1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 } 2543 2544 #define DEF_NOT_SUBREG (0) 2545 static void init_reg_state(struct bpf_verifier_env *env, 2546 struct bpf_func_state *state) 2547 { 2548 struct bpf_reg_state *regs = state->regs; 2549 int i; 2550 2551 for (i = 0; i < MAX_BPF_REG; i++) { 2552 mark_reg_not_init(env, regs, i); 2553 regs[i].live = REG_LIVE_NONE; 2554 regs[i].parent = NULL; 2555 regs[i].subreg_def = DEF_NOT_SUBREG; 2556 } 2557 2558 /* frame pointer */ 2559 regs[BPF_REG_FP].type = PTR_TO_STACK; 2560 mark_reg_known_zero(env, regs, BPF_REG_FP); 2561 regs[BPF_REG_FP].frameno = state->frameno; 2562 } 2563 2564 #define BPF_MAIN_FUNC (-1) 2565 static void init_func_state(struct bpf_verifier_env *env, 2566 struct bpf_func_state *state, 2567 int callsite, int frameno, int subprogno) 2568 { 2569 state->callsite = callsite; 2570 state->frameno = frameno; 2571 state->subprogno = subprogno; 2572 state->callback_ret_range = tnum_range(0, 0); 2573 init_reg_state(env, state); 2574 mark_verifier_state_scratched(env); 2575 } 2576 2577 /* Similar to push_stack(), but for async callbacks */ 2578 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2579 int insn_idx, int prev_insn_idx, 2580 int subprog) 2581 { 2582 struct bpf_verifier_stack_elem *elem; 2583 struct bpf_func_state *frame; 2584 2585 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2586 if (!elem) 2587 goto err; 2588 2589 elem->insn_idx = insn_idx; 2590 elem->prev_insn_idx = prev_insn_idx; 2591 elem->next = env->head; 2592 elem->log_pos = env->log.end_pos; 2593 env->head = elem; 2594 env->stack_size++; 2595 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2596 verbose(env, 2597 "The sequence of %d jumps is too complex for async cb.\n", 2598 env->stack_size); 2599 goto err; 2600 } 2601 /* Unlike push_stack() do not copy_verifier_state(). 2602 * The caller state doesn't matter. 2603 * This is async callback. It starts in a fresh stack. 2604 * Initialize it similar to do_check_common(). 2605 */ 2606 elem->st.branches = 1; 2607 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2608 if (!frame) 2609 goto err; 2610 init_func_state(env, frame, 2611 BPF_MAIN_FUNC /* callsite */, 2612 0 /* frameno within this callchain */, 2613 subprog /* subprog number within this prog */); 2614 elem->st.frame[0] = frame; 2615 return &elem->st; 2616 err: 2617 free_verifier_state(env->cur_state, true); 2618 env->cur_state = NULL; 2619 /* pop all elements and return */ 2620 while (!pop_stack(env, NULL, NULL, false)); 2621 return NULL; 2622 } 2623 2624 2625 enum reg_arg_type { 2626 SRC_OP, /* register is used as source operand */ 2627 DST_OP, /* register is used as destination operand */ 2628 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2629 }; 2630 2631 static int cmp_subprogs(const void *a, const void *b) 2632 { 2633 return ((struct bpf_subprog_info *)a)->start - 2634 ((struct bpf_subprog_info *)b)->start; 2635 } 2636 2637 static int find_subprog(struct bpf_verifier_env *env, int off) 2638 { 2639 struct bpf_subprog_info *p; 2640 2641 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2642 sizeof(env->subprog_info[0]), cmp_subprogs); 2643 if (!p) 2644 return -ENOENT; 2645 return p - env->subprog_info; 2646 2647 } 2648 2649 static int add_subprog(struct bpf_verifier_env *env, int off) 2650 { 2651 int insn_cnt = env->prog->len; 2652 int ret; 2653 2654 if (off >= insn_cnt || off < 0) { 2655 verbose(env, "call to invalid destination\n"); 2656 return -EINVAL; 2657 } 2658 ret = find_subprog(env, off); 2659 if (ret >= 0) 2660 return ret; 2661 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2662 verbose(env, "too many subprograms\n"); 2663 return -E2BIG; 2664 } 2665 /* determine subprog starts. The end is one before the next starts */ 2666 env->subprog_info[env->subprog_cnt++].start = off; 2667 sort(env->subprog_info, env->subprog_cnt, 2668 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2669 return env->subprog_cnt - 1; 2670 } 2671 2672 #define MAX_KFUNC_DESCS 256 2673 #define MAX_KFUNC_BTFS 256 2674 2675 struct bpf_kfunc_desc { 2676 struct btf_func_model func_model; 2677 u32 func_id; 2678 s32 imm; 2679 u16 offset; 2680 unsigned long addr; 2681 }; 2682 2683 struct bpf_kfunc_btf { 2684 struct btf *btf; 2685 struct module *module; 2686 u16 offset; 2687 }; 2688 2689 struct bpf_kfunc_desc_tab { 2690 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2691 * verification. JITs do lookups by bpf_insn, where func_id may not be 2692 * available, therefore at the end of verification do_misc_fixups() 2693 * sorts this by imm and offset. 2694 */ 2695 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2696 u32 nr_descs; 2697 }; 2698 2699 struct bpf_kfunc_btf_tab { 2700 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2701 u32 nr_descs; 2702 }; 2703 2704 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2705 { 2706 const struct bpf_kfunc_desc *d0 = a; 2707 const struct bpf_kfunc_desc *d1 = b; 2708 2709 /* func_id is not greater than BTF_MAX_TYPE */ 2710 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2711 } 2712 2713 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2714 { 2715 const struct bpf_kfunc_btf *d0 = a; 2716 const struct bpf_kfunc_btf *d1 = b; 2717 2718 return d0->offset - d1->offset; 2719 } 2720 2721 static const struct bpf_kfunc_desc * 2722 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2723 { 2724 struct bpf_kfunc_desc desc = { 2725 .func_id = func_id, 2726 .offset = offset, 2727 }; 2728 struct bpf_kfunc_desc_tab *tab; 2729 2730 tab = prog->aux->kfunc_tab; 2731 return bsearch(&desc, tab->descs, tab->nr_descs, 2732 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2733 } 2734 2735 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2736 u16 btf_fd_idx, u8 **func_addr) 2737 { 2738 const struct bpf_kfunc_desc *desc; 2739 2740 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2741 if (!desc) 2742 return -EFAULT; 2743 2744 *func_addr = (u8 *)desc->addr; 2745 return 0; 2746 } 2747 2748 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2749 s16 offset) 2750 { 2751 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2752 struct bpf_kfunc_btf_tab *tab; 2753 struct bpf_kfunc_btf *b; 2754 struct module *mod; 2755 struct btf *btf; 2756 int btf_fd; 2757 2758 tab = env->prog->aux->kfunc_btf_tab; 2759 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2760 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2761 if (!b) { 2762 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2763 verbose(env, "too many different module BTFs\n"); 2764 return ERR_PTR(-E2BIG); 2765 } 2766 2767 if (bpfptr_is_null(env->fd_array)) { 2768 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2769 return ERR_PTR(-EPROTO); 2770 } 2771 2772 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2773 offset * sizeof(btf_fd), 2774 sizeof(btf_fd))) 2775 return ERR_PTR(-EFAULT); 2776 2777 btf = btf_get_by_fd(btf_fd); 2778 if (IS_ERR(btf)) { 2779 verbose(env, "invalid module BTF fd specified\n"); 2780 return btf; 2781 } 2782 2783 if (!btf_is_module(btf)) { 2784 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2785 btf_put(btf); 2786 return ERR_PTR(-EINVAL); 2787 } 2788 2789 mod = btf_try_get_module(btf); 2790 if (!mod) { 2791 btf_put(btf); 2792 return ERR_PTR(-ENXIO); 2793 } 2794 2795 b = &tab->descs[tab->nr_descs++]; 2796 b->btf = btf; 2797 b->module = mod; 2798 b->offset = offset; 2799 2800 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2801 kfunc_btf_cmp_by_off, NULL); 2802 } 2803 return b->btf; 2804 } 2805 2806 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2807 { 2808 if (!tab) 2809 return; 2810 2811 while (tab->nr_descs--) { 2812 module_put(tab->descs[tab->nr_descs].module); 2813 btf_put(tab->descs[tab->nr_descs].btf); 2814 } 2815 kfree(tab); 2816 } 2817 2818 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2819 { 2820 if (offset) { 2821 if (offset < 0) { 2822 /* In the future, this can be allowed to increase limit 2823 * of fd index into fd_array, interpreted as u16. 2824 */ 2825 verbose(env, "negative offset disallowed for kernel module function call\n"); 2826 return ERR_PTR(-EINVAL); 2827 } 2828 2829 return __find_kfunc_desc_btf(env, offset); 2830 } 2831 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2832 } 2833 2834 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2835 { 2836 const struct btf_type *func, *func_proto; 2837 struct bpf_kfunc_btf_tab *btf_tab; 2838 struct bpf_kfunc_desc_tab *tab; 2839 struct bpf_prog_aux *prog_aux; 2840 struct bpf_kfunc_desc *desc; 2841 const char *func_name; 2842 struct btf *desc_btf; 2843 unsigned long call_imm; 2844 unsigned long addr; 2845 int err; 2846 2847 prog_aux = env->prog->aux; 2848 tab = prog_aux->kfunc_tab; 2849 btf_tab = prog_aux->kfunc_btf_tab; 2850 if (!tab) { 2851 if (!btf_vmlinux) { 2852 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2853 return -ENOTSUPP; 2854 } 2855 2856 if (!env->prog->jit_requested) { 2857 verbose(env, "JIT is required for calling kernel function\n"); 2858 return -ENOTSUPP; 2859 } 2860 2861 if (!bpf_jit_supports_kfunc_call()) { 2862 verbose(env, "JIT does not support calling kernel function\n"); 2863 return -ENOTSUPP; 2864 } 2865 2866 if (!env->prog->gpl_compatible) { 2867 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2868 return -EINVAL; 2869 } 2870 2871 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2872 if (!tab) 2873 return -ENOMEM; 2874 prog_aux->kfunc_tab = tab; 2875 } 2876 2877 /* func_id == 0 is always invalid, but instead of returning an error, be 2878 * conservative and wait until the code elimination pass before returning 2879 * error, so that invalid calls that get pruned out can be in BPF programs 2880 * loaded from userspace. It is also required that offset be untouched 2881 * for such calls. 2882 */ 2883 if (!func_id && !offset) 2884 return 0; 2885 2886 if (!btf_tab && offset) { 2887 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2888 if (!btf_tab) 2889 return -ENOMEM; 2890 prog_aux->kfunc_btf_tab = btf_tab; 2891 } 2892 2893 desc_btf = find_kfunc_desc_btf(env, offset); 2894 if (IS_ERR(desc_btf)) { 2895 verbose(env, "failed to find BTF for kernel function\n"); 2896 return PTR_ERR(desc_btf); 2897 } 2898 2899 if (find_kfunc_desc(env->prog, func_id, offset)) 2900 return 0; 2901 2902 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2903 verbose(env, "too many different kernel function calls\n"); 2904 return -E2BIG; 2905 } 2906 2907 func = btf_type_by_id(desc_btf, func_id); 2908 if (!func || !btf_type_is_func(func)) { 2909 verbose(env, "kernel btf_id %u is not a function\n", 2910 func_id); 2911 return -EINVAL; 2912 } 2913 func_proto = btf_type_by_id(desc_btf, func->type); 2914 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2915 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2916 func_id); 2917 return -EINVAL; 2918 } 2919 2920 func_name = btf_name_by_offset(desc_btf, func->name_off); 2921 addr = kallsyms_lookup_name(func_name); 2922 if (!addr) { 2923 verbose(env, "cannot find address for kernel function %s\n", 2924 func_name); 2925 return -EINVAL; 2926 } 2927 specialize_kfunc(env, func_id, offset, &addr); 2928 2929 if (bpf_jit_supports_far_kfunc_call()) { 2930 call_imm = func_id; 2931 } else { 2932 call_imm = BPF_CALL_IMM(addr); 2933 /* Check whether the relative offset overflows desc->imm */ 2934 if ((unsigned long)(s32)call_imm != call_imm) { 2935 verbose(env, "address of kernel function %s is out of range\n", 2936 func_name); 2937 return -EINVAL; 2938 } 2939 } 2940 2941 if (bpf_dev_bound_kfunc_id(func_id)) { 2942 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2943 if (err) 2944 return err; 2945 } 2946 2947 desc = &tab->descs[tab->nr_descs++]; 2948 desc->func_id = func_id; 2949 desc->imm = call_imm; 2950 desc->offset = offset; 2951 desc->addr = addr; 2952 err = btf_distill_func_proto(&env->log, desc_btf, 2953 func_proto, func_name, 2954 &desc->func_model); 2955 if (!err) 2956 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2957 kfunc_desc_cmp_by_id_off, NULL); 2958 return err; 2959 } 2960 2961 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2962 { 2963 const struct bpf_kfunc_desc *d0 = a; 2964 const struct bpf_kfunc_desc *d1 = b; 2965 2966 if (d0->imm != d1->imm) 2967 return d0->imm < d1->imm ? -1 : 1; 2968 if (d0->offset != d1->offset) 2969 return d0->offset < d1->offset ? -1 : 1; 2970 return 0; 2971 } 2972 2973 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2974 { 2975 struct bpf_kfunc_desc_tab *tab; 2976 2977 tab = prog->aux->kfunc_tab; 2978 if (!tab) 2979 return; 2980 2981 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2982 kfunc_desc_cmp_by_imm_off, NULL); 2983 } 2984 2985 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2986 { 2987 return !!prog->aux->kfunc_tab; 2988 } 2989 2990 const struct btf_func_model * 2991 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2992 const struct bpf_insn *insn) 2993 { 2994 const struct bpf_kfunc_desc desc = { 2995 .imm = insn->imm, 2996 .offset = insn->off, 2997 }; 2998 const struct bpf_kfunc_desc *res; 2999 struct bpf_kfunc_desc_tab *tab; 3000 3001 tab = prog->aux->kfunc_tab; 3002 res = bsearch(&desc, tab->descs, tab->nr_descs, 3003 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3004 3005 return res ? &res->func_model : NULL; 3006 } 3007 3008 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3009 { 3010 struct bpf_subprog_info *subprog = env->subprog_info; 3011 struct bpf_insn *insn = env->prog->insnsi; 3012 int i, ret, insn_cnt = env->prog->len; 3013 3014 /* Add entry function. */ 3015 ret = add_subprog(env, 0); 3016 if (ret) 3017 return ret; 3018 3019 for (i = 0; i < insn_cnt; i++, insn++) { 3020 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3021 !bpf_pseudo_kfunc_call(insn)) 3022 continue; 3023 3024 if (!env->bpf_capable) { 3025 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3026 return -EPERM; 3027 } 3028 3029 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3030 ret = add_subprog(env, i + insn->imm + 1); 3031 else 3032 ret = add_kfunc_call(env, insn->imm, insn->off); 3033 3034 if (ret < 0) 3035 return ret; 3036 } 3037 3038 /* Add a fake 'exit' subprog which could simplify subprog iteration 3039 * logic. 'subprog_cnt' should not be increased. 3040 */ 3041 subprog[env->subprog_cnt].start = insn_cnt; 3042 3043 if (env->log.level & BPF_LOG_LEVEL2) 3044 for (i = 0; i < env->subprog_cnt; i++) 3045 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3046 3047 return 0; 3048 } 3049 3050 static int check_subprogs(struct bpf_verifier_env *env) 3051 { 3052 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3053 struct bpf_subprog_info *subprog = env->subprog_info; 3054 struct bpf_insn *insn = env->prog->insnsi; 3055 int insn_cnt = env->prog->len; 3056 3057 /* now check that all jumps are within the same subprog */ 3058 subprog_start = subprog[cur_subprog].start; 3059 subprog_end = subprog[cur_subprog + 1].start; 3060 for (i = 0; i < insn_cnt; i++) { 3061 u8 code = insn[i].code; 3062 3063 if (code == (BPF_JMP | BPF_CALL) && 3064 insn[i].src_reg == 0 && 3065 insn[i].imm == BPF_FUNC_tail_call) 3066 subprog[cur_subprog].has_tail_call = true; 3067 if (BPF_CLASS(code) == BPF_LD && 3068 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3069 subprog[cur_subprog].has_ld_abs = true; 3070 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3071 goto next; 3072 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3073 goto next; 3074 if (code == (BPF_JMP32 | BPF_JA)) 3075 off = i + insn[i].imm + 1; 3076 else 3077 off = i + insn[i].off + 1; 3078 if (off < subprog_start || off >= subprog_end) { 3079 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3080 return -EINVAL; 3081 } 3082 next: 3083 if (i == subprog_end - 1) { 3084 /* to avoid fall-through from one subprog into another 3085 * the last insn of the subprog should be either exit 3086 * or unconditional jump back 3087 */ 3088 if (code != (BPF_JMP | BPF_EXIT) && 3089 code != (BPF_JMP32 | BPF_JA) && 3090 code != (BPF_JMP | BPF_JA)) { 3091 verbose(env, "last insn is not an exit or jmp\n"); 3092 return -EINVAL; 3093 } 3094 subprog_start = subprog_end; 3095 cur_subprog++; 3096 if (cur_subprog < env->subprog_cnt) 3097 subprog_end = subprog[cur_subprog + 1].start; 3098 } 3099 } 3100 return 0; 3101 } 3102 3103 /* Parentage chain of this register (or stack slot) should take care of all 3104 * issues like callee-saved registers, stack slot allocation time, etc. 3105 */ 3106 static int mark_reg_read(struct bpf_verifier_env *env, 3107 const struct bpf_reg_state *state, 3108 struct bpf_reg_state *parent, u8 flag) 3109 { 3110 bool writes = parent == state->parent; /* Observe write marks */ 3111 int cnt = 0; 3112 3113 while (parent) { 3114 /* if read wasn't screened by an earlier write ... */ 3115 if (writes && state->live & REG_LIVE_WRITTEN) 3116 break; 3117 if (parent->live & REG_LIVE_DONE) { 3118 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3119 reg_type_str(env, parent->type), 3120 parent->var_off.value, parent->off); 3121 return -EFAULT; 3122 } 3123 /* The first condition is more likely to be true than the 3124 * second, checked it first. 3125 */ 3126 if ((parent->live & REG_LIVE_READ) == flag || 3127 parent->live & REG_LIVE_READ64) 3128 /* The parentage chain never changes and 3129 * this parent was already marked as LIVE_READ. 3130 * There is no need to keep walking the chain again and 3131 * keep re-marking all parents as LIVE_READ. 3132 * This case happens when the same register is read 3133 * multiple times without writes into it in-between. 3134 * Also, if parent has the stronger REG_LIVE_READ64 set, 3135 * then no need to set the weak REG_LIVE_READ32. 3136 */ 3137 break; 3138 /* ... then we depend on parent's value */ 3139 parent->live |= flag; 3140 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3141 if (flag == REG_LIVE_READ64) 3142 parent->live &= ~REG_LIVE_READ32; 3143 state = parent; 3144 parent = state->parent; 3145 writes = true; 3146 cnt++; 3147 } 3148 3149 if (env->longest_mark_read_walk < cnt) 3150 env->longest_mark_read_walk = cnt; 3151 return 0; 3152 } 3153 3154 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3155 { 3156 struct bpf_func_state *state = func(env, reg); 3157 int spi, ret; 3158 3159 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3160 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3161 * check_kfunc_call. 3162 */ 3163 if (reg->type == CONST_PTR_TO_DYNPTR) 3164 return 0; 3165 spi = dynptr_get_spi(env, reg); 3166 if (spi < 0) 3167 return spi; 3168 /* Caller ensures dynptr is valid and initialized, which means spi is in 3169 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3170 * read. 3171 */ 3172 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3173 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3174 if (ret) 3175 return ret; 3176 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3177 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3178 } 3179 3180 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3181 int spi, int nr_slots) 3182 { 3183 struct bpf_func_state *state = func(env, reg); 3184 int err, i; 3185 3186 for (i = 0; i < nr_slots; i++) { 3187 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3188 3189 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3190 if (err) 3191 return err; 3192 3193 mark_stack_slot_scratched(env, spi - i); 3194 } 3195 3196 return 0; 3197 } 3198 3199 /* This function is supposed to be used by the following 32-bit optimization 3200 * code only. It returns TRUE if the source or destination register operates 3201 * on 64-bit, otherwise return FALSE. 3202 */ 3203 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3204 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3205 { 3206 u8 code, class, op; 3207 3208 code = insn->code; 3209 class = BPF_CLASS(code); 3210 op = BPF_OP(code); 3211 if (class == BPF_JMP) { 3212 /* BPF_EXIT for "main" will reach here. Return TRUE 3213 * conservatively. 3214 */ 3215 if (op == BPF_EXIT) 3216 return true; 3217 if (op == BPF_CALL) { 3218 /* BPF to BPF call will reach here because of marking 3219 * caller saved clobber with DST_OP_NO_MARK for which we 3220 * don't care the register def because they are anyway 3221 * marked as NOT_INIT already. 3222 */ 3223 if (insn->src_reg == BPF_PSEUDO_CALL) 3224 return false; 3225 /* Helper call will reach here because of arg type 3226 * check, conservatively return TRUE. 3227 */ 3228 if (t == SRC_OP) 3229 return true; 3230 3231 return false; 3232 } 3233 } 3234 3235 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3236 return false; 3237 3238 if (class == BPF_ALU64 || class == BPF_JMP || 3239 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3240 return true; 3241 3242 if (class == BPF_ALU || class == BPF_JMP32) 3243 return false; 3244 3245 if (class == BPF_LDX) { 3246 if (t != SRC_OP) 3247 return BPF_SIZE(code) == BPF_DW; 3248 /* LDX source must be ptr. */ 3249 return true; 3250 } 3251 3252 if (class == BPF_STX) { 3253 /* BPF_STX (including atomic variants) has multiple source 3254 * operands, one of which is a ptr. Check whether the caller is 3255 * asking about it. 3256 */ 3257 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3258 return true; 3259 return BPF_SIZE(code) == BPF_DW; 3260 } 3261 3262 if (class == BPF_LD) { 3263 u8 mode = BPF_MODE(code); 3264 3265 /* LD_IMM64 */ 3266 if (mode == BPF_IMM) 3267 return true; 3268 3269 /* Both LD_IND and LD_ABS return 32-bit data. */ 3270 if (t != SRC_OP) 3271 return false; 3272 3273 /* Implicit ctx ptr. */ 3274 if (regno == BPF_REG_6) 3275 return true; 3276 3277 /* Explicit source could be any width. */ 3278 return true; 3279 } 3280 3281 if (class == BPF_ST) 3282 /* The only source register for BPF_ST is a ptr. */ 3283 return true; 3284 3285 /* Conservatively return true at default. */ 3286 return true; 3287 } 3288 3289 /* Return the regno defined by the insn, or -1. */ 3290 static int insn_def_regno(const struct bpf_insn *insn) 3291 { 3292 switch (BPF_CLASS(insn->code)) { 3293 case BPF_JMP: 3294 case BPF_JMP32: 3295 case BPF_ST: 3296 return -1; 3297 case BPF_STX: 3298 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3299 (insn->imm & BPF_FETCH)) { 3300 if (insn->imm == BPF_CMPXCHG) 3301 return BPF_REG_0; 3302 else 3303 return insn->src_reg; 3304 } else { 3305 return -1; 3306 } 3307 default: 3308 return insn->dst_reg; 3309 } 3310 } 3311 3312 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3313 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3314 { 3315 int dst_reg = insn_def_regno(insn); 3316 3317 if (dst_reg == -1) 3318 return false; 3319 3320 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3321 } 3322 3323 static void mark_insn_zext(struct bpf_verifier_env *env, 3324 struct bpf_reg_state *reg) 3325 { 3326 s32 def_idx = reg->subreg_def; 3327 3328 if (def_idx == DEF_NOT_SUBREG) 3329 return; 3330 3331 env->insn_aux_data[def_idx - 1].zext_dst = true; 3332 /* The dst will be zero extended, so won't be sub-register anymore. */ 3333 reg->subreg_def = DEF_NOT_SUBREG; 3334 } 3335 3336 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3337 enum reg_arg_type t) 3338 { 3339 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3340 struct bpf_reg_state *reg; 3341 bool rw64; 3342 3343 if (regno >= MAX_BPF_REG) { 3344 verbose(env, "R%d is invalid\n", regno); 3345 return -EINVAL; 3346 } 3347 3348 mark_reg_scratched(env, regno); 3349 3350 reg = ®s[regno]; 3351 rw64 = is_reg64(env, insn, regno, reg, t); 3352 if (t == SRC_OP) { 3353 /* check whether register used as source operand can be read */ 3354 if (reg->type == NOT_INIT) { 3355 verbose(env, "R%d !read_ok\n", regno); 3356 return -EACCES; 3357 } 3358 /* We don't need to worry about FP liveness because it's read-only */ 3359 if (regno == BPF_REG_FP) 3360 return 0; 3361 3362 if (rw64) 3363 mark_insn_zext(env, reg); 3364 3365 return mark_reg_read(env, reg, reg->parent, 3366 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3367 } else { 3368 /* check whether register used as dest operand can be written to */ 3369 if (regno == BPF_REG_FP) { 3370 verbose(env, "frame pointer is read only\n"); 3371 return -EACCES; 3372 } 3373 reg->live |= REG_LIVE_WRITTEN; 3374 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3375 if (t == DST_OP) 3376 mark_reg_unknown(env, regs, regno); 3377 } 3378 return 0; 3379 } 3380 3381 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3382 enum reg_arg_type t) 3383 { 3384 struct bpf_verifier_state *vstate = env->cur_state; 3385 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3386 3387 return __check_reg_arg(env, state->regs, regno, t); 3388 } 3389 3390 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3391 { 3392 env->insn_aux_data[idx].jmp_point = true; 3393 } 3394 3395 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3396 { 3397 return env->insn_aux_data[insn_idx].jmp_point; 3398 } 3399 3400 /* for any branch, call, exit record the history of jmps in the given state */ 3401 static int push_jmp_history(struct bpf_verifier_env *env, 3402 struct bpf_verifier_state *cur) 3403 { 3404 u32 cnt = cur->jmp_history_cnt; 3405 struct bpf_idx_pair *p; 3406 size_t alloc_size; 3407 3408 if (!is_jmp_point(env, env->insn_idx)) 3409 return 0; 3410 3411 cnt++; 3412 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3413 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3414 if (!p) 3415 return -ENOMEM; 3416 p[cnt - 1].idx = env->insn_idx; 3417 p[cnt - 1].prev_idx = env->prev_insn_idx; 3418 cur->jmp_history = p; 3419 cur->jmp_history_cnt = cnt; 3420 return 0; 3421 } 3422 3423 /* Backtrack one insn at a time. If idx is not at the top of recorded 3424 * history then previous instruction came from straight line execution. 3425 * Return -ENOENT if we exhausted all instructions within given state. 3426 * 3427 * It's legal to have a bit of a looping with the same starting and ending 3428 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3429 * instruction index is the same as state's first_idx doesn't mean we are 3430 * done. If there is still some jump history left, we should keep going. We 3431 * need to take into account that we might have a jump history between given 3432 * state's parent and itself, due to checkpointing. In this case, we'll have 3433 * history entry recording a jump from last instruction of parent state and 3434 * first instruction of given state. 3435 */ 3436 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3437 u32 *history) 3438 { 3439 u32 cnt = *history; 3440 3441 if (i == st->first_insn_idx) { 3442 if (cnt == 0) 3443 return -ENOENT; 3444 if (cnt == 1 && st->jmp_history[0].idx == i) 3445 return -ENOENT; 3446 } 3447 3448 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3449 i = st->jmp_history[cnt - 1].prev_idx; 3450 (*history)--; 3451 } else { 3452 i--; 3453 } 3454 return i; 3455 } 3456 3457 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3458 { 3459 const struct btf_type *func; 3460 struct btf *desc_btf; 3461 3462 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3463 return NULL; 3464 3465 desc_btf = find_kfunc_desc_btf(data, insn->off); 3466 if (IS_ERR(desc_btf)) 3467 return "<error>"; 3468 3469 func = btf_type_by_id(desc_btf, insn->imm); 3470 return btf_name_by_offset(desc_btf, func->name_off); 3471 } 3472 3473 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3474 { 3475 bt->frame = frame; 3476 } 3477 3478 static inline void bt_reset(struct backtrack_state *bt) 3479 { 3480 struct bpf_verifier_env *env = bt->env; 3481 3482 memset(bt, 0, sizeof(*bt)); 3483 bt->env = env; 3484 } 3485 3486 static inline u32 bt_empty(struct backtrack_state *bt) 3487 { 3488 u64 mask = 0; 3489 int i; 3490 3491 for (i = 0; i <= bt->frame; i++) 3492 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3493 3494 return mask == 0; 3495 } 3496 3497 static inline int bt_subprog_enter(struct backtrack_state *bt) 3498 { 3499 if (bt->frame == MAX_CALL_FRAMES - 1) { 3500 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3501 WARN_ONCE(1, "verifier backtracking bug"); 3502 return -EFAULT; 3503 } 3504 bt->frame++; 3505 return 0; 3506 } 3507 3508 static inline int bt_subprog_exit(struct backtrack_state *bt) 3509 { 3510 if (bt->frame == 0) { 3511 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3512 WARN_ONCE(1, "verifier backtracking bug"); 3513 return -EFAULT; 3514 } 3515 bt->frame--; 3516 return 0; 3517 } 3518 3519 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3520 { 3521 bt->reg_masks[frame] |= 1 << reg; 3522 } 3523 3524 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3525 { 3526 bt->reg_masks[frame] &= ~(1 << reg); 3527 } 3528 3529 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3530 { 3531 bt_set_frame_reg(bt, bt->frame, reg); 3532 } 3533 3534 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3535 { 3536 bt_clear_frame_reg(bt, bt->frame, reg); 3537 } 3538 3539 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3540 { 3541 bt->stack_masks[frame] |= 1ull << slot; 3542 } 3543 3544 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3545 { 3546 bt->stack_masks[frame] &= ~(1ull << slot); 3547 } 3548 3549 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3550 { 3551 bt_set_frame_slot(bt, bt->frame, slot); 3552 } 3553 3554 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3555 { 3556 bt_clear_frame_slot(bt, bt->frame, slot); 3557 } 3558 3559 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3560 { 3561 return bt->reg_masks[frame]; 3562 } 3563 3564 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3565 { 3566 return bt->reg_masks[bt->frame]; 3567 } 3568 3569 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3570 { 3571 return bt->stack_masks[frame]; 3572 } 3573 3574 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3575 { 3576 return bt->stack_masks[bt->frame]; 3577 } 3578 3579 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3580 { 3581 return bt->reg_masks[bt->frame] & (1 << reg); 3582 } 3583 3584 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3585 { 3586 return bt->stack_masks[bt->frame] & (1ull << slot); 3587 } 3588 3589 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3590 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3591 { 3592 DECLARE_BITMAP(mask, 64); 3593 bool first = true; 3594 int i, n; 3595 3596 buf[0] = '\0'; 3597 3598 bitmap_from_u64(mask, reg_mask); 3599 for_each_set_bit(i, mask, 32) { 3600 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3601 first = false; 3602 buf += n; 3603 buf_sz -= n; 3604 if (buf_sz < 0) 3605 break; 3606 } 3607 } 3608 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3609 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3610 { 3611 DECLARE_BITMAP(mask, 64); 3612 bool first = true; 3613 int i, n; 3614 3615 buf[0] = '\0'; 3616 3617 bitmap_from_u64(mask, stack_mask); 3618 for_each_set_bit(i, mask, 64) { 3619 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3620 first = false; 3621 buf += n; 3622 buf_sz -= n; 3623 if (buf_sz < 0) 3624 break; 3625 } 3626 } 3627 3628 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3629 3630 /* For given verifier state backtrack_insn() is called from the last insn to 3631 * the first insn. Its purpose is to compute a bitmask of registers and 3632 * stack slots that needs precision in the parent verifier state. 3633 * 3634 * @idx is an index of the instruction we are currently processing; 3635 * @subseq_idx is an index of the subsequent instruction that: 3636 * - *would be* executed next, if jump history is viewed in forward order; 3637 * - *was* processed previously during backtracking. 3638 */ 3639 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3640 struct backtrack_state *bt) 3641 { 3642 const struct bpf_insn_cbs cbs = { 3643 .cb_call = disasm_kfunc_name, 3644 .cb_print = verbose, 3645 .private_data = env, 3646 }; 3647 struct bpf_insn *insn = env->prog->insnsi + idx; 3648 u8 class = BPF_CLASS(insn->code); 3649 u8 opcode = BPF_OP(insn->code); 3650 u8 mode = BPF_MODE(insn->code); 3651 u32 dreg = insn->dst_reg; 3652 u32 sreg = insn->src_reg; 3653 u32 spi, i; 3654 3655 if (insn->code == 0) 3656 return 0; 3657 if (env->log.level & BPF_LOG_LEVEL2) { 3658 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3659 verbose(env, "mark_precise: frame%d: regs=%s ", 3660 bt->frame, env->tmp_str_buf); 3661 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3662 verbose(env, "stack=%s before ", env->tmp_str_buf); 3663 verbose(env, "%d: ", idx); 3664 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3665 } 3666 3667 if (class == BPF_ALU || class == BPF_ALU64) { 3668 if (!bt_is_reg_set(bt, dreg)) 3669 return 0; 3670 if (opcode == BPF_END || opcode == BPF_NEG) { 3671 /* sreg is reserved and unused 3672 * dreg still need precision before this insn 3673 */ 3674 return 0; 3675 } else if (opcode == BPF_MOV) { 3676 if (BPF_SRC(insn->code) == BPF_X) { 3677 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3678 * dreg needs precision after this insn 3679 * sreg needs precision before this insn 3680 */ 3681 bt_clear_reg(bt, dreg); 3682 bt_set_reg(bt, sreg); 3683 } else { 3684 /* dreg = K 3685 * dreg needs precision after this insn. 3686 * Corresponding register is already marked 3687 * as precise=true in this verifier state. 3688 * No further markings in parent are necessary 3689 */ 3690 bt_clear_reg(bt, dreg); 3691 } 3692 } else { 3693 if (BPF_SRC(insn->code) == BPF_X) { 3694 /* dreg += sreg 3695 * both dreg and sreg need precision 3696 * before this insn 3697 */ 3698 bt_set_reg(bt, sreg); 3699 } /* else dreg += K 3700 * dreg still needs precision before this insn 3701 */ 3702 } 3703 } else if (class == BPF_LDX) { 3704 if (!bt_is_reg_set(bt, dreg)) 3705 return 0; 3706 bt_clear_reg(bt, dreg); 3707 3708 /* scalars can only be spilled into stack w/o losing precision. 3709 * Load from any other memory can be zero extended. 3710 * The desire to keep that precision is already indicated 3711 * by 'precise' mark in corresponding register of this state. 3712 * No further tracking necessary. 3713 */ 3714 if (insn->src_reg != BPF_REG_FP) 3715 return 0; 3716 3717 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3718 * that [fp - off] slot contains scalar that needs to be 3719 * tracked with precision 3720 */ 3721 spi = (-insn->off - 1) / BPF_REG_SIZE; 3722 if (spi >= 64) { 3723 verbose(env, "BUG spi %d\n", spi); 3724 WARN_ONCE(1, "verifier backtracking bug"); 3725 return -EFAULT; 3726 } 3727 bt_set_slot(bt, spi); 3728 } else if (class == BPF_STX || class == BPF_ST) { 3729 if (bt_is_reg_set(bt, dreg)) 3730 /* stx & st shouldn't be using _scalar_ dst_reg 3731 * to access memory. It means backtracking 3732 * encountered a case of pointer subtraction. 3733 */ 3734 return -ENOTSUPP; 3735 /* scalars can only be spilled into stack */ 3736 if (insn->dst_reg != BPF_REG_FP) 3737 return 0; 3738 spi = (-insn->off - 1) / BPF_REG_SIZE; 3739 if (spi >= 64) { 3740 verbose(env, "BUG spi %d\n", spi); 3741 WARN_ONCE(1, "verifier backtracking bug"); 3742 return -EFAULT; 3743 } 3744 if (!bt_is_slot_set(bt, spi)) 3745 return 0; 3746 bt_clear_slot(bt, spi); 3747 if (class == BPF_STX) 3748 bt_set_reg(bt, sreg); 3749 } else if (class == BPF_JMP || class == BPF_JMP32) { 3750 if (bpf_pseudo_call(insn)) { 3751 int subprog_insn_idx, subprog; 3752 3753 subprog_insn_idx = idx + insn->imm + 1; 3754 subprog = find_subprog(env, subprog_insn_idx); 3755 if (subprog < 0) 3756 return -EFAULT; 3757 3758 if (subprog_is_global(env, subprog)) { 3759 /* check that jump history doesn't have any 3760 * extra instructions from subprog; the next 3761 * instruction after call to global subprog 3762 * should be literally next instruction in 3763 * caller program 3764 */ 3765 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3766 /* r1-r5 are invalidated after subprog call, 3767 * so for global func call it shouldn't be set 3768 * anymore 3769 */ 3770 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3771 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3772 WARN_ONCE(1, "verifier backtracking bug"); 3773 return -EFAULT; 3774 } 3775 /* global subprog always sets R0 */ 3776 bt_clear_reg(bt, BPF_REG_0); 3777 return 0; 3778 } else { 3779 /* static subprog call instruction, which 3780 * means that we are exiting current subprog, 3781 * so only r1-r5 could be still requested as 3782 * precise, r0 and r6-r10 or any stack slot in 3783 * the current frame should be zero by now 3784 */ 3785 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3786 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3787 WARN_ONCE(1, "verifier backtracking bug"); 3788 return -EFAULT; 3789 } 3790 /* we don't track register spills perfectly, 3791 * so fallback to force-precise instead of failing */ 3792 if (bt_stack_mask(bt) != 0) 3793 return -ENOTSUPP; 3794 /* propagate r1-r5 to the caller */ 3795 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3796 if (bt_is_reg_set(bt, i)) { 3797 bt_clear_reg(bt, i); 3798 bt_set_frame_reg(bt, bt->frame - 1, i); 3799 } 3800 } 3801 if (bt_subprog_exit(bt)) 3802 return -EFAULT; 3803 return 0; 3804 } 3805 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3806 /* exit from callback subprog to callback-calling helper or 3807 * kfunc call. Use idx/subseq_idx check to discern it from 3808 * straight line code backtracking. 3809 * Unlike the subprog call handling above, we shouldn't 3810 * propagate precision of r1-r5 (if any requested), as they are 3811 * not actually arguments passed directly to callback subprogs 3812 */ 3813 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3814 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3815 WARN_ONCE(1, "verifier backtracking bug"); 3816 return -EFAULT; 3817 } 3818 if (bt_stack_mask(bt) != 0) 3819 return -ENOTSUPP; 3820 /* clear r1-r5 in callback subprog's mask */ 3821 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3822 bt_clear_reg(bt, i); 3823 if (bt_subprog_exit(bt)) 3824 return -EFAULT; 3825 return 0; 3826 } else if (opcode == BPF_CALL) { 3827 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3828 * catch this error later. Make backtracking conservative 3829 * with ENOTSUPP. 3830 */ 3831 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3832 return -ENOTSUPP; 3833 /* regular helper call sets R0 */ 3834 bt_clear_reg(bt, BPF_REG_0); 3835 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3836 /* if backtracing was looking for registers R1-R5 3837 * they should have been found already. 3838 */ 3839 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3840 WARN_ONCE(1, "verifier backtracking bug"); 3841 return -EFAULT; 3842 } 3843 } else if (opcode == BPF_EXIT) { 3844 bool r0_precise; 3845 3846 /* Backtracking to a nested function call, 'idx' is a part of 3847 * the inner frame 'subseq_idx' is a part of the outer frame. 3848 * In case of a regular function call, instructions giving 3849 * precision to registers R1-R5 should have been found already. 3850 * In case of a callback, it is ok to have R1-R5 marked for 3851 * backtracking, as these registers are set by the function 3852 * invoking callback. 3853 */ 3854 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3855 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3856 bt_clear_reg(bt, i); 3857 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3858 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3859 WARN_ONCE(1, "verifier backtracking bug"); 3860 return -EFAULT; 3861 } 3862 3863 /* BPF_EXIT in subprog or callback always returns 3864 * right after the call instruction, so by checking 3865 * whether the instruction at subseq_idx-1 is subprog 3866 * call or not we can distinguish actual exit from 3867 * *subprog* from exit from *callback*. In the former 3868 * case, we need to propagate r0 precision, if 3869 * necessary. In the former we never do that. 3870 */ 3871 r0_precise = subseq_idx - 1 >= 0 && 3872 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3873 bt_is_reg_set(bt, BPF_REG_0); 3874 3875 bt_clear_reg(bt, BPF_REG_0); 3876 if (bt_subprog_enter(bt)) 3877 return -EFAULT; 3878 3879 if (r0_precise) 3880 bt_set_reg(bt, BPF_REG_0); 3881 /* r6-r9 and stack slots will stay set in caller frame 3882 * bitmasks until we return back from callee(s) 3883 */ 3884 return 0; 3885 } else if (BPF_SRC(insn->code) == BPF_X) { 3886 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3887 return 0; 3888 /* dreg <cond> sreg 3889 * Both dreg and sreg need precision before 3890 * this insn. If only sreg was marked precise 3891 * before it would be equally necessary to 3892 * propagate it to dreg. 3893 */ 3894 bt_set_reg(bt, dreg); 3895 bt_set_reg(bt, sreg); 3896 /* else dreg <cond> K 3897 * Only dreg still needs precision before 3898 * this insn, so for the K-based conditional 3899 * there is nothing new to be marked. 3900 */ 3901 } 3902 } else if (class == BPF_LD) { 3903 if (!bt_is_reg_set(bt, dreg)) 3904 return 0; 3905 bt_clear_reg(bt, dreg); 3906 /* It's ld_imm64 or ld_abs or ld_ind. 3907 * For ld_imm64 no further tracking of precision 3908 * into parent is necessary 3909 */ 3910 if (mode == BPF_IND || mode == BPF_ABS) 3911 /* to be analyzed */ 3912 return -ENOTSUPP; 3913 } 3914 return 0; 3915 } 3916 3917 /* the scalar precision tracking algorithm: 3918 * . at the start all registers have precise=false. 3919 * . scalar ranges are tracked as normal through alu and jmp insns. 3920 * . once precise value of the scalar register is used in: 3921 * . ptr + scalar alu 3922 * . if (scalar cond K|scalar) 3923 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3924 * backtrack through the verifier states and mark all registers and 3925 * stack slots with spilled constants that these scalar regisers 3926 * should be precise. 3927 * . during state pruning two registers (or spilled stack slots) 3928 * are equivalent if both are not precise. 3929 * 3930 * Note the verifier cannot simply walk register parentage chain, 3931 * since many different registers and stack slots could have been 3932 * used to compute single precise scalar. 3933 * 3934 * The approach of starting with precise=true for all registers and then 3935 * backtrack to mark a register as not precise when the verifier detects 3936 * that program doesn't care about specific value (e.g., when helper 3937 * takes register as ARG_ANYTHING parameter) is not safe. 3938 * 3939 * It's ok to walk single parentage chain of the verifier states. 3940 * It's possible that this backtracking will go all the way till 1st insn. 3941 * All other branches will be explored for needing precision later. 3942 * 3943 * The backtracking needs to deal with cases like: 3944 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3945 * r9 -= r8 3946 * r5 = r9 3947 * if r5 > 0x79f goto pc+7 3948 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3949 * r5 += 1 3950 * ... 3951 * call bpf_perf_event_output#25 3952 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3953 * 3954 * and this case: 3955 * r6 = 1 3956 * call foo // uses callee's r6 inside to compute r0 3957 * r0 += r6 3958 * if r0 == 0 goto 3959 * 3960 * to track above reg_mask/stack_mask needs to be independent for each frame. 3961 * 3962 * Also if parent's curframe > frame where backtracking started, 3963 * the verifier need to mark registers in both frames, otherwise callees 3964 * may incorrectly prune callers. This is similar to 3965 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3966 * 3967 * For now backtracking falls back into conservative marking. 3968 */ 3969 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3970 struct bpf_verifier_state *st) 3971 { 3972 struct bpf_func_state *func; 3973 struct bpf_reg_state *reg; 3974 int i, j; 3975 3976 if (env->log.level & BPF_LOG_LEVEL2) { 3977 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3978 st->curframe); 3979 } 3980 3981 /* big hammer: mark all scalars precise in this path. 3982 * pop_stack may still get !precise scalars. 3983 * We also skip current state and go straight to first parent state, 3984 * because precision markings in current non-checkpointed state are 3985 * not needed. See why in the comment in __mark_chain_precision below. 3986 */ 3987 for (st = st->parent; st; st = st->parent) { 3988 for (i = 0; i <= st->curframe; i++) { 3989 func = st->frame[i]; 3990 for (j = 0; j < BPF_REG_FP; j++) { 3991 reg = &func->regs[j]; 3992 if (reg->type != SCALAR_VALUE || reg->precise) 3993 continue; 3994 reg->precise = true; 3995 if (env->log.level & BPF_LOG_LEVEL2) { 3996 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3997 i, j); 3998 } 3999 } 4000 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4001 if (!is_spilled_reg(&func->stack[j])) 4002 continue; 4003 reg = &func->stack[j].spilled_ptr; 4004 if (reg->type != SCALAR_VALUE || reg->precise) 4005 continue; 4006 reg->precise = true; 4007 if (env->log.level & BPF_LOG_LEVEL2) { 4008 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4009 i, -(j + 1) * 8); 4010 } 4011 } 4012 } 4013 } 4014 } 4015 4016 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4017 { 4018 struct bpf_func_state *func; 4019 struct bpf_reg_state *reg; 4020 int i, j; 4021 4022 for (i = 0; i <= st->curframe; i++) { 4023 func = st->frame[i]; 4024 for (j = 0; j < BPF_REG_FP; j++) { 4025 reg = &func->regs[j]; 4026 if (reg->type != SCALAR_VALUE) 4027 continue; 4028 reg->precise = false; 4029 } 4030 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4031 if (!is_spilled_reg(&func->stack[j])) 4032 continue; 4033 reg = &func->stack[j].spilled_ptr; 4034 if (reg->type != SCALAR_VALUE) 4035 continue; 4036 reg->precise = false; 4037 } 4038 } 4039 } 4040 4041 static bool idset_contains(struct bpf_idset *s, u32 id) 4042 { 4043 u32 i; 4044 4045 for (i = 0; i < s->count; ++i) 4046 if (s->ids[i] == id) 4047 return true; 4048 4049 return false; 4050 } 4051 4052 static int idset_push(struct bpf_idset *s, u32 id) 4053 { 4054 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4055 return -EFAULT; 4056 s->ids[s->count++] = id; 4057 return 0; 4058 } 4059 4060 static void idset_reset(struct bpf_idset *s) 4061 { 4062 s->count = 0; 4063 } 4064 4065 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4066 * Mark all registers with these IDs as precise. 4067 */ 4068 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4069 { 4070 struct bpf_idset *precise_ids = &env->idset_scratch; 4071 struct backtrack_state *bt = &env->bt; 4072 struct bpf_func_state *func; 4073 struct bpf_reg_state *reg; 4074 DECLARE_BITMAP(mask, 64); 4075 int i, fr; 4076 4077 idset_reset(precise_ids); 4078 4079 for (fr = bt->frame; fr >= 0; fr--) { 4080 func = st->frame[fr]; 4081 4082 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4083 for_each_set_bit(i, mask, 32) { 4084 reg = &func->regs[i]; 4085 if (!reg->id || reg->type != SCALAR_VALUE) 4086 continue; 4087 if (idset_push(precise_ids, reg->id)) 4088 return -EFAULT; 4089 } 4090 4091 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4092 for_each_set_bit(i, mask, 64) { 4093 if (i >= func->allocated_stack / BPF_REG_SIZE) 4094 break; 4095 if (!is_spilled_scalar_reg(&func->stack[i])) 4096 continue; 4097 reg = &func->stack[i].spilled_ptr; 4098 if (!reg->id) 4099 continue; 4100 if (idset_push(precise_ids, reg->id)) 4101 return -EFAULT; 4102 } 4103 } 4104 4105 for (fr = 0; fr <= st->curframe; ++fr) { 4106 func = st->frame[fr]; 4107 4108 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4109 reg = &func->regs[i]; 4110 if (!reg->id) 4111 continue; 4112 if (!idset_contains(precise_ids, reg->id)) 4113 continue; 4114 bt_set_frame_reg(bt, fr, i); 4115 } 4116 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4117 if (!is_spilled_scalar_reg(&func->stack[i])) 4118 continue; 4119 reg = &func->stack[i].spilled_ptr; 4120 if (!reg->id) 4121 continue; 4122 if (!idset_contains(precise_ids, reg->id)) 4123 continue; 4124 bt_set_frame_slot(bt, fr, i); 4125 } 4126 } 4127 4128 return 0; 4129 } 4130 4131 /* 4132 * __mark_chain_precision() backtracks BPF program instruction sequence and 4133 * chain of verifier states making sure that register *regno* (if regno >= 0) 4134 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4135 * SCALARS, as well as any other registers and slots that contribute to 4136 * a tracked state of given registers/stack slots, depending on specific BPF 4137 * assembly instructions (see backtrack_insns() for exact instruction handling 4138 * logic). This backtracking relies on recorded jmp_history and is able to 4139 * traverse entire chain of parent states. This process ends only when all the 4140 * necessary registers/slots and their transitive dependencies are marked as 4141 * precise. 4142 * 4143 * One important and subtle aspect is that precise marks *do not matter* in 4144 * the currently verified state (current state). It is important to understand 4145 * why this is the case. 4146 * 4147 * First, note that current state is the state that is not yet "checkpointed", 4148 * i.e., it is not yet put into env->explored_states, and it has no children 4149 * states as well. It's ephemeral, and can end up either a) being discarded if 4150 * compatible explored state is found at some point or BPF_EXIT instruction is 4151 * reached or b) checkpointed and put into env->explored_states, branching out 4152 * into one or more children states. 4153 * 4154 * In the former case, precise markings in current state are completely 4155 * ignored by state comparison code (see regsafe() for details). Only 4156 * checkpointed ("old") state precise markings are important, and if old 4157 * state's register/slot is precise, regsafe() assumes current state's 4158 * register/slot as precise and checks value ranges exactly and precisely. If 4159 * states turn out to be compatible, current state's necessary precise 4160 * markings and any required parent states' precise markings are enforced 4161 * after the fact with propagate_precision() logic, after the fact. But it's 4162 * important to realize that in this case, even after marking current state 4163 * registers/slots as precise, we immediately discard current state. So what 4164 * actually matters is any of the precise markings propagated into current 4165 * state's parent states, which are always checkpointed (due to b) case above). 4166 * As such, for scenario a) it doesn't matter if current state has precise 4167 * markings set or not. 4168 * 4169 * Now, for the scenario b), checkpointing and forking into child(ren) 4170 * state(s). Note that before current state gets to checkpointing step, any 4171 * processed instruction always assumes precise SCALAR register/slot 4172 * knowledge: if precise value or range is useful to prune jump branch, BPF 4173 * verifier takes this opportunity enthusiastically. Similarly, when 4174 * register's value is used to calculate offset or memory address, exact 4175 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4176 * what we mentioned above about state comparison ignoring precise markings 4177 * during state comparison, BPF verifier ignores and also assumes precise 4178 * markings *at will* during instruction verification process. But as verifier 4179 * assumes precision, it also propagates any precision dependencies across 4180 * parent states, which are not yet finalized, so can be further restricted 4181 * based on new knowledge gained from restrictions enforced by their children 4182 * states. This is so that once those parent states are finalized, i.e., when 4183 * they have no more active children state, state comparison logic in 4184 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4185 * required for correctness. 4186 * 4187 * To build a bit more intuition, note also that once a state is checkpointed, 4188 * the path we took to get to that state is not important. This is crucial 4189 * property for state pruning. When state is checkpointed and finalized at 4190 * some instruction index, it can be correctly and safely used to "short 4191 * circuit" any *compatible* state that reaches exactly the same instruction 4192 * index. I.e., if we jumped to that instruction from a completely different 4193 * code path than original finalized state was derived from, it doesn't 4194 * matter, current state can be discarded because from that instruction 4195 * forward having a compatible state will ensure we will safely reach the 4196 * exit. States describe preconditions for further exploration, but completely 4197 * forget the history of how we got here. 4198 * 4199 * This also means that even if we needed precise SCALAR range to get to 4200 * finalized state, but from that point forward *that same* SCALAR register is 4201 * never used in a precise context (i.e., it's precise value is not needed for 4202 * correctness), it's correct and safe to mark such register as "imprecise" 4203 * (i.e., precise marking set to false). This is what we rely on when we do 4204 * not set precise marking in current state. If no child state requires 4205 * precision for any given SCALAR register, it's safe to dictate that it can 4206 * be imprecise. If any child state does require this register to be precise, 4207 * we'll mark it precise later retroactively during precise markings 4208 * propagation from child state to parent states. 4209 * 4210 * Skipping precise marking setting in current state is a mild version of 4211 * relying on the above observation. But we can utilize this property even 4212 * more aggressively by proactively forgetting any precise marking in the 4213 * current state (which we inherited from the parent state), right before we 4214 * checkpoint it and branch off into new child state. This is done by 4215 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4216 * finalized states which help in short circuiting more future states. 4217 */ 4218 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4219 { 4220 struct backtrack_state *bt = &env->bt; 4221 struct bpf_verifier_state *st = env->cur_state; 4222 int first_idx = st->first_insn_idx; 4223 int last_idx = env->insn_idx; 4224 int subseq_idx = -1; 4225 struct bpf_func_state *func; 4226 struct bpf_reg_state *reg; 4227 bool skip_first = true; 4228 int i, fr, err; 4229 4230 if (!env->bpf_capable) 4231 return 0; 4232 4233 /* set frame number from which we are starting to backtrack */ 4234 bt_init(bt, env->cur_state->curframe); 4235 4236 /* Do sanity checks against current state of register and/or stack 4237 * slot, but don't set precise flag in current state, as precision 4238 * tracking in the current state is unnecessary. 4239 */ 4240 func = st->frame[bt->frame]; 4241 if (regno >= 0) { 4242 reg = &func->regs[regno]; 4243 if (reg->type != SCALAR_VALUE) { 4244 WARN_ONCE(1, "backtracing misuse"); 4245 return -EFAULT; 4246 } 4247 bt_set_reg(bt, regno); 4248 } 4249 4250 if (bt_empty(bt)) 4251 return 0; 4252 4253 for (;;) { 4254 DECLARE_BITMAP(mask, 64); 4255 u32 history = st->jmp_history_cnt; 4256 4257 if (env->log.level & BPF_LOG_LEVEL2) { 4258 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4259 bt->frame, last_idx, first_idx, subseq_idx); 4260 } 4261 4262 /* If some register with scalar ID is marked as precise, 4263 * make sure that all registers sharing this ID are also precise. 4264 * This is needed to estimate effect of find_equal_scalars(). 4265 * Do this at the last instruction of each state, 4266 * bpf_reg_state::id fields are valid for these instructions. 4267 * 4268 * Allows to track precision in situation like below: 4269 * 4270 * r2 = unknown value 4271 * ... 4272 * --- state #0 --- 4273 * ... 4274 * r1 = r2 // r1 and r2 now share the same ID 4275 * ... 4276 * --- state #1 {r1.id = A, r2.id = A} --- 4277 * ... 4278 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4279 * ... 4280 * --- state #2 {r1.id = A, r2.id = A} --- 4281 * r3 = r10 4282 * r3 += r1 // need to mark both r1 and r2 4283 */ 4284 if (mark_precise_scalar_ids(env, st)) 4285 return -EFAULT; 4286 4287 if (last_idx < 0) { 4288 /* we are at the entry into subprog, which 4289 * is expected for global funcs, but only if 4290 * requested precise registers are R1-R5 4291 * (which are global func's input arguments) 4292 */ 4293 if (st->curframe == 0 && 4294 st->frame[0]->subprogno > 0 && 4295 st->frame[0]->callsite == BPF_MAIN_FUNC && 4296 bt_stack_mask(bt) == 0 && 4297 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4298 bitmap_from_u64(mask, bt_reg_mask(bt)); 4299 for_each_set_bit(i, mask, 32) { 4300 reg = &st->frame[0]->regs[i]; 4301 bt_clear_reg(bt, i); 4302 if (reg->type == SCALAR_VALUE) 4303 reg->precise = true; 4304 } 4305 return 0; 4306 } 4307 4308 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4309 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4310 WARN_ONCE(1, "verifier backtracking bug"); 4311 return -EFAULT; 4312 } 4313 4314 for (i = last_idx;;) { 4315 if (skip_first) { 4316 err = 0; 4317 skip_first = false; 4318 } else { 4319 err = backtrack_insn(env, i, subseq_idx, bt); 4320 } 4321 if (err == -ENOTSUPP) { 4322 mark_all_scalars_precise(env, env->cur_state); 4323 bt_reset(bt); 4324 return 0; 4325 } else if (err) { 4326 return err; 4327 } 4328 if (bt_empty(bt)) 4329 /* Found assignment(s) into tracked register in this state. 4330 * Since this state is already marked, just return. 4331 * Nothing to be tracked further in the parent state. 4332 */ 4333 return 0; 4334 subseq_idx = i; 4335 i = get_prev_insn_idx(st, i, &history); 4336 if (i == -ENOENT) 4337 break; 4338 if (i >= env->prog->len) { 4339 /* This can happen if backtracking reached insn 0 4340 * and there are still reg_mask or stack_mask 4341 * to backtrack. 4342 * It means the backtracking missed the spot where 4343 * particular register was initialized with a constant. 4344 */ 4345 verbose(env, "BUG backtracking idx %d\n", i); 4346 WARN_ONCE(1, "verifier backtracking bug"); 4347 return -EFAULT; 4348 } 4349 } 4350 st = st->parent; 4351 if (!st) 4352 break; 4353 4354 for (fr = bt->frame; fr >= 0; fr--) { 4355 func = st->frame[fr]; 4356 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4357 for_each_set_bit(i, mask, 32) { 4358 reg = &func->regs[i]; 4359 if (reg->type != SCALAR_VALUE) { 4360 bt_clear_frame_reg(bt, fr, i); 4361 continue; 4362 } 4363 if (reg->precise) 4364 bt_clear_frame_reg(bt, fr, i); 4365 else 4366 reg->precise = true; 4367 } 4368 4369 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4370 for_each_set_bit(i, mask, 64) { 4371 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4372 /* the sequence of instructions: 4373 * 2: (bf) r3 = r10 4374 * 3: (7b) *(u64 *)(r3 -8) = r0 4375 * 4: (79) r4 = *(u64 *)(r10 -8) 4376 * doesn't contain jmps. It's backtracked 4377 * as a single block. 4378 * During backtracking insn 3 is not recognized as 4379 * stack access, so at the end of backtracking 4380 * stack slot fp-8 is still marked in stack_mask. 4381 * However the parent state may not have accessed 4382 * fp-8 and it's "unallocated" stack space. 4383 * In such case fallback to conservative. 4384 */ 4385 mark_all_scalars_precise(env, env->cur_state); 4386 bt_reset(bt); 4387 return 0; 4388 } 4389 4390 if (!is_spilled_scalar_reg(&func->stack[i])) { 4391 bt_clear_frame_slot(bt, fr, i); 4392 continue; 4393 } 4394 reg = &func->stack[i].spilled_ptr; 4395 if (reg->precise) 4396 bt_clear_frame_slot(bt, fr, i); 4397 else 4398 reg->precise = true; 4399 } 4400 if (env->log.level & BPF_LOG_LEVEL2) { 4401 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4402 bt_frame_reg_mask(bt, fr)); 4403 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4404 fr, env->tmp_str_buf); 4405 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4406 bt_frame_stack_mask(bt, fr)); 4407 verbose(env, "stack=%s: ", env->tmp_str_buf); 4408 print_verifier_state(env, func, true); 4409 } 4410 } 4411 4412 if (bt_empty(bt)) 4413 return 0; 4414 4415 subseq_idx = first_idx; 4416 last_idx = st->last_insn_idx; 4417 first_idx = st->first_insn_idx; 4418 } 4419 4420 /* if we still have requested precise regs or slots, we missed 4421 * something (e.g., stack access through non-r10 register), so 4422 * fallback to marking all precise 4423 */ 4424 if (!bt_empty(bt)) { 4425 mark_all_scalars_precise(env, env->cur_state); 4426 bt_reset(bt); 4427 } 4428 4429 return 0; 4430 } 4431 4432 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4433 { 4434 return __mark_chain_precision(env, regno); 4435 } 4436 4437 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4438 * desired reg and stack masks across all relevant frames 4439 */ 4440 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4441 { 4442 return __mark_chain_precision(env, -1); 4443 } 4444 4445 static bool is_spillable_regtype(enum bpf_reg_type type) 4446 { 4447 switch (base_type(type)) { 4448 case PTR_TO_MAP_VALUE: 4449 case PTR_TO_STACK: 4450 case PTR_TO_CTX: 4451 case PTR_TO_PACKET: 4452 case PTR_TO_PACKET_META: 4453 case PTR_TO_PACKET_END: 4454 case PTR_TO_FLOW_KEYS: 4455 case CONST_PTR_TO_MAP: 4456 case PTR_TO_SOCKET: 4457 case PTR_TO_SOCK_COMMON: 4458 case PTR_TO_TCP_SOCK: 4459 case PTR_TO_XDP_SOCK: 4460 case PTR_TO_BTF_ID: 4461 case PTR_TO_BUF: 4462 case PTR_TO_MEM: 4463 case PTR_TO_FUNC: 4464 case PTR_TO_MAP_KEY: 4465 return true; 4466 default: 4467 return false; 4468 } 4469 } 4470 4471 /* Does this register contain a constant zero? */ 4472 static bool register_is_null(struct bpf_reg_state *reg) 4473 { 4474 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4475 } 4476 4477 static bool register_is_const(struct bpf_reg_state *reg) 4478 { 4479 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4480 } 4481 4482 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4483 { 4484 return tnum_is_unknown(reg->var_off) && 4485 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4486 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4487 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4488 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4489 } 4490 4491 static bool register_is_bounded(struct bpf_reg_state *reg) 4492 { 4493 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4494 } 4495 4496 static bool __is_pointer_value(bool allow_ptr_leaks, 4497 const struct bpf_reg_state *reg) 4498 { 4499 if (allow_ptr_leaks) 4500 return false; 4501 4502 return reg->type != SCALAR_VALUE; 4503 } 4504 4505 /* Copy src state preserving dst->parent and dst->live fields */ 4506 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4507 { 4508 struct bpf_reg_state *parent = dst->parent; 4509 enum bpf_reg_liveness live = dst->live; 4510 4511 *dst = *src; 4512 dst->parent = parent; 4513 dst->live = live; 4514 } 4515 4516 static void save_register_state(struct bpf_func_state *state, 4517 int spi, struct bpf_reg_state *reg, 4518 int size) 4519 { 4520 int i; 4521 4522 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4523 if (size == BPF_REG_SIZE) 4524 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4525 4526 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4527 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4528 4529 /* size < 8 bytes spill */ 4530 for (; i; i--) 4531 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4532 } 4533 4534 static bool is_bpf_st_mem(struct bpf_insn *insn) 4535 { 4536 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4537 } 4538 4539 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4540 * stack boundary and alignment are checked in check_mem_access() 4541 */ 4542 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4543 /* stack frame we're writing to */ 4544 struct bpf_func_state *state, 4545 int off, int size, int value_regno, 4546 int insn_idx) 4547 { 4548 struct bpf_func_state *cur; /* state of the current function */ 4549 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4550 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4551 struct bpf_reg_state *reg = NULL; 4552 u32 dst_reg = insn->dst_reg; 4553 4554 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4555 * so it's aligned access and [off, off + size) are within stack limits 4556 */ 4557 if (!env->allow_ptr_leaks && 4558 is_spilled_reg(&state->stack[spi]) && 4559 size != BPF_REG_SIZE) { 4560 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4561 return -EACCES; 4562 } 4563 4564 cur = env->cur_state->frame[env->cur_state->curframe]; 4565 if (value_regno >= 0) 4566 reg = &cur->regs[value_regno]; 4567 if (!env->bypass_spec_v4) { 4568 bool sanitize = reg && is_spillable_regtype(reg->type); 4569 4570 for (i = 0; i < size; i++) { 4571 u8 type = state->stack[spi].slot_type[i]; 4572 4573 if (type != STACK_MISC && type != STACK_ZERO) { 4574 sanitize = true; 4575 break; 4576 } 4577 } 4578 4579 if (sanitize) 4580 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4581 } 4582 4583 err = destroy_if_dynptr_stack_slot(env, state, spi); 4584 if (err) 4585 return err; 4586 4587 mark_stack_slot_scratched(env, spi); 4588 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4589 !register_is_null(reg) && env->bpf_capable) { 4590 if (dst_reg != BPF_REG_FP) { 4591 /* The backtracking logic can only recognize explicit 4592 * stack slot address like [fp - 8]. Other spill of 4593 * scalar via different register has to be conservative. 4594 * Backtrack from here and mark all registers as precise 4595 * that contributed into 'reg' being a constant. 4596 */ 4597 err = mark_chain_precision(env, value_regno); 4598 if (err) 4599 return err; 4600 } 4601 save_register_state(state, spi, reg, size); 4602 /* Break the relation on a narrowing spill. */ 4603 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4604 state->stack[spi].spilled_ptr.id = 0; 4605 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4606 insn->imm != 0 && env->bpf_capable) { 4607 struct bpf_reg_state fake_reg = {}; 4608 4609 __mark_reg_known(&fake_reg, insn->imm); 4610 fake_reg.type = SCALAR_VALUE; 4611 save_register_state(state, spi, &fake_reg, size); 4612 } else if (reg && is_spillable_regtype(reg->type)) { 4613 /* register containing pointer is being spilled into stack */ 4614 if (size != BPF_REG_SIZE) { 4615 verbose_linfo(env, insn_idx, "; "); 4616 verbose(env, "invalid size of register spill\n"); 4617 return -EACCES; 4618 } 4619 if (state != cur && reg->type == PTR_TO_STACK) { 4620 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4621 return -EINVAL; 4622 } 4623 save_register_state(state, spi, reg, size); 4624 } else { 4625 u8 type = STACK_MISC; 4626 4627 /* regular write of data into stack destroys any spilled ptr */ 4628 state->stack[spi].spilled_ptr.type = NOT_INIT; 4629 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4630 if (is_stack_slot_special(&state->stack[spi])) 4631 for (i = 0; i < BPF_REG_SIZE; i++) 4632 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4633 4634 /* only mark the slot as written if all 8 bytes were written 4635 * otherwise read propagation may incorrectly stop too soon 4636 * when stack slots are partially written. 4637 * This heuristic means that read propagation will be 4638 * conservative, since it will add reg_live_read marks 4639 * to stack slots all the way to first state when programs 4640 * writes+reads less than 8 bytes 4641 */ 4642 if (size == BPF_REG_SIZE) 4643 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4644 4645 /* when we zero initialize stack slots mark them as such */ 4646 if ((reg && register_is_null(reg)) || 4647 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4648 /* backtracking doesn't work for STACK_ZERO yet. */ 4649 err = mark_chain_precision(env, value_regno); 4650 if (err) 4651 return err; 4652 type = STACK_ZERO; 4653 } 4654 4655 /* Mark slots affected by this stack write. */ 4656 for (i = 0; i < size; i++) 4657 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4658 type; 4659 } 4660 return 0; 4661 } 4662 4663 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4664 * known to contain a variable offset. 4665 * This function checks whether the write is permitted and conservatively 4666 * tracks the effects of the write, considering that each stack slot in the 4667 * dynamic range is potentially written to. 4668 * 4669 * 'off' includes 'regno->off'. 4670 * 'value_regno' can be -1, meaning that an unknown value is being written to 4671 * the stack. 4672 * 4673 * Spilled pointers in range are not marked as written because we don't know 4674 * what's going to be actually written. This means that read propagation for 4675 * future reads cannot be terminated by this write. 4676 * 4677 * For privileged programs, uninitialized stack slots are considered 4678 * initialized by this write (even though we don't know exactly what offsets 4679 * are going to be written to). The idea is that we don't want the verifier to 4680 * reject future reads that access slots written to through variable offsets. 4681 */ 4682 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4683 /* func where register points to */ 4684 struct bpf_func_state *state, 4685 int ptr_regno, int off, int size, 4686 int value_regno, int insn_idx) 4687 { 4688 struct bpf_func_state *cur; /* state of the current function */ 4689 int min_off, max_off; 4690 int i, err; 4691 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4692 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4693 bool writing_zero = false; 4694 /* set if the fact that we're writing a zero is used to let any 4695 * stack slots remain STACK_ZERO 4696 */ 4697 bool zero_used = false; 4698 4699 cur = env->cur_state->frame[env->cur_state->curframe]; 4700 ptr_reg = &cur->regs[ptr_regno]; 4701 min_off = ptr_reg->smin_value + off; 4702 max_off = ptr_reg->smax_value + off + size; 4703 if (value_regno >= 0) 4704 value_reg = &cur->regs[value_regno]; 4705 if ((value_reg && register_is_null(value_reg)) || 4706 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4707 writing_zero = true; 4708 4709 for (i = min_off; i < max_off; i++) { 4710 int spi; 4711 4712 spi = __get_spi(i); 4713 err = destroy_if_dynptr_stack_slot(env, state, spi); 4714 if (err) 4715 return err; 4716 } 4717 4718 /* Variable offset writes destroy any spilled pointers in range. */ 4719 for (i = min_off; i < max_off; i++) { 4720 u8 new_type, *stype; 4721 int slot, spi; 4722 4723 slot = -i - 1; 4724 spi = slot / BPF_REG_SIZE; 4725 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4726 mark_stack_slot_scratched(env, spi); 4727 4728 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4729 /* Reject the write if range we may write to has not 4730 * been initialized beforehand. If we didn't reject 4731 * here, the ptr status would be erased below (even 4732 * though not all slots are actually overwritten), 4733 * possibly opening the door to leaks. 4734 * 4735 * We do however catch STACK_INVALID case below, and 4736 * only allow reading possibly uninitialized memory 4737 * later for CAP_PERFMON, as the write may not happen to 4738 * that slot. 4739 */ 4740 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4741 insn_idx, i); 4742 return -EINVAL; 4743 } 4744 4745 /* Erase all spilled pointers. */ 4746 state->stack[spi].spilled_ptr.type = NOT_INIT; 4747 4748 /* Update the slot type. */ 4749 new_type = STACK_MISC; 4750 if (writing_zero && *stype == STACK_ZERO) { 4751 new_type = STACK_ZERO; 4752 zero_used = true; 4753 } 4754 /* If the slot is STACK_INVALID, we check whether it's OK to 4755 * pretend that it will be initialized by this write. The slot 4756 * might not actually be written to, and so if we mark it as 4757 * initialized future reads might leak uninitialized memory. 4758 * For privileged programs, we will accept such reads to slots 4759 * that may or may not be written because, if we're reject 4760 * them, the error would be too confusing. 4761 */ 4762 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4763 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4764 insn_idx, i); 4765 return -EINVAL; 4766 } 4767 *stype = new_type; 4768 } 4769 if (zero_used) { 4770 /* backtracking doesn't work for STACK_ZERO yet. */ 4771 err = mark_chain_precision(env, value_regno); 4772 if (err) 4773 return err; 4774 } 4775 return 0; 4776 } 4777 4778 /* When register 'dst_regno' is assigned some values from stack[min_off, 4779 * max_off), we set the register's type according to the types of the 4780 * respective stack slots. If all the stack values are known to be zeros, then 4781 * so is the destination reg. Otherwise, the register is considered to be 4782 * SCALAR. This function does not deal with register filling; the caller must 4783 * ensure that all spilled registers in the stack range have been marked as 4784 * read. 4785 */ 4786 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4787 /* func where src register points to */ 4788 struct bpf_func_state *ptr_state, 4789 int min_off, int max_off, int dst_regno) 4790 { 4791 struct bpf_verifier_state *vstate = env->cur_state; 4792 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4793 int i, slot, spi; 4794 u8 *stype; 4795 int zeros = 0; 4796 4797 for (i = min_off; i < max_off; i++) { 4798 slot = -i - 1; 4799 spi = slot / BPF_REG_SIZE; 4800 mark_stack_slot_scratched(env, spi); 4801 stype = ptr_state->stack[spi].slot_type; 4802 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4803 break; 4804 zeros++; 4805 } 4806 if (zeros == max_off - min_off) { 4807 /* any access_size read into register is zero extended, 4808 * so the whole register == const_zero 4809 */ 4810 __mark_reg_const_zero(&state->regs[dst_regno]); 4811 /* backtracking doesn't support STACK_ZERO yet, 4812 * so mark it precise here, so that later 4813 * backtracking can stop here. 4814 * Backtracking may not need this if this register 4815 * doesn't participate in pointer adjustment. 4816 * Forward propagation of precise flag is not 4817 * necessary either. This mark is only to stop 4818 * backtracking. Any register that contributed 4819 * to const 0 was marked precise before spill. 4820 */ 4821 state->regs[dst_regno].precise = true; 4822 } else { 4823 /* have read misc data from the stack */ 4824 mark_reg_unknown(env, state->regs, dst_regno); 4825 } 4826 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4827 } 4828 4829 /* Read the stack at 'off' and put the results into the register indicated by 4830 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4831 * spilled reg. 4832 * 4833 * 'dst_regno' can be -1, meaning that the read value is not going to a 4834 * register. 4835 * 4836 * The access is assumed to be within the current stack bounds. 4837 */ 4838 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4839 /* func where src register points to */ 4840 struct bpf_func_state *reg_state, 4841 int off, int size, int dst_regno) 4842 { 4843 struct bpf_verifier_state *vstate = env->cur_state; 4844 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4845 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4846 struct bpf_reg_state *reg; 4847 u8 *stype, type; 4848 4849 stype = reg_state->stack[spi].slot_type; 4850 reg = ®_state->stack[spi].spilled_ptr; 4851 4852 mark_stack_slot_scratched(env, spi); 4853 4854 if (is_spilled_reg(®_state->stack[spi])) { 4855 u8 spill_size = 1; 4856 4857 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4858 spill_size++; 4859 4860 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4861 if (reg->type != SCALAR_VALUE) { 4862 verbose_linfo(env, env->insn_idx, "; "); 4863 verbose(env, "invalid size of register fill\n"); 4864 return -EACCES; 4865 } 4866 4867 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4868 if (dst_regno < 0) 4869 return 0; 4870 4871 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4872 /* The earlier check_reg_arg() has decided the 4873 * subreg_def for this insn. Save it first. 4874 */ 4875 s32 subreg_def = state->regs[dst_regno].subreg_def; 4876 4877 copy_register_state(&state->regs[dst_regno], reg); 4878 state->regs[dst_regno].subreg_def = subreg_def; 4879 } else { 4880 for (i = 0; i < size; i++) { 4881 type = stype[(slot - i) % BPF_REG_SIZE]; 4882 if (type == STACK_SPILL) 4883 continue; 4884 if (type == STACK_MISC) 4885 continue; 4886 if (type == STACK_INVALID && env->allow_uninit_stack) 4887 continue; 4888 verbose(env, "invalid read from stack off %d+%d size %d\n", 4889 off, i, size); 4890 return -EACCES; 4891 } 4892 mark_reg_unknown(env, state->regs, dst_regno); 4893 } 4894 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4895 return 0; 4896 } 4897 4898 if (dst_regno >= 0) { 4899 /* restore register state from stack */ 4900 copy_register_state(&state->regs[dst_regno], reg); 4901 /* mark reg as written since spilled pointer state likely 4902 * has its liveness marks cleared by is_state_visited() 4903 * which resets stack/reg liveness for state transitions 4904 */ 4905 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4906 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4907 /* If dst_regno==-1, the caller is asking us whether 4908 * it is acceptable to use this value as a SCALAR_VALUE 4909 * (e.g. for XADD). 4910 * We must not allow unprivileged callers to do that 4911 * with spilled pointers. 4912 */ 4913 verbose(env, "leaking pointer from stack off %d\n", 4914 off); 4915 return -EACCES; 4916 } 4917 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4918 } else { 4919 for (i = 0; i < size; i++) { 4920 type = stype[(slot - i) % BPF_REG_SIZE]; 4921 if (type == STACK_MISC) 4922 continue; 4923 if (type == STACK_ZERO) 4924 continue; 4925 if (type == STACK_INVALID && env->allow_uninit_stack) 4926 continue; 4927 verbose(env, "invalid read from stack off %d+%d size %d\n", 4928 off, i, size); 4929 return -EACCES; 4930 } 4931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4932 if (dst_regno >= 0) 4933 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4934 } 4935 return 0; 4936 } 4937 4938 enum bpf_access_src { 4939 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4940 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4941 }; 4942 4943 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4944 int regno, int off, int access_size, 4945 bool zero_size_allowed, 4946 enum bpf_access_src type, 4947 struct bpf_call_arg_meta *meta); 4948 4949 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4950 { 4951 return cur_regs(env) + regno; 4952 } 4953 4954 /* Read the stack at 'ptr_regno + off' and put the result into the register 4955 * 'dst_regno'. 4956 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4957 * but not its variable offset. 4958 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4959 * 4960 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4961 * filling registers (i.e. reads of spilled register cannot be detected when 4962 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4963 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4964 * offset; for a fixed offset check_stack_read_fixed_off should be used 4965 * instead. 4966 */ 4967 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4968 int ptr_regno, int off, int size, int dst_regno) 4969 { 4970 /* The state of the source register. */ 4971 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4972 struct bpf_func_state *ptr_state = func(env, reg); 4973 int err; 4974 int min_off, max_off; 4975 4976 /* Note that we pass a NULL meta, so raw access will not be permitted. 4977 */ 4978 err = check_stack_range_initialized(env, ptr_regno, off, size, 4979 false, ACCESS_DIRECT, NULL); 4980 if (err) 4981 return err; 4982 4983 min_off = reg->smin_value + off; 4984 max_off = reg->smax_value + off; 4985 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4986 return 0; 4987 } 4988 4989 /* check_stack_read dispatches to check_stack_read_fixed_off or 4990 * check_stack_read_var_off. 4991 * 4992 * The caller must ensure that the offset falls within the allocated stack 4993 * bounds. 4994 * 4995 * 'dst_regno' is a register which will receive the value from the stack. It 4996 * can be -1, meaning that the read value is not going to a register. 4997 */ 4998 static int check_stack_read(struct bpf_verifier_env *env, 4999 int ptr_regno, int off, int size, 5000 int dst_regno) 5001 { 5002 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5003 struct bpf_func_state *state = func(env, reg); 5004 int err; 5005 /* Some accesses are only permitted with a static offset. */ 5006 bool var_off = !tnum_is_const(reg->var_off); 5007 5008 /* The offset is required to be static when reads don't go to a 5009 * register, in order to not leak pointers (see 5010 * check_stack_read_fixed_off). 5011 */ 5012 if (dst_regno < 0 && var_off) { 5013 char tn_buf[48]; 5014 5015 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5016 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5017 tn_buf, off, size); 5018 return -EACCES; 5019 } 5020 /* Variable offset is prohibited for unprivileged mode for simplicity 5021 * since it requires corresponding support in Spectre masking for stack 5022 * ALU. See also retrieve_ptr_limit(). The check in 5023 * check_stack_access_for_ptr_arithmetic() called by 5024 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5025 * with variable offsets, therefore no check is required here. Further, 5026 * just checking it here would be insufficient as speculative stack 5027 * writes could still lead to unsafe speculative behaviour. 5028 */ 5029 if (!var_off) { 5030 off += reg->var_off.value; 5031 err = check_stack_read_fixed_off(env, state, off, size, 5032 dst_regno); 5033 } else { 5034 /* Variable offset stack reads need more conservative handling 5035 * than fixed offset ones. Note that dst_regno >= 0 on this 5036 * branch. 5037 */ 5038 err = check_stack_read_var_off(env, ptr_regno, off, size, 5039 dst_regno); 5040 } 5041 return err; 5042 } 5043 5044 5045 /* check_stack_write dispatches to check_stack_write_fixed_off or 5046 * check_stack_write_var_off. 5047 * 5048 * 'ptr_regno' is the register used as a pointer into the stack. 5049 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5050 * 'value_regno' is the register whose value we're writing to the stack. It can 5051 * be -1, meaning that we're not writing from a register. 5052 * 5053 * The caller must ensure that the offset falls within the maximum stack size. 5054 */ 5055 static int check_stack_write(struct bpf_verifier_env *env, 5056 int ptr_regno, int off, int size, 5057 int value_regno, int insn_idx) 5058 { 5059 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5060 struct bpf_func_state *state = func(env, reg); 5061 int err; 5062 5063 if (tnum_is_const(reg->var_off)) { 5064 off += reg->var_off.value; 5065 err = check_stack_write_fixed_off(env, state, off, size, 5066 value_regno, insn_idx); 5067 } else { 5068 /* Variable offset stack reads need more conservative handling 5069 * than fixed offset ones. 5070 */ 5071 err = check_stack_write_var_off(env, state, 5072 ptr_regno, off, size, 5073 value_regno, insn_idx); 5074 } 5075 return err; 5076 } 5077 5078 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5079 int off, int size, enum bpf_access_type type) 5080 { 5081 struct bpf_reg_state *regs = cur_regs(env); 5082 struct bpf_map *map = regs[regno].map_ptr; 5083 u32 cap = bpf_map_flags_to_cap(map); 5084 5085 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5086 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5087 map->value_size, off, size); 5088 return -EACCES; 5089 } 5090 5091 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5092 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5093 map->value_size, off, size); 5094 return -EACCES; 5095 } 5096 5097 return 0; 5098 } 5099 5100 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5101 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5102 int off, int size, u32 mem_size, 5103 bool zero_size_allowed) 5104 { 5105 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5106 struct bpf_reg_state *reg; 5107 5108 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5109 return 0; 5110 5111 reg = &cur_regs(env)[regno]; 5112 switch (reg->type) { 5113 case PTR_TO_MAP_KEY: 5114 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5115 mem_size, off, size); 5116 break; 5117 case PTR_TO_MAP_VALUE: 5118 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5119 mem_size, off, size); 5120 break; 5121 case PTR_TO_PACKET: 5122 case PTR_TO_PACKET_META: 5123 case PTR_TO_PACKET_END: 5124 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5125 off, size, regno, reg->id, off, mem_size); 5126 break; 5127 case PTR_TO_MEM: 5128 default: 5129 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5130 mem_size, off, size); 5131 } 5132 5133 return -EACCES; 5134 } 5135 5136 /* check read/write into a memory region with possible variable offset */ 5137 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5138 int off, int size, u32 mem_size, 5139 bool zero_size_allowed) 5140 { 5141 struct bpf_verifier_state *vstate = env->cur_state; 5142 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5143 struct bpf_reg_state *reg = &state->regs[regno]; 5144 int err; 5145 5146 /* We may have adjusted the register pointing to memory region, so we 5147 * need to try adding each of min_value and max_value to off 5148 * to make sure our theoretical access will be safe. 5149 * 5150 * The minimum value is only important with signed 5151 * comparisons where we can't assume the floor of a 5152 * value is 0. If we are using signed variables for our 5153 * index'es we need to make sure that whatever we use 5154 * will have a set floor within our range. 5155 */ 5156 if (reg->smin_value < 0 && 5157 (reg->smin_value == S64_MIN || 5158 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5159 reg->smin_value + off < 0)) { 5160 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5161 regno); 5162 return -EACCES; 5163 } 5164 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5165 mem_size, zero_size_allowed); 5166 if (err) { 5167 verbose(env, "R%d min value is outside of the allowed memory range\n", 5168 regno); 5169 return err; 5170 } 5171 5172 /* If we haven't set a max value then we need to bail since we can't be 5173 * sure we won't do bad things. 5174 * If reg->umax_value + off could overflow, treat that as unbounded too. 5175 */ 5176 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5177 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5178 regno); 5179 return -EACCES; 5180 } 5181 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5182 mem_size, zero_size_allowed); 5183 if (err) { 5184 verbose(env, "R%d max value is outside of the allowed memory range\n", 5185 regno); 5186 return err; 5187 } 5188 5189 return 0; 5190 } 5191 5192 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5193 const struct bpf_reg_state *reg, int regno, 5194 bool fixed_off_ok) 5195 { 5196 /* Access to this pointer-typed register or passing it to a helper 5197 * is only allowed in its original, unmodified form. 5198 */ 5199 5200 if (reg->off < 0) { 5201 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5202 reg_type_str(env, reg->type), regno, reg->off); 5203 return -EACCES; 5204 } 5205 5206 if (!fixed_off_ok && reg->off) { 5207 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5208 reg_type_str(env, reg->type), regno, reg->off); 5209 return -EACCES; 5210 } 5211 5212 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5213 char tn_buf[48]; 5214 5215 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5216 verbose(env, "variable %s access var_off=%s disallowed\n", 5217 reg_type_str(env, reg->type), tn_buf); 5218 return -EACCES; 5219 } 5220 5221 return 0; 5222 } 5223 5224 int check_ptr_off_reg(struct bpf_verifier_env *env, 5225 const struct bpf_reg_state *reg, int regno) 5226 { 5227 return __check_ptr_off_reg(env, reg, regno, false); 5228 } 5229 5230 static int map_kptr_match_type(struct bpf_verifier_env *env, 5231 struct btf_field *kptr_field, 5232 struct bpf_reg_state *reg, u32 regno) 5233 { 5234 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5235 int perm_flags; 5236 const char *reg_name = ""; 5237 5238 if (btf_is_kernel(reg->btf)) { 5239 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5240 5241 /* Only unreferenced case accepts untrusted pointers */ 5242 if (kptr_field->type == BPF_KPTR_UNREF) 5243 perm_flags |= PTR_UNTRUSTED; 5244 } else { 5245 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5246 } 5247 5248 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5249 goto bad_type; 5250 5251 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5252 reg_name = btf_type_name(reg->btf, reg->btf_id); 5253 5254 /* For ref_ptr case, release function check should ensure we get one 5255 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5256 * normal store of unreferenced kptr, we must ensure var_off is zero. 5257 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5258 * reg->off and reg->ref_obj_id are not needed here. 5259 */ 5260 if (__check_ptr_off_reg(env, reg, regno, true)) 5261 return -EACCES; 5262 5263 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5264 * we also need to take into account the reg->off. 5265 * 5266 * We want to support cases like: 5267 * 5268 * struct foo { 5269 * struct bar br; 5270 * struct baz bz; 5271 * }; 5272 * 5273 * struct foo *v; 5274 * v = func(); // PTR_TO_BTF_ID 5275 * val->foo = v; // reg->off is zero, btf and btf_id match type 5276 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5277 * // first member type of struct after comparison fails 5278 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5279 * // to match type 5280 * 5281 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5282 * is zero. We must also ensure that btf_struct_ids_match does not walk 5283 * the struct to match type against first member of struct, i.e. reject 5284 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5285 * strict mode to true for type match. 5286 */ 5287 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5288 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5289 kptr_field->type == BPF_KPTR_REF)) 5290 goto bad_type; 5291 return 0; 5292 bad_type: 5293 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5294 reg_type_str(env, reg->type), reg_name); 5295 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5296 if (kptr_field->type == BPF_KPTR_UNREF) 5297 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5298 targ_name); 5299 else 5300 verbose(env, "\n"); 5301 return -EINVAL; 5302 } 5303 5304 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5305 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5306 */ 5307 static bool in_rcu_cs(struct bpf_verifier_env *env) 5308 { 5309 return env->cur_state->active_rcu_lock || 5310 env->cur_state->active_lock.ptr || 5311 !env->prog->aux->sleepable; 5312 } 5313 5314 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5315 BTF_SET_START(rcu_protected_types) 5316 BTF_ID(struct, prog_test_ref_kfunc) 5317 BTF_ID(struct, cgroup) 5318 BTF_ID(struct, bpf_cpumask) 5319 BTF_ID(struct, task_struct) 5320 BTF_SET_END(rcu_protected_types) 5321 5322 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5323 { 5324 if (!btf_is_kernel(btf)) 5325 return false; 5326 return btf_id_set_contains(&rcu_protected_types, btf_id); 5327 } 5328 5329 static bool rcu_safe_kptr(const struct btf_field *field) 5330 { 5331 const struct btf_field_kptr *kptr = &field->kptr; 5332 5333 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5334 } 5335 5336 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5337 int value_regno, int insn_idx, 5338 struct btf_field *kptr_field) 5339 { 5340 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5341 int class = BPF_CLASS(insn->code); 5342 struct bpf_reg_state *val_reg; 5343 5344 /* Things we already checked for in check_map_access and caller: 5345 * - Reject cases where variable offset may touch kptr 5346 * - size of access (must be BPF_DW) 5347 * - tnum_is_const(reg->var_off) 5348 * - kptr_field->offset == off + reg->var_off.value 5349 */ 5350 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5351 if (BPF_MODE(insn->code) != BPF_MEM) { 5352 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5353 return -EACCES; 5354 } 5355 5356 /* We only allow loading referenced kptr, since it will be marked as 5357 * untrusted, similar to unreferenced kptr. 5358 */ 5359 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5360 verbose(env, "store to referenced kptr disallowed\n"); 5361 return -EACCES; 5362 } 5363 5364 if (class == BPF_LDX) { 5365 val_reg = reg_state(env, value_regno); 5366 /* We can simply mark the value_regno receiving the pointer 5367 * value from map as PTR_TO_BTF_ID, with the correct type. 5368 */ 5369 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5370 kptr_field->kptr.btf_id, 5371 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5372 PTR_MAYBE_NULL | MEM_RCU : 5373 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5374 /* For mark_ptr_or_null_reg */ 5375 val_reg->id = ++env->id_gen; 5376 } else if (class == BPF_STX) { 5377 val_reg = reg_state(env, value_regno); 5378 if (!register_is_null(val_reg) && 5379 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5380 return -EACCES; 5381 } else if (class == BPF_ST) { 5382 if (insn->imm) { 5383 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5384 kptr_field->offset); 5385 return -EACCES; 5386 } 5387 } else { 5388 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5389 return -EACCES; 5390 } 5391 return 0; 5392 } 5393 5394 /* check read/write into a map element with possible variable offset */ 5395 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5396 int off, int size, bool zero_size_allowed, 5397 enum bpf_access_src src) 5398 { 5399 struct bpf_verifier_state *vstate = env->cur_state; 5400 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5401 struct bpf_reg_state *reg = &state->regs[regno]; 5402 struct bpf_map *map = reg->map_ptr; 5403 struct btf_record *rec; 5404 int err, i; 5405 5406 err = check_mem_region_access(env, regno, off, size, map->value_size, 5407 zero_size_allowed); 5408 if (err) 5409 return err; 5410 5411 if (IS_ERR_OR_NULL(map->record)) 5412 return 0; 5413 rec = map->record; 5414 for (i = 0; i < rec->cnt; i++) { 5415 struct btf_field *field = &rec->fields[i]; 5416 u32 p = field->offset; 5417 5418 /* If any part of a field can be touched by load/store, reject 5419 * this program. To check that [x1, x2) overlaps with [y1, y2), 5420 * it is sufficient to check x1 < y2 && y1 < x2. 5421 */ 5422 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5423 p < reg->umax_value + off + size) { 5424 switch (field->type) { 5425 case BPF_KPTR_UNREF: 5426 case BPF_KPTR_REF: 5427 if (src != ACCESS_DIRECT) { 5428 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5429 return -EACCES; 5430 } 5431 if (!tnum_is_const(reg->var_off)) { 5432 verbose(env, "kptr access cannot have variable offset\n"); 5433 return -EACCES; 5434 } 5435 if (p != off + reg->var_off.value) { 5436 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5437 p, off + reg->var_off.value); 5438 return -EACCES; 5439 } 5440 if (size != bpf_size_to_bytes(BPF_DW)) { 5441 verbose(env, "kptr access size must be BPF_DW\n"); 5442 return -EACCES; 5443 } 5444 break; 5445 default: 5446 verbose(env, "%s cannot be accessed directly by load/store\n", 5447 btf_field_type_name(field->type)); 5448 return -EACCES; 5449 } 5450 } 5451 } 5452 return 0; 5453 } 5454 5455 #define MAX_PACKET_OFF 0xffff 5456 5457 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5458 const struct bpf_call_arg_meta *meta, 5459 enum bpf_access_type t) 5460 { 5461 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5462 5463 switch (prog_type) { 5464 /* Program types only with direct read access go here! */ 5465 case BPF_PROG_TYPE_LWT_IN: 5466 case BPF_PROG_TYPE_LWT_OUT: 5467 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5468 case BPF_PROG_TYPE_SK_REUSEPORT: 5469 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5470 case BPF_PROG_TYPE_CGROUP_SKB: 5471 if (t == BPF_WRITE) 5472 return false; 5473 fallthrough; 5474 5475 /* Program types with direct read + write access go here! */ 5476 case BPF_PROG_TYPE_SCHED_CLS: 5477 case BPF_PROG_TYPE_SCHED_ACT: 5478 case BPF_PROG_TYPE_XDP: 5479 case BPF_PROG_TYPE_LWT_XMIT: 5480 case BPF_PROG_TYPE_SK_SKB: 5481 case BPF_PROG_TYPE_SK_MSG: 5482 if (meta) 5483 return meta->pkt_access; 5484 5485 env->seen_direct_write = true; 5486 return true; 5487 5488 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5489 if (t == BPF_WRITE) 5490 env->seen_direct_write = true; 5491 5492 return true; 5493 5494 default: 5495 return false; 5496 } 5497 } 5498 5499 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5500 int size, bool zero_size_allowed) 5501 { 5502 struct bpf_reg_state *regs = cur_regs(env); 5503 struct bpf_reg_state *reg = ®s[regno]; 5504 int err; 5505 5506 /* We may have added a variable offset to the packet pointer; but any 5507 * reg->range we have comes after that. We are only checking the fixed 5508 * offset. 5509 */ 5510 5511 /* We don't allow negative numbers, because we aren't tracking enough 5512 * detail to prove they're safe. 5513 */ 5514 if (reg->smin_value < 0) { 5515 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5516 regno); 5517 return -EACCES; 5518 } 5519 5520 err = reg->range < 0 ? -EINVAL : 5521 __check_mem_access(env, regno, off, size, reg->range, 5522 zero_size_allowed); 5523 if (err) { 5524 verbose(env, "R%d offset is outside of the packet\n", regno); 5525 return err; 5526 } 5527 5528 /* __check_mem_access has made sure "off + size - 1" is within u16. 5529 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5530 * otherwise find_good_pkt_pointers would have refused to set range info 5531 * that __check_mem_access would have rejected this pkt access. 5532 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5533 */ 5534 env->prog->aux->max_pkt_offset = 5535 max_t(u32, env->prog->aux->max_pkt_offset, 5536 off + reg->umax_value + size - 1); 5537 5538 return err; 5539 } 5540 5541 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5542 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5543 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5544 struct btf **btf, u32 *btf_id) 5545 { 5546 struct bpf_insn_access_aux info = { 5547 .reg_type = *reg_type, 5548 .log = &env->log, 5549 }; 5550 5551 if (env->ops->is_valid_access && 5552 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5553 /* A non zero info.ctx_field_size indicates that this field is a 5554 * candidate for later verifier transformation to load the whole 5555 * field and then apply a mask when accessed with a narrower 5556 * access than actual ctx access size. A zero info.ctx_field_size 5557 * will only allow for whole field access and rejects any other 5558 * type of narrower access. 5559 */ 5560 *reg_type = info.reg_type; 5561 5562 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5563 *btf = info.btf; 5564 *btf_id = info.btf_id; 5565 } else { 5566 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5567 } 5568 /* remember the offset of last byte accessed in ctx */ 5569 if (env->prog->aux->max_ctx_offset < off + size) 5570 env->prog->aux->max_ctx_offset = off + size; 5571 return 0; 5572 } 5573 5574 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5575 return -EACCES; 5576 } 5577 5578 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5579 int size) 5580 { 5581 if (size < 0 || off < 0 || 5582 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5583 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5584 off, size); 5585 return -EACCES; 5586 } 5587 return 0; 5588 } 5589 5590 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5591 u32 regno, int off, int size, 5592 enum bpf_access_type t) 5593 { 5594 struct bpf_reg_state *regs = cur_regs(env); 5595 struct bpf_reg_state *reg = ®s[regno]; 5596 struct bpf_insn_access_aux info = {}; 5597 bool valid; 5598 5599 if (reg->smin_value < 0) { 5600 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5601 regno); 5602 return -EACCES; 5603 } 5604 5605 switch (reg->type) { 5606 case PTR_TO_SOCK_COMMON: 5607 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5608 break; 5609 case PTR_TO_SOCKET: 5610 valid = bpf_sock_is_valid_access(off, size, t, &info); 5611 break; 5612 case PTR_TO_TCP_SOCK: 5613 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5614 break; 5615 case PTR_TO_XDP_SOCK: 5616 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5617 break; 5618 default: 5619 valid = false; 5620 } 5621 5622 5623 if (valid) { 5624 env->insn_aux_data[insn_idx].ctx_field_size = 5625 info.ctx_field_size; 5626 return 0; 5627 } 5628 5629 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5630 regno, reg_type_str(env, reg->type), off, size); 5631 5632 return -EACCES; 5633 } 5634 5635 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5636 { 5637 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5638 } 5639 5640 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5641 { 5642 const struct bpf_reg_state *reg = reg_state(env, regno); 5643 5644 return reg->type == PTR_TO_CTX; 5645 } 5646 5647 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5648 { 5649 const struct bpf_reg_state *reg = reg_state(env, regno); 5650 5651 return type_is_sk_pointer(reg->type); 5652 } 5653 5654 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5655 { 5656 const struct bpf_reg_state *reg = reg_state(env, regno); 5657 5658 return type_is_pkt_pointer(reg->type); 5659 } 5660 5661 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5662 { 5663 const struct bpf_reg_state *reg = reg_state(env, regno); 5664 5665 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5666 return reg->type == PTR_TO_FLOW_KEYS; 5667 } 5668 5669 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5670 #ifdef CONFIG_NET 5671 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5672 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5673 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5674 #endif 5675 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5676 }; 5677 5678 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5679 { 5680 /* A referenced register is always trusted. */ 5681 if (reg->ref_obj_id) 5682 return true; 5683 5684 /* Types listed in the reg2btf_ids are always trusted */ 5685 if (reg2btf_ids[base_type(reg->type)]) 5686 return true; 5687 5688 /* If a register is not referenced, it is trusted if it has the 5689 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5690 * other type modifiers may be safe, but we elect to take an opt-in 5691 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5692 * not. 5693 * 5694 * Eventually, we should make PTR_TRUSTED the single source of truth 5695 * for whether a register is trusted. 5696 */ 5697 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5698 !bpf_type_has_unsafe_modifiers(reg->type); 5699 } 5700 5701 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5702 { 5703 return reg->type & MEM_RCU; 5704 } 5705 5706 static void clear_trusted_flags(enum bpf_type_flag *flag) 5707 { 5708 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5709 } 5710 5711 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5712 const struct bpf_reg_state *reg, 5713 int off, int size, bool strict) 5714 { 5715 struct tnum reg_off; 5716 int ip_align; 5717 5718 /* Byte size accesses are always allowed. */ 5719 if (!strict || size == 1) 5720 return 0; 5721 5722 /* For platforms that do not have a Kconfig enabling 5723 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5724 * NET_IP_ALIGN is universally set to '2'. And on platforms 5725 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5726 * to this code only in strict mode where we want to emulate 5727 * the NET_IP_ALIGN==2 checking. Therefore use an 5728 * unconditional IP align value of '2'. 5729 */ 5730 ip_align = 2; 5731 5732 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5733 if (!tnum_is_aligned(reg_off, size)) { 5734 char tn_buf[48]; 5735 5736 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5737 verbose(env, 5738 "misaligned packet access off %d+%s+%d+%d size %d\n", 5739 ip_align, tn_buf, reg->off, off, size); 5740 return -EACCES; 5741 } 5742 5743 return 0; 5744 } 5745 5746 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5747 const struct bpf_reg_state *reg, 5748 const char *pointer_desc, 5749 int off, int size, bool strict) 5750 { 5751 struct tnum reg_off; 5752 5753 /* Byte size accesses are always allowed. */ 5754 if (!strict || size == 1) 5755 return 0; 5756 5757 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5758 if (!tnum_is_aligned(reg_off, size)) { 5759 char tn_buf[48]; 5760 5761 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5762 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5763 pointer_desc, tn_buf, reg->off, off, size); 5764 return -EACCES; 5765 } 5766 5767 return 0; 5768 } 5769 5770 static int check_ptr_alignment(struct bpf_verifier_env *env, 5771 const struct bpf_reg_state *reg, int off, 5772 int size, bool strict_alignment_once) 5773 { 5774 bool strict = env->strict_alignment || strict_alignment_once; 5775 const char *pointer_desc = ""; 5776 5777 switch (reg->type) { 5778 case PTR_TO_PACKET: 5779 case PTR_TO_PACKET_META: 5780 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5781 * right in front, treat it the very same way. 5782 */ 5783 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5784 case PTR_TO_FLOW_KEYS: 5785 pointer_desc = "flow keys "; 5786 break; 5787 case PTR_TO_MAP_KEY: 5788 pointer_desc = "key "; 5789 break; 5790 case PTR_TO_MAP_VALUE: 5791 pointer_desc = "value "; 5792 break; 5793 case PTR_TO_CTX: 5794 pointer_desc = "context "; 5795 break; 5796 case PTR_TO_STACK: 5797 pointer_desc = "stack "; 5798 /* The stack spill tracking logic in check_stack_write_fixed_off() 5799 * and check_stack_read_fixed_off() relies on stack accesses being 5800 * aligned. 5801 */ 5802 strict = true; 5803 break; 5804 case PTR_TO_SOCKET: 5805 pointer_desc = "sock "; 5806 break; 5807 case PTR_TO_SOCK_COMMON: 5808 pointer_desc = "sock_common "; 5809 break; 5810 case PTR_TO_TCP_SOCK: 5811 pointer_desc = "tcp_sock "; 5812 break; 5813 case PTR_TO_XDP_SOCK: 5814 pointer_desc = "xdp_sock "; 5815 break; 5816 default: 5817 break; 5818 } 5819 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5820 strict); 5821 } 5822 5823 /* starting from main bpf function walk all instructions of the function 5824 * and recursively walk all callees that given function can call. 5825 * Ignore jump and exit insns. 5826 * Since recursion is prevented by check_cfg() this algorithm 5827 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5828 */ 5829 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5830 { 5831 struct bpf_subprog_info *subprog = env->subprog_info; 5832 struct bpf_insn *insn = env->prog->insnsi; 5833 int depth = 0, frame = 0, i, subprog_end; 5834 bool tail_call_reachable = false; 5835 int ret_insn[MAX_CALL_FRAMES]; 5836 int ret_prog[MAX_CALL_FRAMES]; 5837 int j; 5838 5839 i = subprog[idx].start; 5840 process_func: 5841 /* protect against potential stack overflow that might happen when 5842 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5843 * depth for such case down to 256 so that the worst case scenario 5844 * would result in 8k stack size (32 which is tailcall limit * 256 = 5845 * 8k). 5846 * 5847 * To get the idea what might happen, see an example: 5848 * func1 -> sub rsp, 128 5849 * subfunc1 -> sub rsp, 256 5850 * tailcall1 -> add rsp, 256 5851 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5852 * subfunc2 -> sub rsp, 64 5853 * subfunc22 -> sub rsp, 128 5854 * tailcall2 -> add rsp, 128 5855 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5856 * 5857 * tailcall will unwind the current stack frame but it will not get rid 5858 * of caller's stack as shown on the example above. 5859 */ 5860 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5861 verbose(env, 5862 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5863 depth); 5864 return -EACCES; 5865 } 5866 /* round up to 32-bytes, since this is granularity 5867 * of interpreter stack size 5868 */ 5869 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5870 if (depth > MAX_BPF_STACK) { 5871 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5872 frame + 1, depth); 5873 return -EACCES; 5874 } 5875 continue_func: 5876 subprog_end = subprog[idx + 1].start; 5877 for (; i < subprog_end; i++) { 5878 int next_insn, sidx; 5879 5880 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5881 continue; 5882 /* remember insn and function to return to */ 5883 ret_insn[frame] = i + 1; 5884 ret_prog[frame] = idx; 5885 5886 /* find the callee */ 5887 next_insn = i + insn[i].imm + 1; 5888 sidx = find_subprog(env, next_insn); 5889 if (sidx < 0) { 5890 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5891 next_insn); 5892 return -EFAULT; 5893 } 5894 if (subprog[sidx].is_async_cb) { 5895 if (subprog[sidx].has_tail_call) { 5896 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5897 return -EFAULT; 5898 } 5899 /* async callbacks don't increase bpf prog stack size unless called directly */ 5900 if (!bpf_pseudo_call(insn + i)) 5901 continue; 5902 } 5903 i = next_insn; 5904 idx = sidx; 5905 5906 if (subprog[idx].has_tail_call) 5907 tail_call_reachable = true; 5908 5909 frame++; 5910 if (frame >= MAX_CALL_FRAMES) { 5911 verbose(env, "the call stack of %d frames is too deep !\n", 5912 frame); 5913 return -E2BIG; 5914 } 5915 goto process_func; 5916 } 5917 /* if tail call got detected across bpf2bpf calls then mark each of the 5918 * currently present subprog frames as tail call reachable subprogs; 5919 * this info will be utilized by JIT so that we will be preserving the 5920 * tail call counter throughout bpf2bpf calls combined with tailcalls 5921 */ 5922 if (tail_call_reachable) 5923 for (j = 0; j < frame; j++) 5924 subprog[ret_prog[j]].tail_call_reachable = true; 5925 if (subprog[0].tail_call_reachable) 5926 env->prog->aux->tail_call_reachable = true; 5927 5928 /* end of for() loop means the last insn of the 'subprog' 5929 * was reached. Doesn't matter whether it was JA or EXIT 5930 */ 5931 if (frame == 0) 5932 return 0; 5933 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5934 frame--; 5935 i = ret_insn[frame]; 5936 idx = ret_prog[frame]; 5937 goto continue_func; 5938 } 5939 5940 static int check_max_stack_depth(struct bpf_verifier_env *env) 5941 { 5942 struct bpf_subprog_info *si = env->subprog_info; 5943 int ret; 5944 5945 for (int i = 0; i < env->subprog_cnt; i++) { 5946 if (!i || si[i].is_async_cb) { 5947 ret = check_max_stack_depth_subprog(env, i); 5948 if (ret < 0) 5949 return ret; 5950 } 5951 continue; 5952 } 5953 return 0; 5954 } 5955 5956 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5957 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5958 const struct bpf_insn *insn, int idx) 5959 { 5960 int start = idx + insn->imm + 1, subprog; 5961 5962 subprog = find_subprog(env, start); 5963 if (subprog < 0) { 5964 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5965 start); 5966 return -EFAULT; 5967 } 5968 return env->subprog_info[subprog].stack_depth; 5969 } 5970 #endif 5971 5972 static int __check_buffer_access(struct bpf_verifier_env *env, 5973 const char *buf_info, 5974 const struct bpf_reg_state *reg, 5975 int regno, int off, int size) 5976 { 5977 if (off < 0) { 5978 verbose(env, 5979 "R%d invalid %s buffer access: off=%d, size=%d\n", 5980 regno, buf_info, off, size); 5981 return -EACCES; 5982 } 5983 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5984 char tn_buf[48]; 5985 5986 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5987 verbose(env, 5988 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5989 regno, off, tn_buf); 5990 return -EACCES; 5991 } 5992 5993 return 0; 5994 } 5995 5996 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5997 const struct bpf_reg_state *reg, 5998 int regno, int off, int size) 5999 { 6000 int err; 6001 6002 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6003 if (err) 6004 return err; 6005 6006 if (off + size > env->prog->aux->max_tp_access) 6007 env->prog->aux->max_tp_access = off + size; 6008 6009 return 0; 6010 } 6011 6012 static int check_buffer_access(struct bpf_verifier_env *env, 6013 const struct bpf_reg_state *reg, 6014 int regno, int off, int size, 6015 bool zero_size_allowed, 6016 u32 *max_access) 6017 { 6018 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6019 int err; 6020 6021 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6022 if (err) 6023 return err; 6024 6025 if (off + size > *max_access) 6026 *max_access = off + size; 6027 6028 return 0; 6029 } 6030 6031 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6032 static void zext_32_to_64(struct bpf_reg_state *reg) 6033 { 6034 reg->var_off = tnum_subreg(reg->var_off); 6035 __reg_assign_32_into_64(reg); 6036 } 6037 6038 /* truncate register to smaller size (in bytes) 6039 * must be called with size < BPF_REG_SIZE 6040 */ 6041 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6042 { 6043 u64 mask; 6044 6045 /* clear high bits in bit representation */ 6046 reg->var_off = tnum_cast(reg->var_off, size); 6047 6048 /* fix arithmetic bounds */ 6049 mask = ((u64)1 << (size * 8)) - 1; 6050 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6051 reg->umin_value &= mask; 6052 reg->umax_value &= mask; 6053 } else { 6054 reg->umin_value = 0; 6055 reg->umax_value = mask; 6056 } 6057 reg->smin_value = reg->umin_value; 6058 reg->smax_value = reg->umax_value; 6059 6060 /* If size is smaller than 32bit register the 32bit register 6061 * values are also truncated so we push 64-bit bounds into 6062 * 32-bit bounds. Above were truncated < 32-bits already. 6063 */ 6064 if (size >= 4) 6065 return; 6066 __reg_combine_64_into_32(reg); 6067 } 6068 6069 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6070 { 6071 if (size == 1) { 6072 reg->smin_value = reg->s32_min_value = S8_MIN; 6073 reg->smax_value = reg->s32_max_value = S8_MAX; 6074 } else if (size == 2) { 6075 reg->smin_value = reg->s32_min_value = S16_MIN; 6076 reg->smax_value = reg->s32_max_value = S16_MAX; 6077 } else { 6078 /* size == 4 */ 6079 reg->smin_value = reg->s32_min_value = S32_MIN; 6080 reg->smax_value = reg->s32_max_value = S32_MAX; 6081 } 6082 reg->umin_value = reg->u32_min_value = 0; 6083 reg->umax_value = U64_MAX; 6084 reg->u32_max_value = U32_MAX; 6085 reg->var_off = tnum_unknown; 6086 } 6087 6088 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6089 { 6090 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6091 u64 top_smax_value, top_smin_value; 6092 u64 num_bits = size * 8; 6093 6094 if (tnum_is_const(reg->var_off)) { 6095 u64_cval = reg->var_off.value; 6096 if (size == 1) 6097 reg->var_off = tnum_const((s8)u64_cval); 6098 else if (size == 2) 6099 reg->var_off = tnum_const((s16)u64_cval); 6100 else 6101 /* size == 4 */ 6102 reg->var_off = tnum_const((s32)u64_cval); 6103 6104 u64_cval = reg->var_off.value; 6105 reg->smax_value = reg->smin_value = u64_cval; 6106 reg->umax_value = reg->umin_value = u64_cval; 6107 reg->s32_max_value = reg->s32_min_value = u64_cval; 6108 reg->u32_max_value = reg->u32_min_value = u64_cval; 6109 return; 6110 } 6111 6112 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6113 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6114 6115 if (top_smax_value != top_smin_value) 6116 goto out; 6117 6118 /* find the s64_min and s64_min after sign extension */ 6119 if (size == 1) { 6120 init_s64_max = (s8)reg->smax_value; 6121 init_s64_min = (s8)reg->smin_value; 6122 } else if (size == 2) { 6123 init_s64_max = (s16)reg->smax_value; 6124 init_s64_min = (s16)reg->smin_value; 6125 } else { 6126 init_s64_max = (s32)reg->smax_value; 6127 init_s64_min = (s32)reg->smin_value; 6128 } 6129 6130 s64_max = max(init_s64_max, init_s64_min); 6131 s64_min = min(init_s64_max, init_s64_min); 6132 6133 /* both of s64_max/s64_min positive or negative */ 6134 if ((s64_max >= 0) == (s64_min >= 0)) { 6135 reg->smin_value = reg->s32_min_value = s64_min; 6136 reg->smax_value = reg->s32_max_value = s64_max; 6137 reg->umin_value = reg->u32_min_value = s64_min; 6138 reg->umax_value = reg->u32_max_value = s64_max; 6139 reg->var_off = tnum_range(s64_min, s64_max); 6140 return; 6141 } 6142 6143 out: 6144 set_sext64_default_val(reg, size); 6145 } 6146 6147 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6148 { 6149 if (size == 1) { 6150 reg->s32_min_value = S8_MIN; 6151 reg->s32_max_value = S8_MAX; 6152 } else { 6153 /* size == 2 */ 6154 reg->s32_min_value = S16_MIN; 6155 reg->s32_max_value = S16_MAX; 6156 } 6157 reg->u32_min_value = 0; 6158 reg->u32_max_value = U32_MAX; 6159 } 6160 6161 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6162 { 6163 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6164 u32 top_smax_value, top_smin_value; 6165 u32 num_bits = size * 8; 6166 6167 if (tnum_is_const(reg->var_off)) { 6168 u32_val = reg->var_off.value; 6169 if (size == 1) 6170 reg->var_off = tnum_const((s8)u32_val); 6171 else 6172 reg->var_off = tnum_const((s16)u32_val); 6173 6174 u32_val = reg->var_off.value; 6175 reg->s32_min_value = reg->s32_max_value = u32_val; 6176 reg->u32_min_value = reg->u32_max_value = u32_val; 6177 return; 6178 } 6179 6180 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6181 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6182 6183 if (top_smax_value != top_smin_value) 6184 goto out; 6185 6186 /* find the s32_min and s32_min after sign extension */ 6187 if (size == 1) { 6188 init_s32_max = (s8)reg->s32_max_value; 6189 init_s32_min = (s8)reg->s32_min_value; 6190 } else { 6191 /* size == 2 */ 6192 init_s32_max = (s16)reg->s32_max_value; 6193 init_s32_min = (s16)reg->s32_min_value; 6194 } 6195 s32_max = max(init_s32_max, init_s32_min); 6196 s32_min = min(init_s32_max, init_s32_min); 6197 6198 if ((s32_min >= 0) == (s32_max >= 0)) { 6199 reg->s32_min_value = s32_min; 6200 reg->s32_max_value = s32_max; 6201 reg->u32_min_value = (u32)s32_min; 6202 reg->u32_max_value = (u32)s32_max; 6203 return; 6204 } 6205 6206 out: 6207 set_sext32_default_val(reg, size); 6208 } 6209 6210 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6211 { 6212 /* A map is considered read-only if the following condition are true: 6213 * 6214 * 1) BPF program side cannot change any of the map content. The 6215 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6216 * and was set at map creation time. 6217 * 2) The map value(s) have been initialized from user space by a 6218 * loader and then "frozen", such that no new map update/delete 6219 * operations from syscall side are possible for the rest of 6220 * the map's lifetime from that point onwards. 6221 * 3) Any parallel/pending map update/delete operations from syscall 6222 * side have been completed. Only after that point, it's safe to 6223 * assume that map value(s) are immutable. 6224 */ 6225 return (map->map_flags & BPF_F_RDONLY_PROG) && 6226 READ_ONCE(map->frozen) && 6227 !bpf_map_write_active(map); 6228 } 6229 6230 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6231 bool is_ldsx) 6232 { 6233 void *ptr; 6234 u64 addr; 6235 int err; 6236 6237 err = map->ops->map_direct_value_addr(map, &addr, off); 6238 if (err) 6239 return err; 6240 ptr = (void *)(long)addr + off; 6241 6242 switch (size) { 6243 case sizeof(u8): 6244 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6245 break; 6246 case sizeof(u16): 6247 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6248 break; 6249 case sizeof(u32): 6250 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6251 break; 6252 case sizeof(u64): 6253 *val = *(u64 *)ptr; 6254 break; 6255 default: 6256 return -EINVAL; 6257 } 6258 return 0; 6259 } 6260 6261 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6262 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6263 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6264 6265 /* 6266 * Allow list few fields as RCU trusted or full trusted. 6267 * This logic doesn't allow mix tagging and will be removed once GCC supports 6268 * btf_type_tag. 6269 */ 6270 6271 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6272 BTF_TYPE_SAFE_RCU(struct task_struct) { 6273 const cpumask_t *cpus_ptr; 6274 struct css_set __rcu *cgroups; 6275 struct task_struct __rcu *real_parent; 6276 struct task_struct *group_leader; 6277 }; 6278 6279 BTF_TYPE_SAFE_RCU(struct cgroup) { 6280 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6281 struct kernfs_node *kn; 6282 }; 6283 6284 BTF_TYPE_SAFE_RCU(struct css_set) { 6285 struct cgroup *dfl_cgrp; 6286 }; 6287 6288 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6289 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6290 struct file __rcu *exe_file; 6291 }; 6292 6293 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6294 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6295 */ 6296 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6297 struct sock *sk; 6298 }; 6299 6300 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6301 struct sock *sk; 6302 }; 6303 6304 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6305 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6306 struct seq_file *seq; 6307 }; 6308 6309 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6310 struct bpf_iter_meta *meta; 6311 struct task_struct *task; 6312 }; 6313 6314 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6315 struct file *file; 6316 }; 6317 6318 BTF_TYPE_SAFE_TRUSTED(struct file) { 6319 struct inode *f_inode; 6320 }; 6321 6322 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6323 /* no negative dentry-s in places where bpf can see it */ 6324 struct inode *d_inode; 6325 }; 6326 6327 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6328 struct sock *sk; 6329 }; 6330 6331 static bool type_is_rcu(struct bpf_verifier_env *env, 6332 struct bpf_reg_state *reg, 6333 const char *field_name, u32 btf_id) 6334 { 6335 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6336 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6337 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6338 6339 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6340 } 6341 6342 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6343 struct bpf_reg_state *reg, 6344 const char *field_name, u32 btf_id) 6345 { 6346 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6347 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6348 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6349 6350 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6351 } 6352 6353 static bool type_is_trusted(struct bpf_verifier_env *env, 6354 struct bpf_reg_state *reg, 6355 const char *field_name, u32 btf_id) 6356 { 6357 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6358 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6359 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6360 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6363 6364 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6365 } 6366 6367 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6368 struct bpf_reg_state *regs, 6369 int regno, int off, int size, 6370 enum bpf_access_type atype, 6371 int value_regno) 6372 { 6373 struct bpf_reg_state *reg = regs + regno; 6374 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6375 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6376 const char *field_name = NULL; 6377 enum bpf_type_flag flag = 0; 6378 u32 btf_id = 0; 6379 int ret; 6380 6381 if (!env->allow_ptr_leaks) { 6382 verbose(env, 6383 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6384 tname); 6385 return -EPERM; 6386 } 6387 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6388 verbose(env, 6389 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6390 tname); 6391 return -EINVAL; 6392 } 6393 if (off < 0) { 6394 verbose(env, 6395 "R%d is ptr_%s invalid negative access: off=%d\n", 6396 regno, tname, off); 6397 return -EACCES; 6398 } 6399 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6400 char tn_buf[48]; 6401 6402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6403 verbose(env, 6404 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6405 regno, tname, off, tn_buf); 6406 return -EACCES; 6407 } 6408 6409 if (reg->type & MEM_USER) { 6410 verbose(env, 6411 "R%d is ptr_%s access user memory: off=%d\n", 6412 regno, tname, off); 6413 return -EACCES; 6414 } 6415 6416 if (reg->type & MEM_PERCPU) { 6417 verbose(env, 6418 "R%d is ptr_%s access percpu memory: off=%d\n", 6419 regno, tname, off); 6420 return -EACCES; 6421 } 6422 6423 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6424 if (!btf_is_kernel(reg->btf)) { 6425 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6426 return -EFAULT; 6427 } 6428 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6429 } else { 6430 /* Writes are permitted with default btf_struct_access for 6431 * program allocated objects (which always have ref_obj_id > 0), 6432 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6433 */ 6434 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6435 verbose(env, "only read is supported\n"); 6436 return -EACCES; 6437 } 6438 6439 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6440 !reg->ref_obj_id) { 6441 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6442 return -EFAULT; 6443 } 6444 6445 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6446 } 6447 6448 if (ret < 0) 6449 return ret; 6450 6451 if (ret != PTR_TO_BTF_ID) { 6452 /* just mark; */ 6453 6454 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6455 /* If this is an untrusted pointer, all pointers formed by walking it 6456 * also inherit the untrusted flag. 6457 */ 6458 flag = PTR_UNTRUSTED; 6459 6460 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6461 /* By default any pointer obtained from walking a trusted pointer is no 6462 * longer trusted, unless the field being accessed has explicitly been 6463 * marked as inheriting its parent's state of trust (either full or RCU). 6464 * For example: 6465 * 'cgroups' pointer is untrusted if task->cgroups dereference 6466 * happened in a sleepable program outside of bpf_rcu_read_lock() 6467 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6468 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6469 * 6470 * A regular RCU-protected pointer with __rcu tag can also be deemed 6471 * trusted if we are in an RCU CS. Such pointer can be NULL. 6472 */ 6473 if (type_is_trusted(env, reg, field_name, btf_id)) { 6474 flag |= PTR_TRUSTED; 6475 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6476 if (type_is_rcu(env, reg, field_name, btf_id)) { 6477 /* ignore __rcu tag and mark it MEM_RCU */ 6478 flag |= MEM_RCU; 6479 } else if (flag & MEM_RCU || 6480 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6481 /* __rcu tagged pointers can be NULL */ 6482 flag |= MEM_RCU | PTR_MAYBE_NULL; 6483 6484 /* We always trust them */ 6485 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6486 flag & PTR_UNTRUSTED) 6487 flag &= ~PTR_UNTRUSTED; 6488 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6489 /* keep as-is */ 6490 } else { 6491 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6492 clear_trusted_flags(&flag); 6493 } 6494 } else { 6495 /* 6496 * If not in RCU CS or MEM_RCU pointer can be NULL then 6497 * aggressively mark as untrusted otherwise such 6498 * pointers will be plain PTR_TO_BTF_ID without flags 6499 * and will be allowed to be passed into helpers for 6500 * compat reasons. 6501 */ 6502 flag = PTR_UNTRUSTED; 6503 } 6504 } else { 6505 /* Old compat. Deprecated */ 6506 clear_trusted_flags(&flag); 6507 } 6508 6509 if (atype == BPF_READ && value_regno >= 0) 6510 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6511 6512 return 0; 6513 } 6514 6515 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6516 struct bpf_reg_state *regs, 6517 int regno, int off, int size, 6518 enum bpf_access_type atype, 6519 int value_regno) 6520 { 6521 struct bpf_reg_state *reg = regs + regno; 6522 struct bpf_map *map = reg->map_ptr; 6523 struct bpf_reg_state map_reg; 6524 enum bpf_type_flag flag = 0; 6525 const struct btf_type *t; 6526 const char *tname; 6527 u32 btf_id; 6528 int ret; 6529 6530 if (!btf_vmlinux) { 6531 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6532 return -ENOTSUPP; 6533 } 6534 6535 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6536 verbose(env, "map_ptr access not supported for map type %d\n", 6537 map->map_type); 6538 return -ENOTSUPP; 6539 } 6540 6541 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6542 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6543 6544 if (!env->allow_ptr_leaks) { 6545 verbose(env, 6546 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6547 tname); 6548 return -EPERM; 6549 } 6550 6551 if (off < 0) { 6552 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6553 regno, tname, off); 6554 return -EACCES; 6555 } 6556 6557 if (atype != BPF_READ) { 6558 verbose(env, "only read from %s is supported\n", tname); 6559 return -EACCES; 6560 } 6561 6562 /* Simulate access to a PTR_TO_BTF_ID */ 6563 memset(&map_reg, 0, sizeof(map_reg)); 6564 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6565 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6566 if (ret < 0) 6567 return ret; 6568 6569 if (value_regno >= 0) 6570 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6571 6572 return 0; 6573 } 6574 6575 /* Check that the stack access at the given offset is within bounds. The 6576 * maximum valid offset is -1. 6577 * 6578 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6579 * -state->allocated_stack for reads. 6580 */ 6581 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6582 s64 off, 6583 struct bpf_func_state *state, 6584 enum bpf_access_type t) 6585 { 6586 int min_valid_off; 6587 6588 if (t == BPF_WRITE || env->allow_uninit_stack) 6589 min_valid_off = -MAX_BPF_STACK; 6590 else 6591 min_valid_off = -state->allocated_stack; 6592 6593 if (off < min_valid_off || off > -1) 6594 return -EACCES; 6595 return 0; 6596 } 6597 6598 /* Check that the stack access at 'regno + off' falls within the maximum stack 6599 * bounds. 6600 * 6601 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6602 */ 6603 static int check_stack_access_within_bounds( 6604 struct bpf_verifier_env *env, 6605 int regno, int off, int access_size, 6606 enum bpf_access_src src, enum bpf_access_type type) 6607 { 6608 struct bpf_reg_state *regs = cur_regs(env); 6609 struct bpf_reg_state *reg = regs + regno; 6610 struct bpf_func_state *state = func(env, reg); 6611 s64 min_off, max_off; 6612 int err; 6613 char *err_extra; 6614 6615 if (src == ACCESS_HELPER) 6616 /* We don't know if helpers are reading or writing (or both). */ 6617 err_extra = " indirect access to"; 6618 else if (type == BPF_READ) 6619 err_extra = " read from"; 6620 else 6621 err_extra = " write to"; 6622 6623 if (tnum_is_const(reg->var_off)) { 6624 min_off = (s64)reg->var_off.value + off; 6625 max_off = min_off + access_size; 6626 } else { 6627 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6628 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6629 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6630 err_extra, regno); 6631 return -EACCES; 6632 } 6633 min_off = reg->smin_value + off; 6634 max_off = reg->smax_value + off + access_size; 6635 } 6636 6637 err = check_stack_slot_within_bounds(env, min_off, state, type); 6638 if (!err && max_off > 0) 6639 err = -EINVAL; /* out of stack access into non-negative offsets */ 6640 6641 if (err) { 6642 if (tnum_is_const(reg->var_off)) { 6643 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6644 err_extra, regno, off, access_size); 6645 } else { 6646 char tn_buf[48]; 6647 6648 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6649 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6650 err_extra, regno, tn_buf, access_size); 6651 } 6652 return err; 6653 } 6654 6655 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6656 } 6657 6658 /* check whether memory at (regno + off) is accessible for t = (read | write) 6659 * if t==write, value_regno is a register which value is stored into memory 6660 * if t==read, value_regno is a register which will receive the value from memory 6661 * if t==write && value_regno==-1, some unknown value is stored into memory 6662 * if t==read && value_regno==-1, don't care what we read from memory 6663 */ 6664 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6665 int off, int bpf_size, enum bpf_access_type t, 6666 int value_regno, bool strict_alignment_once, bool is_ldsx) 6667 { 6668 struct bpf_reg_state *regs = cur_regs(env); 6669 struct bpf_reg_state *reg = regs + regno; 6670 int size, err = 0; 6671 6672 size = bpf_size_to_bytes(bpf_size); 6673 if (size < 0) 6674 return size; 6675 6676 /* alignment checks will add in reg->off themselves */ 6677 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6678 if (err) 6679 return err; 6680 6681 /* for access checks, reg->off is just part of off */ 6682 off += reg->off; 6683 6684 if (reg->type == PTR_TO_MAP_KEY) { 6685 if (t == BPF_WRITE) { 6686 verbose(env, "write to change key R%d not allowed\n", regno); 6687 return -EACCES; 6688 } 6689 6690 err = check_mem_region_access(env, regno, off, size, 6691 reg->map_ptr->key_size, false); 6692 if (err) 6693 return err; 6694 if (value_regno >= 0) 6695 mark_reg_unknown(env, regs, value_regno); 6696 } else if (reg->type == PTR_TO_MAP_VALUE) { 6697 struct btf_field *kptr_field = NULL; 6698 6699 if (t == BPF_WRITE && value_regno >= 0 && 6700 is_pointer_value(env, value_regno)) { 6701 verbose(env, "R%d leaks addr into map\n", value_regno); 6702 return -EACCES; 6703 } 6704 err = check_map_access_type(env, regno, off, size, t); 6705 if (err) 6706 return err; 6707 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6708 if (err) 6709 return err; 6710 if (tnum_is_const(reg->var_off)) 6711 kptr_field = btf_record_find(reg->map_ptr->record, 6712 off + reg->var_off.value, BPF_KPTR); 6713 if (kptr_field) { 6714 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6715 } else if (t == BPF_READ && value_regno >= 0) { 6716 struct bpf_map *map = reg->map_ptr; 6717 6718 /* if map is read-only, track its contents as scalars */ 6719 if (tnum_is_const(reg->var_off) && 6720 bpf_map_is_rdonly(map) && 6721 map->ops->map_direct_value_addr) { 6722 int map_off = off + reg->var_off.value; 6723 u64 val = 0; 6724 6725 err = bpf_map_direct_read(map, map_off, size, 6726 &val, is_ldsx); 6727 if (err) 6728 return err; 6729 6730 regs[value_regno].type = SCALAR_VALUE; 6731 __mark_reg_known(®s[value_regno], val); 6732 } else { 6733 mark_reg_unknown(env, regs, value_regno); 6734 } 6735 } 6736 } else if (base_type(reg->type) == PTR_TO_MEM) { 6737 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6738 6739 if (type_may_be_null(reg->type)) { 6740 verbose(env, "R%d invalid mem access '%s'\n", regno, 6741 reg_type_str(env, reg->type)); 6742 return -EACCES; 6743 } 6744 6745 if (t == BPF_WRITE && rdonly_mem) { 6746 verbose(env, "R%d cannot write into %s\n", 6747 regno, reg_type_str(env, reg->type)); 6748 return -EACCES; 6749 } 6750 6751 if (t == BPF_WRITE && value_regno >= 0 && 6752 is_pointer_value(env, value_regno)) { 6753 verbose(env, "R%d leaks addr into mem\n", value_regno); 6754 return -EACCES; 6755 } 6756 6757 err = check_mem_region_access(env, regno, off, size, 6758 reg->mem_size, false); 6759 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6760 mark_reg_unknown(env, regs, value_regno); 6761 } else if (reg->type == PTR_TO_CTX) { 6762 enum bpf_reg_type reg_type = SCALAR_VALUE; 6763 struct btf *btf = NULL; 6764 u32 btf_id = 0; 6765 6766 if (t == BPF_WRITE && value_regno >= 0 && 6767 is_pointer_value(env, value_regno)) { 6768 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6769 return -EACCES; 6770 } 6771 6772 err = check_ptr_off_reg(env, reg, regno); 6773 if (err < 0) 6774 return err; 6775 6776 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6777 &btf_id); 6778 if (err) 6779 verbose_linfo(env, insn_idx, "; "); 6780 if (!err && t == BPF_READ && value_regno >= 0) { 6781 /* ctx access returns either a scalar, or a 6782 * PTR_TO_PACKET[_META,_END]. In the latter 6783 * case, we know the offset is zero. 6784 */ 6785 if (reg_type == SCALAR_VALUE) { 6786 mark_reg_unknown(env, regs, value_regno); 6787 } else { 6788 mark_reg_known_zero(env, regs, 6789 value_regno); 6790 if (type_may_be_null(reg_type)) 6791 regs[value_regno].id = ++env->id_gen; 6792 /* A load of ctx field could have different 6793 * actual load size with the one encoded in the 6794 * insn. When the dst is PTR, it is for sure not 6795 * a sub-register. 6796 */ 6797 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6798 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6799 regs[value_regno].btf = btf; 6800 regs[value_regno].btf_id = btf_id; 6801 } 6802 } 6803 regs[value_regno].type = reg_type; 6804 } 6805 6806 } else if (reg->type == PTR_TO_STACK) { 6807 /* Basic bounds checks. */ 6808 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6809 if (err) 6810 return err; 6811 6812 if (t == BPF_READ) 6813 err = check_stack_read(env, regno, off, size, 6814 value_regno); 6815 else 6816 err = check_stack_write(env, regno, off, size, 6817 value_regno, insn_idx); 6818 } else if (reg_is_pkt_pointer(reg)) { 6819 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6820 verbose(env, "cannot write into packet\n"); 6821 return -EACCES; 6822 } 6823 if (t == BPF_WRITE && value_regno >= 0 && 6824 is_pointer_value(env, value_regno)) { 6825 verbose(env, "R%d leaks addr into packet\n", 6826 value_regno); 6827 return -EACCES; 6828 } 6829 err = check_packet_access(env, regno, off, size, false); 6830 if (!err && t == BPF_READ && value_regno >= 0) 6831 mark_reg_unknown(env, regs, value_regno); 6832 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6833 if (t == BPF_WRITE && value_regno >= 0 && 6834 is_pointer_value(env, value_regno)) { 6835 verbose(env, "R%d leaks addr into flow keys\n", 6836 value_regno); 6837 return -EACCES; 6838 } 6839 6840 err = check_flow_keys_access(env, off, size); 6841 if (!err && t == BPF_READ && value_regno >= 0) 6842 mark_reg_unknown(env, regs, value_regno); 6843 } else if (type_is_sk_pointer(reg->type)) { 6844 if (t == BPF_WRITE) { 6845 verbose(env, "R%d cannot write into %s\n", 6846 regno, reg_type_str(env, reg->type)); 6847 return -EACCES; 6848 } 6849 err = check_sock_access(env, insn_idx, regno, off, size, t); 6850 if (!err && value_regno >= 0) 6851 mark_reg_unknown(env, regs, value_regno); 6852 } else if (reg->type == PTR_TO_TP_BUFFER) { 6853 err = check_tp_buffer_access(env, reg, regno, off, size); 6854 if (!err && t == BPF_READ && value_regno >= 0) 6855 mark_reg_unknown(env, regs, value_regno); 6856 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6857 !type_may_be_null(reg->type)) { 6858 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6859 value_regno); 6860 } else if (reg->type == CONST_PTR_TO_MAP) { 6861 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6862 value_regno); 6863 } else if (base_type(reg->type) == PTR_TO_BUF) { 6864 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6865 u32 *max_access; 6866 6867 if (rdonly_mem) { 6868 if (t == BPF_WRITE) { 6869 verbose(env, "R%d cannot write into %s\n", 6870 regno, reg_type_str(env, reg->type)); 6871 return -EACCES; 6872 } 6873 max_access = &env->prog->aux->max_rdonly_access; 6874 } else { 6875 max_access = &env->prog->aux->max_rdwr_access; 6876 } 6877 6878 err = check_buffer_access(env, reg, regno, off, size, false, 6879 max_access); 6880 6881 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6882 mark_reg_unknown(env, regs, value_regno); 6883 } else { 6884 verbose(env, "R%d invalid mem access '%s'\n", regno, 6885 reg_type_str(env, reg->type)); 6886 return -EACCES; 6887 } 6888 6889 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6890 regs[value_regno].type == SCALAR_VALUE) { 6891 if (!is_ldsx) 6892 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6893 coerce_reg_to_size(®s[value_regno], size); 6894 else 6895 coerce_reg_to_size_sx(®s[value_regno], size); 6896 } 6897 return err; 6898 } 6899 6900 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6901 { 6902 int load_reg; 6903 int err; 6904 6905 switch (insn->imm) { 6906 case BPF_ADD: 6907 case BPF_ADD | BPF_FETCH: 6908 case BPF_AND: 6909 case BPF_AND | BPF_FETCH: 6910 case BPF_OR: 6911 case BPF_OR | BPF_FETCH: 6912 case BPF_XOR: 6913 case BPF_XOR | BPF_FETCH: 6914 case BPF_XCHG: 6915 case BPF_CMPXCHG: 6916 break; 6917 default: 6918 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6919 return -EINVAL; 6920 } 6921 6922 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6923 verbose(env, "invalid atomic operand size\n"); 6924 return -EINVAL; 6925 } 6926 6927 /* check src1 operand */ 6928 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6929 if (err) 6930 return err; 6931 6932 /* check src2 operand */ 6933 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6934 if (err) 6935 return err; 6936 6937 if (insn->imm == BPF_CMPXCHG) { 6938 /* Check comparison of R0 with memory location */ 6939 const u32 aux_reg = BPF_REG_0; 6940 6941 err = check_reg_arg(env, aux_reg, SRC_OP); 6942 if (err) 6943 return err; 6944 6945 if (is_pointer_value(env, aux_reg)) { 6946 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6947 return -EACCES; 6948 } 6949 } 6950 6951 if (is_pointer_value(env, insn->src_reg)) { 6952 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6953 return -EACCES; 6954 } 6955 6956 if (is_ctx_reg(env, insn->dst_reg) || 6957 is_pkt_reg(env, insn->dst_reg) || 6958 is_flow_key_reg(env, insn->dst_reg) || 6959 is_sk_reg(env, insn->dst_reg)) { 6960 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6961 insn->dst_reg, 6962 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6963 return -EACCES; 6964 } 6965 6966 if (insn->imm & BPF_FETCH) { 6967 if (insn->imm == BPF_CMPXCHG) 6968 load_reg = BPF_REG_0; 6969 else 6970 load_reg = insn->src_reg; 6971 6972 /* check and record load of old value */ 6973 err = check_reg_arg(env, load_reg, DST_OP); 6974 if (err) 6975 return err; 6976 } else { 6977 /* This instruction accesses a memory location but doesn't 6978 * actually load it into a register. 6979 */ 6980 load_reg = -1; 6981 } 6982 6983 /* Check whether we can read the memory, with second call for fetch 6984 * case to simulate the register fill. 6985 */ 6986 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6987 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6988 if (!err && load_reg >= 0) 6989 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6990 BPF_SIZE(insn->code), BPF_READ, load_reg, 6991 true, false); 6992 if (err) 6993 return err; 6994 6995 /* Check whether we can write into the same memory. */ 6996 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6997 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 6998 if (err) 6999 return err; 7000 7001 return 0; 7002 } 7003 7004 /* When register 'regno' is used to read the stack (either directly or through 7005 * a helper function) make sure that it's within stack boundary and, depending 7006 * on the access type and privileges, that all elements of the stack are 7007 * initialized. 7008 * 7009 * 'off' includes 'regno->off', but not its dynamic part (if any). 7010 * 7011 * All registers that have been spilled on the stack in the slots within the 7012 * read offsets are marked as read. 7013 */ 7014 static int check_stack_range_initialized( 7015 struct bpf_verifier_env *env, int regno, int off, 7016 int access_size, bool zero_size_allowed, 7017 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7018 { 7019 struct bpf_reg_state *reg = reg_state(env, regno); 7020 struct bpf_func_state *state = func(env, reg); 7021 int err, min_off, max_off, i, j, slot, spi; 7022 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7023 enum bpf_access_type bounds_check_type; 7024 /* Some accesses can write anything into the stack, others are 7025 * read-only. 7026 */ 7027 bool clobber = false; 7028 7029 if (access_size == 0 && !zero_size_allowed) { 7030 verbose(env, "invalid zero-sized read\n"); 7031 return -EACCES; 7032 } 7033 7034 if (type == ACCESS_HELPER) { 7035 /* The bounds checks for writes are more permissive than for 7036 * reads. However, if raw_mode is not set, we'll do extra 7037 * checks below. 7038 */ 7039 bounds_check_type = BPF_WRITE; 7040 clobber = true; 7041 } else { 7042 bounds_check_type = BPF_READ; 7043 } 7044 err = check_stack_access_within_bounds(env, regno, off, access_size, 7045 type, bounds_check_type); 7046 if (err) 7047 return err; 7048 7049 7050 if (tnum_is_const(reg->var_off)) { 7051 min_off = max_off = reg->var_off.value + off; 7052 } else { 7053 /* Variable offset is prohibited for unprivileged mode for 7054 * simplicity since it requires corresponding support in 7055 * Spectre masking for stack ALU. 7056 * See also retrieve_ptr_limit(). 7057 */ 7058 if (!env->bypass_spec_v1) { 7059 char tn_buf[48]; 7060 7061 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7062 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7063 regno, err_extra, tn_buf); 7064 return -EACCES; 7065 } 7066 /* Only initialized buffer on stack is allowed to be accessed 7067 * with variable offset. With uninitialized buffer it's hard to 7068 * guarantee that whole memory is marked as initialized on 7069 * helper return since specific bounds are unknown what may 7070 * cause uninitialized stack leaking. 7071 */ 7072 if (meta && meta->raw_mode) 7073 meta = NULL; 7074 7075 min_off = reg->smin_value + off; 7076 max_off = reg->smax_value + off; 7077 } 7078 7079 if (meta && meta->raw_mode) { 7080 /* Ensure we won't be overwriting dynptrs when simulating byte 7081 * by byte access in check_helper_call using meta.access_size. 7082 * This would be a problem if we have a helper in the future 7083 * which takes: 7084 * 7085 * helper(uninit_mem, len, dynptr) 7086 * 7087 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7088 * may end up writing to dynptr itself when touching memory from 7089 * arg 1. This can be relaxed on a case by case basis for known 7090 * safe cases, but reject due to the possibilitiy of aliasing by 7091 * default. 7092 */ 7093 for (i = min_off; i < max_off + access_size; i++) { 7094 int stack_off = -i - 1; 7095 7096 spi = __get_spi(i); 7097 /* raw_mode may write past allocated_stack */ 7098 if (state->allocated_stack <= stack_off) 7099 continue; 7100 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7101 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7102 return -EACCES; 7103 } 7104 } 7105 meta->access_size = access_size; 7106 meta->regno = regno; 7107 return 0; 7108 } 7109 7110 for (i = min_off; i < max_off + access_size; i++) { 7111 u8 *stype; 7112 7113 slot = -i - 1; 7114 spi = slot / BPF_REG_SIZE; 7115 if (state->allocated_stack <= slot) { 7116 verbose(env, "verifier bug: allocated_stack too small"); 7117 return -EFAULT; 7118 } 7119 7120 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7121 if (*stype == STACK_MISC) 7122 goto mark; 7123 if ((*stype == STACK_ZERO) || 7124 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7125 if (clobber) { 7126 /* helper can write anything into the stack */ 7127 *stype = STACK_MISC; 7128 } 7129 goto mark; 7130 } 7131 7132 if (is_spilled_reg(&state->stack[spi]) && 7133 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7134 env->allow_ptr_leaks)) { 7135 if (clobber) { 7136 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7137 for (j = 0; j < BPF_REG_SIZE; j++) 7138 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7139 } 7140 goto mark; 7141 } 7142 7143 if (tnum_is_const(reg->var_off)) { 7144 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7145 err_extra, regno, min_off, i - min_off, access_size); 7146 } else { 7147 char tn_buf[48]; 7148 7149 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7150 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7151 err_extra, regno, tn_buf, i - min_off, access_size); 7152 } 7153 return -EACCES; 7154 mark: 7155 /* reading any byte out of 8-byte 'spill_slot' will cause 7156 * the whole slot to be marked as 'read' 7157 */ 7158 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7159 state->stack[spi].spilled_ptr.parent, 7160 REG_LIVE_READ64); 7161 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7162 * be sure that whether stack slot is written to or not. Hence, 7163 * we must still conservatively propagate reads upwards even if 7164 * helper may write to the entire memory range. 7165 */ 7166 } 7167 return 0; 7168 } 7169 7170 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7171 int access_size, bool zero_size_allowed, 7172 struct bpf_call_arg_meta *meta) 7173 { 7174 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7175 u32 *max_access; 7176 7177 switch (base_type(reg->type)) { 7178 case PTR_TO_PACKET: 7179 case PTR_TO_PACKET_META: 7180 return check_packet_access(env, regno, reg->off, access_size, 7181 zero_size_allowed); 7182 case PTR_TO_MAP_KEY: 7183 if (meta && meta->raw_mode) { 7184 verbose(env, "R%d cannot write into %s\n", regno, 7185 reg_type_str(env, reg->type)); 7186 return -EACCES; 7187 } 7188 return check_mem_region_access(env, regno, reg->off, access_size, 7189 reg->map_ptr->key_size, false); 7190 case PTR_TO_MAP_VALUE: 7191 if (check_map_access_type(env, regno, reg->off, access_size, 7192 meta && meta->raw_mode ? BPF_WRITE : 7193 BPF_READ)) 7194 return -EACCES; 7195 return check_map_access(env, regno, reg->off, access_size, 7196 zero_size_allowed, ACCESS_HELPER); 7197 case PTR_TO_MEM: 7198 if (type_is_rdonly_mem(reg->type)) { 7199 if (meta && meta->raw_mode) { 7200 verbose(env, "R%d cannot write into %s\n", regno, 7201 reg_type_str(env, reg->type)); 7202 return -EACCES; 7203 } 7204 } 7205 return check_mem_region_access(env, regno, reg->off, 7206 access_size, reg->mem_size, 7207 zero_size_allowed); 7208 case PTR_TO_BUF: 7209 if (type_is_rdonly_mem(reg->type)) { 7210 if (meta && meta->raw_mode) { 7211 verbose(env, "R%d cannot write into %s\n", regno, 7212 reg_type_str(env, reg->type)); 7213 return -EACCES; 7214 } 7215 7216 max_access = &env->prog->aux->max_rdonly_access; 7217 } else { 7218 max_access = &env->prog->aux->max_rdwr_access; 7219 } 7220 return check_buffer_access(env, reg, regno, reg->off, 7221 access_size, zero_size_allowed, 7222 max_access); 7223 case PTR_TO_STACK: 7224 return check_stack_range_initialized( 7225 env, 7226 regno, reg->off, access_size, 7227 zero_size_allowed, ACCESS_HELPER, meta); 7228 case PTR_TO_BTF_ID: 7229 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7230 access_size, BPF_READ, -1); 7231 case PTR_TO_CTX: 7232 /* in case the function doesn't know how to access the context, 7233 * (because we are in a program of type SYSCALL for example), we 7234 * can not statically check its size. 7235 * Dynamically check it now. 7236 */ 7237 if (!env->ops->convert_ctx_access) { 7238 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7239 int offset = access_size - 1; 7240 7241 /* Allow zero-byte read from PTR_TO_CTX */ 7242 if (access_size == 0) 7243 return zero_size_allowed ? 0 : -EACCES; 7244 7245 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7246 atype, -1, false, false); 7247 } 7248 7249 fallthrough; 7250 default: /* scalar_value or invalid ptr */ 7251 /* Allow zero-byte read from NULL, regardless of pointer type */ 7252 if (zero_size_allowed && access_size == 0 && 7253 register_is_null(reg)) 7254 return 0; 7255 7256 verbose(env, "R%d type=%s ", regno, 7257 reg_type_str(env, reg->type)); 7258 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7259 return -EACCES; 7260 } 7261 } 7262 7263 static int check_mem_size_reg(struct bpf_verifier_env *env, 7264 struct bpf_reg_state *reg, u32 regno, 7265 bool zero_size_allowed, 7266 struct bpf_call_arg_meta *meta) 7267 { 7268 int err; 7269 7270 /* This is used to refine r0 return value bounds for helpers 7271 * that enforce this value as an upper bound on return values. 7272 * See do_refine_retval_range() for helpers that can refine 7273 * the return value. C type of helper is u32 so we pull register 7274 * bound from umax_value however, if negative verifier errors 7275 * out. Only upper bounds can be learned because retval is an 7276 * int type and negative retvals are allowed. 7277 */ 7278 meta->msize_max_value = reg->umax_value; 7279 7280 /* The register is SCALAR_VALUE; the access check 7281 * happens using its boundaries. 7282 */ 7283 if (!tnum_is_const(reg->var_off)) 7284 /* For unprivileged variable accesses, disable raw 7285 * mode so that the program is required to 7286 * initialize all the memory that the helper could 7287 * just partially fill up. 7288 */ 7289 meta = NULL; 7290 7291 if (reg->smin_value < 0) { 7292 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7293 regno); 7294 return -EACCES; 7295 } 7296 7297 if (reg->umin_value == 0) { 7298 err = check_helper_mem_access(env, regno - 1, 0, 7299 zero_size_allowed, 7300 meta); 7301 if (err) 7302 return err; 7303 } 7304 7305 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7306 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7307 regno); 7308 return -EACCES; 7309 } 7310 err = check_helper_mem_access(env, regno - 1, 7311 reg->umax_value, 7312 zero_size_allowed, meta); 7313 if (!err) 7314 err = mark_chain_precision(env, regno); 7315 return err; 7316 } 7317 7318 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7319 u32 regno, u32 mem_size) 7320 { 7321 bool may_be_null = type_may_be_null(reg->type); 7322 struct bpf_reg_state saved_reg; 7323 struct bpf_call_arg_meta meta; 7324 int err; 7325 7326 if (register_is_null(reg)) 7327 return 0; 7328 7329 memset(&meta, 0, sizeof(meta)); 7330 /* Assuming that the register contains a value check if the memory 7331 * access is safe. Temporarily save and restore the register's state as 7332 * the conversion shouldn't be visible to a caller. 7333 */ 7334 if (may_be_null) { 7335 saved_reg = *reg; 7336 mark_ptr_not_null_reg(reg); 7337 } 7338 7339 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7340 /* Check access for BPF_WRITE */ 7341 meta.raw_mode = true; 7342 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7343 7344 if (may_be_null) 7345 *reg = saved_reg; 7346 7347 return err; 7348 } 7349 7350 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7351 u32 regno) 7352 { 7353 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7354 bool may_be_null = type_may_be_null(mem_reg->type); 7355 struct bpf_reg_state saved_reg; 7356 struct bpf_call_arg_meta meta; 7357 int err; 7358 7359 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7360 7361 memset(&meta, 0, sizeof(meta)); 7362 7363 if (may_be_null) { 7364 saved_reg = *mem_reg; 7365 mark_ptr_not_null_reg(mem_reg); 7366 } 7367 7368 err = check_mem_size_reg(env, reg, regno, true, &meta); 7369 /* Check access for BPF_WRITE */ 7370 meta.raw_mode = true; 7371 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7372 7373 if (may_be_null) 7374 *mem_reg = saved_reg; 7375 return err; 7376 } 7377 7378 /* Implementation details: 7379 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7380 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7381 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7382 * Two separate bpf_obj_new will also have different reg->id. 7383 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7384 * clears reg->id after value_or_null->value transition, since the verifier only 7385 * cares about the range of access to valid map value pointer and doesn't care 7386 * about actual address of the map element. 7387 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7388 * reg->id > 0 after value_or_null->value transition. By doing so 7389 * two bpf_map_lookups will be considered two different pointers that 7390 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7391 * returned from bpf_obj_new. 7392 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7393 * dead-locks. 7394 * Since only one bpf_spin_lock is allowed the checks are simpler than 7395 * reg_is_refcounted() logic. The verifier needs to remember only 7396 * one spin_lock instead of array of acquired_refs. 7397 * cur_state->active_lock remembers which map value element or allocated 7398 * object got locked and clears it after bpf_spin_unlock. 7399 */ 7400 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7401 bool is_lock) 7402 { 7403 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7404 struct bpf_verifier_state *cur = env->cur_state; 7405 bool is_const = tnum_is_const(reg->var_off); 7406 u64 val = reg->var_off.value; 7407 struct bpf_map *map = NULL; 7408 struct btf *btf = NULL; 7409 struct btf_record *rec; 7410 7411 if (!is_const) { 7412 verbose(env, 7413 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7414 regno); 7415 return -EINVAL; 7416 } 7417 if (reg->type == PTR_TO_MAP_VALUE) { 7418 map = reg->map_ptr; 7419 if (!map->btf) { 7420 verbose(env, 7421 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7422 map->name); 7423 return -EINVAL; 7424 } 7425 } else { 7426 btf = reg->btf; 7427 } 7428 7429 rec = reg_btf_record(reg); 7430 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7431 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7432 map ? map->name : "kptr"); 7433 return -EINVAL; 7434 } 7435 if (rec->spin_lock_off != val + reg->off) { 7436 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7437 val + reg->off, rec->spin_lock_off); 7438 return -EINVAL; 7439 } 7440 if (is_lock) { 7441 if (cur->active_lock.ptr) { 7442 verbose(env, 7443 "Locking two bpf_spin_locks are not allowed\n"); 7444 return -EINVAL; 7445 } 7446 if (map) 7447 cur->active_lock.ptr = map; 7448 else 7449 cur->active_lock.ptr = btf; 7450 cur->active_lock.id = reg->id; 7451 } else { 7452 void *ptr; 7453 7454 if (map) 7455 ptr = map; 7456 else 7457 ptr = btf; 7458 7459 if (!cur->active_lock.ptr) { 7460 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7461 return -EINVAL; 7462 } 7463 if (cur->active_lock.ptr != ptr || 7464 cur->active_lock.id != reg->id) { 7465 verbose(env, "bpf_spin_unlock of different lock\n"); 7466 return -EINVAL; 7467 } 7468 7469 invalidate_non_owning_refs(env); 7470 7471 cur->active_lock.ptr = NULL; 7472 cur->active_lock.id = 0; 7473 } 7474 return 0; 7475 } 7476 7477 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7478 struct bpf_call_arg_meta *meta) 7479 { 7480 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7481 bool is_const = tnum_is_const(reg->var_off); 7482 struct bpf_map *map = reg->map_ptr; 7483 u64 val = reg->var_off.value; 7484 7485 if (!is_const) { 7486 verbose(env, 7487 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7488 regno); 7489 return -EINVAL; 7490 } 7491 if (!map->btf) { 7492 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7493 map->name); 7494 return -EINVAL; 7495 } 7496 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7497 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7498 return -EINVAL; 7499 } 7500 if (map->record->timer_off != val + reg->off) { 7501 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7502 val + reg->off, map->record->timer_off); 7503 return -EINVAL; 7504 } 7505 if (meta->map_ptr) { 7506 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7507 return -EFAULT; 7508 } 7509 meta->map_uid = reg->map_uid; 7510 meta->map_ptr = map; 7511 return 0; 7512 } 7513 7514 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7515 struct bpf_call_arg_meta *meta) 7516 { 7517 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7518 struct bpf_map *map_ptr = reg->map_ptr; 7519 struct btf_field *kptr_field; 7520 u32 kptr_off; 7521 7522 if (!tnum_is_const(reg->var_off)) { 7523 verbose(env, 7524 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7525 regno); 7526 return -EINVAL; 7527 } 7528 if (!map_ptr->btf) { 7529 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7530 map_ptr->name); 7531 return -EINVAL; 7532 } 7533 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7534 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7535 return -EINVAL; 7536 } 7537 7538 meta->map_ptr = map_ptr; 7539 kptr_off = reg->off + reg->var_off.value; 7540 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7541 if (!kptr_field) { 7542 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7543 return -EACCES; 7544 } 7545 if (kptr_field->type != BPF_KPTR_REF) { 7546 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7547 return -EACCES; 7548 } 7549 meta->kptr_field = kptr_field; 7550 return 0; 7551 } 7552 7553 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7554 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7555 * 7556 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7557 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7558 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7559 * 7560 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7561 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7562 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7563 * mutate the view of the dynptr and also possibly destroy it. In the latter 7564 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7565 * memory that dynptr points to. 7566 * 7567 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7568 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7569 * readonly dynptr view yet, hence only the first case is tracked and checked. 7570 * 7571 * This is consistent with how C applies the const modifier to a struct object, 7572 * where the pointer itself inside bpf_dynptr becomes const but not what it 7573 * points to. 7574 * 7575 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7576 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7577 */ 7578 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7579 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7580 { 7581 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7582 int err; 7583 7584 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7585 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7586 */ 7587 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7588 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7589 return -EFAULT; 7590 } 7591 7592 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7593 * constructing a mutable bpf_dynptr object. 7594 * 7595 * Currently, this is only possible with PTR_TO_STACK 7596 * pointing to a region of at least 16 bytes which doesn't 7597 * contain an existing bpf_dynptr. 7598 * 7599 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7600 * mutated or destroyed. However, the memory it points to 7601 * may be mutated. 7602 * 7603 * None - Points to a initialized dynptr that can be mutated and 7604 * destroyed, including mutation of the memory it points 7605 * to. 7606 */ 7607 if (arg_type & MEM_UNINIT) { 7608 int i; 7609 7610 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7611 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7612 return -EINVAL; 7613 } 7614 7615 /* we write BPF_DW bits (8 bytes) at a time */ 7616 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7617 err = check_mem_access(env, insn_idx, regno, 7618 i, BPF_DW, BPF_WRITE, -1, false, false); 7619 if (err) 7620 return err; 7621 } 7622 7623 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7624 } else /* MEM_RDONLY and None case from above */ { 7625 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7626 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7627 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7628 return -EINVAL; 7629 } 7630 7631 if (!is_dynptr_reg_valid_init(env, reg)) { 7632 verbose(env, 7633 "Expected an initialized dynptr as arg #%d\n", 7634 regno); 7635 return -EINVAL; 7636 } 7637 7638 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7639 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7640 verbose(env, 7641 "Expected a dynptr of type %s as arg #%d\n", 7642 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7643 return -EINVAL; 7644 } 7645 7646 err = mark_dynptr_read(env, reg); 7647 } 7648 return err; 7649 } 7650 7651 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7652 { 7653 struct bpf_func_state *state = func(env, reg); 7654 7655 return state->stack[spi].spilled_ptr.ref_obj_id; 7656 } 7657 7658 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7659 { 7660 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7661 } 7662 7663 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7664 { 7665 return meta->kfunc_flags & KF_ITER_NEW; 7666 } 7667 7668 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7669 { 7670 return meta->kfunc_flags & KF_ITER_NEXT; 7671 } 7672 7673 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7674 { 7675 return meta->kfunc_flags & KF_ITER_DESTROY; 7676 } 7677 7678 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7679 { 7680 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7681 * kfunc is iter state pointer 7682 */ 7683 return arg == 0 && is_iter_kfunc(meta); 7684 } 7685 7686 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7687 struct bpf_kfunc_call_arg_meta *meta) 7688 { 7689 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7690 const struct btf_type *t; 7691 const struct btf_param *arg; 7692 int spi, err, i, nr_slots; 7693 u32 btf_id; 7694 7695 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7696 arg = &btf_params(meta->func_proto)[0]; 7697 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7698 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7699 nr_slots = t->size / BPF_REG_SIZE; 7700 7701 if (is_iter_new_kfunc(meta)) { 7702 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7703 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7704 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7705 iter_type_str(meta->btf, btf_id), regno); 7706 return -EINVAL; 7707 } 7708 7709 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7710 err = check_mem_access(env, insn_idx, regno, 7711 i, BPF_DW, BPF_WRITE, -1, false, false); 7712 if (err) 7713 return err; 7714 } 7715 7716 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7717 if (err) 7718 return err; 7719 } else { 7720 /* iter_next() or iter_destroy() expect initialized iter state*/ 7721 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7722 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7723 iter_type_str(meta->btf, btf_id), regno); 7724 return -EINVAL; 7725 } 7726 7727 spi = iter_get_spi(env, reg, nr_slots); 7728 if (spi < 0) 7729 return spi; 7730 7731 err = mark_iter_read(env, reg, spi, nr_slots); 7732 if (err) 7733 return err; 7734 7735 /* remember meta->iter info for process_iter_next_call() */ 7736 meta->iter.spi = spi; 7737 meta->iter.frameno = reg->frameno; 7738 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7739 7740 if (is_iter_destroy_kfunc(meta)) { 7741 err = unmark_stack_slots_iter(env, reg, nr_slots); 7742 if (err) 7743 return err; 7744 } 7745 } 7746 7747 return 0; 7748 } 7749 7750 /* Look for a previous loop entry at insn_idx: nearest parent state 7751 * stopped at insn_idx with callsites matching those in cur->frame. 7752 */ 7753 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7754 struct bpf_verifier_state *cur, 7755 int insn_idx) 7756 { 7757 struct bpf_verifier_state_list *sl; 7758 struct bpf_verifier_state *st; 7759 7760 /* Explored states are pushed in stack order, most recent states come first */ 7761 sl = *explored_state(env, insn_idx); 7762 for (; sl; sl = sl->next) { 7763 /* If st->branches != 0 state is a part of current DFS verification path, 7764 * hence cur & st for a loop. 7765 */ 7766 st = &sl->state; 7767 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7768 st->dfs_depth < cur->dfs_depth) 7769 return st; 7770 } 7771 7772 return NULL; 7773 } 7774 7775 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7776 static bool regs_exact(const struct bpf_reg_state *rold, 7777 const struct bpf_reg_state *rcur, 7778 struct bpf_idmap *idmap); 7779 7780 static void maybe_widen_reg(struct bpf_verifier_env *env, 7781 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7782 struct bpf_idmap *idmap) 7783 { 7784 if (rold->type != SCALAR_VALUE) 7785 return; 7786 if (rold->type != rcur->type) 7787 return; 7788 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7789 return; 7790 __mark_reg_unknown(env, rcur); 7791 } 7792 7793 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7794 struct bpf_verifier_state *old, 7795 struct bpf_verifier_state *cur) 7796 { 7797 struct bpf_func_state *fold, *fcur; 7798 int i, fr; 7799 7800 reset_idmap_scratch(env); 7801 for (fr = old->curframe; fr >= 0; fr--) { 7802 fold = old->frame[fr]; 7803 fcur = cur->frame[fr]; 7804 7805 for (i = 0; i < MAX_BPF_REG; i++) 7806 maybe_widen_reg(env, 7807 &fold->regs[i], 7808 &fcur->regs[i], 7809 &env->idmap_scratch); 7810 7811 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7812 if (!is_spilled_reg(&fold->stack[i]) || 7813 !is_spilled_reg(&fcur->stack[i])) 7814 continue; 7815 7816 maybe_widen_reg(env, 7817 &fold->stack[i].spilled_ptr, 7818 &fcur->stack[i].spilled_ptr, 7819 &env->idmap_scratch); 7820 } 7821 } 7822 return 0; 7823 } 7824 7825 /* process_iter_next_call() is called when verifier gets to iterator's next 7826 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7827 * to it as just "iter_next()" in comments below. 7828 * 7829 * BPF verifier relies on a crucial contract for any iter_next() 7830 * implementation: it should *eventually* return NULL, and once that happens 7831 * it should keep returning NULL. That is, once iterator exhausts elements to 7832 * iterate, it should never reset or spuriously return new elements. 7833 * 7834 * With the assumption of such contract, process_iter_next_call() simulates 7835 * a fork in the verifier state to validate loop logic correctness and safety 7836 * without having to simulate infinite amount of iterations. 7837 * 7838 * In current state, we first assume that iter_next() returned NULL and 7839 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7840 * conditions we should not form an infinite loop and should eventually reach 7841 * exit. 7842 * 7843 * Besides that, we also fork current state and enqueue it for later 7844 * verification. In a forked state we keep iterator state as ACTIVE 7845 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7846 * also bump iteration depth to prevent erroneous infinite loop detection 7847 * later on (see iter_active_depths_differ() comment for details). In this 7848 * state we assume that we'll eventually loop back to another iter_next() 7849 * calls (it could be in exactly same location or in some other instruction, 7850 * it doesn't matter, we don't make any unnecessary assumptions about this, 7851 * everything revolves around iterator state in a stack slot, not which 7852 * instruction is calling iter_next()). When that happens, we either will come 7853 * to iter_next() with equivalent state and can conclude that next iteration 7854 * will proceed in exactly the same way as we just verified, so it's safe to 7855 * assume that loop converges. If not, we'll go on another iteration 7856 * simulation with a different input state, until all possible starting states 7857 * are validated or we reach maximum number of instructions limit. 7858 * 7859 * This way, we will either exhaustively discover all possible input states 7860 * that iterator loop can start with and eventually will converge, or we'll 7861 * effectively regress into bounded loop simulation logic and either reach 7862 * maximum number of instructions if loop is not provably convergent, or there 7863 * is some statically known limit on number of iterations (e.g., if there is 7864 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7865 * 7866 * Iteration convergence logic in is_state_visited() relies on exact 7867 * states comparison, which ignores read and precision marks. 7868 * This is necessary because read and precision marks are not finalized 7869 * while in the loop. Exact comparison might preclude convergence for 7870 * simple programs like below: 7871 * 7872 * i = 0; 7873 * while(iter_next(&it)) 7874 * i++; 7875 * 7876 * At each iteration step i++ would produce a new distinct state and 7877 * eventually instruction processing limit would be reached. 7878 * 7879 * To avoid such behavior speculatively forget (widen) range for 7880 * imprecise scalar registers, if those registers were not precise at the 7881 * end of the previous iteration and do not match exactly. 7882 * 7883 * This is a conservative heuristic that allows to verify wide range of programs, 7884 * however it precludes verification of programs that conjure an 7885 * imprecise value on the first loop iteration and use it as precise on a second. 7886 * For example, the following safe program would fail to verify: 7887 * 7888 * struct bpf_num_iter it; 7889 * int arr[10]; 7890 * int i = 0, a = 0; 7891 * bpf_iter_num_new(&it, 0, 10); 7892 * while (bpf_iter_num_next(&it)) { 7893 * if (a == 0) { 7894 * a = 1; 7895 * i = 7; // Because i changed verifier would forget 7896 * // it's range on second loop entry. 7897 * } else { 7898 * arr[i] = 42; // This would fail to verify. 7899 * } 7900 * } 7901 * bpf_iter_num_destroy(&it); 7902 */ 7903 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7904 struct bpf_kfunc_call_arg_meta *meta) 7905 { 7906 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7907 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7908 struct bpf_reg_state *cur_iter, *queued_iter; 7909 int iter_frameno = meta->iter.frameno; 7910 int iter_spi = meta->iter.spi; 7911 7912 BTF_TYPE_EMIT(struct bpf_iter); 7913 7914 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7915 7916 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7917 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7918 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7919 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7920 return -EFAULT; 7921 } 7922 7923 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7924 /* Because iter_next() call is a checkpoint is_state_visitied() 7925 * should guarantee parent state with same call sites and insn_idx. 7926 */ 7927 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7928 !same_callsites(cur_st->parent, cur_st)) { 7929 verbose(env, "bug: bad parent state for iter next call"); 7930 return -EFAULT; 7931 } 7932 /* Note cur_st->parent in the call below, it is necessary to skip 7933 * checkpoint created for cur_st by is_state_visited() 7934 * right at this instruction. 7935 */ 7936 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7937 /* branch out active iter state */ 7938 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7939 if (!queued_st) 7940 return -ENOMEM; 7941 7942 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7943 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7944 queued_iter->iter.depth++; 7945 if (prev_st) 7946 widen_imprecise_scalars(env, prev_st, queued_st); 7947 7948 queued_fr = queued_st->frame[queued_st->curframe]; 7949 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7950 } 7951 7952 /* switch to DRAINED state, but keep the depth unchanged */ 7953 /* mark current iter state as drained and assume returned NULL */ 7954 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7955 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7956 7957 return 0; 7958 } 7959 7960 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7961 { 7962 return type == ARG_CONST_SIZE || 7963 type == ARG_CONST_SIZE_OR_ZERO; 7964 } 7965 7966 static bool arg_type_is_release(enum bpf_arg_type type) 7967 { 7968 return type & OBJ_RELEASE; 7969 } 7970 7971 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7972 { 7973 return base_type(type) == ARG_PTR_TO_DYNPTR; 7974 } 7975 7976 static int int_ptr_type_to_size(enum bpf_arg_type type) 7977 { 7978 if (type == ARG_PTR_TO_INT) 7979 return sizeof(u32); 7980 else if (type == ARG_PTR_TO_LONG) 7981 return sizeof(u64); 7982 7983 return -EINVAL; 7984 } 7985 7986 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7987 const struct bpf_call_arg_meta *meta, 7988 enum bpf_arg_type *arg_type) 7989 { 7990 if (!meta->map_ptr) { 7991 /* kernel subsystem misconfigured verifier */ 7992 verbose(env, "invalid map_ptr to access map->type\n"); 7993 return -EACCES; 7994 } 7995 7996 switch (meta->map_ptr->map_type) { 7997 case BPF_MAP_TYPE_SOCKMAP: 7998 case BPF_MAP_TYPE_SOCKHASH: 7999 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8000 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8001 } else { 8002 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8003 return -EINVAL; 8004 } 8005 break; 8006 case BPF_MAP_TYPE_BLOOM_FILTER: 8007 if (meta->func_id == BPF_FUNC_map_peek_elem) 8008 *arg_type = ARG_PTR_TO_MAP_VALUE; 8009 break; 8010 default: 8011 break; 8012 } 8013 return 0; 8014 } 8015 8016 struct bpf_reg_types { 8017 const enum bpf_reg_type types[10]; 8018 u32 *btf_id; 8019 }; 8020 8021 static const struct bpf_reg_types sock_types = { 8022 .types = { 8023 PTR_TO_SOCK_COMMON, 8024 PTR_TO_SOCKET, 8025 PTR_TO_TCP_SOCK, 8026 PTR_TO_XDP_SOCK, 8027 }, 8028 }; 8029 8030 #ifdef CONFIG_NET 8031 static const struct bpf_reg_types btf_id_sock_common_types = { 8032 .types = { 8033 PTR_TO_SOCK_COMMON, 8034 PTR_TO_SOCKET, 8035 PTR_TO_TCP_SOCK, 8036 PTR_TO_XDP_SOCK, 8037 PTR_TO_BTF_ID, 8038 PTR_TO_BTF_ID | PTR_TRUSTED, 8039 }, 8040 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8041 }; 8042 #endif 8043 8044 static const struct bpf_reg_types mem_types = { 8045 .types = { 8046 PTR_TO_STACK, 8047 PTR_TO_PACKET, 8048 PTR_TO_PACKET_META, 8049 PTR_TO_MAP_KEY, 8050 PTR_TO_MAP_VALUE, 8051 PTR_TO_MEM, 8052 PTR_TO_MEM | MEM_RINGBUF, 8053 PTR_TO_BUF, 8054 PTR_TO_BTF_ID | PTR_TRUSTED, 8055 }, 8056 }; 8057 8058 static const struct bpf_reg_types int_ptr_types = { 8059 .types = { 8060 PTR_TO_STACK, 8061 PTR_TO_PACKET, 8062 PTR_TO_PACKET_META, 8063 PTR_TO_MAP_KEY, 8064 PTR_TO_MAP_VALUE, 8065 }, 8066 }; 8067 8068 static const struct bpf_reg_types spin_lock_types = { 8069 .types = { 8070 PTR_TO_MAP_VALUE, 8071 PTR_TO_BTF_ID | MEM_ALLOC, 8072 } 8073 }; 8074 8075 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8076 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8077 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8078 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8079 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8080 static const struct bpf_reg_types btf_ptr_types = { 8081 .types = { 8082 PTR_TO_BTF_ID, 8083 PTR_TO_BTF_ID | PTR_TRUSTED, 8084 PTR_TO_BTF_ID | MEM_RCU, 8085 }, 8086 }; 8087 static const struct bpf_reg_types percpu_btf_ptr_types = { 8088 .types = { 8089 PTR_TO_BTF_ID | MEM_PERCPU, 8090 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8091 } 8092 }; 8093 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8094 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8095 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8096 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8097 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8098 static const struct bpf_reg_types dynptr_types = { 8099 .types = { 8100 PTR_TO_STACK, 8101 CONST_PTR_TO_DYNPTR, 8102 } 8103 }; 8104 8105 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8106 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8107 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8108 [ARG_CONST_SIZE] = &scalar_types, 8109 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8110 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8111 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8112 [ARG_PTR_TO_CTX] = &context_types, 8113 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8114 #ifdef CONFIG_NET 8115 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8116 #endif 8117 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8118 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8119 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8120 [ARG_PTR_TO_MEM] = &mem_types, 8121 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8122 [ARG_PTR_TO_INT] = &int_ptr_types, 8123 [ARG_PTR_TO_LONG] = &int_ptr_types, 8124 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8125 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8126 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8127 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8128 [ARG_PTR_TO_TIMER] = &timer_types, 8129 [ARG_PTR_TO_KPTR] = &kptr_types, 8130 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8131 }; 8132 8133 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8134 enum bpf_arg_type arg_type, 8135 const u32 *arg_btf_id, 8136 struct bpf_call_arg_meta *meta) 8137 { 8138 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8139 enum bpf_reg_type expected, type = reg->type; 8140 const struct bpf_reg_types *compatible; 8141 int i, j; 8142 8143 compatible = compatible_reg_types[base_type(arg_type)]; 8144 if (!compatible) { 8145 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8146 return -EFAULT; 8147 } 8148 8149 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8150 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8151 * 8152 * Same for MAYBE_NULL: 8153 * 8154 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8155 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8156 * 8157 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8158 * 8159 * Therefore we fold these flags depending on the arg_type before comparison. 8160 */ 8161 if (arg_type & MEM_RDONLY) 8162 type &= ~MEM_RDONLY; 8163 if (arg_type & PTR_MAYBE_NULL) 8164 type &= ~PTR_MAYBE_NULL; 8165 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8166 type &= ~DYNPTR_TYPE_FLAG_MASK; 8167 8168 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8169 type &= ~MEM_ALLOC; 8170 8171 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8172 expected = compatible->types[i]; 8173 if (expected == NOT_INIT) 8174 break; 8175 8176 if (type == expected) 8177 goto found; 8178 } 8179 8180 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8181 for (j = 0; j + 1 < i; j++) 8182 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8183 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8184 return -EACCES; 8185 8186 found: 8187 if (base_type(reg->type) != PTR_TO_BTF_ID) 8188 return 0; 8189 8190 if (compatible == &mem_types) { 8191 if (!(arg_type & MEM_RDONLY)) { 8192 verbose(env, 8193 "%s() may write into memory pointed by R%d type=%s\n", 8194 func_id_name(meta->func_id), 8195 regno, reg_type_str(env, reg->type)); 8196 return -EACCES; 8197 } 8198 return 0; 8199 } 8200 8201 switch ((int)reg->type) { 8202 case PTR_TO_BTF_ID: 8203 case PTR_TO_BTF_ID | PTR_TRUSTED: 8204 case PTR_TO_BTF_ID | MEM_RCU: 8205 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8206 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8207 { 8208 /* For bpf_sk_release, it needs to match against first member 8209 * 'struct sock_common', hence make an exception for it. This 8210 * allows bpf_sk_release to work for multiple socket types. 8211 */ 8212 bool strict_type_match = arg_type_is_release(arg_type) && 8213 meta->func_id != BPF_FUNC_sk_release; 8214 8215 if (type_may_be_null(reg->type) && 8216 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8217 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8218 return -EACCES; 8219 } 8220 8221 if (!arg_btf_id) { 8222 if (!compatible->btf_id) { 8223 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8224 return -EFAULT; 8225 } 8226 arg_btf_id = compatible->btf_id; 8227 } 8228 8229 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8230 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8231 return -EACCES; 8232 } else { 8233 if (arg_btf_id == BPF_PTR_POISON) { 8234 verbose(env, "verifier internal error:"); 8235 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8236 regno); 8237 return -EACCES; 8238 } 8239 8240 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8241 btf_vmlinux, *arg_btf_id, 8242 strict_type_match)) { 8243 verbose(env, "R%d is of type %s but %s is expected\n", 8244 regno, btf_type_name(reg->btf, reg->btf_id), 8245 btf_type_name(btf_vmlinux, *arg_btf_id)); 8246 return -EACCES; 8247 } 8248 } 8249 break; 8250 } 8251 case PTR_TO_BTF_ID | MEM_ALLOC: 8252 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8253 meta->func_id != BPF_FUNC_kptr_xchg) { 8254 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8255 return -EFAULT; 8256 } 8257 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8258 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8259 return -EACCES; 8260 } 8261 break; 8262 case PTR_TO_BTF_ID | MEM_PERCPU: 8263 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8264 /* Handled by helper specific checks */ 8265 break; 8266 default: 8267 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8268 return -EFAULT; 8269 } 8270 return 0; 8271 } 8272 8273 static struct btf_field * 8274 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8275 { 8276 struct btf_field *field; 8277 struct btf_record *rec; 8278 8279 rec = reg_btf_record(reg); 8280 if (!rec) 8281 return NULL; 8282 8283 field = btf_record_find(rec, off, fields); 8284 if (!field) 8285 return NULL; 8286 8287 return field; 8288 } 8289 8290 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8291 const struct bpf_reg_state *reg, int regno, 8292 enum bpf_arg_type arg_type) 8293 { 8294 u32 type = reg->type; 8295 8296 /* When referenced register is passed to release function, its fixed 8297 * offset must be 0. 8298 * 8299 * We will check arg_type_is_release reg has ref_obj_id when storing 8300 * meta->release_regno. 8301 */ 8302 if (arg_type_is_release(arg_type)) { 8303 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8304 * may not directly point to the object being released, but to 8305 * dynptr pointing to such object, which might be at some offset 8306 * on the stack. In that case, we simply to fallback to the 8307 * default handling. 8308 */ 8309 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8310 return 0; 8311 8312 /* Doing check_ptr_off_reg check for the offset will catch this 8313 * because fixed_off_ok is false, but checking here allows us 8314 * to give the user a better error message. 8315 */ 8316 if (reg->off) { 8317 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8318 regno); 8319 return -EINVAL; 8320 } 8321 return __check_ptr_off_reg(env, reg, regno, false); 8322 } 8323 8324 switch (type) { 8325 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8326 case PTR_TO_STACK: 8327 case PTR_TO_PACKET: 8328 case PTR_TO_PACKET_META: 8329 case PTR_TO_MAP_KEY: 8330 case PTR_TO_MAP_VALUE: 8331 case PTR_TO_MEM: 8332 case PTR_TO_MEM | MEM_RDONLY: 8333 case PTR_TO_MEM | MEM_RINGBUF: 8334 case PTR_TO_BUF: 8335 case PTR_TO_BUF | MEM_RDONLY: 8336 case SCALAR_VALUE: 8337 return 0; 8338 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8339 * fixed offset. 8340 */ 8341 case PTR_TO_BTF_ID: 8342 case PTR_TO_BTF_ID | MEM_ALLOC: 8343 case PTR_TO_BTF_ID | PTR_TRUSTED: 8344 case PTR_TO_BTF_ID | MEM_RCU: 8345 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8346 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8347 /* When referenced PTR_TO_BTF_ID is passed to release function, 8348 * its fixed offset must be 0. In the other cases, fixed offset 8349 * can be non-zero. This was already checked above. So pass 8350 * fixed_off_ok as true to allow fixed offset for all other 8351 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8352 * still need to do checks instead of returning. 8353 */ 8354 return __check_ptr_off_reg(env, reg, regno, true); 8355 default: 8356 return __check_ptr_off_reg(env, reg, regno, false); 8357 } 8358 } 8359 8360 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8361 const struct bpf_func_proto *fn, 8362 struct bpf_reg_state *regs) 8363 { 8364 struct bpf_reg_state *state = NULL; 8365 int i; 8366 8367 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8368 if (arg_type_is_dynptr(fn->arg_type[i])) { 8369 if (state) { 8370 verbose(env, "verifier internal error: multiple dynptr args\n"); 8371 return NULL; 8372 } 8373 state = ®s[BPF_REG_1 + i]; 8374 } 8375 8376 if (!state) 8377 verbose(env, "verifier internal error: no dynptr arg found\n"); 8378 8379 return state; 8380 } 8381 8382 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8383 { 8384 struct bpf_func_state *state = func(env, reg); 8385 int spi; 8386 8387 if (reg->type == CONST_PTR_TO_DYNPTR) 8388 return reg->id; 8389 spi = dynptr_get_spi(env, reg); 8390 if (spi < 0) 8391 return spi; 8392 return state->stack[spi].spilled_ptr.id; 8393 } 8394 8395 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8396 { 8397 struct bpf_func_state *state = func(env, reg); 8398 int spi; 8399 8400 if (reg->type == CONST_PTR_TO_DYNPTR) 8401 return reg->ref_obj_id; 8402 spi = dynptr_get_spi(env, reg); 8403 if (spi < 0) 8404 return spi; 8405 return state->stack[spi].spilled_ptr.ref_obj_id; 8406 } 8407 8408 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8409 struct bpf_reg_state *reg) 8410 { 8411 struct bpf_func_state *state = func(env, reg); 8412 int spi; 8413 8414 if (reg->type == CONST_PTR_TO_DYNPTR) 8415 return reg->dynptr.type; 8416 8417 spi = __get_spi(reg->off); 8418 if (spi < 0) { 8419 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8420 return BPF_DYNPTR_TYPE_INVALID; 8421 } 8422 8423 return state->stack[spi].spilled_ptr.dynptr.type; 8424 } 8425 8426 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8427 struct bpf_call_arg_meta *meta, 8428 const struct bpf_func_proto *fn, 8429 int insn_idx) 8430 { 8431 u32 regno = BPF_REG_1 + arg; 8432 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8433 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8434 enum bpf_reg_type type = reg->type; 8435 u32 *arg_btf_id = NULL; 8436 int err = 0; 8437 8438 if (arg_type == ARG_DONTCARE) 8439 return 0; 8440 8441 err = check_reg_arg(env, regno, SRC_OP); 8442 if (err) 8443 return err; 8444 8445 if (arg_type == ARG_ANYTHING) { 8446 if (is_pointer_value(env, regno)) { 8447 verbose(env, "R%d leaks addr into helper function\n", 8448 regno); 8449 return -EACCES; 8450 } 8451 return 0; 8452 } 8453 8454 if (type_is_pkt_pointer(type) && 8455 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8456 verbose(env, "helper access to the packet is not allowed\n"); 8457 return -EACCES; 8458 } 8459 8460 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8461 err = resolve_map_arg_type(env, meta, &arg_type); 8462 if (err) 8463 return err; 8464 } 8465 8466 if (register_is_null(reg) && type_may_be_null(arg_type)) 8467 /* A NULL register has a SCALAR_VALUE type, so skip 8468 * type checking. 8469 */ 8470 goto skip_type_check; 8471 8472 /* arg_btf_id and arg_size are in a union. */ 8473 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8474 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8475 arg_btf_id = fn->arg_btf_id[arg]; 8476 8477 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8478 if (err) 8479 return err; 8480 8481 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8482 if (err) 8483 return err; 8484 8485 skip_type_check: 8486 if (arg_type_is_release(arg_type)) { 8487 if (arg_type_is_dynptr(arg_type)) { 8488 struct bpf_func_state *state = func(env, reg); 8489 int spi; 8490 8491 /* Only dynptr created on stack can be released, thus 8492 * the get_spi and stack state checks for spilled_ptr 8493 * should only be done before process_dynptr_func for 8494 * PTR_TO_STACK. 8495 */ 8496 if (reg->type == PTR_TO_STACK) { 8497 spi = dynptr_get_spi(env, reg); 8498 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8499 verbose(env, "arg %d is an unacquired reference\n", regno); 8500 return -EINVAL; 8501 } 8502 } else { 8503 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8504 return -EINVAL; 8505 } 8506 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8507 verbose(env, "R%d must be referenced when passed to release function\n", 8508 regno); 8509 return -EINVAL; 8510 } 8511 if (meta->release_regno) { 8512 verbose(env, "verifier internal error: more than one release argument\n"); 8513 return -EFAULT; 8514 } 8515 meta->release_regno = regno; 8516 } 8517 8518 if (reg->ref_obj_id) { 8519 if (meta->ref_obj_id) { 8520 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8521 regno, reg->ref_obj_id, 8522 meta->ref_obj_id); 8523 return -EFAULT; 8524 } 8525 meta->ref_obj_id = reg->ref_obj_id; 8526 } 8527 8528 switch (base_type(arg_type)) { 8529 case ARG_CONST_MAP_PTR: 8530 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8531 if (meta->map_ptr) { 8532 /* Use map_uid (which is unique id of inner map) to reject: 8533 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8534 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8535 * if (inner_map1 && inner_map2) { 8536 * timer = bpf_map_lookup_elem(inner_map1); 8537 * if (timer) 8538 * // mismatch would have been allowed 8539 * bpf_timer_init(timer, inner_map2); 8540 * } 8541 * 8542 * Comparing map_ptr is enough to distinguish normal and outer maps. 8543 */ 8544 if (meta->map_ptr != reg->map_ptr || 8545 meta->map_uid != reg->map_uid) { 8546 verbose(env, 8547 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8548 meta->map_uid, reg->map_uid); 8549 return -EINVAL; 8550 } 8551 } 8552 meta->map_ptr = reg->map_ptr; 8553 meta->map_uid = reg->map_uid; 8554 break; 8555 case ARG_PTR_TO_MAP_KEY: 8556 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8557 * check that [key, key + map->key_size) are within 8558 * stack limits and initialized 8559 */ 8560 if (!meta->map_ptr) { 8561 /* in function declaration map_ptr must come before 8562 * map_key, so that it's verified and known before 8563 * we have to check map_key here. Otherwise it means 8564 * that kernel subsystem misconfigured verifier 8565 */ 8566 verbose(env, "invalid map_ptr to access map->key\n"); 8567 return -EACCES; 8568 } 8569 err = check_helper_mem_access(env, regno, 8570 meta->map_ptr->key_size, false, 8571 NULL); 8572 break; 8573 case ARG_PTR_TO_MAP_VALUE: 8574 if (type_may_be_null(arg_type) && register_is_null(reg)) 8575 return 0; 8576 8577 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8578 * check [value, value + map->value_size) validity 8579 */ 8580 if (!meta->map_ptr) { 8581 /* kernel subsystem misconfigured verifier */ 8582 verbose(env, "invalid map_ptr to access map->value\n"); 8583 return -EACCES; 8584 } 8585 meta->raw_mode = arg_type & MEM_UNINIT; 8586 err = check_helper_mem_access(env, regno, 8587 meta->map_ptr->value_size, false, 8588 meta); 8589 break; 8590 case ARG_PTR_TO_PERCPU_BTF_ID: 8591 if (!reg->btf_id) { 8592 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8593 return -EACCES; 8594 } 8595 meta->ret_btf = reg->btf; 8596 meta->ret_btf_id = reg->btf_id; 8597 break; 8598 case ARG_PTR_TO_SPIN_LOCK: 8599 if (in_rbtree_lock_required_cb(env)) { 8600 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8601 return -EACCES; 8602 } 8603 if (meta->func_id == BPF_FUNC_spin_lock) { 8604 err = process_spin_lock(env, regno, true); 8605 if (err) 8606 return err; 8607 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8608 err = process_spin_lock(env, regno, false); 8609 if (err) 8610 return err; 8611 } else { 8612 verbose(env, "verifier internal error\n"); 8613 return -EFAULT; 8614 } 8615 break; 8616 case ARG_PTR_TO_TIMER: 8617 err = process_timer_func(env, regno, meta); 8618 if (err) 8619 return err; 8620 break; 8621 case ARG_PTR_TO_FUNC: 8622 meta->subprogno = reg->subprogno; 8623 break; 8624 case ARG_PTR_TO_MEM: 8625 /* The access to this pointer is only checked when we hit the 8626 * next is_mem_size argument below. 8627 */ 8628 meta->raw_mode = arg_type & MEM_UNINIT; 8629 if (arg_type & MEM_FIXED_SIZE) { 8630 err = check_helper_mem_access(env, regno, 8631 fn->arg_size[arg], false, 8632 meta); 8633 } 8634 break; 8635 case ARG_CONST_SIZE: 8636 err = check_mem_size_reg(env, reg, regno, false, meta); 8637 break; 8638 case ARG_CONST_SIZE_OR_ZERO: 8639 err = check_mem_size_reg(env, reg, regno, true, meta); 8640 break; 8641 case ARG_PTR_TO_DYNPTR: 8642 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8643 if (err) 8644 return err; 8645 break; 8646 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8647 if (!tnum_is_const(reg->var_off)) { 8648 verbose(env, "R%d is not a known constant'\n", 8649 regno); 8650 return -EACCES; 8651 } 8652 meta->mem_size = reg->var_off.value; 8653 err = mark_chain_precision(env, regno); 8654 if (err) 8655 return err; 8656 break; 8657 case ARG_PTR_TO_INT: 8658 case ARG_PTR_TO_LONG: 8659 { 8660 int size = int_ptr_type_to_size(arg_type); 8661 8662 err = check_helper_mem_access(env, regno, size, false, meta); 8663 if (err) 8664 return err; 8665 err = check_ptr_alignment(env, reg, 0, size, true); 8666 break; 8667 } 8668 case ARG_PTR_TO_CONST_STR: 8669 { 8670 struct bpf_map *map = reg->map_ptr; 8671 int map_off; 8672 u64 map_addr; 8673 char *str_ptr; 8674 8675 if (!bpf_map_is_rdonly(map)) { 8676 verbose(env, "R%d does not point to a readonly map'\n", regno); 8677 return -EACCES; 8678 } 8679 8680 if (!tnum_is_const(reg->var_off)) { 8681 verbose(env, "R%d is not a constant address'\n", regno); 8682 return -EACCES; 8683 } 8684 8685 if (!map->ops->map_direct_value_addr) { 8686 verbose(env, "no direct value access support for this map type\n"); 8687 return -EACCES; 8688 } 8689 8690 err = check_map_access(env, regno, reg->off, 8691 map->value_size - reg->off, false, 8692 ACCESS_HELPER); 8693 if (err) 8694 return err; 8695 8696 map_off = reg->off + reg->var_off.value; 8697 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8698 if (err) { 8699 verbose(env, "direct value access on string failed\n"); 8700 return err; 8701 } 8702 8703 str_ptr = (char *)(long)(map_addr); 8704 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8705 verbose(env, "string is not zero-terminated\n"); 8706 return -EINVAL; 8707 } 8708 break; 8709 } 8710 case ARG_PTR_TO_KPTR: 8711 err = process_kptr_func(env, regno, meta); 8712 if (err) 8713 return err; 8714 break; 8715 } 8716 8717 return err; 8718 } 8719 8720 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8721 { 8722 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8723 enum bpf_prog_type type = resolve_prog_type(env->prog); 8724 8725 if (func_id != BPF_FUNC_map_update_elem) 8726 return false; 8727 8728 /* It's not possible to get access to a locked struct sock in these 8729 * contexts, so updating is safe. 8730 */ 8731 switch (type) { 8732 case BPF_PROG_TYPE_TRACING: 8733 if (eatype == BPF_TRACE_ITER) 8734 return true; 8735 break; 8736 case BPF_PROG_TYPE_SOCKET_FILTER: 8737 case BPF_PROG_TYPE_SCHED_CLS: 8738 case BPF_PROG_TYPE_SCHED_ACT: 8739 case BPF_PROG_TYPE_XDP: 8740 case BPF_PROG_TYPE_SK_REUSEPORT: 8741 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8742 case BPF_PROG_TYPE_SK_LOOKUP: 8743 return true; 8744 default: 8745 break; 8746 } 8747 8748 verbose(env, "cannot update sockmap in this context\n"); 8749 return false; 8750 } 8751 8752 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8753 { 8754 return env->prog->jit_requested && 8755 bpf_jit_supports_subprog_tailcalls(); 8756 } 8757 8758 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8759 struct bpf_map *map, int func_id) 8760 { 8761 if (!map) 8762 return 0; 8763 8764 /* We need a two way check, first is from map perspective ... */ 8765 switch (map->map_type) { 8766 case BPF_MAP_TYPE_PROG_ARRAY: 8767 if (func_id != BPF_FUNC_tail_call) 8768 goto error; 8769 break; 8770 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8771 if (func_id != BPF_FUNC_perf_event_read && 8772 func_id != BPF_FUNC_perf_event_output && 8773 func_id != BPF_FUNC_skb_output && 8774 func_id != BPF_FUNC_perf_event_read_value && 8775 func_id != BPF_FUNC_xdp_output) 8776 goto error; 8777 break; 8778 case BPF_MAP_TYPE_RINGBUF: 8779 if (func_id != BPF_FUNC_ringbuf_output && 8780 func_id != BPF_FUNC_ringbuf_reserve && 8781 func_id != BPF_FUNC_ringbuf_query && 8782 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8783 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8784 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8785 goto error; 8786 break; 8787 case BPF_MAP_TYPE_USER_RINGBUF: 8788 if (func_id != BPF_FUNC_user_ringbuf_drain) 8789 goto error; 8790 break; 8791 case BPF_MAP_TYPE_STACK_TRACE: 8792 if (func_id != BPF_FUNC_get_stackid) 8793 goto error; 8794 break; 8795 case BPF_MAP_TYPE_CGROUP_ARRAY: 8796 if (func_id != BPF_FUNC_skb_under_cgroup && 8797 func_id != BPF_FUNC_current_task_under_cgroup) 8798 goto error; 8799 break; 8800 case BPF_MAP_TYPE_CGROUP_STORAGE: 8801 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8802 if (func_id != BPF_FUNC_get_local_storage) 8803 goto error; 8804 break; 8805 case BPF_MAP_TYPE_DEVMAP: 8806 case BPF_MAP_TYPE_DEVMAP_HASH: 8807 if (func_id != BPF_FUNC_redirect_map && 8808 func_id != BPF_FUNC_map_lookup_elem) 8809 goto error; 8810 break; 8811 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8812 * appear. 8813 */ 8814 case BPF_MAP_TYPE_CPUMAP: 8815 if (func_id != BPF_FUNC_redirect_map) 8816 goto error; 8817 break; 8818 case BPF_MAP_TYPE_XSKMAP: 8819 if (func_id != BPF_FUNC_redirect_map && 8820 func_id != BPF_FUNC_map_lookup_elem) 8821 goto error; 8822 break; 8823 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8824 case BPF_MAP_TYPE_HASH_OF_MAPS: 8825 if (func_id != BPF_FUNC_map_lookup_elem) 8826 goto error; 8827 break; 8828 case BPF_MAP_TYPE_SOCKMAP: 8829 if (func_id != BPF_FUNC_sk_redirect_map && 8830 func_id != BPF_FUNC_sock_map_update && 8831 func_id != BPF_FUNC_map_delete_elem && 8832 func_id != BPF_FUNC_msg_redirect_map && 8833 func_id != BPF_FUNC_sk_select_reuseport && 8834 func_id != BPF_FUNC_map_lookup_elem && 8835 !may_update_sockmap(env, func_id)) 8836 goto error; 8837 break; 8838 case BPF_MAP_TYPE_SOCKHASH: 8839 if (func_id != BPF_FUNC_sk_redirect_hash && 8840 func_id != BPF_FUNC_sock_hash_update && 8841 func_id != BPF_FUNC_map_delete_elem && 8842 func_id != BPF_FUNC_msg_redirect_hash && 8843 func_id != BPF_FUNC_sk_select_reuseport && 8844 func_id != BPF_FUNC_map_lookup_elem && 8845 !may_update_sockmap(env, func_id)) 8846 goto error; 8847 break; 8848 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8849 if (func_id != BPF_FUNC_sk_select_reuseport) 8850 goto error; 8851 break; 8852 case BPF_MAP_TYPE_QUEUE: 8853 case BPF_MAP_TYPE_STACK: 8854 if (func_id != BPF_FUNC_map_peek_elem && 8855 func_id != BPF_FUNC_map_pop_elem && 8856 func_id != BPF_FUNC_map_push_elem) 8857 goto error; 8858 break; 8859 case BPF_MAP_TYPE_SK_STORAGE: 8860 if (func_id != BPF_FUNC_sk_storage_get && 8861 func_id != BPF_FUNC_sk_storage_delete && 8862 func_id != BPF_FUNC_kptr_xchg) 8863 goto error; 8864 break; 8865 case BPF_MAP_TYPE_INODE_STORAGE: 8866 if (func_id != BPF_FUNC_inode_storage_get && 8867 func_id != BPF_FUNC_inode_storage_delete && 8868 func_id != BPF_FUNC_kptr_xchg) 8869 goto error; 8870 break; 8871 case BPF_MAP_TYPE_TASK_STORAGE: 8872 if (func_id != BPF_FUNC_task_storage_get && 8873 func_id != BPF_FUNC_task_storage_delete && 8874 func_id != BPF_FUNC_kptr_xchg) 8875 goto error; 8876 break; 8877 case BPF_MAP_TYPE_CGRP_STORAGE: 8878 if (func_id != BPF_FUNC_cgrp_storage_get && 8879 func_id != BPF_FUNC_cgrp_storage_delete && 8880 func_id != BPF_FUNC_kptr_xchg) 8881 goto error; 8882 break; 8883 case BPF_MAP_TYPE_BLOOM_FILTER: 8884 if (func_id != BPF_FUNC_map_peek_elem && 8885 func_id != BPF_FUNC_map_push_elem) 8886 goto error; 8887 break; 8888 default: 8889 break; 8890 } 8891 8892 /* ... and second from the function itself. */ 8893 switch (func_id) { 8894 case BPF_FUNC_tail_call: 8895 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8896 goto error; 8897 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8898 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8899 return -EINVAL; 8900 } 8901 break; 8902 case BPF_FUNC_perf_event_read: 8903 case BPF_FUNC_perf_event_output: 8904 case BPF_FUNC_perf_event_read_value: 8905 case BPF_FUNC_skb_output: 8906 case BPF_FUNC_xdp_output: 8907 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8908 goto error; 8909 break; 8910 case BPF_FUNC_ringbuf_output: 8911 case BPF_FUNC_ringbuf_reserve: 8912 case BPF_FUNC_ringbuf_query: 8913 case BPF_FUNC_ringbuf_reserve_dynptr: 8914 case BPF_FUNC_ringbuf_submit_dynptr: 8915 case BPF_FUNC_ringbuf_discard_dynptr: 8916 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8917 goto error; 8918 break; 8919 case BPF_FUNC_user_ringbuf_drain: 8920 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8921 goto error; 8922 break; 8923 case BPF_FUNC_get_stackid: 8924 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8925 goto error; 8926 break; 8927 case BPF_FUNC_current_task_under_cgroup: 8928 case BPF_FUNC_skb_under_cgroup: 8929 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8930 goto error; 8931 break; 8932 case BPF_FUNC_redirect_map: 8933 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8934 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8935 map->map_type != BPF_MAP_TYPE_CPUMAP && 8936 map->map_type != BPF_MAP_TYPE_XSKMAP) 8937 goto error; 8938 break; 8939 case BPF_FUNC_sk_redirect_map: 8940 case BPF_FUNC_msg_redirect_map: 8941 case BPF_FUNC_sock_map_update: 8942 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8943 goto error; 8944 break; 8945 case BPF_FUNC_sk_redirect_hash: 8946 case BPF_FUNC_msg_redirect_hash: 8947 case BPF_FUNC_sock_hash_update: 8948 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8949 goto error; 8950 break; 8951 case BPF_FUNC_get_local_storage: 8952 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8953 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8954 goto error; 8955 break; 8956 case BPF_FUNC_sk_select_reuseport: 8957 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8958 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8959 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8960 goto error; 8961 break; 8962 case BPF_FUNC_map_pop_elem: 8963 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8964 map->map_type != BPF_MAP_TYPE_STACK) 8965 goto error; 8966 break; 8967 case BPF_FUNC_map_peek_elem: 8968 case BPF_FUNC_map_push_elem: 8969 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8970 map->map_type != BPF_MAP_TYPE_STACK && 8971 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8972 goto error; 8973 break; 8974 case BPF_FUNC_map_lookup_percpu_elem: 8975 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8976 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8977 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8978 goto error; 8979 break; 8980 case BPF_FUNC_sk_storage_get: 8981 case BPF_FUNC_sk_storage_delete: 8982 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8983 goto error; 8984 break; 8985 case BPF_FUNC_inode_storage_get: 8986 case BPF_FUNC_inode_storage_delete: 8987 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8988 goto error; 8989 break; 8990 case BPF_FUNC_task_storage_get: 8991 case BPF_FUNC_task_storage_delete: 8992 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 8993 goto error; 8994 break; 8995 case BPF_FUNC_cgrp_storage_get: 8996 case BPF_FUNC_cgrp_storage_delete: 8997 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 8998 goto error; 8999 break; 9000 default: 9001 break; 9002 } 9003 9004 return 0; 9005 error: 9006 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9007 map->map_type, func_id_name(func_id), func_id); 9008 return -EINVAL; 9009 } 9010 9011 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9012 { 9013 int count = 0; 9014 9015 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9016 count++; 9017 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9018 count++; 9019 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9020 count++; 9021 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9022 count++; 9023 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9024 count++; 9025 9026 /* We only support one arg being in raw mode at the moment, 9027 * which is sufficient for the helper functions we have 9028 * right now. 9029 */ 9030 return count <= 1; 9031 } 9032 9033 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9034 { 9035 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9036 bool has_size = fn->arg_size[arg] != 0; 9037 bool is_next_size = false; 9038 9039 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9040 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9041 9042 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9043 return is_next_size; 9044 9045 return has_size == is_next_size || is_next_size == is_fixed; 9046 } 9047 9048 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9049 { 9050 /* bpf_xxx(..., buf, len) call will access 'len' 9051 * bytes from memory 'buf'. Both arg types need 9052 * to be paired, so make sure there's no buggy 9053 * helper function specification. 9054 */ 9055 if (arg_type_is_mem_size(fn->arg1_type) || 9056 check_args_pair_invalid(fn, 0) || 9057 check_args_pair_invalid(fn, 1) || 9058 check_args_pair_invalid(fn, 2) || 9059 check_args_pair_invalid(fn, 3) || 9060 check_args_pair_invalid(fn, 4)) 9061 return false; 9062 9063 return true; 9064 } 9065 9066 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9067 { 9068 int i; 9069 9070 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9071 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9072 return !!fn->arg_btf_id[i]; 9073 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9074 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9075 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9076 /* arg_btf_id and arg_size are in a union. */ 9077 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9078 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9079 return false; 9080 } 9081 9082 return true; 9083 } 9084 9085 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9086 { 9087 return check_raw_mode_ok(fn) && 9088 check_arg_pair_ok(fn) && 9089 check_btf_id_ok(fn) ? 0 : -EINVAL; 9090 } 9091 9092 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9093 * are now invalid, so turn them into unknown SCALAR_VALUE. 9094 * 9095 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9096 * since these slices point to packet data. 9097 */ 9098 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9099 { 9100 struct bpf_func_state *state; 9101 struct bpf_reg_state *reg; 9102 9103 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9104 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9105 mark_reg_invalid(env, reg); 9106 })); 9107 } 9108 9109 enum { 9110 AT_PKT_END = -1, 9111 BEYOND_PKT_END = -2, 9112 }; 9113 9114 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9115 { 9116 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9117 struct bpf_reg_state *reg = &state->regs[regn]; 9118 9119 if (reg->type != PTR_TO_PACKET) 9120 /* PTR_TO_PACKET_META is not supported yet */ 9121 return; 9122 9123 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9124 * How far beyond pkt_end it goes is unknown. 9125 * if (!range_open) it's the case of pkt >= pkt_end 9126 * if (range_open) it's the case of pkt > pkt_end 9127 * hence this pointer is at least 1 byte bigger than pkt_end 9128 */ 9129 if (range_open) 9130 reg->range = BEYOND_PKT_END; 9131 else 9132 reg->range = AT_PKT_END; 9133 } 9134 9135 /* The pointer with the specified id has released its reference to kernel 9136 * resources. Identify all copies of the same pointer and clear the reference. 9137 */ 9138 static int release_reference(struct bpf_verifier_env *env, 9139 int ref_obj_id) 9140 { 9141 struct bpf_func_state *state; 9142 struct bpf_reg_state *reg; 9143 int err; 9144 9145 err = release_reference_state(cur_func(env), ref_obj_id); 9146 if (err) 9147 return err; 9148 9149 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9150 if (reg->ref_obj_id == ref_obj_id) 9151 mark_reg_invalid(env, reg); 9152 })); 9153 9154 return 0; 9155 } 9156 9157 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9158 { 9159 struct bpf_func_state *unused; 9160 struct bpf_reg_state *reg; 9161 9162 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9163 if (type_is_non_owning_ref(reg->type)) 9164 mark_reg_invalid(env, reg); 9165 })); 9166 } 9167 9168 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9169 struct bpf_reg_state *regs) 9170 { 9171 int i; 9172 9173 /* after the call registers r0 - r5 were scratched */ 9174 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9175 mark_reg_not_init(env, regs, caller_saved[i]); 9176 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9177 } 9178 } 9179 9180 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9181 struct bpf_func_state *caller, 9182 struct bpf_func_state *callee, 9183 int insn_idx); 9184 9185 static int set_callee_state(struct bpf_verifier_env *env, 9186 struct bpf_func_state *caller, 9187 struct bpf_func_state *callee, int insn_idx); 9188 9189 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9190 set_callee_state_fn set_callee_state_cb, 9191 struct bpf_verifier_state *state) 9192 { 9193 struct bpf_func_state *caller, *callee; 9194 int err; 9195 9196 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9197 verbose(env, "the call stack of %d frames is too deep\n", 9198 state->curframe + 2); 9199 return -E2BIG; 9200 } 9201 9202 if (state->frame[state->curframe + 1]) { 9203 verbose(env, "verifier bug. Frame %d already allocated\n", 9204 state->curframe + 1); 9205 return -EFAULT; 9206 } 9207 9208 caller = state->frame[state->curframe]; 9209 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9210 if (!callee) 9211 return -ENOMEM; 9212 state->frame[state->curframe + 1] = callee; 9213 9214 /* callee cannot access r0, r6 - r9 for reading and has to write 9215 * into its own stack before reading from it. 9216 * callee can read/write into caller's stack 9217 */ 9218 init_func_state(env, callee, 9219 /* remember the callsite, it will be used by bpf_exit */ 9220 callsite, 9221 state->curframe + 1 /* frameno within this callchain */, 9222 subprog /* subprog number within this prog */); 9223 /* Transfer references to the callee */ 9224 err = copy_reference_state(callee, caller); 9225 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9226 if (err) 9227 goto err_out; 9228 9229 /* only increment it after check_reg_arg() finished */ 9230 state->curframe++; 9231 9232 return 0; 9233 9234 err_out: 9235 free_func_state(callee); 9236 state->frame[state->curframe + 1] = NULL; 9237 return err; 9238 } 9239 9240 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9241 int insn_idx, int subprog, 9242 set_callee_state_fn set_callee_state_cb) 9243 { 9244 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9245 struct bpf_func_state *caller, *callee; 9246 int err; 9247 9248 caller = state->frame[state->curframe]; 9249 err = btf_check_subprog_call(env, subprog, caller->regs); 9250 if (err == -EFAULT) 9251 return err; 9252 9253 /* set_callee_state is used for direct subprog calls, but we are 9254 * interested in validating only BPF helpers that can call subprogs as 9255 * callbacks 9256 */ 9257 if (bpf_pseudo_kfunc_call(insn) && 9258 !is_sync_callback_calling_kfunc(insn->imm)) { 9259 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9260 func_id_name(insn->imm), insn->imm); 9261 return -EFAULT; 9262 } else if (!bpf_pseudo_kfunc_call(insn) && 9263 !is_callback_calling_function(insn->imm)) { /* helper */ 9264 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9265 func_id_name(insn->imm), insn->imm); 9266 return -EFAULT; 9267 } 9268 9269 if (insn->code == (BPF_JMP | BPF_CALL) && 9270 insn->src_reg == 0 && 9271 insn->imm == BPF_FUNC_timer_set_callback) { 9272 struct bpf_verifier_state *async_cb; 9273 9274 /* there is no real recursion here. timer callbacks are async */ 9275 env->subprog_info[subprog].is_async_cb = true; 9276 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9277 insn_idx, subprog); 9278 if (!async_cb) 9279 return -EFAULT; 9280 callee = async_cb->frame[0]; 9281 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9282 9283 /* Convert bpf_timer_set_callback() args into timer callback args */ 9284 err = set_callee_state_cb(env, caller, callee, insn_idx); 9285 if (err) 9286 return err; 9287 9288 return 0; 9289 } 9290 9291 /* for callback functions enqueue entry to callback and 9292 * proceed with next instruction within current frame. 9293 */ 9294 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9295 if (!callback_state) 9296 return -ENOMEM; 9297 9298 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9299 callback_state); 9300 if (err) 9301 return err; 9302 9303 callback_state->callback_unroll_depth++; 9304 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9305 caller->callback_depth = 0; 9306 return 0; 9307 } 9308 9309 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9310 int *insn_idx) 9311 { 9312 struct bpf_verifier_state *state = env->cur_state; 9313 struct bpf_func_state *caller; 9314 int err, subprog, target_insn; 9315 9316 target_insn = *insn_idx + insn->imm + 1; 9317 subprog = find_subprog(env, target_insn); 9318 if (subprog < 0) { 9319 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9320 return -EFAULT; 9321 } 9322 9323 caller = state->frame[state->curframe]; 9324 err = btf_check_subprog_call(env, subprog, caller->regs); 9325 if (err == -EFAULT) 9326 return err; 9327 if (subprog_is_global(env, subprog)) { 9328 if (err) { 9329 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9330 return err; 9331 } 9332 9333 if (env->log.level & BPF_LOG_LEVEL) 9334 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9335 clear_caller_saved_regs(env, caller->regs); 9336 9337 /* All global functions return a 64-bit SCALAR_VALUE */ 9338 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9339 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9340 9341 /* continue with next insn after call */ 9342 return 0; 9343 } 9344 9345 /* for regular function entry setup new frame and continue 9346 * from that frame. 9347 */ 9348 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9349 if (err) 9350 return err; 9351 9352 clear_caller_saved_regs(env, caller->regs); 9353 9354 /* and go analyze first insn of the callee */ 9355 *insn_idx = env->subprog_info[subprog].start - 1; 9356 9357 if (env->log.level & BPF_LOG_LEVEL) { 9358 verbose(env, "caller:\n"); 9359 print_verifier_state(env, caller, true); 9360 verbose(env, "callee:\n"); 9361 print_verifier_state(env, state->frame[state->curframe], true); 9362 } 9363 9364 return 0; 9365 } 9366 9367 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9368 struct bpf_func_state *caller, 9369 struct bpf_func_state *callee) 9370 { 9371 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9372 * void *callback_ctx, u64 flags); 9373 * callback_fn(struct bpf_map *map, void *key, void *value, 9374 * void *callback_ctx); 9375 */ 9376 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9377 9378 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9379 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9380 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9381 9382 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9383 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9384 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9385 9386 /* pointer to stack or null */ 9387 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9388 9389 /* unused */ 9390 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9391 return 0; 9392 } 9393 9394 static int set_callee_state(struct bpf_verifier_env *env, 9395 struct bpf_func_state *caller, 9396 struct bpf_func_state *callee, int insn_idx) 9397 { 9398 int i; 9399 9400 /* copy r1 - r5 args that callee can access. The copy includes parent 9401 * pointers, which connects us up to the liveness chain 9402 */ 9403 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9404 callee->regs[i] = caller->regs[i]; 9405 return 0; 9406 } 9407 9408 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9409 struct bpf_func_state *caller, 9410 struct bpf_func_state *callee, 9411 int insn_idx) 9412 { 9413 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9414 struct bpf_map *map; 9415 int err; 9416 9417 if (bpf_map_ptr_poisoned(insn_aux)) { 9418 verbose(env, "tail_call abusing map_ptr\n"); 9419 return -EINVAL; 9420 } 9421 9422 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9423 if (!map->ops->map_set_for_each_callback_args || 9424 !map->ops->map_for_each_callback) { 9425 verbose(env, "callback function not allowed for map\n"); 9426 return -ENOTSUPP; 9427 } 9428 9429 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9430 if (err) 9431 return err; 9432 9433 callee->in_callback_fn = true; 9434 callee->callback_ret_range = tnum_range(0, 1); 9435 return 0; 9436 } 9437 9438 static int set_loop_callback_state(struct bpf_verifier_env *env, 9439 struct bpf_func_state *caller, 9440 struct bpf_func_state *callee, 9441 int insn_idx) 9442 { 9443 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9444 * u64 flags); 9445 * callback_fn(u32 index, void *callback_ctx); 9446 */ 9447 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9448 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9449 9450 /* unused */ 9451 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9452 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9453 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9454 9455 callee->in_callback_fn = true; 9456 callee->callback_ret_range = tnum_range(0, 1); 9457 return 0; 9458 } 9459 9460 static int set_timer_callback_state(struct bpf_verifier_env *env, 9461 struct bpf_func_state *caller, 9462 struct bpf_func_state *callee, 9463 int insn_idx) 9464 { 9465 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9466 9467 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9468 * callback_fn(struct bpf_map *map, void *key, void *value); 9469 */ 9470 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9471 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9472 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9473 9474 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9475 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9476 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9477 9478 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9479 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9480 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9481 9482 /* unused */ 9483 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9484 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9485 callee->in_async_callback_fn = true; 9486 callee->callback_ret_range = tnum_range(0, 1); 9487 return 0; 9488 } 9489 9490 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9491 struct bpf_func_state *caller, 9492 struct bpf_func_state *callee, 9493 int insn_idx) 9494 { 9495 /* bpf_find_vma(struct task_struct *task, u64 addr, 9496 * void *callback_fn, void *callback_ctx, u64 flags) 9497 * (callback_fn)(struct task_struct *task, 9498 * struct vm_area_struct *vma, void *callback_ctx); 9499 */ 9500 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9501 9502 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9503 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9504 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9505 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9506 9507 /* pointer to stack or null */ 9508 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9509 9510 /* unused */ 9511 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9512 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9513 callee->in_callback_fn = true; 9514 callee->callback_ret_range = tnum_range(0, 1); 9515 return 0; 9516 } 9517 9518 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9519 struct bpf_func_state *caller, 9520 struct bpf_func_state *callee, 9521 int insn_idx) 9522 { 9523 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9524 * callback_ctx, u64 flags); 9525 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9526 */ 9527 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9528 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9529 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9530 9531 /* unused */ 9532 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9533 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9534 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9535 9536 callee->in_callback_fn = true; 9537 callee->callback_ret_range = tnum_range(0, 1); 9538 return 0; 9539 } 9540 9541 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9542 struct bpf_func_state *caller, 9543 struct bpf_func_state *callee, 9544 int insn_idx) 9545 { 9546 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9547 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9548 * 9549 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9550 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9551 * by this point, so look at 'root' 9552 */ 9553 struct btf_field *field; 9554 9555 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9556 BPF_RB_ROOT); 9557 if (!field || !field->graph_root.value_btf_id) 9558 return -EFAULT; 9559 9560 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9561 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9562 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9563 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9564 9565 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9566 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9567 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9568 callee->in_callback_fn = true; 9569 callee->callback_ret_range = tnum_range(0, 1); 9570 return 0; 9571 } 9572 9573 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9574 9575 /* Are we currently verifying the callback for a rbtree helper that must 9576 * be called with lock held? If so, no need to complain about unreleased 9577 * lock 9578 */ 9579 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9580 { 9581 struct bpf_verifier_state *state = env->cur_state; 9582 struct bpf_insn *insn = env->prog->insnsi; 9583 struct bpf_func_state *callee; 9584 int kfunc_btf_id; 9585 9586 if (!state->curframe) 9587 return false; 9588 9589 callee = state->frame[state->curframe]; 9590 9591 if (!callee->in_callback_fn) 9592 return false; 9593 9594 kfunc_btf_id = insn[callee->callsite].imm; 9595 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9596 } 9597 9598 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9599 { 9600 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9601 struct bpf_func_state *caller, *callee; 9602 struct bpf_reg_state *r0; 9603 bool in_callback_fn; 9604 int err; 9605 9606 callee = state->frame[state->curframe]; 9607 r0 = &callee->regs[BPF_REG_0]; 9608 if (r0->type == PTR_TO_STACK) { 9609 /* technically it's ok to return caller's stack pointer 9610 * (or caller's caller's pointer) back to the caller, 9611 * since these pointers are valid. Only current stack 9612 * pointer will be invalid as soon as function exits, 9613 * but let's be conservative 9614 */ 9615 verbose(env, "cannot return stack pointer to the caller\n"); 9616 return -EINVAL; 9617 } 9618 9619 caller = state->frame[state->curframe - 1]; 9620 if (callee->in_callback_fn) { 9621 /* enforce R0 return value range [0, 1]. */ 9622 struct tnum range = callee->callback_ret_range; 9623 9624 if (r0->type != SCALAR_VALUE) { 9625 verbose(env, "R0 not a scalar value\n"); 9626 return -EACCES; 9627 } 9628 9629 /* we are going to rely on register's precise value */ 9630 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9631 err = err ?: mark_chain_precision(env, BPF_REG_0); 9632 if (err) 9633 return err; 9634 9635 if (!tnum_in(range, r0->var_off)) { 9636 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9637 return -EINVAL; 9638 } 9639 if (!calls_callback(env, callee->callsite)) { 9640 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9641 *insn_idx, callee->callsite); 9642 return -EFAULT; 9643 } 9644 } else { 9645 /* return to the caller whatever r0 had in the callee */ 9646 caller->regs[BPF_REG_0] = *r0; 9647 } 9648 9649 /* callback_fn frame should have released its own additions to parent's 9650 * reference state at this point, or check_reference_leak would 9651 * complain, hence it must be the same as the caller. There is no need 9652 * to copy it back. 9653 */ 9654 if (!callee->in_callback_fn) { 9655 /* Transfer references to the caller */ 9656 err = copy_reference_state(caller, callee); 9657 if (err) 9658 return err; 9659 } 9660 9661 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9662 * there function call logic would reschedule callback visit. If iteration 9663 * converges is_state_visited() would prune that visit eventually. 9664 */ 9665 in_callback_fn = callee->in_callback_fn; 9666 if (in_callback_fn) 9667 *insn_idx = callee->callsite; 9668 else 9669 *insn_idx = callee->callsite + 1; 9670 9671 if (env->log.level & BPF_LOG_LEVEL) { 9672 verbose(env, "returning from callee:\n"); 9673 print_verifier_state(env, callee, true); 9674 verbose(env, "to caller at %d:\n", *insn_idx); 9675 print_verifier_state(env, caller, true); 9676 } 9677 /* clear everything in the callee */ 9678 free_func_state(callee); 9679 state->frame[state->curframe--] = NULL; 9680 9681 /* for callbacks widen imprecise scalars to make programs like below verify: 9682 * 9683 * struct ctx { int i; } 9684 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9685 * ... 9686 * struct ctx = { .i = 0; } 9687 * bpf_loop(100, cb, &ctx, 0); 9688 * 9689 * This is similar to what is done in process_iter_next_call() for open 9690 * coded iterators. 9691 */ 9692 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9693 if (prev_st) { 9694 err = widen_imprecise_scalars(env, prev_st, state); 9695 if (err) 9696 return err; 9697 } 9698 return 0; 9699 } 9700 9701 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9702 int func_id, 9703 struct bpf_call_arg_meta *meta) 9704 { 9705 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9706 9707 if (ret_type != RET_INTEGER) 9708 return; 9709 9710 switch (func_id) { 9711 case BPF_FUNC_get_stack: 9712 case BPF_FUNC_get_task_stack: 9713 case BPF_FUNC_probe_read_str: 9714 case BPF_FUNC_probe_read_kernel_str: 9715 case BPF_FUNC_probe_read_user_str: 9716 ret_reg->smax_value = meta->msize_max_value; 9717 ret_reg->s32_max_value = meta->msize_max_value; 9718 ret_reg->smin_value = -MAX_ERRNO; 9719 ret_reg->s32_min_value = -MAX_ERRNO; 9720 reg_bounds_sync(ret_reg); 9721 break; 9722 case BPF_FUNC_get_smp_processor_id: 9723 ret_reg->umax_value = nr_cpu_ids - 1; 9724 ret_reg->u32_max_value = nr_cpu_ids - 1; 9725 ret_reg->smax_value = nr_cpu_ids - 1; 9726 ret_reg->s32_max_value = nr_cpu_ids - 1; 9727 ret_reg->umin_value = 0; 9728 ret_reg->u32_min_value = 0; 9729 ret_reg->smin_value = 0; 9730 ret_reg->s32_min_value = 0; 9731 reg_bounds_sync(ret_reg); 9732 break; 9733 } 9734 } 9735 9736 static int 9737 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9738 int func_id, int insn_idx) 9739 { 9740 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9741 struct bpf_map *map = meta->map_ptr; 9742 9743 if (func_id != BPF_FUNC_tail_call && 9744 func_id != BPF_FUNC_map_lookup_elem && 9745 func_id != BPF_FUNC_map_update_elem && 9746 func_id != BPF_FUNC_map_delete_elem && 9747 func_id != BPF_FUNC_map_push_elem && 9748 func_id != BPF_FUNC_map_pop_elem && 9749 func_id != BPF_FUNC_map_peek_elem && 9750 func_id != BPF_FUNC_for_each_map_elem && 9751 func_id != BPF_FUNC_redirect_map && 9752 func_id != BPF_FUNC_map_lookup_percpu_elem) 9753 return 0; 9754 9755 if (map == NULL) { 9756 verbose(env, "kernel subsystem misconfigured verifier\n"); 9757 return -EINVAL; 9758 } 9759 9760 /* In case of read-only, some additional restrictions 9761 * need to be applied in order to prevent altering the 9762 * state of the map from program side. 9763 */ 9764 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9765 (func_id == BPF_FUNC_map_delete_elem || 9766 func_id == BPF_FUNC_map_update_elem || 9767 func_id == BPF_FUNC_map_push_elem || 9768 func_id == BPF_FUNC_map_pop_elem)) { 9769 verbose(env, "write into map forbidden\n"); 9770 return -EACCES; 9771 } 9772 9773 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9774 bpf_map_ptr_store(aux, meta->map_ptr, 9775 !meta->map_ptr->bypass_spec_v1); 9776 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9777 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9778 !meta->map_ptr->bypass_spec_v1); 9779 return 0; 9780 } 9781 9782 static int 9783 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9784 int func_id, int insn_idx) 9785 { 9786 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9787 struct bpf_reg_state *regs = cur_regs(env), *reg; 9788 struct bpf_map *map = meta->map_ptr; 9789 u64 val, max; 9790 int err; 9791 9792 if (func_id != BPF_FUNC_tail_call) 9793 return 0; 9794 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9795 verbose(env, "kernel subsystem misconfigured verifier\n"); 9796 return -EINVAL; 9797 } 9798 9799 reg = ®s[BPF_REG_3]; 9800 val = reg->var_off.value; 9801 max = map->max_entries; 9802 9803 if (!(register_is_const(reg) && val < max)) { 9804 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9805 return 0; 9806 } 9807 9808 err = mark_chain_precision(env, BPF_REG_3); 9809 if (err) 9810 return err; 9811 if (bpf_map_key_unseen(aux)) 9812 bpf_map_key_store(aux, val); 9813 else if (!bpf_map_key_poisoned(aux) && 9814 bpf_map_key_immediate(aux) != val) 9815 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9816 return 0; 9817 } 9818 9819 static int check_reference_leak(struct bpf_verifier_env *env) 9820 { 9821 struct bpf_func_state *state = cur_func(env); 9822 bool refs_lingering = false; 9823 int i; 9824 9825 if (state->frameno && !state->in_callback_fn) 9826 return 0; 9827 9828 for (i = 0; i < state->acquired_refs; i++) { 9829 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9830 continue; 9831 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9832 state->refs[i].id, state->refs[i].insn_idx); 9833 refs_lingering = true; 9834 } 9835 return refs_lingering ? -EINVAL : 0; 9836 } 9837 9838 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9839 struct bpf_reg_state *regs) 9840 { 9841 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9842 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9843 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9844 struct bpf_bprintf_data data = {}; 9845 int err, fmt_map_off, num_args; 9846 u64 fmt_addr; 9847 char *fmt; 9848 9849 /* data must be an array of u64 */ 9850 if (data_len_reg->var_off.value % 8) 9851 return -EINVAL; 9852 num_args = data_len_reg->var_off.value / 8; 9853 9854 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9855 * and map_direct_value_addr is set. 9856 */ 9857 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9858 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9859 fmt_map_off); 9860 if (err) { 9861 verbose(env, "verifier bug\n"); 9862 return -EFAULT; 9863 } 9864 fmt = (char *)(long)fmt_addr + fmt_map_off; 9865 9866 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9867 * can focus on validating the format specifiers. 9868 */ 9869 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9870 if (err < 0) 9871 verbose(env, "Invalid format string\n"); 9872 9873 return err; 9874 } 9875 9876 static int check_get_func_ip(struct bpf_verifier_env *env) 9877 { 9878 enum bpf_prog_type type = resolve_prog_type(env->prog); 9879 int func_id = BPF_FUNC_get_func_ip; 9880 9881 if (type == BPF_PROG_TYPE_TRACING) { 9882 if (!bpf_prog_has_trampoline(env->prog)) { 9883 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9884 func_id_name(func_id), func_id); 9885 return -ENOTSUPP; 9886 } 9887 return 0; 9888 } else if (type == BPF_PROG_TYPE_KPROBE) { 9889 return 0; 9890 } 9891 9892 verbose(env, "func %s#%d not supported for program type %d\n", 9893 func_id_name(func_id), func_id, type); 9894 return -ENOTSUPP; 9895 } 9896 9897 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9898 { 9899 return &env->insn_aux_data[env->insn_idx]; 9900 } 9901 9902 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9903 { 9904 struct bpf_reg_state *regs = cur_regs(env); 9905 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9906 bool reg_is_null = register_is_null(reg); 9907 9908 if (reg_is_null) 9909 mark_chain_precision(env, BPF_REG_4); 9910 9911 return reg_is_null; 9912 } 9913 9914 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9915 { 9916 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9917 9918 if (!state->initialized) { 9919 state->initialized = 1; 9920 state->fit_for_inline = loop_flag_is_zero(env); 9921 state->callback_subprogno = subprogno; 9922 return; 9923 } 9924 9925 if (!state->fit_for_inline) 9926 return; 9927 9928 state->fit_for_inline = (loop_flag_is_zero(env) && 9929 state->callback_subprogno == subprogno); 9930 } 9931 9932 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9933 int *insn_idx_p) 9934 { 9935 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9936 const struct bpf_func_proto *fn = NULL; 9937 enum bpf_return_type ret_type; 9938 enum bpf_type_flag ret_flag; 9939 struct bpf_reg_state *regs; 9940 struct bpf_call_arg_meta meta; 9941 int insn_idx = *insn_idx_p; 9942 bool changes_data; 9943 int i, err, func_id; 9944 9945 /* find function prototype */ 9946 func_id = insn->imm; 9947 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9948 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9949 func_id); 9950 return -EINVAL; 9951 } 9952 9953 if (env->ops->get_func_proto) 9954 fn = env->ops->get_func_proto(func_id, env->prog); 9955 if (!fn) { 9956 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9957 func_id); 9958 return -EINVAL; 9959 } 9960 9961 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9962 if (!env->prog->gpl_compatible && fn->gpl_only) { 9963 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9964 return -EINVAL; 9965 } 9966 9967 if (fn->allowed && !fn->allowed(env->prog)) { 9968 verbose(env, "helper call is not allowed in probe\n"); 9969 return -EINVAL; 9970 } 9971 9972 if (!env->prog->aux->sleepable && fn->might_sleep) { 9973 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9974 return -EINVAL; 9975 } 9976 9977 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9978 changes_data = bpf_helper_changes_pkt_data(fn->func); 9979 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9980 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9981 func_id_name(func_id), func_id); 9982 return -EINVAL; 9983 } 9984 9985 memset(&meta, 0, sizeof(meta)); 9986 meta.pkt_access = fn->pkt_access; 9987 9988 err = check_func_proto(fn, func_id); 9989 if (err) { 9990 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9991 func_id_name(func_id), func_id); 9992 return err; 9993 } 9994 9995 if (env->cur_state->active_rcu_lock) { 9996 if (fn->might_sleep) { 9997 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 9998 func_id_name(func_id), func_id); 9999 return -EINVAL; 10000 } 10001 10002 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10003 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10004 } 10005 10006 meta.func_id = func_id; 10007 /* check args */ 10008 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10009 err = check_func_arg(env, i, &meta, fn, insn_idx); 10010 if (err) 10011 return err; 10012 } 10013 10014 err = record_func_map(env, &meta, func_id, insn_idx); 10015 if (err) 10016 return err; 10017 10018 err = record_func_key(env, &meta, func_id, insn_idx); 10019 if (err) 10020 return err; 10021 10022 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10023 * is inferred from register state. 10024 */ 10025 for (i = 0; i < meta.access_size; i++) { 10026 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10027 BPF_WRITE, -1, false, false); 10028 if (err) 10029 return err; 10030 } 10031 10032 regs = cur_regs(env); 10033 10034 if (meta.release_regno) { 10035 err = -EINVAL; 10036 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10037 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10038 * is safe to do directly. 10039 */ 10040 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10041 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10042 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10043 return -EFAULT; 10044 } 10045 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10046 } else if (meta.ref_obj_id) { 10047 err = release_reference(env, meta.ref_obj_id); 10048 } else if (register_is_null(®s[meta.release_regno])) { 10049 /* meta.ref_obj_id can only be 0 if register that is meant to be 10050 * released is NULL, which must be > R0. 10051 */ 10052 err = 0; 10053 } 10054 if (err) { 10055 verbose(env, "func %s#%d reference has not been acquired before\n", 10056 func_id_name(func_id), func_id); 10057 return err; 10058 } 10059 } 10060 10061 switch (func_id) { 10062 case BPF_FUNC_tail_call: 10063 err = check_reference_leak(env); 10064 if (err) { 10065 verbose(env, "tail_call would lead to reference leak\n"); 10066 return err; 10067 } 10068 break; 10069 case BPF_FUNC_get_local_storage: 10070 /* check that flags argument in get_local_storage(map, flags) is 0, 10071 * this is required because get_local_storage() can't return an error. 10072 */ 10073 if (!register_is_null(®s[BPF_REG_2])) { 10074 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10075 return -EINVAL; 10076 } 10077 break; 10078 case BPF_FUNC_for_each_map_elem: 10079 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10080 set_map_elem_callback_state); 10081 break; 10082 case BPF_FUNC_timer_set_callback: 10083 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10084 set_timer_callback_state); 10085 break; 10086 case BPF_FUNC_find_vma: 10087 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10088 set_find_vma_callback_state); 10089 break; 10090 case BPF_FUNC_snprintf: 10091 err = check_bpf_snprintf_call(env, regs); 10092 break; 10093 case BPF_FUNC_loop: 10094 update_loop_inline_state(env, meta.subprogno); 10095 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10096 * is finished, thus mark it precise. 10097 */ 10098 err = mark_chain_precision(env, BPF_REG_1); 10099 if (err) 10100 return err; 10101 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10102 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10103 set_loop_callback_state); 10104 } else { 10105 cur_func(env)->callback_depth = 0; 10106 if (env->log.level & BPF_LOG_LEVEL2) 10107 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10108 env->cur_state->curframe); 10109 } 10110 break; 10111 case BPF_FUNC_dynptr_from_mem: 10112 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10113 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10114 reg_type_str(env, regs[BPF_REG_1].type)); 10115 return -EACCES; 10116 } 10117 break; 10118 case BPF_FUNC_set_retval: 10119 if (prog_type == BPF_PROG_TYPE_LSM && 10120 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10121 if (!env->prog->aux->attach_func_proto->type) { 10122 /* Make sure programs that attach to void 10123 * hooks don't try to modify return value. 10124 */ 10125 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10126 return -EINVAL; 10127 } 10128 } 10129 break; 10130 case BPF_FUNC_dynptr_data: 10131 { 10132 struct bpf_reg_state *reg; 10133 int id, ref_obj_id; 10134 10135 reg = get_dynptr_arg_reg(env, fn, regs); 10136 if (!reg) 10137 return -EFAULT; 10138 10139 10140 if (meta.dynptr_id) { 10141 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10142 return -EFAULT; 10143 } 10144 if (meta.ref_obj_id) { 10145 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10146 return -EFAULT; 10147 } 10148 10149 id = dynptr_id(env, reg); 10150 if (id < 0) { 10151 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10152 return id; 10153 } 10154 10155 ref_obj_id = dynptr_ref_obj_id(env, reg); 10156 if (ref_obj_id < 0) { 10157 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10158 return ref_obj_id; 10159 } 10160 10161 meta.dynptr_id = id; 10162 meta.ref_obj_id = ref_obj_id; 10163 10164 break; 10165 } 10166 case BPF_FUNC_dynptr_write: 10167 { 10168 enum bpf_dynptr_type dynptr_type; 10169 struct bpf_reg_state *reg; 10170 10171 reg = get_dynptr_arg_reg(env, fn, regs); 10172 if (!reg) 10173 return -EFAULT; 10174 10175 dynptr_type = dynptr_get_type(env, reg); 10176 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10177 return -EFAULT; 10178 10179 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10180 /* this will trigger clear_all_pkt_pointers(), which will 10181 * invalidate all dynptr slices associated with the skb 10182 */ 10183 changes_data = true; 10184 10185 break; 10186 } 10187 case BPF_FUNC_user_ringbuf_drain: 10188 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10189 set_user_ringbuf_callback_state); 10190 break; 10191 } 10192 10193 if (err) 10194 return err; 10195 10196 /* reset caller saved regs */ 10197 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10198 mark_reg_not_init(env, regs, caller_saved[i]); 10199 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10200 } 10201 10202 /* helper call returns 64-bit value. */ 10203 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10204 10205 /* update return register (already marked as written above) */ 10206 ret_type = fn->ret_type; 10207 ret_flag = type_flag(ret_type); 10208 10209 switch (base_type(ret_type)) { 10210 case RET_INTEGER: 10211 /* sets type to SCALAR_VALUE */ 10212 mark_reg_unknown(env, regs, BPF_REG_0); 10213 break; 10214 case RET_VOID: 10215 regs[BPF_REG_0].type = NOT_INIT; 10216 break; 10217 case RET_PTR_TO_MAP_VALUE: 10218 /* There is no offset yet applied, variable or fixed */ 10219 mark_reg_known_zero(env, regs, BPF_REG_0); 10220 /* remember map_ptr, so that check_map_access() 10221 * can check 'value_size' boundary of memory access 10222 * to map element returned from bpf_map_lookup_elem() 10223 */ 10224 if (meta.map_ptr == NULL) { 10225 verbose(env, 10226 "kernel subsystem misconfigured verifier\n"); 10227 return -EINVAL; 10228 } 10229 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10230 regs[BPF_REG_0].map_uid = meta.map_uid; 10231 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10232 if (!type_may_be_null(ret_type) && 10233 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10234 regs[BPF_REG_0].id = ++env->id_gen; 10235 } 10236 break; 10237 case RET_PTR_TO_SOCKET: 10238 mark_reg_known_zero(env, regs, BPF_REG_0); 10239 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10240 break; 10241 case RET_PTR_TO_SOCK_COMMON: 10242 mark_reg_known_zero(env, regs, BPF_REG_0); 10243 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10244 break; 10245 case RET_PTR_TO_TCP_SOCK: 10246 mark_reg_known_zero(env, regs, BPF_REG_0); 10247 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10248 break; 10249 case RET_PTR_TO_MEM: 10250 mark_reg_known_zero(env, regs, BPF_REG_0); 10251 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10252 regs[BPF_REG_0].mem_size = meta.mem_size; 10253 break; 10254 case RET_PTR_TO_MEM_OR_BTF_ID: 10255 { 10256 const struct btf_type *t; 10257 10258 mark_reg_known_zero(env, regs, BPF_REG_0); 10259 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10260 if (!btf_type_is_struct(t)) { 10261 u32 tsize; 10262 const struct btf_type *ret; 10263 const char *tname; 10264 10265 /* resolve the type size of ksym. */ 10266 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10267 if (IS_ERR(ret)) { 10268 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10269 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10270 tname, PTR_ERR(ret)); 10271 return -EINVAL; 10272 } 10273 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10274 regs[BPF_REG_0].mem_size = tsize; 10275 } else { 10276 /* MEM_RDONLY may be carried from ret_flag, but it 10277 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10278 * it will confuse the check of PTR_TO_BTF_ID in 10279 * check_mem_access(). 10280 */ 10281 ret_flag &= ~MEM_RDONLY; 10282 10283 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10284 regs[BPF_REG_0].btf = meta.ret_btf; 10285 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10286 } 10287 break; 10288 } 10289 case RET_PTR_TO_BTF_ID: 10290 { 10291 struct btf *ret_btf; 10292 int ret_btf_id; 10293 10294 mark_reg_known_zero(env, regs, BPF_REG_0); 10295 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10296 if (func_id == BPF_FUNC_kptr_xchg) { 10297 ret_btf = meta.kptr_field->kptr.btf; 10298 ret_btf_id = meta.kptr_field->kptr.btf_id; 10299 if (!btf_is_kernel(ret_btf)) 10300 regs[BPF_REG_0].type |= MEM_ALLOC; 10301 } else { 10302 if (fn->ret_btf_id == BPF_PTR_POISON) { 10303 verbose(env, "verifier internal error:"); 10304 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10305 func_id_name(func_id)); 10306 return -EINVAL; 10307 } 10308 ret_btf = btf_vmlinux; 10309 ret_btf_id = *fn->ret_btf_id; 10310 } 10311 if (ret_btf_id == 0) { 10312 verbose(env, "invalid return type %u of func %s#%d\n", 10313 base_type(ret_type), func_id_name(func_id), 10314 func_id); 10315 return -EINVAL; 10316 } 10317 regs[BPF_REG_0].btf = ret_btf; 10318 regs[BPF_REG_0].btf_id = ret_btf_id; 10319 break; 10320 } 10321 default: 10322 verbose(env, "unknown return type %u of func %s#%d\n", 10323 base_type(ret_type), func_id_name(func_id), func_id); 10324 return -EINVAL; 10325 } 10326 10327 if (type_may_be_null(regs[BPF_REG_0].type)) 10328 regs[BPF_REG_0].id = ++env->id_gen; 10329 10330 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10331 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10332 func_id_name(func_id), func_id); 10333 return -EFAULT; 10334 } 10335 10336 if (is_dynptr_ref_function(func_id)) 10337 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10338 10339 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10340 /* For release_reference() */ 10341 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10342 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10343 int id = acquire_reference_state(env, insn_idx); 10344 10345 if (id < 0) 10346 return id; 10347 /* For mark_ptr_or_null_reg() */ 10348 regs[BPF_REG_0].id = id; 10349 /* For release_reference() */ 10350 regs[BPF_REG_0].ref_obj_id = id; 10351 } 10352 10353 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10354 10355 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10356 if (err) 10357 return err; 10358 10359 if ((func_id == BPF_FUNC_get_stack || 10360 func_id == BPF_FUNC_get_task_stack) && 10361 !env->prog->has_callchain_buf) { 10362 const char *err_str; 10363 10364 #ifdef CONFIG_PERF_EVENTS 10365 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10366 err_str = "cannot get callchain buffer for func %s#%d\n"; 10367 #else 10368 err = -ENOTSUPP; 10369 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10370 #endif 10371 if (err) { 10372 verbose(env, err_str, func_id_name(func_id), func_id); 10373 return err; 10374 } 10375 10376 env->prog->has_callchain_buf = true; 10377 } 10378 10379 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10380 env->prog->call_get_stack = true; 10381 10382 if (func_id == BPF_FUNC_get_func_ip) { 10383 if (check_get_func_ip(env)) 10384 return -ENOTSUPP; 10385 env->prog->call_get_func_ip = true; 10386 } 10387 10388 if (changes_data) 10389 clear_all_pkt_pointers(env); 10390 return 0; 10391 } 10392 10393 /* mark_btf_func_reg_size() is used when the reg size is determined by 10394 * the BTF func_proto's return value size and argument. 10395 */ 10396 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10397 size_t reg_size) 10398 { 10399 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10400 10401 if (regno == BPF_REG_0) { 10402 /* Function return value */ 10403 reg->live |= REG_LIVE_WRITTEN; 10404 reg->subreg_def = reg_size == sizeof(u64) ? 10405 DEF_NOT_SUBREG : env->insn_idx + 1; 10406 } else { 10407 /* Function argument */ 10408 if (reg_size == sizeof(u64)) { 10409 mark_insn_zext(env, reg); 10410 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10411 } else { 10412 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10413 } 10414 } 10415 } 10416 10417 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10418 { 10419 return meta->kfunc_flags & KF_ACQUIRE; 10420 } 10421 10422 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10423 { 10424 return meta->kfunc_flags & KF_RELEASE; 10425 } 10426 10427 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10428 { 10429 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10430 } 10431 10432 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10433 { 10434 return meta->kfunc_flags & KF_SLEEPABLE; 10435 } 10436 10437 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10438 { 10439 return meta->kfunc_flags & KF_DESTRUCTIVE; 10440 } 10441 10442 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10443 { 10444 return meta->kfunc_flags & KF_RCU; 10445 } 10446 10447 static bool __kfunc_param_match_suffix(const struct btf *btf, 10448 const struct btf_param *arg, 10449 const char *suffix) 10450 { 10451 int suffix_len = strlen(suffix), len; 10452 const char *param_name; 10453 10454 /* In the future, this can be ported to use BTF tagging */ 10455 param_name = btf_name_by_offset(btf, arg->name_off); 10456 if (str_is_empty(param_name)) 10457 return false; 10458 len = strlen(param_name); 10459 if (len < suffix_len) 10460 return false; 10461 param_name += len - suffix_len; 10462 return !strncmp(param_name, suffix, suffix_len); 10463 } 10464 10465 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10466 const struct btf_param *arg, 10467 const struct bpf_reg_state *reg) 10468 { 10469 const struct btf_type *t; 10470 10471 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10472 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10473 return false; 10474 10475 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10476 } 10477 10478 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10479 const struct btf_param *arg, 10480 const struct bpf_reg_state *reg) 10481 { 10482 const struct btf_type *t; 10483 10484 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10485 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10486 return false; 10487 10488 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10489 } 10490 10491 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10492 { 10493 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10494 } 10495 10496 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10497 { 10498 return __kfunc_param_match_suffix(btf, arg, "__k"); 10499 } 10500 10501 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10502 { 10503 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10504 } 10505 10506 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10507 { 10508 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10509 } 10510 10511 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10512 { 10513 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10514 } 10515 10516 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10517 { 10518 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10519 } 10520 10521 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10522 const struct btf_param *arg, 10523 const char *name) 10524 { 10525 int len, target_len = strlen(name); 10526 const char *param_name; 10527 10528 param_name = btf_name_by_offset(btf, arg->name_off); 10529 if (str_is_empty(param_name)) 10530 return false; 10531 len = strlen(param_name); 10532 if (len != target_len) 10533 return false; 10534 if (strcmp(param_name, name)) 10535 return false; 10536 10537 return true; 10538 } 10539 10540 enum { 10541 KF_ARG_DYNPTR_ID, 10542 KF_ARG_LIST_HEAD_ID, 10543 KF_ARG_LIST_NODE_ID, 10544 KF_ARG_RB_ROOT_ID, 10545 KF_ARG_RB_NODE_ID, 10546 }; 10547 10548 BTF_ID_LIST(kf_arg_btf_ids) 10549 BTF_ID(struct, bpf_dynptr_kern) 10550 BTF_ID(struct, bpf_list_head) 10551 BTF_ID(struct, bpf_list_node) 10552 BTF_ID(struct, bpf_rb_root) 10553 BTF_ID(struct, bpf_rb_node) 10554 10555 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10556 const struct btf_param *arg, int type) 10557 { 10558 const struct btf_type *t; 10559 u32 res_id; 10560 10561 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10562 if (!t) 10563 return false; 10564 if (!btf_type_is_ptr(t)) 10565 return false; 10566 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10567 if (!t) 10568 return false; 10569 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10570 } 10571 10572 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10573 { 10574 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10575 } 10576 10577 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10578 { 10579 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10580 } 10581 10582 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10583 { 10584 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10585 } 10586 10587 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10588 { 10589 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10590 } 10591 10592 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10593 { 10594 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10595 } 10596 10597 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10598 const struct btf_param *arg) 10599 { 10600 const struct btf_type *t; 10601 10602 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10603 if (!t) 10604 return false; 10605 10606 return true; 10607 } 10608 10609 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10610 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10611 const struct btf *btf, 10612 const struct btf_type *t, int rec) 10613 { 10614 const struct btf_type *member_type; 10615 const struct btf_member *member; 10616 u32 i; 10617 10618 if (!btf_type_is_struct(t)) 10619 return false; 10620 10621 for_each_member(i, t, member) { 10622 const struct btf_array *array; 10623 10624 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10625 if (btf_type_is_struct(member_type)) { 10626 if (rec >= 3) { 10627 verbose(env, "max struct nesting depth exceeded\n"); 10628 return false; 10629 } 10630 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10631 return false; 10632 continue; 10633 } 10634 if (btf_type_is_array(member_type)) { 10635 array = btf_array(member_type); 10636 if (!array->nelems) 10637 return false; 10638 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10639 if (!btf_type_is_scalar(member_type)) 10640 return false; 10641 continue; 10642 } 10643 if (!btf_type_is_scalar(member_type)) 10644 return false; 10645 } 10646 return true; 10647 } 10648 10649 enum kfunc_ptr_arg_type { 10650 KF_ARG_PTR_TO_CTX, 10651 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10652 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10653 KF_ARG_PTR_TO_DYNPTR, 10654 KF_ARG_PTR_TO_ITER, 10655 KF_ARG_PTR_TO_LIST_HEAD, 10656 KF_ARG_PTR_TO_LIST_NODE, 10657 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10658 KF_ARG_PTR_TO_MEM, 10659 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10660 KF_ARG_PTR_TO_CALLBACK, 10661 KF_ARG_PTR_TO_RB_ROOT, 10662 KF_ARG_PTR_TO_RB_NODE, 10663 }; 10664 10665 enum special_kfunc_type { 10666 KF_bpf_obj_new_impl, 10667 KF_bpf_obj_drop_impl, 10668 KF_bpf_refcount_acquire_impl, 10669 KF_bpf_list_push_front_impl, 10670 KF_bpf_list_push_back_impl, 10671 KF_bpf_list_pop_front, 10672 KF_bpf_list_pop_back, 10673 KF_bpf_cast_to_kern_ctx, 10674 KF_bpf_rdonly_cast, 10675 KF_bpf_rcu_read_lock, 10676 KF_bpf_rcu_read_unlock, 10677 KF_bpf_rbtree_remove, 10678 KF_bpf_rbtree_add_impl, 10679 KF_bpf_rbtree_first, 10680 KF_bpf_dynptr_from_skb, 10681 KF_bpf_dynptr_from_xdp, 10682 KF_bpf_dynptr_slice, 10683 KF_bpf_dynptr_slice_rdwr, 10684 KF_bpf_dynptr_clone, 10685 }; 10686 10687 BTF_SET_START(special_kfunc_set) 10688 BTF_ID(func, bpf_obj_new_impl) 10689 BTF_ID(func, bpf_obj_drop_impl) 10690 BTF_ID(func, bpf_refcount_acquire_impl) 10691 BTF_ID(func, bpf_list_push_front_impl) 10692 BTF_ID(func, bpf_list_push_back_impl) 10693 BTF_ID(func, bpf_list_pop_front) 10694 BTF_ID(func, bpf_list_pop_back) 10695 BTF_ID(func, bpf_cast_to_kern_ctx) 10696 BTF_ID(func, bpf_rdonly_cast) 10697 BTF_ID(func, bpf_rbtree_remove) 10698 BTF_ID(func, bpf_rbtree_add_impl) 10699 BTF_ID(func, bpf_rbtree_first) 10700 BTF_ID(func, bpf_dynptr_from_skb) 10701 BTF_ID(func, bpf_dynptr_from_xdp) 10702 BTF_ID(func, bpf_dynptr_slice) 10703 BTF_ID(func, bpf_dynptr_slice_rdwr) 10704 BTF_ID(func, bpf_dynptr_clone) 10705 BTF_SET_END(special_kfunc_set) 10706 10707 BTF_ID_LIST(special_kfunc_list) 10708 BTF_ID(func, bpf_obj_new_impl) 10709 BTF_ID(func, bpf_obj_drop_impl) 10710 BTF_ID(func, bpf_refcount_acquire_impl) 10711 BTF_ID(func, bpf_list_push_front_impl) 10712 BTF_ID(func, bpf_list_push_back_impl) 10713 BTF_ID(func, bpf_list_pop_front) 10714 BTF_ID(func, bpf_list_pop_back) 10715 BTF_ID(func, bpf_cast_to_kern_ctx) 10716 BTF_ID(func, bpf_rdonly_cast) 10717 BTF_ID(func, bpf_rcu_read_lock) 10718 BTF_ID(func, bpf_rcu_read_unlock) 10719 BTF_ID(func, bpf_rbtree_remove) 10720 BTF_ID(func, bpf_rbtree_add_impl) 10721 BTF_ID(func, bpf_rbtree_first) 10722 BTF_ID(func, bpf_dynptr_from_skb) 10723 BTF_ID(func, bpf_dynptr_from_xdp) 10724 BTF_ID(func, bpf_dynptr_slice) 10725 BTF_ID(func, bpf_dynptr_slice_rdwr) 10726 BTF_ID(func, bpf_dynptr_clone) 10727 10728 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10729 { 10730 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10731 meta->arg_owning_ref) { 10732 return false; 10733 } 10734 10735 return meta->kfunc_flags & KF_RET_NULL; 10736 } 10737 10738 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10739 { 10740 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10741 } 10742 10743 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10744 { 10745 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10746 } 10747 10748 static enum kfunc_ptr_arg_type 10749 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10750 struct bpf_kfunc_call_arg_meta *meta, 10751 const struct btf_type *t, const struct btf_type *ref_t, 10752 const char *ref_tname, const struct btf_param *args, 10753 int argno, int nargs) 10754 { 10755 u32 regno = argno + 1; 10756 struct bpf_reg_state *regs = cur_regs(env); 10757 struct bpf_reg_state *reg = ®s[regno]; 10758 bool arg_mem_size = false; 10759 10760 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10761 return KF_ARG_PTR_TO_CTX; 10762 10763 /* In this function, we verify the kfunc's BTF as per the argument type, 10764 * leaving the rest of the verification with respect to the register 10765 * type to our caller. When a set of conditions hold in the BTF type of 10766 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10767 */ 10768 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10769 return KF_ARG_PTR_TO_CTX; 10770 10771 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10772 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10773 10774 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10775 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10776 10777 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10778 return KF_ARG_PTR_TO_DYNPTR; 10779 10780 if (is_kfunc_arg_iter(meta, argno)) 10781 return KF_ARG_PTR_TO_ITER; 10782 10783 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10784 return KF_ARG_PTR_TO_LIST_HEAD; 10785 10786 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10787 return KF_ARG_PTR_TO_LIST_NODE; 10788 10789 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10790 return KF_ARG_PTR_TO_RB_ROOT; 10791 10792 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10793 return KF_ARG_PTR_TO_RB_NODE; 10794 10795 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10796 if (!btf_type_is_struct(ref_t)) { 10797 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10798 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10799 return -EINVAL; 10800 } 10801 return KF_ARG_PTR_TO_BTF_ID; 10802 } 10803 10804 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10805 return KF_ARG_PTR_TO_CALLBACK; 10806 10807 10808 if (argno + 1 < nargs && 10809 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10810 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10811 arg_mem_size = true; 10812 10813 /* This is the catch all argument type of register types supported by 10814 * check_helper_mem_access. However, we only allow when argument type is 10815 * pointer to scalar, or struct composed (recursively) of scalars. When 10816 * arg_mem_size is true, the pointer can be void *. 10817 */ 10818 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10819 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10820 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10821 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10822 return -EINVAL; 10823 } 10824 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10825 } 10826 10827 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10828 struct bpf_reg_state *reg, 10829 const struct btf_type *ref_t, 10830 const char *ref_tname, u32 ref_id, 10831 struct bpf_kfunc_call_arg_meta *meta, 10832 int argno) 10833 { 10834 const struct btf_type *reg_ref_t; 10835 bool strict_type_match = false; 10836 const struct btf *reg_btf; 10837 const char *reg_ref_tname; 10838 u32 reg_ref_id; 10839 10840 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10841 reg_btf = reg->btf; 10842 reg_ref_id = reg->btf_id; 10843 } else { 10844 reg_btf = btf_vmlinux; 10845 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10846 } 10847 10848 /* Enforce strict type matching for calls to kfuncs that are acquiring 10849 * or releasing a reference, or are no-cast aliases. We do _not_ 10850 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10851 * as we want to enable BPF programs to pass types that are bitwise 10852 * equivalent without forcing them to explicitly cast with something 10853 * like bpf_cast_to_kern_ctx(). 10854 * 10855 * For example, say we had a type like the following: 10856 * 10857 * struct bpf_cpumask { 10858 * cpumask_t cpumask; 10859 * refcount_t usage; 10860 * }; 10861 * 10862 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10863 * to a struct cpumask, so it would be safe to pass a struct 10864 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10865 * 10866 * The philosophy here is similar to how we allow scalars of different 10867 * types to be passed to kfuncs as long as the size is the same. The 10868 * only difference here is that we're simply allowing 10869 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10870 * resolve types. 10871 */ 10872 if (is_kfunc_acquire(meta) || 10873 (is_kfunc_release(meta) && reg->ref_obj_id) || 10874 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10875 strict_type_match = true; 10876 10877 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10878 10879 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10880 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10881 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10882 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10883 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10884 btf_type_str(reg_ref_t), reg_ref_tname); 10885 return -EINVAL; 10886 } 10887 return 0; 10888 } 10889 10890 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10891 { 10892 struct bpf_verifier_state *state = env->cur_state; 10893 struct btf_record *rec = reg_btf_record(reg); 10894 10895 if (!state->active_lock.ptr) { 10896 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10897 return -EFAULT; 10898 } 10899 10900 if (type_flag(reg->type) & NON_OWN_REF) { 10901 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10902 return -EFAULT; 10903 } 10904 10905 reg->type |= NON_OWN_REF; 10906 if (rec->refcount_off >= 0) 10907 reg->type |= MEM_RCU; 10908 10909 return 0; 10910 } 10911 10912 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10913 { 10914 struct bpf_func_state *state, *unused; 10915 struct bpf_reg_state *reg; 10916 int i; 10917 10918 state = cur_func(env); 10919 10920 if (!ref_obj_id) { 10921 verbose(env, "verifier internal error: ref_obj_id is zero for " 10922 "owning -> non-owning conversion\n"); 10923 return -EFAULT; 10924 } 10925 10926 for (i = 0; i < state->acquired_refs; i++) { 10927 if (state->refs[i].id != ref_obj_id) 10928 continue; 10929 10930 /* Clear ref_obj_id here so release_reference doesn't clobber 10931 * the whole reg 10932 */ 10933 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10934 if (reg->ref_obj_id == ref_obj_id) { 10935 reg->ref_obj_id = 0; 10936 ref_set_non_owning(env, reg); 10937 } 10938 })); 10939 return 0; 10940 } 10941 10942 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10943 return -EFAULT; 10944 } 10945 10946 /* Implementation details: 10947 * 10948 * Each register points to some region of memory, which we define as an 10949 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10950 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10951 * allocation. The lock and the data it protects are colocated in the same 10952 * memory region. 10953 * 10954 * Hence, everytime a register holds a pointer value pointing to such 10955 * allocation, the verifier preserves a unique reg->id for it. 10956 * 10957 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10958 * bpf_spin_lock is called. 10959 * 10960 * To enable this, lock state in the verifier captures two values: 10961 * active_lock.ptr = Register's type specific pointer 10962 * active_lock.id = A unique ID for each register pointer value 10963 * 10964 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10965 * supported register types. 10966 * 10967 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10968 * allocated objects is the reg->btf pointer. 10969 * 10970 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10971 * can establish the provenance of the map value statically for each distinct 10972 * lookup into such maps. They always contain a single map value hence unique 10973 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10974 * 10975 * So, in case of global variables, they use array maps with max_entries = 1, 10976 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10977 * into the same map value as max_entries is 1, as described above). 10978 * 10979 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10980 * outer map pointer (in verifier context), but each lookup into an inner map 10981 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10982 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10983 * will get different reg->id assigned to each lookup, hence different 10984 * active_lock.id. 10985 * 10986 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10987 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10988 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10989 */ 10990 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10991 { 10992 void *ptr; 10993 u32 id; 10994 10995 switch ((int)reg->type) { 10996 case PTR_TO_MAP_VALUE: 10997 ptr = reg->map_ptr; 10998 break; 10999 case PTR_TO_BTF_ID | MEM_ALLOC: 11000 ptr = reg->btf; 11001 break; 11002 default: 11003 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11004 return -EFAULT; 11005 } 11006 id = reg->id; 11007 11008 if (!env->cur_state->active_lock.ptr) 11009 return -EINVAL; 11010 if (env->cur_state->active_lock.ptr != ptr || 11011 env->cur_state->active_lock.id != id) { 11012 verbose(env, "held lock and object are not in the same allocation\n"); 11013 return -EINVAL; 11014 } 11015 return 0; 11016 } 11017 11018 static bool is_bpf_list_api_kfunc(u32 btf_id) 11019 { 11020 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11021 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11022 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11023 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11024 } 11025 11026 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11027 { 11028 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11029 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11030 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11031 } 11032 11033 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11034 { 11035 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11036 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11037 } 11038 11039 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11040 { 11041 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11042 } 11043 11044 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11045 { 11046 return is_bpf_rbtree_api_kfunc(btf_id); 11047 } 11048 11049 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11050 enum btf_field_type head_field_type, 11051 u32 kfunc_btf_id) 11052 { 11053 bool ret; 11054 11055 switch (head_field_type) { 11056 case BPF_LIST_HEAD: 11057 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11058 break; 11059 case BPF_RB_ROOT: 11060 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11061 break; 11062 default: 11063 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11064 btf_field_type_name(head_field_type)); 11065 return false; 11066 } 11067 11068 if (!ret) 11069 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11070 btf_field_type_name(head_field_type)); 11071 return ret; 11072 } 11073 11074 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11075 enum btf_field_type node_field_type, 11076 u32 kfunc_btf_id) 11077 { 11078 bool ret; 11079 11080 switch (node_field_type) { 11081 case BPF_LIST_NODE: 11082 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11083 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11084 break; 11085 case BPF_RB_NODE: 11086 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11087 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11088 break; 11089 default: 11090 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11091 btf_field_type_name(node_field_type)); 11092 return false; 11093 } 11094 11095 if (!ret) 11096 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11097 btf_field_type_name(node_field_type)); 11098 return ret; 11099 } 11100 11101 static int 11102 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11103 struct bpf_reg_state *reg, u32 regno, 11104 struct bpf_kfunc_call_arg_meta *meta, 11105 enum btf_field_type head_field_type, 11106 struct btf_field **head_field) 11107 { 11108 const char *head_type_name; 11109 struct btf_field *field; 11110 struct btf_record *rec; 11111 u32 head_off; 11112 11113 if (meta->btf != btf_vmlinux) { 11114 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11115 return -EFAULT; 11116 } 11117 11118 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11119 return -EFAULT; 11120 11121 head_type_name = btf_field_type_name(head_field_type); 11122 if (!tnum_is_const(reg->var_off)) { 11123 verbose(env, 11124 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11125 regno, head_type_name); 11126 return -EINVAL; 11127 } 11128 11129 rec = reg_btf_record(reg); 11130 head_off = reg->off + reg->var_off.value; 11131 field = btf_record_find(rec, head_off, head_field_type); 11132 if (!field) { 11133 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11134 return -EINVAL; 11135 } 11136 11137 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11138 if (check_reg_allocation_locked(env, reg)) { 11139 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11140 rec->spin_lock_off, head_type_name); 11141 return -EINVAL; 11142 } 11143 11144 if (*head_field) { 11145 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11146 return -EFAULT; 11147 } 11148 *head_field = field; 11149 return 0; 11150 } 11151 11152 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11153 struct bpf_reg_state *reg, u32 regno, 11154 struct bpf_kfunc_call_arg_meta *meta) 11155 { 11156 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11157 &meta->arg_list_head.field); 11158 } 11159 11160 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11161 struct bpf_reg_state *reg, u32 regno, 11162 struct bpf_kfunc_call_arg_meta *meta) 11163 { 11164 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11165 &meta->arg_rbtree_root.field); 11166 } 11167 11168 static int 11169 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11170 struct bpf_reg_state *reg, u32 regno, 11171 struct bpf_kfunc_call_arg_meta *meta, 11172 enum btf_field_type head_field_type, 11173 enum btf_field_type node_field_type, 11174 struct btf_field **node_field) 11175 { 11176 const char *node_type_name; 11177 const struct btf_type *et, *t; 11178 struct btf_field *field; 11179 u32 node_off; 11180 11181 if (meta->btf != btf_vmlinux) { 11182 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11183 return -EFAULT; 11184 } 11185 11186 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11187 return -EFAULT; 11188 11189 node_type_name = btf_field_type_name(node_field_type); 11190 if (!tnum_is_const(reg->var_off)) { 11191 verbose(env, 11192 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11193 regno, node_type_name); 11194 return -EINVAL; 11195 } 11196 11197 node_off = reg->off + reg->var_off.value; 11198 field = reg_find_field_offset(reg, node_off, node_field_type); 11199 if (!field || field->offset != node_off) { 11200 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11201 return -EINVAL; 11202 } 11203 11204 field = *node_field; 11205 11206 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11207 t = btf_type_by_id(reg->btf, reg->btf_id); 11208 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11209 field->graph_root.value_btf_id, true)) { 11210 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11211 "in struct %s, but arg is at offset=%d in struct %s\n", 11212 btf_field_type_name(head_field_type), 11213 btf_field_type_name(node_field_type), 11214 field->graph_root.node_offset, 11215 btf_name_by_offset(field->graph_root.btf, et->name_off), 11216 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11217 return -EINVAL; 11218 } 11219 meta->arg_btf = reg->btf; 11220 meta->arg_btf_id = reg->btf_id; 11221 11222 if (node_off != field->graph_root.node_offset) { 11223 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11224 node_off, btf_field_type_name(node_field_type), 11225 field->graph_root.node_offset, 11226 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11227 return -EINVAL; 11228 } 11229 11230 return 0; 11231 } 11232 11233 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11234 struct bpf_reg_state *reg, u32 regno, 11235 struct bpf_kfunc_call_arg_meta *meta) 11236 { 11237 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11238 BPF_LIST_HEAD, BPF_LIST_NODE, 11239 &meta->arg_list_head.field); 11240 } 11241 11242 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11243 struct bpf_reg_state *reg, u32 regno, 11244 struct bpf_kfunc_call_arg_meta *meta) 11245 { 11246 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11247 BPF_RB_ROOT, BPF_RB_NODE, 11248 &meta->arg_rbtree_root.field); 11249 } 11250 11251 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11252 int insn_idx) 11253 { 11254 const char *func_name = meta->func_name, *ref_tname; 11255 const struct btf *btf = meta->btf; 11256 const struct btf_param *args; 11257 struct btf_record *rec; 11258 u32 i, nargs; 11259 int ret; 11260 11261 args = (const struct btf_param *)(meta->func_proto + 1); 11262 nargs = btf_type_vlen(meta->func_proto); 11263 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11264 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11265 MAX_BPF_FUNC_REG_ARGS); 11266 return -EINVAL; 11267 } 11268 11269 /* Check that BTF function arguments match actual types that the 11270 * verifier sees. 11271 */ 11272 for (i = 0; i < nargs; i++) { 11273 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11274 const struct btf_type *t, *ref_t, *resolve_ret; 11275 enum bpf_arg_type arg_type = ARG_DONTCARE; 11276 u32 regno = i + 1, ref_id, type_size; 11277 bool is_ret_buf_sz = false; 11278 int kf_arg_type; 11279 11280 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11281 11282 if (is_kfunc_arg_ignore(btf, &args[i])) 11283 continue; 11284 11285 if (btf_type_is_scalar(t)) { 11286 if (reg->type != SCALAR_VALUE) { 11287 verbose(env, "R%d is not a scalar\n", regno); 11288 return -EINVAL; 11289 } 11290 11291 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11292 if (meta->arg_constant.found) { 11293 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11294 return -EFAULT; 11295 } 11296 if (!tnum_is_const(reg->var_off)) { 11297 verbose(env, "R%d must be a known constant\n", regno); 11298 return -EINVAL; 11299 } 11300 ret = mark_chain_precision(env, regno); 11301 if (ret < 0) 11302 return ret; 11303 meta->arg_constant.found = true; 11304 meta->arg_constant.value = reg->var_off.value; 11305 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11306 meta->r0_rdonly = true; 11307 is_ret_buf_sz = true; 11308 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11309 is_ret_buf_sz = true; 11310 } 11311 11312 if (is_ret_buf_sz) { 11313 if (meta->r0_size) { 11314 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11315 return -EINVAL; 11316 } 11317 11318 if (!tnum_is_const(reg->var_off)) { 11319 verbose(env, "R%d is not a const\n", regno); 11320 return -EINVAL; 11321 } 11322 11323 meta->r0_size = reg->var_off.value; 11324 ret = mark_chain_precision(env, regno); 11325 if (ret) 11326 return ret; 11327 } 11328 continue; 11329 } 11330 11331 if (!btf_type_is_ptr(t)) { 11332 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11333 return -EINVAL; 11334 } 11335 11336 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11337 (register_is_null(reg) || type_may_be_null(reg->type))) { 11338 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11339 return -EACCES; 11340 } 11341 11342 if (reg->ref_obj_id) { 11343 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11344 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11345 regno, reg->ref_obj_id, 11346 meta->ref_obj_id); 11347 return -EFAULT; 11348 } 11349 meta->ref_obj_id = reg->ref_obj_id; 11350 if (is_kfunc_release(meta)) 11351 meta->release_regno = regno; 11352 } 11353 11354 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11355 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11356 11357 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11358 if (kf_arg_type < 0) 11359 return kf_arg_type; 11360 11361 switch (kf_arg_type) { 11362 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11363 case KF_ARG_PTR_TO_BTF_ID: 11364 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11365 break; 11366 11367 if (!is_trusted_reg(reg)) { 11368 if (!is_kfunc_rcu(meta)) { 11369 verbose(env, "R%d must be referenced or trusted\n", regno); 11370 return -EINVAL; 11371 } 11372 if (!is_rcu_reg(reg)) { 11373 verbose(env, "R%d must be a rcu pointer\n", regno); 11374 return -EINVAL; 11375 } 11376 } 11377 11378 fallthrough; 11379 case KF_ARG_PTR_TO_CTX: 11380 /* Trusted arguments have the same offset checks as release arguments */ 11381 arg_type |= OBJ_RELEASE; 11382 break; 11383 case KF_ARG_PTR_TO_DYNPTR: 11384 case KF_ARG_PTR_TO_ITER: 11385 case KF_ARG_PTR_TO_LIST_HEAD: 11386 case KF_ARG_PTR_TO_LIST_NODE: 11387 case KF_ARG_PTR_TO_RB_ROOT: 11388 case KF_ARG_PTR_TO_RB_NODE: 11389 case KF_ARG_PTR_TO_MEM: 11390 case KF_ARG_PTR_TO_MEM_SIZE: 11391 case KF_ARG_PTR_TO_CALLBACK: 11392 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11393 /* Trusted by default */ 11394 break; 11395 default: 11396 WARN_ON_ONCE(1); 11397 return -EFAULT; 11398 } 11399 11400 if (is_kfunc_release(meta) && reg->ref_obj_id) 11401 arg_type |= OBJ_RELEASE; 11402 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11403 if (ret < 0) 11404 return ret; 11405 11406 switch (kf_arg_type) { 11407 case KF_ARG_PTR_TO_CTX: 11408 if (reg->type != PTR_TO_CTX) { 11409 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11410 return -EINVAL; 11411 } 11412 11413 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11414 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11415 if (ret < 0) 11416 return -EINVAL; 11417 meta->ret_btf_id = ret; 11418 } 11419 break; 11420 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11421 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11422 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11423 return -EINVAL; 11424 } 11425 if (!reg->ref_obj_id) { 11426 verbose(env, "allocated object must be referenced\n"); 11427 return -EINVAL; 11428 } 11429 if (meta->btf == btf_vmlinux && 11430 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11431 meta->arg_btf = reg->btf; 11432 meta->arg_btf_id = reg->btf_id; 11433 } 11434 break; 11435 case KF_ARG_PTR_TO_DYNPTR: 11436 { 11437 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11438 int clone_ref_obj_id = 0; 11439 11440 if (reg->type != PTR_TO_STACK && 11441 reg->type != CONST_PTR_TO_DYNPTR) { 11442 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11443 return -EINVAL; 11444 } 11445 11446 if (reg->type == CONST_PTR_TO_DYNPTR) 11447 dynptr_arg_type |= MEM_RDONLY; 11448 11449 if (is_kfunc_arg_uninit(btf, &args[i])) 11450 dynptr_arg_type |= MEM_UNINIT; 11451 11452 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11453 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11454 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11455 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11456 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11457 (dynptr_arg_type & MEM_UNINIT)) { 11458 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11459 11460 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11461 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11462 return -EFAULT; 11463 } 11464 11465 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11466 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11467 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11468 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11469 return -EFAULT; 11470 } 11471 } 11472 11473 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11474 if (ret < 0) 11475 return ret; 11476 11477 if (!(dynptr_arg_type & MEM_UNINIT)) { 11478 int id = dynptr_id(env, reg); 11479 11480 if (id < 0) { 11481 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11482 return id; 11483 } 11484 meta->initialized_dynptr.id = id; 11485 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11486 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11487 } 11488 11489 break; 11490 } 11491 case KF_ARG_PTR_TO_ITER: 11492 ret = process_iter_arg(env, regno, insn_idx, meta); 11493 if (ret < 0) 11494 return ret; 11495 break; 11496 case KF_ARG_PTR_TO_LIST_HEAD: 11497 if (reg->type != PTR_TO_MAP_VALUE && 11498 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11499 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11500 return -EINVAL; 11501 } 11502 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11503 verbose(env, "allocated object must be referenced\n"); 11504 return -EINVAL; 11505 } 11506 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11507 if (ret < 0) 11508 return ret; 11509 break; 11510 case KF_ARG_PTR_TO_RB_ROOT: 11511 if (reg->type != PTR_TO_MAP_VALUE && 11512 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11513 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11514 return -EINVAL; 11515 } 11516 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11517 verbose(env, "allocated object must be referenced\n"); 11518 return -EINVAL; 11519 } 11520 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11521 if (ret < 0) 11522 return ret; 11523 break; 11524 case KF_ARG_PTR_TO_LIST_NODE: 11525 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11526 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11527 return -EINVAL; 11528 } 11529 if (!reg->ref_obj_id) { 11530 verbose(env, "allocated object must be referenced\n"); 11531 return -EINVAL; 11532 } 11533 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11534 if (ret < 0) 11535 return ret; 11536 break; 11537 case KF_ARG_PTR_TO_RB_NODE: 11538 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11539 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11540 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11541 return -EINVAL; 11542 } 11543 if (in_rbtree_lock_required_cb(env)) { 11544 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11545 return -EINVAL; 11546 } 11547 } else { 11548 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11549 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11550 return -EINVAL; 11551 } 11552 if (!reg->ref_obj_id) { 11553 verbose(env, "allocated object must be referenced\n"); 11554 return -EINVAL; 11555 } 11556 } 11557 11558 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11559 if (ret < 0) 11560 return ret; 11561 break; 11562 case KF_ARG_PTR_TO_BTF_ID: 11563 /* Only base_type is checked, further checks are done here */ 11564 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11565 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11566 !reg2btf_ids[base_type(reg->type)]) { 11567 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11568 verbose(env, "expected %s or socket\n", 11569 reg_type_str(env, base_type(reg->type) | 11570 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11571 return -EINVAL; 11572 } 11573 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11574 if (ret < 0) 11575 return ret; 11576 break; 11577 case KF_ARG_PTR_TO_MEM: 11578 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11579 if (IS_ERR(resolve_ret)) { 11580 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11581 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11582 return -EINVAL; 11583 } 11584 ret = check_mem_reg(env, reg, regno, type_size); 11585 if (ret < 0) 11586 return ret; 11587 break; 11588 case KF_ARG_PTR_TO_MEM_SIZE: 11589 { 11590 struct bpf_reg_state *buff_reg = ®s[regno]; 11591 const struct btf_param *buff_arg = &args[i]; 11592 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11593 const struct btf_param *size_arg = &args[i + 1]; 11594 11595 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11596 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11597 if (ret < 0) { 11598 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11599 return ret; 11600 } 11601 } 11602 11603 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11604 if (meta->arg_constant.found) { 11605 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11606 return -EFAULT; 11607 } 11608 if (!tnum_is_const(size_reg->var_off)) { 11609 verbose(env, "R%d must be a known constant\n", regno + 1); 11610 return -EINVAL; 11611 } 11612 meta->arg_constant.found = true; 11613 meta->arg_constant.value = size_reg->var_off.value; 11614 } 11615 11616 /* Skip next '__sz' or '__szk' argument */ 11617 i++; 11618 break; 11619 } 11620 case KF_ARG_PTR_TO_CALLBACK: 11621 if (reg->type != PTR_TO_FUNC) { 11622 verbose(env, "arg%d expected pointer to func\n", i); 11623 return -EINVAL; 11624 } 11625 meta->subprogno = reg->subprogno; 11626 break; 11627 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11628 if (!type_is_ptr_alloc_obj(reg->type)) { 11629 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11630 return -EINVAL; 11631 } 11632 if (!type_is_non_owning_ref(reg->type)) 11633 meta->arg_owning_ref = true; 11634 11635 rec = reg_btf_record(reg); 11636 if (!rec) { 11637 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11638 return -EFAULT; 11639 } 11640 11641 if (rec->refcount_off < 0) { 11642 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11643 return -EINVAL; 11644 } 11645 11646 meta->arg_btf = reg->btf; 11647 meta->arg_btf_id = reg->btf_id; 11648 break; 11649 } 11650 } 11651 11652 if (is_kfunc_release(meta) && !meta->release_regno) { 11653 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11654 func_name); 11655 return -EINVAL; 11656 } 11657 11658 return 0; 11659 } 11660 11661 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11662 struct bpf_insn *insn, 11663 struct bpf_kfunc_call_arg_meta *meta, 11664 const char **kfunc_name) 11665 { 11666 const struct btf_type *func, *func_proto; 11667 u32 func_id, *kfunc_flags; 11668 const char *func_name; 11669 struct btf *desc_btf; 11670 11671 if (kfunc_name) 11672 *kfunc_name = NULL; 11673 11674 if (!insn->imm) 11675 return -EINVAL; 11676 11677 desc_btf = find_kfunc_desc_btf(env, insn->off); 11678 if (IS_ERR(desc_btf)) 11679 return PTR_ERR(desc_btf); 11680 11681 func_id = insn->imm; 11682 func = btf_type_by_id(desc_btf, func_id); 11683 func_name = btf_name_by_offset(desc_btf, func->name_off); 11684 if (kfunc_name) 11685 *kfunc_name = func_name; 11686 func_proto = btf_type_by_id(desc_btf, func->type); 11687 11688 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11689 if (!kfunc_flags) { 11690 return -EACCES; 11691 } 11692 11693 memset(meta, 0, sizeof(*meta)); 11694 meta->btf = desc_btf; 11695 meta->func_id = func_id; 11696 meta->kfunc_flags = *kfunc_flags; 11697 meta->func_proto = func_proto; 11698 meta->func_name = func_name; 11699 11700 return 0; 11701 } 11702 11703 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11704 int *insn_idx_p) 11705 { 11706 const struct btf_type *t, *ptr_type; 11707 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11708 struct bpf_reg_state *regs = cur_regs(env); 11709 const char *func_name, *ptr_type_name; 11710 bool sleepable, rcu_lock, rcu_unlock; 11711 struct bpf_kfunc_call_arg_meta meta; 11712 struct bpf_insn_aux_data *insn_aux; 11713 int err, insn_idx = *insn_idx_p; 11714 const struct btf_param *args; 11715 const struct btf_type *ret_t; 11716 struct btf *desc_btf; 11717 11718 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11719 if (!insn->imm) 11720 return 0; 11721 11722 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11723 if (err == -EACCES && func_name) 11724 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11725 if (err) 11726 return err; 11727 desc_btf = meta.btf; 11728 insn_aux = &env->insn_aux_data[insn_idx]; 11729 11730 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11731 11732 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11733 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11734 return -EACCES; 11735 } 11736 11737 sleepable = is_kfunc_sleepable(&meta); 11738 if (sleepable && !env->prog->aux->sleepable) { 11739 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11740 return -EACCES; 11741 } 11742 11743 /* Check the arguments */ 11744 err = check_kfunc_args(env, &meta, insn_idx); 11745 if (err < 0) 11746 return err; 11747 11748 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11749 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11750 set_rbtree_add_callback_state); 11751 if (err) { 11752 verbose(env, "kfunc %s#%d failed callback verification\n", 11753 func_name, meta.func_id); 11754 return err; 11755 } 11756 } 11757 11758 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11759 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11760 11761 if (env->cur_state->active_rcu_lock) { 11762 struct bpf_func_state *state; 11763 struct bpf_reg_state *reg; 11764 11765 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11766 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11767 return -EACCES; 11768 } 11769 11770 if (rcu_lock) { 11771 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11772 return -EINVAL; 11773 } else if (rcu_unlock) { 11774 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11775 if (reg->type & MEM_RCU) { 11776 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11777 reg->type |= PTR_UNTRUSTED; 11778 } 11779 })); 11780 env->cur_state->active_rcu_lock = false; 11781 } else if (sleepable) { 11782 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11783 return -EACCES; 11784 } 11785 } else if (rcu_lock) { 11786 env->cur_state->active_rcu_lock = true; 11787 } else if (rcu_unlock) { 11788 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11789 return -EINVAL; 11790 } 11791 11792 /* In case of release function, we get register number of refcounted 11793 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11794 */ 11795 if (meta.release_regno) { 11796 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11797 if (err) { 11798 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11799 func_name, meta.func_id); 11800 return err; 11801 } 11802 } 11803 11804 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11805 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11806 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11807 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11808 insn_aux->insert_off = regs[BPF_REG_2].off; 11809 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11810 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11811 if (err) { 11812 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11813 func_name, meta.func_id); 11814 return err; 11815 } 11816 11817 err = release_reference(env, release_ref_obj_id); 11818 if (err) { 11819 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11820 func_name, meta.func_id); 11821 return err; 11822 } 11823 } 11824 11825 for (i = 0; i < CALLER_SAVED_REGS; i++) 11826 mark_reg_not_init(env, regs, caller_saved[i]); 11827 11828 /* Check return type */ 11829 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11830 11831 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11832 /* Only exception is bpf_obj_new_impl */ 11833 if (meta.btf != btf_vmlinux || 11834 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11835 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11836 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11837 return -EINVAL; 11838 } 11839 } 11840 11841 if (btf_type_is_scalar(t)) { 11842 mark_reg_unknown(env, regs, BPF_REG_0); 11843 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11844 } else if (btf_type_is_ptr(t)) { 11845 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11846 11847 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11848 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11849 struct btf *ret_btf; 11850 u32 ret_btf_id; 11851 11852 if (unlikely(!bpf_global_ma_set)) 11853 return -ENOMEM; 11854 11855 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11856 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11857 return -EINVAL; 11858 } 11859 11860 ret_btf = env->prog->aux->btf; 11861 ret_btf_id = meta.arg_constant.value; 11862 11863 /* This may be NULL due to user not supplying a BTF */ 11864 if (!ret_btf) { 11865 verbose(env, "bpf_obj_new requires prog BTF\n"); 11866 return -EINVAL; 11867 } 11868 11869 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11870 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11871 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11872 return -EINVAL; 11873 } 11874 11875 mark_reg_known_zero(env, regs, BPF_REG_0); 11876 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11877 regs[BPF_REG_0].btf = ret_btf; 11878 regs[BPF_REG_0].btf_id = ret_btf_id; 11879 11880 insn_aux->obj_new_size = ret_t->size; 11881 insn_aux->kptr_struct_meta = 11882 btf_find_struct_meta(ret_btf, ret_btf_id); 11883 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11884 mark_reg_known_zero(env, regs, BPF_REG_0); 11885 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11886 regs[BPF_REG_0].btf = meta.arg_btf; 11887 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11888 11889 insn_aux->kptr_struct_meta = 11890 btf_find_struct_meta(meta.arg_btf, 11891 meta.arg_btf_id); 11892 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11893 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11894 struct btf_field *field = meta.arg_list_head.field; 11895 11896 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11897 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11898 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11899 struct btf_field *field = meta.arg_rbtree_root.field; 11900 11901 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11902 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11903 mark_reg_known_zero(env, regs, BPF_REG_0); 11904 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11905 regs[BPF_REG_0].btf = desc_btf; 11906 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11907 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11908 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11909 if (!ret_t || !btf_type_is_struct(ret_t)) { 11910 verbose(env, 11911 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11912 return -EINVAL; 11913 } 11914 11915 mark_reg_known_zero(env, regs, BPF_REG_0); 11916 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11917 regs[BPF_REG_0].btf = desc_btf; 11918 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11919 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11920 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11921 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11922 11923 mark_reg_known_zero(env, regs, BPF_REG_0); 11924 11925 if (!meta.arg_constant.found) { 11926 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11927 return -EFAULT; 11928 } 11929 11930 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11931 11932 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11933 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11934 11935 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11936 regs[BPF_REG_0].type |= MEM_RDONLY; 11937 } else { 11938 /* this will set env->seen_direct_write to true */ 11939 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11940 verbose(env, "the prog does not allow writes to packet data\n"); 11941 return -EINVAL; 11942 } 11943 } 11944 11945 if (!meta.initialized_dynptr.id) { 11946 verbose(env, "verifier internal error: no dynptr id\n"); 11947 return -EFAULT; 11948 } 11949 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11950 11951 /* we don't need to set BPF_REG_0's ref obj id 11952 * because packet slices are not refcounted (see 11953 * dynptr_type_refcounted) 11954 */ 11955 } else { 11956 verbose(env, "kernel function %s unhandled dynamic return type\n", 11957 meta.func_name); 11958 return -EFAULT; 11959 } 11960 } else if (!__btf_type_is_struct(ptr_type)) { 11961 if (!meta.r0_size) { 11962 __u32 sz; 11963 11964 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11965 meta.r0_size = sz; 11966 meta.r0_rdonly = true; 11967 } 11968 } 11969 if (!meta.r0_size) { 11970 ptr_type_name = btf_name_by_offset(desc_btf, 11971 ptr_type->name_off); 11972 verbose(env, 11973 "kernel function %s returns pointer type %s %s is not supported\n", 11974 func_name, 11975 btf_type_str(ptr_type), 11976 ptr_type_name); 11977 return -EINVAL; 11978 } 11979 11980 mark_reg_known_zero(env, regs, BPF_REG_0); 11981 regs[BPF_REG_0].type = PTR_TO_MEM; 11982 regs[BPF_REG_0].mem_size = meta.r0_size; 11983 11984 if (meta.r0_rdonly) 11985 regs[BPF_REG_0].type |= MEM_RDONLY; 11986 11987 /* Ensures we don't access the memory after a release_reference() */ 11988 if (meta.ref_obj_id) 11989 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11990 } else { 11991 mark_reg_known_zero(env, regs, BPF_REG_0); 11992 regs[BPF_REG_0].btf = desc_btf; 11993 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 11994 regs[BPF_REG_0].btf_id = ptr_type_id; 11995 } 11996 11997 if (is_kfunc_ret_null(&meta)) { 11998 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 11999 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12000 regs[BPF_REG_0].id = ++env->id_gen; 12001 } 12002 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12003 if (is_kfunc_acquire(&meta)) { 12004 int id = acquire_reference_state(env, insn_idx); 12005 12006 if (id < 0) 12007 return id; 12008 if (is_kfunc_ret_null(&meta)) 12009 regs[BPF_REG_0].id = id; 12010 regs[BPF_REG_0].ref_obj_id = id; 12011 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12012 ref_set_non_owning(env, ®s[BPF_REG_0]); 12013 } 12014 12015 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12016 regs[BPF_REG_0].id = ++env->id_gen; 12017 } else if (btf_type_is_void(t)) { 12018 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12019 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12020 insn_aux->kptr_struct_meta = 12021 btf_find_struct_meta(meta.arg_btf, 12022 meta.arg_btf_id); 12023 } 12024 } 12025 } 12026 12027 nargs = btf_type_vlen(meta.func_proto); 12028 args = (const struct btf_param *)(meta.func_proto + 1); 12029 for (i = 0; i < nargs; i++) { 12030 u32 regno = i + 1; 12031 12032 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12033 if (btf_type_is_ptr(t)) 12034 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12035 else 12036 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12037 mark_btf_func_reg_size(env, regno, t->size); 12038 } 12039 12040 if (is_iter_next_kfunc(&meta)) { 12041 err = process_iter_next_call(env, insn_idx, &meta); 12042 if (err) 12043 return err; 12044 } 12045 12046 return 0; 12047 } 12048 12049 static bool signed_add_overflows(s64 a, s64 b) 12050 { 12051 /* Do the add in u64, where overflow is well-defined */ 12052 s64 res = (s64)((u64)a + (u64)b); 12053 12054 if (b < 0) 12055 return res > a; 12056 return res < a; 12057 } 12058 12059 static bool signed_add32_overflows(s32 a, s32 b) 12060 { 12061 /* Do the add in u32, where overflow is well-defined */ 12062 s32 res = (s32)((u32)a + (u32)b); 12063 12064 if (b < 0) 12065 return res > a; 12066 return res < a; 12067 } 12068 12069 static bool signed_sub_overflows(s64 a, s64 b) 12070 { 12071 /* Do the sub in u64, where overflow is well-defined */ 12072 s64 res = (s64)((u64)a - (u64)b); 12073 12074 if (b < 0) 12075 return res < a; 12076 return res > a; 12077 } 12078 12079 static bool signed_sub32_overflows(s32 a, s32 b) 12080 { 12081 /* Do the sub in u32, where overflow is well-defined */ 12082 s32 res = (s32)((u32)a - (u32)b); 12083 12084 if (b < 0) 12085 return res < a; 12086 return res > a; 12087 } 12088 12089 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12090 const struct bpf_reg_state *reg, 12091 enum bpf_reg_type type) 12092 { 12093 bool known = tnum_is_const(reg->var_off); 12094 s64 val = reg->var_off.value; 12095 s64 smin = reg->smin_value; 12096 12097 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12098 verbose(env, "math between %s pointer and %lld is not allowed\n", 12099 reg_type_str(env, type), val); 12100 return false; 12101 } 12102 12103 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12104 verbose(env, "%s pointer offset %d is not allowed\n", 12105 reg_type_str(env, type), reg->off); 12106 return false; 12107 } 12108 12109 if (smin == S64_MIN) { 12110 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12111 reg_type_str(env, type)); 12112 return false; 12113 } 12114 12115 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12116 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12117 smin, reg_type_str(env, type)); 12118 return false; 12119 } 12120 12121 return true; 12122 } 12123 12124 enum { 12125 REASON_BOUNDS = -1, 12126 REASON_TYPE = -2, 12127 REASON_PATHS = -3, 12128 REASON_LIMIT = -4, 12129 REASON_STACK = -5, 12130 }; 12131 12132 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12133 u32 *alu_limit, bool mask_to_left) 12134 { 12135 u32 max = 0, ptr_limit = 0; 12136 12137 switch (ptr_reg->type) { 12138 case PTR_TO_STACK: 12139 /* Offset 0 is out-of-bounds, but acceptable start for the 12140 * left direction, see BPF_REG_FP. Also, unknown scalar 12141 * offset where we would need to deal with min/max bounds is 12142 * currently prohibited for unprivileged. 12143 */ 12144 max = MAX_BPF_STACK + mask_to_left; 12145 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12146 break; 12147 case PTR_TO_MAP_VALUE: 12148 max = ptr_reg->map_ptr->value_size; 12149 ptr_limit = (mask_to_left ? 12150 ptr_reg->smin_value : 12151 ptr_reg->umax_value) + ptr_reg->off; 12152 break; 12153 default: 12154 return REASON_TYPE; 12155 } 12156 12157 if (ptr_limit >= max) 12158 return REASON_LIMIT; 12159 *alu_limit = ptr_limit; 12160 return 0; 12161 } 12162 12163 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12164 const struct bpf_insn *insn) 12165 { 12166 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12167 } 12168 12169 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12170 u32 alu_state, u32 alu_limit) 12171 { 12172 /* If we arrived here from different branches with different 12173 * state or limits to sanitize, then this won't work. 12174 */ 12175 if (aux->alu_state && 12176 (aux->alu_state != alu_state || 12177 aux->alu_limit != alu_limit)) 12178 return REASON_PATHS; 12179 12180 /* Corresponding fixup done in do_misc_fixups(). */ 12181 aux->alu_state = alu_state; 12182 aux->alu_limit = alu_limit; 12183 return 0; 12184 } 12185 12186 static int sanitize_val_alu(struct bpf_verifier_env *env, 12187 struct bpf_insn *insn) 12188 { 12189 struct bpf_insn_aux_data *aux = cur_aux(env); 12190 12191 if (can_skip_alu_sanitation(env, insn)) 12192 return 0; 12193 12194 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12195 } 12196 12197 static bool sanitize_needed(u8 opcode) 12198 { 12199 return opcode == BPF_ADD || opcode == BPF_SUB; 12200 } 12201 12202 struct bpf_sanitize_info { 12203 struct bpf_insn_aux_data aux; 12204 bool mask_to_left; 12205 }; 12206 12207 static struct bpf_verifier_state * 12208 sanitize_speculative_path(struct bpf_verifier_env *env, 12209 const struct bpf_insn *insn, 12210 u32 next_idx, u32 curr_idx) 12211 { 12212 struct bpf_verifier_state *branch; 12213 struct bpf_reg_state *regs; 12214 12215 branch = push_stack(env, next_idx, curr_idx, true); 12216 if (branch && insn) { 12217 regs = branch->frame[branch->curframe]->regs; 12218 if (BPF_SRC(insn->code) == BPF_K) { 12219 mark_reg_unknown(env, regs, insn->dst_reg); 12220 } else if (BPF_SRC(insn->code) == BPF_X) { 12221 mark_reg_unknown(env, regs, insn->dst_reg); 12222 mark_reg_unknown(env, regs, insn->src_reg); 12223 } 12224 } 12225 return branch; 12226 } 12227 12228 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12229 struct bpf_insn *insn, 12230 const struct bpf_reg_state *ptr_reg, 12231 const struct bpf_reg_state *off_reg, 12232 struct bpf_reg_state *dst_reg, 12233 struct bpf_sanitize_info *info, 12234 const bool commit_window) 12235 { 12236 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12237 struct bpf_verifier_state *vstate = env->cur_state; 12238 bool off_is_imm = tnum_is_const(off_reg->var_off); 12239 bool off_is_neg = off_reg->smin_value < 0; 12240 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12241 u8 opcode = BPF_OP(insn->code); 12242 u32 alu_state, alu_limit; 12243 struct bpf_reg_state tmp; 12244 bool ret; 12245 int err; 12246 12247 if (can_skip_alu_sanitation(env, insn)) 12248 return 0; 12249 12250 /* We already marked aux for masking from non-speculative 12251 * paths, thus we got here in the first place. We only care 12252 * to explore bad access from here. 12253 */ 12254 if (vstate->speculative) 12255 goto do_sim; 12256 12257 if (!commit_window) { 12258 if (!tnum_is_const(off_reg->var_off) && 12259 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12260 return REASON_BOUNDS; 12261 12262 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12263 (opcode == BPF_SUB && !off_is_neg); 12264 } 12265 12266 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12267 if (err < 0) 12268 return err; 12269 12270 if (commit_window) { 12271 /* In commit phase we narrow the masking window based on 12272 * the observed pointer move after the simulated operation. 12273 */ 12274 alu_state = info->aux.alu_state; 12275 alu_limit = abs(info->aux.alu_limit - alu_limit); 12276 } else { 12277 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12278 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12279 alu_state |= ptr_is_dst_reg ? 12280 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12281 12282 /* Limit pruning on unknown scalars to enable deep search for 12283 * potential masking differences from other program paths. 12284 */ 12285 if (!off_is_imm) 12286 env->explore_alu_limits = true; 12287 } 12288 12289 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12290 if (err < 0) 12291 return err; 12292 do_sim: 12293 /* If we're in commit phase, we're done here given we already 12294 * pushed the truncated dst_reg into the speculative verification 12295 * stack. 12296 * 12297 * Also, when register is a known constant, we rewrite register-based 12298 * operation to immediate-based, and thus do not need masking (and as 12299 * a consequence, do not need to simulate the zero-truncation either). 12300 */ 12301 if (commit_window || off_is_imm) 12302 return 0; 12303 12304 /* Simulate and find potential out-of-bounds access under 12305 * speculative execution from truncation as a result of 12306 * masking when off was not within expected range. If off 12307 * sits in dst, then we temporarily need to move ptr there 12308 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12309 * for cases where we use K-based arithmetic in one direction 12310 * and truncated reg-based in the other in order to explore 12311 * bad access. 12312 */ 12313 if (!ptr_is_dst_reg) { 12314 tmp = *dst_reg; 12315 copy_register_state(dst_reg, ptr_reg); 12316 } 12317 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12318 env->insn_idx); 12319 if (!ptr_is_dst_reg && ret) 12320 *dst_reg = tmp; 12321 return !ret ? REASON_STACK : 0; 12322 } 12323 12324 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12325 { 12326 struct bpf_verifier_state *vstate = env->cur_state; 12327 12328 /* If we simulate paths under speculation, we don't update the 12329 * insn as 'seen' such that when we verify unreachable paths in 12330 * the non-speculative domain, sanitize_dead_code() can still 12331 * rewrite/sanitize them. 12332 */ 12333 if (!vstate->speculative) 12334 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12335 } 12336 12337 static int sanitize_err(struct bpf_verifier_env *env, 12338 const struct bpf_insn *insn, int reason, 12339 const struct bpf_reg_state *off_reg, 12340 const struct bpf_reg_state *dst_reg) 12341 { 12342 static const char *err = "pointer arithmetic with it prohibited for !root"; 12343 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12344 u32 dst = insn->dst_reg, src = insn->src_reg; 12345 12346 switch (reason) { 12347 case REASON_BOUNDS: 12348 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12349 off_reg == dst_reg ? dst : src, err); 12350 break; 12351 case REASON_TYPE: 12352 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12353 off_reg == dst_reg ? src : dst, err); 12354 break; 12355 case REASON_PATHS: 12356 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12357 dst, op, err); 12358 break; 12359 case REASON_LIMIT: 12360 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12361 dst, op, err); 12362 break; 12363 case REASON_STACK: 12364 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12365 dst, err); 12366 break; 12367 default: 12368 verbose(env, "verifier internal error: unknown reason (%d)\n", 12369 reason); 12370 break; 12371 } 12372 12373 return -EACCES; 12374 } 12375 12376 /* check that stack access falls within stack limits and that 'reg' doesn't 12377 * have a variable offset. 12378 * 12379 * Variable offset is prohibited for unprivileged mode for simplicity since it 12380 * requires corresponding support in Spectre masking for stack ALU. See also 12381 * retrieve_ptr_limit(). 12382 * 12383 * 12384 * 'off' includes 'reg->off'. 12385 */ 12386 static int check_stack_access_for_ptr_arithmetic( 12387 struct bpf_verifier_env *env, 12388 int regno, 12389 const struct bpf_reg_state *reg, 12390 int off) 12391 { 12392 if (!tnum_is_const(reg->var_off)) { 12393 char tn_buf[48]; 12394 12395 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12396 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12397 regno, tn_buf, off); 12398 return -EACCES; 12399 } 12400 12401 if (off >= 0 || off < -MAX_BPF_STACK) { 12402 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12403 "prohibited for !root; off=%d\n", regno, off); 12404 return -EACCES; 12405 } 12406 12407 return 0; 12408 } 12409 12410 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12411 const struct bpf_insn *insn, 12412 const struct bpf_reg_state *dst_reg) 12413 { 12414 u32 dst = insn->dst_reg; 12415 12416 /* For unprivileged we require that resulting offset must be in bounds 12417 * in order to be able to sanitize access later on. 12418 */ 12419 if (env->bypass_spec_v1) 12420 return 0; 12421 12422 switch (dst_reg->type) { 12423 case PTR_TO_STACK: 12424 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12425 dst_reg->off + dst_reg->var_off.value)) 12426 return -EACCES; 12427 break; 12428 case PTR_TO_MAP_VALUE: 12429 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12430 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12431 "prohibited for !root\n", dst); 12432 return -EACCES; 12433 } 12434 break; 12435 default: 12436 break; 12437 } 12438 12439 return 0; 12440 } 12441 12442 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12443 * Caller should also handle BPF_MOV case separately. 12444 * If we return -EACCES, caller may want to try again treating pointer as a 12445 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12446 */ 12447 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12448 struct bpf_insn *insn, 12449 const struct bpf_reg_state *ptr_reg, 12450 const struct bpf_reg_state *off_reg) 12451 { 12452 struct bpf_verifier_state *vstate = env->cur_state; 12453 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12454 struct bpf_reg_state *regs = state->regs, *dst_reg; 12455 bool known = tnum_is_const(off_reg->var_off); 12456 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12457 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12458 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12459 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12460 struct bpf_sanitize_info info = {}; 12461 u8 opcode = BPF_OP(insn->code); 12462 u32 dst = insn->dst_reg; 12463 int ret; 12464 12465 dst_reg = ®s[dst]; 12466 12467 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12468 smin_val > smax_val || umin_val > umax_val) { 12469 /* Taint dst register if offset had invalid bounds derived from 12470 * e.g. dead branches. 12471 */ 12472 __mark_reg_unknown(env, dst_reg); 12473 return 0; 12474 } 12475 12476 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12477 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12478 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12479 __mark_reg_unknown(env, dst_reg); 12480 return 0; 12481 } 12482 12483 verbose(env, 12484 "R%d 32-bit pointer arithmetic prohibited\n", 12485 dst); 12486 return -EACCES; 12487 } 12488 12489 if (ptr_reg->type & PTR_MAYBE_NULL) { 12490 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12491 dst, reg_type_str(env, ptr_reg->type)); 12492 return -EACCES; 12493 } 12494 12495 switch (base_type(ptr_reg->type)) { 12496 case PTR_TO_FLOW_KEYS: 12497 if (known) 12498 break; 12499 fallthrough; 12500 case CONST_PTR_TO_MAP: 12501 /* smin_val represents the known value */ 12502 if (known && smin_val == 0 && opcode == BPF_ADD) 12503 break; 12504 fallthrough; 12505 case PTR_TO_PACKET_END: 12506 case PTR_TO_SOCKET: 12507 case PTR_TO_SOCK_COMMON: 12508 case PTR_TO_TCP_SOCK: 12509 case PTR_TO_XDP_SOCK: 12510 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12511 dst, reg_type_str(env, ptr_reg->type)); 12512 return -EACCES; 12513 default: 12514 break; 12515 } 12516 12517 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12518 * The id may be overwritten later if we create a new variable offset. 12519 */ 12520 dst_reg->type = ptr_reg->type; 12521 dst_reg->id = ptr_reg->id; 12522 12523 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12524 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12525 return -EINVAL; 12526 12527 /* pointer types do not carry 32-bit bounds at the moment. */ 12528 __mark_reg32_unbounded(dst_reg); 12529 12530 if (sanitize_needed(opcode)) { 12531 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12532 &info, false); 12533 if (ret < 0) 12534 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12535 } 12536 12537 switch (opcode) { 12538 case BPF_ADD: 12539 /* We can take a fixed offset as long as it doesn't overflow 12540 * the s32 'off' field 12541 */ 12542 if (known && (ptr_reg->off + smin_val == 12543 (s64)(s32)(ptr_reg->off + smin_val))) { 12544 /* pointer += K. Accumulate it into fixed offset */ 12545 dst_reg->smin_value = smin_ptr; 12546 dst_reg->smax_value = smax_ptr; 12547 dst_reg->umin_value = umin_ptr; 12548 dst_reg->umax_value = umax_ptr; 12549 dst_reg->var_off = ptr_reg->var_off; 12550 dst_reg->off = ptr_reg->off + smin_val; 12551 dst_reg->raw = ptr_reg->raw; 12552 break; 12553 } 12554 /* A new variable offset is created. Note that off_reg->off 12555 * == 0, since it's a scalar. 12556 * dst_reg gets the pointer type and since some positive 12557 * integer value was added to the pointer, give it a new 'id' 12558 * if it's a PTR_TO_PACKET. 12559 * this creates a new 'base' pointer, off_reg (variable) gets 12560 * added into the variable offset, and we copy the fixed offset 12561 * from ptr_reg. 12562 */ 12563 if (signed_add_overflows(smin_ptr, smin_val) || 12564 signed_add_overflows(smax_ptr, smax_val)) { 12565 dst_reg->smin_value = S64_MIN; 12566 dst_reg->smax_value = S64_MAX; 12567 } else { 12568 dst_reg->smin_value = smin_ptr + smin_val; 12569 dst_reg->smax_value = smax_ptr + smax_val; 12570 } 12571 if (umin_ptr + umin_val < umin_ptr || 12572 umax_ptr + umax_val < umax_ptr) { 12573 dst_reg->umin_value = 0; 12574 dst_reg->umax_value = U64_MAX; 12575 } else { 12576 dst_reg->umin_value = umin_ptr + umin_val; 12577 dst_reg->umax_value = umax_ptr + umax_val; 12578 } 12579 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12580 dst_reg->off = ptr_reg->off; 12581 dst_reg->raw = ptr_reg->raw; 12582 if (reg_is_pkt_pointer(ptr_reg)) { 12583 dst_reg->id = ++env->id_gen; 12584 /* something was added to pkt_ptr, set range to zero */ 12585 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12586 } 12587 break; 12588 case BPF_SUB: 12589 if (dst_reg == off_reg) { 12590 /* scalar -= pointer. Creates an unknown scalar */ 12591 verbose(env, "R%d tried to subtract pointer from scalar\n", 12592 dst); 12593 return -EACCES; 12594 } 12595 /* We don't allow subtraction from FP, because (according to 12596 * test_verifier.c test "invalid fp arithmetic", JITs might not 12597 * be able to deal with it. 12598 */ 12599 if (ptr_reg->type == PTR_TO_STACK) { 12600 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12601 dst); 12602 return -EACCES; 12603 } 12604 if (known && (ptr_reg->off - smin_val == 12605 (s64)(s32)(ptr_reg->off - smin_val))) { 12606 /* pointer -= K. Subtract it from fixed offset */ 12607 dst_reg->smin_value = smin_ptr; 12608 dst_reg->smax_value = smax_ptr; 12609 dst_reg->umin_value = umin_ptr; 12610 dst_reg->umax_value = umax_ptr; 12611 dst_reg->var_off = ptr_reg->var_off; 12612 dst_reg->id = ptr_reg->id; 12613 dst_reg->off = ptr_reg->off - smin_val; 12614 dst_reg->raw = ptr_reg->raw; 12615 break; 12616 } 12617 /* A new variable offset is created. If the subtrahend is known 12618 * nonnegative, then any reg->range we had before is still good. 12619 */ 12620 if (signed_sub_overflows(smin_ptr, smax_val) || 12621 signed_sub_overflows(smax_ptr, smin_val)) { 12622 /* Overflow possible, we know nothing */ 12623 dst_reg->smin_value = S64_MIN; 12624 dst_reg->smax_value = S64_MAX; 12625 } else { 12626 dst_reg->smin_value = smin_ptr - smax_val; 12627 dst_reg->smax_value = smax_ptr - smin_val; 12628 } 12629 if (umin_ptr < umax_val) { 12630 /* Overflow possible, we know nothing */ 12631 dst_reg->umin_value = 0; 12632 dst_reg->umax_value = U64_MAX; 12633 } else { 12634 /* Cannot overflow (as long as bounds are consistent) */ 12635 dst_reg->umin_value = umin_ptr - umax_val; 12636 dst_reg->umax_value = umax_ptr - umin_val; 12637 } 12638 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12639 dst_reg->off = ptr_reg->off; 12640 dst_reg->raw = ptr_reg->raw; 12641 if (reg_is_pkt_pointer(ptr_reg)) { 12642 dst_reg->id = ++env->id_gen; 12643 /* something was added to pkt_ptr, set range to zero */ 12644 if (smin_val < 0) 12645 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12646 } 12647 break; 12648 case BPF_AND: 12649 case BPF_OR: 12650 case BPF_XOR: 12651 /* bitwise ops on pointers are troublesome, prohibit. */ 12652 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12653 dst, bpf_alu_string[opcode >> 4]); 12654 return -EACCES; 12655 default: 12656 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12657 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12658 dst, bpf_alu_string[opcode >> 4]); 12659 return -EACCES; 12660 } 12661 12662 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12663 return -EINVAL; 12664 reg_bounds_sync(dst_reg); 12665 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12666 return -EACCES; 12667 if (sanitize_needed(opcode)) { 12668 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12669 &info, true); 12670 if (ret < 0) 12671 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12672 } 12673 12674 return 0; 12675 } 12676 12677 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12678 struct bpf_reg_state *src_reg) 12679 { 12680 s32 smin_val = src_reg->s32_min_value; 12681 s32 smax_val = src_reg->s32_max_value; 12682 u32 umin_val = src_reg->u32_min_value; 12683 u32 umax_val = src_reg->u32_max_value; 12684 12685 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12686 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12687 dst_reg->s32_min_value = S32_MIN; 12688 dst_reg->s32_max_value = S32_MAX; 12689 } else { 12690 dst_reg->s32_min_value += smin_val; 12691 dst_reg->s32_max_value += smax_val; 12692 } 12693 if (dst_reg->u32_min_value + umin_val < umin_val || 12694 dst_reg->u32_max_value + umax_val < umax_val) { 12695 dst_reg->u32_min_value = 0; 12696 dst_reg->u32_max_value = U32_MAX; 12697 } else { 12698 dst_reg->u32_min_value += umin_val; 12699 dst_reg->u32_max_value += umax_val; 12700 } 12701 } 12702 12703 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12704 struct bpf_reg_state *src_reg) 12705 { 12706 s64 smin_val = src_reg->smin_value; 12707 s64 smax_val = src_reg->smax_value; 12708 u64 umin_val = src_reg->umin_value; 12709 u64 umax_val = src_reg->umax_value; 12710 12711 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12712 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12713 dst_reg->smin_value = S64_MIN; 12714 dst_reg->smax_value = S64_MAX; 12715 } else { 12716 dst_reg->smin_value += smin_val; 12717 dst_reg->smax_value += smax_val; 12718 } 12719 if (dst_reg->umin_value + umin_val < umin_val || 12720 dst_reg->umax_value + umax_val < umax_val) { 12721 dst_reg->umin_value = 0; 12722 dst_reg->umax_value = U64_MAX; 12723 } else { 12724 dst_reg->umin_value += umin_val; 12725 dst_reg->umax_value += umax_val; 12726 } 12727 } 12728 12729 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12730 struct bpf_reg_state *src_reg) 12731 { 12732 s32 smin_val = src_reg->s32_min_value; 12733 s32 smax_val = src_reg->s32_max_value; 12734 u32 umin_val = src_reg->u32_min_value; 12735 u32 umax_val = src_reg->u32_max_value; 12736 12737 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12738 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12739 /* Overflow possible, we know nothing */ 12740 dst_reg->s32_min_value = S32_MIN; 12741 dst_reg->s32_max_value = S32_MAX; 12742 } else { 12743 dst_reg->s32_min_value -= smax_val; 12744 dst_reg->s32_max_value -= smin_val; 12745 } 12746 if (dst_reg->u32_min_value < umax_val) { 12747 /* Overflow possible, we know nothing */ 12748 dst_reg->u32_min_value = 0; 12749 dst_reg->u32_max_value = U32_MAX; 12750 } else { 12751 /* Cannot overflow (as long as bounds are consistent) */ 12752 dst_reg->u32_min_value -= umax_val; 12753 dst_reg->u32_max_value -= umin_val; 12754 } 12755 } 12756 12757 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12758 struct bpf_reg_state *src_reg) 12759 { 12760 s64 smin_val = src_reg->smin_value; 12761 s64 smax_val = src_reg->smax_value; 12762 u64 umin_val = src_reg->umin_value; 12763 u64 umax_val = src_reg->umax_value; 12764 12765 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12766 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12767 /* Overflow possible, we know nothing */ 12768 dst_reg->smin_value = S64_MIN; 12769 dst_reg->smax_value = S64_MAX; 12770 } else { 12771 dst_reg->smin_value -= smax_val; 12772 dst_reg->smax_value -= smin_val; 12773 } 12774 if (dst_reg->umin_value < umax_val) { 12775 /* Overflow possible, we know nothing */ 12776 dst_reg->umin_value = 0; 12777 dst_reg->umax_value = U64_MAX; 12778 } else { 12779 /* Cannot overflow (as long as bounds are consistent) */ 12780 dst_reg->umin_value -= umax_val; 12781 dst_reg->umax_value -= umin_val; 12782 } 12783 } 12784 12785 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12786 struct bpf_reg_state *src_reg) 12787 { 12788 s32 smin_val = src_reg->s32_min_value; 12789 u32 umin_val = src_reg->u32_min_value; 12790 u32 umax_val = src_reg->u32_max_value; 12791 12792 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12793 /* Ain't nobody got time to multiply that sign */ 12794 __mark_reg32_unbounded(dst_reg); 12795 return; 12796 } 12797 /* Both values are positive, so we can work with unsigned and 12798 * copy the result to signed (unless it exceeds S32_MAX). 12799 */ 12800 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12801 /* Potential overflow, we know nothing */ 12802 __mark_reg32_unbounded(dst_reg); 12803 return; 12804 } 12805 dst_reg->u32_min_value *= umin_val; 12806 dst_reg->u32_max_value *= umax_val; 12807 if (dst_reg->u32_max_value > S32_MAX) { 12808 /* Overflow possible, we know nothing */ 12809 dst_reg->s32_min_value = S32_MIN; 12810 dst_reg->s32_max_value = S32_MAX; 12811 } else { 12812 dst_reg->s32_min_value = dst_reg->u32_min_value; 12813 dst_reg->s32_max_value = dst_reg->u32_max_value; 12814 } 12815 } 12816 12817 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12818 struct bpf_reg_state *src_reg) 12819 { 12820 s64 smin_val = src_reg->smin_value; 12821 u64 umin_val = src_reg->umin_value; 12822 u64 umax_val = src_reg->umax_value; 12823 12824 if (smin_val < 0 || dst_reg->smin_value < 0) { 12825 /* Ain't nobody got time to multiply that sign */ 12826 __mark_reg64_unbounded(dst_reg); 12827 return; 12828 } 12829 /* Both values are positive, so we can work with unsigned and 12830 * copy the result to signed (unless it exceeds S64_MAX). 12831 */ 12832 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12833 /* Potential overflow, we know nothing */ 12834 __mark_reg64_unbounded(dst_reg); 12835 return; 12836 } 12837 dst_reg->umin_value *= umin_val; 12838 dst_reg->umax_value *= umax_val; 12839 if (dst_reg->umax_value > S64_MAX) { 12840 /* Overflow possible, we know nothing */ 12841 dst_reg->smin_value = S64_MIN; 12842 dst_reg->smax_value = S64_MAX; 12843 } else { 12844 dst_reg->smin_value = dst_reg->umin_value; 12845 dst_reg->smax_value = dst_reg->umax_value; 12846 } 12847 } 12848 12849 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12850 struct bpf_reg_state *src_reg) 12851 { 12852 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12853 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12854 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12855 s32 smin_val = src_reg->s32_min_value; 12856 u32 umax_val = src_reg->u32_max_value; 12857 12858 if (src_known && dst_known) { 12859 __mark_reg32_known(dst_reg, var32_off.value); 12860 return; 12861 } 12862 12863 /* We get our minimum from the var_off, since that's inherently 12864 * bitwise. Our maximum is the minimum of the operands' maxima. 12865 */ 12866 dst_reg->u32_min_value = var32_off.value; 12867 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12868 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12869 /* Lose signed bounds when ANDing negative numbers, 12870 * ain't nobody got time for that. 12871 */ 12872 dst_reg->s32_min_value = S32_MIN; 12873 dst_reg->s32_max_value = S32_MAX; 12874 } else { 12875 /* ANDing two positives gives a positive, so safe to 12876 * cast result into s64. 12877 */ 12878 dst_reg->s32_min_value = dst_reg->u32_min_value; 12879 dst_reg->s32_max_value = dst_reg->u32_max_value; 12880 } 12881 } 12882 12883 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12884 struct bpf_reg_state *src_reg) 12885 { 12886 bool src_known = tnum_is_const(src_reg->var_off); 12887 bool dst_known = tnum_is_const(dst_reg->var_off); 12888 s64 smin_val = src_reg->smin_value; 12889 u64 umax_val = src_reg->umax_value; 12890 12891 if (src_known && dst_known) { 12892 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12893 return; 12894 } 12895 12896 /* We get our minimum from the var_off, since that's inherently 12897 * bitwise. Our maximum is the minimum of the operands' maxima. 12898 */ 12899 dst_reg->umin_value = dst_reg->var_off.value; 12900 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12901 if (dst_reg->smin_value < 0 || smin_val < 0) { 12902 /* Lose signed bounds when ANDing negative numbers, 12903 * ain't nobody got time for that. 12904 */ 12905 dst_reg->smin_value = S64_MIN; 12906 dst_reg->smax_value = S64_MAX; 12907 } else { 12908 /* ANDing two positives gives a positive, so safe to 12909 * cast result into s64. 12910 */ 12911 dst_reg->smin_value = dst_reg->umin_value; 12912 dst_reg->smax_value = dst_reg->umax_value; 12913 } 12914 /* We may learn something more from the var_off */ 12915 __update_reg_bounds(dst_reg); 12916 } 12917 12918 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12919 struct bpf_reg_state *src_reg) 12920 { 12921 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12922 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12923 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12924 s32 smin_val = src_reg->s32_min_value; 12925 u32 umin_val = src_reg->u32_min_value; 12926 12927 if (src_known && dst_known) { 12928 __mark_reg32_known(dst_reg, var32_off.value); 12929 return; 12930 } 12931 12932 /* We get our maximum from the var_off, and our minimum is the 12933 * maximum of the operands' minima 12934 */ 12935 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12936 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12937 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12938 /* Lose signed bounds when ORing negative numbers, 12939 * ain't nobody got time for that. 12940 */ 12941 dst_reg->s32_min_value = S32_MIN; 12942 dst_reg->s32_max_value = S32_MAX; 12943 } else { 12944 /* ORing two positives gives a positive, so safe to 12945 * cast result into s64. 12946 */ 12947 dst_reg->s32_min_value = dst_reg->u32_min_value; 12948 dst_reg->s32_max_value = dst_reg->u32_max_value; 12949 } 12950 } 12951 12952 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12953 struct bpf_reg_state *src_reg) 12954 { 12955 bool src_known = tnum_is_const(src_reg->var_off); 12956 bool dst_known = tnum_is_const(dst_reg->var_off); 12957 s64 smin_val = src_reg->smin_value; 12958 u64 umin_val = src_reg->umin_value; 12959 12960 if (src_known && dst_known) { 12961 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12962 return; 12963 } 12964 12965 /* We get our maximum from the var_off, and our minimum is the 12966 * maximum of the operands' minima 12967 */ 12968 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12969 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12970 if (dst_reg->smin_value < 0 || smin_val < 0) { 12971 /* Lose signed bounds when ORing negative numbers, 12972 * ain't nobody got time for that. 12973 */ 12974 dst_reg->smin_value = S64_MIN; 12975 dst_reg->smax_value = S64_MAX; 12976 } else { 12977 /* ORing two positives gives a positive, so safe to 12978 * cast result into s64. 12979 */ 12980 dst_reg->smin_value = dst_reg->umin_value; 12981 dst_reg->smax_value = dst_reg->umax_value; 12982 } 12983 /* We may learn something more from the var_off */ 12984 __update_reg_bounds(dst_reg); 12985 } 12986 12987 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12988 struct bpf_reg_state *src_reg) 12989 { 12990 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12991 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12992 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12993 s32 smin_val = src_reg->s32_min_value; 12994 12995 if (src_known && dst_known) { 12996 __mark_reg32_known(dst_reg, var32_off.value); 12997 return; 12998 } 12999 13000 /* We get both minimum and maximum from the var32_off. */ 13001 dst_reg->u32_min_value = var32_off.value; 13002 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13003 13004 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13005 /* XORing two positive sign numbers gives a positive, 13006 * so safe to cast u32 result into s32. 13007 */ 13008 dst_reg->s32_min_value = dst_reg->u32_min_value; 13009 dst_reg->s32_max_value = dst_reg->u32_max_value; 13010 } else { 13011 dst_reg->s32_min_value = S32_MIN; 13012 dst_reg->s32_max_value = S32_MAX; 13013 } 13014 } 13015 13016 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13017 struct bpf_reg_state *src_reg) 13018 { 13019 bool src_known = tnum_is_const(src_reg->var_off); 13020 bool dst_known = tnum_is_const(dst_reg->var_off); 13021 s64 smin_val = src_reg->smin_value; 13022 13023 if (src_known && dst_known) { 13024 /* dst_reg->var_off.value has been updated earlier */ 13025 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13026 return; 13027 } 13028 13029 /* We get both minimum and maximum from the var_off. */ 13030 dst_reg->umin_value = dst_reg->var_off.value; 13031 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13032 13033 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13034 /* XORing two positive sign numbers gives a positive, 13035 * so safe to cast u64 result into s64. 13036 */ 13037 dst_reg->smin_value = dst_reg->umin_value; 13038 dst_reg->smax_value = dst_reg->umax_value; 13039 } else { 13040 dst_reg->smin_value = S64_MIN; 13041 dst_reg->smax_value = S64_MAX; 13042 } 13043 13044 __update_reg_bounds(dst_reg); 13045 } 13046 13047 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13048 u64 umin_val, u64 umax_val) 13049 { 13050 /* We lose all sign bit information (except what we can pick 13051 * up from var_off) 13052 */ 13053 dst_reg->s32_min_value = S32_MIN; 13054 dst_reg->s32_max_value = S32_MAX; 13055 /* If we might shift our top bit out, then we know nothing */ 13056 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13057 dst_reg->u32_min_value = 0; 13058 dst_reg->u32_max_value = U32_MAX; 13059 } else { 13060 dst_reg->u32_min_value <<= umin_val; 13061 dst_reg->u32_max_value <<= umax_val; 13062 } 13063 } 13064 13065 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13066 struct bpf_reg_state *src_reg) 13067 { 13068 u32 umax_val = src_reg->u32_max_value; 13069 u32 umin_val = src_reg->u32_min_value; 13070 /* u32 alu operation will zext upper bits */ 13071 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13072 13073 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13074 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13075 /* Not required but being careful mark reg64 bounds as unknown so 13076 * that we are forced to pick them up from tnum and zext later and 13077 * if some path skips this step we are still safe. 13078 */ 13079 __mark_reg64_unbounded(dst_reg); 13080 __update_reg32_bounds(dst_reg); 13081 } 13082 13083 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13084 u64 umin_val, u64 umax_val) 13085 { 13086 /* Special case <<32 because it is a common compiler pattern to sign 13087 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13088 * positive we know this shift will also be positive so we can track 13089 * bounds correctly. Otherwise we lose all sign bit information except 13090 * what we can pick up from var_off. Perhaps we can generalize this 13091 * later to shifts of any length. 13092 */ 13093 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13094 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13095 else 13096 dst_reg->smax_value = S64_MAX; 13097 13098 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13099 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13100 else 13101 dst_reg->smin_value = S64_MIN; 13102 13103 /* If we might shift our top bit out, then we know nothing */ 13104 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13105 dst_reg->umin_value = 0; 13106 dst_reg->umax_value = U64_MAX; 13107 } else { 13108 dst_reg->umin_value <<= umin_val; 13109 dst_reg->umax_value <<= umax_val; 13110 } 13111 } 13112 13113 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13114 struct bpf_reg_state *src_reg) 13115 { 13116 u64 umax_val = src_reg->umax_value; 13117 u64 umin_val = src_reg->umin_value; 13118 13119 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13120 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13121 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13122 13123 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13124 /* We may learn something more from the var_off */ 13125 __update_reg_bounds(dst_reg); 13126 } 13127 13128 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13129 struct bpf_reg_state *src_reg) 13130 { 13131 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13132 u32 umax_val = src_reg->u32_max_value; 13133 u32 umin_val = src_reg->u32_min_value; 13134 13135 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13136 * be negative, then either: 13137 * 1) src_reg might be zero, so the sign bit of the result is 13138 * unknown, so we lose our signed bounds 13139 * 2) it's known negative, thus the unsigned bounds capture the 13140 * signed bounds 13141 * 3) the signed bounds cross zero, so they tell us nothing 13142 * about the result 13143 * If the value in dst_reg is known nonnegative, then again the 13144 * unsigned bounds capture the signed bounds. 13145 * Thus, in all cases it suffices to blow away our signed bounds 13146 * and rely on inferring new ones from the unsigned bounds and 13147 * var_off of the result. 13148 */ 13149 dst_reg->s32_min_value = S32_MIN; 13150 dst_reg->s32_max_value = S32_MAX; 13151 13152 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13153 dst_reg->u32_min_value >>= umax_val; 13154 dst_reg->u32_max_value >>= umin_val; 13155 13156 __mark_reg64_unbounded(dst_reg); 13157 __update_reg32_bounds(dst_reg); 13158 } 13159 13160 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13161 struct bpf_reg_state *src_reg) 13162 { 13163 u64 umax_val = src_reg->umax_value; 13164 u64 umin_val = src_reg->umin_value; 13165 13166 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13167 * be negative, then either: 13168 * 1) src_reg might be zero, so the sign bit of the result is 13169 * unknown, so we lose our signed bounds 13170 * 2) it's known negative, thus the unsigned bounds capture the 13171 * signed bounds 13172 * 3) the signed bounds cross zero, so they tell us nothing 13173 * about the result 13174 * If the value in dst_reg is known nonnegative, then again the 13175 * unsigned bounds capture the signed bounds. 13176 * Thus, in all cases it suffices to blow away our signed bounds 13177 * and rely on inferring new ones from the unsigned bounds and 13178 * var_off of the result. 13179 */ 13180 dst_reg->smin_value = S64_MIN; 13181 dst_reg->smax_value = S64_MAX; 13182 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13183 dst_reg->umin_value >>= umax_val; 13184 dst_reg->umax_value >>= umin_val; 13185 13186 /* Its not easy to operate on alu32 bounds here because it depends 13187 * on bits being shifted in. Take easy way out and mark unbounded 13188 * so we can recalculate later from tnum. 13189 */ 13190 __mark_reg32_unbounded(dst_reg); 13191 __update_reg_bounds(dst_reg); 13192 } 13193 13194 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13195 struct bpf_reg_state *src_reg) 13196 { 13197 u64 umin_val = src_reg->u32_min_value; 13198 13199 /* Upon reaching here, src_known is true and 13200 * umax_val is equal to umin_val. 13201 */ 13202 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13203 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13204 13205 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13206 13207 /* blow away the dst_reg umin_value/umax_value and rely on 13208 * dst_reg var_off to refine the result. 13209 */ 13210 dst_reg->u32_min_value = 0; 13211 dst_reg->u32_max_value = U32_MAX; 13212 13213 __mark_reg64_unbounded(dst_reg); 13214 __update_reg32_bounds(dst_reg); 13215 } 13216 13217 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13218 struct bpf_reg_state *src_reg) 13219 { 13220 u64 umin_val = src_reg->umin_value; 13221 13222 /* Upon reaching here, src_known is true and umax_val is equal 13223 * to umin_val. 13224 */ 13225 dst_reg->smin_value >>= umin_val; 13226 dst_reg->smax_value >>= umin_val; 13227 13228 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13229 13230 /* blow away the dst_reg umin_value/umax_value and rely on 13231 * dst_reg var_off to refine the result. 13232 */ 13233 dst_reg->umin_value = 0; 13234 dst_reg->umax_value = U64_MAX; 13235 13236 /* Its not easy to operate on alu32 bounds here because it depends 13237 * on bits being shifted in from upper 32-bits. Take easy way out 13238 * and mark unbounded so we can recalculate later from tnum. 13239 */ 13240 __mark_reg32_unbounded(dst_reg); 13241 __update_reg_bounds(dst_reg); 13242 } 13243 13244 /* WARNING: This function does calculations on 64-bit values, but the actual 13245 * execution may occur on 32-bit values. Therefore, things like bitshifts 13246 * need extra checks in the 32-bit case. 13247 */ 13248 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13249 struct bpf_insn *insn, 13250 struct bpf_reg_state *dst_reg, 13251 struct bpf_reg_state src_reg) 13252 { 13253 struct bpf_reg_state *regs = cur_regs(env); 13254 u8 opcode = BPF_OP(insn->code); 13255 bool src_known; 13256 s64 smin_val, smax_val; 13257 u64 umin_val, umax_val; 13258 s32 s32_min_val, s32_max_val; 13259 u32 u32_min_val, u32_max_val; 13260 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13261 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13262 int ret; 13263 13264 smin_val = src_reg.smin_value; 13265 smax_val = src_reg.smax_value; 13266 umin_val = src_reg.umin_value; 13267 umax_val = src_reg.umax_value; 13268 13269 s32_min_val = src_reg.s32_min_value; 13270 s32_max_val = src_reg.s32_max_value; 13271 u32_min_val = src_reg.u32_min_value; 13272 u32_max_val = src_reg.u32_max_value; 13273 13274 if (alu32) { 13275 src_known = tnum_subreg_is_const(src_reg.var_off); 13276 if ((src_known && 13277 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13278 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13279 /* Taint dst register if offset had invalid bounds 13280 * derived from e.g. dead branches. 13281 */ 13282 __mark_reg_unknown(env, dst_reg); 13283 return 0; 13284 } 13285 } else { 13286 src_known = tnum_is_const(src_reg.var_off); 13287 if ((src_known && 13288 (smin_val != smax_val || umin_val != umax_val)) || 13289 smin_val > smax_val || umin_val > umax_val) { 13290 /* Taint dst register if offset had invalid bounds 13291 * derived from e.g. dead branches. 13292 */ 13293 __mark_reg_unknown(env, dst_reg); 13294 return 0; 13295 } 13296 } 13297 13298 if (!src_known && 13299 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13300 __mark_reg_unknown(env, dst_reg); 13301 return 0; 13302 } 13303 13304 if (sanitize_needed(opcode)) { 13305 ret = sanitize_val_alu(env, insn); 13306 if (ret < 0) 13307 return sanitize_err(env, insn, ret, NULL, NULL); 13308 } 13309 13310 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13311 * There are two classes of instructions: The first class we track both 13312 * alu32 and alu64 sign/unsigned bounds independently this provides the 13313 * greatest amount of precision when alu operations are mixed with jmp32 13314 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13315 * and BPF_OR. This is possible because these ops have fairly easy to 13316 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13317 * See alu32 verifier tests for examples. The second class of 13318 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13319 * with regards to tracking sign/unsigned bounds because the bits may 13320 * cross subreg boundaries in the alu64 case. When this happens we mark 13321 * the reg unbounded in the subreg bound space and use the resulting 13322 * tnum to calculate an approximation of the sign/unsigned bounds. 13323 */ 13324 switch (opcode) { 13325 case BPF_ADD: 13326 scalar32_min_max_add(dst_reg, &src_reg); 13327 scalar_min_max_add(dst_reg, &src_reg); 13328 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13329 break; 13330 case BPF_SUB: 13331 scalar32_min_max_sub(dst_reg, &src_reg); 13332 scalar_min_max_sub(dst_reg, &src_reg); 13333 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13334 break; 13335 case BPF_MUL: 13336 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13337 scalar32_min_max_mul(dst_reg, &src_reg); 13338 scalar_min_max_mul(dst_reg, &src_reg); 13339 break; 13340 case BPF_AND: 13341 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13342 scalar32_min_max_and(dst_reg, &src_reg); 13343 scalar_min_max_and(dst_reg, &src_reg); 13344 break; 13345 case BPF_OR: 13346 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13347 scalar32_min_max_or(dst_reg, &src_reg); 13348 scalar_min_max_or(dst_reg, &src_reg); 13349 break; 13350 case BPF_XOR: 13351 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13352 scalar32_min_max_xor(dst_reg, &src_reg); 13353 scalar_min_max_xor(dst_reg, &src_reg); 13354 break; 13355 case BPF_LSH: 13356 if (umax_val >= insn_bitness) { 13357 /* Shifts greater than 31 or 63 are undefined. 13358 * This includes shifts by a negative number. 13359 */ 13360 mark_reg_unknown(env, regs, insn->dst_reg); 13361 break; 13362 } 13363 if (alu32) 13364 scalar32_min_max_lsh(dst_reg, &src_reg); 13365 else 13366 scalar_min_max_lsh(dst_reg, &src_reg); 13367 break; 13368 case BPF_RSH: 13369 if (umax_val >= insn_bitness) { 13370 /* Shifts greater than 31 or 63 are undefined. 13371 * This includes shifts by a negative number. 13372 */ 13373 mark_reg_unknown(env, regs, insn->dst_reg); 13374 break; 13375 } 13376 if (alu32) 13377 scalar32_min_max_rsh(dst_reg, &src_reg); 13378 else 13379 scalar_min_max_rsh(dst_reg, &src_reg); 13380 break; 13381 case BPF_ARSH: 13382 if (umax_val >= insn_bitness) { 13383 /* Shifts greater than 31 or 63 are undefined. 13384 * This includes shifts by a negative number. 13385 */ 13386 mark_reg_unknown(env, regs, insn->dst_reg); 13387 break; 13388 } 13389 if (alu32) 13390 scalar32_min_max_arsh(dst_reg, &src_reg); 13391 else 13392 scalar_min_max_arsh(dst_reg, &src_reg); 13393 break; 13394 default: 13395 mark_reg_unknown(env, regs, insn->dst_reg); 13396 break; 13397 } 13398 13399 /* ALU32 ops are zero extended into 64bit register */ 13400 if (alu32) 13401 zext_32_to_64(dst_reg); 13402 reg_bounds_sync(dst_reg); 13403 return 0; 13404 } 13405 13406 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13407 * and var_off. 13408 */ 13409 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13410 struct bpf_insn *insn) 13411 { 13412 struct bpf_verifier_state *vstate = env->cur_state; 13413 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13414 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13415 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13416 u8 opcode = BPF_OP(insn->code); 13417 int err; 13418 13419 dst_reg = ®s[insn->dst_reg]; 13420 src_reg = NULL; 13421 if (dst_reg->type != SCALAR_VALUE) 13422 ptr_reg = dst_reg; 13423 else 13424 /* Make sure ID is cleared otherwise dst_reg min/max could be 13425 * incorrectly propagated into other registers by find_equal_scalars() 13426 */ 13427 dst_reg->id = 0; 13428 if (BPF_SRC(insn->code) == BPF_X) { 13429 src_reg = ®s[insn->src_reg]; 13430 if (src_reg->type != SCALAR_VALUE) { 13431 if (dst_reg->type != SCALAR_VALUE) { 13432 /* Combining two pointers by any ALU op yields 13433 * an arbitrary scalar. Disallow all math except 13434 * pointer subtraction 13435 */ 13436 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13437 mark_reg_unknown(env, regs, insn->dst_reg); 13438 return 0; 13439 } 13440 verbose(env, "R%d pointer %s pointer prohibited\n", 13441 insn->dst_reg, 13442 bpf_alu_string[opcode >> 4]); 13443 return -EACCES; 13444 } else { 13445 /* scalar += pointer 13446 * This is legal, but we have to reverse our 13447 * src/dest handling in computing the range 13448 */ 13449 err = mark_chain_precision(env, insn->dst_reg); 13450 if (err) 13451 return err; 13452 return adjust_ptr_min_max_vals(env, insn, 13453 src_reg, dst_reg); 13454 } 13455 } else if (ptr_reg) { 13456 /* pointer += scalar */ 13457 err = mark_chain_precision(env, insn->src_reg); 13458 if (err) 13459 return err; 13460 return adjust_ptr_min_max_vals(env, insn, 13461 dst_reg, src_reg); 13462 } else if (dst_reg->precise) { 13463 /* if dst_reg is precise, src_reg should be precise as well */ 13464 err = mark_chain_precision(env, insn->src_reg); 13465 if (err) 13466 return err; 13467 } 13468 } else { 13469 /* Pretend the src is a reg with a known value, since we only 13470 * need to be able to read from this state. 13471 */ 13472 off_reg.type = SCALAR_VALUE; 13473 __mark_reg_known(&off_reg, insn->imm); 13474 src_reg = &off_reg; 13475 if (ptr_reg) /* pointer += K */ 13476 return adjust_ptr_min_max_vals(env, insn, 13477 ptr_reg, src_reg); 13478 } 13479 13480 /* Got here implies adding two SCALAR_VALUEs */ 13481 if (WARN_ON_ONCE(ptr_reg)) { 13482 print_verifier_state(env, state, true); 13483 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13484 return -EINVAL; 13485 } 13486 if (WARN_ON(!src_reg)) { 13487 print_verifier_state(env, state, true); 13488 verbose(env, "verifier internal error: no src_reg\n"); 13489 return -EINVAL; 13490 } 13491 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13492 } 13493 13494 /* check validity of 32-bit and 64-bit arithmetic operations */ 13495 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13496 { 13497 struct bpf_reg_state *regs = cur_regs(env); 13498 u8 opcode = BPF_OP(insn->code); 13499 int err; 13500 13501 if (opcode == BPF_END || opcode == BPF_NEG) { 13502 if (opcode == BPF_NEG) { 13503 if (BPF_SRC(insn->code) != BPF_K || 13504 insn->src_reg != BPF_REG_0 || 13505 insn->off != 0 || insn->imm != 0) { 13506 verbose(env, "BPF_NEG uses reserved fields\n"); 13507 return -EINVAL; 13508 } 13509 } else { 13510 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13511 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13512 (BPF_CLASS(insn->code) == BPF_ALU64 && 13513 BPF_SRC(insn->code) != BPF_TO_LE)) { 13514 verbose(env, "BPF_END uses reserved fields\n"); 13515 return -EINVAL; 13516 } 13517 } 13518 13519 /* check src operand */ 13520 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13521 if (err) 13522 return err; 13523 13524 if (is_pointer_value(env, insn->dst_reg)) { 13525 verbose(env, "R%d pointer arithmetic prohibited\n", 13526 insn->dst_reg); 13527 return -EACCES; 13528 } 13529 13530 /* check dest operand */ 13531 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13532 if (err) 13533 return err; 13534 13535 } else if (opcode == BPF_MOV) { 13536 13537 if (BPF_SRC(insn->code) == BPF_X) { 13538 if (insn->imm != 0) { 13539 verbose(env, "BPF_MOV uses reserved fields\n"); 13540 return -EINVAL; 13541 } 13542 13543 if (BPF_CLASS(insn->code) == BPF_ALU) { 13544 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13545 verbose(env, "BPF_MOV uses reserved fields\n"); 13546 return -EINVAL; 13547 } 13548 } else { 13549 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13550 insn->off != 32) { 13551 verbose(env, "BPF_MOV uses reserved fields\n"); 13552 return -EINVAL; 13553 } 13554 } 13555 13556 /* check src operand */ 13557 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13558 if (err) 13559 return err; 13560 } else { 13561 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13562 verbose(env, "BPF_MOV uses reserved fields\n"); 13563 return -EINVAL; 13564 } 13565 } 13566 13567 /* check dest operand, mark as required later */ 13568 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13569 if (err) 13570 return err; 13571 13572 if (BPF_SRC(insn->code) == BPF_X) { 13573 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13574 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13575 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13576 !tnum_is_const(src_reg->var_off); 13577 13578 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13579 if (insn->off == 0) { 13580 /* case: R1 = R2 13581 * copy register state to dest reg 13582 */ 13583 if (need_id) 13584 /* Assign src and dst registers the same ID 13585 * that will be used by find_equal_scalars() 13586 * to propagate min/max range. 13587 */ 13588 src_reg->id = ++env->id_gen; 13589 copy_register_state(dst_reg, src_reg); 13590 dst_reg->live |= REG_LIVE_WRITTEN; 13591 dst_reg->subreg_def = DEF_NOT_SUBREG; 13592 } else { 13593 /* case: R1 = (s8, s16 s32)R2 */ 13594 if (is_pointer_value(env, insn->src_reg)) { 13595 verbose(env, 13596 "R%d sign-extension part of pointer\n", 13597 insn->src_reg); 13598 return -EACCES; 13599 } else if (src_reg->type == SCALAR_VALUE) { 13600 bool no_sext; 13601 13602 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13603 if (no_sext && need_id) 13604 src_reg->id = ++env->id_gen; 13605 copy_register_state(dst_reg, src_reg); 13606 if (!no_sext) 13607 dst_reg->id = 0; 13608 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13609 dst_reg->live |= REG_LIVE_WRITTEN; 13610 dst_reg->subreg_def = DEF_NOT_SUBREG; 13611 } else { 13612 mark_reg_unknown(env, regs, insn->dst_reg); 13613 } 13614 } 13615 } else { 13616 /* R1 = (u32) R2 */ 13617 if (is_pointer_value(env, insn->src_reg)) { 13618 verbose(env, 13619 "R%d partial copy of pointer\n", 13620 insn->src_reg); 13621 return -EACCES; 13622 } else if (src_reg->type == SCALAR_VALUE) { 13623 if (insn->off == 0) { 13624 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13625 13626 if (is_src_reg_u32 && need_id) 13627 src_reg->id = ++env->id_gen; 13628 copy_register_state(dst_reg, src_reg); 13629 /* Make sure ID is cleared if src_reg is not in u32 13630 * range otherwise dst_reg min/max could be incorrectly 13631 * propagated into src_reg by find_equal_scalars() 13632 */ 13633 if (!is_src_reg_u32) 13634 dst_reg->id = 0; 13635 dst_reg->live |= REG_LIVE_WRITTEN; 13636 dst_reg->subreg_def = env->insn_idx + 1; 13637 } else { 13638 /* case: W1 = (s8, s16)W2 */ 13639 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13640 13641 if (no_sext && need_id) 13642 src_reg->id = ++env->id_gen; 13643 copy_register_state(dst_reg, src_reg); 13644 if (!no_sext) 13645 dst_reg->id = 0; 13646 dst_reg->live |= REG_LIVE_WRITTEN; 13647 dst_reg->subreg_def = env->insn_idx + 1; 13648 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13649 } 13650 } else { 13651 mark_reg_unknown(env, regs, 13652 insn->dst_reg); 13653 } 13654 zext_32_to_64(dst_reg); 13655 reg_bounds_sync(dst_reg); 13656 } 13657 } else { 13658 /* case: R = imm 13659 * remember the value we stored into this reg 13660 */ 13661 /* clear any state __mark_reg_known doesn't set */ 13662 mark_reg_unknown(env, regs, insn->dst_reg); 13663 regs[insn->dst_reg].type = SCALAR_VALUE; 13664 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13665 __mark_reg_known(regs + insn->dst_reg, 13666 insn->imm); 13667 } else { 13668 __mark_reg_known(regs + insn->dst_reg, 13669 (u32)insn->imm); 13670 } 13671 } 13672 13673 } else if (opcode > BPF_END) { 13674 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13675 return -EINVAL; 13676 13677 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13678 13679 if (BPF_SRC(insn->code) == BPF_X) { 13680 if (insn->imm != 0 || insn->off > 1 || 13681 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13682 verbose(env, "BPF_ALU uses reserved fields\n"); 13683 return -EINVAL; 13684 } 13685 /* check src1 operand */ 13686 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13687 if (err) 13688 return err; 13689 } else { 13690 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13691 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13692 verbose(env, "BPF_ALU uses reserved fields\n"); 13693 return -EINVAL; 13694 } 13695 } 13696 13697 /* check src2 operand */ 13698 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13699 if (err) 13700 return err; 13701 13702 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13703 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13704 verbose(env, "div by zero\n"); 13705 return -EINVAL; 13706 } 13707 13708 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13709 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13710 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13711 13712 if (insn->imm < 0 || insn->imm >= size) { 13713 verbose(env, "invalid shift %d\n", insn->imm); 13714 return -EINVAL; 13715 } 13716 } 13717 13718 /* check dest operand */ 13719 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13720 if (err) 13721 return err; 13722 13723 return adjust_reg_min_max_vals(env, insn); 13724 } 13725 13726 return 0; 13727 } 13728 13729 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13730 struct bpf_reg_state *dst_reg, 13731 enum bpf_reg_type type, 13732 bool range_right_open) 13733 { 13734 struct bpf_func_state *state; 13735 struct bpf_reg_state *reg; 13736 int new_range; 13737 13738 if (dst_reg->off < 0 || 13739 (dst_reg->off == 0 && range_right_open)) 13740 /* This doesn't give us any range */ 13741 return; 13742 13743 if (dst_reg->umax_value > MAX_PACKET_OFF || 13744 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13745 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13746 * than pkt_end, but that's because it's also less than pkt. 13747 */ 13748 return; 13749 13750 new_range = dst_reg->off; 13751 if (range_right_open) 13752 new_range++; 13753 13754 /* Examples for register markings: 13755 * 13756 * pkt_data in dst register: 13757 * 13758 * r2 = r3; 13759 * r2 += 8; 13760 * if (r2 > pkt_end) goto <handle exception> 13761 * <access okay> 13762 * 13763 * r2 = r3; 13764 * r2 += 8; 13765 * if (r2 < pkt_end) goto <access okay> 13766 * <handle exception> 13767 * 13768 * Where: 13769 * r2 == dst_reg, pkt_end == src_reg 13770 * r2=pkt(id=n,off=8,r=0) 13771 * r3=pkt(id=n,off=0,r=0) 13772 * 13773 * pkt_data in src register: 13774 * 13775 * r2 = r3; 13776 * r2 += 8; 13777 * if (pkt_end >= r2) goto <access okay> 13778 * <handle exception> 13779 * 13780 * r2 = r3; 13781 * r2 += 8; 13782 * if (pkt_end <= r2) goto <handle exception> 13783 * <access okay> 13784 * 13785 * Where: 13786 * pkt_end == dst_reg, r2 == src_reg 13787 * r2=pkt(id=n,off=8,r=0) 13788 * r3=pkt(id=n,off=0,r=0) 13789 * 13790 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13791 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13792 * and [r3, r3 + 8-1) respectively is safe to access depending on 13793 * the check. 13794 */ 13795 13796 /* If our ids match, then we must have the same max_value. And we 13797 * don't care about the other reg's fixed offset, since if it's too big 13798 * the range won't allow anything. 13799 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13800 */ 13801 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13802 if (reg->type == type && reg->id == dst_reg->id) 13803 /* keep the maximum range already checked */ 13804 reg->range = max(reg->range, new_range); 13805 })); 13806 } 13807 13808 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13809 { 13810 struct tnum subreg = tnum_subreg(reg->var_off); 13811 s32 sval = (s32)val; 13812 13813 switch (opcode) { 13814 case BPF_JEQ: 13815 if (tnum_is_const(subreg)) 13816 return !!tnum_equals_const(subreg, val); 13817 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13818 return 0; 13819 break; 13820 case BPF_JNE: 13821 if (tnum_is_const(subreg)) 13822 return !tnum_equals_const(subreg, val); 13823 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13824 return 1; 13825 break; 13826 case BPF_JSET: 13827 if ((~subreg.mask & subreg.value) & val) 13828 return 1; 13829 if (!((subreg.mask | subreg.value) & val)) 13830 return 0; 13831 break; 13832 case BPF_JGT: 13833 if (reg->u32_min_value > val) 13834 return 1; 13835 else if (reg->u32_max_value <= val) 13836 return 0; 13837 break; 13838 case BPF_JSGT: 13839 if (reg->s32_min_value > sval) 13840 return 1; 13841 else if (reg->s32_max_value <= sval) 13842 return 0; 13843 break; 13844 case BPF_JLT: 13845 if (reg->u32_max_value < val) 13846 return 1; 13847 else if (reg->u32_min_value >= val) 13848 return 0; 13849 break; 13850 case BPF_JSLT: 13851 if (reg->s32_max_value < sval) 13852 return 1; 13853 else if (reg->s32_min_value >= sval) 13854 return 0; 13855 break; 13856 case BPF_JGE: 13857 if (reg->u32_min_value >= val) 13858 return 1; 13859 else if (reg->u32_max_value < val) 13860 return 0; 13861 break; 13862 case BPF_JSGE: 13863 if (reg->s32_min_value >= sval) 13864 return 1; 13865 else if (reg->s32_max_value < sval) 13866 return 0; 13867 break; 13868 case BPF_JLE: 13869 if (reg->u32_max_value <= val) 13870 return 1; 13871 else if (reg->u32_min_value > val) 13872 return 0; 13873 break; 13874 case BPF_JSLE: 13875 if (reg->s32_max_value <= sval) 13876 return 1; 13877 else if (reg->s32_min_value > sval) 13878 return 0; 13879 break; 13880 } 13881 13882 return -1; 13883 } 13884 13885 13886 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13887 { 13888 s64 sval = (s64)val; 13889 13890 switch (opcode) { 13891 case BPF_JEQ: 13892 if (tnum_is_const(reg->var_off)) 13893 return !!tnum_equals_const(reg->var_off, val); 13894 else if (val < reg->umin_value || val > reg->umax_value) 13895 return 0; 13896 break; 13897 case BPF_JNE: 13898 if (tnum_is_const(reg->var_off)) 13899 return !tnum_equals_const(reg->var_off, val); 13900 else if (val < reg->umin_value || val > reg->umax_value) 13901 return 1; 13902 break; 13903 case BPF_JSET: 13904 if ((~reg->var_off.mask & reg->var_off.value) & val) 13905 return 1; 13906 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13907 return 0; 13908 break; 13909 case BPF_JGT: 13910 if (reg->umin_value > val) 13911 return 1; 13912 else if (reg->umax_value <= val) 13913 return 0; 13914 break; 13915 case BPF_JSGT: 13916 if (reg->smin_value > sval) 13917 return 1; 13918 else if (reg->smax_value <= sval) 13919 return 0; 13920 break; 13921 case BPF_JLT: 13922 if (reg->umax_value < val) 13923 return 1; 13924 else if (reg->umin_value >= val) 13925 return 0; 13926 break; 13927 case BPF_JSLT: 13928 if (reg->smax_value < sval) 13929 return 1; 13930 else if (reg->smin_value >= sval) 13931 return 0; 13932 break; 13933 case BPF_JGE: 13934 if (reg->umin_value >= val) 13935 return 1; 13936 else if (reg->umax_value < val) 13937 return 0; 13938 break; 13939 case BPF_JSGE: 13940 if (reg->smin_value >= sval) 13941 return 1; 13942 else if (reg->smax_value < sval) 13943 return 0; 13944 break; 13945 case BPF_JLE: 13946 if (reg->umax_value <= val) 13947 return 1; 13948 else if (reg->umin_value > val) 13949 return 0; 13950 break; 13951 case BPF_JSLE: 13952 if (reg->smax_value <= sval) 13953 return 1; 13954 else if (reg->smin_value > sval) 13955 return 0; 13956 break; 13957 } 13958 13959 return -1; 13960 } 13961 13962 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13963 * and return: 13964 * 1 - branch will be taken and "goto target" will be executed 13965 * 0 - branch will not be taken and fall-through to next insn 13966 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13967 * range [0,10] 13968 */ 13969 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13970 bool is_jmp32) 13971 { 13972 if (__is_pointer_value(false, reg)) { 13973 if (!reg_not_null(reg)) 13974 return -1; 13975 13976 /* If pointer is valid tests against zero will fail so we can 13977 * use this to direct branch taken. 13978 */ 13979 if (val != 0) 13980 return -1; 13981 13982 switch (opcode) { 13983 case BPF_JEQ: 13984 return 0; 13985 case BPF_JNE: 13986 return 1; 13987 default: 13988 return -1; 13989 } 13990 } 13991 13992 if (is_jmp32) 13993 return is_branch32_taken(reg, val, opcode); 13994 return is_branch64_taken(reg, val, opcode); 13995 } 13996 13997 static int flip_opcode(u32 opcode) 13998 { 13999 /* How can we transform "a <op> b" into "b <op> a"? */ 14000 static const u8 opcode_flip[16] = { 14001 /* these stay the same */ 14002 [BPF_JEQ >> 4] = BPF_JEQ, 14003 [BPF_JNE >> 4] = BPF_JNE, 14004 [BPF_JSET >> 4] = BPF_JSET, 14005 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14006 [BPF_JGE >> 4] = BPF_JLE, 14007 [BPF_JGT >> 4] = BPF_JLT, 14008 [BPF_JLE >> 4] = BPF_JGE, 14009 [BPF_JLT >> 4] = BPF_JGT, 14010 [BPF_JSGE >> 4] = BPF_JSLE, 14011 [BPF_JSGT >> 4] = BPF_JSLT, 14012 [BPF_JSLE >> 4] = BPF_JSGE, 14013 [BPF_JSLT >> 4] = BPF_JSGT 14014 }; 14015 return opcode_flip[opcode >> 4]; 14016 } 14017 14018 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14019 struct bpf_reg_state *src_reg, 14020 u8 opcode) 14021 { 14022 struct bpf_reg_state *pkt; 14023 14024 if (src_reg->type == PTR_TO_PACKET_END) { 14025 pkt = dst_reg; 14026 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14027 pkt = src_reg; 14028 opcode = flip_opcode(opcode); 14029 } else { 14030 return -1; 14031 } 14032 14033 if (pkt->range >= 0) 14034 return -1; 14035 14036 switch (opcode) { 14037 case BPF_JLE: 14038 /* pkt <= pkt_end */ 14039 fallthrough; 14040 case BPF_JGT: 14041 /* pkt > pkt_end */ 14042 if (pkt->range == BEYOND_PKT_END) 14043 /* pkt has at last one extra byte beyond pkt_end */ 14044 return opcode == BPF_JGT; 14045 break; 14046 case BPF_JLT: 14047 /* pkt < pkt_end */ 14048 fallthrough; 14049 case BPF_JGE: 14050 /* pkt >= pkt_end */ 14051 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14052 return opcode == BPF_JGE; 14053 break; 14054 } 14055 return -1; 14056 } 14057 14058 /* Adjusts the register min/max values in the case that the dst_reg is the 14059 * variable register that we are working on, and src_reg is a constant or we're 14060 * simply doing a BPF_K check. 14061 * In JEQ/JNE cases we also adjust the var_off values. 14062 */ 14063 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14064 struct bpf_reg_state *false_reg, 14065 u64 val, u32 val32, 14066 u8 opcode, bool is_jmp32) 14067 { 14068 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14069 struct tnum false_64off = false_reg->var_off; 14070 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14071 struct tnum true_64off = true_reg->var_off; 14072 s64 sval = (s64)val; 14073 s32 sval32 = (s32)val32; 14074 14075 /* If the dst_reg is a pointer, we can't learn anything about its 14076 * variable offset from the compare (unless src_reg were a pointer into 14077 * the same object, but we don't bother with that. 14078 * Since false_reg and true_reg have the same type by construction, we 14079 * only need to check one of them for pointerness. 14080 */ 14081 if (__is_pointer_value(false, false_reg)) 14082 return; 14083 14084 switch (opcode) { 14085 /* JEQ/JNE comparison doesn't change the register equivalence. 14086 * 14087 * r1 = r2; 14088 * if (r1 == 42) goto label; 14089 * ... 14090 * label: // here both r1 and r2 are known to be 42. 14091 * 14092 * Hence when marking register as known preserve it's ID. 14093 */ 14094 case BPF_JEQ: 14095 if (is_jmp32) { 14096 __mark_reg32_known(true_reg, val32); 14097 true_32off = tnum_subreg(true_reg->var_off); 14098 } else { 14099 ___mark_reg_known(true_reg, val); 14100 true_64off = true_reg->var_off; 14101 } 14102 break; 14103 case BPF_JNE: 14104 if (is_jmp32) { 14105 __mark_reg32_known(false_reg, val32); 14106 false_32off = tnum_subreg(false_reg->var_off); 14107 } else { 14108 ___mark_reg_known(false_reg, val); 14109 false_64off = false_reg->var_off; 14110 } 14111 break; 14112 case BPF_JSET: 14113 if (is_jmp32) { 14114 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14115 if (is_power_of_2(val32)) 14116 true_32off = tnum_or(true_32off, 14117 tnum_const(val32)); 14118 } else { 14119 false_64off = tnum_and(false_64off, tnum_const(~val)); 14120 if (is_power_of_2(val)) 14121 true_64off = tnum_or(true_64off, 14122 tnum_const(val)); 14123 } 14124 break; 14125 case BPF_JGE: 14126 case BPF_JGT: 14127 { 14128 if (is_jmp32) { 14129 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14130 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14131 14132 false_reg->u32_max_value = min(false_reg->u32_max_value, 14133 false_umax); 14134 true_reg->u32_min_value = max(true_reg->u32_min_value, 14135 true_umin); 14136 } else { 14137 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14138 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14139 14140 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14141 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14142 } 14143 break; 14144 } 14145 case BPF_JSGE: 14146 case BPF_JSGT: 14147 { 14148 if (is_jmp32) { 14149 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14150 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14151 14152 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14153 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14154 } else { 14155 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14156 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14157 14158 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14159 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14160 } 14161 break; 14162 } 14163 case BPF_JLE: 14164 case BPF_JLT: 14165 { 14166 if (is_jmp32) { 14167 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14168 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14169 14170 false_reg->u32_min_value = max(false_reg->u32_min_value, 14171 false_umin); 14172 true_reg->u32_max_value = min(true_reg->u32_max_value, 14173 true_umax); 14174 } else { 14175 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14176 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14177 14178 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14179 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14180 } 14181 break; 14182 } 14183 case BPF_JSLE: 14184 case BPF_JSLT: 14185 { 14186 if (is_jmp32) { 14187 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14188 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14189 14190 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14191 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14192 } else { 14193 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14194 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14195 14196 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14197 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14198 } 14199 break; 14200 } 14201 default: 14202 return; 14203 } 14204 14205 if (is_jmp32) { 14206 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14207 tnum_subreg(false_32off)); 14208 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14209 tnum_subreg(true_32off)); 14210 __reg_combine_32_into_64(false_reg); 14211 __reg_combine_32_into_64(true_reg); 14212 } else { 14213 false_reg->var_off = false_64off; 14214 true_reg->var_off = true_64off; 14215 __reg_combine_64_into_32(false_reg); 14216 __reg_combine_64_into_32(true_reg); 14217 } 14218 } 14219 14220 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14221 * the variable reg. 14222 */ 14223 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14224 struct bpf_reg_state *false_reg, 14225 u64 val, u32 val32, 14226 u8 opcode, bool is_jmp32) 14227 { 14228 opcode = flip_opcode(opcode); 14229 /* This uses zero as "not present in table"; luckily the zero opcode, 14230 * BPF_JA, can't get here. 14231 */ 14232 if (opcode) 14233 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14234 } 14235 14236 /* Regs are known to be equal, so intersect their min/max/var_off */ 14237 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14238 struct bpf_reg_state *dst_reg) 14239 { 14240 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14241 dst_reg->umin_value); 14242 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14243 dst_reg->umax_value); 14244 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14245 dst_reg->smin_value); 14246 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14247 dst_reg->smax_value); 14248 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14249 dst_reg->var_off); 14250 reg_bounds_sync(src_reg); 14251 reg_bounds_sync(dst_reg); 14252 } 14253 14254 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14255 struct bpf_reg_state *true_dst, 14256 struct bpf_reg_state *false_src, 14257 struct bpf_reg_state *false_dst, 14258 u8 opcode) 14259 { 14260 switch (opcode) { 14261 case BPF_JEQ: 14262 __reg_combine_min_max(true_src, true_dst); 14263 break; 14264 case BPF_JNE: 14265 __reg_combine_min_max(false_src, false_dst); 14266 break; 14267 } 14268 } 14269 14270 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14271 struct bpf_reg_state *reg, u32 id, 14272 bool is_null) 14273 { 14274 if (type_may_be_null(reg->type) && reg->id == id && 14275 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14276 /* Old offset (both fixed and variable parts) should have been 14277 * known-zero, because we don't allow pointer arithmetic on 14278 * pointers that might be NULL. If we see this happening, don't 14279 * convert the register. 14280 * 14281 * But in some cases, some helpers that return local kptrs 14282 * advance offset for the returned pointer. In those cases, it 14283 * is fine to expect to see reg->off. 14284 */ 14285 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14286 return; 14287 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14288 WARN_ON_ONCE(reg->off)) 14289 return; 14290 14291 if (is_null) { 14292 reg->type = SCALAR_VALUE; 14293 /* We don't need id and ref_obj_id from this point 14294 * onwards anymore, thus we should better reset it, 14295 * so that state pruning has chances to take effect. 14296 */ 14297 reg->id = 0; 14298 reg->ref_obj_id = 0; 14299 14300 return; 14301 } 14302 14303 mark_ptr_not_null_reg(reg); 14304 14305 if (!reg_may_point_to_spin_lock(reg)) { 14306 /* For not-NULL ptr, reg->ref_obj_id will be reset 14307 * in release_reference(). 14308 * 14309 * reg->id is still used by spin_lock ptr. Other 14310 * than spin_lock ptr type, reg->id can be reset. 14311 */ 14312 reg->id = 0; 14313 } 14314 } 14315 } 14316 14317 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14318 * be folded together at some point. 14319 */ 14320 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14321 bool is_null) 14322 { 14323 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14324 struct bpf_reg_state *regs = state->regs, *reg; 14325 u32 ref_obj_id = regs[regno].ref_obj_id; 14326 u32 id = regs[regno].id; 14327 14328 if (ref_obj_id && ref_obj_id == id && is_null) 14329 /* regs[regno] is in the " == NULL" branch. 14330 * No one could have freed the reference state before 14331 * doing the NULL check. 14332 */ 14333 WARN_ON_ONCE(release_reference_state(state, id)); 14334 14335 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14336 mark_ptr_or_null_reg(state, reg, id, is_null); 14337 })); 14338 } 14339 14340 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14341 struct bpf_reg_state *dst_reg, 14342 struct bpf_reg_state *src_reg, 14343 struct bpf_verifier_state *this_branch, 14344 struct bpf_verifier_state *other_branch) 14345 { 14346 if (BPF_SRC(insn->code) != BPF_X) 14347 return false; 14348 14349 /* Pointers are always 64-bit. */ 14350 if (BPF_CLASS(insn->code) == BPF_JMP32) 14351 return false; 14352 14353 switch (BPF_OP(insn->code)) { 14354 case BPF_JGT: 14355 if ((dst_reg->type == PTR_TO_PACKET && 14356 src_reg->type == PTR_TO_PACKET_END) || 14357 (dst_reg->type == PTR_TO_PACKET_META && 14358 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14359 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14360 find_good_pkt_pointers(this_branch, dst_reg, 14361 dst_reg->type, false); 14362 mark_pkt_end(other_branch, insn->dst_reg, true); 14363 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14364 src_reg->type == PTR_TO_PACKET) || 14365 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14366 src_reg->type == PTR_TO_PACKET_META)) { 14367 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14368 find_good_pkt_pointers(other_branch, src_reg, 14369 src_reg->type, true); 14370 mark_pkt_end(this_branch, insn->src_reg, false); 14371 } else { 14372 return false; 14373 } 14374 break; 14375 case BPF_JLT: 14376 if ((dst_reg->type == PTR_TO_PACKET && 14377 src_reg->type == PTR_TO_PACKET_END) || 14378 (dst_reg->type == PTR_TO_PACKET_META && 14379 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14380 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14381 find_good_pkt_pointers(other_branch, dst_reg, 14382 dst_reg->type, true); 14383 mark_pkt_end(this_branch, insn->dst_reg, false); 14384 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14385 src_reg->type == PTR_TO_PACKET) || 14386 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14387 src_reg->type == PTR_TO_PACKET_META)) { 14388 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14389 find_good_pkt_pointers(this_branch, src_reg, 14390 src_reg->type, false); 14391 mark_pkt_end(other_branch, insn->src_reg, true); 14392 } else { 14393 return false; 14394 } 14395 break; 14396 case BPF_JGE: 14397 if ((dst_reg->type == PTR_TO_PACKET && 14398 src_reg->type == PTR_TO_PACKET_END) || 14399 (dst_reg->type == PTR_TO_PACKET_META && 14400 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14401 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14402 find_good_pkt_pointers(this_branch, dst_reg, 14403 dst_reg->type, true); 14404 mark_pkt_end(other_branch, insn->dst_reg, false); 14405 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14406 src_reg->type == PTR_TO_PACKET) || 14407 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14408 src_reg->type == PTR_TO_PACKET_META)) { 14409 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14410 find_good_pkt_pointers(other_branch, src_reg, 14411 src_reg->type, false); 14412 mark_pkt_end(this_branch, insn->src_reg, true); 14413 } else { 14414 return false; 14415 } 14416 break; 14417 case BPF_JLE: 14418 if ((dst_reg->type == PTR_TO_PACKET && 14419 src_reg->type == PTR_TO_PACKET_END) || 14420 (dst_reg->type == PTR_TO_PACKET_META && 14421 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14422 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14423 find_good_pkt_pointers(other_branch, dst_reg, 14424 dst_reg->type, false); 14425 mark_pkt_end(this_branch, insn->dst_reg, true); 14426 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14427 src_reg->type == PTR_TO_PACKET) || 14428 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14429 src_reg->type == PTR_TO_PACKET_META)) { 14430 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14431 find_good_pkt_pointers(this_branch, src_reg, 14432 src_reg->type, true); 14433 mark_pkt_end(other_branch, insn->src_reg, false); 14434 } else { 14435 return false; 14436 } 14437 break; 14438 default: 14439 return false; 14440 } 14441 14442 return true; 14443 } 14444 14445 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14446 struct bpf_reg_state *known_reg) 14447 { 14448 struct bpf_func_state *state; 14449 struct bpf_reg_state *reg; 14450 14451 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14452 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14453 copy_register_state(reg, known_reg); 14454 })); 14455 } 14456 14457 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14458 struct bpf_insn *insn, int *insn_idx) 14459 { 14460 struct bpf_verifier_state *this_branch = env->cur_state; 14461 struct bpf_verifier_state *other_branch; 14462 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14463 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14464 struct bpf_reg_state *eq_branch_regs; 14465 u8 opcode = BPF_OP(insn->code); 14466 bool is_jmp32; 14467 int pred = -1; 14468 int err; 14469 14470 /* Only conditional jumps are expected to reach here. */ 14471 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14472 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14473 return -EINVAL; 14474 } 14475 14476 /* check src2 operand */ 14477 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14478 if (err) 14479 return err; 14480 14481 dst_reg = ®s[insn->dst_reg]; 14482 if (BPF_SRC(insn->code) == BPF_X) { 14483 if (insn->imm != 0) { 14484 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14485 return -EINVAL; 14486 } 14487 14488 /* check src1 operand */ 14489 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14490 if (err) 14491 return err; 14492 14493 src_reg = ®s[insn->src_reg]; 14494 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14495 is_pointer_value(env, insn->src_reg)) { 14496 verbose(env, "R%d pointer comparison prohibited\n", 14497 insn->src_reg); 14498 return -EACCES; 14499 } 14500 } else { 14501 if (insn->src_reg != BPF_REG_0) { 14502 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14503 return -EINVAL; 14504 } 14505 } 14506 14507 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14508 14509 if (BPF_SRC(insn->code) == BPF_K) { 14510 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14511 } else if (src_reg->type == SCALAR_VALUE && 14512 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14513 pred = is_branch_taken(dst_reg, 14514 tnum_subreg(src_reg->var_off).value, 14515 opcode, 14516 is_jmp32); 14517 } else if (src_reg->type == SCALAR_VALUE && 14518 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14519 pred = is_branch_taken(dst_reg, 14520 src_reg->var_off.value, 14521 opcode, 14522 is_jmp32); 14523 } else if (dst_reg->type == SCALAR_VALUE && 14524 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14525 pred = is_branch_taken(src_reg, 14526 tnum_subreg(dst_reg->var_off).value, 14527 flip_opcode(opcode), 14528 is_jmp32); 14529 } else if (dst_reg->type == SCALAR_VALUE && 14530 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14531 pred = is_branch_taken(src_reg, 14532 dst_reg->var_off.value, 14533 flip_opcode(opcode), 14534 is_jmp32); 14535 } else if (reg_is_pkt_pointer_any(dst_reg) && 14536 reg_is_pkt_pointer_any(src_reg) && 14537 !is_jmp32) { 14538 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14539 } 14540 14541 if (pred >= 0) { 14542 /* If we get here with a dst_reg pointer type it is because 14543 * above is_branch_taken() special cased the 0 comparison. 14544 */ 14545 if (!__is_pointer_value(false, dst_reg)) 14546 err = mark_chain_precision(env, insn->dst_reg); 14547 if (BPF_SRC(insn->code) == BPF_X && !err && 14548 !__is_pointer_value(false, src_reg)) 14549 err = mark_chain_precision(env, insn->src_reg); 14550 if (err) 14551 return err; 14552 } 14553 14554 if (pred == 1) { 14555 /* Only follow the goto, ignore fall-through. If needed, push 14556 * the fall-through branch for simulation under speculative 14557 * execution. 14558 */ 14559 if (!env->bypass_spec_v1 && 14560 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14561 *insn_idx)) 14562 return -EFAULT; 14563 if (env->log.level & BPF_LOG_LEVEL) 14564 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14565 *insn_idx += insn->off; 14566 return 0; 14567 } else if (pred == 0) { 14568 /* Only follow the fall-through branch, since that's where the 14569 * program will go. If needed, push the goto branch for 14570 * simulation under speculative execution. 14571 */ 14572 if (!env->bypass_spec_v1 && 14573 !sanitize_speculative_path(env, insn, 14574 *insn_idx + insn->off + 1, 14575 *insn_idx)) 14576 return -EFAULT; 14577 if (env->log.level & BPF_LOG_LEVEL) 14578 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14579 return 0; 14580 } 14581 14582 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14583 false); 14584 if (!other_branch) 14585 return -EFAULT; 14586 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14587 14588 /* detect if we are comparing against a constant value so we can adjust 14589 * our min/max values for our dst register. 14590 * this is only legit if both are scalars (or pointers to the same 14591 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14592 * because otherwise the different base pointers mean the offsets aren't 14593 * comparable. 14594 */ 14595 if (BPF_SRC(insn->code) == BPF_X) { 14596 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14597 14598 if (dst_reg->type == SCALAR_VALUE && 14599 src_reg->type == SCALAR_VALUE) { 14600 if (tnum_is_const(src_reg->var_off) || 14601 (is_jmp32 && 14602 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14603 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14604 dst_reg, 14605 src_reg->var_off.value, 14606 tnum_subreg(src_reg->var_off).value, 14607 opcode, is_jmp32); 14608 else if (tnum_is_const(dst_reg->var_off) || 14609 (is_jmp32 && 14610 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14611 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14612 src_reg, 14613 dst_reg->var_off.value, 14614 tnum_subreg(dst_reg->var_off).value, 14615 opcode, is_jmp32); 14616 else if (!is_jmp32 && 14617 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14618 /* Comparing for equality, we can combine knowledge */ 14619 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14620 &other_branch_regs[insn->dst_reg], 14621 src_reg, dst_reg, opcode); 14622 if (src_reg->id && 14623 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14624 find_equal_scalars(this_branch, src_reg); 14625 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14626 } 14627 14628 } 14629 } else if (dst_reg->type == SCALAR_VALUE) { 14630 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14631 dst_reg, insn->imm, (u32)insn->imm, 14632 opcode, is_jmp32); 14633 } 14634 14635 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14636 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14637 find_equal_scalars(this_branch, dst_reg); 14638 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14639 } 14640 14641 /* if one pointer register is compared to another pointer 14642 * register check if PTR_MAYBE_NULL could be lifted. 14643 * E.g. register A - maybe null 14644 * register B - not null 14645 * for JNE A, B, ... - A is not null in the false branch; 14646 * for JEQ A, B, ... - A is not null in the true branch. 14647 * 14648 * Since PTR_TO_BTF_ID points to a kernel struct that does 14649 * not need to be null checked by the BPF program, i.e., 14650 * could be null even without PTR_MAYBE_NULL marking, so 14651 * only propagate nullness when neither reg is that type. 14652 */ 14653 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14654 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14655 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14656 base_type(src_reg->type) != PTR_TO_BTF_ID && 14657 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14658 eq_branch_regs = NULL; 14659 switch (opcode) { 14660 case BPF_JEQ: 14661 eq_branch_regs = other_branch_regs; 14662 break; 14663 case BPF_JNE: 14664 eq_branch_regs = regs; 14665 break; 14666 default: 14667 /* do nothing */ 14668 break; 14669 } 14670 if (eq_branch_regs) { 14671 if (type_may_be_null(src_reg->type)) 14672 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14673 else 14674 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14675 } 14676 } 14677 14678 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14679 * NOTE: these optimizations below are related with pointer comparison 14680 * which will never be JMP32. 14681 */ 14682 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14683 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14684 type_may_be_null(dst_reg->type)) { 14685 /* Mark all identical registers in each branch as either 14686 * safe or unknown depending R == 0 or R != 0 conditional. 14687 */ 14688 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14689 opcode == BPF_JNE); 14690 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14691 opcode == BPF_JEQ); 14692 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14693 this_branch, other_branch) && 14694 is_pointer_value(env, insn->dst_reg)) { 14695 verbose(env, "R%d pointer comparison prohibited\n", 14696 insn->dst_reg); 14697 return -EACCES; 14698 } 14699 if (env->log.level & BPF_LOG_LEVEL) 14700 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14701 return 0; 14702 } 14703 14704 /* verify BPF_LD_IMM64 instruction */ 14705 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14706 { 14707 struct bpf_insn_aux_data *aux = cur_aux(env); 14708 struct bpf_reg_state *regs = cur_regs(env); 14709 struct bpf_reg_state *dst_reg; 14710 struct bpf_map *map; 14711 int err; 14712 14713 if (BPF_SIZE(insn->code) != BPF_DW) { 14714 verbose(env, "invalid BPF_LD_IMM insn\n"); 14715 return -EINVAL; 14716 } 14717 if (insn->off != 0) { 14718 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14719 return -EINVAL; 14720 } 14721 14722 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14723 if (err) 14724 return err; 14725 14726 dst_reg = ®s[insn->dst_reg]; 14727 if (insn->src_reg == 0) { 14728 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14729 14730 dst_reg->type = SCALAR_VALUE; 14731 __mark_reg_known(®s[insn->dst_reg], imm); 14732 return 0; 14733 } 14734 14735 /* All special src_reg cases are listed below. From this point onwards 14736 * we either succeed and assign a corresponding dst_reg->type after 14737 * zeroing the offset, or fail and reject the program. 14738 */ 14739 mark_reg_known_zero(env, regs, insn->dst_reg); 14740 14741 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14742 dst_reg->type = aux->btf_var.reg_type; 14743 switch (base_type(dst_reg->type)) { 14744 case PTR_TO_MEM: 14745 dst_reg->mem_size = aux->btf_var.mem_size; 14746 break; 14747 case PTR_TO_BTF_ID: 14748 dst_reg->btf = aux->btf_var.btf; 14749 dst_reg->btf_id = aux->btf_var.btf_id; 14750 break; 14751 default: 14752 verbose(env, "bpf verifier is misconfigured\n"); 14753 return -EFAULT; 14754 } 14755 return 0; 14756 } 14757 14758 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14759 struct bpf_prog_aux *aux = env->prog->aux; 14760 u32 subprogno = find_subprog(env, 14761 env->insn_idx + insn->imm + 1); 14762 14763 if (!aux->func_info) { 14764 verbose(env, "missing btf func_info\n"); 14765 return -EINVAL; 14766 } 14767 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14768 verbose(env, "callback function not static\n"); 14769 return -EINVAL; 14770 } 14771 14772 dst_reg->type = PTR_TO_FUNC; 14773 dst_reg->subprogno = subprogno; 14774 return 0; 14775 } 14776 14777 map = env->used_maps[aux->map_index]; 14778 dst_reg->map_ptr = map; 14779 14780 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14781 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14782 dst_reg->type = PTR_TO_MAP_VALUE; 14783 dst_reg->off = aux->map_off; 14784 WARN_ON_ONCE(map->max_entries != 1); 14785 /* We want reg->id to be same (0) as map_value is not distinct */ 14786 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14787 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14788 dst_reg->type = CONST_PTR_TO_MAP; 14789 } else { 14790 verbose(env, "bpf verifier is misconfigured\n"); 14791 return -EINVAL; 14792 } 14793 14794 return 0; 14795 } 14796 14797 static bool may_access_skb(enum bpf_prog_type type) 14798 { 14799 switch (type) { 14800 case BPF_PROG_TYPE_SOCKET_FILTER: 14801 case BPF_PROG_TYPE_SCHED_CLS: 14802 case BPF_PROG_TYPE_SCHED_ACT: 14803 return true; 14804 default: 14805 return false; 14806 } 14807 } 14808 14809 /* verify safety of LD_ABS|LD_IND instructions: 14810 * - they can only appear in the programs where ctx == skb 14811 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14812 * preserve R6-R9, and store return value into R0 14813 * 14814 * Implicit input: 14815 * ctx == skb == R6 == CTX 14816 * 14817 * Explicit input: 14818 * SRC == any register 14819 * IMM == 32-bit immediate 14820 * 14821 * Output: 14822 * R0 - 8/16/32-bit skb data converted to cpu endianness 14823 */ 14824 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14825 { 14826 struct bpf_reg_state *regs = cur_regs(env); 14827 static const int ctx_reg = BPF_REG_6; 14828 u8 mode = BPF_MODE(insn->code); 14829 int i, err; 14830 14831 if (!may_access_skb(resolve_prog_type(env->prog))) { 14832 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14833 return -EINVAL; 14834 } 14835 14836 if (!env->ops->gen_ld_abs) { 14837 verbose(env, "bpf verifier is misconfigured\n"); 14838 return -EINVAL; 14839 } 14840 14841 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14842 BPF_SIZE(insn->code) == BPF_DW || 14843 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14844 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14845 return -EINVAL; 14846 } 14847 14848 /* check whether implicit source operand (register R6) is readable */ 14849 err = check_reg_arg(env, ctx_reg, SRC_OP); 14850 if (err) 14851 return err; 14852 14853 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14854 * gen_ld_abs() may terminate the program at runtime, leading to 14855 * reference leak. 14856 */ 14857 err = check_reference_leak(env); 14858 if (err) { 14859 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14860 return err; 14861 } 14862 14863 if (env->cur_state->active_lock.ptr) { 14864 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14865 return -EINVAL; 14866 } 14867 14868 if (env->cur_state->active_rcu_lock) { 14869 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14870 return -EINVAL; 14871 } 14872 14873 if (regs[ctx_reg].type != PTR_TO_CTX) { 14874 verbose(env, 14875 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14876 return -EINVAL; 14877 } 14878 14879 if (mode == BPF_IND) { 14880 /* check explicit source operand */ 14881 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14882 if (err) 14883 return err; 14884 } 14885 14886 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14887 if (err < 0) 14888 return err; 14889 14890 /* reset caller saved regs to unreadable */ 14891 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14892 mark_reg_not_init(env, regs, caller_saved[i]); 14893 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14894 } 14895 14896 /* mark destination R0 register as readable, since it contains 14897 * the value fetched from the packet. 14898 * Already marked as written above. 14899 */ 14900 mark_reg_unknown(env, regs, BPF_REG_0); 14901 /* ld_abs load up to 32-bit skb data. */ 14902 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14903 return 0; 14904 } 14905 14906 static int check_return_code(struct bpf_verifier_env *env) 14907 { 14908 struct tnum enforce_attach_type_range = tnum_unknown; 14909 const struct bpf_prog *prog = env->prog; 14910 struct bpf_reg_state *reg; 14911 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14912 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14913 int err; 14914 struct bpf_func_state *frame = env->cur_state->frame[0]; 14915 const bool is_subprog = frame->subprogno; 14916 14917 /* LSM and struct_ops func-ptr's return type could be "void" */ 14918 if (!is_subprog) { 14919 switch (prog_type) { 14920 case BPF_PROG_TYPE_LSM: 14921 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14922 /* See below, can be 0 or 0-1 depending on hook. */ 14923 break; 14924 fallthrough; 14925 case BPF_PROG_TYPE_STRUCT_OPS: 14926 if (!prog->aux->attach_func_proto->type) 14927 return 0; 14928 break; 14929 default: 14930 break; 14931 } 14932 } 14933 14934 /* eBPF calling convention is such that R0 is used 14935 * to return the value from eBPF program. 14936 * Make sure that it's readable at this time 14937 * of bpf_exit, which means that program wrote 14938 * something into it earlier 14939 */ 14940 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14941 if (err) 14942 return err; 14943 14944 if (is_pointer_value(env, BPF_REG_0)) { 14945 verbose(env, "R0 leaks addr as return value\n"); 14946 return -EACCES; 14947 } 14948 14949 reg = cur_regs(env) + BPF_REG_0; 14950 14951 if (frame->in_async_callback_fn) { 14952 /* enforce return zero from async callbacks like timer */ 14953 if (reg->type != SCALAR_VALUE) { 14954 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14955 reg_type_str(env, reg->type)); 14956 return -EINVAL; 14957 } 14958 14959 if (!tnum_in(const_0, reg->var_off)) { 14960 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14961 return -EINVAL; 14962 } 14963 return 0; 14964 } 14965 14966 if (is_subprog) { 14967 if (reg->type != SCALAR_VALUE) { 14968 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14969 reg_type_str(env, reg->type)); 14970 return -EINVAL; 14971 } 14972 return 0; 14973 } 14974 14975 switch (prog_type) { 14976 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14977 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14978 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14979 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14980 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14981 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14982 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14983 range = tnum_range(1, 1); 14984 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14985 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14986 range = tnum_range(0, 3); 14987 break; 14988 case BPF_PROG_TYPE_CGROUP_SKB: 14989 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14990 range = tnum_range(0, 3); 14991 enforce_attach_type_range = tnum_range(2, 3); 14992 } 14993 break; 14994 case BPF_PROG_TYPE_CGROUP_SOCK: 14995 case BPF_PROG_TYPE_SOCK_OPS: 14996 case BPF_PROG_TYPE_CGROUP_DEVICE: 14997 case BPF_PROG_TYPE_CGROUP_SYSCTL: 14998 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 14999 break; 15000 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15001 if (!env->prog->aux->attach_btf_id) 15002 return 0; 15003 range = tnum_const(0); 15004 break; 15005 case BPF_PROG_TYPE_TRACING: 15006 switch (env->prog->expected_attach_type) { 15007 case BPF_TRACE_FENTRY: 15008 case BPF_TRACE_FEXIT: 15009 range = tnum_const(0); 15010 break; 15011 case BPF_TRACE_RAW_TP: 15012 case BPF_MODIFY_RETURN: 15013 return 0; 15014 case BPF_TRACE_ITER: 15015 break; 15016 default: 15017 return -ENOTSUPP; 15018 } 15019 break; 15020 case BPF_PROG_TYPE_SK_LOOKUP: 15021 range = tnum_range(SK_DROP, SK_PASS); 15022 break; 15023 15024 case BPF_PROG_TYPE_LSM: 15025 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15026 /* Regular BPF_PROG_TYPE_LSM programs can return 15027 * any value. 15028 */ 15029 return 0; 15030 } 15031 if (!env->prog->aux->attach_func_proto->type) { 15032 /* Make sure programs that attach to void 15033 * hooks don't try to modify return value. 15034 */ 15035 range = tnum_range(1, 1); 15036 } 15037 break; 15038 15039 case BPF_PROG_TYPE_NETFILTER: 15040 range = tnum_range(NF_DROP, NF_ACCEPT); 15041 break; 15042 case BPF_PROG_TYPE_EXT: 15043 /* freplace program can return anything as its return value 15044 * depends on the to-be-replaced kernel func or bpf program. 15045 */ 15046 default: 15047 return 0; 15048 } 15049 15050 if (reg->type != SCALAR_VALUE) { 15051 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15052 reg_type_str(env, reg->type)); 15053 return -EINVAL; 15054 } 15055 15056 if (!tnum_in(range, reg->var_off)) { 15057 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15058 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15059 prog_type == BPF_PROG_TYPE_LSM && 15060 !prog->aux->attach_func_proto->type) 15061 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15062 return -EINVAL; 15063 } 15064 15065 if (!tnum_is_unknown(enforce_attach_type_range) && 15066 tnum_in(enforce_attach_type_range, reg->var_off)) 15067 env->prog->enforce_expected_attach_type = 1; 15068 return 0; 15069 } 15070 15071 /* non-recursive DFS pseudo code 15072 * 1 procedure DFS-iterative(G,v): 15073 * 2 label v as discovered 15074 * 3 let S be a stack 15075 * 4 S.push(v) 15076 * 5 while S is not empty 15077 * 6 t <- S.peek() 15078 * 7 if t is what we're looking for: 15079 * 8 return t 15080 * 9 for all edges e in G.adjacentEdges(t) do 15081 * 10 if edge e is already labelled 15082 * 11 continue with the next edge 15083 * 12 w <- G.adjacentVertex(t,e) 15084 * 13 if vertex w is not discovered and not explored 15085 * 14 label e as tree-edge 15086 * 15 label w as discovered 15087 * 16 S.push(w) 15088 * 17 continue at 5 15089 * 18 else if vertex w is discovered 15090 * 19 label e as back-edge 15091 * 20 else 15092 * 21 // vertex w is explored 15093 * 22 label e as forward- or cross-edge 15094 * 23 label t as explored 15095 * 24 S.pop() 15096 * 15097 * convention: 15098 * 0x10 - discovered 15099 * 0x11 - discovered and fall-through edge labelled 15100 * 0x12 - discovered and fall-through and branch edges labelled 15101 * 0x20 - explored 15102 */ 15103 15104 enum { 15105 DISCOVERED = 0x10, 15106 EXPLORED = 0x20, 15107 FALLTHROUGH = 1, 15108 BRANCH = 2, 15109 }; 15110 15111 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15112 { 15113 env->insn_aux_data[idx].prune_point = true; 15114 } 15115 15116 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15117 { 15118 return env->insn_aux_data[insn_idx].prune_point; 15119 } 15120 15121 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15122 { 15123 env->insn_aux_data[idx].force_checkpoint = true; 15124 } 15125 15126 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15127 { 15128 return env->insn_aux_data[insn_idx].force_checkpoint; 15129 } 15130 15131 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15132 { 15133 env->insn_aux_data[idx].calls_callback = true; 15134 } 15135 15136 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15137 { 15138 return env->insn_aux_data[insn_idx].calls_callback; 15139 } 15140 15141 enum { 15142 DONE_EXPLORING = 0, 15143 KEEP_EXPLORING = 1, 15144 }; 15145 15146 /* t, w, e - match pseudo-code above: 15147 * t - index of current instruction 15148 * w - next instruction 15149 * e - edge 15150 */ 15151 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15152 { 15153 int *insn_stack = env->cfg.insn_stack; 15154 int *insn_state = env->cfg.insn_state; 15155 15156 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15157 return DONE_EXPLORING; 15158 15159 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15160 return DONE_EXPLORING; 15161 15162 if (w < 0 || w >= env->prog->len) { 15163 verbose_linfo(env, t, "%d: ", t); 15164 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15165 return -EINVAL; 15166 } 15167 15168 if (e == BRANCH) { 15169 /* mark branch target for state pruning */ 15170 mark_prune_point(env, w); 15171 mark_jmp_point(env, w); 15172 } 15173 15174 if (insn_state[w] == 0) { 15175 /* tree-edge */ 15176 insn_state[t] = DISCOVERED | e; 15177 insn_state[w] = DISCOVERED; 15178 if (env->cfg.cur_stack >= env->prog->len) 15179 return -E2BIG; 15180 insn_stack[env->cfg.cur_stack++] = w; 15181 return KEEP_EXPLORING; 15182 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15183 if (env->bpf_capable) 15184 return DONE_EXPLORING; 15185 verbose_linfo(env, t, "%d: ", t); 15186 verbose_linfo(env, w, "%d: ", w); 15187 verbose(env, "back-edge from insn %d to %d\n", t, w); 15188 return -EINVAL; 15189 } else if (insn_state[w] == EXPLORED) { 15190 /* forward- or cross-edge */ 15191 insn_state[t] = DISCOVERED | e; 15192 } else { 15193 verbose(env, "insn state internal bug\n"); 15194 return -EFAULT; 15195 } 15196 return DONE_EXPLORING; 15197 } 15198 15199 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15200 struct bpf_verifier_env *env, 15201 bool visit_callee) 15202 { 15203 int ret, insn_sz; 15204 15205 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15206 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15207 if (ret) 15208 return ret; 15209 15210 mark_prune_point(env, t + insn_sz); 15211 /* when we exit from subprog, we need to record non-linear history */ 15212 mark_jmp_point(env, t + insn_sz); 15213 15214 if (visit_callee) { 15215 mark_prune_point(env, t); 15216 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15217 } 15218 return ret; 15219 } 15220 15221 /* Visits the instruction at index t and returns one of the following: 15222 * < 0 - an error occurred 15223 * DONE_EXPLORING - the instruction was fully explored 15224 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15225 */ 15226 static int visit_insn(int t, struct bpf_verifier_env *env) 15227 { 15228 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15229 int ret, off, insn_sz; 15230 15231 if (bpf_pseudo_func(insn)) 15232 return visit_func_call_insn(t, insns, env, true); 15233 15234 /* All non-branch instructions have a single fall-through edge. */ 15235 if (BPF_CLASS(insn->code) != BPF_JMP && 15236 BPF_CLASS(insn->code) != BPF_JMP32) { 15237 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15238 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15239 } 15240 15241 switch (BPF_OP(insn->code)) { 15242 case BPF_EXIT: 15243 return DONE_EXPLORING; 15244 15245 case BPF_CALL: 15246 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15247 /* Mark this call insn as a prune point to trigger 15248 * is_state_visited() check before call itself is 15249 * processed by __check_func_call(). Otherwise new 15250 * async state will be pushed for further exploration. 15251 */ 15252 mark_prune_point(env, t); 15253 /* For functions that invoke callbacks it is not known how many times 15254 * callback would be called. Verifier models callback calling functions 15255 * by repeatedly visiting callback bodies and returning to origin call 15256 * instruction. 15257 * In order to stop such iteration verifier needs to identify when a 15258 * state identical some state from a previous iteration is reached. 15259 * Check below forces creation of checkpoint before callback calling 15260 * instruction to allow search for such identical states. 15261 */ 15262 if (is_sync_callback_calling_insn(insn)) { 15263 mark_calls_callback(env, t); 15264 mark_force_checkpoint(env, t); 15265 mark_prune_point(env, t); 15266 mark_jmp_point(env, t); 15267 } 15268 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15269 struct bpf_kfunc_call_arg_meta meta; 15270 15271 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15272 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15273 mark_prune_point(env, t); 15274 /* Checking and saving state checkpoints at iter_next() call 15275 * is crucial for fast convergence of open-coded iterator loop 15276 * logic, so we need to force it. If we don't do that, 15277 * is_state_visited() might skip saving a checkpoint, causing 15278 * unnecessarily long sequence of not checkpointed 15279 * instructions and jumps, leading to exhaustion of jump 15280 * history buffer, and potentially other undesired outcomes. 15281 * It is expected that with correct open-coded iterators 15282 * convergence will happen quickly, so we don't run a risk of 15283 * exhausting memory. 15284 */ 15285 mark_force_checkpoint(env, t); 15286 } 15287 } 15288 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15289 15290 case BPF_JA: 15291 if (BPF_SRC(insn->code) != BPF_K) 15292 return -EINVAL; 15293 15294 if (BPF_CLASS(insn->code) == BPF_JMP) 15295 off = insn->off; 15296 else 15297 off = insn->imm; 15298 15299 /* unconditional jump with single edge */ 15300 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15301 if (ret) 15302 return ret; 15303 15304 mark_prune_point(env, t + off + 1); 15305 mark_jmp_point(env, t + off + 1); 15306 15307 return ret; 15308 15309 default: 15310 /* conditional jump with two edges */ 15311 mark_prune_point(env, t); 15312 15313 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15314 if (ret) 15315 return ret; 15316 15317 return push_insn(t, t + insn->off + 1, BRANCH, env); 15318 } 15319 } 15320 15321 /* non-recursive depth-first-search to detect loops in BPF program 15322 * loop == back-edge in directed graph 15323 */ 15324 static int check_cfg(struct bpf_verifier_env *env) 15325 { 15326 int insn_cnt = env->prog->len; 15327 int *insn_stack, *insn_state; 15328 int ret = 0; 15329 int i; 15330 15331 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15332 if (!insn_state) 15333 return -ENOMEM; 15334 15335 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15336 if (!insn_stack) { 15337 kvfree(insn_state); 15338 return -ENOMEM; 15339 } 15340 15341 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15342 insn_stack[0] = 0; /* 0 is the first instruction */ 15343 env->cfg.cur_stack = 1; 15344 15345 while (env->cfg.cur_stack > 0) { 15346 int t = insn_stack[env->cfg.cur_stack - 1]; 15347 15348 ret = visit_insn(t, env); 15349 switch (ret) { 15350 case DONE_EXPLORING: 15351 insn_state[t] = EXPLORED; 15352 env->cfg.cur_stack--; 15353 break; 15354 case KEEP_EXPLORING: 15355 break; 15356 default: 15357 if (ret > 0) { 15358 verbose(env, "visit_insn internal bug\n"); 15359 ret = -EFAULT; 15360 } 15361 goto err_free; 15362 } 15363 } 15364 15365 if (env->cfg.cur_stack < 0) { 15366 verbose(env, "pop stack internal bug\n"); 15367 ret = -EFAULT; 15368 goto err_free; 15369 } 15370 15371 for (i = 0; i < insn_cnt; i++) { 15372 struct bpf_insn *insn = &env->prog->insnsi[i]; 15373 15374 if (insn_state[i] != EXPLORED) { 15375 verbose(env, "unreachable insn %d\n", i); 15376 ret = -EINVAL; 15377 goto err_free; 15378 } 15379 if (bpf_is_ldimm64(insn)) { 15380 if (insn_state[i + 1] != 0) { 15381 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15382 ret = -EINVAL; 15383 goto err_free; 15384 } 15385 i++; /* skip second half of ldimm64 */ 15386 } 15387 } 15388 ret = 0; /* cfg looks good */ 15389 15390 err_free: 15391 kvfree(insn_state); 15392 kvfree(insn_stack); 15393 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15394 return ret; 15395 } 15396 15397 static int check_abnormal_return(struct bpf_verifier_env *env) 15398 { 15399 int i; 15400 15401 for (i = 1; i < env->subprog_cnt; i++) { 15402 if (env->subprog_info[i].has_ld_abs) { 15403 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15404 return -EINVAL; 15405 } 15406 if (env->subprog_info[i].has_tail_call) { 15407 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15408 return -EINVAL; 15409 } 15410 } 15411 return 0; 15412 } 15413 15414 /* The minimum supported BTF func info size */ 15415 #define MIN_BPF_FUNCINFO_SIZE 8 15416 #define MAX_FUNCINFO_REC_SIZE 252 15417 15418 static int check_btf_func(struct bpf_verifier_env *env, 15419 const union bpf_attr *attr, 15420 bpfptr_t uattr) 15421 { 15422 const struct btf_type *type, *func_proto, *ret_type; 15423 u32 i, nfuncs, urec_size, min_size; 15424 u32 krec_size = sizeof(struct bpf_func_info); 15425 struct bpf_func_info *krecord; 15426 struct bpf_func_info_aux *info_aux = NULL; 15427 struct bpf_prog *prog; 15428 const struct btf *btf; 15429 bpfptr_t urecord; 15430 u32 prev_offset = 0; 15431 bool scalar_return; 15432 int ret = -ENOMEM; 15433 15434 nfuncs = attr->func_info_cnt; 15435 if (!nfuncs) { 15436 if (check_abnormal_return(env)) 15437 return -EINVAL; 15438 return 0; 15439 } 15440 15441 if (nfuncs != env->subprog_cnt) { 15442 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15443 return -EINVAL; 15444 } 15445 15446 urec_size = attr->func_info_rec_size; 15447 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15448 urec_size > MAX_FUNCINFO_REC_SIZE || 15449 urec_size % sizeof(u32)) { 15450 verbose(env, "invalid func info rec size %u\n", urec_size); 15451 return -EINVAL; 15452 } 15453 15454 prog = env->prog; 15455 btf = prog->aux->btf; 15456 15457 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15458 min_size = min_t(u32, krec_size, urec_size); 15459 15460 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15461 if (!krecord) 15462 return -ENOMEM; 15463 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15464 if (!info_aux) 15465 goto err_free; 15466 15467 for (i = 0; i < nfuncs; i++) { 15468 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15469 if (ret) { 15470 if (ret == -E2BIG) { 15471 verbose(env, "nonzero tailing record in func info"); 15472 /* set the size kernel expects so loader can zero 15473 * out the rest of the record. 15474 */ 15475 if (copy_to_bpfptr_offset(uattr, 15476 offsetof(union bpf_attr, func_info_rec_size), 15477 &min_size, sizeof(min_size))) 15478 ret = -EFAULT; 15479 } 15480 goto err_free; 15481 } 15482 15483 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15484 ret = -EFAULT; 15485 goto err_free; 15486 } 15487 15488 /* check insn_off */ 15489 ret = -EINVAL; 15490 if (i == 0) { 15491 if (krecord[i].insn_off) { 15492 verbose(env, 15493 "nonzero insn_off %u for the first func info record", 15494 krecord[i].insn_off); 15495 goto err_free; 15496 } 15497 } else if (krecord[i].insn_off <= prev_offset) { 15498 verbose(env, 15499 "same or smaller insn offset (%u) than previous func info record (%u)", 15500 krecord[i].insn_off, prev_offset); 15501 goto err_free; 15502 } 15503 15504 if (env->subprog_info[i].start != krecord[i].insn_off) { 15505 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15506 goto err_free; 15507 } 15508 15509 /* check type_id */ 15510 type = btf_type_by_id(btf, krecord[i].type_id); 15511 if (!type || !btf_type_is_func(type)) { 15512 verbose(env, "invalid type id %d in func info", 15513 krecord[i].type_id); 15514 goto err_free; 15515 } 15516 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15517 15518 func_proto = btf_type_by_id(btf, type->type); 15519 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15520 /* btf_func_check() already verified it during BTF load */ 15521 goto err_free; 15522 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15523 scalar_return = 15524 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15525 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15526 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15527 goto err_free; 15528 } 15529 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15530 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15531 goto err_free; 15532 } 15533 15534 prev_offset = krecord[i].insn_off; 15535 bpfptr_add(&urecord, urec_size); 15536 } 15537 15538 prog->aux->func_info = krecord; 15539 prog->aux->func_info_cnt = nfuncs; 15540 prog->aux->func_info_aux = info_aux; 15541 return 0; 15542 15543 err_free: 15544 kvfree(krecord); 15545 kfree(info_aux); 15546 return ret; 15547 } 15548 15549 static void adjust_btf_func(struct bpf_verifier_env *env) 15550 { 15551 struct bpf_prog_aux *aux = env->prog->aux; 15552 int i; 15553 15554 if (!aux->func_info) 15555 return; 15556 15557 for (i = 0; i < env->subprog_cnt; i++) 15558 aux->func_info[i].insn_off = env->subprog_info[i].start; 15559 } 15560 15561 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15562 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15563 15564 static int check_btf_line(struct bpf_verifier_env *env, 15565 const union bpf_attr *attr, 15566 bpfptr_t uattr) 15567 { 15568 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15569 struct bpf_subprog_info *sub; 15570 struct bpf_line_info *linfo; 15571 struct bpf_prog *prog; 15572 const struct btf *btf; 15573 bpfptr_t ulinfo; 15574 int err; 15575 15576 nr_linfo = attr->line_info_cnt; 15577 if (!nr_linfo) 15578 return 0; 15579 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15580 return -EINVAL; 15581 15582 rec_size = attr->line_info_rec_size; 15583 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15584 rec_size > MAX_LINEINFO_REC_SIZE || 15585 rec_size & (sizeof(u32) - 1)) 15586 return -EINVAL; 15587 15588 /* Need to zero it in case the userspace may 15589 * pass in a smaller bpf_line_info object. 15590 */ 15591 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15592 GFP_KERNEL | __GFP_NOWARN); 15593 if (!linfo) 15594 return -ENOMEM; 15595 15596 prog = env->prog; 15597 btf = prog->aux->btf; 15598 15599 s = 0; 15600 sub = env->subprog_info; 15601 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15602 expected_size = sizeof(struct bpf_line_info); 15603 ncopy = min_t(u32, expected_size, rec_size); 15604 for (i = 0; i < nr_linfo; i++) { 15605 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15606 if (err) { 15607 if (err == -E2BIG) { 15608 verbose(env, "nonzero tailing record in line_info"); 15609 if (copy_to_bpfptr_offset(uattr, 15610 offsetof(union bpf_attr, line_info_rec_size), 15611 &expected_size, sizeof(expected_size))) 15612 err = -EFAULT; 15613 } 15614 goto err_free; 15615 } 15616 15617 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15618 err = -EFAULT; 15619 goto err_free; 15620 } 15621 15622 /* 15623 * Check insn_off to ensure 15624 * 1) strictly increasing AND 15625 * 2) bounded by prog->len 15626 * 15627 * The linfo[0].insn_off == 0 check logically falls into 15628 * the later "missing bpf_line_info for func..." case 15629 * because the first linfo[0].insn_off must be the 15630 * first sub also and the first sub must have 15631 * subprog_info[0].start == 0. 15632 */ 15633 if ((i && linfo[i].insn_off <= prev_offset) || 15634 linfo[i].insn_off >= prog->len) { 15635 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15636 i, linfo[i].insn_off, prev_offset, 15637 prog->len); 15638 err = -EINVAL; 15639 goto err_free; 15640 } 15641 15642 if (!prog->insnsi[linfo[i].insn_off].code) { 15643 verbose(env, 15644 "Invalid insn code at line_info[%u].insn_off\n", 15645 i); 15646 err = -EINVAL; 15647 goto err_free; 15648 } 15649 15650 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15651 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15652 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15653 err = -EINVAL; 15654 goto err_free; 15655 } 15656 15657 if (s != env->subprog_cnt) { 15658 if (linfo[i].insn_off == sub[s].start) { 15659 sub[s].linfo_idx = i; 15660 s++; 15661 } else if (sub[s].start < linfo[i].insn_off) { 15662 verbose(env, "missing bpf_line_info for func#%u\n", s); 15663 err = -EINVAL; 15664 goto err_free; 15665 } 15666 } 15667 15668 prev_offset = linfo[i].insn_off; 15669 bpfptr_add(&ulinfo, rec_size); 15670 } 15671 15672 if (s != env->subprog_cnt) { 15673 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15674 env->subprog_cnt - s, s); 15675 err = -EINVAL; 15676 goto err_free; 15677 } 15678 15679 prog->aux->linfo = linfo; 15680 prog->aux->nr_linfo = nr_linfo; 15681 15682 return 0; 15683 15684 err_free: 15685 kvfree(linfo); 15686 return err; 15687 } 15688 15689 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15690 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15691 15692 static int check_core_relo(struct bpf_verifier_env *env, 15693 const union bpf_attr *attr, 15694 bpfptr_t uattr) 15695 { 15696 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15697 struct bpf_core_relo core_relo = {}; 15698 struct bpf_prog *prog = env->prog; 15699 const struct btf *btf = prog->aux->btf; 15700 struct bpf_core_ctx ctx = { 15701 .log = &env->log, 15702 .btf = btf, 15703 }; 15704 bpfptr_t u_core_relo; 15705 int err; 15706 15707 nr_core_relo = attr->core_relo_cnt; 15708 if (!nr_core_relo) 15709 return 0; 15710 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15711 return -EINVAL; 15712 15713 rec_size = attr->core_relo_rec_size; 15714 if (rec_size < MIN_CORE_RELO_SIZE || 15715 rec_size > MAX_CORE_RELO_SIZE || 15716 rec_size % sizeof(u32)) 15717 return -EINVAL; 15718 15719 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15720 expected_size = sizeof(struct bpf_core_relo); 15721 ncopy = min_t(u32, expected_size, rec_size); 15722 15723 /* Unlike func_info and line_info, copy and apply each CO-RE 15724 * relocation record one at a time. 15725 */ 15726 for (i = 0; i < nr_core_relo; i++) { 15727 /* future proofing when sizeof(bpf_core_relo) changes */ 15728 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15729 if (err) { 15730 if (err == -E2BIG) { 15731 verbose(env, "nonzero tailing record in core_relo"); 15732 if (copy_to_bpfptr_offset(uattr, 15733 offsetof(union bpf_attr, core_relo_rec_size), 15734 &expected_size, sizeof(expected_size))) 15735 err = -EFAULT; 15736 } 15737 break; 15738 } 15739 15740 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15741 err = -EFAULT; 15742 break; 15743 } 15744 15745 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15746 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15747 i, core_relo.insn_off, prog->len); 15748 err = -EINVAL; 15749 break; 15750 } 15751 15752 err = bpf_core_apply(&ctx, &core_relo, i, 15753 &prog->insnsi[core_relo.insn_off / 8]); 15754 if (err) 15755 break; 15756 bpfptr_add(&u_core_relo, rec_size); 15757 } 15758 return err; 15759 } 15760 15761 static int check_btf_info(struct bpf_verifier_env *env, 15762 const union bpf_attr *attr, 15763 bpfptr_t uattr) 15764 { 15765 struct btf *btf; 15766 int err; 15767 15768 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15769 if (check_abnormal_return(env)) 15770 return -EINVAL; 15771 return 0; 15772 } 15773 15774 btf = btf_get_by_fd(attr->prog_btf_fd); 15775 if (IS_ERR(btf)) 15776 return PTR_ERR(btf); 15777 if (btf_is_kernel(btf)) { 15778 btf_put(btf); 15779 return -EACCES; 15780 } 15781 env->prog->aux->btf = btf; 15782 15783 err = check_btf_func(env, attr, uattr); 15784 if (err) 15785 return err; 15786 15787 err = check_btf_line(env, attr, uattr); 15788 if (err) 15789 return err; 15790 15791 err = check_core_relo(env, attr, uattr); 15792 if (err) 15793 return err; 15794 15795 return 0; 15796 } 15797 15798 /* check %cur's range satisfies %old's */ 15799 static bool range_within(struct bpf_reg_state *old, 15800 struct bpf_reg_state *cur) 15801 { 15802 return old->umin_value <= cur->umin_value && 15803 old->umax_value >= cur->umax_value && 15804 old->smin_value <= cur->smin_value && 15805 old->smax_value >= cur->smax_value && 15806 old->u32_min_value <= cur->u32_min_value && 15807 old->u32_max_value >= cur->u32_max_value && 15808 old->s32_min_value <= cur->s32_min_value && 15809 old->s32_max_value >= cur->s32_max_value; 15810 } 15811 15812 /* If in the old state two registers had the same id, then they need to have 15813 * the same id in the new state as well. But that id could be different from 15814 * the old state, so we need to track the mapping from old to new ids. 15815 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15816 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15817 * regs with a different old id could still have new id 9, we don't care about 15818 * that. 15819 * So we look through our idmap to see if this old id has been seen before. If 15820 * so, we require the new id to match; otherwise, we add the id pair to the map. 15821 */ 15822 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15823 { 15824 struct bpf_id_pair *map = idmap->map; 15825 unsigned int i; 15826 15827 /* either both IDs should be set or both should be zero */ 15828 if (!!old_id != !!cur_id) 15829 return false; 15830 15831 if (old_id == 0) /* cur_id == 0 as well */ 15832 return true; 15833 15834 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15835 if (!map[i].old) { 15836 /* Reached an empty slot; haven't seen this id before */ 15837 map[i].old = old_id; 15838 map[i].cur = cur_id; 15839 return true; 15840 } 15841 if (map[i].old == old_id) 15842 return map[i].cur == cur_id; 15843 if (map[i].cur == cur_id) 15844 return false; 15845 } 15846 /* We ran out of idmap slots, which should be impossible */ 15847 WARN_ON_ONCE(1); 15848 return false; 15849 } 15850 15851 /* Similar to check_ids(), but allocate a unique temporary ID 15852 * for 'old_id' or 'cur_id' of zero. 15853 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15854 */ 15855 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15856 { 15857 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15858 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15859 15860 return check_ids(old_id, cur_id, idmap); 15861 } 15862 15863 static void clean_func_state(struct bpf_verifier_env *env, 15864 struct bpf_func_state *st) 15865 { 15866 enum bpf_reg_liveness live; 15867 int i, j; 15868 15869 for (i = 0; i < BPF_REG_FP; i++) { 15870 live = st->regs[i].live; 15871 /* liveness must not touch this register anymore */ 15872 st->regs[i].live |= REG_LIVE_DONE; 15873 if (!(live & REG_LIVE_READ)) 15874 /* since the register is unused, clear its state 15875 * to make further comparison simpler 15876 */ 15877 __mark_reg_not_init(env, &st->regs[i]); 15878 } 15879 15880 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15881 live = st->stack[i].spilled_ptr.live; 15882 /* liveness must not touch this stack slot anymore */ 15883 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15884 if (!(live & REG_LIVE_READ)) { 15885 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15886 for (j = 0; j < BPF_REG_SIZE; j++) 15887 st->stack[i].slot_type[j] = STACK_INVALID; 15888 } 15889 } 15890 } 15891 15892 static void clean_verifier_state(struct bpf_verifier_env *env, 15893 struct bpf_verifier_state *st) 15894 { 15895 int i; 15896 15897 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15898 /* all regs in this state in all frames were already marked */ 15899 return; 15900 15901 for (i = 0; i <= st->curframe; i++) 15902 clean_func_state(env, st->frame[i]); 15903 } 15904 15905 /* the parentage chains form a tree. 15906 * the verifier states are added to state lists at given insn and 15907 * pushed into state stack for future exploration. 15908 * when the verifier reaches bpf_exit insn some of the verifer states 15909 * stored in the state lists have their final liveness state already, 15910 * but a lot of states will get revised from liveness point of view when 15911 * the verifier explores other branches. 15912 * Example: 15913 * 1: r0 = 1 15914 * 2: if r1 == 100 goto pc+1 15915 * 3: r0 = 2 15916 * 4: exit 15917 * when the verifier reaches exit insn the register r0 in the state list of 15918 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15919 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15920 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15921 * 15922 * Since the verifier pushes the branch states as it sees them while exploring 15923 * the program the condition of walking the branch instruction for the second 15924 * time means that all states below this branch were already explored and 15925 * their final liveness marks are already propagated. 15926 * Hence when the verifier completes the search of state list in is_state_visited() 15927 * we can call this clean_live_states() function to mark all liveness states 15928 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15929 * will not be used. 15930 * This function also clears the registers and stack for states that !READ 15931 * to simplify state merging. 15932 * 15933 * Important note here that walking the same branch instruction in the callee 15934 * doesn't meant that the states are DONE. The verifier has to compare 15935 * the callsites 15936 */ 15937 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15938 struct bpf_verifier_state *cur) 15939 { 15940 struct bpf_verifier_state_list *sl; 15941 15942 sl = *explored_state(env, insn); 15943 while (sl) { 15944 if (sl->state.branches) 15945 goto next; 15946 if (sl->state.insn_idx != insn || 15947 !same_callsites(&sl->state, cur)) 15948 goto next; 15949 clean_verifier_state(env, &sl->state); 15950 next: 15951 sl = sl->next; 15952 } 15953 } 15954 15955 static bool regs_exact(const struct bpf_reg_state *rold, 15956 const struct bpf_reg_state *rcur, 15957 struct bpf_idmap *idmap) 15958 { 15959 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15960 check_ids(rold->id, rcur->id, idmap) && 15961 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15962 } 15963 15964 /* Returns true if (rold safe implies rcur safe) */ 15965 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15966 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15967 { 15968 if (exact) 15969 return regs_exact(rold, rcur, idmap); 15970 15971 if (!(rold->live & REG_LIVE_READ)) 15972 /* explored state didn't use this */ 15973 return true; 15974 if (rold->type == NOT_INIT) 15975 /* explored state can't have used this */ 15976 return true; 15977 if (rcur->type == NOT_INIT) 15978 return false; 15979 15980 /* Enforce that register types have to match exactly, including their 15981 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15982 * rule. 15983 * 15984 * One can make a point that using a pointer register as unbounded 15985 * SCALAR would be technically acceptable, but this could lead to 15986 * pointer leaks because scalars are allowed to leak while pointers 15987 * are not. We could make this safe in special cases if root is 15988 * calling us, but it's probably not worth the hassle. 15989 * 15990 * Also, register types that are *not* MAYBE_NULL could technically be 15991 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15992 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 15993 * to the same map). 15994 * However, if the old MAYBE_NULL register then got NULL checked, 15995 * doing so could have affected others with the same id, and we can't 15996 * check for that because we lost the id when we converted to 15997 * a non-MAYBE_NULL variant. 15998 * So, as a general rule we don't allow mixing MAYBE_NULL and 15999 * non-MAYBE_NULL registers as well. 16000 */ 16001 if (rold->type != rcur->type) 16002 return false; 16003 16004 switch (base_type(rold->type)) { 16005 case SCALAR_VALUE: 16006 if (env->explore_alu_limits) { 16007 /* explore_alu_limits disables tnum_in() and range_within() 16008 * logic and requires everything to be strict 16009 */ 16010 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16011 check_scalar_ids(rold->id, rcur->id, idmap); 16012 } 16013 if (!rold->precise) 16014 return true; 16015 /* Why check_ids() for scalar registers? 16016 * 16017 * Consider the following BPF code: 16018 * 1: r6 = ... unbound scalar, ID=a ... 16019 * 2: r7 = ... unbound scalar, ID=b ... 16020 * 3: if (r6 > r7) goto +1 16021 * 4: r6 = r7 16022 * 5: if (r6 > X) goto ... 16023 * 6: ... memory operation using r7 ... 16024 * 16025 * First verification path is [1-6]: 16026 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16027 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16028 * r7 <= X, because r6 and r7 share same id. 16029 * Next verification path is [1-4, 6]. 16030 * 16031 * Instruction (6) would be reached in two states: 16032 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16033 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16034 * 16035 * Use check_ids() to distinguish these states. 16036 * --- 16037 * Also verify that new value satisfies old value range knowledge. 16038 */ 16039 return range_within(rold, rcur) && 16040 tnum_in(rold->var_off, rcur->var_off) && 16041 check_scalar_ids(rold->id, rcur->id, idmap); 16042 case PTR_TO_MAP_KEY: 16043 case PTR_TO_MAP_VALUE: 16044 case PTR_TO_MEM: 16045 case PTR_TO_BUF: 16046 case PTR_TO_TP_BUFFER: 16047 /* If the new min/max/var_off satisfy the old ones and 16048 * everything else matches, we are OK. 16049 */ 16050 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16051 range_within(rold, rcur) && 16052 tnum_in(rold->var_off, rcur->var_off) && 16053 check_ids(rold->id, rcur->id, idmap) && 16054 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16055 case PTR_TO_PACKET_META: 16056 case PTR_TO_PACKET: 16057 /* We must have at least as much range as the old ptr 16058 * did, so that any accesses which were safe before are 16059 * still safe. This is true even if old range < old off, 16060 * since someone could have accessed through (ptr - k), or 16061 * even done ptr -= k in a register, to get a safe access. 16062 */ 16063 if (rold->range > rcur->range) 16064 return false; 16065 /* If the offsets don't match, we can't trust our alignment; 16066 * nor can we be sure that we won't fall out of range. 16067 */ 16068 if (rold->off != rcur->off) 16069 return false; 16070 /* id relations must be preserved */ 16071 if (!check_ids(rold->id, rcur->id, idmap)) 16072 return false; 16073 /* new val must satisfy old val knowledge */ 16074 return range_within(rold, rcur) && 16075 tnum_in(rold->var_off, rcur->var_off); 16076 case PTR_TO_STACK: 16077 /* two stack pointers are equal only if they're pointing to 16078 * the same stack frame, since fp-8 in foo != fp-8 in bar 16079 */ 16080 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16081 default: 16082 return regs_exact(rold, rcur, idmap); 16083 } 16084 } 16085 16086 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16087 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16088 { 16089 int i, spi; 16090 16091 /* walk slots of the explored stack and ignore any additional 16092 * slots in the current stack, since explored(safe) state 16093 * didn't use them 16094 */ 16095 for (i = 0; i < old->allocated_stack; i++) { 16096 struct bpf_reg_state *old_reg, *cur_reg; 16097 16098 spi = i / BPF_REG_SIZE; 16099 16100 if (exact && 16101 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16102 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16103 return false; 16104 16105 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16106 i += BPF_REG_SIZE - 1; 16107 /* explored state didn't use this */ 16108 continue; 16109 } 16110 16111 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16112 continue; 16113 16114 if (env->allow_uninit_stack && 16115 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16116 continue; 16117 16118 /* explored stack has more populated slots than current stack 16119 * and these slots were used 16120 */ 16121 if (i >= cur->allocated_stack) 16122 return false; 16123 16124 /* if old state was safe with misc data in the stack 16125 * it will be safe with zero-initialized stack. 16126 * The opposite is not true 16127 */ 16128 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16129 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16130 continue; 16131 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16132 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16133 /* Ex: old explored (safe) state has STACK_SPILL in 16134 * this stack slot, but current has STACK_MISC -> 16135 * this verifier states are not equivalent, 16136 * return false to continue verification of this path 16137 */ 16138 return false; 16139 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16140 continue; 16141 /* Both old and cur are having same slot_type */ 16142 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16143 case STACK_SPILL: 16144 /* when explored and current stack slot are both storing 16145 * spilled registers, check that stored pointers types 16146 * are the same as well. 16147 * Ex: explored safe path could have stored 16148 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16149 * but current path has stored: 16150 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16151 * such verifier states are not equivalent. 16152 * return false to continue verification of this path 16153 */ 16154 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16155 &cur->stack[spi].spilled_ptr, idmap, exact)) 16156 return false; 16157 break; 16158 case STACK_DYNPTR: 16159 old_reg = &old->stack[spi].spilled_ptr; 16160 cur_reg = &cur->stack[spi].spilled_ptr; 16161 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16162 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16163 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16164 return false; 16165 break; 16166 case STACK_ITER: 16167 old_reg = &old->stack[spi].spilled_ptr; 16168 cur_reg = &cur->stack[spi].spilled_ptr; 16169 /* iter.depth is not compared between states as it 16170 * doesn't matter for correctness and would otherwise 16171 * prevent convergence; we maintain it only to prevent 16172 * infinite loop check triggering, see 16173 * iter_active_depths_differ() 16174 */ 16175 if (old_reg->iter.btf != cur_reg->iter.btf || 16176 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16177 old_reg->iter.state != cur_reg->iter.state || 16178 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16179 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16180 return false; 16181 break; 16182 case STACK_MISC: 16183 case STACK_ZERO: 16184 case STACK_INVALID: 16185 continue; 16186 /* Ensure that new unhandled slot types return false by default */ 16187 default: 16188 return false; 16189 } 16190 } 16191 return true; 16192 } 16193 16194 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16195 struct bpf_idmap *idmap) 16196 { 16197 int i; 16198 16199 if (old->acquired_refs != cur->acquired_refs) 16200 return false; 16201 16202 for (i = 0; i < old->acquired_refs; i++) { 16203 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16204 return false; 16205 } 16206 16207 return true; 16208 } 16209 16210 /* compare two verifier states 16211 * 16212 * all states stored in state_list are known to be valid, since 16213 * verifier reached 'bpf_exit' instruction through them 16214 * 16215 * this function is called when verifier exploring different branches of 16216 * execution popped from the state stack. If it sees an old state that has 16217 * more strict register state and more strict stack state then this execution 16218 * branch doesn't need to be explored further, since verifier already 16219 * concluded that more strict state leads to valid finish. 16220 * 16221 * Therefore two states are equivalent if register state is more conservative 16222 * and explored stack state is more conservative than the current one. 16223 * Example: 16224 * explored current 16225 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16226 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16227 * 16228 * In other words if current stack state (one being explored) has more 16229 * valid slots than old one that already passed validation, it means 16230 * the verifier can stop exploring and conclude that current state is valid too 16231 * 16232 * Similarly with registers. If explored state has register type as invalid 16233 * whereas register type in current state is meaningful, it means that 16234 * the current state will reach 'bpf_exit' instruction safely 16235 */ 16236 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16237 struct bpf_func_state *cur, bool exact) 16238 { 16239 int i; 16240 16241 for (i = 0; i < MAX_BPF_REG; i++) 16242 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16243 &env->idmap_scratch, exact)) 16244 return false; 16245 16246 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16247 return false; 16248 16249 if (!refsafe(old, cur, &env->idmap_scratch)) 16250 return false; 16251 16252 return true; 16253 } 16254 16255 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16256 { 16257 env->idmap_scratch.tmp_id_gen = env->id_gen; 16258 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16259 } 16260 16261 static bool states_equal(struct bpf_verifier_env *env, 16262 struct bpf_verifier_state *old, 16263 struct bpf_verifier_state *cur, 16264 bool exact) 16265 { 16266 int i; 16267 16268 if (old->curframe != cur->curframe) 16269 return false; 16270 16271 reset_idmap_scratch(env); 16272 16273 /* Verification state from speculative execution simulation 16274 * must never prune a non-speculative execution one. 16275 */ 16276 if (old->speculative && !cur->speculative) 16277 return false; 16278 16279 if (old->active_lock.ptr != cur->active_lock.ptr) 16280 return false; 16281 16282 /* Old and cur active_lock's have to be either both present 16283 * or both absent. 16284 */ 16285 if (!!old->active_lock.id != !!cur->active_lock.id) 16286 return false; 16287 16288 if (old->active_lock.id && 16289 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16290 return false; 16291 16292 if (old->active_rcu_lock != cur->active_rcu_lock) 16293 return false; 16294 16295 /* for states to be equal callsites have to be the same 16296 * and all frame states need to be equivalent 16297 */ 16298 for (i = 0; i <= old->curframe; i++) { 16299 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16300 return false; 16301 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16302 return false; 16303 } 16304 return true; 16305 } 16306 16307 /* Return 0 if no propagation happened. Return negative error code if error 16308 * happened. Otherwise, return the propagated bit. 16309 */ 16310 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16311 struct bpf_reg_state *reg, 16312 struct bpf_reg_state *parent_reg) 16313 { 16314 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16315 u8 flag = reg->live & REG_LIVE_READ; 16316 int err; 16317 16318 /* When comes here, read flags of PARENT_REG or REG could be any of 16319 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16320 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16321 */ 16322 if (parent_flag == REG_LIVE_READ64 || 16323 /* Or if there is no read flag from REG. */ 16324 !flag || 16325 /* Or if the read flag from REG is the same as PARENT_REG. */ 16326 parent_flag == flag) 16327 return 0; 16328 16329 err = mark_reg_read(env, reg, parent_reg, flag); 16330 if (err) 16331 return err; 16332 16333 return flag; 16334 } 16335 16336 /* A write screens off any subsequent reads; but write marks come from the 16337 * straight-line code between a state and its parent. When we arrive at an 16338 * equivalent state (jump target or such) we didn't arrive by the straight-line 16339 * code, so read marks in the state must propagate to the parent regardless 16340 * of the state's write marks. That's what 'parent == state->parent' comparison 16341 * in mark_reg_read() is for. 16342 */ 16343 static int propagate_liveness(struct bpf_verifier_env *env, 16344 const struct bpf_verifier_state *vstate, 16345 struct bpf_verifier_state *vparent) 16346 { 16347 struct bpf_reg_state *state_reg, *parent_reg; 16348 struct bpf_func_state *state, *parent; 16349 int i, frame, err = 0; 16350 16351 if (vparent->curframe != vstate->curframe) { 16352 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16353 vparent->curframe, vstate->curframe); 16354 return -EFAULT; 16355 } 16356 /* Propagate read liveness of registers... */ 16357 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16358 for (frame = 0; frame <= vstate->curframe; frame++) { 16359 parent = vparent->frame[frame]; 16360 state = vstate->frame[frame]; 16361 parent_reg = parent->regs; 16362 state_reg = state->regs; 16363 /* We don't need to worry about FP liveness, it's read-only */ 16364 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16365 err = propagate_liveness_reg(env, &state_reg[i], 16366 &parent_reg[i]); 16367 if (err < 0) 16368 return err; 16369 if (err == REG_LIVE_READ64) 16370 mark_insn_zext(env, &parent_reg[i]); 16371 } 16372 16373 /* Propagate stack slots. */ 16374 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16375 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16376 parent_reg = &parent->stack[i].spilled_ptr; 16377 state_reg = &state->stack[i].spilled_ptr; 16378 err = propagate_liveness_reg(env, state_reg, 16379 parent_reg); 16380 if (err < 0) 16381 return err; 16382 } 16383 } 16384 return 0; 16385 } 16386 16387 /* find precise scalars in the previous equivalent state and 16388 * propagate them into the current state 16389 */ 16390 static int propagate_precision(struct bpf_verifier_env *env, 16391 const struct bpf_verifier_state *old) 16392 { 16393 struct bpf_reg_state *state_reg; 16394 struct bpf_func_state *state; 16395 int i, err = 0, fr; 16396 bool first; 16397 16398 for (fr = old->curframe; fr >= 0; fr--) { 16399 state = old->frame[fr]; 16400 state_reg = state->regs; 16401 first = true; 16402 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16403 if (state_reg->type != SCALAR_VALUE || 16404 !state_reg->precise || 16405 !(state_reg->live & REG_LIVE_READ)) 16406 continue; 16407 if (env->log.level & BPF_LOG_LEVEL2) { 16408 if (first) 16409 verbose(env, "frame %d: propagating r%d", fr, i); 16410 else 16411 verbose(env, ",r%d", i); 16412 } 16413 bt_set_frame_reg(&env->bt, fr, i); 16414 first = false; 16415 } 16416 16417 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16418 if (!is_spilled_reg(&state->stack[i])) 16419 continue; 16420 state_reg = &state->stack[i].spilled_ptr; 16421 if (state_reg->type != SCALAR_VALUE || 16422 !state_reg->precise || 16423 !(state_reg->live & REG_LIVE_READ)) 16424 continue; 16425 if (env->log.level & BPF_LOG_LEVEL2) { 16426 if (first) 16427 verbose(env, "frame %d: propagating fp%d", 16428 fr, (-i - 1) * BPF_REG_SIZE); 16429 else 16430 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16431 } 16432 bt_set_frame_slot(&env->bt, fr, i); 16433 first = false; 16434 } 16435 if (!first) 16436 verbose(env, "\n"); 16437 } 16438 16439 err = mark_chain_precision_batch(env); 16440 if (err < 0) 16441 return err; 16442 16443 return 0; 16444 } 16445 16446 static bool states_maybe_looping(struct bpf_verifier_state *old, 16447 struct bpf_verifier_state *cur) 16448 { 16449 struct bpf_func_state *fold, *fcur; 16450 int i, fr = cur->curframe; 16451 16452 if (old->curframe != fr) 16453 return false; 16454 16455 fold = old->frame[fr]; 16456 fcur = cur->frame[fr]; 16457 for (i = 0; i < MAX_BPF_REG; i++) 16458 if (memcmp(&fold->regs[i], &fcur->regs[i], 16459 offsetof(struct bpf_reg_state, parent))) 16460 return false; 16461 return true; 16462 } 16463 16464 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16465 { 16466 return env->insn_aux_data[insn_idx].is_iter_next; 16467 } 16468 16469 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16470 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16471 * states to match, which otherwise would look like an infinite loop. So while 16472 * iter_next() calls are taken care of, we still need to be careful and 16473 * prevent erroneous and too eager declaration of "ininite loop", when 16474 * iterators are involved. 16475 * 16476 * Here's a situation in pseudo-BPF assembly form: 16477 * 16478 * 0: again: ; set up iter_next() call args 16479 * 1: r1 = &it ; <CHECKPOINT HERE> 16480 * 2: call bpf_iter_num_next ; this is iter_next() call 16481 * 3: if r0 == 0 goto done 16482 * 4: ... something useful here ... 16483 * 5: goto again ; another iteration 16484 * 6: done: 16485 * 7: r1 = &it 16486 * 8: call bpf_iter_num_destroy ; clean up iter state 16487 * 9: exit 16488 * 16489 * This is a typical loop. Let's assume that we have a prune point at 1:, 16490 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16491 * again`, assuming other heuristics don't get in a way). 16492 * 16493 * When we first time come to 1:, let's say we have some state X. We proceed 16494 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16495 * Now we come back to validate that forked ACTIVE state. We proceed through 16496 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16497 * are converging. But the problem is that we don't know that yet, as this 16498 * convergence has to happen at iter_next() call site only. So if nothing is 16499 * done, at 1: verifier will use bounded loop logic and declare infinite 16500 * looping (and would be *technically* correct, if not for iterator's 16501 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16502 * don't want that. So what we do in process_iter_next_call() when we go on 16503 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16504 * a different iteration. So when we suspect an infinite loop, we additionally 16505 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16506 * pretend we are not looping and wait for next iter_next() call. 16507 * 16508 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16509 * loop, because that would actually mean infinite loop, as DRAINED state is 16510 * "sticky", and so we'll keep returning into the same instruction with the 16511 * same state (at least in one of possible code paths). 16512 * 16513 * This approach allows to keep infinite loop heuristic even in the face of 16514 * active iterator. E.g., C snippet below is and will be detected as 16515 * inifintely looping: 16516 * 16517 * struct bpf_iter_num it; 16518 * int *p, x; 16519 * 16520 * bpf_iter_num_new(&it, 0, 10); 16521 * while ((p = bpf_iter_num_next(&t))) { 16522 * x = p; 16523 * while (x--) {} // <<-- infinite loop here 16524 * } 16525 * 16526 */ 16527 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16528 { 16529 struct bpf_reg_state *slot, *cur_slot; 16530 struct bpf_func_state *state; 16531 int i, fr; 16532 16533 for (fr = old->curframe; fr >= 0; fr--) { 16534 state = old->frame[fr]; 16535 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16536 if (state->stack[i].slot_type[0] != STACK_ITER) 16537 continue; 16538 16539 slot = &state->stack[i].spilled_ptr; 16540 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16541 continue; 16542 16543 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16544 if (cur_slot->iter.depth != slot->iter.depth) 16545 return true; 16546 } 16547 } 16548 return false; 16549 } 16550 16551 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16552 { 16553 struct bpf_verifier_state_list *new_sl; 16554 struct bpf_verifier_state_list *sl, **pprev; 16555 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16556 int i, j, n, err, states_cnt = 0; 16557 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16558 bool add_new_state = force_new_state; 16559 bool force_exact; 16560 16561 /* bpf progs typically have pruning point every 4 instructions 16562 * http://vger.kernel.org/bpfconf2019.html#session-1 16563 * Do not add new state for future pruning if the verifier hasn't seen 16564 * at least 2 jumps and at least 8 instructions. 16565 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16566 * In tests that amounts to up to 50% reduction into total verifier 16567 * memory consumption and 20% verifier time speedup. 16568 */ 16569 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16570 env->insn_processed - env->prev_insn_processed >= 8) 16571 add_new_state = true; 16572 16573 pprev = explored_state(env, insn_idx); 16574 sl = *pprev; 16575 16576 clean_live_states(env, insn_idx, cur); 16577 16578 while (sl) { 16579 states_cnt++; 16580 if (sl->state.insn_idx != insn_idx) 16581 goto next; 16582 16583 if (sl->state.branches) { 16584 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16585 16586 if (frame->in_async_callback_fn && 16587 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16588 /* Different async_entry_cnt means that the verifier is 16589 * processing another entry into async callback. 16590 * Seeing the same state is not an indication of infinite 16591 * loop or infinite recursion. 16592 * But finding the same state doesn't mean that it's safe 16593 * to stop processing the current state. The previous state 16594 * hasn't yet reached bpf_exit, since state.branches > 0. 16595 * Checking in_async_callback_fn alone is not enough either. 16596 * Since the verifier still needs to catch infinite loops 16597 * inside async callbacks. 16598 */ 16599 goto skip_inf_loop_check; 16600 } 16601 /* BPF open-coded iterators loop detection is special. 16602 * states_maybe_looping() logic is too simplistic in detecting 16603 * states that *might* be equivalent, because it doesn't know 16604 * about ID remapping, so don't even perform it. 16605 * See process_iter_next_call() and iter_active_depths_differ() 16606 * for overview of the logic. When current and one of parent 16607 * states are detected as equivalent, it's a good thing: we prove 16608 * convergence and can stop simulating further iterations. 16609 * It's safe to assume that iterator loop will finish, taking into 16610 * account iter_next() contract of eventually returning 16611 * sticky NULL result. 16612 * 16613 * Note, that states have to be compared exactly in this case because 16614 * read and precision marks might not be finalized inside the loop. 16615 * E.g. as in the program below: 16616 * 16617 * 1. r7 = -16 16618 * 2. r6 = bpf_get_prandom_u32() 16619 * 3. while (bpf_iter_num_next(&fp[-8])) { 16620 * 4. if (r6 != 42) { 16621 * 5. r7 = -32 16622 * 6. r6 = bpf_get_prandom_u32() 16623 * 7. continue 16624 * 8. } 16625 * 9. r0 = r10 16626 * 10. r0 += r7 16627 * 11. r8 = *(u64 *)(r0 + 0) 16628 * 12. r6 = bpf_get_prandom_u32() 16629 * 13. } 16630 * 16631 * Here verifier would first visit path 1-3, create a checkpoint at 3 16632 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16633 * not have read or precision mark for r7 yet, thus inexact states 16634 * comparison would discard current state with r7=-32 16635 * => unsafe memory access at 11 would not be caught. 16636 */ 16637 if (is_iter_next_insn(env, insn_idx)) { 16638 if (states_equal(env, &sl->state, cur, true)) { 16639 struct bpf_func_state *cur_frame; 16640 struct bpf_reg_state *iter_state, *iter_reg; 16641 int spi; 16642 16643 cur_frame = cur->frame[cur->curframe]; 16644 /* btf_check_iter_kfuncs() enforces that 16645 * iter state pointer is always the first arg 16646 */ 16647 iter_reg = &cur_frame->regs[BPF_REG_1]; 16648 /* current state is valid due to states_equal(), 16649 * so we can assume valid iter and reg state, 16650 * no need for extra (re-)validations 16651 */ 16652 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16653 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16654 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16655 update_loop_entry(cur, &sl->state); 16656 goto hit; 16657 } 16658 } 16659 goto skip_inf_loop_check; 16660 } 16661 if (calls_callback(env, insn_idx)) { 16662 if (states_equal(env, &sl->state, cur, true)) 16663 goto hit; 16664 goto skip_inf_loop_check; 16665 } 16666 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16667 if (states_maybe_looping(&sl->state, cur) && 16668 states_equal(env, &sl->state, cur, false) && 16669 !iter_active_depths_differ(&sl->state, cur) && 16670 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16671 verbose_linfo(env, insn_idx, "; "); 16672 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16673 verbose(env, "cur state:"); 16674 print_verifier_state(env, cur->frame[cur->curframe], true); 16675 verbose(env, "old state:"); 16676 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16677 return -EINVAL; 16678 } 16679 /* if the verifier is processing a loop, avoid adding new state 16680 * too often, since different loop iterations have distinct 16681 * states and may not help future pruning. 16682 * This threshold shouldn't be too low to make sure that 16683 * a loop with large bound will be rejected quickly. 16684 * The most abusive loop will be: 16685 * r1 += 1 16686 * if r1 < 1000000 goto pc-2 16687 * 1M insn_procssed limit / 100 == 10k peak states. 16688 * This threshold shouldn't be too high either, since states 16689 * at the end of the loop are likely to be useful in pruning. 16690 */ 16691 skip_inf_loop_check: 16692 if (!force_new_state && 16693 env->jmps_processed - env->prev_jmps_processed < 20 && 16694 env->insn_processed - env->prev_insn_processed < 100) 16695 add_new_state = false; 16696 goto miss; 16697 } 16698 /* If sl->state is a part of a loop and this loop's entry is a part of 16699 * current verification path then states have to be compared exactly. 16700 * 'force_exact' is needed to catch the following case: 16701 * 16702 * initial Here state 'succ' was processed first, 16703 * | it was eventually tracked to produce a 16704 * V state identical to 'hdr'. 16705 * .---------> hdr All branches from 'succ' had been explored 16706 * | | and thus 'succ' has its .branches == 0. 16707 * | V 16708 * | .------... Suppose states 'cur' and 'succ' correspond 16709 * | | | to the same instruction + callsites. 16710 * | V V In such case it is necessary to check 16711 * | ... ... if 'succ' and 'cur' are states_equal(). 16712 * | | | If 'succ' and 'cur' are a part of the 16713 * | V V same loop exact flag has to be set. 16714 * | succ <- cur To check if that is the case, verify 16715 * | | if loop entry of 'succ' is in current 16716 * | V DFS path. 16717 * | ... 16718 * | | 16719 * '----' 16720 * 16721 * Additional details are in the comment before get_loop_entry(). 16722 */ 16723 loop_entry = get_loop_entry(&sl->state); 16724 force_exact = loop_entry && loop_entry->branches > 0; 16725 if (states_equal(env, &sl->state, cur, force_exact)) { 16726 if (force_exact) 16727 update_loop_entry(cur, loop_entry); 16728 hit: 16729 sl->hit_cnt++; 16730 /* reached equivalent register/stack state, 16731 * prune the search. 16732 * Registers read by the continuation are read by us. 16733 * If we have any write marks in env->cur_state, they 16734 * will prevent corresponding reads in the continuation 16735 * from reaching our parent (an explored_state). Our 16736 * own state will get the read marks recorded, but 16737 * they'll be immediately forgotten as we're pruning 16738 * this state and will pop a new one. 16739 */ 16740 err = propagate_liveness(env, &sl->state, cur); 16741 16742 /* if previous state reached the exit with precision and 16743 * current state is equivalent to it (except precsion marks) 16744 * the precision needs to be propagated back in 16745 * the current state. 16746 */ 16747 err = err ? : push_jmp_history(env, cur); 16748 err = err ? : propagate_precision(env, &sl->state); 16749 if (err) 16750 return err; 16751 return 1; 16752 } 16753 miss: 16754 /* when new state is not going to be added do not increase miss count. 16755 * Otherwise several loop iterations will remove the state 16756 * recorded earlier. The goal of these heuristics is to have 16757 * states from some iterations of the loop (some in the beginning 16758 * and some at the end) to help pruning. 16759 */ 16760 if (add_new_state) 16761 sl->miss_cnt++; 16762 /* heuristic to determine whether this state is beneficial 16763 * to keep checking from state equivalence point of view. 16764 * Higher numbers increase max_states_per_insn and verification time, 16765 * but do not meaningfully decrease insn_processed. 16766 * 'n' controls how many times state could miss before eviction. 16767 * Use bigger 'n' for checkpoints because evicting checkpoint states 16768 * too early would hinder iterator convergence. 16769 */ 16770 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16771 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16772 /* the state is unlikely to be useful. Remove it to 16773 * speed up verification 16774 */ 16775 *pprev = sl->next; 16776 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16777 !sl->state.used_as_loop_entry) { 16778 u32 br = sl->state.branches; 16779 16780 WARN_ONCE(br, 16781 "BUG live_done but branches_to_explore %d\n", 16782 br); 16783 free_verifier_state(&sl->state, false); 16784 kfree(sl); 16785 env->peak_states--; 16786 } else { 16787 /* cannot free this state, since parentage chain may 16788 * walk it later. Add it for free_list instead to 16789 * be freed at the end of verification 16790 */ 16791 sl->next = env->free_list; 16792 env->free_list = sl; 16793 } 16794 sl = *pprev; 16795 continue; 16796 } 16797 next: 16798 pprev = &sl->next; 16799 sl = *pprev; 16800 } 16801 16802 if (env->max_states_per_insn < states_cnt) 16803 env->max_states_per_insn = states_cnt; 16804 16805 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16806 return 0; 16807 16808 if (!add_new_state) 16809 return 0; 16810 16811 /* There were no equivalent states, remember the current one. 16812 * Technically the current state is not proven to be safe yet, 16813 * but it will either reach outer most bpf_exit (which means it's safe) 16814 * or it will be rejected. When there are no loops the verifier won't be 16815 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16816 * again on the way to bpf_exit. 16817 * When looping the sl->state.branches will be > 0 and this state 16818 * will not be considered for equivalence until branches == 0. 16819 */ 16820 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16821 if (!new_sl) 16822 return -ENOMEM; 16823 env->total_states++; 16824 env->peak_states++; 16825 env->prev_jmps_processed = env->jmps_processed; 16826 env->prev_insn_processed = env->insn_processed; 16827 16828 /* forget precise markings we inherited, see __mark_chain_precision */ 16829 if (env->bpf_capable) 16830 mark_all_scalars_imprecise(env, cur); 16831 16832 /* add new state to the head of linked list */ 16833 new = &new_sl->state; 16834 err = copy_verifier_state(new, cur); 16835 if (err) { 16836 free_verifier_state(new, false); 16837 kfree(new_sl); 16838 return err; 16839 } 16840 new->insn_idx = insn_idx; 16841 WARN_ONCE(new->branches != 1, 16842 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16843 16844 cur->parent = new; 16845 cur->first_insn_idx = insn_idx; 16846 cur->dfs_depth = new->dfs_depth + 1; 16847 clear_jmp_history(cur); 16848 new_sl->next = *explored_state(env, insn_idx); 16849 *explored_state(env, insn_idx) = new_sl; 16850 /* connect new state to parentage chain. Current frame needs all 16851 * registers connected. Only r6 - r9 of the callers are alive (pushed 16852 * to the stack implicitly by JITs) so in callers' frames connect just 16853 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16854 * the state of the call instruction (with WRITTEN set), and r0 comes 16855 * from callee with its full parentage chain, anyway. 16856 */ 16857 /* clear write marks in current state: the writes we did are not writes 16858 * our child did, so they don't screen off its reads from us. 16859 * (There are no read marks in current state, because reads always mark 16860 * their parent and current state never has children yet. Only 16861 * explored_states can get read marks.) 16862 */ 16863 for (j = 0; j <= cur->curframe; j++) { 16864 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16865 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16866 for (i = 0; i < BPF_REG_FP; i++) 16867 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16868 } 16869 16870 /* all stack frames are accessible from callee, clear them all */ 16871 for (j = 0; j <= cur->curframe; j++) { 16872 struct bpf_func_state *frame = cur->frame[j]; 16873 struct bpf_func_state *newframe = new->frame[j]; 16874 16875 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16876 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16877 frame->stack[i].spilled_ptr.parent = 16878 &newframe->stack[i].spilled_ptr; 16879 } 16880 } 16881 return 0; 16882 } 16883 16884 /* Return true if it's OK to have the same insn return a different type. */ 16885 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16886 { 16887 switch (base_type(type)) { 16888 case PTR_TO_CTX: 16889 case PTR_TO_SOCKET: 16890 case PTR_TO_SOCK_COMMON: 16891 case PTR_TO_TCP_SOCK: 16892 case PTR_TO_XDP_SOCK: 16893 case PTR_TO_BTF_ID: 16894 return false; 16895 default: 16896 return true; 16897 } 16898 } 16899 16900 /* If an instruction was previously used with particular pointer types, then we 16901 * need to be careful to avoid cases such as the below, where it may be ok 16902 * for one branch accessing the pointer, but not ok for the other branch: 16903 * 16904 * R1 = sock_ptr 16905 * goto X; 16906 * ... 16907 * R1 = some_other_valid_ptr; 16908 * goto X; 16909 * ... 16910 * R2 = *(u32 *)(R1 + 0); 16911 */ 16912 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16913 { 16914 return src != prev && (!reg_type_mismatch_ok(src) || 16915 !reg_type_mismatch_ok(prev)); 16916 } 16917 16918 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16919 bool allow_trust_missmatch) 16920 { 16921 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16922 16923 if (*prev_type == NOT_INIT) { 16924 /* Saw a valid insn 16925 * dst_reg = *(u32 *)(src_reg + off) 16926 * save type to validate intersecting paths 16927 */ 16928 *prev_type = type; 16929 } else if (reg_type_mismatch(type, *prev_type)) { 16930 /* Abuser program is trying to use the same insn 16931 * dst_reg = *(u32*) (src_reg + off) 16932 * with different pointer types: 16933 * src_reg == ctx in one branch and 16934 * src_reg == stack|map in some other branch. 16935 * Reject it. 16936 */ 16937 if (allow_trust_missmatch && 16938 base_type(type) == PTR_TO_BTF_ID && 16939 base_type(*prev_type) == PTR_TO_BTF_ID) { 16940 /* 16941 * Have to support a use case when one path through 16942 * the program yields TRUSTED pointer while another 16943 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16944 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16945 */ 16946 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16947 } else { 16948 verbose(env, "same insn cannot be used with different pointers\n"); 16949 return -EINVAL; 16950 } 16951 } 16952 16953 return 0; 16954 } 16955 16956 static int do_check(struct bpf_verifier_env *env) 16957 { 16958 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16959 struct bpf_verifier_state *state = env->cur_state; 16960 struct bpf_insn *insns = env->prog->insnsi; 16961 struct bpf_reg_state *regs; 16962 int insn_cnt = env->prog->len; 16963 bool do_print_state = false; 16964 int prev_insn_idx = -1; 16965 16966 for (;;) { 16967 struct bpf_insn *insn; 16968 u8 class; 16969 int err; 16970 16971 env->prev_insn_idx = prev_insn_idx; 16972 if (env->insn_idx >= insn_cnt) { 16973 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16974 env->insn_idx, insn_cnt); 16975 return -EFAULT; 16976 } 16977 16978 insn = &insns[env->insn_idx]; 16979 class = BPF_CLASS(insn->code); 16980 16981 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16982 verbose(env, 16983 "BPF program is too large. Processed %d insn\n", 16984 env->insn_processed); 16985 return -E2BIG; 16986 } 16987 16988 state->last_insn_idx = env->prev_insn_idx; 16989 16990 if (is_prune_point(env, env->insn_idx)) { 16991 err = is_state_visited(env, env->insn_idx); 16992 if (err < 0) 16993 return err; 16994 if (err == 1) { 16995 /* found equivalent state, can prune the search */ 16996 if (env->log.level & BPF_LOG_LEVEL) { 16997 if (do_print_state) 16998 verbose(env, "\nfrom %d to %d%s: safe\n", 16999 env->prev_insn_idx, env->insn_idx, 17000 env->cur_state->speculative ? 17001 " (speculative execution)" : ""); 17002 else 17003 verbose(env, "%d: safe\n", env->insn_idx); 17004 } 17005 goto process_bpf_exit; 17006 } 17007 } 17008 17009 if (is_jmp_point(env, env->insn_idx)) { 17010 err = push_jmp_history(env, state); 17011 if (err) 17012 return err; 17013 } 17014 17015 if (signal_pending(current)) 17016 return -EAGAIN; 17017 17018 if (need_resched()) 17019 cond_resched(); 17020 17021 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17022 verbose(env, "\nfrom %d to %d%s:", 17023 env->prev_insn_idx, env->insn_idx, 17024 env->cur_state->speculative ? 17025 " (speculative execution)" : ""); 17026 print_verifier_state(env, state->frame[state->curframe], true); 17027 do_print_state = false; 17028 } 17029 17030 if (env->log.level & BPF_LOG_LEVEL) { 17031 const struct bpf_insn_cbs cbs = { 17032 .cb_call = disasm_kfunc_name, 17033 .cb_print = verbose, 17034 .private_data = env, 17035 }; 17036 17037 if (verifier_state_scratched(env)) 17038 print_insn_state(env, state->frame[state->curframe]); 17039 17040 verbose_linfo(env, env->insn_idx, "; "); 17041 env->prev_log_pos = env->log.end_pos; 17042 verbose(env, "%d: ", env->insn_idx); 17043 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17044 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17045 env->prev_log_pos = env->log.end_pos; 17046 } 17047 17048 if (bpf_prog_is_offloaded(env->prog->aux)) { 17049 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17050 env->prev_insn_idx); 17051 if (err) 17052 return err; 17053 } 17054 17055 regs = cur_regs(env); 17056 sanitize_mark_insn_seen(env); 17057 prev_insn_idx = env->insn_idx; 17058 17059 if (class == BPF_ALU || class == BPF_ALU64) { 17060 err = check_alu_op(env, insn); 17061 if (err) 17062 return err; 17063 17064 } else if (class == BPF_LDX) { 17065 enum bpf_reg_type src_reg_type; 17066 17067 /* check for reserved fields is already done */ 17068 17069 /* check src operand */ 17070 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17071 if (err) 17072 return err; 17073 17074 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17075 if (err) 17076 return err; 17077 17078 src_reg_type = regs[insn->src_reg].type; 17079 17080 /* check that memory (src_reg + off) is readable, 17081 * the state of dst_reg will be updated by this func 17082 */ 17083 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17084 insn->off, BPF_SIZE(insn->code), 17085 BPF_READ, insn->dst_reg, false, 17086 BPF_MODE(insn->code) == BPF_MEMSX); 17087 if (err) 17088 return err; 17089 17090 err = save_aux_ptr_type(env, src_reg_type, true); 17091 if (err) 17092 return err; 17093 } else if (class == BPF_STX) { 17094 enum bpf_reg_type dst_reg_type; 17095 17096 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17097 err = check_atomic(env, env->insn_idx, insn); 17098 if (err) 17099 return err; 17100 env->insn_idx++; 17101 continue; 17102 } 17103 17104 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17105 verbose(env, "BPF_STX uses reserved fields\n"); 17106 return -EINVAL; 17107 } 17108 17109 /* check src1 operand */ 17110 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17111 if (err) 17112 return err; 17113 /* check src2 operand */ 17114 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17115 if (err) 17116 return err; 17117 17118 dst_reg_type = regs[insn->dst_reg].type; 17119 17120 /* check that memory (dst_reg + off) is writeable */ 17121 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17122 insn->off, BPF_SIZE(insn->code), 17123 BPF_WRITE, insn->src_reg, false, false); 17124 if (err) 17125 return err; 17126 17127 err = save_aux_ptr_type(env, dst_reg_type, false); 17128 if (err) 17129 return err; 17130 } else if (class == BPF_ST) { 17131 enum bpf_reg_type dst_reg_type; 17132 17133 if (BPF_MODE(insn->code) != BPF_MEM || 17134 insn->src_reg != BPF_REG_0) { 17135 verbose(env, "BPF_ST uses reserved fields\n"); 17136 return -EINVAL; 17137 } 17138 /* check src operand */ 17139 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17140 if (err) 17141 return err; 17142 17143 dst_reg_type = regs[insn->dst_reg].type; 17144 17145 /* check that memory (dst_reg + off) is writeable */ 17146 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17147 insn->off, BPF_SIZE(insn->code), 17148 BPF_WRITE, -1, false, false); 17149 if (err) 17150 return err; 17151 17152 err = save_aux_ptr_type(env, dst_reg_type, false); 17153 if (err) 17154 return err; 17155 } else if (class == BPF_JMP || class == BPF_JMP32) { 17156 u8 opcode = BPF_OP(insn->code); 17157 17158 env->jmps_processed++; 17159 if (opcode == BPF_CALL) { 17160 if (BPF_SRC(insn->code) != BPF_K || 17161 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17162 && insn->off != 0) || 17163 (insn->src_reg != BPF_REG_0 && 17164 insn->src_reg != BPF_PSEUDO_CALL && 17165 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17166 insn->dst_reg != BPF_REG_0 || 17167 class == BPF_JMP32) { 17168 verbose(env, "BPF_CALL uses reserved fields\n"); 17169 return -EINVAL; 17170 } 17171 17172 if (env->cur_state->active_lock.ptr) { 17173 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17174 (insn->src_reg == BPF_PSEUDO_CALL) || 17175 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17176 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17177 verbose(env, "function calls are not allowed while holding a lock\n"); 17178 return -EINVAL; 17179 } 17180 } 17181 if (insn->src_reg == BPF_PSEUDO_CALL) 17182 err = check_func_call(env, insn, &env->insn_idx); 17183 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17184 err = check_kfunc_call(env, insn, &env->insn_idx); 17185 else 17186 err = check_helper_call(env, insn, &env->insn_idx); 17187 if (err) 17188 return err; 17189 17190 mark_reg_scratched(env, BPF_REG_0); 17191 } else if (opcode == BPF_JA) { 17192 if (BPF_SRC(insn->code) != BPF_K || 17193 insn->src_reg != BPF_REG_0 || 17194 insn->dst_reg != BPF_REG_0 || 17195 (class == BPF_JMP && insn->imm != 0) || 17196 (class == BPF_JMP32 && insn->off != 0)) { 17197 verbose(env, "BPF_JA uses reserved fields\n"); 17198 return -EINVAL; 17199 } 17200 17201 if (class == BPF_JMP) 17202 env->insn_idx += insn->off + 1; 17203 else 17204 env->insn_idx += insn->imm + 1; 17205 continue; 17206 17207 } else if (opcode == BPF_EXIT) { 17208 if (BPF_SRC(insn->code) != BPF_K || 17209 insn->imm != 0 || 17210 insn->src_reg != BPF_REG_0 || 17211 insn->dst_reg != BPF_REG_0 || 17212 class == BPF_JMP32) { 17213 verbose(env, "BPF_EXIT uses reserved fields\n"); 17214 return -EINVAL; 17215 } 17216 17217 if (env->cur_state->active_lock.ptr && 17218 !in_rbtree_lock_required_cb(env)) { 17219 verbose(env, "bpf_spin_unlock is missing\n"); 17220 return -EINVAL; 17221 } 17222 17223 if (env->cur_state->active_rcu_lock && 17224 !in_rbtree_lock_required_cb(env)) { 17225 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17226 return -EINVAL; 17227 } 17228 17229 /* We must do check_reference_leak here before 17230 * prepare_func_exit to handle the case when 17231 * state->curframe > 0, it may be a callback 17232 * function, for which reference_state must 17233 * match caller reference state when it exits. 17234 */ 17235 err = check_reference_leak(env); 17236 if (err) 17237 return err; 17238 17239 if (state->curframe) { 17240 /* exit from nested function */ 17241 err = prepare_func_exit(env, &env->insn_idx); 17242 if (err) 17243 return err; 17244 do_print_state = true; 17245 continue; 17246 } 17247 17248 err = check_return_code(env); 17249 if (err) 17250 return err; 17251 process_bpf_exit: 17252 mark_verifier_state_scratched(env); 17253 update_branch_counts(env, env->cur_state); 17254 err = pop_stack(env, &prev_insn_idx, 17255 &env->insn_idx, pop_log); 17256 if (err < 0) { 17257 if (err != -ENOENT) 17258 return err; 17259 break; 17260 } else { 17261 do_print_state = true; 17262 continue; 17263 } 17264 } else { 17265 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17266 if (err) 17267 return err; 17268 } 17269 } else if (class == BPF_LD) { 17270 u8 mode = BPF_MODE(insn->code); 17271 17272 if (mode == BPF_ABS || mode == BPF_IND) { 17273 err = check_ld_abs(env, insn); 17274 if (err) 17275 return err; 17276 17277 } else if (mode == BPF_IMM) { 17278 err = check_ld_imm(env, insn); 17279 if (err) 17280 return err; 17281 17282 env->insn_idx++; 17283 sanitize_mark_insn_seen(env); 17284 } else { 17285 verbose(env, "invalid BPF_LD mode\n"); 17286 return -EINVAL; 17287 } 17288 } else { 17289 verbose(env, "unknown insn class %d\n", class); 17290 return -EINVAL; 17291 } 17292 17293 env->insn_idx++; 17294 } 17295 17296 return 0; 17297 } 17298 17299 static int find_btf_percpu_datasec(struct btf *btf) 17300 { 17301 const struct btf_type *t; 17302 const char *tname; 17303 int i, n; 17304 17305 /* 17306 * Both vmlinux and module each have their own ".data..percpu" 17307 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17308 * types to look at only module's own BTF types. 17309 */ 17310 n = btf_nr_types(btf); 17311 if (btf_is_module(btf)) 17312 i = btf_nr_types(btf_vmlinux); 17313 else 17314 i = 1; 17315 17316 for(; i < n; i++) { 17317 t = btf_type_by_id(btf, i); 17318 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17319 continue; 17320 17321 tname = btf_name_by_offset(btf, t->name_off); 17322 if (!strcmp(tname, ".data..percpu")) 17323 return i; 17324 } 17325 17326 return -ENOENT; 17327 } 17328 17329 /* replace pseudo btf_id with kernel symbol address */ 17330 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17331 struct bpf_insn *insn, 17332 struct bpf_insn_aux_data *aux) 17333 { 17334 const struct btf_var_secinfo *vsi; 17335 const struct btf_type *datasec; 17336 struct btf_mod_pair *btf_mod; 17337 const struct btf_type *t; 17338 const char *sym_name; 17339 bool percpu = false; 17340 u32 type, id = insn->imm; 17341 struct btf *btf; 17342 s32 datasec_id; 17343 u64 addr; 17344 int i, btf_fd, err; 17345 17346 btf_fd = insn[1].imm; 17347 if (btf_fd) { 17348 btf = btf_get_by_fd(btf_fd); 17349 if (IS_ERR(btf)) { 17350 verbose(env, "invalid module BTF object FD specified.\n"); 17351 return -EINVAL; 17352 } 17353 } else { 17354 if (!btf_vmlinux) { 17355 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17356 return -EINVAL; 17357 } 17358 btf = btf_vmlinux; 17359 btf_get(btf); 17360 } 17361 17362 t = btf_type_by_id(btf, id); 17363 if (!t) { 17364 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17365 err = -ENOENT; 17366 goto err_put; 17367 } 17368 17369 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17370 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17371 err = -EINVAL; 17372 goto err_put; 17373 } 17374 17375 sym_name = btf_name_by_offset(btf, t->name_off); 17376 addr = kallsyms_lookup_name(sym_name); 17377 if (!addr) { 17378 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17379 sym_name); 17380 err = -ENOENT; 17381 goto err_put; 17382 } 17383 insn[0].imm = (u32)addr; 17384 insn[1].imm = addr >> 32; 17385 17386 if (btf_type_is_func(t)) { 17387 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17388 aux->btf_var.mem_size = 0; 17389 goto check_btf; 17390 } 17391 17392 datasec_id = find_btf_percpu_datasec(btf); 17393 if (datasec_id > 0) { 17394 datasec = btf_type_by_id(btf, datasec_id); 17395 for_each_vsi(i, datasec, vsi) { 17396 if (vsi->type == id) { 17397 percpu = true; 17398 break; 17399 } 17400 } 17401 } 17402 17403 type = t->type; 17404 t = btf_type_skip_modifiers(btf, type, NULL); 17405 if (percpu) { 17406 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17407 aux->btf_var.btf = btf; 17408 aux->btf_var.btf_id = type; 17409 } else if (!btf_type_is_struct(t)) { 17410 const struct btf_type *ret; 17411 const char *tname; 17412 u32 tsize; 17413 17414 /* resolve the type size of ksym. */ 17415 ret = btf_resolve_size(btf, t, &tsize); 17416 if (IS_ERR(ret)) { 17417 tname = btf_name_by_offset(btf, t->name_off); 17418 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17419 tname, PTR_ERR(ret)); 17420 err = -EINVAL; 17421 goto err_put; 17422 } 17423 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17424 aux->btf_var.mem_size = tsize; 17425 } else { 17426 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17427 aux->btf_var.btf = btf; 17428 aux->btf_var.btf_id = type; 17429 } 17430 check_btf: 17431 /* check whether we recorded this BTF (and maybe module) already */ 17432 for (i = 0; i < env->used_btf_cnt; i++) { 17433 if (env->used_btfs[i].btf == btf) { 17434 btf_put(btf); 17435 return 0; 17436 } 17437 } 17438 17439 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17440 err = -E2BIG; 17441 goto err_put; 17442 } 17443 17444 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17445 btf_mod->btf = btf; 17446 btf_mod->module = NULL; 17447 17448 /* if we reference variables from kernel module, bump its refcount */ 17449 if (btf_is_module(btf)) { 17450 btf_mod->module = btf_try_get_module(btf); 17451 if (!btf_mod->module) { 17452 err = -ENXIO; 17453 goto err_put; 17454 } 17455 } 17456 17457 env->used_btf_cnt++; 17458 17459 return 0; 17460 err_put: 17461 btf_put(btf); 17462 return err; 17463 } 17464 17465 static bool is_tracing_prog_type(enum bpf_prog_type type) 17466 { 17467 switch (type) { 17468 case BPF_PROG_TYPE_KPROBE: 17469 case BPF_PROG_TYPE_TRACEPOINT: 17470 case BPF_PROG_TYPE_PERF_EVENT: 17471 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17472 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17473 return true; 17474 default: 17475 return false; 17476 } 17477 } 17478 17479 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17480 struct bpf_map *map, 17481 struct bpf_prog *prog) 17482 17483 { 17484 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17485 17486 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17487 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17488 if (is_tracing_prog_type(prog_type)) { 17489 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17490 return -EINVAL; 17491 } 17492 } 17493 17494 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17495 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17496 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17497 return -EINVAL; 17498 } 17499 17500 if (is_tracing_prog_type(prog_type)) { 17501 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17502 return -EINVAL; 17503 } 17504 } 17505 17506 if (btf_record_has_field(map->record, BPF_TIMER)) { 17507 if (is_tracing_prog_type(prog_type)) { 17508 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17509 return -EINVAL; 17510 } 17511 } 17512 17513 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17514 !bpf_offload_prog_map_match(prog, map)) { 17515 verbose(env, "offload device mismatch between prog and map\n"); 17516 return -EINVAL; 17517 } 17518 17519 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17520 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17521 return -EINVAL; 17522 } 17523 17524 if (prog->aux->sleepable) 17525 switch (map->map_type) { 17526 case BPF_MAP_TYPE_HASH: 17527 case BPF_MAP_TYPE_LRU_HASH: 17528 case BPF_MAP_TYPE_ARRAY: 17529 case BPF_MAP_TYPE_PERCPU_HASH: 17530 case BPF_MAP_TYPE_PERCPU_ARRAY: 17531 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17532 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17533 case BPF_MAP_TYPE_HASH_OF_MAPS: 17534 case BPF_MAP_TYPE_RINGBUF: 17535 case BPF_MAP_TYPE_USER_RINGBUF: 17536 case BPF_MAP_TYPE_INODE_STORAGE: 17537 case BPF_MAP_TYPE_SK_STORAGE: 17538 case BPF_MAP_TYPE_TASK_STORAGE: 17539 case BPF_MAP_TYPE_CGRP_STORAGE: 17540 break; 17541 default: 17542 verbose(env, 17543 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17544 return -EINVAL; 17545 } 17546 17547 return 0; 17548 } 17549 17550 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17551 { 17552 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17553 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17554 } 17555 17556 /* find and rewrite pseudo imm in ld_imm64 instructions: 17557 * 17558 * 1. if it accesses map FD, replace it with actual map pointer. 17559 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17560 * 17561 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17562 */ 17563 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17564 { 17565 struct bpf_insn *insn = env->prog->insnsi; 17566 int insn_cnt = env->prog->len; 17567 int i, j, err; 17568 17569 err = bpf_prog_calc_tag(env->prog); 17570 if (err) 17571 return err; 17572 17573 for (i = 0; i < insn_cnt; i++, insn++) { 17574 if (BPF_CLASS(insn->code) == BPF_LDX && 17575 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17576 insn->imm != 0)) { 17577 verbose(env, "BPF_LDX uses reserved fields\n"); 17578 return -EINVAL; 17579 } 17580 17581 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17582 struct bpf_insn_aux_data *aux; 17583 struct bpf_map *map; 17584 struct fd f; 17585 u64 addr; 17586 u32 fd; 17587 17588 if (i == insn_cnt - 1 || insn[1].code != 0 || 17589 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17590 insn[1].off != 0) { 17591 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17592 return -EINVAL; 17593 } 17594 17595 if (insn[0].src_reg == 0) 17596 /* valid generic load 64-bit imm */ 17597 goto next_insn; 17598 17599 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17600 aux = &env->insn_aux_data[i]; 17601 err = check_pseudo_btf_id(env, insn, aux); 17602 if (err) 17603 return err; 17604 goto next_insn; 17605 } 17606 17607 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17608 aux = &env->insn_aux_data[i]; 17609 aux->ptr_type = PTR_TO_FUNC; 17610 goto next_insn; 17611 } 17612 17613 /* In final convert_pseudo_ld_imm64() step, this is 17614 * converted into regular 64-bit imm load insn. 17615 */ 17616 switch (insn[0].src_reg) { 17617 case BPF_PSEUDO_MAP_VALUE: 17618 case BPF_PSEUDO_MAP_IDX_VALUE: 17619 break; 17620 case BPF_PSEUDO_MAP_FD: 17621 case BPF_PSEUDO_MAP_IDX: 17622 if (insn[1].imm == 0) 17623 break; 17624 fallthrough; 17625 default: 17626 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17627 return -EINVAL; 17628 } 17629 17630 switch (insn[0].src_reg) { 17631 case BPF_PSEUDO_MAP_IDX_VALUE: 17632 case BPF_PSEUDO_MAP_IDX: 17633 if (bpfptr_is_null(env->fd_array)) { 17634 verbose(env, "fd_idx without fd_array is invalid\n"); 17635 return -EPROTO; 17636 } 17637 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17638 insn[0].imm * sizeof(fd), 17639 sizeof(fd))) 17640 return -EFAULT; 17641 break; 17642 default: 17643 fd = insn[0].imm; 17644 break; 17645 } 17646 17647 f = fdget(fd); 17648 map = __bpf_map_get(f); 17649 if (IS_ERR(map)) { 17650 verbose(env, "fd %d is not pointing to valid bpf_map\n", 17651 insn[0].imm); 17652 return PTR_ERR(map); 17653 } 17654 17655 err = check_map_prog_compatibility(env, map, env->prog); 17656 if (err) { 17657 fdput(f); 17658 return err; 17659 } 17660 17661 aux = &env->insn_aux_data[i]; 17662 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17663 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17664 addr = (unsigned long)map; 17665 } else { 17666 u32 off = insn[1].imm; 17667 17668 if (off >= BPF_MAX_VAR_OFF) { 17669 verbose(env, "direct value offset of %u is not allowed\n", off); 17670 fdput(f); 17671 return -EINVAL; 17672 } 17673 17674 if (!map->ops->map_direct_value_addr) { 17675 verbose(env, "no direct value access support for this map type\n"); 17676 fdput(f); 17677 return -EINVAL; 17678 } 17679 17680 err = map->ops->map_direct_value_addr(map, &addr, off); 17681 if (err) { 17682 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17683 map->value_size, off); 17684 fdput(f); 17685 return err; 17686 } 17687 17688 aux->map_off = off; 17689 addr += off; 17690 } 17691 17692 insn[0].imm = (u32)addr; 17693 insn[1].imm = addr >> 32; 17694 17695 /* check whether we recorded this map already */ 17696 for (j = 0; j < env->used_map_cnt; j++) { 17697 if (env->used_maps[j] == map) { 17698 aux->map_index = j; 17699 fdput(f); 17700 goto next_insn; 17701 } 17702 } 17703 17704 if (env->used_map_cnt >= MAX_USED_MAPS) { 17705 fdput(f); 17706 return -E2BIG; 17707 } 17708 17709 /* hold the map. If the program is rejected by verifier, 17710 * the map will be released by release_maps() or it 17711 * will be used by the valid program until it's unloaded 17712 * and all maps are released in free_used_maps() 17713 */ 17714 bpf_map_inc(map); 17715 17716 aux->map_index = env->used_map_cnt; 17717 env->used_maps[env->used_map_cnt++] = map; 17718 17719 if (bpf_map_is_cgroup_storage(map) && 17720 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17721 verbose(env, "only one cgroup storage of each type is allowed\n"); 17722 fdput(f); 17723 return -EBUSY; 17724 } 17725 17726 fdput(f); 17727 next_insn: 17728 insn++; 17729 i++; 17730 continue; 17731 } 17732 17733 /* Basic sanity check before we invest more work here. */ 17734 if (!bpf_opcode_in_insntable(insn->code)) { 17735 verbose(env, "unknown opcode %02x\n", insn->code); 17736 return -EINVAL; 17737 } 17738 } 17739 17740 /* now all pseudo BPF_LD_IMM64 instructions load valid 17741 * 'struct bpf_map *' into a register instead of user map_fd. 17742 * These pointers will be used later by verifier to validate map access. 17743 */ 17744 return 0; 17745 } 17746 17747 /* drop refcnt of maps used by the rejected program */ 17748 static void release_maps(struct bpf_verifier_env *env) 17749 { 17750 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17751 env->used_map_cnt); 17752 } 17753 17754 /* drop refcnt of maps used by the rejected program */ 17755 static void release_btfs(struct bpf_verifier_env *env) 17756 { 17757 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17758 env->used_btf_cnt); 17759 } 17760 17761 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17762 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17763 { 17764 struct bpf_insn *insn = env->prog->insnsi; 17765 int insn_cnt = env->prog->len; 17766 int i; 17767 17768 for (i = 0; i < insn_cnt; i++, insn++) { 17769 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17770 continue; 17771 if (insn->src_reg == BPF_PSEUDO_FUNC) 17772 continue; 17773 insn->src_reg = 0; 17774 } 17775 } 17776 17777 /* single env->prog->insni[off] instruction was replaced with the range 17778 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17779 * [0, off) and [off, end) to new locations, so the patched range stays zero 17780 */ 17781 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17782 struct bpf_insn_aux_data *new_data, 17783 struct bpf_prog *new_prog, u32 off, u32 cnt) 17784 { 17785 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17786 struct bpf_insn *insn = new_prog->insnsi; 17787 u32 old_seen = old_data[off].seen; 17788 u32 prog_len; 17789 int i; 17790 17791 /* aux info at OFF always needs adjustment, no matter fast path 17792 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17793 * original insn at old prog. 17794 */ 17795 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17796 17797 if (cnt == 1) 17798 return; 17799 prog_len = new_prog->len; 17800 17801 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17802 memcpy(new_data + off + cnt - 1, old_data + off, 17803 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17804 for (i = off; i < off + cnt - 1; i++) { 17805 /* Expand insni[off]'s seen count to the patched range. */ 17806 new_data[i].seen = old_seen; 17807 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17808 } 17809 env->insn_aux_data = new_data; 17810 vfree(old_data); 17811 } 17812 17813 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17814 { 17815 int i; 17816 17817 if (len == 1) 17818 return; 17819 /* NOTE: fake 'exit' subprog should be updated as well. */ 17820 for (i = 0; i <= env->subprog_cnt; i++) { 17821 if (env->subprog_info[i].start <= off) 17822 continue; 17823 env->subprog_info[i].start += len - 1; 17824 } 17825 } 17826 17827 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17828 { 17829 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17830 int i, sz = prog->aux->size_poke_tab; 17831 struct bpf_jit_poke_descriptor *desc; 17832 17833 for (i = 0; i < sz; i++) { 17834 desc = &tab[i]; 17835 if (desc->insn_idx <= off) 17836 continue; 17837 desc->insn_idx += len - 1; 17838 } 17839 } 17840 17841 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17842 const struct bpf_insn *patch, u32 len) 17843 { 17844 struct bpf_prog *new_prog; 17845 struct bpf_insn_aux_data *new_data = NULL; 17846 17847 if (len > 1) { 17848 new_data = vzalloc(array_size(env->prog->len + len - 1, 17849 sizeof(struct bpf_insn_aux_data))); 17850 if (!new_data) 17851 return NULL; 17852 } 17853 17854 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17855 if (IS_ERR(new_prog)) { 17856 if (PTR_ERR(new_prog) == -ERANGE) 17857 verbose(env, 17858 "insn %d cannot be patched due to 16-bit range\n", 17859 env->insn_aux_data[off].orig_idx); 17860 vfree(new_data); 17861 return NULL; 17862 } 17863 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17864 adjust_subprog_starts(env, off, len); 17865 adjust_poke_descs(new_prog, off, len); 17866 return new_prog; 17867 } 17868 17869 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17870 u32 off, u32 cnt) 17871 { 17872 int i, j; 17873 17874 /* find first prog starting at or after off (first to remove) */ 17875 for (i = 0; i < env->subprog_cnt; i++) 17876 if (env->subprog_info[i].start >= off) 17877 break; 17878 /* find first prog starting at or after off + cnt (first to stay) */ 17879 for (j = i; j < env->subprog_cnt; j++) 17880 if (env->subprog_info[j].start >= off + cnt) 17881 break; 17882 /* if j doesn't start exactly at off + cnt, we are just removing 17883 * the front of previous prog 17884 */ 17885 if (env->subprog_info[j].start != off + cnt) 17886 j--; 17887 17888 if (j > i) { 17889 struct bpf_prog_aux *aux = env->prog->aux; 17890 int move; 17891 17892 /* move fake 'exit' subprog as well */ 17893 move = env->subprog_cnt + 1 - j; 17894 17895 memmove(env->subprog_info + i, 17896 env->subprog_info + j, 17897 sizeof(*env->subprog_info) * move); 17898 env->subprog_cnt -= j - i; 17899 17900 /* remove func_info */ 17901 if (aux->func_info) { 17902 move = aux->func_info_cnt - j; 17903 17904 memmove(aux->func_info + i, 17905 aux->func_info + j, 17906 sizeof(*aux->func_info) * move); 17907 aux->func_info_cnt -= j - i; 17908 /* func_info->insn_off is set after all code rewrites, 17909 * in adjust_btf_func() - no need to adjust 17910 */ 17911 } 17912 } else { 17913 /* convert i from "first prog to remove" to "first to adjust" */ 17914 if (env->subprog_info[i].start == off) 17915 i++; 17916 } 17917 17918 /* update fake 'exit' subprog as well */ 17919 for (; i <= env->subprog_cnt; i++) 17920 env->subprog_info[i].start -= cnt; 17921 17922 return 0; 17923 } 17924 17925 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17926 u32 cnt) 17927 { 17928 struct bpf_prog *prog = env->prog; 17929 u32 i, l_off, l_cnt, nr_linfo; 17930 struct bpf_line_info *linfo; 17931 17932 nr_linfo = prog->aux->nr_linfo; 17933 if (!nr_linfo) 17934 return 0; 17935 17936 linfo = prog->aux->linfo; 17937 17938 /* find first line info to remove, count lines to be removed */ 17939 for (i = 0; i < nr_linfo; i++) 17940 if (linfo[i].insn_off >= off) 17941 break; 17942 17943 l_off = i; 17944 l_cnt = 0; 17945 for (; i < nr_linfo; i++) 17946 if (linfo[i].insn_off < off + cnt) 17947 l_cnt++; 17948 else 17949 break; 17950 17951 /* First live insn doesn't match first live linfo, it needs to "inherit" 17952 * last removed linfo. prog is already modified, so prog->len == off 17953 * means no live instructions after (tail of the program was removed). 17954 */ 17955 if (prog->len != off && l_cnt && 17956 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17957 l_cnt--; 17958 linfo[--i].insn_off = off + cnt; 17959 } 17960 17961 /* remove the line info which refer to the removed instructions */ 17962 if (l_cnt) { 17963 memmove(linfo + l_off, linfo + i, 17964 sizeof(*linfo) * (nr_linfo - i)); 17965 17966 prog->aux->nr_linfo -= l_cnt; 17967 nr_linfo = prog->aux->nr_linfo; 17968 } 17969 17970 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17971 for (i = l_off; i < nr_linfo; i++) 17972 linfo[i].insn_off -= cnt; 17973 17974 /* fix up all subprogs (incl. 'exit') which start >= off */ 17975 for (i = 0; i <= env->subprog_cnt; i++) 17976 if (env->subprog_info[i].linfo_idx > l_off) { 17977 /* program may have started in the removed region but 17978 * may not be fully removed 17979 */ 17980 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17981 env->subprog_info[i].linfo_idx -= l_cnt; 17982 else 17983 env->subprog_info[i].linfo_idx = l_off; 17984 } 17985 17986 return 0; 17987 } 17988 17989 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17990 { 17991 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 17992 unsigned int orig_prog_len = env->prog->len; 17993 int err; 17994 17995 if (bpf_prog_is_offloaded(env->prog->aux)) 17996 bpf_prog_offload_remove_insns(env, off, cnt); 17997 17998 err = bpf_remove_insns(env->prog, off, cnt); 17999 if (err) 18000 return err; 18001 18002 err = adjust_subprog_starts_after_remove(env, off, cnt); 18003 if (err) 18004 return err; 18005 18006 err = bpf_adj_linfo_after_remove(env, off, cnt); 18007 if (err) 18008 return err; 18009 18010 memmove(aux_data + off, aux_data + off + cnt, 18011 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18012 18013 return 0; 18014 } 18015 18016 /* The verifier does more data flow analysis than llvm and will not 18017 * explore branches that are dead at run time. Malicious programs can 18018 * have dead code too. Therefore replace all dead at-run-time code 18019 * with 'ja -1'. 18020 * 18021 * Just nops are not optimal, e.g. if they would sit at the end of the 18022 * program and through another bug we would manage to jump there, then 18023 * we'd execute beyond program memory otherwise. Returning exception 18024 * code also wouldn't work since we can have subprogs where the dead 18025 * code could be located. 18026 */ 18027 static void sanitize_dead_code(struct bpf_verifier_env *env) 18028 { 18029 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18030 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18031 struct bpf_insn *insn = env->prog->insnsi; 18032 const int insn_cnt = env->prog->len; 18033 int i; 18034 18035 for (i = 0; i < insn_cnt; i++) { 18036 if (aux_data[i].seen) 18037 continue; 18038 memcpy(insn + i, &trap, sizeof(trap)); 18039 aux_data[i].zext_dst = false; 18040 } 18041 } 18042 18043 static bool insn_is_cond_jump(u8 code) 18044 { 18045 u8 op; 18046 18047 op = BPF_OP(code); 18048 if (BPF_CLASS(code) == BPF_JMP32) 18049 return op != BPF_JA; 18050 18051 if (BPF_CLASS(code) != BPF_JMP) 18052 return false; 18053 18054 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18055 } 18056 18057 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18058 { 18059 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18060 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18061 struct bpf_insn *insn = env->prog->insnsi; 18062 const int insn_cnt = env->prog->len; 18063 int i; 18064 18065 for (i = 0; i < insn_cnt; i++, insn++) { 18066 if (!insn_is_cond_jump(insn->code)) 18067 continue; 18068 18069 if (!aux_data[i + 1].seen) 18070 ja.off = insn->off; 18071 else if (!aux_data[i + 1 + insn->off].seen) 18072 ja.off = 0; 18073 else 18074 continue; 18075 18076 if (bpf_prog_is_offloaded(env->prog->aux)) 18077 bpf_prog_offload_replace_insn(env, i, &ja); 18078 18079 memcpy(insn, &ja, sizeof(ja)); 18080 } 18081 } 18082 18083 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18084 { 18085 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18086 int insn_cnt = env->prog->len; 18087 int i, err; 18088 18089 for (i = 0; i < insn_cnt; i++) { 18090 int j; 18091 18092 j = 0; 18093 while (i + j < insn_cnt && !aux_data[i + j].seen) 18094 j++; 18095 if (!j) 18096 continue; 18097 18098 err = verifier_remove_insns(env, i, j); 18099 if (err) 18100 return err; 18101 insn_cnt = env->prog->len; 18102 } 18103 18104 return 0; 18105 } 18106 18107 static int opt_remove_nops(struct bpf_verifier_env *env) 18108 { 18109 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18110 struct bpf_insn *insn = env->prog->insnsi; 18111 int insn_cnt = env->prog->len; 18112 int i, err; 18113 18114 for (i = 0; i < insn_cnt; i++) { 18115 if (memcmp(&insn[i], &ja, sizeof(ja))) 18116 continue; 18117 18118 err = verifier_remove_insns(env, i, 1); 18119 if (err) 18120 return err; 18121 insn_cnt--; 18122 i--; 18123 } 18124 18125 return 0; 18126 } 18127 18128 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18129 const union bpf_attr *attr) 18130 { 18131 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18132 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18133 int i, patch_len, delta = 0, len = env->prog->len; 18134 struct bpf_insn *insns = env->prog->insnsi; 18135 struct bpf_prog *new_prog; 18136 bool rnd_hi32; 18137 18138 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18139 zext_patch[1] = BPF_ZEXT_REG(0); 18140 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18141 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18142 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18143 for (i = 0; i < len; i++) { 18144 int adj_idx = i + delta; 18145 struct bpf_insn insn; 18146 int load_reg; 18147 18148 insn = insns[adj_idx]; 18149 load_reg = insn_def_regno(&insn); 18150 if (!aux[adj_idx].zext_dst) { 18151 u8 code, class; 18152 u32 imm_rnd; 18153 18154 if (!rnd_hi32) 18155 continue; 18156 18157 code = insn.code; 18158 class = BPF_CLASS(code); 18159 if (load_reg == -1) 18160 continue; 18161 18162 /* NOTE: arg "reg" (the fourth one) is only used for 18163 * BPF_STX + SRC_OP, so it is safe to pass NULL 18164 * here. 18165 */ 18166 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18167 if (class == BPF_LD && 18168 BPF_MODE(code) == BPF_IMM) 18169 i++; 18170 continue; 18171 } 18172 18173 /* ctx load could be transformed into wider load. */ 18174 if (class == BPF_LDX && 18175 aux[adj_idx].ptr_type == PTR_TO_CTX) 18176 continue; 18177 18178 imm_rnd = get_random_u32(); 18179 rnd_hi32_patch[0] = insn; 18180 rnd_hi32_patch[1].imm = imm_rnd; 18181 rnd_hi32_patch[3].dst_reg = load_reg; 18182 patch = rnd_hi32_patch; 18183 patch_len = 4; 18184 goto apply_patch_buffer; 18185 } 18186 18187 /* Add in an zero-extend instruction if a) the JIT has requested 18188 * it or b) it's a CMPXCHG. 18189 * 18190 * The latter is because: BPF_CMPXCHG always loads a value into 18191 * R0, therefore always zero-extends. However some archs' 18192 * equivalent instruction only does this load when the 18193 * comparison is successful. This detail of CMPXCHG is 18194 * orthogonal to the general zero-extension behaviour of the 18195 * CPU, so it's treated independently of bpf_jit_needs_zext. 18196 */ 18197 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18198 continue; 18199 18200 /* Zero-extension is done by the caller. */ 18201 if (bpf_pseudo_kfunc_call(&insn)) 18202 continue; 18203 18204 if (WARN_ON(load_reg == -1)) { 18205 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18206 return -EFAULT; 18207 } 18208 18209 zext_patch[0] = insn; 18210 zext_patch[1].dst_reg = load_reg; 18211 zext_patch[1].src_reg = load_reg; 18212 patch = zext_patch; 18213 patch_len = 2; 18214 apply_patch_buffer: 18215 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18216 if (!new_prog) 18217 return -ENOMEM; 18218 env->prog = new_prog; 18219 insns = new_prog->insnsi; 18220 aux = env->insn_aux_data; 18221 delta += patch_len - 1; 18222 } 18223 18224 return 0; 18225 } 18226 18227 /* convert load instructions that access fields of a context type into a 18228 * sequence of instructions that access fields of the underlying structure: 18229 * struct __sk_buff -> struct sk_buff 18230 * struct bpf_sock_ops -> struct sock 18231 */ 18232 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18233 { 18234 const struct bpf_verifier_ops *ops = env->ops; 18235 int i, cnt, size, ctx_field_size, delta = 0; 18236 const int insn_cnt = env->prog->len; 18237 struct bpf_insn insn_buf[16], *insn; 18238 u32 target_size, size_default, off; 18239 struct bpf_prog *new_prog; 18240 enum bpf_access_type type; 18241 bool is_narrower_load; 18242 18243 if (ops->gen_prologue || env->seen_direct_write) { 18244 if (!ops->gen_prologue) { 18245 verbose(env, "bpf verifier is misconfigured\n"); 18246 return -EINVAL; 18247 } 18248 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18249 env->prog); 18250 if (cnt >= ARRAY_SIZE(insn_buf)) { 18251 verbose(env, "bpf verifier is misconfigured\n"); 18252 return -EINVAL; 18253 } else if (cnt) { 18254 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18255 if (!new_prog) 18256 return -ENOMEM; 18257 18258 env->prog = new_prog; 18259 delta += cnt - 1; 18260 } 18261 } 18262 18263 if (bpf_prog_is_offloaded(env->prog->aux)) 18264 return 0; 18265 18266 insn = env->prog->insnsi + delta; 18267 18268 for (i = 0; i < insn_cnt; i++, insn++) { 18269 bpf_convert_ctx_access_t convert_ctx_access; 18270 u8 mode; 18271 18272 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18273 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18274 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18275 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18276 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18277 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18278 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18279 type = BPF_READ; 18280 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18281 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18282 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18283 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18284 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18285 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18286 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18287 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18288 type = BPF_WRITE; 18289 } else { 18290 continue; 18291 } 18292 18293 if (type == BPF_WRITE && 18294 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18295 struct bpf_insn patch[] = { 18296 *insn, 18297 BPF_ST_NOSPEC(), 18298 }; 18299 18300 cnt = ARRAY_SIZE(patch); 18301 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18302 if (!new_prog) 18303 return -ENOMEM; 18304 18305 delta += cnt - 1; 18306 env->prog = new_prog; 18307 insn = new_prog->insnsi + i + delta; 18308 continue; 18309 } 18310 18311 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18312 case PTR_TO_CTX: 18313 if (!ops->convert_ctx_access) 18314 continue; 18315 convert_ctx_access = ops->convert_ctx_access; 18316 break; 18317 case PTR_TO_SOCKET: 18318 case PTR_TO_SOCK_COMMON: 18319 convert_ctx_access = bpf_sock_convert_ctx_access; 18320 break; 18321 case PTR_TO_TCP_SOCK: 18322 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18323 break; 18324 case PTR_TO_XDP_SOCK: 18325 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18326 break; 18327 case PTR_TO_BTF_ID: 18328 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18329 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18330 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18331 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18332 * any faults for loads into such types. BPF_WRITE is disallowed 18333 * for this case. 18334 */ 18335 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18336 if (type == BPF_READ) { 18337 if (BPF_MODE(insn->code) == BPF_MEM) 18338 insn->code = BPF_LDX | BPF_PROBE_MEM | 18339 BPF_SIZE((insn)->code); 18340 else 18341 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18342 BPF_SIZE((insn)->code); 18343 env->prog->aux->num_exentries++; 18344 } 18345 continue; 18346 default: 18347 continue; 18348 } 18349 18350 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18351 size = BPF_LDST_BYTES(insn); 18352 mode = BPF_MODE(insn->code); 18353 18354 /* If the read access is a narrower load of the field, 18355 * convert to a 4/8-byte load, to minimum program type specific 18356 * convert_ctx_access changes. If conversion is successful, 18357 * we will apply proper mask to the result. 18358 */ 18359 is_narrower_load = size < ctx_field_size; 18360 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18361 off = insn->off; 18362 if (is_narrower_load) { 18363 u8 size_code; 18364 18365 if (type == BPF_WRITE) { 18366 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18367 return -EINVAL; 18368 } 18369 18370 size_code = BPF_H; 18371 if (ctx_field_size == 4) 18372 size_code = BPF_W; 18373 else if (ctx_field_size == 8) 18374 size_code = BPF_DW; 18375 18376 insn->off = off & ~(size_default - 1); 18377 insn->code = BPF_LDX | BPF_MEM | size_code; 18378 } 18379 18380 target_size = 0; 18381 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18382 &target_size); 18383 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18384 (ctx_field_size && !target_size)) { 18385 verbose(env, "bpf verifier is misconfigured\n"); 18386 return -EINVAL; 18387 } 18388 18389 if (is_narrower_load && size < target_size) { 18390 u8 shift = bpf_ctx_narrow_access_offset( 18391 off, size, size_default) * 8; 18392 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18393 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18394 return -EINVAL; 18395 } 18396 if (ctx_field_size <= 4) { 18397 if (shift) 18398 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18399 insn->dst_reg, 18400 shift); 18401 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18402 (1 << size * 8) - 1); 18403 } else { 18404 if (shift) 18405 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18406 insn->dst_reg, 18407 shift); 18408 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18409 (1ULL << size * 8) - 1); 18410 } 18411 } 18412 if (mode == BPF_MEMSX) 18413 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18414 insn->dst_reg, insn->dst_reg, 18415 size * 8, 0); 18416 18417 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18418 if (!new_prog) 18419 return -ENOMEM; 18420 18421 delta += cnt - 1; 18422 18423 /* keep walking new program and skip insns we just inserted */ 18424 env->prog = new_prog; 18425 insn = new_prog->insnsi + i + delta; 18426 } 18427 18428 return 0; 18429 } 18430 18431 static int jit_subprogs(struct bpf_verifier_env *env) 18432 { 18433 struct bpf_prog *prog = env->prog, **func, *tmp; 18434 int i, j, subprog_start, subprog_end = 0, len, subprog; 18435 struct bpf_map *map_ptr; 18436 struct bpf_insn *insn; 18437 void *old_bpf_func; 18438 int err, num_exentries; 18439 18440 if (env->subprog_cnt <= 1) 18441 return 0; 18442 18443 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18444 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18445 continue; 18446 18447 /* Upon error here we cannot fall back to interpreter but 18448 * need a hard reject of the program. Thus -EFAULT is 18449 * propagated in any case. 18450 */ 18451 subprog = find_subprog(env, i + insn->imm + 1); 18452 if (subprog < 0) { 18453 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18454 i + insn->imm + 1); 18455 return -EFAULT; 18456 } 18457 /* temporarily remember subprog id inside insn instead of 18458 * aux_data, since next loop will split up all insns into funcs 18459 */ 18460 insn->off = subprog; 18461 /* remember original imm in case JIT fails and fallback 18462 * to interpreter will be needed 18463 */ 18464 env->insn_aux_data[i].call_imm = insn->imm; 18465 /* point imm to __bpf_call_base+1 from JITs point of view */ 18466 insn->imm = 1; 18467 if (bpf_pseudo_func(insn)) 18468 /* jit (e.g. x86_64) may emit fewer instructions 18469 * if it learns a u32 imm is the same as a u64 imm. 18470 * Force a non zero here. 18471 */ 18472 insn[1].imm = 1; 18473 } 18474 18475 err = bpf_prog_alloc_jited_linfo(prog); 18476 if (err) 18477 goto out_undo_insn; 18478 18479 err = -ENOMEM; 18480 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18481 if (!func) 18482 goto out_undo_insn; 18483 18484 for (i = 0; i < env->subprog_cnt; i++) { 18485 subprog_start = subprog_end; 18486 subprog_end = env->subprog_info[i + 1].start; 18487 18488 len = subprog_end - subprog_start; 18489 /* bpf_prog_run() doesn't call subprogs directly, 18490 * hence main prog stats include the runtime of subprogs. 18491 * subprogs don't have IDs and not reachable via prog_get_next_id 18492 * func[i]->stats will never be accessed and stays NULL 18493 */ 18494 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18495 if (!func[i]) 18496 goto out_free; 18497 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18498 len * sizeof(struct bpf_insn)); 18499 func[i]->type = prog->type; 18500 func[i]->len = len; 18501 if (bpf_prog_calc_tag(func[i])) 18502 goto out_free; 18503 func[i]->is_func = 1; 18504 func[i]->aux->func_idx = i; 18505 /* Below members will be freed only at prog->aux */ 18506 func[i]->aux->btf = prog->aux->btf; 18507 func[i]->aux->func_info = prog->aux->func_info; 18508 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18509 func[i]->aux->poke_tab = prog->aux->poke_tab; 18510 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18511 18512 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18513 struct bpf_jit_poke_descriptor *poke; 18514 18515 poke = &prog->aux->poke_tab[j]; 18516 if (poke->insn_idx < subprog_end && 18517 poke->insn_idx >= subprog_start) 18518 poke->aux = func[i]->aux; 18519 } 18520 18521 func[i]->aux->name[0] = 'F'; 18522 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18523 func[i]->jit_requested = 1; 18524 func[i]->blinding_requested = prog->blinding_requested; 18525 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18526 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18527 func[i]->aux->linfo = prog->aux->linfo; 18528 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18529 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18530 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18531 num_exentries = 0; 18532 insn = func[i]->insnsi; 18533 for (j = 0; j < func[i]->len; j++, insn++) { 18534 if (BPF_CLASS(insn->code) == BPF_LDX && 18535 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18536 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18537 num_exentries++; 18538 } 18539 func[i]->aux->num_exentries = num_exentries; 18540 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18541 func[i] = bpf_int_jit_compile(func[i]); 18542 if (!func[i]->jited) { 18543 err = -ENOTSUPP; 18544 goto out_free; 18545 } 18546 cond_resched(); 18547 } 18548 18549 /* at this point all bpf functions were successfully JITed 18550 * now populate all bpf_calls with correct addresses and 18551 * run last pass of JIT 18552 */ 18553 for (i = 0; i < env->subprog_cnt; i++) { 18554 insn = func[i]->insnsi; 18555 for (j = 0; j < func[i]->len; j++, insn++) { 18556 if (bpf_pseudo_func(insn)) { 18557 subprog = insn->off; 18558 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18559 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18560 continue; 18561 } 18562 if (!bpf_pseudo_call(insn)) 18563 continue; 18564 subprog = insn->off; 18565 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18566 } 18567 18568 /* we use the aux data to keep a list of the start addresses 18569 * of the JITed images for each function in the program 18570 * 18571 * for some architectures, such as powerpc64, the imm field 18572 * might not be large enough to hold the offset of the start 18573 * address of the callee's JITed image from __bpf_call_base 18574 * 18575 * in such cases, we can lookup the start address of a callee 18576 * by using its subprog id, available from the off field of 18577 * the call instruction, as an index for this list 18578 */ 18579 func[i]->aux->func = func; 18580 func[i]->aux->func_cnt = env->subprog_cnt; 18581 } 18582 for (i = 0; i < env->subprog_cnt; i++) { 18583 old_bpf_func = func[i]->bpf_func; 18584 tmp = bpf_int_jit_compile(func[i]); 18585 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18586 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18587 err = -ENOTSUPP; 18588 goto out_free; 18589 } 18590 cond_resched(); 18591 } 18592 18593 /* finally lock prog and jit images for all functions and 18594 * populate kallsysm. Begin at the first subprogram, since 18595 * bpf_prog_load will add the kallsyms for the main program. 18596 */ 18597 for (i = 1; i < env->subprog_cnt; i++) { 18598 bpf_prog_lock_ro(func[i]); 18599 bpf_prog_kallsyms_add(func[i]); 18600 } 18601 18602 /* Last step: make now unused interpreter insns from main 18603 * prog consistent for later dump requests, so they can 18604 * later look the same as if they were interpreted only. 18605 */ 18606 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18607 if (bpf_pseudo_func(insn)) { 18608 insn[0].imm = env->insn_aux_data[i].call_imm; 18609 insn[1].imm = insn->off; 18610 insn->off = 0; 18611 continue; 18612 } 18613 if (!bpf_pseudo_call(insn)) 18614 continue; 18615 insn->off = env->insn_aux_data[i].call_imm; 18616 subprog = find_subprog(env, i + insn->off + 1); 18617 insn->imm = subprog; 18618 } 18619 18620 prog->jited = 1; 18621 prog->bpf_func = func[0]->bpf_func; 18622 prog->jited_len = func[0]->jited_len; 18623 prog->aux->extable = func[0]->aux->extable; 18624 prog->aux->num_exentries = func[0]->aux->num_exentries; 18625 prog->aux->func = func; 18626 prog->aux->func_cnt = env->subprog_cnt; 18627 bpf_prog_jit_attempt_done(prog); 18628 return 0; 18629 out_free: 18630 /* We failed JIT'ing, so at this point we need to unregister poke 18631 * descriptors from subprogs, so that kernel is not attempting to 18632 * patch it anymore as we're freeing the subprog JIT memory. 18633 */ 18634 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18635 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18636 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18637 } 18638 /* At this point we're guaranteed that poke descriptors are not 18639 * live anymore. We can just unlink its descriptor table as it's 18640 * released with the main prog. 18641 */ 18642 for (i = 0; i < env->subprog_cnt; i++) { 18643 if (!func[i]) 18644 continue; 18645 func[i]->aux->poke_tab = NULL; 18646 bpf_jit_free(func[i]); 18647 } 18648 kfree(func); 18649 out_undo_insn: 18650 /* cleanup main prog to be interpreted */ 18651 prog->jit_requested = 0; 18652 prog->blinding_requested = 0; 18653 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18654 if (!bpf_pseudo_call(insn)) 18655 continue; 18656 insn->off = 0; 18657 insn->imm = env->insn_aux_data[i].call_imm; 18658 } 18659 bpf_prog_jit_attempt_done(prog); 18660 return err; 18661 } 18662 18663 static int fixup_call_args(struct bpf_verifier_env *env) 18664 { 18665 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18666 struct bpf_prog *prog = env->prog; 18667 struct bpf_insn *insn = prog->insnsi; 18668 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18669 int i, depth; 18670 #endif 18671 int err = 0; 18672 18673 if (env->prog->jit_requested && 18674 !bpf_prog_is_offloaded(env->prog->aux)) { 18675 err = jit_subprogs(env); 18676 if (err == 0) 18677 return 0; 18678 if (err == -EFAULT) 18679 return err; 18680 } 18681 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18682 if (has_kfunc_call) { 18683 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18684 return -EINVAL; 18685 } 18686 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18687 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18688 * have to be rejected, since interpreter doesn't support them yet. 18689 */ 18690 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18691 return -EINVAL; 18692 } 18693 for (i = 0; i < prog->len; i++, insn++) { 18694 if (bpf_pseudo_func(insn)) { 18695 /* When JIT fails the progs with callback calls 18696 * have to be rejected, since interpreter doesn't support them yet. 18697 */ 18698 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18699 return -EINVAL; 18700 } 18701 18702 if (!bpf_pseudo_call(insn)) 18703 continue; 18704 depth = get_callee_stack_depth(env, insn, i); 18705 if (depth < 0) 18706 return depth; 18707 bpf_patch_call_args(insn, depth); 18708 } 18709 err = 0; 18710 #endif 18711 return err; 18712 } 18713 18714 /* replace a generic kfunc with a specialized version if necessary */ 18715 static void specialize_kfunc(struct bpf_verifier_env *env, 18716 u32 func_id, u16 offset, unsigned long *addr) 18717 { 18718 struct bpf_prog *prog = env->prog; 18719 bool seen_direct_write; 18720 void *xdp_kfunc; 18721 bool is_rdonly; 18722 18723 if (bpf_dev_bound_kfunc_id(func_id)) { 18724 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18725 if (xdp_kfunc) { 18726 *addr = (unsigned long)xdp_kfunc; 18727 return; 18728 } 18729 /* fallback to default kfunc when not supported by netdev */ 18730 } 18731 18732 if (offset) 18733 return; 18734 18735 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18736 seen_direct_write = env->seen_direct_write; 18737 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18738 18739 if (is_rdonly) 18740 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18741 18742 /* restore env->seen_direct_write to its original value, since 18743 * may_access_direct_pkt_data mutates it 18744 */ 18745 env->seen_direct_write = seen_direct_write; 18746 } 18747 } 18748 18749 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18750 u16 struct_meta_reg, 18751 u16 node_offset_reg, 18752 struct bpf_insn *insn, 18753 struct bpf_insn *insn_buf, 18754 int *cnt) 18755 { 18756 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18757 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18758 18759 insn_buf[0] = addr[0]; 18760 insn_buf[1] = addr[1]; 18761 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18762 insn_buf[3] = *insn; 18763 *cnt = 4; 18764 } 18765 18766 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18767 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18768 { 18769 const struct bpf_kfunc_desc *desc; 18770 18771 if (!insn->imm) { 18772 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18773 return -EINVAL; 18774 } 18775 18776 *cnt = 0; 18777 18778 /* insn->imm has the btf func_id. Replace it with an offset relative to 18779 * __bpf_call_base, unless the JIT needs to call functions that are 18780 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18781 */ 18782 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18783 if (!desc) { 18784 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18785 insn->imm); 18786 return -EFAULT; 18787 } 18788 18789 if (!bpf_jit_supports_far_kfunc_call()) 18790 insn->imm = BPF_CALL_IMM(desc->addr); 18791 if (insn->off) 18792 return 0; 18793 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18794 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18795 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18796 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18797 18798 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18799 insn_buf[1] = addr[0]; 18800 insn_buf[2] = addr[1]; 18801 insn_buf[3] = *insn; 18802 *cnt = 4; 18803 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18804 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18805 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18806 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18807 18808 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18809 !kptr_struct_meta) { 18810 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18811 insn_idx); 18812 return -EFAULT; 18813 } 18814 18815 insn_buf[0] = addr[0]; 18816 insn_buf[1] = addr[1]; 18817 insn_buf[2] = *insn; 18818 *cnt = 3; 18819 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18820 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18821 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18822 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18823 int struct_meta_reg = BPF_REG_3; 18824 int node_offset_reg = BPF_REG_4; 18825 18826 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18827 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18828 struct_meta_reg = BPF_REG_4; 18829 node_offset_reg = BPF_REG_5; 18830 } 18831 18832 if (!kptr_struct_meta) { 18833 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18834 insn_idx); 18835 return -EFAULT; 18836 } 18837 18838 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18839 node_offset_reg, insn, insn_buf, cnt); 18840 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18841 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18842 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18843 *cnt = 1; 18844 } 18845 return 0; 18846 } 18847 18848 /* Do various post-verification rewrites in a single program pass. 18849 * These rewrites simplify JIT and interpreter implementations. 18850 */ 18851 static int do_misc_fixups(struct bpf_verifier_env *env) 18852 { 18853 struct bpf_prog *prog = env->prog; 18854 enum bpf_attach_type eatype = prog->expected_attach_type; 18855 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18856 struct bpf_insn *insn = prog->insnsi; 18857 const struct bpf_func_proto *fn; 18858 const int insn_cnt = prog->len; 18859 const struct bpf_map_ops *ops; 18860 struct bpf_insn_aux_data *aux; 18861 struct bpf_insn insn_buf[16]; 18862 struct bpf_prog *new_prog; 18863 struct bpf_map *map_ptr; 18864 int i, ret, cnt, delta = 0; 18865 18866 for (i = 0; i < insn_cnt; i++, insn++) { 18867 /* Make divide-by-zero exceptions impossible. */ 18868 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18869 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18870 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18871 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18872 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18873 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18874 struct bpf_insn *patchlet; 18875 struct bpf_insn chk_and_div[] = { 18876 /* [R,W]x div 0 -> 0 */ 18877 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18878 BPF_JNE | BPF_K, insn->src_reg, 18879 0, 2, 0), 18880 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18881 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18882 *insn, 18883 }; 18884 struct bpf_insn chk_and_mod[] = { 18885 /* [R,W]x mod 0 -> [R,W]x */ 18886 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18887 BPF_JEQ | BPF_K, insn->src_reg, 18888 0, 1 + (is64 ? 0 : 1), 0), 18889 *insn, 18890 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18891 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18892 }; 18893 18894 patchlet = isdiv ? chk_and_div : chk_and_mod; 18895 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18896 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18897 18898 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18899 if (!new_prog) 18900 return -ENOMEM; 18901 18902 delta += cnt - 1; 18903 env->prog = prog = new_prog; 18904 insn = new_prog->insnsi + i + delta; 18905 continue; 18906 } 18907 18908 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18909 if (BPF_CLASS(insn->code) == BPF_LD && 18910 (BPF_MODE(insn->code) == BPF_ABS || 18911 BPF_MODE(insn->code) == BPF_IND)) { 18912 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18913 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18914 verbose(env, "bpf verifier is misconfigured\n"); 18915 return -EINVAL; 18916 } 18917 18918 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18919 if (!new_prog) 18920 return -ENOMEM; 18921 18922 delta += cnt - 1; 18923 env->prog = prog = new_prog; 18924 insn = new_prog->insnsi + i + delta; 18925 continue; 18926 } 18927 18928 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18929 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18930 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18931 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18932 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18933 struct bpf_insn *patch = &insn_buf[0]; 18934 bool issrc, isneg, isimm; 18935 u32 off_reg; 18936 18937 aux = &env->insn_aux_data[i + delta]; 18938 if (!aux->alu_state || 18939 aux->alu_state == BPF_ALU_NON_POINTER) 18940 continue; 18941 18942 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18943 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18944 BPF_ALU_SANITIZE_SRC; 18945 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18946 18947 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18948 if (isimm) { 18949 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18950 } else { 18951 if (isneg) 18952 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18953 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18954 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18955 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18956 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18957 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18958 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18959 } 18960 if (!issrc) 18961 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18962 insn->src_reg = BPF_REG_AX; 18963 if (isneg) 18964 insn->code = insn->code == code_add ? 18965 code_sub : code_add; 18966 *patch++ = *insn; 18967 if (issrc && isneg && !isimm) 18968 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18969 cnt = patch - insn_buf; 18970 18971 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18972 if (!new_prog) 18973 return -ENOMEM; 18974 18975 delta += cnt - 1; 18976 env->prog = prog = new_prog; 18977 insn = new_prog->insnsi + i + delta; 18978 continue; 18979 } 18980 18981 if (insn->code != (BPF_JMP | BPF_CALL)) 18982 continue; 18983 if (insn->src_reg == BPF_PSEUDO_CALL) 18984 continue; 18985 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18986 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18987 if (ret) 18988 return ret; 18989 if (cnt == 0) 18990 continue; 18991 18992 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18993 if (!new_prog) 18994 return -ENOMEM; 18995 18996 delta += cnt - 1; 18997 env->prog = prog = new_prog; 18998 insn = new_prog->insnsi + i + delta; 18999 continue; 19000 } 19001 19002 if (insn->imm == BPF_FUNC_get_route_realm) 19003 prog->dst_needed = 1; 19004 if (insn->imm == BPF_FUNC_get_prandom_u32) 19005 bpf_user_rnd_init_once(); 19006 if (insn->imm == BPF_FUNC_override_return) 19007 prog->kprobe_override = 1; 19008 if (insn->imm == BPF_FUNC_tail_call) { 19009 /* If we tail call into other programs, we 19010 * cannot make any assumptions since they can 19011 * be replaced dynamically during runtime in 19012 * the program array. 19013 */ 19014 prog->cb_access = 1; 19015 if (!allow_tail_call_in_subprogs(env)) 19016 prog->aux->stack_depth = MAX_BPF_STACK; 19017 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19018 19019 /* mark bpf_tail_call as different opcode to avoid 19020 * conditional branch in the interpreter for every normal 19021 * call and to prevent accidental JITing by JIT compiler 19022 * that doesn't support bpf_tail_call yet 19023 */ 19024 insn->imm = 0; 19025 insn->code = BPF_JMP | BPF_TAIL_CALL; 19026 19027 aux = &env->insn_aux_data[i + delta]; 19028 if (env->bpf_capable && !prog->blinding_requested && 19029 prog->jit_requested && 19030 !bpf_map_key_poisoned(aux) && 19031 !bpf_map_ptr_poisoned(aux) && 19032 !bpf_map_ptr_unpriv(aux)) { 19033 struct bpf_jit_poke_descriptor desc = { 19034 .reason = BPF_POKE_REASON_TAIL_CALL, 19035 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19036 .tail_call.key = bpf_map_key_immediate(aux), 19037 .insn_idx = i + delta, 19038 }; 19039 19040 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19041 if (ret < 0) { 19042 verbose(env, "adding tail call poke descriptor failed\n"); 19043 return ret; 19044 } 19045 19046 insn->imm = ret + 1; 19047 continue; 19048 } 19049 19050 if (!bpf_map_ptr_unpriv(aux)) 19051 continue; 19052 19053 /* instead of changing every JIT dealing with tail_call 19054 * emit two extra insns: 19055 * if (index >= max_entries) goto out; 19056 * index &= array->index_mask; 19057 * to avoid out-of-bounds cpu speculation 19058 */ 19059 if (bpf_map_ptr_poisoned(aux)) { 19060 verbose(env, "tail_call abusing map_ptr\n"); 19061 return -EINVAL; 19062 } 19063 19064 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19065 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19066 map_ptr->max_entries, 2); 19067 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19068 container_of(map_ptr, 19069 struct bpf_array, 19070 map)->index_mask); 19071 insn_buf[2] = *insn; 19072 cnt = 3; 19073 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19074 if (!new_prog) 19075 return -ENOMEM; 19076 19077 delta += cnt - 1; 19078 env->prog = prog = new_prog; 19079 insn = new_prog->insnsi + i + delta; 19080 continue; 19081 } 19082 19083 if (insn->imm == BPF_FUNC_timer_set_callback) { 19084 /* The verifier will process callback_fn as many times as necessary 19085 * with different maps and the register states prepared by 19086 * set_timer_callback_state will be accurate. 19087 * 19088 * The following use case is valid: 19089 * map1 is shared by prog1, prog2, prog3. 19090 * prog1 calls bpf_timer_init for some map1 elements 19091 * prog2 calls bpf_timer_set_callback for some map1 elements. 19092 * Those that were not bpf_timer_init-ed will return -EINVAL. 19093 * prog3 calls bpf_timer_start for some map1 elements. 19094 * Those that were not both bpf_timer_init-ed and 19095 * bpf_timer_set_callback-ed will return -EINVAL. 19096 */ 19097 struct bpf_insn ld_addrs[2] = { 19098 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19099 }; 19100 19101 insn_buf[0] = ld_addrs[0]; 19102 insn_buf[1] = ld_addrs[1]; 19103 insn_buf[2] = *insn; 19104 cnt = 3; 19105 19106 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19107 if (!new_prog) 19108 return -ENOMEM; 19109 19110 delta += cnt - 1; 19111 env->prog = prog = new_prog; 19112 insn = new_prog->insnsi + i + delta; 19113 goto patch_call_imm; 19114 } 19115 19116 if (is_storage_get_function(insn->imm)) { 19117 if (!env->prog->aux->sleepable || 19118 env->insn_aux_data[i + delta].storage_get_func_atomic) 19119 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19120 else 19121 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19122 insn_buf[1] = *insn; 19123 cnt = 2; 19124 19125 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19126 if (!new_prog) 19127 return -ENOMEM; 19128 19129 delta += cnt - 1; 19130 env->prog = prog = new_prog; 19131 insn = new_prog->insnsi + i + delta; 19132 goto patch_call_imm; 19133 } 19134 19135 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19136 * and other inlining handlers are currently limited to 64 bit 19137 * only. 19138 */ 19139 if (prog->jit_requested && BITS_PER_LONG == 64 && 19140 (insn->imm == BPF_FUNC_map_lookup_elem || 19141 insn->imm == BPF_FUNC_map_update_elem || 19142 insn->imm == BPF_FUNC_map_delete_elem || 19143 insn->imm == BPF_FUNC_map_push_elem || 19144 insn->imm == BPF_FUNC_map_pop_elem || 19145 insn->imm == BPF_FUNC_map_peek_elem || 19146 insn->imm == BPF_FUNC_redirect_map || 19147 insn->imm == BPF_FUNC_for_each_map_elem || 19148 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19149 aux = &env->insn_aux_data[i + delta]; 19150 if (bpf_map_ptr_poisoned(aux)) 19151 goto patch_call_imm; 19152 19153 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19154 ops = map_ptr->ops; 19155 if (insn->imm == BPF_FUNC_map_lookup_elem && 19156 ops->map_gen_lookup) { 19157 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19158 if (cnt == -EOPNOTSUPP) 19159 goto patch_map_ops_generic; 19160 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19161 verbose(env, "bpf verifier is misconfigured\n"); 19162 return -EINVAL; 19163 } 19164 19165 new_prog = bpf_patch_insn_data(env, i + delta, 19166 insn_buf, cnt); 19167 if (!new_prog) 19168 return -ENOMEM; 19169 19170 delta += cnt - 1; 19171 env->prog = prog = new_prog; 19172 insn = new_prog->insnsi + i + delta; 19173 continue; 19174 } 19175 19176 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19177 (void *(*)(struct bpf_map *map, void *key))NULL)); 19178 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19179 (long (*)(struct bpf_map *map, void *key))NULL)); 19180 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19181 (long (*)(struct bpf_map *map, void *key, void *value, 19182 u64 flags))NULL)); 19183 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19184 (long (*)(struct bpf_map *map, void *value, 19185 u64 flags))NULL)); 19186 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19187 (long (*)(struct bpf_map *map, void *value))NULL)); 19188 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19189 (long (*)(struct bpf_map *map, void *value))NULL)); 19190 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19191 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19192 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19193 (long (*)(struct bpf_map *map, 19194 bpf_callback_t callback_fn, 19195 void *callback_ctx, 19196 u64 flags))NULL)); 19197 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19198 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19199 19200 patch_map_ops_generic: 19201 switch (insn->imm) { 19202 case BPF_FUNC_map_lookup_elem: 19203 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19204 continue; 19205 case BPF_FUNC_map_update_elem: 19206 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19207 continue; 19208 case BPF_FUNC_map_delete_elem: 19209 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19210 continue; 19211 case BPF_FUNC_map_push_elem: 19212 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19213 continue; 19214 case BPF_FUNC_map_pop_elem: 19215 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19216 continue; 19217 case BPF_FUNC_map_peek_elem: 19218 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19219 continue; 19220 case BPF_FUNC_redirect_map: 19221 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19222 continue; 19223 case BPF_FUNC_for_each_map_elem: 19224 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19225 continue; 19226 case BPF_FUNC_map_lookup_percpu_elem: 19227 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19228 continue; 19229 } 19230 19231 goto patch_call_imm; 19232 } 19233 19234 /* Implement bpf_jiffies64 inline. */ 19235 if (prog->jit_requested && BITS_PER_LONG == 64 && 19236 insn->imm == BPF_FUNC_jiffies64) { 19237 struct bpf_insn ld_jiffies_addr[2] = { 19238 BPF_LD_IMM64(BPF_REG_0, 19239 (unsigned long)&jiffies), 19240 }; 19241 19242 insn_buf[0] = ld_jiffies_addr[0]; 19243 insn_buf[1] = ld_jiffies_addr[1]; 19244 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19245 BPF_REG_0, 0); 19246 cnt = 3; 19247 19248 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19249 cnt); 19250 if (!new_prog) 19251 return -ENOMEM; 19252 19253 delta += cnt - 1; 19254 env->prog = prog = new_prog; 19255 insn = new_prog->insnsi + i + delta; 19256 continue; 19257 } 19258 19259 /* Implement bpf_get_func_arg inline. */ 19260 if (prog_type == BPF_PROG_TYPE_TRACING && 19261 insn->imm == BPF_FUNC_get_func_arg) { 19262 /* Load nr_args from ctx - 8 */ 19263 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19264 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19265 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19266 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19267 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19268 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19269 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19270 insn_buf[7] = BPF_JMP_A(1); 19271 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19272 cnt = 9; 19273 19274 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19275 if (!new_prog) 19276 return -ENOMEM; 19277 19278 delta += cnt - 1; 19279 env->prog = prog = new_prog; 19280 insn = new_prog->insnsi + i + delta; 19281 continue; 19282 } 19283 19284 /* Implement bpf_get_func_ret inline. */ 19285 if (prog_type == BPF_PROG_TYPE_TRACING && 19286 insn->imm == BPF_FUNC_get_func_ret) { 19287 if (eatype == BPF_TRACE_FEXIT || 19288 eatype == BPF_MODIFY_RETURN) { 19289 /* Load nr_args from ctx - 8 */ 19290 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19291 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19292 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19293 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19294 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19295 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19296 cnt = 6; 19297 } else { 19298 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19299 cnt = 1; 19300 } 19301 19302 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19303 if (!new_prog) 19304 return -ENOMEM; 19305 19306 delta += cnt - 1; 19307 env->prog = prog = new_prog; 19308 insn = new_prog->insnsi + i + delta; 19309 continue; 19310 } 19311 19312 /* Implement get_func_arg_cnt inline. */ 19313 if (prog_type == BPF_PROG_TYPE_TRACING && 19314 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19315 /* Load nr_args from ctx - 8 */ 19316 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19317 19318 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19319 if (!new_prog) 19320 return -ENOMEM; 19321 19322 env->prog = prog = new_prog; 19323 insn = new_prog->insnsi + i + delta; 19324 continue; 19325 } 19326 19327 /* Implement bpf_get_func_ip inline. */ 19328 if (prog_type == BPF_PROG_TYPE_TRACING && 19329 insn->imm == BPF_FUNC_get_func_ip) { 19330 /* Load IP address from ctx - 16 */ 19331 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19332 19333 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19334 if (!new_prog) 19335 return -ENOMEM; 19336 19337 env->prog = prog = new_prog; 19338 insn = new_prog->insnsi + i + delta; 19339 continue; 19340 } 19341 19342 patch_call_imm: 19343 fn = env->ops->get_func_proto(insn->imm, env->prog); 19344 /* all functions that have prototype and verifier allowed 19345 * programs to call them, must be real in-kernel functions 19346 */ 19347 if (!fn->func) { 19348 verbose(env, 19349 "kernel subsystem misconfigured func %s#%d\n", 19350 func_id_name(insn->imm), insn->imm); 19351 return -EFAULT; 19352 } 19353 insn->imm = fn->func - __bpf_call_base; 19354 } 19355 19356 /* Since poke tab is now finalized, publish aux to tracker. */ 19357 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19358 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19359 if (!map_ptr->ops->map_poke_track || 19360 !map_ptr->ops->map_poke_untrack || 19361 !map_ptr->ops->map_poke_run) { 19362 verbose(env, "bpf verifier is misconfigured\n"); 19363 return -EINVAL; 19364 } 19365 19366 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19367 if (ret < 0) { 19368 verbose(env, "tracking tail call prog failed\n"); 19369 return ret; 19370 } 19371 } 19372 19373 sort_kfunc_descs_by_imm_off(env->prog); 19374 19375 return 0; 19376 } 19377 19378 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19379 int position, 19380 s32 stack_base, 19381 u32 callback_subprogno, 19382 u32 *cnt) 19383 { 19384 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19385 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19386 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19387 int reg_loop_max = BPF_REG_6; 19388 int reg_loop_cnt = BPF_REG_7; 19389 int reg_loop_ctx = BPF_REG_8; 19390 19391 struct bpf_prog *new_prog; 19392 u32 callback_start; 19393 u32 call_insn_offset; 19394 s32 callback_offset; 19395 19396 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19397 * be careful to modify this code in sync. 19398 */ 19399 struct bpf_insn insn_buf[] = { 19400 /* Return error and jump to the end of the patch if 19401 * expected number of iterations is too big. 19402 */ 19403 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19404 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19405 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19406 /* spill R6, R7, R8 to use these as loop vars */ 19407 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19408 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19409 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19410 /* initialize loop vars */ 19411 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19412 BPF_MOV32_IMM(reg_loop_cnt, 0), 19413 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19414 /* loop header, 19415 * if reg_loop_cnt >= reg_loop_max skip the loop body 19416 */ 19417 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19418 /* callback call, 19419 * correct callback offset would be set after patching 19420 */ 19421 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19422 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19423 BPF_CALL_REL(0), 19424 /* increment loop counter */ 19425 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19426 /* jump to loop header if callback returned 0 */ 19427 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19428 /* return value of bpf_loop, 19429 * set R0 to the number of iterations 19430 */ 19431 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19432 /* restore original values of R6, R7, R8 */ 19433 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19434 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19435 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19436 }; 19437 19438 *cnt = ARRAY_SIZE(insn_buf); 19439 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19440 if (!new_prog) 19441 return new_prog; 19442 19443 /* callback start is known only after patching */ 19444 callback_start = env->subprog_info[callback_subprogno].start; 19445 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19446 call_insn_offset = position + 12; 19447 callback_offset = callback_start - call_insn_offset - 1; 19448 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19449 19450 return new_prog; 19451 } 19452 19453 static bool is_bpf_loop_call(struct bpf_insn *insn) 19454 { 19455 return insn->code == (BPF_JMP | BPF_CALL) && 19456 insn->src_reg == 0 && 19457 insn->imm == BPF_FUNC_loop; 19458 } 19459 19460 /* For all sub-programs in the program (including main) check 19461 * insn_aux_data to see if there are bpf_loop calls that require 19462 * inlining. If such calls are found the calls are replaced with a 19463 * sequence of instructions produced by `inline_bpf_loop` function and 19464 * subprog stack_depth is increased by the size of 3 registers. 19465 * This stack space is used to spill values of the R6, R7, R8. These 19466 * registers are used to store the loop bound, counter and context 19467 * variables. 19468 */ 19469 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19470 { 19471 struct bpf_subprog_info *subprogs = env->subprog_info; 19472 int i, cur_subprog = 0, cnt, delta = 0; 19473 struct bpf_insn *insn = env->prog->insnsi; 19474 int insn_cnt = env->prog->len; 19475 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19476 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19477 u16 stack_depth_extra = 0; 19478 19479 for (i = 0; i < insn_cnt; i++, insn++) { 19480 struct bpf_loop_inline_state *inline_state = 19481 &env->insn_aux_data[i + delta].loop_inline_state; 19482 19483 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19484 struct bpf_prog *new_prog; 19485 19486 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19487 new_prog = inline_bpf_loop(env, 19488 i + delta, 19489 -(stack_depth + stack_depth_extra), 19490 inline_state->callback_subprogno, 19491 &cnt); 19492 if (!new_prog) 19493 return -ENOMEM; 19494 19495 delta += cnt - 1; 19496 env->prog = new_prog; 19497 insn = new_prog->insnsi + i + delta; 19498 } 19499 19500 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19501 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19502 cur_subprog++; 19503 stack_depth = subprogs[cur_subprog].stack_depth; 19504 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19505 stack_depth_extra = 0; 19506 } 19507 } 19508 19509 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19510 19511 return 0; 19512 } 19513 19514 static void free_states(struct bpf_verifier_env *env) 19515 { 19516 struct bpf_verifier_state_list *sl, *sln; 19517 int i; 19518 19519 sl = env->free_list; 19520 while (sl) { 19521 sln = sl->next; 19522 free_verifier_state(&sl->state, false); 19523 kfree(sl); 19524 sl = sln; 19525 } 19526 env->free_list = NULL; 19527 19528 if (!env->explored_states) 19529 return; 19530 19531 for (i = 0; i < state_htab_size(env); i++) { 19532 sl = env->explored_states[i]; 19533 19534 while (sl) { 19535 sln = sl->next; 19536 free_verifier_state(&sl->state, false); 19537 kfree(sl); 19538 sl = sln; 19539 } 19540 env->explored_states[i] = NULL; 19541 } 19542 } 19543 19544 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19545 { 19546 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19547 struct bpf_verifier_state *state; 19548 struct bpf_reg_state *regs; 19549 int ret, i; 19550 19551 env->prev_linfo = NULL; 19552 env->pass_cnt++; 19553 19554 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19555 if (!state) 19556 return -ENOMEM; 19557 state->curframe = 0; 19558 state->speculative = false; 19559 state->branches = 1; 19560 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19561 if (!state->frame[0]) { 19562 kfree(state); 19563 return -ENOMEM; 19564 } 19565 env->cur_state = state; 19566 init_func_state(env, state->frame[0], 19567 BPF_MAIN_FUNC /* callsite */, 19568 0 /* frameno */, 19569 subprog); 19570 state->first_insn_idx = env->subprog_info[subprog].start; 19571 state->last_insn_idx = -1; 19572 19573 regs = state->frame[state->curframe]->regs; 19574 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19575 ret = btf_prepare_func_args(env, subprog, regs); 19576 if (ret) 19577 goto out; 19578 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19579 if (regs[i].type == PTR_TO_CTX) 19580 mark_reg_known_zero(env, regs, i); 19581 else if (regs[i].type == SCALAR_VALUE) 19582 mark_reg_unknown(env, regs, i); 19583 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19584 const u32 mem_size = regs[i].mem_size; 19585 19586 mark_reg_known_zero(env, regs, i); 19587 regs[i].mem_size = mem_size; 19588 regs[i].id = ++env->id_gen; 19589 } 19590 } 19591 } else { 19592 /* 1st arg to a function */ 19593 regs[BPF_REG_1].type = PTR_TO_CTX; 19594 mark_reg_known_zero(env, regs, BPF_REG_1); 19595 ret = btf_check_subprog_arg_match(env, subprog, regs); 19596 if (ret == -EFAULT) 19597 /* unlikely verifier bug. abort. 19598 * ret == 0 and ret < 0 are sadly acceptable for 19599 * main() function due to backward compatibility. 19600 * Like socket filter program may be written as: 19601 * int bpf_prog(struct pt_regs *ctx) 19602 * and never dereference that ctx in the program. 19603 * 'struct pt_regs' is a type mismatch for socket 19604 * filter that should be using 'struct __sk_buff'. 19605 */ 19606 goto out; 19607 } 19608 19609 ret = do_check(env); 19610 out: 19611 /* check for NULL is necessary, since cur_state can be freed inside 19612 * do_check() under memory pressure. 19613 */ 19614 if (env->cur_state) { 19615 free_verifier_state(env->cur_state, true); 19616 env->cur_state = NULL; 19617 } 19618 while (!pop_stack(env, NULL, NULL, false)); 19619 if (!ret && pop_log) 19620 bpf_vlog_reset(&env->log, 0); 19621 free_states(env); 19622 return ret; 19623 } 19624 19625 /* Verify all global functions in a BPF program one by one based on their BTF. 19626 * All global functions must pass verification. Otherwise the whole program is rejected. 19627 * Consider: 19628 * int bar(int); 19629 * int foo(int f) 19630 * { 19631 * return bar(f); 19632 * } 19633 * int bar(int b) 19634 * { 19635 * ... 19636 * } 19637 * foo() will be verified first for R1=any_scalar_value. During verification it 19638 * will be assumed that bar() already verified successfully and call to bar() 19639 * from foo() will be checked for type match only. Later bar() will be verified 19640 * independently to check that it's safe for R1=any_scalar_value. 19641 */ 19642 static int do_check_subprogs(struct bpf_verifier_env *env) 19643 { 19644 struct bpf_prog_aux *aux = env->prog->aux; 19645 int i, ret; 19646 19647 if (!aux->func_info) 19648 return 0; 19649 19650 for (i = 1; i < env->subprog_cnt; i++) { 19651 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19652 continue; 19653 env->insn_idx = env->subprog_info[i].start; 19654 WARN_ON_ONCE(env->insn_idx == 0); 19655 ret = do_check_common(env, i); 19656 if (ret) { 19657 return ret; 19658 } else if (env->log.level & BPF_LOG_LEVEL) { 19659 verbose(env, 19660 "Func#%d is safe for any args that match its prototype\n", 19661 i); 19662 } 19663 } 19664 return 0; 19665 } 19666 19667 static int do_check_main(struct bpf_verifier_env *env) 19668 { 19669 int ret; 19670 19671 env->insn_idx = 0; 19672 ret = do_check_common(env, 0); 19673 if (!ret) 19674 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19675 return ret; 19676 } 19677 19678 19679 static void print_verification_stats(struct bpf_verifier_env *env) 19680 { 19681 int i; 19682 19683 if (env->log.level & BPF_LOG_STATS) { 19684 verbose(env, "verification time %lld usec\n", 19685 div_u64(env->verification_time, 1000)); 19686 verbose(env, "stack depth "); 19687 for (i = 0; i < env->subprog_cnt; i++) { 19688 u32 depth = env->subprog_info[i].stack_depth; 19689 19690 verbose(env, "%d", depth); 19691 if (i + 1 < env->subprog_cnt) 19692 verbose(env, "+"); 19693 } 19694 verbose(env, "\n"); 19695 } 19696 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19697 "total_states %d peak_states %d mark_read %d\n", 19698 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19699 env->max_states_per_insn, env->total_states, 19700 env->peak_states, env->longest_mark_read_walk); 19701 } 19702 19703 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19704 { 19705 const struct btf_type *t, *func_proto; 19706 const struct bpf_struct_ops *st_ops; 19707 const struct btf_member *member; 19708 struct bpf_prog *prog = env->prog; 19709 u32 btf_id, member_idx; 19710 const char *mname; 19711 19712 if (!prog->gpl_compatible) { 19713 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19714 return -EINVAL; 19715 } 19716 19717 btf_id = prog->aux->attach_btf_id; 19718 st_ops = bpf_struct_ops_find(btf_id); 19719 if (!st_ops) { 19720 verbose(env, "attach_btf_id %u is not a supported struct\n", 19721 btf_id); 19722 return -ENOTSUPP; 19723 } 19724 19725 t = st_ops->type; 19726 member_idx = prog->expected_attach_type; 19727 if (member_idx >= btf_type_vlen(t)) { 19728 verbose(env, "attach to invalid member idx %u of struct %s\n", 19729 member_idx, st_ops->name); 19730 return -EINVAL; 19731 } 19732 19733 member = &btf_type_member(t)[member_idx]; 19734 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19735 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19736 NULL); 19737 if (!func_proto) { 19738 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19739 mname, member_idx, st_ops->name); 19740 return -EINVAL; 19741 } 19742 19743 if (st_ops->check_member) { 19744 int err = st_ops->check_member(t, member, prog); 19745 19746 if (err) { 19747 verbose(env, "attach to unsupported member %s of struct %s\n", 19748 mname, st_ops->name); 19749 return err; 19750 } 19751 } 19752 19753 prog->aux->attach_func_proto = func_proto; 19754 prog->aux->attach_func_name = mname; 19755 env->ops = st_ops->verifier_ops; 19756 19757 return 0; 19758 } 19759 #define SECURITY_PREFIX "security_" 19760 19761 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19762 { 19763 if (within_error_injection_list(addr) || 19764 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19765 return 0; 19766 19767 return -EINVAL; 19768 } 19769 19770 /* list of non-sleepable functions that are otherwise on 19771 * ALLOW_ERROR_INJECTION list 19772 */ 19773 BTF_SET_START(btf_non_sleepable_error_inject) 19774 /* Three functions below can be called from sleepable and non-sleepable context. 19775 * Assume non-sleepable from bpf safety point of view. 19776 */ 19777 BTF_ID(func, __filemap_add_folio) 19778 BTF_ID(func, should_fail_alloc_page) 19779 BTF_ID(func, should_failslab) 19780 BTF_SET_END(btf_non_sleepable_error_inject) 19781 19782 static int check_non_sleepable_error_inject(u32 btf_id) 19783 { 19784 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19785 } 19786 19787 int bpf_check_attach_target(struct bpf_verifier_log *log, 19788 const struct bpf_prog *prog, 19789 const struct bpf_prog *tgt_prog, 19790 u32 btf_id, 19791 struct bpf_attach_target_info *tgt_info) 19792 { 19793 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19794 const char prefix[] = "btf_trace_"; 19795 int ret = 0, subprog = -1, i; 19796 const struct btf_type *t; 19797 bool conservative = true; 19798 const char *tname; 19799 struct btf *btf; 19800 long addr = 0; 19801 struct module *mod = NULL; 19802 19803 if (!btf_id) { 19804 bpf_log(log, "Tracing programs must provide btf_id\n"); 19805 return -EINVAL; 19806 } 19807 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19808 if (!btf) { 19809 bpf_log(log, 19810 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19811 return -EINVAL; 19812 } 19813 t = btf_type_by_id(btf, btf_id); 19814 if (!t) { 19815 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19816 return -EINVAL; 19817 } 19818 tname = btf_name_by_offset(btf, t->name_off); 19819 if (!tname) { 19820 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19821 return -EINVAL; 19822 } 19823 if (tgt_prog) { 19824 struct bpf_prog_aux *aux = tgt_prog->aux; 19825 19826 if (bpf_prog_is_dev_bound(prog->aux) && 19827 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19828 bpf_log(log, "Target program bound device mismatch"); 19829 return -EINVAL; 19830 } 19831 19832 for (i = 0; i < aux->func_info_cnt; i++) 19833 if (aux->func_info[i].type_id == btf_id) { 19834 subprog = i; 19835 break; 19836 } 19837 if (subprog == -1) { 19838 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19839 return -EINVAL; 19840 } 19841 conservative = aux->func_info_aux[subprog].unreliable; 19842 if (prog_extension) { 19843 if (conservative) { 19844 bpf_log(log, 19845 "Cannot replace static functions\n"); 19846 return -EINVAL; 19847 } 19848 if (!prog->jit_requested) { 19849 bpf_log(log, 19850 "Extension programs should be JITed\n"); 19851 return -EINVAL; 19852 } 19853 } 19854 if (!tgt_prog->jited) { 19855 bpf_log(log, "Can attach to only JITed progs\n"); 19856 return -EINVAL; 19857 } 19858 if (tgt_prog->type == prog->type) { 19859 /* Cannot fentry/fexit another fentry/fexit program. 19860 * Cannot attach program extension to another extension. 19861 * It's ok to attach fentry/fexit to extension program. 19862 */ 19863 bpf_log(log, "Cannot recursively attach\n"); 19864 return -EINVAL; 19865 } 19866 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19867 prog_extension && 19868 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19869 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19870 /* Program extensions can extend all program types 19871 * except fentry/fexit. The reason is the following. 19872 * The fentry/fexit programs are used for performance 19873 * analysis, stats and can be attached to any program 19874 * type except themselves. When extension program is 19875 * replacing XDP function it is necessary to allow 19876 * performance analysis of all functions. Both original 19877 * XDP program and its program extension. Hence 19878 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19879 * allowed. If extending of fentry/fexit was allowed it 19880 * would be possible to create long call chain 19881 * fentry->extension->fentry->extension beyond 19882 * reasonable stack size. Hence extending fentry is not 19883 * allowed. 19884 */ 19885 bpf_log(log, "Cannot extend fentry/fexit\n"); 19886 return -EINVAL; 19887 } 19888 } else { 19889 if (prog_extension) { 19890 bpf_log(log, "Cannot replace kernel functions\n"); 19891 return -EINVAL; 19892 } 19893 } 19894 19895 switch (prog->expected_attach_type) { 19896 case BPF_TRACE_RAW_TP: 19897 if (tgt_prog) { 19898 bpf_log(log, 19899 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19900 return -EINVAL; 19901 } 19902 if (!btf_type_is_typedef(t)) { 19903 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19904 btf_id); 19905 return -EINVAL; 19906 } 19907 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19908 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19909 btf_id, tname); 19910 return -EINVAL; 19911 } 19912 tname += sizeof(prefix) - 1; 19913 t = btf_type_by_id(btf, t->type); 19914 if (!btf_type_is_ptr(t)) 19915 /* should never happen in valid vmlinux build */ 19916 return -EINVAL; 19917 t = btf_type_by_id(btf, t->type); 19918 if (!btf_type_is_func_proto(t)) 19919 /* should never happen in valid vmlinux build */ 19920 return -EINVAL; 19921 19922 break; 19923 case BPF_TRACE_ITER: 19924 if (!btf_type_is_func(t)) { 19925 bpf_log(log, "attach_btf_id %u is not a function\n", 19926 btf_id); 19927 return -EINVAL; 19928 } 19929 t = btf_type_by_id(btf, t->type); 19930 if (!btf_type_is_func_proto(t)) 19931 return -EINVAL; 19932 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19933 if (ret) 19934 return ret; 19935 break; 19936 default: 19937 if (!prog_extension) 19938 return -EINVAL; 19939 fallthrough; 19940 case BPF_MODIFY_RETURN: 19941 case BPF_LSM_MAC: 19942 case BPF_LSM_CGROUP: 19943 case BPF_TRACE_FENTRY: 19944 case BPF_TRACE_FEXIT: 19945 if (!btf_type_is_func(t)) { 19946 bpf_log(log, "attach_btf_id %u is not a function\n", 19947 btf_id); 19948 return -EINVAL; 19949 } 19950 if (prog_extension && 19951 btf_check_type_match(log, prog, btf, t)) 19952 return -EINVAL; 19953 t = btf_type_by_id(btf, t->type); 19954 if (!btf_type_is_func_proto(t)) 19955 return -EINVAL; 19956 19957 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19958 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19959 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19960 return -EINVAL; 19961 19962 if (tgt_prog && conservative) 19963 t = NULL; 19964 19965 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19966 if (ret < 0) 19967 return ret; 19968 19969 if (tgt_prog) { 19970 if (subprog == 0) 19971 addr = (long) tgt_prog->bpf_func; 19972 else 19973 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19974 } else { 19975 if (btf_is_module(btf)) { 19976 mod = btf_try_get_module(btf); 19977 if (mod) 19978 addr = find_kallsyms_symbol_value(mod, tname); 19979 else 19980 addr = 0; 19981 } else { 19982 addr = kallsyms_lookup_name(tname); 19983 } 19984 if (!addr) { 19985 module_put(mod); 19986 bpf_log(log, 19987 "The address of function %s cannot be found\n", 19988 tname); 19989 return -ENOENT; 19990 } 19991 } 19992 19993 if (prog->aux->sleepable) { 19994 ret = -EINVAL; 19995 switch (prog->type) { 19996 case BPF_PROG_TYPE_TRACING: 19997 19998 /* fentry/fexit/fmod_ret progs can be sleepable if they are 19999 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20000 */ 20001 if (!check_non_sleepable_error_inject(btf_id) && 20002 within_error_injection_list(addr)) 20003 ret = 0; 20004 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20005 * in the fmodret id set with the KF_SLEEPABLE flag. 20006 */ 20007 else { 20008 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20009 prog); 20010 20011 if (flags && (*flags & KF_SLEEPABLE)) 20012 ret = 0; 20013 } 20014 break; 20015 case BPF_PROG_TYPE_LSM: 20016 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20017 * Only some of them are sleepable. 20018 */ 20019 if (bpf_lsm_is_sleepable_hook(btf_id)) 20020 ret = 0; 20021 break; 20022 default: 20023 break; 20024 } 20025 if (ret) { 20026 module_put(mod); 20027 bpf_log(log, "%s is not sleepable\n", tname); 20028 return ret; 20029 } 20030 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20031 if (tgt_prog) { 20032 module_put(mod); 20033 bpf_log(log, "can't modify return codes of BPF programs\n"); 20034 return -EINVAL; 20035 } 20036 ret = -EINVAL; 20037 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20038 !check_attach_modify_return(addr, tname)) 20039 ret = 0; 20040 if (ret) { 20041 module_put(mod); 20042 bpf_log(log, "%s() is not modifiable\n", tname); 20043 return ret; 20044 } 20045 } 20046 20047 break; 20048 } 20049 tgt_info->tgt_addr = addr; 20050 tgt_info->tgt_name = tname; 20051 tgt_info->tgt_type = t; 20052 tgt_info->tgt_mod = mod; 20053 return 0; 20054 } 20055 20056 BTF_SET_START(btf_id_deny) 20057 BTF_ID_UNUSED 20058 #ifdef CONFIG_SMP 20059 BTF_ID(func, migrate_disable) 20060 BTF_ID(func, migrate_enable) 20061 #endif 20062 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20063 BTF_ID(func, rcu_read_unlock_strict) 20064 #endif 20065 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20066 BTF_ID(func, preempt_count_add) 20067 BTF_ID(func, preempt_count_sub) 20068 #endif 20069 #ifdef CONFIG_PREEMPT_RCU 20070 BTF_ID(func, __rcu_read_lock) 20071 BTF_ID(func, __rcu_read_unlock) 20072 #endif 20073 BTF_SET_END(btf_id_deny) 20074 20075 static bool can_be_sleepable(struct bpf_prog *prog) 20076 { 20077 if (prog->type == BPF_PROG_TYPE_TRACING) { 20078 switch (prog->expected_attach_type) { 20079 case BPF_TRACE_FENTRY: 20080 case BPF_TRACE_FEXIT: 20081 case BPF_MODIFY_RETURN: 20082 case BPF_TRACE_ITER: 20083 return true; 20084 default: 20085 return false; 20086 } 20087 } 20088 return prog->type == BPF_PROG_TYPE_LSM || 20089 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20090 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20091 } 20092 20093 static int check_attach_btf_id(struct bpf_verifier_env *env) 20094 { 20095 struct bpf_prog *prog = env->prog; 20096 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20097 struct bpf_attach_target_info tgt_info = {}; 20098 u32 btf_id = prog->aux->attach_btf_id; 20099 struct bpf_trampoline *tr; 20100 int ret; 20101 u64 key; 20102 20103 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20104 if (prog->aux->sleepable) 20105 /* attach_btf_id checked to be zero already */ 20106 return 0; 20107 verbose(env, "Syscall programs can only be sleepable\n"); 20108 return -EINVAL; 20109 } 20110 20111 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20112 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20113 return -EINVAL; 20114 } 20115 20116 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20117 return check_struct_ops_btf_id(env); 20118 20119 if (prog->type != BPF_PROG_TYPE_TRACING && 20120 prog->type != BPF_PROG_TYPE_LSM && 20121 prog->type != BPF_PROG_TYPE_EXT) 20122 return 0; 20123 20124 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20125 if (ret) 20126 return ret; 20127 20128 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20129 /* to make freplace equivalent to their targets, they need to 20130 * inherit env->ops and expected_attach_type for the rest of the 20131 * verification 20132 */ 20133 env->ops = bpf_verifier_ops[tgt_prog->type]; 20134 prog->expected_attach_type = tgt_prog->expected_attach_type; 20135 } 20136 20137 /* store info about the attachment target that will be used later */ 20138 prog->aux->attach_func_proto = tgt_info.tgt_type; 20139 prog->aux->attach_func_name = tgt_info.tgt_name; 20140 prog->aux->mod = tgt_info.tgt_mod; 20141 20142 if (tgt_prog) { 20143 prog->aux->saved_dst_prog_type = tgt_prog->type; 20144 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20145 } 20146 20147 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20148 prog->aux->attach_btf_trace = true; 20149 return 0; 20150 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20151 if (!bpf_iter_prog_supported(prog)) 20152 return -EINVAL; 20153 return 0; 20154 } 20155 20156 if (prog->type == BPF_PROG_TYPE_LSM) { 20157 ret = bpf_lsm_verify_prog(&env->log, prog); 20158 if (ret < 0) 20159 return ret; 20160 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20161 btf_id_set_contains(&btf_id_deny, btf_id)) { 20162 return -EINVAL; 20163 } 20164 20165 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20166 tr = bpf_trampoline_get(key, &tgt_info); 20167 if (!tr) 20168 return -ENOMEM; 20169 20170 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20171 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20172 20173 prog->aux->dst_trampoline = tr; 20174 return 0; 20175 } 20176 20177 struct btf *bpf_get_btf_vmlinux(void) 20178 { 20179 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20180 mutex_lock(&bpf_verifier_lock); 20181 if (!btf_vmlinux) 20182 btf_vmlinux = btf_parse_vmlinux(); 20183 mutex_unlock(&bpf_verifier_lock); 20184 } 20185 return btf_vmlinux; 20186 } 20187 20188 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20189 { 20190 u64 start_time = ktime_get_ns(); 20191 struct bpf_verifier_env *env; 20192 int i, len, ret = -EINVAL, err; 20193 u32 log_true_size; 20194 bool is_priv; 20195 20196 /* no program is valid */ 20197 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20198 return -EINVAL; 20199 20200 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20201 * allocate/free it every time bpf_check() is called 20202 */ 20203 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20204 if (!env) 20205 return -ENOMEM; 20206 20207 env->bt.env = env; 20208 20209 len = (*prog)->len; 20210 env->insn_aux_data = 20211 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20212 ret = -ENOMEM; 20213 if (!env->insn_aux_data) 20214 goto err_free_env; 20215 for (i = 0; i < len; i++) 20216 env->insn_aux_data[i].orig_idx = i; 20217 env->prog = *prog; 20218 env->ops = bpf_verifier_ops[env->prog->type]; 20219 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20220 is_priv = bpf_capable(); 20221 20222 bpf_get_btf_vmlinux(); 20223 20224 /* grab the mutex to protect few globals used by verifier */ 20225 if (!is_priv) 20226 mutex_lock(&bpf_verifier_lock); 20227 20228 /* user could have requested verbose verifier output 20229 * and supplied buffer to store the verification trace 20230 */ 20231 ret = bpf_vlog_init(&env->log, attr->log_level, 20232 (char __user *) (unsigned long) attr->log_buf, 20233 attr->log_size); 20234 if (ret) 20235 goto err_unlock; 20236 20237 mark_verifier_state_clean(env); 20238 20239 if (IS_ERR(btf_vmlinux)) { 20240 /* Either gcc or pahole or kernel are broken. */ 20241 verbose(env, "in-kernel BTF is malformed\n"); 20242 ret = PTR_ERR(btf_vmlinux); 20243 goto skip_full_check; 20244 } 20245 20246 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20247 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20248 env->strict_alignment = true; 20249 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20250 env->strict_alignment = false; 20251 20252 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20253 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20254 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20255 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20256 env->bpf_capable = bpf_capable(); 20257 20258 if (is_priv) 20259 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20260 20261 env->explored_states = kvcalloc(state_htab_size(env), 20262 sizeof(struct bpf_verifier_state_list *), 20263 GFP_USER); 20264 ret = -ENOMEM; 20265 if (!env->explored_states) 20266 goto skip_full_check; 20267 20268 ret = add_subprog_and_kfunc(env); 20269 if (ret < 0) 20270 goto skip_full_check; 20271 20272 ret = check_subprogs(env); 20273 if (ret < 0) 20274 goto skip_full_check; 20275 20276 ret = check_btf_info(env, attr, uattr); 20277 if (ret < 0) 20278 goto skip_full_check; 20279 20280 ret = check_attach_btf_id(env); 20281 if (ret) 20282 goto skip_full_check; 20283 20284 ret = resolve_pseudo_ldimm64(env); 20285 if (ret < 0) 20286 goto skip_full_check; 20287 20288 if (bpf_prog_is_offloaded(env->prog->aux)) { 20289 ret = bpf_prog_offload_verifier_prep(env->prog); 20290 if (ret) 20291 goto skip_full_check; 20292 } 20293 20294 ret = check_cfg(env); 20295 if (ret < 0) 20296 goto skip_full_check; 20297 20298 ret = do_check_subprogs(env); 20299 ret = ret ?: do_check_main(env); 20300 20301 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20302 ret = bpf_prog_offload_finalize(env); 20303 20304 skip_full_check: 20305 kvfree(env->explored_states); 20306 20307 if (ret == 0) 20308 ret = check_max_stack_depth(env); 20309 20310 /* instruction rewrites happen after this point */ 20311 if (ret == 0) 20312 ret = optimize_bpf_loop(env); 20313 20314 if (is_priv) { 20315 if (ret == 0) 20316 opt_hard_wire_dead_code_branches(env); 20317 if (ret == 0) 20318 ret = opt_remove_dead_code(env); 20319 if (ret == 0) 20320 ret = opt_remove_nops(env); 20321 } else { 20322 if (ret == 0) 20323 sanitize_dead_code(env); 20324 } 20325 20326 if (ret == 0) 20327 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20328 ret = convert_ctx_accesses(env); 20329 20330 if (ret == 0) 20331 ret = do_misc_fixups(env); 20332 20333 /* do 32-bit optimization after insn patching has done so those patched 20334 * insns could be handled correctly. 20335 */ 20336 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20337 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20338 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20339 : false; 20340 } 20341 20342 if (ret == 0) 20343 ret = fixup_call_args(env); 20344 20345 env->verification_time = ktime_get_ns() - start_time; 20346 print_verification_stats(env); 20347 env->prog->aux->verified_insns = env->insn_processed; 20348 20349 /* preserve original error even if log finalization is successful */ 20350 err = bpf_vlog_finalize(&env->log, &log_true_size); 20351 if (err) 20352 ret = err; 20353 20354 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20355 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20356 &log_true_size, sizeof(log_true_size))) { 20357 ret = -EFAULT; 20358 goto err_release_maps; 20359 } 20360 20361 if (ret) 20362 goto err_release_maps; 20363 20364 if (env->used_map_cnt) { 20365 /* if program passed verifier, update used_maps in bpf_prog_info */ 20366 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20367 sizeof(env->used_maps[0]), 20368 GFP_KERNEL); 20369 20370 if (!env->prog->aux->used_maps) { 20371 ret = -ENOMEM; 20372 goto err_release_maps; 20373 } 20374 20375 memcpy(env->prog->aux->used_maps, env->used_maps, 20376 sizeof(env->used_maps[0]) * env->used_map_cnt); 20377 env->prog->aux->used_map_cnt = env->used_map_cnt; 20378 } 20379 if (env->used_btf_cnt) { 20380 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20381 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20382 sizeof(env->used_btfs[0]), 20383 GFP_KERNEL); 20384 if (!env->prog->aux->used_btfs) { 20385 ret = -ENOMEM; 20386 goto err_release_maps; 20387 } 20388 20389 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20390 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20391 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20392 } 20393 if (env->used_map_cnt || env->used_btf_cnt) { 20394 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20395 * bpf_ld_imm64 instructions 20396 */ 20397 convert_pseudo_ld_imm64(env); 20398 } 20399 20400 adjust_btf_func(env); 20401 20402 err_release_maps: 20403 if (!env->prog->aux->used_maps) 20404 /* if we didn't copy map pointers into bpf_prog_info, release 20405 * them now. Otherwise free_used_maps() will release them. 20406 */ 20407 release_maps(env); 20408 if (!env->prog->aux->used_btfs) 20409 release_btfs(env); 20410 20411 /* extension progs temporarily inherit the attach_type of their targets 20412 for verification purposes, so set it back to zero before returning 20413 */ 20414 if (env->prog->type == BPF_PROG_TYPE_EXT) 20415 env->prog->expected_attach_type = 0; 20416 20417 *prog = env->prog; 20418 err_unlock: 20419 if (!is_priv) 20420 mutex_unlock(&bpf_verifier_lock); 20421 vfree(env->insn_aux_data); 20422 err_free_env: 20423 kfree(env); 20424 return ret; 20425 } 20426