1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 u32 btf_id; 242 u32 ret_btf_id; 243 }; 244 245 struct btf *btf_vmlinux; 246 247 static DEFINE_MUTEX(bpf_verifier_lock); 248 249 static const struct bpf_line_info * 250 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 251 { 252 const struct bpf_line_info *linfo; 253 const struct bpf_prog *prog; 254 u32 i, nr_linfo; 255 256 prog = env->prog; 257 nr_linfo = prog->aux->nr_linfo; 258 259 if (!nr_linfo || insn_off >= prog->len) 260 return NULL; 261 262 linfo = prog->aux->linfo; 263 for (i = 1; i < nr_linfo; i++) 264 if (insn_off < linfo[i].insn_off) 265 break; 266 267 return &linfo[i - 1]; 268 } 269 270 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 271 va_list args) 272 { 273 unsigned int n; 274 275 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 276 277 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 278 "verifier log line truncated - local buffer too short\n"); 279 280 n = min(log->len_total - log->len_used - 1, n); 281 log->kbuf[n] = '\0'; 282 283 if (log->level == BPF_LOG_KERNEL) { 284 pr_err("BPF:%s\n", log->kbuf); 285 return; 286 } 287 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 288 log->len_used += n; 289 else 290 log->ubuf = NULL; 291 } 292 293 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 294 { 295 char zero = 0; 296 297 if (!bpf_verifier_log_needed(log)) 298 return; 299 300 log->len_used = new_pos; 301 if (put_user(zero, log->ubuf + new_pos)) 302 log->ubuf = NULL; 303 } 304 305 /* log_level controls verbosity level of eBPF verifier. 306 * bpf_verifier_log_write() is used to dump the verification trace to the log, 307 * so the user can figure out what's wrong with the program 308 */ 309 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 310 const char *fmt, ...) 311 { 312 va_list args; 313 314 if (!bpf_verifier_log_needed(&env->log)) 315 return; 316 317 va_start(args, fmt); 318 bpf_verifier_vlog(&env->log, fmt, args); 319 va_end(args); 320 } 321 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 322 323 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 324 { 325 struct bpf_verifier_env *env = private_data; 326 va_list args; 327 328 if (!bpf_verifier_log_needed(&env->log)) 329 return; 330 331 va_start(args, fmt); 332 bpf_verifier_vlog(&env->log, fmt, args); 333 va_end(args); 334 } 335 336 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 337 const char *fmt, ...) 338 { 339 va_list args; 340 341 if (!bpf_verifier_log_needed(log)) 342 return; 343 344 va_start(args, fmt); 345 bpf_verifier_vlog(log, fmt, args); 346 va_end(args); 347 } 348 349 static const char *ltrim(const char *s) 350 { 351 while (isspace(*s)) 352 s++; 353 354 return s; 355 } 356 357 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 358 u32 insn_off, 359 const char *prefix_fmt, ...) 360 { 361 const struct bpf_line_info *linfo; 362 363 if (!bpf_verifier_log_needed(&env->log)) 364 return; 365 366 linfo = find_linfo(env, insn_off); 367 if (!linfo || linfo == env->prev_linfo) 368 return; 369 370 if (prefix_fmt) { 371 va_list args; 372 373 va_start(args, prefix_fmt); 374 bpf_verifier_vlog(&env->log, prefix_fmt, args); 375 va_end(args); 376 } 377 378 verbose(env, "%s\n", 379 ltrim(btf_name_by_offset(env->prog->aux->btf, 380 linfo->line_off))); 381 382 env->prev_linfo = linfo; 383 } 384 385 static bool type_is_pkt_pointer(enum bpf_reg_type type) 386 { 387 return type == PTR_TO_PACKET || 388 type == PTR_TO_PACKET_META; 389 } 390 391 static bool type_is_sk_pointer(enum bpf_reg_type type) 392 { 393 return type == PTR_TO_SOCKET || 394 type == PTR_TO_SOCK_COMMON || 395 type == PTR_TO_TCP_SOCK || 396 type == PTR_TO_XDP_SOCK; 397 } 398 399 static bool reg_type_not_null(enum bpf_reg_type type) 400 { 401 return type == PTR_TO_SOCKET || 402 type == PTR_TO_TCP_SOCK || 403 type == PTR_TO_MAP_VALUE || 404 type == PTR_TO_SOCK_COMMON; 405 } 406 407 static bool reg_type_may_be_null(enum bpf_reg_type type) 408 { 409 return type == PTR_TO_MAP_VALUE_OR_NULL || 410 type == PTR_TO_SOCKET_OR_NULL || 411 type == PTR_TO_SOCK_COMMON_OR_NULL || 412 type == PTR_TO_TCP_SOCK_OR_NULL || 413 type == PTR_TO_BTF_ID_OR_NULL || 414 type == PTR_TO_MEM_OR_NULL || 415 type == PTR_TO_RDONLY_BUF_OR_NULL || 416 type == PTR_TO_RDWR_BUF_OR_NULL; 417 } 418 419 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 420 { 421 return reg->type == PTR_TO_MAP_VALUE && 422 map_value_has_spin_lock(reg->map_ptr); 423 } 424 425 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 426 { 427 return type == PTR_TO_SOCKET || 428 type == PTR_TO_SOCKET_OR_NULL || 429 type == PTR_TO_TCP_SOCK || 430 type == PTR_TO_TCP_SOCK_OR_NULL || 431 type == PTR_TO_MEM || 432 type == PTR_TO_MEM_OR_NULL; 433 } 434 435 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 436 { 437 return type == ARG_PTR_TO_SOCK_COMMON; 438 } 439 440 static bool arg_type_may_be_null(enum bpf_arg_type type) 441 { 442 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 443 type == ARG_PTR_TO_MEM_OR_NULL || 444 type == ARG_PTR_TO_CTX_OR_NULL || 445 type == ARG_PTR_TO_SOCKET_OR_NULL || 446 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 447 } 448 449 /* Determine whether the function releases some resources allocated by another 450 * function call. The first reference type argument will be assumed to be 451 * released by release_reference(). 452 */ 453 static bool is_release_function(enum bpf_func_id func_id) 454 { 455 return func_id == BPF_FUNC_sk_release || 456 func_id == BPF_FUNC_ringbuf_submit || 457 func_id == BPF_FUNC_ringbuf_discard; 458 } 459 460 static bool may_be_acquire_function(enum bpf_func_id func_id) 461 { 462 return func_id == BPF_FUNC_sk_lookup_tcp || 463 func_id == BPF_FUNC_sk_lookup_udp || 464 func_id == BPF_FUNC_skc_lookup_tcp || 465 func_id == BPF_FUNC_map_lookup_elem || 466 func_id == BPF_FUNC_ringbuf_reserve; 467 } 468 469 static bool is_acquire_function(enum bpf_func_id func_id, 470 const struct bpf_map *map) 471 { 472 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 473 474 if (func_id == BPF_FUNC_sk_lookup_tcp || 475 func_id == BPF_FUNC_sk_lookup_udp || 476 func_id == BPF_FUNC_skc_lookup_tcp || 477 func_id == BPF_FUNC_ringbuf_reserve) 478 return true; 479 480 if (func_id == BPF_FUNC_map_lookup_elem && 481 (map_type == BPF_MAP_TYPE_SOCKMAP || 482 map_type == BPF_MAP_TYPE_SOCKHASH)) 483 return true; 484 485 return false; 486 } 487 488 static bool is_ptr_cast_function(enum bpf_func_id func_id) 489 { 490 return func_id == BPF_FUNC_tcp_sock || 491 func_id == BPF_FUNC_sk_fullsock || 492 func_id == BPF_FUNC_skc_to_tcp_sock || 493 func_id == BPF_FUNC_skc_to_tcp6_sock || 494 func_id == BPF_FUNC_skc_to_udp6_sock || 495 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 496 func_id == BPF_FUNC_skc_to_tcp_request_sock; 497 } 498 499 /* string representation of 'enum bpf_reg_type' */ 500 static const char * const reg_type_str[] = { 501 [NOT_INIT] = "?", 502 [SCALAR_VALUE] = "inv", 503 [PTR_TO_CTX] = "ctx", 504 [CONST_PTR_TO_MAP] = "map_ptr", 505 [PTR_TO_MAP_VALUE] = "map_value", 506 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 507 [PTR_TO_STACK] = "fp", 508 [PTR_TO_PACKET] = "pkt", 509 [PTR_TO_PACKET_META] = "pkt_meta", 510 [PTR_TO_PACKET_END] = "pkt_end", 511 [PTR_TO_FLOW_KEYS] = "flow_keys", 512 [PTR_TO_SOCKET] = "sock", 513 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 514 [PTR_TO_SOCK_COMMON] = "sock_common", 515 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 516 [PTR_TO_TCP_SOCK] = "tcp_sock", 517 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 518 [PTR_TO_TP_BUFFER] = "tp_buffer", 519 [PTR_TO_XDP_SOCK] = "xdp_sock", 520 [PTR_TO_BTF_ID] = "ptr_", 521 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 522 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 523 [PTR_TO_MEM] = "mem", 524 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 525 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 526 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 527 [PTR_TO_RDWR_BUF] = "rdwr_buf", 528 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 529 }; 530 531 static char slot_type_char[] = { 532 [STACK_INVALID] = '?', 533 [STACK_SPILL] = 'r', 534 [STACK_MISC] = 'm', 535 [STACK_ZERO] = '0', 536 }; 537 538 static void print_liveness(struct bpf_verifier_env *env, 539 enum bpf_reg_liveness live) 540 { 541 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 542 verbose(env, "_"); 543 if (live & REG_LIVE_READ) 544 verbose(env, "r"); 545 if (live & REG_LIVE_WRITTEN) 546 verbose(env, "w"); 547 if (live & REG_LIVE_DONE) 548 verbose(env, "D"); 549 } 550 551 static struct bpf_func_state *func(struct bpf_verifier_env *env, 552 const struct bpf_reg_state *reg) 553 { 554 struct bpf_verifier_state *cur = env->cur_state; 555 556 return cur->frame[reg->frameno]; 557 } 558 559 const char *kernel_type_name(u32 id) 560 { 561 return btf_name_by_offset(btf_vmlinux, 562 btf_type_by_id(btf_vmlinux, id)->name_off); 563 } 564 565 static void print_verifier_state(struct bpf_verifier_env *env, 566 const struct bpf_func_state *state) 567 { 568 const struct bpf_reg_state *reg; 569 enum bpf_reg_type t; 570 int i; 571 572 if (state->frameno) 573 verbose(env, " frame%d:", state->frameno); 574 for (i = 0; i < MAX_BPF_REG; i++) { 575 reg = &state->regs[i]; 576 t = reg->type; 577 if (t == NOT_INIT) 578 continue; 579 verbose(env, " R%d", i); 580 print_liveness(env, reg->live); 581 verbose(env, "=%s", reg_type_str[t]); 582 if (t == SCALAR_VALUE && reg->precise) 583 verbose(env, "P"); 584 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 585 tnum_is_const(reg->var_off)) { 586 /* reg->off should be 0 for SCALAR_VALUE */ 587 verbose(env, "%lld", reg->var_off.value + reg->off); 588 } else { 589 if (t == PTR_TO_BTF_ID || 590 t == PTR_TO_BTF_ID_OR_NULL || 591 t == PTR_TO_PERCPU_BTF_ID) 592 verbose(env, "%s", kernel_type_name(reg->btf_id)); 593 verbose(env, "(id=%d", reg->id); 594 if (reg_type_may_be_refcounted_or_null(t)) 595 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 596 if (t != SCALAR_VALUE) 597 verbose(env, ",off=%d", reg->off); 598 if (type_is_pkt_pointer(t)) 599 verbose(env, ",r=%d", reg->range); 600 else if (t == CONST_PTR_TO_MAP || 601 t == PTR_TO_MAP_VALUE || 602 t == PTR_TO_MAP_VALUE_OR_NULL) 603 verbose(env, ",ks=%d,vs=%d", 604 reg->map_ptr->key_size, 605 reg->map_ptr->value_size); 606 if (tnum_is_const(reg->var_off)) { 607 /* Typically an immediate SCALAR_VALUE, but 608 * could be a pointer whose offset is too big 609 * for reg->off 610 */ 611 verbose(env, ",imm=%llx", reg->var_off.value); 612 } else { 613 if (reg->smin_value != reg->umin_value && 614 reg->smin_value != S64_MIN) 615 verbose(env, ",smin_value=%lld", 616 (long long)reg->smin_value); 617 if (reg->smax_value != reg->umax_value && 618 reg->smax_value != S64_MAX) 619 verbose(env, ",smax_value=%lld", 620 (long long)reg->smax_value); 621 if (reg->umin_value != 0) 622 verbose(env, ",umin_value=%llu", 623 (unsigned long long)reg->umin_value); 624 if (reg->umax_value != U64_MAX) 625 verbose(env, ",umax_value=%llu", 626 (unsigned long long)reg->umax_value); 627 if (!tnum_is_unknown(reg->var_off)) { 628 char tn_buf[48]; 629 630 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 631 verbose(env, ",var_off=%s", tn_buf); 632 } 633 if (reg->s32_min_value != reg->smin_value && 634 reg->s32_min_value != S32_MIN) 635 verbose(env, ",s32_min_value=%d", 636 (int)(reg->s32_min_value)); 637 if (reg->s32_max_value != reg->smax_value && 638 reg->s32_max_value != S32_MAX) 639 verbose(env, ",s32_max_value=%d", 640 (int)(reg->s32_max_value)); 641 if (reg->u32_min_value != reg->umin_value && 642 reg->u32_min_value != U32_MIN) 643 verbose(env, ",u32_min_value=%d", 644 (int)(reg->u32_min_value)); 645 if (reg->u32_max_value != reg->umax_value && 646 reg->u32_max_value != U32_MAX) 647 verbose(env, ",u32_max_value=%d", 648 (int)(reg->u32_max_value)); 649 } 650 verbose(env, ")"); 651 } 652 } 653 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 654 char types_buf[BPF_REG_SIZE + 1]; 655 bool valid = false; 656 int j; 657 658 for (j = 0; j < BPF_REG_SIZE; j++) { 659 if (state->stack[i].slot_type[j] != STACK_INVALID) 660 valid = true; 661 types_buf[j] = slot_type_char[ 662 state->stack[i].slot_type[j]]; 663 } 664 types_buf[BPF_REG_SIZE] = 0; 665 if (!valid) 666 continue; 667 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 668 print_liveness(env, state->stack[i].spilled_ptr.live); 669 if (state->stack[i].slot_type[0] == STACK_SPILL) { 670 reg = &state->stack[i].spilled_ptr; 671 t = reg->type; 672 verbose(env, "=%s", reg_type_str[t]); 673 if (t == SCALAR_VALUE && reg->precise) 674 verbose(env, "P"); 675 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 676 verbose(env, "%lld", reg->var_off.value + reg->off); 677 } else { 678 verbose(env, "=%s", types_buf); 679 } 680 } 681 if (state->acquired_refs && state->refs[0].id) { 682 verbose(env, " refs=%d", state->refs[0].id); 683 for (i = 1; i < state->acquired_refs; i++) 684 if (state->refs[i].id) 685 verbose(env, ",%d", state->refs[i].id); 686 } 687 verbose(env, "\n"); 688 } 689 690 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 691 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 692 const struct bpf_func_state *src) \ 693 { \ 694 if (!src->FIELD) \ 695 return 0; \ 696 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 697 /* internal bug, make state invalid to reject the program */ \ 698 memset(dst, 0, sizeof(*dst)); \ 699 return -EFAULT; \ 700 } \ 701 memcpy(dst->FIELD, src->FIELD, \ 702 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 703 return 0; \ 704 } 705 /* copy_reference_state() */ 706 COPY_STATE_FN(reference, acquired_refs, refs, 1) 707 /* copy_stack_state() */ 708 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 709 #undef COPY_STATE_FN 710 711 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 712 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 713 bool copy_old) \ 714 { \ 715 u32 old_size = state->COUNT; \ 716 struct bpf_##NAME##_state *new_##FIELD; \ 717 int slot = size / SIZE; \ 718 \ 719 if (size <= old_size || !size) { \ 720 if (copy_old) \ 721 return 0; \ 722 state->COUNT = slot * SIZE; \ 723 if (!size && old_size) { \ 724 kfree(state->FIELD); \ 725 state->FIELD = NULL; \ 726 } \ 727 return 0; \ 728 } \ 729 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 730 GFP_KERNEL); \ 731 if (!new_##FIELD) \ 732 return -ENOMEM; \ 733 if (copy_old) { \ 734 if (state->FIELD) \ 735 memcpy(new_##FIELD, state->FIELD, \ 736 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 737 memset(new_##FIELD + old_size / SIZE, 0, \ 738 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 739 } \ 740 state->COUNT = slot * SIZE; \ 741 kfree(state->FIELD); \ 742 state->FIELD = new_##FIELD; \ 743 return 0; \ 744 } 745 /* realloc_reference_state() */ 746 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 747 /* realloc_stack_state() */ 748 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 749 #undef REALLOC_STATE_FN 750 751 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 752 * make it consume minimal amount of memory. check_stack_write() access from 753 * the program calls into realloc_func_state() to grow the stack size. 754 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 755 * which realloc_stack_state() copies over. It points to previous 756 * bpf_verifier_state which is never reallocated. 757 */ 758 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 759 int refs_size, bool copy_old) 760 { 761 int err = realloc_reference_state(state, refs_size, copy_old); 762 if (err) 763 return err; 764 return realloc_stack_state(state, stack_size, copy_old); 765 } 766 767 /* Acquire a pointer id from the env and update the state->refs to include 768 * this new pointer reference. 769 * On success, returns a valid pointer id to associate with the register 770 * On failure, returns a negative errno. 771 */ 772 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 773 { 774 struct bpf_func_state *state = cur_func(env); 775 int new_ofs = state->acquired_refs; 776 int id, err; 777 778 err = realloc_reference_state(state, state->acquired_refs + 1, true); 779 if (err) 780 return err; 781 id = ++env->id_gen; 782 state->refs[new_ofs].id = id; 783 state->refs[new_ofs].insn_idx = insn_idx; 784 785 return id; 786 } 787 788 /* release function corresponding to acquire_reference_state(). Idempotent. */ 789 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 790 { 791 int i, last_idx; 792 793 last_idx = state->acquired_refs - 1; 794 for (i = 0; i < state->acquired_refs; i++) { 795 if (state->refs[i].id == ptr_id) { 796 if (last_idx && i != last_idx) 797 memcpy(&state->refs[i], &state->refs[last_idx], 798 sizeof(*state->refs)); 799 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 800 state->acquired_refs--; 801 return 0; 802 } 803 } 804 return -EINVAL; 805 } 806 807 static int transfer_reference_state(struct bpf_func_state *dst, 808 struct bpf_func_state *src) 809 { 810 int err = realloc_reference_state(dst, src->acquired_refs, false); 811 if (err) 812 return err; 813 err = copy_reference_state(dst, src); 814 if (err) 815 return err; 816 return 0; 817 } 818 819 static void free_func_state(struct bpf_func_state *state) 820 { 821 if (!state) 822 return; 823 kfree(state->refs); 824 kfree(state->stack); 825 kfree(state); 826 } 827 828 static void clear_jmp_history(struct bpf_verifier_state *state) 829 { 830 kfree(state->jmp_history); 831 state->jmp_history = NULL; 832 state->jmp_history_cnt = 0; 833 } 834 835 static void free_verifier_state(struct bpf_verifier_state *state, 836 bool free_self) 837 { 838 int i; 839 840 for (i = 0; i <= state->curframe; i++) { 841 free_func_state(state->frame[i]); 842 state->frame[i] = NULL; 843 } 844 clear_jmp_history(state); 845 if (free_self) 846 kfree(state); 847 } 848 849 /* copy verifier state from src to dst growing dst stack space 850 * when necessary to accommodate larger src stack 851 */ 852 static int copy_func_state(struct bpf_func_state *dst, 853 const struct bpf_func_state *src) 854 { 855 int err; 856 857 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 858 false); 859 if (err) 860 return err; 861 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 862 err = copy_reference_state(dst, src); 863 if (err) 864 return err; 865 return copy_stack_state(dst, src); 866 } 867 868 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 869 const struct bpf_verifier_state *src) 870 { 871 struct bpf_func_state *dst; 872 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 873 int i, err; 874 875 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 876 kfree(dst_state->jmp_history); 877 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 878 if (!dst_state->jmp_history) 879 return -ENOMEM; 880 } 881 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 882 dst_state->jmp_history_cnt = src->jmp_history_cnt; 883 884 /* if dst has more stack frames then src frame, free them */ 885 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 886 free_func_state(dst_state->frame[i]); 887 dst_state->frame[i] = NULL; 888 } 889 dst_state->speculative = src->speculative; 890 dst_state->curframe = src->curframe; 891 dst_state->active_spin_lock = src->active_spin_lock; 892 dst_state->branches = src->branches; 893 dst_state->parent = src->parent; 894 dst_state->first_insn_idx = src->first_insn_idx; 895 dst_state->last_insn_idx = src->last_insn_idx; 896 for (i = 0; i <= src->curframe; i++) { 897 dst = dst_state->frame[i]; 898 if (!dst) { 899 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 900 if (!dst) 901 return -ENOMEM; 902 dst_state->frame[i] = dst; 903 } 904 err = copy_func_state(dst, src->frame[i]); 905 if (err) 906 return err; 907 } 908 return 0; 909 } 910 911 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 912 { 913 while (st) { 914 u32 br = --st->branches; 915 916 /* WARN_ON(br > 1) technically makes sense here, 917 * but see comment in push_stack(), hence: 918 */ 919 WARN_ONCE((int)br < 0, 920 "BUG update_branch_counts:branches_to_explore=%d\n", 921 br); 922 if (br) 923 break; 924 st = st->parent; 925 } 926 } 927 928 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 929 int *insn_idx, bool pop_log) 930 { 931 struct bpf_verifier_state *cur = env->cur_state; 932 struct bpf_verifier_stack_elem *elem, *head = env->head; 933 int err; 934 935 if (env->head == NULL) 936 return -ENOENT; 937 938 if (cur) { 939 err = copy_verifier_state(cur, &head->st); 940 if (err) 941 return err; 942 } 943 if (pop_log) 944 bpf_vlog_reset(&env->log, head->log_pos); 945 if (insn_idx) 946 *insn_idx = head->insn_idx; 947 if (prev_insn_idx) 948 *prev_insn_idx = head->prev_insn_idx; 949 elem = head->next; 950 free_verifier_state(&head->st, false); 951 kfree(head); 952 env->head = elem; 953 env->stack_size--; 954 return 0; 955 } 956 957 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 958 int insn_idx, int prev_insn_idx, 959 bool speculative) 960 { 961 struct bpf_verifier_state *cur = env->cur_state; 962 struct bpf_verifier_stack_elem *elem; 963 int err; 964 965 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 966 if (!elem) 967 goto err; 968 969 elem->insn_idx = insn_idx; 970 elem->prev_insn_idx = prev_insn_idx; 971 elem->next = env->head; 972 elem->log_pos = env->log.len_used; 973 env->head = elem; 974 env->stack_size++; 975 err = copy_verifier_state(&elem->st, cur); 976 if (err) 977 goto err; 978 elem->st.speculative |= speculative; 979 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 980 verbose(env, "The sequence of %d jumps is too complex.\n", 981 env->stack_size); 982 goto err; 983 } 984 if (elem->st.parent) { 985 ++elem->st.parent->branches; 986 /* WARN_ON(branches > 2) technically makes sense here, 987 * but 988 * 1. speculative states will bump 'branches' for non-branch 989 * instructions 990 * 2. is_state_visited() heuristics may decide not to create 991 * a new state for a sequence of branches and all such current 992 * and cloned states will be pointing to a single parent state 993 * which might have large 'branches' count. 994 */ 995 } 996 return &elem->st; 997 err: 998 free_verifier_state(env->cur_state, true); 999 env->cur_state = NULL; 1000 /* pop all elements and return */ 1001 while (!pop_stack(env, NULL, NULL, false)); 1002 return NULL; 1003 } 1004 1005 #define CALLER_SAVED_REGS 6 1006 static const int caller_saved[CALLER_SAVED_REGS] = { 1007 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1008 }; 1009 1010 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1011 struct bpf_reg_state *reg); 1012 1013 /* This helper doesn't clear reg->id */ 1014 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1015 { 1016 reg->var_off = tnum_const(imm); 1017 reg->smin_value = (s64)imm; 1018 reg->smax_value = (s64)imm; 1019 reg->umin_value = imm; 1020 reg->umax_value = imm; 1021 1022 reg->s32_min_value = (s32)imm; 1023 reg->s32_max_value = (s32)imm; 1024 reg->u32_min_value = (u32)imm; 1025 reg->u32_max_value = (u32)imm; 1026 } 1027 1028 /* Mark the unknown part of a register (variable offset or scalar value) as 1029 * known to have the value @imm. 1030 */ 1031 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1032 { 1033 /* Clear id, off, and union(map_ptr, range) */ 1034 memset(((u8 *)reg) + sizeof(reg->type), 0, 1035 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1036 ___mark_reg_known(reg, imm); 1037 } 1038 1039 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1040 { 1041 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1042 reg->s32_min_value = (s32)imm; 1043 reg->s32_max_value = (s32)imm; 1044 reg->u32_min_value = (u32)imm; 1045 reg->u32_max_value = (u32)imm; 1046 } 1047 1048 /* Mark the 'variable offset' part of a register as zero. This should be 1049 * used only on registers holding a pointer type. 1050 */ 1051 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1052 { 1053 __mark_reg_known(reg, 0); 1054 } 1055 1056 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1057 { 1058 __mark_reg_known(reg, 0); 1059 reg->type = SCALAR_VALUE; 1060 } 1061 1062 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1063 struct bpf_reg_state *regs, u32 regno) 1064 { 1065 if (WARN_ON(regno >= MAX_BPF_REG)) { 1066 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1067 /* Something bad happened, let's kill all regs */ 1068 for (regno = 0; regno < MAX_BPF_REG; regno++) 1069 __mark_reg_not_init(env, regs + regno); 1070 return; 1071 } 1072 __mark_reg_known_zero(regs + regno); 1073 } 1074 1075 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1076 { 1077 return type_is_pkt_pointer(reg->type); 1078 } 1079 1080 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1081 { 1082 return reg_is_pkt_pointer(reg) || 1083 reg->type == PTR_TO_PACKET_END; 1084 } 1085 1086 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1087 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1088 enum bpf_reg_type which) 1089 { 1090 /* The register can already have a range from prior markings. 1091 * This is fine as long as it hasn't been advanced from its 1092 * origin. 1093 */ 1094 return reg->type == which && 1095 reg->id == 0 && 1096 reg->off == 0 && 1097 tnum_equals_const(reg->var_off, 0); 1098 } 1099 1100 /* Reset the min/max bounds of a register */ 1101 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1102 { 1103 reg->smin_value = S64_MIN; 1104 reg->smax_value = S64_MAX; 1105 reg->umin_value = 0; 1106 reg->umax_value = U64_MAX; 1107 1108 reg->s32_min_value = S32_MIN; 1109 reg->s32_max_value = S32_MAX; 1110 reg->u32_min_value = 0; 1111 reg->u32_max_value = U32_MAX; 1112 } 1113 1114 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1115 { 1116 reg->smin_value = S64_MIN; 1117 reg->smax_value = S64_MAX; 1118 reg->umin_value = 0; 1119 reg->umax_value = U64_MAX; 1120 } 1121 1122 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1123 { 1124 reg->s32_min_value = S32_MIN; 1125 reg->s32_max_value = S32_MAX; 1126 reg->u32_min_value = 0; 1127 reg->u32_max_value = U32_MAX; 1128 } 1129 1130 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1131 { 1132 struct tnum var32_off = tnum_subreg(reg->var_off); 1133 1134 /* min signed is max(sign bit) | min(other bits) */ 1135 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1136 var32_off.value | (var32_off.mask & S32_MIN)); 1137 /* max signed is min(sign bit) | max(other bits) */ 1138 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1139 var32_off.value | (var32_off.mask & S32_MAX)); 1140 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1141 reg->u32_max_value = min(reg->u32_max_value, 1142 (u32)(var32_off.value | var32_off.mask)); 1143 } 1144 1145 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1146 { 1147 /* min signed is max(sign bit) | min(other bits) */ 1148 reg->smin_value = max_t(s64, reg->smin_value, 1149 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1150 /* max signed is min(sign bit) | max(other bits) */ 1151 reg->smax_value = min_t(s64, reg->smax_value, 1152 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1153 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1154 reg->umax_value = min(reg->umax_value, 1155 reg->var_off.value | reg->var_off.mask); 1156 } 1157 1158 static void __update_reg_bounds(struct bpf_reg_state *reg) 1159 { 1160 __update_reg32_bounds(reg); 1161 __update_reg64_bounds(reg); 1162 } 1163 1164 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1165 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1166 { 1167 /* Learn sign from signed bounds. 1168 * If we cannot cross the sign boundary, then signed and unsigned bounds 1169 * are the same, so combine. This works even in the negative case, e.g. 1170 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1171 */ 1172 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1173 reg->s32_min_value = reg->u32_min_value = 1174 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1175 reg->s32_max_value = reg->u32_max_value = 1176 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1177 return; 1178 } 1179 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1180 * boundary, so we must be careful. 1181 */ 1182 if ((s32)reg->u32_max_value >= 0) { 1183 /* Positive. We can't learn anything from the smin, but smax 1184 * is positive, hence safe. 1185 */ 1186 reg->s32_min_value = reg->u32_min_value; 1187 reg->s32_max_value = reg->u32_max_value = 1188 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1189 } else if ((s32)reg->u32_min_value < 0) { 1190 /* Negative. We can't learn anything from the smax, but smin 1191 * is negative, hence safe. 1192 */ 1193 reg->s32_min_value = reg->u32_min_value = 1194 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1195 reg->s32_max_value = reg->u32_max_value; 1196 } 1197 } 1198 1199 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1200 { 1201 /* Learn sign from signed bounds. 1202 * If we cannot cross the sign boundary, then signed and unsigned bounds 1203 * are the same, so combine. This works even in the negative case, e.g. 1204 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1205 */ 1206 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1207 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1208 reg->umin_value); 1209 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1210 reg->umax_value); 1211 return; 1212 } 1213 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1214 * boundary, so we must be careful. 1215 */ 1216 if ((s64)reg->umax_value >= 0) { 1217 /* Positive. We can't learn anything from the smin, but smax 1218 * is positive, hence safe. 1219 */ 1220 reg->smin_value = reg->umin_value; 1221 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1222 reg->umax_value); 1223 } else if ((s64)reg->umin_value < 0) { 1224 /* Negative. We can't learn anything from the smax, but smin 1225 * is negative, hence safe. 1226 */ 1227 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1228 reg->umin_value); 1229 reg->smax_value = reg->umax_value; 1230 } 1231 } 1232 1233 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1234 { 1235 __reg32_deduce_bounds(reg); 1236 __reg64_deduce_bounds(reg); 1237 } 1238 1239 /* Attempts to improve var_off based on unsigned min/max information */ 1240 static void __reg_bound_offset(struct bpf_reg_state *reg) 1241 { 1242 struct tnum var64_off = tnum_intersect(reg->var_off, 1243 tnum_range(reg->umin_value, 1244 reg->umax_value)); 1245 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1246 tnum_range(reg->u32_min_value, 1247 reg->u32_max_value)); 1248 1249 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1250 } 1251 1252 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1253 { 1254 reg->umin_value = reg->u32_min_value; 1255 reg->umax_value = reg->u32_max_value; 1256 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1257 * but must be positive otherwise set to worse case bounds 1258 * and refine later from tnum. 1259 */ 1260 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1261 reg->smax_value = reg->s32_max_value; 1262 else 1263 reg->smax_value = U32_MAX; 1264 if (reg->s32_min_value >= 0) 1265 reg->smin_value = reg->s32_min_value; 1266 else 1267 reg->smin_value = 0; 1268 } 1269 1270 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1271 { 1272 /* special case when 64-bit register has upper 32-bit register 1273 * zeroed. Typically happens after zext or <<32, >>32 sequence 1274 * allowing us to use 32-bit bounds directly, 1275 */ 1276 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1277 __reg_assign_32_into_64(reg); 1278 } else { 1279 /* Otherwise the best we can do is push lower 32bit known and 1280 * unknown bits into register (var_off set from jmp logic) 1281 * then learn as much as possible from the 64-bit tnum 1282 * known and unknown bits. The previous smin/smax bounds are 1283 * invalid here because of jmp32 compare so mark them unknown 1284 * so they do not impact tnum bounds calculation. 1285 */ 1286 __mark_reg64_unbounded(reg); 1287 __update_reg_bounds(reg); 1288 } 1289 1290 /* Intersecting with the old var_off might have improved our bounds 1291 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1292 * then new var_off is (0; 0x7f...fc) which improves our umax. 1293 */ 1294 __reg_deduce_bounds(reg); 1295 __reg_bound_offset(reg); 1296 __update_reg_bounds(reg); 1297 } 1298 1299 static bool __reg64_bound_s32(s64 a) 1300 { 1301 return a > S32_MIN && a < S32_MAX; 1302 } 1303 1304 static bool __reg64_bound_u32(u64 a) 1305 { 1306 if (a > U32_MIN && a < U32_MAX) 1307 return true; 1308 return false; 1309 } 1310 1311 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1312 { 1313 __mark_reg32_unbounded(reg); 1314 1315 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1316 reg->s32_min_value = (s32)reg->smin_value; 1317 reg->s32_max_value = (s32)reg->smax_value; 1318 } 1319 if (__reg64_bound_u32(reg->umin_value)) 1320 reg->u32_min_value = (u32)reg->umin_value; 1321 if (__reg64_bound_u32(reg->umax_value)) 1322 reg->u32_max_value = (u32)reg->umax_value; 1323 1324 /* Intersecting with the old var_off might have improved our bounds 1325 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1326 * then new var_off is (0; 0x7f...fc) which improves our umax. 1327 */ 1328 __reg_deduce_bounds(reg); 1329 __reg_bound_offset(reg); 1330 __update_reg_bounds(reg); 1331 } 1332 1333 /* Mark a register as having a completely unknown (scalar) value. */ 1334 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1335 struct bpf_reg_state *reg) 1336 { 1337 /* 1338 * Clear type, id, off, and union(map_ptr, range) and 1339 * padding between 'type' and union 1340 */ 1341 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1342 reg->type = SCALAR_VALUE; 1343 reg->var_off = tnum_unknown; 1344 reg->frameno = 0; 1345 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1346 __mark_reg_unbounded(reg); 1347 } 1348 1349 static void mark_reg_unknown(struct bpf_verifier_env *env, 1350 struct bpf_reg_state *regs, u32 regno) 1351 { 1352 if (WARN_ON(regno >= MAX_BPF_REG)) { 1353 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1354 /* Something bad happened, let's kill all regs except FP */ 1355 for (regno = 0; regno < BPF_REG_FP; regno++) 1356 __mark_reg_not_init(env, regs + regno); 1357 return; 1358 } 1359 __mark_reg_unknown(env, regs + regno); 1360 } 1361 1362 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1363 struct bpf_reg_state *reg) 1364 { 1365 __mark_reg_unknown(env, reg); 1366 reg->type = NOT_INIT; 1367 } 1368 1369 static void mark_reg_not_init(struct bpf_verifier_env *env, 1370 struct bpf_reg_state *regs, u32 regno) 1371 { 1372 if (WARN_ON(regno >= MAX_BPF_REG)) { 1373 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1374 /* Something bad happened, let's kill all regs except FP */ 1375 for (regno = 0; regno < BPF_REG_FP; regno++) 1376 __mark_reg_not_init(env, regs + regno); 1377 return; 1378 } 1379 __mark_reg_not_init(env, regs + regno); 1380 } 1381 1382 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1383 struct bpf_reg_state *regs, u32 regno, 1384 enum bpf_reg_type reg_type, u32 btf_id) 1385 { 1386 if (reg_type == SCALAR_VALUE) { 1387 mark_reg_unknown(env, regs, regno); 1388 return; 1389 } 1390 mark_reg_known_zero(env, regs, regno); 1391 regs[regno].type = PTR_TO_BTF_ID; 1392 regs[regno].btf_id = btf_id; 1393 } 1394 1395 #define DEF_NOT_SUBREG (0) 1396 static void init_reg_state(struct bpf_verifier_env *env, 1397 struct bpf_func_state *state) 1398 { 1399 struct bpf_reg_state *regs = state->regs; 1400 int i; 1401 1402 for (i = 0; i < MAX_BPF_REG; i++) { 1403 mark_reg_not_init(env, regs, i); 1404 regs[i].live = REG_LIVE_NONE; 1405 regs[i].parent = NULL; 1406 regs[i].subreg_def = DEF_NOT_SUBREG; 1407 } 1408 1409 /* frame pointer */ 1410 regs[BPF_REG_FP].type = PTR_TO_STACK; 1411 mark_reg_known_zero(env, regs, BPF_REG_FP); 1412 regs[BPF_REG_FP].frameno = state->frameno; 1413 } 1414 1415 #define BPF_MAIN_FUNC (-1) 1416 static void init_func_state(struct bpf_verifier_env *env, 1417 struct bpf_func_state *state, 1418 int callsite, int frameno, int subprogno) 1419 { 1420 state->callsite = callsite; 1421 state->frameno = frameno; 1422 state->subprogno = subprogno; 1423 init_reg_state(env, state); 1424 } 1425 1426 enum reg_arg_type { 1427 SRC_OP, /* register is used as source operand */ 1428 DST_OP, /* register is used as destination operand */ 1429 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1430 }; 1431 1432 static int cmp_subprogs(const void *a, const void *b) 1433 { 1434 return ((struct bpf_subprog_info *)a)->start - 1435 ((struct bpf_subprog_info *)b)->start; 1436 } 1437 1438 static int find_subprog(struct bpf_verifier_env *env, int off) 1439 { 1440 struct bpf_subprog_info *p; 1441 1442 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1443 sizeof(env->subprog_info[0]), cmp_subprogs); 1444 if (!p) 1445 return -ENOENT; 1446 return p - env->subprog_info; 1447 1448 } 1449 1450 static int add_subprog(struct bpf_verifier_env *env, int off) 1451 { 1452 int insn_cnt = env->prog->len; 1453 int ret; 1454 1455 if (off >= insn_cnt || off < 0) { 1456 verbose(env, "call to invalid destination\n"); 1457 return -EINVAL; 1458 } 1459 ret = find_subprog(env, off); 1460 if (ret >= 0) 1461 return 0; 1462 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1463 verbose(env, "too many subprograms\n"); 1464 return -E2BIG; 1465 } 1466 env->subprog_info[env->subprog_cnt++].start = off; 1467 sort(env->subprog_info, env->subprog_cnt, 1468 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1469 return 0; 1470 } 1471 1472 static int check_subprogs(struct bpf_verifier_env *env) 1473 { 1474 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1475 struct bpf_subprog_info *subprog = env->subprog_info; 1476 struct bpf_insn *insn = env->prog->insnsi; 1477 int insn_cnt = env->prog->len; 1478 1479 /* Add entry function. */ 1480 ret = add_subprog(env, 0); 1481 if (ret < 0) 1482 return ret; 1483 1484 /* determine subprog starts. The end is one before the next starts */ 1485 for (i = 0; i < insn_cnt; i++) { 1486 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1487 continue; 1488 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1489 continue; 1490 if (!env->bpf_capable) { 1491 verbose(env, 1492 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1493 return -EPERM; 1494 } 1495 ret = add_subprog(env, i + insn[i].imm + 1); 1496 if (ret < 0) 1497 return ret; 1498 } 1499 1500 /* Add a fake 'exit' subprog which could simplify subprog iteration 1501 * logic. 'subprog_cnt' should not be increased. 1502 */ 1503 subprog[env->subprog_cnt].start = insn_cnt; 1504 1505 if (env->log.level & BPF_LOG_LEVEL2) 1506 for (i = 0; i < env->subprog_cnt; i++) 1507 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1508 1509 /* now check that all jumps are within the same subprog */ 1510 subprog_start = subprog[cur_subprog].start; 1511 subprog_end = subprog[cur_subprog + 1].start; 1512 for (i = 0; i < insn_cnt; i++) { 1513 u8 code = insn[i].code; 1514 1515 if (code == (BPF_JMP | BPF_CALL) && 1516 insn[i].imm == BPF_FUNC_tail_call && 1517 insn[i].src_reg != BPF_PSEUDO_CALL) 1518 subprog[cur_subprog].has_tail_call = true; 1519 if (BPF_CLASS(code) == BPF_LD && 1520 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1521 subprog[cur_subprog].has_ld_abs = true; 1522 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1523 goto next; 1524 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1525 goto next; 1526 off = i + insn[i].off + 1; 1527 if (off < subprog_start || off >= subprog_end) { 1528 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1529 return -EINVAL; 1530 } 1531 next: 1532 if (i == subprog_end - 1) { 1533 /* to avoid fall-through from one subprog into another 1534 * the last insn of the subprog should be either exit 1535 * or unconditional jump back 1536 */ 1537 if (code != (BPF_JMP | BPF_EXIT) && 1538 code != (BPF_JMP | BPF_JA)) { 1539 verbose(env, "last insn is not an exit or jmp\n"); 1540 return -EINVAL; 1541 } 1542 subprog_start = subprog_end; 1543 cur_subprog++; 1544 if (cur_subprog < env->subprog_cnt) 1545 subprog_end = subprog[cur_subprog + 1].start; 1546 } 1547 } 1548 return 0; 1549 } 1550 1551 /* Parentage chain of this register (or stack slot) should take care of all 1552 * issues like callee-saved registers, stack slot allocation time, etc. 1553 */ 1554 static int mark_reg_read(struct bpf_verifier_env *env, 1555 const struct bpf_reg_state *state, 1556 struct bpf_reg_state *parent, u8 flag) 1557 { 1558 bool writes = parent == state->parent; /* Observe write marks */ 1559 int cnt = 0; 1560 1561 while (parent) { 1562 /* if read wasn't screened by an earlier write ... */ 1563 if (writes && state->live & REG_LIVE_WRITTEN) 1564 break; 1565 if (parent->live & REG_LIVE_DONE) { 1566 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1567 reg_type_str[parent->type], 1568 parent->var_off.value, parent->off); 1569 return -EFAULT; 1570 } 1571 /* The first condition is more likely to be true than the 1572 * second, checked it first. 1573 */ 1574 if ((parent->live & REG_LIVE_READ) == flag || 1575 parent->live & REG_LIVE_READ64) 1576 /* The parentage chain never changes and 1577 * this parent was already marked as LIVE_READ. 1578 * There is no need to keep walking the chain again and 1579 * keep re-marking all parents as LIVE_READ. 1580 * This case happens when the same register is read 1581 * multiple times without writes into it in-between. 1582 * Also, if parent has the stronger REG_LIVE_READ64 set, 1583 * then no need to set the weak REG_LIVE_READ32. 1584 */ 1585 break; 1586 /* ... then we depend on parent's value */ 1587 parent->live |= flag; 1588 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1589 if (flag == REG_LIVE_READ64) 1590 parent->live &= ~REG_LIVE_READ32; 1591 state = parent; 1592 parent = state->parent; 1593 writes = true; 1594 cnt++; 1595 } 1596 1597 if (env->longest_mark_read_walk < cnt) 1598 env->longest_mark_read_walk = cnt; 1599 return 0; 1600 } 1601 1602 /* This function is supposed to be used by the following 32-bit optimization 1603 * code only. It returns TRUE if the source or destination register operates 1604 * on 64-bit, otherwise return FALSE. 1605 */ 1606 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1607 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1608 { 1609 u8 code, class, op; 1610 1611 code = insn->code; 1612 class = BPF_CLASS(code); 1613 op = BPF_OP(code); 1614 if (class == BPF_JMP) { 1615 /* BPF_EXIT for "main" will reach here. Return TRUE 1616 * conservatively. 1617 */ 1618 if (op == BPF_EXIT) 1619 return true; 1620 if (op == BPF_CALL) { 1621 /* BPF to BPF call will reach here because of marking 1622 * caller saved clobber with DST_OP_NO_MARK for which we 1623 * don't care the register def because they are anyway 1624 * marked as NOT_INIT already. 1625 */ 1626 if (insn->src_reg == BPF_PSEUDO_CALL) 1627 return false; 1628 /* Helper call will reach here because of arg type 1629 * check, conservatively return TRUE. 1630 */ 1631 if (t == SRC_OP) 1632 return true; 1633 1634 return false; 1635 } 1636 } 1637 1638 if (class == BPF_ALU64 || class == BPF_JMP || 1639 /* BPF_END always use BPF_ALU class. */ 1640 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1641 return true; 1642 1643 if (class == BPF_ALU || class == BPF_JMP32) 1644 return false; 1645 1646 if (class == BPF_LDX) { 1647 if (t != SRC_OP) 1648 return BPF_SIZE(code) == BPF_DW; 1649 /* LDX source must be ptr. */ 1650 return true; 1651 } 1652 1653 if (class == BPF_STX) { 1654 if (reg->type != SCALAR_VALUE) 1655 return true; 1656 return BPF_SIZE(code) == BPF_DW; 1657 } 1658 1659 if (class == BPF_LD) { 1660 u8 mode = BPF_MODE(code); 1661 1662 /* LD_IMM64 */ 1663 if (mode == BPF_IMM) 1664 return true; 1665 1666 /* Both LD_IND and LD_ABS return 32-bit data. */ 1667 if (t != SRC_OP) 1668 return false; 1669 1670 /* Implicit ctx ptr. */ 1671 if (regno == BPF_REG_6) 1672 return true; 1673 1674 /* Explicit source could be any width. */ 1675 return true; 1676 } 1677 1678 if (class == BPF_ST) 1679 /* The only source register for BPF_ST is a ptr. */ 1680 return true; 1681 1682 /* Conservatively return true at default. */ 1683 return true; 1684 } 1685 1686 /* Return TRUE if INSN doesn't have explicit value define. */ 1687 static bool insn_no_def(struct bpf_insn *insn) 1688 { 1689 u8 class = BPF_CLASS(insn->code); 1690 1691 return (class == BPF_JMP || class == BPF_JMP32 || 1692 class == BPF_STX || class == BPF_ST); 1693 } 1694 1695 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1696 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1697 { 1698 if (insn_no_def(insn)) 1699 return false; 1700 1701 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1702 } 1703 1704 static void mark_insn_zext(struct bpf_verifier_env *env, 1705 struct bpf_reg_state *reg) 1706 { 1707 s32 def_idx = reg->subreg_def; 1708 1709 if (def_idx == DEF_NOT_SUBREG) 1710 return; 1711 1712 env->insn_aux_data[def_idx - 1].zext_dst = true; 1713 /* The dst will be zero extended, so won't be sub-register anymore. */ 1714 reg->subreg_def = DEF_NOT_SUBREG; 1715 } 1716 1717 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1718 enum reg_arg_type t) 1719 { 1720 struct bpf_verifier_state *vstate = env->cur_state; 1721 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1722 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1723 struct bpf_reg_state *reg, *regs = state->regs; 1724 bool rw64; 1725 1726 if (regno >= MAX_BPF_REG) { 1727 verbose(env, "R%d is invalid\n", regno); 1728 return -EINVAL; 1729 } 1730 1731 reg = ®s[regno]; 1732 rw64 = is_reg64(env, insn, regno, reg, t); 1733 if (t == SRC_OP) { 1734 /* check whether register used as source operand can be read */ 1735 if (reg->type == NOT_INIT) { 1736 verbose(env, "R%d !read_ok\n", regno); 1737 return -EACCES; 1738 } 1739 /* We don't need to worry about FP liveness because it's read-only */ 1740 if (regno == BPF_REG_FP) 1741 return 0; 1742 1743 if (rw64) 1744 mark_insn_zext(env, reg); 1745 1746 return mark_reg_read(env, reg, reg->parent, 1747 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1748 } else { 1749 /* check whether register used as dest operand can be written to */ 1750 if (regno == BPF_REG_FP) { 1751 verbose(env, "frame pointer is read only\n"); 1752 return -EACCES; 1753 } 1754 reg->live |= REG_LIVE_WRITTEN; 1755 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1756 if (t == DST_OP) 1757 mark_reg_unknown(env, regs, regno); 1758 } 1759 return 0; 1760 } 1761 1762 /* for any branch, call, exit record the history of jmps in the given state */ 1763 static int push_jmp_history(struct bpf_verifier_env *env, 1764 struct bpf_verifier_state *cur) 1765 { 1766 u32 cnt = cur->jmp_history_cnt; 1767 struct bpf_idx_pair *p; 1768 1769 cnt++; 1770 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1771 if (!p) 1772 return -ENOMEM; 1773 p[cnt - 1].idx = env->insn_idx; 1774 p[cnt - 1].prev_idx = env->prev_insn_idx; 1775 cur->jmp_history = p; 1776 cur->jmp_history_cnt = cnt; 1777 return 0; 1778 } 1779 1780 /* Backtrack one insn at a time. If idx is not at the top of recorded 1781 * history then previous instruction came from straight line execution. 1782 */ 1783 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1784 u32 *history) 1785 { 1786 u32 cnt = *history; 1787 1788 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1789 i = st->jmp_history[cnt - 1].prev_idx; 1790 (*history)--; 1791 } else { 1792 i--; 1793 } 1794 return i; 1795 } 1796 1797 /* For given verifier state backtrack_insn() is called from the last insn to 1798 * the first insn. Its purpose is to compute a bitmask of registers and 1799 * stack slots that needs precision in the parent verifier state. 1800 */ 1801 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1802 u32 *reg_mask, u64 *stack_mask) 1803 { 1804 const struct bpf_insn_cbs cbs = { 1805 .cb_print = verbose, 1806 .private_data = env, 1807 }; 1808 struct bpf_insn *insn = env->prog->insnsi + idx; 1809 u8 class = BPF_CLASS(insn->code); 1810 u8 opcode = BPF_OP(insn->code); 1811 u8 mode = BPF_MODE(insn->code); 1812 u32 dreg = 1u << insn->dst_reg; 1813 u32 sreg = 1u << insn->src_reg; 1814 u32 spi; 1815 1816 if (insn->code == 0) 1817 return 0; 1818 if (env->log.level & BPF_LOG_LEVEL) { 1819 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1820 verbose(env, "%d: ", idx); 1821 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1822 } 1823 1824 if (class == BPF_ALU || class == BPF_ALU64) { 1825 if (!(*reg_mask & dreg)) 1826 return 0; 1827 if (opcode == BPF_MOV) { 1828 if (BPF_SRC(insn->code) == BPF_X) { 1829 /* dreg = sreg 1830 * dreg needs precision after this insn 1831 * sreg needs precision before this insn 1832 */ 1833 *reg_mask &= ~dreg; 1834 *reg_mask |= sreg; 1835 } else { 1836 /* dreg = K 1837 * dreg needs precision after this insn. 1838 * Corresponding register is already marked 1839 * as precise=true in this verifier state. 1840 * No further markings in parent are necessary 1841 */ 1842 *reg_mask &= ~dreg; 1843 } 1844 } else { 1845 if (BPF_SRC(insn->code) == BPF_X) { 1846 /* dreg += sreg 1847 * both dreg and sreg need precision 1848 * before this insn 1849 */ 1850 *reg_mask |= sreg; 1851 } /* else dreg += K 1852 * dreg still needs precision before this insn 1853 */ 1854 } 1855 } else if (class == BPF_LDX) { 1856 if (!(*reg_mask & dreg)) 1857 return 0; 1858 *reg_mask &= ~dreg; 1859 1860 /* scalars can only be spilled into stack w/o losing precision. 1861 * Load from any other memory can be zero extended. 1862 * The desire to keep that precision is already indicated 1863 * by 'precise' mark in corresponding register of this state. 1864 * No further tracking necessary. 1865 */ 1866 if (insn->src_reg != BPF_REG_FP) 1867 return 0; 1868 if (BPF_SIZE(insn->code) != BPF_DW) 1869 return 0; 1870 1871 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1872 * that [fp - off] slot contains scalar that needs to be 1873 * tracked with precision 1874 */ 1875 spi = (-insn->off - 1) / BPF_REG_SIZE; 1876 if (spi >= 64) { 1877 verbose(env, "BUG spi %d\n", spi); 1878 WARN_ONCE(1, "verifier backtracking bug"); 1879 return -EFAULT; 1880 } 1881 *stack_mask |= 1ull << spi; 1882 } else if (class == BPF_STX || class == BPF_ST) { 1883 if (*reg_mask & dreg) 1884 /* stx & st shouldn't be using _scalar_ dst_reg 1885 * to access memory. It means backtracking 1886 * encountered a case of pointer subtraction. 1887 */ 1888 return -ENOTSUPP; 1889 /* scalars can only be spilled into stack */ 1890 if (insn->dst_reg != BPF_REG_FP) 1891 return 0; 1892 if (BPF_SIZE(insn->code) != BPF_DW) 1893 return 0; 1894 spi = (-insn->off - 1) / BPF_REG_SIZE; 1895 if (spi >= 64) { 1896 verbose(env, "BUG spi %d\n", spi); 1897 WARN_ONCE(1, "verifier backtracking bug"); 1898 return -EFAULT; 1899 } 1900 if (!(*stack_mask & (1ull << spi))) 1901 return 0; 1902 *stack_mask &= ~(1ull << spi); 1903 if (class == BPF_STX) 1904 *reg_mask |= sreg; 1905 } else if (class == BPF_JMP || class == BPF_JMP32) { 1906 if (opcode == BPF_CALL) { 1907 if (insn->src_reg == BPF_PSEUDO_CALL) 1908 return -ENOTSUPP; 1909 /* regular helper call sets R0 */ 1910 *reg_mask &= ~1; 1911 if (*reg_mask & 0x3f) { 1912 /* if backtracing was looking for registers R1-R5 1913 * they should have been found already. 1914 */ 1915 verbose(env, "BUG regs %x\n", *reg_mask); 1916 WARN_ONCE(1, "verifier backtracking bug"); 1917 return -EFAULT; 1918 } 1919 } else if (opcode == BPF_EXIT) { 1920 return -ENOTSUPP; 1921 } 1922 } else if (class == BPF_LD) { 1923 if (!(*reg_mask & dreg)) 1924 return 0; 1925 *reg_mask &= ~dreg; 1926 /* It's ld_imm64 or ld_abs or ld_ind. 1927 * For ld_imm64 no further tracking of precision 1928 * into parent is necessary 1929 */ 1930 if (mode == BPF_IND || mode == BPF_ABS) 1931 /* to be analyzed */ 1932 return -ENOTSUPP; 1933 } 1934 return 0; 1935 } 1936 1937 /* the scalar precision tracking algorithm: 1938 * . at the start all registers have precise=false. 1939 * . scalar ranges are tracked as normal through alu and jmp insns. 1940 * . once precise value of the scalar register is used in: 1941 * . ptr + scalar alu 1942 * . if (scalar cond K|scalar) 1943 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1944 * backtrack through the verifier states and mark all registers and 1945 * stack slots with spilled constants that these scalar regisers 1946 * should be precise. 1947 * . during state pruning two registers (or spilled stack slots) 1948 * are equivalent if both are not precise. 1949 * 1950 * Note the verifier cannot simply walk register parentage chain, 1951 * since many different registers and stack slots could have been 1952 * used to compute single precise scalar. 1953 * 1954 * The approach of starting with precise=true for all registers and then 1955 * backtrack to mark a register as not precise when the verifier detects 1956 * that program doesn't care about specific value (e.g., when helper 1957 * takes register as ARG_ANYTHING parameter) is not safe. 1958 * 1959 * It's ok to walk single parentage chain of the verifier states. 1960 * It's possible that this backtracking will go all the way till 1st insn. 1961 * All other branches will be explored for needing precision later. 1962 * 1963 * The backtracking needs to deal with cases like: 1964 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1965 * r9 -= r8 1966 * r5 = r9 1967 * if r5 > 0x79f goto pc+7 1968 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1969 * r5 += 1 1970 * ... 1971 * call bpf_perf_event_output#25 1972 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1973 * 1974 * and this case: 1975 * r6 = 1 1976 * call foo // uses callee's r6 inside to compute r0 1977 * r0 += r6 1978 * if r0 == 0 goto 1979 * 1980 * to track above reg_mask/stack_mask needs to be independent for each frame. 1981 * 1982 * Also if parent's curframe > frame where backtracking started, 1983 * the verifier need to mark registers in both frames, otherwise callees 1984 * may incorrectly prune callers. This is similar to 1985 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1986 * 1987 * For now backtracking falls back into conservative marking. 1988 */ 1989 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1990 struct bpf_verifier_state *st) 1991 { 1992 struct bpf_func_state *func; 1993 struct bpf_reg_state *reg; 1994 int i, j; 1995 1996 /* big hammer: mark all scalars precise in this path. 1997 * pop_stack may still get !precise scalars. 1998 */ 1999 for (; st; st = st->parent) 2000 for (i = 0; i <= st->curframe; i++) { 2001 func = st->frame[i]; 2002 for (j = 0; j < BPF_REG_FP; j++) { 2003 reg = &func->regs[j]; 2004 if (reg->type != SCALAR_VALUE) 2005 continue; 2006 reg->precise = true; 2007 } 2008 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2009 if (func->stack[j].slot_type[0] != STACK_SPILL) 2010 continue; 2011 reg = &func->stack[j].spilled_ptr; 2012 if (reg->type != SCALAR_VALUE) 2013 continue; 2014 reg->precise = true; 2015 } 2016 } 2017 } 2018 2019 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2020 int spi) 2021 { 2022 struct bpf_verifier_state *st = env->cur_state; 2023 int first_idx = st->first_insn_idx; 2024 int last_idx = env->insn_idx; 2025 struct bpf_func_state *func; 2026 struct bpf_reg_state *reg; 2027 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2028 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2029 bool skip_first = true; 2030 bool new_marks = false; 2031 int i, err; 2032 2033 if (!env->bpf_capable) 2034 return 0; 2035 2036 func = st->frame[st->curframe]; 2037 if (regno >= 0) { 2038 reg = &func->regs[regno]; 2039 if (reg->type != SCALAR_VALUE) { 2040 WARN_ONCE(1, "backtracing misuse"); 2041 return -EFAULT; 2042 } 2043 if (!reg->precise) 2044 new_marks = true; 2045 else 2046 reg_mask = 0; 2047 reg->precise = true; 2048 } 2049 2050 while (spi >= 0) { 2051 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2052 stack_mask = 0; 2053 break; 2054 } 2055 reg = &func->stack[spi].spilled_ptr; 2056 if (reg->type != SCALAR_VALUE) { 2057 stack_mask = 0; 2058 break; 2059 } 2060 if (!reg->precise) 2061 new_marks = true; 2062 else 2063 stack_mask = 0; 2064 reg->precise = true; 2065 break; 2066 } 2067 2068 if (!new_marks) 2069 return 0; 2070 if (!reg_mask && !stack_mask) 2071 return 0; 2072 for (;;) { 2073 DECLARE_BITMAP(mask, 64); 2074 u32 history = st->jmp_history_cnt; 2075 2076 if (env->log.level & BPF_LOG_LEVEL) 2077 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2078 for (i = last_idx;;) { 2079 if (skip_first) { 2080 err = 0; 2081 skip_first = false; 2082 } else { 2083 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2084 } 2085 if (err == -ENOTSUPP) { 2086 mark_all_scalars_precise(env, st); 2087 return 0; 2088 } else if (err) { 2089 return err; 2090 } 2091 if (!reg_mask && !stack_mask) 2092 /* Found assignment(s) into tracked register in this state. 2093 * Since this state is already marked, just return. 2094 * Nothing to be tracked further in the parent state. 2095 */ 2096 return 0; 2097 if (i == first_idx) 2098 break; 2099 i = get_prev_insn_idx(st, i, &history); 2100 if (i >= env->prog->len) { 2101 /* This can happen if backtracking reached insn 0 2102 * and there are still reg_mask or stack_mask 2103 * to backtrack. 2104 * It means the backtracking missed the spot where 2105 * particular register was initialized with a constant. 2106 */ 2107 verbose(env, "BUG backtracking idx %d\n", i); 2108 WARN_ONCE(1, "verifier backtracking bug"); 2109 return -EFAULT; 2110 } 2111 } 2112 st = st->parent; 2113 if (!st) 2114 break; 2115 2116 new_marks = false; 2117 func = st->frame[st->curframe]; 2118 bitmap_from_u64(mask, reg_mask); 2119 for_each_set_bit(i, mask, 32) { 2120 reg = &func->regs[i]; 2121 if (reg->type != SCALAR_VALUE) { 2122 reg_mask &= ~(1u << i); 2123 continue; 2124 } 2125 if (!reg->precise) 2126 new_marks = true; 2127 reg->precise = true; 2128 } 2129 2130 bitmap_from_u64(mask, stack_mask); 2131 for_each_set_bit(i, mask, 64) { 2132 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2133 /* the sequence of instructions: 2134 * 2: (bf) r3 = r10 2135 * 3: (7b) *(u64 *)(r3 -8) = r0 2136 * 4: (79) r4 = *(u64 *)(r10 -8) 2137 * doesn't contain jmps. It's backtracked 2138 * as a single block. 2139 * During backtracking insn 3 is not recognized as 2140 * stack access, so at the end of backtracking 2141 * stack slot fp-8 is still marked in stack_mask. 2142 * However the parent state may not have accessed 2143 * fp-8 and it's "unallocated" stack space. 2144 * In such case fallback to conservative. 2145 */ 2146 mark_all_scalars_precise(env, st); 2147 return 0; 2148 } 2149 2150 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2151 stack_mask &= ~(1ull << i); 2152 continue; 2153 } 2154 reg = &func->stack[i].spilled_ptr; 2155 if (reg->type != SCALAR_VALUE) { 2156 stack_mask &= ~(1ull << i); 2157 continue; 2158 } 2159 if (!reg->precise) 2160 new_marks = true; 2161 reg->precise = true; 2162 } 2163 if (env->log.level & BPF_LOG_LEVEL) { 2164 print_verifier_state(env, func); 2165 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2166 new_marks ? "didn't have" : "already had", 2167 reg_mask, stack_mask); 2168 } 2169 2170 if (!reg_mask && !stack_mask) 2171 break; 2172 if (!new_marks) 2173 break; 2174 2175 last_idx = st->last_insn_idx; 2176 first_idx = st->first_insn_idx; 2177 } 2178 return 0; 2179 } 2180 2181 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2182 { 2183 return __mark_chain_precision(env, regno, -1); 2184 } 2185 2186 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2187 { 2188 return __mark_chain_precision(env, -1, spi); 2189 } 2190 2191 static bool is_spillable_regtype(enum bpf_reg_type type) 2192 { 2193 switch (type) { 2194 case PTR_TO_MAP_VALUE: 2195 case PTR_TO_MAP_VALUE_OR_NULL: 2196 case PTR_TO_STACK: 2197 case PTR_TO_CTX: 2198 case PTR_TO_PACKET: 2199 case PTR_TO_PACKET_META: 2200 case PTR_TO_PACKET_END: 2201 case PTR_TO_FLOW_KEYS: 2202 case CONST_PTR_TO_MAP: 2203 case PTR_TO_SOCKET: 2204 case PTR_TO_SOCKET_OR_NULL: 2205 case PTR_TO_SOCK_COMMON: 2206 case PTR_TO_SOCK_COMMON_OR_NULL: 2207 case PTR_TO_TCP_SOCK: 2208 case PTR_TO_TCP_SOCK_OR_NULL: 2209 case PTR_TO_XDP_SOCK: 2210 case PTR_TO_BTF_ID: 2211 case PTR_TO_BTF_ID_OR_NULL: 2212 case PTR_TO_RDONLY_BUF: 2213 case PTR_TO_RDONLY_BUF_OR_NULL: 2214 case PTR_TO_RDWR_BUF: 2215 case PTR_TO_RDWR_BUF_OR_NULL: 2216 case PTR_TO_PERCPU_BTF_ID: 2217 return true; 2218 default: 2219 return false; 2220 } 2221 } 2222 2223 /* Does this register contain a constant zero? */ 2224 static bool register_is_null(struct bpf_reg_state *reg) 2225 { 2226 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2227 } 2228 2229 static bool register_is_const(struct bpf_reg_state *reg) 2230 { 2231 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2232 } 2233 2234 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2235 { 2236 return tnum_is_unknown(reg->var_off) && 2237 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2238 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2239 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2240 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2241 } 2242 2243 static bool register_is_bounded(struct bpf_reg_state *reg) 2244 { 2245 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2246 } 2247 2248 static bool __is_pointer_value(bool allow_ptr_leaks, 2249 const struct bpf_reg_state *reg) 2250 { 2251 if (allow_ptr_leaks) 2252 return false; 2253 2254 return reg->type != SCALAR_VALUE; 2255 } 2256 2257 static void save_register_state(struct bpf_func_state *state, 2258 int spi, struct bpf_reg_state *reg) 2259 { 2260 int i; 2261 2262 state->stack[spi].spilled_ptr = *reg; 2263 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2264 2265 for (i = 0; i < BPF_REG_SIZE; i++) 2266 state->stack[spi].slot_type[i] = STACK_SPILL; 2267 } 2268 2269 /* check_stack_read/write functions track spill/fill of registers, 2270 * stack boundary and alignment are checked in check_mem_access() 2271 */ 2272 static int check_stack_write(struct bpf_verifier_env *env, 2273 struct bpf_func_state *state, /* func where register points to */ 2274 int off, int size, int value_regno, int insn_idx) 2275 { 2276 struct bpf_func_state *cur; /* state of the current function */ 2277 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2278 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2279 struct bpf_reg_state *reg = NULL; 2280 2281 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2282 state->acquired_refs, true); 2283 if (err) 2284 return err; 2285 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2286 * so it's aligned access and [off, off + size) are within stack limits 2287 */ 2288 if (!env->allow_ptr_leaks && 2289 state->stack[spi].slot_type[0] == STACK_SPILL && 2290 size != BPF_REG_SIZE) { 2291 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2292 return -EACCES; 2293 } 2294 2295 cur = env->cur_state->frame[env->cur_state->curframe]; 2296 if (value_regno >= 0) 2297 reg = &cur->regs[value_regno]; 2298 2299 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2300 !register_is_null(reg) && env->bpf_capable) { 2301 if (dst_reg != BPF_REG_FP) { 2302 /* The backtracking logic can only recognize explicit 2303 * stack slot address like [fp - 8]. Other spill of 2304 * scalar via different register has to be conervative. 2305 * Backtrack from here and mark all registers as precise 2306 * that contributed into 'reg' being a constant. 2307 */ 2308 err = mark_chain_precision(env, value_regno); 2309 if (err) 2310 return err; 2311 } 2312 save_register_state(state, spi, reg); 2313 } else if (reg && is_spillable_regtype(reg->type)) { 2314 /* register containing pointer is being spilled into stack */ 2315 if (size != BPF_REG_SIZE) { 2316 verbose_linfo(env, insn_idx, "; "); 2317 verbose(env, "invalid size of register spill\n"); 2318 return -EACCES; 2319 } 2320 2321 if (state != cur && reg->type == PTR_TO_STACK) { 2322 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2323 return -EINVAL; 2324 } 2325 2326 if (!env->bypass_spec_v4) { 2327 bool sanitize = false; 2328 2329 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2330 register_is_const(&state->stack[spi].spilled_ptr)) 2331 sanitize = true; 2332 for (i = 0; i < BPF_REG_SIZE; i++) 2333 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2334 sanitize = true; 2335 break; 2336 } 2337 if (sanitize) { 2338 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2339 int soff = (-spi - 1) * BPF_REG_SIZE; 2340 2341 /* detected reuse of integer stack slot with a pointer 2342 * which means either llvm is reusing stack slot or 2343 * an attacker is trying to exploit CVE-2018-3639 2344 * (speculative store bypass) 2345 * Have to sanitize that slot with preemptive 2346 * store of zero. 2347 */ 2348 if (*poff && *poff != soff) { 2349 /* disallow programs where single insn stores 2350 * into two different stack slots, since verifier 2351 * cannot sanitize them 2352 */ 2353 verbose(env, 2354 "insn %d cannot access two stack slots fp%d and fp%d", 2355 insn_idx, *poff, soff); 2356 return -EINVAL; 2357 } 2358 *poff = soff; 2359 } 2360 } 2361 save_register_state(state, spi, reg); 2362 } else { 2363 u8 type = STACK_MISC; 2364 2365 /* regular write of data into stack destroys any spilled ptr */ 2366 state->stack[spi].spilled_ptr.type = NOT_INIT; 2367 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2368 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2369 for (i = 0; i < BPF_REG_SIZE; i++) 2370 state->stack[spi].slot_type[i] = STACK_MISC; 2371 2372 /* only mark the slot as written if all 8 bytes were written 2373 * otherwise read propagation may incorrectly stop too soon 2374 * when stack slots are partially written. 2375 * This heuristic means that read propagation will be 2376 * conservative, since it will add reg_live_read marks 2377 * to stack slots all the way to first state when programs 2378 * writes+reads less than 8 bytes 2379 */ 2380 if (size == BPF_REG_SIZE) 2381 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2382 2383 /* when we zero initialize stack slots mark them as such */ 2384 if (reg && register_is_null(reg)) { 2385 /* backtracking doesn't work for STACK_ZERO yet. */ 2386 err = mark_chain_precision(env, value_regno); 2387 if (err) 2388 return err; 2389 type = STACK_ZERO; 2390 } 2391 2392 /* Mark slots affected by this stack write. */ 2393 for (i = 0; i < size; i++) 2394 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2395 type; 2396 } 2397 return 0; 2398 } 2399 2400 static int check_stack_read(struct bpf_verifier_env *env, 2401 struct bpf_func_state *reg_state /* func where register points to */, 2402 int off, int size, int value_regno) 2403 { 2404 struct bpf_verifier_state *vstate = env->cur_state; 2405 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2406 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2407 struct bpf_reg_state *reg; 2408 u8 *stype; 2409 2410 if (reg_state->allocated_stack <= slot) { 2411 verbose(env, "invalid read from stack off %d+0 size %d\n", 2412 off, size); 2413 return -EACCES; 2414 } 2415 stype = reg_state->stack[spi].slot_type; 2416 reg = ®_state->stack[spi].spilled_ptr; 2417 2418 if (stype[0] == STACK_SPILL) { 2419 if (size != BPF_REG_SIZE) { 2420 if (reg->type != SCALAR_VALUE) { 2421 verbose_linfo(env, env->insn_idx, "; "); 2422 verbose(env, "invalid size of register fill\n"); 2423 return -EACCES; 2424 } 2425 if (value_regno >= 0) { 2426 mark_reg_unknown(env, state->regs, value_regno); 2427 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2428 } 2429 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2430 return 0; 2431 } 2432 for (i = 1; i < BPF_REG_SIZE; i++) { 2433 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2434 verbose(env, "corrupted spill memory\n"); 2435 return -EACCES; 2436 } 2437 } 2438 2439 if (value_regno >= 0) { 2440 /* restore register state from stack */ 2441 state->regs[value_regno] = *reg; 2442 /* mark reg as written since spilled pointer state likely 2443 * has its liveness marks cleared by is_state_visited() 2444 * which resets stack/reg liveness for state transitions 2445 */ 2446 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2447 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2448 /* If value_regno==-1, the caller is asking us whether 2449 * it is acceptable to use this value as a SCALAR_VALUE 2450 * (e.g. for XADD). 2451 * We must not allow unprivileged callers to do that 2452 * with spilled pointers. 2453 */ 2454 verbose(env, "leaking pointer from stack off %d\n", 2455 off); 2456 return -EACCES; 2457 } 2458 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2459 } else { 2460 int zeros = 0; 2461 2462 for (i = 0; i < size; i++) { 2463 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2464 continue; 2465 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2466 zeros++; 2467 continue; 2468 } 2469 verbose(env, "invalid read from stack off %d+%d size %d\n", 2470 off, i, size); 2471 return -EACCES; 2472 } 2473 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2474 if (value_regno >= 0) { 2475 if (zeros == size) { 2476 /* any size read into register is zero extended, 2477 * so the whole register == const_zero 2478 */ 2479 __mark_reg_const_zero(&state->regs[value_regno]); 2480 /* backtracking doesn't support STACK_ZERO yet, 2481 * so mark it precise here, so that later 2482 * backtracking can stop here. 2483 * Backtracking may not need this if this register 2484 * doesn't participate in pointer adjustment. 2485 * Forward propagation of precise flag is not 2486 * necessary either. This mark is only to stop 2487 * backtracking. Any register that contributed 2488 * to const 0 was marked precise before spill. 2489 */ 2490 state->regs[value_regno].precise = true; 2491 } else { 2492 /* have read misc data from the stack */ 2493 mark_reg_unknown(env, state->regs, value_regno); 2494 } 2495 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2496 } 2497 } 2498 return 0; 2499 } 2500 2501 static int check_stack_access(struct bpf_verifier_env *env, 2502 const struct bpf_reg_state *reg, 2503 int off, int size) 2504 { 2505 /* Stack accesses must be at a fixed offset, so that we 2506 * can determine what type of data were returned. See 2507 * check_stack_read(). 2508 */ 2509 if (!tnum_is_const(reg->var_off)) { 2510 char tn_buf[48]; 2511 2512 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2513 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2514 tn_buf, off, size); 2515 return -EACCES; 2516 } 2517 2518 if (off >= 0 || off < -MAX_BPF_STACK) { 2519 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2520 return -EACCES; 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2527 int off, int size, enum bpf_access_type type) 2528 { 2529 struct bpf_reg_state *regs = cur_regs(env); 2530 struct bpf_map *map = regs[regno].map_ptr; 2531 u32 cap = bpf_map_flags_to_cap(map); 2532 2533 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2534 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2535 map->value_size, off, size); 2536 return -EACCES; 2537 } 2538 2539 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2540 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2541 map->value_size, off, size); 2542 return -EACCES; 2543 } 2544 2545 return 0; 2546 } 2547 2548 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2549 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2550 int off, int size, u32 mem_size, 2551 bool zero_size_allowed) 2552 { 2553 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2554 struct bpf_reg_state *reg; 2555 2556 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2557 return 0; 2558 2559 reg = &cur_regs(env)[regno]; 2560 switch (reg->type) { 2561 case PTR_TO_MAP_VALUE: 2562 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2563 mem_size, off, size); 2564 break; 2565 case PTR_TO_PACKET: 2566 case PTR_TO_PACKET_META: 2567 case PTR_TO_PACKET_END: 2568 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2569 off, size, regno, reg->id, off, mem_size); 2570 break; 2571 case PTR_TO_MEM: 2572 default: 2573 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2574 mem_size, off, size); 2575 } 2576 2577 return -EACCES; 2578 } 2579 2580 /* check read/write into a memory region with possible variable offset */ 2581 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2582 int off, int size, u32 mem_size, 2583 bool zero_size_allowed) 2584 { 2585 struct bpf_verifier_state *vstate = env->cur_state; 2586 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2587 struct bpf_reg_state *reg = &state->regs[regno]; 2588 int err; 2589 2590 /* We may have adjusted the register pointing to memory region, so we 2591 * need to try adding each of min_value and max_value to off 2592 * to make sure our theoretical access will be safe. 2593 */ 2594 if (env->log.level & BPF_LOG_LEVEL) 2595 print_verifier_state(env, state); 2596 2597 /* The minimum value is only important with signed 2598 * comparisons where we can't assume the floor of a 2599 * value is 0. If we are using signed variables for our 2600 * index'es we need to make sure that whatever we use 2601 * will have a set floor within our range. 2602 */ 2603 if (reg->smin_value < 0 && 2604 (reg->smin_value == S64_MIN || 2605 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2606 reg->smin_value + off < 0)) { 2607 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2608 regno); 2609 return -EACCES; 2610 } 2611 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2612 mem_size, zero_size_allowed); 2613 if (err) { 2614 verbose(env, "R%d min value is outside of the allowed memory range\n", 2615 regno); 2616 return err; 2617 } 2618 2619 /* If we haven't set a max value then we need to bail since we can't be 2620 * sure we won't do bad things. 2621 * If reg->umax_value + off could overflow, treat that as unbounded too. 2622 */ 2623 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2624 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2625 regno); 2626 return -EACCES; 2627 } 2628 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2629 mem_size, zero_size_allowed); 2630 if (err) { 2631 verbose(env, "R%d max value is outside of the allowed memory range\n", 2632 regno); 2633 return err; 2634 } 2635 2636 return 0; 2637 } 2638 2639 /* check read/write into a map element with possible variable offset */ 2640 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2641 int off, int size, bool zero_size_allowed) 2642 { 2643 struct bpf_verifier_state *vstate = env->cur_state; 2644 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2645 struct bpf_reg_state *reg = &state->regs[regno]; 2646 struct bpf_map *map = reg->map_ptr; 2647 int err; 2648 2649 err = check_mem_region_access(env, regno, off, size, map->value_size, 2650 zero_size_allowed); 2651 if (err) 2652 return err; 2653 2654 if (map_value_has_spin_lock(map)) { 2655 u32 lock = map->spin_lock_off; 2656 2657 /* if any part of struct bpf_spin_lock can be touched by 2658 * load/store reject this program. 2659 * To check that [x1, x2) overlaps with [y1, y2) 2660 * it is sufficient to check x1 < y2 && y1 < x2. 2661 */ 2662 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2663 lock < reg->umax_value + off + size) { 2664 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2665 return -EACCES; 2666 } 2667 } 2668 return err; 2669 } 2670 2671 #define MAX_PACKET_OFF 0xffff 2672 2673 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2674 { 2675 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2676 } 2677 2678 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2679 const struct bpf_call_arg_meta *meta, 2680 enum bpf_access_type t) 2681 { 2682 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2683 2684 switch (prog_type) { 2685 /* Program types only with direct read access go here! */ 2686 case BPF_PROG_TYPE_LWT_IN: 2687 case BPF_PROG_TYPE_LWT_OUT: 2688 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2689 case BPF_PROG_TYPE_SK_REUSEPORT: 2690 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2691 case BPF_PROG_TYPE_CGROUP_SKB: 2692 if (t == BPF_WRITE) 2693 return false; 2694 fallthrough; 2695 2696 /* Program types with direct read + write access go here! */ 2697 case BPF_PROG_TYPE_SCHED_CLS: 2698 case BPF_PROG_TYPE_SCHED_ACT: 2699 case BPF_PROG_TYPE_XDP: 2700 case BPF_PROG_TYPE_LWT_XMIT: 2701 case BPF_PROG_TYPE_SK_SKB: 2702 case BPF_PROG_TYPE_SK_MSG: 2703 if (meta) 2704 return meta->pkt_access; 2705 2706 env->seen_direct_write = true; 2707 return true; 2708 2709 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2710 if (t == BPF_WRITE) 2711 env->seen_direct_write = true; 2712 2713 return true; 2714 2715 default: 2716 return false; 2717 } 2718 } 2719 2720 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2721 int size, bool zero_size_allowed) 2722 { 2723 struct bpf_reg_state *regs = cur_regs(env); 2724 struct bpf_reg_state *reg = ®s[regno]; 2725 int err; 2726 2727 /* We may have added a variable offset to the packet pointer; but any 2728 * reg->range we have comes after that. We are only checking the fixed 2729 * offset. 2730 */ 2731 2732 /* We don't allow negative numbers, because we aren't tracking enough 2733 * detail to prove they're safe. 2734 */ 2735 if (reg->smin_value < 0) { 2736 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2737 regno); 2738 return -EACCES; 2739 } 2740 err = __check_mem_access(env, regno, off, size, reg->range, 2741 zero_size_allowed); 2742 if (err) { 2743 verbose(env, "R%d offset is outside of the packet\n", regno); 2744 return err; 2745 } 2746 2747 /* __check_mem_access has made sure "off + size - 1" is within u16. 2748 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2749 * otherwise find_good_pkt_pointers would have refused to set range info 2750 * that __check_mem_access would have rejected this pkt access. 2751 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2752 */ 2753 env->prog->aux->max_pkt_offset = 2754 max_t(u32, env->prog->aux->max_pkt_offset, 2755 off + reg->umax_value + size - 1); 2756 2757 return err; 2758 } 2759 2760 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2761 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2762 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2763 u32 *btf_id) 2764 { 2765 struct bpf_insn_access_aux info = { 2766 .reg_type = *reg_type, 2767 .log = &env->log, 2768 }; 2769 2770 if (env->ops->is_valid_access && 2771 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2772 /* A non zero info.ctx_field_size indicates that this field is a 2773 * candidate for later verifier transformation to load the whole 2774 * field and then apply a mask when accessed with a narrower 2775 * access than actual ctx access size. A zero info.ctx_field_size 2776 * will only allow for whole field access and rejects any other 2777 * type of narrower access. 2778 */ 2779 *reg_type = info.reg_type; 2780 2781 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2782 *btf_id = info.btf_id; 2783 else 2784 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2785 /* remember the offset of last byte accessed in ctx */ 2786 if (env->prog->aux->max_ctx_offset < off + size) 2787 env->prog->aux->max_ctx_offset = off + size; 2788 return 0; 2789 } 2790 2791 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2792 return -EACCES; 2793 } 2794 2795 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2796 int size) 2797 { 2798 if (size < 0 || off < 0 || 2799 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2800 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2801 off, size); 2802 return -EACCES; 2803 } 2804 return 0; 2805 } 2806 2807 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2808 u32 regno, int off, int size, 2809 enum bpf_access_type t) 2810 { 2811 struct bpf_reg_state *regs = cur_regs(env); 2812 struct bpf_reg_state *reg = ®s[regno]; 2813 struct bpf_insn_access_aux info = {}; 2814 bool valid; 2815 2816 if (reg->smin_value < 0) { 2817 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2818 regno); 2819 return -EACCES; 2820 } 2821 2822 switch (reg->type) { 2823 case PTR_TO_SOCK_COMMON: 2824 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2825 break; 2826 case PTR_TO_SOCKET: 2827 valid = bpf_sock_is_valid_access(off, size, t, &info); 2828 break; 2829 case PTR_TO_TCP_SOCK: 2830 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2831 break; 2832 case PTR_TO_XDP_SOCK: 2833 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2834 break; 2835 default: 2836 valid = false; 2837 } 2838 2839 2840 if (valid) { 2841 env->insn_aux_data[insn_idx].ctx_field_size = 2842 info.ctx_field_size; 2843 return 0; 2844 } 2845 2846 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2847 regno, reg_type_str[reg->type], off, size); 2848 2849 return -EACCES; 2850 } 2851 2852 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2853 { 2854 return cur_regs(env) + regno; 2855 } 2856 2857 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2858 { 2859 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2860 } 2861 2862 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2863 { 2864 const struct bpf_reg_state *reg = reg_state(env, regno); 2865 2866 return reg->type == PTR_TO_CTX; 2867 } 2868 2869 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2870 { 2871 const struct bpf_reg_state *reg = reg_state(env, regno); 2872 2873 return type_is_sk_pointer(reg->type); 2874 } 2875 2876 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2877 { 2878 const struct bpf_reg_state *reg = reg_state(env, regno); 2879 2880 return type_is_pkt_pointer(reg->type); 2881 } 2882 2883 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2884 { 2885 const struct bpf_reg_state *reg = reg_state(env, regno); 2886 2887 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2888 return reg->type == PTR_TO_FLOW_KEYS; 2889 } 2890 2891 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2892 const struct bpf_reg_state *reg, 2893 int off, int size, bool strict) 2894 { 2895 struct tnum reg_off; 2896 int ip_align; 2897 2898 /* Byte size accesses are always allowed. */ 2899 if (!strict || size == 1) 2900 return 0; 2901 2902 /* For platforms that do not have a Kconfig enabling 2903 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2904 * NET_IP_ALIGN is universally set to '2'. And on platforms 2905 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2906 * to this code only in strict mode where we want to emulate 2907 * the NET_IP_ALIGN==2 checking. Therefore use an 2908 * unconditional IP align value of '2'. 2909 */ 2910 ip_align = 2; 2911 2912 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2913 if (!tnum_is_aligned(reg_off, size)) { 2914 char tn_buf[48]; 2915 2916 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2917 verbose(env, 2918 "misaligned packet access off %d+%s+%d+%d size %d\n", 2919 ip_align, tn_buf, reg->off, off, size); 2920 return -EACCES; 2921 } 2922 2923 return 0; 2924 } 2925 2926 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2927 const struct bpf_reg_state *reg, 2928 const char *pointer_desc, 2929 int off, int size, bool strict) 2930 { 2931 struct tnum reg_off; 2932 2933 /* Byte size accesses are always allowed. */ 2934 if (!strict || size == 1) 2935 return 0; 2936 2937 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2938 if (!tnum_is_aligned(reg_off, size)) { 2939 char tn_buf[48]; 2940 2941 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2942 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2943 pointer_desc, tn_buf, reg->off, off, size); 2944 return -EACCES; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int check_ptr_alignment(struct bpf_verifier_env *env, 2951 const struct bpf_reg_state *reg, int off, 2952 int size, bool strict_alignment_once) 2953 { 2954 bool strict = env->strict_alignment || strict_alignment_once; 2955 const char *pointer_desc = ""; 2956 2957 switch (reg->type) { 2958 case PTR_TO_PACKET: 2959 case PTR_TO_PACKET_META: 2960 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2961 * right in front, treat it the very same way. 2962 */ 2963 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2964 case PTR_TO_FLOW_KEYS: 2965 pointer_desc = "flow keys "; 2966 break; 2967 case PTR_TO_MAP_VALUE: 2968 pointer_desc = "value "; 2969 break; 2970 case PTR_TO_CTX: 2971 pointer_desc = "context "; 2972 break; 2973 case PTR_TO_STACK: 2974 pointer_desc = "stack "; 2975 /* The stack spill tracking logic in check_stack_write() 2976 * and check_stack_read() relies on stack accesses being 2977 * aligned. 2978 */ 2979 strict = true; 2980 break; 2981 case PTR_TO_SOCKET: 2982 pointer_desc = "sock "; 2983 break; 2984 case PTR_TO_SOCK_COMMON: 2985 pointer_desc = "sock_common "; 2986 break; 2987 case PTR_TO_TCP_SOCK: 2988 pointer_desc = "tcp_sock "; 2989 break; 2990 case PTR_TO_XDP_SOCK: 2991 pointer_desc = "xdp_sock "; 2992 break; 2993 default: 2994 break; 2995 } 2996 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2997 strict); 2998 } 2999 3000 static int update_stack_depth(struct bpf_verifier_env *env, 3001 const struct bpf_func_state *func, 3002 int off) 3003 { 3004 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3005 3006 if (stack >= -off) 3007 return 0; 3008 3009 /* update known max for given subprogram */ 3010 env->subprog_info[func->subprogno].stack_depth = -off; 3011 return 0; 3012 } 3013 3014 /* starting from main bpf function walk all instructions of the function 3015 * and recursively walk all callees that given function can call. 3016 * Ignore jump and exit insns. 3017 * Since recursion is prevented by check_cfg() this algorithm 3018 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3019 */ 3020 static int check_max_stack_depth(struct bpf_verifier_env *env) 3021 { 3022 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3023 struct bpf_subprog_info *subprog = env->subprog_info; 3024 struct bpf_insn *insn = env->prog->insnsi; 3025 bool tail_call_reachable = false; 3026 int ret_insn[MAX_CALL_FRAMES]; 3027 int ret_prog[MAX_CALL_FRAMES]; 3028 int j; 3029 3030 process_func: 3031 /* protect against potential stack overflow that might happen when 3032 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3033 * depth for such case down to 256 so that the worst case scenario 3034 * would result in 8k stack size (32 which is tailcall limit * 256 = 3035 * 8k). 3036 * 3037 * To get the idea what might happen, see an example: 3038 * func1 -> sub rsp, 128 3039 * subfunc1 -> sub rsp, 256 3040 * tailcall1 -> add rsp, 256 3041 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3042 * subfunc2 -> sub rsp, 64 3043 * subfunc22 -> sub rsp, 128 3044 * tailcall2 -> add rsp, 128 3045 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3046 * 3047 * tailcall will unwind the current stack frame but it will not get rid 3048 * of caller's stack as shown on the example above. 3049 */ 3050 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3051 verbose(env, 3052 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3053 depth); 3054 return -EACCES; 3055 } 3056 /* round up to 32-bytes, since this is granularity 3057 * of interpreter stack size 3058 */ 3059 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3060 if (depth > MAX_BPF_STACK) { 3061 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3062 frame + 1, depth); 3063 return -EACCES; 3064 } 3065 continue_func: 3066 subprog_end = subprog[idx + 1].start; 3067 for (; i < subprog_end; i++) { 3068 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3069 continue; 3070 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3071 continue; 3072 /* remember insn and function to return to */ 3073 ret_insn[frame] = i + 1; 3074 ret_prog[frame] = idx; 3075 3076 /* find the callee */ 3077 i = i + insn[i].imm + 1; 3078 idx = find_subprog(env, i); 3079 if (idx < 0) { 3080 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3081 i); 3082 return -EFAULT; 3083 } 3084 3085 if (subprog[idx].has_tail_call) 3086 tail_call_reachable = true; 3087 3088 frame++; 3089 if (frame >= MAX_CALL_FRAMES) { 3090 verbose(env, "the call stack of %d frames is too deep !\n", 3091 frame); 3092 return -E2BIG; 3093 } 3094 goto process_func; 3095 } 3096 /* if tail call got detected across bpf2bpf calls then mark each of the 3097 * currently present subprog frames as tail call reachable subprogs; 3098 * this info will be utilized by JIT so that we will be preserving the 3099 * tail call counter throughout bpf2bpf calls combined with tailcalls 3100 */ 3101 if (tail_call_reachable) 3102 for (j = 0; j < frame; j++) 3103 subprog[ret_prog[j]].tail_call_reachable = true; 3104 3105 /* end of for() loop means the last insn of the 'subprog' 3106 * was reached. Doesn't matter whether it was JA or EXIT 3107 */ 3108 if (frame == 0) 3109 return 0; 3110 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3111 frame--; 3112 i = ret_insn[frame]; 3113 idx = ret_prog[frame]; 3114 goto continue_func; 3115 } 3116 3117 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3118 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3119 const struct bpf_insn *insn, int idx) 3120 { 3121 int start = idx + insn->imm + 1, subprog; 3122 3123 subprog = find_subprog(env, start); 3124 if (subprog < 0) { 3125 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3126 start); 3127 return -EFAULT; 3128 } 3129 return env->subprog_info[subprog].stack_depth; 3130 } 3131 #endif 3132 3133 int check_ctx_reg(struct bpf_verifier_env *env, 3134 const struct bpf_reg_state *reg, int regno) 3135 { 3136 /* Access to ctx or passing it to a helper is only allowed in 3137 * its original, unmodified form. 3138 */ 3139 3140 if (reg->off) { 3141 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3142 regno, reg->off); 3143 return -EACCES; 3144 } 3145 3146 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3147 char tn_buf[48]; 3148 3149 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3150 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3151 return -EACCES; 3152 } 3153 3154 return 0; 3155 } 3156 3157 static int __check_buffer_access(struct bpf_verifier_env *env, 3158 const char *buf_info, 3159 const struct bpf_reg_state *reg, 3160 int regno, int off, int size) 3161 { 3162 if (off < 0) { 3163 verbose(env, 3164 "R%d invalid %s buffer access: off=%d, size=%d\n", 3165 regno, buf_info, off, size); 3166 return -EACCES; 3167 } 3168 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3169 char tn_buf[48]; 3170 3171 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3172 verbose(env, 3173 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3174 regno, off, tn_buf); 3175 return -EACCES; 3176 } 3177 3178 return 0; 3179 } 3180 3181 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3182 const struct bpf_reg_state *reg, 3183 int regno, int off, int size) 3184 { 3185 int err; 3186 3187 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3188 if (err) 3189 return err; 3190 3191 if (off + size > env->prog->aux->max_tp_access) 3192 env->prog->aux->max_tp_access = off + size; 3193 3194 return 0; 3195 } 3196 3197 static int check_buffer_access(struct bpf_verifier_env *env, 3198 const struct bpf_reg_state *reg, 3199 int regno, int off, int size, 3200 bool zero_size_allowed, 3201 const char *buf_info, 3202 u32 *max_access) 3203 { 3204 int err; 3205 3206 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3207 if (err) 3208 return err; 3209 3210 if (off + size > *max_access) 3211 *max_access = off + size; 3212 3213 return 0; 3214 } 3215 3216 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3217 static void zext_32_to_64(struct bpf_reg_state *reg) 3218 { 3219 reg->var_off = tnum_subreg(reg->var_off); 3220 __reg_assign_32_into_64(reg); 3221 } 3222 3223 /* truncate register to smaller size (in bytes) 3224 * must be called with size < BPF_REG_SIZE 3225 */ 3226 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3227 { 3228 u64 mask; 3229 3230 /* clear high bits in bit representation */ 3231 reg->var_off = tnum_cast(reg->var_off, size); 3232 3233 /* fix arithmetic bounds */ 3234 mask = ((u64)1 << (size * 8)) - 1; 3235 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3236 reg->umin_value &= mask; 3237 reg->umax_value &= mask; 3238 } else { 3239 reg->umin_value = 0; 3240 reg->umax_value = mask; 3241 } 3242 reg->smin_value = reg->umin_value; 3243 reg->smax_value = reg->umax_value; 3244 3245 /* If size is smaller than 32bit register the 32bit register 3246 * values are also truncated so we push 64-bit bounds into 3247 * 32-bit bounds. Above were truncated < 32-bits already. 3248 */ 3249 if (size >= 4) 3250 return; 3251 __reg_combine_64_into_32(reg); 3252 } 3253 3254 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3255 { 3256 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3257 } 3258 3259 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3260 { 3261 void *ptr; 3262 u64 addr; 3263 int err; 3264 3265 err = map->ops->map_direct_value_addr(map, &addr, off); 3266 if (err) 3267 return err; 3268 ptr = (void *)(long)addr + off; 3269 3270 switch (size) { 3271 case sizeof(u8): 3272 *val = (u64)*(u8 *)ptr; 3273 break; 3274 case sizeof(u16): 3275 *val = (u64)*(u16 *)ptr; 3276 break; 3277 case sizeof(u32): 3278 *val = (u64)*(u32 *)ptr; 3279 break; 3280 case sizeof(u64): 3281 *val = *(u64 *)ptr; 3282 break; 3283 default: 3284 return -EINVAL; 3285 } 3286 return 0; 3287 } 3288 3289 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3290 struct bpf_reg_state *regs, 3291 int regno, int off, int size, 3292 enum bpf_access_type atype, 3293 int value_regno) 3294 { 3295 struct bpf_reg_state *reg = regs + regno; 3296 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3297 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3298 u32 btf_id; 3299 int ret; 3300 3301 if (off < 0) { 3302 verbose(env, 3303 "R%d is ptr_%s invalid negative access: off=%d\n", 3304 regno, tname, off); 3305 return -EACCES; 3306 } 3307 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3308 char tn_buf[48]; 3309 3310 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3311 verbose(env, 3312 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3313 regno, tname, off, tn_buf); 3314 return -EACCES; 3315 } 3316 3317 if (env->ops->btf_struct_access) { 3318 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3319 atype, &btf_id); 3320 } else { 3321 if (atype != BPF_READ) { 3322 verbose(env, "only read is supported\n"); 3323 return -EACCES; 3324 } 3325 3326 ret = btf_struct_access(&env->log, t, off, size, atype, 3327 &btf_id); 3328 } 3329 3330 if (ret < 0) 3331 return ret; 3332 3333 if (atype == BPF_READ && value_regno >= 0) 3334 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3335 3336 return 0; 3337 } 3338 3339 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3340 struct bpf_reg_state *regs, 3341 int regno, int off, int size, 3342 enum bpf_access_type atype, 3343 int value_regno) 3344 { 3345 struct bpf_reg_state *reg = regs + regno; 3346 struct bpf_map *map = reg->map_ptr; 3347 const struct btf_type *t; 3348 const char *tname; 3349 u32 btf_id; 3350 int ret; 3351 3352 if (!btf_vmlinux) { 3353 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3354 return -ENOTSUPP; 3355 } 3356 3357 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3358 verbose(env, "map_ptr access not supported for map type %d\n", 3359 map->map_type); 3360 return -ENOTSUPP; 3361 } 3362 3363 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3364 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3365 3366 if (!env->allow_ptr_to_map_access) { 3367 verbose(env, 3368 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3369 tname); 3370 return -EPERM; 3371 } 3372 3373 if (off < 0) { 3374 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3375 regno, tname, off); 3376 return -EACCES; 3377 } 3378 3379 if (atype != BPF_READ) { 3380 verbose(env, "only read from %s is supported\n", tname); 3381 return -EACCES; 3382 } 3383 3384 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3385 if (ret < 0) 3386 return ret; 3387 3388 if (value_regno >= 0) 3389 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3390 3391 return 0; 3392 } 3393 3394 3395 /* check whether memory at (regno + off) is accessible for t = (read | write) 3396 * if t==write, value_regno is a register which value is stored into memory 3397 * if t==read, value_regno is a register which will receive the value from memory 3398 * if t==write && value_regno==-1, some unknown value is stored into memory 3399 * if t==read && value_regno==-1, don't care what we read from memory 3400 */ 3401 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3402 int off, int bpf_size, enum bpf_access_type t, 3403 int value_regno, bool strict_alignment_once) 3404 { 3405 struct bpf_reg_state *regs = cur_regs(env); 3406 struct bpf_reg_state *reg = regs + regno; 3407 struct bpf_func_state *state; 3408 int size, err = 0; 3409 3410 size = bpf_size_to_bytes(bpf_size); 3411 if (size < 0) 3412 return size; 3413 3414 /* alignment checks will add in reg->off themselves */ 3415 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3416 if (err) 3417 return err; 3418 3419 /* for access checks, reg->off is just part of off */ 3420 off += reg->off; 3421 3422 if (reg->type == PTR_TO_MAP_VALUE) { 3423 if (t == BPF_WRITE && value_regno >= 0 && 3424 is_pointer_value(env, value_regno)) { 3425 verbose(env, "R%d leaks addr into map\n", value_regno); 3426 return -EACCES; 3427 } 3428 err = check_map_access_type(env, regno, off, size, t); 3429 if (err) 3430 return err; 3431 err = check_map_access(env, regno, off, size, false); 3432 if (!err && t == BPF_READ && value_regno >= 0) { 3433 struct bpf_map *map = reg->map_ptr; 3434 3435 /* if map is read-only, track its contents as scalars */ 3436 if (tnum_is_const(reg->var_off) && 3437 bpf_map_is_rdonly(map) && 3438 map->ops->map_direct_value_addr) { 3439 int map_off = off + reg->var_off.value; 3440 u64 val = 0; 3441 3442 err = bpf_map_direct_read(map, map_off, size, 3443 &val); 3444 if (err) 3445 return err; 3446 3447 regs[value_regno].type = SCALAR_VALUE; 3448 __mark_reg_known(®s[value_regno], val); 3449 } else { 3450 mark_reg_unknown(env, regs, value_regno); 3451 } 3452 } 3453 } else if (reg->type == PTR_TO_MEM) { 3454 if (t == BPF_WRITE && value_regno >= 0 && 3455 is_pointer_value(env, value_regno)) { 3456 verbose(env, "R%d leaks addr into mem\n", value_regno); 3457 return -EACCES; 3458 } 3459 err = check_mem_region_access(env, regno, off, size, 3460 reg->mem_size, false); 3461 if (!err && t == BPF_READ && value_regno >= 0) 3462 mark_reg_unknown(env, regs, value_regno); 3463 } else if (reg->type == PTR_TO_CTX) { 3464 enum bpf_reg_type reg_type = SCALAR_VALUE; 3465 u32 btf_id = 0; 3466 3467 if (t == BPF_WRITE && value_regno >= 0 && 3468 is_pointer_value(env, value_regno)) { 3469 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3470 return -EACCES; 3471 } 3472 3473 err = check_ctx_reg(env, reg, regno); 3474 if (err < 0) 3475 return err; 3476 3477 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3478 if (err) 3479 verbose_linfo(env, insn_idx, "; "); 3480 if (!err && t == BPF_READ && value_regno >= 0) { 3481 /* ctx access returns either a scalar, or a 3482 * PTR_TO_PACKET[_META,_END]. In the latter 3483 * case, we know the offset is zero. 3484 */ 3485 if (reg_type == SCALAR_VALUE) { 3486 mark_reg_unknown(env, regs, value_regno); 3487 } else { 3488 mark_reg_known_zero(env, regs, 3489 value_regno); 3490 if (reg_type_may_be_null(reg_type)) 3491 regs[value_regno].id = ++env->id_gen; 3492 /* A load of ctx field could have different 3493 * actual load size with the one encoded in the 3494 * insn. When the dst is PTR, it is for sure not 3495 * a sub-register. 3496 */ 3497 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3498 if (reg_type == PTR_TO_BTF_ID || 3499 reg_type == PTR_TO_BTF_ID_OR_NULL) 3500 regs[value_regno].btf_id = btf_id; 3501 } 3502 regs[value_regno].type = reg_type; 3503 } 3504 3505 } else if (reg->type == PTR_TO_STACK) { 3506 off += reg->var_off.value; 3507 err = check_stack_access(env, reg, off, size); 3508 if (err) 3509 return err; 3510 3511 state = func(env, reg); 3512 err = update_stack_depth(env, state, off); 3513 if (err) 3514 return err; 3515 3516 if (t == BPF_WRITE) 3517 err = check_stack_write(env, state, off, size, 3518 value_regno, insn_idx); 3519 else 3520 err = check_stack_read(env, state, off, size, 3521 value_regno); 3522 } else if (reg_is_pkt_pointer(reg)) { 3523 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3524 verbose(env, "cannot write into packet\n"); 3525 return -EACCES; 3526 } 3527 if (t == BPF_WRITE && value_regno >= 0 && 3528 is_pointer_value(env, value_regno)) { 3529 verbose(env, "R%d leaks addr into packet\n", 3530 value_regno); 3531 return -EACCES; 3532 } 3533 err = check_packet_access(env, regno, off, size, false); 3534 if (!err && t == BPF_READ && value_regno >= 0) 3535 mark_reg_unknown(env, regs, value_regno); 3536 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3537 if (t == BPF_WRITE && value_regno >= 0 && 3538 is_pointer_value(env, value_regno)) { 3539 verbose(env, "R%d leaks addr into flow keys\n", 3540 value_regno); 3541 return -EACCES; 3542 } 3543 3544 err = check_flow_keys_access(env, off, size); 3545 if (!err && t == BPF_READ && value_regno >= 0) 3546 mark_reg_unknown(env, regs, value_regno); 3547 } else if (type_is_sk_pointer(reg->type)) { 3548 if (t == BPF_WRITE) { 3549 verbose(env, "R%d cannot write into %s\n", 3550 regno, reg_type_str[reg->type]); 3551 return -EACCES; 3552 } 3553 err = check_sock_access(env, insn_idx, regno, off, size, t); 3554 if (!err && value_regno >= 0) 3555 mark_reg_unknown(env, regs, value_regno); 3556 } else if (reg->type == PTR_TO_TP_BUFFER) { 3557 err = check_tp_buffer_access(env, reg, regno, off, size); 3558 if (!err && t == BPF_READ && value_regno >= 0) 3559 mark_reg_unknown(env, regs, value_regno); 3560 } else if (reg->type == PTR_TO_BTF_ID) { 3561 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3562 value_regno); 3563 } else if (reg->type == CONST_PTR_TO_MAP) { 3564 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3565 value_regno); 3566 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3567 if (t == BPF_WRITE) { 3568 verbose(env, "R%d cannot write into %s\n", 3569 regno, reg_type_str[reg->type]); 3570 return -EACCES; 3571 } 3572 err = check_buffer_access(env, reg, regno, off, size, false, 3573 "rdonly", 3574 &env->prog->aux->max_rdonly_access); 3575 if (!err && value_regno >= 0) 3576 mark_reg_unknown(env, regs, value_regno); 3577 } else if (reg->type == PTR_TO_RDWR_BUF) { 3578 err = check_buffer_access(env, reg, regno, off, size, false, 3579 "rdwr", 3580 &env->prog->aux->max_rdwr_access); 3581 if (!err && t == BPF_READ && value_regno >= 0) 3582 mark_reg_unknown(env, regs, value_regno); 3583 } else { 3584 verbose(env, "R%d invalid mem access '%s'\n", regno, 3585 reg_type_str[reg->type]); 3586 return -EACCES; 3587 } 3588 3589 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3590 regs[value_regno].type == SCALAR_VALUE) { 3591 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3592 coerce_reg_to_size(®s[value_regno], size); 3593 } 3594 return err; 3595 } 3596 3597 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3598 { 3599 int err; 3600 3601 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3602 insn->imm != 0) { 3603 verbose(env, "BPF_XADD uses reserved fields\n"); 3604 return -EINVAL; 3605 } 3606 3607 /* check src1 operand */ 3608 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3609 if (err) 3610 return err; 3611 3612 /* check src2 operand */ 3613 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3614 if (err) 3615 return err; 3616 3617 if (is_pointer_value(env, insn->src_reg)) { 3618 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3619 return -EACCES; 3620 } 3621 3622 if (is_ctx_reg(env, insn->dst_reg) || 3623 is_pkt_reg(env, insn->dst_reg) || 3624 is_flow_key_reg(env, insn->dst_reg) || 3625 is_sk_reg(env, insn->dst_reg)) { 3626 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3627 insn->dst_reg, 3628 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3629 return -EACCES; 3630 } 3631 3632 /* check whether atomic_add can read the memory */ 3633 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3634 BPF_SIZE(insn->code), BPF_READ, -1, true); 3635 if (err) 3636 return err; 3637 3638 /* check whether atomic_add can write into the same memory */ 3639 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3640 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3641 } 3642 3643 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3644 int off, int access_size, 3645 bool zero_size_allowed) 3646 { 3647 struct bpf_reg_state *reg = reg_state(env, regno); 3648 3649 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3650 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3651 if (tnum_is_const(reg->var_off)) { 3652 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3653 regno, off, access_size); 3654 } else { 3655 char tn_buf[48]; 3656 3657 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3658 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3659 regno, tn_buf, access_size); 3660 } 3661 return -EACCES; 3662 } 3663 return 0; 3664 } 3665 3666 /* when register 'regno' is passed into function that will read 'access_size' 3667 * bytes from that pointer, make sure that it's within stack boundary 3668 * and all elements of stack are initialized. 3669 * Unlike most pointer bounds-checking functions, this one doesn't take an 3670 * 'off' argument, so it has to add in reg->off itself. 3671 */ 3672 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3673 int access_size, bool zero_size_allowed, 3674 struct bpf_call_arg_meta *meta) 3675 { 3676 struct bpf_reg_state *reg = reg_state(env, regno); 3677 struct bpf_func_state *state = func(env, reg); 3678 int err, min_off, max_off, i, j, slot, spi; 3679 3680 if (tnum_is_const(reg->var_off)) { 3681 min_off = max_off = reg->var_off.value + reg->off; 3682 err = __check_stack_boundary(env, regno, min_off, access_size, 3683 zero_size_allowed); 3684 if (err) 3685 return err; 3686 } else { 3687 /* Variable offset is prohibited for unprivileged mode for 3688 * simplicity since it requires corresponding support in 3689 * Spectre masking for stack ALU. 3690 * See also retrieve_ptr_limit(). 3691 */ 3692 if (!env->bypass_spec_v1) { 3693 char tn_buf[48]; 3694 3695 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3696 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3697 regno, tn_buf); 3698 return -EACCES; 3699 } 3700 /* Only initialized buffer on stack is allowed to be accessed 3701 * with variable offset. With uninitialized buffer it's hard to 3702 * guarantee that whole memory is marked as initialized on 3703 * helper return since specific bounds are unknown what may 3704 * cause uninitialized stack leaking. 3705 */ 3706 if (meta && meta->raw_mode) 3707 meta = NULL; 3708 3709 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3710 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3711 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3712 regno); 3713 return -EACCES; 3714 } 3715 min_off = reg->smin_value + reg->off; 3716 max_off = reg->smax_value + reg->off; 3717 err = __check_stack_boundary(env, regno, min_off, access_size, 3718 zero_size_allowed); 3719 if (err) { 3720 verbose(env, "R%d min value is outside of stack bound\n", 3721 regno); 3722 return err; 3723 } 3724 err = __check_stack_boundary(env, regno, max_off, access_size, 3725 zero_size_allowed); 3726 if (err) { 3727 verbose(env, "R%d max value is outside of stack bound\n", 3728 regno); 3729 return err; 3730 } 3731 } 3732 3733 if (meta && meta->raw_mode) { 3734 meta->access_size = access_size; 3735 meta->regno = regno; 3736 return 0; 3737 } 3738 3739 for (i = min_off; i < max_off + access_size; i++) { 3740 u8 *stype; 3741 3742 slot = -i - 1; 3743 spi = slot / BPF_REG_SIZE; 3744 if (state->allocated_stack <= slot) 3745 goto err; 3746 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3747 if (*stype == STACK_MISC) 3748 goto mark; 3749 if (*stype == STACK_ZERO) { 3750 /* helper can write anything into the stack */ 3751 *stype = STACK_MISC; 3752 goto mark; 3753 } 3754 3755 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3756 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3757 goto mark; 3758 3759 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3760 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3761 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3762 for (j = 0; j < BPF_REG_SIZE; j++) 3763 state->stack[spi].slot_type[j] = STACK_MISC; 3764 goto mark; 3765 } 3766 3767 err: 3768 if (tnum_is_const(reg->var_off)) { 3769 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3770 min_off, i - min_off, access_size); 3771 } else { 3772 char tn_buf[48]; 3773 3774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3775 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3776 tn_buf, i - min_off, access_size); 3777 } 3778 return -EACCES; 3779 mark: 3780 /* reading any byte out of 8-byte 'spill_slot' will cause 3781 * the whole slot to be marked as 'read' 3782 */ 3783 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3784 state->stack[spi].spilled_ptr.parent, 3785 REG_LIVE_READ64); 3786 } 3787 return update_stack_depth(env, state, min_off); 3788 } 3789 3790 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3791 int access_size, bool zero_size_allowed, 3792 struct bpf_call_arg_meta *meta) 3793 { 3794 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3795 3796 switch (reg->type) { 3797 case PTR_TO_PACKET: 3798 case PTR_TO_PACKET_META: 3799 return check_packet_access(env, regno, reg->off, access_size, 3800 zero_size_allowed); 3801 case PTR_TO_MAP_VALUE: 3802 if (check_map_access_type(env, regno, reg->off, access_size, 3803 meta && meta->raw_mode ? BPF_WRITE : 3804 BPF_READ)) 3805 return -EACCES; 3806 return check_map_access(env, regno, reg->off, access_size, 3807 zero_size_allowed); 3808 case PTR_TO_MEM: 3809 return check_mem_region_access(env, regno, reg->off, 3810 access_size, reg->mem_size, 3811 zero_size_allowed); 3812 case PTR_TO_RDONLY_BUF: 3813 if (meta && meta->raw_mode) 3814 return -EACCES; 3815 return check_buffer_access(env, reg, regno, reg->off, 3816 access_size, zero_size_allowed, 3817 "rdonly", 3818 &env->prog->aux->max_rdonly_access); 3819 case PTR_TO_RDWR_BUF: 3820 return check_buffer_access(env, reg, regno, reg->off, 3821 access_size, zero_size_allowed, 3822 "rdwr", 3823 &env->prog->aux->max_rdwr_access); 3824 case PTR_TO_STACK: 3825 return check_stack_boundary(env, regno, access_size, 3826 zero_size_allowed, meta); 3827 default: /* scalar_value or invalid ptr */ 3828 /* Allow zero-byte read from NULL, regardless of pointer type */ 3829 if (zero_size_allowed && access_size == 0 && 3830 register_is_null(reg)) 3831 return 0; 3832 3833 verbose(env, "R%d type=%s expected=%s\n", regno, 3834 reg_type_str[reg->type], 3835 reg_type_str[PTR_TO_STACK]); 3836 return -EACCES; 3837 } 3838 } 3839 3840 /* Implementation details: 3841 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3842 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3843 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3844 * value_or_null->value transition, since the verifier only cares about 3845 * the range of access to valid map value pointer and doesn't care about actual 3846 * address of the map element. 3847 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3848 * reg->id > 0 after value_or_null->value transition. By doing so 3849 * two bpf_map_lookups will be considered two different pointers that 3850 * point to different bpf_spin_locks. 3851 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3852 * dead-locks. 3853 * Since only one bpf_spin_lock is allowed the checks are simpler than 3854 * reg_is_refcounted() logic. The verifier needs to remember only 3855 * one spin_lock instead of array of acquired_refs. 3856 * cur_state->active_spin_lock remembers which map value element got locked 3857 * and clears it after bpf_spin_unlock. 3858 */ 3859 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3860 bool is_lock) 3861 { 3862 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3863 struct bpf_verifier_state *cur = env->cur_state; 3864 bool is_const = tnum_is_const(reg->var_off); 3865 struct bpf_map *map = reg->map_ptr; 3866 u64 val = reg->var_off.value; 3867 3868 if (!is_const) { 3869 verbose(env, 3870 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3871 regno); 3872 return -EINVAL; 3873 } 3874 if (!map->btf) { 3875 verbose(env, 3876 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3877 map->name); 3878 return -EINVAL; 3879 } 3880 if (!map_value_has_spin_lock(map)) { 3881 if (map->spin_lock_off == -E2BIG) 3882 verbose(env, 3883 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3884 map->name); 3885 else if (map->spin_lock_off == -ENOENT) 3886 verbose(env, 3887 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3888 map->name); 3889 else 3890 verbose(env, 3891 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3892 map->name); 3893 return -EINVAL; 3894 } 3895 if (map->spin_lock_off != val + reg->off) { 3896 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3897 val + reg->off); 3898 return -EINVAL; 3899 } 3900 if (is_lock) { 3901 if (cur->active_spin_lock) { 3902 verbose(env, 3903 "Locking two bpf_spin_locks are not allowed\n"); 3904 return -EINVAL; 3905 } 3906 cur->active_spin_lock = reg->id; 3907 } else { 3908 if (!cur->active_spin_lock) { 3909 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3910 return -EINVAL; 3911 } 3912 if (cur->active_spin_lock != reg->id) { 3913 verbose(env, "bpf_spin_unlock of different lock\n"); 3914 return -EINVAL; 3915 } 3916 cur->active_spin_lock = 0; 3917 } 3918 return 0; 3919 } 3920 3921 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3922 { 3923 return type == ARG_PTR_TO_MEM || 3924 type == ARG_PTR_TO_MEM_OR_NULL || 3925 type == ARG_PTR_TO_UNINIT_MEM; 3926 } 3927 3928 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3929 { 3930 return type == ARG_CONST_SIZE || 3931 type == ARG_CONST_SIZE_OR_ZERO; 3932 } 3933 3934 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3935 { 3936 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3937 } 3938 3939 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3940 { 3941 return type == ARG_PTR_TO_INT || 3942 type == ARG_PTR_TO_LONG; 3943 } 3944 3945 static int int_ptr_type_to_size(enum bpf_arg_type type) 3946 { 3947 if (type == ARG_PTR_TO_INT) 3948 return sizeof(u32); 3949 else if (type == ARG_PTR_TO_LONG) 3950 return sizeof(u64); 3951 3952 return -EINVAL; 3953 } 3954 3955 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3956 const struct bpf_call_arg_meta *meta, 3957 enum bpf_arg_type *arg_type) 3958 { 3959 if (!meta->map_ptr) { 3960 /* kernel subsystem misconfigured verifier */ 3961 verbose(env, "invalid map_ptr to access map->type\n"); 3962 return -EACCES; 3963 } 3964 3965 switch (meta->map_ptr->map_type) { 3966 case BPF_MAP_TYPE_SOCKMAP: 3967 case BPF_MAP_TYPE_SOCKHASH: 3968 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3969 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 3970 } else { 3971 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3972 return -EINVAL; 3973 } 3974 break; 3975 3976 default: 3977 break; 3978 } 3979 return 0; 3980 } 3981 3982 struct bpf_reg_types { 3983 const enum bpf_reg_type types[10]; 3984 u32 *btf_id; 3985 }; 3986 3987 static const struct bpf_reg_types map_key_value_types = { 3988 .types = { 3989 PTR_TO_STACK, 3990 PTR_TO_PACKET, 3991 PTR_TO_PACKET_META, 3992 PTR_TO_MAP_VALUE, 3993 }, 3994 }; 3995 3996 static const struct bpf_reg_types sock_types = { 3997 .types = { 3998 PTR_TO_SOCK_COMMON, 3999 PTR_TO_SOCKET, 4000 PTR_TO_TCP_SOCK, 4001 PTR_TO_XDP_SOCK, 4002 }, 4003 }; 4004 4005 #ifdef CONFIG_NET 4006 static const struct bpf_reg_types btf_id_sock_common_types = { 4007 .types = { 4008 PTR_TO_SOCK_COMMON, 4009 PTR_TO_SOCKET, 4010 PTR_TO_TCP_SOCK, 4011 PTR_TO_XDP_SOCK, 4012 PTR_TO_BTF_ID, 4013 }, 4014 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4015 }; 4016 #endif 4017 4018 static const struct bpf_reg_types mem_types = { 4019 .types = { 4020 PTR_TO_STACK, 4021 PTR_TO_PACKET, 4022 PTR_TO_PACKET_META, 4023 PTR_TO_MAP_VALUE, 4024 PTR_TO_MEM, 4025 PTR_TO_RDONLY_BUF, 4026 PTR_TO_RDWR_BUF, 4027 }, 4028 }; 4029 4030 static const struct bpf_reg_types int_ptr_types = { 4031 .types = { 4032 PTR_TO_STACK, 4033 PTR_TO_PACKET, 4034 PTR_TO_PACKET_META, 4035 PTR_TO_MAP_VALUE, 4036 }, 4037 }; 4038 4039 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4040 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4041 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4042 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4043 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4044 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4045 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4046 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4047 4048 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4049 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4050 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4051 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4052 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4053 [ARG_CONST_SIZE] = &scalar_types, 4054 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4055 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4056 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4057 [ARG_PTR_TO_CTX] = &context_types, 4058 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4059 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4060 #ifdef CONFIG_NET 4061 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4062 #endif 4063 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4064 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4065 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4066 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4067 [ARG_PTR_TO_MEM] = &mem_types, 4068 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4069 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4070 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4071 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4072 [ARG_PTR_TO_INT] = &int_ptr_types, 4073 [ARG_PTR_TO_LONG] = &int_ptr_types, 4074 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4075 }; 4076 4077 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4078 enum bpf_arg_type arg_type, 4079 const u32 *arg_btf_id) 4080 { 4081 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4082 enum bpf_reg_type expected, type = reg->type; 4083 const struct bpf_reg_types *compatible; 4084 int i, j; 4085 4086 compatible = compatible_reg_types[arg_type]; 4087 if (!compatible) { 4088 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4089 return -EFAULT; 4090 } 4091 4092 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4093 expected = compatible->types[i]; 4094 if (expected == NOT_INIT) 4095 break; 4096 4097 if (type == expected) 4098 goto found; 4099 } 4100 4101 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4102 for (j = 0; j + 1 < i; j++) 4103 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4104 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4105 return -EACCES; 4106 4107 found: 4108 if (type == PTR_TO_BTF_ID) { 4109 if (!arg_btf_id) { 4110 if (!compatible->btf_id) { 4111 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4112 return -EFAULT; 4113 } 4114 arg_btf_id = compatible->btf_id; 4115 } 4116 4117 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, 4118 *arg_btf_id)) { 4119 verbose(env, "R%d is of type %s but %s is expected\n", 4120 regno, kernel_type_name(reg->btf_id), 4121 kernel_type_name(*arg_btf_id)); 4122 return -EACCES; 4123 } 4124 4125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4126 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4127 regno); 4128 return -EACCES; 4129 } 4130 } 4131 4132 return 0; 4133 } 4134 4135 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4136 struct bpf_call_arg_meta *meta, 4137 const struct bpf_func_proto *fn) 4138 { 4139 u32 regno = BPF_REG_1 + arg; 4140 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4141 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4142 enum bpf_reg_type type = reg->type; 4143 int err = 0; 4144 4145 if (arg_type == ARG_DONTCARE) 4146 return 0; 4147 4148 err = check_reg_arg(env, regno, SRC_OP); 4149 if (err) 4150 return err; 4151 4152 if (arg_type == ARG_ANYTHING) { 4153 if (is_pointer_value(env, regno)) { 4154 verbose(env, "R%d leaks addr into helper function\n", 4155 regno); 4156 return -EACCES; 4157 } 4158 return 0; 4159 } 4160 4161 if (type_is_pkt_pointer(type) && 4162 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4163 verbose(env, "helper access to the packet is not allowed\n"); 4164 return -EACCES; 4165 } 4166 4167 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4168 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4169 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4170 err = resolve_map_arg_type(env, meta, &arg_type); 4171 if (err) 4172 return err; 4173 } 4174 4175 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4176 /* A NULL register has a SCALAR_VALUE type, so skip 4177 * type checking. 4178 */ 4179 goto skip_type_check; 4180 4181 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4182 if (err) 4183 return err; 4184 4185 if (type == PTR_TO_CTX) { 4186 err = check_ctx_reg(env, reg, regno); 4187 if (err < 0) 4188 return err; 4189 } 4190 4191 skip_type_check: 4192 if (reg->ref_obj_id) { 4193 if (meta->ref_obj_id) { 4194 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4195 regno, reg->ref_obj_id, 4196 meta->ref_obj_id); 4197 return -EFAULT; 4198 } 4199 meta->ref_obj_id = reg->ref_obj_id; 4200 } 4201 4202 if (arg_type == ARG_CONST_MAP_PTR) { 4203 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4204 meta->map_ptr = reg->map_ptr; 4205 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4206 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4207 * check that [key, key + map->key_size) are within 4208 * stack limits and initialized 4209 */ 4210 if (!meta->map_ptr) { 4211 /* in function declaration map_ptr must come before 4212 * map_key, so that it's verified and known before 4213 * we have to check map_key here. Otherwise it means 4214 * that kernel subsystem misconfigured verifier 4215 */ 4216 verbose(env, "invalid map_ptr to access map->key\n"); 4217 return -EACCES; 4218 } 4219 err = check_helper_mem_access(env, regno, 4220 meta->map_ptr->key_size, false, 4221 NULL); 4222 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4223 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4224 !register_is_null(reg)) || 4225 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4226 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4227 * check [value, value + map->value_size) validity 4228 */ 4229 if (!meta->map_ptr) { 4230 /* kernel subsystem misconfigured verifier */ 4231 verbose(env, "invalid map_ptr to access map->value\n"); 4232 return -EACCES; 4233 } 4234 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4235 err = check_helper_mem_access(env, regno, 4236 meta->map_ptr->value_size, false, 4237 meta); 4238 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4239 if (!reg->btf_id) { 4240 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4241 return -EACCES; 4242 } 4243 meta->ret_btf_id = reg->btf_id; 4244 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4245 if (meta->func_id == BPF_FUNC_spin_lock) { 4246 if (process_spin_lock(env, regno, true)) 4247 return -EACCES; 4248 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4249 if (process_spin_lock(env, regno, false)) 4250 return -EACCES; 4251 } else { 4252 verbose(env, "verifier internal error\n"); 4253 return -EFAULT; 4254 } 4255 } else if (arg_type_is_mem_ptr(arg_type)) { 4256 /* The access to this pointer is only checked when we hit the 4257 * next is_mem_size argument below. 4258 */ 4259 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4260 } else if (arg_type_is_mem_size(arg_type)) { 4261 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4262 4263 /* This is used to refine r0 return value bounds for helpers 4264 * that enforce this value as an upper bound on return values. 4265 * See do_refine_retval_range() for helpers that can refine 4266 * the return value. C type of helper is u32 so we pull register 4267 * bound from umax_value however, if negative verifier errors 4268 * out. Only upper bounds can be learned because retval is an 4269 * int type and negative retvals are allowed. 4270 */ 4271 meta->msize_max_value = reg->umax_value; 4272 4273 /* The register is SCALAR_VALUE; the access check 4274 * happens using its boundaries. 4275 */ 4276 if (!tnum_is_const(reg->var_off)) 4277 /* For unprivileged variable accesses, disable raw 4278 * mode so that the program is required to 4279 * initialize all the memory that the helper could 4280 * just partially fill up. 4281 */ 4282 meta = NULL; 4283 4284 if (reg->smin_value < 0) { 4285 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4286 regno); 4287 return -EACCES; 4288 } 4289 4290 if (reg->umin_value == 0) { 4291 err = check_helper_mem_access(env, regno - 1, 0, 4292 zero_size_allowed, 4293 meta); 4294 if (err) 4295 return err; 4296 } 4297 4298 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4299 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4300 regno); 4301 return -EACCES; 4302 } 4303 err = check_helper_mem_access(env, regno - 1, 4304 reg->umax_value, 4305 zero_size_allowed, meta); 4306 if (!err) 4307 err = mark_chain_precision(env, regno); 4308 } else if (arg_type_is_alloc_size(arg_type)) { 4309 if (!tnum_is_const(reg->var_off)) { 4310 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4311 regno); 4312 return -EACCES; 4313 } 4314 meta->mem_size = reg->var_off.value; 4315 } else if (arg_type_is_int_ptr(arg_type)) { 4316 int size = int_ptr_type_to_size(arg_type); 4317 4318 err = check_helper_mem_access(env, regno, size, false, meta); 4319 if (err) 4320 return err; 4321 err = check_ptr_alignment(env, reg, 0, size, true); 4322 } 4323 4324 return err; 4325 } 4326 4327 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4328 { 4329 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4330 enum bpf_prog_type type = resolve_prog_type(env->prog); 4331 4332 if (func_id != BPF_FUNC_map_update_elem) 4333 return false; 4334 4335 /* It's not possible to get access to a locked struct sock in these 4336 * contexts, so updating is safe. 4337 */ 4338 switch (type) { 4339 case BPF_PROG_TYPE_TRACING: 4340 if (eatype == BPF_TRACE_ITER) 4341 return true; 4342 break; 4343 case BPF_PROG_TYPE_SOCKET_FILTER: 4344 case BPF_PROG_TYPE_SCHED_CLS: 4345 case BPF_PROG_TYPE_SCHED_ACT: 4346 case BPF_PROG_TYPE_XDP: 4347 case BPF_PROG_TYPE_SK_REUSEPORT: 4348 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4349 case BPF_PROG_TYPE_SK_LOOKUP: 4350 return true; 4351 default: 4352 break; 4353 } 4354 4355 verbose(env, "cannot update sockmap in this context\n"); 4356 return false; 4357 } 4358 4359 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4360 { 4361 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4362 } 4363 4364 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4365 struct bpf_map *map, int func_id) 4366 { 4367 if (!map) 4368 return 0; 4369 4370 /* We need a two way check, first is from map perspective ... */ 4371 switch (map->map_type) { 4372 case BPF_MAP_TYPE_PROG_ARRAY: 4373 if (func_id != BPF_FUNC_tail_call) 4374 goto error; 4375 break; 4376 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4377 if (func_id != BPF_FUNC_perf_event_read && 4378 func_id != BPF_FUNC_perf_event_output && 4379 func_id != BPF_FUNC_skb_output && 4380 func_id != BPF_FUNC_perf_event_read_value && 4381 func_id != BPF_FUNC_xdp_output) 4382 goto error; 4383 break; 4384 case BPF_MAP_TYPE_RINGBUF: 4385 if (func_id != BPF_FUNC_ringbuf_output && 4386 func_id != BPF_FUNC_ringbuf_reserve && 4387 func_id != BPF_FUNC_ringbuf_submit && 4388 func_id != BPF_FUNC_ringbuf_discard && 4389 func_id != BPF_FUNC_ringbuf_query) 4390 goto error; 4391 break; 4392 case BPF_MAP_TYPE_STACK_TRACE: 4393 if (func_id != BPF_FUNC_get_stackid) 4394 goto error; 4395 break; 4396 case BPF_MAP_TYPE_CGROUP_ARRAY: 4397 if (func_id != BPF_FUNC_skb_under_cgroup && 4398 func_id != BPF_FUNC_current_task_under_cgroup) 4399 goto error; 4400 break; 4401 case BPF_MAP_TYPE_CGROUP_STORAGE: 4402 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4403 if (func_id != BPF_FUNC_get_local_storage) 4404 goto error; 4405 break; 4406 case BPF_MAP_TYPE_DEVMAP: 4407 case BPF_MAP_TYPE_DEVMAP_HASH: 4408 if (func_id != BPF_FUNC_redirect_map && 4409 func_id != BPF_FUNC_map_lookup_elem) 4410 goto error; 4411 break; 4412 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4413 * appear. 4414 */ 4415 case BPF_MAP_TYPE_CPUMAP: 4416 if (func_id != BPF_FUNC_redirect_map) 4417 goto error; 4418 break; 4419 case BPF_MAP_TYPE_XSKMAP: 4420 if (func_id != BPF_FUNC_redirect_map && 4421 func_id != BPF_FUNC_map_lookup_elem) 4422 goto error; 4423 break; 4424 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4425 case BPF_MAP_TYPE_HASH_OF_MAPS: 4426 if (func_id != BPF_FUNC_map_lookup_elem) 4427 goto error; 4428 break; 4429 case BPF_MAP_TYPE_SOCKMAP: 4430 if (func_id != BPF_FUNC_sk_redirect_map && 4431 func_id != BPF_FUNC_sock_map_update && 4432 func_id != BPF_FUNC_map_delete_elem && 4433 func_id != BPF_FUNC_msg_redirect_map && 4434 func_id != BPF_FUNC_sk_select_reuseport && 4435 func_id != BPF_FUNC_map_lookup_elem && 4436 !may_update_sockmap(env, func_id)) 4437 goto error; 4438 break; 4439 case BPF_MAP_TYPE_SOCKHASH: 4440 if (func_id != BPF_FUNC_sk_redirect_hash && 4441 func_id != BPF_FUNC_sock_hash_update && 4442 func_id != BPF_FUNC_map_delete_elem && 4443 func_id != BPF_FUNC_msg_redirect_hash && 4444 func_id != BPF_FUNC_sk_select_reuseport && 4445 func_id != BPF_FUNC_map_lookup_elem && 4446 !may_update_sockmap(env, func_id)) 4447 goto error; 4448 break; 4449 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4450 if (func_id != BPF_FUNC_sk_select_reuseport) 4451 goto error; 4452 break; 4453 case BPF_MAP_TYPE_QUEUE: 4454 case BPF_MAP_TYPE_STACK: 4455 if (func_id != BPF_FUNC_map_peek_elem && 4456 func_id != BPF_FUNC_map_pop_elem && 4457 func_id != BPF_FUNC_map_push_elem) 4458 goto error; 4459 break; 4460 case BPF_MAP_TYPE_SK_STORAGE: 4461 if (func_id != BPF_FUNC_sk_storage_get && 4462 func_id != BPF_FUNC_sk_storage_delete) 4463 goto error; 4464 break; 4465 case BPF_MAP_TYPE_INODE_STORAGE: 4466 if (func_id != BPF_FUNC_inode_storage_get && 4467 func_id != BPF_FUNC_inode_storage_delete) 4468 goto error; 4469 break; 4470 default: 4471 break; 4472 } 4473 4474 /* ... and second from the function itself. */ 4475 switch (func_id) { 4476 case BPF_FUNC_tail_call: 4477 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4478 goto error; 4479 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4480 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4481 return -EINVAL; 4482 } 4483 break; 4484 case BPF_FUNC_perf_event_read: 4485 case BPF_FUNC_perf_event_output: 4486 case BPF_FUNC_perf_event_read_value: 4487 case BPF_FUNC_skb_output: 4488 case BPF_FUNC_xdp_output: 4489 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4490 goto error; 4491 break; 4492 case BPF_FUNC_get_stackid: 4493 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4494 goto error; 4495 break; 4496 case BPF_FUNC_current_task_under_cgroup: 4497 case BPF_FUNC_skb_under_cgroup: 4498 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4499 goto error; 4500 break; 4501 case BPF_FUNC_redirect_map: 4502 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4503 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4504 map->map_type != BPF_MAP_TYPE_CPUMAP && 4505 map->map_type != BPF_MAP_TYPE_XSKMAP) 4506 goto error; 4507 break; 4508 case BPF_FUNC_sk_redirect_map: 4509 case BPF_FUNC_msg_redirect_map: 4510 case BPF_FUNC_sock_map_update: 4511 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4512 goto error; 4513 break; 4514 case BPF_FUNC_sk_redirect_hash: 4515 case BPF_FUNC_msg_redirect_hash: 4516 case BPF_FUNC_sock_hash_update: 4517 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4518 goto error; 4519 break; 4520 case BPF_FUNC_get_local_storage: 4521 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4522 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4523 goto error; 4524 break; 4525 case BPF_FUNC_sk_select_reuseport: 4526 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4527 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4528 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4529 goto error; 4530 break; 4531 case BPF_FUNC_map_peek_elem: 4532 case BPF_FUNC_map_pop_elem: 4533 case BPF_FUNC_map_push_elem: 4534 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4535 map->map_type != BPF_MAP_TYPE_STACK) 4536 goto error; 4537 break; 4538 case BPF_FUNC_sk_storage_get: 4539 case BPF_FUNC_sk_storage_delete: 4540 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4541 goto error; 4542 break; 4543 case BPF_FUNC_inode_storage_get: 4544 case BPF_FUNC_inode_storage_delete: 4545 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4546 goto error; 4547 break; 4548 default: 4549 break; 4550 } 4551 4552 return 0; 4553 error: 4554 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4555 map->map_type, func_id_name(func_id), func_id); 4556 return -EINVAL; 4557 } 4558 4559 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4560 { 4561 int count = 0; 4562 4563 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4564 count++; 4565 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4566 count++; 4567 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4568 count++; 4569 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4570 count++; 4571 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4572 count++; 4573 4574 /* We only support one arg being in raw mode at the moment, 4575 * which is sufficient for the helper functions we have 4576 * right now. 4577 */ 4578 return count <= 1; 4579 } 4580 4581 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4582 enum bpf_arg_type arg_next) 4583 { 4584 return (arg_type_is_mem_ptr(arg_curr) && 4585 !arg_type_is_mem_size(arg_next)) || 4586 (!arg_type_is_mem_ptr(arg_curr) && 4587 arg_type_is_mem_size(arg_next)); 4588 } 4589 4590 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4591 { 4592 /* bpf_xxx(..., buf, len) call will access 'len' 4593 * bytes from memory 'buf'. Both arg types need 4594 * to be paired, so make sure there's no buggy 4595 * helper function specification. 4596 */ 4597 if (arg_type_is_mem_size(fn->arg1_type) || 4598 arg_type_is_mem_ptr(fn->arg5_type) || 4599 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4600 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4601 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4602 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4603 return false; 4604 4605 return true; 4606 } 4607 4608 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4609 { 4610 int count = 0; 4611 4612 if (arg_type_may_be_refcounted(fn->arg1_type)) 4613 count++; 4614 if (arg_type_may_be_refcounted(fn->arg2_type)) 4615 count++; 4616 if (arg_type_may_be_refcounted(fn->arg3_type)) 4617 count++; 4618 if (arg_type_may_be_refcounted(fn->arg4_type)) 4619 count++; 4620 if (arg_type_may_be_refcounted(fn->arg5_type)) 4621 count++; 4622 4623 /* A reference acquiring function cannot acquire 4624 * another refcounted ptr. 4625 */ 4626 if (may_be_acquire_function(func_id) && count) 4627 return false; 4628 4629 /* We only support one arg being unreferenced at the moment, 4630 * which is sufficient for the helper functions we have right now. 4631 */ 4632 return count <= 1; 4633 } 4634 4635 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4636 { 4637 int i; 4638 4639 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4640 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4641 return false; 4642 4643 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 4644 return false; 4645 } 4646 4647 return true; 4648 } 4649 4650 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4651 { 4652 return check_raw_mode_ok(fn) && 4653 check_arg_pair_ok(fn) && 4654 check_btf_id_ok(fn) && 4655 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4656 } 4657 4658 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4659 * are now invalid, so turn them into unknown SCALAR_VALUE. 4660 */ 4661 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4662 struct bpf_func_state *state) 4663 { 4664 struct bpf_reg_state *regs = state->regs, *reg; 4665 int i; 4666 4667 for (i = 0; i < MAX_BPF_REG; i++) 4668 if (reg_is_pkt_pointer_any(®s[i])) 4669 mark_reg_unknown(env, regs, i); 4670 4671 bpf_for_each_spilled_reg(i, state, reg) { 4672 if (!reg) 4673 continue; 4674 if (reg_is_pkt_pointer_any(reg)) 4675 __mark_reg_unknown(env, reg); 4676 } 4677 } 4678 4679 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4680 { 4681 struct bpf_verifier_state *vstate = env->cur_state; 4682 int i; 4683 4684 for (i = 0; i <= vstate->curframe; i++) 4685 __clear_all_pkt_pointers(env, vstate->frame[i]); 4686 } 4687 4688 static void release_reg_references(struct bpf_verifier_env *env, 4689 struct bpf_func_state *state, 4690 int ref_obj_id) 4691 { 4692 struct bpf_reg_state *regs = state->regs, *reg; 4693 int i; 4694 4695 for (i = 0; i < MAX_BPF_REG; i++) 4696 if (regs[i].ref_obj_id == ref_obj_id) 4697 mark_reg_unknown(env, regs, i); 4698 4699 bpf_for_each_spilled_reg(i, state, reg) { 4700 if (!reg) 4701 continue; 4702 if (reg->ref_obj_id == ref_obj_id) 4703 __mark_reg_unknown(env, reg); 4704 } 4705 } 4706 4707 /* The pointer with the specified id has released its reference to kernel 4708 * resources. Identify all copies of the same pointer and clear the reference. 4709 */ 4710 static int release_reference(struct bpf_verifier_env *env, 4711 int ref_obj_id) 4712 { 4713 struct bpf_verifier_state *vstate = env->cur_state; 4714 int err; 4715 int i; 4716 4717 err = release_reference_state(cur_func(env), ref_obj_id); 4718 if (err) 4719 return err; 4720 4721 for (i = 0; i <= vstate->curframe; i++) 4722 release_reg_references(env, vstate->frame[i], ref_obj_id); 4723 4724 return 0; 4725 } 4726 4727 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4728 struct bpf_reg_state *regs) 4729 { 4730 int i; 4731 4732 /* after the call registers r0 - r5 were scratched */ 4733 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4734 mark_reg_not_init(env, regs, caller_saved[i]); 4735 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4736 } 4737 } 4738 4739 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4740 int *insn_idx) 4741 { 4742 struct bpf_verifier_state *state = env->cur_state; 4743 struct bpf_func_info_aux *func_info_aux; 4744 struct bpf_func_state *caller, *callee; 4745 int i, err, subprog, target_insn; 4746 bool is_global = false; 4747 4748 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4749 verbose(env, "the call stack of %d frames is too deep\n", 4750 state->curframe + 2); 4751 return -E2BIG; 4752 } 4753 4754 target_insn = *insn_idx + insn->imm; 4755 subprog = find_subprog(env, target_insn + 1); 4756 if (subprog < 0) { 4757 verbose(env, "verifier bug. No program starts at insn %d\n", 4758 target_insn + 1); 4759 return -EFAULT; 4760 } 4761 4762 caller = state->frame[state->curframe]; 4763 if (state->frame[state->curframe + 1]) { 4764 verbose(env, "verifier bug. Frame %d already allocated\n", 4765 state->curframe + 1); 4766 return -EFAULT; 4767 } 4768 4769 func_info_aux = env->prog->aux->func_info_aux; 4770 if (func_info_aux) 4771 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4772 err = btf_check_func_arg_match(env, subprog, caller->regs); 4773 if (err == -EFAULT) 4774 return err; 4775 if (is_global) { 4776 if (err) { 4777 verbose(env, "Caller passes invalid args into func#%d\n", 4778 subprog); 4779 return err; 4780 } else { 4781 if (env->log.level & BPF_LOG_LEVEL) 4782 verbose(env, 4783 "Func#%d is global and valid. Skipping.\n", 4784 subprog); 4785 clear_caller_saved_regs(env, caller->regs); 4786 4787 /* All global functions return SCALAR_VALUE */ 4788 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4789 4790 /* continue with next insn after call */ 4791 return 0; 4792 } 4793 } 4794 4795 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4796 if (!callee) 4797 return -ENOMEM; 4798 state->frame[state->curframe + 1] = callee; 4799 4800 /* callee cannot access r0, r6 - r9 for reading and has to write 4801 * into its own stack before reading from it. 4802 * callee can read/write into caller's stack 4803 */ 4804 init_func_state(env, callee, 4805 /* remember the callsite, it will be used by bpf_exit */ 4806 *insn_idx /* callsite */, 4807 state->curframe + 1 /* frameno within this callchain */, 4808 subprog /* subprog number within this prog */); 4809 4810 /* Transfer references to the callee */ 4811 err = transfer_reference_state(callee, caller); 4812 if (err) 4813 return err; 4814 4815 /* copy r1 - r5 args that callee can access. The copy includes parent 4816 * pointers, which connects us up to the liveness chain 4817 */ 4818 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4819 callee->regs[i] = caller->regs[i]; 4820 4821 clear_caller_saved_regs(env, caller->regs); 4822 4823 /* only increment it after check_reg_arg() finished */ 4824 state->curframe++; 4825 4826 /* and go analyze first insn of the callee */ 4827 *insn_idx = target_insn; 4828 4829 if (env->log.level & BPF_LOG_LEVEL) { 4830 verbose(env, "caller:\n"); 4831 print_verifier_state(env, caller); 4832 verbose(env, "callee:\n"); 4833 print_verifier_state(env, callee); 4834 } 4835 return 0; 4836 } 4837 4838 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4839 { 4840 struct bpf_verifier_state *state = env->cur_state; 4841 struct bpf_func_state *caller, *callee; 4842 struct bpf_reg_state *r0; 4843 int err; 4844 4845 callee = state->frame[state->curframe]; 4846 r0 = &callee->regs[BPF_REG_0]; 4847 if (r0->type == PTR_TO_STACK) { 4848 /* technically it's ok to return caller's stack pointer 4849 * (or caller's caller's pointer) back to the caller, 4850 * since these pointers are valid. Only current stack 4851 * pointer will be invalid as soon as function exits, 4852 * but let's be conservative 4853 */ 4854 verbose(env, "cannot return stack pointer to the caller\n"); 4855 return -EINVAL; 4856 } 4857 4858 state->curframe--; 4859 caller = state->frame[state->curframe]; 4860 /* return to the caller whatever r0 had in the callee */ 4861 caller->regs[BPF_REG_0] = *r0; 4862 4863 /* Transfer references to the caller */ 4864 err = transfer_reference_state(caller, callee); 4865 if (err) 4866 return err; 4867 4868 *insn_idx = callee->callsite + 1; 4869 if (env->log.level & BPF_LOG_LEVEL) { 4870 verbose(env, "returning from callee:\n"); 4871 print_verifier_state(env, callee); 4872 verbose(env, "to caller at %d:\n", *insn_idx); 4873 print_verifier_state(env, caller); 4874 } 4875 /* clear everything in the callee */ 4876 free_func_state(callee); 4877 state->frame[state->curframe + 1] = NULL; 4878 return 0; 4879 } 4880 4881 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4882 int func_id, 4883 struct bpf_call_arg_meta *meta) 4884 { 4885 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4886 4887 if (ret_type != RET_INTEGER || 4888 (func_id != BPF_FUNC_get_stack && 4889 func_id != BPF_FUNC_probe_read_str && 4890 func_id != BPF_FUNC_probe_read_kernel_str && 4891 func_id != BPF_FUNC_probe_read_user_str)) 4892 return; 4893 4894 ret_reg->smax_value = meta->msize_max_value; 4895 ret_reg->s32_max_value = meta->msize_max_value; 4896 ret_reg->smin_value = -MAX_ERRNO; 4897 ret_reg->s32_min_value = -MAX_ERRNO; 4898 __reg_deduce_bounds(ret_reg); 4899 __reg_bound_offset(ret_reg); 4900 __update_reg_bounds(ret_reg); 4901 } 4902 4903 static int 4904 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4905 int func_id, int insn_idx) 4906 { 4907 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4908 struct bpf_map *map = meta->map_ptr; 4909 4910 if (func_id != BPF_FUNC_tail_call && 4911 func_id != BPF_FUNC_map_lookup_elem && 4912 func_id != BPF_FUNC_map_update_elem && 4913 func_id != BPF_FUNC_map_delete_elem && 4914 func_id != BPF_FUNC_map_push_elem && 4915 func_id != BPF_FUNC_map_pop_elem && 4916 func_id != BPF_FUNC_map_peek_elem) 4917 return 0; 4918 4919 if (map == NULL) { 4920 verbose(env, "kernel subsystem misconfigured verifier\n"); 4921 return -EINVAL; 4922 } 4923 4924 /* In case of read-only, some additional restrictions 4925 * need to be applied in order to prevent altering the 4926 * state of the map from program side. 4927 */ 4928 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4929 (func_id == BPF_FUNC_map_delete_elem || 4930 func_id == BPF_FUNC_map_update_elem || 4931 func_id == BPF_FUNC_map_push_elem || 4932 func_id == BPF_FUNC_map_pop_elem)) { 4933 verbose(env, "write into map forbidden\n"); 4934 return -EACCES; 4935 } 4936 4937 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4938 bpf_map_ptr_store(aux, meta->map_ptr, 4939 !meta->map_ptr->bypass_spec_v1); 4940 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4941 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4942 !meta->map_ptr->bypass_spec_v1); 4943 return 0; 4944 } 4945 4946 static int 4947 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4948 int func_id, int insn_idx) 4949 { 4950 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4951 struct bpf_reg_state *regs = cur_regs(env), *reg; 4952 struct bpf_map *map = meta->map_ptr; 4953 struct tnum range; 4954 u64 val; 4955 int err; 4956 4957 if (func_id != BPF_FUNC_tail_call) 4958 return 0; 4959 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4960 verbose(env, "kernel subsystem misconfigured verifier\n"); 4961 return -EINVAL; 4962 } 4963 4964 range = tnum_range(0, map->max_entries - 1); 4965 reg = ®s[BPF_REG_3]; 4966 4967 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4968 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4969 return 0; 4970 } 4971 4972 err = mark_chain_precision(env, BPF_REG_3); 4973 if (err) 4974 return err; 4975 4976 val = reg->var_off.value; 4977 if (bpf_map_key_unseen(aux)) 4978 bpf_map_key_store(aux, val); 4979 else if (!bpf_map_key_poisoned(aux) && 4980 bpf_map_key_immediate(aux) != val) 4981 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4982 return 0; 4983 } 4984 4985 static int check_reference_leak(struct bpf_verifier_env *env) 4986 { 4987 struct bpf_func_state *state = cur_func(env); 4988 int i; 4989 4990 for (i = 0; i < state->acquired_refs; i++) { 4991 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4992 state->refs[i].id, state->refs[i].insn_idx); 4993 } 4994 return state->acquired_refs ? -EINVAL : 0; 4995 } 4996 4997 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4998 { 4999 const struct bpf_func_proto *fn = NULL; 5000 struct bpf_reg_state *regs; 5001 struct bpf_call_arg_meta meta; 5002 bool changes_data; 5003 int i, err; 5004 5005 /* find function prototype */ 5006 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5007 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5008 func_id); 5009 return -EINVAL; 5010 } 5011 5012 if (env->ops->get_func_proto) 5013 fn = env->ops->get_func_proto(func_id, env->prog); 5014 if (!fn) { 5015 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5016 func_id); 5017 return -EINVAL; 5018 } 5019 5020 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5021 if (!env->prog->gpl_compatible && fn->gpl_only) { 5022 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5023 return -EINVAL; 5024 } 5025 5026 if (fn->allowed && !fn->allowed(env->prog)) { 5027 verbose(env, "helper call is not allowed in probe\n"); 5028 return -EINVAL; 5029 } 5030 5031 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5032 changes_data = bpf_helper_changes_pkt_data(fn->func); 5033 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5034 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5035 func_id_name(func_id), func_id); 5036 return -EINVAL; 5037 } 5038 5039 memset(&meta, 0, sizeof(meta)); 5040 meta.pkt_access = fn->pkt_access; 5041 5042 err = check_func_proto(fn, func_id); 5043 if (err) { 5044 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5045 func_id_name(func_id), func_id); 5046 return err; 5047 } 5048 5049 meta.func_id = func_id; 5050 /* check args */ 5051 for (i = 0; i < 5; i++) { 5052 err = check_func_arg(env, i, &meta, fn); 5053 if (err) 5054 return err; 5055 } 5056 5057 err = record_func_map(env, &meta, func_id, insn_idx); 5058 if (err) 5059 return err; 5060 5061 err = record_func_key(env, &meta, func_id, insn_idx); 5062 if (err) 5063 return err; 5064 5065 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5066 * is inferred from register state. 5067 */ 5068 for (i = 0; i < meta.access_size; i++) { 5069 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5070 BPF_WRITE, -1, false); 5071 if (err) 5072 return err; 5073 } 5074 5075 if (func_id == BPF_FUNC_tail_call) { 5076 err = check_reference_leak(env); 5077 if (err) { 5078 verbose(env, "tail_call would lead to reference leak\n"); 5079 return err; 5080 } 5081 } else if (is_release_function(func_id)) { 5082 err = release_reference(env, meta.ref_obj_id); 5083 if (err) { 5084 verbose(env, "func %s#%d reference has not been acquired before\n", 5085 func_id_name(func_id), func_id); 5086 return err; 5087 } 5088 } 5089 5090 regs = cur_regs(env); 5091 5092 /* check that flags argument in get_local_storage(map, flags) is 0, 5093 * this is required because get_local_storage() can't return an error. 5094 */ 5095 if (func_id == BPF_FUNC_get_local_storage && 5096 !register_is_null(®s[BPF_REG_2])) { 5097 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5098 return -EINVAL; 5099 } 5100 5101 /* reset caller saved regs */ 5102 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5103 mark_reg_not_init(env, regs, caller_saved[i]); 5104 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5105 } 5106 5107 /* helper call returns 64-bit value. */ 5108 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5109 5110 /* update return register (already marked as written above) */ 5111 if (fn->ret_type == RET_INTEGER) { 5112 /* sets type to SCALAR_VALUE */ 5113 mark_reg_unknown(env, regs, BPF_REG_0); 5114 } else if (fn->ret_type == RET_VOID) { 5115 regs[BPF_REG_0].type = NOT_INIT; 5116 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5117 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5118 /* There is no offset yet applied, variable or fixed */ 5119 mark_reg_known_zero(env, regs, BPF_REG_0); 5120 /* remember map_ptr, so that check_map_access() 5121 * can check 'value_size' boundary of memory access 5122 * to map element returned from bpf_map_lookup_elem() 5123 */ 5124 if (meta.map_ptr == NULL) { 5125 verbose(env, 5126 "kernel subsystem misconfigured verifier\n"); 5127 return -EINVAL; 5128 } 5129 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5130 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5131 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5132 if (map_value_has_spin_lock(meta.map_ptr)) 5133 regs[BPF_REG_0].id = ++env->id_gen; 5134 } else { 5135 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5136 } 5137 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5138 mark_reg_known_zero(env, regs, BPF_REG_0); 5139 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5140 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5141 mark_reg_known_zero(env, regs, BPF_REG_0); 5142 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5143 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5144 mark_reg_known_zero(env, regs, BPF_REG_0); 5145 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5146 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5147 mark_reg_known_zero(env, regs, BPF_REG_0); 5148 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5149 regs[BPF_REG_0].mem_size = meta.mem_size; 5150 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5151 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5152 const struct btf_type *t; 5153 5154 mark_reg_known_zero(env, regs, BPF_REG_0); 5155 t = btf_type_skip_modifiers(btf_vmlinux, meta.ret_btf_id, NULL); 5156 if (!btf_type_is_struct(t)) { 5157 u32 tsize; 5158 const struct btf_type *ret; 5159 const char *tname; 5160 5161 /* resolve the type size of ksym. */ 5162 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 5163 if (IS_ERR(ret)) { 5164 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 5165 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5166 tname, PTR_ERR(ret)); 5167 return -EINVAL; 5168 } 5169 regs[BPF_REG_0].type = 5170 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5171 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5172 regs[BPF_REG_0].mem_size = tsize; 5173 } else { 5174 regs[BPF_REG_0].type = 5175 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5176 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5177 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5178 } 5179 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) { 5180 int ret_btf_id; 5181 5182 mark_reg_known_zero(env, regs, BPF_REG_0); 5183 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL; 5184 ret_btf_id = *fn->ret_btf_id; 5185 if (ret_btf_id == 0) { 5186 verbose(env, "invalid return type %d of func %s#%d\n", 5187 fn->ret_type, func_id_name(func_id), func_id); 5188 return -EINVAL; 5189 } 5190 regs[BPF_REG_0].btf_id = ret_btf_id; 5191 } else { 5192 verbose(env, "unknown return type %d of func %s#%d\n", 5193 fn->ret_type, func_id_name(func_id), func_id); 5194 return -EINVAL; 5195 } 5196 5197 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5198 regs[BPF_REG_0].id = ++env->id_gen; 5199 5200 if (is_ptr_cast_function(func_id)) { 5201 /* For release_reference() */ 5202 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5203 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5204 int id = acquire_reference_state(env, insn_idx); 5205 5206 if (id < 0) 5207 return id; 5208 /* For mark_ptr_or_null_reg() */ 5209 regs[BPF_REG_0].id = id; 5210 /* For release_reference() */ 5211 regs[BPF_REG_0].ref_obj_id = id; 5212 } 5213 5214 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5215 5216 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5217 if (err) 5218 return err; 5219 5220 if ((func_id == BPF_FUNC_get_stack || 5221 func_id == BPF_FUNC_get_task_stack) && 5222 !env->prog->has_callchain_buf) { 5223 const char *err_str; 5224 5225 #ifdef CONFIG_PERF_EVENTS 5226 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5227 err_str = "cannot get callchain buffer for func %s#%d\n"; 5228 #else 5229 err = -ENOTSUPP; 5230 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5231 #endif 5232 if (err) { 5233 verbose(env, err_str, func_id_name(func_id), func_id); 5234 return err; 5235 } 5236 5237 env->prog->has_callchain_buf = true; 5238 } 5239 5240 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5241 env->prog->call_get_stack = true; 5242 5243 if (changes_data) 5244 clear_all_pkt_pointers(env); 5245 return 0; 5246 } 5247 5248 static bool signed_add_overflows(s64 a, s64 b) 5249 { 5250 /* Do the add in u64, where overflow is well-defined */ 5251 s64 res = (s64)((u64)a + (u64)b); 5252 5253 if (b < 0) 5254 return res > a; 5255 return res < a; 5256 } 5257 5258 static bool signed_add32_overflows(s64 a, s64 b) 5259 { 5260 /* Do the add in u32, where overflow is well-defined */ 5261 s32 res = (s32)((u32)a + (u32)b); 5262 5263 if (b < 0) 5264 return res > a; 5265 return res < a; 5266 } 5267 5268 static bool signed_sub_overflows(s32 a, s32 b) 5269 { 5270 /* Do the sub in u64, where overflow is well-defined */ 5271 s64 res = (s64)((u64)a - (u64)b); 5272 5273 if (b < 0) 5274 return res < a; 5275 return res > a; 5276 } 5277 5278 static bool signed_sub32_overflows(s32 a, s32 b) 5279 { 5280 /* Do the sub in u64, where overflow is well-defined */ 5281 s32 res = (s32)((u32)a - (u32)b); 5282 5283 if (b < 0) 5284 return res < a; 5285 return res > a; 5286 } 5287 5288 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5289 const struct bpf_reg_state *reg, 5290 enum bpf_reg_type type) 5291 { 5292 bool known = tnum_is_const(reg->var_off); 5293 s64 val = reg->var_off.value; 5294 s64 smin = reg->smin_value; 5295 5296 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5297 verbose(env, "math between %s pointer and %lld is not allowed\n", 5298 reg_type_str[type], val); 5299 return false; 5300 } 5301 5302 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5303 verbose(env, "%s pointer offset %d is not allowed\n", 5304 reg_type_str[type], reg->off); 5305 return false; 5306 } 5307 5308 if (smin == S64_MIN) { 5309 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5310 reg_type_str[type]); 5311 return false; 5312 } 5313 5314 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5315 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5316 smin, reg_type_str[type]); 5317 return false; 5318 } 5319 5320 return true; 5321 } 5322 5323 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5324 { 5325 return &env->insn_aux_data[env->insn_idx]; 5326 } 5327 5328 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5329 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5330 { 5331 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5332 (opcode == BPF_SUB && !off_is_neg); 5333 u32 off; 5334 5335 switch (ptr_reg->type) { 5336 case PTR_TO_STACK: 5337 /* Indirect variable offset stack access is prohibited in 5338 * unprivileged mode so it's not handled here. 5339 */ 5340 off = ptr_reg->off + ptr_reg->var_off.value; 5341 if (mask_to_left) 5342 *ptr_limit = MAX_BPF_STACK + off; 5343 else 5344 *ptr_limit = -off; 5345 return 0; 5346 case PTR_TO_MAP_VALUE: 5347 if (mask_to_left) { 5348 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5349 } else { 5350 off = ptr_reg->smin_value + ptr_reg->off; 5351 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5352 } 5353 return 0; 5354 default: 5355 return -EINVAL; 5356 } 5357 } 5358 5359 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5360 const struct bpf_insn *insn) 5361 { 5362 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5363 } 5364 5365 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5366 u32 alu_state, u32 alu_limit) 5367 { 5368 /* If we arrived here from different branches with different 5369 * state or limits to sanitize, then this won't work. 5370 */ 5371 if (aux->alu_state && 5372 (aux->alu_state != alu_state || 5373 aux->alu_limit != alu_limit)) 5374 return -EACCES; 5375 5376 /* Corresponding fixup done in fixup_bpf_calls(). */ 5377 aux->alu_state = alu_state; 5378 aux->alu_limit = alu_limit; 5379 return 0; 5380 } 5381 5382 static int sanitize_val_alu(struct bpf_verifier_env *env, 5383 struct bpf_insn *insn) 5384 { 5385 struct bpf_insn_aux_data *aux = cur_aux(env); 5386 5387 if (can_skip_alu_sanitation(env, insn)) 5388 return 0; 5389 5390 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5391 } 5392 5393 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5394 struct bpf_insn *insn, 5395 const struct bpf_reg_state *ptr_reg, 5396 struct bpf_reg_state *dst_reg, 5397 bool off_is_neg) 5398 { 5399 struct bpf_verifier_state *vstate = env->cur_state; 5400 struct bpf_insn_aux_data *aux = cur_aux(env); 5401 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5402 u8 opcode = BPF_OP(insn->code); 5403 u32 alu_state, alu_limit; 5404 struct bpf_reg_state tmp; 5405 bool ret; 5406 5407 if (can_skip_alu_sanitation(env, insn)) 5408 return 0; 5409 5410 /* We already marked aux for masking from non-speculative 5411 * paths, thus we got here in the first place. We only care 5412 * to explore bad access from here. 5413 */ 5414 if (vstate->speculative) 5415 goto do_sim; 5416 5417 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5418 alu_state |= ptr_is_dst_reg ? 5419 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5420 5421 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5422 return 0; 5423 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5424 return -EACCES; 5425 do_sim: 5426 /* Simulate and find potential out-of-bounds access under 5427 * speculative execution from truncation as a result of 5428 * masking when off was not within expected range. If off 5429 * sits in dst, then we temporarily need to move ptr there 5430 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5431 * for cases where we use K-based arithmetic in one direction 5432 * and truncated reg-based in the other in order to explore 5433 * bad access. 5434 */ 5435 if (!ptr_is_dst_reg) { 5436 tmp = *dst_reg; 5437 *dst_reg = *ptr_reg; 5438 } 5439 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5440 if (!ptr_is_dst_reg && ret) 5441 *dst_reg = tmp; 5442 return !ret ? -EFAULT : 0; 5443 } 5444 5445 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5446 * Caller should also handle BPF_MOV case separately. 5447 * If we return -EACCES, caller may want to try again treating pointer as a 5448 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5449 */ 5450 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5451 struct bpf_insn *insn, 5452 const struct bpf_reg_state *ptr_reg, 5453 const struct bpf_reg_state *off_reg) 5454 { 5455 struct bpf_verifier_state *vstate = env->cur_state; 5456 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5457 struct bpf_reg_state *regs = state->regs, *dst_reg; 5458 bool known = tnum_is_const(off_reg->var_off); 5459 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5460 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5461 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5462 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5463 u32 dst = insn->dst_reg, src = insn->src_reg; 5464 u8 opcode = BPF_OP(insn->code); 5465 int ret; 5466 5467 dst_reg = ®s[dst]; 5468 5469 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5470 smin_val > smax_val || umin_val > umax_val) { 5471 /* Taint dst register if offset had invalid bounds derived from 5472 * e.g. dead branches. 5473 */ 5474 __mark_reg_unknown(env, dst_reg); 5475 return 0; 5476 } 5477 5478 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5479 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5480 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5481 __mark_reg_unknown(env, dst_reg); 5482 return 0; 5483 } 5484 5485 verbose(env, 5486 "R%d 32-bit pointer arithmetic prohibited\n", 5487 dst); 5488 return -EACCES; 5489 } 5490 5491 switch (ptr_reg->type) { 5492 case PTR_TO_MAP_VALUE_OR_NULL: 5493 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5494 dst, reg_type_str[ptr_reg->type]); 5495 return -EACCES; 5496 case CONST_PTR_TO_MAP: 5497 /* smin_val represents the known value */ 5498 if (known && smin_val == 0 && opcode == BPF_ADD) 5499 break; 5500 fallthrough; 5501 case PTR_TO_PACKET_END: 5502 case PTR_TO_SOCKET: 5503 case PTR_TO_SOCKET_OR_NULL: 5504 case PTR_TO_SOCK_COMMON: 5505 case PTR_TO_SOCK_COMMON_OR_NULL: 5506 case PTR_TO_TCP_SOCK: 5507 case PTR_TO_TCP_SOCK_OR_NULL: 5508 case PTR_TO_XDP_SOCK: 5509 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5510 dst, reg_type_str[ptr_reg->type]); 5511 return -EACCES; 5512 case PTR_TO_MAP_VALUE: 5513 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5514 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5515 off_reg == dst_reg ? dst : src); 5516 return -EACCES; 5517 } 5518 fallthrough; 5519 default: 5520 break; 5521 } 5522 5523 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5524 * The id may be overwritten later if we create a new variable offset. 5525 */ 5526 dst_reg->type = ptr_reg->type; 5527 dst_reg->id = ptr_reg->id; 5528 5529 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5530 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5531 return -EINVAL; 5532 5533 /* pointer types do not carry 32-bit bounds at the moment. */ 5534 __mark_reg32_unbounded(dst_reg); 5535 5536 switch (opcode) { 5537 case BPF_ADD: 5538 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5539 if (ret < 0) { 5540 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5541 return ret; 5542 } 5543 /* We can take a fixed offset as long as it doesn't overflow 5544 * the s32 'off' field 5545 */ 5546 if (known && (ptr_reg->off + smin_val == 5547 (s64)(s32)(ptr_reg->off + smin_val))) { 5548 /* pointer += K. Accumulate it into fixed offset */ 5549 dst_reg->smin_value = smin_ptr; 5550 dst_reg->smax_value = smax_ptr; 5551 dst_reg->umin_value = umin_ptr; 5552 dst_reg->umax_value = umax_ptr; 5553 dst_reg->var_off = ptr_reg->var_off; 5554 dst_reg->off = ptr_reg->off + smin_val; 5555 dst_reg->raw = ptr_reg->raw; 5556 break; 5557 } 5558 /* A new variable offset is created. Note that off_reg->off 5559 * == 0, since it's a scalar. 5560 * dst_reg gets the pointer type and since some positive 5561 * integer value was added to the pointer, give it a new 'id' 5562 * if it's a PTR_TO_PACKET. 5563 * this creates a new 'base' pointer, off_reg (variable) gets 5564 * added into the variable offset, and we copy the fixed offset 5565 * from ptr_reg. 5566 */ 5567 if (signed_add_overflows(smin_ptr, smin_val) || 5568 signed_add_overflows(smax_ptr, smax_val)) { 5569 dst_reg->smin_value = S64_MIN; 5570 dst_reg->smax_value = S64_MAX; 5571 } else { 5572 dst_reg->smin_value = smin_ptr + smin_val; 5573 dst_reg->smax_value = smax_ptr + smax_val; 5574 } 5575 if (umin_ptr + umin_val < umin_ptr || 5576 umax_ptr + umax_val < umax_ptr) { 5577 dst_reg->umin_value = 0; 5578 dst_reg->umax_value = U64_MAX; 5579 } else { 5580 dst_reg->umin_value = umin_ptr + umin_val; 5581 dst_reg->umax_value = umax_ptr + umax_val; 5582 } 5583 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5584 dst_reg->off = ptr_reg->off; 5585 dst_reg->raw = ptr_reg->raw; 5586 if (reg_is_pkt_pointer(ptr_reg)) { 5587 dst_reg->id = ++env->id_gen; 5588 /* something was added to pkt_ptr, set range to zero */ 5589 dst_reg->raw = 0; 5590 } 5591 break; 5592 case BPF_SUB: 5593 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5594 if (ret < 0) { 5595 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5596 return ret; 5597 } 5598 if (dst_reg == off_reg) { 5599 /* scalar -= pointer. Creates an unknown scalar */ 5600 verbose(env, "R%d tried to subtract pointer from scalar\n", 5601 dst); 5602 return -EACCES; 5603 } 5604 /* We don't allow subtraction from FP, because (according to 5605 * test_verifier.c test "invalid fp arithmetic", JITs might not 5606 * be able to deal with it. 5607 */ 5608 if (ptr_reg->type == PTR_TO_STACK) { 5609 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5610 dst); 5611 return -EACCES; 5612 } 5613 if (known && (ptr_reg->off - smin_val == 5614 (s64)(s32)(ptr_reg->off - smin_val))) { 5615 /* pointer -= K. Subtract it from fixed offset */ 5616 dst_reg->smin_value = smin_ptr; 5617 dst_reg->smax_value = smax_ptr; 5618 dst_reg->umin_value = umin_ptr; 5619 dst_reg->umax_value = umax_ptr; 5620 dst_reg->var_off = ptr_reg->var_off; 5621 dst_reg->id = ptr_reg->id; 5622 dst_reg->off = ptr_reg->off - smin_val; 5623 dst_reg->raw = ptr_reg->raw; 5624 break; 5625 } 5626 /* A new variable offset is created. If the subtrahend is known 5627 * nonnegative, then any reg->range we had before is still good. 5628 */ 5629 if (signed_sub_overflows(smin_ptr, smax_val) || 5630 signed_sub_overflows(smax_ptr, smin_val)) { 5631 /* Overflow possible, we know nothing */ 5632 dst_reg->smin_value = S64_MIN; 5633 dst_reg->smax_value = S64_MAX; 5634 } else { 5635 dst_reg->smin_value = smin_ptr - smax_val; 5636 dst_reg->smax_value = smax_ptr - smin_val; 5637 } 5638 if (umin_ptr < umax_val) { 5639 /* Overflow possible, we know nothing */ 5640 dst_reg->umin_value = 0; 5641 dst_reg->umax_value = U64_MAX; 5642 } else { 5643 /* Cannot overflow (as long as bounds are consistent) */ 5644 dst_reg->umin_value = umin_ptr - umax_val; 5645 dst_reg->umax_value = umax_ptr - umin_val; 5646 } 5647 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5648 dst_reg->off = ptr_reg->off; 5649 dst_reg->raw = ptr_reg->raw; 5650 if (reg_is_pkt_pointer(ptr_reg)) { 5651 dst_reg->id = ++env->id_gen; 5652 /* something was added to pkt_ptr, set range to zero */ 5653 if (smin_val < 0) 5654 dst_reg->raw = 0; 5655 } 5656 break; 5657 case BPF_AND: 5658 case BPF_OR: 5659 case BPF_XOR: 5660 /* bitwise ops on pointers are troublesome, prohibit. */ 5661 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5662 dst, bpf_alu_string[opcode >> 4]); 5663 return -EACCES; 5664 default: 5665 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5666 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5667 dst, bpf_alu_string[opcode >> 4]); 5668 return -EACCES; 5669 } 5670 5671 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5672 return -EINVAL; 5673 5674 __update_reg_bounds(dst_reg); 5675 __reg_deduce_bounds(dst_reg); 5676 __reg_bound_offset(dst_reg); 5677 5678 /* For unprivileged we require that resulting offset must be in bounds 5679 * in order to be able to sanitize access later on. 5680 */ 5681 if (!env->bypass_spec_v1) { 5682 if (dst_reg->type == PTR_TO_MAP_VALUE && 5683 check_map_access(env, dst, dst_reg->off, 1, false)) { 5684 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5685 "prohibited for !root\n", dst); 5686 return -EACCES; 5687 } else if (dst_reg->type == PTR_TO_STACK && 5688 check_stack_access(env, dst_reg, dst_reg->off + 5689 dst_reg->var_off.value, 1)) { 5690 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5691 "prohibited for !root\n", dst); 5692 return -EACCES; 5693 } 5694 } 5695 5696 return 0; 5697 } 5698 5699 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5700 struct bpf_reg_state *src_reg) 5701 { 5702 s32 smin_val = src_reg->s32_min_value; 5703 s32 smax_val = src_reg->s32_max_value; 5704 u32 umin_val = src_reg->u32_min_value; 5705 u32 umax_val = src_reg->u32_max_value; 5706 5707 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5708 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5709 dst_reg->s32_min_value = S32_MIN; 5710 dst_reg->s32_max_value = S32_MAX; 5711 } else { 5712 dst_reg->s32_min_value += smin_val; 5713 dst_reg->s32_max_value += smax_val; 5714 } 5715 if (dst_reg->u32_min_value + umin_val < umin_val || 5716 dst_reg->u32_max_value + umax_val < umax_val) { 5717 dst_reg->u32_min_value = 0; 5718 dst_reg->u32_max_value = U32_MAX; 5719 } else { 5720 dst_reg->u32_min_value += umin_val; 5721 dst_reg->u32_max_value += umax_val; 5722 } 5723 } 5724 5725 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5726 struct bpf_reg_state *src_reg) 5727 { 5728 s64 smin_val = src_reg->smin_value; 5729 s64 smax_val = src_reg->smax_value; 5730 u64 umin_val = src_reg->umin_value; 5731 u64 umax_val = src_reg->umax_value; 5732 5733 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5734 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5735 dst_reg->smin_value = S64_MIN; 5736 dst_reg->smax_value = S64_MAX; 5737 } else { 5738 dst_reg->smin_value += smin_val; 5739 dst_reg->smax_value += smax_val; 5740 } 5741 if (dst_reg->umin_value + umin_val < umin_val || 5742 dst_reg->umax_value + umax_val < umax_val) { 5743 dst_reg->umin_value = 0; 5744 dst_reg->umax_value = U64_MAX; 5745 } else { 5746 dst_reg->umin_value += umin_val; 5747 dst_reg->umax_value += umax_val; 5748 } 5749 } 5750 5751 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5752 struct bpf_reg_state *src_reg) 5753 { 5754 s32 smin_val = src_reg->s32_min_value; 5755 s32 smax_val = src_reg->s32_max_value; 5756 u32 umin_val = src_reg->u32_min_value; 5757 u32 umax_val = src_reg->u32_max_value; 5758 5759 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5760 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5761 /* Overflow possible, we know nothing */ 5762 dst_reg->s32_min_value = S32_MIN; 5763 dst_reg->s32_max_value = S32_MAX; 5764 } else { 5765 dst_reg->s32_min_value -= smax_val; 5766 dst_reg->s32_max_value -= smin_val; 5767 } 5768 if (dst_reg->u32_min_value < umax_val) { 5769 /* Overflow possible, we know nothing */ 5770 dst_reg->u32_min_value = 0; 5771 dst_reg->u32_max_value = U32_MAX; 5772 } else { 5773 /* Cannot overflow (as long as bounds are consistent) */ 5774 dst_reg->u32_min_value -= umax_val; 5775 dst_reg->u32_max_value -= umin_val; 5776 } 5777 } 5778 5779 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5780 struct bpf_reg_state *src_reg) 5781 { 5782 s64 smin_val = src_reg->smin_value; 5783 s64 smax_val = src_reg->smax_value; 5784 u64 umin_val = src_reg->umin_value; 5785 u64 umax_val = src_reg->umax_value; 5786 5787 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5788 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5789 /* Overflow possible, we know nothing */ 5790 dst_reg->smin_value = S64_MIN; 5791 dst_reg->smax_value = S64_MAX; 5792 } else { 5793 dst_reg->smin_value -= smax_val; 5794 dst_reg->smax_value -= smin_val; 5795 } 5796 if (dst_reg->umin_value < umax_val) { 5797 /* Overflow possible, we know nothing */ 5798 dst_reg->umin_value = 0; 5799 dst_reg->umax_value = U64_MAX; 5800 } else { 5801 /* Cannot overflow (as long as bounds are consistent) */ 5802 dst_reg->umin_value -= umax_val; 5803 dst_reg->umax_value -= umin_val; 5804 } 5805 } 5806 5807 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5808 struct bpf_reg_state *src_reg) 5809 { 5810 s32 smin_val = src_reg->s32_min_value; 5811 u32 umin_val = src_reg->u32_min_value; 5812 u32 umax_val = src_reg->u32_max_value; 5813 5814 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5815 /* Ain't nobody got time to multiply that sign */ 5816 __mark_reg32_unbounded(dst_reg); 5817 return; 5818 } 5819 /* Both values are positive, so we can work with unsigned and 5820 * copy the result to signed (unless it exceeds S32_MAX). 5821 */ 5822 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5823 /* Potential overflow, we know nothing */ 5824 __mark_reg32_unbounded(dst_reg); 5825 return; 5826 } 5827 dst_reg->u32_min_value *= umin_val; 5828 dst_reg->u32_max_value *= umax_val; 5829 if (dst_reg->u32_max_value > S32_MAX) { 5830 /* Overflow possible, we know nothing */ 5831 dst_reg->s32_min_value = S32_MIN; 5832 dst_reg->s32_max_value = S32_MAX; 5833 } else { 5834 dst_reg->s32_min_value = dst_reg->u32_min_value; 5835 dst_reg->s32_max_value = dst_reg->u32_max_value; 5836 } 5837 } 5838 5839 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5840 struct bpf_reg_state *src_reg) 5841 { 5842 s64 smin_val = src_reg->smin_value; 5843 u64 umin_val = src_reg->umin_value; 5844 u64 umax_val = src_reg->umax_value; 5845 5846 if (smin_val < 0 || dst_reg->smin_value < 0) { 5847 /* Ain't nobody got time to multiply that sign */ 5848 __mark_reg64_unbounded(dst_reg); 5849 return; 5850 } 5851 /* Both values are positive, so we can work with unsigned and 5852 * copy the result to signed (unless it exceeds S64_MAX). 5853 */ 5854 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5855 /* Potential overflow, we know nothing */ 5856 __mark_reg64_unbounded(dst_reg); 5857 return; 5858 } 5859 dst_reg->umin_value *= umin_val; 5860 dst_reg->umax_value *= umax_val; 5861 if (dst_reg->umax_value > S64_MAX) { 5862 /* Overflow possible, we know nothing */ 5863 dst_reg->smin_value = S64_MIN; 5864 dst_reg->smax_value = S64_MAX; 5865 } else { 5866 dst_reg->smin_value = dst_reg->umin_value; 5867 dst_reg->smax_value = dst_reg->umax_value; 5868 } 5869 } 5870 5871 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5872 struct bpf_reg_state *src_reg) 5873 { 5874 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5875 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5876 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5877 s32 smin_val = src_reg->s32_min_value; 5878 u32 umax_val = src_reg->u32_max_value; 5879 5880 /* Assuming scalar64_min_max_and will be called so its safe 5881 * to skip updating register for known 32-bit case. 5882 */ 5883 if (src_known && dst_known) 5884 return; 5885 5886 /* We get our minimum from the var_off, since that's inherently 5887 * bitwise. Our maximum is the minimum of the operands' maxima. 5888 */ 5889 dst_reg->u32_min_value = var32_off.value; 5890 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5891 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5892 /* Lose signed bounds when ANDing negative numbers, 5893 * ain't nobody got time for that. 5894 */ 5895 dst_reg->s32_min_value = S32_MIN; 5896 dst_reg->s32_max_value = S32_MAX; 5897 } else { 5898 /* ANDing two positives gives a positive, so safe to 5899 * cast result into s64. 5900 */ 5901 dst_reg->s32_min_value = dst_reg->u32_min_value; 5902 dst_reg->s32_max_value = dst_reg->u32_max_value; 5903 } 5904 5905 } 5906 5907 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5908 struct bpf_reg_state *src_reg) 5909 { 5910 bool src_known = tnum_is_const(src_reg->var_off); 5911 bool dst_known = tnum_is_const(dst_reg->var_off); 5912 s64 smin_val = src_reg->smin_value; 5913 u64 umax_val = src_reg->umax_value; 5914 5915 if (src_known && dst_known) { 5916 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5917 return; 5918 } 5919 5920 /* We get our minimum from the var_off, since that's inherently 5921 * bitwise. Our maximum is the minimum of the operands' maxima. 5922 */ 5923 dst_reg->umin_value = dst_reg->var_off.value; 5924 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5925 if (dst_reg->smin_value < 0 || smin_val < 0) { 5926 /* Lose signed bounds when ANDing negative numbers, 5927 * ain't nobody got time for that. 5928 */ 5929 dst_reg->smin_value = S64_MIN; 5930 dst_reg->smax_value = S64_MAX; 5931 } else { 5932 /* ANDing two positives gives a positive, so safe to 5933 * cast result into s64. 5934 */ 5935 dst_reg->smin_value = dst_reg->umin_value; 5936 dst_reg->smax_value = dst_reg->umax_value; 5937 } 5938 /* We may learn something more from the var_off */ 5939 __update_reg_bounds(dst_reg); 5940 } 5941 5942 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5943 struct bpf_reg_state *src_reg) 5944 { 5945 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5946 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5947 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5948 s32 smin_val = src_reg->s32_min_value; 5949 u32 umin_val = src_reg->u32_min_value; 5950 5951 /* Assuming scalar64_min_max_or will be called so it is safe 5952 * to skip updating register for known case. 5953 */ 5954 if (src_known && dst_known) 5955 return; 5956 5957 /* We get our maximum from the var_off, and our minimum is the 5958 * maximum of the operands' minima 5959 */ 5960 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5961 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5962 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5963 /* Lose signed bounds when ORing negative numbers, 5964 * ain't nobody got time for that. 5965 */ 5966 dst_reg->s32_min_value = S32_MIN; 5967 dst_reg->s32_max_value = S32_MAX; 5968 } else { 5969 /* ORing two positives gives a positive, so safe to 5970 * cast result into s64. 5971 */ 5972 dst_reg->s32_min_value = dst_reg->u32_min_value; 5973 dst_reg->s32_max_value = dst_reg->u32_max_value; 5974 } 5975 } 5976 5977 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5978 struct bpf_reg_state *src_reg) 5979 { 5980 bool src_known = tnum_is_const(src_reg->var_off); 5981 bool dst_known = tnum_is_const(dst_reg->var_off); 5982 s64 smin_val = src_reg->smin_value; 5983 u64 umin_val = src_reg->umin_value; 5984 5985 if (src_known && dst_known) { 5986 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5987 return; 5988 } 5989 5990 /* We get our maximum from the var_off, and our minimum is the 5991 * maximum of the operands' minima 5992 */ 5993 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5994 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5995 if (dst_reg->smin_value < 0 || smin_val < 0) { 5996 /* Lose signed bounds when ORing negative numbers, 5997 * ain't nobody got time for that. 5998 */ 5999 dst_reg->smin_value = S64_MIN; 6000 dst_reg->smax_value = S64_MAX; 6001 } else { 6002 /* ORing two positives gives a positive, so safe to 6003 * cast result into s64. 6004 */ 6005 dst_reg->smin_value = dst_reg->umin_value; 6006 dst_reg->smax_value = dst_reg->umax_value; 6007 } 6008 /* We may learn something more from the var_off */ 6009 __update_reg_bounds(dst_reg); 6010 } 6011 6012 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6013 struct bpf_reg_state *src_reg) 6014 { 6015 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6016 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6017 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6018 s32 smin_val = src_reg->s32_min_value; 6019 6020 /* Assuming scalar64_min_max_xor will be called so it is safe 6021 * to skip updating register for known case. 6022 */ 6023 if (src_known && dst_known) 6024 return; 6025 6026 /* We get both minimum and maximum from the var32_off. */ 6027 dst_reg->u32_min_value = var32_off.value; 6028 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6029 6030 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6031 /* XORing two positive sign numbers gives a positive, 6032 * so safe to cast u32 result into s32. 6033 */ 6034 dst_reg->s32_min_value = dst_reg->u32_min_value; 6035 dst_reg->s32_max_value = dst_reg->u32_max_value; 6036 } else { 6037 dst_reg->s32_min_value = S32_MIN; 6038 dst_reg->s32_max_value = S32_MAX; 6039 } 6040 } 6041 6042 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6043 struct bpf_reg_state *src_reg) 6044 { 6045 bool src_known = tnum_is_const(src_reg->var_off); 6046 bool dst_known = tnum_is_const(dst_reg->var_off); 6047 s64 smin_val = src_reg->smin_value; 6048 6049 if (src_known && dst_known) { 6050 /* dst_reg->var_off.value has been updated earlier */ 6051 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6052 return; 6053 } 6054 6055 /* We get both minimum and maximum from the var_off. */ 6056 dst_reg->umin_value = dst_reg->var_off.value; 6057 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6058 6059 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6060 /* XORing two positive sign numbers gives a positive, 6061 * so safe to cast u64 result into s64. 6062 */ 6063 dst_reg->smin_value = dst_reg->umin_value; 6064 dst_reg->smax_value = dst_reg->umax_value; 6065 } else { 6066 dst_reg->smin_value = S64_MIN; 6067 dst_reg->smax_value = S64_MAX; 6068 } 6069 6070 __update_reg_bounds(dst_reg); 6071 } 6072 6073 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6074 u64 umin_val, u64 umax_val) 6075 { 6076 /* We lose all sign bit information (except what we can pick 6077 * up from var_off) 6078 */ 6079 dst_reg->s32_min_value = S32_MIN; 6080 dst_reg->s32_max_value = S32_MAX; 6081 /* If we might shift our top bit out, then we know nothing */ 6082 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6083 dst_reg->u32_min_value = 0; 6084 dst_reg->u32_max_value = U32_MAX; 6085 } else { 6086 dst_reg->u32_min_value <<= umin_val; 6087 dst_reg->u32_max_value <<= umax_val; 6088 } 6089 } 6090 6091 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6092 struct bpf_reg_state *src_reg) 6093 { 6094 u32 umax_val = src_reg->u32_max_value; 6095 u32 umin_val = src_reg->u32_min_value; 6096 /* u32 alu operation will zext upper bits */ 6097 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6098 6099 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6100 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6101 /* Not required but being careful mark reg64 bounds as unknown so 6102 * that we are forced to pick them up from tnum and zext later and 6103 * if some path skips this step we are still safe. 6104 */ 6105 __mark_reg64_unbounded(dst_reg); 6106 __update_reg32_bounds(dst_reg); 6107 } 6108 6109 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6110 u64 umin_val, u64 umax_val) 6111 { 6112 /* Special case <<32 because it is a common compiler pattern to sign 6113 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6114 * positive we know this shift will also be positive so we can track 6115 * bounds correctly. Otherwise we lose all sign bit information except 6116 * what we can pick up from var_off. Perhaps we can generalize this 6117 * later to shifts of any length. 6118 */ 6119 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6120 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6121 else 6122 dst_reg->smax_value = S64_MAX; 6123 6124 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6125 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6126 else 6127 dst_reg->smin_value = S64_MIN; 6128 6129 /* If we might shift our top bit out, then we know nothing */ 6130 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6131 dst_reg->umin_value = 0; 6132 dst_reg->umax_value = U64_MAX; 6133 } else { 6134 dst_reg->umin_value <<= umin_val; 6135 dst_reg->umax_value <<= umax_val; 6136 } 6137 } 6138 6139 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6140 struct bpf_reg_state *src_reg) 6141 { 6142 u64 umax_val = src_reg->umax_value; 6143 u64 umin_val = src_reg->umin_value; 6144 6145 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6146 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6147 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6148 6149 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6150 /* We may learn something more from the var_off */ 6151 __update_reg_bounds(dst_reg); 6152 } 6153 6154 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6155 struct bpf_reg_state *src_reg) 6156 { 6157 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6158 u32 umax_val = src_reg->u32_max_value; 6159 u32 umin_val = src_reg->u32_min_value; 6160 6161 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6162 * be negative, then either: 6163 * 1) src_reg might be zero, so the sign bit of the result is 6164 * unknown, so we lose our signed bounds 6165 * 2) it's known negative, thus the unsigned bounds capture the 6166 * signed bounds 6167 * 3) the signed bounds cross zero, so they tell us nothing 6168 * about the result 6169 * If the value in dst_reg is known nonnegative, then again the 6170 * unsigned bounts capture the signed bounds. 6171 * Thus, in all cases it suffices to blow away our signed bounds 6172 * and rely on inferring new ones from the unsigned bounds and 6173 * var_off of the result. 6174 */ 6175 dst_reg->s32_min_value = S32_MIN; 6176 dst_reg->s32_max_value = S32_MAX; 6177 6178 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6179 dst_reg->u32_min_value >>= umax_val; 6180 dst_reg->u32_max_value >>= umin_val; 6181 6182 __mark_reg64_unbounded(dst_reg); 6183 __update_reg32_bounds(dst_reg); 6184 } 6185 6186 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6187 struct bpf_reg_state *src_reg) 6188 { 6189 u64 umax_val = src_reg->umax_value; 6190 u64 umin_val = src_reg->umin_value; 6191 6192 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6193 * be negative, then either: 6194 * 1) src_reg might be zero, so the sign bit of the result is 6195 * unknown, so we lose our signed bounds 6196 * 2) it's known negative, thus the unsigned bounds capture the 6197 * signed bounds 6198 * 3) the signed bounds cross zero, so they tell us nothing 6199 * about the result 6200 * If the value in dst_reg is known nonnegative, then again the 6201 * unsigned bounts capture the signed bounds. 6202 * Thus, in all cases it suffices to blow away our signed bounds 6203 * and rely on inferring new ones from the unsigned bounds and 6204 * var_off of the result. 6205 */ 6206 dst_reg->smin_value = S64_MIN; 6207 dst_reg->smax_value = S64_MAX; 6208 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6209 dst_reg->umin_value >>= umax_val; 6210 dst_reg->umax_value >>= umin_val; 6211 6212 /* Its not easy to operate on alu32 bounds here because it depends 6213 * on bits being shifted in. Take easy way out and mark unbounded 6214 * so we can recalculate later from tnum. 6215 */ 6216 __mark_reg32_unbounded(dst_reg); 6217 __update_reg_bounds(dst_reg); 6218 } 6219 6220 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6221 struct bpf_reg_state *src_reg) 6222 { 6223 u64 umin_val = src_reg->u32_min_value; 6224 6225 /* Upon reaching here, src_known is true and 6226 * umax_val is equal to umin_val. 6227 */ 6228 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6229 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6230 6231 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6232 6233 /* blow away the dst_reg umin_value/umax_value and rely on 6234 * dst_reg var_off to refine the result. 6235 */ 6236 dst_reg->u32_min_value = 0; 6237 dst_reg->u32_max_value = U32_MAX; 6238 6239 __mark_reg64_unbounded(dst_reg); 6240 __update_reg32_bounds(dst_reg); 6241 } 6242 6243 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6244 struct bpf_reg_state *src_reg) 6245 { 6246 u64 umin_val = src_reg->umin_value; 6247 6248 /* Upon reaching here, src_known is true and umax_val is equal 6249 * to umin_val. 6250 */ 6251 dst_reg->smin_value >>= umin_val; 6252 dst_reg->smax_value >>= umin_val; 6253 6254 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6255 6256 /* blow away the dst_reg umin_value/umax_value and rely on 6257 * dst_reg var_off to refine the result. 6258 */ 6259 dst_reg->umin_value = 0; 6260 dst_reg->umax_value = U64_MAX; 6261 6262 /* Its not easy to operate on alu32 bounds here because it depends 6263 * on bits being shifted in from upper 32-bits. Take easy way out 6264 * and mark unbounded so we can recalculate later from tnum. 6265 */ 6266 __mark_reg32_unbounded(dst_reg); 6267 __update_reg_bounds(dst_reg); 6268 } 6269 6270 /* WARNING: This function does calculations on 64-bit values, but the actual 6271 * execution may occur on 32-bit values. Therefore, things like bitshifts 6272 * need extra checks in the 32-bit case. 6273 */ 6274 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6275 struct bpf_insn *insn, 6276 struct bpf_reg_state *dst_reg, 6277 struct bpf_reg_state src_reg) 6278 { 6279 struct bpf_reg_state *regs = cur_regs(env); 6280 u8 opcode = BPF_OP(insn->code); 6281 bool src_known; 6282 s64 smin_val, smax_val; 6283 u64 umin_val, umax_val; 6284 s32 s32_min_val, s32_max_val; 6285 u32 u32_min_val, u32_max_val; 6286 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6287 u32 dst = insn->dst_reg; 6288 int ret; 6289 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6290 6291 smin_val = src_reg.smin_value; 6292 smax_val = src_reg.smax_value; 6293 umin_val = src_reg.umin_value; 6294 umax_val = src_reg.umax_value; 6295 6296 s32_min_val = src_reg.s32_min_value; 6297 s32_max_val = src_reg.s32_max_value; 6298 u32_min_val = src_reg.u32_min_value; 6299 u32_max_val = src_reg.u32_max_value; 6300 6301 if (alu32) { 6302 src_known = tnum_subreg_is_const(src_reg.var_off); 6303 if ((src_known && 6304 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6305 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6306 /* Taint dst register if offset had invalid bounds 6307 * derived from e.g. dead branches. 6308 */ 6309 __mark_reg_unknown(env, dst_reg); 6310 return 0; 6311 } 6312 } else { 6313 src_known = tnum_is_const(src_reg.var_off); 6314 if ((src_known && 6315 (smin_val != smax_val || umin_val != umax_val)) || 6316 smin_val > smax_val || umin_val > umax_val) { 6317 /* Taint dst register if offset had invalid bounds 6318 * derived from e.g. dead branches. 6319 */ 6320 __mark_reg_unknown(env, dst_reg); 6321 return 0; 6322 } 6323 } 6324 6325 if (!src_known && 6326 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6327 __mark_reg_unknown(env, dst_reg); 6328 return 0; 6329 } 6330 6331 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6332 * There are two classes of instructions: The first class we track both 6333 * alu32 and alu64 sign/unsigned bounds independently this provides the 6334 * greatest amount of precision when alu operations are mixed with jmp32 6335 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6336 * and BPF_OR. This is possible because these ops have fairly easy to 6337 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6338 * See alu32 verifier tests for examples. The second class of 6339 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6340 * with regards to tracking sign/unsigned bounds because the bits may 6341 * cross subreg boundaries in the alu64 case. When this happens we mark 6342 * the reg unbounded in the subreg bound space and use the resulting 6343 * tnum to calculate an approximation of the sign/unsigned bounds. 6344 */ 6345 switch (opcode) { 6346 case BPF_ADD: 6347 ret = sanitize_val_alu(env, insn); 6348 if (ret < 0) { 6349 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6350 return ret; 6351 } 6352 scalar32_min_max_add(dst_reg, &src_reg); 6353 scalar_min_max_add(dst_reg, &src_reg); 6354 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6355 break; 6356 case BPF_SUB: 6357 ret = sanitize_val_alu(env, insn); 6358 if (ret < 0) { 6359 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6360 return ret; 6361 } 6362 scalar32_min_max_sub(dst_reg, &src_reg); 6363 scalar_min_max_sub(dst_reg, &src_reg); 6364 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6365 break; 6366 case BPF_MUL: 6367 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6368 scalar32_min_max_mul(dst_reg, &src_reg); 6369 scalar_min_max_mul(dst_reg, &src_reg); 6370 break; 6371 case BPF_AND: 6372 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6373 scalar32_min_max_and(dst_reg, &src_reg); 6374 scalar_min_max_and(dst_reg, &src_reg); 6375 break; 6376 case BPF_OR: 6377 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6378 scalar32_min_max_or(dst_reg, &src_reg); 6379 scalar_min_max_or(dst_reg, &src_reg); 6380 break; 6381 case BPF_XOR: 6382 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6383 scalar32_min_max_xor(dst_reg, &src_reg); 6384 scalar_min_max_xor(dst_reg, &src_reg); 6385 break; 6386 case BPF_LSH: 6387 if (umax_val >= insn_bitness) { 6388 /* Shifts greater than 31 or 63 are undefined. 6389 * This includes shifts by a negative number. 6390 */ 6391 mark_reg_unknown(env, regs, insn->dst_reg); 6392 break; 6393 } 6394 if (alu32) 6395 scalar32_min_max_lsh(dst_reg, &src_reg); 6396 else 6397 scalar_min_max_lsh(dst_reg, &src_reg); 6398 break; 6399 case BPF_RSH: 6400 if (umax_val >= insn_bitness) { 6401 /* Shifts greater than 31 or 63 are undefined. 6402 * This includes shifts by a negative number. 6403 */ 6404 mark_reg_unknown(env, regs, insn->dst_reg); 6405 break; 6406 } 6407 if (alu32) 6408 scalar32_min_max_rsh(dst_reg, &src_reg); 6409 else 6410 scalar_min_max_rsh(dst_reg, &src_reg); 6411 break; 6412 case BPF_ARSH: 6413 if (umax_val >= insn_bitness) { 6414 /* Shifts greater than 31 or 63 are undefined. 6415 * This includes shifts by a negative number. 6416 */ 6417 mark_reg_unknown(env, regs, insn->dst_reg); 6418 break; 6419 } 6420 if (alu32) 6421 scalar32_min_max_arsh(dst_reg, &src_reg); 6422 else 6423 scalar_min_max_arsh(dst_reg, &src_reg); 6424 break; 6425 default: 6426 mark_reg_unknown(env, regs, insn->dst_reg); 6427 break; 6428 } 6429 6430 /* ALU32 ops are zero extended into 64bit register */ 6431 if (alu32) 6432 zext_32_to_64(dst_reg); 6433 6434 __update_reg_bounds(dst_reg); 6435 __reg_deduce_bounds(dst_reg); 6436 __reg_bound_offset(dst_reg); 6437 return 0; 6438 } 6439 6440 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6441 * and var_off. 6442 */ 6443 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6444 struct bpf_insn *insn) 6445 { 6446 struct bpf_verifier_state *vstate = env->cur_state; 6447 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6448 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6449 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6450 u8 opcode = BPF_OP(insn->code); 6451 int err; 6452 6453 dst_reg = ®s[insn->dst_reg]; 6454 src_reg = NULL; 6455 if (dst_reg->type != SCALAR_VALUE) 6456 ptr_reg = dst_reg; 6457 else 6458 /* Make sure ID is cleared otherwise dst_reg min/max could be 6459 * incorrectly propagated into other registers by find_equal_scalars() 6460 */ 6461 dst_reg->id = 0; 6462 if (BPF_SRC(insn->code) == BPF_X) { 6463 src_reg = ®s[insn->src_reg]; 6464 if (src_reg->type != SCALAR_VALUE) { 6465 if (dst_reg->type != SCALAR_VALUE) { 6466 /* Combining two pointers by any ALU op yields 6467 * an arbitrary scalar. Disallow all math except 6468 * pointer subtraction 6469 */ 6470 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6471 mark_reg_unknown(env, regs, insn->dst_reg); 6472 return 0; 6473 } 6474 verbose(env, "R%d pointer %s pointer prohibited\n", 6475 insn->dst_reg, 6476 bpf_alu_string[opcode >> 4]); 6477 return -EACCES; 6478 } else { 6479 /* scalar += pointer 6480 * This is legal, but we have to reverse our 6481 * src/dest handling in computing the range 6482 */ 6483 err = mark_chain_precision(env, insn->dst_reg); 6484 if (err) 6485 return err; 6486 return adjust_ptr_min_max_vals(env, insn, 6487 src_reg, dst_reg); 6488 } 6489 } else if (ptr_reg) { 6490 /* pointer += scalar */ 6491 err = mark_chain_precision(env, insn->src_reg); 6492 if (err) 6493 return err; 6494 return adjust_ptr_min_max_vals(env, insn, 6495 dst_reg, src_reg); 6496 } 6497 } else { 6498 /* Pretend the src is a reg with a known value, since we only 6499 * need to be able to read from this state. 6500 */ 6501 off_reg.type = SCALAR_VALUE; 6502 __mark_reg_known(&off_reg, insn->imm); 6503 src_reg = &off_reg; 6504 if (ptr_reg) /* pointer += K */ 6505 return adjust_ptr_min_max_vals(env, insn, 6506 ptr_reg, src_reg); 6507 } 6508 6509 /* Got here implies adding two SCALAR_VALUEs */ 6510 if (WARN_ON_ONCE(ptr_reg)) { 6511 print_verifier_state(env, state); 6512 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6513 return -EINVAL; 6514 } 6515 if (WARN_ON(!src_reg)) { 6516 print_verifier_state(env, state); 6517 verbose(env, "verifier internal error: no src_reg\n"); 6518 return -EINVAL; 6519 } 6520 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6521 } 6522 6523 /* check validity of 32-bit and 64-bit arithmetic operations */ 6524 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6525 { 6526 struct bpf_reg_state *regs = cur_regs(env); 6527 u8 opcode = BPF_OP(insn->code); 6528 int err; 6529 6530 if (opcode == BPF_END || opcode == BPF_NEG) { 6531 if (opcode == BPF_NEG) { 6532 if (BPF_SRC(insn->code) != 0 || 6533 insn->src_reg != BPF_REG_0 || 6534 insn->off != 0 || insn->imm != 0) { 6535 verbose(env, "BPF_NEG uses reserved fields\n"); 6536 return -EINVAL; 6537 } 6538 } else { 6539 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6540 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6541 BPF_CLASS(insn->code) == BPF_ALU64) { 6542 verbose(env, "BPF_END uses reserved fields\n"); 6543 return -EINVAL; 6544 } 6545 } 6546 6547 /* check src operand */ 6548 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6549 if (err) 6550 return err; 6551 6552 if (is_pointer_value(env, insn->dst_reg)) { 6553 verbose(env, "R%d pointer arithmetic prohibited\n", 6554 insn->dst_reg); 6555 return -EACCES; 6556 } 6557 6558 /* check dest operand */ 6559 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6560 if (err) 6561 return err; 6562 6563 } else if (opcode == BPF_MOV) { 6564 6565 if (BPF_SRC(insn->code) == BPF_X) { 6566 if (insn->imm != 0 || insn->off != 0) { 6567 verbose(env, "BPF_MOV uses reserved fields\n"); 6568 return -EINVAL; 6569 } 6570 6571 /* check src operand */ 6572 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6573 if (err) 6574 return err; 6575 } else { 6576 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6577 verbose(env, "BPF_MOV uses reserved fields\n"); 6578 return -EINVAL; 6579 } 6580 } 6581 6582 /* check dest operand, mark as required later */ 6583 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6584 if (err) 6585 return err; 6586 6587 if (BPF_SRC(insn->code) == BPF_X) { 6588 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6589 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6590 6591 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6592 /* case: R1 = R2 6593 * copy register state to dest reg 6594 */ 6595 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 6596 /* Assign src and dst registers the same ID 6597 * that will be used by find_equal_scalars() 6598 * to propagate min/max range. 6599 */ 6600 src_reg->id = ++env->id_gen; 6601 *dst_reg = *src_reg; 6602 dst_reg->live |= REG_LIVE_WRITTEN; 6603 dst_reg->subreg_def = DEF_NOT_SUBREG; 6604 } else { 6605 /* R1 = (u32) R2 */ 6606 if (is_pointer_value(env, insn->src_reg)) { 6607 verbose(env, 6608 "R%d partial copy of pointer\n", 6609 insn->src_reg); 6610 return -EACCES; 6611 } else if (src_reg->type == SCALAR_VALUE) { 6612 *dst_reg = *src_reg; 6613 /* Make sure ID is cleared otherwise 6614 * dst_reg min/max could be incorrectly 6615 * propagated into src_reg by find_equal_scalars() 6616 */ 6617 dst_reg->id = 0; 6618 dst_reg->live |= REG_LIVE_WRITTEN; 6619 dst_reg->subreg_def = env->insn_idx + 1; 6620 } else { 6621 mark_reg_unknown(env, regs, 6622 insn->dst_reg); 6623 } 6624 zext_32_to_64(dst_reg); 6625 } 6626 } else { 6627 /* case: R = imm 6628 * remember the value we stored into this reg 6629 */ 6630 /* clear any state __mark_reg_known doesn't set */ 6631 mark_reg_unknown(env, regs, insn->dst_reg); 6632 regs[insn->dst_reg].type = SCALAR_VALUE; 6633 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6634 __mark_reg_known(regs + insn->dst_reg, 6635 insn->imm); 6636 } else { 6637 __mark_reg_known(regs + insn->dst_reg, 6638 (u32)insn->imm); 6639 } 6640 } 6641 6642 } else if (opcode > BPF_END) { 6643 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6644 return -EINVAL; 6645 6646 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6647 6648 if (BPF_SRC(insn->code) == BPF_X) { 6649 if (insn->imm != 0 || insn->off != 0) { 6650 verbose(env, "BPF_ALU uses reserved fields\n"); 6651 return -EINVAL; 6652 } 6653 /* check src1 operand */ 6654 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6655 if (err) 6656 return err; 6657 } else { 6658 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6659 verbose(env, "BPF_ALU uses reserved fields\n"); 6660 return -EINVAL; 6661 } 6662 } 6663 6664 /* check src2 operand */ 6665 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6666 if (err) 6667 return err; 6668 6669 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6670 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6671 verbose(env, "div by zero\n"); 6672 return -EINVAL; 6673 } 6674 6675 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6676 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6677 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6678 6679 if (insn->imm < 0 || insn->imm >= size) { 6680 verbose(env, "invalid shift %d\n", insn->imm); 6681 return -EINVAL; 6682 } 6683 } 6684 6685 /* check dest operand */ 6686 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6687 if (err) 6688 return err; 6689 6690 return adjust_reg_min_max_vals(env, insn); 6691 } 6692 6693 return 0; 6694 } 6695 6696 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6697 struct bpf_reg_state *dst_reg, 6698 enum bpf_reg_type type, u16 new_range) 6699 { 6700 struct bpf_reg_state *reg; 6701 int i; 6702 6703 for (i = 0; i < MAX_BPF_REG; i++) { 6704 reg = &state->regs[i]; 6705 if (reg->type == type && reg->id == dst_reg->id) 6706 /* keep the maximum range already checked */ 6707 reg->range = max(reg->range, new_range); 6708 } 6709 6710 bpf_for_each_spilled_reg(i, state, reg) { 6711 if (!reg) 6712 continue; 6713 if (reg->type == type && reg->id == dst_reg->id) 6714 reg->range = max(reg->range, new_range); 6715 } 6716 } 6717 6718 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6719 struct bpf_reg_state *dst_reg, 6720 enum bpf_reg_type type, 6721 bool range_right_open) 6722 { 6723 u16 new_range; 6724 int i; 6725 6726 if (dst_reg->off < 0 || 6727 (dst_reg->off == 0 && range_right_open)) 6728 /* This doesn't give us any range */ 6729 return; 6730 6731 if (dst_reg->umax_value > MAX_PACKET_OFF || 6732 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6733 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6734 * than pkt_end, but that's because it's also less than pkt. 6735 */ 6736 return; 6737 6738 new_range = dst_reg->off; 6739 if (range_right_open) 6740 new_range--; 6741 6742 /* Examples for register markings: 6743 * 6744 * pkt_data in dst register: 6745 * 6746 * r2 = r3; 6747 * r2 += 8; 6748 * if (r2 > pkt_end) goto <handle exception> 6749 * <access okay> 6750 * 6751 * r2 = r3; 6752 * r2 += 8; 6753 * if (r2 < pkt_end) goto <access okay> 6754 * <handle exception> 6755 * 6756 * Where: 6757 * r2 == dst_reg, pkt_end == src_reg 6758 * r2=pkt(id=n,off=8,r=0) 6759 * r3=pkt(id=n,off=0,r=0) 6760 * 6761 * pkt_data in src register: 6762 * 6763 * r2 = r3; 6764 * r2 += 8; 6765 * if (pkt_end >= r2) goto <access okay> 6766 * <handle exception> 6767 * 6768 * r2 = r3; 6769 * r2 += 8; 6770 * if (pkt_end <= r2) goto <handle exception> 6771 * <access okay> 6772 * 6773 * Where: 6774 * pkt_end == dst_reg, r2 == src_reg 6775 * r2=pkt(id=n,off=8,r=0) 6776 * r3=pkt(id=n,off=0,r=0) 6777 * 6778 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6779 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6780 * and [r3, r3 + 8-1) respectively is safe to access depending on 6781 * the check. 6782 */ 6783 6784 /* If our ids match, then we must have the same max_value. And we 6785 * don't care about the other reg's fixed offset, since if it's too big 6786 * the range won't allow anything. 6787 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6788 */ 6789 for (i = 0; i <= vstate->curframe; i++) 6790 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6791 new_range); 6792 } 6793 6794 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6795 { 6796 struct tnum subreg = tnum_subreg(reg->var_off); 6797 s32 sval = (s32)val; 6798 6799 switch (opcode) { 6800 case BPF_JEQ: 6801 if (tnum_is_const(subreg)) 6802 return !!tnum_equals_const(subreg, val); 6803 break; 6804 case BPF_JNE: 6805 if (tnum_is_const(subreg)) 6806 return !tnum_equals_const(subreg, val); 6807 break; 6808 case BPF_JSET: 6809 if ((~subreg.mask & subreg.value) & val) 6810 return 1; 6811 if (!((subreg.mask | subreg.value) & val)) 6812 return 0; 6813 break; 6814 case BPF_JGT: 6815 if (reg->u32_min_value > val) 6816 return 1; 6817 else if (reg->u32_max_value <= val) 6818 return 0; 6819 break; 6820 case BPF_JSGT: 6821 if (reg->s32_min_value > sval) 6822 return 1; 6823 else if (reg->s32_max_value < sval) 6824 return 0; 6825 break; 6826 case BPF_JLT: 6827 if (reg->u32_max_value < val) 6828 return 1; 6829 else if (reg->u32_min_value >= val) 6830 return 0; 6831 break; 6832 case BPF_JSLT: 6833 if (reg->s32_max_value < sval) 6834 return 1; 6835 else if (reg->s32_min_value >= sval) 6836 return 0; 6837 break; 6838 case BPF_JGE: 6839 if (reg->u32_min_value >= val) 6840 return 1; 6841 else if (reg->u32_max_value < val) 6842 return 0; 6843 break; 6844 case BPF_JSGE: 6845 if (reg->s32_min_value >= sval) 6846 return 1; 6847 else if (reg->s32_max_value < sval) 6848 return 0; 6849 break; 6850 case BPF_JLE: 6851 if (reg->u32_max_value <= val) 6852 return 1; 6853 else if (reg->u32_min_value > val) 6854 return 0; 6855 break; 6856 case BPF_JSLE: 6857 if (reg->s32_max_value <= sval) 6858 return 1; 6859 else if (reg->s32_min_value > sval) 6860 return 0; 6861 break; 6862 } 6863 6864 return -1; 6865 } 6866 6867 6868 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6869 { 6870 s64 sval = (s64)val; 6871 6872 switch (opcode) { 6873 case BPF_JEQ: 6874 if (tnum_is_const(reg->var_off)) 6875 return !!tnum_equals_const(reg->var_off, val); 6876 break; 6877 case BPF_JNE: 6878 if (tnum_is_const(reg->var_off)) 6879 return !tnum_equals_const(reg->var_off, val); 6880 break; 6881 case BPF_JSET: 6882 if ((~reg->var_off.mask & reg->var_off.value) & val) 6883 return 1; 6884 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6885 return 0; 6886 break; 6887 case BPF_JGT: 6888 if (reg->umin_value > val) 6889 return 1; 6890 else if (reg->umax_value <= val) 6891 return 0; 6892 break; 6893 case BPF_JSGT: 6894 if (reg->smin_value > sval) 6895 return 1; 6896 else if (reg->smax_value < sval) 6897 return 0; 6898 break; 6899 case BPF_JLT: 6900 if (reg->umax_value < val) 6901 return 1; 6902 else if (reg->umin_value >= val) 6903 return 0; 6904 break; 6905 case BPF_JSLT: 6906 if (reg->smax_value < sval) 6907 return 1; 6908 else if (reg->smin_value >= sval) 6909 return 0; 6910 break; 6911 case BPF_JGE: 6912 if (reg->umin_value >= val) 6913 return 1; 6914 else if (reg->umax_value < val) 6915 return 0; 6916 break; 6917 case BPF_JSGE: 6918 if (reg->smin_value >= sval) 6919 return 1; 6920 else if (reg->smax_value < sval) 6921 return 0; 6922 break; 6923 case BPF_JLE: 6924 if (reg->umax_value <= val) 6925 return 1; 6926 else if (reg->umin_value > val) 6927 return 0; 6928 break; 6929 case BPF_JSLE: 6930 if (reg->smax_value <= sval) 6931 return 1; 6932 else if (reg->smin_value > sval) 6933 return 0; 6934 break; 6935 } 6936 6937 return -1; 6938 } 6939 6940 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6941 * and return: 6942 * 1 - branch will be taken and "goto target" will be executed 6943 * 0 - branch will not be taken and fall-through to next insn 6944 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6945 * range [0,10] 6946 */ 6947 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6948 bool is_jmp32) 6949 { 6950 if (__is_pointer_value(false, reg)) { 6951 if (!reg_type_not_null(reg->type)) 6952 return -1; 6953 6954 /* If pointer is valid tests against zero will fail so we can 6955 * use this to direct branch taken. 6956 */ 6957 if (val != 0) 6958 return -1; 6959 6960 switch (opcode) { 6961 case BPF_JEQ: 6962 return 0; 6963 case BPF_JNE: 6964 return 1; 6965 default: 6966 return -1; 6967 } 6968 } 6969 6970 if (is_jmp32) 6971 return is_branch32_taken(reg, val, opcode); 6972 return is_branch64_taken(reg, val, opcode); 6973 } 6974 6975 /* Adjusts the register min/max values in the case that the dst_reg is the 6976 * variable register that we are working on, and src_reg is a constant or we're 6977 * simply doing a BPF_K check. 6978 * In JEQ/JNE cases we also adjust the var_off values. 6979 */ 6980 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6981 struct bpf_reg_state *false_reg, 6982 u64 val, u32 val32, 6983 u8 opcode, bool is_jmp32) 6984 { 6985 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6986 struct tnum false_64off = false_reg->var_off; 6987 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6988 struct tnum true_64off = true_reg->var_off; 6989 s64 sval = (s64)val; 6990 s32 sval32 = (s32)val32; 6991 6992 /* If the dst_reg is a pointer, we can't learn anything about its 6993 * variable offset from the compare (unless src_reg were a pointer into 6994 * the same object, but we don't bother with that. 6995 * Since false_reg and true_reg have the same type by construction, we 6996 * only need to check one of them for pointerness. 6997 */ 6998 if (__is_pointer_value(false, false_reg)) 6999 return; 7000 7001 switch (opcode) { 7002 case BPF_JEQ: 7003 case BPF_JNE: 7004 { 7005 struct bpf_reg_state *reg = 7006 opcode == BPF_JEQ ? true_reg : false_reg; 7007 7008 /* JEQ/JNE comparison doesn't change the register equivalence. 7009 * r1 = r2; 7010 * if (r1 == 42) goto label; 7011 * ... 7012 * label: // here both r1 and r2 are known to be 42. 7013 * 7014 * Hence when marking register as known preserve it's ID. 7015 */ 7016 if (is_jmp32) 7017 __mark_reg32_known(reg, val32); 7018 else 7019 ___mark_reg_known(reg, val); 7020 break; 7021 } 7022 case BPF_JSET: 7023 if (is_jmp32) { 7024 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7025 if (is_power_of_2(val32)) 7026 true_32off = tnum_or(true_32off, 7027 tnum_const(val32)); 7028 } else { 7029 false_64off = tnum_and(false_64off, tnum_const(~val)); 7030 if (is_power_of_2(val)) 7031 true_64off = tnum_or(true_64off, 7032 tnum_const(val)); 7033 } 7034 break; 7035 case BPF_JGE: 7036 case BPF_JGT: 7037 { 7038 if (is_jmp32) { 7039 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7040 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7041 7042 false_reg->u32_max_value = min(false_reg->u32_max_value, 7043 false_umax); 7044 true_reg->u32_min_value = max(true_reg->u32_min_value, 7045 true_umin); 7046 } else { 7047 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7048 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7049 7050 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7051 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7052 } 7053 break; 7054 } 7055 case BPF_JSGE: 7056 case BPF_JSGT: 7057 { 7058 if (is_jmp32) { 7059 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7060 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7061 7062 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7063 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7064 } else { 7065 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7066 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7067 7068 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7069 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7070 } 7071 break; 7072 } 7073 case BPF_JLE: 7074 case BPF_JLT: 7075 { 7076 if (is_jmp32) { 7077 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7078 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7079 7080 false_reg->u32_min_value = max(false_reg->u32_min_value, 7081 false_umin); 7082 true_reg->u32_max_value = min(true_reg->u32_max_value, 7083 true_umax); 7084 } else { 7085 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7086 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7087 7088 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7089 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7090 } 7091 break; 7092 } 7093 case BPF_JSLE: 7094 case BPF_JSLT: 7095 { 7096 if (is_jmp32) { 7097 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7098 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7099 7100 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7101 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7102 } else { 7103 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7104 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7105 7106 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7107 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7108 } 7109 break; 7110 } 7111 default: 7112 return; 7113 } 7114 7115 if (is_jmp32) { 7116 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7117 tnum_subreg(false_32off)); 7118 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7119 tnum_subreg(true_32off)); 7120 __reg_combine_32_into_64(false_reg); 7121 __reg_combine_32_into_64(true_reg); 7122 } else { 7123 false_reg->var_off = false_64off; 7124 true_reg->var_off = true_64off; 7125 __reg_combine_64_into_32(false_reg); 7126 __reg_combine_64_into_32(true_reg); 7127 } 7128 } 7129 7130 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7131 * the variable reg. 7132 */ 7133 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7134 struct bpf_reg_state *false_reg, 7135 u64 val, u32 val32, 7136 u8 opcode, bool is_jmp32) 7137 { 7138 /* How can we transform "a <op> b" into "b <op> a"? */ 7139 static const u8 opcode_flip[16] = { 7140 /* these stay the same */ 7141 [BPF_JEQ >> 4] = BPF_JEQ, 7142 [BPF_JNE >> 4] = BPF_JNE, 7143 [BPF_JSET >> 4] = BPF_JSET, 7144 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7145 [BPF_JGE >> 4] = BPF_JLE, 7146 [BPF_JGT >> 4] = BPF_JLT, 7147 [BPF_JLE >> 4] = BPF_JGE, 7148 [BPF_JLT >> 4] = BPF_JGT, 7149 [BPF_JSGE >> 4] = BPF_JSLE, 7150 [BPF_JSGT >> 4] = BPF_JSLT, 7151 [BPF_JSLE >> 4] = BPF_JSGE, 7152 [BPF_JSLT >> 4] = BPF_JSGT 7153 }; 7154 opcode = opcode_flip[opcode >> 4]; 7155 /* This uses zero as "not present in table"; luckily the zero opcode, 7156 * BPF_JA, can't get here. 7157 */ 7158 if (opcode) 7159 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7160 } 7161 7162 /* Regs are known to be equal, so intersect their min/max/var_off */ 7163 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7164 struct bpf_reg_state *dst_reg) 7165 { 7166 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7167 dst_reg->umin_value); 7168 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7169 dst_reg->umax_value); 7170 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7171 dst_reg->smin_value); 7172 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7173 dst_reg->smax_value); 7174 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7175 dst_reg->var_off); 7176 /* We might have learned new bounds from the var_off. */ 7177 __update_reg_bounds(src_reg); 7178 __update_reg_bounds(dst_reg); 7179 /* We might have learned something about the sign bit. */ 7180 __reg_deduce_bounds(src_reg); 7181 __reg_deduce_bounds(dst_reg); 7182 /* We might have learned some bits from the bounds. */ 7183 __reg_bound_offset(src_reg); 7184 __reg_bound_offset(dst_reg); 7185 /* Intersecting with the old var_off might have improved our bounds 7186 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7187 * then new var_off is (0; 0x7f...fc) which improves our umax. 7188 */ 7189 __update_reg_bounds(src_reg); 7190 __update_reg_bounds(dst_reg); 7191 } 7192 7193 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7194 struct bpf_reg_state *true_dst, 7195 struct bpf_reg_state *false_src, 7196 struct bpf_reg_state *false_dst, 7197 u8 opcode) 7198 { 7199 switch (opcode) { 7200 case BPF_JEQ: 7201 __reg_combine_min_max(true_src, true_dst); 7202 break; 7203 case BPF_JNE: 7204 __reg_combine_min_max(false_src, false_dst); 7205 break; 7206 } 7207 } 7208 7209 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7210 struct bpf_reg_state *reg, u32 id, 7211 bool is_null) 7212 { 7213 if (reg_type_may_be_null(reg->type) && reg->id == id && 7214 !WARN_ON_ONCE(!reg->id)) { 7215 /* Old offset (both fixed and variable parts) should 7216 * have been known-zero, because we don't allow pointer 7217 * arithmetic on pointers that might be NULL. 7218 */ 7219 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7220 !tnum_equals_const(reg->var_off, 0) || 7221 reg->off)) { 7222 __mark_reg_known_zero(reg); 7223 reg->off = 0; 7224 } 7225 if (is_null) { 7226 reg->type = SCALAR_VALUE; 7227 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7228 const struct bpf_map *map = reg->map_ptr; 7229 7230 if (map->inner_map_meta) { 7231 reg->type = CONST_PTR_TO_MAP; 7232 reg->map_ptr = map->inner_map_meta; 7233 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7234 reg->type = PTR_TO_XDP_SOCK; 7235 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7236 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7237 reg->type = PTR_TO_SOCKET; 7238 } else { 7239 reg->type = PTR_TO_MAP_VALUE; 7240 } 7241 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7242 reg->type = PTR_TO_SOCKET; 7243 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7244 reg->type = PTR_TO_SOCK_COMMON; 7245 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7246 reg->type = PTR_TO_TCP_SOCK; 7247 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7248 reg->type = PTR_TO_BTF_ID; 7249 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7250 reg->type = PTR_TO_MEM; 7251 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7252 reg->type = PTR_TO_RDONLY_BUF; 7253 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7254 reg->type = PTR_TO_RDWR_BUF; 7255 } 7256 if (is_null) { 7257 /* We don't need id and ref_obj_id from this point 7258 * onwards anymore, thus we should better reset it, 7259 * so that state pruning has chances to take effect. 7260 */ 7261 reg->id = 0; 7262 reg->ref_obj_id = 0; 7263 } else if (!reg_may_point_to_spin_lock(reg)) { 7264 /* For not-NULL ptr, reg->ref_obj_id will be reset 7265 * in release_reg_references(). 7266 * 7267 * reg->id is still used by spin_lock ptr. Other 7268 * than spin_lock ptr type, reg->id can be reset. 7269 */ 7270 reg->id = 0; 7271 } 7272 } 7273 } 7274 7275 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7276 bool is_null) 7277 { 7278 struct bpf_reg_state *reg; 7279 int i; 7280 7281 for (i = 0; i < MAX_BPF_REG; i++) 7282 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7283 7284 bpf_for_each_spilled_reg(i, state, reg) { 7285 if (!reg) 7286 continue; 7287 mark_ptr_or_null_reg(state, reg, id, is_null); 7288 } 7289 } 7290 7291 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7292 * be folded together at some point. 7293 */ 7294 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7295 bool is_null) 7296 { 7297 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7298 struct bpf_reg_state *regs = state->regs; 7299 u32 ref_obj_id = regs[regno].ref_obj_id; 7300 u32 id = regs[regno].id; 7301 int i; 7302 7303 if (ref_obj_id && ref_obj_id == id && is_null) 7304 /* regs[regno] is in the " == NULL" branch. 7305 * No one could have freed the reference state before 7306 * doing the NULL check. 7307 */ 7308 WARN_ON_ONCE(release_reference_state(state, id)); 7309 7310 for (i = 0; i <= vstate->curframe; i++) 7311 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7312 } 7313 7314 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7315 struct bpf_reg_state *dst_reg, 7316 struct bpf_reg_state *src_reg, 7317 struct bpf_verifier_state *this_branch, 7318 struct bpf_verifier_state *other_branch) 7319 { 7320 if (BPF_SRC(insn->code) != BPF_X) 7321 return false; 7322 7323 /* Pointers are always 64-bit. */ 7324 if (BPF_CLASS(insn->code) == BPF_JMP32) 7325 return false; 7326 7327 switch (BPF_OP(insn->code)) { 7328 case BPF_JGT: 7329 if ((dst_reg->type == PTR_TO_PACKET && 7330 src_reg->type == PTR_TO_PACKET_END) || 7331 (dst_reg->type == PTR_TO_PACKET_META && 7332 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7333 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7334 find_good_pkt_pointers(this_branch, dst_reg, 7335 dst_reg->type, false); 7336 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7337 src_reg->type == PTR_TO_PACKET) || 7338 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7339 src_reg->type == PTR_TO_PACKET_META)) { 7340 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7341 find_good_pkt_pointers(other_branch, src_reg, 7342 src_reg->type, true); 7343 } else { 7344 return false; 7345 } 7346 break; 7347 case BPF_JLT: 7348 if ((dst_reg->type == PTR_TO_PACKET && 7349 src_reg->type == PTR_TO_PACKET_END) || 7350 (dst_reg->type == PTR_TO_PACKET_META && 7351 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7352 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7353 find_good_pkt_pointers(other_branch, dst_reg, 7354 dst_reg->type, true); 7355 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7356 src_reg->type == PTR_TO_PACKET) || 7357 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7358 src_reg->type == PTR_TO_PACKET_META)) { 7359 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7360 find_good_pkt_pointers(this_branch, src_reg, 7361 src_reg->type, false); 7362 } else { 7363 return false; 7364 } 7365 break; 7366 case BPF_JGE: 7367 if ((dst_reg->type == PTR_TO_PACKET && 7368 src_reg->type == PTR_TO_PACKET_END) || 7369 (dst_reg->type == PTR_TO_PACKET_META && 7370 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7371 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7372 find_good_pkt_pointers(this_branch, dst_reg, 7373 dst_reg->type, true); 7374 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7375 src_reg->type == PTR_TO_PACKET) || 7376 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7377 src_reg->type == PTR_TO_PACKET_META)) { 7378 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7379 find_good_pkt_pointers(other_branch, src_reg, 7380 src_reg->type, false); 7381 } else { 7382 return false; 7383 } 7384 break; 7385 case BPF_JLE: 7386 if ((dst_reg->type == PTR_TO_PACKET && 7387 src_reg->type == PTR_TO_PACKET_END) || 7388 (dst_reg->type == PTR_TO_PACKET_META && 7389 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7390 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7391 find_good_pkt_pointers(other_branch, dst_reg, 7392 dst_reg->type, false); 7393 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7394 src_reg->type == PTR_TO_PACKET) || 7395 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7396 src_reg->type == PTR_TO_PACKET_META)) { 7397 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7398 find_good_pkt_pointers(this_branch, src_reg, 7399 src_reg->type, true); 7400 } else { 7401 return false; 7402 } 7403 break; 7404 default: 7405 return false; 7406 } 7407 7408 return true; 7409 } 7410 7411 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7412 struct bpf_reg_state *known_reg) 7413 { 7414 struct bpf_func_state *state; 7415 struct bpf_reg_state *reg; 7416 int i, j; 7417 7418 for (i = 0; i <= vstate->curframe; i++) { 7419 state = vstate->frame[i]; 7420 for (j = 0; j < MAX_BPF_REG; j++) { 7421 reg = &state->regs[j]; 7422 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7423 *reg = *known_reg; 7424 } 7425 7426 bpf_for_each_spilled_reg(j, state, reg) { 7427 if (!reg) 7428 continue; 7429 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7430 *reg = *known_reg; 7431 } 7432 } 7433 } 7434 7435 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7436 struct bpf_insn *insn, int *insn_idx) 7437 { 7438 struct bpf_verifier_state *this_branch = env->cur_state; 7439 struct bpf_verifier_state *other_branch; 7440 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7441 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7442 u8 opcode = BPF_OP(insn->code); 7443 bool is_jmp32; 7444 int pred = -1; 7445 int err; 7446 7447 /* Only conditional jumps are expected to reach here. */ 7448 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7449 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7450 return -EINVAL; 7451 } 7452 7453 if (BPF_SRC(insn->code) == BPF_X) { 7454 if (insn->imm != 0) { 7455 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7456 return -EINVAL; 7457 } 7458 7459 /* check src1 operand */ 7460 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7461 if (err) 7462 return err; 7463 7464 if (is_pointer_value(env, insn->src_reg)) { 7465 verbose(env, "R%d pointer comparison prohibited\n", 7466 insn->src_reg); 7467 return -EACCES; 7468 } 7469 src_reg = ®s[insn->src_reg]; 7470 } else { 7471 if (insn->src_reg != BPF_REG_0) { 7472 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7473 return -EINVAL; 7474 } 7475 } 7476 7477 /* check src2 operand */ 7478 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7479 if (err) 7480 return err; 7481 7482 dst_reg = ®s[insn->dst_reg]; 7483 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7484 7485 if (BPF_SRC(insn->code) == BPF_K) { 7486 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7487 } else if (src_reg->type == SCALAR_VALUE && 7488 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7489 pred = is_branch_taken(dst_reg, 7490 tnum_subreg(src_reg->var_off).value, 7491 opcode, 7492 is_jmp32); 7493 } else if (src_reg->type == SCALAR_VALUE && 7494 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7495 pred = is_branch_taken(dst_reg, 7496 src_reg->var_off.value, 7497 opcode, 7498 is_jmp32); 7499 } 7500 7501 if (pred >= 0) { 7502 /* If we get here with a dst_reg pointer type it is because 7503 * above is_branch_taken() special cased the 0 comparison. 7504 */ 7505 if (!__is_pointer_value(false, dst_reg)) 7506 err = mark_chain_precision(env, insn->dst_reg); 7507 if (BPF_SRC(insn->code) == BPF_X && !err) 7508 err = mark_chain_precision(env, insn->src_reg); 7509 if (err) 7510 return err; 7511 } 7512 if (pred == 1) { 7513 /* only follow the goto, ignore fall-through */ 7514 *insn_idx += insn->off; 7515 return 0; 7516 } else if (pred == 0) { 7517 /* only follow fall-through branch, since 7518 * that's where the program will go 7519 */ 7520 return 0; 7521 } 7522 7523 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7524 false); 7525 if (!other_branch) 7526 return -EFAULT; 7527 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7528 7529 /* detect if we are comparing against a constant value so we can adjust 7530 * our min/max values for our dst register. 7531 * this is only legit if both are scalars (or pointers to the same 7532 * object, I suppose, but we don't support that right now), because 7533 * otherwise the different base pointers mean the offsets aren't 7534 * comparable. 7535 */ 7536 if (BPF_SRC(insn->code) == BPF_X) { 7537 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7538 7539 if (dst_reg->type == SCALAR_VALUE && 7540 src_reg->type == SCALAR_VALUE) { 7541 if (tnum_is_const(src_reg->var_off) || 7542 (is_jmp32 && 7543 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7544 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7545 dst_reg, 7546 src_reg->var_off.value, 7547 tnum_subreg(src_reg->var_off).value, 7548 opcode, is_jmp32); 7549 else if (tnum_is_const(dst_reg->var_off) || 7550 (is_jmp32 && 7551 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7552 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7553 src_reg, 7554 dst_reg->var_off.value, 7555 tnum_subreg(dst_reg->var_off).value, 7556 opcode, is_jmp32); 7557 else if (!is_jmp32 && 7558 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7559 /* Comparing for equality, we can combine knowledge */ 7560 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7561 &other_branch_regs[insn->dst_reg], 7562 src_reg, dst_reg, opcode); 7563 if (src_reg->id && 7564 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 7565 find_equal_scalars(this_branch, src_reg); 7566 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7567 } 7568 7569 } 7570 } else if (dst_reg->type == SCALAR_VALUE) { 7571 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7572 dst_reg, insn->imm, (u32)insn->imm, 7573 opcode, is_jmp32); 7574 } 7575 7576 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7577 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7578 find_equal_scalars(this_branch, dst_reg); 7579 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7580 } 7581 7582 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7583 * NOTE: these optimizations below are related with pointer comparison 7584 * which will never be JMP32. 7585 */ 7586 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7587 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7588 reg_type_may_be_null(dst_reg->type)) { 7589 /* Mark all identical registers in each branch as either 7590 * safe or unknown depending R == 0 or R != 0 conditional. 7591 */ 7592 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7593 opcode == BPF_JNE); 7594 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7595 opcode == BPF_JEQ); 7596 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7597 this_branch, other_branch) && 7598 is_pointer_value(env, insn->dst_reg)) { 7599 verbose(env, "R%d pointer comparison prohibited\n", 7600 insn->dst_reg); 7601 return -EACCES; 7602 } 7603 if (env->log.level & BPF_LOG_LEVEL) 7604 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7605 return 0; 7606 } 7607 7608 /* verify BPF_LD_IMM64 instruction */ 7609 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7610 { 7611 struct bpf_insn_aux_data *aux = cur_aux(env); 7612 struct bpf_reg_state *regs = cur_regs(env); 7613 struct bpf_reg_state *dst_reg; 7614 struct bpf_map *map; 7615 int err; 7616 7617 if (BPF_SIZE(insn->code) != BPF_DW) { 7618 verbose(env, "invalid BPF_LD_IMM insn\n"); 7619 return -EINVAL; 7620 } 7621 if (insn->off != 0) { 7622 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7623 return -EINVAL; 7624 } 7625 7626 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7627 if (err) 7628 return err; 7629 7630 dst_reg = ®s[insn->dst_reg]; 7631 if (insn->src_reg == 0) { 7632 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7633 7634 dst_reg->type = SCALAR_VALUE; 7635 __mark_reg_known(®s[insn->dst_reg], imm); 7636 return 0; 7637 } 7638 7639 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 7640 mark_reg_known_zero(env, regs, insn->dst_reg); 7641 7642 dst_reg->type = aux->btf_var.reg_type; 7643 switch (dst_reg->type) { 7644 case PTR_TO_MEM: 7645 dst_reg->mem_size = aux->btf_var.mem_size; 7646 break; 7647 case PTR_TO_BTF_ID: 7648 case PTR_TO_PERCPU_BTF_ID: 7649 dst_reg->btf_id = aux->btf_var.btf_id; 7650 break; 7651 default: 7652 verbose(env, "bpf verifier is misconfigured\n"); 7653 return -EFAULT; 7654 } 7655 return 0; 7656 } 7657 7658 map = env->used_maps[aux->map_index]; 7659 mark_reg_known_zero(env, regs, insn->dst_reg); 7660 dst_reg->map_ptr = map; 7661 7662 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7663 dst_reg->type = PTR_TO_MAP_VALUE; 7664 dst_reg->off = aux->map_off; 7665 if (map_value_has_spin_lock(map)) 7666 dst_reg->id = ++env->id_gen; 7667 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7668 dst_reg->type = CONST_PTR_TO_MAP; 7669 } else { 7670 verbose(env, "bpf verifier is misconfigured\n"); 7671 return -EINVAL; 7672 } 7673 7674 return 0; 7675 } 7676 7677 static bool may_access_skb(enum bpf_prog_type type) 7678 { 7679 switch (type) { 7680 case BPF_PROG_TYPE_SOCKET_FILTER: 7681 case BPF_PROG_TYPE_SCHED_CLS: 7682 case BPF_PROG_TYPE_SCHED_ACT: 7683 return true; 7684 default: 7685 return false; 7686 } 7687 } 7688 7689 /* verify safety of LD_ABS|LD_IND instructions: 7690 * - they can only appear in the programs where ctx == skb 7691 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7692 * preserve R6-R9, and store return value into R0 7693 * 7694 * Implicit input: 7695 * ctx == skb == R6 == CTX 7696 * 7697 * Explicit input: 7698 * SRC == any register 7699 * IMM == 32-bit immediate 7700 * 7701 * Output: 7702 * R0 - 8/16/32-bit skb data converted to cpu endianness 7703 */ 7704 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7705 { 7706 struct bpf_reg_state *regs = cur_regs(env); 7707 static const int ctx_reg = BPF_REG_6; 7708 u8 mode = BPF_MODE(insn->code); 7709 int i, err; 7710 7711 if (!may_access_skb(resolve_prog_type(env->prog))) { 7712 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7713 return -EINVAL; 7714 } 7715 7716 if (!env->ops->gen_ld_abs) { 7717 verbose(env, "bpf verifier is misconfigured\n"); 7718 return -EINVAL; 7719 } 7720 7721 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7722 BPF_SIZE(insn->code) == BPF_DW || 7723 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7724 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7725 return -EINVAL; 7726 } 7727 7728 /* check whether implicit source operand (register R6) is readable */ 7729 err = check_reg_arg(env, ctx_reg, SRC_OP); 7730 if (err) 7731 return err; 7732 7733 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7734 * gen_ld_abs() may terminate the program at runtime, leading to 7735 * reference leak. 7736 */ 7737 err = check_reference_leak(env); 7738 if (err) { 7739 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7740 return err; 7741 } 7742 7743 if (env->cur_state->active_spin_lock) { 7744 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7745 return -EINVAL; 7746 } 7747 7748 if (regs[ctx_reg].type != PTR_TO_CTX) { 7749 verbose(env, 7750 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7751 return -EINVAL; 7752 } 7753 7754 if (mode == BPF_IND) { 7755 /* check explicit source operand */ 7756 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7757 if (err) 7758 return err; 7759 } 7760 7761 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7762 if (err < 0) 7763 return err; 7764 7765 /* reset caller saved regs to unreadable */ 7766 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7767 mark_reg_not_init(env, regs, caller_saved[i]); 7768 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7769 } 7770 7771 /* mark destination R0 register as readable, since it contains 7772 * the value fetched from the packet. 7773 * Already marked as written above. 7774 */ 7775 mark_reg_unknown(env, regs, BPF_REG_0); 7776 /* ld_abs load up to 32-bit skb data. */ 7777 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7778 return 0; 7779 } 7780 7781 static int check_return_code(struct bpf_verifier_env *env) 7782 { 7783 struct tnum enforce_attach_type_range = tnum_unknown; 7784 const struct bpf_prog *prog = env->prog; 7785 struct bpf_reg_state *reg; 7786 struct tnum range = tnum_range(0, 1); 7787 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7788 int err; 7789 const bool is_subprog = env->cur_state->frame[0]->subprogno; 7790 7791 /* LSM and struct_ops func-ptr's return type could be "void" */ 7792 if (!is_subprog && 7793 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7794 prog_type == BPF_PROG_TYPE_LSM) && 7795 !prog->aux->attach_func_proto->type) 7796 return 0; 7797 7798 /* eBPF calling convetion is such that R0 is used 7799 * to return the value from eBPF program. 7800 * Make sure that it's readable at this time 7801 * of bpf_exit, which means that program wrote 7802 * something into it earlier 7803 */ 7804 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7805 if (err) 7806 return err; 7807 7808 if (is_pointer_value(env, BPF_REG_0)) { 7809 verbose(env, "R0 leaks addr as return value\n"); 7810 return -EACCES; 7811 } 7812 7813 reg = cur_regs(env) + BPF_REG_0; 7814 if (is_subprog) { 7815 if (reg->type != SCALAR_VALUE) { 7816 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 7817 reg_type_str[reg->type]); 7818 return -EINVAL; 7819 } 7820 return 0; 7821 } 7822 7823 switch (prog_type) { 7824 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7825 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7826 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7827 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7828 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7829 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7830 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7831 range = tnum_range(1, 1); 7832 break; 7833 case BPF_PROG_TYPE_CGROUP_SKB: 7834 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7835 range = tnum_range(0, 3); 7836 enforce_attach_type_range = tnum_range(2, 3); 7837 } 7838 break; 7839 case BPF_PROG_TYPE_CGROUP_SOCK: 7840 case BPF_PROG_TYPE_SOCK_OPS: 7841 case BPF_PROG_TYPE_CGROUP_DEVICE: 7842 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7843 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7844 break; 7845 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7846 if (!env->prog->aux->attach_btf_id) 7847 return 0; 7848 range = tnum_const(0); 7849 break; 7850 case BPF_PROG_TYPE_TRACING: 7851 switch (env->prog->expected_attach_type) { 7852 case BPF_TRACE_FENTRY: 7853 case BPF_TRACE_FEXIT: 7854 range = tnum_const(0); 7855 break; 7856 case BPF_TRACE_RAW_TP: 7857 case BPF_MODIFY_RETURN: 7858 return 0; 7859 case BPF_TRACE_ITER: 7860 break; 7861 default: 7862 return -ENOTSUPP; 7863 } 7864 break; 7865 case BPF_PROG_TYPE_SK_LOOKUP: 7866 range = tnum_range(SK_DROP, SK_PASS); 7867 break; 7868 case BPF_PROG_TYPE_EXT: 7869 /* freplace program can return anything as its return value 7870 * depends on the to-be-replaced kernel func or bpf program. 7871 */ 7872 default: 7873 return 0; 7874 } 7875 7876 if (reg->type != SCALAR_VALUE) { 7877 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7878 reg_type_str[reg->type]); 7879 return -EINVAL; 7880 } 7881 7882 if (!tnum_in(range, reg->var_off)) { 7883 char tn_buf[48]; 7884 7885 verbose(env, "At program exit the register R0 "); 7886 if (!tnum_is_unknown(reg->var_off)) { 7887 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7888 verbose(env, "has value %s", tn_buf); 7889 } else { 7890 verbose(env, "has unknown scalar value"); 7891 } 7892 tnum_strn(tn_buf, sizeof(tn_buf), range); 7893 verbose(env, " should have been in %s\n", tn_buf); 7894 return -EINVAL; 7895 } 7896 7897 if (!tnum_is_unknown(enforce_attach_type_range) && 7898 tnum_in(enforce_attach_type_range, reg->var_off)) 7899 env->prog->enforce_expected_attach_type = 1; 7900 return 0; 7901 } 7902 7903 /* non-recursive DFS pseudo code 7904 * 1 procedure DFS-iterative(G,v): 7905 * 2 label v as discovered 7906 * 3 let S be a stack 7907 * 4 S.push(v) 7908 * 5 while S is not empty 7909 * 6 t <- S.pop() 7910 * 7 if t is what we're looking for: 7911 * 8 return t 7912 * 9 for all edges e in G.adjacentEdges(t) do 7913 * 10 if edge e is already labelled 7914 * 11 continue with the next edge 7915 * 12 w <- G.adjacentVertex(t,e) 7916 * 13 if vertex w is not discovered and not explored 7917 * 14 label e as tree-edge 7918 * 15 label w as discovered 7919 * 16 S.push(w) 7920 * 17 continue at 5 7921 * 18 else if vertex w is discovered 7922 * 19 label e as back-edge 7923 * 20 else 7924 * 21 // vertex w is explored 7925 * 22 label e as forward- or cross-edge 7926 * 23 label t as explored 7927 * 24 S.pop() 7928 * 7929 * convention: 7930 * 0x10 - discovered 7931 * 0x11 - discovered and fall-through edge labelled 7932 * 0x12 - discovered and fall-through and branch edges labelled 7933 * 0x20 - explored 7934 */ 7935 7936 enum { 7937 DISCOVERED = 0x10, 7938 EXPLORED = 0x20, 7939 FALLTHROUGH = 1, 7940 BRANCH = 2, 7941 }; 7942 7943 static u32 state_htab_size(struct bpf_verifier_env *env) 7944 { 7945 return env->prog->len; 7946 } 7947 7948 static struct bpf_verifier_state_list **explored_state( 7949 struct bpf_verifier_env *env, 7950 int idx) 7951 { 7952 struct bpf_verifier_state *cur = env->cur_state; 7953 struct bpf_func_state *state = cur->frame[cur->curframe]; 7954 7955 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7956 } 7957 7958 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7959 { 7960 env->insn_aux_data[idx].prune_point = true; 7961 } 7962 7963 /* t, w, e - match pseudo-code above: 7964 * t - index of current instruction 7965 * w - next instruction 7966 * e - edge 7967 */ 7968 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7969 bool loop_ok) 7970 { 7971 int *insn_stack = env->cfg.insn_stack; 7972 int *insn_state = env->cfg.insn_state; 7973 7974 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7975 return 0; 7976 7977 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7978 return 0; 7979 7980 if (w < 0 || w >= env->prog->len) { 7981 verbose_linfo(env, t, "%d: ", t); 7982 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7983 return -EINVAL; 7984 } 7985 7986 if (e == BRANCH) 7987 /* mark branch target for state pruning */ 7988 init_explored_state(env, w); 7989 7990 if (insn_state[w] == 0) { 7991 /* tree-edge */ 7992 insn_state[t] = DISCOVERED | e; 7993 insn_state[w] = DISCOVERED; 7994 if (env->cfg.cur_stack >= env->prog->len) 7995 return -E2BIG; 7996 insn_stack[env->cfg.cur_stack++] = w; 7997 return 1; 7998 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7999 if (loop_ok && env->bpf_capable) 8000 return 0; 8001 verbose_linfo(env, t, "%d: ", t); 8002 verbose_linfo(env, w, "%d: ", w); 8003 verbose(env, "back-edge from insn %d to %d\n", t, w); 8004 return -EINVAL; 8005 } else if (insn_state[w] == EXPLORED) { 8006 /* forward- or cross-edge */ 8007 insn_state[t] = DISCOVERED | e; 8008 } else { 8009 verbose(env, "insn state internal bug\n"); 8010 return -EFAULT; 8011 } 8012 return 0; 8013 } 8014 8015 /* non-recursive depth-first-search to detect loops in BPF program 8016 * loop == back-edge in directed graph 8017 */ 8018 static int check_cfg(struct bpf_verifier_env *env) 8019 { 8020 struct bpf_insn *insns = env->prog->insnsi; 8021 int insn_cnt = env->prog->len; 8022 int *insn_stack, *insn_state; 8023 int ret = 0; 8024 int i, t; 8025 8026 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8027 if (!insn_state) 8028 return -ENOMEM; 8029 8030 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8031 if (!insn_stack) { 8032 kvfree(insn_state); 8033 return -ENOMEM; 8034 } 8035 8036 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8037 insn_stack[0] = 0; /* 0 is the first instruction */ 8038 env->cfg.cur_stack = 1; 8039 8040 peek_stack: 8041 if (env->cfg.cur_stack == 0) 8042 goto check_state; 8043 t = insn_stack[env->cfg.cur_stack - 1]; 8044 8045 if (BPF_CLASS(insns[t].code) == BPF_JMP || 8046 BPF_CLASS(insns[t].code) == BPF_JMP32) { 8047 u8 opcode = BPF_OP(insns[t].code); 8048 8049 if (opcode == BPF_EXIT) { 8050 goto mark_explored; 8051 } else if (opcode == BPF_CALL) { 8052 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8053 if (ret == 1) 8054 goto peek_stack; 8055 else if (ret < 0) 8056 goto err_free; 8057 if (t + 1 < insn_cnt) 8058 init_explored_state(env, t + 1); 8059 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8060 init_explored_state(env, t); 8061 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8062 env, false); 8063 if (ret == 1) 8064 goto peek_stack; 8065 else if (ret < 0) 8066 goto err_free; 8067 } 8068 } else if (opcode == BPF_JA) { 8069 if (BPF_SRC(insns[t].code) != BPF_K) { 8070 ret = -EINVAL; 8071 goto err_free; 8072 } 8073 /* unconditional jump with single edge */ 8074 ret = push_insn(t, t + insns[t].off + 1, 8075 FALLTHROUGH, env, true); 8076 if (ret == 1) 8077 goto peek_stack; 8078 else if (ret < 0) 8079 goto err_free; 8080 /* unconditional jmp is not a good pruning point, 8081 * but it's marked, since backtracking needs 8082 * to record jmp history in is_state_visited(). 8083 */ 8084 init_explored_state(env, t + insns[t].off + 1); 8085 /* tell verifier to check for equivalent states 8086 * after every call and jump 8087 */ 8088 if (t + 1 < insn_cnt) 8089 init_explored_state(env, t + 1); 8090 } else { 8091 /* conditional jump with two edges */ 8092 init_explored_state(env, t); 8093 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8094 if (ret == 1) 8095 goto peek_stack; 8096 else if (ret < 0) 8097 goto err_free; 8098 8099 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8100 if (ret == 1) 8101 goto peek_stack; 8102 else if (ret < 0) 8103 goto err_free; 8104 } 8105 } else { 8106 /* all other non-branch instructions with single 8107 * fall-through edge 8108 */ 8109 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8110 if (ret == 1) 8111 goto peek_stack; 8112 else if (ret < 0) 8113 goto err_free; 8114 } 8115 8116 mark_explored: 8117 insn_state[t] = EXPLORED; 8118 if (env->cfg.cur_stack-- <= 0) { 8119 verbose(env, "pop stack internal bug\n"); 8120 ret = -EFAULT; 8121 goto err_free; 8122 } 8123 goto peek_stack; 8124 8125 check_state: 8126 for (i = 0; i < insn_cnt; i++) { 8127 if (insn_state[i] != EXPLORED) { 8128 verbose(env, "unreachable insn %d\n", i); 8129 ret = -EINVAL; 8130 goto err_free; 8131 } 8132 } 8133 ret = 0; /* cfg looks good */ 8134 8135 err_free: 8136 kvfree(insn_state); 8137 kvfree(insn_stack); 8138 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8139 return ret; 8140 } 8141 8142 static int check_abnormal_return(struct bpf_verifier_env *env) 8143 { 8144 int i; 8145 8146 for (i = 1; i < env->subprog_cnt; i++) { 8147 if (env->subprog_info[i].has_ld_abs) { 8148 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8149 return -EINVAL; 8150 } 8151 if (env->subprog_info[i].has_tail_call) { 8152 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8153 return -EINVAL; 8154 } 8155 } 8156 return 0; 8157 } 8158 8159 /* The minimum supported BTF func info size */ 8160 #define MIN_BPF_FUNCINFO_SIZE 8 8161 #define MAX_FUNCINFO_REC_SIZE 252 8162 8163 static int check_btf_func(struct bpf_verifier_env *env, 8164 const union bpf_attr *attr, 8165 union bpf_attr __user *uattr) 8166 { 8167 const struct btf_type *type, *func_proto, *ret_type; 8168 u32 i, nfuncs, urec_size, min_size; 8169 u32 krec_size = sizeof(struct bpf_func_info); 8170 struct bpf_func_info *krecord; 8171 struct bpf_func_info_aux *info_aux = NULL; 8172 struct bpf_prog *prog; 8173 const struct btf *btf; 8174 void __user *urecord; 8175 u32 prev_offset = 0; 8176 bool scalar_return; 8177 int ret = -ENOMEM; 8178 8179 nfuncs = attr->func_info_cnt; 8180 if (!nfuncs) { 8181 if (check_abnormal_return(env)) 8182 return -EINVAL; 8183 return 0; 8184 } 8185 8186 if (nfuncs != env->subprog_cnt) { 8187 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8188 return -EINVAL; 8189 } 8190 8191 urec_size = attr->func_info_rec_size; 8192 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8193 urec_size > MAX_FUNCINFO_REC_SIZE || 8194 urec_size % sizeof(u32)) { 8195 verbose(env, "invalid func info rec size %u\n", urec_size); 8196 return -EINVAL; 8197 } 8198 8199 prog = env->prog; 8200 btf = prog->aux->btf; 8201 8202 urecord = u64_to_user_ptr(attr->func_info); 8203 min_size = min_t(u32, krec_size, urec_size); 8204 8205 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8206 if (!krecord) 8207 return -ENOMEM; 8208 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8209 if (!info_aux) 8210 goto err_free; 8211 8212 for (i = 0; i < nfuncs; i++) { 8213 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8214 if (ret) { 8215 if (ret == -E2BIG) { 8216 verbose(env, "nonzero tailing record in func info"); 8217 /* set the size kernel expects so loader can zero 8218 * out the rest of the record. 8219 */ 8220 if (put_user(min_size, &uattr->func_info_rec_size)) 8221 ret = -EFAULT; 8222 } 8223 goto err_free; 8224 } 8225 8226 if (copy_from_user(&krecord[i], urecord, min_size)) { 8227 ret = -EFAULT; 8228 goto err_free; 8229 } 8230 8231 /* check insn_off */ 8232 ret = -EINVAL; 8233 if (i == 0) { 8234 if (krecord[i].insn_off) { 8235 verbose(env, 8236 "nonzero insn_off %u for the first func info record", 8237 krecord[i].insn_off); 8238 goto err_free; 8239 } 8240 } else if (krecord[i].insn_off <= prev_offset) { 8241 verbose(env, 8242 "same or smaller insn offset (%u) than previous func info record (%u)", 8243 krecord[i].insn_off, prev_offset); 8244 goto err_free; 8245 } 8246 8247 if (env->subprog_info[i].start != krecord[i].insn_off) { 8248 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8249 goto err_free; 8250 } 8251 8252 /* check type_id */ 8253 type = btf_type_by_id(btf, krecord[i].type_id); 8254 if (!type || !btf_type_is_func(type)) { 8255 verbose(env, "invalid type id %d in func info", 8256 krecord[i].type_id); 8257 goto err_free; 8258 } 8259 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8260 8261 func_proto = btf_type_by_id(btf, type->type); 8262 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8263 /* btf_func_check() already verified it during BTF load */ 8264 goto err_free; 8265 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8266 scalar_return = 8267 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8268 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8269 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8270 goto err_free; 8271 } 8272 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8273 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8274 goto err_free; 8275 } 8276 8277 prev_offset = krecord[i].insn_off; 8278 urecord += urec_size; 8279 } 8280 8281 prog->aux->func_info = krecord; 8282 prog->aux->func_info_cnt = nfuncs; 8283 prog->aux->func_info_aux = info_aux; 8284 return 0; 8285 8286 err_free: 8287 kvfree(krecord); 8288 kfree(info_aux); 8289 return ret; 8290 } 8291 8292 static void adjust_btf_func(struct bpf_verifier_env *env) 8293 { 8294 struct bpf_prog_aux *aux = env->prog->aux; 8295 int i; 8296 8297 if (!aux->func_info) 8298 return; 8299 8300 for (i = 0; i < env->subprog_cnt; i++) 8301 aux->func_info[i].insn_off = env->subprog_info[i].start; 8302 } 8303 8304 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8305 sizeof(((struct bpf_line_info *)(0))->line_col)) 8306 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8307 8308 static int check_btf_line(struct bpf_verifier_env *env, 8309 const union bpf_attr *attr, 8310 union bpf_attr __user *uattr) 8311 { 8312 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8313 struct bpf_subprog_info *sub; 8314 struct bpf_line_info *linfo; 8315 struct bpf_prog *prog; 8316 const struct btf *btf; 8317 void __user *ulinfo; 8318 int err; 8319 8320 nr_linfo = attr->line_info_cnt; 8321 if (!nr_linfo) 8322 return 0; 8323 8324 rec_size = attr->line_info_rec_size; 8325 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8326 rec_size > MAX_LINEINFO_REC_SIZE || 8327 rec_size & (sizeof(u32) - 1)) 8328 return -EINVAL; 8329 8330 /* Need to zero it in case the userspace may 8331 * pass in a smaller bpf_line_info object. 8332 */ 8333 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8334 GFP_KERNEL | __GFP_NOWARN); 8335 if (!linfo) 8336 return -ENOMEM; 8337 8338 prog = env->prog; 8339 btf = prog->aux->btf; 8340 8341 s = 0; 8342 sub = env->subprog_info; 8343 ulinfo = u64_to_user_ptr(attr->line_info); 8344 expected_size = sizeof(struct bpf_line_info); 8345 ncopy = min_t(u32, expected_size, rec_size); 8346 for (i = 0; i < nr_linfo; i++) { 8347 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8348 if (err) { 8349 if (err == -E2BIG) { 8350 verbose(env, "nonzero tailing record in line_info"); 8351 if (put_user(expected_size, 8352 &uattr->line_info_rec_size)) 8353 err = -EFAULT; 8354 } 8355 goto err_free; 8356 } 8357 8358 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8359 err = -EFAULT; 8360 goto err_free; 8361 } 8362 8363 /* 8364 * Check insn_off to ensure 8365 * 1) strictly increasing AND 8366 * 2) bounded by prog->len 8367 * 8368 * The linfo[0].insn_off == 0 check logically falls into 8369 * the later "missing bpf_line_info for func..." case 8370 * because the first linfo[0].insn_off must be the 8371 * first sub also and the first sub must have 8372 * subprog_info[0].start == 0. 8373 */ 8374 if ((i && linfo[i].insn_off <= prev_offset) || 8375 linfo[i].insn_off >= prog->len) { 8376 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8377 i, linfo[i].insn_off, prev_offset, 8378 prog->len); 8379 err = -EINVAL; 8380 goto err_free; 8381 } 8382 8383 if (!prog->insnsi[linfo[i].insn_off].code) { 8384 verbose(env, 8385 "Invalid insn code at line_info[%u].insn_off\n", 8386 i); 8387 err = -EINVAL; 8388 goto err_free; 8389 } 8390 8391 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8392 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8393 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8394 err = -EINVAL; 8395 goto err_free; 8396 } 8397 8398 if (s != env->subprog_cnt) { 8399 if (linfo[i].insn_off == sub[s].start) { 8400 sub[s].linfo_idx = i; 8401 s++; 8402 } else if (sub[s].start < linfo[i].insn_off) { 8403 verbose(env, "missing bpf_line_info for func#%u\n", s); 8404 err = -EINVAL; 8405 goto err_free; 8406 } 8407 } 8408 8409 prev_offset = linfo[i].insn_off; 8410 ulinfo += rec_size; 8411 } 8412 8413 if (s != env->subprog_cnt) { 8414 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8415 env->subprog_cnt - s, s); 8416 err = -EINVAL; 8417 goto err_free; 8418 } 8419 8420 prog->aux->linfo = linfo; 8421 prog->aux->nr_linfo = nr_linfo; 8422 8423 return 0; 8424 8425 err_free: 8426 kvfree(linfo); 8427 return err; 8428 } 8429 8430 static int check_btf_info(struct bpf_verifier_env *env, 8431 const union bpf_attr *attr, 8432 union bpf_attr __user *uattr) 8433 { 8434 struct btf *btf; 8435 int err; 8436 8437 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8438 if (check_abnormal_return(env)) 8439 return -EINVAL; 8440 return 0; 8441 } 8442 8443 btf = btf_get_by_fd(attr->prog_btf_fd); 8444 if (IS_ERR(btf)) 8445 return PTR_ERR(btf); 8446 env->prog->aux->btf = btf; 8447 8448 err = check_btf_func(env, attr, uattr); 8449 if (err) 8450 return err; 8451 8452 err = check_btf_line(env, attr, uattr); 8453 if (err) 8454 return err; 8455 8456 return 0; 8457 } 8458 8459 /* check %cur's range satisfies %old's */ 8460 static bool range_within(struct bpf_reg_state *old, 8461 struct bpf_reg_state *cur) 8462 { 8463 return old->umin_value <= cur->umin_value && 8464 old->umax_value >= cur->umax_value && 8465 old->smin_value <= cur->smin_value && 8466 old->smax_value >= cur->smax_value; 8467 } 8468 8469 /* Maximum number of register states that can exist at once */ 8470 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8471 struct idpair { 8472 u32 old; 8473 u32 cur; 8474 }; 8475 8476 /* If in the old state two registers had the same id, then they need to have 8477 * the same id in the new state as well. But that id could be different from 8478 * the old state, so we need to track the mapping from old to new ids. 8479 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8480 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8481 * regs with a different old id could still have new id 9, we don't care about 8482 * that. 8483 * So we look through our idmap to see if this old id has been seen before. If 8484 * so, we require the new id to match; otherwise, we add the id pair to the map. 8485 */ 8486 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8487 { 8488 unsigned int i; 8489 8490 for (i = 0; i < ID_MAP_SIZE; i++) { 8491 if (!idmap[i].old) { 8492 /* Reached an empty slot; haven't seen this id before */ 8493 idmap[i].old = old_id; 8494 idmap[i].cur = cur_id; 8495 return true; 8496 } 8497 if (idmap[i].old == old_id) 8498 return idmap[i].cur == cur_id; 8499 } 8500 /* We ran out of idmap slots, which should be impossible */ 8501 WARN_ON_ONCE(1); 8502 return false; 8503 } 8504 8505 static void clean_func_state(struct bpf_verifier_env *env, 8506 struct bpf_func_state *st) 8507 { 8508 enum bpf_reg_liveness live; 8509 int i, j; 8510 8511 for (i = 0; i < BPF_REG_FP; i++) { 8512 live = st->regs[i].live; 8513 /* liveness must not touch this register anymore */ 8514 st->regs[i].live |= REG_LIVE_DONE; 8515 if (!(live & REG_LIVE_READ)) 8516 /* since the register is unused, clear its state 8517 * to make further comparison simpler 8518 */ 8519 __mark_reg_not_init(env, &st->regs[i]); 8520 } 8521 8522 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8523 live = st->stack[i].spilled_ptr.live; 8524 /* liveness must not touch this stack slot anymore */ 8525 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8526 if (!(live & REG_LIVE_READ)) { 8527 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8528 for (j = 0; j < BPF_REG_SIZE; j++) 8529 st->stack[i].slot_type[j] = STACK_INVALID; 8530 } 8531 } 8532 } 8533 8534 static void clean_verifier_state(struct bpf_verifier_env *env, 8535 struct bpf_verifier_state *st) 8536 { 8537 int i; 8538 8539 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8540 /* all regs in this state in all frames were already marked */ 8541 return; 8542 8543 for (i = 0; i <= st->curframe; i++) 8544 clean_func_state(env, st->frame[i]); 8545 } 8546 8547 /* the parentage chains form a tree. 8548 * the verifier states are added to state lists at given insn and 8549 * pushed into state stack for future exploration. 8550 * when the verifier reaches bpf_exit insn some of the verifer states 8551 * stored in the state lists have their final liveness state already, 8552 * but a lot of states will get revised from liveness point of view when 8553 * the verifier explores other branches. 8554 * Example: 8555 * 1: r0 = 1 8556 * 2: if r1 == 100 goto pc+1 8557 * 3: r0 = 2 8558 * 4: exit 8559 * when the verifier reaches exit insn the register r0 in the state list of 8560 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8561 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8562 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8563 * 8564 * Since the verifier pushes the branch states as it sees them while exploring 8565 * the program the condition of walking the branch instruction for the second 8566 * time means that all states below this branch were already explored and 8567 * their final liveness markes are already propagated. 8568 * Hence when the verifier completes the search of state list in is_state_visited() 8569 * we can call this clean_live_states() function to mark all liveness states 8570 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8571 * will not be used. 8572 * This function also clears the registers and stack for states that !READ 8573 * to simplify state merging. 8574 * 8575 * Important note here that walking the same branch instruction in the callee 8576 * doesn't meant that the states are DONE. The verifier has to compare 8577 * the callsites 8578 */ 8579 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8580 struct bpf_verifier_state *cur) 8581 { 8582 struct bpf_verifier_state_list *sl; 8583 int i; 8584 8585 sl = *explored_state(env, insn); 8586 while (sl) { 8587 if (sl->state.branches) 8588 goto next; 8589 if (sl->state.insn_idx != insn || 8590 sl->state.curframe != cur->curframe) 8591 goto next; 8592 for (i = 0; i <= cur->curframe; i++) 8593 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8594 goto next; 8595 clean_verifier_state(env, &sl->state); 8596 next: 8597 sl = sl->next; 8598 } 8599 } 8600 8601 /* Returns true if (rold safe implies rcur safe) */ 8602 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8603 struct idpair *idmap) 8604 { 8605 bool equal; 8606 8607 if (!(rold->live & REG_LIVE_READ)) 8608 /* explored state didn't use this */ 8609 return true; 8610 8611 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8612 8613 if (rold->type == PTR_TO_STACK) 8614 /* two stack pointers are equal only if they're pointing to 8615 * the same stack frame, since fp-8 in foo != fp-8 in bar 8616 */ 8617 return equal && rold->frameno == rcur->frameno; 8618 8619 if (equal) 8620 return true; 8621 8622 if (rold->type == NOT_INIT) 8623 /* explored state can't have used this */ 8624 return true; 8625 if (rcur->type == NOT_INIT) 8626 return false; 8627 switch (rold->type) { 8628 case SCALAR_VALUE: 8629 if (rcur->type == SCALAR_VALUE) { 8630 if (!rold->precise && !rcur->precise) 8631 return true; 8632 /* new val must satisfy old val knowledge */ 8633 return range_within(rold, rcur) && 8634 tnum_in(rold->var_off, rcur->var_off); 8635 } else { 8636 /* We're trying to use a pointer in place of a scalar. 8637 * Even if the scalar was unbounded, this could lead to 8638 * pointer leaks because scalars are allowed to leak 8639 * while pointers are not. We could make this safe in 8640 * special cases if root is calling us, but it's 8641 * probably not worth the hassle. 8642 */ 8643 return false; 8644 } 8645 case PTR_TO_MAP_VALUE: 8646 /* If the new min/max/var_off satisfy the old ones and 8647 * everything else matches, we are OK. 8648 * 'id' is not compared, since it's only used for maps with 8649 * bpf_spin_lock inside map element and in such cases if 8650 * the rest of the prog is valid for one map element then 8651 * it's valid for all map elements regardless of the key 8652 * used in bpf_map_lookup() 8653 */ 8654 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8655 range_within(rold, rcur) && 8656 tnum_in(rold->var_off, rcur->var_off); 8657 case PTR_TO_MAP_VALUE_OR_NULL: 8658 /* a PTR_TO_MAP_VALUE could be safe to use as a 8659 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8660 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8661 * checked, doing so could have affected others with the same 8662 * id, and we can't check for that because we lost the id when 8663 * we converted to a PTR_TO_MAP_VALUE. 8664 */ 8665 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8666 return false; 8667 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8668 return false; 8669 /* Check our ids match any regs they're supposed to */ 8670 return check_ids(rold->id, rcur->id, idmap); 8671 case PTR_TO_PACKET_META: 8672 case PTR_TO_PACKET: 8673 if (rcur->type != rold->type) 8674 return false; 8675 /* We must have at least as much range as the old ptr 8676 * did, so that any accesses which were safe before are 8677 * still safe. This is true even if old range < old off, 8678 * since someone could have accessed through (ptr - k), or 8679 * even done ptr -= k in a register, to get a safe access. 8680 */ 8681 if (rold->range > rcur->range) 8682 return false; 8683 /* If the offsets don't match, we can't trust our alignment; 8684 * nor can we be sure that we won't fall out of range. 8685 */ 8686 if (rold->off != rcur->off) 8687 return false; 8688 /* id relations must be preserved */ 8689 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8690 return false; 8691 /* new val must satisfy old val knowledge */ 8692 return range_within(rold, rcur) && 8693 tnum_in(rold->var_off, rcur->var_off); 8694 case PTR_TO_CTX: 8695 case CONST_PTR_TO_MAP: 8696 case PTR_TO_PACKET_END: 8697 case PTR_TO_FLOW_KEYS: 8698 case PTR_TO_SOCKET: 8699 case PTR_TO_SOCKET_OR_NULL: 8700 case PTR_TO_SOCK_COMMON: 8701 case PTR_TO_SOCK_COMMON_OR_NULL: 8702 case PTR_TO_TCP_SOCK: 8703 case PTR_TO_TCP_SOCK_OR_NULL: 8704 case PTR_TO_XDP_SOCK: 8705 /* Only valid matches are exact, which memcmp() above 8706 * would have accepted 8707 */ 8708 default: 8709 /* Don't know what's going on, just say it's not safe */ 8710 return false; 8711 } 8712 8713 /* Shouldn't get here; if we do, say it's not safe */ 8714 WARN_ON_ONCE(1); 8715 return false; 8716 } 8717 8718 static bool stacksafe(struct bpf_func_state *old, 8719 struct bpf_func_state *cur, 8720 struct idpair *idmap) 8721 { 8722 int i, spi; 8723 8724 /* walk slots of the explored stack and ignore any additional 8725 * slots in the current stack, since explored(safe) state 8726 * didn't use them 8727 */ 8728 for (i = 0; i < old->allocated_stack; i++) { 8729 spi = i / BPF_REG_SIZE; 8730 8731 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8732 i += BPF_REG_SIZE - 1; 8733 /* explored state didn't use this */ 8734 continue; 8735 } 8736 8737 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8738 continue; 8739 8740 /* explored stack has more populated slots than current stack 8741 * and these slots were used 8742 */ 8743 if (i >= cur->allocated_stack) 8744 return false; 8745 8746 /* if old state was safe with misc data in the stack 8747 * it will be safe with zero-initialized stack. 8748 * The opposite is not true 8749 */ 8750 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8751 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8752 continue; 8753 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8754 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8755 /* Ex: old explored (safe) state has STACK_SPILL in 8756 * this stack slot, but current has STACK_MISC -> 8757 * this verifier states are not equivalent, 8758 * return false to continue verification of this path 8759 */ 8760 return false; 8761 if (i % BPF_REG_SIZE) 8762 continue; 8763 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8764 continue; 8765 if (!regsafe(&old->stack[spi].spilled_ptr, 8766 &cur->stack[spi].spilled_ptr, 8767 idmap)) 8768 /* when explored and current stack slot are both storing 8769 * spilled registers, check that stored pointers types 8770 * are the same as well. 8771 * Ex: explored safe path could have stored 8772 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8773 * but current path has stored: 8774 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8775 * such verifier states are not equivalent. 8776 * return false to continue verification of this path 8777 */ 8778 return false; 8779 } 8780 return true; 8781 } 8782 8783 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8784 { 8785 if (old->acquired_refs != cur->acquired_refs) 8786 return false; 8787 return !memcmp(old->refs, cur->refs, 8788 sizeof(*old->refs) * old->acquired_refs); 8789 } 8790 8791 /* compare two verifier states 8792 * 8793 * all states stored in state_list are known to be valid, since 8794 * verifier reached 'bpf_exit' instruction through them 8795 * 8796 * this function is called when verifier exploring different branches of 8797 * execution popped from the state stack. If it sees an old state that has 8798 * more strict register state and more strict stack state then this execution 8799 * branch doesn't need to be explored further, since verifier already 8800 * concluded that more strict state leads to valid finish. 8801 * 8802 * Therefore two states are equivalent if register state is more conservative 8803 * and explored stack state is more conservative than the current one. 8804 * Example: 8805 * explored current 8806 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8807 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8808 * 8809 * In other words if current stack state (one being explored) has more 8810 * valid slots than old one that already passed validation, it means 8811 * the verifier can stop exploring and conclude that current state is valid too 8812 * 8813 * Similarly with registers. If explored state has register type as invalid 8814 * whereas register type in current state is meaningful, it means that 8815 * the current state will reach 'bpf_exit' instruction safely 8816 */ 8817 static bool func_states_equal(struct bpf_func_state *old, 8818 struct bpf_func_state *cur) 8819 { 8820 struct idpair *idmap; 8821 bool ret = false; 8822 int i; 8823 8824 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8825 /* If we failed to allocate the idmap, just say it's not safe */ 8826 if (!idmap) 8827 return false; 8828 8829 for (i = 0; i < MAX_BPF_REG; i++) { 8830 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8831 goto out_free; 8832 } 8833 8834 if (!stacksafe(old, cur, idmap)) 8835 goto out_free; 8836 8837 if (!refsafe(old, cur)) 8838 goto out_free; 8839 ret = true; 8840 out_free: 8841 kfree(idmap); 8842 return ret; 8843 } 8844 8845 static bool states_equal(struct bpf_verifier_env *env, 8846 struct bpf_verifier_state *old, 8847 struct bpf_verifier_state *cur) 8848 { 8849 int i; 8850 8851 if (old->curframe != cur->curframe) 8852 return false; 8853 8854 /* Verification state from speculative execution simulation 8855 * must never prune a non-speculative execution one. 8856 */ 8857 if (old->speculative && !cur->speculative) 8858 return false; 8859 8860 if (old->active_spin_lock != cur->active_spin_lock) 8861 return false; 8862 8863 /* for states to be equal callsites have to be the same 8864 * and all frame states need to be equivalent 8865 */ 8866 for (i = 0; i <= old->curframe; i++) { 8867 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8868 return false; 8869 if (!func_states_equal(old->frame[i], cur->frame[i])) 8870 return false; 8871 } 8872 return true; 8873 } 8874 8875 /* Return 0 if no propagation happened. Return negative error code if error 8876 * happened. Otherwise, return the propagated bit. 8877 */ 8878 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8879 struct bpf_reg_state *reg, 8880 struct bpf_reg_state *parent_reg) 8881 { 8882 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8883 u8 flag = reg->live & REG_LIVE_READ; 8884 int err; 8885 8886 /* When comes here, read flags of PARENT_REG or REG could be any of 8887 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8888 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8889 */ 8890 if (parent_flag == REG_LIVE_READ64 || 8891 /* Or if there is no read flag from REG. */ 8892 !flag || 8893 /* Or if the read flag from REG is the same as PARENT_REG. */ 8894 parent_flag == flag) 8895 return 0; 8896 8897 err = mark_reg_read(env, reg, parent_reg, flag); 8898 if (err) 8899 return err; 8900 8901 return flag; 8902 } 8903 8904 /* A write screens off any subsequent reads; but write marks come from the 8905 * straight-line code between a state and its parent. When we arrive at an 8906 * equivalent state (jump target or such) we didn't arrive by the straight-line 8907 * code, so read marks in the state must propagate to the parent regardless 8908 * of the state's write marks. That's what 'parent == state->parent' comparison 8909 * in mark_reg_read() is for. 8910 */ 8911 static int propagate_liveness(struct bpf_verifier_env *env, 8912 const struct bpf_verifier_state *vstate, 8913 struct bpf_verifier_state *vparent) 8914 { 8915 struct bpf_reg_state *state_reg, *parent_reg; 8916 struct bpf_func_state *state, *parent; 8917 int i, frame, err = 0; 8918 8919 if (vparent->curframe != vstate->curframe) { 8920 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8921 vparent->curframe, vstate->curframe); 8922 return -EFAULT; 8923 } 8924 /* Propagate read liveness of registers... */ 8925 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8926 for (frame = 0; frame <= vstate->curframe; frame++) { 8927 parent = vparent->frame[frame]; 8928 state = vstate->frame[frame]; 8929 parent_reg = parent->regs; 8930 state_reg = state->regs; 8931 /* We don't need to worry about FP liveness, it's read-only */ 8932 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8933 err = propagate_liveness_reg(env, &state_reg[i], 8934 &parent_reg[i]); 8935 if (err < 0) 8936 return err; 8937 if (err == REG_LIVE_READ64) 8938 mark_insn_zext(env, &parent_reg[i]); 8939 } 8940 8941 /* Propagate stack slots. */ 8942 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8943 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8944 parent_reg = &parent->stack[i].spilled_ptr; 8945 state_reg = &state->stack[i].spilled_ptr; 8946 err = propagate_liveness_reg(env, state_reg, 8947 parent_reg); 8948 if (err < 0) 8949 return err; 8950 } 8951 } 8952 return 0; 8953 } 8954 8955 /* find precise scalars in the previous equivalent state and 8956 * propagate them into the current state 8957 */ 8958 static int propagate_precision(struct bpf_verifier_env *env, 8959 const struct bpf_verifier_state *old) 8960 { 8961 struct bpf_reg_state *state_reg; 8962 struct bpf_func_state *state; 8963 int i, err = 0; 8964 8965 state = old->frame[old->curframe]; 8966 state_reg = state->regs; 8967 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8968 if (state_reg->type != SCALAR_VALUE || 8969 !state_reg->precise) 8970 continue; 8971 if (env->log.level & BPF_LOG_LEVEL2) 8972 verbose(env, "propagating r%d\n", i); 8973 err = mark_chain_precision(env, i); 8974 if (err < 0) 8975 return err; 8976 } 8977 8978 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8979 if (state->stack[i].slot_type[0] != STACK_SPILL) 8980 continue; 8981 state_reg = &state->stack[i].spilled_ptr; 8982 if (state_reg->type != SCALAR_VALUE || 8983 !state_reg->precise) 8984 continue; 8985 if (env->log.level & BPF_LOG_LEVEL2) 8986 verbose(env, "propagating fp%d\n", 8987 (-i - 1) * BPF_REG_SIZE); 8988 err = mark_chain_precision_stack(env, i); 8989 if (err < 0) 8990 return err; 8991 } 8992 return 0; 8993 } 8994 8995 static bool states_maybe_looping(struct bpf_verifier_state *old, 8996 struct bpf_verifier_state *cur) 8997 { 8998 struct bpf_func_state *fold, *fcur; 8999 int i, fr = cur->curframe; 9000 9001 if (old->curframe != fr) 9002 return false; 9003 9004 fold = old->frame[fr]; 9005 fcur = cur->frame[fr]; 9006 for (i = 0; i < MAX_BPF_REG; i++) 9007 if (memcmp(&fold->regs[i], &fcur->regs[i], 9008 offsetof(struct bpf_reg_state, parent))) 9009 return false; 9010 return true; 9011 } 9012 9013 9014 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9015 { 9016 struct bpf_verifier_state_list *new_sl; 9017 struct bpf_verifier_state_list *sl, **pprev; 9018 struct bpf_verifier_state *cur = env->cur_state, *new; 9019 int i, j, err, states_cnt = 0; 9020 bool add_new_state = env->test_state_freq ? true : false; 9021 9022 cur->last_insn_idx = env->prev_insn_idx; 9023 if (!env->insn_aux_data[insn_idx].prune_point) 9024 /* this 'insn_idx' instruction wasn't marked, so we will not 9025 * be doing state search here 9026 */ 9027 return 0; 9028 9029 /* bpf progs typically have pruning point every 4 instructions 9030 * http://vger.kernel.org/bpfconf2019.html#session-1 9031 * Do not add new state for future pruning if the verifier hasn't seen 9032 * at least 2 jumps and at least 8 instructions. 9033 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9034 * In tests that amounts to up to 50% reduction into total verifier 9035 * memory consumption and 20% verifier time speedup. 9036 */ 9037 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9038 env->insn_processed - env->prev_insn_processed >= 8) 9039 add_new_state = true; 9040 9041 pprev = explored_state(env, insn_idx); 9042 sl = *pprev; 9043 9044 clean_live_states(env, insn_idx, cur); 9045 9046 while (sl) { 9047 states_cnt++; 9048 if (sl->state.insn_idx != insn_idx) 9049 goto next; 9050 if (sl->state.branches) { 9051 if (states_maybe_looping(&sl->state, cur) && 9052 states_equal(env, &sl->state, cur)) { 9053 verbose_linfo(env, insn_idx, "; "); 9054 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9055 return -EINVAL; 9056 } 9057 /* if the verifier is processing a loop, avoid adding new state 9058 * too often, since different loop iterations have distinct 9059 * states and may not help future pruning. 9060 * This threshold shouldn't be too low to make sure that 9061 * a loop with large bound will be rejected quickly. 9062 * The most abusive loop will be: 9063 * r1 += 1 9064 * if r1 < 1000000 goto pc-2 9065 * 1M insn_procssed limit / 100 == 10k peak states. 9066 * This threshold shouldn't be too high either, since states 9067 * at the end of the loop are likely to be useful in pruning. 9068 */ 9069 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9070 env->insn_processed - env->prev_insn_processed < 100) 9071 add_new_state = false; 9072 goto miss; 9073 } 9074 if (states_equal(env, &sl->state, cur)) { 9075 sl->hit_cnt++; 9076 /* reached equivalent register/stack state, 9077 * prune the search. 9078 * Registers read by the continuation are read by us. 9079 * If we have any write marks in env->cur_state, they 9080 * will prevent corresponding reads in the continuation 9081 * from reaching our parent (an explored_state). Our 9082 * own state will get the read marks recorded, but 9083 * they'll be immediately forgotten as we're pruning 9084 * this state and will pop a new one. 9085 */ 9086 err = propagate_liveness(env, &sl->state, cur); 9087 9088 /* if previous state reached the exit with precision and 9089 * current state is equivalent to it (except precsion marks) 9090 * the precision needs to be propagated back in 9091 * the current state. 9092 */ 9093 err = err ? : push_jmp_history(env, cur); 9094 err = err ? : propagate_precision(env, &sl->state); 9095 if (err) 9096 return err; 9097 return 1; 9098 } 9099 miss: 9100 /* when new state is not going to be added do not increase miss count. 9101 * Otherwise several loop iterations will remove the state 9102 * recorded earlier. The goal of these heuristics is to have 9103 * states from some iterations of the loop (some in the beginning 9104 * and some at the end) to help pruning. 9105 */ 9106 if (add_new_state) 9107 sl->miss_cnt++; 9108 /* heuristic to determine whether this state is beneficial 9109 * to keep checking from state equivalence point of view. 9110 * Higher numbers increase max_states_per_insn and verification time, 9111 * but do not meaningfully decrease insn_processed. 9112 */ 9113 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9114 /* the state is unlikely to be useful. Remove it to 9115 * speed up verification 9116 */ 9117 *pprev = sl->next; 9118 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9119 u32 br = sl->state.branches; 9120 9121 WARN_ONCE(br, 9122 "BUG live_done but branches_to_explore %d\n", 9123 br); 9124 free_verifier_state(&sl->state, false); 9125 kfree(sl); 9126 env->peak_states--; 9127 } else { 9128 /* cannot free this state, since parentage chain may 9129 * walk it later. Add it for free_list instead to 9130 * be freed at the end of verification 9131 */ 9132 sl->next = env->free_list; 9133 env->free_list = sl; 9134 } 9135 sl = *pprev; 9136 continue; 9137 } 9138 next: 9139 pprev = &sl->next; 9140 sl = *pprev; 9141 } 9142 9143 if (env->max_states_per_insn < states_cnt) 9144 env->max_states_per_insn = states_cnt; 9145 9146 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9147 return push_jmp_history(env, cur); 9148 9149 if (!add_new_state) 9150 return push_jmp_history(env, cur); 9151 9152 /* There were no equivalent states, remember the current one. 9153 * Technically the current state is not proven to be safe yet, 9154 * but it will either reach outer most bpf_exit (which means it's safe) 9155 * or it will be rejected. When there are no loops the verifier won't be 9156 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9157 * again on the way to bpf_exit. 9158 * When looping the sl->state.branches will be > 0 and this state 9159 * will not be considered for equivalence until branches == 0. 9160 */ 9161 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9162 if (!new_sl) 9163 return -ENOMEM; 9164 env->total_states++; 9165 env->peak_states++; 9166 env->prev_jmps_processed = env->jmps_processed; 9167 env->prev_insn_processed = env->insn_processed; 9168 9169 /* add new state to the head of linked list */ 9170 new = &new_sl->state; 9171 err = copy_verifier_state(new, cur); 9172 if (err) { 9173 free_verifier_state(new, false); 9174 kfree(new_sl); 9175 return err; 9176 } 9177 new->insn_idx = insn_idx; 9178 WARN_ONCE(new->branches != 1, 9179 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9180 9181 cur->parent = new; 9182 cur->first_insn_idx = insn_idx; 9183 clear_jmp_history(cur); 9184 new_sl->next = *explored_state(env, insn_idx); 9185 *explored_state(env, insn_idx) = new_sl; 9186 /* connect new state to parentage chain. Current frame needs all 9187 * registers connected. Only r6 - r9 of the callers are alive (pushed 9188 * to the stack implicitly by JITs) so in callers' frames connect just 9189 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9190 * the state of the call instruction (with WRITTEN set), and r0 comes 9191 * from callee with its full parentage chain, anyway. 9192 */ 9193 /* clear write marks in current state: the writes we did are not writes 9194 * our child did, so they don't screen off its reads from us. 9195 * (There are no read marks in current state, because reads always mark 9196 * their parent and current state never has children yet. Only 9197 * explored_states can get read marks.) 9198 */ 9199 for (j = 0; j <= cur->curframe; j++) { 9200 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9201 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9202 for (i = 0; i < BPF_REG_FP; i++) 9203 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9204 } 9205 9206 /* all stack frames are accessible from callee, clear them all */ 9207 for (j = 0; j <= cur->curframe; j++) { 9208 struct bpf_func_state *frame = cur->frame[j]; 9209 struct bpf_func_state *newframe = new->frame[j]; 9210 9211 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9212 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9213 frame->stack[i].spilled_ptr.parent = 9214 &newframe->stack[i].spilled_ptr; 9215 } 9216 } 9217 return 0; 9218 } 9219 9220 /* Return true if it's OK to have the same insn return a different type. */ 9221 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9222 { 9223 switch (type) { 9224 case PTR_TO_CTX: 9225 case PTR_TO_SOCKET: 9226 case PTR_TO_SOCKET_OR_NULL: 9227 case PTR_TO_SOCK_COMMON: 9228 case PTR_TO_SOCK_COMMON_OR_NULL: 9229 case PTR_TO_TCP_SOCK: 9230 case PTR_TO_TCP_SOCK_OR_NULL: 9231 case PTR_TO_XDP_SOCK: 9232 case PTR_TO_BTF_ID: 9233 case PTR_TO_BTF_ID_OR_NULL: 9234 return false; 9235 default: 9236 return true; 9237 } 9238 } 9239 9240 /* If an instruction was previously used with particular pointer types, then we 9241 * need to be careful to avoid cases such as the below, where it may be ok 9242 * for one branch accessing the pointer, but not ok for the other branch: 9243 * 9244 * R1 = sock_ptr 9245 * goto X; 9246 * ... 9247 * R1 = some_other_valid_ptr; 9248 * goto X; 9249 * ... 9250 * R2 = *(u32 *)(R1 + 0); 9251 */ 9252 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9253 { 9254 return src != prev && (!reg_type_mismatch_ok(src) || 9255 !reg_type_mismatch_ok(prev)); 9256 } 9257 9258 static int do_check(struct bpf_verifier_env *env) 9259 { 9260 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9261 struct bpf_verifier_state *state = env->cur_state; 9262 struct bpf_insn *insns = env->prog->insnsi; 9263 struct bpf_reg_state *regs; 9264 int insn_cnt = env->prog->len; 9265 bool do_print_state = false; 9266 int prev_insn_idx = -1; 9267 9268 for (;;) { 9269 struct bpf_insn *insn; 9270 u8 class; 9271 int err; 9272 9273 env->prev_insn_idx = prev_insn_idx; 9274 if (env->insn_idx >= insn_cnt) { 9275 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9276 env->insn_idx, insn_cnt); 9277 return -EFAULT; 9278 } 9279 9280 insn = &insns[env->insn_idx]; 9281 class = BPF_CLASS(insn->code); 9282 9283 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9284 verbose(env, 9285 "BPF program is too large. Processed %d insn\n", 9286 env->insn_processed); 9287 return -E2BIG; 9288 } 9289 9290 err = is_state_visited(env, env->insn_idx); 9291 if (err < 0) 9292 return err; 9293 if (err == 1) { 9294 /* found equivalent state, can prune the search */ 9295 if (env->log.level & BPF_LOG_LEVEL) { 9296 if (do_print_state) 9297 verbose(env, "\nfrom %d to %d%s: safe\n", 9298 env->prev_insn_idx, env->insn_idx, 9299 env->cur_state->speculative ? 9300 " (speculative execution)" : ""); 9301 else 9302 verbose(env, "%d: safe\n", env->insn_idx); 9303 } 9304 goto process_bpf_exit; 9305 } 9306 9307 if (signal_pending(current)) 9308 return -EAGAIN; 9309 9310 if (need_resched()) 9311 cond_resched(); 9312 9313 if (env->log.level & BPF_LOG_LEVEL2 || 9314 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9315 if (env->log.level & BPF_LOG_LEVEL2) 9316 verbose(env, "%d:", env->insn_idx); 9317 else 9318 verbose(env, "\nfrom %d to %d%s:", 9319 env->prev_insn_idx, env->insn_idx, 9320 env->cur_state->speculative ? 9321 " (speculative execution)" : ""); 9322 print_verifier_state(env, state->frame[state->curframe]); 9323 do_print_state = false; 9324 } 9325 9326 if (env->log.level & BPF_LOG_LEVEL) { 9327 const struct bpf_insn_cbs cbs = { 9328 .cb_print = verbose, 9329 .private_data = env, 9330 }; 9331 9332 verbose_linfo(env, env->insn_idx, "; "); 9333 verbose(env, "%d: ", env->insn_idx); 9334 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9335 } 9336 9337 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9338 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9339 env->prev_insn_idx); 9340 if (err) 9341 return err; 9342 } 9343 9344 regs = cur_regs(env); 9345 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9346 prev_insn_idx = env->insn_idx; 9347 9348 if (class == BPF_ALU || class == BPF_ALU64) { 9349 err = check_alu_op(env, insn); 9350 if (err) 9351 return err; 9352 9353 } else if (class == BPF_LDX) { 9354 enum bpf_reg_type *prev_src_type, src_reg_type; 9355 9356 /* check for reserved fields is already done */ 9357 9358 /* check src operand */ 9359 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9360 if (err) 9361 return err; 9362 9363 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9364 if (err) 9365 return err; 9366 9367 src_reg_type = regs[insn->src_reg].type; 9368 9369 /* check that memory (src_reg + off) is readable, 9370 * the state of dst_reg will be updated by this func 9371 */ 9372 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9373 insn->off, BPF_SIZE(insn->code), 9374 BPF_READ, insn->dst_reg, false); 9375 if (err) 9376 return err; 9377 9378 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9379 9380 if (*prev_src_type == NOT_INIT) { 9381 /* saw a valid insn 9382 * dst_reg = *(u32 *)(src_reg + off) 9383 * save type to validate intersecting paths 9384 */ 9385 *prev_src_type = src_reg_type; 9386 9387 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9388 /* ABuser program is trying to use the same insn 9389 * dst_reg = *(u32*) (src_reg + off) 9390 * with different pointer types: 9391 * src_reg == ctx in one branch and 9392 * src_reg == stack|map in some other branch. 9393 * Reject it. 9394 */ 9395 verbose(env, "same insn cannot be used with different pointers\n"); 9396 return -EINVAL; 9397 } 9398 9399 } else if (class == BPF_STX) { 9400 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9401 9402 if (BPF_MODE(insn->code) == BPF_XADD) { 9403 err = check_xadd(env, env->insn_idx, insn); 9404 if (err) 9405 return err; 9406 env->insn_idx++; 9407 continue; 9408 } 9409 9410 /* check src1 operand */ 9411 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9412 if (err) 9413 return err; 9414 /* check src2 operand */ 9415 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9416 if (err) 9417 return err; 9418 9419 dst_reg_type = regs[insn->dst_reg].type; 9420 9421 /* check that memory (dst_reg + off) is writeable */ 9422 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9423 insn->off, BPF_SIZE(insn->code), 9424 BPF_WRITE, insn->src_reg, false); 9425 if (err) 9426 return err; 9427 9428 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9429 9430 if (*prev_dst_type == NOT_INIT) { 9431 *prev_dst_type = dst_reg_type; 9432 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9433 verbose(env, "same insn cannot be used with different pointers\n"); 9434 return -EINVAL; 9435 } 9436 9437 } else if (class == BPF_ST) { 9438 if (BPF_MODE(insn->code) != BPF_MEM || 9439 insn->src_reg != BPF_REG_0) { 9440 verbose(env, "BPF_ST uses reserved fields\n"); 9441 return -EINVAL; 9442 } 9443 /* check src operand */ 9444 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9445 if (err) 9446 return err; 9447 9448 if (is_ctx_reg(env, insn->dst_reg)) { 9449 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9450 insn->dst_reg, 9451 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9452 return -EACCES; 9453 } 9454 9455 /* check that memory (dst_reg + off) is writeable */ 9456 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9457 insn->off, BPF_SIZE(insn->code), 9458 BPF_WRITE, -1, false); 9459 if (err) 9460 return err; 9461 9462 } else if (class == BPF_JMP || class == BPF_JMP32) { 9463 u8 opcode = BPF_OP(insn->code); 9464 9465 env->jmps_processed++; 9466 if (opcode == BPF_CALL) { 9467 if (BPF_SRC(insn->code) != BPF_K || 9468 insn->off != 0 || 9469 (insn->src_reg != BPF_REG_0 && 9470 insn->src_reg != BPF_PSEUDO_CALL) || 9471 insn->dst_reg != BPF_REG_0 || 9472 class == BPF_JMP32) { 9473 verbose(env, "BPF_CALL uses reserved fields\n"); 9474 return -EINVAL; 9475 } 9476 9477 if (env->cur_state->active_spin_lock && 9478 (insn->src_reg == BPF_PSEUDO_CALL || 9479 insn->imm != BPF_FUNC_spin_unlock)) { 9480 verbose(env, "function calls are not allowed while holding a lock\n"); 9481 return -EINVAL; 9482 } 9483 if (insn->src_reg == BPF_PSEUDO_CALL) 9484 err = check_func_call(env, insn, &env->insn_idx); 9485 else 9486 err = check_helper_call(env, insn->imm, env->insn_idx); 9487 if (err) 9488 return err; 9489 9490 } else if (opcode == BPF_JA) { 9491 if (BPF_SRC(insn->code) != BPF_K || 9492 insn->imm != 0 || 9493 insn->src_reg != BPF_REG_0 || 9494 insn->dst_reg != BPF_REG_0 || 9495 class == BPF_JMP32) { 9496 verbose(env, "BPF_JA uses reserved fields\n"); 9497 return -EINVAL; 9498 } 9499 9500 env->insn_idx += insn->off + 1; 9501 continue; 9502 9503 } else if (opcode == BPF_EXIT) { 9504 if (BPF_SRC(insn->code) != BPF_K || 9505 insn->imm != 0 || 9506 insn->src_reg != BPF_REG_0 || 9507 insn->dst_reg != BPF_REG_0 || 9508 class == BPF_JMP32) { 9509 verbose(env, "BPF_EXIT uses reserved fields\n"); 9510 return -EINVAL; 9511 } 9512 9513 if (env->cur_state->active_spin_lock) { 9514 verbose(env, "bpf_spin_unlock is missing\n"); 9515 return -EINVAL; 9516 } 9517 9518 if (state->curframe) { 9519 /* exit from nested function */ 9520 err = prepare_func_exit(env, &env->insn_idx); 9521 if (err) 9522 return err; 9523 do_print_state = true; 9524 continue; 9525 } 9526 9527 err = check_reference_leak(env); 9528 if (err) 9529 return err; 9530 9531 err = check_return_code(env); 9532 if (err) 9533 return err; 9534 process_bpf_exit: 9535 update_branch_counts(env, env->cur_state); 9536 err = pop_stack(env, &prev_insn_idx, 9537 &env->insn_idx, pop_log); 9538 if (err < 0) { 9539 if (err != -ENOENT) 9540 return err; 9541 break; 9542 } else { 9543 do_print_state = true; 9544 continue; 9545 } 9546 } else { 9547 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9548 if (err) 9549 return err; 9550 } 9551 } else if (class == BPF_LD) { 9552 u8 mode = BPF_MODE(insn->code); 9553 9554 if (mode == BPF_ABS || mode == BPF_IND) { 9555 err = check_ld_abs(env, insn); 9556 if (err) 9557 return err; 9558 9559 } else if (mode == BPF_IMM) { 9560 err = check_ld_imm(env, insn); 9561 if (err) 9562 return err; 9563 9564 env->insn_idx++; 9565 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9566 } else { 9567 verbose(env, "invalid BPF_LD mode\n"); 9568 return -EINVAL; 9569 } 9570 } else { 9571 verbose(env, "unknown insn class %d\n", class); 9572 return -EINVAL; 9573 } 9574 9575 env->insn_idx++; 9576 } 9577 9578 return 0; 9579 } 9580 9581 /* replace pseudo btf_id with kernel symbol address */ 9582 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 9583 struct bpf_insn *insn, 9584 struct bpf_insn_aux_data *aux) 9585 { 9586 const struct btf_var_secinfo *vsi; 9587 const struct btf_type *datasec; 9588 const struct btf_type *t; 9589 const char *sym_name; 9590 bool percpu = false; 9591 u32 type, id = insn->imm; 9592 s32 datasec_id; 9593 u64 addr; 9594 int i; 9595 9596 if (!btf_vmlinux) { 9597 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9598 return -EINVAL; 9599 } 9600 9601 if (insn[1].imm != 0) { 9602 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9603 return -EINVAL; 9604 } 9605 9606 t = btf_type_by_id(btf_vmlinux, id); 9607 if (!t) { 9608 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9609 return -ENOENT; 9610 } 9611 9612 if (!btf_type_is_var(t)) { 9613 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", 9614 id); 9615 return -EINVAL; 9616 } 9617 9618 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9619 addr = kallsyms_lookup_name(sym_name); 9620 if (!addr) { 9621 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 9622 sym_name); 9623 return -ENOENT; 9624 } 9625 9626 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", 9627 BTF_KIND_DATASEC); 9628 if (datasec_id > 0) { 9629 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 9630 for_each_vsi(i, datasec, vsi) { 9631 if (vsi->type == id) { 9632 percpu = true; 9633 break; 9634 } 9635 } 9636 } 9637 9638 insn[0].imm = (u32)addr; 9639 insn[1].imm = addr >> 32; 9640 9641 type = t->type; 9642 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 9643 if (percpu) { 9644 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 9645 aux->btf_var.btf_id = type; 9646 } else if (!btf_type_is_struct(t)) { 9647 const struct btf_type *ret; 9648 const char *tname; 9649 u32 tsize; 9650 9651 /* resolve the type size of ksym. */ 9652 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 9653 if (IS_ERR(ret)) { 9654 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9655 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 9656 tname, PTR_ERR(ret)); 9657 return -EINVAL; 9658 } 9659 aux->btf_var.reg_type = PTR_TO_MEM; 9660 aux->btf_var.mem_size = tsize; 9661 } else { 9662 aux->btf_var.reg_type = PTR_TO_BTF_ID; 9663 aux->btf_var.btf_id = type; 9664 } 9665 return 0; 9666 } 9667 9668 static int check_map_prealloc(struct bpf_map *map) 9669 { 9670 return (map->map_type != BPF_MAP_TYPE_HASH && 9671 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9672 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9673 !(map->map_flags & BPF_F_NO_PREALLOC); 9674 } 9675 9676 static bool is_tracing_prog_type(enum bpf_prog_type type) 9677 { 9678 switch (type) { 9679 case BPF_PROG_TYPE_KPROBE: 9680 case BPF_PROG_TYPE_TRACEPOINT: 9681 case BPF_PROG_TYPE_PERF_EVENT: 9682 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9683 return true; 9684 default: 9685 return false; 9686 } 9687 } 9688 9689 static bool is_preallocated_map(struct bpf_map *map) 9690 { 9691 if (!check_map_prealloc(map)) 9692 return false; 9693 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9694 return false; 9695 return true; 9696 } 9697 9698 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9699 struct bpf_map *map, 9700 struct bpf_prog *prog) 9701 9702 { 9703 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9704 /* 9705 * Validate that trace type programs use preallocated hash maps. 9706 * 9707 * For programs attached to PERF events this is mandatory as the 9708 * perf NMI can hit any arbitrary code sequence. 9709 * 9710 * All other trace types using preallocated hash maps are unsafe as 9711 * well because tracepoint or kprobes can be inside locked regions 9712 * of the memory allocator or at a place where a recursion into the 9713 * memory allocator would see inconsistent state. 9714 * 9715 * On RT enabled kernels run-time allocation of all trace type 9716 * programs is strictly prohibited due to lock type constraints. On 9717 * !RT kernels it is allowed for backwards compatibility reasons for 9718 * now, but warnings are emitted so developers are made aware of 9719 * the unsafety and can fix their programs before this is enforced. 9720 */ 9721 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9722 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9723 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9724 return -EINVAL; 9725 } 9726 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9727 verbose(env, "trace type programs can only use preallocated hash map\n"); 9728 return -EINVAL; 9729 } 9730 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9731 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9732 } 9733 9734 if ((is_tracing_prog_type(prog_type) || 9735 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) && 9736 map_value_has_spin_lock(map)) { 9737 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9738 return -EINVAL; 9739 } 9740 9741 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9742 !bpf_offload_prog_map_match(prog, map)) { 9743 verbose(env, "offload device mismatch between prog and map\n"); 9744 return -EINVAL; 9745 } 9746 9747 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9748 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9749 return -EINVAL; 9750 } 9751 9752 if (prog->aux->sleepable) 9753 switch (map->map_type) { 9754 case BPF_MAP_TYPE_HASH: 9755 case BPF_MAP_TYPE_LRU_HASH: 9756 case BPF_MAP_TYPE_ARRAY: 9757 if (!is_preallocated_map(map)) { 9758 verbose(env, 9759 "Sleepable programs can only use preallocated hash maps\n"); 9760 return -EINVAL; 9761 } 9762 break; 9763 default: 9764 verbose(env, 9765 "Sleepable programs can only use array and hash maps\n"); 9766 return -EINVAL; 9767 } 9768 9769 return 0; 9770 } 9771 9772 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9773 { 9774 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9775 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9776 } 9777 9778 /* find and rewrite pseudo imm in ld_imm64 instructions: 9779 * 9780 * 1. if it accesses map FD, replace it with actual map pointer. 9781 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 9782 * 9783 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 9784 */ 9785 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 9786 { 9787 struct bpf_insn *insn = env->prog->insnsi; 9788 int insn_cnt = env->prog->len; 9789 int i, j, err; 9790 9791 err = bpf_prog_calc_tag(env->prog); 9792 if (err) 9793 return err; 9794 9795 for (i = 0; i < insn_cnt; i++, insn++) { 9796 if (BPF_CLASS(insn->code) == BPF_LDX && 9797 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9798 verbose(env, "BPF_LDX uses reserved fields\n"); 9799 return -EINVAL; 9800 } 9801 9802 if (BPF_CLASS(insn->code) == BPF_STX && 9803 ((BPF_MODE(insn->code) != BPF_MEM && 9804 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9805 verbose(env, "BPF_STX uses reserved fields\n"); 9806 return -EINVAL; 9807 } 9808 9809 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9810 struct bpf_insn_aux_data *aux; 9811 struct bpf_map *map; 9812 struct fd f; 9813 u64 addr; 9814 9815 if (i == insn_cnt - 1 || insn[1].code != 0 || 9816 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9817 insn[1].off != 0) { 9818 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9819 return -EINVAL; 9820 } 9821 9822 if (insn[0].src_reg == 0) 9823 /* valid generic load 64-bit imm */ 9824 goto next_insn; 9825 9826 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 9827 aux = &env->insn_aux_data[i]; 9828 err = check_pseudo_btf_id(env, insn, aux); 9829 if (err) 9830 return err; 9831 goto next_insn; 9832 } 9833 9834 /* In final convert_pseudo_ld_imm64() step, this is 9835 * converted into regular 64-bit imm load insn. 9836 */ 9837 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9838 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9839 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9840 insn[1].imm != 0)) { 9841 verbose(env, 9842 "unrecognized bpf_ld_imm64 insn\n"); 9843 return -EINVAL; 9844 } 9845 9846 f = fdget(insn[0].imm); 9847 map = __bpf_map_get(f); 9848 if (IS_ERR(map)) { 9849 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9850 insn[0].imm); 9851 return PTR_ERR(map); 9852 } 9853 9854 err = check_map_prog_compatibility(env, map, env->prog); 9855 if (err) { 9856 fdput(f); 9857 return err; 9858 } 9859 9860 aux = &env->insn_aux_data[i]; 9861 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9862 addr = (unsigned long)map; 9863 } else { 9864 u32 off = insn[1].imm; 9865 9866 if (off >= BPF_MAX_VAR_OFF) { 9867 verbose(env, "direct value offset of %u is not allowed\n", off); 9868 fdput(f); 9869 return -EINVAL; 9870 } 9871 9872 if (!map->ops->map_direct_value_addr) { 9873 verbose(env, "no direct value access support for this map type\n"); 9874 fdput(f); 9875 return -EINVAL; 9876 } 9877 9878 err = map->ops->map_direct_value_addr(map, &addr, off); 9879 if (err) { 9880 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9881 map->value_size, off); 9882 fdput(f); 9883 return err; 9884 } 9885 9886 aux->map_off = off; 9887 addr += off; 9888 } 9889 9890 insn[0].imm = (u32)addr; 9891 insn[1].imm = addr >> 32; 9892 9893 /* check whether we recorded this map already */ 9894 for (j = 0; j < env->used_map_cnt; j++) { 9895 if (env->used_maps[j] == map) { 9896 aux->map_index = j; 9897 fdput(f); 9898 goto next_insn; 9899 } 9900 } 9901 9902 if (env->used_map_cnt >= MAX_USED_MAPS) { 9903 fdput(f); 9904 return -E2BIG; 9905 } 9906 9907 /* hold the map. If the program is rejected by verifier, 9908 * the map will be released by release_maps() or it 9909 * will be used by the valid program until it's unloaded 9910 * and all maps are released in free_used_maps() 9911 */ 9912 bpf_map_inc(map); 9913 9914 aux->map_index = env->used_map_cnt; 9915 env->used_maps[env->used_map_cnt++] = map; 9916 9917 if (bpf_map_is_cgroup_storage(map) && 9918 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9919 verbose(env, "only one cgroup storage of each type is allowed\n"); 9920 fdput(f); 9921 return -EBUSY; 9922 } 9923 9924 fdput(f); 9925 next_insn: 9926 insn++; 9927 i++; 9928 continue; 9929 } 9930 9931 /* Basic sanity check before we invest more work here. */ 9932 if (!bpf_opcode_in_insntable(insn->code)) { 9933 verbose(env, "unknown opcode %02x\n", insn->code); 9934 return -EINVAL; 9935 } 9936 } 9937 9938 /* now all pseudo BPF_LD_IMM64 instructions load valid 9939 * 'struct bpf_map *' into a register instead of user map_fd. 9940 * These pointers will be used later by verifier to validate map access. 9941 */ 9942 return 0; 9943 } 9944 9945 /* drop refcnt of maps used by the rejected program */ 9946 static void release_maps(struct bpf_verifier_env *env) 9947 { 9948 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9949 env->used_map_cnt); 9950 } 9951 9952 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9953 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9954 { 9955 struct bpf_insn *insn = env->prog->insnsi; 9956 int insn_cnt = env->prog->len; 9957 int i; 9958 9959 for (i = 0; i < insn_cnt; i++, insn++) 9960 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9961 insn->src_reg = 0; 9962 } 9963 9964 /* single env->prog->insni[off] instruction was replaced with the range 9965 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9966 * [0, off) and [off, end) to new locations, so the patched range stays zero 9967 */ 9968 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9969 struct bpf_prog *new_prog, u32 off, u32 cnt) 9970 { 9971 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9972 struct bpf_insn *insn = new_prog->insnsi; 9973 u32 prog_len; 9974 int i; 9975 9976 /* aux info at OFF always needs adjustment, no matter fast path 9977 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9978 * original insn at old prog. 9979 */ 9980 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9981 9982 if (cnt == 1) 9983 return 0; 9984 prog_len = new_prog->len; 9985 new_data = vzalloc(array_size(prog_len, 9986 sizeof(struct bpf_insn_aux_data))); 9987 if (!new_data) 9988 return -ENOMEM; 9989 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9990 memcpy(new_data + off + cnt - 1, old_data + off, 9991 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9992 for (i = off; i < off + cnt - 1; i++) { 9993 new_data[i].seen = env->pass_cnt; 9994 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9995 } 9996 env->insn_aux_data = new_data; 9997 vfree(old_data); 9998 return 0; 9999 } 10000 10001 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10002 { 10003 int i; 10004 10005 if (len == 1) 10006 return; 10007 /* NOTE: fake 'exit' subprog should be updated as well. */ 10008 for (i = 0; i <= env->subprog_cnt; i++) { 10009 if (env->subprog_info[i].start <= off) 10010 continue; 10011 env->subprog_info[i].start += len - 1; 10012 } 10013 } 10014 10015 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10016 { 10017 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10018 int i, sz = prog->aux->size_poke_tab; 10019 struct bpf_jit_poke_descriptor *desc; 10020 10021 for (i = 0; i < sz; i++) { 10022 desc = &tab[i]; 10023 desc->insn_idx += len - 1; 10024 } 10025 } 10026 10027 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10028 const struct bpf_insn *patch, u32 len) 10029 { 10030 struct bpf_prog *new_prog; 10031 10032 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10033 if (IS_ERR(new_prog)) { 10034 if (PTR_ERR(new_prog) == -ERANGE) 10035 verbose(env, 10036 "insn %d cannot be patched due to 16-bit range\n", 10037 env->insn_aux_data[off].orig_idx); 10038 return NULL; 10039 } 10040 if (adjust_insn_aux_data(env, new_prog, off, len)) 10041 return NULL; 10042 adjust_subprog_starts(env, off, len); 10043 adjust_poke_descs(new_prog, len); 10044 return new_prog; 10045 } 10046 10047 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10048 u32 off, u32 cnt) 10049 { 10050 int i, j; 10051 10052 /* find first prog starting at or after off (first to remove) */ 10053 for (i = 0; i < env->subprog_cnt; i++) 10054 if (env->subprog_info[i].start >= off) 10055 break; 10056 /* find first prog starting at or after off + cnt (first to stay) */ 10057 for (j = i; j < env->subprog_cnt; j++) 10058 if (env->subprog_info[j].start >= off + cnt) 10059 break; 10060 /* if j doesn't start exactly at off + cnt, we are just removing 10061 * the front of previous prog 10062 */ 10063 if (env->subprog_info[j].start != off + cnt) 10064 j--; 10065 10066 if (j > i) { 10067 struct bpf_prog_aux *aux = env->prog->aux; 10068 int move; 10069 10070 /* move fake 'exit' subprog as well */ 10071 move = env->subprog_cnt + 1 - j; 10072 10073 memmove(env->subprog_info + i, 10074 env->subprog_info + j, 10075 sizeof(*env->subprog_info) * move); 10076 env->subprog_cnt -= j - i; 10077 10078 /* remove func_info */ 10079 if (aux->func_info) { 10080 move = aux->func_info_cnt - j; 10081 10082 memmove(aux->func_info + i, 10083 aux->func_info + j, 10084 sizeof(*aux->func_info) * move); 10085 aux->func_info_cnt -= j - i; 10086 /* func_info->insn_off is set after all code rewrites, 10087 * in adjust_btf_func() - no need to adjust 10088 */ 10089 } 10090 } else { 10091 /* convert i from "first prog to remove" to "first to adjust" */ 10092 if (env->subprog_info[i].start == off) 10093 i++; 10094 } 10095 10096 /* update fake 'exit' subprog as well */ 10097 for (; i <= env->subprog_cnt; i++) 10098 env->subprog_info[i].start -= cnt; 10099 10100 return 0; 10101 } 10102 10103 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10104 u32 cnt) 10105 { 10106 struct bpf_prog *prog = env->prog; 10107 u32 i, l_off, l_cnt, nr_linfo; 10108 struct bpf_line_info *linfo; 10109 10110 nr_linfo = prog->aux->nr_linfo; 10111 if (!nr_linfo) 10112 return 0; 10113 10114 linfo = prog->aux->linfo; 10115 10116 /* find first line info to remove, count lines to be removed */ 10117 for (i = 0; i < nr_linfo; i++) 10118 if (linfo[i].insn_off >= off) 10119 break; 10120 10121 l_off = i; 10122 l_cnt = 0; 10123 for (; i < nr_linfo; i++) 10124 if (linfo[i].insn_off < off + cnt) 10125 l_cnt++; 10126 else 10127 break; 10128 10129 /* First live insn doesn't match first live linfo, it needs to "inherit" 10130 * last removed linfo. prog is already modified, so prog->len == off 10131 * means no live instructions after (tail of the program was removed). 10132 */ 10133 if (prog->len != off && l_cnt && 10134 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10135 l_cnt--; 10136 linfo[--i].insn_off = off + cnt; 10137 } 10138 10139 /* remove the line info which refer to the removed instructions */ 10140 if (l_cnt) { 10141 memmove(linfo + l_off, linfo + i, 10142 sizeof(*linfo) * (nr_linfo - i)); 10143 10144 prog->aux->nr_linfo -= l_cnt; 10145 nr_linfo = prog->aux->nr_linfo; 10146 } 10147 10148 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10149 for (i = l_off; i < nr_linfo; i++) 10150 linfo[i].insn_off -= cnt; 10151 10152 /* fix up all subprogs (incl. 'exit') which start >= off */ 10153 for (i = 0; i <= env->subprog_cnt; i++) 10154 if (env->subprog_info[i].linfo_idx > l_off) { 10155 /* program may have started in the removed region but 10156 * may not be fully removed 10157 */ 10158 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10159 env->subprog_info[i].linfo_idx -= l_cnt; 10160 else 10161 env->subprog_info[i].linfo_idx = l_off; 10162 } 10163 10164 return 0; 10165 } 10166 10167 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10168 { 10169 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10170 unsigned int orig_prog_len = env->prog->len; 10171 int err; 10172 10173 if (bpf_prog_is_dev_bound(env->prog->aux)) 10174 bpf_prog_offload_remove_insns(env, off, cnt); 10175 10176 err = bpf_remove_insns(env->prog, off, cnt); 10177 if (err) 10178 return err; 10179 10180 err = adjust_subprog_starts_after_remove(env, off, cnt); 10181 if (err) 10182 return err; 10183 10184 err = bpf_adj_linfo_after_remove(env, off, cnt); 10185 if (err) 10186 return err; 10187 10188 memmove(aux_data + off, aux_data + off + cnt, 10189 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10190 10191 return 0; 10192 } 10193 10194 /* The verifier does more data flow analysis than llvm and will not 10195 * explore branches that are dead at run time. Malicious programs can 10196 * have dead code too. Therefore replace all dead at-run-time code 10197 * with 'ja -1'. 10198 * 10199 * Just nops are not optimal, e.g. if they would sit at the end of the 10200 * program and through another bug we would manage to jump there, then 10201 * we'd execute beyond program memory otherwise. Returning exception 10202 * code also wouldn't work since we can have subprogs where the dead 10203 * code could be located. 10204 */ 10205 static void sanitize_dead_code(struct bpf_verifier_env *env) 10206 { 10207 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10208 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10209 struct bpf_insn *insn = env->prog->insnsi; 10210 const int insn_cnt = env->prog->len; 10211 int i; 10212 10213 for (i = 0; i < insn_cnt; i++) { 10214 if (aux_data[i].seen) 10215 continue; 10216 memcpy(insn + i, &trap, sizeof(trap)); 10217 } 10218 } 10219 10220 static bool insn_is_cond_jump(u8 code) 10221 { 10222 u8 op; 10223 10224 if (BPF_CLASS(code) == BPF_JMP32) 10225 return true; 10226 10227 if (BPF_CLASS(code) != BPF_JMP) 10228 return false; 10229 10230 op = BPF_OP(code); 10231 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10232 } 10233 10234 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10235 { 10236 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10237 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10238 struct bpf_insn *insn = env->prog->insnsi; 10239 const int insn_cnt = env->prog->len; 10240 int i; 10241 10242 for (i = 0; i < insn_cnt; i++, insn++) { 10243 if (!insn_is_cond_jump(insn->code)) 10244 continue; 10245 10246 if (!aux_data[i + 1].seen) 10247 ja.off = insn->off; 10248 else if (!aux_data[i + 1 + insn->off].seen) 10249 ja.off = 0; 10250 else 10251 continue; 10252 10253 if (bpf_prog_is_dev_bound(env->prog->aux)) 10254 bpf_prog_offload_replace_insn(env, i, &ja); 10255 10256 memcpy(insn, &ja, sizeof(ja)); 10257 } 10258 } 10259 10260 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10261 { 10262 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10263 int insn_cnt = env->prog->len; 10264 int i, err; 10265 10266 for (i = 0; i < insn_cnt; i++) { 10267 int j; 10268 10269 j = 0; 10270 while (i + j < insn_cnt && !aux_data[i + j].seen) 10271 j++; 10272 if (!j) 10273 continue; 10274 10275 err = verifier_remove_insns(env, i, j); 10276 if (err) 10277 return err; 10278 insn_cnt = env->prog->len; 10279 } 10280 10281 return 0; 10282 } 10283 10284 static int opt_remove_nops(struct bpf_verifier_env *env) 10285 { 10286 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10287 struct bpf_insn *insn = env->prog->insnsi; 10288 int insn_cnt = env->prog->len; 10289 int i, err; 10290 10291 for (i = 0; i < insn_cnt; i++) { 10292 if (memcmp(&insn[i], &ja, sizeof(ja))) 10293 continue; 10294 10295 err = verifier_remove_insns(env, i, 1); 10296 if (err) 10297 return err; 10298 insn_cnt--; 10299 i--; 10300 } 10301 10302 return 0; 10303 } 10304 10305 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10306 const union bpf_attr *attr) 10307 { 10308 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10309 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10310 int i, patch_len, delta = 0, len = env->prog->len; 10311 struct bpf_insn *insns = env->prog->insnsi; 10312 struct bpf_prog *new_prog; 10313 bool rnd_hi32; 10314 10315 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10316 zext_patch[1] = BPF_ZEXT_REG(0); 10317 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10318 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10319 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10320 for (i = 0; i < len; i++) { 10321 int adj_idx = i + delta; 10322 struct bpf_insn insn; 10323 10324 insn = insns[adj_idx]; 10325 if (!aux[adj_idx].zext_dst) { 10326 u8 code, class; 10327 u32 imm_rnd; 10328 10329 if (!rnd_hi32) 10330 continue; 10331 10332 code = insn.code; 10333 class = BPF_CLASS(code); 10334 if (insn_no_def(&insn)) 10335 continue; 10336 10337 /* NOTE: arg "reg" (the fourth one) is only used for 10338 * BPF_STX which has been ruled out in above 10339 * check, it is safe to pass NULL here. 10340 */ 10341 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10342 if (class == BPF_LD && 10343 BPF_MODE(code) == BPF_IMM) 10344 i++; 10345 continue; 10346 } 10347 10348 /* ctx load could be transformed into wider load. */ 10349 if (class == BPF_LDX && 10350 aux[adj_idx].ptr_type == PTR_TO_CTX) 10351 continue; 10352 10353 imm_rnd = get_random_int(); 10354 rnd_hi32_patch[0] = insn; 10355 rnd_hi32_patch[1].imm = imm_rnd; 10356 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10357 patch = rnd_hi32_patch; 10358 patch_len = 4; 10359 goto apply_patch_buffer; 10360 } 10361 10362 if (!bpf_jit_needs_zext()) 10363 continue; 10364 10365 zext_patch[0] = insn; 10366 zext_patch[1].dst_reg = insn.dst_reg; 10367 zext_patch[1].src_reg = insn.dst_reg; 10368 patch = zext_patch; 10369 patch_len = 2; 10370 apply_patch_buffer: 10371 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10372 if (!new_prog) 10373 return -ENOMEM; 10374 env->prog = new_prog; 10375 insns = new_prog->insnsi; 10376 aux = env->insn_aux_data; 10377 delta += patch_len - 1; 10378 } 10379 10380 return 0; 10381 } 10382 10383 /* convert load instructions that access fields of a context type into a 10384 * sequence of instructions that access fields of the underlying structure: 10385 * struct __sk_buff -> struct sk_buff 10386 * struct bpf_sock_ops -> struct sock 10387 */ 10388 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10389 { 10390 const struct bpf_verifier_ops *ops = env->ops; 10391 int i, cnt, size, ctx_field_size, delta = 0; 10392 const int insn_cnt = env->prog->len; 10393 struct bpf_insn insn_buf[16], *insn; 10394 u32 target_size, size_default, off; 10395 struct bpf_prog *new_prog; 10396 enum bpf_access_type type; 10397 bool is_narrower_load; 10398 10399 if (ops->gen_prologue || env->seen_direct_write) { 10400 if (!ops->gen_prologue) { 10401 verbose(env, "bpf verifier is misconfigured\n"); 10402 return -EINVAL; 10403 } 10404 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10405 env->prog); 10406 if (cnt >= ARRAY_SIZE(insn_buf)) { 10407 verbose(env, "bpf verifier is misconfigured\n"); 10408 return -EINVAL; 10409 } else if (cnt) { 10410 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10411 if (!new_prog) 10412 return -ENOMEM; 10413 10414 env->prog = new_prog; 10415 delta += cnt - 1; 10416 } 10417 } 10418 10419 if (bpf_prog_is_dev_bound(env->prog->aux)) 10420 return 0; 10421 10422 insn = env->prog->insnsi + delta; 10423 10424 for (i = 0; i < insn_cnt; i++, insn++) { 10425 bpf_convert_ctx_access_t convert_ctx_access; 10426 10427 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10428 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10429 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10430 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10431 type = BPF_READ; 10432 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10433 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10434 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10435 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10436 type = BPF_WRITE; 10437 else 10438 continue; 10439 10440 if (type == BPF_WRITE && 10441 env->insn_aux_data[i + delta].sanitize_stack_off) { 10442 struct bpf_insn patch[] = { 10443 /* Sanitize suspicious stack slot with zero. 10444 * There are no memory dependencies for this store, 10445 * since it's only using frame pointer and immediate 10446 * constant of zero 10447 */ 10448 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10449 env->insn_aux_data[i + delta].sanitize_stack_off, 10450 0), 10451 /* the original STX instruction will immediately 10452 * overwrite the same stack slot with appropriate value 10453 */ 10454 *insn, 10455 }; 10456 10457 cnt = ARRAY_SIZE(patch); 10458 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10459 if (!new_prog) 10460 return -ENOMEM; 10461 10462 delta += cnt - 1; 10463 env->prog = new_prog; 10464 insn = new_prog->insnsi + i + delta; 10465 continue; 10466 } 10467 10468 switch (env->insn_aux_data[i + delta].ptr_type) { 10469 case PTR_TO_CTX: 10470 if (!ops->convert_ctx_access) 10471 continue; 10472 convert_ctx_access = ops->convert_ctx_access; 10473 break; 10474 case PTR_TO_SOCKET: 10475 case PTR_TO_SOCK_COMMON: 10476 convert_ctx_access = bpf_sock_convert_ctx_access; 10477 break; 10478 case PTR_TO_TCP_SOCK: 10479 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10480 break; 10481 case PTR_TO_XDP_SOCK: 10482 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10483 break; 10484 case PTR_TO_BTF_ID: 10485 if (type == BPF_READ) { 10486 insn->code = BPF_LDX | BPF_PROBE_MEM | 10487 BPF_SIZE((insn)->code); 10488 env->prog->aux->num_exentries++; 10489 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10490 verbose(env, "Writes through BTF pointers are not allowed\n"); 10491 return -EINVAL; 10492 } 10493 continue; 10494 default: 10495 continue; 10496 } 10497 10498 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10499 size = BPF_LDST_BYTES(insn); 10500 10501 /* If the read access is a narrower load of the field, 10502 * convert to a 4/8-byte load, to minimum program type specific 10503 * convert_ctx_access changes. If conversion is successful, 10504 * we will apply proper mask to the result. 10505 */ 10506 is_narrower_load = size < ctx_field_size; 10507 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10508 off = insn->off; 10509 if (is_narrower_load) { 10510 u8 size_code; 10511 10512 if (type == BPF_WRITE) { 10513 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10514 return -EINVAL; 10515 } 10516 10517 size_code = BPF_H; 10518 if (ctx_field_size == 4) 10519 size_code = BPF_W; 10520 else if (ctx_field_size == 8) 10521 size_code = BPF_DW; 10522 10523 insn->off = off & ~(size_default - 1); 10524 insn->code = BPF_LDX | BPF_MEM | size_code; 10525 } 10526 10527 target_size = 0; 10528 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10529 &target_size); 10530 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10531 (ctx_field_size && !target_size)) { 10532 verbose(env, "bpf verifier is misconfigured\n"); 10533 return -EINVAL; 10534 } 10535 10536 if (is_narrower_load && size < target_size) { 10537 u8 shift = bpf_ctx_narrow_access_offset( 10538 off, size, size_default) * 8; 10539 if (ctx_field_size <= 4) { 10540 if (shift) 10541 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10542 insn->dst_reg, 10543 shift); 10544 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10545 (1 << size * 8) - 1); 10546 } else { 10547 if (shift) 10548 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10549 insn->dst_reg, 10550 shift); 10551 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10552 (1ULL << size * 8) - 1); 10553 } 10554 } 10555 10556 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10557 if (!new_prog) 10558 return -ENOMEM; 10559 10560 delta += cnt - 1; 10561 10562 /* keep walking new program and skip insns we just inserted */ 10563 env->prog = new_prog; 10564 insn = new_prog->insnsi + i + delta; 10565 } 10566 10567 return 0; 10568 } 10569 10570 static int jit_subprogs(struct bpf_verifier_env *env) 10571 { 10572 struct bpf_prog *prog = env->prog, **func, *tmp; 10573 int i, j, subprog_start, subprog_end = 0, len, subprog; 10574 struct bpf_map *map_ptr; 10575 struct bpf_insn *insn; 10576 void *old_bpf_func; 10577 int err, num_exentries; 10578 10579 if (env->subprog_cnt <= 1) 10580 return 0; 10581 10582 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10583 if (insn->code != (BPF_JMP | BPF_CALL) || 10584 insn->src_reg != BPF_PSEUDO_CALL) 10585 continue; 10586 /* Upon error here we cannot fall back to interpreter but 10587 * need a hard reject of the program. Thus -EFAULT is 10588 * propagated in any case. 10589 */ 10590 subprog = find_subprog(env, i + insn->imm + 1); 10591 if (subprog < 0) { 10592 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10593 i + insn->imm + 1); 10594 return -EFAULT; 10595 } 10596 /* temporarily remember subprog id inside insn instead of 10597 * aux_data, since next loop will split up all insns into funcs 10598 */ 10599 insn->off = subprog; 10600 /* remember original imm in case JIT fails and fallback 10601 * to interpreter will be needed 10602 */ 10603 env->insn_aux_data[i].call_imm = insn->imm; 10604 /* point imm to __bpf_call_base+1 from JITs point of view */ 10605 insn->imm = 1; 10606 } 10607 10608 err = bpf_prog_alloc_jited_linfo(prog); 10609 if (err) 10610 goto out_undo_insn; 10611 10612 err = -ENOMEM; 10613 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10614 if (!func) 10615 goto out_undo_insn; 10616 10617 for (i = 0; i < env->subprog_cnt; i++) { 10618 subprog_start = subprog_end; 10619 subprog_end = env->subprog_info[i + 1].start; 10620 10621 len = subprog_end - subprog_start; 10622 /* BPF_PROG_RUN doesn't call subprogs directly, 10623 * hence main prog stats include the runtime of subprogs. 10624 * subprogs don't have IDs and not reachable via prog_get_next_id 10625 * func[i]->aux->stats will never be accessed and stays NULL 10626 */ 10627 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10628 if (!func[i]) 10629 goto out_free; 10630 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10631 len * sizeof(struct bpf_insn)); 10632 func[i]->type = prog->type; 10633 func[i]->len = len; 10634 if (bpf_prog_calc_tag(func[i])) 10635 goto out_free; 10636 func[i]->is_func = 1; 10637 func[i]->aux->func_idx = i; 10638 /* the btf and func_info will be freed only at prog->aux */ 10639 func[i]->aux->btf = prog->aux->btf; 10640 func[i]->aux->func_info = prog->aux->func_info; 10641 10642 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10643 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10644 int ret; 10645 10646 if (!(insn_idx >= subprog_start && 10647 insn_idx <= subprog_end)) 10648 continue; 10649 10650 ret = bpf_jit_add_poke_descriptor(func[i], 10651 &prog->aux->poke_tab[j]); 10652 if (ret < 0) { 10653 verbose(env, "adding tail call poke descriptor failed\n"); 10654 goto out_free; 10655 } 10656 10657 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10658 10659 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10660 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10661 if (ret < 0) { 10662 verbose(env, "tracking tail call prog failed\n"); 10663 goto out_free; 10664 } 10665 } 10666 10667 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10668 * Long term would need debug info to populate names 10669 */ 10670 func[i]->aux->name[0] = 'F'; 10671 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10672 func[i]->jit_requested = 1; 10673 func[i]->aux->linfo = prog->aux->linfo; 10674 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10675 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10676 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10677 num_exentries = 0; 10678 insn = func[i]->insnsi; 10679 for (j = 0; j < func[i]->len; j++, insn++) { 10680 if (BPF_CLASS(insn->code) == BPF_LDX && 10681 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10682 num_exentries++; 10683 } 10684 func[i]->aux->num_exentries = num_exentries; 10685 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10686 func[i] = bpf_int_jit_compile(func[i]); 10687 if (!func[i]->jited) { 10688 err = -ENOTSUPP; 10689 goto out_free; 10690 } 10691 cond_resched(); 10692 } 10693 10694 /* Untrack main program's aux structs so that during map_poke_run() 10695 * we will not stumble upon the unfilled poke descriptors; each 10696 * of the main program's poke descs got distributed across subprogs 10697 * and got tracked onto map, so we are sure that none of them will 10698 * be missed after the operation below 10699 */ 10700 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10701 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10702 10703 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10704 } 10705 10706 /* at this point all bpf functions were successfully JITed 10707 * now populate all bpf_calls with correct addresses and 10708 * run last pass of JIT 10709 */ 10710 for (i = 0; i < env->subprog_cnt; i++) { 10711 insn = func[i]->insnsi; 10712 for (j = 0; j < func[i]->len; j++, insn++) { 10713 if (insn->code != (BPF_JMP | BPF_CALL) || 10714 insn->src_reg != BPF_PSEUDO_CALL) 10715 continue; 10716 subprog = insn->off; 10717 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10718 __bpf_call_base; 10719 } 10720 10721 /* we use the aux data to keep a list of the start addresses 10722 * of the JITed images for each function in the program 10723 * 10724 * for some architectures, such as powerpc64, the imm field 10725 * might not be large enough to hold the offset of the start 10726 * address of the callee's JITed image from __bpf_call_base 10727 * 10728 * in such cases, we can lookup the start address of a callee 10729 * by using its subprog id, available from the off field of 10730 * the call instruction, as an index for this list 10731 */ 10732 func[i]->aux->func = func; 10733 func[i]->aux->func_cnt = env->subprog_cnt; 10734 } 10735 for (i = 0; i < env->subprog_cnt; i++) { 10736 old_bpf_func = func[i]->bpf_func; 10737 tmp = bpf_int_jit_compile(func[i]); 10738 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10739 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10740 err = -ENOTSUPP; 10741 goto out_free; 10742 } 10743 cond_resched(); 10744 } 10745 10746 /* finally lock prog and jit images for all functions and 10747 * populate kallsysm 10748 */ 10749 for (i = 0; i < env->subprog_cnt; i++) { 10750 bpf_prog_lock_ro(func[i]); 10751 bpf_prog_kallsyms_add(func[i]); 10752 } 10753 10754 /* Last step: make now unused interpreter insns from main 10755 * prog consistent for later dump requests, so they can 10756 * later look the same as if they were interpreted only. 10757 */ 10758 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10759 if (insn->code != (BPF_JMP | BPF_CALL) || 10760 insn->src_reg != BPF_PSEUDO_CALL) 10761 continue; 10762 insn->off = env->insn_aux_data[i].call_imm; 10763 subprog = find_subprog(env, i + insn->off + 1); 10764 insn->imm = subprog; 10765 } 10766 10767 prog->jited = 1; 10768 prog->bpf_func = func[0]->bpf_func; 10769 prog->aux->func = func; 10770 prog->aux->func_cnt = env->subprog_cnt; 10771 bpf_prog_free_unused_jited_linfo(prog); 10772 return 0; 10773 out_free: 10774 for (i = 0; i < env->subprog_cnt; i++) { 10775 if (!func[i]) 10776 continue; 10777 10778 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10779 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10780 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10781 } 10782 bpf_jit_free(func[i]); 10783 } 10784 kfree(func); 10785 out_undo_insn: 10786 /* cleanup main prog to be interpreted */ 10787 prog->jit_requested = 0; 10788 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10789 if (insn->code != (BPF_JMP | BPF_CALL) || 10790 insn->src_reg != BPF_PSEUDO_CALL) 10791 continue; 10792 insn->off = 0; 10793 insn->imm = env->insn_aux_data[i].call_imm; 10794 } 10795 bpf_prog_free_jited_linfo(prog); 10796 return err; 10797 } 10798 10799 static int fixup_call_args(struct bpf_verifier_env *env) 10800 { 10801 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10802 struct bpf_prog *prog = env->prog; 10803 struct bpf_insn *insn = prog->insnsi; 10804 int i, depth; 10805 #endif 10806 int err = 0; 10807 10808 if (env->prog->jit_requested && 10809 !bpf_prog_is_dev_bound(env->prog->aux)) { 10810 err = jit_subprogs(env); 10811 if (err == 0) 10812 return 0; 10813 if (err == -EFAULT) 10814 return err; 10815 } 10816 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10817 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10818 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10819 * have to be rejected, since interpreter doesn't support them yet. 10820 */ 10821 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10822 return -EINVAL; 10823 } 10824 for (i = 0; i < prog->len; i++, insn++) { 10825 if (insn->code != (BPF_JMP | BPF_CALL) || 10826 insn->src_reg != BPF_PSEUDO_CALL) 10827 continue; 10828 depth = get_callee_stack_depth(env, insn, i); 10829 if (depth < 0) 10830 return depth; 10831 bpf_patch_call_args(insn, depth); 10832 } 10833 err = 0; 10834 #endif 10835 return err; 10836 } 10837 10838 /* fixup insn->imm field of bpf_call instructions 10839 * and inline eligible helpers as explicit sequence of BPF instructions 10840 * 10841 * this function is called after eBPF program passed verification 10842 */ 10843 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10844 { 10845 struct bpf_prog *prog = env->prog; 10846 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10847 struct bpf_insn *insn = prog->insnsi; 10848 const struct bpf_func_proto *fn; 10849 const int insn_cnt = prog->len; 10850 const struct bpf_map_ops *ops; 10851 struct bpf_insn_aux_data *aux; 10852 struct bpf_insn insn_buf[16]; 10853 struct bpf_prog *new_prog; 10854 struct bpf_map *map_ptr; 10855 int i, ret, cnt, delta = 0; 10856 10857 for (i = 0; i < insn_cnt; i++, insn++) { 10858 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10859 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10860 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10861 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10862 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10863 struct bpf_insn mask_and_div[] = { 10864 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10865 /* Rx div 0 -> 0 */ 10866 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10867 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10868 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10869 *insn, 10870 }; 10871 struct bpf_insn mask_and_mod[] = { 10872 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10873 /* Rx mod 0 -> Rx */ 10874 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10875 *insn, 10876 }; 10877 struct bpf_insn *patchlet; 10878 10879 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10880 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10881 patchlet = mask_and_div + (is64 ? 1 : 0); 10882 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10883 } else { 10884 patchlet = mask_and_mod + (is64 ? 1 : 0); 10885 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10886 } 10887 10888 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10889 if (!new_prog) 10890 return -ENOMEM; 10891 10892 delta += cnt - 1; 10893 env->prog = prog = new_prog; 10894 insn = new_prog->insnsi + i + delta; 10895 continue; 10896 } 10897 10898 if (BPF_CLASS(insn->code) == BPF_LD && 10899 (BPF_MODE(insn->code) == BPF_ABS || 10900 BPF_MODE(insn->code) == BPF_IND)) { 10901 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10902 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10903 verbose(env, "bpf verifier is misconfigured\n"); 10904 return -EINVAL; 10905 } 10906 10907 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10908 if (!new_prog) 10909 return -ENOMEM; 10910 10911 delta += cnt - 1; 10912 env->prog = prog = new_prog; 10913 insn = new_prog->insnsi + i + delta; 10914 continue; 10915 } 10916 10917 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10918 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10919 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10920 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10921 struct bpf_insn insn_buf[16]; 10922 struct bpf_insn *patch = &insn_buf[0]; 10923 bool issrc, isneg; 10924 u32 off_reg; 10925 10926 aux = &env->insn_aux_data[i + delta]; 10927 if (!aux->alu_state || 10928 aux->alu_state == BPF_ALU_NON_POINTER) 10929 continue; 10930 10931 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10932 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10933 BPF_ALU_SANITIZE_SRC; 10934 10935 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10936 if (isneg) 10937 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10938 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10939 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10940 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10941 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10942 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10943 if (issrc) { 10944 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10945 off_reg); 10946 insn->src_reg = BPF_REG_AX; 10947 } else { 10948 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10949 BPF_REG_AX); 10950 } 10951 if (isneg) 10952 insn->code = insn->code == code_add ? 10953 code_sub : code_add; 10954 *patch++ = *insn; 10955 if (issrc && isneg) 10956 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10957 cnt = patch - insn_buf; 10958 10959 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10960 if (!new_prog) 10961 return -ENOMEM; 10962 10963 delta += cnt - 1; 10964 env->prog = prog = new_prog; 10965 insn = new_prog->insnsi + i + delta; 10966 continue; 10967 } 10968 10969 if (insn->code != (BPF_JMP | BPF_CALL)) 10970 continue; 10971 if (insn->src_reg == BPF_PSEUDO_CALL) 10972 continue; 10973 10974 if (insn->imm == BPF_FUNC_get_route_realm) 10975 prog->dst_needed = 1; 10976 if (insn->imm == BPF_FUNC_get_prandom_u32) 10977 bpf_user_rnd_init_once(); 10978 if (insn->imm == BPF_FUNC_override_return) 10979 prog->kprobe_override = 1; 10980 if (insn->imm == BPF_FUNC_tail_call) { 10981 /* If we tail call into other programs, we 10982 * cannot make any assumptions since they can 10983 * be replaced dynamically during runtime in 10984 * the program array. 10985 */ 10986 prog->cb_access = 1; 10987 if (!allow_tail_call_in_subprogs(env)) 10988 prog->aux->stack_depth = MAX_BPF_STACK; 10989 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10990 10991 /* mark bpf_tail_call as different opcode to avoid 10992 * conditional branch in the interpeter for every normal 10993 * call and to prevent accidental JITing by JIT compiler 10994 * that doesn't support bpf_tail_call yet 10995 */ 10996 insn->imm = 0; 10997 insn->code = BPF_JMP | BPF_TAIL_CALL; 10998 10999 aux = &env->insn_aux_data[i + delta]; 11000 if (env->bpf_capable && !expect_blinding && 11001 prog->jit_requested && 11002 !bpf_map_key_poisoned(aux) && 11003 !bpf_map_ptr_poisoned(aux) && 11004 !bpf_map_ptr_unpriv(aux)) { 11005 struct bpf_jit_poke_descriptor desc = { 11006 .reason = BPF_POKE_REASON_TAIL_CALL, 11007 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11008 .tail_call.key = bpf_map_key_immediate(aux), 11009 .insn_idx = i + delta, 11010 }; 11011 11012 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11013 if (ret < 0) { 11014 verbose(env, "adding tail call poke descriptor failed\n"); 11015 return ret; 11016 } 11017 11018 insn->imm = ret + 1; 11019 continue; 11020 } 11021 11022 if (!bpf_map_ptr_unpriv(aux)) 11023 continue; 11024 11025 /* instead of changing every JIT dealing with tail_call 11026 * emit two extra insns: 11027 * if (index >= max_entries) goto out; 11028 * index &= array->index_mask; 11029 * to avoid out-of-bounds cpu speculation 11030 */ 11031 if (bpf_map_ptr_poisoned(aux)) { 11032 verbose(env, "tail_call abusing map_ptr\n"); 11033 return -EINVAL; 11034 } 11035 11036 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11037 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11038 map_ptr->max_entries, 2); 11039 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11040 container_of(map_ptr, 11041 struct bpf_array, 11042 map)->index_mask); 11043 insn_buf[2] = *insn; 11044 cnt = 3; 11045 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11046 if (!new_prog) 11047 return -ENOMEM; 11048 11049 delta += cnt - 1; 11050 env->prog = prog = new_prog; 11051 insn = new_prog->insnsi + i + delta; 11052 continue; 11053 } 11054 11055 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11056 * and other inlining handlers are currently limited to 64 bit 11057 * only. 11058 */ 11059 if (prog->jit_requested && BITS_PER_LONG == 64 && 11060 (insn->imm == BPF_FUNC_map_lookup_elem || 11061 insn->imm == BPF_FUNC_map_update_elem || 11062 insn->imm == BPF_FUNC_map_delete_elem || 11063 insn->imm == BPF_FUNC_map_push_elem || 11064 insn->imm == BPF_FUNC_map_pop_elem || 11065 insn->imm == BPF_FUNC_map_peek_elem)) { 11066 aux = &env->insn_aux_data[i + delta]; 11067 if (bpf_map_ptr_poisoned(aux)) 11068 goto patch_call_imm; 11069 11070 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11071 ops = map_ptr->ops; 11072 if (insn->imm == BPF_FUNC_map_lookup_elem && 11073 ops->map_gen_lookup) { 11074 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11075 if (cnt == -EOPNOTSUPP) 11076 goto patch_map_ops_generic; 11077 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11078 verbose(env, "bpf verifier is misconfigured\n"); 11079 return -EINVAL; 11080 } 11081 11082 new_prog = bpf_patch_insn_data(env, i + delta, 11083 insn_buf, cnt); 11084 if (!new_prog) 11085 return -ENOMEM; 11086 11087 delta += cnt - 1; 11088 env->prog = prog = new_prog; 11089 insn = new_prog->insnsi + i + delta; 11090 continue; 11091 } 11092 11093 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11094 (void *(*)(struct bpf_map *map, void *key))NULL)); 11095 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11096 (int (*)(struct bpf_map *map, void *key))NULL)); 11097 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11098 (int (*)(struct bpf_map *map, void *key, void *value, 11099 u64 flags))NULL)); 11100 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11101 (int (*)(struct bpf_map *map, void *value, 11102 u64 flags))NULL)); 11103 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11104 (int (*)(struct bpf_map *map, void *value))NULL)); 11105 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11106 (int (*)(struct bpf_map *map, void *value))NULL)); 11107 patch_map_ops_generic: 11108 switch (insn->imm) { 11109 case BPF_FUNC_map_lookup_elem: 11110 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11111 __bpf_call_base; 11112 continue; 11113 case BPF_FUNC_map_update_elem: 11114 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11115 __bpf_call_base; 11116 continue; 11117 case BPF_FUNC_map_delete_elem: 11118 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11119 __bpf_call_base; 11120 continue; 11121 case BPF_FUNC_map_push_elem: 11122 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11123 __bpf_call_base; 11124 continue; 11125 case BPF_FUNC_map_pop_elem: 11126 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11127 __bpf_call_base; 11128 continue; 11129 case BPF_FUNC_map_peek_elem: 11130 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11131 __bpf_call_base; 11132 continue; 11133 } 11134 11135 goto patch_call_imm; 11136 } 11137 11138 if (prog->jit_requested && BITS_PER_LONG == 64 && 11139 insn->imm == BPF_FUNC_jiffies64) { 11140 struct bpf_insn ld_jiffies_addr[2] = { 11141 BPF_LD_IMM64(BPF_REG_0, 11142 (unsigned long)&jiffies), 11143 }; 11144 11145 insn_buf[0] = ld_jiffies_addr[0]; 11146 insn_buf[1] = ld_jiffies_addr[1]; 11147 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11148 BPF_REG_0, 0); 11149 cnt = 3; 11150 11151 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11152 cnt); 11153 if (!new_prog) 11154 return -ENOMEM; 11155 11156 delta += cnt - 1; 11157 env->prog = prog = new_prog; 11158 insn = new_prog->insnsi + i + delta; 11159 continue; 11160 } 11161 11162 patch_call_imm: 11163 fn = env->ops->get_func_proto(insn->imm, env->prog); 11164 /* all functions that have prototype and verifier allowed 11165 * programs to call them, must be real in-kernel functions 11166 */ 11167 if (!fn->func) { 11168 verbose(env, 11169 "kernel subsystem misconfigured func %s#%d\n", 11170 func_id_name(insn->imm), insn->imm); 11171 return -EFAULT; 11172 } 11173 insn->imm = fn->func - __bpf_call_base; 11174 } 11175 11176 /* Since poke tab is now finalized, publish aux to tracker. */ 11177 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11178 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11179 if (!map_ptr->ops->map_poke_track || 11180 !map_ptr->ops->map_poke_untrack || 11181 !map_ptr->ops->map_poke_run) { 11182 verbose(env, "bpf verifier is misconfigured\n"); 11183 return -EINVAL; 11184 } 11185 11186 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11187 if (ret < 0) { 11188 verbose(env, "tracking tail call prog failed\n"); 11189 return ret; 11190 } 11191 } 11192 11193 return 0; 11194 } 11195 11196 static void free_states(struct bpf_verifier_env *env) 11197 { 11198 struct bpf_verifier_state_list *sl, *sln; 11199 int i; 11200 11201 sl = env->free_list; 11202 while (sl) { 11203 sln = sl->next; 11204 free_verifier_state(&sl->state, false); 11205 kfree(sl); 11206 sl = sln; 11207 } 11208 env->free_list = NULL; 11209 11210 if (!env->explored_states) 11211 return; 11212 11213 for (i = 0; i < state_htab_size(env); i++) { 11214 sl = env->explored_states[i]; 11215 11216 while (sl) { 11217 sln = sl->next; 11218 free_verifier_state(&sl->state, false); 11219 kfree(sl); 11220 sl = sln; 11221 } 11222 env->explored_states[i] = NULL; 11223 } 11224 } 11225 11226 /* The verifier is using insn_aux_data[] to store temporary data during 11227 * verification and to store information for passes that run after the 11228 * verification like dead code sanitization. do_check_common() for subprogram N 11229 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11230 * temporary data after do_check_common() finds that subprogram N cannot be 11231 * verified independently. pass_cnt counts the number of times 11232 * do_check_common() was run and insn->aux->seen tells the pass number 11233 * insn_aux_data was touched. These variables are compared to clear temporary 11234 * data from failed pass. For testing and experiments do_check_common() can be 11235 * run multiple times even when prior attempt to verify is unsuccessful. 11236 */ 11237 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11238 { 11239 struct bpf_insn *insn = env->prog->insnsi; 11240 struct bpf_insn_aux_data *aux; 11241 int i, class; 11242 11243 for (i = 0; i < env->prog->len; i++) { 11244 class = BPF_CLASS(insn[i].code); 11245 if (class != BPF_LDX && class != BPF_STX) 11246 continue; 11247 aux = &env->insn_aux_data[i]; 11248 if (aux->seen != env->pass_cnt) 11249 continue; 11250 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11251 } 11252 } 11253 11254 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11255 { 11256 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11257 struct bpf_verifier_state *state; 11258 struct bpf_reg_state *regs; 11259 int ret, i; 11260 11261 env->prev_linfo = NULL; 11262 env->pass_cnt++; 11263 11264 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11265 if (!state) 11266 return -ENOMEM; 11267 state->curframe = 0; 11268 state->speculative = false; 11269 state->branches = 1; 11270 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11271 if (!state->frame[0]) { 11272 kfree(state); 11273 return -ENOMEM; 11274 } 11275 env->cur_state = state; 11276 init_func_state(env, state->frame[0], 11277 BPF_MAIN_FUNC /* callsite */, 11278 0 /* frameno */, 11279 subprog); 11280 11281 regs = state->frame[state->curframe]->regs; 11282 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11283 ret = btf_prepare_func_args(env, subprog, regs); 11284 if (ret) 11285 goto out; 11286 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11287 if (regs[i].type == PTR_TO_CTX) 11288 mark_reg_known_zero(env, regs, i); 11289 else if (regs[i].type == SCALAR_VALUE) 11290 mark_reg_unknown(env, regs, i); 11291 } 11292 } else { 11293 /* 1st arg to a function */ 11294 regs[BPF_REG_1].type = PTR_TO_CTX; 11295 mark_reg_known_zero(env, regs, BPF_REG_1); 11296 ret = btf_check_func_arg_match(env, subprog, regs); 11297 if (ret == -EFAULT) 11298 /* unlikely verifier bug. abort. 11299 * ret == 0 and ret < 0 are sadly acceptable for 11300 * main() function due to backward compatibility. 11301 * Like socket filter program may be written as: 11302 * int bpf_prog(struct pt_regs *ctx) 11303 * and never dereference that ctx in the program. 11304 * 'struct pt_regs' is a type mismatch for socket 11305 * filter that should be using 'struct __sk_buff'. 11306 */ 11307 goto out; 11308 } 11309 11310 ret = do_check(env); 11311 out: 11312 /* check for NULL is necessary, since cur_state can be freed inside 11313 * do_check() under memory pressure. 11314 */ 11315 if (env->cur_state) { 11316 free_verifier_state(env->cur_state, true); 11317 env->cur_state = NULL; 11318 } 11319 while (!pop_stack(env, NULL, NULL, false)); 11320 if (!ret && pop_log) 11321 bpf_vlog_reset(&env->log, 0); 11322 free_states(env); 11323 if (ret) 11324 /* clean aux data in case subprog was rejected */ 11325 sanitize_insn_aux_data(env); 11326 return ret; 11327 } 11328 11329 /* Verify all global functions in a BPF program one by one based on their BTF. 11330 * All global functions must pass verification. Otherwise the whole program is rejected. 11331 * Consider: 11332 * int bar(int); 11333 * int foo(int f) 11334 * { 11335 * return bar(f); 11336 * } 11337 * int bar(int b) 11338 * { 11339 * ... 11340 * } 11341 * foo() will be verified first for R1=any_scalar_value. During verification it 11342 * will be assumed that bar() already verified successfully and call to bar() 11343 * from foo() will be checked for type match only. Later bar() will be verified 11344 * independently to check that it's safe for R1=any_scalar_value. 11345 */ 11346 static int do_check_subprogs(struct bpf_verifier_env *env) 11347 { 11348 struct bpf_prog_aux *aux = env->prog->aux; 11349 int i, ret; 11350 11351 if (!aux->func_info) 11352 return 0; 11353 11354 for (i = 1; i < env->subprog_cnt; i++) { 11355 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11356 continue; 11357 env->insn_idx = env->subprog_info[i].start; 11358 WARN_ON_ONCE(env->insn_idx == 0); 11359 ret = do_check_common(env, i); 11360 if (ret) { 11361 return ret; 11362 } else if (env->log.level & BPF_LOG_LEVEL) { 11363 verbose(env, 11364 "Func#%d is safe for any args that match its prototype\n", 11365 i); 11366 } 11367 } 11368 return 0; 11369 } 11370 11371 static int do_check_main(struct bpf_verifier_env *env) 11372 { 11373 int ret; 11374 11375 env->insn_idx = 0; 11376 ret = do_check_common(env, 0); 11377 if (!ret) 11378 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11379 return ret; 11380 } 11381 11382 11383 static void print_verification_stats(struct bpf_verifier_env *env) 11384 { 11385 int i; 11386 11387 if (env->log.level & BPF_LOG_STATS) { 11388 verbose(env, "verification time %lld usec\n", 11389 div_u64(env->verification_time, 1000)); 11390 verbose(env, "stack depth "); 11391 for (i = 0; i < env->subprog_cnt; i++) { 11392 u32 depth = env->subprog_info[i].stack_depth; 11393 11394 verbose(env, "%d", depth); 11395 if (i + 1 < env->subprog_cnt) 11396 verbose(env, "+"); 11397 } 11398 verbose(env, "\n"); 11399 } 11400 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11401 "total_states %d peak_states %d mark_read %d\n", 11402 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11403 env->max_states_per_insn, env->total_states, 11404 env->peak_states, env->longest_mark_read_walk); 11405 } 11406 11407 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11408 { 11409 const struct btf_type *t, *func_proto; 11410 const struct bpf_struct_ops *st_ops; 11411 const struct btf_member *member; 11412 struct bpf_prog *prog = env->prog; 11413 u32 btf_id, member_idx; 11414 const char *mname; 11415 11416 btf_id = prog->aux->attach_btf_id; 11417 st_ops = bpf_struct_ops_find(btf_id); 11418 if (!st_ops) { 11419 verbose(env, "attach_btf_id %u is not a supported struct\n", 11420 btf_id); 11421 return -ENOTSUPP; 11422 } 11423 11424 t = st_ops->type; 11425 member_idx = prog->expected_attach_type; 11426 if (member_idx >= btf_type_vlen(t)) { 11427 verbose(env, "attach to invalid member idx %u of struct %s\n", 11428 member_idx, st_ops->name); 11429 return -EINVAL; 11430 } 11431 11432 member = &btf_type_member(t)[member_idx]; 11433 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11434 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11435 NULL); 11436 if (!func_proto) { 11437 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11438 mname, member_idx, st_ops->name); 11439 return -EINVAL; 11440 } 11441 11442 if (st_ops->check_member) { 11443 int err = st_ops->check_member(t, member); 11444 11445 if (err) { 11446 verbose(env, "attach to unsupported member %s of struct %s\n", 11447 mname, st_ops->name); 11448 return err; 11449 } 11450 } 11451 11452 prog->aux->attach_func_proto = func_proto; 11453 prog->aux->attach_func_name = mname; 11454 env->ops = st_ops->verifier_ops; 11455 11456 return 0; 11457 } 11458 #define SECURITY_PREFIX "security_" 11459 11460 static int check_attach_modify_return(unsigned long addr, const char *func_name) 11461 { 11462 if (within_error_injection_list(addr) || 11463 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 11464 return 0; 11465 11466 return -EINVAL; 11467 } 11468 11469 /* non exhaustive list of sleepable bpf_lsm_*() functions */ 11470 BTF_SET_START(btf_sleepable_lsm_hooks) 11471 #ifdef CONFIG_BPF_LSM 11472 BTF_ID(func, bpf_lsm_bprm_committed_creds) 11473 #else 11474 BTF_ID_UNUSED 11475 #endif 11476 BTF_SET_END(btf_sleepable_lsm_hooks) 11477 11478 static int check_sleepable_lsm_hook(u32 btf_id) 11479 { 11480 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id); 11481 } 11482 11483 /* list of non-sleepable functions that are otherwise on 11484 * ALLOW_ERROR_INJECTION list 11485 */ 11486 BTF_SET_START(btf_non_sleepable_error_inject) 11487 /* Three functions below can be called from sleepable and non-sleepable context. 11488 * Assume non-sleepable from bpf safety point of view. 11489 */ 11490 BTF_ID(func, __add_to_page_cache_locked) 11491 BTF_ID(func, should_fail_alloc_page) 11492 BTF_ID(func, should_failslab) 11493 BTF_SET_END(btf_non_sleepable_error_inject) 11494 11495 static int check_non_sleepable_error_inject(u32 btf_id) 11496 { 11497 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11498 } 11499 11500 int bpf_check_attach_target(struct bpf_verifier_log *log, 11501 const struct bpf_prog *prog, 11502 const struct bpf_prog *tgt_prog, 11503 u32 btf_id, 11504 struct bpf_attach_target_info *tgt_info) 11505 { 11506 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11507 const char prefix[] = "btf_trace_"; 11508 int ret = 0, subprog = -1, i; 11509 const struct btf_type *t; 11510 bool conservative = true; 11511 const char *tname; 11512 struct btf *btf; 11513 long addr = 0; 11514 11515 if (!btf_id) { 11516 bpf_log(log, "Tracing programs must provide btf_id\n"); 11517 return -EINVAL; 11518 } 11519 btf = tgt_prog ? tgt_prog->aux->btf : btf_vmlinux; 11520 if (!btf) { 11521 bpf_log(log, 11522 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11523 return -EINVAL; 11524 } 11525 t = btf_type_by_id(btf, btf_id); 11526 if (!t) { 11527 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11528 return -EINVAL; 11529 } 11530 tname = btf_name_by_offset(btf, t->name_off); 11531 if (!tname) { 11532 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11533 return -EINVAL; 11534 } 11535 if (tgt_prog) { 11536 struct bpf_prog_aux *aux = tgt_prog->aux; 11537 11538 for (i = 0; i < aux->func_info_cnt; i++) 11539 if (aux->func_info[i].type_id == btf_id) { 11540 subprog = i; 11541 break; 11542 } 11543 if (subprog == -1) { 11544 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11545 return -EINVAL; 11546 } 11547 conservative = aux->func_info_aux[subprog].unreliable; 11548 if (prog_extension) { 11549 if (conservative) { 11550 bpf_log(log, 11551 "Cannot replace static functions\n"); 11552 return -EINVAL; 11553 } 11554 if (!prog->jit_requested) { 11555 bpf_log(log, 11556 "Extension programs should be JITed\n"); 11557 return -EINVAL; 11558 } 11559 } 11560 if (!tgt_prog->jited) { 11561 bpf_log(log, "Can attach to only JITed progs\n"); 11562 return -EINVAL; 11563 } 11564 if (tgt_prog->type == prog->type) { 11565 /* Cannot fentry/fexit another fentry/fexit program. 11566 * Cannot attach program extension to another extension. 11567 * It's ok to attach fentry/fexit to extension program. 11568 */ 11569 bpf_log(log, "Cannot recursively attach\n"); 11570 return -EINVAL; 11571 } 11572 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11573 prog_extension && 11574 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11575 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11576 /* Program extensions can extend all program types 11577 * except fentry/fexit. The reason is the following. 11578 * The fentry/fexit programs are used for performance 11579 * analysis, stats and can be attached to any program 11580 * type except themselves. When extension program is 11581 * replacing XDP function it is necessary to allow 11582 * performance analysis of all functions. Both original 11583 * XDP program and its program extension. Hence 11584 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11585 * allowed. If extending of fentry/fexit was allowed it 11586 * would be possible to create long call chain 11587 * fentry->extension->fentry->extension beyond 11588 * reasonable stack size. Hence extending fentry is not 11589 * allowed. 11590 */ 11591 bpf_log(log, "Cannot extend fentry/fexit\n"); 11592 return -EINVAL; 11593 } 11594 } else { 11595 if (prog_extension) { 11596 bpf_log(log, "Cannot replace kernel functions\n"); 11597 return -EINVAL; 11598 } 11599 } 11600 11601 switch (prog->expected_attach_type) { 11602 case BPF_TRACE_RAW_TP: 11603 if (tgt_prog) { 11604 bpf_log(log, 11605 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11606 return -EINVAL; 11607 } 11608 if (!btf_type_is_typedef(t)) { 11609 bpf_log(log, "attach_btf_id %u is not a typedef\n", 11610 btf_id); 11611 return -EINVAL; 11612 } 11613 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11614 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 11615 btf_id, tname); 11616 return -EINVAL; 11617 } 11618 tname += sizeof(prefix) - 1; 11619 t = btf_type_by_id(btf, t->type); 11620 if (!btf_type_is_ptr(t)) 11621 /* should never happen in valid vmlinux build */ 11622 return -EINVAL; 11623 t = btf_type_by_id(btf, t->type); 11624 if (!btf_type_is_func_proto(t)) 11625 /* should never happen in valid vmlinux build */ 11626 return -EINVAL; 11627 11628 break; 11629 case BPF_TRACE_ITER: 11630 if (!btf_type_is_func(t)) { 11631 bpf_log(log, "attach_btf_id %u is not a function\n", 11632 btf_id); 11633 return -EINVAL; 11634 } 11635 t = btf_type_by_id(btf, t->type); 11636 if (!btf_type_is_func_proto(t)) 11637 return -EINVAL; 11638 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11639 if (ret) 11640 return ret; 11641 break; 11642 default: 11643 if (!prog_extension) 11644 return -EINVAL; 11645 fallthrough; 11646 case BPF_MODIFY_RETURN: 11647 case BPF_LSM_MAC: 11648 case BPF_TRACE_FENTRY: 11649 case BPF_TRACE_FEXIT: 11650 if (!btf_type_is_func(t)) { 11651 bpf_log(log, "attach_btf_id %u is not a function\n", 11652 btf_id); 11653 return -EINVAL; 11654 } 11655 if (prog_extension && 11656 btf_check_type_match(log, prog, btf, t)) 11657 return -EINVAL; 11658 t = btf_type_by_id(btf, t->type); 11659 if (!btf_type_is_func_proto(t)) 11660 return -EINVAL; 11661 11662 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11663 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11664 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 11665 return -EINVAL; 11666 11667 if (tgt_prog && conservative) 11668 t = NULL; 11669 11670 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11671 if (ret < 0) 11672 return ret; 11673 11674 if (tgt_prog) { 11675 if (subprog == 0) 11676 addr = (long) tgt_prog->bpf_func; 11677 else 11678 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11679 } else { 11680 addr = kallsyms_lookup_name(tname); 11681 if (!addr) { 11682 bpf_log(log, 11683 "The address of function %s cannot be found\n", 11684 tname); 11685 return -ENOENT; 11686 } 11687 } 11688 11689 if (prog->aux->sleepable) { 11690 ret = -EINVAL; 11691 switch (prog->type) { 11692 case BPF_PROG_TYPE_TRACING: 11693 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11694 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11695 */ 11696 if (!check_non_sleepable_error_inject(btf_id) && 11697 within_error_injection_list(addr)) 11698 ret = 0; 11699 break; 11700 case BPF_PROG_TYPE_LSM: 11701 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11702 * Only some of them are sleepable. 11703 */ 11704 if (check_sleepable_lsm_hook(btf_id)) 11705 ret = 0; 11706 break; 11707 default: 11708 break; 11709 } 11710 if (ret) { 11711 bpf_log(log, "%s is not sleepable\n", tname); 11712 return ret; 11713 } 11714 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11715 if (tgt_prog) { 11716 bpf_log(log, "can't modify return codes of BPF programs\n"); 11717 return -EINVAL; 11718 } 11719 ret = check_attach_modify_return(addr, tname); 11720 if (ret) { 11721 bpf_log(log, "%s() is not modifiable\n", tname); 11722 return ret; 11723 } 11724 } 11725 11726 break; 11727 } 11728 tgt_info->tgt_addr = addr; 11729 tgt_info->tgt_name = tname; 11730 tgt_info->tgt_type = t; 11731 return 0; 11732 } 11733 11734 static int check_attach_btf_id(struct bpf_verifier_env *env) 11735 { 11736 struct bpf_prog *prog = env->prog; 11737 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 11738 struct bpf_attach_target_info tgt_info = {}; 11739 u32 btf_id = prog->aux->attach_btf_id; 11740 struct bpf_trampoline *tr; 11741 int ret; 11742 u64 key; 11743 11744 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11745 prog->type != BPF_PROG_TYPE_LSM) { 11746 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11747 return -EINVAL; 11748 } 11749 11750 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11751 return check_struct_ops_btf_id(env); 11752 11753 if (prog->type != BPF_PROG_TYPE_TRACING && 11754 prog->type != BPF_PROG_TYPE_LSM && 11755 prog->type != BPF_PROG_TYPE_EXT) 11756 return 0; 11757 11758 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 11759 if (ret) 11760 return ret; 11761 11762 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 11763 /* to make freplace equivalent to their targets, they need to 11764 * inherit env->ops and expected_attach_type for the rest of the 11765 * verification 11766 */ 11767 env->ops = bpf_verifier_ops[tgt_prog->type]; 11768 prog->expected_attach_type = tgt_prog->expected_attach_type; 11769 } 11770 11771 /* store info about the attachment target that will be used later */ 11772 prog->aux->attach_func_proto = tgt_info.tgt_type; 11773 prog->aux->attach_func_name = tgt_info.tgt_name; 11774 11775 if (tgt_prog) { 11776 prog->aux->saved_dst_prog_type = tgt_prog->type; 11777 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 11778 } 11779 11780 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 11781 prog->aux->attach_btf_trace = true; 11782 return 0; 11783 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 11784 if (!bpf_iter_prog_supported(prog)) 11785 return -EINVAL; 11786 return 0; 11787 } 11788 11789 if (prog->type == BPF_PROG_TYPE_LSM) { 11790 ret = bpf_lsm_verify_prog(&env->log, prog); 11791 if (ret < 0) 11792 return ret; 11793 } 11794 11795 key = bpf_trampoline_compute_key(tgt_prog, btf_id); 11796 tr = bpf_trampoline_get(key, &tgt_info); 11797 if (!tr) 11798 return -ENOMEM; 11799 11800 prog->aux->dst_trampoline = tr; 11801 return 0; 11802 } 11803 11804 struct btf *bpf_get_btf_vmlinux(void) 11805 { 11806 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11807 mutex_lock(&bpf_verifier_lock); 11808 if (!btf_vmlinux) 11809 btf_vmlinux = btf_parse_vmlinux(); 11810 mutex_unlock(&bpf_verifier_lock); 11811 } 11812 return btf_vmlinux; 11813 } 11814 11815 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11816 union bpf_attr __user *uattr) 11817 { 11818 u64 start_time = ktime_get_ns(); 11819 struct bpf_verifier_env *env; 11820 struct bpf_verifier_log *log; 11821 int i, len, ret = -EINVAL; 11822 bool is_priv; 11823 11824 /* no program is valid */ 11825 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11826 return -EINVAL; 11827 11828 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11829 * allocate/free it every time bpf_check() is called 11830 */ 11831 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11832 if (!env) 11833 return -ENOMEM; 11834 log = &env->log; 11835 11836 len = (*prog)->len; 11837 env->insn_aux_data = 11838 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11839 ret = -ENOMEM; 11840 if (!env->insn_aux_data) 11841 goto err_free_env; 11842 for (i = 0; i < len; i++) 11843 env->insn_aux_data[i].orig_idx = i; 11844 env->prog = *prog; 11845 env->ops = bpf_verifier_ops[env->prog->type]; 11846 is_priv = bpf_capable(); 11847 11848 bpf_get_btf_vmlinux(); 11849 11850 /* grab the mutex to protect few globals used by verifier */ 11851 if (!is_priv) 11852 mutex_lock(&bpf_verifier_lock); 11853 11854 if (attr->log_level || attr->log_buf || attr->log_size) { 11855 /* user requested verbose verifier output 11856 * and supplied buffer to store the verification trace 11857 */ 11858 log->level = attr->log_level; 11859 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11860 log->len_total = attr->log_size; 11861 11862 ret = -EINVAL; 11863 /* log attributes have to be sane */ 11864 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11865 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11866 goto err_unlock; 11867 } 11868 11869 if (IS_ERR(btf_vmlinux)) { 11870 /* Either gcc or pahole or kernel are broken. */ 11871 verbose(env, "in-kernel BTF is malformed\n"); 11872 ret = PTR_ERR(btf_vmlinux); 11873 goto skip_full_check; 11874 } 11875 11876 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11877 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11878 env->strict_alignment = true; 11879 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11880 env->strict_alignment = false; 11881 11882 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11883 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11884 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11885 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11886 env->bpf_capable = bpf_capable(); 11887 11888 if (is_priv) 11889 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11890 11891 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11892 ret = bpf_prog_offload_verifier_prep(env->prog); 11893 if (ret) 11894 goto skip_full_check; 11895 } 11896 11897 env->explored_states = kvcalloc(state_htab_size(env), 11898 sizeof(struct bpf_verifier_state_list *), 11899 GFP_USER); 11900 ret = -ENOMEM; 11901 if (!env->explored_states) 11902 goto skip_full_check; 11903 11904 ret = check_subprogs(env); 11905 if (ret < 0) 11906 goto skip_full_check; 11907 11908 ret = check_btf_info(env, attr, uattr); 11909 if (ret < 0) 11910 goto skip_full_check; 11911 11912 ret = check_attach_btf_id(env); 11913 if (ret) 11914 goto skip_full_check; 11915 11916 ret = resolve_pseudo_ldimm64(env); 11917 if (ret < 0) 11918 goto skip_full_check; 11919 11920 ret = check_cfg(env); 11921 if (ret < 0) 11922 goto skip_full_check; 11923 11924 ret = do_check_subprogs(env); 11925 ret = ret ?: do_check_main(env); 11926 11927 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11928 ret = bpf_prog_offload_finalize(env); 11929 11930 skip_full_check: 11931 kvfree(env->explored_states); 11932 11933 if (ret == 0) 11934 ret = check_max_stack_depth(env); 11935 11936 /* instruction rewrites happen after this point */ 11937 if (is_priv) { 11938 if (ret == 0) 11939 opt_hard_wire_dead_code_branches(env); 11940 if (ret == 0) 11941 ret = opt_remove_dead_code(env); 11942 if (ret == 0) 11943 ret = opt_remove_nops(env); 11944 } else { 11945 if (ret == 0) 11946 sanitize_dead_code(env); 11947 } 11948 11949 if (ret == 0) 11950 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11951 ret = convert_ctx_accesses(env); 11952 11953 if (ret == 0) 11954 ret = fixup_bpf_calls(env); 11955 11956 /* do 32-bit optimization after insn patching has done so those patched 11957 * insns could be handled correctly. 11958 */ 11959 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11960 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11961 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11962 : false; 11963 } 11964 11965 if (ret == 0) 11966 ret = fixup_call_args(env); 11967 11968 env->verification_time = ktime_get_ns() - start_time; 11969 print_verification_stats(env); 11970 11971 if (log->level && bpf_verifier_log_full(log)) 11972 ret = -ENOSPC; 11973 if (log->level && !log->ubuf) { 11974 ret = -EFAULT; 11975 goto err_release_maps; 11976 } 11977 11978 if (ret == 0 && env->used_map_cnt) { 11979 /* if program passed verifier, update used_maps in bpf_prog_info */ 11980 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11981 sizeof(env->used_maps[0]), 11982 GFP_KERNEL); 11983 11984 if (!env->prog->aux->used_maps) { 11985 ret = -ENOMEM; 11986 goto err_release_maps; 11987 } 11988 11989 memcpy(env->prog->aux->used_maps, env->used_maps, 11990 sizeof(env->used_maps[0]) * env->used_map_cnt); 11991 env->prog->aux->used_map_cnt = env->used_map_cnt; 11992 11993 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11994 * bpf_ld_imm64 instructions 11995 */ 11996 convert_pseudo_ld_imm64(env); 11997 } 11998 11999 if (ret == 0) 12000 adjust_btf_func(env); 12001 12002 err_release_maps: 12003 if (!env->prog->aux->used_maps) 12004 /* if we didn't copy map pointers into bpf_prog_info, release 12005 * them now. Otherwise free_used_maps() will release them. 12006 */ 12007 release_maps(env); 12008 12009 /* extension progs temporarily inherit the attach_type of their targets 12010 for verification purposes, so set it back to zero before returning 12011 */ 12012 if (env->prog->type == BPF_PROG_TYPE_EXT) 12013 env->prog->expected_attach_type = 0; 12014 12015 *prog = env->prog; 12016 err_unlock: 12017 if (!is_priv) 12018 mutex_unlock(&bpf_verifier_lock); 12019 vfree(env->insn_aux_data); 12020 err_free_env: 12021 kfree(env); 12022 return ret; 12023 } 12024