity
5292 		 */
5293 		if (!meta->map_ptr) {
5294 			/* kernel subsystem misconfigured verifier */
5295 			verbose(env, "invalid map_ptr to access map->value\n");
5296 			return -EACCES;
5297 		}
5298 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
5299 		err = check_helper_mem_access(env, regno,
5300 					      meta->map_ptr->value_size, false,
5301 					      meta);
5302 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
5303 		if (!reg->btf_id) {
5304 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
5305 			return -EACCES;
5306 		}
5307 		meta->ret_btf = reg->btf;
5308 		meta->ret_btf_id = reg->btf_id;
5309 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
5310 		if (meta->func_id == BPF_FUNC_spin_lock) {
5311 			if (process_spin_lock(env, regno, true))
5312 				return -EACCES;
5313 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
5314 			if (process_spin_lock(env, regno, false))
5315 				return -EACCES;
5316 		} else {
5317 			verbose(env, "verifier internal error\n");
5318 			return -EFAULT;
5319 		}
5320 	} else if (arg_type == ARG_PTR_TO_TIMER) {
5321 		if (process_timer_func(env, regno, meta))
5322 			return -EACCES;
5323 	} else if (arg_type == ARG_PTR_TO_FUNC) {
5324 		meta->subprogno = reg->subprogno;
5325 	} else if (arg_type_is_mem_ptr(arg_type)) {
5326 		/* The access to this pointer is only checked when we hit the
5327 		 * next is_mem_size argument below.
5328 		 */
5329 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5330 	} else if (arg_type_is_mem_size(arg_type)) {
5331 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5332 
5333 		/* This is used to refine r0 return value bounds for helpers
5334 		 * that enforce this value as an upper bound on return values.
5335 		 * See do_refine_retval_range() for helpers that can refine
5336 		 * the return value. C type of helper is u32 so we pull register
5337 		 * bound from umax_value however, if negative verifier errors
5338 		 * out. Only upper bounds can be learned because retval is an
5339 		 * int type and negative retvals are allowed.
5340 		 */
5341 		meta->msize_max_value = reg->umax_value;
5342 
5343 		/* The register is SCALAR_VALUE; the access check
5344 		 * happens using its boundaries.
5345 		 */
5346 		if (!tnum_is_const(reg->var_off))
5347 			/* For unprivileged variable accesses, disable raw
5348 			 * mode so that the program is required to
5349 			 * initialize all the memory that the helper could
5350 			 * just partially fill up.
5351 			 */
5352 			meta = NULL;
5353 
5354 		if (reg->smin_value < 0) {
5355 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5356 				regno);
5357 			return -EACCES;
5358 		}
5359 
5360 		if (reg->umin_value == 0) {
5361 			err = check_helper_mem_access(env, regno - 1, 0,
5362 						      zero_size_allowed,
5363 						      meta);
5364 			if (err)
5365 				return err;
5366 		}
5367 
5368 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5369 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5370 				regno);
5371 			return -EACCES;
5372 		}
5373 		err = check_helper_mem_access(env, regno - 1,
5374 					      reg->umax_value,
5375 					      zero_size_allowed, meta);
5376 		if (!err)
5377 			err = mark_chain_precision(env, regno);
5378 	} else if (arg_type_is_alloc_size(arg_type)) {
5379 		if (!tnum_is_const(reg->var_off)) {
5380 			verbose(env, "R%d is not a known constant'\n",
5381 				regno);
5382 			return -EACCES;
5383 		}
5384 		meta->mem_size = reg->var_off.value;
5385 	} else if (arg_type_is_int_ptr(arg_type)) {
5386 		int size = int_ptr_type_to_size(arg_type);
5387 
5388 		err = check_helper_mem_access(env, regno, size, false, meta);
5389 		if (err)
5390 			return err;
5391 		err = check_ptr_alignment(env, reg, 0, size, true);
5392 	} else if (arg_type == ARG_PTR_TO_CONST_STR) {
5393 		struct bpf_map *map = reg->map_ptr;
5394 		int map_off;
5395 		u64 map_addr;
5396 		char *str_ptr;
5397 
5398 		if (!bpf_map_is_rdonly(map)) {
5399 			verbose(env, "R%d does not point to a readonly map'\n", regno);
5400 			return -EACCES;
5401 		}
5402 
5403 		if (!tnum_is_const(reg->var_off)) {
5404 			verbose(env, "R%d is not a constant address'\n", regno);
5405 			return -EACCES;
5406 		}
5407 
5408 		if (!map->ops->map_direct_value_addr) {
5409 			verbose(env, "no direct value access support for this map type\n");
5410 			return -EACCES;
5411 		}
5412 
5413 		err = check_map_access(env, regno, reg->off,
5414 				       map->value_size - reg->off, false);
5415 		if (err)
5416 			return err;
5417 
5418 		map_off = reg->off + reg->var_off.value;
5419 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5420 		if (err) {
5421 			verbose(env, "direct value access on string failed\n");
5422 			return err;
5423 		}
5424 
5425 		str_ptr = (char *)(long)(map_addr);
5426 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5427 			verbose(env, "string is not zero-terminated\n");
5428 			return -EINVAL;
5429 		}
5430 	}
5431 
5432 	return err;
5433 }
5434 
5435 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5436 {
5437 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
5438 	enum bpf_prog_type type = resolve_prog_type(env->prog);
5439 
5440 	if (func_id != BPF_FUNC_map_update_elem)
5441 		return false;
5442 
5443 	/* It's not possible to get access to a locked struct sock in these
5444 	 * contexts, so updating is safe.
5445 	 */
5446 	switch (type) {
5447 	case BPF_PROG_TYPE_TRACING:
5448 		if (eatype == BPF_TRACE_ITER)
5449 			return true;
5450 		break;
5451 	case BPF_PROG_TYPE_SOCKET_FILTER:
5452 	case BPF_PROG_TYPE_SCHED_CLS:
5453 	case BPF_PROG_TYPE_SCHED_ACT:
5454 	case BPF_PROG_TYPE_XDP:
5455 	case BPF_PROG_TYPE_SK_REUSEPORT:
5456 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5457 	case BPF_PROG_TYPE_SK_LOOKUP:
5458 		return true;
5459 	default:
5460 		break;
5461 	}
5462 
5463 	verbose(env, "cannot update sockmap in this context\n");
5464 	return false;
5465 }
5466 
5467 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5468 {
5469 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5470 }
5471 
5472 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5473 					struct bpf_map *map, int func_id)
5474 {
5475 	if (!map)
5476 		return 0;
5477 
5478 	/* We need a two way check, first is from map perspective ... */
5479 	switch (map->map_type) {
5480 	case BPF_MAP_TYPE_PROG_ARRAY:
5481 		if (func_id != BPF_FUNC_tail_call)
5482 			goto error;
5483 		break;
5484 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5485 		if (func_id != BPF_FUNC_perf_event_read &&
5486 		    func_id != BPF_FUNC_perf_event_output &&
5487 		    func_id != BPF_FUNC_skb_output &&
5488 		    func_id != BPF_FUNC_perf_event_read_value &&
5489 		    func_id != BPF_FUNC_xdp_output)
5490 			goto error;
5491 		break;
5492 	case BPF_MAP_TYPE_RINGBUF:
5493 		if (func_id != BPF_FUNC_ringbuf_output &&
5494 		    func_id != BPF_FUNC_ringbuf_reserve &&
5495 		    func_id != BPF_FUNC_ringbuf_query)
5496 			goto error;
5497 		break;
5498 	case BPF_MAP_TYPE_STACK_TRACE:
5499 		if (func_id != BPF_FUNC_get_stackid)
5500 			goto error;
5501 		break;
5502 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5503 		if (func_id != BPF_FUNC_skb_under_cgroup &&
5504 		    func_id != BPF_FUNC_current_task_under_cgroup)
5505 			goto error;
5506 		break;
5507 	case BPF_MAP_TYPE_CGROUP_STORAGE:
5508 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5509 		if (func_id != BPF_FUNC_get_local_storage)
5510 			goto error;
5511 		break;
5512 	case BPF_MAP_TYPE_DEVMAP:
5513 	case BPF_MAP_TYPE_DEVMAP_HASH:
5514 		if (func_id != BPF_FUNC_redirect_map &&
5515 		    func_id != BPF_FUNC_map_lookup_elem)
5516 			goto error;
5517 		break;
5518 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
5519 	 * appear.
5520 	 */
5521 	case BPF_MAP_TYPE_CPUMAP:
5522 		if (func_id != BPF_FUNC_redirect_map)
5523 			goto error;
5524 		break;
5525 	case BPF_MAP_TYPE_XSKMAP:
5526 		if (func_id != BPF_FUNC_redirect_map &&
5527 		    func_id != BPF_FUNC_map_lookup_elem)
5528 			goto error;
5529 		break;
5530 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5531 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5532 		if (func_id != BPF_FUNC_map_lookup_elem)
5533 			goto error;
5534 		break;
5535 	case BPF_MAP_TYPE_SOCKMAP:
5536 		if (func_id != BPF_FUNC_sk_redirect_map &&
5537 		    func_id != BPF_FUNC_sock_map_update &&
5538 		    func_id != BPF_FUNC_map_delete_elem &&
5539 		    func_id != BPF_FUNC_msg_redirect_map &&
5540 		    func_id != BPF_FUNC_sk_select_reuseport &&
5541 		    func_id != BPF_FUNC_map_lookup_elem &&
5542 		    !may_update_sockmap(env, func_id))
5543 			goto error;
5544 		break;
5545 	case BPF_MAP_TYPE_SOCKHASH:
5546 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5547 		    func_id != BPF_FUNC_sock_hash_update &&
5548 		    func_id != BPF_FUNC_map_delete_elem &&
5549 		    func_id != BPF_FUNC_msg_redirect_hash &&
5550 		    func_id != BPF_FUNC_sk_select_reuseport &&
5551 		    func_id != BPF_FUNC_map_lookup_elem &&
5552 		    !may_update_sockmap(env, func_id))
5553 			goto error;
5554 		break;
5555 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5556 		if (func_id != BPF_FUNC_sk_select_reuseport)
5557 			goto error;
5558 		break;
5559 	case BPF_MAP_TYPE_QUEUE:
5560 	case BPF_MAP_TYPE_STACK:
5561 		if (func_id != BPF_FUNC_map_peek_elem &&
5562 		    func_id != BPF_FUNC_map_pop_elem &&
5563 		    func_id != BPF_FUNC_map_push_elem)
5564 			goto error;
5565 		break;
5566 	case BPF_MAP_TYPE_SK_STORAGE:
5567 		if (func_id != BPF_FUNC_sk_storage_get &&
5568 		    func_id != BPF_FUNC_sk_storage_delete)
5569 			goto error;
5570 		break;
5571 	case BPF_MAP_TYPE_INODE_STORAGE:
5572 		if (func_id != BPF_FUNC_inode_storage_get &&
5573 		    func_id != BPF_FUNC_inode_storage_delete)
5574 			goto error;
5575 		break;
5576 	case BPF_MAP_TYPE_TASK_STORAGE:
5577 		if (func_id != BPF_FUNC_task_storage_get &&
5578 		    func_id != BPF_FUNC_task_storage_delete)
5579 			goto error;
5580 		break;
5581 	case BPF_MAP_TYPE_BLOOM_FILTER:
5582 		if (func_id != BPF_FUNC_map_peek_elem &&
5583 		    func_id != BPF_FUNC_map_push_elem)
5584 			goto error;
5585 		break;
5586 	default:
5587 		break;
5588 	}
5589 
5590 	/* ... and second from the function itself. */
5591 	switch (func_id) {
5592 	case BPF_FUNC_tail_call:
5593 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5594 			goto error;
5595 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5596 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5597 			return -EINVAL;
5598 		}
5599 		break;
5600 	case BPF_FUNC_perf_event_read:
5601 	case BPF_FUNC_perf_event_output:
5602 	case BPF_FUNC_perf_event_read_value:
5603 	case BPF_FUNC_skb_output:
5604 	case BPF_FUNC_xdp_output:
5605 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5606 			goto error;
5607 		break;
5608 	case BPF_FUNC_ringbuf_output:
5609 	case BPF_FUNC_ringbuf_reserve:
5610 	case BPF_FUNC_ringbuf_query:
5611 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
5612 			goto error;
5613 		break;
5614 	case BPF_FUNC_get_stackid:
5615 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5616 			goto error;
5617 		break;
5618 	case BPF_FUNC_current_task_under_cgroup:
5619 	case BPF_FUNC_skb_under_cgroup:
5620 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5621 			goto error;
5622 		break;
5623 	case BPF_FUNC_redirect_map:
5624 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5625 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5626 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5627 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5628 			goto error;
5629 		break;
5630 	case BPF_FUNC_sk_redirect_map:
5631 	case BPF_FUNC_msg_redirect_map:
5632 	case BPF_FUNC_sock_map_update:
5633 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5634 			goto error;
5635 		break;
5636 	case BPF_FUNC_sk_redirect_hash:
5637 	case BPF_FUNC_msg_redirect_hash:
5638 	case BPF_FUNC_sock_hash_update:
5639 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5640 			goto error;
5641 		break;
5642 	case BPF_FUNC_get_local_storage:
5643 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5644 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5645 			goto error;
5646 		break;
5647 	case BPF_FUNC_sk_select_reuseport:
5648 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5649 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5650 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5651 			goto error;
5652 		break;
5653 	case BPF_FUNC_map_pop_elem:
5654 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5655 		    map->map_type != BPF_MAP_TYPE_STACK)
5656 			goto error;
5657 		break;
5658 	case BPF_FUNC_map_peek_elem:
5659 	case BPF_FUNC_map_push_elem:
5660 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5661 		    map->map_type != BPF_MAP_TYPE_STACK &&
5662 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
5663 			goto error;
5664 		break;
5665 	case BPF_FUNC_sk_storage_get:
5666 	case BPF_FUNC_sk_storage_delete:
5667 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5668 			goto error;
5669 		break;
5670 	case BPF_FUNC_inode_storage_get:
5671 	case BPF_FUNC_inode_storage_delete:
5672 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5673 			goto error;
5674 		break;
5675 	case BPF_FUNC_task_storage_get:
5676 	case BPF_FUNC_task_storage_delete:
5677 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5678 			goto error;
5679 		break;
5680 	default:
5681 		break;
5682 	}
5683 
5684 	return 0;
5685 error:
5686 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5687 		map->map_type, func_id_name(func_id), func_id);
5688 	return -EINVAL;
5689 }
5690 
5691 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5692 {
5693 	int count = 0;
5694 
5695 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5696 		count++;
5697 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5698 		count++;
5699 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5700 		count++;
5701 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5702 		count++;
5703 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5704 		count++;
5705 
5706 	/* We only support one arg being in raw mode at the moment,
5707 	 * which is sufficient for the helper functions we have
5708 	 * right now.
5709 	 */
5710 	return count <= 1;
5711 }
5712 
5713 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5714 				    enum bpf_arg_type arg_next)
5715 {
5716 	return (arg_type_is_mem_ptr(arg_curr) &&
5717 	        !arg_type_is_mem_size(arg_next)) ||
5718 	       (!arg_type_is_mem_ptr(arg_curr) &&
5719 		arg_type_is_mem_size(arg_next));
5720 }
5721 
5722 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5723 {
5724 	/* bpf_xxx(..., buf, len) call will access 'len'
5725 	 * bytes from memory 'buf'. Both arg types need
5726 	 * to be paired, so make sure there's no buggy
5727 	 * helper function specification.
5728 	 */
5729 	if (arg_type_is_mem_size(fn->arg1_type) ||
5730 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5731 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5732 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5733 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5734 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5735 		return false;
5736 
5737 	return true;
5738 }
5739 
5740 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5741 {
5742 	int count = 0;
5743 
5744 	if (arg_type_may_be_refcounted(fn->arg1_type))
5745 		count++;
5746 	if (arg_type_may_be_refcounted(fn->arg2_type))
5747 		count++;
5748 	if (arg_type_may_be_refcounted(fn->arg3_type))
5749 		count++;
5750 	if (arg_type_may_be_refcounted(fn->arg4_type))
5751 		count++;
5752 	if (arg_type_may_be_refcounted(fn->arg5_type))
5753 		count++;
5754 
5755 	/* A reference acquiring function cannot acquire
5756 	 * another refcounted ptr.
5757 	 */
5758 	if (may_be_acquire_function(func_id) && count)
5759 		return false;
5760 
5761 	/* We only support one arg being unreferenced at the moment,
5762 	 * which is sufficient for the helper functions we have right now.
5763 	 */
5764 	return count <= 1;
5765 }
5766 
5767 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5768 {
5769 	int i;
5770 
5771 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5772 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5773 			return false;
5774 
5775 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5776 			return false;
5777 	}
5778 
5779 	return true;
5780 }
5781 
5782 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5783 {
5784 	return check_raw_mode_ok(fn) &&
5785 	       check_arg_pair_ok(fn) &&
5786 	       check_btf_id_ok(fn) &&
5787 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5788 }
5789 
5790 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5791  * are now invalid, so turn them into unknown SCALAR_VALUE.
5792  */
5793 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5794 				     struct bpf_func_state *state)
5795 {
5796 	struct bpf_reg_state *regs = state->regs, *reg;
5797 	int i;
5798 
5799 	for (i = 0; i < MAX_BPF_REG; i++)
5800 		if (reg_is_pkt_pointer_any(&regs[i]))
5801 			mark_reg_unknown(env, regs, i);
5802 
5803 	bpf_for_each_spilled_reg(i, state, reg) {
5804 		if (!reg)
5805 			continue;
5806 		if (reg_is_pkt_pointer_any(reg))
5807 			__mark_reg_unknown(env, reg);
5808 	}
5809 }
5810 
5811 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5812 {
5813 	struct bpf_verifier_state *vstate = env->cur_state;
5814 	int i;
5815 
5816 	for (i = 0; i <= vstate->curframe; i++)
5817 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5818 }
5819 
5820 enum {
5821 	AT_PKT_END = -1,
5822 	BEYOND_PKT_END = -2,
5823 };
5824 
5825 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5826 {
5827 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5828 	struct bpf_reg_state *reg = &state->regs[regn];
5829 
5830 	if (reg->type != PTR_TO_PACKET)
5831 		/* PTR_TO_PACKET_META is not supported yet */
5832 		return;
5833 
5834 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5835 	 * How far beyond pkt_end it goes is unknown.
5836 	 * if (!range_open) it's the case of pkt >= pkt_end
5837 	 * if (range_open) it's the case of pkt > pkt_end
5838 	 * hence this pointer is at least 1 byte bigger than pkt_end
5839 	 */
5840 	if (range_open)
5841 		reg->range = BEYOND_PKT_END;
5842 	else
5843 		reg->range = AT_PKT_END;
5844 }
5845 
5846 static void release_reg_references(struct bpf_verifier_env *env,
5847 				   struct bpf_func_state *state,
5848 				   int ref_obj_id)
5849 {
5850 	struct bpf_reg_state *regs = state->regs, *reg;
5851 	int i;
5852 
5853 	for (i = 0; i < MAX_BPF_REG; i++)
5854 		if (regs[i].ref_obj_id == ref_obj_id)
5855 			mark_reg_unknown(env, regs, i);
5856 
5857 	bpf_for_each_spilled_reg(i, state, reg) {
5858 		if (!reg)
5859 			continue;
5860 		if (reg->ref_obj_id == ref_obj_id)
5861 			__mark_reg_unknown(env, reg);
5862 	}
5863 }
5864 
5865 /* The pointer with the specified id has released its reference to kernel
5866  * resources. Identify all copies of the same pointer and clear the reference.
5867  */
5868 static int release_reference(struct bpf_verifier_env *env,
5869 			     int ref_obj_id)
5870 {
5871 	struct bpf_verifier_state *vstate = env->cur_state;
5872 	int err;
5873 	int i;
5874 
5875 	err = release_reference_state(cur_func(env), ref_obj_id);
5876 	if (err)
5877 		return err;
5878 
5879 	for (i = 0; i <= vstate->curframe; i++)
5880 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5881 
5882 	return 0;
5883 }
5884 
5885 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5886 				    struct bpf_reg_state *regs)
5887 {
5888 	int i;
5889 
5890 	/* after the call registers r0 - r5 were scratched */
5891 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5892 		mark_reg_not_init(env, regs, caller_saved[i]);
5893 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5894 	}
5895 }
5896 
5897 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5898 				   struct bpf_func_state *caller,
5899 				   struct bpf_func_state *callee,
5900 				   int insn_idx);
5901 
5902 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5903 			     int *insn_idx, int subprog,
5904 			     set_callee_state_fn set_callee_state_cb)
5905 {
5906 	struct bpf_verifier_state *state = env->cur_state;
5907 	struct bpf_func_info_aux *func_info_aux;
5908 	struct bpf_func_state *caller, *callee;
5909 	int err;
5910 	bool is_global = false;
5911 
5912 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5913 		verbose(env, "the call stack of %d frames is too deep\n",
5914 			state->curframe + 2);
5915 		return -E2BIG;
5916 	}
5917 
5918 	caller = state->frame[state->curframe];
5919 	if (state->frame[state->curframe + 1]) {
5920 		verbose(env, "verifier bug. Frame %d already allocated\n",
5921 			state->curframe + 1);
5922 		return -EFAULT;
5923 	}
5924 
5925 	func_info_aux = env->prog->aux->func_info_aux;
5926 	if (func_info_aux)
5927 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5928 	err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5929 	if (err == -EFAULT)
5930 		return err;
5931 	if (is_global) {
5932 		if (err) {
5933 			verbose(env, "Caller passes invalid args into func#%d\n",
5934 				subprog);
5935 			return err;
5936 		} else {
5937 			if (env->log.level & BPF_LOG_LEVEL)
5938 				verbose(env,
5939 					"Func#%d is global and valid. Skipping.\n",
5940 					subprog);
5941 			clear_caller_saved_regs(env, caller->regs);
5942 
5943 			/* All global functions return a 64-bit SCALAR_VALUE */
5944 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5945 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5946 
5947 			/* continue with next insn after call */
5948 			return 0;
5949 		}
5950 	}
5951 
5952 	if (insn->code == (BPF_JMP | BPF_CALL) &&
5953 	    insn->imm == BPF_FUNC_timer_set_callback) {
5954 		struct bpf_verifier_state *async_cb;
5955 
5956 		/* there is no real recursion here. timer callbacks are async */
5957 		env->subprog_info[subprog].is_async_cb = true;
5958 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
5959 					 *insn_idx, subprog);
5960 		if (!async_cb)
5961 			return -EFAULT;
5962 		callee = async_cb->frame[0];
5963 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
5964 
5965 		/* Convert bpf_timer_set_callback() args into timer callback args */
5966 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
5967 		if (err)
5968 			return err;
5969 
5970 		clear_caller_saved_regs(env, caller->regs);
5971 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
5972 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5973 		/* continue with next insn after call */
5974 		return 0;
5975 	}
5976 
5977 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5978 	if (!callee)
5979 		return -ENOMEM;
5980 	state->frame[state->curframe + 1] = callee;
5981 
5982 	/* callee cannot access r0, r6 - r9 for reading and has to write
5983 	 * into its own stack before reading from it.
5984 	 * callee can read/write into caller's stack
5985 	 */
5986 	init_func_state(env, callee,
5987 			/* remember the callsite, it will be used by bpf_exit */
5988 			*insn_idx /* callsite */,
5989 			state->curframe + 1 /* frameno within this callchain */,
5990 			subprog /* subprog number within this prog */);
5991 
5992 	/* Transfer references to the callee */
5993 	err = copy_reference_state(callee, caller);
5994 	if (err)
5995 		return err;
5996 
5997 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5998 	if (err)
5999 		return err;
6000 
6001 	clear_caller_saved_regs(env, caller->regs);
6002 
6003 	/* only increment it after check_reg_arg() finished */
6004 	state->curframe++;
6005 
6006 	/* and go analyze first insn of the callee */
6007 	*insn_idx = env->subprog_info[subprog].start - 1;
6008 
6009 	if (env->log.level & BPF_LOG_LEVEL) {
6010 		verbose(env, "caller:\n");
6011 		print_verifier_state(env, caller);
6012 		verbose(env, "callee:\n");
6013 		print_verifier_state(env, callee);
6014 	}
6015 	return 0;
6016 }
6017 
6018 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
6019 				   struct bpf_func_state *caller,
6020 				   struct bpf_func_state *callee)
6021 {
6022 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
6023 	 *      void *callback_ctx, u64 flags);
6024 	 * callback_fn(struct bpf_map *map, void *key, void *value,
6025 	 *      void *callback_ctx);
6026 	 */
6027 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
6028 
6029 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6030 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6031 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6032 
6033 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6034 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6035 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
6036 
6037 	/* pointer to stack or null */
6038 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
6039 
6040 	/* unused */
6041 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6042 	return 0;
6043 }
6044 
6045 static int set_callee_state(struct bpf_verifier_env *env,
6046 			    struct bpf_func_state *caller,
6047 			    struct bpf_func_state *callee, int insn_idx)
6048 {
6049 	int i;
6050 
6051 	/* copy r1 - r5 args that callee can access.  The copy includes parent
6052 	 * pointers, which connects us up to the liveness chain
6053 	 */
6054 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
6055 		callee->regs[i] = caller->regs[i];
6056 	return 0;
6057 }
6058 
6059 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6060 			   int *insn_idx)
6061 {
6062 	int subprog, target_insn;
6063 
6064 	target_insn = *insn_idx + insn->imm + 1;
6065 	subprog = find_subprog(env, target_insn);
6066 	if (subprog < 0) {
6067 		verbose(env, "verifier bug. No program starts at insn %d\n",
6068 			target_insn);
6069 		return -EFAULT;
6070 	}
6071 
6072 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
6073 }
6074 
6075 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
6076 				       struct bpf_func_state *caller,
6077 				       struct bpf_func_state *callee,
6078 				       int insn_idx)
6079 {
6080 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
6081 	struct bpf_map *map;
6082 	int err;
6083 
6084 	if (bpf_map_ptr_poisoned(insn_aux)) {
6085 		verbose(env, "tail_call abusing map_ptr\n");
6086 		return -EINVAL;
6087 	}
6088 
6089 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
6090 	if (!map->ops->map_set_for_each_callback_args ||
6091 	    !map->ops->map_for_each_callback) {
6092 		verbose(env, "callback function not allowed for map\n");
6093 		return -ENOTSUPP;
6094 	}
6095 
6096 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
6097 	if (err)
6098 		return err;
6099 
6100 	callee->in_callback_fn = true;
6101 	return 0;
6102 }
6103 
6104 static int set_timer_callback_state(struct bpf_verifier_env *env,
6105 				    struct bpf_func_state *caller,
6106 				    struct bpf_func_state *callee,
6107 				    int insn_idx)
6108 {
6109 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
6110 
6111 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
6112 	 * callback_fn(struct bpf_map *map, void *key, void *value);
6113 	 */
6114 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
6115 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
6116 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
6117 
6118 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
6119 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
6120 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
6121 
6122 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
6123 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
6124 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
6125 
6126 	/* unused */
6127 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
6128 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
6129 	callee->in_async_callback_fn = true;
6130 	return 0;
6131 }
6132 
6133 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
6134 {
6135 	struct bpf_verifier_state *state = env->cur_state;
6136 	struct bpf_func_state *caller, *callee;
6137 	struct bpf_reg_state *r0;
6138 	int err;
6139 
6140 	callee = state->frame[state->curframe];
6141 	r0 = &callee->regs[BPF_REG_0];
6142 	if (r0->type == PTR_TO_STACK) {
6143 		/* technically it's ok to return caller's stack pointer
6144 		 * (or caller's caller's pointer) back to the caller,
6145 		 * since these pointers are valid. Only current stack
6146 		 * pointer will be invalid as soon as function exits,
6147 		 * but let's be conservative
6148 		 */
6149 		verbose(env, "cannot return stack pointer to the caller\n");
6150 		return -EINVAL;
6151 	}
6152 
6153 	state->curframe--;
6154 	caller = state->frame[state->curframe];
6155 	if (callee->in_callback_fn) {
6156 		/* enforce R0 return value range [0, 1]. */
6157 		struct tnum range = tnum_range(0, 1);
6158 
6159 		if (r0->type != SCALAR_VALUE) {
6160 			verbose(env, "R0 not a scalar value\n");
6161 			return -EACCES;
6162 		}
6163 		if (!tnum_in(range, r0->var_off)) {
6164 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
6165 			return -EINVAL;
6166 		}
6167 	} else {
6168 		/* return to the caller whatever r0 had in the callee */
6169 		caller->regs[BPF_REG_0] = *r0;
6170 	}
6171 
6172 	/* Transfer references to the caller */
6173 	err = copy_reference_state(caller, callee);
6174 	if (err)
6175 		return err;
6176 
6177 	*insn_idx = callee->callsite + 1;
6178 	if (env->log.level & BPF_LOG_LEVEL) {
6179 		verbose(env, "returning from callee:\n");
6180 		print_verifier_state(env, callee);
6181 		verbose(env, "to caller at %d:\n", *insn_idx);
6182 		print_verifier_state(env, caller);
6183 	}
6184 	/* clear everything in the callee */
6185 	free_func_state(callee);
6186 	state->frame[state->curframe + 1] = NULL;
6187 	return 0;
6188 }
6189 
6190 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
6191 				   int func_id,
6192 				   struct bpf_call_arg_meta *meta)
6193 {
6194 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
6195 
6196 	if (ret_type != RET_INTEGER ||
6197 	    (func_id != BPF_FUNC_get_stack &&
6198 	     func_id != BPF_FUNC_get_task_stack &&
6199 	     func_id != BPF_FUNC_probe_read_str &&
6200 	     func_id != BPF_FUNC_probe_read_kernel_str &&
6201 	     func_id != BPF_FUNC_probe_read_user_str))
6202 		return;
6203 
6204 	ret_reg->smax_value = meta->msize_max_value;
6205 	ret_reg->s32_max_value = meta->msize_max_value;
6206 	ret_reg->smin_value = -MAX_ERRNO;
6207 	ret_reg->s32_min_value = -MAX_ERRNO;
6208 	__reg_deduce_bounds(ret_reg);
6209 	__reg_bound_offset(ret_reg);
6210 	__update_reg_bounds(ret_reg);
6211 }
6212 
6213 static int
6214 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6215 		int func_id, int insn_idx)
6216 {
6217 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6218 	struct bpf_map *map = meta->map_ptr;
6219 
6220 	if (func_id != BPF_FUNC_tail_call &&
6221 	    func_id != BPF_FUNC_map_lookup_elem &&
6222 	    func_id != BPF_FUNC_map_update_elem &&
6223 	    func_id != BPF_FUNC_map_delete_elem &&
6224 	    func_id != BPF_FUNC_map_push_elem &&
6225 	    func_id != BPF_FUNC_map_pop_elem &&
6226 	    func_id != BPF_FUNC_map_peek_elem &&
6227 	    func_id != BPF_FUNC_for_each_map_elem &&
6228 	    func_id != BPF_FUNC_redirect_map)
6229 		return 0;
6230 
6231 	if (map == NULL) {
6232 		verbose(env, "kernel subsystem misconfigured verifier\n");
6233 		return -EINVAL;
6234 	}
6235 
6236 	/* In case of read-only, some additional restrictions
6237 	 * need to be applied in order to prevent altering the
6238 	 * state of the map from program side.
6239 	 */
6240 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
6241 	    (func_id == BPF_FUNC_map_delete_elem ||
6242 	     func_id == BPF_FUNC_map_update_elem ||
6243 	     func_id == BPF_FUNC_map_push_elem ||
6244 	     func_id == BPF_FUNC_map_pop_elem)) {
6245 		verbose(env, "write into map forbidden\n");
6246 		return -EACCES;
6247 	}
6248 
6249 	if (!BPF_MAP_PTR(aux->map_ptr_state))
6250 		bpf_map_ptr_store(aux, meta->map_ptr,
6251 				  !meta->map_ptr->bypass_spec_v1);
6252 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
6253 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
6254 				  !meta->map_ptr->bypass_spec_v1);
6255 	return 0;
6256 }
6257 
6258 static int
6259 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
6260 		int func_id, int insn_idx)
6261 {
6262 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
6263 	struct bpf_reg_state *regs = cur_regs(env), *reg;
6264 	struct bpf_map *map = meta->map_ptr;
6265 	struct tnum range;
6266 	u64 val;
6267 	int err;
6268 
6269 	if (func_id != BPF_FUNC_tail_call)
6270 		return 0;
6271 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
6272 		verbose(env, "kernel subsystem misconfigured verifier\n");
6273 		return -EINVAL;
6274 	}
6275 
6276 	range = tnum_range(0, map->max_entries - 1);
6277 	reg = &regs[BPF_REG_3];
6278 
6279 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
6280 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6281 		return 0;
6282 	}
6283 
6284 	err = mark_chain_precision(env, BPF_REG_3);
6285 	if (err)
6286 		return err;
6287 
6288 	val = reg->var_off.value;
6289 	if (bpf_map_key_unseen(aux))
6290 		bpf_map_key_store(aux, val);
6291 	else if (!bpf_map_key_poisoned(aux) &&
6292 		  bpf_map_key_immediate(aux) != val)
6293 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
6294 	return 0;
6295 }
6296 
6297 static int check_reference_leak(struct bpf_verifier_env *env)
6298 {
6299 	struct bpf_func_state *state = cur_func(env);
6300 	int i;
6301 
6302 	for (i = 0; i < state->acquired_refs; i++) {
6303 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
6304 			state->refs[i].id, state->refs[i].insn_idx);
6305 	}
6306 	return state->acquired_refs ? -EINVAL : 0;
6307 }
6308 
6309 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
6310 				   struct bpf_reg_state *regs)
6311 {
6312 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
6313 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
6314 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
6315 	int err, fmt_map_off, num_args;
6316 	u64 fmt_addr;
6317 	char *fmt;
6318 
6319 	/* data must be an array of u64 */
6320 	if (data_len_reg->var_off.value % 8)
6321 		return -EINVAL;
6322 	num_args = data_len_reg->var_off.value / 8;
6323 
6324 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
6325 	 * and map_direct_value_addr is set.
6326 	 */
6327 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
6328 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
6329 						  fmt_map_off);
6330 	if (err) {
6331 		verbose(env, "verifier bug\n");
6332 		return -EFAULT;
6333 	}
6334 	fmt = (char *)(long)fmt_addr + fmt_map_off;
6335 
6336 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
6337 	 * can focus on validating the format specifiers.
6338 	 */
6339 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
6340 	if (err < 0)
6341 		verbose(env, "Invalid format string\n");
6342 
6343 	return err;
6344 }
6345 
6346 static int check_get_func_ip(struct bpf_verifier_env *env)
6347 {
6348 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
6349 	enum bpf_prog_type type = resolve_prog_type(env->prog);
6350 	int func_id = BPF_FUNC_get_func_ip;
6351 
6352 	if (type == BPF_PROG_TYPE_TRACING) {
6353 		if (eatype != BPF_TRACE_FENTRY && eatype != BPF_TRACE_FEXIT &&
6354 		    eatype != BPF_MODIFY_RETURN) {
6355 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
6356 				func_id_name(func_id), func_id);
6357 			return -ENOTSUPP;
6358 		}
6359 		return 0;
6360 	} else if (type == BPF_PROG_TYPE_KPROBE) {
6361 		return 0;
6362 	}
6363 
6364 	verbose(env, "func %s#%d not supported for program type %d\n",
6365 		func_id_name(func_id), func_id, type);
6366 	return -ENOTSUPP;
6367 }
6368 
6369 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
6370 			     int *insn_idx_p)
6371 {
6372 	const struct bpf_func_proto *fn = NULL;
6373 	struct bpf_reg_state *regs;
6374 	struct bpf_call_arg_meta meta;
6375 	int insn_idx = *insn_idx_p;
6376 	bool changes_data;
6377 	int i, err, func_id;
6378 
6379 	/* find function prototype */
6380 	func_id = insn->imm;
6381 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
6382 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
6383 			func_id);
6384 		return -EINVAL;
6385 	}
6386 
6387 	if (env->ops->get_func_proto)
6388 		fn = env->ops->get_func_proto(func_id, env->prog);
6389 	if (!fn) {
6390 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
6391 			func_id);
6392 		return -EINVAL;
6393 	}
6394 
6395 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
6396 	if (!env->prog->gpl_compatible && fn->gpl_only) {
6397 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
6398 		return -EINVAL;
6399 	}
6400 
6401 	if (fn->allowed && !fn->allowed(env->prog)) {
6402 		verbose(env, "helper call is not allowed in probe\n");
6403 		return -EINVAL;
6404 	}
6405 
6406 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
6407 	changes_data = bpf_helper_changes_pkt_data(fn->func);
6408 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
6409 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
6410 			func_id_name(func_id), func_id);
6411 		return -EINVAL;
6412 	}
6413 
6414 	memset(&meta, 0, sizeof(meta));
6415 	meta.pkt_access = fn->pkt_access;
6416 
6417 	err = check_func_proto(fn, func_id);
6418 	if (err) {
6419 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6420 			func_id_name(func_id), func_id);
6421 		return err;
6422 	}
6423 
6424 	meta.func_id = func_id;
6425 	/* check args */
6426 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6427 		err = check_func_arg(env, i, &meta, fn);
6428 		if (err)
6429 			return err;
6430 	}
6431 
6432 	err = record_func_map(env, &meta, func_id, insn_idx);
6433 	if (err)
6434 		return err;
6435 
6436 	err = record_func_key(env, &meta, func_id, insn_idx);
6437 	if (err)
6438 		return err;
6439 
6440 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
6441 	 * is inferred from register state.
6442 	 */
6443 	for (i = 0; i < meta.access_size; i++) {
6444 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6445 				       BPF_WRITE, -1, false);
6446 		if (err)
6447 			return err;
6448 	}
6449 
6450 	if (func_id == BPF_FUNC_tail_call) {
6451 		err = check_reference_leak(env);
6452 		if (err) {
6453 			verbose(env, "tail_call would lead to reference leak\n");
6454 			return err;
6455 		}
6456 	} else if (is_release_function(func_id)) {
6457 		err = release_reference(env, meta.ref_obj_id);
6458 		if (err) {
6459 			verbose(env, "func %s#%d reference has not been acquired before\n",
6460 				func_id_name(func_id), func_id);
6461 			return err;
6462 		}
6463 	}
6464 
6465 	regs = cur_regs(env);
6466 
6467 	/* check that flags argument in get_local_storage(map, flags) is 0,
6468 	 * this is required because get_local_storage() can't return an error.
6469 	 */
6470 	if (func_id == BPF_FUNC_get_local_storage &&
6471 	    !register_is_null(&regs[BPF_REG_2])) {
6472 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6473 		return -EINVAL;
6474 	}
6475 
6476 	if (func_id == BPF_FUNC_for_each_map_elem) {
6477 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6478 					set_map_elem_callback_state);
6479 		if (err < 0)
6480 			return -EINVAL;
6481 	}
6482 
6483 	if (func_id == BPF_FUNC_timer_set_callback) {
6484 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6485 					set_timer_callback_state);
6486 		if (err < 0)
6487 			return -EINVAL;
6488 	}
6489 
6490 	if (func_id == BPF_FUNC_snprintf) {
6491 		err = check_bpf_snprintf_call(env, regs);
6492 		if (err < 0)
6493 			return err;
6494 	}
6495 
6496 	/* reset caller saved regs */
6497 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6498 		mark_reg_not_init(env, regs, caller_saved[i]);
6499 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6500 	}
6501 
6502 	/* helper call returns 64-bit value. */
6503 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6504 
6505 	/* update return register (already marked as written above) */
6506 	if (fn->ret_type == RET_INTEGER) {
6507 		/* sets type to SCALAR_VALUE */
6508 		mark_reg_unknown(env, regs, BPF_REG_0);
6509 	} else if (fn->ret_type == RET_VOID) {
6510 		regs[BPF_REG_0].type = NOT_INIT;
6511 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6512 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6513 		/* There is no offset yet applied, variable or fixed */
6514 		mark_reg_known_zero(env, regs, BPF_REG_0);
6515 		/* remember map_ptr, so that check_map_access()
6516 		 * can check 'value_size' boundary of memory access
6517 		 * to map element returned from bpf_map_lookup_elem()
6518 		 */
6519 		if (meta.map_ptr == NULL) {
6520 			verbose(env,
6521 				"kernel subsystem misconfigured verifier\n");
6522 			return -EINVAL;
6523 		}
6524 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
6525 		regs[BPF_REG_0].map_uid = meta.map_uid;
6526 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6527 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6528 			if (map_value_has_spin_lock(meta.map_ptr))
6529 				regs[BPF_REG_0].id = ++env->id_gen;
6530 		} else {
6531 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6532 		}
6533 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6534 		mark_reg_known_zero(env, regs, BPF_REG_0);
6535 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6536 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6537 		mark_reg_known_zero(env, regs, BPF_REG_0);
6538 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6539 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6540 		mark_reg_known_zero(env, regs, BPF_REG_0);
6541 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6542 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6543 		mark_reg_known_zero(env, regs, BPF_REG_0);
6544 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6545 		regs[BPF_REG_0].mem_size = meta.mem_size;
6546 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6547 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6548 		const struct btf_type *t;
6549 
6550 		mark_reg_known_zero(env, regs, BPF_REG_0);
6551 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6552 		if (!btf_type_is_struct(t)) {
6553 			u32 tsize;
6554 			const struct btf_type *ret;
6555 			const char *tname;
6556 
6557 			/* resolve the type size of ksym. */
6558 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6559 			if (IS_ERR(ret)) {
6560 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6561 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
6562 					tname, PTR_ERR(ret));
6563 				return -EINVAL;
6564 			}
6565 			regs[BPF_REG_0].type =
6566 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6567 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6568 			regs[BPF_REG_0].mem_size = tsize;
6569 		} else {
6570 			regs[BPF_REG_0].type =
6571 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6572 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6573 			regs[BPF_REG_0].btf = meta.ret_btf;
6574 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6575 		}
6576 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6577 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
6578 		int ret_btf_id;
6579 
6580 		mark_reg_known_zero(env, regs, BPF_REG_0);
6581 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6582 						     PTR_TO_BTF_ID :
6583 						     PTR_TO_BTF_ID_OR_NULL;
6584 		ret_btf_id = *fn->ret_btf_id;
6585 		if (ret_btf_id == 0) {
6586 			verbose(env, "invalid return type %d of func %s#%d\n",
6587 				fn->ret_type, func_id_name(func_id), func_id);
6588 			return -EINVAL;
6589 		}
6590 		/* current BPF helper definitions are only coming from
6591 		 * built-in code with type IDs from  vmlinux BTF
6592 		 */
6593 		regs[BPF_REG_0].btf = btf_vmlinux;
6594 		regs[BPF_REG_0].btf_id = ret_btf_id;
6595 	} else {
6596 		verbose(env, "unknown return type %d of func %s#%d\n",
6597 			fn->ret_type, func_id_name(func_id), func_id);
6598 		return -EINVAL;
6599 	}
6600 
6601 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
6602 		regs[BPF_REG_0].id = ++env->id_gen;
6603 
6604 	if (is_ptr_cast_function(func_id)) {
6605 		/* For release_reference() */
6606 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6607 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
6608 		int id = acquire_reference_state(env, insn_idx);
6609 
6610 		if (id < 0)
6611 			return id;
6612 		/* For mark_ptr_or_null_reg() */
6613 		regs[BPF_REG_0].id = id;
6614 		/* For release_reference() */
6615 		regs[BPF_REG_0].ref_obj_id = id;
6616 	}
6617 
6618 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6619 
6620 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6621 	if (err)
6622 		return err;
6623 
6624 	if ((func_id == BPF_FUNC_get_stack ||
6625 	     func_id == BPF_FUNC_get_task_stack) &&
6626 	    !env->prog->has_callchain_buf) {
6627 		const char *err_str;
6628 
6629 #ifdef CONFIG_PERF_EVENTS
6630 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
6631 		err_str = "cannot get callchain buffer for func %s#%d\n";
6632 #else
6633 		err = -ENOTSUPP;
6634 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6635 #endif
6636 		if (err) {
6637 			verbose(env, err_str, func_id_name(func_id), func_id);
6638 			return err;
6639 		}
6640 
6641 		env->prog->has_callchain_buf = true;
6642 	}
6643 
6644 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6645 		env->prog->call_get_stack = true;
6646 
6647 	if (func_id == BPF_FUNC_get_func_ip) {
6648 		if (check_get_func_ip(env))
6649 			return -ENOTSUPP;
6650 		env->prog->call_get_func_ip = true;
6651 	}
6652 
6653 	if (changes_data)
6654 		clear_all_pkt_pointers(env);
6655 	return 0;
6656 }
6657 
6658 /* mark_btf_func_reg_size() is used when the reg size is determined by
6659  * the BTF func_proto's return value size and argument.
6660  */
6661 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6662 				   size_t reg_size)
6663 {
6664 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
6665 
6666 	if (regno == BPF_REG_0) {
6667 		/* Function return value */
6668 		reg->live |= REG_LIVE_WRITTEN;
6669 		reg->subreg_def = reg_size == sizeof(u64) ?
6670 			DEF_NOT_SUBREG : env->insn_idx + 1;
6671 	} else {
6672 		/* Function argument */
6673 		if (reg_size == sizeof(u64)) {
6674 			mark_insn_zext(env, reg);
6675 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6676 		} else {
6677 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6678 		}
6679 	}
6680 }
6681 
6682 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6683 {
6684 	const struct btf_type *t, *func, *func_proto, *ptr_type;
6685 	struct bpf_reg_state *regs = cur_regs(env);
6686 	const char *func_name, *ptr_type_name;
6687 	u32 i, nargs, func_id, ptr_type_id;
6688 	struct module *btf_mod = NULL;
6689 	const struct btf_param *args;
6690 	struct btf *desc_btf;
6691 	int err;
6692 
6693 	/* skip for now, but return error when we find this in fixup_kfunc_call */
6694 	if (!insn->imm)
6695 		return 0;
6696 
6697 	desc_btf = find_kfunc_desc_btf(env, insn->imm, insn->off, &btf_mod);
6698 	if (IS_ERR(desc_btf))
6699 		return PTR_ERR(desc_btf);
6700 
6701 	func_id = insn->imm;
6702 	func = btf_type_by_id(desc_btf, func_id);
6703 	func_name = btf_name_by_offset(desc_btf, func->name_off);
6704 	func_proto = btf_type_by_id(desc_btf, func->type);
6705 
6706 	if (!env->ops->check_kfunc_call ||
6707 	    !env->ops->check_kfunc_call(func_id, btf_mod)) {
6708 		verbose(env, "calling kernel function %s is not allowed\n",
6709 			func_name);
6710 		return -EACCES;
6711 	}
6712 
6713 	/* Check the arguments */
6714 	err = btf_check_kfunc_arg_match(env, desc_btf, func_id, regs);
6715 	if (err)
6716 		return err;
6717 
6718 	for (i = 0; i < CALLER_SAVED_REGS; i++)
6719 		mark_reg_not_init(env, regs, caller_saved[i]);
6720 
6721 	/* Check return type */
6722 	t = btf_type_skip_modifiers(desc_btf, func_proto->type, NULL);
6723 	if (btf_type_is_scalar(t)) {
6724 		mark_reg_unknown(env, regs, BPF_REG_0);
6725 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6726 	} else if (btf_type_is_ptr(t)) {
6727 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type,
6728 						   &ptr_type_id);
6729 		if (!btf_type_is_struct(ptr_type)) {
6730 			ptr_type_name = btf_name_by_offset(desc_btf,
6731 							   ptr_type->name_off);
6732 			verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6733 				func_name, btf_type_str(ptr_type),
6734 				ptr_type_name);
6735 			return -EINVAL;
6736 		}
6737 		mark_reg_known_zero(env, regs, BPF_REG_0);
6738 		regs[BPF_REG_0].btf = desc_btf;
6739 		regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6740 		regs[BPF_REG_0].btf_id = ptr_type_id;
6741 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6742 	} /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6743 
6744 	nargs = btf_type_vlen(func_proto);
6745 	args = (const struct btf_param *)(func_proto + 1);
6746 	for (i = 0; i < nargs; i++) {
6747 		u32 regno = i + 1;
6748 
6749 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
6750 		if (btf_type_is_ptr(t))
6751 			mark_btf_func_reg_size(env, regno, sizeof(void *));
6752 		else
6753 			/* scalar. ensured by btf_check_kfunc_arg_match() */
6754 			mark_btf_func_reg_size(env, regno, t->size);
6755 	}
6756 
6757 	return 0;
6758 }
6759 
6760 static bool signed_add_overflows(s64 a, s64 b)
6761 {
6762 	/* Do the add in u64, where overflow is well-defined */
6763 	s64 res = (s64)((u64)a + (u64)b);
6764 
6765 	if (b < 0)
6766 		return res > a;
6767 	return res < a;
6768 }
6769 
6770 static bool signed_add32_overflows(s32 a, s32 b)
6771 {
6772 	/* Do the add in u32, where overflow is well-defined */
6773 	s32 res = (s32)((u32)a + (u32)b);
6774 
6775 	if (b < 0)
6776 		return res > a;
6777 	return res < a;
6778 }
6779 
6780 static bool signed_sub_overflows(s64 a, s64 b)
6781 {
6782 	/* Do the sub in u64, where overflow is well-defined */
6783 	s64 res = (s64)((u64)a - (u64)b);
6784 
6785 	if (b < 0)
6786 		return res < a;
6787 	return res > a;
6788 }
6789 
6790 static bool signed_sub32_overflows(s32 a, s32 b)
6791 {
6792 	/* Do the sub in u32, where overflow is well-defined */
6793 	s32 res = (s32)((u32)a - (u32)b);
6794 
6795 	if (b < 0)
6796 		return res < a;
6797 	return res > a;
6798 }
6799 
6800 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6801 				  const struct bpf_reg_state *reg,
6802 				  enum bpf_reg_type type)
6803 {
6804 	bool known = tnum_is_const(reg->var_off);
6805 	s64 val = reg->var_off.value;
6806 	s64 smin = reg->smin_value;
6807 
6808 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6809 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6810 			reg_type_str[type], val);
6811 		return false;
6812 	}
6813 
6814 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6815 		verbose(env, "%s pointer offset %d is not allowed\n",
6816 			reg_type_str[type], reg->off);
6817 		return false;
6818 	}
6819 
6820 	if (smin == S64_MIN) {
6821 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6822 			reg_type_str[type]);
6823 		return false;
6824 	}
6825 
6826 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6827 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6828 			smin, reg_type_str[type]);
6829 		return false;
6830 	}
6831 
6832 	return true;
6833 }
6834 
6835 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6836 {
6837 	return &env->insn_aux_data[env->insn_idx];
6838 }
6839 
6840 enum {
6841 	REASON_BOUNDS	= -1,
6842 	REASON_TYPE	= -2,
6843 	REASON_PATHS	= -3,
6844 	REASON_LIMIT	= -4,
6845 	REASON_STACK	= -5,
6846 };
6847 
6848 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6849 			      u32 *alu_limit, bool mask_to_left)
6850 {
6851 	u32 max = 0, ptr_limit = 0;
6852 
6853 	switch (ptr_reg->type) {
6854 	case PTR_TO_STACK:
6855 		/* Offset 0 is out-of-bounds, but acceptable start for the
6856 		 * left direction, see BPF_REG_FP. Also, unknown scalar
6857 		 * offset where we would need to deal with min/max bounds is
6858 		 * currently prohibited for unprivileged.
6859 		 */
6860 		max = MAX_BPF_STACK + mask_to_left;
6861 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6862 		break;
6863 	case PTR_TO_MAP_VALUE:
6864 		max = ptr_reg->map_ptr->value_size;
6865 		ptr_limit = (mask_to_left ?
6866 			     ptr_reg->smin_value :
6867 			     ptr_reg->umax_value) + ptr_reg->off;
6868 		break;
6869 	default:
6870 		return REASON_TYPE;
6871 	}
6872 
6873 	if (ptr_limit >= max)
6874 		return REASON_LIMIT;
6875 	*alu_limit = ptr_limit;
6876 	return 0;
6877 }
6878 
6879 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6880 				    const struct bpf_insn *insn)
6881 {
6882 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6883 }
6884 
6885 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6886 				       u32 alu_state, u32 alu_limit)
6887 {
6888 	/* If we arrived here from different branches with different
6889 	 * state or limits to sanitize, then this won't work.
6890 	 */
6891 	if (aux->alu_state &&
6892 	    (aux->alu_state != alu_state ||
6893 	     aux->alu_limit != alu_limit))
6894 		return REASON_PATHS;
6895 
6896 	/* Corresponding fixup done in do_misc_fixups(). */
6897 	aux->alu_state = alu_state;
6898 	aux->alu_limit = alu_limit;
6899 	return 0;
6900 }
6901 
6902 static int sanitize_val_alu(struct bpf_verifier_env *env,
6903 			    struct bpf_insn *insn)
6904 {
6905 	struct bpf_insn_aux_data *aux = cur_aux(env);
6906 
6907 	if (can_skip_alu_sanitation(env, insn))
6908 		return 0;
6909 
6910 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6911 }
6912 
6913 static bool sanitize_needed(u8 opcode)
6914 {
6915 	return opcode == BPF_ADD || opcode == BPF_SUB;
6916 }
6917 
6918 struct bpf_sanitize_info {
6919 	struct bpf_insn_aux_data aux;
6920 	bool mask_to_left;
6921 };
6922 
6923 static struct bpf_verifier_state *
6924 sanitize_speculative_path(struct bpf_verifier_env *env,
6925 			  const struct bpf_insn *insn,
6926 			  u32 next_idx, u32 curr_idx)
6927 {
6928 	struct bpf_verifier_state *branch;
6929 	struct bpf_reg_state *regs;
6930 
6931 	branch = push_stack(env, next_idx, curr_idx, true);
6932 	if (branch && insn) {
6933 		regs = branch->frame[branch->curframe]->regs;
6934 		if (BPF_SRC(insn->code) == BPF_K) {
6935 			mark_reg_unknown(env, regs, insn->dst_reg);
6936 		} else if (BPF_SRC(insn->code) == BPF_X) {
6937 			mark_reg_unknown(env, regs, insn->dst_reg);
6938 			mark_reg_unknown(env, regs, insn->src_reg);
6939 		}
6940 	}
6941 	return branch;
6942 }
6943 
6944 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6945 			    struct bpf_insn *insn,
6946 			    const struct bpf_reg_state *ptr_reg,
6947 			    const struct bpf_reg_state *off_reg,
6948 			    struct bpf_reg_state *dst_reg,
6949 			    struct bpf_sanitize_info *info,
6950 			    const bool commit_window)
6951 {
6952 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6953 	struct bpf_verifier_state *vstate = env->cur_state;
6954 	bool off_is_imm = tnum_is_const(off_reg->var_off);
6955 	bool off_is_neg = off_reg->smin_value < 0;
6956 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6957 	u8 opcode = BPF_OP(insn->code);
6958 	u32 alu_state, alu_limit;
6959 	struct bpf_reg_state tmp;
6960 	bool ret;
6961 	int err;
6962 
6963 	if (can_skip_alu_sanitation(env, insn))
6964 		return 0;
6965 
6966 	/* We already marked aux for masking from non-speculative
6967 	 * paths, thus we got here in the first place. We only care
6968 	 * to explore bad access from here.
6969 	 */
6970 	if (vstate->speculative)
6971 		goto do_sim;
6972 
6973 	if (!commit_window) {
6974 		if (!tnum_is_const(off_reg->var_off) &&
6975 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6976 			return REASON_BOUNDS;
6977 
6978 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6979 				     (opcode == BPF_SUB && !off_is_neg);
6980 	}
6981 
6982 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6983 	if (err < 0)
6984 		return err;
6985 
6986 	if (commit_window) {
6987 		/* In commit phase we narrow the masking window based on
6988 		 * the observed pointer move after the simulated operation.
6989 		 */
6990 		alu_state = info->aux.alu_state;
6991 		alu_limit = abs(info->aux.alu_limit - alu_limit);
6992 	} else {
6993 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6994 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6995 		alu_state |= ptr_is_dst_reg ?
6996 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6997 
6998 		/* Limit pruning on unknown scalars to enable deep search for
6999 		 * potential masking differences from other program paths.
7000 		 */
7001 		if (!off_is_imm)
7002 			env->explore_alu_limits = true;
7003 	}
7004 
7005 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
7006 	if (err < 0)
7007 		return err;
7008 do_sim:
7009 	/* If we're in commit phase, we're done here given we already
7010 	 * pushed the truncated dst_reg into the speculative verification
7011 	 * stack.
7012 	 *
7013 	 * Also, when register is a known constant, we rewrite register-based
7014 	 * operation to immediate-based, and thus do not need masking (and as
7015 	 * a consequence, do not need to simulate the zero-truncation either).
7016 	 */
7017 	if (commit_window || off_is_imm)
7018 		return 0;
7019 
7020 	/* Simulate and find potential out-of-bounds access under
7021 	 * speculative execution from truncation as a result of
7022 	 * masking when off was not within expected range. If off
7023 	 * sits in dst, then we temporarily need to move ptr there
7024 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
7025 	 * for cases where we use K-based arithmetic in one direction
7026 	 * and truncated reg-based in the other in order to explore
7027 	 * bad access.
7028 	 */
7029 	if (!ptr_is_dst_reg) {
7030 		tmp = *dst_reg;
7031 		*dst_reg = *ptr_reg;
7032 	}
7033 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
7034 					env->insn_idx);
7035 	if (!ptr_is_dst_reg && ret)
7036 		*dst_reg = tmp;
7037 	return !ret ? REASON_STACK : 0;
7038 }
7039 
7040 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
7041 {
7042 	struct bpf_verifier_state *vstate = env->cur_state;
7043 
7044 	/* If we simulate paths under speculation, we don't update the
7045 	 * insn as 'seen' such that when we verify unreachable paths in
7046 	 * the non-speculative domain, sanitize_dead_code() can still
7047 	 * rewrite/sanitize them.
7048 	 */
7049 	if (!vstate->speculative)
7050 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7051 }
7052 
7053 static int sanitize_err(struct bpf_verifier_env *env,
7054 			const struct bpf_insn *insn, int reason,
7055 			const struct bpf_reg_state *off_reg,
7056 			const struct bpf_reg_state *dst_reg)
7057 {
7058 	static const char *err = "pointer arithmetic with it prohibited for !root";
7059 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
7060 	u32 dst = insn->dst_reg, src = insn->src_reg;
7061 
7062 	switch (reason) {
7063 	case REASON_BOUNDS:
7064 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
7065 			off_reg == dst_reg ? dst : src, err);
7066 		break;
7067 	case REASON_TYPE:
7068 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
7069 			off_reg == dst_reg ? src : dst, err);
7070 		break;
7071 	case REASON_PATHS:
7072 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
7073 			dst, op, err);
7074 		break;
7075 	case REASON_LIMIT:
7076 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
7077 			dst, op, err);
7078 		break;
7079 	case REASON_STACK:
7080 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
7081 			dst, err);
7082 		break;
7083 	default:
7084 		verbose(env, "verifier internal error: unknown reason (%d)\n",
7085 			reason);
7086 		break;
7087 	}
7088 
7089 	return -EACCES;
7090 }
7091 
7092 /* check that stack access falls within stack limits and that 'reg' doesn't
7093  * have a variable offset.
7094  *
7095  * Variable offset is prohibited for unprivileged mode for simplicity since it
7096  * requires corresponding support in Spectre masking for stack ALU.  See also
7097  * retrieve_ptr_limit().
7098  *
7099  *
7100  * 'off' includes 'reg->off'.
7101  */
7102 static int check_stack_access_for_ptr_arithmetic(
7103 				struct bpf_verifier_env *env,
7104 				int regno,
7105 				const struct bpf_reg_state *reg,
7106 				int off)
7107 {
7108 	if (!tnum_is_const(reg->var_off)) {
7109 		char tn_buf[48];
7110 
7111 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7112 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
7113 			regno, tn_buf, off);
7114 		return -EACCES;
7115 	}
7116 
7117 	if (off >= 0 || off < -MAX_BPF_STACK) {
7118 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
7119 			"prohibited for !root; off=%d\n", regno, off);
7120 		return -EACCES;
7121 	}
7122 
7123 	return 0;
7124 }
7125 
7126 static int sanitize_check_bounds(struct bpf_verifier_env *env,
7127 				 const struct bpf_insn *insn,
7128 				 const struct bpf_reg_state *dst_reg)
7129 {
7130 	u32 dst = insn->dst_reg;
7131 
7132 	/* For unprivileged we require that resulting offset must be in bounds
7133 	 * in order to be able to sanitize access later on.
7134 	 */
7135 	if (env->bypass_spec_v1)
7136 		return 0;
7137 
7138 	switch (dst_reg->type) {
7139 	case PTR_TO_STACK:
7140 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
7141 					dst_reg->off + dst_reg->var_off.value))
7142 			return -EACCES;
7143 		break;
7144 	case PTR_TO_MAP_VALUE:
7145 		if (check_map_access(env, dst, dst_reg->off, 1, false)) {
7146 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
7147 				"prohibited for !root\n", dst);
7148 			return -EACCES;
7149 		}
7150 		break;
7151 	default:
7152 		break;
7153 	}
7154 
7155 	return 0;
7156 }
7157 
7158 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
7159  * Caller should also handle BPF_MOV case separately.
7160  * If we return -EACCES, caller may want to try again treating pointer as a
7161  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
7162  */
7163 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
7164 				   struct bpf_insn *insn,
7165 				   const struct bpf_reg_state *ptr_reg,
7166 				   const struct bpf_reg_state *off_reg)
7167 {
7168 	struct bpf_verifier_state *vstate = env->cur_state;
7169 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7170 	struct bpf_reg_state *regs = state->regs, *dst_reg;
7171 	bool known = tnum_is_const(off_reg->var_off);
7172 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
7173 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
7174 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
7175 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
7176 	struct bpf_sanitize_info info = {};
7177 	u8 opcode = BPF_OP(insn->code);
7178 	u32 dst = insn->dst_reg;
7179 	int ret;
7180 
7181 	dst_reg = &regs[dst];
7182 
7183 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
7184 	    smin_val > smax_val || umin_val > umax_val) {
7185 		/* Taint dst register if offset had invalid bounds derived from
7186 		 * e.g. dead branches.
7187 		 */
7188 		__mark_reg_unknown(env, dst_reg);
7189 		return 0;
7190 	}
7191 
7192 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
7193 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
7194 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7195 			__mark_reg_unknown(env, dst_reg);
7196 			return 0;
7197 		}
7198 
7199 		verbose(env,
7200 			"R%d 32-bit pointer arithmetic prohibited\n",
7201 			dst);
7202 		return -EACCES;
7203 	}
7204 
7205 	switch (ptr_reg->type) {
7206 	case PTR_TO_MAP_VALUE_OR_NULL:
7207 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
7208 			dst, reg_type_str[ptr_reg->type]);
7209 		return -EACCES;
7210 	case CONST_PTR_TO_MAP:
7211 		/* smin_val represents the known value */
7212 		if (known && smin_val == 0 && opcode == BPF_ADD)
7213 			break;
7214 		fallthrough;
7215 	case PTR_TO_PACKET_END:
7216 	case PTR_TO_SOCKET:
7217 	case PTR_TO_SOCKET_OR_NULL:
7218 	case PTR_TO_SOCK_COMMON:
7219 	case PTR_TO_SOCK_COMMON_OR_NULL:
7220 	case PTR_TO_TCP_SOCK:
7221 	case PTR_TO_TCP_SOCK_OR_NULL:
7222 	case PTR_TO_XDP_SOCK:
7223 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
7224 			dst, reg_type_str[ptr_reg->type]);
7225 		return -EACCES;
7226 	default:
7227 		break;
7228 	}
7229 
7230 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
7231 	 * The id may be overwritten later if we create a new variable offset.
7232 	 */
7233 	dst_reg->type = ptr_reg->type;
7234 	dst_reg->id = ptr_reg->id;
7235 
7236 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
7237 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
7238 		return -EINVAL;
7239 
7240 	/* pointer types do not carry 32-bit bounds at the moment. */
7241 	__mark_reg32_unbounded(dst_reg);
7242 
7243 	if (sanitize_needed(opcode)) {
7244 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
7245 				       &info, false);
7246 		if (ret < 0)
7247 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7248 	}
7249 
7250 	switch (opcode) {
7251 	case BPF_ADD:
7252 		/* We can take a fixed offset as long as it doesn't overflow
7253 		 * the s32 'off' field
7254 		 */
7255 		if (known && (ptr_reg->off + smin_val ==
7256 			      (s64)(s32)(ptr_reg->off + smin_val))) {
7257 			/* pointer += K.  Accumulate it into fixed offset */
7258 			dst_reg->smin_value = smin_ptr;
7259 			dst_reg->smax_value = smax_ptr;
7260 			dst_reg->umin_value = umin_ptr;
7261 			dst_reg->umax_value = umax_ptr;
7262 			dst_reg->var_off = ptr_reg->var_off;
7263 			dst_reg->off = ptr_reg->off + smin_val;
7264 			dst_reg->raw = ptr_reg->raw;
7265 			break;
7266 		}
7267 		/* A new variable offset is created.  Note that off_reg->off
7268 		 * == 0, since it's a scalar.
7269 		 * dst_reg gets the pointer type and since some positive
7270 		 * integer value was added to the pointer, give it a new 'id'
7271 		 * if it's a PTR_TO_PACKET.
7272 		 * this creates a new 'base' pointer, off_reg (variable) gets
7273 		 * added into the variable offset, and we copy the fixed offset
7274 		 * from ptr_reg.
7275 		 */
7276 		if (signed_add_overflows(smin_ptr, smin_val) ||
7277 		    signed_add_overflows(smax_ptr, smax_val)) {
7278 			dst_reg->smin_value = S64_MIN;
7279 			dst_reg->smax_value = S64_MAX;
7280 		} else {
7281 			dst_reg->smin_value = smin_ptr + smin_val;
7282 			dst_reg->smax_value = smax_ptr + smax_val;
7283 		}
7284 		if (umin_ptr + umin_val < umin_ptr ||
7285 		    umax_ptr + umax_val < umax_ptr) {
7286 			dst_reg->umin_value = 0;
7287 			dst_reg->umax_value = U64_MAX;
7288 		} else {
7289 			dst_reg->umin_value = umin_ptr + umin_val;
7290 			dst_reg->umax_value = umax_ptr + umax_val;
7291 		}
7292 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
7293 		dst_reg->off = ptr_reg->off;
7294 		dst_reg->raw = ptr_reg->raw;
7295 		if (reg_is_pkt_pointer(ptr_reg)) {
7296 			dst_reg->id = ++env->id_gen;
7297 			/* something was added to pkt_ptr, set range to zero */
7298 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7299 		}
7300 		break;
7301 	case BPF_SUB:
7302 		if (dst_reg == off_reg) {
7303 			/* scalar -= pointer.  Creates an unknown scalar */
7304 			verbose(env, "R%d tried to subtract pointer from scalar\n",
7305 				dst);
7306 			return -EACCES;
7307 		}
7308 		/* We don't allow subtraction from FP, because (according to
7309 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
7310 		 * be able to deal with it.
7311 		 */
7312 		if (ptr_reg->type == PTR_TO_STACK) {
7313 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
7314 				dst);
7315 			return -EACCES;
7316 		}
7317 		if (known && (ptr_reg->off - smin_val ==
7318 			      (s64)(s32)(ptr_reg->off - smin_val))) {
7319 			/* pointer -= K.  Subtract it from fixed offset */
7320 			dst_reg->smin_value = smin_ptr;
7321 			dst_reg->smax_value = smax_ptr;
7322 			dst_reg->umin_value = umin_ptr;
7323 			dst_reg->umax_value = umax_ptr;
7324 			dst_reg->var_off = ptr_reg->var_off;
7325 			dst_reg->id = ptr_reg->id;
7326 			dst_reg->off = ptr_reg->off - smin_val;
7327 			dst_reg->raw = ptr_reg->raw;
7328 			break;
7329 		}
7330 		/* A new variable offset is created.  If the subtrahend is known
7331 		 * nonnegative, then any reg->range we had before is still good.
7332 		 */
7333 		if (signed_sub_overflows(smin_ptr, smax_val) ||
7334 		    signed_sub_overflows(smax_ptr, smin_val)) {
7335 			/* Overflow possible, we know nothing */
7336 			dst_reg->smin_value = S64_MIN;
7337 			dst_reg->smax_value = S64_MAX;
7338 		} else {
7339 			dst_reg->smin_value = smin_ptr - smax_val;
7340 			dst_reg->smax_value = smax_ptr - smin_val;
7341 		}
7342 		if (umin_ptr < umax_val) {
7343 			/* Overflow possible, we know nothing */
7344 			dst_reg->umin_value = 0;
7345 			dst_reg->umax_value = U64_MAX;
7346 		} else {
7347 			/* Cannot overflow (as long as bounds are consistent) */
7348 			dst_reg->umin_value = umin_ptr - umax_val;
7349 			dst_reg->umax_value = umax_ptr - umin_val;
7350 		}
7351 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
7352 		dst_reg->off = ptr_reg->off;
7353 		dst_reg->raw = ptr_reg->raw;
7354 		if (reg_is_pkt_pointer(ptr_reg)) {
7355 			dst_reg->id = ++env->id_gen;
7356 			/* something was added to pkt_ptr, set range to zero */
7357 			if (smin_val < 0)
7358 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
7359 		}
7360 		break;
7361 	case BPF_AND:
7362 	case BPF_OR:
7363 	case BPF_XOR:
7364 		/* bitwise ops on pointers are troublesome, prohibit. */
7365 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
7366 			dst, bpf_alu_string[opcode >> 4]);
7367 		return -EACCES;
7368 	default:
7369 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
7370 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
7371 			dst, bpf_alu_string[opcode >> 4]);
7372 		return -EACCES;
7373 	}
7374 
7375 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
7376 		return -EINVAL;
7377 
7378 	__update_reg_bounds(dst_reg);
7379 	__reg_deduce_bounds(dst_reg);
7380 	__reg_bound_offset(dst_reg);
7381 
7382 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
7383 		return -EACCES;
7384 	if (sanitize_needed(opcode)) {
7385 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
7386 				       &info, true);
7387 		if (ret < 0)
7388 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
7389 	}
7390 
7391 	return 0;
7392 }
7393 
7394 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
7395 				 struct bpf_reg_state *src_reg)
7396 {
7397 	s32 smin_val = src_reg->s32_min_value;
7398 	s32 smax_val = src_reg->s32_max_value;
7399 	u32 umin_val = src_reg->u32_min_value;
7400 	u32 umax_val = src_reg->u32_max_value;
7401 
7402 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
7403 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
7404 		dst_reg->s32_min_value = S32_MIN;
7405 		dst_reg->s32_max_value = S32_MAX;
7406 	} else {
7407 		dst_reg->s32_min_value += smin_val;
7408 		dst_reg->s32_max_value += smax_val;
7409 	}
7410 	if (dst_reg->u32_min_value + umin_val < umin_val ||
7411 	    dst_reg->u32_max_value + umax_val < umax_val) {
7412 		dst_reg->u32_min_value = 0;
7413 		dst_reg->u32_max_value = U32_MAX;
7414 	} else {
7415 		dst_reg->u32_min_value += umin_val;
7416 		dst_reg->u32_max_value += umax_val;
7417 	}
7418 }
7419 
7420 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
7421 			       struct bpf_reg_state *src_reg)
7422 {
7423 	s64 smin_val = src_reg->smin_value;
7424 	s64 smax_val = src_reg->smax_value;
7425 	u64 umin_val = src_reg->umin_value;
7426 	u64 umax_val = src_reg->umax_value;
7427 
7428 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
7429 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
7430 		dst_reg->smin_value = S64_MIN;
7431 		dst_reg->smax_value = S64_MAX;
7432 	} else {
7433 		dst_reg->smin_value += smin_val;
7434 		dst_reg->smax_value += smax_val;
7435 	}
7436 	if (dst_reg->umin_value + umin_val < umin_val ||
7437 	    dst_reg->umax_value + umax_val < umax_val) {
7438 		dst_reg->umin_value = 0;
7439 		dst_reg->umax_value = U64_MAX;
7440 	} else {
7441 		dst_reg->umin_value += umin_val;
7442 		dst_reg->umax_value += umax_val;
7443 	}
7444 }
7445 
7446 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
7447 				 struct bpf_reg_state *src_reg)
7448 {
7449 	s32 smin_val = src_reg->s32_min_value;
7450 	s32 smax_val = src_reg->s32_max_value;
7451 	u32 umin_val = src_reg->u32_min_value;
7452 	u32 umax_val = src_reg->u32_max_value;
7453 
7454 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
7455 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
7456 		/* Overflow possible, we know nothing */
7457 		dst_reg->s32_min_value = S32_MIN;
7458 		dst_reg->s32_max_value = S32_MAX;
7459 	} else {
7460 		dst_reg->s32_min_value -= smax_val;
7461 		dst_reg->s32_max_value -= smin_val;
7462 	}
7463 	if (dst_reg->u32_min_value < umax_val) {
7464 		/* Overflow possible, we know nothing */
7465 		dst_reg->u32_min_value = 0;
7466 		dst_reg->u32_max_value = U32_MAX;
7467 	} else {
7468 		/* Cannot overflow (as long as bounds are consistent) */
7469 		dst_reg->u32_min_value -= umax_val;
7470 		dst_reg->u32_max_value -= umin_val;
7471 	}
7472 }
7473 
7474 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7475 			       struct bpf_reg_state *src_reg)
7476 {
7477 	s64 smin_val = src_reg->smin_value;
7478 	s64 smax_val = src_reg->smax_value;
7479 	u64 umin_val = src_reg->umin_value;
7480 	u64 umax_val = src_reg->umax_value;
7481 
7482 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7483 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7484 		/* Overflow possible, we know nothing */
7485 		dst_reg->smin_value = S64_MIN;
7486 		dst_reg->smax_value = S64_MAX;
7487 	} else {
7488 		dst_reg->smin_value -= smax_val;
7489 		dst_reg->smax_value -= smin_val;
7490 	}
7491 	if (dst_reg->umin_value < umax_val) {
7492 		/* Overflow possible, we know nothing */
7493 		dst_reg->umin_value = 0;
7494 		dst_reg->umax_value = U64_MAX;
7495 	} else {
7496 		/* Cannot overflow (as long as bounds are consistent) */
7497 		dst_reg->umin_value -= umax_val;
7498 		dst_reg->umax_value -= umin_val;
7499 	}
7500 }
7501 
7502 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7503 				 struct bpf_reg_state *src_reg)
7504 {
7505 	s32 smin_val = src_reg->s32_min_value;
7506 	u32 umin_val = src_reg->u32_min_value;
7507 	u32 umax_val = src_reg->u32_max_value;
7508 
7509 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7510 		/* Ain't nobody got time to multiply that sign */
7511 		__mark_reg32_unbounded(dst_reg);
7512 		return;
7513 	}
7514 	/* Both values are positive, so we can work with unsigned and
7515 	 * copy the result to signed (unless it exceeds S32_MAX).
7516 	 */
7517 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7518 		/* Potential overflow, we know nothing */
7519 		__mark_reg32_unbounded(dst_reg);
7520 		return;
7521 	}
7522 	dst_reg->u32_min_value *= umin_val;
7523 	dst_reg->u32_max_value *= umax_val;
7524 	if (dst_reg->u32_max_value > S32_MAX) {
7525 		/* Overflow possible, we know nothing */
7526 		dst_reg->s32_min_value = S32_MIN;
7527 		dst_reg->s32_max_value = S32_MAX;
7528 	} else {
7529 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7530 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7531 	}
7532 }
7533 
7534 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7535 			       struct bpf_reg_state *src_reg)
7536 {
7537 	s64 smin_val = src_reg->smin_value;
7538 	u64 umin_val = src_reg->umin_value;
7539 	u64 umax_val = src_reg->umax_value;
7540 
7541 	if (smin_val < 0 || dst_reg->smin_value < 0) {
7542 		/* Ain't nobody got time to multiply that sign */
7543 		__mark_reg64_unbounded(dst_reg);
7544 		return;
7545 	}
7546 	/* Both values are positive, so we can work with unsigned and
7547 	 * copy the result to signed (unless it exceeds S64_MAX).
7548 	 */
7549 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7550 		/* Potential overflow, we know nothing */
7551 		__mark_reg64_unbounded(dst_reg);
7552 		return;
7553 	}
7554 	dst_reg->umin_value *= umin_val;
7555 	dst_reg->umax_value *= umax_val;
7556 	if (dst_reg->umax_value > S64_MAX) {
7557 		/* Overflow possible, we know nothing */
7558 		dst_reg->smin_value = S64_MIN;
7559 		dst_reg->smax_value = S64_MAX;
7560 	} else {
7561 		dst_reg->smin_value = dst_reg->umin_value;
7562 		dst_reg->smax_value = dst_reg->umax_value;
7563 	}
7564 }
7565 
7566 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7567 				 struct bpf_reg_state *src_reg)
7568 {
7569 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7570 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7571 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7572 	s32 smin_val = src_reg->s32_min_value;
7573 	u32 umax_val = src_reg->u32_max_value;
7574 
7575 	if (src_known && dst_known) {
7576 		__mark_reg32_known(dst_reg, var32_off.value);
7577 		return;
7578 	}
7579 
7580 	/* We get our minimum from the var_off, since that's inherently
7581 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7582 	 */
7583 	dst_reg->u32_min_value = var32_off.value;
7584 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7585 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7586 		/* Lose signed bounds when ANDing negative numbers,
7587 		 * ain't nobody got time for that.
7588 		 */
7589 		dst_reg->s32_min_value = S32_MIN;
7590 		dst_reg->s32_max_value = S32_MAX;
7591 	} else {
7592 		/* ANDing two positives gives a positive, so safe to
7593 		 * cast result into s64.
7594 		 */
7595 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7596 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7597 	}
7598 }
7599 
7600 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7601 			       struct bpf_reg_state *src_reg)
7602 {
7603 	bool src_known = tnum_is_const(src_reg->var_off);
7604 	bool dst_known = tnum_is_const(dst_reg->var_off);
7605 	s64 smin_val = src_reg->smin_value;
7606 	u64 umax_val = src_reg->umax_value;
7607 
7608 	if (src_known && dst_known) {
7609 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7610 		return;
7611 	}
7612 
7613 	/* We get our minimum from the var_off, since that's inherently
7614 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
7615 	 */
7616 	dst_reg->umin_value = dst_reg->var_off.value;
7617 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7618 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7619 		/* Lose signed bounds when ANDing negative numbers,
7620 		 * ain't nobody got time for that.
7621 		 */
7622 		dst_reg->smin_value = S64_MIN;
7623 		dst_reg->smax_value = S64_MAX;
7624 	} else {
7625 		/* ANDing two positives gives a positive, so safe to
7626 		 * cast result into s64.
7627 		 */
7628 		dst_reg->smin_value = dst_reg->umin_value;
7629 		dst_reg->smax_value = dst_reg->umax_value;
7630 	}
7631 	/* We may learn something more from the var_off */
7632 	__update_reg_bounds(dst_reg);
7633 }
7634 
7635 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7636 				struct bpf_reg_state *src_reg)
7637 {
7638 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7639 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7640 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7641 	s32 smin_val = src_reg->s32_min_value;
7642 	u32 umin_val = src_reg->u32_min_value;
7643 
7644 	if (src_known && dst_known) {
7645 		__mark_reg32_known(dst_reg, var32_off.value);
7646 		return;
7647 	}
7648 
7649 	/* We get our maximum from the var_off, and our minimum is the
7650 	 * maximum of the operands' minima
7651 	 */
7652 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7653 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7654 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7655 		/* Lose signed bounds when ORing negative numbers,
7656 		 * ain't nobody got time for that.
7657 		 */
7658 		dst_reg->s32_min_value = S32_MIN;
7659 		dst_reg->s32_max_value = S32_MAX;
7660 	} else {
7661 		/* ORing two positives gives a positive, so safe to
7662 		 * cast result into s64.
7663 		 */
7664 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7665 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7666 	}
7667 }
7668 
7669 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7670 			      struct bpf_reg_state *src_reg)
7671 {
7672 	bool src_known = tnum_is_const(src_reg->var_off);
7673 	bool dst_known = tnum_is_const(dst_reg->var_off);
7674 	s64 smin_val = src_reg->smin_value;
7675 	u64 umin_val = src_reg->umin_value;
7676 
7677 	if (src_known && dst_known) {
7678 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7679 		return;
7680 	}
7681 
7682 	/* We get our maximum from the var_off, and our minimum is the
7683 	 * maximum of the operands' minima
7684 	 */
7685 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7686 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7687 	if (dst_reg->smin_value < 0 || smin_val < 0) {
7688 		/* Lose signed bounds when ORing negative numbers,
7689 		 * ain't nobody got time for that.
7690 		 */
7691 		dst_reg->smin_value = S64_MIN;
7692 		dst_reg->smax_value = S64_MAX;
7693 	} else {
7694 		/* ORing two positives gives a positive, so safe to
7695 		 * cast result into s64.
7696 		 */
7697 		dst_reg->smin_value = dst_reg->umin_value;
7698 		dst_reg->smax_value = dst_reg->umax_value;
7699 	}
7700 	/* We may learn something more from the var_off */
7701 	__update_reg_bounds(dst_reg);
7702 }
7703 
7704 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7705 				 struct bpf_reg_state *src_reg)
7706 {
7707 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
7708 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7709 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7710 	s32 smin_val = src_reg->s32_min_value;
7711 
7712 	if (src_known && dst_known) {
7713 		__mark_reg32_known(dst_reg, var32_off.value);
7714 		return;
7715 	}
7716 
7717 	/* We get both minimum and maximum from the var32_off. */
7718 	dst_reg->u32_min_value = var32_off.value;
7719 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7720 
7721 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7722 		/* XORing two positive sign numbers gives a positive,
7723 		 * so safe to cast u32 result into s32.
7724 		 */
7725 		dst_reg->s32_min_value = dst_reg->u32_min_value;
7726 		dst_reg->s32_max_value = dst_reg->u32_max_value;
7727 	} else {
7728 		dst_reg->s32_min_value = S32_MIN;
7729 		dst_reg->s32_max_value = S32_MAX;
7730 	}
7731 }
7732 
7733 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7734 			       struct bpf_reg_state *src_reg)
7735 {
7736 	bool src_known = tnum_is_const(src_reg->var_off);
7737 	bool dst_known = tnum_is_const(dst_reg->var_off);
7738 	s64 smin_val = src_reg->smin_value;
7739 
7740 	if (src_known && dst_known) {
7741 		/* dst_reg->var_off.value has been updated earlier */
7742 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
7743 		return;
7744 	}
7745 
7746 	/* We get both minimum and maximum from the var_off. */
7747 	dst_reg->umin_value = dst_reg->var_off.value;
7748 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7749 
7750 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7751 		/* XORing two positive sign numbers gives a positive,
7752 		 * so safe to cast u64 result into s64.
7753 		 */
7754 		dst_reg->smin_value = dst_reg->umin_value;
7755 		dst_reg->smax_value = dst_reg->umax_value;
7756 	} else {
7757 		dst_reg->smin_value = S64_MIN;
7758 		dst_reg->smax_value = S64_MAX;
7759 	}
7760 
7761 	__update_reg_bounds(dst_reg);
7762 }
7763 
7764 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7765 				   u64 umin_val, u64 umax_val)
7766 {
7767 	/* We lose all sign bit information (except what we can pick
7768 	 * up from var_off)
7769 	 */
7770 	dst_reg->s32_min_value = S32_MIN;
7771 	dst_reg->s32_max_value = S32_MAX;
7772 	/* If we might shift our top bit out, then we know nothing */
7773 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7774 		dst_reg->u32_min_value = 0;
7775 		dst_reg->u32_max_value = U32_MAX;
7776 	} else {
7777 		dst_reg->u32_min_value <<= umin_val;
7778 		dst_reg->u32_max_value <<= umax_val;
7779 	}
7780 }
7781 
7782 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7783 				 struct bpf_reg_state *src_reg)
7784 {
7785 	u32 umax_val = src_reg->u32_max_value;
7786 	u32 umin_val = src_reg->u32_min_value;
7787 	/* u32 alu operation will zext upper bits */
7788 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7789 
7790 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7791 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7792 	/* Not required but being careful mark reg64 bounds as unknown so
7793 	 * that we are forced to pick them up from tnum and zext later and
7794 	 * if some path skips this step we are still safe.
7795 	 */
7796 	__mark_reg64_unbounded(dst_reg);
7797 	__update_reg32_bounds(dst_reg);
7798 }
7799 
7800 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7801 				   u64 umin_val, u64 umax_val)
7802 {
7803 	/* Special case <<32 because it is a common compiler pattern to sign
7804 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7805 	 * positive we know this shift will also be positive so we can track
7806 	 * bounds correctly. Otherwise we lose all sign bit information except
7807 	 * what we can pick up from var_off. Perhaps we can generalize this
7808 	 * later to shifts of any length.
7809 	 */
7810 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7811 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7812 	else
7813 		dst_reg->smax_value = S64_MAX;
7814 
7815 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7816 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7817 	else
7818 		dst_reg->smin_value = S64_MIN;
7819 
7820 	/* If we might shift our top bit out, then we know nothing */
7821 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7822 		dst_reg->umin_value = 0;
7823 		dst_reg->umax_value = U64_MAX;
7824 	} else {
7825 		dst_reg->umin_value <<= umin_val;
7826 		dst_reg->umax_value <<= umax_val;
7827 	}
7828 }
7829 
7830 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7831 			       struct bpf_reg_state *src_reg)
7832 {
7833 	u64 umax_val = src_reg->umax_value;
7834 	u64 umin_val = src_reg->umin_value;
7835 
7836 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
7837 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7838 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7839 
7840 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7841 	/* We may learn something more from the var_off */
7842 	__update_reg_bounds(dst_reg);
7843 }
7844 
7845 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7846 				 struct bpf_reg_state *src_reg)
7847 {
7848 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
7849 	u32 umax_val = src_reg->u32_max_value;
7850 	u32 umin_val = src_reg->u32_min_value;
7851 
7852 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7853 	 * be negative, then either:
7854 	 * 1) src_reg might be zero, so the sign bit of the result is
7855 	 *    unknown, so we lose our signed bounds
7856 	 * 2) it's known negative, thus the unsigned bounds capture the
7857 	 *    signed bounds
7858 	 * 3) the signed bounds cross zero, so they tell us nothing
7859 	 *    about the result
7860 	 * If the value in dst_reg is known nonnegative, then again the
7861 	 * unsigned bounds capture the signed bounds.
7862 	 * Thus, in all cases it suffices to blow away our signed bounds
7863 	 * and rely on inferring new ones from the unsigned bounds and
7864 	 * var_off of the result.
7865 	 */
7866 	dst_reg->s32_min_value = S32_MIN;
7867 	dst_reg->s32_max_value = S32_MAX;
7868 
7869 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
7870 	dst_reg->u32_min_value >>= umax_val;
7871 	dst_reg->u32_max_value >>= umin_val;
7872 
7873 	__mark_reg64_unbounded(dst_reg);
7874 	__update_reg32_bounds(dst_reg);
7875 }
7876 
7877 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7878 			       struct bpf_reg_state *src_reg)
7879 {
7880 	u64 umax_val = src_reg->umax_value;
7881 	u64 umin_val = src_reg->umin_value;
7882 
7883 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
7884 	 * be negative, then either:
7885 	 * 1) src_reg might be zero, so the sign bit of the result is
7886 	 *    unknown, so we lose our signed bounds
7887 	 * 2) it's known negative, thus the unsigned bounds capture the
7888 	 *    signed bounds
7889 	 * 3) the signed bounds cross zero, so they tell us nothing
7890 	 *    about the result
7891 	 * If the value in dst_reg is known nonnegative, then again the
7892 	 * unsigned bounds capture the signed bounds.
7893 	 * Thus, in all cases it suffices to blow away our signed bounds
7894 	 * and rely on inferring new ones from the unsigned bounds and
7895 	 * var_off of the result.
7896 	 */
7897 	dst_reg->smin_value = S64_MIN;
7898 	dst_reg->smax_value = S64_MAX;
7899 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7900 	dst_reg->umin_value >>= umax_val;
7901 	dst_reg->umax_value >>= umin_val;
7902 
7903 	/* Its not easy to operate on alu32 bounds here because it depends
7904 	 * on bits being shifted in. Take easy way out and mark unbounded
7905 	 * so we can recalculate later from tnum.
7906 	 */
7907 	__mark_reg32_unbounded(dst_reg);
7908 	__update_reg_bounds(dst_reg);
7909 }
7910 
7911 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7912 				  struct bpf_reg_state *src_reg)
7913 {
7914 	u64 umin_val = src_reg->u32_min_value;
7915 
7916 	/* Upon reaching here, src_known is true and
7917 	 * umax_val is equal to umin_val.
7918 	 */
7919 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7920 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7921 
7922 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7923 
7924 	/* blow away the dst_reg umin_value/umax_value and rely on
7925 	 * dst_reg var_off to refine the result.
7926 	 */
7927 	dst_reg->u32_min_value = 0;
7928 	dst_reg->u32_max_value = U32_MAX;
7929 
7930 	__mark_reg64_unbounded(dst_reg);
7931 	__update_reg32_bounds(dst_reg);
7932 }
7933 
7934 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7935 				struct bpf_reg_state *src_reg)
7936 {
7937 	u64 umin_val = src_reg->umin_value;
7938 
7939 	/* Upon reaching here, src_known is true and umax_val is equal
7940 	 * to umin_val.
7941 	 */
7942 	dst_reg->smin_value >>= umin_val;
7943 	dst_reg->smax_value >>= umin_val;
7944 
7945 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7946 
7947 	/* blow away the dst_reg umin_value/umax_value and rely on
7948 	 * dst_reg var_off to refine the result.
7949 	 */
7950 	dst_reg->umin_value = 0;
7951 	dst_reg->umax_value = U64_MAX;
7952 
7953 	/* Its not easy to operate on alu32 bounds here because it depends
7954 	 * on bits being shifted in from upper 32-bits. Take easy way out
7955 	 * and mark unbounded so we can recalculate later from tnum.
7956 	 */
7957 	__mark_reg32_unbounded(dst_reg);
7958 	__update_reg_bounds(dst_reg);
7959 }
7960 
7961 /* WARNING: This function does calculations on 64-bit values, but the actual
7962  * execution may occur on 32-bit values. Therefore, things like bitshifts
7963  * need extra checks in the 32-bit case.
7964  */
7965 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7966 				      struct bpf_insn *insn,
7967 				      struct bpf_reg_state *dst_reg,
7968 				      struct bpf_reg_state src_reg)
7969 {
7970 	struct bpf_reg_state *regs = cur_regs(env);
7971 	u8 opcode = BPF_OP(insn->code);
7972 	bool src_known;
7973 	s64 smin_val, smax_val;
7974 	u64 umin_val, umax_val;
7975 	s32 s32_min_val, s32_max_val;
7976 	u32 u32_min_val, u32_max_val;
7977 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7978 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7979 	int ret;
7980 
7981 	smin_val = src_reg.smin_value;
7982 	smax_val = src_reg.smax_value;
7983 	umin_val = src_reg.umin_value;
7984 	umax_val = src_reg.umax_value;
7985 
7986 	s32_min_val = src_reg.s32_min_value;
7987 	s32_max_val = src_reg.s32_max_value;
7988 	u32_min_val = src_reg.u32_min_value;
7989 	u32_max_val = src_reg.u32_max_value;
7990 
7991 	if (alu32) {
7992 		src_known = tnum_subreg_is_const(src_reg.var_off);
7993 		if ((src_known &&
7994 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7995 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7996 			/* Taint dst register if offset had invalid bounds
7997 			 * derived from e.g. dead branches.
7998 			 */
7999 			__mark_reg_unknown(env, dst_reg);
8000 			return 0;
8001 		}
8002 	} else {
8003 		src_known = tnum_is_const(src_reg.var_off);
8004 		if ((src_known &&
8005 		     (smin_val != smax_val || umin_val != umax_val)) ||
8006 		    smin_val > smax_val || umin_val > umax_val) {
8007 			/* Taint dst register if offset had invalid bounds
8008 			 * derived from e.g. dead branches.
8009 			 */
8010 			__mark_reg_unknown(env, dst_reg);
8011 			return 0;
8012 		}
8013 	}
8014 
8015 	if (!src_known &&
8016 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
8017 		__mark_reg_unknown(env, dst_reg);
8018 		return 0;
8019 	}
8020 
8021 	if (sanitize_needed(opcode)) {
8022 		ret = sanitize_val_alu(env, insn);
8023 		if (ret < 0)
8024 			return sanitize_err(env, insn, ret, NULL, NULL);
8025 	}
8026 
8027 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
8028 	 * There are two classes of instructions: The first class we track both
8029 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
8030 	 * greatest amount of precision when alu operations are mixed with jmp32
8031 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
8032 	 * and BPF_OR. This is possible because these ops have fairly easy to
8033 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
8034 	 * See alu32 verifier tests for examples. The second class of
8035 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
8036 	 * with regards to tracking sign/unsigned bounds because the bits may
8037 	 * cross subreg boundaries in the alu64 case. When this happens we mark
8038 	 * the reg unbounded in the subreg bound space and use the resulting
8039 	 * tnum to calculate an approximation of the sign/unsigned bounds.
8040 	 */
8041 	switch (opcode) {
8042 	case BPF_ADD:
8043 		scalar32_min_max_add(dst_reg, &src_reg);
8044 		scalar_min_max_add(dst_reg, &src_reg);
8045 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
8046 		break;
8047 	case BPF_SUB:
8048 		scalar32_min_max_sub(dst_reg, &src_reg);
8049 		scalar_min_max_sub(dst_reg, &src_reg);
8050 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
8051 		break;
8052 	case BPF_MUL:
8053 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
8054 		scalar32_min_max_mul(dst_reg, &src_reg);
8055 		scalar_min_max_mul(dst_reg, &src_reg);
8056 		break;
8057 	case BPF_AND:
8058 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
8059 		scalar32_min_max_and(dst_reg, &src_reg);
8060 		scalar_min_max_and(dst_reg, &src_reg);
8061 		break;
8062 	case BPF_OR:
8063 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
8064 		scalar32_min_max_or(dst_reg, &src_reg);
8065 		scalar_min_max_or(dst_reg, &src_reg);
8066 		break;
8067 	case BPF_XOR:
8068 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
8069 		scalar32_min_max_xor(dst_reg, &src_reg);
8070 		scalar_min_max_xor(dst_reg, &src_reg);
8071 		break;
8072 	case BPF_LSH:
8073 		if (umax_val >= insn_bitness) {
8074 			/* Shifts greater than 31 or 63 are undefined.
8075 			 * This includes shifts by a negative number.
8076 			 */
8077 			mark_reg_unknown(env, regs, insn->dst_reg);
8078 			break;
8079 		}
8080 		if (alu32)
8081 			scalar32_min_max_lsh(dst_reg, &src_reg);
8082 		else
8083 			scalar_min_max_lsh(dst_reg, &src_reg);
8084 		break;
8085 	case BPF_RSH:
8086 		if (umax_val >= insn_bitness) {
8087 			/* Shifts greater than 31 or 63 are undefined.
8088 			 * This includes shifts by a negative number.
8089 			 */
8090 			mark_reg_unknown(env, regs, insn->dst_reg);
8091 			break;
8092 		}
8093 		if (alu32)
8094 			scalar32_min_max_rsh(dst_reg, &src_reg);
8095 		else
8096 			scalar_min_max_rsh(dst_reg, &src_reg);
8097 		break;
8098 	case BPF_ARSH:
8099 		if (umax_val >= insn_bitness) {
8100 			/* Shifts greater than 31 or 63 are undefined.
8101 			 * This includes shifts by a negative number.
8102 			 */
8103 			mark_reg_unknown(env, regs, insn->dst_reg);
8104 			break;
8105 		}
8106 		if (alu32)
8107 			scalar32_min_max_arsh(dst_reg, &src_reg);
8108 		else
8109 			scalar_min_max_arsh(dst_reg, &src_reg);
8110 		break;
8111 	default:
8112 		mark_reg_unknown(env, regs, insn->dst_reg);
8113 		break;
8114 	}
8115 
8116 	/* ALU32 ops are zero extended into 64bit register */
8117 	if (alu32)
8118 		zext_32_to_64(dst_reg);
8119 
8120 	__update_reg_bounds(dst_reg);
8121 	__reg_deduce_bounds(dst_reg);
8122 	__reg_bound_offset(dst_reg);
8123 	return 0;
8124 }
8125 
8126 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
8127  * and var_off.
8128  */
8129 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
8130 				   struct bpf_insn *insn)
8131 {
8132 	struct bpf_verifier_state *vstate = env->cur_state;
8133 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8134 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
8135 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
8136 	u8 opcode = BPF_OP(insn->code);
8137 	int err;
8138 
8139 	dst_reg = &regs[insn->dst_reg];
8140 	src_reg = NULL;
8141 	if (dst_reg->type != SCALAR_VALUE)
8142 		ptr_reg = dst_reg;
8143 	else
8144 		/* Make sure ID is cleared otherwise dst_reg min/max could be
8145 		 * incorrectly propagated into other registers by find_equal_scalars()
8146 		 */
8147 		dst_reg->id = 0;
8148 	if (BPF_SRC(insn->code) == BPF_X) {
8149 		src_reg = &regs[insn->src_reg];
8150 		if (src_reg->type != SCALAR_VALUE) {
8151 			if (dst_reg->type != SCALAR_VALUE) {
8152 				/* Combining two pointers by any ALU op yields
8153 				 * an arbitrary scalar. Disallow all math except
8154 				 * pointer subtraction
8155 				 */
8156 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
8157 					mark_reg_unknown(env, regs, insn->dst_reg);
8158 					return 0;
8159 				}
8160 				verbose(env, "R%d pointer %s pointer prohibited\n",
8161 					insn->dst_reg,
8162 					bpf_alu_string[opcode >> 4]);
8163 				return -EACCES;
8164 			} else {
8165 				/* scalar += pointer
8166 				 * This is legal, but we have to reverse our
8167 				 * src/dest handling in computing the range
8168 				 */
8169 				err = mark_chain_precision(env, insn->dst_reg);
8170 				if (err)
8171 					return err;
8172 				return adjust_ptr_min_max_vals(env, insn,
8173 							       src_reg, dst_reg);
8174 			}
8175 		} else if (ptr_reg) {
8176 			/* pointer += scalar */
8177 			err = mark_chain_precision(env, insn->src_reg);
8178 			if (err)
8179 				return err;
8180 			return adjust_ptr_min_max_vals(env, insn,
8181 						       dst_reg, src_reg);
8182 		}
8183 	} else {
8184 		/* Pretend the src is a reg with a known value, since we only
8185 		 * need to be able to read from this state.
8186 		 */
8187 		off_reg.type = SCALAR_VALUE;
8188 		__mark_reg_known(&off_reg, insn->imm);
8189 		src_reg = &off_reg;
8190 		if (ptr_reg) /* pointer += K */
8191 			return adjust_ptr_min_max_vals(env, insn,
8192 						       ptr_reg, src_reg);
8193 	}
8194 
8195 	/* Got here implies adding two SCALAR_VALUEs */
8196 	if (WARN_ON_ONCE(ptr_reg)) {
8197 		print_verifier_state(env, state);
8198 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
8199 		return -EINVAL;
8200 	}
8201 	if (WARN_ON(!src_reg)) {
8202 		print_verifier_state(env, state);
8203 		verbose(env, "verifier internal error: no src_reg\n");
8204 		return -EINVAL;
8205 	}
8206 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
8207 }
8208 
8209 /* check validity of 32-bit and 64-bit arithmetic operations */
8210 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
8211 {
8212 	struct bpf_reg_state *regs = cur_regs(env);
8213 	u8 opcode = BPF_OP(insn->code);
8214 	int err;
8215 
8216 	if (opcode == BPF_END || opcode == BPF_NEG) {
8217 		if (opcode == BPF_NEG) {
8218 			if (BPF_SRC(insn->code) != 0 ||
8219 			    insn->src_reg != BPF_REG_0 ||
8220 			    insn->off != 0 || insn->imm != 0) {
8221 				verbose(env, "BPF_NEG uses reserved fields\n");
8222 				return -EINVAL;
8223 			}
8224 		} else {
8225 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
8226 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
8227 			    BPF_CLASS(insn->code) == BPF_ALU64) {
8228 				verbose(env, "BPF_END uses reserved fields\n");
8229 				return -EINVAL;
8230 			}
8231 		}
8232 
8233 		/* check src operand */
8234 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8235 		if (err)
8236 			return err;
8237 
8238 		if (is_pointer_value(env, insn->dst_reg)) {
8239 			verbose(env, "R%d pointer arithmetic prohibited\n",
8240 				insn->dst_reg);
8241 			return -EACCES;
8242 		}
8243 
8244 		/* check dest operand */
8245 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
8246 		if (err)
8247 			return err;
8248 
8249 	} else if (opcode == BPF_MOV) {
8250 
8251 		if (BPF_SRC(insn->code) == BPF_X) {
8252 			if (insn->imm != 0 || insn->off != 0) {
8253 				verbose(env, "BPF_MOV uses reserved fields\n");
8254 				return -EINVAL;
8255 			}
8256 
8257 			/* check src operand */
8258 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8259 			if (err)
8260 				return err;
8261 		} else {
8262 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8263 				verbose(env, "BPF_MOV uses reserved fields\n");
8264 				return -EINVAL;
8265 			}
8266 		}
8267 
8268 		/* check dest operand, mark as required later */
8269 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8270 		if (err)
8271 			return err;
8272 
8273 		if (BPF_SRC(insn->code) == BPF_X) {
8274 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
8275 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
8276 
8277 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8278 				/* case: R1 = R2
8279 				 * copy register state to dest reg
8280 				 */
8281 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
8282 					/* Assign src and dst registers the same ID
8283 					 * that will be used by find_equal_scalars()
8284 					 * to propagate min/max range.
8285 					 */
8286 					src_reg->id = ++env->id_gen;
8287 				*dst_reg = *src_reg;
8288 				dst_reg->live |= REG_LIVE_WRITTEN;
8289 				dst_reg->subreg_def = DEF_NOT_SUBREG;
8290 			} else {
8291 				/* R1 = (u32) R2 */
8292 				if (is_pointer_value(env, insn->src_reg)) {
8293 					verbose(env,
8294 						"R%d partial copy of pointer\n",
8295 						insn->src_reg);
8296 					return -EACCES;
8297 				} else if (src_reg->type == SCALAR_VALUE) {
8298 					*dst_reg = *src_reg;
8299 					/* Make sure ID is cleared otherwise
8300 					 * dst_reg min/max could be incorrectly
8301 					 * propagated into src_reg by find_equal_scalars()
8302 					 */
8303 					dst_reg->id = 0;
8304 					dst_reg->live |= REG_LIVE_WRITTEN;
8305 					dst_reg->subreg_def = env->insn_idx + 1;
8306 				} else {
8307 					mark_reg_unknown(env, regs,
8308 							 insn->dst_reg);
8309 				}
8310 				zext_32_to_64(dst_reg);
8311 			}
8312 		} else {
8313 			/* case: R = imm
8314 			 * remember the value we stored into this reg
8315 			 */
8316 			/* clear any state __mark_reg_known doesn't set */
8317 			mark_reg_unknown(env, regs, insn->dst_reg);
8318 			regs[insn->dst_reg].type = SCALAR_VALUE;
8319 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
8320 				__mark_reg_known(regs + insn->dst_reg,
8321 						 insn->imm);
8322 			} else {
8323 				__mark_reg_known(regs + insn->dst_reg,
8324 						 (u32)insn->imm);
8325 			}
8326 		}
8327 
8328 	} else if (opcode > BPF_END) {
8329 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
8330 		return -EINVAL;
8331 
8332 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
8333 
8334 		if (BPF_SRC(insn->code) == BPF_X) {
8335 			if (insn->imm != 0 || insn->off != 0) {
8336 				verbose(env, "BPF_ALU uses reserved fields\n");
8337 				return -EINVAL;
8338 			}
8339 			/* check src1 operand */
8340 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
8341 			if (err)
8342 				return err;
8343 		} else {
8344 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
8345 				verbose(env, "BPF_ALU uses reserved fields\n");
8346 				return -EINVAL;
8347 			}
8348 		}
8349 
8350 		/* check src2 operand */
8351 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8352 		if (err)
8353 			return err;
8354 
8355 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
8356 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
8357 			verbose(env, "div by zero\n");
8358 			return -EINVAL;
8359 		}
8360 
8361 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
8362 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
8363 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
8364 
8365 			if (insn->imm < 0 || insn->imm >= size) {
8366 				verbose(env, "invalid shift %d\n", insn->imm);
8367 				return -EINVAL;
8368 			}
8369 		}
8370 
8371 		/* check dest operand */
8372 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
8373 		if (err)
8374 			return err;
8375 
8376 		return adjust_reg_min_max_vals(env, insn);
8377 	}
8378 
8379 	return 0;
8380 }
8381 
8382 static void __find_good_pkt_pointers(struct bpf_func_state *state,
8383 				     struct bpf_reg_state *dst_reg,
8384 				     enum bpf_reg_type type, int new_range)
8385 {
8386 	struct bpf_reg_state *reg;
8387 	int i;
8388 
8389 	for (i = 0; i < MAX_BPF_REG; i++) {
8390 		reg = &state->regs[i];
8391 		if (reg->type == type && reg->id == dst_reg->id)
8392 			/* keep the maximum range already checked */
8393 			reg->range = max(reg->range, new_range);
8394 	}
8395 
8396 	bpf_for_each_spilled_reg(i, state, reg) {
8397 		if (!reg)
8398 			continue;
8399 		if (reg->type == type && reg->id == dst_reg->id)
8400 			reg->range = max(reg->range, new_range);
8401 	}
8402 }
8403 
8404 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
8405 				   struct bpf_reg_state *dst_reg,
8406 				   enum bpf_reg_type type,
8407 				   bool range_right_open)
8408 {
8409 	int new_range, i;
8410 
8411 	if (dst_reg->off < 0 ||
8412 	    (dst_reg->off == 0 && range_right_open))
8413 		/* This doesn't give us any range */
8414 		return;
8415 
8416 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
8417 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
8418 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
8419 		 * than pkt_end, but that's because it's also less than pkt.
8420 		 */
8421 		return;
8422 
8423 	new_range = dst_reg->off;
8424 	if (range_right_open)
8425 		new_range--;
8426 
8427 	/* Examples for register markings:
8428 	 *
8429 	 * pkt_data in dst register:
8430 	 *
8431 	 *   r2 = r3;
8432 	 *   r2 += 8;
8433 	 *   if (r2 > pkt_end) goto <handle exception>
8434 	 *   <access okay>
8435 	 *
8436 	 *   r2 = r3;
8437 	 *   r2 += 8;
8438 	 *   if (r2 < pkt_end) goto <access okay>
8439 	 *   <handle exception>
8440 	 *
8441 	 *   Where:
8442 	 *     r2 == dst_reg, pkt_end == src_reg
8443 	 *     r2=pkt(id=n,off=8,r=0)
8444 	 *     r3=pkt(id=n,off=0,r=0)
8445 	 *
8446 	 * pkt_data in src register:
8447 	 *
8448 	 *   r2 = r3;
8449 	 *   r2 += 8;
8450 	 *   if (pkt_end >= r2) goto <access okay>
8451 	 *   <handle exception>
8452 	 *
8453 	 *   r2 = r3;
8454 	 *   r2 += 8;
8455 	 *   if (pkt_end <= r2) goto <handle exception>
8456 	 *   <access okay>
8457 	 *
8458 	 *   Where:
8459 	 *     pkt_end == dst_reg, r2 == src_reg
8460 	 *     r2=pkt(id=n,off=8,r=0)
8461 	 *     r3=pkt(id=n,off=0,r=0)
8462 	 *
8463 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
8464 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8465 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
8466 	 * the check.
8467 	 */
8468 
8469 	/* If our ids match, then we must have the same max_value.  And we
8470 	 * don't care about the other reg's fixed offset, since if it's too big
8471 	 * the range won't allow anything.
8472 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8473 	 */
8474 	for (i = 0; i <= vstate->curframe; i++)
8475 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8476 					 new_range);
8477 }
8478 
8479 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8480 {
8481 	struct tnum subreg = tnum_subreg(reg->var_off);
8482 	s32 sval = (s32)val;
8483 
8484 	switch (opcode) {
8485 	case BPF_JEQ:
8486 		if (tnum_is_const(subreg))
8487 			return !!tnum_equals_const(subreg, val);
8488 		break;
8489 	case BPF_JNE:
8490 		if (tnum_is_const(subreg))
8491 			return !tnum_equals_const(subreg, val);
8492 		break;
8493 	case BPF_JSET:
8494 		if ((~subreg.mask & subreg.value) & val)
8495 			return 1;
8496 		if (!((subreg.mask | subreg.value) & val))
8497 			return 0;
8498 		break;
8499 	case BPF_JGT:
8500 		if (reg->u32_min_value > val)
8501 			return 1;
8502 		else if (reg->u32_max_value <= val)
8503 			return 0;
8504 		break;
8505 	case BPF_JSGT:
8506 		if (reg->s32_min_value > sval)
8507 			return 1;
8508 		else if (reg->s32_max_value <= sval)
8509 			return 0;
8510 		break;
8511 	case BPF_JLT:
8512 		if (reg->u32_max_value < val)
8513 			return 1;
8514 		else if (reg->u32_min_value >= val)
8515 			return 0;
8516 		break;
8517 	case BPF_JSLT:
8518 		if (reg->s32_max_value < sval)
8519 			return 1;
8520 		else if (reg->s32_min_value >= sval)
8521 			return 0;
8522 		break;
8523 	case BPF_JGE:
8524 		if (reg->u32_min_value >= val)
8525 			return 1;
8526 		else if (reg->u32_max_value < val)
8527 			return 0;
8528 		break;
8529 	case BPF_JSGE:
8530 		if (reg->s32_min_value >= sval)
8531 			return 1;
8532 		else if (reg->s32_max_value < sval)
8533 			return 0;
8534 		break;
8535 	case BPF_JLE:
8536 		if (reg->u32_max_value <= val)
8537 			return 1;
8538 		else if (reg->u32_min_value > val)
8539 			return 0;
8540 		break;
8541 	case BPF_JSLE:
8542 		if (reg->s32_max_value <= sval)
8543 			return 1;
8544 		else if (reg->s32_min_value > sval)
8545 			return 0;
8546 		break;
8547 	}
8548 
8549 	return -1;
8550 }
8551 
8552 
8553 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8554 {
8555 	s64 sval = (s64)val;
8556 
8557 	switch (opcode) {
8558 	case BPF_JEQ:
8559 		if (tnum_is_const(reg->var_off))
8560 			return !!tnum_equals_const(reg->var_off, val);
8561 		break;
8562 	case BPF_JNE:
8563 		if (tnum_is_const(reg->var_off))
8564 			return !tnum_equals_const(reg->var_off, val);
8565 		break;
8566 	case BPF_JSET:
8567 		if ((~reg->var_off.mask & reg->var_off.value) & val)
8568 			return 1;
8569 		if (!((reg->var_off.mask | reg->var_off.value) & val))
8570 			return 0;
8571 		break;
8572 	case BPF_JGT:
8573 		if (reg->umin_value > val)
8574 			return 1;
8575 		else if (reg->umax_value <= val)
8576 			return 0;
8577 		break;
8578 	case BPF_JSGT:
8579 		if (reg->smin_value > sval)
8580 			return 1;
8581 		else if (reg->smax_value <= sval)
8582 			return 0;
8583 		break;
8584 	case BPF_JLT:
8585 		if (reg->umax_value < val)
8586 			return 1;
8587 		else if (reg->umin_value >= val)
8588 			return 0;
8589 		break;
8590 	case BPF_JSLT:
8591 		if (reg->smax_value < sval)
8592 			return 1;
8593 		else if (reg->smin_value >= sval)
8594 			return 0;
8595 		break;
8596 	case BPF_JGE:
8597 		if (reg->umin_value >= val)
8598 			return 1;
8599 		else if (reg->umax_value < val)
8600 			return 0;
8601 		break;
8602 	case BPF_JSGE:
8603 		if (reg->smin_value >= sval)
8604 			return 1;
8605 		else if (reg->smax_value < sval)
8606 			return 0;
8607 		break;
8608 	case BPF_JLE:
8609 		if (reg->umax_value <= val)
8610 			return 1;
8611 		else if (reg->umin_value > val)
8612 			return 0;
8613 		break;
8614 	case BPF_JSLE:
8615 		if (reg->smax_value <= sval)
8616 			return 1;
8617 		else if (reg->smin_value > sval)
8618 			return 0;
8619 		break;
8620 	}
8621 
8622 	return -1;
8623 }
8624 
8625 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8626  * and return:
8627  *  1 - branch will be taken and "goto target" will be executed
8628  *  0 - branch will not be taken and fall-through to next insn
8629  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8630  *      range [0,10]
8631  */
8632 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8633 			   bool is_jmp32)
8634 {
8635 	if (__is_pointer_value(false, reg)) {
8636 		if (!reg_type_not_null(reg->type))
8637 			return -1;
8638 
8639 		/* If pointer is valid tests against zero will fail so we can
8640 		 * use this to direct branch taken.
8641 		 */
8642 		if (val != 0)
8643 			return -1;
8644 
8645 		switch (opcode) {
8646 		case BPF_JEQ:
8647 			return 0;
8648 		case BPF_JNE:
8649 			return 1;
8650 		default:
8651 			return -1;
8652 		}
8653 	}
8654 
8655 	if (is_jmp32)
8656 		return is_branch32_taken(reg, val, opcode);
8657 	return is_branch64_taken(reg, val, opcode);
8658 }
8659 
8660 static int flip_opcode(u32 opcode)
8661 {
8662 	/* How can we transform "a <op> b" into "b <op> a"? */
8663 	static const u8 opcode_flip[16] = {
8664 		/* these stay the same */
8665 		[BPF_JEQ  >> 4] = BPF_JEQ,
8666 		[BPF_JNE  >> 4] = BPF_JNE,
8667 		[BPF_JSET >> 4] = BPF_JSET,
8668 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
8669 		[BPF_JGE  >> 4] = BPF_JLE,
8670 		[BPF_JGT  >> 4] = BPF_JLT,
8671 		[BPF_JLE  >> 4] = BPF_JGE,
8672 		[BPF_JLT  >> 4] = BPF_JGT,
8673 		[BPF_JSGE >> 4] = BPF_JSLE,
8674 		[BPF_JSGT >> 4] = BPF_JSLT,
8675 		[BPF_JSLE >> 4] = BPF_JSGE,
8676 		[BPF_JSLT >> 4] = BPF_JSGT
8677 	};
8678 	return opcode_flip[opcode >> 4];
8679 }
8680 
8681 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8682 				   struct bpf_reg_state *src_reg,
8683 				   u8 opcode)
8684 {
8685 	struct bpf_reg_state *pkt;
8686 
8687 	if (src_reg->type == PTR_TO_PACKET_END) {
8688 		pkt = dst_reg;
8689 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
8690 		pkt = src_reg;
8691 		opcode = flip_opcode(opcode);
8692 	} else {
8693 		return -1;
8694 	}
8695 
8696 	if (pkt->range >= 0)
8697 		return -1;
8698 
8699 	switch (opcode) {
8700 	case BPF_JLE:
8701 		/* pkt <= pkt_end */
8702 		fallthrough;
8703 	case BPF_JGT:
8704 		/* pkt > pkt_end */
8705 		if (pkt->range == BEYOND_PKT_END)
8706 			/* pkt has at last one extra byte beyond pkt_end */
8707 			return opcode == BPF_JGT;
8708 		break;
8709 	case BPF_JLT:
8710 		/* pkt < pkt_end */
8711 		fallthrough;
8712 	case BPF_JGE:
8713 		/* pkt >= pkt_end */
8714 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8715 			return opcode == BPF_JGE;
8716 		break;
8717 	}
8718 	return -1;
8719 }
8720 
8721 /* Adjusts the register min/max values in the case that the dst_reg is the
8722  * variable register that we are working on, and src_reg is a constant or we're
8723  * simply doing a BPF_K check.
8724  * In JEQ/JNE cases we also adjust the var_off values.
8725  */
8726 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8727 			    struct bpf_reg_state *false_reg,
8728 			    u64 val, u32 val32,
8729 			    u8 opcode, bool is_jmp32)
8730 {
8731 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
8732 	struct tnum false_64off = false_reg->var_off;
8733 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
8734 	struct tnum true_64off = true_reg->var_off;
8735 	s64 sval = (s64)val;
8736 	s32 sval32 = (s32)val32;
8737 
8738 	/* If the dst_reg is a pointer, we can't learn anything about its
8739 	 * variable offset from the compare (unless src_reg were a pointer into
8740 	 * the same object, but we don't bother with that.
8741 	 * Since false_reg and true_reg have the same type by construction, we
8742 	 * only need to check one of them for pointerness.
8743 	 */
8744 	if (__is_pointer_value(false, false_reg))
8745 		return;
8746 
8747 	switch (opcode) {
8748 	case BPF_JEQ:
8749 	case BPF_JNE:
8750 	{
8751 		struct bpf_reg_state *reg =
8752 			opcode == BPF_JEQ ? true_reg : false_reg;
8753 
8754 		/* JEQ/JNE comparison doesn't change the register equivalence.
8755 		 * r1 = r2;
8756 		 * if (r1 == 42) goto label;
8757 		 * ...
8758 		 * label: // here both r1 and r2 are known to be 42.
8759 		 *
8760 		 * Hence when marking register as known preserve it's ID.
8761 		 */
8762 		if (is_jmp32)
8763 			__mark_reg32_known(reg, val32);
8764 		else
8765 			___mark_reg_known(reg, val);
8766 		break;
8767 	}
8768 	case BPF_JSET:
8769 		if (is_jmp32) {
8770 			false_32off = tnum_and(false_32off, tnum_const(~val32));
8771 			if (is_power_of_2(val32))
8772 				true_32off = tnum_or(true_32off,
8773 						     tnum_const(val32));
8774 		} else {
8775 			false_64off = tnum_and(false_64off, tnum_const(~val));
8776 			if (is_power_of_2(val))
8777 				true_64off = tnum_or(true_64off,
8778 						     tnum_const(val));
8779 		}
8780 		break;
8781 	case BPF_JGE:
8782 	case BPF_JGT:
8783 	{
8784 		if (is_jmp32) {
8785 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
8786 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8787 
8788 			false_reg->u32_max_value = min(false_reg->u32_max_value,
8789 						       false_umax);
8790 			true_reg->u32_min_value = max(true_reg->u32_min_value,
8791 						      true_umin);
8792 		} else {
8793 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
8794 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8795 
8796 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
8797 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
8798 		}
8799 		break;
8800 	}
8801 	case BPF_JSGE:
8802 	case BPF_JSGT:
8803 	{
8804 		if (is_jmp32) {
8805 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
8806 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8807 
8808 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8809 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8810 		} else {
8811 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
8812 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8813 
8814 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
8815 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
8816 		}
8817 		break;
8818 	}
8819 	case BPF_JLE:
8820 	case BPF_JLT:
8821 	{
8822 		if (is_jmp32) {
8823 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
8824 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8825 
8826 			false_reg->u32_min_value = max(false_reg->u32_min_value,
8827 						       false_umin);
8828 			true_reg->u32_max_value = min(true_reg->u32_max_value,
8829 						      true_umax);
8830 		} else {
8831 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
8832 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8833 
8834 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
8835 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
8836 		}
8837 		break;
8838 	}
8839 	case BPF_JSLE:
8840 	case BPF_JSLT:
8841 	{
8842 		if (is_jmp32) {
8843 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
8844 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8845 
8846 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8847 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8848 		} else {
8849 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
8850 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8851 
8852 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
8853 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
8854 		}
8855 		break;
8856 	}
8857 	default:
8858 		return;
8859 	}
8860 
8861 	if (is_jmp32) {
8862 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8863 					     tnum_subreg(false_32off));
8864 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8865 					    tnum_subreg(true_32off));
8866 		__reg_combine_32_into_64(false_reg);
8867 		__reg_combine_32_into_64(true_reg);
8868 	} else {
8869 		false_reg->var_off = false_64off;
8870 		true_reg->var_off = true_64off;
8871 		__reg_combine_64_into_32(false_reg);
8872 		__reg_combine_64_into_32(true_reg);
8873 	}
8874 }
8875 
8876 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8877  * the variable reg.
8878  */
8879 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8880 				struct bpf_reg_state *false_reg,
8881 				u64 val, u32 val32,
8882 				u8 opcode, bool is_jmp32)
8883 {
8884 	opcode = flip_opcode(opcode);
8885 	/* This uses zero as "not present in table"; luckily the zero opcode,
8886 	 * BPF_JA, can't get here.
8887 	 */
8888 	if (opcode)
8889 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8890 }
8891 
8892 /* Regs are known to be equal, so intersect their min/max/var_off */
8893 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8894 				  struct bpf_reg_state *dst_reg)
8895 {
8896 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8897 							dst_reg->umin_value);
8898 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8899 							dst_reg->umax_value);
8900 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8901 							dst_reg->smin_value);
8902 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8903 							dst_reg->smax_value);
8904 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8905 							     dst_reg->var_off);
8906 	/* We might have learned new bounds from the var_off. */
8907 	__update_reg_bounds(src_reg);
8908 	__update_reg_bounds(dst_reg);
8909 	/* We might have learned something about the sign bit. */
8910 	__reg_deduce_bounds(src_reg);
8911 	__reg_deduce_bounds(dst_reg);
8912 	/* We might have learned some bits from the bounds. */
8913 	__reg_bound_offset(src_reg);
8914 	__reg_bound_offset(dst_reg);
8915 	/* Intersecting with the old var_off might have improved our bounds
8916 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8917 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8918 	 */
8919 	__update_reg_bounds(src_reg);
8920 	__update_reg_bounds(dst_reg);
8921 }
8922 
8923 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8924 				struct bpf_reg_state *true_dst,
8925 				struct bpf_reg_state *false_src,
8926 				struct bpf_reg_state *false_dst,
8927 				u8 opcode)
8928 {
8929 	switch (opcode) {
8930 	case BPF_JEQ:
8931 		__reg_combine_min_max(true_src, true_dst);
8932 		break;
8933 	case BPF_JNE:
8934 		__reg_combine_min_max(false_src, false_dst);
8935 		break;
8936 	}
8937 }
8938 
8939 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8940 				 struct bpf_reg_state *reg, u32 id,
8941 				 bool is_null)
8942 {
8943 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8944 	    !WARN_ON_ONCE(!reg->id)) {
8945 		/* Old offset (both fixed and variable parts) should
8946 		 * have been known-zero, because we don't allow pointer
8947 		 * arithmetic on pointers that might be NULL.
8948 		 */
8949 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8950 				 !tnum_equals_const(reg->var_off, 0) ||
8951 				 reg->off)) {
8952 			__mark_reg_known_zero(reg);
8953 			reg->off = 0;
8954 		}
8955 		if (is_null) {
8956 			reg->type = SCALAR_VALUE;
8957 			/* We don't need id and ref_obj_id from this point
8958 			 * onwards anymore, thus we should better reset it,
8959 			 * so that state pruning has chances to take effect.
8960 			 */
8961 			reg->id = 0;
8962 			reg->ref_obj_id = 0;
8963 
8964 			return;
8965 		}
8966 
8967 		mark_ptr_not_null_reg(reg);
8968 
8969 		if (!reg_may_point_to_spin_lock(reg)) {
8970 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8971 			 * in release_reg_references().
8972 			 *
8973 			 * reg->id is still used by spin_lock ptr. Other
8974 			 * than spin_lock ptr type, reg->id can be reset.
8975 			 */
8976 			reg->id = 0;
8977 		}
8978 	}
8979 }
8980 
8981 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8982 				    bool is_null)
8983 {
8984 	struct bpf_reg_state *reg;
8985 	int i;
8986 
8987 	for (i = 0; i < MAX_BPF_REG; i++)
8988 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8989 
8990 	bpf_for_each_spilled_reg(i, state, reg) {
8991 		if (!reg)
8992 			continue;
8993 		mark_ptr_or_null_reg(state, reg, id, is_null);
8994 	}
8995 }
8996 
8997 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8998  * be folded together at some point.
8999  */
9000 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
9001 				  bool is_null)
9002 {
9003 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
9004 	struct bpf_reg_state *regs = state->regs;
9005 	u32 ref_obj_id = regs[regno].ref_obj_id;
9006 	u32 id = regs[regno].id;
9007 	int i;
9008 
9009 	if (ref_obj_id && ref_obj_id == id && is_null)
9010 		/* regs[regno] is in the " == NULL" branch.
9011 		 * No one could have freed the reference state before
9012 		 * doing the NULL check.
9013 		 */
9014 		WARN_ON_ONCE(release_reference_state(state, id));
9015 
9016 	for (i = 0; i <= vstate->curframe; i++)
9017 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
9018 }
9019 
9020 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
9021 				   struct bpf_reg_state *dst_reg,
9022 				   struct bpf_reg_state *src_reg,
9023 				   struct bpf_verifier_state *this_branch,
9024 				   struct bpf_verifier_state *other_branch)
9025 {
9026 	if (BPF_SRC(insn->code) != BPF_X)
9027 		return false;
9028 
9029 	/* Pointers are always 64-bit. */
9030 	if (BPF_CLASS(insn->code) == BPF_JMP32)
9031 		return false;
9032 
9033 	switch (BPF_OP(insn->code)) {
9034 	case BPF_JGT:
9035 		if ((dst_reg->type == PTR_TO_PACKET &&
9036 		     src_reg->type == PTR_TO_PACKET_END) ||
9037 		    (dst_reg->type == PTR_TO_PACKET_META &&
9038 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9039 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
9040 			find_good_pkt_pointers(this_branch, dst_reg,
9041 					       dst_reg->type, false);
9042 			mark_pkt_end(other_branch, insn->dst_reg, true);
9043 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9044 			    src_reg->type == PTR_TO_PACKET) ||
9045 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9046 			    src_reg->type == PTR_TO_PACKET_META)) {
9047 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
9048 			find_good_pkt_pointers(other_branch, src_reg,
9049 					       src_reg->type, true);
9050 			mark_pkt_end(this_branch, insn->src_reg, false);
9051 		} else {
9052 			return false;
9053 		}
9054 		break;
9055 	case BPF_JLT:
9056 		if ((dst_reg->type == PTR_TO_PACKET &&
9057 		     src_reg->type == PTR_TO_PACKET_END) ||
9058 		    (dst_reg->type == PTR_TO_PACKET_META &&
9059 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9060 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
9061 			find_good_pkt_pointers(other_branch, dst_reg,
9062 					       dst_reg->type, true);
9063 			mark_pkt_end(this_branch, insn->dst_reg, false);
9064 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9065 			    src_reg->type == PTR_TO_PACKET) ||
9066 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9067 			    src_reg->type == PTR_TO_PACKET_META)) {
9068 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
9069 			find_good_pkt_pointers(this_branch, src_reg,
9070 					       src_reg->type, false);
9071 			mark_pkt_end(other_branch, insn->src_reg, true);
9072 		} else {
9073 			return false;
9074 		}
9075 		break;
9076 	case BPF_JGE:
9077 		if ((dst_reg->type == PTR_TO_PACKET &&
9078 		     src_reg->type == PTR_TO_PACKET_END) ||
9079 		    (dst_reg->type == PTR_TO_PACKET_META &&
9080 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9081 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
9082 			find_good_pkt_pointers(this_branch, dst_reg,
9083 					       dst_reg->type, true);
9084 			mark_pkt_end(other_branch, insn->dst_reg, false);
9085 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9086 			    src_reg->type == PTR_TO_PACKET) ||
9087 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9088 			    src_reg->type == PTR_TO_PACKET_META)) {
9089 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
9090 			find_good_pkt_pointers(other_branch, src_reg,
9091 					       src_reg->type, false);
9092 			mark_pkt_end(this_branch, insn->src_reg, true);
9093 		} else {
9094 			return false;
9095 		}
9096 		break;
9097 	case BPF_JLE:
9098 		if ((dst_reg->type == PTR_TO_PACKET &&
9099 		     src_reg->type == PTR_TO_PACKET_END) ||
9100 		    (dst_reg->type == PTR_TO_PACKET_META &&
9101 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
9102 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
9103 			find_good_pkt_pointers(other_branch, dst_reg,
9104 					       dst_reg->type, false);
9105 			mark_pkt_end(this_branch, insn->dst_reg, true);
9106 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
9107 			    src_reg->type == PTR_TO_PACKET) ||
9108 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
9109 			    src_reg->type == PTR_TO_PACKET_META)) {
9110 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
9111 			find_good_pkt_pointers(this_branch, src_reg,
9112 					       src_reg->type, true);
9113 			mark_pkt_end(other_branch, insn->src_reg, false);
9114 		} else {
9115 			return false;
9116 		}
9117 		break;
9118 	default:
9119 		return false;
9120 	}
9121 
9122 	return true;
9123 }
9124 
9125 static void find_equal_scalars(struct bpf_verifier_state *vstate,
9126 			       struct bpf_reg_state *known_reg)
9127 {
9128 	struct bpf_func_state *state;
9129 	struct bpf_reg_state *reg;
9130 	int i, j;
9131 
9132 	for (i = 0; i <= vstate->curframe; i++) {
9133 		state = vstate->frame[i];
9134 		for (j = 0; j < MAX_BPF_REG; j++) {
9135 			reg = &state->regs[j];
9136 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9137 				*reg = *known_reg;
9138 		}
9139 
9140 		bpf_for_each_spilled_reg(j, state, reg) {
9141 			if (!reg)
9142 				continue;
9143 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
9144 				*reg = *known_reg;
9145 		}
9146 	}
9147 }
9148 
9149 static int check_cond_jmp_op(struct bpf_verifier_env *env,
9150 			     struct bpf_insn *insn, int *insn_idx)
9151 {
9152 	struct bpf_verifier_state *this_branch = env->cur_state;
9153 	struct bpf_verifier_state *other_branch;
9154 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
9155 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
9156 	u8 opcode = BPF_OP(insn->code);
9157 	bool is_jmp32;
9158 	int pred = -1;
9159 	int err;
9160 
9161 	/* Only conditional jumps are expected to reach here. */
9162 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
9163 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
9164 		return -EINVAL;
9165 	}
9166 
9167 	if (BPF_SRC(insn->code) == BPF_X) {
9168 		if (insn->imm != 0) {
9169 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9170 			return -EINVAL;
9171 		}
9172 
9173 		/* check src1 operand */
9174 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9175 		if (err)
9176 			return err;
9177 
9178 		if (is_pointer_value(env, insn->src_reg)) {
9179 			verbose(env, "R%d pointer comparison prohibited\n",
9180 				insn->src_reg);
9181 			return -EACCES;
9182 		}
9183 		src_reg = &regs[insn->src_reg];
9184 	} else {
9185 		if (insn->src_reg != BPF_REG_0) {
9186 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
9187 			return -EINVAL;
9188 		}
9189 	}
9190 
9191 	/* check src2 operand */
9192 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9193 	if (err)
9194 		return err;
9195 
9196 	dst_reg = &regs[insn->dst_reg];
9197 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
9198 
9199 	if (BPF_SRC(insn->code) == BPF_K) {
9200 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
9201 	} else if (src_reg->type == SCALAR_VALUE &&
9202 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
9203 		pred = is_branch_taken(dst_reg,
9204 				       tnum_subreg(src_reg->var_off).value,
9205 				       opcode,
9206 				       is_jmp32);
9207 	} else if (src_reg->type == SCALAR_VALUE &&
9208 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
9209 		pred = is_branch_taken(dst_reg,
9210 				       src_reg->var_off.value,
9211 				       opcode,
9212 				       is_jmp32);
9213 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
9214 		   reg_is_pkt_pointer_any(src_reg) &&
9215 		   !is_jmp32) {
9216 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
9217 	}
9218 
9219 	if (pred >= 0) {
9220 		/* If we get here with a dst_reg pointer type it is because
9221 		 * above is_branch_taken() special cased the 0 comparison.
9222 		 */
9223 		if (!__is_pointer_value(false, dst_reg))
9224 			err = mark_chain_precision(env, insn->dst_reg);
9225 		if (BPF_SRC(insn->code) == BPF_X && !err &&
9226 		    !__is_pointer_value(false, src_reg))
9227 			err = mark_chain_precision(env, insn->src_reg);
9228 		if (err)
9229 			return err;
9230 	}
9231 
9232 	if (pred == 1) {
9233 		/* Only follow the goto, ignore fall-through. If needed, push
9234 		 * the fall-through branch for simulation under speculative
9235 		 * execution.
9236 		 */
9237 		if (!env->bypass_spec_v1 &&
9238 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
9239 					       *insn_idx))
9240 			return -EFAULT;
9241 		*insn_idx += insn->off;
9242 		return 0;
9243 	} else if (pred == 0) {
9244 		/* Only follow the fall-through branch, since that's where the
9245 		 * program will go. If needed, push the goto branch for
9246 		 * simulation under speculative execution.
9247 		 */
9248 		if (!env->bypass_spec_v1 &&
9249 		    !sanitize_speculative_path(env, insn,
9250 					       *insn_idx + insn->off + 1,
9251 					       *insn_idx))
9252 			return -EFAULT;
9253 		return 0;
9254 	}
9255 
9256 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
9257 				  false);
9258 	if (!other_branch)
9259 		return -EFAULT;
9260 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
9261 
9262 	/* detect if we are comparing against a constant value so we can adjust
9263 	 * our min/max values for our dst register.
9264 	 * this is only legit if both are scalars (or pointers to the same
9265 	 * object, I suppose, but we don't support that right now), because
9266 	 * otherwise the different base pointers mean the offsets aren't
9267 	 * comparable.
9268 	 */
9269 	if (BPF_SRC(insn->code) == BPF_X) {
9270 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
9271 
9272 		if (dst_reg->type == SCALAR_VALUE &&
9273 		    src_reg->type == SCALAR_VALUE) {
9274 			if (tnum_is_const(src_reg->var_off) ||
9275 			    (is_jmp32 &&
9276 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
9277 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
9278 						dst_reg,
9279 						src_reg->var_off.value,
9280 						tnum_subreg(src_reg->var_off).value,
9281 						opcode, is_jmp32);
9282 			else if (tnum_is_const(dst_reg->var_off) ||
9283 				 (is_jmp32 &&
9284 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
9285 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
9286 						    src_reg,
9287 						    dst_reg->var_off.value,
9288 						    tnum_subreg(dst_reg->var_off).value,
9289 						    opcode, is_jmp32);
9290 			else if (!is_jmp32 &&
9291 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
9292 				/* Comparing for equality, we can combine knowledge */
9293 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
9294 						    &other_branch_regs[insn->dst_reg],
9295 						    src_reg, dst_reg, opcode);
9296 			if (src_reg->id &&
9297 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
9298 				find_equal_scalars(this_branch, src_reg);
9299 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
9300 			}
9301 
9302 		}
9303 	} else if (dst_reg->type == SCALAR_VALUE) {
9304 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
9305 					dst_reg, insn->imm, (u32)insn->imm,
9306 					opcode, is_jmp32);
9307 	}
9308 
9309 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
9310 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
9311 		find_equal_scalars(this_branch, dst_reg);
9312 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
9313 	}
9314 
9315 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
9316 	 * NOTE: these optimizations below are related with pointer comparison
9317 	 *       which will never be JMP32.
9318 	 */
9319 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
9320 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
9321 	    reg_type_may_be_null(dst_reg->type)) {
9322 		/* Mark all identical registers in each branch as either
9323 		 * safe or unknown depending R == 0 or R != 0 conditional.
9324 		 */
9325 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
9326 				      opcode == BPF_JNE);
9327 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
9328 				      opcode == BPF_JEQ);
9329 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
9330 					   this_branch, other_branch) &&
9331 		   is_pointer_value(env, insn->dst_reg)) {
9332 		verbose(env, "R%d pointer comparison prohibited\n",
9333 			insn->dst_reg);
9334 		return -EACCES;
9335 	}
9336 	if (env->log.level & BPF_LOG_LEVEL)
9337 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
9338 	return 0;
9339 }
9340 
9341 /* verify BPF_LD_IMM64 instruction */
9342 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
9343 {
9344 	struct bpf_insn_aux_data *aux = cur_aux(env);
9345 	struct bpf_reg_state *regs = cur_regs(env);
9346 	struct bpf_reg_state *dst_reg;
9347 	struct bpf_map *map;
9348 	int err;
9349 
9350 	if (BPF_SIZE(insn->code) != BPF_DW) {
9351 		verbose(env, "invalid BPF_LD_IMM insn\n");
9352 		return -EINVAL;
9353 	}
9354 	if (insn->off != 0) {
9355 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
9356 		return -EINVAL;
9357 	}
9358 
9359 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
9360 	if (err)
9361 		return err;
9362 
9363 	dst_reg = &regs[insn->dst_reg];
9364 	if (insn->src_reg == 0) {
9365 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
9366 
9367 		dst_reg->type = SCALAR_VALUE;
9368 		__mark_reg_known(&regs[insn->dst_reg], imm);
9369 		return 0;
9370 	}
9371 
9372 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
9373 		mark_reg_known_zero(env, regs, insn->dst_reg);
9374 
9375 		dst_reg->type = aux->btf_var.reg_type;
9376 		switch (dst_reg->type) {
9377 		case PTR_TO_MEM:
9378 			dst_reg->mem_size = aux->btf_var.mem_size;
9379 			break;
9380 		case PTR_TO_BTF_ID:
9381 		case PTR_TO_PERCPU_BTF_ID:
9382 			dst_reg->btf = aux->btf_var.btf;
9383 			dst_reg->btf_id = aux->btf_var.btf_id;
9384 			break;
9385 		default:
9386 			verbose(env, "bpf verifier is misconfigured\n");
9387 			return -EFAULT;
9388 		}
9389 		return 0;
9390 	}
9391 
9392 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
9393 		struct bpf_prog_aux *aux = env->prog->aux;
9394 		u32 subprogno = find_subprog(env,
9395 					     env->insn_idx + insn->imm + 1);
9396 
9397 		if (!aux->func_info) {
9398 			verbose(env, "missing btf func_info\n");
9399 			return -EINVAL;
9400 		}
9401 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
9402 			verbose(env, "callback function not static\n");
9403 			return -EINVAL;
9404 		}
9405 
9406 		dst_reg->type = PTR_TO_FUNC;
9407 		dst_reg->subprogno = subprogno;
9408 		return 0;
9409 	}
9410 
9411 	map = env->used_maps[aux->map_index];
9412 	mark_reg_known_zero(env, regs, insn->dst_reg);
9413 	dst_reg->map_ptr = map;
9414 
9415 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
9416 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
9417 		dst_reg->type = PTR_TO_MAP_VALUE;
9418 		dst_reg->off = aux->map_off;
9419 		if (map_value_has_spin_lock(map))
9420 			dst_reg->id = ++env->id_gen;
9421 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
9422 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
9423 		dst_reg->type = CONST_PTR_TO_MAP;
9424 	} else {
9425 		verbose(env, "bpf verifier is misconfigured\n");
9426 		return -EINVAL;
9427 	}
9428 
9429 	return 0;
9430 }
9431 
9432 static bool may_access_skb(enum bpf_prog_type type)
9433 {
9434 	switch (type) {
9435 	case BPF_PROG_TYPE_SOCKET_FILTER:
9436 	case BPF_PROG_TYPE_SCHED_CLS:
9437 	case BPF_PROG_TYPE_SCHED_ACT:
9438 		return true;
9439 	default:
9440 		return false;
9441 	}
9442 }
9443 
9444 /* verify safety of LD_ABS|LD_IND instructions:
9445  * - they can only appear in the programs where ctx == skb
9446  * - since they are wrappers of function calls, they scratch R1-R5 registers,
9447  *   preserve R6-R9, and store return value into R0
9448  *
9449  * Implicit input:
9450  *   ctx == skb == R6 == CTX
9451  *
9452  * Explicit input:
9453  *   SRC == any register
9454  *   IMM == 32-bit immediate
9455  *
9456  * Output:
9457  *   R0 - 8/16/32-bit skb data converted to cpu endianness
9458  */
9459 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
9460 {
9461 	struct bpf_reg_state *regs = cur_regs(env);
9462 	static const int ctx_reg = BPF_REG_6;
9463 	u8 mode = BPF_MODE(insn->code);
9464 	int i, err;
9465 
9466 	if (!may_access_skb(resolve_prog_type(env->prog))) {
9467 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
9468 		return -EINVAL;
9469 	}
9470 
9471 	if (!env->ops->gen_ld_abs) {
9472 		verbose(env, "bpf verifier is misconfigured\n");
9473 		return -EINVAL;
9474 	}
9475 
9476 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
9477 	    BPF_SIZE(insn->code) == BPF_DW ||
9478 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
9479 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
9480 		return -EINVAL;
9481 	}
9482 
9483 	/* check whether implicit source operand (register R6) is readable */
9484 	err = check_reg_arg(env, ctx_reg, SRC_OP);
9485 	if (err)
9486 		return err;
9487 
9488 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9489 	 * gen_ld_abs() may terminate the program at runtime, leading to
9490 	 * reference leak.
9491 	 */
9492 	err = check_reference_leak(env);
9493 	if (err) {
9494 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9495 		return err;
9496 	}
9497 
9498 	if (env->cur_state->active_spin_lock) {
9499 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9500 		return -EINVAL;
9501 	}
9502 
9503 	if (regs[ctx_reg].type != PTR_TO_CTX) {
9504 		verbose(env,
9505 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9506 		return -EINVAL;
9507 	}
9508 
9509 	if (mode == BPF_IND) {
9510 		/* check explicit source operand */
9511 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
9512 		if (err)
9513 			return err;
9514 	}
9515 
9516 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9517 	if (err < 0)
9518 		return err;
9519 
9520 	/* reset caller saved regs to unreadable */
9521 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9522 		mark_reg_not_init(env, regs, caller_saved[i]);
9523 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9524 	}
9525 
9526 	/* mark destination R0 register as readable, since it contains
9527 	 * the value fetched from the packet.
9528 	 * Already marked as written above.
9529 	 */
9530 	mark_reg_unknown(env, regs, BPF_REG_0);
9531 	/* ld_abs load up to 32-bit skb data. */
9532 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9533 	return 0;
9534 }
9535 
9536 static int check_return_code(struct bpf_verifier_env *env)
9537 {
9538 	struct tnum enforce_attach_type_range = tnum_unknown;
9539 	const struct bpf_prog *prog = env->prog;
9540 	struct bpf_reg_state *reg;
9541 	struct tnum range = tnum_range(0, 1);
9542 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9543 	int err;
9544 	struct bpf_func_state *frame = env->cur_state->frame[0];
9545 	const bool is_subprog = frame->subprogno;
9546 
9547 	/* LSM and struct_ops func-ptr's return type could be "void" */
9548 	if (!is_subprog &&
9549 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9550 	     prog_type == BPF_PROG_TYPE_LSM) &&
9551 	    !prog->aux->attach_func_proto->type)
9552 		return 0;
9553 
9554 	/* eBPF calling convention is such that R0 is used
9555 	 * to return the value from eBPF program.
9556 	 * Make sure that it's readable at this time
9557 	 * of bpf_exit, which means that program wrote
9558 	 * something into it earlier
9559 	 */
9560 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9561 	if (err)
9562 		return err;
9563 
9564 	if (is_pointer_value(env, BPF_REG_0)) {
9565 		verbose(env, "R0 leaks addr as return value\n");
9566 		return -EACCES;
9567 	}
9568 
9569 	reg = cur_regs(env) + BPF_REG_0;
9570 
9571 	if (frame->in_async_callback_fn) {
9572 		/* enforce return zero from async callbacks like timer */
9573 		if (reg->type != SCALAR_VALUE) {
9574 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
9575 				reg_type_str[reg->type]);
9576 			return -EINVAL;
9577 		}
9578 
9579 		if (!tnum_in(tnum_const(0), reg->var_off)) {
9580 			verbose_invalid_scalar(env, reg, &range, "async callback", "R0");
9581 			return -EINVAL;
9582 		}
9583 		return 0;
9584 	}
9585 
9586 	if (is_subprog) {
9587 		if (reg->type != SCALAR_VALUE) {
9588 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9589 				reg_type_str[reg->type]);
9590 			return -EINVAL;
9591 		}
9592 		return 0;
9593 	}
9594 
9595 	switch (prog_type) {
9596 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9597 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9598 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9599 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9600 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9601 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9602 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9603 			range = tnum_range(1, 1);
9604 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9605 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9606 			range = tnum_range(0, 3);
9607 		break;
9608 	case BPF_PROG_TYPE_CGROUP_SKB:
9609 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9610 			range = tnum_range(0, 3);
9611 			enforce_attach_type_range = tnum_range(2, 3);
9612 		}
9613 		break;
9614 	case BPF_PROG_TYPE_CGROUP_SOCK:
9615 	case BPF_PROG_TYPE_SOCK_OPS:
9616 	case BPF_PROG_TYPE_CGROUP_DEVICE:
9617 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
9618 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9619 		break;
9620 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9621 		if (!env->prog->aux->attach_btf_id)
9622 			return 0;
9623 		range = tnum_const(0);
9624 		break;
9625 	case BPF_PROG_TYPE_TRACING:
9626 		switch (env->prog->expected_attach_type) {
9627 		case BPF_TRACE_FENTRY:
9628 		case BPF_TRACE_FEXIT:
9629 			range = tnum_const(0);
9630 			break;
9631 		case BPF_TRACE_RAW_TP:
9632 		case BPF_MODIFY_RETURN:
9633 			return 0;
9634 		case BPF_TRACE_ITER:
9635 			break;
9636 		default:
9637 			return -ENOTSUPP;
9638 		}
9639 		break;
9640 	case BPF_PROG_TYPE_SK_LOOKUP:
9641 		range = tnum_range(SK_DROP, SK_PASS);
9642 		break;
9643 	case BPF_PROG_TYPE_EXT:
9644 		/* freplace program can return anything as its return value
9645 		 * depends on the to-be-replaced kernel func or bpf program.
9646 		 */
9647 	default:
9648 		return 0;
9649 	}
9650 
9651 	if (reg->type != SCALAR_VALUE) {
9652 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9653 			reg_type_str[reg->type]);
9654 		return -EINVAL;
9655 	}
9656 
9657 	if (!tnum_in(range, reg->var_off)) {
9658 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9659 		return -EINVAL;
9660 	}
9661 
9662 	if (!tnum_is_unknown(enforce_attach_type_range) &&
9663 	    tnum_in(enforce_attach_type_range, reg->var_off))
9664 		env->prog->enforce_expected_attach_type = 1;
9665 	return 0;
9666 }
9667 
9668 /* non-recursive DFS pseudo code
9669  * 1  procedure DFS-iterative(G,v):
9670  * 2      label v as discovered
9671  * 3      let S be a stack
9672  * 4      S.push(v)
9673  * 5      while S is not empty
9674  * 6            t <- S.pop()
9675  * 7            if t is what we're looking for:
9676  * 8                return t
9677  * 9            for all edges e in G.adjacentEdges(t) do
9678  * 10               if edge e is already labelled
9679  * 11                   continue with the next edge
9680  * 12               w <- G.adjacentVertex(t,e)
9681  * 13               if vertex w is not discovered and not explored
9682  * 14                   label e as tree-edge
9683  * 15                   label w as discovered
9684  * 16                   S.push(w)
9685  * 17                   continue at 5
9686  * 18               else if vertex w is discovered
9687  * 19                   label e as back-edge
9688  * 20               else
9689  * 21                   // vertex w is explored
9690  * 22                   label e as forward- or cross-edge
9691  * 23           label t as explored
9692  * 24           S.pop()
9693  *
9694  * convention:
9695  * 0x10 - discovered
9696  * 0x11 - discovered and fall-through edge labelled
9697  * 0x12 - discovered and fall-through and branch edges labelled
9698  * 0x20 - explored
9699  */
9700 
9701 enum {
9702 	DISCOVERED = 0x10,
9703 	EXPLORED = 0x20,
9704 	FALLTHROUGH = 1,
9705 	BRANCH = 2,
9706 };
9707 
9708 static u32 state_htab_size(struct bpf_verifier_env *env)
9709 {
9710 	return env->prog->len;
9711 }
9712 
9713 static struct bpf_verifier_state_list **explored_state(
9714 					struct bpf_verifier_env *env,
9715 					int idx)
9716 {
9717 	struct bpf_verifier_state *cur = env->cur_state;
9718 	struct bpf_func_state *state = cur->frame[cur->curframe];
9719 
9720 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9721 }
9722 
9723 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9724 {
9725 	env->insn_aux_data[idx].prune_point = true;
9726 }
9727 
9728 enum {
9729 	DONE_EXPLORING = 0,
9730 	KEEP_EXPLORING = 1,
9731 };
9732 
9733 /* t, w, e - match pseudo-code above:
9734  * t - index of current instruction
9735  * w - next instruction
9736  * e - edge
9737  */
9738 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9739 		     bool loop_ok)
9740 {
9741 	int *insn_stack = env->cfg.insn_stack;
9742 	int *insn_state = env->cfg.insn_state;
9743 
9744 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9745 		return DONE_EXPLORING;
9746 
9747 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9748 		return DONE_EXPLORING;
9749 
9750 	if (w < 0 || w >= env->prog->len) {
9751 		verbose_linfo(env, t, "%d: ", t);
9752 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
9753 		return -EINVAL;
9754 	}
9755 
9756 	if (e == BRANCH)
9757 		/* mark branch target for state pruning */
9758 		init_explored_state(env, w);
9759 
9760 	if (insn_state[w] == 0) {
9761 		/* tree-edge */
9762 		insn_state[t] = DISCOVERED | e;
9763 		insn_state[w] = DISCOVERED;
9764 		if (env->cfg.cur_stack >= env->prog->len)
9765 			return -E2BIG;
9766 		insn_stack[env->cfg.cur_stack++] = w;
9767 		return KEEP_EXPLORING;
9768 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9769 		if (loop_ok && env->bpf_capable)
9770 			return DONE_EXPLORING;
9771 		verbose_linfo(env, t, "%d: ", t);
9772 		verbose_linfo(env, w, "%d: ", w);
9773 		verbose(env, "back-edge from insn %d to %d\n", t, w);
9774 		return -EINVAL;
9775 	} else if (insn_state[w] == EXPLORED) {
9776 		/* forward- or cross-edge */
9777 		insn_state[t] = DISCOVERED | e;
9778 	} else {
9779 		verbose(env, "insn state internal bug\n");
9780 		return -EFAULT;
9781 	}
9782 	return DONE_EXPLORING;
9783 }
9784 
9785 static int visit_func_call_insn(int t, int insn_cnt,
9786 				struct bpf_insn *insns,
9787 				struct bpf_verifier_env *env,
9788 				bool visit_callee)
9789 {
9790 	int ret;
9791 
9792 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9793 	if (ret)
9794 		return ret;
9795 
9796 	if (t + 1 < insn_cnt)
9797 		init_explored_state(env, t + 1);
9798 	if (visit_callee) {
9799 		init_explored_state(env, t);
9800 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env,
9801 				/* It's ok to allow recursion from CFG point of
9802 				 * view. __check_func_call() will do the actual
9803 				 * check.
9804 				 */
9805 				bpf_pseudo_func(insns + t));
9806 	}
9807 	return ret;
9808 }
9809 
9810 /* Visits the instruction at index t and returns one of the following:
9811  *  < 0 - an error occurred
9812  *  DONE_EXPLORING - the instruction was fully explored
9813  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
9814  */
9815 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9816 {
9817 	struct bpf_insn *insns = env->prog->insnsi;
9818 	int ret;
9819 
9820 	if (bpf_pseudo_func(insns + t))
9821 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
9822 
9823 	/* All non-branch instructions have a single fall-through edge. */
9824 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9825 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
9826 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
9827 
9828 	switch (BPF_OP(insns[t].code)) {
9829 	case BPF_EXIT:
9830 		return DONE_EXPLORING;
9831 
9832 	case BPF_CALL:
9833 		if (insns[t].imm == BPF_FUNC_timer_set_callback)
9834 			/* Mark this call insn to trigger is_state_visited() check
9835 			 * before call itself is processed by __check_func_call().
9836 			 * Otherwise new async state will be pushed for further
9837 			 * exploration.
9838 			 */
9839 			init_explored_state(env, t);
9840 		return visit_func_call_insn(t, insn_cnt, insns, env,
9841 					    insns[t].src_reg == BPF_PSEUDO_CALL);
9842 
9843 	case BPF_JA:
9844 		if (BPF_SRC(insns[t].code) != BPF_K)
9845 			return -EINVAL;
9846 
9847 		/* unconditional jump with single edge */
9848 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9849 				true);
9850 		if (ret)
9851 			return ret;
9852 
9853 		/* unconditional jmp is not a good pruning point,
9854 		 * but it's marked, since backtracking needs
9855 		 * to record jmp history in is_state_visited().
9856 		 */
9857 		init_explored_state(env, t + insns[t].off + 1);
9858 		/* tell verifier to check for equivalent states
9859 		 * after every call and jump
9860 		 */
9861 		if (t + 1 < insn_cnt)
9862 			init_explored_state(env, t + 1);
9863 
9864 		return ret;
9865 
9866 	default:
9867 		/* conditional jump with two edges */
9868 		init_explored_state(env, t);
9869 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9870 		if (ret)
9871 			return ret;
9872 
9873 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9874 	}
9875 }
9876 
9877 /* non-recursive depth-first-search to detect loops in BPF program
9878  * loop == back-edge in directed graph
9879  */
9880 static int check_cfg(struct bpf_verifier_env *env)
9881 {
9882 	int insn_cnt = env->prog->len;
9883 	int *insn_stack, *insn_state;
9884 	int ret = 0;
9885 	int i;
9886 
9887 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9888 	if (!insn_state)
9889 		return -ENOMEM;
9890 
9891 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9892 	if (!insn_stack) {
9893 		kvfree(insn_state);
9894 		return -ENOMEM;
9895 	}
9896 
9897 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9898 	insn_stack[0] = 0; /* 0 is the first instruction */
9899 	env->cfg.cur_stack = 1;
9900 
9901 	while (env->cfg.cur_stack > 0) {
9902 		int t = insn_stack[env->cfg.cur_stack - 1];
9903 
9904 		ret = visit_insn(t, insn_cnt, env);
9905 		switch (ret) {
9906 		case DONE_EXPLORING:
9907 			insn_state[t] = EXPLORED;
9908 			env->cfg.cur_stack--;
9909 			break;
9910 		case KEEP_EXPLORING:
9911 			break;
9912 		default:
9913 			if (ret > 0) {
9914 				verbose(env, "visit_insn internal bug\n");
9915 				ret = -EFAULT;
9916 			}
9917 			goto err_free;
9918 		}
9919 	}
9920 
9921 	if (env->cfg.cur_stack < 0) {
9922 		verbose(env, "pop stack internal bug\n");
9923 		ret = -EFAULT;
9924 		goto err_free;
9925 	}
9926 
9927 	for (i = 0; i < insn_cnt; i++) {
9928 		if (insn_state[i] != EXPLORED) {
9929 			verbose(env, "unreachable insn %d\n", i);
9930 			ret = -EINVAL;
9931 			goto err_free;
9932 		}
9933 	}
9934 	ret = 0; /* cfg looks good */
9935 
9936 err_free:
9937 	kvfree(insn_state);
9938 	kvfree(insn_stack);
9939 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
9940 	return ret;
9941 }
9942 
9943 static int check_abnormal_return(struct bpf_verifier_env *env)
9944 {
9945 	int i;
9946 
9947 	for (i = 1; i < env->subprog_cnt; i++) {
9948 		if (env->subprog_info[i].has_ld_abs) {
9949 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9950 			return -EINVAL;
9951 		}
9952 		if (env->subprog_info[i].has_tail_call) {
9953 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9954 			return -EINVAL;
9955 		}
9956 	}
9957 	return 0;
9958 }
9959 
9960 /* The minimum supported BTF func info size */
9961 #define MIN_BPF_FUNCINFO_SIZE	8
9962 #define MAX_FUNCINFO_REC_SIZE	252
9963 
9964 static int check_btf_func(struct bpf_verifier_env *env,
9965 			  const union bpf_attr *attr,
9966 			  bpfptr_t uattr)
9967 {
9968 	const struct btf_type *type, *func_proto, *ret_type;
9969 	u32 i, nfuncs, urec_size, min_size;
9970 	u32 krec_size = sizeof(struct bpf_func_info);
9971 	struct bpf_func_info *krecord;
9972 	struct bpf_func_info_aux *info_aux = NULL;
9973 	struct bpf_prog *prog;
9974 	const struct btf *btf;
9975 	bpfptr_t urecord;
9976 	u32 prev_offset = 0;
9977 	bool scalar_return;
9978 	int ret = -ENOMEM;
9979 
9980 	nfuncs = attr->func_info_cnt;
9981 	if (!nfuncs) {
9982 		if (check_abnormal_return(env))
9983 			return -EINVAL;
9984 		return 0;
9985 	}
9986 
9987 	if (nfuncs != env->subprog_cnt) {
9988 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9989 		return -EINVAL;
9990 	}
9991 
9992 	urec_size = attr->func_info_rec_size;
9993 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9994 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9995 	    urec_size % sizeof(u32)) {
9996 		verbose(env, "invalid func info rec size %u\n", urec_size);
9997 		return -EINVAL;
9998 	}
9999 
10000 	prog = env->prog;
10001 	btf = prog->aux->btf;
10002 
10003 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
10004 	min_size = min_t(u32, krec_size, urec_size);
10005 
10006 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
10007 	if (!krecord)
10008 		return -ENOMEM;
10009 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
10010 	if (!info_aux)
10011 		goto err_free;
10012 
10013 	for (i = 0; i < nfuncs; i++) {
10014 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
10015 		if (ret) {
10016 			if (ret == -E2BIG) {
10017 				verbose(env, "nonzero tailing record in func info");
10018 				/* set the size kernel expects so loader can zero
10019 				 * out the rest of the record.
10020 				 */
10021 				if (copy_to_bpfptr_offset(uattr,
10022 							  offsetof(union bpf_attr, func_info_rec_size),
10023 							  &min_size, sizeof(min_size)))
10024 					ret = -EFAULT;
10025 			}
10026 			goto err_free;
10027 		}
10028 
10029 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
10030 			ret = -EFAULT;
10031 			goto err_free;
10032 		}
10033 
10034 		/* check insn_off */
10035 		ret = -EINVAL;
10036 		if (i == 0) {
10037 			if (krecord[i].insn_off) {
10038 				verbose(env,
10039 					"nonzero insn_off %u for the first func info record",
10040 					krecord[i].insn_off);
10041 				goto err_free;
10042 			}
10043 		} else if (krecord[i].insn_off <= prev_offset) {
10044 			verbose(env,
10045 				"same or smaller insn offset (%u) than previous func info record (%u)",
10046 				krecord[i].insn_off, prev_offset);
10047 			goto err_free;
10048 		}
10049 
10050 		if (env->subprog_info[i].start != krecord[i].insn_off) {
10051 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
10052 			goto err_free;
10053 		}
10054 
10055 		/* check type_id */
10056 		type = btf_type_by_id(btf, krecord[i].type_id);
10057 		if (!type || !btf_type_is_func(type)) {
10058 			verbose(env, "invalid type id %d in func info",
10059 				krecord[i].type_id);
10060 			goto err_free;
10061 		}
10062 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
10063 
10064 		func_proto = btf_type_by_id(btf, type->type);
10065 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
10066 			/* btf_func_check() already verified it during BTF load */
10067 			goto err_free;
10068 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
10069 		scalar_return =
10070 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
10071 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
10072 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
10073 			goto err_free;
10074 		}
10075 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
10076 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
10077 			goto err_free;
10078 		}
10079 
10080 		prev_offset = krecord[i].insn_off;
10081 		bpfptr_add(&urecord, urec_size);
10082 	}
10083 
10084 	prog->aux->func_info = krecord;
10085 	prog->aux->func_info_cnt = nfuncs;
10086 	prog->aux->func_info_aux = info_aux;
10087 	return 0;
10088 
10089 err_free:
10090 	kvfree(krecord);
10091 	kfree(info_aux);
10092 	return ret;
10093 }
10094 
10095 static void adjust_btf_func(struct bpf_verifier_env *env)
10096 {
10097 	struct bpf_prog_aux *aux = env->prog->aux;
10098 	int i;
10099 
10100 	if (!aux->func_info)
10101 		return;
10102 
10103 	for (i = 0; i < env->subprog_cnt; i++)
10104 		aux->func_info[i].insn_off = env->subprog_info[i].start;
10105 }
10106 
10107 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
10108 		sizeof(((struct bpf_line_info *)(0))->line_col))
10109 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
10110 
10111 static int check_btf_line(struct bpf_verifier_env *env,
10112 			  const union bpf_attr *attr,
10113 			  bpfptr_t uattr)
10114 {
10115 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
10116 	struct bpf_subprog_info *sub;
10117 	struct bpf_line_info *linfo;
10118 	struct bpf_prog *prog;
10119 	const struct btf *btf;
10120 	bpfptr_t ulinfo;
10121 	int err;
10122 
10123 	nr_linfo = attr->line_info_cnt;
10124 	if (!nr_linfo)
10125 		return 0;
10126 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
10127 		return -EINVAL;
10128 
10129 	rec_size = attr->line_info_rec_size;
10130 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
10131 	    rec_size > MAX_LINEINFO_REC_SIZE ||
10132 	    rec_size & (sizeof(u32) - 1))
10133 		return -EINVAL;
10134 
10135 	/* Need to zero it in case the userspace may
10136 	 * pass in a smaller bpf_line_info object.
10137 	 */
10138 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
10139 			 GFP_KERNEL | __GFP_NOWARN);
10140 	if (!linfo)
10141 		return -ENOMEM;
10142 
10143 	prog = env->prog;
10144 	btf = prog->aux->btf;
10145 
10146 	s = 0;
10147 	sub = env->subprog_info;
10148 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
10149 	expected_size = sizeof(struct bpf_line_info);
10150 	ncopy = min_t(u32, expected_size, rec_size);
10151 	for (i = 0; i < nr_linfo; i++) {
10152 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
10153 		if (err) {
10154 			if (err == -E2BIG) {
10155 				verbose(env, "nonzero tailing record in line_info");
10156 				if (copy_to_bpfptr_offset(uattr,
10157 							  offsetof(union bpf_attr, line_info_rec_size),
10158 							  &expected_size, sizeof(expected_size)))
10159 					err = -EFAULT;
10160 			}
10161 			goto err_free;
10162 		}
10163 
10164 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
10165 			err = -EFAULT;
10166 			goto err_free;
10167 		}
10168 
10169 		/*
10170 		 * Check insn_off to ensure
10171 		 * 1) strictly increasing AND
10172 		 * 2) bounded by prog->len
10173 		 *
10174 		 * The linfo[0].insn_off == 0 check logically falls into
10175 		 * the later "missing bpf_line_info for func..." case
10176 		 * because the first linfo[0].insn_off must be the
10177 		 * first sub also and the first sub must have
10178 		 * subprog_info[0].start == 0.
10179 		 */
10180 		if ((i && linfo[i].insn_off <= prev_offset) ||
10181 		    linfo[i].insn_off >= prog->len) {
10182 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
10183 				i, linfo[i].insn_off, prev_offset,
10184 				prog->len);
10185 			err = -EINVAL;
10186 			goto err_free;
10187 		}
10188 
10189 		if (!prog->insnsi[linfo[i].insn_off].code) {
10190 			verbose(env,
10191 				"Invalid insn code at line_info[%u].insn_off\n",
10192 				i);
10193 			err = -EINVAL;
10194 			goto err_free;
10195 		}
10196 
10197 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
10198 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
10199 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
10200 			err = -EINVAL;
10201 			goto err_free;
10202 		}
10203 
10204 		if (s != env->subprog_cnt) {
10205 			if (linfo[i].insn_off == sub[s].start) {
10206 				sub[s].linfo_idx = i;
10207 				s++;
10208 			} else if (sub[s].start < linfo[i].insn_off) {
10209 				verbose(env, "missing bpf_line_info for func#%u\n", s);
10210 				err = -EINVAL;
10211 				goto err_free;
10212 			}
10213 		}
10214 
10215 		prev_offset = linfo[i].insn_off;
10216 		bpfptr_add(&ulinfo, rec_size);
10217 	}
10218 
10219 	if (s != env->subprog_cnt) {
10220 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
10221 			env->subprog_cnt - s, s);
10222 		err = -EINVAL;
10223 		goto err_free;
10224 	}
10225 
10226 	prog->aux->linfo = linfo;
10227 	prog->aux->nr_linfo = nr_linfo;
10228 
10229 	return 0;
10230 
10231 err_free:
10232 	kvfree(linfo);
10233 	return err;
10234 }
10235 
10236 static int check_btf_info(struct bpf_verifier_env *env,
10237 			  const union bpf_attr *attr,
10238 			  bpfptr_t uattr)
10239 {
10240 	struct btf *btf;
10241 	int err;
10242 
10243 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
10244 		if (check_abnormal_return(env))
10245 			return -EINVAL;
10246 		return 0;
10247 	}
10248 
10249 	btf = btf_get_by_fd(attr->prog_btf_fd);
10250 	if (IS_ERR(btf))
10251 		return PTR_ERR(btf);
10252 	if (btf_is_kernel(btf)) {
10253 		btf_put(btf);
10254 		return -EACCES;
10255 	}
10256 	env->prog->aux->btf = btf;
10257 
10258 	err = check_btf_func(env, attr, uattr);
10259 	if (err)
10260 		return err;
10261 
10262 	err = check_btf_line(env, attr, uattr);
10263 	if (err)
10264 		return err;
10265 
10266 	return 0;
10267 }
10268 
10269 /* check %cur's range satisfies %old's */
10270 static bool range_within(struct bpf_reg_state *old,
10271 			 struct bpf_reg_state *cur)
10272 {
10273 	return old->umin_value <= cur->umin_value &&
10274 	       old->umax_value >= cur->umax_value &&
10275 	       old->smin_value <= cur->smin_value &&
10276 	       old->smax_value >= cur->smax_value &&
10277 	       old->u32_min_value <= cur->u32_min_value &&
10278 	       old->u32_max_value >= cur->u32_max_value &&
10279 	       old->s32_min_value <= cur->s32_min_value &&
10280 	       old->s32_max_value >= cur->s32_max_value;
10281 }
10282 
10283 /* If in the old state two registers had the same id, then they need to have
10284  * the same id in the new state as well.  But that id could be different from
10285  * the old state, so we need to track the mapping from old to new ids.
10286  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
10287  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
10288  * regs with a different old id could still have new id 9, we don't care about
10289  * that.
10290  * So we look through our idmap to see if this old id has been seen before.  If
10291  * so, we require the new id to match; otherwise, we add the id pair to the map.
10292  */
10293 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_id_pair *idmap)
10294 {
10295 	unsigned int i;
10296 
10297 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
10298 		if (!idmap[i].old) {
10299 			/* Reached an empty slot; haven't seen this id before */
10300 			idmap[i].old = old_id;
10301 			idmap[i].cur = cur_id;
10302 			return true;
10303 		}
10304 		if (idmap[i].old == old_id)
10305 			return idmap[i].cur == cur_id;
10306 	}
10307 	/* We ran out of idmap slots, which should be impossible */
10308 	WARN_ON_ONCE(1);
10309 	return false;
10310 }
10311 
10312 static void clean_func_state(struct bpf_verifier_env *env,
10313 			     struct bpf_func_state *st)
10314 {
10315 	enum bpf_reg_liveness live;
10316 	int i, j;
10317 
10318 	for (i = 0; i < BPF_REG_FP; i++) {
10319 		live = st->regs[i].live;
10320 		/* liveness must not touch this register anymore */
10321 		st->regs[i].live |= REG_LIVE_DONE;
10322 		if (!(live & REG_LIVE_READ))
10323 			/* since the register is unused, clear its state
10324 			 * to make further comparison simpler
10325 			 */
10326 			__mark_reg_not_init(env, &st->regs[i]);
10327 	}
10328 
10329 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
10330 		live = st->stack[i].spilled_ptr.live;
10331 		/* liveness must not touch this stack slot anymore */
10332 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
10333 		if (!(live & REG_LIVE_READ)) {
10334 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
10335 			for (j = 0; j < BPF_REG_SIZE; j++)
10336 				st->stack[i].slot_type[j] = STACK_INVALID;
10337 		}
10338 	}
10339 }
10340 
10341 static void clean_verifier_state(struct bpf_verifier_env *env,
10342 				 struct bpf_verifier_state *st)
10343 {
10344 	int i;
10345 
10346 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
10347 		/* all regs in this state in all frames were already marked */
10348 		return;
10349 
10350 	for (i = 0; i <= st->curframe; i++)
10351 		clean_func_state(env, st->frame[i]);
10352 }
10353 
10354 /* the parentage chains form a tree.
10355  * the verifier states are added to state lists at given insn and
10356  * pushed into state stack for future exploration.
10357  * when the verifier reaches bpf_exit insn some of the verifer states
10358  * stored in the state lists have their final liveness state already,
10359  * but a lot of states will get revised from liveness point of view when
10360  * the verifier explores other branches.
10361  * Example:
10362  * 1: r0 = 1
10363  * 2: if r1 == 100 goto pc+1
10364  * 3: r0 = 2
10365  * 4: exit
10366  * when the verifier reaches exit insn the register r0 in the state list of
10367  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
10368  * of insn 2 and goes exploring further. At the insn 4 it will walk the
10369  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
10370  *
10371  * Since the verifier pushes the branch states as it sees them while exploring
10372  * the program the condition of walking the branch instruction for the second
10373  * time means that all states below this branch were already explored and
10374  * their final liveness marks are already propagated.
10375  * Hence when the verifier completes the search of state list in is_state_visited()
10376  * we can call this clean_live_states() function to mark all liveness states
10377  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
10378  * will not be used.
10379  * This function also clears the registers and stack for states that !READ
10380  * to simplify state merging.
10381  *
10382  * Important note here that walking the same branch instruction in the callee
10383  * doesn't meant that the states are DONE. The verifier has to compare
10384  * the callsites
10385  */
10386 static void clean_live_states(struct bpf_verifier_env *env, int insn,
10387 			      struct bpf_verifier_state *cur)
10388 {
10389 	struct bpf_verifier_state_list *sl;
10390 	int i;
10391 
10392 	sl = *explored_state(env, insn);
10393 	while (sl) {
10394 		if (sl->state.branches)
10395 			goto next;
10396 		if (sl->state.insn_idx != insn ||
10397 		    sl->state.curframe != cur->curframe)
10398 			goto next;
10399 		for (i = 0; i <= cur->curframe; i++)
10400 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
10401 				goto next;
10402 		clean_verifier_state(env, &sl->state);
10403 next:
10404 		sl = sl->next;
10405 	}
10406 }
10407 
10408 /* Returns true if (rold safe implies rcur safe) */
10409 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
10410 		    struct bpf_reg_state *rcur, struct bpf_id_pair *idmap)
10411 {
10412 	bool equal;
10413 
10414 	if (!(rold->live & REG_LIVE_READ))
10415 		/* explored state didn't use this */
10416 		return true;
10417 
10418 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
10419 
10420 	if (rold->type == PTR_TO_STACK)
10421 		/* two stack pointers are equal only if they're pointing to
10422 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
10423 		 */
10424 		return equal && rold->frameno == rcur->frameno;
10425 
10426 	if (equal)
10427 		return true;
10428 
10429 	if (rold->type == NOT_INIT)
10430 		/* explored state can't have used this */
10431 		return true;
10432 	if (rcur->type == NOT_INIT)
10433 		return false;
10434 	switch (rold->type) {
10435 	case SCALAR_VALUE:
10436 		if (env->explore_alu_limits)
10437 			return false;
10438 		if (rcur->type == SCALAR_VALUE) {
10439 			if (!rold->precise && !rcur->precise)
10440 				return true;
10441 			/* new val must satisfy old val knowledge */
10442 			return range_within(rold, rcur) &&
10443 			       tnum_in(rold->var_off, rcur->var_off);
10444 		} else {
10445 			/* We're trying to use a pointer in place of a scalar.
10446 			 * Even if the scalar was unbounded, this could lead to
10447 			 * pointer leaks because scalars are allowed to leak
10448 			 * while pointers are not. We could make this safe in
10449 			 * special cases if root is calling us, but it's
10450 			 * probably not worth the hassle.
10451 			 */
10452 			return false;
10453 		}
10454 	case PTR_TO_MAP_KEY:
10455 	case PTR_TO_MAP_VALUE:
10456 		/* If the new min/max/var_off satisfy the old ones and
10457 		 * everything else matches, we are OK.
10458 		 * 'id' is not compared, since it's only used for maps with
10459 		 * bpf_spin_lock inside map element and in such cases if
10460 		 * the rest of the prog is valid for one map element then
10461 		 * it's valid for all map elements regardless of the key
10462 		 * used in bpf_map_lookup()
10463 		 */
10464 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
10465 		       range_within(rold, rcur) &&
10466 		       tnum_in(rold->var_off, rcur->var_off);
10467 	case PTR_TO_MAP_VALUE_OR_NULL:
10468 		/* a PTR_TO_MAP_VALUE could be safe to use as a
10469 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
10470 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
10471 		 * checked, doing so could have affected others with the same
10472 		 * id, and we can't check for that because we lost the id when
10473 		 * we converted to a PTR_TO_MAP_VALUE.
10474 		 */
10475 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
10476 			return false;
10477 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
10478 			return false;
10479 		/* Check our ids match any regs they're supposed to */
10480 		return check_ids(rold->id, rcur->id, idmap);
10481 	case PTR_TO_PACKET_META:
10482 	case PTR_TO_PACKET:
10483 		if (rcur->type != rold->type)
10484 			return false;
10485 		/* We must have at least as much range as the old ptr
10486 		 * did, so that any accesses which were safe before are
10487 		 * still safe.  This is true even if old range < old off,
10488 		 * since someone could have accessed through (ptr - k), or
10489 		 * even done ptr -= k in a register, to get a safe access.
10490 		 */
10491 		if (rold->range > rcur->range)
10492 			return false;
10493 		/* If the offsets don't match, we can't trust our alignment;
10494 		 * nor can we be sure that we won't fall out of range.
10495 		 */
10496 		if (rold->off != rcur->off)
10497 			return false;
10498 		/* id relations must be preserved */
10499 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
10500 			return false;
10501 		/* new val must satisfy old val knowledge */
10502 		return range_within(rold, rcur) &&
10503 		       tnum_in(rold->var_off, rcur->var_off);
10504 	case PTR_TO_CTX:
10505 	case CONST_PTR_TO_MAP:
10506 	case PTR_TO_PACKET_END:
10507 	case PTR_TO_FLOW_KEYS:
10508 	case PTR_TO_SOCKET:
10509 	case PTR_TO_SOCKET_OR_NULL:
10510 	case PTR_TO_SOCK_COMMON:
10511 	case PTR_TO_SOCK_COMMON_OR_NULL:
10512 	case PTR_TO_TCP_SOCK:
10513 	case PTR_TO_TCP_SOCK_OR_NULL:
10514 	case PTR_TO_XDP_SOCK:
10515 		/* Only valid matches are exact, which memcmp() above
10516 		 * would have accepted
10517 		 */
10518 	default:
10519 		/* Don't know what's going on, just say it's not safe */
10520 		return false;
10521 	}
10522 
10523 	/* Shouldn't get here; if we do, say it's not safe */
10524 	WARN_ON_ONCE(1);
10525 	return false;
10526 }
10527 
10528 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
10529 		      struct bpf_func_state *cur, struct bpf_id_pair *idmap)
10530 {
10531 	int i, spi;
10532 
10533 	/* walk slots of the explored stack and ignore any additional
10534 	 * slots in the current stack, since explored(safe) state
10535 	 * didn't use them
10536 	 */
10537 	for (i = 0; i < old->allocated_stack; i++) {
10538 		spi = i / BPF_REG_SIZE;
10539 
10540 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10541 			i += BPF_REG_SIZE - 1;
10542 			/* explored state didn't use this */
10543 			continue;
10544 		}
10545 
10546 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10547 			continue;
10548 
10549 		/* explored stack has more populated slots than current stack
10550 		 * and these slots were used
10551 		 */
10552 		if (i >= cur->allocated_stack)
10553 			return false;
10554 
10555 		/* if old state was safe with misc data in the stack
10556 		 * it will be safe with zero-initialized stack.
10557 		 * The opposite is not true
10558 		 */
10559 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10560 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10561 			continue;
10562 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10563 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10564 			/* Ex: old explored (safe) state has STACK_SPILL in
10565 			 * this stack slot, but current has STACK_MISC ->
10566 			 * this verifier states are not equivalent,
10567 			 * return false to continue verification of this path
10568 			 */
10569 			return false;
10570 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
10571 			continue;
10572 		if (!is_spilled_reg(&old->stack[spi]))
10573 			continue;
10574 		if (!regsafe(env, &old->stack[spi].spilled_ptr,
10575 			     &cur->stack[spi].spilled_ptr, idmap))
10576 			/* when explored and current stack slot are both storing
10577 			 * spilled registers, check that stored pointers types
10578 			 * are the same as well.
10579 			 * Ex: explored safe path could have stored
10580 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10581 			 * but current path has stored:
10582 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10583 			 * such verifier states are not equivalent.
10584 			 * return false to continue verification of this path
10585 			 */
10586 			return false;
10587 	}
10588 	return true;
10589 }
10590 
10591 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10592 {
10593 	if (old->acquired_refs != cur->acquired_refs)
10594 		return false;
10595 	return !memcmp(old->refs, cur->refs,
10596 		       sizeof(*old->refs) * old->acquired_refs);
10597 }
10598 
10599 /* compare two verifier states
10600  *
10601  * all states stored in state_list are known to be valid, since
10602  * verifier reached 'bpf_exit' instruction through them
10603  *
10604  * this function is called when verifier exploring different branches of
10605  * execution popped from the state stack. If it sees an old state that has
10606  * more strict register state and more strict stack state then this execution
10607  * branch doesn't need to be explored further, since verifier already
10608  * concluded that more strict state leads to valid finish.
10609  *
10610  * Therefore two states are equivalent if register state is more conservative
10611  * and explored stack state is more conservative than the current one.
10612  * Example:
10613  *       explored                   current
10614  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10615  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10616  *
10617  * In other words if current stack state (one being explored) has more
10618  * valid slots than old one that already passed validation, it means
10619  * the verifier can stop exploring and conclude that current state is valid too
10620  *
10621  * Similarly with registers. If explored state has register type as invalid
10622  * whereas register type in current state is meaningful, it means that
10623  * the current state will reach 'bpf_exit' instruction safely
10624  */
10625 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
10626 			      struct bpf_func_state *cur)
10627 {
10628 	int i;
10629 
10630 	memset(env->idmap_scratch, 0, sizeof(env->idmap_scratch));
10631 	for (i = 0; i < MAX_BPF_REG; i++)
10632 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
10633 			     env->idmap_scratch))
10634 			return false;
10635 
10636 	if (!stacksafe(env, old, cur, env->idmap_scratch))
10637 		return false;
10638 
10639 	if (!refsafe(old, cur))
10640 		return false;
10641 
10642 	return true;
10643 }
10644 
10645 static bool states_equal(struct bpf_verifier_env *env,
10646 			 struct bpf_verifier_state *old,
10647 			 struct bpf_verifier_state *cur)
10648 {
10649 	int i;
10650 
10651 	if (old->curframe != cur->curframe)
10652 		return false;
10653 
10654 	/* Verification state from speculative execution simulation
10655 	 * must never prune a non-speculative execution one.
10656 	 */
10657 	if (old->speculative && !cur->speculative)
10658 		return false;
10659 
10660 	if (old->active_spin_lock != cur->active_spin_lock)
10661 		return false;
10662 
10663 	/* for states to be equal callsites have to be the same
10664 	 * and all frame states need to be equivalent
10665 	 */
10666 	for (i = 0; i <= old->curframe; i++) {
10667 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
10668 			return false;
10669 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
10670 			return false;
10671 	}
10672 	return true;
10673 }
10674 
10675 /* Return 0 if no propagation happened. Return negative error code if error
10676  * happened. Otherwise, return the propagated bit.
10677  */
10678 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10679 				  struct bpf_reg_state *reg,
10680 				  struct bpf_reg_state *parent_reg)
10681 {
10682 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10683 	u8 flag = reg->live & REG_LIVE_READ;
10684 	int err;
10685 
10686 	/* When comes here, read flags of PARENT_REG or REG could be any of
10687 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10688 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10689 	 */
10690 	if (parent_flag == REG_LIVE_READ64 ||
10691 	    /* Or if there is no read flag from REG. */
10692 	    !flag ||
10693 	    /* Or if the read flag from REG is the same as PARENT_REG. */
10694 	    parent_flag == flag)
10695 		return 0;
10696 
10697 	err = mark_reg_read(env, reg, parent_reg, flag);
10698 	if (err)
10699 		return err;
10700 
10701 	return flag;
10702 }
10703 
10704 /* A write screens off any subsequent reads; but write marks come from the
10705  * straight-line code between a state and its parent.  When we arrive at an
10706  * equivalent state (jump target or such) we didn't arrive by the straight-line
10707  * code, so read marks in the state must propagate to the parent regardless
10708  * of the state's write marks. That's what 'parent == state->parent' comparison
10709  * in mark_reg_read() is for.
10710  */
10711 static int propagate_liveness(struct bpf_verifier_env *env,
10712 			      const struct bpf_verifier_state *vstate,
10713 			      struct bpf_verifier_state *vparent)
10714 {
10715 	struct bpf_reg_state *state_reg, *parent_reg;
10716 	struct bpf_func_state *state, *parent;
10717 	int i, frame, err = 0;
10718 
10719 	if (vparent->curframe != vstate->curframe) {
10720 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
10721 		     vparent->curframe, vstate->curframe);
10722 		return -EFAULT;
10723 	}
10724 	/* Propagate read liveness of registers... */
10725 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10726 	for (frame = 0; frame <= vstate->curframe; frame++) {
10727 		parent = vparent->frame[frame];
10728 		state = vstate->frame[frame];
10729 		parent_reg = parent->regs;
10730 		state_reg = state->regs;
10731 		/* We don't need to worry about FP liveness, it's read-only */
10732 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10733 			err = propagate_liveness_reg(env, &state_reg[i],
10734 						     &parent_reg[i]);
10735 			if (err < 0)
10736 				return err;
10737 			if (err == REG_LIVE_READ64)
10738 				mark_insn_zext(env, &parent_reg[i]);
10739 		}
10740 
10741 		/* Propagate stack slots. */
10742 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10743 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10744 			parent_reg = &parent->stack[i].spilled_ptr;
10745 			state_reg = &state->stack[i].spilled_ptr;
10746 			err = propagate_liveness_reg(env, state_reg,
10747 						     parent_reg);
10748 			if (err < 0)
10749 				return err;
10750 		}
10751 	}
10752 	return 0;
10753 }
10754 
10755 /* find precise scalars in the previous equivalent state and
10756  * propagate them into the current state
10757  */
10758 static int propagate_precision(struct bpf_verifier_env *env,
10759 			       const struct bpf_verifier_state *old)
10760 {
10761 	struct bpf_reg_state *state_reg;
10762 	struct bpf_func_state *state;
10763 	int i, err = 0;
10764 
10765 	state = old->frame[old->curframe];
10766 	state_reg = state->regs;
10767 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10768 		if (state_reg->type != SCALAR_VALUE ||
10769 		    !state_reg->precise)
10770 			continue;
10771 		if (env->log.level & BPF_LOG_LEVEL2)
10772 			verbose(env, "propagating r%d\n", i);
10773 		err = mark_chain_precision(env, i);
10774 		if (err < 0)
10775 			return err;
10776 	}
10777 
10778 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10779 		if (!is_spilled_reg(&state->stack[i]))
10780 			continue;
10781 		state_reg = &state->stack[i].spilled_ptr;
10782 		if (state_reg->type != SCALAR_VALUE ||
10783 		    !state_reg->precise)
10784 			continue;
10785 		if (env->log.level & BPF_LOG_LEVEL2)
10786 			verbose(env, "propagating fp%d\n",
10787 				(-i - 1) * BPF_REG_SIZE);
10788 		err = mark_chain_precision_stack(env, i);
10789 		if (err < 0)
10790 			return err;
10791 	}
10792 	return 0;
10793 }
10794 
10795 static bool states_maybe_looping(struct bpf_verifier_state *old,
10796 				 struct bpf_verifier_state *cur)
10797 {
10798 	struct bpf_func_state *fold, *fcur;
10799 	int i, fr = cur->curframe;
10800 
10801 	if (old->curframe != fr)
10802 		return false;
10803 
10804 	fold = old->frame[fr];
10805 	fcur = cur->frame[fr];
10806 	for (i = 0; i < MAX_BPF_REG; i++)
10807 		if (memcmp(&fold->regs[i], &fcur->regs[i],
10808 			   offsetof(struct bpf_reg_state, parent)))
10809 			return false;
10810 	return true;
10811 }
10812 
10813 
10814 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10815 {
10816 	struct bpf_verifier_state_list *new_sl;
10817 	struct bpf_verifier_state_list *sl, **pprev;
10818 	struct bpf_verifier_state *cur = env->cur_state, *new;
10819 	int i, j, err, states_cnt = 0;
10820 	bool add_new_state = env->test_state_freq ? true : false;
10821 
10822 	cur->last_insn_idx = env->prev_insn_idx;
10823 	if (!env->insn_aux_data[insn_idx].prune_point)
10824 		/* this 'insn_idx' instruction wasn't marked, so we will not
10825 		 * be doing state search here
10826 		 */
10827 		return 0;
10828 
10829 	/* bpf progs typically have pruning point every 4 instructions
10830 	 * http://vger.kernel.org/bpfconf2019.html#session-1
10831 	 * Do not add new state for future pruning if the verifier hasn't seen
10832 	 * at least 2 jumps and at least 8 instructions.
10833 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10834 	 * In tests that amounts to up to 50% reduction into total verifier
10835 	 * memory consumption and 20% verifier time speedup.
10836 	 */
10837 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10838 	    env->insn_processed - env->prev_insn_processed >= 8)
10839 		add_new_state = true;
10840 
10841 	pprev = explored_state(env, insn_idx);
10842 	sl = *pprev;
10843 
10844 	clean_live_states(env, insn_idx, cur);
10845 
10846 	while (sl) {
10847 		states_cnt++;
10848 		if (sl->state.insn_idx != insn_idx)
10849 			goto next;
10850 
10851 		if (sl->state.branches) {
10852 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
10853 
10854 			if (frame->in_async_callback_fn &&
10855 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
10856 				/* Different async_entry_cnt means that the verifier is
10857 				 * processing another entry into async callback.
10858 				 * Seeing the same state is not an indication of infinite
10859 				 * loop or infinite recursion.
10860 				 * But finding the same state doesn't mean that it's safe
10861 				 * to stop processing the current state. The previous state
10862 				 * hasn't yet reached bpf_exit, since state.branches > 0.
10863 				 * Checking in_async_callback_fn alone is not enough either.
10864 				 * Since the verifier still needs to catch infinite loops
10865 				 * inside async callbacks.
10866 				 */
10867 			} else if (states_maybe_looping(&sl->state, cur) &&
10868 				   states_equal(env, &sl->state, cur)) {
10869 				verbose_linfo(env, insn_idx, "; ");
10870 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10871 				return -EINVAL;
10872 			}
10873 			/* if the verifier is processing a loop, avoid adding new state
10874 			 * too often, since different loop iterations have distinct
10875 			 * states and may not help future pruning.
10876 			 * This threshold shouldn't be too low to make sure that
10877 			 * a loop with large bound will be rejected quickly.
10878 			 * The most abusive loop will be:
10879 			 * r1 += 1
10880 			 * if r1 < 1000000 goto pc-2
10881 			 * 1M insn_procssed limit / 100 == 10k peak states.
10882 			 * This threshold shouldn't be too high either, since states
10883 			 * at the end of the loop are likely to be useful in pruning.
10884 			 */
10885 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10886 			    env->insn_processed - env->prev_insn_processed < 100)
10887 				add_new_state = false;
10888 			goto miss;
10889 		}
10890 		if (states_equal(env, &sl->state, cur)) {
10891 			sl->hit_cnt++;
10892 			/* reached equivalent register/stack state,
10893 			 * prune the search.
10894 			 * Registers read by the continuation are read by us.
10895 			 * If we have any write marks in env->cur_state, they
10896 			 * will prevent corresponding reads in the continuation
10897 			 * from reaching our parent (an explored_state).  Our
10898 			 * own state will get the read marks recorded, but
10899 			 * they'll be immediately forgotten as we're pruning
10900 			 * this state and will pop a new one.
10901 			 */
10902 			err = propagate_liveness(env, &sl->state, cur);
10903 
10904 			/* if previous state reached the exit with precision and
10905 			 * current state is equivalent to it (except precsion marks)
10906 			 * the precision needs to be propagated back in
10907 			 * the current state.
10908 			 */
10909 			err = err ? : push_jmp_history(env, cur);
10910 			err = err ? : propagate_precision(env, &sl->state);
10911 			if (err)
10912 				return err;
10913 			return 1;
10914 		}
10915 miss:
10916 		/* when new state is not going to be added do not increase miss count.
10917 		 * Otherwise several loop iterations will remove the state
10918 		 * recorded earlier. The goal of these heuristics is to have
10919 		 * states from some iterations of the loop (some in the beginning
10920 		 * and some at the end) to help pruning.
10921 		 */
10922 		if (add_new_state)
10923 			sl->miss_cnt++;
10924 		/* heuristic to determine whether this state is beneficial
10925 		 * to keep checking from state equivalence point of view.
10926 		 * Higher numbers increase max_states_per_insn and verification time,
10927 		 * but do not meaningfully decrease insn_processed.
10928 		 */
10929 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10930 			/* the state is unlikely to be useful. Remove it to
10931 			 * speed up verification
10932 			 */
10933 			*pprev = sl->next;
10934 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10935 				u32 br = sl->state.branches;
10936 
10937 				WARN_ONCE(br,
10938 					  "BUG live_done but branches_to_explore %d\n",
10939 					  br);
10940 				free_verifier_state(&sl->state, false);
10941 				kfree(sl);
10942 				env->peak_states--;
10943 			} else {
10944 				/* cannot free this state, since parentage chain may
10945 				 * walk it later. Add it for free_list instead to
10946 				 * be freed at the end of verification
10947 				 */
10948 				sl->next = env->free_list;
10949 				env->free_list = sl;
10950 			}
10951 			sl = *pprev;
10952 			continue;
10953 		}
10954 next:
10955 		pprev = &sl->next;
10956 		sl = *pprev;
10957 	}
10958 
10959 	if (env->max_states_per_insn < states_cnt)
10960 		env->max_states_per_insn = states_cnt;
10961 
10962 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10963 		return push_jmp_history(env, cur);
10964 
10965 	if (!add_new_state)
10966 		return push_jmp_history(env, cur);
10967 
10968 	/* There were no equivalent states, remember the current one.
10969 	 * Technically the current state is not proven to be safe yet,
10970 	 * but it will either reach outer most bpf_exit (which means it's safe)
10971 	 * or it will be rejected. When there are no loops the verifier won't be
10972 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10973 	 * again on the way to bpf_exit.
10974 	 * When looping the sl->state.branches will be > 0 and this state
10975 	 * will not be considered for equivalence until branches == 0.
10976 	 */
10977 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10978 	if (!new_sl)
10979 		return -ENOMEM;
10980 	env->total_states++;
10981 	env->peak_states++;
10982 	env->prev_jmps_processed = env->jmps_processed;
10983 	env->prev_insn_processed = env->insn_processed;
10984 
10985 	/* add new state to the head of linked list */
10986 	new = &new_sl->state;
10987 	err = copy_verifier_state(new, cur);
10988 	if (err) {
10989 		free_verifier_state(new, false);
10990 		kfree(new_sl);
10991 		return err;
10992 	}
10993 	new->insn_idx = insn_idx;
10994 	WARN_ONCE(new->branches != 1,
10995 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10996 
10997 	cur->parent = new;
10998 	cur->first_insn_idx = insn_idx;
10999 	clear_jmp_history(cur);
11000 	new_sl->next = *explored_state(env, insn_idx);
11001 	*explored_state(env, insn_idx) = new_sl;
11002 	/* connect new state to parentage chain. Current frame needs all
11003 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
11004 	 * to the stack implicitly by JITs) so in callers' frames connect just
11005 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
11006 	 * the state of the call instruction (with WRITTEN set), and r0 comes
11007 	 * from callee with its full parentage chain, anyway.
11008 	 */
11009 	/* clear write marks in current state: the writes we did are not writes
11010 	 * our child did, so they don't screen off its reads from us.
11011 	 * (There are no read marks in current state, because reads always mark
11012 	 * their parent and current state never has children yet.  Only
11013 	 * explored_states can get read marks.)
11014 	 */
11015 	for (j = 0; j <= cur->curframe; j++) {
11016 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
11017 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
11018 		for (i = 0; i < BPF_REG_FP; i++)
11019 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
11020 	}
11021 
11022 	/* all stack frames are accessible from callee, clear them all */
11023 	for (j = 0; j <= cur->curframe; j++) {
11024 		struct bpf_func_state *frame = cur->frame[j];
11025 		struct bpf_func_state *newframe = new->frame[j];
11026 
11027 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
11028 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
11029 			frame->stack[i].spilled_ptr.parent =
11030 						&newframe->stack[i].spilled_ptr;
11031 		}
11032 	}
11033 	return 0;
11034 }
11035 
11036 /* Return true if it's OK to have the same insn return a different type. */
11037 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
11038 {
11039 	switch (type) {
11040 	case PTR_TO_CTX:
11041 	case PTR_TO_SOCKET:
11042 	case PTR_TO_SOCKET_OR_NULL:
11043 	case PTR_TO_SOCK_COMMON:
11044 	case PTR_TO_SOCK_COMMON_OR_NULL:
11045 	case PTR_TO_TCP_SOCK:
11046 	case PTR_TO_TCP_SOCK_OR_NULL:
11047 	case PTR_TO_XDP_SOCK:
11048 	case PTR_TO_BTF_ID:
11049 	case PTR_TO_BTF_ID_OR_NULL:
11050 		return false;
11051 	default:
11052 		return true;
11053 	}
11054 }
11055 
11056 /* If an instruction was previously used with particular pointer types, then we
11057  * need to be careful to avoid cases such as the below, where it may be ok
11058  * for one branch accessing the pointer, but not ok for the other branch:
11059  *
11060  * R1 = sock_ptr
11061  * goto X;
11062  * ...
11063  * R1 = some_other_valid_ptr;
11064  * goto X;
11065  * ...
11066  * R2 = *(u32 *)(R1 + 0);
11067  */
11068 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
11069 {
11070 	return src != prev && (!reg_type_mismatch_ok(src) ||
11071 			       !reg_type_mismatch_ok(prev));
11072 }
11073 
11074 static int do_check(struct bpf_verifier_env *env)
11075 {
11076 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11077 	struct bpf_verifier_state *state = env->cur_state;
11078 	struct bpf_insn *insns = env->prog->insnsi;
11079 	struct bpf_reg_state *regs;
11080 	int insn_cnt = env->prog->len;
11081 	bool do_print_state = false;
11082 	int prev_insn_idx = -1;
11083 
11084 	for (;;) {
11085 		struct bpf_insn *insn;
11086 		u8 class;
11087 		int err;
11088 
11089 		env->prev_insn_idx = prev_insn_idx;
11090 		if (env->insn_idx >= insn_cnt) {
11091 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
11092 				env->insn_idx, insn_cnt);
11093 			return -EFAULT;
11094 		}
11095 
11096 		insn = &insns[env->insn_idx];
11097 		class = BPF_CLASS(insn->code);
11098 
11099 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
11100 			verbose(env,
11101 				"BPF program is too large. Processed %d insn\n",
11102 				env->insn_processed);
11103 			return -E2BIG;
11104 		}
11105 
11106 		err = is_state_visited(env, env->insn_idx);
11107 		if (err < 0)
11108 			return err;
11109 		if (err == 1) {
11110 			/* found equivalent state, can prune the search */
11111 			if (env->log.level & BPF_LOG_LEVEL) {
11112 				if (do_print_state)
11113 					verbose(env, "\nfrom %d to %d%s: safe\n",
11114 						env->prev_insn_idx, env->insn_idx,
11115 						env->cur_state->speculative ?
11116 						" (speculative execution)" : "");
11117 				else
11118 					verbose(env, "%d: safe\n", env->insn_idx);
11119 			}
11120 			goto process_bpf_exit;
11121 		}
11122 
11123 		if (signal_pending(current))
11124 			return -EAGAIN;
11125 
11126 		if (need_resched())
11127 			cond_resched();
11128 
11129 		if (env->log.level & BPF_LOG_LEVEL2 ||
11130 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
11131 			if (env->log.level & BPF_LOG_LEVEL2)
11132 				verbose(env, "%d:", env->insn_idx);
11133 			else
11134 				verbose(env, "\nfrom %d to %d%s:",
11135 					env->prev_insn_idx, env->insn_idx,
11136 					env->cur_state->speculative ?
11137 					" (speculative execution)" : "");
11138 			print_verifier_state(env, state->frame[state->curframe]);
11139 			do_print_state = false;
11140 		}
11141 
11142 		if (env->log.level & BPF_LOG_LEVEL) {
11143 			const struct bpf_insn_cbs cbs = {
11144 				.cb_call	= disasm_kfunc_name,
11145 				.cb_print	= verbose,
11146 				.private_data	= env,
11147 			};
11148 
11149 			verbose_linfo(env, env->insn_idx, "; ");
11150 			verbose(env, "%d: ", env->insn_idx);
11151 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
11152 		}
11153 
11154 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
11155 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
11156 							   env->prev_insn_idx);
11157 			if (err)
11158 				return err;
11159 		}
11160 
11161 		regs = cur_regs(env);
11162 		sanitize_mark_insn_seen(env);
11163 		prev_insn_idx = env->insn_idx;
11164 
11165 		if (class == BPF_ALU || class == BPF_ALU64) {
11166 			err = check_alu_op(env, insn);
11167 			if (err)
11168 				return err;
11169 
11170 		} else if (class == BPF_LDX) {
11171 			enum bpf_reg_type *prev_src_type, src_reg_type;
11172 
11173 			/* check for reserved fields is already done */
11174 
11175 			/* check src operand */
11176 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11177 			if (err)
11178 				return err;
11179 
11180 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
11181 			if (err)
11182 				return err;
11183 
11184 			src_reg_type = regs[insn->src_reg].type;
11185 
11186 			/* check that memory (src_reg + off) is readable,
11187 			 * the state of dst_reg will be updated by this func
11188 			 */
11189 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
11190 					       insn->off, BPF_SIZE(insn->code),
11191 					       BPF_READ, insn->dst_reg, false);
11192 			if (err)
11193 				return err;
11194 
11195 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11196 
11197 			if (*prev_src_type == NOT_INIT) {
11198 				/* saw a valid insn
11199 				 * dst_reg = *(u32 *)(src_reg + off)
11200 				 * save type to validate intersecting paths
11201 				 */
11202 				*prev_src_type = src_reg_type;
11203 
11204 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
11205 				/* ABuser program is trying to use the same insn
11206 				 * dst_reg = *(u32*) (src_reg + off)
11207 				 * with different pointer types:
11208 				 * src_reg == ctx in one branch and
11209 				 * src_reg == stack|map in some other branch.
11210 				 * Reject it.
11211 				 */
11212 				verbose(env, "same insn cannot be used with different pointers\n");
11213 				return -EINVAL;
11214 			}
11215 
11216 		} else if (class == BPF_STX) {
11217 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
11218 
11219 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
11220 				err = check_atomic(env, env->insn_idx, insn);
11221 				if (err)
11222 					return err;
11223 				env->insn_idx++;
11224 				continue;
11225 			}
11226 
11227 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
11228 				verbose(env, "BPF_STX uses reserved fields\n");
11229 				return -EINVAL;
11230 			}
11231 
11232 			/* check src1 operand */
11233 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
11234 			if (err)
11235 				return err;
11236 			/* check src2 operand */
11237 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11238 			if (err)
11239 				return err;
11240 
11241 			dst_reg_type = regs[insn->dst_reg].type;
11242 
11243 			/* check that memory (dst_reg + off) is writeable */
11244 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11245 					       insn->off, BPF_SIZE(insn->code),
11246 					       BPF_WRITE, insn->src_reg, false);
11247 			if (err)
11248 				return err;
11249 
11250 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
11251 
11252 			if (*prev_dst_type == NOT_INIT) {
11253 				*prev_dst_type = dst_reg_type;
11254 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
11255 				verbose(env, "same insn cannot be used with different pointers\n");
11256 				return -EINVAL;
11257 			}
11258 
11259 		} else if (class == BPF_ST) {
11260 			if (BPF_MODE(insn->code) != BPF_MEM ||
11261 			    insn->src_reg != BPF_REG_0) {
11262 				verbose(env, "BPF_ST uses reserved fields\n");
11263 				return -EINVAL;
11264 			}
11265 			/* check src operand */
11266 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
11267 			if (err)
11268 				return err;
11269 
11270 			if (is_ctx_reg(env, insn->dst_reg)) {
11271 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
11272 					insn->dst_reg,
11273 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
11274 				return -EACCES;
11275 			}
11276 
11277 			/* check that memory (dst_reg + off) is writeable */
11278 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
11279 					       insn->off, BPF_SIZE(insn->code),
11280 					       BPF_WRITE, -1, false);
11281 			if (err)
11282 				return err;
11283 
11284 		} else if (class == BPF_JMP || class == BPF_JMP32) {
11285 			u8 opcode = BPF_OP(insn->code);
11286 
11287 			env->jmps_processed++;
11288 			if (opcode == BPF_CALL) {
11289 				if (BPF_SRC(insn->code) != BPF_K ||
11290 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
11291 				     && insn->off != 0) ||
11292 				    (insn->src_reg != BPF_REG_0 &&
11293 				     insn->src_reg != BPF_PSEUDO_CALL &&
11294 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
11295 				    insn->dst_reg != BPF_REG_0 ||
11296 				    class == BPF_JMP32) {
11297 					verbose(env, "BPF_CALL uses reserved fields\n");
11298 					return -EINVAL;
11299 				}
11300 
11301 				if (env->cur_state->active_spin_lock &&
11302 				    (insn->src_reg == BPF_PSEUDO_CALL ||
11303 				     insn->imm != BPF_FUNC_spin_unlock)) {
11304 					verbose(env, "function calls are not allowed while holding a lock\n");
11305 					return -EINVAL;
11306 				}
11307 				if (insn->src_reg == BPF_PSEUDO_CALL)
11308 					err = check_func_call(env, insn, &env->insn_idx);
11309 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
11310 					err = check_kfunc_call(env, insn);
11311 				else
11312 					err = check_helper_call(env, insn, &env->insn_idx);
11313 				if (err)
11314 					return err;
11315 			} else if (opcode == BPF_JA) {
11316 				if (BPF_SRC(insn->code) != BPF_K ||
11317 				    insn->imm != 0 ||
11318 				    insn->src_reg != BPF_REG_0 ||
11319 				    insn->dst_reg != BPF_REG_0 ||
11320 				    class == BPF_JMP32) {
11321 					verbose(env, "BPF_JA uses reserved fields\n");
11322 					return -EINVAL;
11323 				}
11324 
11325 				env->insn_idx += insn->off + 1;
11326 				continue;
11327 
11328 			} else if (opcode == BPF_EXIT) {
11329 				if (BPF_SRC(insn->code) != BPF_K ||
11330 				    insn->imm != 0 ||
11331 				    insn->src_reg != BPF_REG_0 ||
11332 				    insn->dst_reg != BPF_REG_0 ||
11333 				    class == BPF_JMP32) {
11334 					verbose(env, "BPF_EXIT uses reserved fields\n");
11335 					return -EINVAL;
11336 				}
11337 
11338 				if (env->cur_state->active_spin_lock) {
11339 					verbose(env, "bpf_spin_unlock is missing\n");
11340 					return -EINVAL;
11341 				}
11342 
11343 				if (state->curframe) {
11344 					/* exit from nested function */
11345 					err = prepare_func_exit(env, &env->insn_idx);
11346 					if (err)
11347 						return err;
11348 					do_print_state = true;
11349 					continue;
11350 				}
11351 
11352 				err = check_reference_leak(env);
11353 				if (err)
11354 					return err;
11355 
11356 				err = check_return_code(env);
11357 				if (err)
11358 					return err;
11359 process_bpf_exit:
11360 				update_branch_counts(env, env->cur_state);
11361 				err = pop_stack(env, &prev_insn_idx,
11362 						&env->insn_idx, pop_log);
11363 				if (err < 0) {
11364 					if (err != -ENOENT)
11365 						return err;
11366 					break;
11367 				} else {
11368 					do_print_state = true;
11369 					continue;
11370 				}
11371 			} else {
11372 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
11373 				if (err)
11374 					return err;
11375 			}
11376 		} else if (class == BPF_LD) {
11377 			u8 mode = BPF_MODE(insn->code);
11378 
11379 			if (mode == BPF_ABS || mode == BPF_IND) {
11380 				err = check_ld_abs(env, insn);
11381 				if (err)
11382 					return err;
11383 
11384 			} else if (mode == BPF_IMM) {
11385 				err = check_ld_imm(env, insn);
11386 				if (err)
11387 					return err;
11388 
11389 				env->insn_idx++;
11390 				sanitize_mark_insn_seen(env);
11391 			} else {
11392 				verbose(env, "invalid BPF_LD mode\n");
11393 				return -EINVAL;
11394 			}
11395 		} else {
11396 			verbose(env, "unknown insn class %d\n", class);
11397 			return -EINVAL;
11398 		}
11399 
11400 		env->insn_idx++;
11401 	}
11402 
11403 	return 0;
11404 }
11405 
11406 static int find_btf_percpu_datasec(struct btf *btf)
11407 {
11408 	const struct btf_type *t;
11409 	const char *tname;
11410 	int i, n;
11411 
11412 	/*
11413 	 * Both vmlinux and module each have their own ".data..percpu"
11414 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
11415 	 * types to look at only module's own BTF types.
11416 	 */
11417 	n = btf_nr_types(btf);
11418 	if (btf_is_module(btf))
11419 		i = btf_nr_types(btf_vmlinux);
11420 	else
11421 		i = 1;
11422 
11423 	for(; i < n; i++) {
11424 		t = btf_type_by_id(btf, i);
11425 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
11426 			continue;
11427 
11428 		tname = btf_name_by_offset(btf, t->name_off);
11429 		if (!strcmp(tname, ".data..percpu"))
11430 			return i;
11431 	}
11432 
11433 	return -ENOENT;
11434 }
11435 
11436 /* replace pseudo btf_id with kernel symbol address */
11437 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
11438 			       struct bpf_insn *insn,
11439 			       struct bpf_insn_aux_data *aux)
11440 {
11441 	const struct btf_var_secinfo *vsi;
11442 	const struct btf_type *datasec;
11443 	struct btf_mod_pair *btf_mod;
11444 	const struct btf_type *t;
11445 	const char *sym_name;
11446 	bool percpu = false;
11447 	u32 type, id = insn->imm;
11448 	struct btf *btf;
11449 	s32 datasec_id;
11450 	u64 addr;
11451 	int i, btf_fd, err;
11452 
11453 	btf_fd = insn[1].imm;
11454 	if (btf_fd) {
11455 		btf = btf_get_by_fd(btf_fd);
11456 		if (IS_ERR(btf)) {
11457 			verbose(env, "invalid module BTF object FD specified.\n");
11458 			return -EINVAL;
11459 		}
11460 	} else {
11461 		if (!btf_vmlinux) {
11462 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
11463 			return -EINVAL;
11464 		}
11465 		btf = btf_vmlinux;
11466 		btf_get(btf);
11467 	}
11468 
11469 	t = btf_type_by_id(btf, id);
11470 	if (!t) {
11471 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
11472 		err = -ENOENT;
11473 		goto err_put;
11474 	}
11475 
11476 	if (!btf_type_is_var(t)) {
11477 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
11478 		err = -EINVAL;
11479 		goto err_put;
11480 	}
11481 
11482 	sym_name = btf_name_by_offset(btf, t->name_off);
11483 	addr = kallsyms_lookup_name(sym_name);
11484 	if (!addr) {
11485 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
11486 			sym_name);
11487 		err = -ENOENT;
11488 		goto err_put;
11489 	}
11490 
11491 	datasec_id = find_btf_percpu_datasec(btf);
11492 	if (datasec_id > 0) {
11493 		datasec = btf_type_by_id(btf, datasec_id);
11494 		for_each_vsi(i, datasec, vsi) {
11495 			if (vsi->type == id) {
11496 				percpu = true;
11497 				break;
11498 			}
11499 		}
11500 	}
11501 
11502 	insn[0].imm = (u32)addr;
11503 	insn[1].imm = addr >> 32;
11504 
11505 	type = t->type;
11506 	t = btf_type_skip_modifiers(btf, type, NULL);
11507 	if (percpu) {
11508 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
11509 		aux->btf_var.btf = btf;
11510 		aux->btf_var.btf_id = type;
11511 	} else if (!btf_type_is_struct(t)) {
11512 		const struct btf_type *ret;
11513 		const char *tname;
11514 		u32 tsize;
11515 
11516 		/* resolve the type size of ksym. */
11517 		ret = btf_resolve_size(btf, t, &tsize);
11518 		if (IS_ERR(ret)) {
11519 			tname = btf_name_by_offset(btf, t->name_off);
11520 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11521 				tname, PTR_ERR(ret));
11522 			err = -EINVAL;
11523 			goto err_put;
11524 		}
11525 		aux->btf_var.reg_type = PTR_TO_MEM;
11526 		aux->btf_var.mem_size = tsize;
11527 	} else {
11528 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
11529 		aux->btf_var.btf = btf;
11530 		aux->btf_var.btf_id = type;
11531 	}
11532 
11533 	/* check whether we recorded this BTF (and maybe module) already */
11534 	for (i = 0; i < env->used_btf_cnt; i++) {
11535 		if (env->used_btfs[i].btf == btf) {
11536 			btf_put(btf);
11537 			return 0;
11538 		}
11539 	}
11540 
11541 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
11542 		err = -E2BIG;
11543 		goto err_put;
11544 	}
11545 
11546 	btf_mod = &env->used_btfs[env->used_btf_cnt];
11547 	btf_mod->btf = btf;
11548 	btf_mod->module = NULL;
11549 
11550 	/* if we reference variables from kernel module, bump its refcount */
11551 	if (btf_is_module(btf)) {
11552 		btf_mod->module = btf_try_get_module(btf);
11553 		if (!btf_mod->module) {
11554 			err = -ENXIO;
11555 			goto err_put;
11556 		}
11557 	}
11558 
11559 	env->used_btf_cnt++;
11560 
11561 	return 0;
11562 err_put:
11563 	btf_put(btf);
11564 	return err;
11565 }
11566 
11567 static int check_map_prealloc(struct bpf_map *map)
11568 {
11569 	return (map->map_type != BPF_MAP_TYPE_HASH &&
11570 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11571 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11572 		!(map->map_flags & BPF_F_NO_PREALLOC);
11573 }
11574 
11575 static bool is_tracing_prog_type(enum bpf_prog_type type)
11576 {
11577 	switch (type) {
11578 	case BPF_PROG_TYPE_KPROBE:
11579 	case BPF_PROG_TYPE_TRACEPOINT:
11580 	case BPF_PROG_TYPE_PERF_EVENT:
11581 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
11582 		return true;
11583 	default:
11584 		return false;
11585 	}
11586 }
11587 
11588 static bool is_preallocated_map(struct bpf_map *map)
11589 {
11590 	if (!check_map_prealloc(map))
11591 		return false;
11592 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11593 		return false;
11594 	return true;
11595 }
11596 
11597 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11598 					struct bpf_map *map,
11599 					struct bpf_prog *prog)
11600 
11601 {
11602 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
11603 	/*
11604 	 * Validate that trace type programs use preallocated hash maps.
11605 	 *
11606 	 * For programs attached to PERF events this is mandatory as the
11607 	 * perf NMI can hit any arbitrary code sequence.
11608 	 *
11609 	 * All other trace types using preallocated hash maps are unsafe as
11610 	 * well because tracepoint or kprobes can be inside locked regions
11611 	 * of the memory allocator or at a place where a recursion into the
11612 	 * memory allocator would see inconsistent state.
11613 	 *
11614 	 * On RT enabled kernels run-time allocation of all trace type
11615 	 * programs is strictly prohibited due to lock type constraints. On
11616 	 * !RT kernels it is allowed for backwards compatibility reasons for
11617 	 * now, but warnings are emitted so developers are made aware of
11618 	 * the unsafety and can fix their programs before this is enforced.
11619 	 */
11620 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11621 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11622 			verbose(env, "perf_event programs can only use preallocated hash map\n");
11623 			return -EINVAL;
11624 		}
11625 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11626 			verbose(env, "trace type programs can only use preallocated hash map\n");
11627 			return -EINVAL;
11628 		}
11629 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11630 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11631 	}
11632 
11633 	if (map_value_has_spin_lock(map)) {
11634 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11635 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11636 			return -EINVAL;
11637 		}
11638 
11639 		if (is_tracing_prog_type(prog_type)) {
11640 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11641 			return -EINVAL;
11642 		}
11643 
11644 		if (prog->aux->sleepable) {
11645 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11646 			return -EINVAL;
11647 		}
11648 	}
11649 
11650 	if (map_value_has_timer(map)) {
11651 		if (is_tracing_prog_type(prog_type)) {
11652 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
11653 			return -EINVAL;
11654 		}
11655 	}
11656 
11657 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11658 	    !bpf_offload_prog_map_match(prog, map)) {
11659 		verbose(env, "offload device mismatch between prog and map\n");
11660 		return -EINVAL;
11661 	}
11662 
11663 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11664 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11665 		return -EINVAL;
11666 	}
11667 
11668 	if (prog->aux->sleepable)
11669 		switch (map->map_type) {
11670 		case BPF_MAP_TYPE_HASH:
11671 		case BPF_MAP_TYPE_LRU_HASH:
11672 		case BPF_MAP_TYPE_ARRAY:
11673 		case BPF_MAP_TYPE_PERCPU_HASH:
11674 		case BPF_MAP_TYPE_PERCPU_ARRAY:
11675 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11676 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11677 		case BPF_MAP_TYPE_HASH_OF_MAPS:
11678 			if (!is_preallocated_map(map)) {
11679 				verbose(env,
11680 					"Sleepable programs can only use preallocated maps\n");
11681 				return -EINVAL;
11682 			}
11683 			break;
11684 		case BPF_MAP_TYPE_RINGBUF:
11685 			break;
11686 		default:
11687 			verbose(env,
11688 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
11689 			return -EINVAL;
11690 		}
11691 
11692 	return 0;
11693 }
11694 
11695 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11696 {
11697 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11698 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11699 }
11700 
11701 /* find and rewrite pseudo imm in ld_imm64 instructions:
11702  *
11703  * 1. if it accesses map FD, replace it with actual map pointer.
11704  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11705  *
11706  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11707  */
11708 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11709 {
11710 	struct bpf_insn *insn = env->prog->insnsi;
11711 	int insn_cnt = env->prog->len;
11712 	int i, j, err;
11713 
11714 	err = bpf_prog_calc_tag(env->prog);
11715 	if (err)
11716 		return err;
11717 
11718 	for (i = 0; i < insn_cnt; i++, insn++) {
11719 		if (BPF_CLASS(insn->code) == BPF_LDX &&
11720 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11721 			verbose(env, "BPF_LDX uses reserved fields\n");
11722 			return -EINVAL;
11723 		}
11724 
11725 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11726 			struct bpf_insn_aux_data *aux;
11727 			struct bpf_map *map;
11728 			struct fd f;
11729 			u64 addr;
11730 			u32 fd;
11731 
11732 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
11733 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11734 			    insn[1].off != 0) {
11735 				verbose(env, "invalid bpf_ld_imm64 insn\n");
11736 				return -EINVAL;
11737 			}
11738 
11739 			if (insn[0].src_reg == 0)
11740 				/* valid generic load 64-bit imm */
11741 				goto next_insn;
11742 
11743 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11744 				aux = &env->insn_aux_data[i];
11745 				err = check_pseudo_btf_id(env, insn, aux);
11746 				if (err)
11747 					return err;
11748 				goto next_insn;
11749 			}
11750 
11751 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11752 				aux = &env->insn_aux_data[i];
11753 				aux->ptr_type = PTR_TO_FUNC;
11754 				goto next_insn;
11755 			}
11756 
11757 			/* In final convert_pseudo_ld_imm64() step, this is
11758 			 * converted into regular 64-bit imm load insn.
11759 			 */
11760 			switch (insn[0].src_reg) {
11761 			case BPF_PSEUDO_MAP_VALUE:
11762 			case BPF_PSEUDO_MAP_IDX_VALUE:
11763 				break;
11764 			case BPF_PSEUDO_MAP_FD:
11765 			case BPF_PSEUDO_MAP_IDX:
11766 				if (insn[1].imm == 0)
11767 					break;
11768 				fallthrough;
11769 			default:
11770 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
11771 				return -EINVAL;
11772 			}
11773 
11774 			switch (insn[0].src_reg) {
11775 			case BPF_PSEUDO_MAP_IDX_VALUE:
11776 			case BPF_PSEUDO_MAP_IDX:
11777 				if (bpfptr_is_null(env->fd_array)) {
11778 					verbose(env, "fd_idx without fd_array is invalid\n");
11779 					return -EPROTO;
11780 				}
11781 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
11782 							    insn[0].imm * sizeof(fd),
11783 							    sizeof(fd)))
11784 					return -EFAULT;
11785 				break;
11786 			default:
11787 				fd = insn[0].imm;
11788 				break;
11789 			}
11790 
11791 			f = fdget(fd);
11792 			map = __bpf_map_get(f);
11793 			if (IS_ERR(map)) {
11794 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
11795 					insn[0].imm);
11796 				return PTR_ERR(map);
11797 			}
11798 
11799 			err = check_map_prog_compatibility(env, map, env->prog);
11800 			if (err) {
11801 				fdput(f);
11802 				return err;
11803 			}
11804 
11805 			aux = &env->insn_aux_data[i];
11806 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
11807 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
11808 				addr = (unsigned long)map;
11809 			} else {
11810 				u32 off = insn[1].imm;
11811 
11812 				if (off >= BPF_MAX_VAR_OFF) {
11813 					verbose(env, "direct value offset of %u is not allowed\n", off);
11814 					fdput(f);
11815 					return -EINVAL;
11816 				}
11817 
11818 				if (!map->ops->map_direct_value_addr) {
11819 					verbose(env, "no direct value access support for this map type\n");
11820 					fdput(f);
11821 					return -EINVAL;
11822 				}
11823 
11824 				err = map->ops->map_direct_value_addr(map, &addr, off);
11825 				if (err) {
11826 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11827 						map->value_size, off);
11828 					fdput(f);
11829 					return err;
11830 				}
11831 
11832 				aux->map_off = off;
11833 				addr += off;
11834 			}
11835 
11836 			insn[0].imm = (u32)addr;
11837 			insn[1].imm = addr >> 32;
11838 
11839 			/* check whether we recorded this map already */
11840 			for (j = 0; j < env->used_map_cnt; j++) {
11841 				if (env->used_maps[j] == map) {
11842 					aux->map_index = j;
11843 					fdput(f);
11844 					goto next_insn;
11845 				}
11846 			}
11847 
11848 			if (env->used_map_cnt >= MAX_USED_MAPS) {
11849 				fdput(f);
11850 				return -E2BIG;
11851 			}
11852 
11853 			/* hold the map. If the program is rejected by verifier,
11854 			 * the map will be released by release_maps() or it
11855 			 * will be used by the valid program until it's unloaded
11856 			 * and all maps are released in free_used_maps()
11857 			 */
11858 			bpf_map_inc(map);
11859 
11860 			aux->map_index = env->used_map_cnt;
11861 			env->used_maps[env->used_map_cnt++] = map;
11862 
11863 			if (bpf_map_is_cgroup_storage(map) &&
11864 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
11865 				verbose(env, "only one cgroup storage of each type is allowed\n");
11866 				fdput(f);
11867 				return -EBUSY;
11868 			}
11869 
11870 			fdput(f);
11871 next_insn:
11872 			insn++;
11873 			i++;
11874 			continue;
11875 		}
11876 
11877 		/* Basic sanity check before we invest more work here. */
11878 		if (!bpf_opcode_in_insntable(insn->code)) {
11879 			verbose(env, "unknown opcode %02x\n", insn->code);
11880 			return -EINVAL;
11881 		}
11882 	}
11883 
11884 	/* now all pseudo BPF_LD_IMM64 instructions load valid
11885 	 * 'struct bpf_map *' into a register instead of user map_fd.
11886 	 * These pointers will be used later by verifier to validate map access.
11887 	 */
11888 	return 0;
11889 }
11890 
11891 /* drop refcnt of maps used by the rejected program */
11892 static void release_maps(struct bpf_verifier_env *env)
11893 {
11894 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
11895 			     env->used_map_cnt);
11896 }
11897 
11898 /* drop refcnt of maps used by the rejected program */
11899 static void release_btfs(struct bpf_verifier_env *env)
11900 {
11901 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11902 			     env->used_btf_cnt);
11903 }
11904 
11905 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11906 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11907 {
11908 	struct bpf_insn *insn = env->prog->insnsi;
11909 	int insn_cnt = env->prog->len;
11910 	int i;
11911 
11912 	for (i = 0; i < insn_cnt; i++, insn++) {
11913 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11914 			continue;
11915 		if (insn->src_reg == BPF_PSEUDO_FUNC)
11916 			continue;
11917 		insn->src_reg = 0;
11918 	}
11919 }
11920 
11921 /* single env->prog->insni[off] instruction was replaced with the range
11922  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
11923  * [0, off) and [off, end) to new locations, so the patched range stays zero
11924  */
11925 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
11926 				 struct bpf_insn_aux_data *new_data,
11927 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
11928 {
11929 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
11930 	struct bpf_insn *insn = new_prog->insnsi;
11931 	u32 old_seen = old_data[off].seen;
11932 	u32 prog_len;
11933 	int i;
11934 
11935 	/* aux info at OFF always needs adjustment, no matter fast path
11936 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11937 	 * original insn at old prog.
11938 	 */
11939 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11940 
11941 	if (cnt == 1)
11942 		return;
11943 	prog_len = new_prog->len;
11944 
11945 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11946 	memcpy(new_data + off + cnt - 1, old_data + off,
11947 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11948 	for (i = off; i < off + cnt - 1; i++) {
11949 		/* Expand insni[off]'s seen count to the patched range. */
11950 		new_data[i].seen = old_seen;
11951 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
11952 	}
11953 	env->insn_aux_data = new_data;
11954 	vfree(old_data);
11955 }
11956 
11957 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11958 {
11959 	int i;
11960 
11961 	if (len == 1)
11962 		return;
11963 	/* NOTE: fake 'exit' subprog should be updated as well. */
11964 	for (i = 0; i <= env->subprog_cnt; i++) {
11965 		if (env->subprog_info[i].start <= off)
11966 			continue;
11967 		env->subprog_info[i].start += len - 1;
11968 	}
11969 }
11970 
11971 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
11972 {
11973 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11974 	int i, sz = prog->aux->size_poke_tab;
11975 	struct bpf_jit_poke_descriptor *desc;
11976 
11977 	for (i = 0; i < sz; i++) {
11978 		desc = &tab[i];
11979 		if (desc->insn_idx <= off)
11980 			continue;
11981 		desc->insn_idx += len - 1;
11982 	}
11983 }
11984 
11985 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11986 					    const struct bpf_insn *patch, u32 len)
11987 {
11988 	struct bpf_prog *new_prog;
11989 	struct bpf_insn_aux_data *new_data = NULL;
11990 
11991 	if (len > 1) {
11992 		new_data = vzalloc(array_size(env->prog->len + len - 1,
11993 					      sizeof(struct bpf_insn_aux_data)));
11994 		if (!new_data)
11995 			return NULL;
11996 	}
11997 
11998 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11999 	if (IS_ERR(new_prog)) {
12000 		if (PTR_ERR(new_prog) == -ERANGE)
12001 			verbose(env,
12002 				"insn %d cannot be patched due to 16-bit range\n",
12003 				env->insn_aux_data[off].orig_idx);
12004 		vfree(new_data);
12005 		return NULL;
12006 	}
12007 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
12008 	adjust_subprog_starts(env, off, len);
12009 	adjust_poke_descs(new_prog, off, len);
12010 	return new_prog;
12011 }
12012 
12013 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
12014 					      u32 off, u32 cnt)
12015 {
12016 	int i, j;
12017 
12018 	/* find first prog starting at or after off (first to remove) */
12019 	for (i = 0; i < env->subprog_cnt; i++)
12020 		if (env->subprog_info[i].start >= off)
12021 			break;
12022 	/* find first prog starting at or after off + cnt (first to stay) */
12023 	for (j = i; j < env->subprog_cnt; j++)
12024 		if (env->subprog_info[j].start >= off + cnt)
12025 			break;
12026 	/* if j doesn't start exactly at off + cnt, we are just removing
12027 	 * the front of previous prog
12028 	 */
12029 	if (env->subprog_info[j].start != off + cnt)
12030 		j--;
12031 
12032 	if (j > i) {
12033 		struct bpf_prog_aux *aux = env->prog->aux;
12034 		int move;
12035 
12036 		/* move fake 'exit' subprog as well */
12037 		move = env->subprog_cnt + 1 - j;
12038 
12039 		memmove(env->subprog_info + i,
12040 			env->subprog_info + j,
12041 			sizeof(*env->subprog_info) * move);
12042 		env->subprog_cnt -= j - i;
12043 
12044 		/* remove func_info */
12045 		if (aux->func_info) {
12046 			move = aux->func_info_cnt - j;
12047 
12048 			memmove(aux->func_info + i,
12049 				aux->func_info + j,
12050 				sizeof(*aux->func_info) * move);
12051 			aux->func_info_cnt -= j - i;
12052 			/* func_info->insn_off is set after all code rewrites,
12053 			 * in adjust_btf_func() - no need to adjust
12054 			 */
12055 		}
12056 	} else {
12057 		/* convert i from "first prog to remove" to "first to adjust" */
12058 		if (env->subprog_info[i].start == off)
12059 			i++;
12060 	}
12061 
12062 	/* update fake 'exit' subprog as well */
12063 	for (; i <= env->subprog_cnt; i++)
12064 		env->subprog_info[i].start -= cnt;
12065 
12066 	return 0;
12067 }
12068 
12069 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
12070 				      u32 cnt)
12071 {
12072 	struct bpf_prog *prog = env->prog;
12073 	u32 i, l_off, l_cnt, nr_linfo;
12074 	struct bpf_line_info *linfo;
12075 
12076 	nr_linfo = prog->aux->nr_linfo;
12077 	if (!nr_linfo)
12078 		return 0;
12079 
12080 	linfo = prog->aux->linfo;
12081 
12082 	/* find first line info to remove, count lines to be removed */
12083 	for (i = 0; i < nr_linfo; i++)
12084 		if (linfo[i].insn_off >= off)
12085 			break;
12086 
12087 	l_off = i;
12088 	l_cnt = 0;
12089 	for (; i < nr_linfo; i++)
12090 		if (linfo[i].insn_off < off + cnt)
12091 			l_cnt++;
12092 		else
12093 			break;
12094 
12095 	/* First live insn doesn't match first live linfo, it needs to "inherit"
12096 	 * last removed linfo.  prog is already modified, so prog->len == off
12097 	 * means no live instructions after (tail of the program was removed).
12098 	 */
12099 	if (prog->len != off && l_cnt &&
12100 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
12101 		l_cnt--;
12102 		linfo[--i].insn_off = off + cnt;
12103 	}
12104 
12105 	/* remove the line info which refer to the removed instructions */
12106 	if (l_cnt) {
12107 		memmove(linfo + l_off, linfo + i,
12108 			sizeof(*linfo) * (nr_linfo - i));
12109 
12110 		prog->aux->nr_linfo -= l_cnt;
12111 		nr_linfo = prog->aux->nr_linfo;
12112 	}
12113 
12114 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
12115 	for (i = l_off; i < nr_linfo; i++)
12116 		linfo[i].insn_off -= cnt;
12117 
12118 	/* fix up all subprogs (incl. 'exit') which start >= off */
12119 	for (i = 0; i <= env->subprog_cnt; i++)
12120 		if (env->subprog_info[i].linfo_idx > l_off) {
12121 			/* program may have started in the removed region but
12122 			 * may not be fully removed
12123 			 */
12124 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
12125 				env->subprog_info[i].linfo_idx -= l_cnt;
12126 			else
12127 				env->subprog_info[i].linfo_idx = l_off;
12128 		}
12129 
12130 	return 0;
12131 }
12132 
12133 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
12134 {
12135 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12136 	unsigned int orig_prog_len = env->prog->len;
12137 	int err;
12138 
12139 	if (bpf_prog_is_dev_bound(env->prog->aux))
12140 		bpf_prog_offload_remove_insns(env, off, cnt);
12141 
12142 	err = bpf_remove_insns(env->prog, off, cnt);
12143 	if (err)
12144 		return err;
12145 
12146 	err = adjust_subprog_starts_after_remove(env, off, cnt);
12147 	if (err)
12148 		return err;
12149 
12150 	err = bpf_adj_linfo_after_remove(env, off, cnt);
12151 	if (err)
12152 		return err;
12153 
12154 	memmove(aux_data + off,	aux_data + off + cnt,
12155 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
12156 
12157 	return 0;
12158 }
12159 
12160 /* The verifier does more data flow analysis than llvm and will not
12161  * explore branches that are dead at run time. Malicious programs can
12162  * have dead code too. Therefore replace all dead at-run-time code
12163  * with 'ja -1'.
12164  *
12165  * Just nops are not optimal, e.g. if they would sit at the end of the
12166  * program and through another bug we would manage to jump there, then
12167  * we'd execute beyond program memory otherwise. Returning exception
12168  * code also wouldn't work since we can have subprogs where the dead
12169  * code could be located.
12170  */
12171 static void sanitize_dead_code(struct bpf_verifier_env *env)
12172 {
12173 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12174 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
12175 	struct bpf_insn *insn = env->prog->insnsi;
12176 	const int insn_cnt = env->prog->len;
12177 	int i;
12178 
12179 	for (i = 0; i < insn_cnt; i++) {
12180 		if (aux_data[i].seen)
12181 			continue;
12182 		memcpy(insn + i, &trap, sizeof(trap));
12183 		aux_data[i].zext_dst = false;
12184 	}
12185 }
12186 
12187 static bool insn_is_cond_jump(u8 code)
12188 {
12189 	u8 op;
12190 
12191 	if (BPF_CLASS(code) == BPF_JMP32)
12192 		return true;
12193 
12194 	if (BPF_CLASS(code) != BPF_JMP)
12195 		return false;
12196 
12197 	op = BPF_OP(code);
12198 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
12199 }
12200 
12201 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
12202 {
12203 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12204 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12205 	struct bpf_insn *insn = env->prog->insnsi;
12206 	const int insn_cnt = env->prog->len;
12207 	int i;
12208 
12209 	for (i = 0; i < insn_cnt; i++, insn++) {
12210 		if (!insn_is_cond_jump(insn->code))
12211 			continue;
12212 
12213 		if (!aux_data[i + 1].seen)
12214 			ja.off = insn->off;
12215 		else if (!aux_data[i + 1 + insn->off].seen)
12216 			ja.off = 0;
12217 		else
12218 			continue;
12219 
12220 		if (bpf_prog_is_dev_bound(env->prog->aux))
12221 			bpf_prog_offload_replace_insn(env, i, &ja);
12222 
12223 		memcpy(insn, &ja, sizeof(ja));
12224 	}
12225 }
12226 
12227 static int opt_remove_dead_code(struct bpf_verifier_env *env)
12228 {
12229 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
12230 	int insn_cnt = env->prog->len;
12231 	int i, err;
12232 
12233 	for (i = 0; i < insn_cnt; i++) {
12234 		int j;
12235 
12236 		j = 0;
12237 		while (i + j < insn_cnt && !aux_data[i + j].seen)
12238 			j++;
12239 		if (!j)
12240 			continue;
12241 
12242 		err = verifier_remove_insns(env, i, j);
12243 		if (err)
12244 			return err;
12245 		insn_cnt = env->prog->len;
12246 	}
12247 
12248 	return 0;
12249 }
12250 
12251 static int opt_remove_nops(struct bpf_verifier_env *env)
12252 {
12253 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
12254 	struct bpf_insn *insn = env->prog->insnsi;
12255 	int insn_cnt = env->prog->len;
12256 	int i, err;
12257 
12258 	for (i = 0; i < insn_cnt; i++) {
12259 		if (memcmp(&insn[i], &ja, sizeof(ja)))
12260 			continue;
12261 
12262 		err = verifier_remove_insns(env, i, 1);
12263 		if (err)
12264 			return err;
12265 		insn_cnt--;
12266 		i--;
12267 	}
12268 
12269 	return 0;
12270 }
12271 
12272 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
12273 					 const union bpf_attr *attr)
12274 {
12275 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
12276 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
12277 	int i, patch_len, delta = 0, len = env->prog->len;
12278 	struct bpf_insn *insns = env->prog->insnsi;
12279 	struct bpf_prog *new_prog;
12280 	bool rnd_hi32;
12281 
12282 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
12283 	zext_patch[1] = BPF_ZEXT_REG(0);
12284 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
12285 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
12286 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
12287 	for (i = 0; i < len; i++) {
12288 		int adj_idx = i + delta;
12289 		struct bpf_insn insn;
12290 		int load_reg;
12291 
12292 		insn = insns[adj_idx];
12293 		load_reg = insn_def_regno(&insn);
12294 		if (!aux[adj_idx].zext_dst) {
12295 			u8 code, class;
12296 			u32 imm_rnd;
12297 
12298 			if (!rnd_hi32)
12299 				continue;
12300 
12301 			code = insn.code;
12302 			class = BPF_CLASS(code);
12303 			if (load_reg == -1)
12304 				continue;
12305 
12306 			/* NOTE: arg "reg" (the fourth one) is only used for
12307 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
12308 			 *       here.
12309 			 */
12310 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
12311 				if (class == BPF_LD &&
12312 				    BPF_MODE(code) == BPF_IMM)
12313 					i++;
12314 				continue;
12315 			}
12316 
12317 			/* ctx load could be transformed into wider load. */
12318 			if (class == BPF_LDX &&
12319 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
12320 				continue;
12321 
12322 			imm_rnd = get_random_int();
12323 			rnd_hi32_patch[0] = insn;
12324 			rnd_hi32_patch[1].imm = imm_rnd;
12325 			rnd_hi32_patch[3].dst_reg = load_reg;
12326 			patch = rnd_hi32_patch;
12327 			patch_len = 4;
12328 			goto apply_patch_buffer;
12329 		}
12330 
12331 		/* Add in an zero-extend instruction if a) the JIT has requested
12332 		 * it or b) it's a CMPXCHG.
12333 		 *
12334 		 * The latter is because: BPF_CMPXCHG always loads a value into
12335 		 * R0, therefore always zero-extends. However some archs'
12336 		 * equivalent instruction only does this load when the
12337 		 * comparison is successful. This detail of CMPXCHG is
12338 		 * orthogonal to the general zero-extension behaviour of the
12339 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
12340 		 */
12341 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
12342 			continue;
12343 
12344 		if (WARN_ON(load_reg == -1)) {
12345 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
12346 			return -EFAULT;
12347 		}
12348 
12349 		zext_patch[0] = insn;
12350 		zext_patch[1].dst_reg = load_reg;
12351 		zext_patch[1].src_reg = load_reg;
12352 		patch = zext_patch;
12353 		patch_len = 2;
12354 apply_patch_buffer:
12355 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
12356 		if (!new_prog)
12357 			return -ENOMEM;
12358 		env->prog = new_prog;
12359 		insns = new_prog->insnsi;
12360 		aux = env->insn_aux_data;
12361 		delta += patch_len - 1;
12362 	}
12363 
12364 	return 0;
12365 }
12366 
12367 /* convert load instructions that access fields of a context type into a
12368  * sequence of instructions that access fields of the underlying structure:
12369  *     struct __sk_buff    -> struct sk_buff
12370  *     struct bpf_sock_ops -> struct sock
12371  */
12372 static int convert_ctx_accesses(struct bpf_verifier_env *env)
12373 {
12374 	const struct bpf_verifier_ops *ops = env->ops;
12375 	int i, cnt, size, ctx_field_size, delta = 0;
12376 	const int insn_cnt = env->prog->len;
12377 	struct bpf_insn insn_buf[16], *insn;
12378 	u32 target_size, size_default, off;
12379 	struct bpf_prog *new_prog;
12380 	enum bpf_access_type type;
12381 	bool is_narrower_load;
12382 
12383 	if (ops->gen_prologue || env->seen_direct_write) {
12384 		if (!ops->gen_prologue) {
12385 			verbose(env, "bpf verifier is misconfigured\n");
12386 			return -EINVAL;
12387 		}
12388 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
12389 					env->prog);
12390 		if (cnt >= ARRAY_SIZE(insn_buf)) {
12391 			verbose(env, "bpf verifier is misconfigured\n");
12392 			return -EINVAL;
12393 		} else if (cnt) {
12394 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
12395 			if (!new_prog)
12396 				return -ENOMEM;
12397 
12398 			env->prog = new_prog;
12399 			delta += cnt - 1;
12400 		}
12401 	}
12402 
12403 	if (bpf_prog_is_dev_bound(env->prog->aux))
12404 		return 0;
12405 
12406 	insn = env->prog->insnsi + delta;
12407 
12408 	for (i = 0; i < insn_cnt; i++, insn++) {
12409 		bpf_convert_ctx_access_t convert_ctx_access;
12410 		bool ctx_access;
12411 
12412 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
12413 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
12414 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
12415 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
12416 			type = BPF_READ;
12417 			ctx_access = true;
12418 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
12419 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
12420 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
12421 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
12422 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
12423 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
12424 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
12425 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
12426 			type = BPF_WRITE;
12427 			ctx_access = BPF_CLASS(insn->code) == BPF_STX;
12428 		} else {
12429 			continue;
12430 		}
12431 
12432 		if (type == BPF_WRITE &&
12433 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
12434 			struct bpf_insn patch[] = {
12435 				*insn,
12436 				BPF_ST_NOSPEC(),
12437 			};
12438 
12439 			cnt = ARRAY_SIZE(patch);
12440 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
12441 			if (!new_prog)
12442 				return -ENOMEM;
12443 
12444 			delta    += cnt - 1;
12445 			env->prog = new_prog;
12446 			insn      = new_prog->insnsi + i + delta;
12447 			continue;
12448 		}
12449 
12450 		if (!ctx_access)
12451 			continue;
12452 
12453 		switch (env->insn_aux_data[i + delta].ptr_type) {
12454 		case PTR_TO_CTX:
12455 			if (!ops->convert_ctx_access)
12456 				continue;
12457 			convert_ctx_access = ops->convert_ctx_access;
12458 			break;
12459 		case PTR_TO_SOCKET:
12460 		case PTR_TO_SOCK_COMMON:
12461 			convert_ctx_access = bpf_sock_convert_ctx_access;
12462 			break;
12463 		case PTR_TO_TCP_SOCK:
12464 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
12465 			break;
12466 		case PTR_TO_XDP_SOCK:
12467 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
12468 			break;
12469 		case PTR_TO_BTF_ID:
12470 			if (type == BPF_READ) {
12471 				insn->code = BPF_LDX | BPF_PROBE_MEM |
12472 					BPF_SIZE((insn)->code);
12473 				env->prog->aux->num_exentries++;
12474 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
12475 				verbose(env, "Writes through BTF pointers are not allowed\n");
12476 				return -EINVAL;
12477 			}
12478 			continue;
12479 		default:
12480 			continue;
12481 		}
12482 
12483 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
12484 		size = BPF_LDST_BYTES(insn);
12485 
12486 		/* If the read access is a narrower load of the field,
12487 		 * convert to a 4/8-byte load, to minimum program type specific
12488 		 * convert_ctx_access changes. If conversion is successful,
12489 		 * we will apply proper mask to the result.
12490 		 */
12491 		is_narrower_load = size < ctx_field_size;
12492 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
12493 		off = insn->off;
12494 		if (is_narrower_load) {
12495 			u8 size_code;
12496 
12497 			if (type == BPF_WRITE) {
12498 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
12499 				return -EINVAL;
12500 			}
12501 
12502 			size_code = BPF_H;
12503 			if (ctx_field_size == 4)
12504 				size_code = BPF_W;
12505 			else if (ctx_field_size == 8)
12506 				size_code = BPF_DW;
12507 
12508 			insn->off = off & ~(size_default - 1);
12509 			insn->code = BPF_LDX | BPF_MEM | size_code;
12510 		}
12511 
12512 		target_size = 0;
12513 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12514 					 &target_size);
12515 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
12516 		    (ctx_field_size && !target_size)) {
12517 			verbose(env, "bpf verifier is misconfigured\n");
12518 			return -EINVAL;
12519 		}
12520 
12521 		if (is_narrower_load && size < target_size) {
12522 			u8 shift = bpf_ctx_narrow_access_offset(
12523 				off, size, size_default) * 8;
12524 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
12525 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
12526 				return -EINVAL;
12527 			}
12528 			if (ctx_field_size <= 4) {
12529 				if (shift)
12530 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
12531 									insn->dst_reg,
12532 									shift);
12533 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
12534 								(1 << size * 8) - 1);
12535 			} else {
12536 				if (shift)
12537 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12538 									insn->dst_reg,
12539 									shift);
12540 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
12541 								(1ULL << size * 8) - 1);
12542 			}
12543 		}
12544 
12545 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12546 		if (!new_prog)
12547 			return -ENOMEM;
12548 
12549 		delta += cnt - 1;
12550 
12551 		/* keep walking new program and skip insns we just inserted */
12552 		env->prog = new_prog;
12553 		insn      = new_prog->insnsi + i + delta;
12554 	}
12555 
12556 	return 0;
12557 }
12558 
12559 static int jit_subprogs(struct bpf_verifier_env *env)
12560 {
12561 	struct bpf_prog *prog = env->prog, **func, *tmp;
12562 	int i, j, subprog_start, subprog_end = 0, len, subprog;
12563 	struct bpf_map *map_ptr;
12564 	struct bpf_insn *insn;
12565 	void *old_bpf_func;
12566 	int err, num_exentries;
12567 
12568 	if (env->subprog_cnt <= 1)
12569 		return 0;
12570 
12571 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12572 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
12573 			continue;
12574 
12575 		/* Upon error here we cannot fall back to interpreter but
12576 		 * need a hard reject of the program. Thus -EFAULT is
12577 		 * propagated in any case.
12578 		 */
12579 		subprog = find_subprog(env, i + insn->imm + 1);
12580 		if (subprog < 0) {
12581 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12582 				  i + insn->imm + 1);
12583 			return -EFAULT;
12584 		}
12585 		/* temporarily remember subprog id inside insn instead of
12586 		 * aux_data, since next loop will split up all insns into funcs
12587 		 */
12588 		insn->off = subprog;
12589 		/* remember original imm in case JIT fails and fallback
12590 		 * to interpreter will be needed
12591 		 */
12592 		env->insn_aux_data[i].call_imm = insn->imm;
12593 		/* point imm to __bpf_call_base+1 from JITs point of view */
12594 		insn->imm = 1;
12595 		if (bpf_pseudo_func(insn))
12596 			/* jit (e.g. x86_64) may emit fewer instructions
12597 			 * if it learns a u32 imm is the same as a u64 imm.
12598 			 * Force a non zero here.
12599 			 */
12600 			insn[1].imm = 1;
12601 	}
12602 
12603 	err = bpf_prog_alloc_jited_linfo(prog);
12604 	if (err)
12605 		goto out_undo_insn;
12606 
12607 	err = -ENOMEM;
12608 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12609 	if (!func)
12610 		goto out_undo_insn;
12611 
12612 	for (i = 0; i < env->subprog_cnt; i++) {
12613 		subprog_start = subprog_end;
12614 		subprog_end = env->subprog_info[i + 1].start;
12615 
12616 		len = subprog_end - subprog_start;
12617 		/* bpf_prog_run() doesn't call subprogs directly,
12618 		 * hence main prog stats include the runtime of subprogs.
12619 		 * subprogs don't have IDs and not reachable via prog_get_next_id
12620 		 * func[i]->stats will never be accessed and stays NULL
12621 		 */
12622 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12623 		if (!func[i])
12624 			goto out_free;
12625 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12626 		       len * sizeof(struct bpf_insn));
12627 		func[i]->type = prog->type;
12628 		func[i]->len = len;
12629 		if (bpf_prog_calc_tag(func[i]))
12630 			goto out_free;
12631 		func[i]->is_func = 1;
12632 		func[i]->aux->func_idx = i;
12633 		/* Below members will be freed only at prog->aux */
12634 		func[i]->aux->btf = prog->aux->btf;
12635 		func[i]->aux->func_info = prog->aux->func_info;
12636 		func[i]->aux->poke_tab = prog->aux->poke_tab;
12637 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
12638 
12639 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
12640 			struct bpf_jit_poke_descriptor *poke;
12641 
12642 			poke = &prog->aux->poke_tab[j];
12643 			if (poke->insn_idx < subprog_end &&
12644 			    poke->insn_idx >= subprog_start)
12645 				poke->aux = func[i]->aux;
12646 		}
12647 
12648 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
12649 		 * Long term would need debug info to populate names
12650 		 */
12651 		func[i]->aux->name[0] = 'F';
12652 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12653 		func[i]->jit_requested = 1;
12654 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12655 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
12656 		func[i]->aux->linfo = prog->aux->linfo;
12657 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12658 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12659 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12660 		num_exentries = 0;
12661 		insn = func[i]->insnsi;
12662 		for (j = 0; j < func[i]->len; j++, insn++) {
12663 			if (BPF_CLASS(insn->code) == BPF_LDX &&
12664 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
12665 				num_exentries++;
12666 		}
12667 		func[i]->aux->num_exentries = num_exentries;
12668 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12669 		func[i] = bpf_int_jit_compile(func[i]);
12670 		if (!func[i]->jited) {
12671 			err = -ENOTSUPP;
12672 			goto out_free;
12673 		}
12674 		cond_resched();
12675 	}
12676 
12677 	/* at this point all bpf functions were successfully JITed
12678 	 * now populate all bpf_calls with correct addresses and
12679 	 * run last pass of JIT
12680 	 */
12681 	for (i = 0; i < env->subprog_cnt; i++) {
12682 		insn = func[i]->insnsi;
12683 		for (j = 0; j < func[i]->len; j++, insn++) {
12684 			if (bpf_pseudo_func(insn)) {
12685 				subprog = insn->off;
12686 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12687 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12688 				continue;
12689 			}
12690 			if (!bpf_pseudo_call(insn))
12691 				continue;
12692 			subprog = insn->off;
12693 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
12694 		}
12695 
12696 		/* we use the aux data to keep a list of the start addresses
12697 		 * of the JITed images for each function in the program
12698 		 *
12699 		 * for some architectures, such as powerpc64, the imm field
12700 		 * might not be large enough to hold the offset of the start
12701 		 * address of the callee's JITed image from __bpf_call_base
12702 		 *
12703 		 * in such cases, we can lookup the start address of a callee
12704 		 * by using its subprog id, available from the off field of
12705 		 * the call instruction, as an index for this list
12706 		 */
12707 		func[i]->aux->func = func;
12708 		func[i]->aux->func_cnt = env->subprog_cnt;
12709 	}
12710 	for (i = 0; i < env->subprog_cnt; i++) {
12711 		old_bpf_func = func[i]->bpf_func;
12712 		tmp = bpf_int_jit_compile(func[i]);
12713 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12714 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12715 			err = -ENOTSUPP;
12716 			goto out_free;
12717 		}
12718 		cond_resched();
12719 	}
12720 
12721 	/* finally lock prog and jit images for all functions and
12722 	 * populate kallsysm
12723 	 */
12724 	for (i = 0; i < env->subprog_cnt; i++) {
12725 		bpf_prog_lock_ro(func[i]);
12726 		bpf_prog_kallsyms_add(func[i]);
12727 	}
12728 
12729 	/* Last step: make now unused interpreter insns from main
12730 	 * prog consistent for later dump requests, so they can
12731 	 * later look the same as if they were interpreted only.
12732 	 */
12733 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12734 		if (bpf_pseudo_func(insn)) {
12735 			insn[0].imm = env->insn_aux_data[i].call_imm;
12736 			insn[1].imm = insn->off;
12737 			insn->off = 0;
12738 			continue;
12739 		}
12740 		if (!bpf_pseudo_call(insn))
12741 			continue;
12742 		insn->off = env->insn_aux_data[i].call_imm;
12743 		subprog = find_subprog(env, i + insn->off + 1);
12744 		insn->imm = subprog;
12745 	}
12746 
12747 	prog->jited = 1;
12748 	prog->bpf_func = func[0]->bpf_func;
12749 	prog->aux->func = func;
12750 	prog->aux->func_cnt = env->subprog_cnt;
12751 	bpf_prog_jit_attempt_done(prog);
12752 	return 0;
12753 out_free:
12754 	/* We failed JIT'ing, so at this point we need to unregister poke
12755 	 * descriptors from subprogs, so that kernel is not attempting to
12756 	 * patch it anymore as we're freeing the subprog JIT memory.
12757 	 */
12758 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12759 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12760 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12761 	}
12762 	/* At this point we're guaranteed that poke descriptors are not
12763 	 * live anymore. We can just unlink its descriptor table as it's
12764 	 * released with the main prog.
12765 	 */
12766 	for (i = 0; i < env->subprog_cnt; i++) {
12767 		if (!func[i])
12768 			continue;
12769 		func[i]->aux->poke_tab = NULL;
12770 		bpf_jit_free(func[i]);
12771 	}
12772 	kfree(func);
12773 out_undo_insn:
12774 	/* cleanup main prog to be interpreted */
12775 	prog->jit_requested = 0;
12776 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12777 		if (!bpf_pseudo_call(insn))
12778 			continue;
12779 		insn->off = 0;
12780 		insn->imm = env->insn_aux_data[i].call_imm;
12781 	}
12782 	bpf_prog_jit_attempt_done(prog);
12783 	return err;
12784 }
12785 
12786 static int fixup_call_args(struct bpf_verifier_env *env)
12787 {
12788 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12789 	struct bpf_prog *prog = env->prog;
12790 	struct bpf_insn *insn = prog->insnsi;
12791 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12792 	int i, depth;
12793 #endif
12794 	int err = 0;
12795 
12796 	if (env->prog->jit_requested &&
12797 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
12798 		err = jit_subprogs(env);
12799 		if (err == 0)
12800 			return 0;
12801 		if (err == -EFAULT)
12802 			return err;
12803 	}
12804 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12805 	if (has_kfunc_call) {
12806 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12807 		return -EINVAL;
12808 	}
12809 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12810 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
12811 		 * have to be rejected, since interpreter doesn't support them yet.
12812 		 */
12813 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12814 		return -EINVAL;
12815 	}
12816 	for (i = 0; i < prog->len; i++, insn++) {
12817 		if (bpf_pseudo_func(insn)) {
12818 			/* When JIT fails the progs with callback calls
12819 			 * have to be rejected, since interpreter doesn't support them yet.
12820 			 */
12821 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
12822 			return -EINVAL;
12823 		}
12824 
12825 		if (!bpf_pseudo_call(insn))
12826 			continue;
12827 		depth = get_callee_stack_depth(env, insn, i);
12828 		if (depth < 0)
12829 			return depth;
12830 		bpf_patch_call_args(insn, depth);
12831 	}
12832 	err = 0;
12833 #endif
12834 	return err;
12835 }
12836 
12837 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12838 			    struct bpf_insn *insn)
12839 {
12840 	const struct bpf_kfunc_desc *desc;
12841 
12842 	if (!insn->imm) {
12843 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
12844 		return -EINVAL;
12845 	}
12846 
12847 	/* insn->imm has the btf func_id. Replace it with
12848 	 * an address (relative to __bpf_base_call).
12849 	 */
12850 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
12851 	if (!desc) {
12852 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12853 			insn->imm);
12854 		return -EFAULT;
12855 	}
12856 
12857 	insn->imm = desc->imm;
12858 
12859 	return 0;
12860 }
12861 
12862 /* Do various post-verification rewrites in a single program pass.
12863  * These rewrites simplify JIT and interpreter implementations.
12864  */
12865 static int do_misc_fixups(struct bpf_verifier_env *env)
12866 {
12867 	struct bpf_prog *prog = env->prog;
12868 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
12869 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
12870 	struct bpf_insn *insn = prog->insnsi;
12871 	const struct bpf_func_proto *fn;
12872 	const int insn_cnt = prog->len;
12873 	const struct bpf_map_ops *ops;
12874 	struct bpf_insn_aux_data *aux;
12875 	struct bpf_insn insn_buf[16];
12876 	struct bpf_prog *new_prog;
12877 	struct bpf_map *map_ptr;
12878 	int i, ret, cnt, delta = 0;
12879 
12880 	for (i = 0; i < insn_cnt; i++, insn++) {
12881 		/* Make divide-by-zero exceptions impossible. */
12882 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12883 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12884 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12885 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12886 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12887 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12888 			struct bpf_insn *patchlet;
12889 			struct bpf_insn chk_and_div[] = {
12890 				/* [R,W]x div 0 -> 0 */
12891 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12892 					     BPF_JNE | BPF_K, insn->src_reg,
12893 					     0, 2, 0),
12894 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12895 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12896 				*insn,
12897 			};
12898 			struct bpf_insn chk_and_mod[] = {
12899 				/* [R,W]x mod 0 -> [R,W]x */
12900 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12901 					     BPF_JEQ | BPF_K, insn->src_reg,
12902 					     0, 1 + (is64 ? 0 : 1), 0),
12903 				*insn,
12904 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12905 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12906 			};
12907 
12908 			patchlet = isdiv ? chk_and_div : chk_and_mod;
12909 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12910 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12911 
12912 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12913 			if (!new_prog)
12914 				return -ENOMEM;
12915 
12916 			delta    += cnt - 1;
12917 			env->prog = prog = new_prog;
12918 			insn      = new_prog->insnsi + i + delta;
12919 			continue;
12920 		}
12921 
12922 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12923 		if (BPF_CLASS(insn->code) == BPF_LD &&
12924 		    (BPF_MODE(insn->code) == BPF_ABS ||
12925 		     BPF_MODE(insn->code) == BPF_IND)) {
12926 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
12927 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12928 				verbose(env, "bpf verifier is misconfigured\n");
12929 				return -EINVAL;
12930 			}
12931 
12932 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12933 			if (!new_prog)
12934 				return -ENOMEM;
12935 
12936 			delta    += cnt - 1;
12937 			env->prog = prog = new_prog;
12938 			insn      = new_prog->insnsi + i + delta;
12939 			continue;
12940 		}
12941 
12942 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
12943 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12944 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12945 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12946 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12947 			struct bpf_insn *patch = &insn_buf[0];
12948 			bool issrc, isneg, isimm;
12949 			u32 off_reg;
12950 
12951 			aux = &env->insn_aux_data[i + delta];
12952 			if (!aux->alu_state ||
12953 			    aux->alu_state == BPF_ALU_NON_POINTER)
12954 				continue;
12955 
12956 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12957 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12958 				BPF_ALU_SANITIZE_SRC;
12959 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12960 
12961 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
12962 			if (isimm) {
12963 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12964 			} else {
12965 				if (isneg)
12966 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12967 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12968 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12969 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12970 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12971 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12972 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12973 			}
12974 			if (!issrc)
12975 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12976 			insn->src_reg = BPF_REG_AX;
12977 			if (isneg)
12978 				insn->code = insn->code == code_add ?
12979 					     code_sub : code_add;
12980 			*patch++ = *insn;
12981 			if (issrc && isneg && !isimm)
12982 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12983 			cnt = patch - insn_buf;
12984 
12985 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12986 			if (!new_prog)
12987 				return -ENOMEM;
12988 
12989 			delta    += cnt - 1;
12990 			env->prog = prog = new_prog;
12991 			insn      = new_prog->insnsi + i + delta;
12992 			continue;
12993 		}
12994 
12995 		if (insn->code != (BPF_JMP | BPF_CALL))
12996 			continue;
12997 		if (insn->src_reg == BPF_PSEUDO_CALL)
12998 			continue;
12999 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
13000 			ret = fixup_kfunc_call(env, insn);
13001 			if (ret)
13002 				return ret;
13003 			continue;
13004 		}
13005 
13006 		if (insn->imm == BPF_FUNC_get_route_realm)
13007 			prog->dst_needed = 1;
13008 		if (insn->imm == BPF_FUNC_get_prandom_u32)
13009 			bpf_user_rnd_init_once();
13010 		if (insn->imm == BPF_FUNC_override_return)
13011 			prog->kprobe_override = 1;
13012 		if (insn->imm == BPF_FUNC_tail_call) {
13013 			/* If we tail call into other programs, we
13014 			 * cannot make any assumptions since they can
13015 			 * be replaced dynamically during runtime in
13016 			 * the program array.
13017 			 */
13018 			prog->cb_access = 1;
13019 			if (!allow_tail_call_in_subprogs(env))
13020 				prog->aux->stack_depth = MAX_BPF_STACK;
13021 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
13022 
13023 			/* mark bpf_tail_call as different opcode to avoid
13024 			 * conditional branch in the interpreter for every normal
13025 			 * call and to prevent accidental JITing by JIT compiler
13026 			 * that doesn't support bpf_tail_call yet
13027 			 */
13028 			insn->imm = 0;
13029 			insn->code = BPF_JMP | BPF_TAIL_CALL;
13030 
13031 			aux = &env->insn_aux_data[i + delta];
13032 			if (env->bpf_capable && !expect_blinding &&
13033 			    prog->jit_requested &&
13034 			    !bpf_map_key_poisoned(aux) &&
13035 			    !bpf_map_ptr_poisoned(aux) &&
13036 			    !bpf_map_ptr_unpriv(aux)) {
13037 				struct bpf_jit_poke_descriptor desc = {
13038 					.reason = BPF_POKE_REASON_TAIL_CALL,
13039 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
13040 					.tail_call.key = bpf_map_key_immediate(aux),
13041 					.insn_idx = i + delta,
13042 				};
13043 
13044 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
13045 				if (ret < 0) {
13046 					verbose(env, "adding tail call poke descriptor failed\n");
13047 					return ret;
13048 				}
13049 
13050 				insn->imm = ret + 1;
13051 				continue;
13052 			}
13053 
13054 			if (!bpf_map_ptr_unpriv(aux))
13055 				continue;
13056 
13057 			/* instead of changing every JIT dealing with tail_call
13058 			 * emit two extra insns:
13059 			 * if (index >= max_entries) goto out;
13060 			 * index &= array->index_mask;
13061 			 * to avoid out-of-bounds cpu speculation
13062 			 */
13063 			if (bpf_map_ptr_poisoned(aux)) {
13064 				verbose(env, "tail_call abusing map_ptr\n");
13065 				return -EINVAL;
13066 			}
13067 
13068 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13069 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
13070 						  map_ptr->max_entries, 2);
13071 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
13072 						    container_of(map_ptr,
13073 								 struct bpf_array,
13074 								 map)->index_mask);
13075 			insn_buf[2] = *insn;
13076 			cnt = 3;
13077 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13078 			if (!new_prog)
13079 				return -ENOMEM;
13080 
13081 			delta    += cnt - 1;
13082 			env->prog = prog = new_prog;
13083 			insn      = new_prog->insnsi + i + delta;
13084 			continue;
13085 		}
13086 
13087 		if (insn->imm == BPF_FUNC_timer_set_callback) {
13088 			/* The verifier will process callback_fn as many times as necessary
13089 			 * with different maps and the register states prepared by
13090 			 * set_timer_callback_state will be accurate.
13091 			 *
13092 			 * The following use case is valid:
13093 			 *   map1 is shared by prog1, prog2, prog3.
13094 			 *   prog1 calls bpf_timer_init for some map1 elements
13095 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
13096 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
13097 			 *   prog3 calls bpf_timer_start for some map1 elements.
13098 			 *     Those that were not both bpf_timer_init-ed and
13099 			 *     bpf_timer_set_callback-ed will return -EINVAL.
13100 			 */
13101 			struct bpf_insn ld_addrs[2] = {
13102 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
13103 			};
13104 
13105 			insn_buf[0] = ld_addrs[0];
13106 			insn_buf[1] = ld_addrs[1];
13107 			insn_buf[2] = *insn;
13108 			cnt = 3;
13109 
13110 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
13111 			if (!new_prog)
13112 				return -ENOMEM;
13113 
13114 			delta    += cnt - 1;
13115 			env->prog = prog = new_prog;
13116 			insn      = new_prog->insnsi + i + delta;
13117 			goto patch_call_imm;
13118 		}
13119 
13120 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
13121 		 * and other inlining handlers are currently limited to 64 bit
13122 		 * only.
13123 		 */
13124 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13125 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
13126 		     insn->imm == BPF_FUNC_map_update_elem ||
13127 		     insn->imm == BPF_FUNC_map_delete_elem ||
13128 		     insn->imm == BPF_FUNC_map_push_elem   ||
13129 		     insn->imm == BPF_FUNC_map_pop_elem    ||
13130 		     insn->imm == BPF_FUNC_map_peek_elem   ||
13131 		     insn->imm == BPF_FUNC_redirect_map    ||
13132 		     insn->imm == BPF_FUNC_for_each_map_elem)) {
13133 			aux = &env->insn_aux_data[i + delta];
13134 			if (bpf_map_ptr_poisoned(aux))
13135 				goto patch_call_imm;
13136 
13137 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
13138 			ops = map_ptr->ops;
13139 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
13140 			    ops->map_gen_lookup) {
13141 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
13142 				if (cnt == -EOPNOTSUPP)
13143 					goto patch_map_ops_generic;
13144 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
13145 					verbose(env, "bpf verifier is misconfigured\n");
13146 					return -EINVAL;
13147 				}
13148 
13149 				new_prog = bpf_patch_insn_data(env, i + delta,
13150 							       insn_buf, cnt);
13151 				if (!new_prog)
13152 					return -ENOMEM;
13153 
13154 				delta    += cnt - 1;
13155 				env->prog = prog = new_prog;
13156 				insn      = new_prog->insnsi + i + delta;
13157 				continue;
13158 			}
13159 
13160 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
13161 				     (void *(*)(struct bpf_map *map, void *key))NULL));
13162 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
13163 				     (int (*)(struct bpf_map *map, void *key))NULL));
13164 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
13165 				     (int (*)(struct bpf_map *map, void *key, void *value,
13166 					      u64 flags))NULL));
13167 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
13168 				     (int (*)(struct bpf_map *map, void *value,
13169 					      u64 flags))NULL));
13170 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
13171 				     (int (*)(struct bpf_map *map, void *value))NULL));
13172 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
13173 				     (int (*)(struct bpf_map *map, void *value))NULL));
13174 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
13175 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
13176 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
13177 				     (int (*)(struct bpf_map *map,
13178 					      bpf_callback_t callback_fn,
13179 					      void *callback_ctx,
13180 					      u64 flags))NULL));
13181 
13182 patch_map_ops_generic:
13183 			switch (insn->imm) {
13184 			case BPF_FUNC_map_lookup_elem:
13185 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
13186 				continue;
13187 			case BPF_FUNC_map_update_elem:
13188 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
13189 				continue;
13190 			case BPF_FUNC_map_delete_elem:
13191 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
13192 				continue;
13193 			case BPF_FUNC_map_push_elem:
13194 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
13195 				continue;
13196 			case BPF_FUNC_map_pop_elem:
13197 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
13198 				continue;
13199 			case BPF_FUNC_map_peek_elem:
13200 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
13201 				continue;
13202 			case BPF_FUNC_redirect_map:
13203 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
13204 				continue;
13205 			case BPF_FUNC_for_each_map_elem:
13206 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
13207 				continue;
13208 			}
13209 
13210 			goto patch_call_imm;
13211 		}
13212 
13213 		/* Implement bpf_jiffies64 inline. */
13214 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
13215 		    insn->imm == BPF_FUNC_jiffies64) {
13216 			struct bpf_insn ld_jiffies_addr[2] = {
13217 				BPF_LD_IMM64(BPF_REG_0,
13218 					     (unsigned long)&jiffies),
13219 			};
13220 
13221 			insn_buf[0] = ld_jiffies_addr[0];
13222 			insn_buf[1] = ld_jiffies_addr[1];
13223 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
13224 						  BPF_REG_0, 0);
13225 			cnt = 3;
13226 
13227 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
13228 						       cnt);
13229 			if (!new_prog)
13230 				return -ENOMEM;
13231 
13232 			delta    += cnt - 1;
13233 			env->prog = prog = new_prog;
13234 			insn      = new_prog->insnsi + i + delta;
13235 			continue;
13236 		}
13237 
13238 		/* Implement bpf_get_func_ip inline. */
13239 		if (prog_type == BPF_PROG_TYPE_TRACING &&
13240 		    insn->imm == BPF_FUNC_get_func_ip) {
13241 			/* Load IP address from ctx - 8 */
13242 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
13243 
13244 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
13245 			if (!new_prog)
13246 				return -ENOMEM;
13247 
13248 			env->prog = prog = new_prog;
13249 			insn      = new_prog->insnsi + i + delta;
13250 			continue;
13251 		}
13252 
13253 patch_call_imm:
13254 		fn = env->ops->get_func_proto(insn->imm, env->prog);
13255 		/* all functions that have prototype and verifier allowed
13256 		 * programs to call them, must be real in-kernel functions
13257 		 */
13258 		if (!fn->func) {
13259 			verbose(env,
13260 				"kernel subsystem misconfigured func %s#%d\n",
13261 				func_id_name(insn->imm), insn->imm);
13262 			return -EFAULT;
13263 		}
13264 		insn->imm = fn->func - __bpf_call_base;
13265 	}
13266 
13267 	/* Since poke tab is now finalized, publish aux to tracker. */
13268 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
13269 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
13270 		if (!map_ptr->ops->map_poke_track ||
13271 		    !map_ptr->ops->map_poke_untrack ||
13272 		    !map_ptr->ops->map_poke_run) {
13273 			verbose(env, "bpf verifier is misconfigured\n");
13274 			return -EINVAL;
13275 		}
13276 
13277 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
13278 		if (ret < 0) {
13279 			verbose(env, "tracking tail call prog failed\n");
13280 			return ret;
13281 		}
13282 	}
13283 
13284 	sort_kfunc_descs_by_imm(env->prog);
13285 
13286 	return 0;
13287 }
13288 
13289 static void free_states(struct bpf_verifier_env *env)
13290 {
13291 	struct bpf_verifier_state_list *sl, *sln;
13292 	int i;
13293 
13294 	sl = env->free_list;
13295 	while (sl) {
13296 		sln = sl->next;
13297 		free_verifier_state(&sl->state, false);
13298 		kfree(sl);
13299 		sl = sln;
13300 	}
13301 	env->free_list = NULL;
13302 
13303 	if (!env->explored_states)
13304 		return;
13305 
13306 	for (i = 0; i < state_htab_size(env); i++) {
13307 		sl = env->explored_states[i];
13308 
13309 		while (sl) {
13310 			sln = sl->next;
13311 			free_verifier_state(&sl->state, false);
13312 			kfree(sl);
13313 			sl = sln;
13314 		}
13315 		env->explored_states[i] = NULL;
13316 	}
13317 }
13318 
13319 static int do_check_common(struct bpf_verifier_env *env, int subprog)
13320 {
13321 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
13322 	struct bpf_verifier_state *state;
13323 	struct bpf_reg_state *regs;
13324 	int ret, i;
13325 
13326 	env->prev_linfo = NULL;
13327 	env->pass_cnt++;
13328 
13329 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
13330 	if (!state)
13331 		return -ENOMEM;
13332 	state->curframe = 0;
13333 	state->speculative = false;
13334 	state->branches = 1;
13335 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
13336 	if (!state->frame[0]) {
13337 		kfree(state);
13338 		return -ENOMEM;
13339 	}
13340 	env->cur_state = state;
13341 	init_func_state(env, state->frame[0],
13342 			BPF_MAIN_FUNC /* callsite */,
13343 			0 /* frameno */,
13344 			subprog);
13345 
13346 	regs = state->frame[state->curframe]->regs;
13347 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
13348 		ret = btf_prepare_func_args(env, subprog, regs);
13349 		if (ret)
13350 			goto out;
13351 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
13352 			if (regs[i].type == PTR_TO_CTX)
13353 				mark_reg_known_zero(env, regs, i);
13354 			else if (regs[i].type == SCALAR_VALUE)
13355 				mark_reg_unknown(env, regs, i);
13356 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
13357 				const u32 mem_size = regs[i].mem_size;
13358 
13359 				mark_reg_known_zero(env, regs, i);
13360 				regs[i].mem_size = mem_size;
13361 				regs[i].id = ++env->id_gen;
13362 			}
13363 		}
13364 	} else {
13365 		/* 1st arg to a function */
13366 		regs[BPF_REG_1].type = PTR_TO_CTX;
13367 		mark_reg_known_zero(env, regs, BPF_REG_1);
13368 		ret = btf_check_subprog_arg_match(env, subprog, regs);
13369 		if (ret == -EFAULT)
13370 			/* unlikely verifier bug. abort.
13371 			 * ret == 0 and ret < 0 are sadly acceptable for
13372 			 * main() function due to backward compatibility.
13373 			 * Like socket filter program may be written as:
13374 			 * int bpf_prog(struct pt_regs *ctx)
13375 			 * and never dereference that ctx in the program.
13376 			 * 'struct pt_regs' is a type mismatch for socket
13377 			 * filter that should be using 'struct __sk_buff'.
13378 			 */
13379 			goto out;
13380 	}
13381 
13382 	ret = do_check(env);
13383 out:
13384 	/* check for NULL is necessary, since cur_state can be freed inside
13385 	 * do_check() under memory pressure.
13386 	 */
13387 	if (env->cur_state) {
13388 		free_verifier_state(env->cur_state, true);
13389 		env->cur_state = NULL;
13390 	}
13391 	while (!pop_stack(env, NULL, NULL, false));
13392 	if (!ret && pop_log)
13393 		bpf_vlog_reset(&env->log, 0);
13394 	free_states(env);
13395 	return ret;
13396 }
13397 
13398 /* Verify all global functions in a BPF program one by one based on their BTF.
13399  * All global functions must pass verification. Otherwise the whole program is rejected.
13400  * Consider:
13401  * int bar(int);
13402  * int foo(int f)
13403  * {
13404  *    return bar(f);
13405  * }
13406  * int bar(int b)
13407  * {
13408  *    ...
13409  * }
13410  * foo() will be verified first for R1=any_scalar_value. During verification it
13411  * will be assumed that bar() already verified successfully and call to bar()
13412  * from foo() will be checked for type match only. Later bar() will be verified
13413  * independently to check that it's safe for R1=any_scalar_value.
13414  */
13415 static int do_check_subprogs(struct bpf_verifier_env *env)
13416 {
13417 	struct bpf_prog_aux *aux = env->prog->aux;
13418 	int i, ret;
13419 
13420 	if (!aux->func_info)
13421 		return 0;
13422 
13423 	for (i = 1; i < env->subprog_cnt; i++) {
13424 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
13425 			continue;
13426 		env->insn_idx = env->subprog_info[i].start;
13427 		WARN_ON_ONCE(env->insn_idx == 0);
13428 		ret = do_check_common(env, i);
13429 		if (ret) {
13430 			return ret;
13431 		} else if (env->log.level & BPF_LOG_LEVEL) {
13432 			verbose(env,
13433 				"Func#%d is safe for any args that match its prototype\n",
13434 				i);
13435 		}
13436 	}
13437 	return 0;
13438 }
13439 
13440 static int do_check_main(struct bpf_verifier_env *env)
13441 {
13442 	int ret;
13443 
13444 	env->insn_idx = 0;
13445 	ret = do_check_common(env, 0);
13446 	if (!ret)
13447 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
13448 	return ret;
13449 }
13450 
13451 
13452 static void print_verification_stats(struct bpf_verifier_env *env)
13453 {
13454 	int i;
13455 
13456 	if (env->log.level & BPF_LOG_STATS) {
13457 		verbose(env, "verification time %lld usec\n",
13458 			div_u64(env->verification_time, 1000));
13459 		verbose(env, "stack depth ");
13460 		for (i = 0; i < env->subprog_cnt; i++) {
13461 			u32 depth = env->subprog_info[i].stack_depth;
13462 
13463 			verbose(env, "%d", depth);
13464 			if (i + 1 < env->subprog_cnt)
13465 				verbose(env, "+");
13466 		}
13467 		verbose(env, "\n");
13468 	}
13469 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
13470 		"total_states %d peak_states %d mark_read %d\n",
13471 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
13472 		env->max_states_per_insn, env->total_states,
13473 		env->peak_states, env->longest_mark_read_walk);
13474 }
13475 
13476 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
13477 {
13478 	const struct btf_type *t, *func_proto;
13479 	const struct bpf_struct_ops *st_ops;
13480 	const struct btf_member *member;
13481 	struct bpf_prog *prog = env->prog;
13482 	u32 btf_id, member_idx;
13483 	const char *mname;
13484 
13485 	if (!prog->gpl_compatible) {
13486 		verbose(env, "struct ops programs must have a GPL compatible license\n");
13487 		return -EINVAL;
13488 	}
13489 
13490 	btf_id = prog->aux->attach_btf_id;
13491 	st_ops = bpf_struct_ops_find(btf_id);
13492 	if (!st_ops) {
13493 		verbose(env, "attach_btf_id %u is not a supported struct\n",
13494 			btf_id);
13495 		return -ENOTSUPP;
13496 	}
13497 
13498 	t = st_ops->type;
13499 	member_idx = prog->expected_attach_type;
13500 	if (member_idx >= btf_type_vlen(t)) {
13501 		verbose(env, "attach to invalid member idx %u of struct %s\n",
13502 			member_idx, st_ops->name);
13503 		return -EINVAL;
13504 	}
13505 
13506 	member = &btf_type_member(t)[member_idx];
13507 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
13508 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
13509 					       NULL);
13510 	if (!func_proto) {
13511 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
13512 			mname, member_idx, st_ops->name);
13513 		return -EINVAL;
13514 	}
13515 
13516 	if (st_ops->check_member) {
13517 		int err = st_ops->check_member(t, member);
13518 
13519 		if (err) {
13520 			verbose(env, "attach to unsupported member %s of struct %s\n",
13521 				mname, st_ops->name);
13522 			return err;
13523 		}
13524 	}
13525 
13526 	prog->aux->attach_func_proto = func_proto;
13527 	prog->aux->attach_func_name = mname;
13528 	env->ops = st_ops->verifier_ops;
13529 
13530 	return 0;
13531 }
13532 #define SECURITY_PREFIX "security_"
13533 
13534 static int check_attach_modify_return(unsigned long addr, const char *func_name)
13535 {
13536 	if (within_error_injection_list(addr) ||
13537 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
13538 		return 0;
13539 
13540 	return -EINVAL;
13541 }
13542 
13543 /* list of non-sleepable functions that are otherwise on
13544  * ALLOW_ERROR_INJECTION list
13545  */
13546 BTF_SET_START(btf_non_sleepable_error_inject)
13547 /* Three functions below can be called from sleepable and non-sleepable context.
13548  * Assume non-sleepable from bpf safety point of view.
13549  */
13550 BTF_ID(func, __filemap_add_folio)
13551 BTF_ID(func, should_fail_alloc_page)
13552 BTF_ID(func, should_failslab)
13553 BTF_SET_END(btf_non_sleepable_error_inject)
13554 
13555 static int check_non_sleepable_error_inject(u32 btf_id)
13556 {
13557 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
13558 }
13559 
13560 int bpf_check_attach_target(struct bpf_verifier_log *log,
13561 			    const struct bpf_prog *prog,
13562 			    const struct bpf_prog *tgt_prog,
13563 			    u32 btf_id,
13564 			    struct bpf_attach_target_info *tgt_info)
13565 {
13566 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13567 	const char prefix[] = "btf_trace_";
13568 	int ret = 0, subprog = -1, i;
13569 	const struct btf_type *t;
13570 	bool conservative = true;
13571 	const char *tname;
13572 	struct btf *btf;
13573 	long addr = 0;
13574 
13575 	if (!btf_id) {
13576 		bpf_log(log, "Tracing programs must provide btf_id\n");
13577 		return -EINVAL;
13578 	}
13579 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13580 	if (!btf) {
13581 		bpf_log(log,
13582 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13583 		return -EINVAL;
13584 	}
13585 	t = btf_type_by_id(btf, btf_id);
13586 	if (!t) {
13587 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13588 		return -EINVAL;
13589 	}
13590 	tname = btf_name_by_offset(btf, t->name_off);
13591 	if (!tname) {
13592 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13593 		return -EINVAL;
13594 	}
13595 	if (tgt_prog) {
13596 		struct bpf_prog_aux *aux = tgt_prog->aux;
13597 
13598 		for (i = 0; i < aux->func_info_cnt; i++)
13599 			if (aux->func_info[i].type_id == btf_id) {
13600 				subprog = i;
13601 				break;
13602 			}
13603 		if (subprog == -1) {
13604 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
13605 			return -EINVAL;
13606 		}
13607 		conservative = aux->func_info_aux[subprog].unreliable;
13608 		if (prog_extension) {
13609 			if (conservative) {
13610 				bpf_log(log,
13611 					"Cannot replace static functions\n");
13612 				return -EINVAL;
13613 			}
13614 			if (!prog->jit_requested) {
13615 				bpf_log(log,
13616 					"Extension programs should be JITed\n");
13617 				return -EINVAL;
13618 			}
13619 		}
13620 		if (!tgt_prog->jited) {
13621 			bpf_log(log, "Can attach to only JITed progs\n");
13622 			return -EINVAL;
13623 		}
13624 		if (tgt_prog->type == prog->type) {
13625 			/* Cannot fentry/fexit another fentry/fexit program.
13626 			 * Cannot attach program extension to another extension.
13627 			 * It's ok to attach fentry/fexit to extension program.
13628 			 */
13629 			bpf_log(log, "Cannot recursively attach\n");
13630 			return -EINVAL;
13631 		}
13632 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13633 		    prog_extension &&
13634 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13635 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13636 			/* Program extensions can extend all program types
13637 			 * except fentry/fexit. The reason is the following.
13638 			 * The fentry/fexit programs are used for performance
13639 			 * analysis, stats and can be attached to any program
13640 			 * type except themselves. When extension program is
13641 			 * replacing XDP function it is necessary to allow
13642 			 * performance analysis of all functions. Both original
13643 			 * XDP program and its program extension. Hence
13644 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13645 			 * allowed. If extending of fentry/fexit was allowed it
13646 			 * would be possible to create long call chain
13647 			 * fentry->extension->fentry->extension beyond
13648 			 * reasonable stack size. Hence extending fentry is not
13649 			 * allowed.
13650 			 */
13651 			bpf_log(log, "Cannot extend fentry/fexit\n");
13652 			return -EINVAL;
13653 		}
13654 	} else {
13655 		if (prog_extension) {
13656 			bpf_log(log, "Cannot replace kernel functions\n");
13657 			return -EINVAL;
13658 		}
13659 	}
13660 
13661 	switch (prog->expected_attach_type) {
13662 	case BPF_TRACE_RAW_TP:
13663 		if (tgt_prog) {
13664 			bpf_log(log,
13665 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13666 			return -EINVAL;
13667 		}
13668 		if (!btf_type_is_typedef(t)) {
13669 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
13670 				btf_id);
13671 			return -EINVAL;
13672 		}
13673 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13674 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13675 				btf_id, tname);
13676 			return -EINVAL;
13677 		}
13678 		tname += sizeof(prefix) - 1;
13679 		t = btf_type_by_id(btf, t->type);
13680 		if (!btf_type_is_ptr(t))
13681 			/* should never happen in valid vmlinux build */
13682 			return -EINVAL;
13683 		t = btf_type_by_id(btf, t->type);
13684 		if (!btf_type_is_func_proto(t))
13685 			/* should never happen in valid vmlinux build */
13686 			return -EINVAL;
13687 
13688 		break;
13689 	case BPF_TRACE_ITER:
13690 		if (!btf_type_is_func(t)) {
13691 			bpf_log(log, "attach_btf_id %u is not a function\n",
13692 				btf_id);
13693 			return -EINVAL;
13694 		}
13695 		t = btf_type_by_id(btf, t->type);
13696 		if (!btf_type_is_func_proto(t))
13697 			return -EINVAL;
13698 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13699 		if (ret)
13700 			return ret;
13701 		break;
13702 	default:
13703 		if (!prog_extension)
13704 			return -EINVAL;
13705 		fallthrough;
13706 	case BPF_MODIFY_RETURN:
13707 	case BPF_LSM_MAC:
13708 	case BPF_TRACE_FENTRY:
13709 	case BPF_TRACE_FEXIT:
13710 		if (!btf_type_is_func(t)) {
13711 			bpf_log(log, "attach_btf_id %u is not a function\n",
13712 				btf_id);
13713 			return -EINVAL;
13714 		}
13715 		if (prog_extension &&
13716 		    btf_check_type_match(log, prog, btf, t))
13717 			return -EINVAL;
13718 		t = btf_type_by_id(btf, t->type);
13719 		if (!btf_type_is_func_proto(t))
13720 			return -EINVAL;
13721 
13722 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13723 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13724 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13725 			return -EINVAL;
13726 
13727 		if (tgt_prog && conservative)
13728 			t = NULL;
13729 
13730 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13731 		if (ret < 0)
13732 			return ret;
13733 
13734 		if (tgt_prog) {
13735 			if (subprog == 0)
13736 				addr = (long) tgt_prog->bpf_func;
13737 			else
13738 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13739 		} else {
13740 			addr = kallsyms_lookup_name(tname);
13741 			if (!addr) {
13742 				bpf_log(log,
13743 					"The address of function %s cannot be found\n",
13744 					tname);
13745 				return -ENOENT;
13746 			}
13747 		}
13748 
13749 		if (prog->aux->sleepable) {
13750 			ret = -EINVAL;
13751 			switch (prog->type) {
13752 			case BPF_PROG_TYPE_TRACING:
13753 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
13754 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13755 				 */
13756 				if (!check_non_sleepable_error_inject(btf_id) &&
13757 				    within_error_injection_list(addr))
13758 					ret = 0;
13759 				break;
13760 			case BPF_PROG_TYPE_LSM:
13761 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
13762 				 * Only some of them are sleepable.
13763 				 */
13764 				if (bpf_lsm_is_sleepable_hook(btf_id))
13765 					ret = 0;
13766 				break;
13767 			default:
13768 				break;
13769 			}
13770 			if (ret) {
13771 				bpf_log(log, "%s is not sleepable\n", tname);
13772 				return ret;
13773 			}
13774 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13775 			if (tgt_prog) {
13776 				bpf_log(log, "can't modify return codes of BPF programs\n");
13777 				return -EINVAL;
13778 			}
13779 			ret = check_attach_modify_return(addr, tname);
13780 			if (ret) {
13781 				bpf_log(log, "%s() is not modifiable\n", tname);
13782 				return ret;
13783 			}
13784 		}
13785 
13786 		break;
13787 	}
13788 	tgt_info->tgt_addr = addr;
13789 	tgt_info->tgt_name = tname;
13790 	tgt_info->tgt_type = t;
13791 	return 0;
13792 }
13793 
13794 BTF_SET_START(btf_id_deny)
13795 BTF_ID_UNUSED
13796 #ifdef CONFIG_SMP
13797 BTF_ID(func, migrate_disable)
13798 BTF_ID(func, migrate_enable)
13799 #endif
13800 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13801 BTF_ID(func, rcu_read_unlock_strict)
13802 #endif
13803 BTF_SET_END(btf_id_deny)
13804 
13805 static int check_attach_btf_id(struct bpf_verifier_env *env)
13806 {
13807 	struct bpf_prog *prog = env->prog;
13808 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13809 	struct bpf_attach_target_info tgt_info = {};
13810 	u32 btf_id = prog->aux->attach_btf_id;
13811 	struct bpf_trampoline *tr;
13812 	int ret;
13813 	u64 key;
13814 
13815 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
13816 		if (prog->aux->sleepable)
13817 			/* attach_btf_id checked to be zero already */
13818 			return 0;
13819 		verbose(env, "Syscall programs can only be sleepable\n");
13820 		return -EINVAL;
13821 	}
13822 
13823 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13824 	    prog->type != BPF_PROG_TYPE_LSM) {
13825 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13826 		return -EINVAL;
13827 	}
13828 
13829 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13830 		return check_struct_ops_btf_id(env);
13831 
13832 	if (prog->type != BPF_PROG_TYPE_TRACING &&
13833 	    prog->type != BPF_PROG_TYPE_LSM &&
13834 	    prog->type != BPF_PROG_TYPE_EXT)
13835 		return 0;
13836 
13837 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13838 	if (ret)
13839 		return ret;
13840 
13841 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13842 		/* to make freplace equivalent to their targets, they need to
13843 		 * inherit env->ops and expected_attach_type for the rest of the
13844 		 * verification
13845 		 */
13846 		env->ops = bpf_verifier_ops[tgt_prog->type];
13847 		prog->expected_attach_type = tgt_prog->expected_attach_type;
13848 	}
13849 
13850 	/* store info about the attachment target that will be used later */
13851 	prog->aux->attach_func_proto = tgt_info.tgt_type;
13852 	prog->aux->attach_func_name = tgt_info.tgt_name;
13853 
13854 	if (tgt_prog) {
13855 		prog->aux->saved_dst_prog_type = tgt_prog->type;
13856 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13857 	}
13858 
13859 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13860 		prog->aux->attach_btf_trace = true;
13861 		return 0;
13862 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13863 		if (!bpf_iter_prog_supported(prog))
13864 			return -EINVAL;
13865 		return 0;
13866 	}
13867 
13868 	if (prog->type == BPF_PROG_TYPE_LSM) {
13869 		ret = bpf_lsm_verify_prog(&env->log, prog);
13870 		if (ret < 0)
13871 			return ret;
13872 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
13873 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
13874 		return -EINVAL;
13875 	}
13876 
13877 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13878 	tr = bpf_trampoline_get(key, &tgt_info);
13879 	if (!tr)
13880 		return -ENOMEM;
13881 
13882 	prog->aux->dst_trampoline = tr;
13883 	return 0;
13884 }
13885 
13886 struct btf *bpf_get_btf_vmlinux(void)
13887 {
13888 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13889 		mutex_lock(&bpf_verifier_lock);
13890 		if (!btf_vmlinux)
13891 			btf_vmlinux = btf_parse_vmlinux();
13892 		mutex_unlock(&bpf_verifier_lock);
13893 	}
13894 	return btf_vmlinux;
13895 }
13896 
13897 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr)
13898 {
13899 	u64 start_time = ktime_get_ns();
13900 	struct bpf_verifier_env *env;
13901 	struct bpf_verifier_log *log;
13902 	int i, len, ret = -EINVAL;
13903 	bool is_priv;
13904 
13905 	/* no program is valid */
13906 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13907 		return -EINVAL;
13908 
13909 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
13910 	 * allocate/free it every time bpf_check() is called
13911 	 */
13912 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13913 	if (!env)
13914 		return -ENOMEM;
13915 	log = &env->log;
13916 
13917 	len = (*prog)->len;
13918 	env->insn_aux_data =
13919 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13920 	ret = -ENOMEM;
13921 	if (!env->insn_aux_data)
13922 		goto err_free_env;
13923 	for (i = 0; i < len; i++)
13924 		env->insn_aux_data[i].orig_idx = i;
13925 	env->prog = *prog;
13926 	env->ops = bpf_verifier_ops[env->prog->type];
13927 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
13928 	is_priv = bpf_capable();
13929 
13930 	bpf_get_btf_vmlinux();
13931 
13932 	/* grab the mutex to protect few globals used by verifier */
13933 	if (!is_priv)
13934 		mutex_lock(&bpf_verifier_lock);
13935 
13936 	if (attr->log_level || attr->log_buf || attr->log_size) {
13937 		/* user requested verbose verifier output
13938 		 * and supplied buffer to store the verification trace
13939 		 */
13940 		log->level = attr->log_level;
13941 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13942 		log->len_total = attr->log_size;
13943 
13944 		ret = -EINVAL;
13945 		/* log attributes have to be sane */
13946 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13947 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13948 			goto err_unlock;
13949 	}
13950 
13951 	if (IS_ERR(btf_vmlinux)) {
13952 		/* Either gcc or pahole or kernel are broken. */
13953 		verbose(env, "in-kernel BTF is malformed\n");
13954 		ret = PTR_ERR(btf_vmlinux);
13955 		goto skip_full_check;
13956 	}
13957 
13958 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13959 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13960 		env->strict_alignment = true;
13961 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13962 		env->strict_alignment = false;
13963 
13964 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13965 	env->allow_uninit_stack = bpf_allow_uninit_stack();
13966 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13967 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
13968 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
13969 	env->bpf_capable = bpf_capable();
13970 
13971 	if (is_priv)
13972 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13973 
13974 	env->explored_states = kvcalloc(state_htab_size(env),
13975 				       sizeof(struct bpf_verifier_state_list *),
13976 				       GFP_USER);
13977 	ret = -ENOMEM;
13978 	if (!env->explored_states)
13979 		goto skip_full_check;
13980 
13981 	ret = add_subprog_and_kfunc(env);
13982 	if (ret < 0)
13983 		goto skip_full_check;
13984 
13985 	ret = check_subprogs(env);
13986 	if (ret < 0)
13987 		goto skip_full_check;
13988 
13989 	ret = check_btf_info(env, attr, uattr);
13990 	if (ret < 0)
13991 		goto skip_full_check;
13992 
13993 	ret = check_attach_btf_id(env);
13994 	if (ret)
13995 		goto skip_full_check;
13996 
13997 	ret = resolve_pseudo_ldimm64(env);
13998 	if (ret < 0)
13999 		goto skip_full_check;
14000 
14001 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
14002 		ret = bpf_prog_offload_verifier_prep(env->prog);
14003 		if (ret)
14004 			goto skip_full_check;
14005 	}
14006 
14007 	ret = check_cfg(env);
14008 	if (ret < 0)
14009 		goto skip_full_check;
14010 
14011 	ret = do_check_subprogs(env);
14012 	ret = ret ?: do_check_main(env);
14013 
14014 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
14015 		ret = bpf_prog_offload_finalize(env);
14016 
14017 skip_full_check:
14018 	kvfree(env->explored_states);
14019 
14020 	if (ret == 0)
14021 		ret = check_max_stack_depth(env);
14022 
14023 	/* instruction rewrites happen after this point */
14024 	if (is_priv) {
14025 		if (ret == 0)
14026 			opt_hard_wire_dead_code_branches(env);
14027 		if (ret == 0)
14028 			ret = opt_remove_dead_code(env);
14029 		if (ret == 0)
14030 			ret = opt_remove_nops(env);
14031 	} else {
14032 		if (ret == 0)
14033 			sanitize_dead_code(env);
14034 	}
14035 
14036 	if (ret == 0)
14037 		/* program is valid, convert *(u32*)(ctx + off) accesses */
14038 		ret = convert_ctx_accesses(env);
14039 
14040 	if (ret == 0)
14041 		ret = do_misc_fixups(env);
14042 
14043 	/* do 32-bit optimization after insn patching has done so those patched
14044 	 * insns could be handled correctly.
14045 	 */
14046 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
14047 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
14048 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
14049 								     : false;
14050 	}
14051 
14052 	if (ret == 0)
14053 		ret = fixup_call_args(env);
14054 
14055 	env->verification_time = ktime_get_ns() - start_time;
14056 	print_verification_stats(env);
14057 	env->prog->aux->verified_insns = env->insn_processed;
14058 
14059 	if (log->level && bpf_verifier_log_full(log))
14060 		ret = -ENOSPC;
14061 	if (log->level && !log->ubuf) {
14062 		ret = -EFAULT;
14063 		goto err_release_maps;
14064 	}
14065 
14066 	if (ret)
14067 		goto err_release_maps;
14068 
14069 	if (env->used_map_cnt) {
14070 		/* if program passed verifier, update used_maps in bpf_prog_info */
14071 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
14072 							  sizeof(env->used_maps[0]),
14073 							  GFP_KERNEL);
14074 
14075 		if (!env->prog->aux->used_maps) {
14076 			ret = -ENOMEM;
14077 			goto err_release_maps;
14078 		}
14079 
14080 		memcpy(env->prog->aux->used_maps, env->used_maps,
14081 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
14082 		env->prog->aux->used_map_cnt = env->used_map_cnt;
14083 	}
14084 	if (env->used_btf_cnt) {
14085 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
14086 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
14087 							  sizeof(env->used_btfs[0]),
14088 							  GFP_KERNEL);
14089 		if (!env->prog->aux->used_btfs) {
14090 			ret = -ENOMEM;
14091 			goto err_release_maps;
14092 		}
14093 
14094 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
14095 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
14096 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
14097 	}
14098 	if (env->used_map_cnt || env->used_btf_cnt) {
14099 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
14100 		 * bpf_ld_imm64 instructions
14101 		 */
14102 		convert_pseudo_ld_imm64(env);
14103 	}
14104 
14105 	adjust_btf_func(env);
14106 
14107 err_release_maps:
14108 	if (!env->prog->aux->used_maps)
14109 		/* if we didn't copy map pointers into bpf_prog_info, release
14110 		 * them now. Otherwise free_used_maps() will release them.
14111 		 */
14112 		release_maps(env);
14113 	if (!env->prog->aux->used_btfs)
14114 		release_btfs(env);
14115 
14116 	/* extension progs temporarily inherit the attach_type of their targets
14117 	   for verification purposes, so set it back to zero before returning
14118 	 */
14119 	if (env->prog->type == BPF_PROG_TYPE_EXT)
14120 		env->prog->expected_attach_type = 0;
14121 
14122 	*prog = env->prog;
14123 err_unlock:
14124 	if (!is_priv)
14125 		mutex_unlock(&bpf_verifier_lock);
14126 	vfree(env->insn_aux_data);
14127 err_free_env:
14128 	kfree(env);
14129 	return ret;
14130 }
14131