xref: /openbmc/linux/kernel/bpf/verifier.c (revision a86854d0)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 
160 #define BPF_MAP_PTR_UNPRIV	1UL
161 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
162 					  POISON_POINTER_DELTA))
163 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
164 
165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
166 {
167 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
168 }
169 
170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
171 {
172 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
173 }
174 
175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
176 			      const struct bpf_map *map, bool unpriv)
177 {
178 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
179 	unpriv |= bpf_map_ptr_unpriv(aux);
180 	aux->map_state = (unsigned long)map |
181 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
182 }
183 
184 struct bpf_call_arg_meta {
185 	struct bpf_map *map_ptr;
186 	bool raw_mode;
187 	bool pkt_access;
188 	int regno;
189 	int access_size;
190 	s64 msize_smax_value;
191 	u64 msize_umax_value;
192 };
193 
194 static DEFINE_MUTEX(bpf_verifier_lock);
195 
196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 		       va_list args)
198 {
199 	unsigned int n;
200 
201 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
202 
203 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 		  "verifier log line truncated - local buffer too short\n");
205 
206 	n = min(log->len_total - log->len_used - 1, n);
207 	log->kbuf[n] = '\0';
208 
209 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 		log->len_used += n;
211 	else
212 		log->ubuf = NULL;
213 }
214 
215 /* log_level controls verbosity level of eBPF verifier.
216  * bpf_verifier_log_write() is used to dump the verification trace to the log,
217  * so the user can figure out what's wrong with the program
218  */
219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 					   const char *fmt, ...)
221 {
222 	va_list args;
223 
224 	if (!bpf_verifier_log_needed(&env->log))
225 		return;
226 
227 	va_start(args, fmt);
228 	bpf_verifier_vlog(&env->log, fmt, args);
229 	va_end(args);
230 }
231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232 
233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234 {
235 	struct bpf_verifier_env *env = private_data;
236 	va_list args;
237 
238 	if (!bpf_verifier_log_needed(&env->log))
239 		return;
240 
241 	va_start(args, fmt);
242 	bpf_verifier_vlog(&env->log, fmt, args);
243 	va_end(args);
244 }
245 
246 static bool type_is_pkt_pointer(enum bpf_reg_type type)
247 {
248 	return type == PTR_TO_PACKET ||
249 	       type == PTR_TO_PACKET_META;
250 }
251 
252 /* string representation of 'enum bpf_reg_type' */
253 static const char * const reg_type_str[] = {
254 	[NOT_INIT]		= "?",
255 	[SCALAR_VALUE]		= "inv",
256 	[PTR_TO_CTX]		= "ctx",
257 	[CONST_PTR_TO_MAP]	= "map_ptr",
258 	[PTR_TO_MAP_VALUE]	= "map_value",
259 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
260 	[PTR_TO_STACK]		= "fp",
261 	[PTR_TO_PACKET]		= "pkt",
262 	[PTR_TO_PACKET_META]	= "pkt_meta",
263 	[PTR_TO_PACKET_END]	= "pkt_end",
264 };
265 
266 static void print_liveness(struct bpf_verifier_env *env,
267 			   enum bpf_reg_liveness live)
268 {
269 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
270 	    verbose(env, "_");
271 	if (live & REG_LIVE_READ)
272 		verbose(env, "r");
273 	if (live & REG_LIVE_WRITTEN)
274 		verbose(env, "w");
275 }
276 
277 static struct bpf_func_state *func(struct bpf_verifier_env *env,
278 				   const struct bpf_reg_state *reg)
279 {
280 	struct bpf_verifier_state *cur = env->cur_state;
281 
282 	return cur->frame[reg->frameno];
283 }
284 
285 static void print_verifier_state(struct bpf_verifier_env *env,
286 				 const struct bpf_func_state *state)
287 {
288 	const struct bpf_reg_state *reg;
289 	enum bpf_reg_type t;
290 	int i;
291 
292 	if (state->frameno)
293 		verbose(env, " frame%d:", state->frameno);
294 	for (i = 0; i < MAX_BPF_REG; i++) {
295 		reg = &state->regs[i];
296 		t = reg->type;
297 		if (t == NOT_INIT)
298 			continue;
299 		verbose(env, " R%d", i);
300 		print_liveness(env, reg->live);
301 		verbose(env, "=%s", reg_type_str[t]);
302 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
303 		    tnum_is_const(reg->var_off)) {
304 			/* reg->off should be 0 for SCALAR_VALUE */
305 			verbose(env, "%lld", reg->var_off.value + reg->off);
306 			if (t == PTR_TO_STACK)
307 				verbose(env, ",call_%d", func(env, reg)->callsite);
308 		} else {
309 			verbose(env, "(id=%d", reg->id);
310 			if (t != SCALAR_VALUE)
311 				verbose(env, ",off=%d", reg->off);
312 			if (type_is_pkt_pointer(t))
313 				verbose(env, ",r=%d", reg->range);
314 			else if (t == CONST_PTR_TO_MAP ||
315 				 t == PTR_TO_MAP_VALUE ||
316 				 t == PTR_TO_MAP_VALUE_OR_NULL)
317 				verbose(env, ",ks=%d,vs=%d",
318 					reg->map_ptr->key_size,
319 					reg->map_ptr->value_size);
320 			if (tnum_is_const(reg->var_off)) {
321 				/* Typically an immediate SCALAR_VALUE, but
322 				 * could be a pointer whose offset is too big
323 				 * for reg->off
324 				 */
325 				verbose(env, ",imm=%llx", reg->var_off.value);
326 			} else {
327 				if (reg->smin_value != reg->umin_value &&
328 				    reg->smin_value != S64_MIN)
329 					verbose(env, ",smin_value=%lld",
330 						(long long)reg->smin_value);
331 				if (reg->smax_value != reg->umax_value &&
332 				    reg->smax_value != S64_MAX)
333 					verbose(env, ",smax_value=%lld",
334 						(long long)reg->smax_value);
335 				if (reg->umin_value != 0)
336 					verbose(env, ",umin_value=%llu",
337 						(unsigned long long)reg->umin_value);
338 				if (reg->umax_value != U64_MAX)
339 					verbose(env, ",umax_value=%llu",
340 						(unsigned long long)reg->umax_value);
341 				if (!tnum_is_unknown(reg->var_off)) {
342 					char tn_buf[48];
343 
344 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345 					verbose(env, ",var_off=%s", tn_buf);
346 				}
347 			}
348 			verbose(env, ")");
349 		}
350 	}
351 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
353 			verbose(env, " fp%d",
354 				(-i - 1) * BPF_REG_SIZE);
355 			print_liveness(env, state->stack[i].spilled_ptr.live);
356 			verbose(env, "=%s",
357 				reg_type_str[state->stack[i].spilled_ptr.type]);
358 		}
359 		if (state->stack[i].slot_type[0] == STACK_ZERO)
360 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361 	}
362 	verbose(env, "\n");
363 }
364 
365 static int copy_stack_state(struct bpf_func_state *dst,
366 			    const struct bpf_func_state *src)
367 {
368 	if (!src->stack)
369 		return 0;
370 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
371 		/* internal bug, make state invalid to reject the program */
372 		memset(dst, 0, sizeof(*dst));
373 		return -EFAULT;
374 	}
375 	memcpy(dst->stack, src->stack,
376 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
377 	return 0;
378 }
379 
380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
381  * make it consume minimal amount of memory. check_stack_write() access from
382  * the program calls into realloc_func_state() to grow the stack size.
383  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
384  * which this function copies over. It points to previous bpf_verifier_state
385  * which is never reallocated
386  */
387 static int realloc_func_state(struct bpf_func_state *state, int size,
388 			      bool copy_old)
389 {
390 	u32 old_size = state->allocated_stack;
391 	struct bpf_stack_state *new_stack;
392 	int slot = size / BPF_REG_SIZE;
393 
394 	if (size <= old_size || !size) {
395 		if (copy_old)
396 			return 0;
397 		state->allocated_stack = slot * BPF_REG_SIZE;
398 		if (!size && old_size) {
399 			kfree(state->stack);
400 			state->stack = NULL;
401 		}
402 		return 0;
403 	}
404 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
405 				  GFP_KERNEL);
406 	if (!new_stack)
407 		return -ENOMEM;
408 	if (copy_old) {
409 		if (state->stack)
410 			memcpy(new_stack, state->stack,
411 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
412 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
413 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
414 	}
415 	state->allocated_stack = slot * BPF_REG_SIZE;
416 	kfree(state->stack);
417 	state->stack = new_stack;
418 	return 0;
419 }
420 
421 static void free_func_state(struct bpf_func_state *state)
422 {
423 	if (!state)
424 		return;
425 	kfree(state->stack);
426 	kfree(state);
427 }
428 
429 static void free_verifier_state(struct bpf_verifier_state *state,
430 				bool free_self)
431 {
432 	int i;
433 
434 	for (i = 0; i <= state->curframe; i++) {
435 		free_func_state(state->frame[i]);
436 		state->frame[i] = NULL;
437 	}
438 	if (free_self)
439 		kfree(state);
440 }
441 
442 /* copy verifier state from src to dst growing dst stack space
443  * when necessary to accommodate larger src stack
444  */
445 static int copy_func_state(struct bpf_func_state *dst,
446 			   const struct bpf_func_state *src)
447 {
448 	int err;
449 
450 	err = realloc_func_state(dst, src->allocated_stack, false);
451 	if (err)
452 		return err;
453 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 	return copy_stack_state(dst, src);
455 }
456 
457 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
458 			       const struct bpf_verifier_state *src)
459 {
460 	struct bpf_func_state *dst;
461 	int i, err;
462 
463 	/* if dst has more stack frames then src frame, free them */
464 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
465 		free_func_state(dst_state->frame[i]);
466 		dst_state->frame[i] = NULL;
467 	}
468 	dst_state->curframe = src->curframe;
469 	dst_state->parent = src->parent;
470 	for (i = 0; i <= src->curframe; i++) {
471 		dst = dst_state->frame[i];
472 		if (!dst) {
473 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
474 			if (!dst)
475 				return -ENOMEM;
476 			dst_state->frame[i] = dst;
477 		}
478 		err = copy_func_state(dst, src->frame[i]);
479 		if (err)
480 			return err;
481 	}
482 	return 0;
483 }
484 
485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
486 		     int *insn_idx)
487 {
488 	struct bpf_verifier_state *cur = env->cur_state;
489 	struct bpf_verifier_stack_elem *elem, *head = env->head;
490 	int err;
491 
492 	if (env->head == NULL)
493 		return -ENOENT;
494 
495 	if (cur) {
496 		err = copy_verifier_state(cur, &head->st);
497 		if (err)
498 			return err;
499 	}
500 	if (insn_idx)
501 		*insn_idx = head->insn_idx;
502 	if (prev_insn_idx)
503 		*prev_insn_idx = head->prev_insn_idx;
504 	elem = head->next;
505 	free_verifier_state(&head->st, false);
506 	kfree(head);
507 	env->head = elem;
508 	env->stack_size--;
509 	return 0;
510 }
511 
512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
513 					     int insn_idx, int prev_insn_idx)
514 {
515 	struct bpf_verifier_state *cur = env->cur_state;
516 	struct bpf_verifier_stack_elem *elem;
517 	int err;
518 
519 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
520 	if (!elem)
521 		goto err;
522 
523 	elem->insn_idx = insn_idx;
524 	elem->prev_insn_idx = prev_insn_idx;
525 	elem->next = env->head;
526 	env->head = elem;
527 	env->stack_size++;
528 	err = copy_verifier_state(&elem->st, cur);
529 	if (err)
530 		goto err;
531 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
532 		verbose(env, "BPF program is too complex\n");
533 		goto err;
534 	}
535 	return &elem->st;
536 err:
537 	free_verifier_state(env->cur_state, true);
538 	env->cur_state = NULL;
539 	/* pop all elements and return */
540 	while (!pop_stack(env, NULL, NULL));
541 	return NULL;
542 }
543 
544 #define CALLER_SAVED_REGS 6
545 static const int caller_saved[CALLER_SAVED_REGS] = {
546 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
547 };
548 
549 static void __mark_reg_not_init(struct bpf_reg_state *reg);
550 
551 /* Mark the unknown part of a register (variable offset or scalar value) as
552  * known to have the value @imm.
553  */
554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
555 {
556 	reg->id = 0;
557 	reg->var_off = tnum_const(imm);
558 	reg->smin_value = (s64)imm;
559 	reg->smax_value = (s64)imm;
560 	reg->umin_value = imm;
561 	reg->umax_value = imm;
562 }
563 
564 /* Mark the 'variable offset' part of a register as zero.  This should be
565  * used only on registers holding a pointer type.
566  */
567 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
568 {
569 	__mark_reg_known(reg, 0);
570 }
571 
572 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
573 {
574 	__mark_reg_known(reg, 0);
575 	reg->off = 0;
576 	reg->type = SCALAR_VALUE;
577 }
578 
579 static void mark_reg_known_zero(struct bpf_verifier_env *env,
580 				struct bpf_reg_state *regs, u32 regno)
581 {
582 	if (WARN_ON(regno >= MAX_BPF_REG)) {
583 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
584 		/* Something bad happened, let's kill all regs */
585 		for (regno = 0; regno < MAX_BPF_REG; regno++)
586 			__mark_reg_not_init(regs + regno);
587 		return;
588 	}
589 	__mark_reg_known_zero(regs + regno);
590 }
591 
592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
593 {
594 	return type_is_pkt_pointer(reg->type);
595 }
596 
597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
598 {
599 	return reg_is_pkt_pointer(reg) ||
600 	       reg->type == PTR_TO_PACKET_END;
601 }
602 
603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
605 				    enum bpf_reg_type which)
606 {
607 	/* The register can already have a range from prior markings.
608 	 * This is fine as long as it hasn't been advanced from its
609 	 * origin.
610 	 */
611 	return reg->type == which &&
612 	       reg->id == 0 &&
613 	       reg->off == 0 &&
614 	       tnum_equals_const(reg->var_off, 0);
615 }
616 
617 /* Attempts to improve min/max values based on var_off information */
618 static void __update_reg_bounds(struct bpf_reg_state *reg)
619 {
620 	/* min signed is max(sign bit) | min(other bits) */
621 	reg->smin_value = max_t(s64, reg->smin_value,
622 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
623 	/* max signed is min(sign bit) | max(other bits) */
624 	reg->smax_value = min_t(s64, reg->smax_value,
625 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
626 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
627 	reg->umax_value = min(reg->umax_value,
628 			      reg->var_off.value | reg->var_off.mask);
629 }
630 
631 /* Uses signed min/max values to inform unsigned, and vice-versa */
632 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
633 {
634 	/* Learn sign from signed bounds.
635 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
636 	 * are the same, so combine.  This works even in the negative case, e.g.
637 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
638 	 */
639 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
640 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
641 							  reg->umin_value);
642 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
643 							  reg->umax_value);
644 		return;
645 	}
646 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
647 	 * boundary, so we must be careful.
648 	 */
649 	if ((s64)reg->umax_value >= 0) {
650 		/* Positive.  We can't learn anything from the smin, but smax
651 		 * is positive, hence safe.
652 		 */
653 		reg->smin_value = reg->umin_value;
654 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
655 							  reg->umax_value);
656 	} else if ((s64)reg->umin_value < 0) {
657 		/* Negative.  We can't learn anything from the smax, but smin
658 		 * is negative, hence safe.
659 		 */
660 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
661 							  reg->umin_value);
662 		reg->smax_value = reg->umax_value;
663 	}
664 }
665 
666 /* Attempts to improve var_off based on unsigned min/max information */
667 static void __reg_bound_offset(struct bpf_reg_state *reg)
668 {
669 	reg->var_off = tnum_intersect(reg->var_off,
670 				      tnum_range(reg->umin_value,
671 						 reg->umax_value));
672 }
673 
674 /* Reset the min/max bounds of a register */
675 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
676 {
677 	reg->smin_value = S64_MIN;
678 	reg->smax_value = S64_MAX;
679 	reg->umin_value = 0;
680 	reg->umax_value = U64_MAX;
681 }
682 
683 /* Mark a register as having a completely unknown (scalar) value. */
684 static void __mark_reg_unknown(struct bpf_reg_state *reg)
685 {
686 	reg->type = SCALAR_VALUE;
687 	reg->id = 0;
688 	reg->off = 0;
689 	reg->var_off = tnum_unknown;
690 	reg->frameno = 0;
691 	__mark_reg_unbounded(reg);
692 }
693 
694 static void mark_reg_unknown(struct bpf_verifier_env *env,
695 			     struct bpf_reg_state *regs, u32 regno)
696 {
697 	if (WARN_ON(regno >= MAX_BPF_REG)) {
698 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
699 		/* Something bad happened, let's kill all regs except FP */
700 		for (regno = 0; regno < BPF_REG_FP; regno++)
701 			__mark_reg_not_init(regs + regno);
702 		return;
703 	}
704 	__mark_reg_unknown(regs + regno);
705 }
706 
707 static void __mark_reg_not_init(struct bpf_reg_state *reg)
708 {
709 	__mark_reg_unknown(reg);
710 	reg->type = NOT_INIT;
711 }
712 
713 static void mark_reg_not_init(struct bpf_verifier_env *env,
714 			      struct bpf_reg_state *regs, u32 regno)
715 {
716 	if (WARN_ON(regno >= MAX_BPF_REG)) {
717 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
718 		/* Something bad happened, let's kill all regs except FP */
719 		for (regno = 0; regno < BPF_REG_FP; regno++)
720 			__mark_reg_not_init(regs + regno);
721 		return;
722 	}
723 	__mark_reg_not_init(regs + regno);
724 }
725 
726 static void init_reg_state(struct bpf_verifier_env *env,
727 			   struct bpf_func_state *state)
728 {
729 	struct bpf_reg_state *regs = state->regs;
730 	int i;
731 
732 	for (i = 0; i < MAX_BPF_REG; i++) {
733 		mark_reg_not_init(env, regs, i);
734 		regs[i].live = REG_LIVE_NONE;
735 	}
736 
737 	/* frame pointer */
738 	regs[BPF_REG_FP].type = PTR_TO_STACK;
739 	mark_reg_known_zero(env, regs, BPF_REG_FP);
740 	regs[BPF_REG_FP].frameno = state->frameno;
741 
742 	/* 1st arg to a function */
743 	regs[BPF_REG_1].type = PTR_TO_CTX;
744 	mark_reg_known_zero(env, regs, BPF_REG_1);
745 }
746 
747 #define BPF_MAIN_FUNC (-1)
748 static void init_func_state(struct bpf_verifier_env *env,
749 			    struct bpf_func_state *state,
750 			    int callsite, int frameno, int subprogno)
751 {
752 	state->callsite = callsite;
753 	state->frameno = frameno;
754 	state->subprogno = subprogno;
755 	init_reg_state(env, state);
756 }
757 
758 enum reg_arg_type {
759 	SRC_OP,		/* register is used as source operand */
760 	DST_OP,		/* register is used as destination operand */
761 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
762 };
763 
764 static int cmp_subprogs(const void *a, const void *b)
765 {
766 	return ((struct bpf_subprog_info *)a)->start -
767 	       ((struct bpf_subprog_info *)b)->start;
768 }
769 
770 static int find_subprog(struct bpf_verifier_env *env, int off)
771 {
772 	struct bpf_subprog_info *p;
773 
774 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
775 		    sizeof(env->subprog_info[0]), cmp_subprogs);
776 	if (!p)
777 		return -ENOENT;
778 	return p - env->subprog_info;
779 
780 }
781 
782 static int add_subprog(struct bpf_verifier_env *env, int off)
783 {
784 	int insn_cnt = env->prog->len;
785 	int ret;
786 
787 	if (off >= insn_cnt || off < 0) {
788 		verbose(env, "call to invalid destination\n");
789 		return -EINVAL;
790 	}
791 	ret = find_subprog(env, off);
792 	if (ret >= 0)
793 		return 0;
794 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
795 		verbose(env, "too many subprograms\n");
796 		return -E2BIG;
797 	}
798 	env->subprog_info[env->subprog_cnt++].start = off;
799 	sort(env->subprog_info, env->subprog_cnt,
800 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
801 	return 0;
802 }
803 
804 static int check_subprogs(struct bpf_verifier_env *env)
805 {
806 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
807 	struct bpf_subprog_info *subprog = env->subprog_info;
808 	struct bpf_insn *insn = env->prog->insnsi;
809 	int insn_cnt = env->prog->len;
810 
811 	/* Add entry function. */
812 	ret = add_subprog(env, 0);
813 	if (ret < 0)
814 		return ret;
815 
816 	/* determine subprog starts. The end is one before the next starts */
817 	for (i = 0; i < insn_cnt; i++) {
818 		if (insn[i].code != (BPF_JMP | BPF_CALL))
819 			continue;
820 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
821 			continue;
822 		if (!env->allow_ptr_leaks) {
823 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
824 			return -EPERM;
825 		}
826 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
827 			verbose(env, "function calls in offloaded programs are not supported yet\n");
828 			return -EINVAL;
829 		}
830 		ret = add_subprog(env, i + insn[i].imm + 1);
831 		if (ret < 0)
832 			return ret;
833 	}
834 
835 	/* Add a fake 'exit' subprog which could simplify subprog iteration
836 	 * logic. 'subprog_cnt' should not be increased.
837 	 */
838 	subprog[env->subprog_cnt].start = insn_cnt;
839 
840 	if (env->log.level > 1)
841 		for (i = 0; i < env->subprog_cnt; i++)
842 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
843 
844 	/* now check that all jumps are within the same subprog */
845 	subprog_start = subprog[cur_subprog].start;
846 	subprog_end = subprog[cur_subprog + 1].start;
847 	for (i = 0; i < insn_cnt; i++) {
848 		u8 code = insn[i].code;
849 
850 		if (BPF_CLASS(code) != BPF_JMP)
851 			goto next;
852 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
853 			goto next;
854 		off = i + insn[i].off + 1;
855 		if (off < subprog_start || off >= subprog_end) {
856 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
857 			return -EINVAL;
858 		}
859 next:
860 		if (i == subprog_end - 1) {
861 			/* to avoid fall-through from one subprog into another
862 			 * the last insn of the subprog should be either exit
863 			 * or unconditional jump back
864 			 */
865 			if (code != (BPF_JMP | BPF_EXIT) &&
866 			    code != (BPF_JMP | BPF_JA)) {
867 				verbose(env, "last insn is not an exit or jmp\n");
868 				return -EINVAL;
869 			}
870 			subprog_start = subprog_end;
871 			cur_subprog++;
872 			if (cur_subprog < env->subprog_cnt)
873 				subprog_end = subprog[cur_subprog + 1].start;
874 		}
875 	}
876 	return 0;
877 }
878 
879 static
880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
881 				       const struct bpf_verifier_state *state,
882 				       struct bpf_verifier_state *parent,
883 				       u32 regno)
884 {
885 	struct bpf_verifier_state *tmp = NULL;
886 
887 	/* 'parent' could be a state of caller and
888 	 * 'state' could be a state of callee. In such case
889 	 * parent->curframe < state->curframe
890 	 * and it's ok for r1 - r5 registers
891 	 *
892 	 * 'parent' could be a callee's state after it bpf_exit-ed.
893 	 * In such case parent->curframe > state->curframe
894 	 * and it's ok for r0 only
895 	 */
896 	if (parent->curframe == state->curframe ||
897 	    (parent->curframe < state->curframe &&
898 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
899 	    (parent->curframe > state->curframe &&
900 	       regno == BPF_REG_0))
901 		return parent;
902 
903 	if (parent->curframe > state->curframe &&
904 	    regno >= BPF_REG_6) {
905 		/* for callee saved regs we have to skip the whole chain
906 		 * of states that belong to callee and mark as LIVE_READ
907 		 * the registers before the call
908 		 */
909 		tmp = parent;
910 		while (tmp && tmp->curframe != state->curframe) {
911 			tmp = tmp->parent;
912 		}
913 		if (!tmp)
914 			goto bug;
915 		parent = tmp;
916 	} else {
917 		goto bug;
918 	}
919 	return parent;
920 bug:
921 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
922 	verbose(env, "regno %d parent frame %d current frame %d\n",
923 		regno, parent->curframe, state->curframe);
924 	return NULL;
925 }
926 
927 static int mark_reg_read(struct bpf_verifier_env *env,
928 			 const struct bpf_verifier_state *state,
929 			 struct bpf_verifier_state *parent,
930 			 u32 regno)
931 {
932 	bool writes = parent == state->parent; /* Observe write marks */
933 
934 	if (regno == BPF_REG_FP)
935 		/* We don't need to worry about FP liveness because it's read-only */
936 		return 0;
937 
938 	while (parent) {
939 		/* if read wasn't screened by an earlier write ... */
940 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
941 			break;
942 		parent = skip_callee(env, state, parent, regno);
943 		if (!parent)
944 			return -EFAULT;
945 		/* ... then we depend on parent's value */
946 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
947 		state = parent;
948 		parent = state->parent;
949 		writes = true;
950 	}
951 	return 0;
952 }
953 
954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
955 			 enum reg_arg_type t)
956 {
957 	struct bpf_verifier_state *vstate = env->cur_state;
958 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
959 	struct bpf_reg_state *regs = state->regs;
960 
961 	if (regno >= MAX_BPF_REG) {
962 		verbose(env, "R%d is invalid\n", regno);
963 		return -EINVAL;
964 	}
965 
966 	if (t == SRC_OP) {
967 		/* check whether register used as source operand can be read */
968 		if (regs[regno].type == NOT_INIT) {
969 			verbose(env, "R%d !read_ok\n", regno);
970 			return -EACCES;
971 		}
972 		return mark_reg_read(env, vstate, vstate->parent, regno);
973 	} else {
974 		/* check whether register used as dest operand can be written to */
975 		if (regno == BPF_REG_FP) {
976 			verbose(env, "frame pointer is read only\n");
977 			return -EACCES;
978 		}
979 		regs[regno].live |= REG_LIVE_WRITTEN;
980 		if (t == DST_OP)
981 			mark_reg_unknown(env, regs, regno);
982 	}
983 	return 0;
984 }
985 
986 static bool is_spillable_regtype(enum bpf_reg_type type)
987 {
988 	switch (type) {
989 	case PTR_TO_MAP_VALUE:
990 	case PTR_TO_MAP_VALUE_OR_NULL:
991 	case PTR_TO_STACK:
992 	case PTR_TO_CTX:
993 	case PTR_TO_PACKET:
994 	case PTR_TO_PACKET_META:
995 	case PTR_TO_PACKET_END:
996 	case CONST_PTR_TO_MAP:
997 		return true;
998 	default:
999 		return false;
1000 	}
1001 }
1002 
1003 /* Does this register contain a constant zero? */
1004 static bool register_is_null(struct bpf_reg_state *reg)
1005 {
1006 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1007 }
1008 
1009 /* check_stack_read/write functions track spill/fill of registers,
1010  * stack boundary and alignment are checked in check_mem_access()
1011  */
1012 static int check_stack_write(struct bpf_verifier_env *env,
1013 			     struct bpf_func_state *state, /* func where register points to */
1014 			     int off, int size, int value_regno, int insn_idx)
1015 {
1016 	struct bpf_func_state *cur; /* state of the current function */
1017 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1018 	enum bpf_reg_type type;
1019 
1020 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1021 				 true);
1022 	if (err)
1023 		return err;
1024 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1025 	 * so it's aligned access and [off, off + size) are within stack limits
1026 	 */
1027 	if (!env->allow_ptr_leaks &&
1028 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1029 	    size != BPF_REG_SIZE) {
1030 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1031 		return -EACCES;
1032 	}
1033 
1034 	cur = env->cur_state->frame[env->cur_state->curframe];
1035 	if (value_regno >= 0 &&
1036 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1037 
1038 		/* register containing pointer is being spilled into stack */
1039 		if (size != BPF_REG_SIZE) {
1040 			verbose(env, "invalid size of register spill\n");
1041 			return -EACCES;
1042 		}
1043 
1044 		if (state != cur && type == PTR_TO_STACK) {
1045 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1046 			return -EINVAL;
1047 		}
1048 
1049 		/* save register state */
1050 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1051 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1052 
1053 		for (i = 0; i < BPF_REG_SIZE; i++) {
1054 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1055 			    !env->allow_ptr_leaks) {
1056 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1057 				int soff = (-spi - 1) * BPF_REG_SIZE;
1058 
1059 				/* detected reuse of integer stack slot with a pointer
1060 				 * which means either llvm is reusing stack slot or
1061 				 * an attacker is trying to exploit CVE-2018-3639
1062 				 * (speculative store bypass)
1063 				 * Have to sanitize that slot with preemptive
1064 				 * store of zero.
1065 				 */
1066 				if (*poff && *poff != soff) {
1067 					/* disallow programs where single insn stores
1068 					 * into two different stack slots, since verifier
1069 					 * cannot sanitize them
1070 					 */
1071 					verbose(env,
1072 						"insn %d cannot access two stack slots fp%d and fp%d",
1073 						insn_idx, *poff, soff);
1074 					return -EINVAL;
1075 				}
1076 				*poff = soff;
1077 			}
1078 			state->stack[spi].slot_type[i] = STACK_SPILL;
1079 		}
1080 	} else {
1081 		u8 type = STACK_MISC;
1082 
1083 		/* regular write of data into stack */
1084 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1085 
1086 		/* only mark the slot as written if all 8 bytes were written
1087 		 * otherwise read propagation may incorrectly stop too soon
1088 		 * when stack slots are partially written.
1089 		 * This heuristic means that read propagation will be
1090 		 * conservative, since it will add reg_live_read marks
1091 		 * to stack slots all the way to first state when programs
1092 		 * writes+reads less than 8 bytes
1093 		 */
1094 		if (size == BPF_REG_SIZE)
1095 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1096 
1097 		/* when we zero initialize stack slots mark them as such */
1098 		if (value_regno >= 0 &&
1099 		    register_is_null(&cur->regs[value_regno]))
1100 			type = STACK_ZERO;
1101 
1102 		for (i = 0; i < size; i++)
1103 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1104 				type;
1105 	}
1106 	return 0;
1107 }
1108 
1109 /* registers of every function are unique and mark_reg_read() propagates
1110  * the liveness in the following cases:
1111  * - from callee into caller for R1 - R5 that were used as arguments
1112  * - from caller into callee for R0 that used as result of the call
1113  * - from caller to the same caller skipping states of the callee for R6 - R9,
1114  *   since R6 - R9 are callee saved by implicit function prologue and
1115  *   caller's R6 != callee's R6, so when we propagate liveness up to
1116  *   parent states we need to skip callee states for R6 - R9.
1117  *
1118  * stack slot marking is different, since stacks of caller and callee are
1119  * accessible in both (since caller can pass a pointer to caller's stack to
1120  * callee which can pass it to another function), hence mark_stack_slot_read()
1121  * has to propagate the stack liveness to all parent states at given frame number.
1122  * Consider code:
1123  * f1() {
1124  *   ptr = fp - 8;
1125  *   *ptr = ctx;
1126  *   call f2 {
1127  *      .. = *ptr;
1128  *   }
1129  *   .. = *ptr;
1130  * }
1131  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1132  * to mark liveness at the f1's frame and not f2's frame.
1133  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1134  * to propagate liveness to f2 states at f1's frame level and further into
1135  * f1 states at f1's frame level until write into that stack slot
1136  */
1137 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1138 				 const struct bpf_verifier_state *state,
1139 				 struct bpf_verifier_state *parent,
1140 				 int slot, int frameno)
1141 {
1142 	bool writes = parent == state->parent; /* Observe write marks */
1143 
1144 	while (parent) {
1145 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1146 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1147 			 * write the read marks are conservative and parent
1148 			 * state may not even have the stack allocated. In such case
1149 			 * end the propagation, since the loop reached beginning
1150 			 * of the function
1151 			 */
1152 			break;
1153 		/* if read wasn't screened by an earlier write ... */
1154 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1155 			break;
1156 		/* ... then we depend on parent's value */
1157 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1158 		state = parent;
1159 		parent = state->parent;
1160 		writes = true;
1161 	}
1162 }
1163 
1164 static int check_stack_read(struct bpf_verifier_env *env,
1165 			    struct bpf_func_state *reg_state /* func where register points to */,
1166 			    int off, int size, int value_regno)
1167 {
1168 	struct bpf_verifier_state *vstate = env->cur_state;
1169 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1171 	u8 *stype;
1172 
1173 	if (reg_state->allocated_stack <= slot) {
1174 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1175 			off, size);
1176 		return -EACCES;
1177 	}
1178 	stype = reg_state->stack[spi].slot_type;
1179 
1180 	if (stype[0] == STACK_SPILL) {
1181 		if (size != BPF_REG_SIZE) {
1182 			verbose(env, "invalid size of register spill\n");
1183 			return -EACCES;
1184 		}
1185 		for (i = 1; i < BPF_REG_SIZE; i++) {
1186 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1187 				verbose(env, "corrupted spill memory\n");
1188 				return -EACCES;
1189 			}
1190 		}
1191 
1192 		if (value_regno >= 0) {
1193 			/* restore register state from stack */
1194 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1195 			/* mark reg as written since spilled pointer state likely
1196 			 * has its liveness marks cleared by is_state_visited()
1197 			 * which resets stack/reg liveness for state transitions
1198 			 */
1199 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1200 		}
1201 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1202 				     reg_state->frameno);
1203 		return 0;
1204 	} else {
1205 		int zeros = 0;
1206 
1207 		for (i = 0; i < size; i++) {
1208 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1209 				continue;
1210 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1211 				zeros++;
1212 				continue;
1213 			}
1214 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1215 				off, i, size);
1216 			return -EACCES;
1217 		}
1218 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1219 				     reg_state->frameno);
1220 		if (value_regno >= 0) {
1221 			if (zeros == size) {
1222 				/* any size read into register is zero extended,
1223 				 * so the whole register == const_zero
1224 				 */
1225 				__mark_reg_const_zero(&state->regs[value_regno]);
1226 			} else {
1227 				/* have read misc data from the stack */
1228 				mark_reg_unknown(env, state->regs, value_regno);
1229 			}
1230 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1231 		}
1232 		return 0;
1233 	}
1234 }
1235 
1236 /* check read/write into map element returned by bpf_map_lookup_elem() */
1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1238 			      int size, bool zero_size_allowed)
1239 {
1240 	struct bpf_reg_state *regs = cur_regs(env);
1241 	struct bpf_map *map = regs[regno].map_ptr;
1242 
1243 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1244 	    off + size > map->value_size) {
1245 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1246 			map->value_size, off, size);
1247 		return -EACCES;
1248 	}
1249 	return 0;
1250 }
1251 
1252 /* check read/write into a map element with possible variable offset */
1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1254 			    int off, int size, bool zero_size_allowed)
1255 {
1256 	struct bpf_verifier_state *vstate = env->cur_state;
1257 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1258 	struct bpf_reg_state *reg = &state->regs[regno];
1259 	int err;
1260 
1261 	/* We may have adjusted the register to this map value, so we
1262 	 * need to try adding each of min_value and max_value to off
1263 	 * to make sure our theoretical access will be safe.
1264 	 */
1265 	if (env->log.level)
1266 		print_verifier_state(env, state);
1267 	/* The minimum value is only important with signed
1268 	 * comparisons where we can't assume the floor of a
1269 	 * value is 0.  If we are using signed variables for our
1270 	 * index'es we need to make sure that whatever we use
1271 	 * will have a set floor within our range.
1272 	 */
1273 	if (reg->smin_value < 0) {
1274 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1275 			regno);
1276 		return -EACCES;
1277 	}
1278 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1279 				 zero_size_allowed);
1280 	if (err) {
1281 		verbose(env, "R%d min value is outside of the array range\n",
1282 			regno);
1283 		return err;
1284 	}
1285 
1286 	/* If we haven't set a max value then we need to bail since we can't be
1287 	 * sure we won't do bad things.
1288 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1289 	 */
1290 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1291 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1292 			regno);
1293 		return -EACCES;
1294 	}
1295 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1296 				 zero_size_allowed);
1297 	if (err)
1298 		verbose(env, "R%d max value is outside of the array range\n",
1299 			regno);
1300 	return err;
1301 }
1302 
1303 #define MAX_PACKET_OFF 0xffff
1304 
1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1306 				       const struct bpf_call_arg_meta *meta,
1307 				       enum bpf_access_type t)
1308 {
1309 	switch (env->prog->type) {
1310 	case BPF_PROG_TYPE_LWT_IN:
1311 	case BPF_PROG_TYPE_LWT_OUT:
1312 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1313 		/* dst_input() and dst_output() can't write for now */
1314 		if (t == BPF_WRITE)
1315 			return false;
1316 		/* fallthrough */
1317 	case BPF_PROG_TYPE_SCHED_CLS:
1318 	case BPF_PROG_TYPE_SCHED_ACT:
1319 	case BPF_PROG_TYPE_XDP:
1320 	case BPF_PROG_TYPE_LWT_XMIT:
1321 	case BPF_PROG_TYPE_SK_SKB:
1322 	case BPF_PROG_TYPE_SK_MSG:
1323 		if (meta)
1324 			return meta->pkt_access;
1325 
1326 		env->seen_direct_write = true;
1327 		return true;
1328 	default:
1329 		return false;
1330 	}
1331 }
1332 
1333 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1334 				 int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_reg_state *regs = cur_regs(env);
1337 	struct bpf_reg_state *reg = &regs[regno];
1338 
1339 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1340 	    (u64)off + size > reg->range) {
1341 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1342 			off, size, regno, reg->id, reg->off, reg->range);
1343 		return -EACCES;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1349 			       int size, bool zero_size_allowed)
1350 {
1351 	struct bpf_reg_state *regs = cur_regs(env);
1352 	struct bpf_reg_state *reg = &regs[regno];
1353 	int err;
1354 
1355 	/* We may have added a variable offset to the packet pointer; but any
1356 	 * reg->range we have comes after that.  We are only checking the fixed
1357 	 * offset.
1358 	 */
1359 
1360 	/* We don't allow negative numbers, because we aren't tracking enough
1361 	 * detail to prove they're safe.
1362 	 */
1363 	if (reg->smin_value < 0) {
1364 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1365 			regno);
1366 		return -EACCES;
1367 	}
1368 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1369 	if (err) {
1370 		verbose(env, "R%d offset is outside of the packet\n", regno);
1371 		return err;
1372 	}
1373 	return err;
1374 }
1375 
1376 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1377 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1378 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1379 {
1380 	struct bpf_insn_access_aux info = {
1381 		.reg_type = *reg_type,
1382 	};
1383 
1384 	if (env->ops->is_valid_access &&
1385 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1386 		/* A non zero info.ctx_field_size indicates that this field is a
1387 		 * candidate for later verifier transformation to load the whole
1388 		 * field and then apply a mask when accessed with a narrower
1389 		 * access than actual ctx access size. A zero info.ctx_field_size
1390 		 * will only allow for whole field access and rejects any other
1391 		 * type of narrower access.
1392 		 */
1393 		*reg_type = info.reg_type;
1394 
1395 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1396 		/* remember the offset of last byte accessed in ctx */
1397 		if (env->prog->aux->max_ctx_offset < off + size)
1398 			env->prog->aux->max_ctx_offset = off + size;
1399 		return 0;
1400 	}
1401 
1402 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1403 	return -EACCES;
1404 }
1405 
1406 static bool __is_pointer_value(bool allow_ptr_leaks,
1407 			       const struct bpf_reg_state *reg)
1408 {
1409 	if (allow_ptr_leaks)
1410 		return false;
1411 
1412 	return reg->type != SCALAR_VALUE;
1413 }
1414 
1415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1416 {
1417 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1418 }
1419 
1420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1421 {
1422 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1423 
1424 	return reg->type == PTR_TO_CTX;
1425 }
1426 
1427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1428 {
1429 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1430 
1431 	return type_is_pkt_pointer(reg->type);
1432 }
1433 
1434 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1435 				   const struct bpf_reg_state *reg,
1436 				   int off, int size, bool strict)
1437 {
1438 	struct tnum reg_off;
1439 	int ip_align;
1440 
1441 	/* Byte size accesses are always allowed. */
1442 	if (!strict || size == 1)
1443 		return 0;
1444 
1445 	/* For platforms that do not have a Kconfig enabling
1446 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1447 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1448 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1449 	 * to this code only in strict mode where we want to emulate
1450 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1451 	 * unconditional IP align value of '2'.
1452 	 */
1453 	ip_align = 2;
1454 
1455 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1456 	if (!tnum_is_aligned(reg_off, size)) {
1457 		char tn_buf[48];
1458 
1459 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1460 		verbose(env,
1461 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1462 			ip_align, tn_buf, reg->off, off, size);
1463 		return -EACCES;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1470 				       const struct bpf_reg_state *reg,
1471 				       const char *pointer_desc,
1472 				       int off, int size, bool strict)
1473 {
1474 	struct tnum reg_off;
1475 
1476 	/* Byte size accesses are always allowed. */
1477 	if (!strict || size == 1)
1478 		return 0;
1479 
1480 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1481 	if (!tnum_is_aligned(reg_off, size)) {
1482 		char tn_buf[48];
1483 
1484 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1485 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1486 			pointer_desc, tn_buf, reg->off, off, size);
1487 		return -EACCES;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static int check_ptr_alignment(struct bpf_verifier_env *env,
1494 			       const struct bpf_reg_state *reg, int off,
1495 			       int size, bool strict_alignment_once)
1496 {
1497 	bool strict = env->strict_alignment || strict_alignment_once;
1498 	const char *pointer_desc = "";
1499 
1500 	switch (reg->type) {
1501 	case PTR_TO_PACKET:
1502 	case PTR_TO_PACKET_META:
1503 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1504 		 * right in front, treat it the very same way.
1505 		 */
1506 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1507 	case PTR_TO_MAP_VALUE:
1508 		pointer_desc = "value ";
1509 		break;
1510 	case PTR_TO_CTX:
1511 		pointer_desc = "context ";
1512 		break;
1513 	case PTR_TO_STACK:
1514 		pointer_desc = "stack ";
1515 		/* The stack spill tracking logic in check_stack_write()
1516 		 * and check_stack_read() relies on stack accesses being
1517 		 * aligned.
1518 		 */
1519 		strict = true;
1520 		break;
1521 	default:
1522 		break;
1523 	}
1524 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1525 					   strict);
1526 }
1527 
1528 static int update_stack_depth(struct bpf_verifier_env *env,
1529 			      const struct bpf_func_state *func,
1530 			      int off)
1531 {
1532 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1533 
1534 	if (stack >= -off)
1535 		return 0;
1536 
1537 	/* update known max for given subprogram */
1538 	env->subprog_info[func->subprogno].stack_depth = -off;
1539 	return 0;
1540 }
1541 
1542 /* starting from main bpf function walk all instructions of the function
1543  * and recursively walk all callees that given function can call.
1544  * Ignore jump and exit insns.
1545  * Since recursion is prevented by check_cfg() this algorithm
1546  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1547  */
1548 static int check_max_stack_depth(struct bpf_verifier_env *env)
1549 {
1550 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1551 	struct bpf_subprog_info *subprog = env->subprog_info;
1552 	struct bpf_insn *insn = env->prog->insnsi;
1553 	int ret_insn[MAX_CALL_FRAMES];
1554 	int ret_prog[MAX_CALL_FRAMES];
1555 
1556 process_func:
1557 	/* round up to 32-bytes, since this is granularity
1558 	 * of interpreter stack size
1559 	 */
1560 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1561 	if (depth > MAX_BPF_STACK) {
1562 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1563 			frame + 1, depth);
1564 		return -EACCES;
1565 	}
1566 continue_func:
1567 	subprog_end = subprog[idx + 1].start;
1568 	for (; i < subprog_end; i++) {
1569 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1570 			continue;
1571 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1572 			continue;
1573 		/* remember insn and function to return to */
1574 		ret_insn[frame] = i + 1;
1575 		ret_prog[frame] = idx;
1576 
1577 		/* find the callee */
1578 		i = i + insn[i].imm + 1;
1579 		idx = find_subprog(env, i);
1580 		if (idx < 0) {
1581 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1582 				  i);
1583 			return -EFAULT;
1584 		}
1585 		frame++;
1586 		if (frame >= MAX_CALL_FRAMES) {
1587 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1588 			return -EFAULT;
1589 		}
1590 		goto process_func;
1591 	}
1592 	/* end of for() loop means the last insn of the 'subprog'
1593 	 * was reached. Doesn't matter whether it was JA or EXIT
1594 	 */
1595 	if (frame == 0)
1596 		return 0;
1597 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1598 	frame--;
1599 	i = ret_insn[frame];
1600 	idx = ret_prog[frame];
1601 	goto continue_func;
1602 }
1603 
1604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1605 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1606 				  const struct bpf_insn *insn, int idx)
1607 {
1608 	int start = idx + insn->imm + 1, subprog;
1609 
1610 	subprog = find_subprog(env, start);
1611 	if (subprog < 0) {
1612 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1613 			  start);
1614 		return -EFAULT;
1615 	}
1616 	return env->subprog_info[subprog].stack_depth;
1617 }
1618 #endif
1619 
1620 static int check_ctx_reg(struct bpf_verifier_env *env,
1621 			 const struct bpf_reg_state *reg, int regno)
1622 {
1623 	/* Access to ctx or passing it to a helper is only allowed in
1624 	 * its original, unmodified form.
1625 	 */
1626 
1627 	if (reg->off) {
1628 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1629 			regno, reg->off);
1630 		return -EACCES;
1631 	}
1632 
1633 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1634 		char tn_buf[48];
1635 
1636 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1637 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1638 		return -EACCES;
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 /* truncate register to smaller size (in bytes)
1645  * must be called with size < BPF_REG_SIZE
1646  */
1647 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1648 {
1649 	u64 mask;
1650 
1651 	/* clear high bits in bit representation */
1652 	reg->var_off = tnum_cast(reg->var_off, size);
1653 
1654 	/* fix arithmetic bounds */
1655 	mask = ((u64)1 << (size * 8)) - 1;
1656 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1657 		reg->umin_value &= mask;
1658 		reg->umax_value &= mask;
1659 	} else {
1660 		reg->umin_value = 0;
1661 		reg->umax_value = mask;
1662 	}
1663 	reg->smin_value = reg->umin_value;
1664 	reg->smax_value = reg->umax_value;
1665 }
1666 
1667 /* check whether memory at (regno + off) is accessible for t = (read | write)
1668  * if t==write, value_regno is a register which value is stored into memory
1669  * if t==read, value_regno is a register which will receive the value from memory
1670  * if t==write && value_regno==-1, some unknown value is stored into memory
1671  * if t==read && value_regno==-1, don't care what we read from memory
1672  */
1673 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1674 			    int off, int bpf_size, enum bpf_access_type t,
1675 			    int value_regno, bool strict_alignment_once)
1676 {
1677 	struct bpf_reg_state *regs = cur_regs(env);
1678 	struct bpf_reg_state *reg = regs + regno;
1679 	struct bpf_func_state *state;
1680 	int size, err = 0;
1681 
1682 	size = bpf_size_to_bytes(bpf_size);
1683 	if (size < 0)
1684 		return size;
1685 
1686 	/* alignment checks will add in reg->off themselves */
1687 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1688 	if (err)
1689 		return err;
1690 
1691 	/* for access checks, reg->off is just part of off */
1692 	off += reg->off;
1693 
1694 	if (reg->type == PTR_TO_MAP_VALUE) {
1695 		if (t == BPF_WRITE && value_regno >= 0 &&
1696 		    is_pointer_value(env, value_regno)) {
1697 			verbose(env, "R%d leaks addr into map\n", value_regno);
1698 			return -EACCES;
1699 		}
1700 
1701 		err = check_map_access(env, regno, off, size, false);
1702 		if (!err && t == BPF_READ && value_regno >= 0)
1703 			mark_reg_unknown(env, regs, value_regno);
1704 
1705 	} else if (reg->type == PTR_TO_CTX) {
1706 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1707 
1708 		if (t == BPF_WRITE && value_regno >= 0 &&
1709 		    is_pointer_value(env, value_regno)) {
1710 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1711 			return -EACCES;
1712 		}
1713 
1714 		err = check_ctx_reg(env, reg, regno);
1715 		if (err < 0)
1716 			return err;
1717 
1718 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1719 		if (!err && t == BPF_READ && value_regno >= 0) {
1720 			/* ctx access returns either a scalar, or a
1721 			 * PTR_TO_PACKET[_META,_END]. In the latter
1722 			 * case, we know the offset is zero.
1723 			 */
1724 			if (reg_type == SCALAR_VALUE)
1725 				mark_reg_unknown(env, regs, value_regno);
1726 			else
1727 				mark_reg_known_zero(env, regs,
1728 						    value_regno);
1729 			regs[value_regno].id = 0;
1730 			regs[value_regno].off = 0;
1731 			regs[value_regno].range = 0;
1732 			regs[value_regno].type = reg_type;
1733 		}
1734 
1735 	} else if (reg->type == PTR_TO_STACK) {
1736 		/* stack accesses must be at a fixed offset, so that we can
1737 		 * determine what type of data were returned.
1738 		 * See check_stack_read().
1739 		 */
1740 		if (!tnum_is_const(reg->var_off)) {
1741 			char tn_buf[48];
1742 
1743 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1744 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1745 				tn_buf, off, size);
1746 			return -EACCES;
1747 		}
1748 		off += reg->var_off.value;
1749 		if (off >= 0 || off < -MAX_BPF_STACK) {
1750 			verbose(env, "invalid stack off=%d size=%d\n", off,
1751 				size);
1752 			return -EACCES;
1753 		}
1754 
1755 		state = func(env, reg);
1756 		err = update_stack_depth(env, state, off);
1757 		if (err)
1758 			return err;
1759 
1760 		if (t == BPF_WRITE)
1761 			err = check_stack_write(env, state, off, size,
1762 						value_regno, insn_idx);
1763 		else
1764 			err = check_stack_read(env, state, off, size,
1765 					       value_regno);
1766 	} else if (reg_is_pkt_pointer(reg)) {
1767 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1768 			verbose(env, "cannot write into packet\n");
1769 			return -EACCES;
1770 		}
1771 		if (t == BPF_WRITE && value_regno >= 0 &&
1772 		    is_pointer_value(env, value_regno)) {
1773 			verbose(env, "R%d leaks addr into packet\n",
1774 				value_regno);
1775 			return -EACCES;
1776 		}
1777 		err = check_packet_access(env, regno, off, size, false);
1778 		if (!err && t == BPF_READ && value_regno >= 0)
1779 			mark_reg_unknown(env, regs, value_regno);
1780 	} else {
1781 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1782 			reg_type_str[reg->type]);
1783 		return -EACCES;
1784 	}
1785 
1786 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1787 	    regs[value_regno].type == SCALAR_VALUE) {
1788 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1789 		coerce_reg_to_size(&regs[value_regno], size);
1790 	}
1791 	return err;
1792 }
1793 
1794 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1795 {
1796 	int err;
1797 
1798 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1799 	    insn->imm != 0) {
1800 		verbose(env, "BPF_XADD uses reserved fields\n");
1801 		return -EINVAL;
1802 	}
1803 
1804 	/* check src1 operand */
1805 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1806 	if (err)
1807 		return err;
1808 
1809 	/* check src2 operand */
1810 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1811 	if (err)
1812 		return err;
1813 
1814 	if (is_pointer_value(env, insn->src_reg)) {
1815 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1816 		return -EACCES;
1817 	}
1818 
1819 	if (is_ctx_reg(env, insn->dst_reg) ||
1820 	    is_pkt_reg(env, insn->dst_reg)) {
1821 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1822 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1823 			"context" : "packet");
1824 		return -EACCES;
1825 	}
1826 
1827 	/* check whether atomic_add can read the memory */
1828 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1829 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1830 	if (err)
1831 		return err;
1832 
1833 	/* check whether atomic_add can write into the same memory */
1834 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1835 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1836 }
1837 
1838 /* when register 'regno' is passed into function that will read 'access_size'
1839  * bytes from that pointer, make sure that it's within stack boundary
1840  * and all elements of stack are initialized.
1841  * Unlike most pointer bounds-checking functions, this one doesn't take an
1842  * 'off' argument, so it has to add in reg->off itself.
1843  */
1844 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1845 				int access_size, bool zero_size_allowed,
1846 				struct bpf_call_arg_meta *meta)
1847 {
1848 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1849 	struct bpf_func_state *state = func(env, reg);
1850 	int off, i, slot, spi;
1851 
1852 	if (reg->type != PTR_TO_STACK) {
1853 		/* Allow zero-byte read from NULL, regardless of pointer type */
1854 		if (zero_size_allowed && access_size == 0 &&
1855 		    register_is_null(reg))
1856 			return 0;
1857 
1858 		verbose(env, "R%d type=%s expected=%s\n", regno,
1859 			reg_type_str[reg->type],
1860 			reg_type_str[PTR_TO_STACK]);
1861 		return -EACCES;
1862 	}
1863 
1864 	/* Only allow fixed-offset stack reads */
1865 	if (!tnum_is_const(reg->var_off)) {
1866 		char tn_buf[48];
1867 
1868 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1869 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1870 			regno, tn_buf);
1871 		return -EACCES;
1872 	}
1873 	off = reg->off + reg->var_off.value;
1874 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1875 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1876 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1877 			regno, off, access_size);
1878 		return -EACCES;
1879 	}
1880 
1881 	if (meta && meta->raw_mode) {
1882 		meta->access_size = access_size;
1883 		meta->regno = regno;
1884 		return 0;
1885 	}
1886 
1887 	for (i = 0; i < access_size; i++) {
1888 		u8 *stype;
1889 
1890 		slot = -(off + i) - 1;
1891 		spi = slot / BPF_REG_SIZE;
1892 		if (state->allocated_stack <= slot)
1893 			goto err;
1894 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1895 		if (*stype == STACK_MISC)
1896 			goto mark;
1897 		if (*stype == STACK_ZERO) {
1898 			/* helper can write anything into the stack */
1899 			*stype = STACK_MISC;
1900 			goto mark;
1901 		}
1902 err:
1903 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1904 			off, i, access_size);
1905 		return -EACCES;
1906 mark:
1907 		/* reading any byte out of 8-byte 'spill_slot' will cause
1908 		 * the whole slot to be marked as 'read'
1909 		 */
1910 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1911 				     spi, state->frameno);
1912 	}
1913 	return update_stack_depth(env, state, off);
1914 }
1915 
1916 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1917 				   int access_size, bool zero_size_allowed,
1918 				   struct bpf_call_arg_meta *meta)
1919 {
1920 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1921 
1922 	switch (reg->type) {
1923 	case PTR_TO_PACKET:
1924 	case PTR_TO_PACKET_META:
1925 		return check_packet_access(env, regno, reg->off, access_size,
1926 					   zero_size_allowed);
1927 	case PTR_TO_MAP_VALUE:
1928 		return check_map_access(env, regno, reg->off, access_size,
1929 					zero_size_allowed);
1930 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1931 		return check_stack_boundary(env, regno, access_size,
1932 					    zero_size_allowed, meta);
1933 	}
1934 }
1935 
1936 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1937 {
1938 	return type == ARG_PTR_TO_MEM ||
1939 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1940 	       type == ARG_PTR_TO_UNINIT_MEM;
1941 }
1942 
1943 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1944 {
1945 	return type == ARG_CONST_SIZE ||
1946 	       type == ARG_CONST_SIZE_OR_ZERO;
1947 }
1948 
1949 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1950 			  enum bpf_arg_type arg_type,
1951 			  struct bpf_call_arg_meta *meta)
1952 {
1953 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1954 	enum bpf_reg_type expected_type, type = reg->type;
1955 	int err = 0;
1956 
1957 	if (arg_type == ARG_DONTCARE)
1958 		return 0;
1959 
1960 	err = check_reg_arg(env, regno, SRC_OP);
1961 	if (err)
1962 		return err;
1963 
1964 	if (arg_type == ARG_ANYTHING) {
1965 		if (is_pointer_value(env, regno)) {
1966 			verbose(env, "R%d leaks addr into helper function\n",
1967 				regno);
1968 			return -EACCES;
1969 		}
1970 		return 0;
1971 	}
1972 
1973 	if (type_is_pkt_pointer(type) &&
1974 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1975 		verbose(env, "helper access to the packet is not allowed\n");
1976 		return -EACCES;
1977 	}
1978 
1979 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1980 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1981 		expected_type = PTR_TO_STACK;
1982 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1983 		    type != expected_type)
1984 			goto err_type;
1985 	} else if (arg_type == ARG_CONST_SIZE ||
1986 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1987 		expected_type = SCALAR_VALUE;
1988 		if (type != expected_type)
1989 			goto err_type;
1990 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1991 		expected_type = CONST_PTR_TO_MAP;
1992 		if (type != expected_type)
1993 			goto err_type;
1994 	} else if (arg_type == ARG_PTR_TO_CTX) {
1995 		expected_type = PTR_TO_CTX;
1996 		if (type != expected_type)
1997 			goto err_type;
1998 		err = check_ctx_reg(env, reg, regno);
1999 		if (err < 0)
2000 			return err;
2001 	} else if (arg_type_is_mem_ptr(arg_type)) {
2002 		expected_type = PTR_TO_STACK;
2003 		/* One exception here. In case function allows for NULL to be
2004 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2005 		 * happens during stack boundary checking.
2006 		 */
2007 		if (register_is_null(reg) &&
2008 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2009 			/* final test in check_stack_boundary() */;
2010 		else if (!type_is_pkt_pointer(type) &&
2011 			 type != PTR_TO_MAP_VALUE &&
2012 			 type != expected_type)
2013 			goto err_type;
2014 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2015 	} else {
2016 		verbose(env, "unsupported arg_type %d\n", arg_type);
2017 		return -EFAULT;
2018 	}
2019 
2020 	if (arg_type == ARG_CONST_MAP_PTR) {
2021 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2022 		meta->map_ptr = reg->map_ptr;
2023 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2024 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2025 		 * check that [key, key + map->key_size) are within
2026 		 * stack limits and initialized
2027 		 */
2028 		if (!meta->map_ptr) {
2029 			/* in function declaration map_ptr must come before
2030 			 * map_key, so that it's verified and known before
2031 			 * we have to check map_key here. Otherwise it means
2032 			 * that kernel subsystem misconfigured verifier
2033 			 */
2034 			verbose(env, "invalid map_ptr to access map->key\n");
2035 			return -EACCES;
2036 		}
2037 		err = check_helper_mem_access(env, regno,
2038 					      meta->map_ptr->key_size, false,
2039 					      NULL);
2040 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2041 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2042 		 * check [value, value + map->value_size) validity
2043 		 */
2044 		if (!meta->map_ptr) {
2045 			/* kernel subsystem misconfigured verifier */
2046 			verbose(env, "invalid map_ptr to access map->value\n");
2047 			return -EACCES;
2048 		}
2049 		err = check_helper_mem_access(env, regno,
2050 					      meta->map_ptr->value_size, false,
2051 					      NULL);
2052 	} else if (arg_type_is_mem_size(arg_type)) {
2053 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2054 
2055 		/* remember the mem_size which may be used later
2056 		 * to refine return values.
2057 		 */
2058 		meta->msize_smax_value = reg->smax_value;
2059 		meta->msize_umax_value = reg->umax_value;
2060 
2061 		/* The register is SCALAR_VALUE; the access check
2062 		 * happens using its boundaries.
2063 		 */
2064 		if (!tnum_is_const(reg->var_off))
2065 			/* For unprivileged variable accesses, disable raw
2066 			 * mode so that the program is required to
2067 			 * initialize all the memory that the helper could
2068 			 * just partially fill up.
2069 			 */
2070 			meta = NULL;
2071 
2072 		if (reg->smin_value < 0) {
2073 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2074 				regno);
2075 			return -EACCES;
2076 		}
2077 
2078 		if (reg->umin_value == 0) {
2079 			err = check_helper_mem_access(env, regno - 1, 0,
2080 						      zero_size_allowed,
2081 						      meta);
2082 			if (err)
2083 				return err;
2084 		}
2085 
2086 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2087 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2088 				regno);
2089 			return -EACCES;
2090 		}
2091 		err = check_helper_mem_access(env, regno - 1,
2092 					      reg->umax_value,
2093 					      zero_size_allowed, meta);
2094 	}
2095 
2096 	return err;
2097 err_type:
2098 	verbose(env, "R%d type=%s expected=%s\n", regno,
2099 		reg_type_str[type], reg_type_str[expected_type]);
2100 	return -EACCES;
2101 }
2102 
2103 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2104 					struct bpf_map *map, int func_id)
2105 {
2106 	if (!map)
2107 		return 0;
2108 
2109 	/* We need a two way check, first is from map perspective ... */
2110 	switch (map->map_type) {
2111 	case BPF_MAP_TYPE_PROG_ARRAY:
2112 		if (func_id != BPF_FUNC_tail_call)
2113 			goto error;
2114 		break;
2115 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2116 		if (func_id != BPF_FUNC_perf_event_read &&
2117 		    func_id != BPF_FUNC_perf_event_output &&
2118 		    func_id != BPF_FUNC_perf_event_read_value)
2119 			goto error;
2120 		break;
2121 	case BPF_MAP_TYPE_STACK_TRACE:
2122 		if (func_id != BPF_FUNC_get_stackid)
2123 			goto error;
2124 		break;
2125 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2126 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2127 		    func_id != BPF_FUNC_current_task_under_cgroup)
2128 			goto error;
2129 		break;
2130 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2131 	 * allow to be modified from bpf side. So do not allow lookup elements
2132 	 * for now.
2133 	 */
2134 	case BPF_MAP_TYPE_DEVMAP:
2135 		if (func_id != BPF_FUNC_redirect_map)
2136 			goto error;
2137 		break;
2138 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2139 	 * appear.
2140 	 */
2141 	case BPF_MAP_TYPE_CPUMAP:
2142 	case BPF_MAP_TYPE_XSKMAP:
2143 		if (func_id != BPF_FUNC_redirect_map)
2144 			goto error;
2145 		break;
2146 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2147 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2148 		if (func_id != BPF_FUNC_map_lookup_elem)
2149 			goto error;
2150 		break;
2151 	case BPF_MAP_TYPE_SOCKMAP:
2152 		if (func_id != BPF_FUNC_sk_redirect_map &&
2153 		    func_id != BPF_FUNC_sock_map_update &&
2154 		    func_id != BPF_FUNC_map_delete_elem &&
2155 		    func_id != BPF_FUNC_msg_redirect_map)
2156 			goto error;
2157 		break;
2158 	case BPF_MAP_TYPE_SOCKHASH:
2159 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2160 		    func_id != BPF_FUNC_sock_hash_update &&
2161 		    func_id != BPF_FUNC_map_delete_elem &&
2162 		    func_id != BPF_FUNC_msg_redirect_hash)
2163 			goto error;
2164 		break;
2165 	default:
2166 		break;
2167 	}
2168 
2169 	/* ... and second from the function itself. */
2170 	switch (func_id) {
2171 	case BPF_FUNC_tail_call:
2172 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2173 			goto error;
2174 		if (env->subprog_cnt > 1) {
2175 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2176 			return -EINVAL;
2177 		}
2178 		break;
2179 	case BPF_FUNC_perf_event_read:
2180 	case BPF_FUNC_perf_event_output:
2181 	case BPF_FUNC_perf_event_read_value:
2182 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2183 			goto error;
2184 		break;
2185 	case BPF_FUNC_get_stackid:
2186 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2187 			goto error;
2188 		break;
2189 	case BPF_FUNC_current_task_under_cgroup:
2190 	case BPF_FUNC_skb_under_cgroup:
2191 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2192 			goto error;
2193 		break;
2194 	case BPF_FUNC_redirect_map:
2195 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2196 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2197 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2198 			goto error;
2199 		break;
2200 	case BPF_FUNC_sk_redirect_map:
2201 	case BPF_FUNC_msg_redirect_map:
2202 	case BPF_FUNC_sock_map_update:
2203 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2204 			goto error;
2205 		break;
2206 	case BPF_FUNC_sk_redirect_hash:
2207 	case BPF_FUNC_msg_redirect_hash:
2208 	case BPF_FUNC_sock_hash_update:
2209 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2210 			goto error;
2211 		break;
2212 	default:
2213 		break;
2214 	}
2215 
2216 	return 0;
2217 error:
2218 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2219 		map->map_type, func_id_name(func_id), func_id);
2220 	return -EINVAL;
2221 }
2222 
2223 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2224 {
2225 	int count = 0;
2226 
2227 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2228 		count++;
2229 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2230 		count++;
2231 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2232 		count++;
2233 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2234 		count++;
2235 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2236 		count++;
2237 
2238 	/* We only support one arg being in raw mode at the moment,
2239 	 * which is sufficient for the helper functions we have
2240 	 * right now.
2241 	 */
2242 	return count <= 1;
2243 }
2244 
2245 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2246 				    enum bpf_arg_type arg_next)
2247 {
2248 	return (arg_type_is_mem_ptr(arg_curr) &&
2249 	        !arg_type_is_mem_size(arg_next)) ||
2250 	       (!arg_type_is_mem_ptr(arg_curr) &&
2251 		arg_type_is_mem_size(arg_next));
2252 }
2253 
2254 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2255 {
2256 	/* bpf_xxx(..., buf, len) call will access 'len'
2257 	 * bytes from memory 'buf'. Both arg types need
2258 	 * to be paired, so make sure there's no buggy
2259 	 * helper function specification.
2260 	 */
2261 	if (arg_type_is_mem_size(fn->arg1_type) ||
2262 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2263 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2264 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2265 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2266 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2267 		return false;
2268 
2269 	return true;
2270 }
2271 
2272 static int check_func_proto(const struct bpf_func_proto *fn)
2273 {
2274 	return check_raw_mode_ok(fn) &&
2275 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2276 }
2277 
2278 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2279  * are now invalid, so turn them into unknown SCALAR_VALUE.
2280  */
2281 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2282 				     struct bpf_func_state *state)
2283 {
2284 	struct bpf_reg_state *regs = state->regs, *reg;
2285 	int i;
2286 
2287 	for (i = 0; i < MAX_BPF_REG; i++)
2288 		if (reg_is_pkt_pointer_any(&regs[i]))
2289 			mark_reg_unknown(env, regs, i);
2290 
2291 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2292 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2293 			continue;
2294 		reg = &state->stack[i].spilled_ptr;
2295 		if (reg_is_pkt_pointer_any(reg))
2296 			__mark_reg_unknown(reg);
2297 	}
2298 }
2299 
2300 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2301 {
2302 	struct bpf_verifier_state *vstate = env->cur_state;
2303 	int i;
2304 
2305 	for (i = 0; i <= vstate->curframe; i++)
2306 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2307 }
2308 
2309 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2310 			   int *insn_idx)
2311 {
2312 	struct bpf_verifier_state *state = env->cur_state;
2313 	struct bpf_func_state *caller, *callee;
2314 	int i, subprog, target_insn;
2315 
2316 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2317 		verbose(env, "the call stack of %d frames is too deep\n",
2318 			state->curframe + 2);
2319 		return -E2BIG;
2320 	}
2321 
2322 	target_insn = *insn_idx + insn->imm;
2323 	subprog = find_subprog(env, target_insn + 1);
2324 	if (subprog < 0) {
2325 		verbose(env, "verifier bug. No program starts at insn %d\n",
2326 			target_insn + 1);
2327 		return -EFAULT;
2328 	}
2329 
2330 	caller = state->frame[state->curframe];
2331 	if (state->frame[state->curframe + 1]) {
2332 		verbose(env, "verifier bug. Frame %d already allocated\n",
2333 			state->curframe + 1);
2334 		return -EFAULT;
2335 	}
2336 
2337 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2338 	if (!callee)
2339 		return -ENOMEM;
2340 	state->frame[state->curframe + 1] = callee;
2341 
2342 	/* callee cannot access r0, r6 - r9 for reading and has to write
2343 	 * into its own stack before reading from it.
2344 	 * callee can read/write into caller's stack
2345 	 */
2346 	init_func_state(env, callee,
2347 			/* remember the callsite, it will be used by bpf_exit */
2348 			*insn_idx /* callsite */,
2349 			state->curframe + 1 /* frameno within this callchain */,
2350 			subprog /* subprog number within this prog */);
2351 
2352 	/* copy r1 - r5 args that callee can access */
2353 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2354 		callee->regs[i] = caller->regs[i];
2355 
2356 	/* after the call regsiters r0 - r5 were scratched */
2357 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2358 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2359 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2360 	}
2361 
2362 	/* only increment it after check_reg_arg() finished */
2363 	state->curframe++;
2364 
2365 	/* and go analyze first insn of the callee */
2366 	*insn_idx = target_insn;
2367 
2368 	if (env->log.level) {
2369 		verbose(env, "caller:\n");
2370 		print_verifier_state(env, caller);
2371 		verbose(env, "callee:\n");
2372 		print_verifier_state(env, callee);
2373 	}
2374 	return 0;
2375 }
2376 
2377 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2378 {
2379 	struct bpf_verifier_state *state = env->cur_state;
2380 	struct bpf_func_state *caller, *callee;
2381 	struct bpf_reg_state *r0;
2382 
2383 	callee = state->frame[state->curframe];
2384 	r0 = &callee->regs[BPF_REG_0];
2385 	if (r0->type == PTR_TO_STACK) {
2386 		/* technically it's ok to return caller's stack pointer
2387 		 * (or caller's caller's pointer) back to the caller,
2388 		 * since these pointers are valid. Only current stack
2389 		 * pointer will be invalid as soon as function exits,
2390 		 * but let's be conservative
2391 		 */
2392 		verbose(env, "cannot return stack pointer to the caller\n");
2393 		return -EINVAL;
2394 	}
2395 
2396 	state->curframe--;
2397 	caller = state->frame[state->curframe];
2398 	/* return to the caller whatever r0 had in the callee */
2399 	caller->regs[BPF_REG_0] = *r0;
2400 
2401 	*insn_idx = callee->callsite + 1;
2402 	if (env->log.level) {
2403 		verbose(env, "returning from callee:\n");
2404 		print_verifier_state(env, callee);
2405 		verbose(env, "to caller at %d:\n", *insn_idx);
2406 		print_verifier_state(env, caller);
2407 	}
2408 	/* clear everything in the callee */
2409 	free_func_state(callee);
2410 	state->frame[state->curframe + 1] = NULL;
2411 	return 0;
2412 }
2413 
2414 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2415 				   int func_id,
2416 				   struct bpf_call_arg_meta *meta)
2417 {
2418 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2419 
2420 	if (ret_type != RET_INTEGER ||
2421 	    (func_id != BPF_FUNC_get_stack &&
2422 	     func_id != BPF_FUNC_probe_read_str))
2423 		return;
2424 
2425 	ret_reg->smax_value = meta->msize_smax_value;
2426 	ret_reg->umax_value = meta->msize_umax_value;
2427 	__reg_deduce_bounds(ret_reg);
2428 	__reg_bound_offset(ret_reg);
2429 }
2430 
2431 static int
2432 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2433 		int func_id, int insn_idx)
2434 {
2435 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2436 
2437 	if (func_id != BPF_FUNC_tail_call &&
2438 	    func_id != BPF_FUNC_map_lookup_elem &&
2439 	    func_id != BPF_FUNC_map_update_elem &&
2440 	    func_id != BPF_FUNC_map_delete_elem)
2441 		return 0;
2442 
2443 	if (meta->map_ptr == NULL) {
2444 		verbose(env, "kernel subsystem misconfigured verifier\n");
2445 		return -EINVAL;
2446 	}
2447 
2448 	if (!BPF_MAP_PTR(aux->map_state))
2449 		bpf_map_ptr_store(aux, meta->map_ptr,
2450 				  meta->map_ptr->unpriv_array);
2451 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2452 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2453 				  meta->map_ptr->unpriv_array);
2454 	return 0;
2455 }
2456 
2457 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2458 {
2459 	const struct bpf_func_proto *fn = NULL;
2460 	struct bpf_reg_state *regs;
2461 	struct bpf_call_arg_meta meta;
2462 	bool changes_data;
2463 	int i, err;
2464 
2465 	/* find function prototype */
2466 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2467 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2468 			func_id);
2469 		return -EINVAL;
2470 	}
2471 
2472 	if (env->ops->get_func_proto)
2473 		fn = env->ops->get_func_proto(func_id, env->prog);
2474 	if (!fn) {
2475 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2476 			func_id);
2477 		return -EINVAL;
2478 	}
2479 
2480 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2481 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2482 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2487 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2488 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2489 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2490 			func_id_name(func_id), func_id);
2491 		return -EINVAL;
2492 	}
2493 
2494 	memset(&meta, 0, sizeof(meta));
2495 	meta.pkt_access = fn->pkt_access;
2496 
2497 	err = check_func_proto(fn);
2498 	if (err) {
2499 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2500 			func_id_name(func_id), func_id);
2501 		return err;
2502 	}
2503 
2504 	/* check args */
2505 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2506 	if (err)
2507 		return err;
2508 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2509 	if (err)
2510 		return err;
2511 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2512 	if (err)
2513 		return err;
2514 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2515 	if (err)
2516 		return err;
2517 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2518 	if (err)
2519 		return err;
2520 
2521 	err = record_func_map(env, &meta, func_id, insn_idx);
2522 	if (err)
2523 		return err;
2524 
2525 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2526 	 * is inferred from register state.
2527 	 */
2528 	for (i = 0; i < meta.access_size; i++) {
2529 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2530 				       BPF_WRITE, -1, false);
2531 		if (err)
2532 			return err;
2533 	}
2534 
2535 	regs = cur_regs(env);
2536 	/* reset caller saved regs */
2537 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2538 		mark_reg_not_init(env, regs, caller_saved[i]);
2539 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2540 	}
2541 
2542 	/* update return register (already marked as written above) */
2543 	if (fn->ret_type == RET_INTEGER) {
2544 		/* sets type to SCALAR_VALUE */
2545 		mark_reg_unknown(env, regs, BPF_REG_0);
2546 	} else if (fn->ret_type == RET_VOID) {
2547 		regs[BPF_REG_0].type = NOT_INIT;
2548 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2549 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2550 		/* There is no offset yet applied, variable or fixed */
2551 		mark_reg_known_zero(env, regs, BPF_REG_0);
2552 		regs[BPF_REG_0].off = 0;
2553 		/* remember map_ptr, so that check_map_access()
2554 		 * can check 'value_size' boundary of memory access
2555 		 * to map element returned from bpf_map_lookup_elem()
2556 		 */
2557 		if (meta.map_ptr == NULL) {
2558 			verbose(env,
2559 				"kernel subsystem misconfigured verifier\n");
2560 			return -EINVAL;
2561 		}
2562 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2563 		regs[BPF_REG_0].id = ++env->id_gen;
2564 	} else {
2565 		verbose(env, "unknown return type %d of func %s#%d\n",
2566 			fn->ret_type, func_id_name(func_id), func_id);
2567 		return -EINVAL;
2568 	}
2569 
2570 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2571 
2572 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2573 	if (err)
2574 		return err;
2575 
2576 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2577 		const char *err_str;
2578 
2579 #ifdef CONFIG_PERF_EVENTS
2580 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2581 		err_str = "cannot get callchain buffer for func %s#%d\n";
2582 #else
2583 		err = -ENOTSUPP;
2584 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2585 #endif
2586 		if (err) {
2587 			verbose(env, err_str, func_id_name(func_id), func_id);
2588 			return err;
2589 		}
2590 
2591 		env->prog->has_callchain_buf = true;
2592 	}
2593 
2594 	if (changes_data)
2595 		clear_all_pkt_pointers(env);
2596 	return 0;
2597 }
2598 
2599 static bool signed_add_overflows(s64 a, s64 b)
2600 {
2601 	/* Do the add in u64, where overflow is well-defined */
2602 	s64 res = (s64)((u64)a + (u64)b);
2603 
2604 	if (b < 0)
2605 		return res > a;
2606 	return res < a;
2607 }
2608 
2609 static bool signed_sub_overflows(s64 a, s64 b)
2610 {
2611 	/* Do the sub in u64, where overflow is well-defined */
2612 	s64 res = (s64)((u64)a - (u64)b);
2613 
2614 	if (b < 0)
2615 		return res < a;
2616 	return res > a;
2617 }
2618 
2619 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2620 				  const struct bpf_reg_state *reg,
2621 				  enum bpf_reg_type type)
2622 {
2623 	bool known = tnum_is_const(reg->var_off);
2624 	s64 val = reg->var_off.value;
2625 	s64 smin = reg->smin_value;
2626 
2627 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2628 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2629 			reg_type_str[type], val);
2630 		return false;
2631 	}
2632 
2633 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2634 		verbose(env, "%s pointer offset %d is not allowed\n",
2635 			reg_type_str[type], reg->off);
2636 		return false;
2637 	}
2638 
2639 	if (smin == S64_MIN) {
2640 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2641 			reg_type_str[type]);
2642 		return false;
2643 	}
2644 
2645 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2646 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2647 			smin, reg_type_str[type]);
2648 		return false;
2649 	}
2650 
2651 	return true;
2652 }
2653 
2654 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2655  * Caller should also handle BPF_MOV case separately.
2656  * If we return -EACCES, caller may want to try again treating pointer as a
2657  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2658  */
2659 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2660 				   struct bpf_insn *insn,
2661 				   const struct bpf_reg_state *ptr_reg,
2662 				   const struct bpf_reg_state *off_reg)
2663 {
2664 	struct bpf_verifier_state *vstate = env->cur_state;
2665 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2666 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2667 	bool known = tnum_is_const(off_reg->var_off);
2668 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2669 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2670 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2671 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2672 	u8 opcode = BPF_OP(insn->code);
2673 	u32 dst = insn->dst_reg;
2674 
2675 	dst_reg = &regs[dst];
2676 
2677 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2678 	    smin_val > smax_val || umin_val > umax_val) {
2679 		/* Taint dst register if offset had invalid bounds derived from
2680 		 * e.g. dead branches.
2681 		 */
2682 		__mark_reg_unknown(dst_reg);
2683 		return 0;
2684 	}
2685 
2686 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2687 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2688 		verbose(env,
2689 			"R%d 32-bit pointer arithmetic prohibited\n",
2690 			dst);
2691 		return -EACCES;
2692 	}
2693 
2694 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2695 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2696 			dst);
2697 		return -EACCES;
2698 	}
2699 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2700 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2701 			dst);
2702 		return -EACCES;
2703 	}
2704 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2705 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2706 			dst);
2707 		return -EACCES;
2708 	}
2709 
2710 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2711 	 * The id may be overwritten later if we create a new variable offset.
2712 	 */
2713 	dst_reg->type = ptr_reg->type;
2714 	dst_reg->id = ptr_reg->id;
2715 
2716 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2717 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2718 		return -EINVAL;
2719 
2720 	switch (opcode) {
2721 	case BPF_ADD:
2722 		/* We can take a fixed offset as long as it doesn't overflow
2723 		 * the s32 'off' field
2724 		 */
2725 		if (known && (ptr_reg->off + smin_val ==
2726 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2727 			/* pointer += K.  Accumulate it into fixed offset */
2728 			dst_reg->smin_value = smin_ptr;
2729 			dst_reg->smax_value = smax_ptr;
2730 			dst_reg->umin_value = umin_ptr;
2731 			dst_reg->umax_value = umax_ptr;
2732 			dst_reg->var_off = ptr_reg->var_off;
2733 			dst_reg->off = ptr_reg->off + smin_val;
2734 			dst_reg->range = ptr_reg->range;
2735 			break;
2736 		}
2737 		/* A new variable offset is created.  Note that off_reg->off
2738 		 * == 0, since it's a scalar.
2739 		 * dst_reg gets the pointer type and since some positive
2740 		 * integer value was added to the pointer, give it a new 'id'
2741 		 * if it's a PTR_TO_PACKET.
2742 		 * this creates a new 'base' pointer, off_reg (variable) gets
2743 		 * added into the variable offset, and we copy the fixed offset
2744 		 * from ptr_reg.
2745 		 */
2746 		if (signed_add_overflows(smin_ptr, smin_val) ||
2747 		    signed_add_overflows(smax_ptr, smax_val)) {
2748 			dst_reg->smin_value = S64_MIN;
2749 			dst_reg->smax_value = S64_MAX;
2750 		} else {
2751 			dst_reg->smin_value = smin_ptr + smin_val;
2752 			dst_reg->smax_value = smax_ptr + smax_val;
2753 		}
2754 		if (umin_ptr + umin_val < umin_ptr ||
2755 		    umax_ptr + umax_val < umax_ptr) {
2756 			dst_reg->umin_value = 0;
2757 			dst_reg->umax_value = U64_MAX;
2758 		} else {
2759 			dst_reg->umin_value = umin_ptr + umin_val;
2760 			dst_reg->umax_value = umax_ptr + umax_val;
2761 		}
2762 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2763 		dst_reg->off = ptr_reg->off;
2764 		if (reg_is_pkt_pointer(ptr_reg)) {
2765 			dst_reg->id = ++env->id_gen;
2766 			/* something was added to pkt_ptr, set range to zero */
2767 			dst_reg->range = 0;
2768 		}
2769 		break;
2770 	case BPF_SUB:
2771 		if (dst_reg == off_reg) {
2772 			/* scalar -= pointer.  Creates an unknown scalar */
2773 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2774 				dst);
2775 			return -EACCES;
2776 		}
2777 		/* We don't allow subtraction from FP, because (according to
2778 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2779 		 * be able to deal with it.
2780 		 */
2781 		if (ptr_reg->type == PTR_TO_STACK) {
2782 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2783 				dst);
2784 			return -EACCES;
2785 		}
2786 		if (known && (ptr_reg->off - smin_val ==
2787 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2788 			/* pointer -= K.  Subtract it from fixed offset */
2789 			dst_reg->smin_value = smin_ptr;
2790 			dst_reg->smax_value = smax_ptr;
2791 			dst_reg->umin_value = umin_ptr;
2792 			dst_reg->umax_value = umax_ptr;
2793 			dst_reg->var_off = ptr_reg->var_off;
2794 			dst_reg->id = ptr_reg->id;
2795 			dst_reg->off = ptr_reg->off - smin_val;
2796 			dst_reg->range = ptr_reg->range;
2797 			break;
2798 		}
2799 		/* A new variable offset is created.  If the subtrahend is known
2800 		 * nonnegative, then any reg->range we had before is still good.
2801 		 */
2802 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2803 		    signed_sub_overflows(smax_ptr, smin_val)) {
2804 			/* Overflow possible, we know nothing */
2805 			dst_reg->smin_value = S64_MIN;
2806 			dst_reg->smax_value = S64_MAX;
2807 		} else {
2808 			dst_reg->smin_value = smin_ptr - smax_val;
2809 			dst_reg->smax_value = smax_ptr - smin_val;
2810 		}
2811 		if (umin_ptr < umax_val) {
2812 			/* Overflow possible, we know nothing */
2813 			dst_reg->umin_value = 0;
2814 			dst_reg->umax_value = U64_MAX;
2815 		} else {
2816 			/* Cannot overflow (as long as bounds are consistent) */
2817 			dst_reg->umin_value = umin_ptr - umax_val;
2818 			dst_reg->umax_value = umax_ptr - umin_val;
2819 		}
2820 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2821 		dst_reg->off = ptr_reg->off;
2822 		if (reg_is_pkt_pointer(ptr_reg)) {
2823 			dst_reg->id = ++env->id_gen;
2824 			/* something was added to pkt_ptr, set range to zero */
2825 			if (smin_val < 0)
2826 				dst_reg->range = 0;
2827 		}
2828 		break;
2829 	case BPF_AND:
2830 	case BPF_OR:
2831 	case BPF_XOR:
2832 		/* bitwise ops on pointers are troublesome, prohibit. */
2833 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2834 			dst, bpf_alu_string[opcode >> 4]);
2835 		return -EACCES;
2836 	default:
2837 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2838 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2839 			dst, bpf_alu_string[opcode >> 4]);
2840 		return -EACCES;
2841 	}
2842 
2843 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2844 		return -EINVAL;
2845 
2846 	__update_reg_bounds(dst_reg);
2847 	__reg_deduce_bounds(dst_reg);
2848 	__reg_bound_offset(dst_reg);
2849 	return 0;
2850 }
2851 
2852 /* WARNING: This function does calculations on 64-bit values, but the actual
2853  * execution may occur on 32-bit values. Therefore, things like bitshifts
2854  * need extra checks in the 32-bit case.
2855  */
2856 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2857 				      struct bpf_insn *insn,
2858 				      struct bpf_reg_state *dst_reg,
2859 				      struct bpf_reg_state src_reg)
2860 {
2861 	struct bpf_reg_state *regs = cur_regs(env);
2862 	u8 opcode = BPF_OP(insn->code);
2863 	bool src_known, dst_known;
2864 	s64 smin_val, smax_val;
2865 	u64 umin_val, umax_val;
2866 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2867 
2868 	smin_val = src_reg.smin_value;
2869 	smax_val = src_reg.smax_value;
2870 	umin_val = src_reg.umin_value;
2871 	umax_val = src_reg.umax_value;
2872 	src_known = tnum_is_const(src_reg.var_off);
2873 	dst_known = tnum_is_const(dst_reg->var_off);
2874 
2875 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2876 	    smin_val > smax_val || umin_val > umax_val) {
2877 		/* Taint dst register if offset had invalid bounds derived from
2878 		 * e.g. dead branches.
2879 		 */
2880 		__mark_reg_unknown(dst_reg);
2881 		return 0;
2882 	}
2883 
2884 	if (!src_known &&
2885 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2886 		__mark_reg_unknown(dst_reg);
2887 		return 0;
2888 	}
2889 
2890 	switch (opcode) {
2891 	case BPF_ADD:
2892 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2893 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2894 			dst_reg->smin_value = S64_MIN;
2895 			dst_reg->smax_value = S64_MAX;
2896 		} else {
2897 			dst_reg->smin_value += smin_val;
2898 			dst_reg->smax_value += smax_val;
2899 		}
2900 		if (dst_reg->umin_value + umin_val < umin_val ||
2901 		    dst_reg->umax_value + umax_val < umax_val) {
2902 			dst_reg->umin_value = 0;
2903 			dst_reg->umax_value = U64_MAX;
2904 		} else {
2905 			dst_reg->umin_value += umin_val;
2906 			dst_reg->umax_value += umax_val;
2907 		}
2908 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2909 		break;
2910 	case BPF_SUB:
2911 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2912 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2913 			/* Overflow possible, we know nothing */
2914 			dst_reg->smin_value = S64_MIN;
2915 			dst_reg->smax_value = S64_MAX;
2916 		} else {
2917 			dst_reg->smin_value -= smax_val;
2918 			dst_reg->smax_value -= smin_val;
2919 		}
2920 		if (dst_reg->umin_value < umax_val) {
2921 			/* Overflow possible, we know nothing */
2922 			dst_reg->umin_value = 0;
2923 			dst_reg->umax_value = U64_MAX;
2924 		} else {
2925 			/* Cannot overflow (as long as bounds are consistent) */
2926 			dst_reg->umin_value -= umax_val;
2927 			dst_reg->umax_value -= umin_val;
2928 		}
2929 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2930 		break;
2931 	case BPF_MUL:
2932 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2933 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2934 			/* Ain't nobody got time to multiply that sign */
2935 			__mark_reg_unbounded(dst_reg);
2936 			__update_reg_bounds(dst_reg);
2937 			break;
2938 		}
2939 		/* Both values are positive, so we can work with unsigned and
2940 		 * copy the result to signed (unless it exceeds S64_MAX).
2941 		 */
2942 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2943 			/* Potential overflow, we know nothing */
2944 			__mark_reg_unbounded(dst_reg);
2945 			/* (except what we can learn from the var_off) */
2946 			__update_reg_bounds(dst_reg);
2947 			break;
2948 		}
2949 		dst_reg->umin_value *= umin_val;
2950 		dst_reg->umax_value *= umax_val;
2951 		if (dst_reg->umax_value > S64_MAX) {
2952 			/* Overflow possible, we know nothing */
2953 			dst_reg->smin_value = S64_MIN;
2954 			dst_reg->smax_value = S64_MAX;
2955 		} else {
2956 			dst_reg->smin_value = dst_reg->umin_value;
2957 			dst_reg->smax_value = dst_reg->umax_value;
2958 		}
2959 		break;
2960 	case BPF_AND:
2961 		if (src_known && dst_known) {
2962 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2963 						  src_reg.var_off.value);
2964 			break;
2965 		}
2966 		/* We get our minimum from the var_off, since that's inherently
2967 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2968 		 */
2969 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2970 		dst_reg->umin_value = dst_reg->var_off.value;
2971 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2972 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2973 			/* Lose signed bounds when ANDing negative numbers,
2974 			 * ain't nobody got time for that.
2975 			 */
2976 			dst_reg->smin_value = S64_MIN;
2977 			dst_reg->smax_value = S64_MAX;
2978 		} else {
2979 			/* ANDing two positives gives a positive, so safe to
2980 			 * cast result into s64.
2981 			 */
2982 			dst_reg->smin_value = dst_reg->umin_value;
2983 			dst_reg->smax_value = dst_reg->umax_value;
2984 		}
2985 		/* We may learn something more from the var_off */
2986 		__update_reg_bounds(dst_reg);
2987 		break;
2988 	case BPF_OR:
2989 		if (src_known && dst_known) {
2990 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2991 						  src_reg.var_off.value);
2992 			break;
2993 		}
2994 		/* We get our maximum from the var_off, and our minimum is the
2995 		 * maximum of the operands' minima
2996 		 */
2997 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2998 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2999 		dst_reg->umax_value = dst_reg->var_off.value |
3000 				      dst_reg->var_off.mask;
3001 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3002 			/* Lose signed bounds when ORing negative numbers,
3003 			 * ain't nobody got time for that.
3004 			 */
3005 			dst_reg->smin_value = S64_MIN;
3006 			dst_reg->smax_value = S64_MAX;
3007 		} else {
3008 			/* ORing two positives gives a positive, so safe to
3009 			 * cast result into s64.
3010 			 */
3011 			dst_reg->smin_value = dst_reg->umin_value;
3012 			dst_reg->smax_value = dst_reg->umax_value;
3013 		}
3014 		/* We may learn something more from the var_off */
3015 		__update_reg_bounds(dst_reg);
3016 		break;
3017 	case BPF_LSH:
3018 		if (umax_val >= insn_bitness) {
3019 			/* Shifts greater than 31 or 63 are undefined.
3020 			 * This includes shifts by a negative number.
3021 			 */
3022 			mark_reg_unknown(env, regs, insn->dst_reg);
3023 			break;
3024 		}
3025 		/* We lose all sign bit information (except what we can pick
3026 		 * up from var_off)
3027 		 */
3028 		dst_reg->smin_value = S64_MIN;
3029 		dst_reg->smax_value = S64_MAX;
3030 		/* If we might shift our top bit out, then we know nothing */
3031 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3032 			dst_reg->umin_value = 0;
3033 			dst_reg->umax_value = U64_MAX;
3034 		} else {
3035 			dst_reg->umin_value <<= umin_val;
3036 			dst_reg->umax_value <<= umax_val;
3037 		}
3038 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3039 		/* We may learn something more from the var_off */
3040 		__update_reg_bounds(dst_reg);
3041 		break;
3042 	case BPF_RSH:
3043 		if (umax_val >= insn_bitness) {
3044 			/* Shifts greater than 31 or 63 are undefined.
3045 			 * This includes shifts by a negative number.
3046 			 */
3047 			mark_reg_unknown(env, regs, insn->dst_reg);
3048 			break;
3049 		}
3050 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3051 		 * be negative, then either:
3052 		 * 1) src_reg might be zero, so the sign bit of the result is
3053 		 *    unknown, so we lose our signed bounds
3054 		 * 2) it's known negative, thus the unsigned bounds capture the
3055 		 *    signed bounds
3056 		 * 3) the signed bounds cross zero, so they tell us nothing
3057 		 *    about the result
3058 		 * If the value in dst_reg is known nonnegative, then again the
3059 		 * unsigned bounts capture the signed bounds.
3060 		 * Thus, in all cases it suffices to blow away our signed bounds
3061 		 * and rely on inferring new ones from the unsigned bounds and
3062 		 * var_off of the result.
3063 		 */
3064 		dst_reg->smin_value = S64_MIN;
3065 		dst_reg->smax_value = S64_MAX;
3066 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3067 		dst_reg->umin_value >>= umax_val;
3068 		dst_reg->umax_value >>= umin_val;
3069 		/* We may learn something more from the var_off */
3070 		__update_reg_bounds(dst_reg);
3071 		break;
3072 	case BPF_ARSH:
3073 		if (umax_val >= insn_bitness) {
3074 			/* Shifts greater than 31 or 63 are undefined.
3075 			 * This includes shifts by a negative number.
3076 			 */
3077 			mark_reg_unknown(env, regs, insn->dst_reg);
3078 			break;
3079 		}
3080 
3081 		/* Upon reaching here, src_known is true and
3082 		 * umax_val is equal to umin_val.
3083 		 */
3084 		dst_reg->smin_value >>= umin_val;
3085 		dst_reg->smax_value >>= umin_val;
3086 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3087 
3088 		/* blow away the dst_reg umin_value/umax_value and rely on
3089 		 * dst_reg var_off to refine the result.
3090 		 */
3091 		dst_reg->umin_value = 0;
3092 		dst_reg->umax_value = U64_MAX;
3093 		__update_reg_bounds(dst_reg);
3094 		break;
3095 	default:
3096 		mark_reg_unknown(env, regs, insn->dst_reg);
3097 		break;
3098 	}
3099 
3100 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3101 		/* 32-bit ALU ops are (32,32)->32 */
3102 		coerce_reg_to_size(dst_reg, 4);
3103 		coerce_reg_to_size(&src_reg, 4);
3104 	}
3105 
3106 	__reg_deduce_bounds(dst_reg);
3107 	__reg_bound_offset(dst_reg);
3108 	return 0;
3109 }
3110 
3111 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3112  * and var_off.
3113  */
3114 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3115 				   struct bpf_insn *insn)
3116 {
3117 	struct bpf_verifier_state *vstate = env->cur_state;
3118 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3119 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3120 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3121 	u8 opcode = BPF_OP(insn->code);
3122 
3123 	dst_reg = &regs[insn->dst_reg];
3124 	src_reg = NULL;
3125 	if (dst_reg->type != SCALAR_VALUE)
3126 		ptr_reg = dst_reg;
3127 	if (BPF_SRC(insn->code) == BPF_X) {
3128 		src_reg = &regs[insn->src_reg];
3129 		if (src_reg->type != SCALAR_VALUE) {
3130 			if (dst_reg->type != SCALAR_VALUE) {
3131 				/* Combining two pointers by any ALU op yields
3132 				 * an arbitrary scalar. Disallow all math except
3133 				 * pointer subtraction
3134 				 */
3135 				if (opcode == BPF_SUB){
3136 					mark_reg_unknown(env, regs, insn->dst_reg);
3137 					return 0;
3138 				}
3139 				verbose(env, "R%d pointer %s pointer prohibited\n",
3140 					insn->dst_reg,
3141 					bpf_alu_string[opcode >> 4]);
3142 				return -EACCES;
3143 			} else {
3144 				/* scalar += pointer
3145 				 * This is legal, but we have to reverse our
3146 				 * src/dest handling in computing the range
3147 				 */
3148 				return adjust_ptr_min_max_vals(env, insn,
3149 							       src_reg, dst_reg);
3150 			}
3151 		} else if (ptr_reg) {
3152 			/* pointer += scalar */
3153 			return adjust_ptr_min_max_vals(env, insn,
3154 						       dst_reg, src_reg);
3155 		}
3156 	} else {
3157 		/* Pretend the src is a reg with a known value, since we only
3158 		 * need to be able to read from this state.
3159 		 */
3160 		off_reg.type = SCALAR_VALUE;
3161 		__mark_reg_known(&off_reg, insn->imm);
3162 		src_reg = &off_reg;
3163 		if (ptr_reg) /* pointer += K */
3164 			return adjust_ptr_min_max_vals(env, insn,
3165 						       ptr_reg, src_reg);
3166 	}
3167 
3168 	/* Got here implies adding two SCALAR_VALUEs */
3169 	if (WARN_ON_ONCE(ptr_reg)) {
3170 		print_verifier_state(env, state);
3171 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3172 		return -EINVAL;
3173 	}
3174 	if (WARN_ON(!src_reg)) {
3175 		print_verifier_state(env, state);
3176 		verbose(env, "verifier internal error: no src_reg\n");
3177 		return -EINVAL;
3178 	}
3179 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3180 }
3181 
3182 /* check validity of 32-bit and 64-bit arithmetic operations */
3183 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3184 {
3185 	struct bpf_reg_state *regs = cur_regs(env);
3186 	u8 opcode = BPF_OP(insn->code);
3187 	int err;
3188 
3189 	if (opcode == BPF_END || opcode == BPF_NEG) {
3190 		if (opcode == BPF_NEG) {
3191 			if (BPF_SRC(insn->code) != 0 ||
3192 			    insn->src_reg != BPF_REG_0 ||
3193 			    insn->off != 0 || insn->imm != 0) {
3194 				verbose(env, "BPF_NEG uses reserved fields\n");
3195 				return -EINVAL;
3196 			}
3197 		} else {
3198 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3199 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3200 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3201 				verbose(env, "BPF_END uses reserved fields\n");
3202 				return -EINVAL;
3203 			}
3204 		}
3205 
3206 		/* check src operand */
3207 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3208 		if (err)
3209 			return err;
3210 
3211 		if (is_pointer_value(env, insn->dst_reg)) {
3212 			verbose(env, "R%d pointer arithmetic prohibited\n",
3213 				insn->dst_reg);
3214 			return -EACCES;
3215 		}
3216 
3217 		/* check dest operand */
3218 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3219 		if (err)
3220 			return err;
3221 
3222 	} else if (opcode == BPF_MOV) {
3223 
3224 		if (BPF_SRC(insn->code) == BPF_X) {
3225 			if (insn->imm != 0 || insn->off != 0) {
3226 				verbose(env, "BPF_MOV uses reserved fields\n");
3227 				return -EINVAL;
3228 			}
3229 
3230 			/* check src operand */
3231 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3232 			if (err)
3233 				return err;
3234 		} else {
3235 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3236 				verbose(env, "BPF_MOV uses reserved fields\n");
3237 				return -EINVAL;
3238 			}
3239 		}
3240 
3241 		/* check dest operand */
3242 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3243 		if (err)
3244 			return err;
3245 
3246 		if (BPF_SRC(insn->code) == BPF_X) {
3247 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3248 				/* case: R1 = R2
3249 				 * copy register state to dest reg
3250 				 */
3251 				regs[insn->dst_reg] = regs[insn->src_reg];
3252 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3253 			} else {
3254 				/* R1 = (u32) R2 */
3255 				if (is_pointer_value(env, insn->src_reg)) {
3256 					verbose(env,
3257 						"R%d partial copy of pointer\n",
3258 						insn->src_reg);
3259 					return -EACCES;
3260 				}
3261 				mark_reg_unknown(env, regs, insn->dst_reg);
3262 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3263 			}
3264 		} else {
3265 			/* case: R = imm
3266 			 * remember the value we stored into this reg
3267 			 */
3268 			regs[insn->dst_reg].type = SCALAR_VALUE;
3269 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3270 				__mark_reg_known(regs + insn->dst_reg,
3271 						 insn->imm);
3272 			} else {
3273 				__mark_reg_known(regs + insn->dst_reg,
3274 						 (u32)insn->imm);
3275 			}
3276 		}
3277 
3278 	} else if (opcode > BPF_END) {
3279 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3280 		return -EINVAL;
3281 
3282 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3283 
3284 		if (BPF_SRC(insn->code) == BPF_X) {
3285 			if (insn->imm != 0 || insn->off != 0) {
3286 				verbose(env, "BPF_ALU uses reserved fields\n");
3287 				return -EINVAL;
3288 			}
3289 			/* check src1 operand */
3290 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3291 			if (err)
3292 				return err;
3293 		} else {
3294 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3295 				verbose(env, "BPF_ALU uses reserved fields\n");
3296 				return -EINVAL;
3297 			}
3298 		}
3299 
3300 		/* check src2 operand */
3301 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3302 		if (err)
3303 			return err;
3304 
3305 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3306 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3307 			verbose(env, "div by zero\n");
3308 			return -EINVAL;
3309 		}
3310 
3311 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3312 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3313 			return -EINVAL;
3314 		}
3315 
3316 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3317 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3318 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3319 
3320 			if (insn->imm < 0 || insn->imm >= size) {
3321 				verbose(env, "invalid shift %d\n", insn->imm);
3322 				return -EINVAL;
3323 			}
3324 		}
3325 
3326 		/* check dest operand */
3327 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3328 		if (err)
3329 			return err;
3330 
3331 		return adjust_reg_min_max_vals(env, insn);
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3338 				   struct bpf_reg_state *dst_reg,
3339 				   enum bpf_reg_type type,
3340 				   bool range_right_open)
3341 {
3342 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3343 	struct bpf_reg_state *regs = state->regs, *reg;
3344 	u16 new_range;
3345 	int i, j;
3346 
3347 	if (dst_reg->off < 0 ||
3348 	    (dst_reg->off == 0 && range_right_open))
3349 		/* This doesn't give us any range */
3350 		return;
3351 
3352 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3353 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3354 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3355 		 * than pkt_end, but that's because it's also less than pkt.
3356 		 */
3357 		return;
3358 
3359 	new_range = dst_reg->off;
3360 	if (range_right_open)
3361 		new_range--;
3362 
3363 	/* Examples for register markings:
3364 	 *
3365 	 * pkt_data in dst register:
3366 	 *
3367 	 *   r2 = r3;
3368 	 *   r2 += 8;
3369 	 *   if (r2 > pkt_end) goto <handle exception>
3370 	 *   <access okay>
3371 	 *
3372 	 *   r2 = r3;
3373 	 *   r2 += 8;
3374 	 *   if (r2 < pkt_end) goto <access okay>
3375 	 *   <handle exception>
3376 	 *
3377 	 *   Where:
3378 	 *     r2 == dst_reg, pkt_end == src_reg
3379 	 *     r2=pkt(id=n,off=8,r=0)
3380 	 *     r3=pkt(id=n,off=0,r=0)
3381 	 *
3382 	 * pkt_data in src register:
3383 	 *
3384 	 *   r2 = r3;
3385 	 *   r2 += 8;
3386 	 *   if (pkt_end >= r2) goto <access okay>
3387 	 *   <handle exception>
3388 	 *
3389 	 *   r2 = r3;
3390 	 *   r2 += 8;
3391 	 *   if (pkt_end <= r2) goto <handle exception>
3392 	 *   <access okay>
3393 	 *
3394 	 *   Where:
3395 	 *     pkt_end == dst_reg, r2 == src_reg
3396 	 *     r2=pkt(id=n,off=8,r=0)
3397 	 *     r3=pkt(id=n,off=0,r=0)
3398 	 *
3399 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3400 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3401 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3402 	 * the check.
3403 	 */
3404 
3405 	/* If our ids match, then we must have the same max_value.  And we
3406 	 * don't care about the other reg's fixed offset, since if it's too big
3407 	 * the range won't allow anything.
3408 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3409 	 */
3410 	for (i = 0; i < MAX_BPF_REG; i++)
3411 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3412 			/* keep the maximum range already checked */
3413 			regs[i].range = max(regs[i].range, new_range);
3414 
3415 	for (j = 0; j <= vstate->curframe; j++) {
3416 		state = vstate->frame[j];
3417 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3418 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3419 				continue;
3420 			reg = &state->stack[i].spilled_ptr;
3421 			if (reg->type == type && reg->id == dst_reg->id)
3422 				reg->range = max(reg->range, new_range);
3423 		}
3424 	}
3425 }
3426 
3427 /* Adjusts the register min/max values in the case that the dst_reg is the
3428  * variable register that we are working on, and src_reg is a constant or we're
3429  * simply doing a BPF_K check.
3430  * In JEQ/JNE cases we also adjust the var_off values.
3431  */
3432 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3433 			    struct bpf_reg_state *false_reg, u64 val,
3434 			    u8 opcode)
3435 {
3436 	/* If the dst_reg is a pointer, we can't learn anything about its
3437 	 * variable offset from the compare (unless src_reg were a pointer into
3438 	 * the same object, but we don't bother with that.
3439 	 * Since false_reg and true_reg have the same type by construction, we
3440 	 * only need to check one of them for pointerness.
3441 	 */
3442 	if (__is_pointer_value(false, false_reg))
3443 		return;
3444 
3445 	switch (opcode) {
3446 	case BPF_JEQ:
3447 		/* If this is false then we know nothing Jon Snow, but if it is
3448 		 * true then we know for sure.
3449 		 */
3450 		__mark_reg_known(true_reg, val);
3451 		break;
3452 	case BPF_JNE:
3453 		/* If this is true we know nothing Jon Snow, but if it is false
3454 		 * we know the value for sure;
3455 		 */
3456 		__mark_reg_known(false_reg, val);
3457 		break;
3458 	case BPF_JGT:
3459 		false_reg->umax_value = min(false_reg->umax_value, val);
3460 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3461 		break;
3462 	case BPF_JSGT:
3463 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3464 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3465 		break;
3466 	case BPF_JLT:
3467 		false_reg->umin_value = max(false_reg->umin_value, val);
3468 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3469 		break;
3470 	case BPF_JSLT:
3471 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3472 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3473 		break;
3474 	case BPF_JGE:
3475 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3476 		true_reg->umin_value = max(true_reg->umin_value, val);
3477 		break;
3478 	case BPF_JSGE:
3479 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3480 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3481 		break;
3482 	case BPF_JLE:
3483 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3484 		true_reg->umax_value = min(true_reg->umax_value, val);
3485 		break;
3486 	case BPF_JSLE:
3487 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3488 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3489 		break;
3490 	default:
3491 		break;
3492 	}
3493 
3494 	__reg_deduce_bounds(false_reg);
3495 	__reg_deduce_bounds(true_reg);
3496 	/* We might have learned some bits from the bounds. */
3497 	__reg_bound_offset(false_reg);
3498 	__reg_bound_offset(true_reg);
3499 	/* Intersecting with the old var_off might have improved our bounds
3500 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3501 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3502 	 */
3503 	__update_reg_bounds(false_reg);
3504 	__update_reg_bounds(true_reg);
3505 }
3506 
3507 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3508  * the variable reg.
3509  */
3510 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3511 				struct bpf_reg_state *false_reg, u64 val,
3512 				u8 opcode)
3513 {
3514 	if (__is_pointer_value(false, false_reg))
3515 		return;
3516 
3517 	switch (opcode) {
3518 	case BPF_JEQ:
3519 		/* If this is false then we know nothing Jon Snow, but if it is
3520 		 * true then we know for sure.
3521 		 */
3522 		__mark_reg_known(true_reg, val);
3523 		break;
3524 	case BPF_JNE:
3525 		/* If this is true we know nothing Jon Snow, but if it is false
3526 		 * we know the value for sure;
3527 		 */
3528 		__mark_reg_known(false_reg, val);
3529 		break;
3530 	case BPF_JGT:
3531 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3532 		false_reg->umin_value = max(false_reg->umin_value, val);
3533 		break;
3534 	case BPF_JSGT:
3535 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3536 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3537 		break;
3538 	case BPF_JLT:
3539 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3540 		false_reg->umax_value = min(false_reg->umax_value, val);
3541 		break;
3542 	case BPF_JSLT:
3543 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3544 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3545 		break;
3546 	case BPF_JGE:
3547 		true_reg->umax_value = min(true_reg->umax_value, val);
3548 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3549 		break;
3550 	case BPF_JSGE:
3551 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3552 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3553 		break;
3554 	case BPF_JLE:
3555 		true_reg->umin_value = max(true_reg->umin_value, val);
3556 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3557 		break;
3558 	case BPF_JSLE:
3559 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3560 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3561 		break;
3562 	default:
3563 		break;
3564 	}
3565 
3566 	__reg_deduce_bounds(false_reg);
3567 	__reg_deduce_bounds(true_reg);
3568 	/* We might have learned some bits from the bounds. */
3569 	__reg_bound_offset(false_reg);
3570 	__reg_bound_offset(true_reg);
3571 	/* Intersecting with the old var_off might have improved our bounds
3572 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3573 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3574 	 */
3575 	__update_reg_bounds(false_reg);
3576 	__update_reg_bounds(true_reg);
3577 }
3578 
3579 /* Regs are known to be equal, so intersect their min/max/var_off */
3580 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3581 				  struct bpf_reg_state *dst_reg)
3582 {
3583 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3584 							dst_reg->umin_value);
3585 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3586 							dst_reg->umax_value);
3587 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3588 							dst_reg->smin_value);
3589 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3590 							dst_reg->smax_value);
3591 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3592 							     dst_reg->var_off);
3593 	/* We might have learned new bounds from the var_off. */
3594 	__update_reg_bounds(src_reg);
3595 	__update_reg_bounds(dst_reg);
3596 	/* We might have learned something about the sign bit. */
3597 	__reg_deduce_bounds(src_reg);
3598 	__reg_deduce_bounds(dst_reg);
3599 	/* We might have learned some bits from the bounds. */
3600 	__reg_bound_offset(src_reg);
3601 	__reg_bound_offset(dst_reg);
3602 	/* Intersecting with the old var_off might have improved our bounds
3603 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3604 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3605 	 */
3606 	__update_reg_bounds(src_reg);
3607 	__update_reg_bounds(dst_reg);
3608 }
3609 
3610 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3611 				struct bpf_reg_state *true_dst,
3612 				struct bpf_reg_state *false_src,
3613 				struct bpf_reg_state *false_dst,
3614 				u8 opcode)
3615 {
3616 	switch (opcode) {
3617 	case BPF_JEQ:
3618 		__reg_combine_min_max(true_src, true_dst);
3619 		break;
3620 	case BPF_JNE:
3621 		__reg_combine_min_max(false_src, false_dst);
3622 		break;
3623 	}
3624 }
3625 
3626 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3627 			 bool is_null)
3628 {
3629 	struct bpf_reg_state *reg = &regs[regno];
3630 
3631 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3632 		/* Old offset (both fixed and variable parts) should
3633 		 * have been known-zero, because we don't allow pointer
3634 		 * arithmetic on pointers that might be NULL.
3635 		 */
3636 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3637 				 !tnum_equals_const(reg->var_off, 0) ||
3638 				 reg->off)) {
3639 			__mark_reg_known_zero(reg);
3640 			reg->off = 0;
3641 		}
3642 		if (is_null) {
3643 			reg->type = SCALAR_VALUE;
3644 		} else if (reg->map_ptr->inner_map_meta) {
3645 			reg->type = CONST_PTR_TO_MAP;
3646 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3647 		} else {
3648 			reg->type = PTR_TO_MAP_VALUE;
3649 		}
3650 		/* We don't need id from this point onwards anymore, thus we
3651 		 * should better reset it, so that state pruning has chances
3652 		 * to take effect.
3653 		 */
3654 		reg->id = 0;
3655 	}
3656 }
3657 
3658 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3659  * be folded together at some point.
3660  */
3661 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3662 			  bool is_null)
3663 {
3664 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3665 	struct bpf_reg_state *regs = state->regs;
3666 	u32 id = regs[regno].id;
3667 	int i, j;
3668 
3669 	for (i = 0; i < MAX_BPF_REG; i++)
3670 		mark_map_reg(regs, i, id, is_null);
3671 
3672 	for (j = 0; j <= vstate->curframe; j++) {
3673 		state = vstate->frame[j];
3674 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3675 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3676 				continue;
3677 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3678 		}
3679 	}
3680 }
3681 
3682 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3683 				   struct bpf_reg_state *dst_reg,
3684 				   struct bpf_reg_state *src_reg,
3685 				   struct bpf_verifier_state *this_branch,
3686 				   struct bpf_verifier_state *other_branch)
3687 {
3688 	if (BPF_SRC(insn->code) != BPF_X)
3689 		return false;
3690 
3691 	switch (BPF_OP(insn->code)) {
3692 	case BPF_JGT:
3693 		if ((dst_reg->type == PTR_TO_PACKET &&
3694 		     src_reg->type == PTR_TO_PACKET_END) ||
3695 		    (dst_reg->type == PTR_TO_PACKET_META &&
3696 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3697 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3698 			find_good_pkt_pointers(this_branch, dst_reg,
3699 					       dst_reg->type, false);
3700 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3701 			    src_reg->type == PTR_TO_PACKET) ||
3702 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3703 			    src_reg->type == PTR_TO_PACKET_META)) {
3704 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3705 			find_good_pkt_pointers(other_branch, src_reg,
3706 					       src_reg->type, true);
3707 		} else {
3708 			return false;
3709 		}
3710 		break;
3711 	case BPF_JLT:
3712 		if ((dst_reg->type == PTR_TO_PACKET &&
3713 		     src_reg->type == PTR_TO_PACKET_END) ||
3714 		    (dst_reg->type == PTR_TO_PACKET_META &&
3715 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3716 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3717 			find_good_pkt_pointers(other_branch, dst_reg,
3718 					       dst_reg->type, true);
3719 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3720 			    src_reg->type == PTR_TO_PACKET) ||
3721 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3722 			    src_reg->type == PTR_TO_PACKET_META)) {
3723 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3724 			find_good_pkt_pointers(this_branch, src_reg,
3725 					       src_reg->type, false);
3726 		} else {
3727 			return false;
3728 		}
3729 		break;
3730 	case BPF_JGE:
3731 		if ((dst_reg->type == PTR_TO_PACKET &&
3732 		     src_reg->type == PTR_TO_PACKET_END) ||
3733 		    (dst_reg->type == PTR_TO_PACKET_META &&
3734 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3735 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3736 			find_good_pkt_pointers(this_branch, dst_reg,
3737 					       dst_reg->type, true);
3738 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3739 			    src_reg->type == PTR_TO_PACKET) ||
3740 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3741 			    src_reg->type == PTR_TO_PACKET_META)) {
3742 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3743 			find_good_pkt_pointers(other_branch, src_reg,
3744 					       src_reg->type, false);
3745 		} else {
3746 			return false;
3747 		}
3748 		break;
3749 	case BPF_JLE:
3750 		if ((dst_reg->type == PTR_TO_PACKET &&
3751 		     src_reg->type == PTR_TO_PACKET_END) ||
3752 		    (dst_reg->type == PTR_TO_PACKET_META &&
3753 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3754 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3755 			find_good_pkt_pointers(other_branch, dst_reg,
3756 					       dst_reg->type, false);
3757 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3758 			    src_reg->type == PTR_TO_PACKET) ||
3759 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3760 			    src_reg->type == PTR_TO_PACKET_META)) {
3761 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3762 			find_good_pkt_pointers(this_branch, src_reg,
3763 					       src_reg->type, true);
3764 		} else {
3765 			return false;
3766 		}
3767 		break;
3768 	default:
3769 		return false;
3770 	}
3771 
3772 	return true;
3773 }
3774 
3775 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3776 			     struct bpf_insn *insn, int *insn_idx)
3777 {
3778 	struct bpf_verifier_state *this_branch = env->cur_state;
3779 	struct bpf_verifier_state *other_branch;
3780 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3781 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3782 	u8 opcode = BPF_OP(insn->code);
3783 	int err;
3784 
3785 	if (opcode > BPF_JSLE) {
3786 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3787 		return -EINVAL;
3788 	}
3789 
3790 	if (BPF_SRC(insn->code) == BPF_X) {
3791 		if (insn->imm != 0) {
3792 			verbose(env, "BPF_JMP uses reserved fields\n");
3793 			return -EINVAL;
3794 		}
3795 
3796 		/* check src1 operand */
3797 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3798 		if (err)
3799 			return err;
3800 
3801 		if (is_pointer_value(env, insn->src_reg)) {
3802 			verbose(env, "R%d pointer comparison prohibited\n",
3803 				insn->src_reg);
3804 			return -EACCES;
3805 		}
3806 	} else {
3807 		if (insn->src_reg != BPF_REG_0) {
3808 			verbose(env, "BPF_JMP uses reserved fields\n");
3809 			return -EINVAL;
3810 		}
3811 	}
3812 
3813 	/* check src2 operand */
3814 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3815 	if (err)
3816 		return err;
3817 
3818 	dst_reg = &regs[insn->dst_reg];
3819 
3820 	/* detect if R == 0 where R was initialized to zero earlier */
3821 	if (BPF_SRC(insn->code) == BPF_K &&
3822 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3823 	    dst_reg->type == SCALAR_VALUE &&
3824 	    tnum_is_const(dst_reg->var_off)) {
3825 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3826 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3827 			/* if (imm == imm) goto pc+off;
3828 			 * only follow the goto, ignore fall-through
3829 			 */
3830 			*insn_idx += insn->off;
3831 			return 0;
3832 		} else {
3833 			/* if (imm != imm) goto pc+off;
3834 			 * only follow fall-through branch, since
3835 			 * that's where the program will go
3836 			 */
3837 			return 0;
3838 		}
3839 	}
3840 
3841 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3842 	if (!other_branch)
3843 		return -EFAULT;
3844 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3845 
3846 	/* detect if we are comparing against a constant value so we can adjust
3847 	 * our min/max values for our dst register.
3848 	 * this is only legit if both are scalars (or pointers to the same
3849 	 * object, I suppose, but we don't support that right now), because
3850 	 * otherwise the different base pointers mean the offsets aren't
3851 	 * comparable.
3852 	 */
3853 	if (BPF_SRC(insn->code) == BPF_X) {
3854 		if (dst_reg->type == SCALAR_VALUE &&
3855 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3856 			if (tnum_is_const(regs[insn->src_reg].var_off))
3857 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3858 						dst_reg, regs[insn->src_reg].var_off.value,
3859 						opcode);
3860 			else if (tnum_is_const(dst_reg->var_off))
3861 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3862 						    &regs[insn->src_reg],
3863 						    dst_reg->var_off.value, opcode);
3864 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3865 				/* Comparing for equality, we can combine knowledge */
3866 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3867 						    &other_branch_regs[insn->dst_reg],
3868 						    &regs[insn->src_reg],
3869 						    &regs[insn->dst_reg], opcode);
3870 		}
3871 	} else if (dst_reg->type == SCALAR_VALUE) {
3872 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3873 					dst_reg, insn->imm, opcode);
3874 	}
3875 
3876 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3877 	if (BPF_SRC(insn->code) == BPF_K &&
3878 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3879 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3880 		/* Mark all identical map registers in each branch as either
3881 		 * safe or unknown depending R == 0 or R != 0 conditional.
3882 		 */
3883 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3884 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3885 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3886 					   this_branch, other_branch) &&
3887 		   is_pointer_value(env, insn->dst_reg)) {
3888 		verbose(env, "R%d pointer comparison prohibited\n",
3889 			insn->dst_reg);
3890 		return -EACCES;
3891 	}
3892 	if (env->log.level)
3893 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3894 	return 0;
3895 }
3896 
3897 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3898 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3899 {
3900 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3901 
3902 	return (struct bpf_map *) (unsigned long) imm64;
3903 }
3904 
3905 /* verify BPF_LD_IMM64 instruction */
3906 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3907 {
3908 	struct bpf_reg_state *regs = cur_regs(env);
3909 	int err;
3910 
3911 	if (BPF_SIZE(insn->code) != BPF_DW) {
3912 		verbose(env, "invalid BPF_LD_IMM insn\n");
3913 		return -EINVAL;
3914 	}
3915 	if (insn->off != 0) {
3916 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3917 		return -EINVAL;
3918 	}
3919 
3920 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3921 	if (err)
3922 		return err;
3923 
3924 	if (insn->src_reg == 0) {
3925 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3926 
3927 		regs[insn->dst_reg].type = SCALAR_VALUE;
3928 		__mark_reg_known(&regs[insn->dst_reg], imm);
3929 		return 0;
3930 	}
3931 
3932 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3933 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3934 
3935 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3936 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3937 	return 0;
3938 }
3939 
3940 static bool may_access_skb(enum bpf_prog_type type)
3941 {
3942 	switch (type) {
3943 	case BPF_PROG_TYPE_SOCKET_FILTER:
3944 	case BPF_PROG_TYPE_SCHED_CLS:
3945 	case BPF_PROG_TYPE_SCHED_ACT:
3946 		return true;
3947 	default:
3948 		return false;
3949 	}
3950 }
3951 
3952 /* verify safety of LD_ABS|LD_IND instructions:
3953  * - they can only appear in the programs where ctx == skb
3954  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3955  *   preserve R6-R9, and store return value into R0
3956  *
3957  * Implicit input:
3958  *   ctx == skb == R6 == CTX
3959  *
3960  * Explicit input:
3961  *   SRC == any register
3962  *   IMM == 32-bit immediate
3963  *
3964  * Output:
3965  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3966  */
3967 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3968 {
3969 	struct bpf_reg_state *regs = cur_regs(env);
3970 	u8 mode = BPF_MODE(insn->code);
3971 	int i, err;
3972 
3973 	if (!may_access_skb(env->prog->type)) {
3974 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3975 		return -EINVAL;
3976 	}
3977 
3978 	if (!env->ops->gen_ld_abs) {
3979 		verbose(env, "bpf verifier is misconfigured\n");
3980 		return -EINVAL;
3981 	}
3982 
3983 	if (env->subprog_cnt > 1) {
3984 		/* when program has LD_ABS insn JITs and interpreter assume
3985 		 * that r1 == ctx == skb which is not the case for callees
3986 		 * that can have arbitrary arguments. It's problematic
3987 		 * for main prog as well since JITs would need to analyze
3988 		 * all functions in order to make proper register save/restore
3989 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3990 		 */
3991 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3992 		return -EINVAL;
3993 	}
3994 
3995 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3996 	    BPF_SIZE(insn->code) == BPF_DW ||
3997 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3998 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3999 		return -EINVAL;
4000 	}
4001 
4002 	/* check whether implicit source operand (register R6) is readable */
4003 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
4004 	if (err)
4005 		return err;
4006 
4007 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
4008 		verbose(env,
4009 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
4010 		return -EINVAL;
4011 	}
4012 
4013 	if (mode == BPF_IND) {
4014 		/* check explicit source operand */
4015 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4016 		if (err)
4017 			return err;
4018 	}
4019 
4020 	/* reset caller saved regs to unreadable */
4021 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4022 		mark_reg_not_init(env, regs, caller_saved[i]);
4023 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4024 	}
4025 
4026 	/* mark destination R0 register as readable, since it contains
4027 	 * the value fetched from the packet.
4028 	 * Already marked as written above.
4029 	 */
4030 	mark_reg_unknown(env, regs, BPF_REG_0);
4031 	return 0;
4032 }
4033 
4034 static int check_return_code(struct bpf_verifier_env *env)
4035 {
4036 	struct bpf_reg_state *reg;
4037 	struct tnum range = tnum_range(0, 1);
4038 
4039 	switch (env->prog->type) {
4040 	case BPF_PROG_TYPE_CGROUP_SKB:
4041 	case BPF_PROG_TYPE_CGROUP_SOCK:
4042 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4043 	case BPF_PROG_TYPE_SOCK_OPS:
4044 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4045 		break;
4046 	default:
4047 		return 0;
4048 	}
4049 
4050 	reg = cur_regs(env) + BPF_REG_0;
4051 	if (reg->type != SCALAR_VALUE) {
4052 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4053 			reg_type_str[reg->type]);
4054 		return -EINVAL;
4055 	}
4056 
4057 	if (!tnum_in(range, reg->var_off)) {
4058 		verbose(env, "At program exit the register R0 ");
4059 		if (!tnum_is_unknown(reg->var_off)) {
4060 			char tn_buf[48];
4061 
4062 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4063 			verbose(env, "has value %s", tn_buf);
4064 		} else {
4065 			verbose(env, "has unknown scalar value");
4066 		}
4067 		verbose(env, " should have been 0 or 1\n");
4068 		return -EINVAL;
4069 	}
4070 	return 0;
4071 }
4072 
4073 /* non-recursive DFS pseudo code
4074  * 1  procedure DFS-iterative(G,v):
4075  * 2      label v as discovered
4076  * 3      let S be a stack
4077  * 4      S.push(v)
4078  * 5      while S is not empty
4079  * 6            t <- S.pop()
4080  * 7            if t is what we're looking for:
4081  * 8                return t
4082  * 9            for all edges e in G.adjacentEdges(t) do
4083  * 10               if edge e is already labelled
4084  * 11                   continue with the next edge
4085  * 12               w <- G.adjacentVertex(t,e)
4086  * 13               if vertex w is not discovered and not explored
4087  * 14                   label e as tree-edge
4088  * 15                   label w as discovered
4089  * 16                   S.push(w)
4090  * 17                   continue at 5
4091  * 18               else if vertex w is discovered
4092  * 19                   label e as back-edge
4093  * 20               else
4094  * 21                   // vertex w is explored
4095  * 22                   label e as forward- or cross-edge
4096  * 23           label t as explored
4097  * 24           S.pop()
4098  *
4099  * convention:
4100  * 0x10 - discovered
4101  * 0x11 - discovered and fall-through edge labelled
4102  * 0x12 - discovered and fall-through and branch edges labelled
4103  * 0x20 - explored
4104  */
4105 
4106 enum {
4107 	DISCOVERED = 0x10,
4108 	EXPLORED = 0x20,
4109 	FALLTHROUGH = 1,
4110 	BRANCH = 2,
4111 };
4112 
4113 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4114 
4115 static int *insn_stack;	/* stack of insns to process */
4116 static int cur_stack;	/* current stack index */
4117 static int *insn_state;
4118 
4119 /* t, w, e - match pseudo-code above:
4120  * t - index of current instruction
4121  * w - next instruction
4122  * e - edge
4123  */
4124 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4125 {
4126 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4127 		return 0;
4128 
4129 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4130 		return 0;
4131 
4132 	if (w < 0 || w >= env->prog->len) {
4133 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4134 		return -EINVAL;
4135 	}
4136 
4137 	if (e == BRANCH)
4138 		/* mark branch target for state pruning */
4139 		env->explored_states[w] = STATE_LIST_MARK;
4140 
4141 	if (insn_state[w] == 0) {
4142 		/* tree-edge */
4143 		insn_state[t] = DISCOVERED | e;
4144 		insn_state[w] = DISCOVERED;
4145 		if (cur_stack >= env->prog->len)
4146 			return -E2BIG;
4147 		insn_stack[cur_stack++] = w;
4148 		return 1;
4149 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4150 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4151 		return -EINVAL;
4152 	} else if (insn_state[w] == EXPLORED) {
4153 		/* forward- or cross-edge */
4154 		insn_state[t] = DISCOVERED | e;
4155 	} else {
4156 		verbose(env, "insn state internal bug\n");
4157 		return -EFAULT;
4158 	}
4159 	return 0;
4160 }
4161 
4162 /* non-recursive depth-first-search to detect loops in BPF program
4163  * loop == back-edge in directed graph
4164  */
4165 static int check_cfg(struct bpf_verifier_env *env)
4166 {
4167 	struct bpf_insn *insns = env->prog->insnsi;
4168 	int insn_cnt = env->prog->len;
4169 	int ret = 0;
4170 	int i, t;
4171 
4172 	ret = check_subprogs(env);
4173 	if (ret < 0)
4174 		return ret;
4175 
4176 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4177 	if (!insn_state)
4178 		return -ENOMEM;
4179 
4180 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4181 	if (!insn_stack) {
4182 		kfree(insn_state);
4183 		return -ENOMEM;
4184 	}
4185 
4186 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4187 	insn_stack[0] = 0; /* 0 is the first instruction */
4188 	cur_stack = 1;
4189 
4190 peek_stack:
4191 	if (cur_stack == 0)
4192 		goto check_state;
4193 	t = insn_stack[cur_stack - 1];
4194 
4195 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4196 		u8 opcode = BPF_OP(insns[t].code);
4197 
4198 		if (opcode == BPF_EXIT) {
4199 			goto mark_explored;
4200 		} else if (opcode == BPF_CALL) {
4201 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4202 			if (ret == 1)
4203 				goto peek_stack;
4204 			else if (ret < 0)
4205 				goto err_free;
4206 			if (t + 1 < insn_cnt)
4207 				env->explored_states[t + 1] = STATE_LIST_MARK;
4208 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4209 				env->explored_states[t] = STATE_LIST_MARK;
4210 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4211 				if (ret == 1)
4212 					goto peek_stack;
4213 				else if (ret < 0)
4214 					goto err_free;
4215 			}
4216 		} else if (opcode == BPF_JA) {
4217 			if (BPF_SRC(insns[t].code) != BPF_K) {
4218 				ret = -EINVAL;
4219 				goto err_free;
4220 			}
4221 			/* unconditional jump with single edge */
4222 			ret = push_insn(t, t + insns[t].off + 1,
4223 					FALLTHROUGH, env);
4224 			if (ret == 1)
4225 				goto peek_stack;
4226 			else if (ret < 0)
4227 				goto err_free;
4228 			/* tell verifier to check for equivalent states
4229 			 * after every call and jump
4230 			 */
4231 			if (t + 1 < insn_cnt)
4232 				env->explored_states[t + 1] = STATE_LIST_MARK;
4233 		} else {
4234 			/* conditional jump with two edges */
4235 			env->explored_states[t] = STATE_LIST_MARK;
4236 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4237 			if (ret == 1)
4238 				goto peek_stack;
4239 			else if (ret < 0)
4240 				goto err_free;
4241 
4242 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4243 			if (ret == 1)
4244 				goto peek_stack;
4245 			else if (ret < 0)
4246 				goto err_free;
4247 		}
4248 	} else {
4249 		/* all other non-branch instructions with single
4250 		 * fall-through edge
4251 		 */
4252 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4253 		if (ret == 1)
4254 			goto peek_stack;
4255 		else if (ret < 0)
4256 			goto err_free;
4257 	}
4258 
4259 mark_explored:
4260 	insn_state[t] = EXPLORED;
4261 	if (cur_stack-- <= 0) {
4262 		verbose(env, "pop stack internal bug\n");
4263 		ret = -EFAULT;
4264 		goto err_free;
4265 	}
4266 	goto peek_stack;
4267 
4268 check_state:
4269 	for (i = 0; i < insn_cnt; i++) {
4270 		if (insn_state[i] != EXPLORED) {
4271 			verbose(env, "unreachable insn %d\n", i);
4272 			ret = -EINVAL;
4273 			goto err_free;
4274 		}
4275 	}
4276 	ret = 0; /* cfg looks good */
4277 
4278 err_free:
4279 	kfree(insn_state);
4280 	kfree(insn_stack);
4281 	return ret;
4282 }
4283 
4284 /* check %cur's range satisfies %old's */
4285 static bool range_within(struct bpf_reg_state *old,
4286 			 struct bpf_reg_state *cur)
4287 {
4288 	return old->umin_value <= cur->umin_value &&
4289 	       old->umax_value >= cur->umax_value &&
4290 	       old->smin_value <= cur->smin_value &&
4291 	       old->smax_value >= cur->smax_value;
4292 }
4293 
4294 /* Maximum number of register states that can exist at once */
4295 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4296 struct idpair {
4297 	u32 old;
4298 	u32 cur;
4299 };
4300 
4301 /* If in the old state two registers had the same id, then they need to have
4302  * the same id in the new state as well.  But that id could be different from
4303  * the old state, so we need to track the mapping from old to new ids.
4304  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4305  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4306  * regs with a different old id could still have new id 9, we don't care about
4307  * that.
4308  * So we look through our idmap to see if this old id has been seen before.  If
4309  * so, we require the new id to match; otherwise, we add the id pair to the map.
4310  */
4311 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4312 {
4313 	unsigned int i;
4314 
4315 	for (i = 0; i < ID_MAP_SIZE; i++) {
4316 		if (!idmap[i].old) {
4317 			/* Reached an empty slot; haven't seen this id before */
4318 			idmap[i].old = old_id;
4319 			idmap[i].cur = cur_id;
4320 			return true;
4321 		}
4322 		if (idmap[i].old == old_id)
4323 			return idmap[i].cur == cur_id;
4324 	}
4325 	/* We ran out of idmap slots, which should be impossible */
4326 	WARN_ON_ONCE(1);
4327 	return false;
4328 }
4329 
4330 /* Returns true if (rold safe implies rcur safe) */
4331 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4332 		    struct idpair *idmap)
4333 {
4334 	bool equal;
4335 
4336 	if (!(rold->live & REG_LIVE_READ))
4337 		/* explored state didn't use this */
4338 		return true;
4339 
4340 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4341 
4342 	if (rold->type == PTR_TO_STACK)
4343 		/* two stack pointers are equal only if they're pointing to
4344 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4345 		 */
4346 		return equal && rold->frameno == rcur->frameno;
4347 
4348 	if (equal)
4349 		return true;
4350 
4351 	if (rold->type == NOT_INIT)
4352 		/* explored state can't have used this */
4353 		return true;
4354 	if (rcur->type == NOT_INIT)
4355 		return false;
4356 	switch (rold->type) {
4357 	case SCALAR_VALUE:
4358 		if (rcur->type == SCALAR_VALUE) {
4359 			/* new val must satisfy old val knowledge */
4360 			return range_within(rold, rcur) &&
4361 			       tnum_in(rold->var_off, rcur->var_off);
4362 		} else {
4363 			/* We're trying to use a pointer in place of a scalar.
4364 			 * Even if the scalar was unbounded, this could lead to
4365 			 * pointer leaks because scalars are allowed to leak
4366 			 * while pointers are not. We could make this safe in
4367 			 * special cases if root is calling us, but it's
4368 			 * probably not worth the hassle.
4369 			 */
4370 			return false;
4371 		}
4372 	case PTR_TO_MAP_VALUE:
4373 		/* If the new min/max/var_off satisfy the old ones and
4374 		 * everything else matches, we are OK.
4375 		 * We don't care about the 'id' value, because nothing
4376 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4377 		 */
4378 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4379 		       range_within(rold, rcur) &&
4380 		       tnum_in(rold->var_off, rcur->var_off);
4381 	case PTR_TO_MAP_VALUE_OR_NULL:
4382 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4383 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4384 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4385 		 * checked, doing so could have affected others with the same
4386 		 * id, and we can't check for that because we lost the id when
4387 		 * we converted to a PTR_TO_MAP_VALUE.
4388 		 */
4389 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4390 			return false;
4391 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4392 			return false;
4393 		/* Check our ids match any regs they're supposed to */
4394 		return check_ids(rold->id, rcur->id, idmap);
4395 	case PTR_TO_PACKET_META:
4396 	case PTR_TO_PACKET:
4397 		if (rcur->type != rold->type)
4398 			return false;
4399 		/* We must have at least as much range as the old ptr
4400 		 * did, so that any accesses which were safe before are
4401 		 * still safe.  This is true even if old range < old off,
4402 		 * since someone could have accessed through (ptr - k), or
4403 		 * even done ptr -= k in a register, to get a safe access.
4404 		 */
4405 		if (rold->range > rcur->range)
4406 			return false;
4407 		/* If the offsets don't match, we can't trust our alignment;
4408 		 * nor can we be sure that we won't fall out of range.
4409 		 */
4410 		if (rold->off != rcur->off)
4411 			return false;
4412 		/* id relations must be preserved */
4413 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4414 			return false;
4415 		/* new val must satisfy old val knowledge */
4416 		return range_within(rold, rcur) &&
4417 		       tnum_in(rold->var_off, rcur->var_off);
4418 	case PTR_TO_CTX:
4419 	case CONST_PTR_TO_MAP:
4420 	case PTR_TO_PACKET_END:
4421 		/* Only valid matches are exact, which memcmp() above
4422 		 * would have accepted
4423 		 */
4424 	default:
4425 		/* Don't know what's going on, just say it's not safe */
4426 		return false;
4427 	}
4428 
4429 	/* Shouldn't get here; if we do, say it's not safe */
4430 	WARN_ON_ONCE(1);
4431 	return false;
4432 }
4433 
4434 static bool stacksafe(struct bpf_func_state *old,
4435 		      struct bpf_func_state *cur,
4436 		      struct idpair *idmap)
4437 {
4438 	int i, spi;
4439 
4440 	/* if explored stack has more populated slots than current stack
4441 	 * such stacks are not equivalent
4442 	 */
4443 	if (old->allocated_stack > cur->allocated_stack)
4444 		return false;
4445 
4446 	/* walk slots of the explored stack and ignore any additional
4447 	 * slots in the current stack, since explored(safe) state
4448 	 * didn't use them
4449 	 */
4450 	for (i = 0; i < old->allocated_stack; i++) {
4451 		spi = i / BPF_REG_SIZE;
4452 
4453 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4454 			/* explored state didn't use this */
4455 			continue;
4456 
4457 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4458 			continue;
4459 		/* if old state was safe with misc data in the stack
4460 		 * it will be safe with zero-initialized stack.
4461 		 * The opposite is not true
4462 		 */
4463 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4464 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4465 			continue;
4466 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4467 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4468 			/* Ex: old explored (safe) state has STACK_SPILL in
4469 			 * this stack slot, but current has has STACK_MISC ->
4470 			 * this verifier states are not equivalent,
4471 			 * return false to continue verification of this path
4472 			 */
4473 			return false;
4474 		if (i % BPF_REG_SIZE)
4475 			continue;
4476 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4477 			continue;
4478 		if (!regsafe(&old->stack[spi].spilled_ptr,
4479 			     &cur->stack[spi].spilled_ptr,
4480 			     idmap))
4481 			/* when explored and current stack slot are both storing
4482 			 * spilled registers, check that stored pointers types
4483 			 * are the same as well.
4484 			 * Ex: explored safe path could have stored
4485 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4486 			 * but current path has stored:
4487 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4488 			 * such verifier states are not equivalent.
4489 			 * return false to continue verification of this path
4490 			 */
4491 			return false;
4492 	}
4493 	return true;
4494 }
4495 
4496 /* compare two verifier states
4497  *
4498  * all states stored in state_list are known to be valid, since
4499  * verifier reached 'bpf_exit' instruction through them
4500  *
4501  * this function is called when verifier exploring different branches of
4502  * execution popped from the state stack. If it sees an old state that has
4503  * more strict register state and more strict stack state then this execution
4504  * branch doesn't need to be explored further, since verifier already
4505  * concluded that more strict state leads to valid finish.
4506  *
4507  * Therefore two states are equivalent if register state is more conservative
4508  * and explored stack state is more conservative than the current one.
4509  * Example:
4510  *       explored                   current
4511  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4512  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4513  *
4514  * In other words if current stack state (one being explored) has more
4515  * valid slots than old one that already passed validation, it means
4516  * the verifier can stop exploring and conclude that current state is valid too
4517  *
4518  * Similarly with registers. If explored state has register type as invalid
4519  * whereas register type in current state is meaningful, it means that
4520  * the current state will reach 'bpf_exit' instruction safely
4521  */
4522 static bool func_states_equal(struct bpf_func_state *old,
4523 			      struct bpf_func_state *cur)
4524 {
4525 	struct idpair *idmap;
4526 	bool ret = false;
4527 	int i;
4528 
4529 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4530 	/* If we failed to allocate the idmap, just say it's not safe */
4531 	if (!idmap)
4532 		return false;
4533 
4534 	for (i = 0; i < MAX_BPF_REG; i++) {
4535 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4536 			goto out_free;
4537 	}
4538 
4539 	if (!stacksafe(old, cur, idmap))
4540 		goto out_free;
4541 	ret = true;
4542 out_free:
4543 	kfree(idmap);
4544 	return ret;
4545 }
4546 
4547 static bool states_equal(struct bpf_verifier_env *env,
4548 			 struct bpf_verifier_state *old,
4549 			 struct bpf_verifier_state *cur)
4550 {
4551 	int i;
4552 
4553 	if (old->curframe != cur->curframe)
4554 		return false;
4555 
4556 	/* for states to be equal callsites have to be the same
4557 	 * and all frame states need to be equivalent
4558 	 */
4559 	for (i = 0; i <= old->curframe; i++) {
4560 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4561 			return false;
4562 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4563 			return false;
4564 	}
4565 	return true;
4566 }
4567 
4568 /* A write screens off any subsequent reads; but write marks come from the
4569  * straight-line code between a state and its parent.  When we arrive at an
4570  * equivalent state (jump target or such) we didn't arrive by the straight-line
4571  * code, so read marks in the state must propagate to the parent regardless
4572  * of the state's write marks. That's what 'parent == state->parent' comparison
4573  * in mark_reg_read() and mark_stack_slot_read() is for.
4574  */
4575 static int propagate_liveness(struct bpf_verifier_env *env,
4576 			      const struct bpf_verifier_state *vstate,
4577 			      struct bpf_verifier_state *vparent)
4578 {
4579 	int i, frame, err = 0;
4580 	struct bpf_func_state *state, *parent;
4581 
4582 	if (vparent->curframe != vstate->curframe) {
4583 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4584 		     vparent->curframe, vstate->curframe);
4585 		return -EFAULT;
4586 	}
4587 	/* Propagate read liveness of registers... */
4588 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4589 	/* We don't need to worry about FP liveness because it's read-only */
4590 	for (i = 0; i < BPF_REG_FP; i++) {
4591 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4592 			continue;
4593 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4594 			err = mark_reg_read(env, vstate, vparent, i);
4595 			if (err)
4596 				return err;
4597 		}
4598 	}
4599 
4600 	/* ... and stack slots */
4601 	for (frame = 0; frame <= vstate->curframe; frame++) {
4602 		state = vstate->frame[frame];
4603 		parent = vparent->frame[frame];
4604 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4605 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4606 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4607 				continue;
4608 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4609 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4610 		}
4611 	}
4612 	return err;
4613 }
4614 
4615 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4616 {
4617 	struct bpf_verifier_state_list *new_sl;
4618 	struct bpf_verifier_state_list *sl;
4619 	struct bpf_verifier_state *cur = env->cur_state;
4620 	int i, j, err;
4621 
4622 	sl = env->explored_states[insn_idx];
4623 	if (!sl)
4624 		/* this 'insn_idx' instruction wasn't marked, so we will not
4625 		 * be doing state search here
4626 		 */
4627 		return 0;
4628 
4629 	while (sl != STATE_LIST_MARK) {
4630 		if (states_equal(env, &sl->state, cur)) {
4631 			/* reached equivalent register/stack state,
4632 			 * prune the search.
4633 			 * Registers read by the continuation are read by us.
4634 			 * If we have any write marks in env->cur_state, they
4635 			 * will prevent corresponding reads in the continuation
4636 			 * from reaching our parent (an explored_state).  Our
4637 			 * own state will get the read marks recorded, but
4638 			 * they'll be immediately forgotten as we're pruning
4639 			 * this state and will pop a new one.
4640 			 */
4641 			err = propagate_liveness(env, &sl->state, cur);
4642 			if (err)
4643 				return err;
4644 			return 1;
4645 		}
4646 		sl = sl->next;
4647 	}
4648 
4649 	/* there were no equivalent states, remember current one.
4650 	 * technically the current state is not proven to be safe yet,
4651 	 * but it will either reach outer most bpf_exit (which means it's safe)
4652 	 * or it will be rejected. Since there are no loops, we won't be
4653 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4654 	 * again on the way to bpf_exit
4655 	 */
4656 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4657 	if (!new_sl)
4658 		return -ENOMEM;
4659 
4660 	/* add new state to the head of linked list */
4661 	err = copy_verifier_state(&new_sl->state, cur);
4662 	if (err) {
4663 		free_verifier_state(&new_sl->state, false);
4664 		kfree(new_sl);
4665 		return err;
4666 	}
4667 	new_sl->next = env->explored_states[insn_idx];
4668 	env->explored_states[insn_idx] = new_sl;
4669 	/* connect new state to parentage chain */
4670 	cur->parent = &new_sl->state;
4671 	/* clear write marks in current state: the writes we did are not writes
4672 	 * our child did, so they don't screen off its reads from us.
4673 	 * (There are no read marks in current state, because reads always mark
4674 	 * their parent and current state never has children yet.  Only
4675 	 * explored_states can get read marks.)
4676 	 */
4677 	for (i = 0; i < BPF_REG_FP; i++)
4678 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4679 
4680 	/* all stack frames are accessible from callee, clear them all */
4681 	for (j = 0; j <= cur->curframe; j++) {
4682 		struct bpf_func_state *frame = cur->frame[j];
4683 
4684 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4685 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4686 	}
4687 	return 0;
4688 }
4689 
4690 static int do_check(struct bpf_verifier_env *env)
4691 {
4692 	struct bpf_verifier_state *state;
4693 	struct bpf_insn *insns = env->prog->insnsi;
4694 	struct bpf_reg_state *regs;
4695 	int insn_cnt = env->prog->len, i;
4696 	int insn_idx, prev_insn_idx = 0;
4697 	int insn_processed = 0;
4698 	bool do_print_state = false;
4699 
4700 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4701 	if (!state)
4702 		return -ENOMEM;
4703 	state->curframe = 0;
4704 	state->parent = NULL;
4705 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4706 	if (!state->frame[0]) {
4707 		kfree(state);
4708 		return -ENOMEM;
4709 	}
4710 	env->cur_state = state;
4711 	init_func_state(env, state->frame[0],
4712 			BPF_MAIN_FUNC /* callsite */,
4713 			0 /* frameno */,
4714 			0 /* subprogno, zero == main subprog */);
4715 	insn_idx = 0;
4716 	for (;;) {
4717 		struct bpf_insn *insn;
4718 		u8 class;
4719 		int err;
4720 
4721 		if (insn_idx >= insn_cnt) {
4722 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4723 				insn_idx, insn_cnt);
4724 			return -EFAULT;
4725 		}
4726 
4727 		insn = &insns[insn_idx];
4728 		class = BPF_CLASS(insn->code);
4729 
4730 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4731 			verbose(env,
4732 				"BPF program is too large. Processed %d insn\n",
4733 				insn_processed);
4734 			return -E2BIG;
4735 		}
4736 
4737 		err = is_state_visited(env, insn_idx);
4738 		if (err < 0)
4739 			return err;
4740 		if (err == 1) {
4741 			/* found equivalent state, can prune the search */
4742 			if (env->log.level) {
4743 				if (do_print_state)
4744 					verbose(env, "\nfrom %d to %d: safe\n",
4745 						prev_insn_idx, insn_idx);
4746 				else
4747 					verbose(env, "%d: safe\n", insn_idx);
4748 			}
4749 			goto process_bpf_exit;
4750 		}
4751 
4752 		if (need_resched())
4753 			cond_resched();
4754 
4755 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4756 			if (env->log.level > 1)
4757 				verbose(env, "%d:", insn_idx);
4758 			else
4759 				verbose(env, "\nfrom %d to %d:",
4760 					prev_insn_idx, insn_idx);
4761 			print_verifier_state(env, state->frame[state->curframe]);
4762 			do_print_state = false;
4763 		}
4764 
4765 		if (env->log.level) {
4766 			const struct bpf_insn_cbs cbs = {
4767 				.cb_print	= verbose,
4768 				.private_data	= env,
4769 			};
4770 
4771 			verbose(env, "%d: ", insn_idx);
4772 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4773 		}
4774 
4775 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4776 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4777 							   prev_insn_idx);
4778 			if (err)
4779 				return err;
4780 		}
4781 
4782 		regs = cur_regs(env);
4783 		env->insn_aux_data[insn_idx].seen = true;
4784 		if (class == BPF_ALU || class == BPF_ALU64) {
4785 			err = check_alu_op(env, insn);
4786 			if (err)
4787 				return err;
4788 
4789 		} else if (class == BPF_LDX) {
4790 			enum bpf_reg_type *prev_src_type, src_reg_type;
4791 
4792 			/* check for reserved fields is already done */
4793 
4794 			/* check src operand */
4795 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4796 			if (err)
4797 				return err;
4798 
4799 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4800 			if (err)
4801 				return err;
4802 
4803 			src_reg_type = regs[insn->src_reg].type;
4804 
4805 			/* check that memory (src_reg + off) is readable,
4806 			 * the state of dst_reg will be updated by this func
4807 			 */
4808 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4809 					       BPF_SIZE(insn->code), BPF_READ,
4810 					       insn->dst_reg, false);
4811 			if (err)
4812 				return err;
4813 
4814 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4815 
4816 			if (*prev_src_type == NOT_INIT) {
4817 				/* saw a valid insn
4818 				 * dst_reg = *(u32 *)(src_reg + off)
4819 				 * save type to validate intersecting paths
4820 				 */
4821 				*prev_src_type = src_reg_type;
4822 
4823 			} else if (src_reg_type != *prev_src_type &&
4824 				   (src_reg_type == PTR_TO_CTX ||
4825 				    *prev_src_type == PTR_TO_CTX)) {
4826 				/* ABuser program is trying to use the same insn
4827 				 * dst_reg = *(u32*) (src_reg + off)
4828 				 * with different pointer types:
4829 				 * src_reg == ctx in one branch and
4830 				 * src_reg == stack|map in some other branch.
4831 				 * Reject it.
4832 				 */
4833 				verbose(env, "same insn cannot be used with different pointers\n");
4834 				return -EINVAL;
4835 			}
4836 
4837 		} else if (class == BPF_STX) {
4838 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4839 
4840 			if (BPF_MODE(insn->code) == BPF_XADD) {
4841 				err = check_xadd(env, insn_idx, insn);
4842 				if (err)
4843 					return err;
4844 				insn_idx++;
4845 				continue;
4846 			}
4847 
4848 			/* check src1 operand */
4849 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4850 			if (err)
4851 				return err;
4852 			/* check src2 operand */
4853 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4854 			if (err)
4855 				return err;
4856 
4857 			dst_reg_type = regs[insn->dst_reg].type;
4858 
4859 			/* check that memory (dst_reg + off) is writeable */
4860 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4861 					       BPF_SIZE(insn->code), BPF_WRITE,
4862 					       insn->src_reg, false);
4863 			if (err)
4864 				return err;
4865 
4866 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4867 
4868 			if (*prev_dst_type == NOT_INIT) {
4869 				*prev_dst_type = dst_reg_type;
4870 			} else if (dst_reg_type != *prev_dst_type &&
4871 				   (dst_reg_type == PTR_TO_CTX ||
4872 				    *prev_dst_type == PTR_TO_CTX)) {
4873 				verbose(env, "same insn cannot be used with different pointers\n");
4874 				return -EINVAL;
4875 			}
4876 
4877 		} else if (class == BPF_ST) {
4878 			if (BPF_MODE(insn->code) != BPF_MEM ||
4879 			    insn->src_reg != BPF_REG_0) {
4880 				verbose(env, "BPF_ST uses reserved fields\n");
4881 				return -EINVAL;
4882 			}
4883 			/* check src operand */
4884 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4885 			if (err)
4886 				return err;
4887 
4888 			if (is_ctx_reg(env, insn->dst_reg)) {
4889 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4890 					insn->dst_reg);
4891 				return -EACCES;
4892 			}
4893 
4894 			/* check that memory (dst_reg + off) is writeable */
4895 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4896 					       BPF_SIZE(insn->code), BPF_WRITE,
4897 					       -1, false);
4898 			if (err)
4899 				return err;
4900 
4901 		} else if (class == BPF_JMP) {
4902 			u8 opcode = BPF_OP(insn->code);
4903 
4904 			if (opcode == BPF_CALL) {
4905 				if (BPF_SRC(insn->code) != BPF_K ||
4906 				    insn->off != 0 ||
4907 				    (insn->src_reg != BPF_REG_0 &&
4908 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4909 				    insn->dst_reg != BPF_REG_0) {
4910 					verbose(env, "BPF_CALL uses reserved fields\n");
4911 					return -EINVAL;
4912 				}
4913 
4914 				if (insn->src_reg == BPF_PSEUDO_CALL)
4915 					err = check_func_call(env, insn, &insn_idx);
4916 				else
4917 					err = check_helper_call(env, insn->imm, insn_idx);
4918 				if (err)
4919 					return err;
4920 
4921 			} else if (opcode == BPF_JA) {
4922 				if (BPF_SRC(insn->code) != BPF_K ||
4923 				    insn->imm != 0 ||
4924 				    insn->src_reg != BPF_REG_0 ||
4925 				    insn->dst_reg != BPF_REG_0) {
4926 					verbose(env, "BPF_JA uses reserved fields\n");
4927 					return -EINVAL;
4928 				}
4929 
4930 				insn_idx += insn->off + 1;
4931 				continue;
4932 
4933 			} else if (opcode == BPF_EXIT) {
4934 				if (BPF_SRC(insn->code) != BPF_K ||
4935 				    insn->imm != 0 ||
4936 				    insn->src_reg != BPF_REG_0 ||
4937 				    insn->dst_reg != BPF_REG_0) {
4938 					verbose(env, "BPF_EXIT uses reserved fields\n");
4939 					return -EINVAL;
4940 				}
4941 
4942 				if (state->curframe) {
4943 					/* exit from nested function */
4944 					prev_insn_idx = insn_idx;
4945 					err = prepare_func_exit(env, &insn_idx);
4946 					if (err)
4947 						return err;
4948 					do_print_state = true;
4949 					continue;
4950 				}
4951 
4952 				/* eBPF calling convetion is such that R0 is used
4953 				 * to return the value from eBPF program.
4954 				 * Make sure that it's readable at this time
4955 				 * of bpf_exit, which means that program wrote
4956 				 * something into it earlier
4957 				 */
4958 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4959 				if (err)
4960 					return err;
4961 
4962 				if (is_pointer_value(env, BPF_REG_0)) {
4963 					verbose(env, "R0 leaks addr as return value\n");
4964 					return -EACCES;
4965 				}
4966 
4967 				err = check_return_code(env);
4968 				if (err)
4969 					return err;
4970 process_bpf_exit:
4971 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4972 				if (err < 0) {
4973 					if (err != -ENOENT)
4974 						return err;
4975 					break;
4976 				} else {
4977 					do_print_state = true;
4978 					continue;
4979 				}
4980 			} else {
4981 				err = check_cond_jmp_op(env, insn, &insn_idx);
4982 				if (err)
4983 					return err;
4984 			}
4985 		} else if (class == BPF_LD) {
4986 			u8 mode = BPF_MODE(insn->code);
4987 
4988 			if (mode == BPF_ABS || mode == BPF_IND) {
4989 				err = check_ld_abs(env, insn);
4990 				if (err)
4991 					return err;
4992 
4993 			} else if (mode == BPF_IMM) {
4994 				err = check_ld_imm(env, insn);
4995 				if (err)
4996 					return err;
4997 
4998 				insn_idx++;
4999 				env->insn_aux_data[insn_idx].seen = true;
5000 			} else {
5001 				verbose(env, "invalid BPF_LD mode\n");
5002 				return -EINVAL;
5003 			}
5004 		} else {
5005 			verbose(env, "unknown insn class %d\n", class);
5006 			return -EINVAL;
5007 		}
5008 
5009 		insn_idx++;
5010 	}
5011 
5012 	verbose(env, "processed %d insns (limit %d), stack depth ",
5013 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5014 	for (i = 0; i < env->subprog_cnt; i++) {
5015 		u32 depth = env->subprog_info[i].stack_depth;
5016 
5017 		verbose(env, "%d", depth);
5018 		if (i + 1 < env->subprog_cnt)
5019 			verbose(env, "+");
5020 	}
5021 	verbose(env, "\n");
5022 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5023 	return 0;
5024 }
5025 
5026 static int check_map_prealloc(struct bpf_map *map)
5027 {
5028 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5029 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5030 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5031 		!(map->map_flags & BPF_F_NO_PREALLOC);
5032 }
5033 
5034 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5035 					struct bpf_map *map,
5036 					struct bpf_prog *prog)
5037 
5038 {
5039 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5040 	 * preallocated hash maps, since doing memory allocation
5041 	 * in overflow_handler can crash depending on where nmi got
5042 	 * triggered.
5043 	 */
5044 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5045 		if (!check_map_prealloc(map)) {
5046 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5047 			return -EINVAL;
5048 		}
5049 		if (map->inner_map_meta &&
5050 		    !check_map_prealloc(map->inner_map_meta)) {
5051 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5052 			return -EINVAL;
5053 		}
5054 	}
5055 
5056 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5057 	    !bpf_offload_dev_match(prog, map)) {
5058 		verbose(env, "offload device mismatch between prog and map\n");
5059 		return -EINVAL;
5060 	}
5061 
5062 	return 0;
5063 }
5064 
5065 /* look for pseudo eBPF instructions that access map FDs and
5066  * replace them with actual map pointers
5067  */
5068 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5069 {
5070 	struct bpf_insn *insn = env->prog->insnsi;
5071 	int insn_cnt = env->prog->len;
5072 	int i, j, err;
5073 
5074 	err = bpf_prog_calc_tag(env->prog);
5075 	if (err)
5076 		return err;
5077 
5078 	for (i = 0; i < insn_cnt; i++, insn++) {
5079 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5080 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5081 			verbose(env, "BPF_LDX uses reserved fields\n");
5082 			return -EINVAL;
5083 		}
5084 
5085 		if (BPF_CLASS(insn->code) == BPF_STX &&
5086 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5087 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5088 			verbose(env, "BPF_STX uses reserved fields\n");
5089 			return -EINVAL;
5090 		}
5091 
5092 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5093 			struct bpf_map *map;
5094 			struct fd f;
5095 
5096 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5097 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5098 			    insn[1].off != 0) {
5099 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5100 				return -EINVAL;
5101 			}
5102 
5103 			if (insn->src_reg == 0)
5104 				/* valid generic load 64-bit imm */
5105 				goto next_insn;
5106 
5107 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5108 				verbose(env,
5109 					"unrecognized bpf_ld_imm64 insn\n");
5110 				return -EINVAL;
5111 			}
5112 
5113 			f = fdget(insn->imm);
5114 			map = __bpf_map_get(f);
5115 			if (IS_ERR(map)) {
5116 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5117 					insn->imm);
5118 				return PTR_ERR(map);
5119 			}
5120 
5121 			err = check_map_prog_compatibility(env, map, env->prog);
5122 			if (err) {
5123 				fdput(f);
5124 				return err;
5125 			}
5126 
5127 			/* store map pointer inside BPF_LD_IMM64 instruction */
5128 			insn[0].imm = (u32) (unsigned long) map;
5129 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5130 
5131 			/* check whether we recorded this map already */
5132 			for (j = 0; j < env->used_map_cnt; j++)
5133 				if (env->used_maps[j] == map) {
5134 					fdput(f);
5135 					goto next_insn;
5136 				}
5137 
5138 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5139 				fdput(f);
5140 				return -E2BIG;
5141 			}
5142 
5143 			/* hold the map. If the program is rejected by verifier,
5144 			 * the map will be released by release_maps() or it
5145 			 * will be used by the valid program until it's unloaded
5146 			 * and all maps are released in free_used_maps()
5147 			 */
5148 			map = bpf_map_inc(map, false);
5149 			if (IS_ERR(map)) {
5150 				fdput(f);
5151 				return PTR_ERR(map);
5152 			}
5153 			env->used_maps[env->used_map_cnt++] = map;
5154 
5155 			fdput(f);
5156 next_insn:
5157 			insn++;
5158 			i++;
5159 			continue;
5160 		}
5161 
5162 		/* Basic sanity check before we invest more work here. */
5163 		if (!bpf_opcode_in_insntable(insn->code)) {
5164 			verbose(env, "unknown opcode %02x\n", insn->code);
5165 			return -EINVAL;
5166 		}
5167 	}
5168 
5169 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5170 	 * 'struct bpf_map *' into a register instead of user map_fd.
5171 	 * These pointers will be used later by verifier to validate map access.
5172 	 */
5173 	return 0;
5174 }
5175 
5176 /* drop refcnt of maps used by the rejected program */
5177 static void release_maps(struct bpf_verifier_env *env)
5178 {
5179 	int i;
5180 
5181 	for (i = 0; i < env->used_map_cnt; i++)
5182 		bpf_map_put(env->used_maps[i]);
5183 }
5184 
5185 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5186 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5187 {
5188 	struct bpf_insn *insn = env->prog->insnsi;
5189 	int insn_cnt = env->prog->len;
5190 	int i;
5191 
5192 	for (i = 0; i < insn_cnt; i++, insn++)
5193 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5194 			insn->src_reg = 0;
5195 }
5196 
5197 /* single env->prog->insni[off] instruction was replaced with the range
5198  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5199  * [0, off) and [off, end) to new locations, so the patched range stays zero
5200  */
5201 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5202 				u32 off, u32 cnt)
5203 {
5204 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5205 	int i;
5206 
5207 	if (cnt == 1)
5208 		return 0;
5209 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5210 	if (!new_data)
5211 		return -ENOMEM;
5212 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5213 	memcpy(new_data + off + cnt - 1, old_data + off,
5214 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5215 	for (i = off; i < off + cnt - 1; i++)
5216 		new_data[i].seen = true;
5217 	env->insn_aux_data = new_data;
5218 	vfree(old_data);
5219 	return 0;
5220 }
5221 
5222 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5223 {
5224 	int i;
5225 
5226 	if (len == 1)
5227 		return;
5228 	/* NOTE: fake 'exit' subprog should be updated as well. */
5229 	for (i = 0; i <= env->subprog_cnt; i++) {
5230 		if (env->subprog_info[i].start < off)
5231 			continue;
5232 		env->subprog_info[i].start += len - 1;
5233 	}
5234 }
5235 
5236 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5237 					    const struct bpf_insn *patch, u32 len)
5238 {
5239 	struct bpf_prog *new_prog;
5240 
5241 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5242 	if (!new_prog)
5243 		return NULL;
5244 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5245 		return NULL;
5246 	adjust_subprog_starts(env, off, len);
5247 	return new_prog;
5248 }
5249 
5250 /* The verifier does more data flow analysis than llvm and will not
5251  * explore branches that are dead at run time. Malicious programs can
5252  * have dead code too. Therefore replace all dead at-run-time code
5253  * with 'ja -1'.
5254  *
5255  * Just nops are not optimal, e.g. if they would sit at the end of the
5256  * program and through another bug we would manage to jump there, then
5257  * we'd execute beyond program memory otherwise. Returning exception
5258  * code also wouldn't work since we can have subprogs where the dead
5259  * code could be located.
5260  */
5261 static void sanitize_dead_code(struct bpf_verifier_env *env)
5262 {
5263 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5264 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5265 	struct bpf_insn *insn = env->prog->insnsi;
5266 	const int insn_cnt = env->prog->len;
5267 	int i;
5268 
5269 	for (i = 0; i < insn_cnt; i++) {
5270 		if (aux_data[i].seen)
5271 			continue;
5272 		memcpy(insn + i, &trap, sizeof(trap));
5273 	}
5274 }
5275 
5276 /* convert load instructions that access fields of 'struct __sk_buff'
5277  * into sequence of instructions that access fields of 'struct sk_buff'
5278  */
5279 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5280 {
5281 	const struct bpf_verifier_ops *ops = env->ops;
5282 	int i, cnt, size, ctx_field_size, delta = 0;
5283 	const int insn_cnt = env->prog->len;
5284 	struct bpf_insn insn_buf[16], *insn;
5285 	struct bpf_prog *new_prog;
5286 	enum bpf_access_type type;
5287 	bool is_narrower_load;
5288 	u32 target_size;
5289 
5290 	if (ops->gen_prologue) {
5291 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5292 					env->prog);
5293 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5294 			verbose(env, "bpf verifier is misconfigured\n");
5295 			return -EINVAL;
5296 		} else if (cnt) {
5297 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5298 			if (!new_prog)
5299 				return -ENOMEM;
5300 
5301 			env->prog = new_prog;
5302 			delta += cnt - 1;
5303 		}
5304 	}
5305 
5306 	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5307 		return 0;
5308 
5309 	insn = env->prog->insnsi + delta;
5310 
5311 	for (i = 0; i < insn_cnt; i++, insn++) {
5312 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5313 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5314 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5315 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5316 			type = BPF_READ;
5317 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5318 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5319 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5320 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5321 			type = BPF_WRITE;
5322 		else
5323 			continue;
5324 
5325 		if (type == BPF_WRITE &&
5326 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5327 			struct bpf_insn patch[] = {
5328 				/* Sanitize suspicious stack slot with zero.
5329 				 * There are no memory dependencies for this store,
5330 				 * since it's only using frame pointer and immediate
5331 				 * constant of zero
5332 				 */
5333 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5334 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5335 					   0),
5336 				/* the original STX instruction will immediately
5337 				 * overwrite the same stack slot with appropriate value
5338 				 */
5339 				*insn,
5340 			};
5341 
5342 			cnt = ARRAY_SIZE(patch);
5343 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5344 			if (!new_prog)
5345 				return -ENOMEM;
5346 
5347 			delta    += cnt - 1;
5348 			env->prog = new_prog;
5349 			insn      = new_prog->insnsi + i + delta;
5350 			continue;
5351 		}
5352 
5353 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5354 			continue;
5355 
5356 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5357 		size = BPF_LDST_BYTES(insn);
5358 
5359 		/* If the read access is a narrower load of the field,
5360 		 * convert to a 4/8-byte load, to minimum program type specific
5361 		 * convert_ctx_access changes. If conversion is successful,
5362 		 * we will apply proper mask to the result.
5363 		 */
5364 		is_narrower_load = size < ctx_field_size;
5365 		if (is_narrower_load) {
5366 			u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5367 			u32 off = insn->off;
5368 			u8 size_code;
5369 
5370 			if (type == BPF_WRITE) {
5371 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5372 				return -EINVAL;
5373 			}
5374 
5375 			size_code = BPF_H;
5376 			if (ctx_field_size == 4)
5377 				size_code = BPF_W;
5378 			else if (ctx_field_size == 8)
5379 				size_code = BPF_DW;
5380 
5381 			insn->off = off & ~(size_default - 1);
5382 			insn->code = BPF_LDX | BPF_MEM | size_code;
5383 		}
5384 
5385 		target_size = 0;
5386 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5387 					      &target_size);
5388 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5389 		    (ctx_field_size && !target_size)) {
5390 			verbose(env, "bpf verifier is misconfigured\n");
5391 			return -EINVAL;
5392 		}
5393 
5394 		if (is_narrower_load && size < target_size) {
5395 			if (ctx_field_size <= 4)
5396 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5397 								(1 << size * 8) - 1);
5398 			else
5399 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5400 								(1 << size * 8) - 1);
5401 		}
5402 
5403 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5404 		if (!new_prog)
5405 			return -ENOMEM;
5406 
5407 		delta += cnt - 1;
5408 
5409 		/* keep walking new program and skip insns we just inserted */
5410 		env->prog = new_prog;
5411 		insn      = new_prog->insnsi + i + delta;
5412 	}
5413 
5414 	return 0;
5415 }
5416 
5417 static int jit_subprogs(struct bpf_verifier_env *env)
5418 {
5419 	struct bpf_prog *prog = env->prog, **func, *tmp;
5420 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5421 	struct bpf_insn *insn;
5422 	void *old_bpf_func;
5423 	int err = -ENOMEM;
5424 
5425 	if (env->subprog_cnt <= 1)
5426 		return 0;
5427 
5428 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5429 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5430 		    insn->src_reg != BPF_PSEUDO_CALL)
5431 			continue;
5432 		subprog = find_subprog(env, i + insn->imm + 1);
5433 		if (subprog < 0) {
5434 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5435 				  i + insn->imm + 1);
5436 			return -EFAULT;
5437 		}
5438 		/* temporarily remember subprog id inside insn instead of
5439 		 * aux_data, since next loop will split up all insns into funcs
5440 		 */
5441 		insn->off = subprog;
5442 		/* remember original imm in case JIT fails and fallback
5443 		 * to interpreter will be needed
5444 		 */
5445 		env->insn_aux_data[i].call_imm = insn->imm;
5446 		/* point imm to __bpf_call_base+1 from JITs point of view */
5447 		insn->imm = 1;
5448 	}
5449 
5450 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
5451 	if (!func)
5452 		return -ENOMEM;
5453 
5454 	for (i = 0; i < env->subprog_cnt; i++) {
5455 		subprog_start = subprog_end;
5456 		subprog_end = env->subprog_info[i + 1].start;
5457 
5458 		len = subprog_end - subprog_start;
5459 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5460 		if (!func[i])
5461 			goto out_free;
5462 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5463 		       len * sizeof(struct bpf_insn));
5464 		func[i]->type = prog->type;
5465 		func[i]->len = len;
5466 		if (bpf_prog_calc_tag(func[i]))
5467 			goto out_free;
5468 		func[i]->is_func = 1;
5469 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5470 		 * Long term would need debug info to populate names
5471 		 */
5472 		func[i]->aux->name[0] = 'F';
5473 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5474 		func[i]->jit_requested = 1;
5475 		func[i] = bpf_int_jit_compile(func[i]);
5476 		if (!func[i]->jited) {
5477 			err = -ENOTSUPP;
5478 			goto out_free;
5479 		}
5480 		cond_resched();
5481 	}
5482 	/* at this point all bpf functions were successfully JITed
5483 	 * now populate all bpf_calls with correct addresses and
5484 	 * run last pass of JIT
5485 	 */
5486 	for (i = 0; i < env->subprog_cnt; i++) {
5487 		insn = func[i]->insnsi;
5488 		for (j = 0; j < func[i]->len; j++, insn++) {
5489 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5490 			    insn->src_reg != BPF_PSEUDO_CALL)
5491 				continue;
5492 			subprog = insn->off;
5493 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5494 				func[subprog]->bpf_func -
5495 				__bpf_call_base;
5496 		}
5497 
5498 		/* we use the aux data to keep a list of the start addresses
5499 		 * of the JITed images for each function in the program
5500 		 *
5501 		 * for some architectures, such as powerpc64, the imm field
5502 		 * might not be large enough to hold the offset of the start
5503 		 * address of the callee's JITed image from __bpf_call_base
5504 		 *
5505 		 * in such cases, we can lookup the start address of a callee
5506 		 * by using its subprog id, available from the off field of
5507 		 * the call instruction, as an index for this list
5508 		 */
5509 		func[i]->aux->func = func;
5510 		func[i]->aux->func_cnt = env->subprog_cnt;
5511 	}
5512 	for (i = 0; i < env->subprog_cnt; i++) {
5513 		old_bpf_func = func[i]->bpf_func;
5514 		tmp = bpf_int_jit_compile(func[i]);
5515 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5516 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5517 			err = -EFAULT;
5518 			goto out_free;
5519 		}
5520 		cond_resched();
5521 	}
5522 
5523 	/* finally lock prog and jit images for all functions and
5524 	 * populate kallsysm
5525 	 */
5526 	for (i = 0; i < env->subprog_cnt; i++) {
5527 		bpf_prog_lock_ro(func[i]);
5528 		bpf_prog_kallsyms_add(func[i]);
5529 	}
5530 
5531 	/* Last step: make now unused interpreter insns from main
5532 	 * prog consistent for later dump requests, so they can
5533 	 * later look the same as if they were interpreted only.
5534 	 */
5535 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5536 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5537 		    insn->src_reg != BPF_PSEUDO_CALL)
5538 			continue;
5539 		insn->off = env->insn_aux_data[i].call_imm;
5540 		subprog = find_subprog(env, i + insn->off + 1);
5541 		insn->imm = subprog;
5542 	}
5543 
5544 	prog->jited = 1;
5545 	prog->bpf_func = func[0]->bpf_func;
5546 	prog->aux->func = func;
5547 	prog->aux->func_cnt = env->subprog_cnt;
5548 	return 0;
5549 out_free:
5550 	for (i = 0; i < env->subprog_cnt; i++)
5551 		if (func[i])
5552 			bpf_jit_free(func[i]);
5553 	kfree(func);
5554 	/* cleanup main prog to be interpreted */
5555 	prog->jit_requested = 0;
5556 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5557 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5558 		    insn->src_reg != BPF_PSEUDO_CALL)
5559 			continue;
5560 		insn->off = 0;
5561 		insn->imm = env->insn_aux_data[i].call_imm;
5562 	}
5563 	return err;
5564 }
5565 
5566 static int fixup_call_args(struct bpf_verifier_env *env)
5567 {
5568 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5569 	struct bpf_prog *prog = env->prog;
5570 	struct bpf_insn *insn = prog->insnsi;
5571 	int i, depth;
5572 #endif
5573 	int err;
5574 
5575 	err = 0;
5576 	if (env->prog->jit_requested) {
5577 		err = jit_subprogs(env);
5578 		if (err == 0)
5579 			return 0;
5580 	}
5581 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5582 	for (i = 0; i < prog->len; i++, insn++) {
5583 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5584 		    insn->src_reg != BPF_PSEUDO_CALL)
5585 			continue;
5586 		depth = get_callee_stack_depth(env, insn, i);
5587 		if (depth < 0)
5588 			return depth;
5589 		bpf_patch_call_args(insn, depth);
5590 	}
5591 	err = 0;
5592 #endif
5593 	return err;
5594 }
5595 
5596 /* fixup insn->imm field of bpf_call instructions
5597  * and inline eligible helpers as explicit sequence of BPF instructions
5598  *
5599  * this function is called after eBPF program passed verification
5600  */
5601 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5602 {
5603 	struct bpf_prog *prog = env->prog;
5604 	struct bpf_insn *insn = prog->insnsi;
5605 	const struct bpf_func_proto *fn;
5606 	const int insn_cnt = prog->len;
5607 	const struct bpf_map_ops *ops;
5608 	struct bpf_insn_aux_data *aux;
5609 	struct bpf_insn insn_buf[16];
5610 	struct bpf_prog *new_prog;
5611 	struct bpf_map *map_ptr;
5612 	int i, cnt, delta = 0;
5613 
5614 	for (i = 0; i < insn_cnt; i++, insn++) {
5615 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5616 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5617 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5618 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5619 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5620 			struct bpf_insn mask_and_div[] = {
5621 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5622 				/* Rx div 0 -> 0 */
5623 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5624 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5625 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5626 				*insn,
5627 			};
5628 			struct bpf_insn mask_and_mod[] = {
5629 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5630 				/* Rx mod 0 -> Rx */
5631 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5632 				*insn,
5633 			};
5634 			struct bpf_insn *patchlet;
5635 
5636 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5637 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5638 				patchlet = mask_and_div + (is64 ? 1 : 0);
5639 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5640 			} else {
5641 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5642 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5643 			}
5644 
5645 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5646 			if (!new_prog)
5647 				return -ENOMEM;
5648 
5649 			delta    += cnt - 1;
5650 			env->prog = prog = new_prog;
5651 			insn      = new_prog->insnsi + i + delta;
5652 			continue;
5653 		}
5654 
5655 		if (BPF_CLASS(insn->code) == BPF_LD &&
5656 		    (BPF_MODE(insn->code) == BPF_ABS ||
5657 		     BPF_MODE(insn->code) == BPF_IND)) {
5658 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
5659 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5660 				verbose(env, "bpf verifier is misconfigured\n");
5661 				return -EINVAL;
5662 			}
5663 
5664 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5665 			if (!new_prog)
5666 				return -ENOMEM;
5667 
5668 			delta    += cnt - 1;
5669 			env->prog = prog = new_prog;
5670 			insn      = new_prog->insnsi + i + delta;
5671 			continue;
5672 		}
5673 
5674 		if (insn->code != (BPF_JMP | BPF_CALL))
5675 			continue;
5676 		if (insn->src_reg == BPF_PSEUDO_CALL)
5677 			continue;
5678 
5679 		if (insn->imm == BPF_FUNC_get_route_realm)
5680 			prog->dst_needed = 1;
5681 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5682 			bpf_user_rnd_init_once();
5683 		if (insn->imm == BPF_FUNC_override_return)
5684 			prog->kprobe_override = 1;
5685 		if (insn->imm == BPF_FUNC_tail_call) {
5686 			/* If we tail call into other programs, we
5687 			 * cannot make any assumptions since they can
5688 			 * be replaced dynamically during runtime in
5689 			 * the program array.
5690 			 */
5691 			prog->cb_access = 1;
5692 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5693 
5694 			/* mark bpf_tail_call as different opcode to avoid
5695 			 * conditional branch in the interpeter for every normal
5696 			 * call and to prevent accidental JITing by JIT compiler
5697 			 * that doesn't support bpf_tail_call yet
5698 			 */
5699 			insn->imm = 0;
5700 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5701 
5702 			aux = &env->insn_aux_data[i + delta];
5703 			if (!bpf_map_ptr_unpriv(aux))
5704 				continue;
5705 
5706 			/* instead of changing every JIT dealing with tail_call
5707 			 * emit two extra insns:
5708 			 * if (index >= max_entries) goto out;
5709 			 * index &= array->index_mask;
5710 			 * to avoid out-of-bounds cpu speculation
5711 			 */
5712 			if (bpf_map_ptr_poisoned(aux)) {
5713 				verbose(env, "tail_call abusing map_ptr\n");
5714 				return -EINVAL;
5715 			}
5716 
5717 			map_ptr = BPF_MAP_PTR(aux->map_state);
5718 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5719 						  map_ptr->max_entries, 2);
5720 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5721 						    container_of(map_ptr,
5722 								 struct bpf_array,
5723 								 map)->index_mask);
5724 			insn_buf[2] = *insn;
5725 			cnt = 3;
5726 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5727 			if (!new_prog)
5728 				return -ENOMEM;
5729 
5730 			delta    += cnt - 1;
5731 			env->prog = prog = new_prog;
5732 			insn      = new_prog->insnsi + i + delta;
5733 			continue;
5734 		}
5735 
5736 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5737 		 * and other inlining handlers are currently limited to 64 bit
5738 		 * only.
5739 		 */
5740 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5741 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
5742 		     insn->imm == BPF_FUNC_map_update_elem ||
5743 		     insn->imm == BPF_FUNC_map_delete_elem)) {
5744 			aux = &env->insn_aux_data[i + delta];
5745 			if (bpf_map_ptr_poisoned(aux))
5746 				goto patch_call_imm;
5747 
5748 			map_ptr = BPF_MAP_PTR(aux->map_state);
5749 			ops = map_ptr->ops;
5750 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
5751 			    ops->map_gen_lookup) {
5752 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
5753 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5754 					verbose(env, "bpf verifier is misconfigured\n");
5755 					return -EINVAL;
5756 				}
5757 
5758 				new_prog = bpf_patch_insn_data(env, i + delta,
5759 							       insn_buf, cnt);
5760 				if (!new_prog)
5761 					return -ENOMEM;
5762 
5763 				delta    += cnt - 1;
5764 				env->prog = prog = new_prog;
5765 				insn      = new_prog->insnsi + i + delta;
5766 				continue;
5767 			}
5768 
5769 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
5770 				     (void *(*)(struct bpf_map *map, void *key))NULL));
5771 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
5772 				     (int (*)(struct bpf_map *map, void *key))NULL));
5773 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
5774 				     (int (*)(struct bpf_map *map, void *key, void *value,
5775 					      u64 flags))NULL));
5776 			switch (insn->imm) {
5777 			case BPF_FUNC_map_lookup_elem:
5778 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
5779 					    __bpf_call_base;
5780 				continue;
5781 			case BPF_FUNC_map_update_elem:
5782 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
5783 					    __bpf_call_base;
5784 				continue;
5785 			case BPF_FUNC_map_delete_elem:
5786 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
5787 					    __bpf_call_base;
5788 				continue;
5789 			}
5790 
5791 			goto patch_call_imm;
5792 		}
5793 
5794 		if (insn->imm == BPF_FUNC_redirect_map) {
5795 			/* Note, we cannot use prog directly as imm as subsequent
5796 			 * rewrites would still change the prog pointer. The only
5797 			 * stable address we can use is aux, which also works with
5798 			 * prog clones during blinding.
5799 			 */
5800 			u64 addr = (unsigned long)prog->aux;
5801 			struct bpf_insn r4_ld[] = {
5802 				BPF_LD_IMM64(BPF_REG_4, addr),
5803 				*insn,
5804 			};
5805 			cnt = ARRAY_SIZE(r4_ld);
5806 
5807 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5808 			if (!new_prog)
5809 				return -ENOMEM;
5810 
5811 			delta    += cnt - 1;
5812 			env->prog = prog = new_prog;
5813 			insn      = new_prog->insnsi + i + delta;
5814 		}
5815 patch_call_imm:
5816 		fn = env->ops->get_func_proto(insn->imm, env->prog);
5817 		/* all functions that have prototype and verifier allowed
5818 		 * programs to call them, must be real in-kernel functions
5819 		 */
5820 		if (!fn->func) {
5821 			verbose(env,
5822 				"kernel subsystem misconfigured func %s#%d\n",
5823 				func_id_name(insn->imm), insn->imm);
5824 			return -EFAULT;
5825 		}
5826 		insn->imm = fn->func - __bpf_call_base;
5827 	}
5828 
5829 	return 0;
5830 }
5831 
5832 static void free_states(struct bpf_verifier_env *env)
5833 {
5834 	struct bpf_verifier_state_list *sl, *sln;
5835 	int i;
5836 
5837 	if (!env->explored_states)
5838 		return;
5839 
5840 	for (i = 0; i < env->prog->len; i++) {
5841 		sl = env->explored_states[i];
5842 
5843 		if (sl)
5844 			while (sl != STATE_LIST_MARK) {
5845 				sln = sl->next;
5846 				free_verifier_state(&sl->state, false);
5847 				kfree(sl);
5848 				sl = sln;
5849 			}
5850 	}
5851 
5852 	kfree(env->explored_states);
5853 }
5854 
5855 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5856 {
5857 	struct bpf_verifier_env *env;
5858 	struct bpf_verifier_log *log;
5859 	int ret = -EINVAL;
5860 
5861 	/* no program is valid */
5862 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5863 		return -EINVAL;
5864 
5865 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5866 	 * allocate/free it every time bpf_check() is called
5867 	 */
5868 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5869 	if (!env)
5870 		return -ENOMEM;
5871 	log = &env->log;
5872 
5873 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5874 				     (*prog)->len);
5875 	ret = -ENOMEM;
5876 	if (!env->insn_aux_data)
5877 		goto err_free_env;
5878 	env->prog = *prog;
5879 	env->ops = bpf_verifier_ops[env->prog->type];
5880 
5881 	/* grab the mutex to protect few globals used by verifier */
5882 	mutex_lock(&bpf_verifier_lock);
5883 
5884 	if (attr->log_level || attr->log_buf || attr->log_size) {
5885 		/* user requested verbose verifier output
5886 		 * and supplied buffer to store the verification trace
5887 		 */
5888 		log->level = attr->log_level;
5889 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5890 		log->len_total = attr->log_size;
5891 
5892 		ret = -EINVAL;
5893 		/* log attributes have to be sane */
5894 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5895 		    !log->level || !log->ubuf)
5896 			goto err_unlock;
5897 	}
5898 
5899 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5900 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5901 		env->strict_alignment = true;
5902 
5903 	ret = replace_map_fd_with_map_ptr(env);
5904 	if (ret < 0)
5905 		goto skip_full_check;
5906 
5907 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5908 		ret = bpf_prog_offload_verifier_prep(env);
5909 		if (ret)
5910 			goto skip_full_check;
5911 	}
5912 
5913 	env->explored_states = kcalloc(env->prog->len,
5914 				       sizeof(struct bpf_verifier_state_list *),
5915 				       GFP_USER);
5916 	ret = -ENOMEM;
5917 	if (!env->explored_states)
5918 		goto skip_full_check;
5919 
5920 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5921 
5922 	ret = check_cfg(env);
5923 	if (ret < 0)
5924 		goto skip_full_check;
5925 
5926 	ret = do_check(env);
5927 	if (env->cur_state) {
5928 		free_verifier_state(env->cur_state, true);
5929 		env->cur_state = NULL;
5930 	}
5931 
5932 skip_full_check:
5933 	while (!pop_stack(env, NULL, NULL));
5934 	free_states(env);
5935 
5936 	if (ret == 0)
5937 		sanitize_dead_code(env);
5938 
5939 	if (ret == 0)
5940 		ret = check_max_stack_depth(env);
5941 
5942 	if (ret == 0)
5943 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5944 		ret = convert_ctx_accesses(env);
5945 
5946 	if (ret == 0)
5947 		ret = fixup_bpf_calls(env);
5948 
5949 	if (ret == 0)
5950 		ret = fixup_call_args(env);
5951 
5952 	if (log->level && bpf_verifier_log_full(log))
5953 		ret = -ENOSPC;
5954 	if (log->level && !log->ubuf) {
5955 		ret = -EFAULT;
5956 		goto err_release_maps;
5957 	}
5958 
5959 	if (ret == 0 && env->used_map_cnt) {
5960 		/* if program passed verifier, update used_maps in bpf_prog_info */
5961 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5962 							  sizeof(env->used_maps[0]),
5963 							  GFP_KERNEL);
5964 
5965 		if (!env->prog->aux->used_maps) {
5966 			ret = -ENOMEM;
5967 			goto err_release_maps;
5968 		}
5969 
5970 		memcpy(env->prog->aux->used_maps, env->used_maps,
5971 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5972 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5973 
5974 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5975 		 * bpf_ld_imm64 instructions
5976 		 */
5977 		convert_pseudo_ld_imm64(env);
5978 	}
5979 
5980 err_release_maps:
5981 	if (!env->prog->aux->used_maps)
5982 		/* if we didn't copy map pointers into bpf_prog_info, release
5983 		 * them now. Otherwise free_used_maps() will release them.
5984 		 */
5985 		release_maps(env);
5986 	*prog = env->prog;
5987 err_unlock:
5988 	mutex_unlock(&bpf_verifier_lock);
5989 	vfree(env->insn_aux_data);
5990 err_free_env:
5991 	kfree(env);
5992 	return ret;
5993 }
5994