xref: /openbmc/linux/kernel/bpf/verifier.c (revision a8da474e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  *
3  * This program is free software; you can redistribute it and/or
4  * modify it under the terms of version 2 of the GNU General Public
5  * License as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful, but
8  * WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10  * General Public License for more details.
11  */
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/bpf.h>
16 #include <linux/filter.h>
17 #include <net/netlink.h>
18 #include <linux/file.h>
19 #include <linux/vmalloc.h>
20 
21 /* bpf_check() is a static code analyzer that walks eBPF program
22  * instruction by instruction and updates register/stack state.
23  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
24  *
25  * The first pass is depth-first-search to check that the program is a DAG.
26  * It rejects the following programs:
27  * - larger than BPF_MAXINSNS insns
28  * - if loop is present (detected via back-edge)
29  * - unreachable insns exist (shouldn't be a forest. program = one function)
30  * - out of bounds or malformed jumps
31  * The second pass is all possible path descent from the 1st insn.
32  * Since it's analyzing all pathes through the program, the length of the
33  * analysis is limited to 32k insn, which may be hit even if total number of
34  * insn is less then 4K, but there are too many branches that change stack/regs.
35  * Number of 'branches to be analyzed' is limited to 1k
36  *
37  * On entry to each instruction, each register has a type, and the instruction
38  * changes the types of the registers depending on instruction semantics.
39  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
40  * copied to R1.
41  *
42  * All registers are 64-bit.
43  * R0 - return register
44  * R1-R5 argument passing registers
45  * R6-R9 callee saved registers
46  * R10 - frame pointer read-only
47  *
48  * At the start of BPF program the register R1 contains a pointer to bpf_context
49  * and has type PTR_TO_CTX.
50  *
51  * Verifier tracks arithmetic operations on pointers in case:
52  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
53  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
54  * 1st insn copies R10 (which has FRAME_PTR) type into R1
55  * and 2nd arithmetic instruction is pattern matched to recognize
56  * that it wants to construct a pointer to some element within stack.
57  * So after 2nd insn, the register R1 has type PTR_TO_STACK
58  * (and -20 constant is saved for further stack bounds checking).
59  * Meaning that this reg is a pointer to stack plus known immediate constant.
60  *
61  * Most of the time the registers have UNKNOWN_VALUE type, which
62  * means the register has some value, but it's not a valid pointer.
63  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
64  *
65  * When verifier sees load or store instructions the type of base register
66  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
67  * types recognized by check_mem_access() function.
68  *
69  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
70  * and the range of [ptr, ptr + map's value_size) is accessible.
71  *
72  * registers used to pass values to function calls are checked against
73  * function argument constraints.
74  *
75  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
76  * It means that the register type passed to this function must be
77  * PTR_TO_STACK and it will be used inside the function as
78  * 'pointer to map element key'
79  *
80  * For example the argument constraints for bpf_map_lookup_elem():
81  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
82  *   .arg1_type = ARG_CONST_MAP_PTR,
83  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
84  *
85  * ret_type says that this function returns 'pointer to map elem value or null'
86  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
87  * 2nd argument should be a pointer to stack, which will be used inside
88  * the helper function as a pointer to map element key.
89  *
90  * On the kernel side the helper function looks like:
91  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
92  * {
93  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
94  *    void *key = (void *) (unsigned long) r2;
95  *    void *value;
96  *
97  *    here kernel can access 'key' and 'map' pointers safely, knowing that
98  *    [key, key + map->key_size) bytes are valid and were initialized on
99  *    the stack of eBPF program.
100  * }
101  *
102  * Corresponding eBPF program may look like:
103  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
104  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
105  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
106  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
107  * here verifier looks at prototype of map_lookup_elem() and sees:
108  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
109  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
110  *
111  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
112  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
113  * and were initialized prior to this call.
114  * If it's ok, then verifier allows this BPF_CALL insn and looks at
115  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
116  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
117  * returns ether pointer to map value or NULL.
118  *
119  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
120  * insn, the register holding that pointer in the true branch changes state to
121  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
122  * branch. See check_cond_jmp_op().
123  *
124  * After the call R0 is set to return type of the function and registers R1-R5
125  * are set to NOT_INIT to indicate that they are no longer readable.
126  */
127 
128 /* types of values stored in eBPF registers */
129 enum bpf_reg_type {
130 	NOT_INIT = 0,		 /* nothing was written into register */
131 	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */
132 	PTR_TO_CTX,		 /* reg points to bpf_context */
133 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
134 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
135 	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */
136 	FRAME_PTR,		 /* reg == frame_pointer */
137 	PTR_TO_STACK,		 /* reg == frame_pointer + imm */
138 	CONST_IMM,		 /* constant integer value */
139 };
140 
141 struct reg_state {
142 	enum bpf_reg_type type;
143 	union {
144 		/* valid when type == CONST_IMM | PTR_TO_STACK */
145 		int imm;
146 
147 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
148 		 *   PTR_TO_MAP_VALUE_OR_NULL
149 		 */
150 		struct bpf_map *map_ptr;
151 	};
152 };
153 
154 enum bpf_stack_slot_type {
155 	STACK_INVALID,    /* nothing was stored in this stack slot */
156 	STACK_SPILL,      /* register spilled into stack */
157 	STACK_MISC	  /* BPF program wrote some data into this slot */
158 };
159 
160 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
161 
162 /* state of the program:
163  * type of all registers and stack info
164  */
165 struct verifier_state {
166 	struct reg_state regs[MAX_BPF_REG];
167 	u8 stack_slot_type[MAX_BPF_STACK];
168 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
169 };
170 
171 /* linked list of verifier states used to prune search */
172 struct verifier_state_list {
173 	struct verifier_state state;
174 	struct verifier_state_list *next;
175 };
176 
177 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
178 struct verifier_stack_elem {
179 	/* verifer state is 'st'
180 	 * before processing instruction 'insn_idx'
181 	 * and after processing instruction 'prev_insn_idx'
182 	 */
183 	struct verifier_state st;
184 	int insn_idx;
185 	int prev_insn_idx;
186 	struct verifier_stack_elem *next;
187 };
188 
189 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
190 
191 /* single container for all structs
192  * one verifier_env per bpf_check() call
193  */
194 struct verifier_env {
195 	struct bpf_prog *prog;		/* eBPF program being verified */
196 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
197 	int stack_size;			/* number of states to be processed */
198 	struct verifier_state cur_state; /* current verifier state */
199 	struct verifier_state_list **explored_states; /* search pruning optimization */
200 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
201 	u32 used_map_cnt;		/* number of used maps */
202 	bool allow_ptr_leaks;
203 };
204 
205 /* verbose verifier prints what it's seeing
206  * bpf_check() is called under lock, so no race to access these global vars
207  */
208 static u32 log_level, log_size, log_len;
209 static char *log_buf;
210 
211 static DEFINE_MUTEX(bpf_verifier_lock);
212 
213 /* log_level controls verbosity level of eBPF verifier.
214  * verbose() is used to dump the verification trace to the log, so the user
215  * can figure out what's wrong with the program
216  */
217 static __printf(1, 2) void verbose(const char *fmt, ...)
218 {
219 	va_list args;
220 
221 	if (log_level == 0 || log_len >= log_size - 1)
222 		return;
223 
224 	va_start(args, fmt);
225 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
226 	va_end(args);
227 }
228 
229 /* string representation of 'enum bpf_reg_type' */
230 static const char * const reg_type_str[] = {
231 	[NOT_INIT]		= "?",
232 	[UNKNOWN_VALUE]		= "inv",
233 	[PTR_TO_CTX]		= "ctx",
234 	[CONST_PTR_TO_MAP]	= "map_ptr",
235 	[PTR_TO_MAP_VALUE]	= "map_value",
236 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
237 	[FRAME_PTR]		= "fp",
238 	[PTR_TO_STACK]		= "fp",
239 	[CONST_IMM]		= "imm",
240 };
241 
242 static const struct {
243 	int map_type;
244 	int func_id;
245 } func_limit[] = {
246 	{BPF_MAP_TYPE_PROG_ARRAY, BPF_FUNC_tail_call},
247 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_read},
248 	{BPF_MAP_TYPE_PERF_EVENT_ARRAY, BPF_FUNC_perf_event_output},
249 };
250 
251 static void print_verifier_state(struct verifier_env *env)
252 {
253 	enum bpf_reg_type t;
254 	int i;
255 
256 	for (i = 0; i < MAX_BPF_REG; i++) {
257 		t = env->cur_state.regs[i].type;
258 		if (t == NOT_INIT)
259 			continue;
260 		verbose(" R%d=%s", i, reg_type_str[t]);
261 		if (t == CONST_IMM || t == PTR_TO_STACK)
262 			verbose("%d", env->cur_state.regs[i].imm);
263 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
264 			 t == PTR_TO_MAP_VALUE_OR_NULL)
265 			verbose("(ks=%d,vs=%d)",
266 				env->cur_state.regs[i].map_ptr->key_size,
267 				env->cur_state.regs[i].map_ptr->value_size);
268 	}
269 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
270 		if (env->cur_state.stack_slot_type[i] == STACK_SPILL)
271 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
272 				reg_type_str[env->cur_state.spilled_regs[i / BPF_REG_SIZE].type]);
273 	}
274 	verbose("\n");
275 }
276 
277 static const char *const bpf_class_string[] = {
278 	[BPF_LD]    = "ld",
279 	[BPF_LDX]   = "ldx",
280 	[BPF_ST]    = "st",
281 	[BPF_STX]   = "stx",
282 	[BPF_ALU]   = "alu",
283 	[BPF_JMP]   = "jmp",
284 	[BPF_RET]   = "BUG",
285 	[BPF_ALU64] = "alu64",
286 };
287 
288 static const char *const bpf_alu_string[16] = {
289 	[BPF_ADD >> 4]  = "+=",
290 	[BPF_SUB >> 4]  = "-=",
291 	[BPF_MUL >> 4]  = "*=",
292 	[BPF_DIV >> 4]  = "/=",
293 	[BPF_OR  >> 4]  = "|=",
294 	[BPF_AND >> 4]  = "&=",
295 	[BPF_LSH >> 4]  = "<<=",
296 	[BPF_RSH >> 4]  = ">>=",
297 	[BPF_NEG >> 4]  = "neg",
298 	[BPF_MOD >> 4]  = "%=",
299 	[BPF_XOR >> 4]  = "^=",
300 	[BPF_MOV >> 4]  = "=",
301 	[BPF_ARSH >> 4] = "s>>=",
302 	[BPF_END >> 4]  = "endian",
303 };
304 
305 static const char *const bpf_ldst_string[] = {
306 	[BPF_W >> 3]  = "u32",
307 	[BPF_H >> 3]  = "u16",
308 	[BPF_B >> 3]  = "u8",
309 	[BPF_DW >> 3] = "u64",
310 };
311 
312 static const char *const bpf_jmp_string[16] = {
313 	[BPF_JA >> 4]   = "jmp",
314 	[BPF_JEQ >> 4]  = "==",
315 	[BPF_JGT >> 4]  = ">",
316 	[BPF_JGE >> 4]  = ">=",
317 	[BPF_JSET >> 4] = "&",
318 	[BPF_JNE >> 4]  = "!=",
319 	[BPF_JSGT >> 4] = "s>",
320 	[BPF_JSGE >> 4] = "s>=",
321 	[BPF_CALL >> 4] = "call",
322 	[BPF_EXIT >> 4] = "exit",
323 };
324 
325 static void print_bpf_insn(struct bpf_insn *insn)
326 {
327 	u8 class = BPF_CLASS(insn->code);
328 
329 	if (class == BPF_ALU || class == BPF_ALU64) {
330 		if (BPF_SRC(insn->code) == BPF_X)
331 			verbose("(%02x) %sr%d %s %sr%d\n",
332 				insn->code, class == BPF_ALU ? "(u32) " : "",
333 				insn->dst_reg,
334 				bpf_alu_string[BPF_OP(insn->code) >> 4],
335 				class == BPF_ALU ? "(u32) " : "",
336 				insn->src_reg);
337 		else
338 			verbose("(%02x) %sr%d %s %s%d\n",
339 				insn->code, class == BPF_ALU ? "(u32) " : "",
340 				insn->dst_reg,
341 				bpf_alu_string[BPF_OP(insn->code) >> 4],
342 				class == BPF_ALU ? "(u32) " : "",
343 				insn->imm);
344 	} else if (class == BPF_STX) {
345 		if (BPF_MODE(insn->code) == BPF_MEM)
346 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
347 				insn->code,
348 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
349 				insn->dst_reg,
350 				insn->off, insn->src_reg);
351 		else if (BPF_MODE(insn->code) == BPF_XADD)
352 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
353 				insn->code,
354 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
355 				insn->dst_reg, insn->off,
356 				insn->src_reg);
357 		else
358 			verbose("BUG_%02x\n", insn->code);
359 	} else if (class == BPF_ST) {
360 		if (BPF_MODE(insn->code) != BPF_MEM) {
361 			verbose("BUG_st_%02x\n", insn->code);
362 			return;
363 		}
364 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
365 			insn->code,
366 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
367 			insn->dst_reg,
368 			insn->off, insn->imm);
369 	} else if (class == BPF_LDX) {
370 		if (BPF_MODE(insn->code) != BPF_MEM) {
371 			verbose("BUG_ldx_%02x\n", insn->code);
372 			return;
373 		}
374 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
375 			insn->code, insn->dst_reg,
376 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
377 			insn->src_reg, insn->off);
378 	} else if (class == BPF_LD) {
379 		if (BPF_MODE(insn->code) == BPF_ABS) {
380 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
381 				insn->code,
382 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
383 				insn->imm);
384 		} else if (BPF_MODE(insn->code) == BPF_IND) {
385 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
386 				insn->code,
387 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 				insn->src_reg, insn->imm);
389 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
390 			verbose("(%02x) r%d = 0x%x\n",
391 				insn->code, insn->dst_reg, insn->imm);
392 		} else {
393 			verbose("BUG_ld_%02x\n", insn->code);
394 			return;
395 		}
396 	} else if (class == BPF_JMP) {
397 		u8 opcode = BPF_OP(insn->code);
398 
399 		if (opcode == BPF_CALL) {
400 			verbose("(%02x) call %d\n", insn->code, insn->imm);
401 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
402 			verbose("(%02x) goto pc%+d\n",
403 				insn->code, insn->off);
404 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
405 			verbose("(%02x) exit\n", insn->code);
406 		} else if (BPF_SRC(insn->code) == BPF_X) {
407 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
408 				insn->code, insn->dst_reg,
409 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
410 				insn->src_reg, insn->off);
411 		} else {
412 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
413 				insn->code, insn->dst_reg,
414 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
415 				insn->imm, insn->off);
416 		}
417 	} else {
418 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
419 	}
420 }
421 
422 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
423 {
424 	struct verifier_stack_elem *elem;
425 	int insn_idx;
426 
427 	if (env->head == NULL)
428 		return -1;
429 
430 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
431 	insn_idx = env->head->insn_idx;
432 	if (prev_insn_idx)
433 		*prev_insn_idx = env->head->prev_insn_idx;
434 	elem = env->head->next;
435 	kfree(env->head);
436 	env->head = elem;
437 	env->stack_size--;
438 	return insn_idx;
439 }
440 
441 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
442 					 int prev_insn_idx)
443 {
444 	struct verifier_stack_elem *elem;
445 
446 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
447 	if (!elem)
448 		goto err;
449 
450 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
451 	elem->insn_idx = insn_idx;
452 	elem->prev_insn_idx = prev_insn_idx;
453 	elem->next = env->head;
454 	env->head = elem;
455 	env->stack_size++;
456 	if (env->stack_size > 1024) {
457 		verbose("BPF program is too complex\n");
458 		goto err;
459 	}
460 	return &elem->st;
461 err:
462 	/* pop all elements and return */
463 	while (pop_stack(env, NULL) >= 0);
464 	return NULL;
465 }
466 
467 #define CALLER_SAVED_REGS 6
468 static const int caller_saved[CALLER_SAVED_REGS] = {
469 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
470 };
471 
472 static void init_reg_state(struct reg_state *regs)
473 {
474 	int i;
475 
476 	for (i = 0; i < MAX_BPF_REG; i++) {
477 		regs[i].type = NOT_INIT;
478 		regs[i].imm = 0;
479 		regs[i].map_ptr = NULL;
480 	}
481 
482 	/* frame pointer */
483 	regs[BPF_REG_FP].type = FRAME_PTR;
484 
485 	/* 1st arg to a function */
486 	regs[BPF_REG_1].type = PTR_TO_CTX;
487 }
488 
489 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
490 {
491 	BUG_ON(regno >= MAX_BPF_REG);
492 	regs[regno].type = UNKNOWN_VALUE;
493 	regs[regno].imm = 0;
494 	regs[regno].map_ptr = NULL;
495 }
496 
497 enum reg_arg_type {
498 	SRC_OP,		/* register is used as source operand */
499 	DST_OP,		/* register is used as destination operand */
500 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
501 };
502 
503 static int check_reg_arg(struct reg_state *regs, u32 regno,
504 			 enum reg_arg_type t)
505 {
506 	if (regno >= MAX_BPF_REG) {
507 		verbose("R%d is invalid\n", regno);
508 		return -EINVAL;
509 	}
510 
511 	if (t == SRC_OP) {
512 		/* check whether register used as source operand can be read */
513 		if (regs[regno].type == NOT_INIT) {
514 			verbose("R%d !read_ok\n", regno);
515 			return -EACCES;
516 		}
517 	} else {
518 		/* check whether register used as dest operand can be written to */
519 		if (regno == BPF_REG_FP) {
520 			verbose("frame pointer is read only\n");
521 			return -EACCES;
522 		}
523 		if (t == DST_OP)
524 			mark_reg_unknown_value(regs, regno);
525 	}
526 	return 0;
527 }
528 
529 static int bpf_size_to_bytes(int bpf_size)
530 {
531 	if (bpf_size == BPF_W)
532 		return 4;
533 	else if (bpf_size == BPF_H)
534 		return 2;
535 	else if (bpf_size == BPF_B)
536 		return 1;
537 	else if (bpf_size == BPF_DW)
538 		return 8;
539 	else
540 		return -EINVAL;
541 }
542 
543 static bool is_spillable_regtype(enum bpf_reg_type type)
544 {
545 	switch (type) {
546 	case PTR_TO_MAP_VALUE:
547 	case PTR_TO_MAP_VALUE_OR_NULL:
548 	case PTR_TO_STACK:
549 	case PTR_TO_CTX:
550 	case FRAME_PTR:
551 	case CONST_PTR_TO_MAP:
552 		return true;
553 	default:
554 		return false;
555 	}
556 }
557 
558 /* check_stack_read/write functions track spill/fill of registers,
559  * stack boundary and alignment are checked in check_mem_access()
560  */
561 static int check_stack_write(struct verifier_state *state, int off, int size,
562 			     int value_regno)
563 {
564 	int i;
565 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
566 	 * so it's aligned access and [off, off + size) are within stack limits
567 	 */
568 
569 	if (value_regno >= 0 &&
570 	    is_spillable_regtype(state->regs[value_regno].type)) {
571 
572 		/* register containing pointer is being spilled into stack */
573 		if (size != BPF_REG_SIZE) {
574 			verbose("invalid size of register spill\n");
575 			return -EACCES;
576 		}
577 
578 		/* save register state */
579 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
580 			state->regs[value_regno];
581 
582 		for (i = 0; i < BPF_REG_SIZE; i++)
583 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
584 	} else {
585 		/* regular write of data into stack */
586 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
587 			(struct reg_state) {};
588 
589 		for (i = 0; i < size; i++)
590 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
591 	}
592 	return 0;
593 }
594 
595 static int check_stack_read(struct verifier_state *state, int off, int size,
596 			    int value_regno)
597 {
598 	u8 *slot_type;
599 	int i;
600 
601 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
602 
603 	if (slot_type[0] == STACK_SPILL) {
604 		if (size != BPF_REG_SIZE) {
605 			verbose("invalid size of register spill\n");
606 			return -EACCES;
607 		}
608 		for (i = 1; i < BPF_REG_SIZE; i++) {
609 			if (slot_type[i] != STACK_SPILL) {
610 				verbose("corrupted spill memory\n");
611 				return -EACCES;
612 			}
613 		}
614 
615 		if (value_regno >= 0)
616 			/* restore register state from stack */
617 			state->regs[value_regno] =
618 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
619 		return 0;
620 	} else {
621 		for (i = 0; i < size; i++) {
622 			if (slot_type[i] != STACK_MISC) {
623 				verbose("invalid read from stack off %d+%d size %d\n",
624 					off, i, size);
625 				return -EACCES;
626 			}
627 		}
628 		if (value_regno >= 0)
629 			/* have read misc data from the stack */
630 			mark_reg_unknown_value(state->regs, value_regno);
631 		return 0;
632 	}
633 }
634 
635 /* check read/write into map element returned by bpf_map_lookup_elem() */
636 static int check_map_access(struct verifier_env *env, u32 regno, int off,
637 			    int size)
638 {
639 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
640 
641 	if (off < 0 || off + size > map->value_size) {
642 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
643 			map->value_size, off, size);
644 		return -EACCES;
645 	}
646 	return 0;
647 }
648 
649 /* check access to 'struct bpf_context' fields */
650 static int check_ctx_access(struct verifier_env *env, int off, int size,
651 			    enum bpf_access_type t)
652 {
653 	if (env->prog->aux->ops->is_valid_access &&
654 	    env->prog->aux->ops->is_valid_access(off, size, t))
655 		return 0;
656 
657 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
658 	return -EACCES;
659 }
660 
661 static bool is_pointer_value(struct verifier_env *env, int regno)
662 {
663 	if (env->allow_ptr_leaks)
664 		return false;
665 
666 	switch (env->cur_state.regs[regno].type) {
667 	case UNKNOWN_VALUE:
668 	case CONST_IMM:
669 		return false;
670 	default:
671 		return true;
672 	}
673 }
674 
675 /* check whether memory at (regno + off) is accessible for t = (read | write)
676  * if t==write, value_regno is a register which value is stored into memory
677  * if t==read, value_regno is a register which will receive the value from memory
678  * if t==write && value_regno==-1, some unknown value is stored into memory
679  * if t==read && value_regno==-1, don't care what we read from memory
680  */
681 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
682 			    int bpf_size, enum bpf_access_type t,
683 			    int value_regno)
684 {
685 	struct verifier_state *state = &env->cur_state;
686 	int size, err = 0;
687 
688 	if (state->regs[regno].type == PTR_TO_STACK)
689 		off += state->regs[regno].imm;
690 
691 	size = bpf_size_to_bytes(bpf_size);
692 	if (size < 0)
693 		return size;
694 
695 	if (off % size != 0) {
696 		verbose("misaligned access off %d size %d\n", off, size);
697 		return -EACCES;
698 	}
699 
700 	if (state->regs[regno].type == PTR_TO_MAP_VALUE) {
701 		if (t == BPF_WRITE && value_regno >= 0 &&
702 		    is_pointer_value(env, value_regno)) {
703 			verbose("R%d leaks addr into map\n", value_regno);
704 			return -EACCES;
705 		}
706 		err = check_map_access(env, regno, off, size);
707 		if (!err && t == BPF_READ && value_regno >= 0)
708 			mark_reg_unknown_value(state->regs, value_regno);
709 
710 	} else if (state->regs[regno].type == PTR_TO_CTX) {
711 		if (t == BPF_WRITE && value_regno >= 0 &&
712 		    is_pointer_value(env, value_regno)) {
713 			verbose("R%d leaks addr into ctx\n", value_regno);
714 			return -EACCES;
715 		}
716 		err = check_ctx_access(env, off, size, t);
717 		if (!err && t == BPF_READ && value_regno >= 0)
718 			mark_reg_unknown_value(state->regs, value_regno);
719 
720 	} else if (state->regs[regno].type == FRAME_PTR ||
721 		   state->regs[regno].type == PTR_TO_STACK) {
722 		if (off >= 0 || off < -MAX_BPF_STACK) {
723 			verbose("invalid stack off=%d size=%d\n", off, size);
724 			return -EACCES;
725 		}
726 		if (t == BPF_WRITE) {
727 			if (!env->allow_ptr_leaks &&
728 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
729 			    size != BPF_REG_SIZE) {
730 				verbose("attempt to corrupt spilled pointer on stack\n");
731 				return -EACCES;
732 			}
733 			err = check_stack_write(state, off, size, value_regno);
734 		} else {
735 			err = check_stack_read(state, off, size, value_regno);
736 		}
737 	} else {
738 		verbose("R%d invalid mem access '%s'\n",
739 			regno, reg_type_str[state->regs[regno].type]);
740 		return -EACCES;
741 	}
742 	return err;
743 }
744 
745 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
746 {
747 	struct reg_state *regs = env->cur_state.regs;
748 	int err;
749 
750 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
751 	    insn->imm != 0) {
752 		verbose("BPF_XADD uses reserved fields\n");
753 		return -EINVAL;
754 	}
755 
756 	/* check src1 operand */
757 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
758 	if (err)
759 		return err;
760 
761 	/* check src2 operand */
762 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
763 	if (err)
764 		return err;
765 
766 	/* check whether atomic_add can read the memory */
767 	err = check_mem_access(env, insn->dst_reg, insn->off,
768 			       BPF_SIZE(insn->code), BPF_READ, -1);
769 	if (err)
770 		return err;
771 
772 	/* check whether atomic_add can write into the same memory */
773 	return check_mem_access(env, insn->dst_reg, insn->off,
774 				BPF_SIZE(insn->code), BPF_WRITE, -1);
775 }
776 
777 /* when register 'regno' is passed into function that will read 'access_size'
778  * bytes from that pointer, make sure that it's within stack boundary
779  * and all elements of stack are initialized
780  */
781 static int check_stack_boundary(struct verifier_env *env,
782 				int regno, int access_size)
783 {
784 	struct verifier_state *state = &env->cur_state;
785 	struct reg_state *regs = state->regs;
786 	int off, i;
787 
788 	if (regs[regno].type != PTR_TO_STACK)
789 		return -EACCES;
790 
791 	off = regs[regno].imm;
792 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
793 	    access_size <= 0) {
794 		verbose("invalid stack type R%d off=%d access_size=%d\n",
795 			regno, off, access_size);
796 		return -EACCES;
797 	}
798 
799 	for (i = 0; i < access_size; i++) {
800 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
801 			verbose("invalid indirect read from stack off %d+%d size %d\n",
802 				off, i, access_size);
803 			return -EACCES;
804 		}
805 	}
806 	return 0;
807 }
808 
809 static int check_func_arg(struct verifier_env *env, u32 regno,
810 			  enum bpf_arg_type arg_type, struct bpf_map **mapp)
811 {
812 	struct reg_state *reg = env->cur_state.regs + regno;
813 	enum bpf_reg_type expected_type;
814 	int err = 0;
815 
816 	if (arg_type == ARG_DONTCARE)
817 		return 0;
818 
819 	if (reg->type == NOT_INIT) {
820 		verbose("R%d !read_ok\n", regno);
821 		return -EACCES;
822 	}
823 
824 	if (arg_type == ARG_ANYTHING) {
825 		if (is_pointer_value(env, regno)) {
826 			verbose("R%d leaks addr into helper function\n", regno);
827 			return -EACCES;
828 		}
829 		return 0;
830 	}
831 
832 	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY ||
833 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
834 		expected_type = PTR_TO_STACK;
835 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
836 		expected_type = CONST_IMM;
837 	} else if (arg_type == ARG_CONST_MAP_PTR) {
838 		expected_type = CONST_PTR_TO_MAP;
839 	} else if (arg_type == ARG_PTR_TO_CTX) {
840 		expected_type = PTR_TO_CTX;
841 	} else {
842 		verbose("unsupported arg_type %d\n", arg_type);
843 		return -EFAULT;
844 	}
845 
846 	if (reg->type != expected_type) {
847 		verbose("R%d type=%s expected=%s\n", regno,
848 			reg_type_str[reg->type], reg_type_str[expected_type]);
849 		return -EACCES;
850 	}
851 
852 	if (arg_type == ARG_CONST_MAP_PTR) {
853 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
854 		*mapp = reg->map_ptr;
855 
856 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
857 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
858 		 * check that [key, key + map->key_size) are within
859 		 * stack limits and initialized
860 		 */
861 		if (!*mapp) {
862 			/* in function declaration map_ptr must come before
863 			 * map_key, so that it's verified and known before
864 			 * we have to check map_key here. Otherwise it means
865 			 * that kernel subsystem misconfigured verifier
866 			 */
867 			verbose("invalid map_ptr to access map->key\n");
868 			return -EACCES;
869 		}
870 		err = check_stack_boundary(env, regno, (*mapp)->key_size);
871 
872 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
873 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
874 		 * check [value, value + map->value_size) validity
875 		 */
876 		if (!*mapp) {
877 			/* kernel subsystem misconfigured verifier */
878 			verbose("invalid map_ptr to access map->value\n");
879 			return -EACCES;
880 		}
881 		err = check_stack_boundary(env, regno, (*mapp)->value_size);
882 
883 	} else if (arg_type == ARG_CONST_STACK_SIZE) {
884 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
885 		 * from stack pointer 'buf'. Check it
886 		 * note: regno == len, regno - 1 == buf
887 		 */
888 		if (regno == 0) {
889 			/* kernel subsystem misconfigured verifier */
890 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
891 			return -EACCES;
892 		}
893 		err = check_stack_boundary(env, regno - 1, reg->imm);
894 	}
895 
896 	return err;
897 }
898 
899 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
900 {
901 	bool bool_map, bool_func;
902 	int i;
903 
904 	if (!map)
905 		return 0;
906 
907 	for (i = 0; i < ARRAY_SIZE(func_limit); i++) {
908 		bool_map = (map->map_type == func_limit[i].map_type);
909 		bool_func = (func_id == func_limit[i].func_id);
910 		/* only when map & func pair match it can continue.
911 		 * don't allow any other map type to be passed into
912 		 * the special func;
913 		 */
914 		if (bool_func && bool_map != bool_func)
915 			return -EINVAL;
916 	}
917 
918 	return 0;
919 }
920 
921 static int check_call(struct verifier_env *env, int func_id)
922 {
923 	struct verifier_state *state = &env->cur_state;
924 	const struct bpf_func_proto *fn = NULL;
925 	struct reg_state *regs = state->regs;
926 	struct bpf_map *map = NULL;
927 	struct reg_state *reg;
928 	int i, err;
929 
930 	/* find function prototype */
931 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
932 		verbose("invalid func %d\n", func_id);
933 		return -EINVAL;
934 	}
935 
936 	if (env->prog->aux->ops->get_func_proto)
937 		fn = env->prog->aux->ops->get_func_proto(func_id);
938 
939 	if (!fn) {
940 		verbose("unknown func %d\n", func_id);
941 		return -EINVAL;
942 	}
943 
944 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
945 	if (!env->prog->gpl_compatible && fn->gpl_only) {
946 		verbose("cannot call GPL only function from proprietary program\n");
947 		return -EINVAL;
948 	}
949 
950 	/* check args */
951 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map);
952 	if (err)
953 		return err;
954 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map);
955 	if (err)
956 		return err;
957 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map);
958 	if (err)
959 		return err;
960 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map);
961 	if (err)
962 		return err;
963 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map);
964 	if (err)
965 		return err;
966 
967 	/* reset caller saved regs */
968 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
969 		reg = regs + caller_saved[i];
970 		reg->type = NOT_INIT;
971 		reg->imm = 0;
972 	}
973 
974 	/* update return register */
975 	if (fn->ret_type == RET_INTEGER) {
976 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
977 	} else if (fn->ret_type == RET_VOID) {
978 		regs[BPF_REG_0].type = NOT_INIT;
979 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
980 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
981 		/* remember map_ptr, so that check_map_access()
982 		 * can check 'value_size' boundary of memory access
983 		 * to map element returned from bpf_map_lookup_elem()
984 		 */
985 		if (map == NULL) {
986 			verbose("kernel subsystem misconfigured verifier\n");
987 			return -EINVAL;
988 		}
989 		regs[BPF_REG_0].map_ptr = map;
990 	} else {
991 		verbose("unknown return type %d of func %d\n",
992 			fn->ret_type, func_id);
993 		return -EINVAL;
994 	}
995 
996 	err = check_map_func_compatibility(map, func_id);
997 	if (err)
998 		return err;
999 
1000 	return 0;
1001 }
1002 
1003 /* check validity of 32-bit and 64-bit arithmetic operations */
1004 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1005 {
1006 	struct reg_state *regs = env->cur_state.regs;
1007 	u8 opcode = BPF_OP(insn->code);
1008 	int err;
1009 
1010 	if (opcode == BPF_END || opcode == BPF_NEG) {
1011 		if (opcode == BPF_NEG) {
1012 			if (BPF_SRC(insn->code) != 0 ||
1013 			    insn->src_reg != BPF_REG_0 ||
1014 			    insn->off != 0 || insn->imm != 0) {
1015 				verbose("BPF_NEG uses reserved fields\n");
1016 				return -EINVAL;
1017 			}
1018 		} else {
1019 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1020 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1021 				verbose("BPF_END uses reserved fields\n");
1022 				return -EINVAL;
1023 			}
1024 		}
1025 
1026 		/* check src operand */
1027 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1028 		if (err)
1029 			return err;
1030 
1031 		if (is_pointer_value(env, insn->dst_reg)) {
1032 			verbose("R%d pointer arithmetic prohibited\n",
1033 				insn->dst_reg);
1034 			return -EACCES;
1035 		}
1036 
1037 		/* check dest operand */
1038 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1039 		if (err)
1040 			return err;
1041 
1042 	} else if (opcode == BPF_MOV) {
1043 
1044 		if (BPF_SRC(insn->code) == BPF_X) {
1045 			if (insn->imm != 0 || insn->off != 0) {
1046 				verbose("BPF_MOV uses reserved fields\n");
1047 				return -EINVAL;
1048 			}
1049 
1050 			/* check src operand */
1051 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1052 			if (err)
1053 				return err;
1054 		} else {
1055 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1056 				verbose("BPF_MOV uses reserved fields\n");
1057 				return -EINVAL;
1058 			}
1059 		}
1060 
1061 		/* check dest operand */
1062 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1063 		if (err)
1064 			return err;
1065 
1066 		if (BPF_SRC(insn->code) == BPF_X) {
1067 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1068 				/* case: R1 = R2
1069 				 * copy register state to dest reg
1070 				 */
1071 				regs[insn->dst_reg] = regs[insn->src_reg];
1072 			} else {
1073 				if (is_pointer_value(env, insn->src_reg)) {
1074 					verbose("R%d partial copy of pointer\n",
1075 						insn->src_reg);
1076 					return -EACCES;
1077 				}
1078 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1079 				regs[insn->dst_reg].map_ptr = NULL;
1080 			}
1081 		} else {
1082 			/* case: R = imm
1083 			 * remember the value we stored into this reg
1084 			 */
1085 			regs[insn->dst_reg].type = CONST_IMM;
1086 			regs[insn->dst_reg].imm = insn->imm;
1087 		}
1088 
1089 	} else if (opcode > BPF_END) {
1090 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1091 		return -EINVAL;
1092 
1093 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1094 
1095 		bool stack_relative = false;
1096 
1097 		if (BPF_SRC(insn->code) == BPF_X) {
1098 			if (insn->imm != 0 || insn->off != 0) {
1099 				verbose("BPF_ALU uses reserved fields\n");
1100 				return -EINVAL;
1101 			}
1102 			/* check src1 operand */
1103 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1104 			if (err)
1105 				return err;
1106 		} else {
1107 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1108 				verbose("BPF_ALU uses reserved fields\n");
1109 				return -EINVAL;
1110 			}
1111 		}
1112 
1113 		/* check src2 operand */
1114 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1115 		if (err)
1116 			return err;
1117 
1118 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1119 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1120 			verbose("div by zero\n");
1121 			return -EINVAL;
1122 		}
1123 
1124 		/* pattern match 'bpf_add Rx, imm' instruction */
1125 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1126 		    regs[insn->dst_reg].type == FRAME_PTR &&
1127 		    BPF_SRC(insn->code) == BPF_K) {
1128 			stack_relative = true;
1129 		} else if (is_pointer_value(env, insn->dst_reg)) {
1130 			verbose("R%d pointer arithmetic prohibited\n",
1131 				insn->dst_reg);
1132 			return -EACCES;
1133 		} else if (BPF_SRC(insn->code) == BPF_X &&
1134 			   is_pointer_value(env, insn->src_reg)) {
1135 			verbose("R%d pointer arithmetic prohibited\n",
1136 				insn->src_reg);
1137 			return -EACCES;
1138 		}
1139 
1140 		/* check dest operand */
1141 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1142 		if (err)
1143 			return err;
1144 
1145 		if (stack_relative) {
1146 			regs[insn->dst_reg].type = PTR_TO_STACK;
1147 			regs[insn->dst_reg].imm = insn->imm;
1148 		}
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int check_cond_jmp_op(struct verifier_env *env,
1155 			     struct bpf_insn *insn, int *insn_idx)
1156 {
1157 	struct reg_state *regs = env->cur_state.regs;
1158 	struct verifier_state *other_branch;
1159 	u8 opcode = BPF_OP(insn->code);
1160 	int err;
1161 
1162 	if (opcode > BPF_EXIT) {
1163 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1164 		return -EINVAL;
1165 	}
1166 
1167 	if (BPF_SRC(insn->code) == BPF_X) {
1168 		if (insn->imm != 0) {
1169 			verbose("BPF_JMP uses reserved fields\n");
1170 			return -EINVAL;
1171 		}
1172 
1173 		/* check src1 operand */
1174 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1175 		if (err)
1176 			return err;
1177 
1178 		if (is_pointer_value(env, insn->src_reg)) {
1179 			verbose("R%d pointer comparison prohibited\n",
1180 				insn->src_reg);
1181 			return -EACCES;
1182 		}
1183 	} else {
1184 		if (insn->src_reg != BPF_REG_0) {
1185 			verbose("BPF_JMP uses reserved fields\n");
1186 			return -EINVAL;
1187 		}
1188 	}
1189 
1190 	/* check src2 operand */
1191 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1192 	if (err)
1193 		return err;
1194 
1195 	/* detect if R == 0 where R was initialized to zero earlier */
1196 	if (BPF_SRC(insn->code) == BPF_K &&
1197 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1198 	    regs[insn->dst_reg].type == CONST_IMM &&
1199 	    regs[insn->dst_reg].imm == insn->imm) {
1200 		if (opcode == BPF_JEQ) {
1201 			/* if (imm == imm) goto pc+off;
1202 			 * only follow the goto, ignore fall-through
1203 			 */
1204 			*insn_idx += insn->off;
1205 			return 0;
1206 		} else {
1207 			/* if (imm != imm) goto pc+off;
1208 			 * only follow fall-through branch, since
1209 			 * that's where the program will go
1210 			 */
1211 			return 0;
1212 		}
1213 	}
1214 
1215 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1216 	if (!other_branch)
1217 		return -EFAULT;
1218 
1219 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1220 	if (BPF_SRC(insn->code) == BPF_K &&
1221 	    insn->imm == 0 && (opcode == BPF_JEQ ||
1222 			       opcode == BPF_JNE) &&
1223 	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) {
1224 		if (opcode == BPF_JEQ) {
1225 			/* next fallthrough insn can access memory via
1226 			 * this register
1227 			 */
1228 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1229 			/* branch targer cannot access it, since reg == 0 */
1230 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1231 			other_branch->regs[insn->dst_reg].imm = 0;
1232 		} else {
1233 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1234 			regs[insn->dst_reg].type = CONST_IMM;
1235 			regs[insn->dst_reg].imm = 0;
1236 		}
1237 	} else if (is_pointer_value(env, insn->dst_reg)) {
1238 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1239 		return -EACCES;
1240 	} else if (BPF_SRC(insn->code) == BPF_K &&
1241 		   (opcode == BPF_JEQ || opcode == BPF_JNE)) {
1242 
1243 		if (opcode == BPF_JEQ) {
1244 			/* detect if (R == imm) goto
1245 			 * and in the target state recognize that R = imm
1246 			 */
1247 			other_branch->regs[insn->dst_reg].type = CONST_IMM;
1248 			other_branch->regs[insn->dst_reg].imm = insn->imm;
1249 		} else {
1250 			/* detect if (R != imm) goto
1251 			 * and in the fall-through state recognize that R = imm
1252 			 */
1253 			regs[insn->dst_reg].type = CONST_IMM;
1254 			regs[insn->dst_reg].imm = insn->imm;
1255 		}
1256 	}
1257 	if (log_level)
1258 		print_verifier_state(env);
1259 	return 0;
1260 }
1261 
1262 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1263 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1264 {
1265 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1266 
1267 	return (struct bpf_map *) (unsigned long) imm64;
1268 }
1269 
1270 /* verify BPF_LD_IMM64 instruction */
1271 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1272 {
1273 	struct reg_state *regs = env->cur_state.regs;
1274 	int err;
1275 
1276 	if (BPF_SIZE(insn->code) != BPF_DW) {
1277 		verbose("invalid BPF_LD_IMM insn\n");
1278 		return -EINVAL;
1279 	}
1280 	if (insn->off != 0) {
1281 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1282 		return -EINVAL;
1283 	}
1284 
1285 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1286 	if (err)
1287 		return err;
1288 
1289 	if (insn->src_reg == 0)
1290 		/* generic move 64-bit immediate into a register */
1291 		return 0;
1292 
1293 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1294 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1295 
1296 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1297 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1298 	return 0;
1299 }
1300 
1301 static bool may_access_skb(enum bpf_prog_type type)
1302 {
1303 	switch (type) {
1304 	case BPF_PROG_TYPE_SOCKET_FILTER:
1305 	case BPF_PROG_TYPE_SCHED_CLS:
1306 	case BPF_PROG_TYPE_SCHED_ACT:
1307 		return true;
1308 	default:
1309 		return false;
1310 	}
1311 }
1312 
1313 /* verify safety of LD_ABS|LD_IND instructions:
1314  * - they can only appear in the programs where ctx == skb
1315  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1316  *   preserve R6-R9, and store return value into R0
1317  *
1318  * Implicit input:
1319  *   ctx == skb == R6 == CTX
1320  *
1321  * Explicit input:
1322  *   SRC == any register
1323  *   IMM == 32-bit immediate
1324  *
1325  * Output:
1326  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1327  */
1328 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1329 {
1330 	struct reg_state *regs = env->cur_state.regs;
1331 	u8 mode = BPF_MODE(insn->code);
1332 	struct reg_state *reg;
1333 	int i, err;
1334 
1335 	if (!may_access_skb(env->prog->type)) {
1336 		verbose("BPF_LD_ABS|IND instructions not allowed for this program type\n");
1337 		return -EINVAL;
1338 	}
1339 
1340 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1341 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1342 		verbose("BPF_LD_ABS uses reserved fields\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	/* check whether implicit source operand (register R6) is readable */
1347 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1348 	if (err)
1349 		return err;
1350 
1351 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1352 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	if (mode == BPF_IND) {
1357 		/* check explicit source operand */
1358 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1359 		if (err)
1360 			return err;
1361 	}
1362 
1363 	/* reset caller saved regs to unreadable */
1364 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1365 		reg = regs + caller_saved[i];
1366 		reg->type = NOT_INIT;
1367 		reg->imm = 0;
1368 	}
1369 
1370 	/* mark destination R0 register as readable, since it contains
1371 	 * the value fetched from the packet
1372 	 */
1373 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1374 	return 0;
1375 }
1376 
1377 /* non-recursive DFS pseudo code
1378  * 1  procedure DFS-iterative(G,v):
1379  * 2      label v as discovered
1380  * 3      let S be a stack
1381  * 4      S.push(v)
1382  * 5      while S is not empty
1383  * 6            t <- S.pop()
1384  * 7            if t is what we're looking for:
1385  * 8                return t
1386  * 9            for all edges e in G.adjacentEdges(t) do
1387  * 10               if edge e is already labelled
1388  * 11                   continue with the next edge
1389  * 12               w <- G.adjacentVertex(t,e)
1390  * 13               if vertex w is not discovered and not explored
1391  * 14                   label e as tree-edge
1392  * 15                   label w as discovered
1393  * 16                   S.push(w)
1394  * 17                   continue at 5
1395  * 18               else if vertex w is discovered
1396  * 19                   label e as back-edge
1397  * 20               else
1398  * 21                   // vertex w is explored
1399  * 22                   label e as forward- or cross-edge
1400  * 23           label t as explored
1401  * 24           S.pop()
1402  *
1403  * convention:
1404  * 0x10 - discovered
1405  * 0x11 - discovered and fall-through edge labelled
1406  * 0x12 - discovered and fall-through and branch edges labelled
1407  * 0x20 - explored
1408  */
1409 
1410 enum {
1411 	DISCOVERED = 0x10,
1412 	EXPLORED = 0x20,
1413 	FALLTHROUGH = 1,
1414 	BRANCH = 2,
1415 };
1416 
1417 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1418 
1419 static int *insn_stack;	/* stack of insns to process */
1420 static int cur_stack;	/* current stack index */
1421 static int *insn_state;
1422 
1423 /* t, w, e - match pseudo-code above:
1424  * t - index of current instruction
1425  * w - next instruction
1426  * e - edge
1427  */
1428 static int push_insn(int t, int w, int e, struct verifier_env *env)
1429 {
1430 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1431 		return 0;
1432 
1433 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1434 		return 0;
1435 
1436 	if (w < 0 || w >= env->prog->len) {
1437 		verbose("jump out of range from insn %d to %d\n", t, w);
1438 		return -EINVAL;
1439 	}
1440 
1441 	if (e == BRANCH)
1442 		/* mark branch target for state pruning */
1443 		env->explored_states[w] = STATE_LIST_MARK;
1444 
1445 	if (insn_state[w] == 0) {
1446 		/* tree-edge */
1447 		insn_state[t] = DISCOVERED | e;
1448 		insn_state[w] = DISCOVERED;
1449 		if (cur_stack >= env->prog->len)
1450 			return -E2BIG;
1451 		insn_stack[cur_stack++] = w;
1452 		return 1;
1453 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1454 		verbose("back-edge from insn %d to %d\n", t, w);
1455 		return -EINVAL;
1456 	} else if (insn_state[w] == EXPLORED) {
1457 		/* forward- or cross-edge */
1458 		insn_state[t] = DISCOVERED | e;
1459 	} else {
1460 		verbose("insn state internal bug\n");
1461 		return -EFAULT;
1462 	}
1463 	return 0;
1464 }
1465 
1466 /* non-recursive depth-first-search to detect loops in BPF program
1467  * loop == back-edge in directed graph
1468  */
1469 static int check_cfg(struct verifier_env *env)
1470 {
1471 	struct bpf_insn *insns = env->prog->insnsi;
1472 	int insn_cnt = env->prog->len;
1473 	int ret = 0;
1474 	int i, t;
1475 
1476 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1477 	if (!insn_state)
1478 		return -ENOMEM;
1479 
1480 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1481 	if (!insn_stack) {
1482 		kfree(insn_state);
1483 		return -ENOMEM;
1484 	}
1485 
1486 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1487 	insn_stack[0] = 0; /* 0 is the first instruction */
1488 	cur_stack = 1;
1489 
1490 peek_stack:
1491 	if (cur_stack == 0)
1492 		goto check_state;
1493 	t = insn_stack[cur_stack - 1];
1494 
1495 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1496 		u8 opcode = BPF_OP(insns[t].code);
1497 
1498 		if (opcode == BPF_EXIT) {
1499 			goto mark_explored;
1500 		} else if (opcode == BPF_CALL) {
1501 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1502 			if (ret == 1)
1503 				goto peek_stack;
1504 			else if (ret < 0)
1505 				goto err_free;
1506 		} else if (opcode == BPF_JA) {
1507 			if (BPF_SRC(insns[t].code) != BPF_K) {
1508 				ret = -EINVAL;
1509 				goto err_free;
1510 			}
1511 			/* unconditional jump with single edge */
1512 			ret = push_insn(t, t + insns[t].off + 1,
1513 					FALLTHROUGH, env);
1514 			if (ret == 1)
1515 				goto peek_stack;
1516 			else if (ret < 0)
1517 				goto err_free;
1518 			/* tell verifier to check for equivalent states
1519 			 * after every call and jump
1520 			 */
1521 			if (t + 1 < insn_cnt)
1522 				env->explored_states[t + 1] = STATE_LIST_MARK;
1523 		} else {
1524 			/* conditional jump with two edges */
1525 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1526 			if (ret == 1)
1527 				goto peek_stack;
1528 			else if (ret < 0)
1529 				goto err_free;
1530 
1531 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
1532 			if (ret == 1)
1533 				goto peek_stack;
1534 			else if (ret < 0)
1535 				goto err_free;
1536 		}
1537 	} else {
1538 		/* all other non-branch instructions with single
1539 		 * fall-through edge
1540 		 */
1541 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
1542 		if (ret == 1)
1543 			goto peek_stack;
1544 		else if (ret < 0)
1545 			goto err_free;
1546 	}
1547 
1548 mark_explored:
1549 	insn_state[t] = EXPLORED;
1550 	if (cur_stack-- <= 0) {
1551 		verbose("pop stack internal bug\n");
1552 		ret = -EFAULT;
1553 		goto err_free;
1554 	}
1555 	goto peek_stack;
1556 
1557 check_state:
1558 	for (i = 0; i < insn_cnt; i++) {
1559 		if (insn_state[i] != EXPLORED) {
1560 			verbose("unreachable insn %d\n", i);
1561 			ret = -EINVAL;
1562 			goto err_free;
1563 		}
1564 	}
1565 	ret = 0; /* cfg looks good */
1566 
1567 err_free:
1568 	kfree(insn_state);
1569 	kfree(insn_stack);
1570 	return ret;
1571 }
1572 
1573 /* compare two verifier states
1574  *
1575  * all states stored in state_list are known to be valid, since
1576  * verifier reached 'bpf_exit' instruction through them
1577  *
1578  * this function is called when verifier exploring different branches of
1579  * execution popped from the state stack. If it sees an old state that has
1580  * more strict register state and more strict stack state then this execution
1581  * branch doesn't need to be explored further, since verifier already
1582  * concluded that more strict state leads to valid finish.
1583  *
1584  * Therefore two states are equivalent if register state is more conservative
1585  * and explored stack state is more conservative than the current one.
1586  * Example:
1587  *       explored                   current
1588  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
1589  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
1590  *
1591  * In other words if current stack state (one being explored) has more
1592  * valid slots than old one that already passed validation, it means
1593  * the verifier can stop exploring and conclude that current state is valid too
1594  *
1595  * Similarly with registers. If explored state has register type as invalid
1596  * whereas register type in current state is meaningful, it means that
1597  * the current state will reach 'bpf_exit' instruction safely
1598  */
1599 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
1600 {
1601 	int i;
1602 
1603 	for (i = 0; i < MAX_BPF_REG; i++) {
1604 		if (memcmp(&old->regs[i], &cur->regs[i],
1605 			   sizeof(old->regs[0])) != 0) {
1606 			if (old->regs[i].type == NOT_INIT ||
1607 			    (old->regs[i].type == UNKNOWN_VALUE &&
1608 			     cur->regs[i].type != NOT_INIT))
1609 				continue;
1610 			return false;
1611 		}
1612 	}
1613 
1614 	for (i = 0; i < MAX_BPF_STACK; i++) {
1615 		if (old->stack_slot_type[i] == STACK_INVALID)
1616 			continue;
1617 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
1618 			/* Ex: old explored (safe) state has STACK_SPILL in
1619 			 * this stack slot, but current has has STACK_MISC ->
1620 			 * this verifier states are not equivalent,
1621 			 * return false to continue verification of this path
1622 			 */
1623 			return false;
1624 		if (i % BPF_REG_SIZE)
1625 			continue;
1626 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
1627 			   &cur->spilled_regs[i / BPF_REG_SIZE],
1628 			   sizeof(old->spilled_regs[0])))
1629 			/* when explored and current stack slot types are
1630 			 * the same, check that stored pointers types
1631 			 * are the same as well.
1632 			 * Ex: explored safe path could have stored
1633 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
1634 			 * but current path has stored:
1635 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
1636 			 * such verifier states are not equivalent.
1637 			 * return false to continue verification of this path
1638 			 */
1639 			return false;
1640 		else
1641 			continue;
1642 	}
1643 	return true;
1644 }
1645 
1646 static int is_state_visited(struct verifier_env *env, int insn_idx)
1647 {
1648 	struct verifier_state_list *new_sl;
1649 	struct verifier_state_list *sl;
1650 
1651 	sl = env->explored_states[insn_idx];
1652 	if (!sl)
1653 		/* this 'insn_idx' instruction wasn't marked, so we will not
1654 		 * be doing state search here
1655 		 */
1656 		return 0;
1657 
1658 	while (sl != STATE_LIST_MARK) {
1659 		if (states_equal(&sl->state, &env->cur_state))
1660 			/* reached equivalent register/stack state,
1661 			 * prune the search
1662 			 */
1663 			return 1;
1664 		sl = sl->next;
1665 	}
1666 
1667 	/* there were no equivalent states, remember current one.
1668 	 * technically the current state is not proven to be safe yet,
1669 	 * but it will either reach bpf_exit (which means it's safe) or
1670 	 * it will be rejected. Since there are no loops, we won't be
1671 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
1672 	 */
1673 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
1674 	if (!new_sl)
1675 		return -ENOMEM;
1676 
1677 	/* add new state to the head of linked list */
1678 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
1679 	new_sl->next = env->explored_states[insn_idx];
1680 	env->explored_states[insn_idx] = new_sl;
1681 	return 0;
1682 }
1683 
1684 static int do_check(struct verifier_env *env)
1685 {
1686 	struct verifier_state *state = &env->cur_state;
1687 	struct bpf_insn *insns = env->prog->insnsi;
1688 	struct reg_state *regs = state->regs;
1689 	int insn_cnt = env->prog->len;
1690 	int insn_idx, prev_insn_idx = 0;
1691 	int insn_processed = 0;
1692 	bool do_print_state = false;
1693 
1694 	init_reg_state(regs);
1695 	insn_idx = 0;
1696 	for (;;) {
1697 		struct bpf_insn *insn;
1698 		u8 class;
1699 		int err;
1700 
1701 		if (insn_idx >= insn_cnt) {
1702 			verbose("invalid insn idx %d insn_cnt %d\n",
1703 				insn_idx, insn_cnt);
1704 			return -EFAULT;
1705 		}
1706 
1707 		insn = &insns[insn_idx];
1708 		class = BPF_CLASS(insn->code);
1709 
1710 		if (++insn_processed > 32768) {
1711 			verbose("BPF program is too large. Proccessed %d insn\n",
1712 				insn_processed);
1713 			return -E2BIG;
1714 		}
1715 
1716 		err = is_state_visited(env, insn_idx);
1717 		if (err < 0)
1718 			return err;
1719 		if (err == 1) {
1720 			/* found equivalent state, can prune the search */
1721 			if (log_level) {
1722 				if (do_print_state)
1723 					verbose("\nfrom %d to %d: safe\n",
1724 						prev_insn_idx, insn_idx);
1725 				else
1726 					verbose("%d: safe\n", insn_idx);
1727 			}
1728 			goto process_bpf_exit;
1729 		}
1730 
1731 		if (log_level && do_print_state) {
1732 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
1733 			print_verifier_state(env);
1734 			do_print_state = false;
1735 		}
1736 
1737 		if (log_level) {
1738 			verbose("%d: ", insn_idx);
1739 			print_bpf_insn(insn);
1740 		}
1741 
1742 		if (class == BPF_ALU || class == BPF_ALU64) {
1743 			err = check_alu_op(env, insn);
1744 			if (err)
1745 				return err;
1746 
1747 		} else if (class == BPF_LDX) {
1748 			enum bpf_reg_type src_reg_type;
1749 
1750 			/* check for reserved fields is already done */
1751 
1752 			/* check src operand */
1753 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1754 			if (err)
1755 				return err;
1756 
1757 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1758 			if (err)
1759 				return err;
1760 
1761 			src_reg_type = regs[insn->src_reg].type;
1762 
1763 			/* check that memory (src_reg + off) is readable,
1764 			 * the state of dst_reg will be updated by this func
1765 			 */
1766 			err = check_mem_access(env, insn->src_reg, insn->off,
1767 					       BPF_SIZE(insn->code), BPF_READ,
1768 					       insn->dst_reg);
1769 			if (err)
1770 				return err;
1771 
1772 			if (BPF_SIZE(insn->code) != BPF_W) {
1773 				insn_idx++;
1774 				continue;
1775 			}
1776 
1777 			if (insn->imm == 0) {
1778 				/* saw a valid insn
1779 				 * dst_reg = *(u32 *)(src_reg + off)
1780 				 * use reserved 'imm' field to mark this insn
1781 				 */
1782 				insn->imm = src_reg_type;
1783 
1784 			} else if (src_reg_type != insn->imm &&
1785 				   (src_reg_type == PTR_TO_CTX ||
1786 				    insn->imm == PTR_TO_CTX)) {
1787 				/* ABuser program is trying to use the same insn
1788 				 * dst_reg = *(u32*) (src_reg + off)
1789 				 * with different pointer types:
1790 				 * src_reg == ctx in one branch and
1791 				 * src_reg == stack|map in some other branch.
1792 				 * Reject it.
1793 				 */
1794 				verbose("same insn cannot be used with different pointers\n");
1795 				return -EINVAL;
1796 			}
1797 
1798 		} else if (class == BPF_STX) {
1799 			enum bpf_reg_type dst_reg_type;
1800 
1801 			if (BPF_MODE(insn->code) == BPF_XADD) {
1802 				err = check_xadd(env, insn);
1803 				if (err)
1804 					return err;
1805 				insn_idx++;
1806 				continue;
1807 			}
1808 
1809 			/* check src1 operand */
1810 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1811 			if (err)
1812 				return err;
1813 			/* check src2 operand */
1814 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1815 			if (err)
1816 				return err;
1817 
1818 			dst_reg_type = regs[insn->dst_reg].type;
1819 
1820 			/* check that memory (dst_reg + off) is writeable */
1821 			err = check_mem_access(env, insn->dst_reg, insn->off,
1822 					       BPF_SIZE(insn->code), BPF_WRITE,
1823 					       insn->src_reg);
1824 			if (err)
1825 				return err;
1826 
1827 			if (insn->imm == 0) {
1828 				insn->imm = dst_reg_type;
1829 			} else if (dst_reg_type != insn->imm &&
1830 				   (dst_reg_type == PTR_TO_CTX ||
1831 				    insn->imm == PTR_TO_CTX)) {
1832 				verbose("same insn cannot be used with different pointers\n");
1833 				return -EINVAL;
1834 			}
1835 
1836 		} else if (class == BPF_ST) {
1837 			if (BPF_MODE(insn->code) != BPF_MEM ||
1838 			    insn->src_reg != BPF_REG_0) {
1839 				verbose("BPF_ST uses reserved fields\n");
1840 				return -EINVAL;
1841 			}
1842 			/* check src operand */
1843 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1844 			if (err)
1845 				return err;
1846 
1847 			/* check that memory (dst_reg + off) is writeable */
1848 			err = check_mem_access(env, insn->dst_reg, insn->off,
1849 					       BPF_SIZE(insn->code), BPF_WRITE,
1850 					       -1);
1851 			if (err)
1852 				return err;
1853 
1854 		} else if (class == BPF_JMP) {
1855 			u8 opcode = BPF_OP(insn->code);
1856 
1857 			if (opcode == BPF_CALL) {
1858 				if (BPF_SRC(insn->code) != BPF_K ||
1859 				    insn->off != 0 ||
1860 				    insn->src_reg != BPF_REG_0 ||
1861 				    insn->dst_reg != BPF_REG_0) {
1862 					verbose("BPF_CALL uses reserved fields\n");
1863 					return -EINVAL;
1864 				}
1865 
1866 				err = check_call(env, insn->imm);
1867 				if (err)
1868 					return err;
1869 
1870 			} else if (opcode == BPF_JA) {
1871 				if (BPF_SRC(insn->code) != BPF_K ||
1872 				    insn->imm != 0 ||
1873 				    insn->src_reg != BPF_REG_0 ||
1874 				    insn->dst_reg != BPF_REG_0) {
1875 					verbose("BPF_JA uses reserved fields\n");
1876 					return -EINVAL;
1877 				}
1878 
1879 				insn_idx += insn->off + 1;
1880 				continue;
1881 
1882 			} else if (opcode == BPF_EXIT) {
1883 				if (BPF_SRC(insn->code) != BPF_K ||
1884 				    insn->imm != 0 ||
1885 				    insn->src_reg != BPF_REG_0 ||
1886 				    insn->dst_reg != BPF_REG_0) {
1887 					verbose("BPF_EXIT uses reserved fields\n");
1888 					return -EINVAL;
1889 				}
1890 
1891 				/* eBPF calling convetion is such that R0 is used
1892 				 * to return the value from eBPF program.
1893 				 * Make sure that it's readable at this time
1894 				 * of bpf_exit, which means that program wrote
1895 				 * something into it earlier
1896 				 */
1897 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
1898 				if (err)
1899 					return err;
1900 
1901 				if (is_pointer_value(env, BPF_REG_0)) {
1902 					verbose("R0 leaks addr as return value\n");
1903 					return -EACCES;
1904 				}
1905 
1906 process_bpf_exit:
1907 				insn_idx = pop_stack(env, &prev_insn_idx);
1908 				if (insn_idx < 0) {
1909 					break;
1910 				} else {
1911 					do_print_state = true;
1912 					continue;
1913 				}
1914 			} else {
1915 				err = check_cond_jmp_op(env, insn, &insn_idx);
1916 				if (err)
1917 					return err;
1918 			}
1919 		} else if (class == BPF_LD) {
1920 			u8 mode = BPF_MODE(insn->code);
1921 
1922 			if (mode == BPF_ABS || mode == BPF_IND) {
1923 				err = check_ld_abs(env, insn);
1924 				if (err)
1925 					return err;
1926 
1927 			} else if (mode == BPF_IMM) {
1928 				err = check_ld_imm(env, insn);
1929 				if (err)
1930 					return err;
1931 
1932 				insn_idx++;
1933 			} else {
1934 				verbose("invalid BPF_LD mode\n");
1935 				return -EINVAL;
1936 			}
1937 		} else {
1938 			verbose("unknown insn class %d\n", class);
1939 			return -EINVAL;
1940 		}
1941 
1942 		insn_idx++;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 /* look for pseudo eBPF instructions that access map FDs and
1949  * replace them with actual map pointers
1950  */
1951 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
1952 {
1953 	struct bpf_insn *insn = env->prog->insnsi;
1954 	int insn_cnt = env->prog->len;
1955 	int i, j;
1956 
1957 	for (i = 0; i < insn_cnt; i++, insn++) {
1958 		if (BPF_CLASS(insn->code) == BPF_LDX &&
1959 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
1960 			verbose("BPF_LDX uses reserved fields\n");
1961 			return -EINVAL;
1962 		}
1963 
1964 		if (BPF_CLASS(insn->code) == BPF_STX &&
1965 		    ((BPF_MODE(insn->code) != BPF_MEM &&
1966 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
1967 			verbose("BPF_STX uses reserved fields\n");
1968 			return -EINVAL;
1969 		}
1970 
1971 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
1972 			struct bpf_map *map;
1973 			struct fd f;
1974 
1975 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
1976 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
1977 			    insn[1].off != 0) {
1978 				verbose("invalid bpf_ld_imm64 insn\n");
1979 				return -EINVAL;
1980 			}
1981 
1982 			if (insn->src_reg == 0)
1983 				/* valid generic load 64-bit imm */
1984 				goto next_insn;
1985 
1986 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
1987 				verbose("unrecognized bpf_ld_imm64 insn\n");
1988 				return -EINVAL;
1989 			}
1990 
1991 			f = fdget(insn->imm);
1992 			map = __bpf_map_get(f);
1993 			if (IS_ERR(map)) {
1994 				verbose("fd %d is not pointing to valid bpf_map\n",
1995 					insn->imm);
1996 				fdput(f);
1997 				return PTR_ERR(map);
1998 			}
1999 
2000 			/* store map pointer inside BPF_LD_IMM64 instruction */
2001 			insn[0].imm = (u32) (unsigned long) map;
2002 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2003 
2004 			/* check whether we recorded this map already */
2005 			for (j = 0; j < env->used_map_cnt; j++)
2006 				if (env->used_maps[j] == map) {
2007 					fdput(f);
2008 					goto next_insn;
2009 				}
2010 
2011 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2012 				fdput(f);
2013 				return -E2BIG;
2014 			}
2015 
2016 			/* remember this map */
2017 			env->used_maps[env->used_map_cnt++] = map;
2018 
2019 			/* hold the map. If the program is rejected by verifier,
2020 			 * the map will be released by release_maps() or it
2021 			 * will be used by the valid program until it's unloaded
2022 			 * and all maps are released in free_bpf_prog_info()
2023 			 */
2024 			atomic_inc(&map->refcnt);
2025 
2026 			fdput(f);
2027 next_insn:
2028 			insn++;
2029 			i++;
2030 		}
2031 	}
2032 
2033 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2034 	 * 'struct bpf_map *' into a register instead of user map_fd.
2035 	 * These pointers will be used later by verifier to validate map access.
2036 	 */
2037 	return 0;
2038 }
2039 
2040 /* drop refcnt of maps used by the rejected program */
2041 static void release_maps(struct verifier_env *env)
2042 {
2043 	int i;
2044 
2045 	for (i = 0; i < env->used_map_cnt; i++)
2046 		bpf_map_put(env->used_maps[i]);
2047 }
2048 
2049 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2050 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2051 {
2052 	struct bpf_insn *insn = env->prog->insnsi;
2053 	int insn_cnt = env->prog->len;
2054 	int i;
2055 
2056 	for (i = 0; i < insn_cnt; i++, insn++)
2057 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2058 			insn->src_reg = 0;
2059 }
2060 
2061 static void adjust_branches(struct bpf_prog *prog, int pos, int delta)
2062 {
2063 	struct bpf_insn *insn = prog->insnsi;
2064 	int insn_cnt = prog->len;
2065 	int i;
2066 
2067 	for (i = 0; i < insn_cnt; i++, insn++) {
2068 		if (BPF_CLASS(insn->code) != BPF_JMP ||
2069 		    BPF_OP(insn->code) == BPF_CALL ||
2070 		    BPF_OP(insn->code) == BPF_EXIT)
2071 			continue;
2072 
2073 		/* adjust offset of jmps if necessary */
2074 		if (i < pos && i + insn->off + 1 > pos)
2075 			insn->off += delta;
2076 		else if (i > pos && i + insn->off + 1 < pos)
2077 			insn->off -= delta;
2078 	}
2079 }
2080 
2081 /* convert load instructions that access fields of 'struct __sk_buff'
2082  * into sequence of instructions that access fields of 'struct sk_buff'
2083  */
2084 static int convert_ctx_accesses(struct verifier_env *env)
2085 {
2086 	struct bpf_insn *insn = env->prog->insnsi;
2087 	int insn_cnt = env->prog->len;
2088 	struct bpf_insn insn_buf[16];
2089 	struct bpf_prog *new_prog;
2090 	u32 cnt;
2091 	int i;
2092 	enum bpf_access_type type;
2093 
2094 	if (!env->prog->aux->ops->convert_ctx_access)
2095 		return 0;
2096 
2097 	for (i = 0; i < insn_cnt; i++, insn++) {
2098 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2099 			type = BPF_READ;
2100 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2101 			type = BPF_WRITE;
2102 		else
2103 			continue;
2104 
2105 		if (insn->imm != PTR_TO_CTX) {
2106 			/* clear internal mark */
2107 			insn->imm = 0;
2108 			continue;
2109 		}
2110 
2111 		cnt = env->prog->aux->ops->
2112 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2113 					   insn->off, insn_buf, env->prog);
2114 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2115 			verbose("bpf verifier is misconfigured\n");
2116 			return -EINVAL;
2117 		}
2118 
2119 		if (cnt == 1) {
2120 			memcpy(insn, insn_buf, sizeof(*insn));
2121 			continue;
2122 		}
2123 
2124 		/* several new insns need to be inserted. Make room for them */
2125 		insn_cnt += cnt - 1;
2126 		new_prog = bpf_prog_realloc(env->prog,
2127 					    bpf_prog_size(insn_cnt),
2128 					    GFP_USER);
2129 		if (!new_prog)
2130 			return -ENOMEM;
2131 
2132 		new_prog->len = insn_cnt;
2133 
2134 		memmove(new_prog->insnsi + i + cnt, new_prog->insns + i + 1,
2135 			sizeof(*insn) * (insn_cnt - i - cnt));
2136 
2137 		/* copy substitute insns in place of load instruction */
2138 		memcpy(new_prog->insnsi + i, insn_buf, sizeof(*insn) * cnt);
2139 
2140 		/* adjust branches in the whole program */
2141 		adjust_branches(new_prog, i, cnt - 1);
2142 
2143 		/* keep walking new program and skip insns we just inserted */
2144 		env->prog = new_prog;
2145 		insn = new_prog->insnsi + i + cnt - 1;
2146 		i += cnt - 1;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static void free_states(struct verifier_env *env)
2153 {
2154 	struct verifier_state_list *sl, *sln;
2155 	int i;
2156 
2157 	if (!env->explored_states)
2158 		return;
2159 
2160 	for (i = 0; i < env->prog->len; i++) {
2161 		sl = env->explored_states[i];
2162 
2163 		if (sl)
2164 			while (sl != STATE_LIST_MARK) {
2165 				sln = sl->next;
2166 				kfree(sl);
2167 				sl = sln;
2168 			}
2169 	}
2170 
2171 	kfree(env->explored_states);
2172 }
2173 
2174 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2175 {
2176 	char __user *log_ubuf = NULL;
2177 	struct verifier_env *env;
2178 	int ret = -EINVAL;
2179 
2180 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2181 		return -E2BIG;
2182 
2183 	/* 'struct verifier_env' can be global, but since it's not small,
2184 	 * allocate/free it every time bpf_check() is called
2185 	 */
2186 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2187 	if (!env)
2188 		return -ENOMEM;
2189 
2190 	env->prog = *prog;
2191 
2192 	/* grab the mutex to protect few globals used by verifier */
2193 	mutex_lock(&bpf_verifier_lock);
2194 
2195 	if (attr->log_level || attr->log_buf || attr->log_size) {
2196 		/* user requested verbose verifier output
2197 		 * and supplied buffer to store the verification trace
2198 		 */
2199 		log_level = attr->log_level;
2200 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2201 		log_size = attr->log_size;
2202 		log_len = 0;
2203 
2204 		ret = -EINVAL;
2205 		/* log_* values have to be sane */
2206 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2207 		    log_level == 0 || log_ubuf == NULL)
2208 			goto free_env;
2209 
2210 		ret = -ENOMEM;
2211 		log_buf = vmalloc(log_size);
2212 		if (!log_buf)
2213 			goto free_env;
2214 	} else {
2215 		log_level = 0;
2216 	}
2217 
2218 	ret = replace_map_fd_with_map_ptr(env);
2219 	if (ret < 0)
2220 		goto skip_full_check;
2221 
2222 	env->explored_states = kcalloc(env->prog->len,
2223 				       sizeof(struct verifier_state_list *),
2224 				       GFP_USER);
2225 	ret = -ENOMEM;
2226 	if (!env->explored_states)
2227 		goto skip_full_check;
2228 
2229 	ret = check_cfg(env);
2230 	if (ret < 0)
2231 		goto skip_full_check;
2232 
2233 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2234 
2235 	ret = do_check(env);
2236 
2237 skip_full_check:
2238 	while (pop_stack(env, NULL) >= 0);
2239 	free_states(env);
2240 
2241 	if (ret == 0)
2242 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2243 		ret = convert_ctx_accesses(env);
2244 
2245 	if (log_level && log_len >= log_size - 1) {
2246 		BUG_ON(log_len >= log_size);
2247 		/* verifier log exceeded user supplied buffer */
2248 		ret = -ENOSPC;
2249 		/* fall through to return what was recorded */
2250 	}
2251 
2252 	/* copy verifier log back to user space including trailing zero */
2253 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2254 		ret = -EFAULT;
2255 		goto free_log_buf;
2256 	}
2257 
2258 	if (ret == 0 && env->used_map_cnt) {
2259 		/* if program passed verifier, update used_maps in bpf_prog_info */
2260 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2261 							  sizeof(env->used_maps[0]),
2262 							  GFP_KERNEL);
2263 
2264 		if (!env->prog->aux->used_maps) {
2265 			ret = -ENOMEM;
2266 			goto free_log_buf;
2267 		}
2268 
2269 		memcpy(env->prog->aux->used_maps, env->used_maps,
2270 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2271 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2272 
2273 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2274 		 * bpf_ld_imm64 instructions
2275 		 */
2276 		convert_pseudo_ld_imm64(env);
2277 	}
2278 
2279 free_log_buf:
2280 	if (log_level)
2281 		vfree(log_buf);
2282 free_env:
2283 	if (!env->prog->aux->used_maps)
2284 		/* if we didn't copy map pointers into bpf_prog_info, release
2285 		 * them now. Otherwise free_bpf_prog_info() will release them.
2286 		 */
2287 		release_maps(env);
2288 	*prog = env->prog;
2289 	kfree(env);
2290 	mutex_unlock(&bpf_verifier_lock);
2291 	return ret;
2292 }
2293