1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_KEY_POISON (1ULL << 63) 175 #define BPF_MAP_KEY_SEEN (1ULL << 62) 176 177 #define BPF_MAP_PTR_UNPRIV 1UL 178 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 179 POISON_POINTER_DELTA)) 180 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 181 182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 183 { 184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 185 } 186 187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 188 { 189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 190 } 191 192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 193 const struct bpf_map *map, bool unpriv) 194 { 195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 196 unpriv |= bpf_map_ptr_unpriv(aux); 197 aux->map_ptr_state = (unsigned long)map | 198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 199 } 200 201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 202 { 203 return aux->map_key_state & BPF_MAP_KEY_POISON; 204 } 205 206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 207 { 208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 209 } 210 211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 212 { 213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 214 } 215 216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 217 { 218 bool poisoned = bpf_map_key_poisoned(aux); 219 220 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 222 } 223 224 struct bpf_call_arg_meta { 225 struct bpf_map *map_ptr; 226 bool raw_mode; 227 bool pkt_access; 228 int regno; 229 int access_size; 230 s64 msize_smax_value; 231 u64 msize_umax_value; 232 int ref_obj_id; 233 int func_id; 234 u32 btf_id; 235 }; 236 237 struct btf *btf_vmlinux; 238 239 static DEFINE_MUTEX(bpf_verifier_lock); 240 241 static const struct bpf_line_info * 242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 243 { 244 const struct bpf_line_info *linfo; 245 const struct bpf_prog *prog; 246 u32 i, nr_linfo; 247 248 prog = env->prog; 249 nr_linfo = prog->aux->nr_linfo; 250 251 if (!nr_linfo || insn_off >= prog->len) 252 return NULL; 253 254 linfo = prog->aux->linfo; 255 for (i = 1; i < nr_linfo; i++) 256 if (insn_off < linfo[i].insn_off) 257 break; 258 259 return &linfo[i - 1]; 260 } 261 262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 263 va_list args) 264 { 265 unsigned int n; 266 267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 268 269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 270 "verifier log line truncated - local buffer too short\n"); 271 272 n = min(log->len_total - log->len_used - 1, n); 273 log->kbuf[n] = '\0'; 274 275 if (log->level == BPF_LOG_KERNEL) { 276 pr_err("BPF:%s\n", log->kbuf); 277 return; 278 } 279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 280 log->len_used += n; 281 else 282 log->ubuf = NULL; 283 } 284 285 /* log_level controls verbosity level of eBPF verifier. 286 * bpf_verifier_log_write() is used to dump the verification trace to the log, 287 * so the user can figure out what's wrong with the program 288 */ 289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 290 const char *fmt, ...) 291 { 292 va_list args; 293 294 if (!bpf_verifier_log_needed(&env->log)) 295 return; 296 297 va_start(args, fmt); 298 bpf_verifier_vlog(&env->log, fmt, args); 299 va_end(args); 300 } 301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 302 303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 304 { 305 struct bpf_verifier_env *env = private_data; 306 va_list args; 307 308 if (!bpf_verifier_log_needed(&env->log)) 309 return; 310 311 va_start(args, fmt); 312 bpf_verifier_vlog(&env->log, fmt, args); 313 va_end(args); 314 } 315 316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 317 const char *fmt, ...) 318 { 319 va_list args; 320 321 if (!bpf_verifier_log_needed(log)) 322 return; 323 324 va_start(args, fmt); 325 bpf_verifier_vlog(log, fmt, args); 326 va_end(args); 327 } 328 329 static const char *ltrim(const char *s) 330 { 331 while (isspace(*s)) 332 s++; 333 334 return s; 335 } 336 337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 338 u32 insn_off, 339 const char *prefix_fmt, ...) 340 { 341 const struct bpf_line_info *linfo; 342 343 if (!bpf_verifier_log_needed(&env->log)) 344 return; 345 346 linfo = find_linfo(env, insn_off); 347 if (!linfo || linfo == env->prev_linfo) 348 return; 349 350 if (prefix_fmt) { 351 va_list args; 352 353 va_start(args, prefix_fmt); 354 bpf_verifier_vlog(&env->log, prefix_fmt, args); 355 va_end(args); 356 } 357 358 verbose(env, "%s\n", 359 ltrim(btf_name_by_offset(env->prog->aux->btf, 360 linfo->line_off))); 361 362 env->prev_linfo = linfo; 363 } 364 365 static bool type_is_pkt_pointer(enum bpf_reg_type type) 366 { 367 return type == PTR_TO_PACKET || 368 type == PTR_TO_PACKET_META; 369 } 370 371 static bool type_is_sk_pointer(enum bpf_reg_type type) 372 { 373 return type == PTR_TO_SOCKET || 374 type == PTR_TO_SOCK_COMMON || 375 type == PTR_TO_TCP_SOCK || 376 type == PTR_TO_XDP_SOCK; 377 } 378 379 static bool reg_type_may_be_null(enum bpf_reg_type type) 380 { 381 return type == PTR_TO_MAP_VALUE_OR_NULL || 382 type == PTR_TO_SOCKET_OR_NULL || 383 type == PTR_TO_SOCK_COMMON_OR_NULL || 384 type == PTR_TO_TCP_SOCK_OR_NULL; 385 } 386 387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 388 { 389 return reg->type == PTR_TO_MAP_VALUE && 390 map_value_has_spin_lock(reg->map_ptr); 391 } 392 393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_SOCKET || 396 type == PTR_TO_SOCKET_OR_NULL || 397 type == PTR_TO_TCP_SOCK || 398 type == PTR_TO_TCP_SOCK_OR_NULL; 399 } 400 401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 402 { 403 return type == ARG_PTR_TO_SOCK_COMMON; 404 } 405 406 /* Determine whether the function releases some resources allocated by another 407 * function call. The first reference type argument will be assumed to be 408 * released by release_reference(). 409 */ 410 static bool is_release_function(enum bpf_func_id func_id) 411 { 412 return func_id == BPF_FUNC_sk_release; 413 } 414 415 static bool is_acquire_function(enum bpf_func_id func_id) 416 { 417 return func_id == BPF_FUNC_sk_lookup_tcp || 418 func_id == BPF_FUNC_sk_lookup_udp || 419 func_id == BPF_FUNC_skc_lookup_tcp; 420 } 421 422 static bool is_ptr_cast_function(enum bpf_func_id func_id) 423 { 424 return func_id == BPF_FUNC_tcp_sock || 425 func_id == BPF_FUNC_sk_fullsock; 426 } 427 428 /* string representation of 'enum bpf_reg_type' */ 429 static const char * const reg_type_str[] = { 430 [NOT_INIT] = "?", 431 [SCALAR_VALUE] = "inv", 432 [PTR_TO_CTX] = "ctx", 433 [CONST_PTR_TO_MAP] = "map_ptr", 434 [PTR_TO_MAP_VALUE] = "map_value", 435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 436 [PTR_TO_STACK] = "fp", 437 [PTR_TO_PACKET] = "pkt", 438 [PTR_TO_PACKET_META] = "pkt_meta", 439 [PTR_TO_PACKET_END] = "pkt_end", 440 [PTR_TO_FLOW_KEYS] = "flow_keys", 441 [PTR_TO_SOCKET] = "sock", 442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 443 [PTR_TO_SOCK_COMMON] = "sock_common", 444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 445 [PTR_TO_TCP_SOCK] = "tcp_sock", 446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 447 [PTR_TO_TP_BUFFER] = "tp_buffer", 448 [PTR_TO_XDP_SOCK] = "xdp_sock", 449 [PTR_TO_BTF_ID] = "ptr_", 450 }; 451 452 static char slot_type_char[] = { 453 [STACK_INVALID] = '?', 454 [STACK_SPILL] = 'r', 455 [STACK_MISC] = 'm', 456 [STACK_ZERO] = '0', 457 }; 458 459 static void print_liveness(struct bpf_verifier_env *env, 460 enum bpf_reg_liveness live) 461 { 462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 463 verbose(env, "_"); 464 if (live & REG_LIVE_READ) 465 verbose(env, "r"); 466 if (live & REG_LIVE_WRITTEN) 467 verbose(env, "w"); 468 if (live & REG_LIVE_DONE) 469 verbose(env, "D"); 470 } 471 472 static struct bpf_func_state *func(struct bpf_verifier_env *env, 473 const struct bpf_reg_state *reg) 474 { 475 struct bpf_verifier_state *cur = env->cur_state; 476 477 return cur->frame[reg->frameno]; 478 } 479 480 const char *kernel_type_name(u32 id) 481 { 482 return btf_name_by_offset(btf_vmlinux, 483 btf_type_by_id(btf_vmlinux, id)->name_off); 484 } 485 486 static void print_verifier_state(struct bpf_verifier_env *env, 487 const struct bpf_func_state *state) 488 { 489 const struct bpf_reg_state *reg; 490 enum bpf_reg_type t; 491 int i; 492 493 if (state->frameno) 494 verbose(env, " frame%d:", state->frameno); 495 for (i = 0; i < MAX_BPF_REG; i++) { 496 reg = &state->regs[i]; 497 t = reg->type; 498 if (t == NOT_INIT) 499 continue; 500 verbose(env, " R%d", i); 501 print_liveness(env, reg->live); 502 verbose(env, "=%s", reg_type_str[t]); 503 if (t == SCALAR_VALUE && reg->precise) 504 verbose(env, "P"); 505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 506 tnum_is_const(reg->var_off)) { 507 /* reg->off should be 0 for SCALAR_VALUE */ 508 verbose(env, "%lld", reg->var_off.value + reg->off); 509 } else { 510 if (t == PTR_TO_BTF_ID) 511 verbose(env, "%s", kernel_type_name(reg->btf_id)); 512 verbose(env, "(id=%d", reg->id); 513 if (reg_type_may_be_refcounted_or_null(t)) 514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 515 if (t != SCALAR_VALUE) 516 verbose(env, ",off=%d", reg->off); 517 if (type_is_pkt_pointer(t)) 518 verbose(env, ",r=%d", reg->range); 519 else if (t == CONST_PTR_TO_MAP || 520 t == PTR_TO_MAP_VALUE || 521 t == PTR_TO_MAP_VALUE_OR_NULL) 522 verbose(env, ",ks=%d,vs=%d", 523 reg->map_ptr->key_size, 524 reg->map_ptr->value_size); 525 if (tnum_is_const(reg->var_off)) { 526 /* Typically an immediate SCALAR_VALUE, but 527 * could be a pointer whose offset is too big 528 * for reg->off 529 */ 530 verbose(env, ",imm=%llx", reg->var_off.value); 531 } else { 532 if (reg->smin_value != reg->umin_value && 533 reg->smin_value != S64_MIN) 534 verbose(env, ",smin_value=%lld", 535 (long long)reg->smin_value); 536 if (reg->smax_value != reg->umax_value && 537 reg->smax_value != S64_MAX) 538 verbose(env, ",smax_value=%lld", 539 (long long)reg->smax_value); 540 if (reg->umin_value != 0) 541 verbose(env, ",umin_value=%llu", 542 (unsigned long long)reg->umin_value); 543 if (reg->umax_value != U64_MAX) 544 verbose(env, ",umax_value=%llu", 545 (unsigned long long)reg->umax_value); 546 if (!tnum_is_unknown(reg->var_off)) { 547 char tn_buf[48]; 548 549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 550 verbose(env, ",var_off=%s", tn_buf); 551 } 552 } 553 verbose(env, ")"); 554 } 555 } 556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 557 char types_buf[BPF_REG_SIZE + 1]; 558 bool valid = false; 559 int j; 560 561 for (j = 0; j < BPF_REG_SIZE; j++) { 562 if (state->stack[i].slot_type[j] != STACK_INVALID) 563 valid = true; 564 types_buf[j] = slot_type_char[ 565 state->stack[i].slot_type[j]]; 566 } 567 types_buf[BPF_REG_SIZE] = 0; 568 if (!valid) 569 continue; 570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 571 print_liveness(env, state->stack[i].spilled_ptr.live); 572 if (state->stack[i].slot_type[0] == STACK_SPILL) { 573 reg = &state->stack[i].spilled_ptr; 574 t = reg->type; 575 verbose(env, "=%s", reg_type_str[t]); 576 if (t == SCALAR_VALUE && reg->precise) 577 verbose(env, "P"); 578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 579 verbose(env, "%lld", reg->var_off.value + reg->off); 580 } else { 581 verbose(env, "=%s", types_buf); 582 } 583 } 584 if (state->acquired_refs && state->refs[0].id) { 585 verbose(env, " refs=%d", state->refs[0].id); 586 for (i = 1; i < state->acquired_refs; i++) 587 if (state->refs[i].id) 588 verbose(env, ",%d", state->refs[i].id); 589 } 590 verbose(env, "\n"); 591 } 592 593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 594 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 595 const struct bpf_func_state *src) \ 596 { \ 597 if (!src->FIELD) \ 598 return 0; \ 599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 600 /* internal bug, make state invalid to reject the program */ \ 601 memset(dst, 0, sizeof(*dst)); \ 602 return -EFAULT; \ 603 } \ 604 memcpy(dst->FIELD, src->FIELD, \ 605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 606 return 0; \ 607 } 608 /* copy_reference_state() */ 609 COPY_STATE_FN(reference, acquired_refs, refs, 1) 610 /* copy_stack_state() */ 611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 612 #undef COPY_STATE_FN 613 614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 616 bool copy_old) \ 617 { \ 618 u32 old_size = state->COUNT; \ 619 struct bpf_##NAME##_state *new_##FIELD; \ 620 int slot = size / SIZE; \ 621 \ 622 if (size <= old_size || !size) { \ 623 if (copy_old) \ 624 return 0; \ 625 state->COUNT = slot * SIZE; \ 626 if (!size && old_size) { \ 627 kfree(state->FIELD); \ 628 state->FIELD = NULL; \ 629 } \ 630 return 0; \ 631 } \ 632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 633 GFP_KERNEL); \ 634 if (!new_##FIELD) \ 635 return -ENOMEM; \ 636 if (copy_old) { \ 637 if (state->FIELD) \ 638 memcpy(new_##FIELD, state->FIELD, \ 639 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 640 memset(new_##FIELD + old_size / SIZE, 0, \ 641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 642 } \ 643 state->COUNT = slot * SIZE; \ 644 kfree(state->FIELD); \ 645 state->FIELD = new_##FIELD; \ 646 return 0; \ 647 } 648 /* realloc_reference_state() */ 649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 650 /* realloc_stack_state() */ 651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 652 #undef REALLOC_STATE_FN 653 654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 655 * make it consume minimal amount of memory. check_stack_write() access from 656 * the program calls into realloc_func_state() to grow the stack size. 657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 658 * which realloc_stack_state() copies over. It points to previous 659 * bpf_verifier_state which is never reallocated. 660 */ 661 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 662 int refs_size, bool copy_old) 663 { 664 int err = realloc_reference_state(state, refs_size, copy_old); 665 if (err) 666 return err; 667 return realloc_stack_state(state, stack_size, copy_old); 668 } 669 670 /* Acquire a pointer id from the env and update the state->refs to include 671 * this new pointer reference. 672 * On success, returns a valid pointer id to associate with the register 673 * On failure, returns a negative errno. 674 */ 675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 676 { 677 struct bpf_func_state *state = cur_func(env); 678 int new_ofs = state->acquired_refs; 679 int id, err; 680 681 err = realloc_reference_state(state, state->acquired_refs + 1, true); 682 if (err) 683 return err; 684 id = ++env->id_gen; 685 state->refs[new_ofs].id = id; 686 state->refs[new_ofs].insn_idx = insn_idx; 687 688 return id; 689 } 690 691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 693 { 694 int i, last_idx; 695 696 last_idx = state->acquired_refs - 1; 697 for (i = 0; i < state->acquired_refs; i++) { 698 if (state->refs[i].id == ptr_id) { 699 if (last_idx && i != last_idx) 700 memcpy(&state->refs[i], &state->refs[last_idx], 701 sizeof(*state->refs)); 702 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 703 state->acquired_refs--; 704 return 0; 705 } 706 } 707 return -EINVAL; 708 } 709 710 static int transfer_reference_state(struct bpf_func_state *dst, 711 struct bpf_func_state *src) 712 { 713 int err = realloc_reference_state(dst, src->acquired_refs, false); 714 if (err) 715 return err; 716 err = copy_reference_state(dst, src); 717 if (err) 718 return err; 719 return 0; 720 } 721 722 static void free_func_state(struct bpf_func_state *state) 723 { 724 if (!state) 725 return; 726 kfree(state->refs); 727 kfree(state->stack); 728 kfree(state); 729 } 730 731 static void clear_jmp_history(struct bpf_verifier_state *state) 732 { 733 kfree(state->jmp_history); 734 state->jmp_history = NULL; 735 state->jmp_history_cnt = 0; 736 } 737 738 static void free_verifier_state(struct bpf_verifier_state *state, 739 bool free_self) 740 { 741 int i; 742 743 for (i = 0; i <= state->curframe; i++) { 744 free_func_state(state->frame[i]); 745 state->frame[i] = NULL; 746 } 747 clear_jmp_history(state); 748 if (free_self) 749 kfree(state); 750 } 751 752 /* copy verifier state from src to dst growing dst stack space 753 * when necessary to accommodate larger src stack 754 */ 755 static int copy_func_state(struct bpf_func_state *dst, 756 const struct bpf_func_state *src) 757 { 758 int err; 759 760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 761 false); 762 if (err) 763 return err; 764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 765 err = copy_reference_state(dst, src); 766 if (err) 767 return err; 768 return copy_stack_state(dst, src); 769 } 770 771 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 772 const struct bpf_verifier_state *src) 773 { 774 struct bpf_func_state *dst; 775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 776 int i, err; 777 778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 779 kfree(dst_state->jmp_history); 780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 781 if (!dst_state->jmp_history) 782 return -ENOMEM; 783 } 784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 785 dst_state->jmp_history_cnt = src->jmp_history_cnt; 786 787 /* if dst has more stack frames then src frame, free them */ 788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 789 free_func_state(dst_state->frame[i]); 790 dst_state->frame[i] = NULL; 791 } 792 dst_state->speculative = src->speculative; 793 dst_state->curframe = src->curframe; 794 dst_state->active_spin_lock = src->active_spin_lock; 795 dst_state->branches = src->branches; 796 dst_state->parent = src->parent; 797 dst_state->first_insn_idx = src->first_insn_idx; 798 dst_state->last_insn_idx = src->last_insn_idx; 799 for (i = 0; i <= src->curframe; i++) { 800 dst = dst_state->frame[i]; 801 if (!dst) { 802 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 803 if (!dst) 804 return -ENOMEM; 805 dst_state->frame[i] = dst; 806 } 807 err = copy_func_state(dst, src->frame[i]); 808 if (err) 809 return err; 810 } 811 return 0; 812 } 813 814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 815 { 816 while (st) { 817 u32 br = --st->branches; 818 819 /* WARN_ON(br > 1) technically makes sense here, 820 * but see comment in push_stack(), hence: 821 */ 822 WARN_ONCE((int)br < 0, 823 "BUG update_branch_counts:branches_to_explore=%d\n", 824 br); 825 if (br) 826 break; 827 st = st->parent; 828 } 829 } 830 831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 832 int *insn_idx) 833 { 834 struct bpf_verifier_state *cur = env->cur_state; 835 struct bpf_verifier_stack_elem *elem, *head = env->head; 836 int err; 837 838 if (env->head == NULL) 839 return -ENOENT; 840 841 if (cur) { 842 err = copy_verifier_state(cur, &head->st); 843 if (err) 844 return err; 845 } 846 if (insn_idx) 847 *insn_idx = head->insn_idx; 848 if (prev_insn_idx) 849 *prev_insn_idx = head->prev_insn_idx; 850 elem = head->next; 851 free_verifier_state(&head->st, false); 852 kfree(head); 853 env->head = elem; 854 env->stack_size--; 855 return 0; 856 } 857 858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 859 int insn_idx, int prev_insn_idx, 860 bool speculative) 861 { 862 struct bpf_verifier_state *cur = env->cur_state; 863 struct bpf_verifier_stack_elem *elem; 864 int err; 865 866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 867 if (!elem) 868 goto err; 869 870 elem->insn_idx = insn_idx; 871 elem->prev_insn_idx = prev_insn_idx; 872 elem->next = env->head; 873 env->head = elem; 874 env->stack_size++; 875 err = copy_verifier_state(&elem->st, cur); 876 if (err) 877 goto err; 878 elem->st.speculative |= speculative; 879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 880 verbose(env, "The sequence of %d jumps is too complex.\n", 881 env->stack_size); 882 goto err; 883 } 884 if (elem->st.parent) { 885 ++elem->st.parent->branches; 886 /* WARN_ON(branches > 2) technically makes sense here, 887 * but 888 * 1. speculative states will bump 'branches' for non-branch 889 * instructions 890 * 2. is_state_visited() heuristics may decide not to create 891 * a new state for a sequence of branches and all such current 892 * and cloned states will be pointing to a single parent state 893 * which might have large 'branches' count. 894 */ 895 } 896 return &elem->st; 897 err: 898 free_verifier_state(env->cur_state, true); 899 env->cur_state = NULL; 900 /* pop all elements and return */ 901 while (!pop_stack(env, NULL, NULL)); 902 return NULL; 903 } 904 905 #define CALLER_SAVED_REGS 6 906 static const int caller_saved[CALLER_SAVED_REGS] = { 907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 908 }; 909 910 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 911 struct bpf_reg_state *reg); 912 913 /* Mark the unknown part of a register (variable offset or scalar value) as 914 * known to have the value @imm. 915 */ 916 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 917 { 918 /* Clear id, off, and union(map_ptr, range) */ 919 memset(((u8 *)reg) + sizeof(reg->type), 0, 920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 921 reg->var_off = tnum_const(imm); 922 reg->smin_value = (s64)imm; 923 reg->smax_value = (s64)imm; 924 reg->umin_value = imm; 925 reg->umax_value = imm; 926 } 927 928 /* Mark the 'variable offset' part of a register as zero. This should be 929 * used only on registers holding a pointer type. 930 */ 931 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 932 { 933 __mark_reg_known(reg, 0); 934 } 935 936 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 937 { 938 __mark_reg_known(reg, 0); 939 reg->type = SCALAR_VALUE; 940 } 941 942 static void mark_reg_known_zero(struct bpf_verifier_env *env, 943 struct bpf_reg_state *regs, u32 regno) 944 { 945 if (WARN_ON(regno >= MAX_BPF_REG)) { 946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 947 /* Something bad happened, let's kill all regs */ 948 for (regno = 0; regno < MAX_BPF_REG; regno++) 949 __mark_reg_not_init(env, regs + regno); 950 return; 951 } 952 __mark_reg_known_zero(regs + regno); 953 } 954 955 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 956 { 957 return type_is_pkt_pointer(reg->type); 958 } 959 960 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 961 { 962 return reg_is_pkt_pointer(reg) || 963 reg->type == PTR_TO_PACKET_END; 964 } 965 966 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 967 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 968 enum bpf_reg_type which) 969 { 970 /* The register can already have a range from prior markings. 971 * This is fine as long as it hasn't been advanced from its 972 * origin. 973 */ 974 return reg->type == which && 975 reg->id == 0 && 976 reg->off == 0 && 977 tnum_equals_const(reg->var_off, 0); 978 } 979 980 /* Attempts to improve min/max values based on var_off information */ 981 static void __update_reg_bounds(struct bpf_reg_state *reg) 982 { 983 /* min signed is max(sign bit) | min(other bits) */ 984 reg->smin_value = max_t(s64, reg->smin_value, 985 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 986 /* max signed is min(sign bit) | max(other bits) */ 987 reg->smax_value = min_t(s64, reg->smax_value, 988 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 989 reg->umin_value = max(reg->umin_value, reg->var_off.value); 990 reg->umax_value = min(reg->umax_value, 991 reg->var_off.value | reg->var_off.mask); 992 } 993 994 /* Uses signed min/max values to inform unsigned, and vice-versa */ 995 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 996 { 997 /* Learn sign from signed bounds. 998 * If we cannot cross the sign boundary, then signed and unsigned bounds 999 * are the same, so combine. This works even in the negative case, e.g. 1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1001 */ 1002 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1004 reg->umin_value); 1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1006 reg->umax_value); 1007 return; 1008 } 1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1010 * boundary, so we must be careful. 1011 */ 1012 if ((s64)reg->umax_value >= 0) { 1013 /* Positive. We can't learn anything from the smin, but smax 1014 * is positive, hence safe. 1015 */ 1016 reg->smin_value = reg->umin_value; 1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1018 reg->umax_value); 1019 } else if ((s64)reg->umin_value < 0) { 1020 /* Negative. We can't learn anything from the smax, but smin 1021 * is negative, hence safe. 1022 */ 1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1024 reg->umin_value); 1025 reg->smax_value = reg->umax_value; 1026 } 1027 } 1028 1029 /* Attempts to improve var_off based on unsigned min/max information */ 1030 static void __reg_bound_offset(struct bpf_reg_state *reg) 1031 { 1032 reg->var_off = tnum_intersect(reg->var_off, 1033 tnum_range(reg->umin_value, 1034 reg->umax_value)); 1035 } 1036 1037 static void __reg_bound_offset32(struct bpf_reg_state *reg) 1038 { 1039 u64 mask = 0xffffFFFF; 1040 struct tnum range = tnum_range(reg->umin_value & mask, 1041 reg->umax_value & mask); 1042 struct tnum lo32 = tnum_cast(reg->var_off, 4); 1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32); 1044 1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range)); 1046 } 1047 1048 /* Reset the min/max bounds of a register */ 1049 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1050 { 1051 reg->smin_value = S64_MIN; 1052 reg->smax_value = S64_MAX; 1053 reg->umin_value = 0; 1054 reg->umax_value = U64_MAX; 1055 } 1056 1057 /* Mark a register as having a completely unknown (scalar) value. */ 1058 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1059 struct bpf_reg_state *reg) 1060 { 1061 /* 1062 * Clear type, id, off, and union(map_ptr, range) and 1063 * padding between 'type' and union 1064 */ 1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1066 reg->type = SCALAR_VALUE; 1067 reg->var_off = tnum_unknown; 1068 reg->frameno = 0; 1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1070 true : false; 1071 __mark_reg_unbounded(reg); 1072 } 1073 1074 static void mark_reg_unknown(struct bpf_verifier_env *env, 1075 struct bpf_reg_state *regs, u32 regno) 1076 { 1077 if (WARN_ON(regno >= MAX_BPF_REG)) { 1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1079 /* Something bad happened, let's kill all regs except FP */ 1080 for (regno = 0; regno < BPF_REG_FP; regno++) 1081 __mark_reg_not_init(env, regs + regno); 1082 return; 1083 } 1084 __mark_reg_unknown(env, regs + regno); 1085 } 1086 1087 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1088 struct bpf_reg_state *reg) 1089 { 1090 __mark_reg_unknown(env, reg); 1091 reg->type = NOT_INIT; 1092 } 1093 1094 static void mark_reg_not_init(struct bpf_verifier_env *env, 1095 struct bpf_reg_state *regs, u32 regno) 1096 { 1097 if (WARN_ON(regno >= MAX_BPF_REG)) { 1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1099 /* Something bad happened, let's kill all regs except FP */ 1100 for (regno = 0; regno < BPF_REG_FP; regno++) 1101 __mark_reg_not_init(env, regs + regno); 1102 return; 1103 } 1104 __mark_reg_not_init(env, regs + regno); 1105 } 1106 1107 #define DEF_NOT_SUBREG (0) 1108 static void init_reg_state(struct bpf_verifier_env *env, 1109 struct bpf_func_state *state) 1110 { 1111 struct bpf_reg_state *regs = state->regs; 1112 int i; 1113 1114 for (i = 0; i < MAX_BPF_REG; i++) { 1115 mark_reg_not_init(env, regs, i); 1116 regs[i].live = REG_LIVE_NONE; 1117 regs[i].parent = NULL; 1118 regs[i].subreg_def = DEF_NOT_SUBREG; 1119 } 1120 1121 /* frame pointer */ 1122 regs[BPF_REG_FP].type = PTR_TO_STACK; 1123 mark_reg_known_zero(env, regs, BPF_REG_FP); 1124 regs[BPF_REG_FP].frameno = state->frameno; 1125 1126 /* 1st arg to a function */ 1127 regs[BPF_REG_1].type = PTR_TO_CTX; 1128 mark_reg_known_zero(env, regs, BPF_REG_1); 1129 } 1130 1131 #define BPF_MAIN_FUNC (-1) 1132 static void init_func_state(struct bpf_verifier_env *env, 1133 struct bpf_func_state *state, 1134 int callsite, int frameno, int subprogno) 1135 { 1136 state->callsite = callsite; 1137 state->frameno = frameno; 1138 state->subprogno = subprogno; 1139 init_reg_state(env, state); 1140 } 1141 1142 enum reg_arg_type { 1143 SRC_OP, /* register is used as source operand */ 1144 DST_OP, /* register is used as destination operand */ 1145 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1146 }; 1147 1148 static int cmp_subprogs(const void *a, const void *b) 1149 { 1150 return ((struct bpf_subprog_info *)a)->start - 1151 ((struct bpf_subprog_info *)b)->start; 1152 } 1153 1154 static int find_subprog(struct bpf_verifier_env *env, int off) 1155 { 1156 struct bpf_subprog_info *p; 1157 1158 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1159 sizeof(env->subprog_info[0]), cmp_subprogs); 1160 if (!p) 1161 return -ENOENT; 1162 return p - env->subprog_info; 1163 1164 } 1165 1166 static int add_subprog(struct bpf_verifier_env *env, int off) 1167 { 1168 int insn_cnt = env->prog->len; 1169 int ret; 1170 1171 if (off >= insn_cnt || off < 0) { 1172 verbose(env, "call to invalid destination\n"); 1173 return -EINVAL; 1174 } 1175 ret = find_subprog(env, off); 1176 if (ret >= 0) 1177 return 0; 1178 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1179 verbose(env, "too many subprograms\n"); 1180 return -E2BIG; 1181 } 1182 env->subprog_info[env->subprog_cnt++].start = off; 1183 sort(env->subprog_info, env->subprog_cnt, 1184 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1185 return 0; 1186 } 1187 1188 static int check_subprogs(struct bpf_verifier_env *env) 1189 { 1190 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1191 struct bpf_subprog_info *subprog = env->subprog_info; 1192 struct bpf_insn *insn = env->prog->insnsi; 1193 int insn_cnt = env->prog->len; 1194 1195 /* Add entry function. */ 1196 ret = add_subprog(env, 0); 1197 if (ret < 0) 1198 return ret; 1199 1200 /* determine subprog starts. The end is one before the next starts */ 1201 for (i = 0; i < insn_cnt; i++) { 1202 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1203 continue; 1204 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1205 continue; 1206 if (!env->allow_ptr_leaks) { 1207 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1208 return -EPERM; 1209 } 1210 ret = add_subprog(env, i + insn[i].imm + 1); 1211 if (ret < 0) 1212 return ret; 1213 } 1214 1215 /* Add a fake 'exit' subprog which could simplify subprog iteration 1216 * logic. 'subprog_cnt' should not be increased. 1217 */ 1218 subprog[env->subprog_cnt].start = insn_cnt; 1219 1220 if (env->log.level & BPF_LOG_LEVEL2) 1221 for (i = 0; i < env->subprog_cnt; i++) 1222 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1223 1224 /* now check that all jumps are within the same subprog */ 1225 subprog_start = subprog[cur_subprog].start; 1226 subprog_end = subprog[cur_subprog + 1].start; 1227 for (i = 0; i < insn_cnt; i++) { 1228 u8 code = insn[i].code; 1229 1230 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1231 goto next; 1232 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1233 goto next; 1234 off = i + insn[i].off + 1; 1235 if (off < subprog_start || off >= subprog_end) { 1236 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1237 return -EINVAL; 1238 } 1239 next: 1240 if (i == subprog_end - 1) { 1241 /* to avoid fall-through from one subprog into another 1242 * the last insn of the subprog should be either exit 1243 * or unconditional jump back 1244 */ 1245 if (code != (BPF_JMP | BPF_EXIT) && 1246 code != (BPF_JMP | BPF_JA)) { 1247 verbose(env, "last insn is not an exit or jmp\n"); 1248 return -EINVAL; 1249 } 1250 subprog_start = subprog_end; 1251 cur_subprog++; 1252 if (cur_subprog < env->subprog_cnt) 1253 subprog_end = subprog[cur_subprog + 1].start; 1254 } 1255 } 1256 return 0; 1257 } 1258 1259 /* Parentage chain of this register (or stack slot) should take care of all 1260 * issues like callee-saved registers, stack slot allocation time, etc. 1261 */ 1262 static int mark_reg_read(struct bpf_verifier_env *env, 1263 const struct bpf_reg_state *state, 1264 struct bpf_reg_state *parent, u8 flag) 1265 { 1266 bool writes = parent == state->parent; /* Observe write marks */ 1267 int cnt = 0; 1268 1269 while (parent) { 1270 /* if read wasn't screened by an earlier write ... */ 1271 if (writes && state->live & REG_LIVE_WRITTEN) 1272 break; 1273 if (parent->live & REG_LIVE_DONE) { 1274 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1275 reg_type_str[parent->type], 1276 parent->var_off.value, parent->off); 1277 return -EFAULT; 1278 } 1279 /* The first condition is more likely to be true than the 1280 * second, checked it first. 1281 */ 1282 if ((parent->live & REG_LIVE_READ) == flag || 1283 parent->live & REG_LIVE_READ64) 1284 /* The parentage chain never changes and 1285 * this parent was already marked as LIVE_READ. 1286 * There is no need to keep walking the chain again and 1287 * keep re-marking all parents as LIVE_READ. 1288 * This case happens when the same register is read 1289 * multiple times without writes into it in-between. 1290 * Also, if parent has the stronger REG_LIVE_READ64 set, 1291 * then no need to set the weak REG_LIVE_READ32. 1292 */ 1293 break; 1294 /* ... then we depend on parent's value */ 1295 parent->live |= flag; 1296 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1297 if (flag == REG_LIVE_READ64) 1298 parent->live &= ~REG_LIVE_READ32; 1299 state = parent; 1300 parent = state->parent; 1301 writes = true; 1302 cnt++; 1303 } 1304 1305 if (env->longest_mark_read_walk < cnt) 1306 env->longest_mark_read_walk = cnt; 1307 return 0; 1308 } 1309 1310 /* This function is supposed to be used by the following 32-bit optimization 1311 * code only. It returns TRUE if the source or destination register operates 1312 * on 64-bit, otherwise return FALSE. 1313 */ 1314 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1315 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1316 { 1317 u8 code, class, op; 1318 1319 code = insn->code; 1320 class = BPF_CLASS(code); 1321 op = BPF_OP(code); 1322 if (class == BPF_JMP) { 1323 /* BPF_EXIT for "main" will reach here. Return TRUE 1324 * conservatively. 1325 */ 1326 if (op == BPF_EXIT) 1327 return true; 1328 if (op == BPF_CALL) { 1329 /* BPF to BPF call will reach here because of marking 1330 * caller saved clobber with DST_OP_NO_MARK for which we 1331 * don't care the register def because they are anyway 1332 * marked as NOT_INIT already. 1333 */ 1334 if (insn->src_reg == BPF_PSEUDO_CALL) 1335 return false; 1336 /* Helper call will reach here because of arg type 1337 * check, conservatively return TRUE. 1338 */ 1339 if (t == SRC_OP) 1340 return true; 1341 1342 return false; 1343 } 1344 } 1345 1346 if (class == BPF_ALU64 || class == BPF_JMP || 1347 /* BPF_END always use BPF_ALU class. */ 1348 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1349 return true; 1350 1351 if (class == BPF_ALU || class == BPF_JMP32) 1352 return false; 1353 1354 if (class == BPF_LDX) { 1355 if (t != SRC_OP) 1356 return BPF_SIZE(code) == BPF_DW; 1357 /* LDX source must be ptr. */ 1358 return true; 1359 } 1360 1361 if (class == BPF_STX) { 1362 if (reg->type != SCALAR_VALUE) 1363 return true; 1364 return BPF_SIZE(code) == BPF_DW; 1365 } 1366 1367 if (class == BPF_LD) { 1368 u8 mode = BPF_MODE(code); 1369 1370 /* LD_IMM64 */ 1371 if (mode == BPF_IMM) 1372 return true; 1373 1374 /* Both LD_IND and LD_ABS return 32-bit data. */ 1375 if (t != SRC_OP) 1376 return false; 1377 1378 /* Implicit ctx ptr. */ 1379 if (regno == BPF_REG_6) 1380 return true; 1381 1382 /* Explicit source could be any width. */ 1383 return true; 1384 } 1385 1386 if (class == BPF_ST) 1387 /* The only source register for BPF_ST is a ptr. */ 1388 return true; 1389 1390 /* Conservatively return true at default. */ 1391 return true; 1392 } 1393 1394 /* Return TRUE if INSN doesn't have explicit value define. */ 1395 static bool insn_no_def(struct bpf_insn *insn) 1396 { 1397 u8 class = BPF_CLASS(insn->code); 1398 1399 return (class == BPF_JMP || class == BPF_JMP32 || 1400 class == BPF_STX || class == BPF_ST); 1401 } 1402 1403 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1404 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1405 { 1406 if (insn_no_def(insn)) 1407 return false; 1408 1409 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1410 } 1411 1412 static void mark_insn_zext(struct bpf_verifier_env *env, 1413 struct bpf_reg_state *reg) 1414 { 1415 s32 def_idx = reg->subreg_def; 1416 1417 if (def_idx == DEF_NOT_SUBREG) 1418 return; 1419 1420 env->insn_aux_data[def_idx - 1].zext_dst = true; 1421 /* The dst will be zero extended, so won't be sub-register anymore. */ 1422 reg->subreg_def = DEF_NOT_SUBREG; 1423 } 1424 1425 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1426 enum reg_arg_type t) 1427 { 1428 struct bpf_verifier_state *vstate = env->cur_state; 1429 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1430 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1431 struct bpf_reg_state *reg, *regs = state->regs; 1432 bool rw64; 1433 1434 if (regno >= MAX_BPF_REG) { 1435 verbose(env, "R%d is invalid\n", regno); 1436 return -EINVAL; 1437 } 1438 1439 reg = ®s[regno]; 1440 rw64 = is_reg64(env, insn, regno, reg, t); 1441 if (t == SRC_OP) { 1442 /* check whether register used as source operand can be read */ 1443 if (reg->type == NOT_INIT) { 1444 verbose(env, "R%d !read_ok\n", regno); 1445 return -EACCES; 1446 } 1447 /* We don't need to worry about FP liveness because it's read-only */ 1448 if (regno == BPF_REG_FP) 1449 return 0; 1450 1451 if (rw64) 1452 mark_insn_zext(env, reg); 1453 1454 return mark_reg_read(env, reg, reg->parent, 1455 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1456 } else { 1457 /* check whether register used as dest operand can be written to */ 1458 if (regno == BPF_REG_FP) { 1459 verbose(env, "frame pointer is read only\n"); 1460 return -EACCES; 1461 } 1462 reg->live |= REG_LIVE_WRITTEN; 1463 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1464 if (t == DST_OP) 1465 mark_reg_unknown(env, regs, regno); 1466 } 1467 return 0; 1468 } 1469 1470 /* for any branch, call, exit record the history of jmps in the given state */ 1471 static int push_jmp_history(struct bpf_verifier_env *env, 1472 struct bpf_verifier_state *cur) 1473 { 1474 u32 cnt = cur->jmp_history_cnt; 1475 struct bpf_idx_pair *p; 1476 1477 cnt++; 1478 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1479 if (!p) 1480 return -ENOMEM; 1481 p[cnt - 1].idx = env->insn_idx; 1482 p[cnt - 1].prev_idx = env->prev_insn_idx; 1483 cur->jmp_history = p; 1484 cur->jmp_history_cnt = cnt; 1485 return 0; 1486 } 1487 1488 /* Backtrack one insn at a time. If idx is not at the top of recorded 1489 * history then previous instruction came from straight line execution. 1490 */ 1491 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1492 u32 *history) 1493 { 1494 u32 cnt = *history; 1495 1496 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1497 i = st->jmp_history[cnt - 1].prev_idx; 1498 (*history)--; 1499 } else { 1500 i--; 1501 } 1502 return i; 1503 } 1504 1505 /* For given verifier state backtrack_insn() is called from the last insn to 1506 * the first insn. Its purpose is to compute a bitmask of registers and 1507 * stack slots that needs precision in the parent verifier state. 1508 */ 1509 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1510 u32 *reg_mask, u64 *stack_mask) 1511 { 1512 const struct bpf_insn_cbs cbs = { 1513 .cb_print = verbose, 1514 .private_data = env, 1515 }; 1516 struct bpf_insn *insn = env->prog->insnsi + idx; 1517 u8 class = BPF_CLASS(insn->code); 1518 u8 opcode = BPF_OP(insn->code); 1519 u8 mode = BPF_MODE(insn->code); 1520 u32 dreg = 1u << insn->dst_reg; 1521 u32 sreg = 1u << insn->src_reg; 1522 u32 spi; 1523 1524 if (insn->code == 0) 1525 return 0; 1526 if (env->log.level & BPF_LOG_LEVEL) { 1527 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1528 verbose(env, "%d: ", idx); 1529 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1530 } 1531 1532 if (class == BPF_ALU || class == BPF_ALU64) { 1533 if (!(*reg_mask & dreg)) 1534 return 0; 1535 if (opcode == BPF_MOV) { 1536 if (BPF_SRC(insn->code) == BPF_X) { 1537 /* dreg = sreg 1538 * dreg needs precision after this insn 1539 * sreg needs precision before this insn 1540 */ 1541 *reg_mask &= ~dreg; 1542 *reg_mask |= sreg; 1543 } else { 1544 /* dreg = K 1545 * dreg needs precision after this insn. 1546 * Corresponding register is already marked 1547 * as precise=true in this verifier state. 1548 * No further markings in parent are necessary 1549 */ 1550 *reg_mask &= ~dreg; 1551 } 1552 } else { 1553 if (BPF_SRC(insn->code) == BPF_X) { 1554 /* dreg += sreg 1555 * both dreg and sreg need precision 1556 * before this insn 1557 */ 1558 *reg_mask |= sreg; 1559 } /* else dreg += K 1560 * dreg still needs precision before this insn 1561 */ 1562 } 1563 } else if (class == BPF_LDX) { 1564 if (!(*reg_mask & dreg)) 1565 return 0; 1566 *reg_mask &= ~dreg; 1567 1568 /* scalars can only be spilled into stack w/o losing precision. 1569 * Load from any other memory can be zero extended. 1570 * The desire to keep that precision is already indicated 1571 * by 'precise' mark in corresponding register of this state. 1572 * No further tracking necessary. 1573 */ 1574 if (insn->src_reg != BPF_REG_FP) 1575 return 0; 1576 if (BPF_SIZE(insn->code) != BPF_DW) 1577 return 0; 1578 1579 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1580 * that [fp - off] slot contains scalar that needs to be 1581 * tracked with precision 1582 */ 1583 spi = (-insn->off - 1) / BPF_REG_SIZE; 1584 if (spi >= 64) { 1585 verbose(env, "BUG spi %d\n", spi); 1586 WARN_ONCE(1, "verifier backtracking bug"); 1587 return -EFAULT; 1588 } 1589 *stack_mask |= 1ull << spi; 1590 } else if (class == BPF_STX || class == BPF_ST) { 1591 if (*reg_mask & dreg) 1592 /* stx & st shouldn't be using _scalar_ dst_reg 1593 * to access memory. It means backtracking 1594 * encountered a case of pointer subtraction. 1595 */ 1596 return -ENOTSUPP; 1597 /* scalars can only be spilled into stack */ 1598 if (insn->dst_reg != BPF_REG_FP) 1599 return 0; 1600 if (BPF_SIZE(insn->code) != BPF_DW) 1601 return 0; 1602 spi = (-insn->off - 1) / BPF_REG_SIZE; 1603 if (spi >= 64) { 1604 verbose(env, "BUG spi %d\n", spi); 1605 WARN_ONCE(1, "verifier backtracking bug"); 1606 return -EFAULT; 1607 } 1608 if (!(*stack_mask & (1ull << spi))) 1609 return 0; 1610 *stack_mask &= ~(1ull << spi); 1611 if (class == BPF_STX) 1612 *reg_mask |= sreg; 1613 } else if (class == BPF_JMP || class == BPF_JMP32) { 1614 if (opcode == BPF_CALL) { 1615 if (insn->src_reg == BPF_PSEUDO_CALL) 1616 return -ENOTSUPP; 1617 /* regular helper call sets R0 */ 1618 *reg_mask &= ~1; 1619 if (*reg_mask & 0x3f) { 1620 /* if backtracing was looking for registers R1-R5 1621 * they should have been found already. 1622 */ 1623 verbose(env, "BUG regs %x\n", *reg_mask); 1624 WARN_ONCE(1, "verifier backtracking bug"); 1625 return -EFAULT; 1626 } 1627 } else if (opcode == BPF_EXIT) { 1628 return -ENOTSUPP; 1629 } 1630 } else if (class == BPF_LD) { 1631 if (!(*reg_mask & dreg)) 1632 return 0; 1633 *reg_mask &= ~dreg; 1634 /* It's ld_imm64 or ld_abs or ld_ind. 1635 * For ld_imm64 no further tracking of precision 1636 * into parent is necessary 1637 */ 1638 if (mode == BPF_IND || mode == BPF_ABS) 1639 /* to be analyzed */ 1640 return -ENOTSUPP; 1641 } 1642 return 0; 1643 } 1644 1645 /* the scalar precision tracking algorithm: 1646 * . at the start all registers have precise=false. 1647 * . scalar ranges are tracked as normal through alu and jmp insns. 1648 * . once precise value of the scalar register is used in: 1649 * . ptr + scalar alu 1650 * . if (scalar cond K|scalar) 1651 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1652 * backtrack through the verifier states and mark all registers and 1653 * stack slots with spilled constants that these scalar regisers 1654 * should be precise. 1655 * . during state pruning two registers (or spilled stack slots) 1656 * are equivalent if both are not precise. 1657 * 1658 * Note the verifier cannot simply walk register parentage chain, 1659 * since many different registers and stack slots could have been 1660 * used to compute single precise scalar. 1661 * 1662 * The approach of starting with precise=true for all registers and then 1663 * backtrack to mark a register as not precise when the verifier detects 1664 * that program doesn't care about specific value (e.g., when helper 1665 * takes register as ARG_ANYTHING parameter) is not safe. 1666 * 1667 * It's ok to walk single parentage chain of the verifier states. 1668 * It's possible that this backtracking will go all the way till 1st insn. 1669 * All other branches will be explored for needing precision later. 1670 * 1671 * The backtracking needs to deal with cases like: 1672 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1673 * r9 -= r8 1674 * r5 = r9 1675 * if r5 > 0x79f goto pc+7 1676 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1677 * r5 += 1 1678 * ... 1679 * call bpf_perf_event_output#25 1680 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1681 * 1682 * and this case: 1683 * r6 = 1 1684 * call foo // uses callee's r6 inside to compute r0 1685 * r0 += r6 1686 * if r0 == 0 goto 1687 * 1688 * to track above reg_mask/stack_mask needs to be independent for each frame. 1689 * 1690 * Also if parent's curframe > frame where backtracking started, 1691 * the verifier need to mark registers in both frames, otherwise callees 1692 * may incorrectly prune callers. This is similar to 1693 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1694 * 1695 * For now backtracking falls back into conservative marking. 1696 */ 1697 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1698 struct bpf_verifier_state *st) 1699 { 1700 struct bpf_func_state *func; 1701 struct bpf_reg_state *reg; 1702 int i, j; 1703 1704 /* big hammer: mark all scalars precise in this path. 1705 * pop_stack may still get !precise scalars. 1706 */ 1707 for (; st; st = st->parent) 1708 for (i = 0; i <= st->curframe; i++) { 1709 func = st->frame[i]; 1710 for (j = 0; j < BPF_REG_FP; j++) { 1711 reg = &func->regs[j]; 1712 if (reg->type != SCALAR_VALUE) 1713 continue; 1714 reg->precise = true; 1715 } 1716 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1717 if (func->stack[j].slot_type[0] != STACK_SPILL) 1718 continue; 1719 reg = &func->stack[j].spilled_ptr; 1720 if (reg->type != SCALAR_VALUE) 1721 continue; 1722 reg->precise = true; 1723 } 1724 } 1725 } 1726 1727 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1728 int spi) 1729 { 1730 struct bpf_verifier_state *st = env->cur_state; 1731 int first_idx = st->first_insn_idx; 1732 int last_idx = env->insn_idx; 1733 struct bpf_func_state *func; 1734 struct bpf_reg_state *reg; 1735 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1736 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1737 bool skip_first = true; 1738 bool new_marks = false; 1739 int i, err; 1740 1741 if (!env->allow_ptr_leaks) 1742 /* backtracking is root only for now */ 1743 return 0; 1744 1745 func = st->frame[st->curframe]; 1746 if (regno >= 0) { 1747 reg = &func->regs[regno]; 1748 if (reg->type != SCALAR_VALUE) { 1749 WARN_ONCE(1, "backtracing misuse"); 1750 return -EFAULT; 1751 } 1752 if (!reg->precise) 1753 new_marks = true; 1754 else 1755 reg_mask = 0; 1756 reg->precise = true; 1757 } 1758 1759 while (spi >= 0) { 1760 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1761 stack_mask = 0; 1762 break; 1763 } 1764 reg = &func->stack[spi].spilled_ptr; 1765 if (reg->type != SCALAR_VALUE) { 1766 stack_mask = 0; 1767 break; 1768 } 1769 if (!reg->precise) 1770 new_marks = true; 1771 else 1772 stack_mask = 0; 1773 reg->precise = true; 1774 break; 1775 } 1776 1777 if (!new_marks) 1778 return 0; 1779 if (!reg_mask && !stack_mask) 1780 return 0; 1781 for (;;) { 1782 DECLARE_BITMAP(mask, 64); 1783 u32 history = st->jmp_history_cnt; 1784 1785 if (env->log.level & BPF_LOG_LEVEL) 1786 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1787 for (i = last_idx;;) { 1788 if (skip_first) { 1789 err = 0; 1790 skip_first = false; 1791 } else { 1792 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1793 } 1794 if (err == -ENOTSUPP) { 1795 mark_all_scalars_precise(env, st); 1796 return 0; 1797 } else if (err) { 1798 return err; 1799 } 1800 if (!reg_mask && !stack_mask) 1801 /* Found assignment(s) into tracked register in this state. 1802 * Since this state is already marked, just return. 1803 * Nothing to be tracked further in the parent state. 1804 */ 1805 return 0; 1806 if (i == first_idx) 1807 break; 1808 i = get_prev_insn_idx(st, i, &history); 1809 if (i >= env->prog->len) { 1810 /* This can happen if backtracking reached insn 0 1811 * and there are still reg_mask or stack_mask 1812 * to backtrack. 1813 * It means the backtracking missed the spot where 1814 * particular register was initialized with a constant. 1815 */ 1816 verbose(env, "BUG backtracking idx %d\n", i); 1817 WARN_ONCE(1, "verifier backtracking bug"); 1818 return -EFAULT; 1819 } 1820 } 1821 st = st->parent; 1822 if (!st) 1823 break; 1824 1825 new_marks = false; 1826 func = st->frame[st->curframe]; 1827 bitmap_from_u64(mask, reg_mask); 1828 for_each_set_bit(i, mask, 32) { 1829 reg = &func->regs[i]; 1830 if (reg->type != SCALAR_VALUE) { 1831 reg_mask &= ~(1u << i); 1832 continue; 1833 } 1834 if (!reg->precise) 1835 new_marks = true; 1836 reg->precise = true; 1837 } 1838 1839 bitmap_from_u64(mask, stack_mask); 1840 for_each_set_bit(i, mask, 64) { 1841 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1842 /* the sequence of instructions: 1843 * 2: (bf) r3 = r10 1844 * 3: (7b) *(u64 *)(r3 -8) = r0 1845 * 4: (79) r4 = *(u64 *)(r10 -8) 1846 * doesn't contain jmps. It's backtracked 1847 * as a single block. 1848 * During backtracking insn 3 is not recognized as 1849 * stack access, so at the end of backtracking 1850 * stack slot fp-8 is still marked in stack_mask. 1851 * However the parent state may not have accessed 1852 * fp-8 and it's "unallocated" stack space. 1853 * In such case fallback to conservative. 1854 */ 1855 mark_all_scalars_precise(env, st); 1856 return 0; 1857 } 1858 1859 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1860 stack_mask &= ~(1ull << i); 1861 continue; 1862 } 1863 reg = &func->stack[i].spilled_ptr; 1864 if (reg->type != SCALAR_VALUE) { 1865 stack_mask &= ~(1ull << i); 1866 continue; 1867 } 1868 if (!reg->precise) 1869 new_marks = true; 1870 reg->precise = true; 1871 } 1872 if (env->log.level & BPF_LOG_LEVEL) { 1873 print_verifier_state(env, func); 1874 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1875 new_marks ? "didn't have" : "already had", 1876 reg_mask, stack_mask); 1877 } 1878 1879 if (!reg_mask && !stack_mask) 1880 break; 1881 if (!new_marks) 1882 break; 1883 1884 last_idx = st->last_insn_idx; 1885 first_idx = st->first_insn_idx; 1886 } 1887 return 0; 1888 } 1889 1890 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1891 { 1892 return __mark_chain_precision(env, regno, -1); 1893 } 1894 1895 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1896 { 1897 return __mark_chain_precision(env, -1, spi); 1898 } 1899 1900 static bool is_spillable_regtype(enum bpf_reg_type type) 1901 { 1902 switch (type) { 1903 case PTR_TO_MAP_VALUE: 1904 case PTR_TO_MAP_VALUE_OR_NULL: 1905 case PTR_TO_STACK: 1906 case PTR_TO_CTX: 1907 case PTR_TO_PACKET: 1908 case PTR_TO_PACKET_META: 1909 case PTR_TO_PACKET_END: 1910 case PTR_TO_FLOW_KEYS: 1911 case CONST_PTR_TO_MAP: 1912 case PTR_TO_SOCKET: 1913 case PTR_TO_SOCKET_OR_NULL: 1914 case PTR_TO_SOCK_COMMON: 1915 case PTR_TO_SOCK_COMMON_OR_NULL: 1916 case PTR_TO_TCP_SOCK: 1917 case PTR_TO_TCP_SOCK_OR_NULL: 1918 case PTR_TO_XDP_SOCK: 1919 return true; 1920 default: 1921 return false; 1922 } 1923 } 1924 1925 /* Does this register contain a constant zero? */ 1926 static bool register_is_null(struct bpf_reg_state *reg) 1927 { 1928 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1929 } 1930 1931 static bool register_is_const(struct bpf_reg_state *reg) 1932 { 1933 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1934 } 1935 1936 static void save_register_state(struct bpf_func_state *state, 1937 int spi, struct bpf_reg_state *reg) 1938 { 1939 int i; 1940 1941 state->stack[spi].spilled_ptr = *reg; 1942 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1943 1944 for (i = 0; i < BPF_REG_SIZE; i++) 1945 state->stack[spi].slot_type[i] = STACK_SPILL; 1946 } 1947 1948 /* check_stack_read/write functions track spill/fill of registers, 1949 * stack boundary and alignment are checked in check_mem_access() 1950 */ 1951 static int check_stack_write(struct bpf_verifier_env *env, 1952 struct bpf_func_state *state, /* func where register points to */ 1953 int off, int size, int value_regno, int insn_idx) 1954 { 1955 struct bpf_func_state *cur; /* state of the current function */ 1956 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1957 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1958 struct bpf_reg_state *reg = NULL; 1959 1960 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1961 state->acquired_refs, true); 1962 if (err) 1963 return err; 1964 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1965 * so it's aligned access and [off, off + size) are within stack limits 1966 */ 1967 if (!env->allow_ptr_leaks && 1968 state->stack[spi].slot_type[0] == STACK_SPILL && 1969 size != BPF_REG_SIZE) { 1970 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1971 return -EACCES; 1972 } 1973 1974 cur = env->cur_state->frame[env->cur_state->curframe]; 1975 if (value_regno >= 0) 1976 reg = &cur->regs[value_regno]; 1977 1978 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1979 !register_is_null(reg) && env->allow_ptr_leaks) { 1980 if (dst_reg != BPF_REG_FP) { 1981 /* The backtracking logic can only recognize explicit 1982 * stack slot address like [fp - 8]. Other spill of 1983 * scalar via different register has to be conervative. 1984 * Backtrack from here and mark all registers as precise 1985 * that contributed into 'reg' being a constant. 1986 */ 1987 err = mark_chain_precision(env, value_regno); 1988 if (err) 1989 return err; 1990 } 1991 save_register_state(state, spi, reg); 1992 } else if (reg && is_spillable_regtype(reg->type)) { 1993 /* register containing pointer is being spilled into stack */ 1994 if (size != BPF_REG_SIZE) { 1995 verbose_linfo(env, insn_idx, "; "); 1996 verbose(env, "invalid size of register spill\n"); 1997 return -EACCES; 1998 } 1999 2000 if (state != cur && reg->type == PTR_TO_STACK) { 2001 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2002 return -EINVAL; 2003 } 2004 2005 if (!env->allow_ptr_leaks) { 2006 bool sanitize = false; 2007 2008 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2009 register_is_const(&state->stack[spi].spilled_ptr)) 2010 sanitize = true; 2011 for (i = 0; i < BPF_REG_SIZE; i++) 2012 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2013 sanitize = true; 2014 break; 2015 } 2016 if (sanitize) { 2017 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2018 int soff = (-spi - 1) * BPF_REG_SIZE; 2019 2020 /* detected reuse of integer stack slot with a pointer 2021 * which means either llvm is reusing stack slot or 2022 * an attacker is trying to exploit CVE-2018-3639 2023 * (speculative store bypass) 2024 * Have to sanitize that slot with preemptive 2025 * store of zero. 2026 */ 2027 if (*poff && *poff != soff) { 2028 /* disallow programs where single insn stores 2029 * into two different stack slots, since verifier 2030 * cannot sanitize them 2031 */ 2032 verbose(env, 2033 "insn %d cannot access two stack slots fp%d and fp%d", 2034 insn_idx, *poff, soff); 2035 return -EINVAL; 2036 } 2037 *poff = soff; 2038 } 2039 } 2040 save_register_state(state, spi, reg); 2041 } else { 2042 u8 type = STACK_MISC; 2043 2044 /* regular write of data into stack destroys any spilled ptr */ 2045 state->stack[spi].spilled_ptr.type = NOT_INIT; 2046 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2047 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2048 for (i = 0; i < BPF_REG_SIZE; i++) 2049 state->stack[spi].slot_type[i] = STACK_MISC; 2050 2051 /* only mark the slot as written if all 8 bytes were written 2052 * otherwise read propagation may incorrectly stop too soon 2053 * when stack slots are partially written. 2054 * This heuristic means that read propagation will be 2055 * conservative, since it will add reg_live_read marks 2056 * to stack slots all the way to first state when programs 2057 * writes+reads less than 8 bytes 2058 */ 2059 if (size == BPF_REG_SIZE) 2060 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2061 2062 /* when we zero initialize stack slots mark them as such */ 2063 if (reg && register_is_null(reg)) { 2064 /* backtracking doesn't work for STACK_ZERO yet. */ 2065 err = mark_chain_precision(env, value_regno); 2066 if (err) 2067 return err; 2068 type = STACK_ZERO; 2069 } 2070 2071 /* Mark slots affected by this stack write. */ 2072 for (i = 0; i < size; i++) 2073 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2074 type; 2075 } 2076 return 0; 2077 } 2078 2079 static int check_stack_read(struct bpf_verifier_env *env, 2080 struct bpf_func_state *reg_state /* func where register points to */, 2081 int off, int size, int value_regno) 2082 { 2083 struct bpf_verifier_state *vstate = env->cur_state; 2084 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2085 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2086 struct bpf_reg_state *reg; 2087 u8 *stype; 2088 2089 if (reg_state->allocated_stack <= slot) { 2090 verbose(env, "invalid read from stack off %d+0 size %d\n", 2091 off, size); 2092 return -EACCES; 2093 } 2094 stype = reg_state->stack[spi].slot_type; 2095 reg = ®_state->stack[spi].spilled_ptr; 2096 2097 if (stype[0] == STACK_SPILL) { 2098 if (size != BPF_REG_SIZE) { 2099 if (reg->type != SCALAR_VALUE) { 2100 verbose_linfo(env, env->insn_idx, "; "); 2101 verbose(env, "invalid size of register fill\n"); 2102 return -EACCES; 2103 } 2104 if (value_regno >= 0) { 2105 mark_reg_unknown(env, state->regs, value_regno); 2106 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2107 } 2108 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2109 return 0; 2110 } 2111 for (i = 1; i < BPF_REG_SIZE; i++) { 2112 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2113 verbose(env, "corrupted spill memory\n"); 2114 return -EACCES; 2115 } 2116 } 2117 2118 if (value_regno >= 0) { 2119 /* restore register state from stack */ 2120 state->regs[value_regno] = *reg; 2121 /* mark reg as written since spilled pointer state likely 2122 * has its liveness marks cleared by is_state_visited() 2123 * which resets stack/reg liveness for state transitions 2124 */ 2125 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2126 } 2127 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2128 } else { 2129 int zeros = 0; 2130 2131 for (i = 0; i < size; i++) { 2132 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2133 continue; 2134 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2135 zeros++; 2136 continue; 2137 } 2138 verbose(env, "invalid read from stack off %d+%d size %d\n", 2139 off, i, size); 2140 return -EACCES; 2141 } 2142 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2143 if (value_regno >= 0) { 2144 if (zeros == size) { 2145 /* any size read into register is zero extended, 2146 * so the whole register == const_zero 2147 */ 2148 __mark_reg_const_zero(&state->regs[value_regno]); 2149 /* backtracking doesn't support STACK_ZERO yet, 2150 * so mark it precise here, so that later 2151 * backtracking can stop here. 2152 * Backtracking may not need this if this register 2153 * doesn't participate in pointer adjustment. 2154 * Forward propagation of precise flag is not 2155 * necessary either. This mark is only to stop 2156 * backtracking. Any register that contributed 2157 * to const 0 was marked precise before spill. 2158 */ 2159 state->regs[value_regno].precise = true; 2160 } else { 2161 /* have read misc data from the stack */ 2162 mark_reg_unknown(env, state->regs, value_regno); 2163 } 2164 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2165 } 2166 } 2167 return 0; 2168 } 2169 2170 static int check_stack_access(struct bpf_verifier_env *env, 2171 const struct bpf_reg_state *reg, 2172 int off, int size) 2173 { 2174 /* Stack accesses must be at a fixed offset, so that we 2175 * can determine what type of data were returned. See 2176 * check_stack_read(). 2177 */ 2178 if (!tnum_is_const(reg->var_off)) { 2179 char tn_buf[48]; 2180 2181 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2182 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2183 tn_buf, off, size); 2184 return -EACCES; 2185 } 2186 2187 if (off >= 0 || off < -MAX_BPF_STACK) { 2188 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2189 return -EACCES; 2190 } 2191 2192 return 0; 2193 } 2194 2195 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2196 int off, int size, enum bpf_access_type type) 2197 { 2198 struct bpf_reg_state *regs = cur_regs(env); 2199 struct bpf_map *map = regs[regno].map_ptr; 2200 u32 cap = bpf_map_flags_to_cap(map); 2201 2202 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2203 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2204 map->value_size, off, size); 2205 return -EACCES; 2206 } 2207 2208 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2209 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2210 map->value_size, off, size); 2211 return -EACCES; 2212 } 2213 2214 return 0; 2215 } 2216 2217 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2218 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2219 int size, bool zero_size_allowed) 2220 { 2221 struct bpf_reg_state *regs = cur_regs(env); 2222 struct bpf_map *map = regs[regno].map_ptr; 2223 2224 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2225 off + size > map->value_size) { 2226 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2227 map->value_size, off, size); 2228 return -EACCES; 2229 } 2230 return 0; 2231 } 2232 2233 /* check read/write into a map element with possible variable offset */ 2234 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2235 int off, int size, bool zero_size_allowed) 2236 { 2237 struct bpf_verifier_state *vstate = env->cur_state; 2238 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2239 struct bpf_reg_state *reg = &state->regs[regno]; 2240 int err; 2241 2242 /* We may have adjusted the register to this map value, so we 2243 * need to try adding each of min_value and max_value to off 2244 * to make sure our theoretical access will be safe. 2245 */ 2246 if (env->log.level & BPF_LOG_LEVEL) 2247 print_verifier_state(env, state); 2248 2249 /* The minimum value is only important with signed 2250 * comparisons where we can't assume the floor of a 2251 * value is 0. If we are using signed variables for our 2252 * index'es we need to make sure that whatever we use 2253 * will have a set floor within our range. 2254 */ 2255 if (reg->smin_value < 0 && 2256 (reg->smin_value == S64_MIN || 2257 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2258 reg->smin_value + off < 0)) { 2259 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2260 regno); 2261 return -EACCES; 2262 } 2263 err = __check_map_access(env, regno, reg->smin_value + off, size, 2264 zero_size_allowed); 2265 if (err) { 2266 verbose(env, "R%d min value is outside of the array range\n", 2267 regno); 2268 return err; 2269 } 2270 2271 /* If we haven't set a max value then we need to bail since we can't be 2272 * sure we won't do bad things. 2273 * If reg->umax_value + off could overflow, treat that as unbounded too. 2274 */ 2275 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2276 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2277 regno); 2278 return -EACCES; 2279 } 2280 err = __check_map_access(env, regno, reg->umax_value + off, size, 2281 zero_size_allowed); 2282 if (err) 2283 verbose(env, "R%d max value is outside of the array range\n", 2284 regno); 2285 2286 if (map_value_has_spin_lock(reg->map_ptr)) { 2287 u32 lock = reg->map_ptr->spin_lock_off; 2288 2289 /* if any part of struct bpf_spin_lock can be touched by 2290 * load/store reject this program. 2291 * To check that [x1, x2) overlaps with [y1, y2) 2292 * it is sufficient to check x1 < y2 && y1 < x2. 2293 */ 2294 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2295 lock < reg->umax_value + off + size) { 2296 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2297 return -EACCES; 2298 } 2299 } 2300 return err; 2301 } 2302 2303 #define MAX_PACKET_OFF 0xffff 2304 2305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2306 const struct bpf_call_arg_meta *meta, 2307 enum bpf_access_type t) 2308 { 2309 switch (env->prog->type) { 2310 /* Program types only with direct read access go here! */ 2311 case BPF_PROG_TYPE_LWT_IN: 2312 case BPF_PROG_TYPE_LWT_OUT: 2313 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2314 case BPF_PROG_TYPE_SK_REUSEPORT: 2315 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2316 case BPF_PROG_TYPE_CGROUP_SKB: 2317 if (t == BPF_WRITE) 2318 return false; 2319 /* fallthrough */ 2320 2321 /* Program types with direct read + write access go here! */ 2322 case BPF_PROG_TYPE_SCHED_CLS: 2323 case BPF_PROG_TYPE_SCHED_ACT: 2324 case BPF_PROG_TYPE_XDP: 2325 case BPF_PROG_TYPE_LWT_XMIT: 2326 case BPF_PROG_TYPE_SK_SKB: 2327 case BPF_PROG_TYPE_SK_MSG: 2328 if (meta) 2329 return meta->pkt_access; 2330 2331 env->seen_direct_write = true; 2332 return true; 2333 2334 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2335 if (t == BPF_WRITE) 2336 env->seen_direct_write = true; 2337 2338 return true; 2339 2340 default: 2341 return false; 2342 } 2343 } 2344 2345 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2346 int off, int size, bool zero_size_allowed) 2347 { 2348 struct bpf_reg_state *regs = cur_regs(env); 2349 struct bpf_reg_state *reg = ®s[regno]; 2350 2351 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2352 (u64)off + size > reg->range) { 2353 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2354 off, size, regno, reg->id, reg->off, reg->range); 2355 return -EACCES; 2356 } 2357 return 0; 2358 } 2359 2360 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2361 int size, bool zero_size_allowed) 2362 { 2363 struct bpf_reg_state *regs = cur_regs(env); 2364 struct bpf_reg_state *reg = ®s[regno]; 2365 int err; 2366 2367 /* We may have added a variable offset to the packet pointer; but any 2368 * reg->range we have comes after that. We are only checking the fixed 2369 * offset. 2370 */ 2371 2372 /* We don't allow negative numbers, because we aren't tracking enough 2373 * detail to prove they're safe. 2374 */ 2375 if (reg->smin_value < 0) { 2376 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2377 regno); 2378 return -EACCES; 2379 } 2380 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2381 if (err) { 2382 verbose(env, "R%d offset is outside of the packet\n", regno); 2383 return err; 2384 } 2385 2386 /* __check_packet_access has made sure "off + size - 1" is within u16. 2387 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2388 * otherwise find_good_pkt_pointers would have refused to set range info 2389 * that __check_packet_access would have rejected this pkt access. 2390 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2391 */ 2392 env->prog->aux->max_pkt_offset = 2393 max_t(u32, env->prog->aux->max_pkt_offset, 2394 off + reg->umax_value + size - 1); 2395 2396 return err; 2397 } 2398 2399 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2400 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2401 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2402 u32 *btf_id) 2403 { 2404 struct bpf_insn_access_aux info = { 2405 .reg_type = *reg_type, 2406 .log = &env->log, 2407 }; 2408 2409 if (env->ops->is_valid_access && 2410 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2411 /* A non zero info.ctx_field_size indicates that this field is a 2412 * candidate for later verifier transformation to load the whole 2413 * field and then apply a mask when accessed with a narrower 2414 * access than actual ctx access size. A zero info.ctx_field_size 2415 * will only allow for whole field access and rejects any other 2416 * type of narrower access. 2417 */ 2418 *reg_type = info.reg_type; 2419 2420 if (*reg_type == PTR_TO_BTF_ID) 2421 *btf_id = info.btf_id; 2422 else 2423 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2424 /* remember the offset of last byte accessed in ctx */ 2425 if (env->prog->aux->max_ctx_offset < off + size) 2426 env->prog->aux->max_ctx_offset = off + size; 2427 return 0; 2428 } 2429 2430 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2431 return -EACCES; 2432 } 2433 2434 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2435 int size) 2436 { 2437 if (size < 0 || off < 0 || 2438 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2439 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2440 off, size); 2441 return -EACCES; 2442 } 2443 return 0; 2444 } 2445 2446 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2447 u32 regno, int off, int size, 2448 enum bpf_access_type t) 2449 { 2450 struct bpf_reg_state *regs = cur_regs(env); 2451 struct bpf_reg_state *reg = ®s[regno]; 2452 struct bpf_insn_access_aux info = {}; 2453 bool valid; 2454 2455 if (reg->smin_value < 0) { 2456 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2457 regno); 2458 return -EACCES; 2459 } 2460 2461 switch (reg->type) { 2462 case PTR_TO_SOCK_COMMON: 2463 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2464 break; 2465 case PTR_TO_SOCKET: 2466 valid = bpf_sock_is_valid_access(off, size, t, &info); 2467 break; 2468 case PTR_TO_TCP_SOCK: 2469 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2470 break; 2471 case PTR_TO_XDP_SOCK: 2472 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2473 break; 2474 default: 2475 valid = false; 2476 } 2477 2478 2479 if (valid) { 2480 env->insn_aux_data[insn_idx].ctx_field_size = 2481 info.ctx_field_size; 2482 return 0; 2483 } 2484 2485 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2486 regno, reg_type_str[reg->type], off, size); 2487 2488 return -EACCES; 2489 } 2490 2491 static bool __is_pointer_value(bool allow_ptr_leaks, 2492 const struct bpf_reg_state *reg) 2493 { 2494 if (allow_ptr_leaks) 2495 return false; 2496 2497 return reg->type != SCALAR_VALUE; 2498 } 2499 2500 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2501 { 2502 return cur_regs(env) + regno; 2503 } 2504 2505 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2506 { 2507 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2508 } 2509 2510 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2511 { 2512 const struct bpf_reg_state *reg = reg_state(env, regno); 2513 2514 return reg->type == PTR_TO_CTX; 2515 } 2516 2517 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2518 { 2519 const struct bpf_reg_state *reg = reg_state(env, regno); 2520 2521 return type_is_sk_pointer(reg->type); 2522 } 2523 2524 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2525 { 2526 const struct bpf_reg_state *reg = reg_state(env, regno); 2527 2528 return type_is_pkt_pointer(reg->type); 2529 } 2530 2531 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2532 { 2533 const struct bpf_reg_state *reg = reg_state(env, regno); 2534 2535 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2536 return reg->type == PTR_TO_FLOW_KEYS; 2537 } 2538 2539 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2540 const struct bpf_reg_state *reg, 2541 int off, int size, bool strict) 2542 { 2543 struct tnum reg_off; 2544 int ip_align; 2545 2546 /* Byte size accesses are always allowed. */ 2547 if (!strict || size == 1) 2548 return 0; 2549 2550 /* For platforms that do not have a Kconfig enabling 2551 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2552 * NET_IP_ALIGN is universally set to '2'. And on platforms 2553 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2554 * to this code only in strict mode where we want to emulate 2555 * the NET_IP_ALIGN==2 checking. Therefore use an 2556 * unconditional IP align value of '2'. 2557 */ 2558 ip_align = 2; 2559 2560 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2561 if (!tnum_is_aligned(reg_off, size)) { 2562 char tn_buf[48]; 2563 2564 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2565 verbose(env, 2566 "misaligned packet access off %d+%s+%d+%d size %d\n", 2567 ip_align, tn_buf, reg->off, off, size); 2568 return -EACCES; 2569 } 2570 2571 return 0; 2572 } 2573 2574 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2575 const struct bpf_reg_state *reg, 2576 const char *pointer_desc, 2577 int off, int size, bool strict) 2578 { 2579 struct tnum reg_off; 2580 2581 /* Byte size accesses are always allowed. */ 2582 if (!strict || size == 1) 2583 return 0; 2584 2585 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2586 if (!tnum_is_aligned(reg_off, size)) { 2587 char tn_buf[48]; 2588 2589 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2590 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2591 pointer_desc, tn_buf, reg->off, off, size); 2592 return -EACCES; 2593 } 2594 2595 return 0; 2596 } 2597 2598 static int check_ptr_alignment(struct bpf_verifier_env *env, 2599 const struct bpf_reg_state *reg, int off, 2600 int size, bool strict_alignment_once) 2601 { 2602 bool strict = env->strict_alignment || strict_alignment_once; 2603 const char *pointer_desc = ""; 2604 2605 switch (reg->type) { 2606 case PTR_TO_PACKET: 2607 case PTR_TO_PACKET_META: 2608 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2609 * right in front, treat it the very same way. 2610 */ 2611 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2612 case PTR_TO_FLOW_KEYS: 2613 pointer_desc = "flow keys "; 2614 break; 2615 case PTR_TO_MAP_VALUE: 2616 pointer_desc = "value "; 2617 break; 2618 case PTR_TO_CTX: 2619 pointer_desc = "context "; 2620 break; 2621 case PTR_TO_STACK: 2622 pointer_desc = "stack "; 2623 /* The stack spill tracking logic in check_stack_write() 2624 * and check_stack_read() relies on stack accesses being 2625 * aligned. 2626 */ 2627 strict = true; 2628 break; 2629 case PTR_TO_SOCKET: 2630 pointer_desc = "sock "; 2631 break; 2632 case PTR_TO_SOCK_COMMON: 2633 pointer_desc = "sock_common "; 2634 break; 2635 case PTR_TO_TCP_SOCK: 2636 pointer_desc = "tcp_sock "; 2637 break; 2638 case PTR_TO_XDP_SOCK: 2639 pointer_desc = "xdp_sock "; 2640 break; 2641 default: 2642 break; 2643 } 2644 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2645 strict); 2646 } 2647 2648 static int update_stack_depth(struct bpf_verifier_env *env, 2649 const struct bpf_func_state *func, 2650 int off) 2651 { 2652 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2653 2654 if (stack >= -off) 2655 return 0; 2656 2657 /* update known max for given subprogram */ 2658 env->subprog_info[func->subprogno].stack_depth = -off; 2659 return 0; 2660 } 2661 2662 /* starting from main bpf function walk all instructions of the function 2663 * and recursively walk all callees that given function can call. 2664 * Ignore jump and exit insns. 2665 * Since recursion is prevented by check_cfg() this algorithm 2666 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2667 */ 2668 static int check_max_stack_depth(struct bpf_verifier_env *env) 2669 { 2670 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2671 struct bpf_subprog_info *subprog = env->subprog_info; 2672 struct bpf_insn *insn = env->prog->insnsi; 2673 int ret_insn[MAX_CALL_FRAMES]; 2674 int ret_prog[MAX_CALL_FRAMES]; 2675 2676 process_func: 2677 /* round up to 32-bytes, since this is granularity 2678 * of interpreter stack size 2679 */ 2680 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2681 if (depth > MAX_BPF_STACK) { 2682 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2683 frame + 1, depth); 2684 return -EACCES; 2685 } 2686 continue_func: 2687 subprog_end = subprog[idx + 1].start; 2688 for (; i < subprog_end; i++) { 2689 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2690 continue; 2691 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2692 continue; 2693 /* remember insn and function to return to */ 2694 ret_insn[frame] = i + 1; 2695 ret_prog[frame] = idx; 2696 2697 /* find the callee */ 2698 i = i + insn[i].imm + 1; 2699 idx = find_subprog(env, i); 2700 if (idx < 0) { 2701 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2702 i); 2703 return -EFAULT; 2704 } 2705 frame++; 2706 if (frame >= MAX_CALL_FRAMES) { 2707 verbose(env, "the call stack of %d frames is too deep !\n", 2708 frame); 2709 return -E2BIG; 2710 } 2711 goto process_func; 2712 } 2713 /* end of for() loop means the last insn of the 'subprog' 2714 * was reached. Doesn't matter whether it was JA or EXIT 2715 */ 2716 if (frame == 0) 2717 return 0; 2718 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2719 frame--; 2720 i = ret_insn[frame]; 2721 idx = ret_prog[frame]; 2722 goto continue_func; 2723 } 2724 2725 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2726 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2727 const struct bpf_insn *insn, int idx) 2728 { 2729 int start = idx + insn->imm + 1, subprog; 2730 2731 subprog = find_subprog(env, start); 2732 if (subprog < 0) { 2733 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2734 start); 2735 return -EFAULT; 2736 } 2737 return env->subprog_info[subprog].stack_depth; 2738 } 2739 #endif 2740 2741 static int check_ctx_reg(struct bpf_verifier_env *env, 2742 const struct bpf_reg_state *reg, int regno) 2743 { 2744 /* Access to ctx or passing it to a helper is only allowed in 2745 * its original, unmodified form. 2746 */ 2747 2748 if (reg->off) { 2749 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2750 regno, reg->off); 2751 return -EACCES; 2752 } 2753 2754 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2755 char tn_buf[48]; 2756 2757 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2758 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2759 return -EACCES; 2760 } 2761 2762 return 0; 2763 } 2764 2765 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2766 const struct bpf_reg_state *reg, 2767 int regno, int off, int size) 2768 { 2769 if (off < 0) { 2770 verbose(env, 2771 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2772 regno, off, size); 2773 return -EACCES; 2774 } 2775 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2776 char tn_buf[48]; 2777 2778 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2779 verbose(env, 2780 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2781 regno, off, tn_buf); 2782 return -EACCES; 2783 } 2784 if (off + size > env->prog->aux->max_tp_access) 2785 env->prog->aux->max_tp_access = off + size; 2786 2787 return 0; 2788 } 2789 2790 2791 /* truncate register to smaller size (in bytes) 2792 * must be called with size < BPF_REG_SIZE 2793 */ 2794 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2795 { 2796 u64 mask; 2797 2798 /* clear high bits in bit representation */ 2799 reg->var_off = tnum_cast(reg->var_off, size); 2800 2801 /* fix arithmetic bounds */ 2802 mask = ((u64)1 << (size * 8)) - 1; 2803 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2804 reg->umin_value &= mask; 2805 reg->umax_value &= mask; 2806 } else { 2807 reg->umin_value = 0; 2808 reg->umax_value = mask; 2809 } 2810 reg->smin_value = reg->umin_value; 2811 reg->smax_value = reg->umax_value; 2812 } 2813 2814 static bool bpf_map_is_rdonly(const struct bpf_map *map) 2815 { 2816 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 2817 } 2818 2819 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 2820 { 2821 void *ptr; 2822 u64 addr; 2823 int err; 2824 2825 err = map->ops->map_direct_value_addr(map, &addr, off); 2826 if (err) 2827 return err; 2828 ptr = (void *)(long)addr + off; 2829 2830 switch (size) { 2831 case sizeof(u8): 2832 *val = (u64)*(u8 *)ptr; 2833 break; 2834 case sizeof(u16): 2835 *val = (u64)*(u16 *)ptr; 2836 break; 2837 case sizeof(u32): 2838 *val = (u64)*(u32 *)ptr; 2839 break; 2840 case sizeof(u64): 2841 *val = *(u64 *)ptr; 2842 break; 2843 default: 2844 return -EINVAL; 2845 } 2846 return 0; 2847 } 2848 2849 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 2850 struct bpf_reg_state *regs, 2851 int regno, int off, int size, 2852 enum bpf_access_type atype, 2853 int value_regno) 2854 { 2855 struct bpf_reg_state *reg = regs + regno; 2856 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 2857 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 2858 u32 btf_id; 2859 int ret; 2860 2861 if (atype != BPF_READ) { 2862 verbose(env, "only read is supported\n"); 2863 return -EACCES; 2864 } 2865 2866 if (off < 0) { 2867 verbose(env, 2868 "R%d is ptr_%s invalid negative access: off=%d\n", 2869 regno, tname, off); 2870 return -EACCES; 2871 } 2872 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2873 char tn_buf[48]; 2874 2875 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2876 verbose(env, 2877 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 2878 regno, tname, off, tn_buf); 2879 return -EACCES; 2880 } 2881 2882 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 2883 if (ret < 0) 2884 return ret; 2885 2886 if (ret == SCALAR_VALUE) { 2887 mark_reg_unknown(env, regs, value_regno); 2888 return 0; 2889 } 2890 mark_reg_known_zero(env, regs, value_regno); 2891 regs[value_regno].type = PTR_TO_BTF_ID; 2892 regs[value_regno].btf_id = btf_id; 2893 return 0; 2894 } 2895 2896 /* check whether memory at (regno + off) is accessible for t = (read | write) 2897 * if t==write, value_regno is a register which value is stored into memory 2898 * if t==read, value_regno is a register which will receive the value from memory 2899 * if t==write && value_regno==-1, some unknown value is stored into memory 2900 * if t==read && value_regno==-1, don't care what we read from memory 2901 */ 2902 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2903 int off, int bpf_size, enum bpf_access_type t, 2904 int value_regno, bool strict_alignment_once) 2905 { 2906 struct bpf_reg_state *regs = cur_regs(env); 2907 struct bpf_reg_state *reg = regs + regno; 2908 struct bpf_func_state *state; 2909 int size, err = 0; 2910 2911 size = bpf_size_to_bytes(bpf_size); 2912 if (size < 0) 2913 return size; 2914 2915 /* alignment checks will add in reg->off themselves */ 2916 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2917 if (err) 2918 return err; 2919 2920 /* for access checks, reg->off is just part of off */ 2921 off += reg->off; 2922 2923 if (reg->type == PTR_TO_MAP_VALUE) { 2924 if (t == BPF_WRITE && value_regno >= 0 && 2925 is_pointer_value(env, value_regno)) { 2926 verbose(env, "R%d leaks addr into map\n", value_regno); 2927 return -EACCES; 2928 } 2929 err = check_map_access_type(env, regno, off, size, t); 2930 if (err) 2931 return err; 2932 err = check_map_access(env, regno, off, size, false); 2933 if (!err && t == BPF_READ && value_regno >= 0) { 2934 struct bpf_map *map = reg->map_ptr; 2935 2936 /* if map is read-only, track its contents as scalars */ 2937 if (tnum_is_const(reg->var_off) && 2938 bpf_map_is_rdonly(map) && 2939 map->ops->map_direct_value_addr) { 2940 int map_off = off + reg->var_off.value; 2941 u64 val = 0; 2942 2943 err = bpf_map_direct_read(map, map_off, size, 2944 &val); 2945 if (err) 2946 return err; 2947 2948 regs[value_regno].type = SCALAR_VALUE; 2949 __mark_reg_known(®s[value_regno], val); 2950 } else { 2951 mark_reg_unknown(env, regs, value_regno); 2952 } 2953 } 2954 } else if (reg->type == PTR_TO_CTX) { 2955 enum bpf_reg_type reg_type = SCALAR_VALUE; 2956 u32 btf_id = 0; 2957 2958 if (t == BPF_WRITE && value_regno >= 0 && 2959 is_pointer_value(env, value_regno)) { 2960 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2961 return -EACCES; 2962 } 2963 2964 err = check_ctx_reg(env, reg, regno); 2965 if (err < 0) 2966 return err; 2967 2968 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 2969 if (err) 2970 verbose_linfo(env, insn_idx, "; "); 2971 if (!err && t == BPF_READ && value_regno >= 0) { 2972 /* ctx access returns either a scalar, or a 2973 * PTR_TO_PACKET[_META,_END]. In the latter 2974 * case, we know the offset is zero. 2975 */ 2976 if (reg_type == SCALAR_VALUE) { 2977 mark_reg_unknown(env, regs, value_regno); 2978 } else { 2979 mark_reg_known_zero(env, regs, 2980 value_regno); 2981 if (reg_type_may_be_null(reg_type)) 2982 regs[value_regno].id = ++env->id_gen; 2983 /* A load of ctx field could have different 2984 * actual load size with the one encoded in the 2985 * insn. When the dst is PTR, it is for sure not 2986 * a sub-register. 2987 */ 2988 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2989 if (reg_type == PTR_TO_BTF_ID) 2990 regs[value_regno].btf_id = btf_id; 2991 } 2992 regs[value_regno].type = reg_type; 2993 } 2994 2995 } else if (reg->type == PTR_TO_STACK) { 2996 off += reg->var_off.value; 2997 err = check_stack_access(env, reg, off, size); 2998 if (err) 2999 return err; 3000 3001 state = func(env, reg); 3002 err = update_stack_depth(env, state, off); 3003 if (err) 3004 return err; 3005 3006 if (t == BPF_WRITE) 3007 err = check_stack_write(env, state, off, size, 3008 value_regno, insn_idx); 3009 else 3010 err = check_stack_read(env, state, off, size, 3011 value_regno); 3012 } else if (reg_is_pkt_pointer(reg)) { 3013 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3014 verbose(env, "cannot write into packet\n"); 3015 return -EACCES; 3016 } 3017 if (t == BPF_WRITE && value_regno >= 0 && 3018 is_pointer_value(env, value_regno)) { 3019 verbose(env, "R%d leaks addr into packet\n", 3020 value_regno); 3021 return -EACCES; 3022 } 3023 err = check_packet_access(env, regno, off, size, false); 3024 if (!err && t == BPF_READ && value_regno >= 0) 3025 mark_reg_unknown(env, regs, value_regno); 3026 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3027 if (t == BPF_WRITE && value_regno >= 0 && 3028 is_pointer_value(env, value_regno)) { 3029 verbose(env, "R%d leaks addr into flow keys\n", 3030 value_regno); 3031 return -EACCES; 3032 } 3033 3034 err = check_flow_keys_access(env, off, size); 3035 if (!err && t == BPF_READ && value_regno >= 0) 3036 mark_reg_unknown(env, regs, value_regno); 3037 } else if (type_is_sk_pointer(reg->type)) { 3038 if (t == BPF_WRITE) { 3039 verbose(env, "R%d cannot write into %s\n", 3040 regno, reg_type_str[reg->type]); 3041 return -EACCES; 3042 } 3043 err = check_sock_access(env, insn_idx, regno, off, size, t); 3044 if (!err && value_regno >= 0) 3045 mark_reg_unknown(env, regs, value_regno); 3046 } else if (reg->type == PTR_TO_TP_BUFFER) { 3047 err = check_tp_buffer_access(env, reg, regno, off, size); 3048 if (!err && t == BPF_READ && value_regno >= 0) 3049 mark_reg_unknown(env, regs, value_regno); 3050 } else if (reg->type == PTR_TO_BTF_ID) { 3051 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3052 value_regno); 3053 } else { 3054 verbose(env, "R%d invalid mem access '%s'\n", regno, 3055 reg_type_str[reg->type]); 3056 return -EACCES; 3057 } 3058 3059 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3060 regs[value_regno].type == SCALAR_VALUE) { 3061 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3062 coerce_reg_to_size(®s[value_regno], size); 3063 } 3064 return err; 3065 } 3066 3067 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3068 { 3069 int err; 3070 3071 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3072 insn->imm != 0) { 3073 verbose(env, "BPF_XADD uses reserved fields\n"); 3074 return -EINVAL; 3075 } 3076 3077 /* check src1 operand */ 3078 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3079 if (err) 3080 return err; 3081 3082 /* check src2 operand */ 3083 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3084 if (err) 3085 return err; 3086 3087 if (is_pointer_value(env, insn->src_reg)) { 3088 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3089 return -EACCES; 3090 } 3091 3092 if (is_ctx_reg(env, insn->dst_reg) || 3093 is_pkt_reg(env, insn->dst_reg) || 3094 is_flow_key_reg(env, insn->dst_reg) || 3095 is_sk_reg(env, insn->dst_reg)) { 3096 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3097 insn->dst_reg, 3098 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3099 return -EACCES; 3100 } 3101 3102 /* check whether atomic_add can read the memory */ 3103 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3104 BPF_SIZE(insn->code), BPF_READ, -1, true); 3105 if (err) 3106 return err; 3107 3108 /* check whether atomic_add can write into the same memory */ 3109 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3110 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3111 } 3112 3113 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3114 int off, int access_size, 3115 bool zero_size_allowed) 3116 { 3117 struct bpf_reg_state *reg = reg_state(env, regno); 3118 3119 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3120 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3121 if (tnum_is_const(reg->var_off)) { 3122 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3123 regno, off, access_size); 3124 } else { 3125 char tn_buf[48]; 3126 3127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3128 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3129 regno, tn_buf, access_size); 3130 } 3131 return -EACCES; 3132 } 3133 return 0; 3134 } 3135 3136 /* when register 'regno' is passed into function that will read 'access_size' 3137 * bytes from that pointer, make sure that it's within stack boundary 3138 * and all elements of stack are initialized. 3139 * Unlike most pointer bounds-checking functions, this one doesn't take an 3140 * 'off' argument, so it has to add in reg->off itself. 3141 */ 3142 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3143 int access_size, bool zero_size_allowed, 3144 struct bpf_call_arg_meta *meta) 3145 { 3146 struct bpf_reg_state *reg = reg_state(env, regno); 3147 struct bpf_func_state *state = func(env, reg); 3148 int err, min_off, max_off, i, j, slot, spi; 3149 3150 if (reg->type != PTR_TO_STACK) { 3151 /* Allow zero-byte read from NULL, regardless of pointer type */ 3152 if (zero_size_allowed && access_size == 0 && 3153 register_is_null(reg)) 3154 return 0; 3155 3156 verbose(env, "R%d type=%s expected=%s\n", regno, 3157 reg_type_str[reg->type], 3158 reg_type_str[PTR_TO_STACK]); 3159 return -EACCES; 3160 } 3161 3162 if (tnum_is_const(reg->var_off)) { 3163 min_off = max_off = reg->var_off.value + reg->off; 3164 err = __check_stack_boundary(env, regno, min_off, access_size, 3165 zero_size_allowed); 3166 if (err) 3167 return err; 3168 } else { 3169 /* Variable offset is prohibited for unprivileged mode for 3170 * simplicity since it requires corresponding support in 3171 * Spectre masking for stack ALU. 3172 * See also retrieve_ptr_limit(). 3173 */ 3174 if (!env->allow_ptr_leaks) { 3175 char tn_buf[48]; 3176 3177 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3178 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3179 regno, tn_buf); 3180 return -EACCES; 3181 } 3182 /* Only initialized buffer on stack is allowed to be accessed 3183 * with variable offset. With uninitialized buffer it's hard to 3184 * guarantee that whole memory is marked as initialized on 3185 * helper return since specific bounds are unknown what may 3186 * cause uninitialized stack leaking. 3187 */ 3188 if (meta && meta->raw_mode) 3189 meta = NULL; 3190 3191 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3192 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3193 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3194 regno); 3195 return -EACCES; 3196 } 3197 min_off = reg->smin_value + reg->off; 3198 max_off = reg->smax_value + reg->off; 3199 err = __check_stack_boundary(env, regno, min_off, access_size, 3200 zero_size_allowed); 3201 if (err) { 3202 verbose(env, "R%d min value is outside of stack bound\n", 3203 regno); 3204 return err; 3205 } 3206 err = __check_stack_boundary(env, regno, max_off, access_size, 3207 zero_size_allowed); 3208 if (err) { 3209 verbose(env, "R%d max value is outside of stack bound\n", 3210 regno); 3211 return err; 3212 } 3213 } 3214 3215 if (meta && meta->raw_mode) { 3216 meta->access_size = access_size; 3217 meta->regno = regno; 3218 return 0; 3219 } 3220 3221 for (i = min_off; i < max_off + access_size; i++) { 3222 u8 *stype; 3223 3224 slot = -i - 1; 3225 spi = slot / BPF_REG_SIZE; 3226 if (state->allocated_stack <= slot) 3227 goto err; 3228 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3229 if (*stype == STACK_MISC) 3230 goto mark; 3231 if (*stype == STACK_ZERO) { 3232 /* helper can write anything into the stack */ 3233 *stype = STACK_MISC; 3234 goto mark; 3235 } 3236 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3237 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3238 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3239 for (j = 0; j < BPF_REG_SIZE; j++) 3240 state->stack[spi].slot_type[j] = STACK_MISC; 3241 goto mark; 3242 } 3243 3244 err: 3245 if (tnum_is_const(reg->var_off)) { 3246 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3247 min_off, i - min_off, access_size); 3248 } else { 3249 char tn_buf[48]; 3250 3251 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3252 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3253 tn_buf, i - min_off, access_size); 3254 } 3255 return -EACCES; 3256 mark: 3257 /* reading any byte out of 8-byte 'spill_slot' will cause 3258 * the whole slot to be marked as 'read' 3259 */ 3260 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3261 state->stack[spi].spilled_ptr.parent, 3262 REG_LIVE_READ64); 3263 } 3264 return update_stack_depth(env, state, min_off); 3265 } 3266 3267 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3268 int access_size, bool zero_size_allowed, 3269 struct bpf_call_arg_meta *meta) 3270 { 3271 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3272 3273 switch (reg->type) { 3274 case PTR_TO_PACKET: 3275 case PTR_TO_PACKET_META: 3276 return check_packet_access(env, regno, reg->off, access_size, 3277 zero_size_allowed); 3278 case PTR_TO_MAP_VALUE: 3279 if (check_map_access_type(env, regno, reg->off, access_size, 3280 meta && meta->raw_mode ? BPF_WRITE : 3281 BPF_READ)) 3282 return -EACCES; 3283 return check_map_access(env, regno, reg->off, access_size, 3284 zero_size_allowed); 3285 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3286 return check_stack_boundary(env, regno, access_size, 3287 zero_size_allowed, meta); 3288 } 3289 } 3290 3291 /* Implementation details: 3292 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3293 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3294 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3295 * value_or_null->value transition, since the verifier only cares about 3296 * the range of access to valid map value pointer and doesn't care about actual 3297 * address of the map element. 3298 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3299 * reg->id > 0 after value_or_null->value transition. By doing so 3300 * two bpf_map_lookups will be considered two different pointers that 3301 * point to different bpf_spin_locks. 3302 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3303 * dead-locks. 3304 * Since only one bpf_spin_lock is allowed the checks are simpler than 3305 * reg_is_refcounted() logic. The verifier needs to remember only 3306 * one spin_lock instead of array of acquired_refs. 3307 * cur_state->active_spin_lock remembers which map value element got locked 3308 * and clears it after bpf_spin_unlock. 3309 */ 3310 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3311 bool is_lock) 3312 { 3313 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3314 struct bpf_verifier_state *cur = env->cur_state; 3315 bool is_const = tnum_is_const(reg->var_off); 3316 struct bpf_map *map = reg->map_ptr; 3317 u64 val = reg->var_off.value; 3318 3319 if (reg->type != PTR_TO_MAP_VALUE) { 3320 verbose(env, "R%d is not a pointer to map_value\n", regno); 3321 return -EINVAL; 3322 } 3323 if (!is_const) { 3324 verbose(env, 3325 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3326 regno); 3327 return -EINVAL; 3328 } 3329 if (!map->btf) { 3330 verbose(env, 3331 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3332 map->name); 3333 return -EINVAL; 3334 } 3335 if (!map_value_has_spin_lock(map)) { 3336 if (map->spin_lock_off == -E2BIG) 3337 verbose(env, 3338 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3339 map->name); 3340 else if (map->spin_lock_off == -ENOENT) 3341 verbose(env, 3342 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3343 map->name); 3344 else 3345 verbose(env, 3346 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3347 map->name); 3348 return -EINVAL; 3349 } 3350 if (map->spin_lock_off != val + reg->off) { 3351 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3352 val + reg->off); 3353 return -EINVAL; 3354 } 3355 if (is_lock) { 3356 if (cur->active_spin_lock) { 3357 verbose(env, 3358 "Locking two bpf_spin_locks are not allowed\n"); 3359 return -EINVAL; 3360 } 3361 cur->active_spin_lock = reg->id; 3362 } else { 3363 if (!cur->active_spin_lock) { 3364 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3365 return -EINVAL; 3366 } 3367 if (cur->active_spin_lock != reg->id) { 3368 verbose(env, "bpf_spin_unlock of different lock\n"); 3369 return -EINVAL; 3370 } 3371 cur->active_spin_lock = 0; 3372 } 3373 return 0; 3374 } 3375 3376 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3377 { 3378 return type == ARG_PTR_TO_MEM || 3379 type == ARG_PTR_TO_MEM_OR_NULL || 3380 type == ARG_PTR_TO_UNINIT_MEM; 3381 } 3382 3383 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3384 { 3385 return type == ARG_CONST_SIZE || 3386 type == ARG_CONST_SIZE_OR_ZERO; 3387 } 3388 3389 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3390 { 3391 return type == ARG_PTR_TO_INT || 3392 type == ARG_PTR_TO_LONG; 3393 } 3394 3395 static int int_ptr_type_to_size(enum bpf_arg_type type) 3396 { 3397 if (type == ARG_PTR_TO_INT) 3398 return sizeof(u32); 3399 else if (type == ARG_PTR_TO_LONG) 3400 return sizeof(u64); 3401 3402 return -EINVAL; 3403 } 3404 3405 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3406 enum bpf_arg_type arg_type, 3407 struct bpf_call_arg_meta *meta) 3408 { 3409 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3410 enum bpf_reg_type expected_type, type = reg->type; 3411 int err = 0; 3412 3413 if (arg_type == ARG_DONTCARE) 3414 return 0; 3415 3416 err = check_reg_arg(env, regno, SRC_OP); 3417 if (err) 3418 return err; 3419 3420 if (arg_type == ARG_ANYTHING) { 3421 if (is_pointer_value(env, regno)) { 3422 verbose(env, "R%d leaks addr into helper function\n", 3423 regno); 3424 return -EACCES; 3425 } 3426 return 0; 3427 } 3428 3429 if (type_is_pkt_pointer(type) && 3430 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3431 verbose(env, "helper access to the packet is not allowed\n"); 3432 return -EACCES; 3433 } 3434 3435 if (arg_type == ARG_PTR_TO_MAP_KEY || 3436 arg_type == ARG_PTR_TO_MAP_VALUE || 3437 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3438 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3439 expected_type = PTR_TO_STACK; 3440 if (register_is_null(reg) && 3441 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3442 /* final test in check_stack_boundary() */; 3443 else if (!type_is_pkt_pointer(type) && 3444 type != PTR_TO_MAP_VALUE && 3445 type != expected_type) 3446 goto err_type; 3447 } else if (arg_type == ARG_CONST_SIZE || 3448 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3449 expected_type = SCALAR_VALUE; 3450 if (type != expected_type) 3451 goto err_type; 3452 } else if (arg_type == ARG_CONST_MAP_PTR) { 3453 expected_type = CONST_PTR_TO_MAP; 3454 if (type != expected_type) 3455 goto err_type; 3456 } else if (arg_type == ARG_PTR_TO_CTX) { 3457 expected_type = PTR_TO_CTX; 3458 if (type != expected_type) 3459 goto err_type; 3460 err = check_ctx_reg(env, reg, regno); 3461 if (err < 0) 3462 return err; 3463 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3464 expected_type = PTR_TO_SOCK_COMMON; 3465 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3466 if (!type_is_sk_pointer(type)) 3467 goto err_type; 3468 if (reg->ref_obj_id) { 3469 if (meta->ref_obj_id) { 3470 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3471 regno, reg->ref_obj_id, 3472 meta->ref_obj_id); 3473 return -EFAULT; 3474 } 3475 meta->ref_obj_id = reg->ref_obj_id; 3476 } 3477 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3478 expected_type = PTR_TO_SOCKET; 3479 if (type != expected_type) 3480 goto err_type; 3481 } else if (arg_type == ARG_PTR_TO_BTF_ID) { 3482 expected_type = PTR_TO_BTF_ID; 3483 if (type != expected_type) 3484 goto err_type; 3485 if (reg->btf_id != meta->btf_id) { 3486 verbose(env, "Helper has type %s got %s in R%d\n", 3487 kernel_type_name(meta->btf_id), 3488 kernel_type_name(reg->btf_id), regno); 3489 3490 return -EACCES; 3491 } 3492 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) { 3493 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 3494 regno); 3495 return -EACCES; 3496 } 3497 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3498 if (meta->func_id == BPF_FUNC_spin_lock) { 3499 if (process_spin_lock(env, regno, true)) 3500 return -EACCES; 3501 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3502 if (process_spin_lock(env, regno, false)) 3503 return -EACCES; 3504 } else { 3505 verbose(env, "verifier internal error\n"); 3506 return -EFAULT; 3507 } 3508 } else if (arg_type_is_mem_ptr(arg_type)) { 3509 expected_type = PTR_TO_STACK; 3510 /* One exception here. In case function allows for NULL to be 3511 * passed in as argument, it's a SCALAR_VALUE type. Final test 3512 * happens during stack boundary checking. 3513 */ 3514 if (register_is_null(reg) && 3515 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3516 /* final test in check_stack_boundary() */; 3517 else if (!type_is_pkt_pointer(type) && 3518 type != PTR_TO_MAP_VALUE && 3519 type != expected_type) 3520 goto err_type; 3521 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3522 } else if (arg_type_is_int_ptr(arg_type)) { 3523 expected_type = PTR_TO_STACK; 3524 if (!type_is_pkt_pointer(type) && 3525 type != PTR_TO_MAP_VALUE && 3526 type != expected_type) 3527 goto err_type; 3528 } else { 3529 verbose(env, "unsupported arg_type %d\n", arg_type); 3530 return -EFAULT; 3531 } 3532 3533 if (arg_type == ARG_CONST_MAP_PTR) { 3534 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3535 meta->map_ptr = reg->map_ptr; 3536 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3537 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3538 * check that [key, key + map->key_size) are within 3539 * stack limits and initialized 3540 */ 3541 if (!meta->map_ptr) { 3542 /* in function declaration map_ptr must come before 3543 * map_key, so that it's verified and known before 3544 * we have to check map_key here. Otherwise it means 3545 * that kernel subsystem misconfigured verifier 3546 */ 3547 verbose(env, "invalid map_ptr to access map->key\n"); 3548 return -EACCES; 3549 } 3550 err = check_helper_mem_access(env, regno, 3551 meta->map_ptr->key_size, false, 3552 NULL); 3553 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3554 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3555 !register_is_null(reg)) || 3556 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3557 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3558 * check [value, value + map->value_size) validity 3559 */ 3560 if (!meta->map_ptr) { 3561 /* kernel subsystem misconfigured verifier */ 3562 verbose(env, "invalid map_ptr to access map->value\n"); 3563 return -EACCES; 3564 } 3565 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3566 err = check_helper_mem_access(env, regno, 3567 meta->map_ptr->value_size, false, 3568 meta); 3569 } else if (arg_type_is_mem_size(arg_type)) { 3570 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3571 3572 /* remember the mem_size which may be used later 3573 * to refine return values. 3574 */ 3575 meta->msize_smax_value = reg->smax_value; 3576 meta->msize_umax_value = reg->umax_value; 3577 3578 /* The register is SCALAR_VALUE; the access check 3579 * happens using its boundaries. 3580 */ 3581 if (!tnum_is_const(reg->var_off)) 3582 /* For unprivileged variable accesses, disable raw 3583 * mode so that the program is required to 3584 * initialize all the memory that the helper could 3585 * just partially fill up. 3586 */ 3587 meta = NULL; 3588 3589 if (reg->smin_value < 0) { 3590 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3591 regno); 3592 return -EACCES; 3593 } 3594 3595 if (reg->umin_value == 0) { 3596 err = check_helper_mem_access(env, regno - 1, 0, 3597 zero_size_allowed, 3598 meta); 3599 if (err) 3600 return err; 3601 } 3602 3603 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3604 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3605 regno); 3606 return -EACCES; 3607 } 3608 err = check_helper_mem_access(env, regno - 1, 3609 reg->umax_value, 3610 zero_size_allowed, meta); 3611 if (!err) 3612 err = mark_chain_precision(env, regno); 3613 } else if (arg_type_is_int_ptr(arg_type)) { 3614 int size = int_ptr_type_to_size(arg_type); 3615 3616 err = check_helper_mem_access(env, regno, size, false, meta); 3617 if (err) 3618 return err; 3619 err = check_ptr_alignment(env, reg, 0, size, true); 3620 } 3621 3622 return err; 3623 err_type: 3624 verbose(env, "R%d type=%s expected=%s\n", regno, 3625 reg_type_str[type], reg_type_str[expected_type]); 3626 return -EACCES; 3627 } 3628 3629 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3630 struct bpf_map *map, int func_id) 3631 { 3632 if (!map) 3633 return 0; 3634 3635 /* We need a two way check, first is from map perspective ... */ 3636 switch (map->map_type) { 3637 case BPF_MAP_TYPE_PROG_ARRAY: 3638 if (func_id != BPF_FUNC_tail_call) 3639 goto error; 3640 break; 3641 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3642 if (func_id != BPF_FUNC_perf_event_read && 3643 func_id != BPF_FUNC_perf_event_output && 3644 func_id != BPF_FUNC_skb_output && 3645 func_id != BPF_FUNC_perf_event_read_value) 3646 goto error; 3647 break; 3648 case BPF_MAP_TYPE_STACK_TRACE: 3649 if (func_id != BPF_FUNC_get_stackid) 3650 goto error; 3651 break; 3652 case BPF_MAP_TYPE_CGROUP_ARRAY: 3653 if (func_id != BPF_FUNC_skb_under_cgroup && 3654 func_id != BPF_FUNC_current_task_under_cgroup) 3655 goto error; 3656 break; 3657 case BPF_MAP_TYPE_CGROUP_STORAGE: 3658 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3659 if (func_id != BPF_FUNC_get_local_storage) 3660 goto error; 3661 break; 3662 case BPF_MAP_TYPE_DEVMAP: 3663 case BPF_MAP_TYPE_DEVMAP_HASH: 3664 if (func_id != BPF_FUNC_redirect_map && 3665 func_id != BPF_FUNC_map_lookup_elem) 3666 goto error; 3667 break; 3668 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3669 * appear. 3670 */ 3671 case BPF_MAP_TYPE_CPUMAP: 3672 if (func_id != BPF_FUNC_redirect_map) 3673 goto error; 3674 break; 3675 case BPF_MAP_TYPE_XSKMAP: 3676 if (func_id != BPF_FUNC_redirect_map && 3677 func_id != BPF_FUNC_map_lookup_elem) 3678 goto error; 3679 break; 3680 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3681 case BPF_MAP_TYPE_HASH_OF_MAPS: 3682 if (func_id != BPF_FUNC_map_lookup_elem) 3683 goto error; 3684 break; 3685 case BPF_MAP_TYPE_SOCKMAP: 3686 if (func_id != BPF_FUNC_sk_redirect_map && 3687 func_id != BPF_FUNC_sock_map_update && 3688 func_id != BPF_FUNC_map_delete_elem && 3689 func_id != BPF_FUNC_msg_redirect_map) 3690 goto error; 3691 break; 3692 case BPF_MAP_TYPE_SOCKHASH: 3693 if (func_id != BPF_FUNC_sk_redirect_hash && 3694 func_id != BPF_FUNC_sock_hash_update && 3695 func_id != BPF_FUNC_map_delete_elem && 3696 func_id != BPF_FUNC_msg_redirect_hash) 3697 goto error; 3698 break; 3699 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3700 if (func_id != BPF_FUNC_sk_select_reuseport) 3701 goto error; 3702 break; 3703 case BPF_MAP_TYPE_QUEUE: 3704 case BPF_MAP_TYPE_STACK: 3705 if (func_id != BPF_FUNC_map_peek_elem && 3706 func_id != BPF_FUNC_map_pop_elem && 3707 func_id != BPF_FUNC_map_push_elem) 3708 goto error; 3709 break; 3710 case BPF_MAP_TYPE_SK_STORAGE: 3711 if (func_id != BPF_FUNC_sk_storage_get && 3712 func_id != BPF_FUNC_sk_storage_delete) 3713 goto error; 3714 break; 3715 default: 3716 break; 3717 } 3718 3719 /* ... and second from the function itself. */ 3720 switch (func_id) { 3721 case BPF_FUNC_tail_call: 3722 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3723 goto error; 3724 if (env->subprog_cnt > 1) { 3725 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3726 return -EINVAL; 3727 } 3728 break; 3729 case BPF_FUNC_perf_event_read: 3730 case BPF_FUNC_perf_event_output: 3731 case BPF_FUNC_perf_event_read_value: 3732 case BPF_FUNC_skb_output: 3733 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3734 goto error; 3735 break; 3736 case BPF_FUNC_get_stackid: 3737 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3738 goto error; 3739 break; 3740 case BPF_FUNC_current_task_under_cgroup: 3741 case BPF_FUNC_skb_under_cgroup: 3742 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3743 goto error; 3744 break; 3745 case BPF_FUNC_redirect_map: 3746 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3747 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3748 map->map_type != BPF_MAP_TYPE_CPUMAP && 3749 map->map_type != BPF_MAP_TYPE_XSKMAP) 3750 goto error; 3751 break; 3752 case BPF_FUNC_sk_redirect_map: 3753 case BPF_FUNC_msg_redirect_map: 3754 case BPF_FUNC_sock_map_update: 3755 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3756 goto error; 3757 break; 3758 case BPF_FUNC_sk_redirect_hash: 3759 case BPF_FUNC_msg_redirect_hash: 3760 case BPF_FUNC_sock_hash_update: 3761 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3762 goto error; 3763 break; 3764 case BPF_FUNC_get_local_storage: 3765 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3766 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3767 goto error; 3768 break; 3769 case BPF_FUNC_sk_select_reuseport: 3770 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3771 goto error; 3772 break; 3773 case BPF_FUNC_map_peek_elem: 3774 case BPF_FUNC_map_pop_elem: 3775 case BPF_FUNC_map_push_elem: 3776 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3777 map->map_type != BPF_MAP_TYPE_STACK) 3778 goto error; 3779 break; 3780 case BPF_FUNC_sk_storage_get: 3781 case BPF_FUNC_sk_storage_delete: 3782 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3783 goto error; 3784 break; 3785 default: 3786 break; 3787 } 3788 3789 return 0; 3790 error: 3791 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3792 map->map_type, func_id_name(func_id), func_id); 3793 return -EINVAL; 3794 } 3795 3796 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3797 { 3798 int count = 0; 3799 3800 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3801 count++; 3802 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3803 count++; 3804 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3805 count++; 3806 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3807 count++; 3808 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3809 count++; 3810 3811 /* We only support one arg being in raw mode at the moment, 3812 * which is sufficient for the helper functions we have 3813 * right now. 3814 */ 3815 return count <= 1; 3816 } 3817 3818 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3819 enum bpf_arg_type arg_next) 3820 { 3821 return (arg_type_is_mem_ptr(arg_curr) && 3822 !arg_type_is_mem_size(arg_next)) || 3823 (!arg_type_is_mem_ptr(arg_curr) && 3824 arg_type_is_mem_size(arg_next)); 3825 } 3826 3827 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3828 { 3829 /* bpf_xxx(..., buf, len) call will access 'len' 3830 * bytes from memory 'buf'. Both arg types need 3831 * to be paired, so make sure there's no buggy 3832 * helper function specification. 3833 */ 3834 if (arg_type_is_mem_size(fn->arg1_type) || 3835 arg_type_is_mem_ptr(fn->arg5_type) || 3836 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3837 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3838 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3839 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3840 return false; 3841 3842 return true; 3843 } 3844 3845 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3846 { 3847 int count = 0; 3848 3849 if (arg_type_may_be_refcounted(fn->arg1_type)) 3850 count++; 3851 if (arg_type_may_be_refcounted(fn->arg2_type)) 3852 count++; 3853 if (arg_type_may_be_refcounted(fn->arg3_type)) 3854 count++; 3855 if (arg_type_may_be_refcounted(fn->arg4_type)) 3856 count++; 3857 if (arg_type_may_be_refcounted(fn->arg5_type)) 3858 count++; 3859 3860 /* A reference acquiring function cannot acquire 3861 * another refcounted ptr. 3862 */ 3863 if (is_acquire_function(func_id) && count) 3864 return false; 3865 3866 /* We only support one arg being unreferenced at the moment, 3867 * which is sufficient for the helper functions we have right now. 3868 */ 3869 return count <= 1; 3870 } 3871 3872 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3873 { 3874 return check_raw_mode_ok(fn) && 3875 check_arg_pair_ok(fn) && 3876 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3877 } 3878 3879 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3880 * are now invalid, so turn them into unknown SCALAR_VALUE. 3881 */ 3882 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3883 struct bpf_func_state *state) 3884 { 3885 struct bpf_reg_state *regs = state->regs, *reg; 3886 int i; 3887 3888 for (i = 0; i < MAX_BPF_REG; i++) 3889 if (reg_is_pkt_pointer_any(®s[i])) 3890 mark_reg_unknown(env, regs, i); 3891 3892 bpf_for_each_spilled_reg(i, state, reg) { 3893 if (!reg) 3894 continue; 3895 if (reg_is_pkt_pointer_any(reg)) 3896 __mark_reg_unknown(env, reg); 3897 } 3898 } 3899 3900 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3901 { 3902 struct bpf_verifier_state *vstate = env->cur_state; 3903 int i; 3904 3905 for (i = 0; i <= vstate->curframe; i++) 3906 __clear_all_pkt_pointers(env, vstate->frame[i]); 3907 } 3908 3909 static void release_reg_references(struct bpf_verifier_env *env, 3910 struct bpf_func_state *state, 3911 int ref_obj_id) 3912 { 3913 struct bpf_reg_state *regs = state->regs, *reg; 3914 int i; 3915 3916 for (i = 0; i < MAX_BPF_REG; i++) 3917 if (regs[i].ref_obj_id == ref_obj_id) 3918 mark_reg_unknown(env, regs, i); 3919 3920 bpf_for_each_spilled_reg(i, state, reg) { 3921 if (!reg) 3922 continue; 3923 if (reg->ref_obj_id == ref_obj_id) 3924 __mark_reg_unknown(env, reg); 3925 } 3926 } 3927 3928 /* The pointer with the specified id has released its reference to kernel 3929 * resources. Identify all copies of the same pointer and clear the reference. 3930 */ 3931 static int release_reference(struct bpf_verifier_env *env, 3932 int ref_obj_id) 3933 { 3934 struct bpf_verifier_state *vstate = env->cur_state; 3935 int err; 3936 int i; 3937 3938 err = release_reference_state(cur_func(env), ref_obj_id); 3939 if (err) 3940 return err; 3941 3942 for (i = 0; i <= vstate->curframe; i++) 3943 release_reg_references(env, vstate->frame[i], ref_obj_id); 3944 3945 return 0; 3946 } 3947 3948 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3949 int *insn_idx) 3950 { 3951 struct bpf_verifier_state *state = env->cur_state; 3952 struct bpf_func_state *caller, *callee; 3953 int i, err, subprog, target_insn; 3954 3955 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3956 verbose(env, "the call stack of %d frames is too deep\n", 3957 state->curframe + 2); 3958 return -E2BIG; 3959 } 3960 3961 target_insn = *insn_idx + insn->imm; 3962 subprog = find_subprog(env, target_insn + 1); 3963 if (subprog < 0) { 3964 verbose(env, "verifier bug. No program starts at insn %d\n", 3965 target_insn + 1); 3966 return -EFAULT; 3967 } 3968 3969 caller = state->frame[state->curframe]; 3970 if (state->frame[state->curframe + 1]) { 3971 verbose(env, "verifier bug. Frame %d already allocated\n", 3972 state->curframe + 1); 3973 return -EFAULT; 3974 } 3975 3976 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3977 if (!callee) 3978 return -ENOMEM; 3979 state->frame[state->curframe + 1] = callee; 3980 3981 /* callee cannot access r0, r6 - r9 for reading and has to write 3982 * into its own stack before reading from it. 3983 * callee can read/write into caller's stack 3984 */ 3985 init_func_state(env, callee, 3986 /* remember the callsite, it will be used by bpf_exit */ 3987 *insn_idx /* callsite */, 3988 state->curframe + 1 /* frameno within this callchain */, 3989 subprog /* subprog number within this prog */); 3990 3991 /* Transfer references to the callee */ 3992 err = transfer_reference_state(callee, caller); 3993 if (err) 3994 return err; 3995 3996 /* copy r1 - r5 args that callee can access. The copy includes parent 3997 * pointers, which connects us up to the liveness chain 3998 */ 3999 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4000 callee->regs[i] = caller->regs[i]; 4001 4002 /* after the call registers r0 - r5 were scratched */ 4003 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4004 mark_reg_not_init(env, caller->regs, caller_saved[i]); 4005 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4006 } 4007 4008 /* only increment it after check_reg_arg() finished */ 4009 state->curframe++; 4010 4011 if (btf_check_func_arg_match(env, subprog)) 4012 return -EINVAL; 4013 4014 /* and go analyze first insn of the callee */ 4015 *insn_idx = target_insn; 4016 4017 if (env->log.level & BPF_LOG_LEVEL) { 4018 verbose(env, "caller:\n"); 4019 print_verifier_state(env, caller); 4020 verbose(env, "callee:\n"); 4021 print_verifier_state(env, callee); 4022 } 4023 return 0; 4024 } 4025 4026 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4027 { 4028 struct bpf_verifier_state *state = env->cur_state; 4029 struct bpf_func_state *caller, *callee; 4030 struct bpf_reg_state *r0; 4031 int err; 4032 4033 callee = state->frame[state->curframe]; 4034 r0 = &callee->regs[BPF_REG_0]; 4035 if (r0->type == PTR_TO_STACK) { 4036 /* technically it's ok to return caller's stack pointer 4037 * (or caller's caller's pointer) back to the caller, 4038 * since these pointers are valid. Only current stack 4039 * pointer will be invalid as soon as function exits, 4040 * but let's be conservative 4041 */ 4042 verbose(env, "cannot return stack pointer to the caller\n"); 4043 return -EINVAL; 4044 } 4045 4046 state->curframe--; 4047 caller = state->frame[state->curframe]; 4048 /* return to the caller whatever r0 had in the callee */ 4049 caller->regs[BPF_REG_0] = *r0; 4050 4051 /* Transfer references to the caller */ 4052 err = transfer_reference_state(caller, callee); 4053 if (err) 4054 return err; 4055 4056 *insn_idx = callee->callsite + 1; 4057 if (env->log.level & BPF_LOG_LEVEL) { 4058 verbose(env, "returning from callee:\n"); 4059 print_verifier_state(env, callee); 4060 verbose(env, "to caller at %d:\n", *insn_idx); 4061 print_verifier_state(env, caller); 4062 } 4063 /* clear everything in the callee */ 4064 free_func_state(callee); 4065 state->frame[state->curframe + 1] = NULL; 4066 return 0; 4067 } 4068 4069 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4070 int func_id, 4071 struct bpf_call_arg_meta *meta) 4072 { 4073 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4074 4075 if (ret_type != RET_INTEGER || 4076 (func_id != BPF_FUNC_get_stack && 4077 func_id != BPF_FUNC_probe_read_str)) 4078 return; 4079 4080 ret_reg->smax_value = meta->msize_smax_value; 4081 ret_reg->umax_value = meta->msize_umax_value; 4082 __reg_deduce_bounds(ret_reg); 4083 __reg_bound_offset(ret_reg); 4084 } 4085 4086 static int 4087 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4088 int func_id, int insn_idx) 4089 { 4090 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4091 struct bpf_map *map = meta->map_ptr; 4092 4093 if (func_id != BPF_FUNC_tail_call && 4094 func_id != BPF_FUNC_map_lookup_elem && 4095 func_id != BPF_FUNC_map_update_elem && 4096 func_id != BPF_FUNC_map_delete_elem && 4097 func_id != BPF_FUNC_map_push_elem && 4098 func_id != BPF_FUNC_map_pop_elem && 4099 func_id != BPF_FUNC_map_peek_elem) 4100 return 0; 4101 4102 if (map == NULL) { 4103 verbose(env, "kernel subsystem misconfigured verifier\n"); 4104 return -EINVAL; 4105 } 4106 4107 /* In case of read-only, some additional restrictions 4108 * need to be applied in order to prevent altering the 4109 * state of the map from program side. 4110 */ 4111 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4112 (func_id == BPF_FUNC_map_delete_elem || 4113 func_id == BPF_FUNC_map_update_elem || 4114 func_id == BPF_FUNC_map_push_elem || 4115 func_id == BPF_FUNC_map_pop_elem)) { 4116 verbose(env, "write into map forbidden\n"); 4117 return -EACCES; 4118 } 4119 4120 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4121 bpf_map_ptr_store(aux, meta->map_ptr, 4122 meta->map_ptr->unpriv_array); 4123 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4124 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4125 meta->map_ptr->unpriv_array); 4126 return 0; 4127 } 4128 4129 static int 4130 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4131 int func_id, int insn_idx) 4132 { 4133 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4134 struct bpf_reg_state *regs = cur_regs(env), *reg; 4135 struct bpf_map *map = meta->map_ptr; 4136 struct tnum range; 4137 u64 val; 4138 int err; 4139 4140 if (func_id != BPF_FUNC_tail_call) 4141 return 0; 4142 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4143 verbose(env, "kernel subsystem misconfigured verifier\n"); 4144 return -EINVAL; 4145 } 4146 4147 range = tnum_range(0, map->max_entries - 1); 4148 reg = ®s[BPF_REG_3]; 4149 4150 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4151 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4152 return 0; 4153 } 4154 4155 err = mark_chain_precision(env, BPF_REG_3); 4156 if (err) 4157 return err; 4158 4159 val = reg->var_off.value; 4160 if (bpf_map_key_unseen(aux)) 4161 bpf_map_key_store(aux, val); 4162 else if (!bpf_map_key_poisoned(aux) && 4163 bpf_map_key_immediate(aux) != val) 4164 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4165 return 0; 4166 } 4167 4168 static int check_reference_leak(struct bpf_verifier_env *env) 4169 { 4170 struct bpf_func_state *state = cur_func(env); 4171 int i; 4172 4173 for (i = 0; i < state->acquired_refs; i++) { 4174 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4175 state->refs[i].id, state->refs[i].insn_idx); 4176 } 4177 return state->acquired_refs ? -EINVAL : 0; 4178 } 4179 4180 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4181 { 4182 const struct bpf_func_proto *fn = NULL; 4183 struct bpf_reg_state *regs; 4184 struct bpf_call_arg_meta meta; 4185 bool changes_data; 4186 int i, err; 4187 4188 /* find function prototype */ 4189 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4190 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4191 func_id); 4192 return -EINVAL; 4193 } 4194 4195 if (env->ops->get_func_proto) 4196 fn = env->ops->get_func_proto(func_id, env->prog); 4197 if (!fn) { 4198 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4199 func_id); 4200 return -EINVAL; 4201 } 4202 4203 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4204 if (!env->prog->gpl_compatible && fn->gpl_only) { 4205 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4206 return -EINVAL; 4207 } 4208 4209 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4210 changes_data = bpf_helper_changes_pkt_data(fn->func); 4211 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4212 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4213 func_id_name(func_id), func_id); 4214 return -EINVAL; 4215 } 4216 4217 memset(&meta, 0, sizeof(meta)); 4218 meta.pkt_access = fn->pkt_access; 4219 4220 err = check_func_proto(fn, func_id); 4221 if (err) { 4222 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4223 func_id_name(func_id), func_id); 4224 return err; 4225 } 4226 4227 meta.func_id = func_id; 4228 /* check args */ 4229 for (i = 0; i < 5; i++) { 4230 err = btf_resolve_helper_id(&env->log, fn, i); 4231 if (err > 0) 4232 meta.btf_id = err; 4233 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta); 4234 if (err) 4235 return err; 4236 } 4237 4238 err = record_func_map(env, &meta, func_id, insn_idx); 4239 if (err) 4240 return err; 4241 4242 err = record_func_key(env, &meta, func_id, insn_idx); 4243 if (err) 4244 return err; 4245 4246 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4247 * is inferred from register state. 4248 */ 4249 for (i = 0; i < meta.access_size; i++) { 4250 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4251 BPF_WRITE, -1, false); 4252 if (err) 4253 return err; 4254 } 4255 4256 if (func_id == BPF_FUNC_tail_call) { 4257 err = check_reference_leak(env); 4258 if (err) { 4259 verbose(env, "tail_call would lead to reference leak\n"); 4260 return err; 4261 } 4262 } else if (is_release_function(func_id)) { 4263 err = release_reference(env, meta.ref_obj_id); 4264 if (err) { 4265 verbose(env, "func %s#%d reference has not been acquired before\n", 4266 func_id_name(func_id), func_id); 4267 return err; 4268 } 4269 } 4270 4271 regs = cur_regs(env); 4272 4273 /* check that flags argument in get_local_storage(map, flags) is 0, 4274 * this is required because get_local_storage() can't return an error. 4275 */ 4276 if (func_id == BPF_FUNC_get_local_storage && 4277 !register_is_null(®s[BPF_REG_2])) { 4278 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4279 return -EINVAL; 4280 } 4281 4282 /* reset caller saved regs */ 4283 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4284 mark_reg_not_init(env, regs, caller_saved[i]); 4285 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4286 } 4287 4288 /* helper call returns 64-bit value. */ 4289 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4290 4291 /* update return register (already marked as written above) */ 4292 if (fn->ret_type == RET_INTEGER) { 4293 /* sets type to SCALAR_VALUE */ 4294 mark_reg_unknown(env, regs, BPF_REG_0); 4295 } else if (fn->ret_type == RET_VOID) { 4296 regs[BPF_REG_0].type = NOT_INIT; 4297 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4298 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4299 /* There is no offset yet applied, variable or fixed */ 4300 mark_reg_known_zero(env, regs, BPF_REG_0); 4301 /* remember map_ptr, so that check_map_access() 4302 * can check 'value_size' boundary of memory access 4303 * to map element returned from bpf_map_lookup_elem() 4304 */ 4305 if (meta.map_ptr == NULL) { 4306 verbose(env, 4307 "kernel subsystem misconfigured verifier\n"); 4308 return -EINVAL; 4309 } 4310 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4311 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4312 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4313 if (map_value_has_spin_lock(meta.map_ptr)) 4314 regs[BPF_REG_0].id = ++env->id_gen; 4315 } else { 4316 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4317 regs[BPF_REG_0].id = ++env->id_gen; 4318 } 4319 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4320 mark_reg_known_zero(env, regs, BPF_REG_0); 4321 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4322 regs[BPF_REG_0].id = ++env->id_gen; 4323 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4324 mark_reg_known_zero(env, regs, BPF_REG_0); 4325 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4326 regs[BPF_REG_0].id = ++env->id_gen; 4327 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4328 mark_reg_known_zero(env, regs, BPF_REG_0); 4329 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4330 regs[BPF_REG_0].id = ++env->id_gen; 4331 } else { 4332 verbose(env, "unknown return type %d of func %s#%d\n", 4333 fn->ret_type, func_id_name(func_id), func_id); 4334 return -EINVAL; 4335 } 4336 4337 if (is_ptr_cast_function(func_id)) { 4338 /* For release_reference() */ 4339 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4340 } else if (is_acquire_function(func_id)) { 4341 int id = acquire_reference_state(env, insn_idx); 4342 4343 if (id < 0) 4344 return id; 4345 /* For mark_ptr_or_null_reg() */ 4346 regs[BPF_REG_0].id = id; 4347 /* For release_reference() */ 4348 regs[BPF_REG_0].ref_obj_id = id; 4349 } 4350 4351 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4352 4353 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4354 if (err) 4355 return err; 4356 4357 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4358 const char *err_str; 4359 4360 #ifdef CONFIG_PERF_EVENTS 4361 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4362 err_str = "cannot get callchain buffer for func %s#%d\n"; 4363 #else 4364 err = -ENOTSUPP; 4365 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4366 #endif 4367 if (err) { 4368 verbose(env, err_str, func_id_name(func_id), func_id); 4369 return err; 4370 } 4371 4372 env->prog->has_callchain_buf = true; 4373 } 4374 4375 if (changes_data) 4376 clear_all_pkt_pointers(env); 4377 return 0; 4378 } 4379 4380 static bool signed_add_overflows(s64 a, s64 b) 4381 { 4382 /* Do the add in u64, where overflow is well-defined */ 4383 s64 res = (s64)((u64)a + (u64)b); 4384 4385 if (b < 0) 4386 return res > a; 4387 return res < a; 4388 } 4389 4390 static bool signed_sub_overflows(s64 a, s64 b) 4391 { 4392 /* Do the sub in u64, where overflow is well-defined */ 4393 s64 res = (s64)((u64)a - (u64)b); 4394 4395 if (b < 0) 4396 return res < a; 4397 return res > a; 4398 } 4399 4400 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4401 const struct bpf_reg_state *reg, 4402 enum bpf_reg_type type) 4403 { 4404 bool known = tnum_is_const(reg->var_off); 4405 s64 val = reg->var_off.value; 4406 s64 smin = reg->smin_value; 4407 4408 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4409 verbose(env, "math between %s pointer and %lld is not allowed\n", 4410 reg_type_str[type], val); 4411 return false; 4412 } 4413 4414 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4415 verbose(env, "%s pointer offset %d is not allowed\n", 4416 reg_type_str[type], reg->off); 4417 return false; 4418 } 4419 4420 if (smin == S64_MIN) { 4421 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4422 reg_type_str[type]); 4423 return false; 4424 } 4425 4426 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4427 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4428 smin, reg_type_str[type]); 4429 return false; 4430 } 4431 4432 return true; 4433 } 4434 4435 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4436 { 4437 return &env->insn_aux_data[env->insn_idx]; 4438 } 4439 4440 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4441 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4442 { 4443 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4444 (opcode == BPF_SUB && !off_is_neg); 4445 u32 off; 4446 4447 switch (ptr_reg->type) { 4448 case PTR_TO_STACK: 4449 /* Indirect variable offset stack access is prohibited in 4450 * unprivileged mode so it's not handled here. 4451 */ 4452 off = ptr_reg->off + ptr_reg->var_off.value; 4453 if (mask_to_left) 4454 *ptr_limit = MAX_BPF_STACK + off; 4455 else 4456 *ptr_limit = -off; 4457 return 0; 4458 case PTR_TO_MAP_VALUE: 4459 if (mask_to_left) { 4460 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4461 } else { 4462 off = ptr_reg->smin_value + ptr_reg->off; 4463 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4464 } 4465 return 0; 4466 default: 4467 return -EINVAL; 4468 } 4469 } 4470 4471 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4472 const struct bpf_insn *insn) 4473 { 4474 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4475 } 4476 4477 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4478 u32 alu_state, u32 alu_limit) 4479 { 4480 /* If we arrived here from different branches with different 4481 * state or limits to sanitize, then this won't work. 4482 */ 4483 if (aux->alu_state && 4484 (aux->alu_state != alu_state || 4485 aux->alu_limit != alu_limit)) 4486 return -EACCES; 4487 4488 /* Corresponding fixup done in fixup_bpf_calls(). */ 4489 aux->alu_state = alu_state; 4490 aux->alu_limit = alu_limit; 4491 return 0; 4492 } 4493 4494 static int sanitize_val_alu(struct bpf_verifier_env *env, 4495 struct bpf_insn *insn) 4496 { 4497 struct bpf_insn_aux_data *aux = cur_aux(env); 4498 4499 if (can_skip_alu_sanitation(env, insn)) 4500 return 0; 4501 4502 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4503 } 4504 4505 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4506 struct bpf_insn *insn, 4507 const struct bpf_reg_state *ptr_reg, 4508 struct bpf_reg_state *dst_reg, 4509 bool off_is_neg) 4510 { 4511 struct bpf_verifier_state *vstate = env->cur_state; 4512 struct bpf_insn_aux_data *aux = cur_aux(env); 4513 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4514 u8 opcode = BPF_OP(insn->code); 4515 u32 alu_state, alu_limit; 4516 struct bpf_reg_state tmp; 4517 bool ret; 4518 4519 if (can_skip_alu_sanitation(env, insn)) 4520 return 0; 4521 4522 /* We already marked aux for masking from non-speculative 4523 * paths, thus we got here in the first place. We only care 4524 * to explore bad access from here. 4525 */ 4526 if (vstate->speculative) 4527 goto do_sim; 4528 4529 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4530 alu_state |= ptr_is_dst_reg ? 4531 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4532 4533 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4534 return 0; 4535 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4536 return -EACCES; 4537 do_sim: 4538 /* Simulate and find potential out-of-bounds access under 4539 * speculative execution from truncation as a result of 4540 * masking when off was not within expected range. If off 4541 * sits in dst, then we temporarily need to move ptr there 4542 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4543 * for cases where we use K-based arithmetic in one direction 4544 * and truncated reg-based in the other in order to explore 4545 * bad access. 4546 */ 4547 if (!ptr_is_dst_reg) { 4548 tmp = *dst_reg; 4549 *dst_reg = *ptr_reg; 4550 } 4551 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4552 if (!ptr_is_dst_reg && ret) 4553 *dst_reg = tmp; 4554 return !ret ? -EFAULT : 0; 4555 } 4556 4557 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4558 * Caller should also handle BPF_MOV case separately. 4559 * If we return -EACCES, caller may want to try again treating pointer as a 4560 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4561 */ 4562 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4563 struct bpf_insn *insn, 4564 const struct bpf_reg_state *ptr_reg, 4565 const struct bpf_reg_state *off_reg) 4566 { 4567 struct bpf_verifier_state *vstate = env->cur_state; 4568 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4569 struct bpf_reg_state *regs = state->regs, *dst_reg; 4570 bool known = tnum_is_const(off_reg->var_off); 4571 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4572 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4573 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4574 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4575 u32 dst = insn->dst_reg, src = insn->src_reg; 4576 u8 opcode = BPF_OP(insn->code); 4577 int ret; 4578 4579 dst_reg = ®s[dst]; 4580 4581 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4582 smin_val > smax_val || umin_val > umax_val) { 4583 /* Taint dst register if offset had invalid bounds derived from 4584 * e.g. dead branches. 4585 */ 4586 __mark_reg_unknown(env, dst_reg); 4587 return 0; 4588 } 4589 4590 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4591 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4592 verbose(env, 4593 "R%d 32-bit pointer arithmetic prohibited\n", 4594 dst); 4595 return -EACCES; 4596 } 4597 4598 switch (ptr_reg->type) { 4599 case PTR_TO_MAP_VALUE_OR_NULL: 4600 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4601 dst, reg_type_str[ptr_reg->type]); 4602 return -EACCES; 4603 case CONST_PTR_TO_MAP: 4604 case PTR_TO_PACKET_END: 4605 case PTR_TO_SOCKET: 4606 case PTR_TO_SOCKET_OR_NULL: 4607 case PTR_TO_SOCK_COMMON: 4608 case PTR_TO_SOCK_COMMON_OR_NULL: 4609 case PTR_TO_TCP_SOCK: 4610 case PTR_TO_TCP_SOCK_OR_NULL: 4611 case PTR_TO_XDP_SOCK: 4612 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4613 dst, reg_type_str[ptr_reg->type]); 4614 return -EACCES; 4615 case PTR_TO_MAP_VALUE: 4616 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4617 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4618 off_reg == dst_reg ? dst : src); 4619 return -EACCES; 4620 } 4621 /* fall-through */ 4622 default: 4623 break; 4624 } 4625 4626 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4627 * The id may be overwritten later if we create a new variable offset. 4628 */ 4629 dst_reg->type = ptr_reg->type; 4630 dst_reg->id = ptr_reg->id; 4631 4632 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4633 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4634 return -EINVAL; 4635 4636 switch (opcode) { 4637 case BPF_ADD: 4638 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4639 if (ret < 0) { 4640 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4641 return ret; 4642 } 4643 /* We can take a fixed offset as long as it doesn't overflow 4644 * the s32 'off' field 4645 */ 4646 if (known && (ptr_reg->off + smin_val == 4647 (s64)(s32)(ptr_reg->off + smin_val))) { 4648 /* pointer += K. Accumulate it into fixed offset */ 4649 dst_reg->smin_value = smin_ptr; 4650 dst_reg->smax_value = smax_ptr; 4651 dst_reg->umin_value = umin_ptr; 4652 dst_reg->umax_value = umax_ptr; 4653 dst_reg->var_off = ptr_reg->var_off; 4654 dst_reg->off = ptr_reg->off + smin_val; 4655 dst_reg->raw = ptr_reg->raw; 4656 break; 4657 } 4658 /* A new variable offset is created. Note that off_reg->off 4659 * == 0, since it's a scalar. 4660 * dst_reg gets the pointer type and since some positive 4661 * integer value was added to the pointer, give it a new 'id' 4662 * if it's a PTR_TO_PACKET. 4663 * this creates a new 'base' pointer, off_reg (variable) gets 4664 * added into the variable offset, and we copy the fixed offset 4665 * from ptr_reg. 4666 */ 4667 if (signed_add_overflows(smin_ptr, smin_val) || 4668 signed_add_overflows(smax_ptr, smax_val)) { 4669 dst_reg->smin_value = S64_MIN; 4670 dst_reg->smax_value = S64_MAX; 4671 } else { 4672 dst_reg->smin_value = smin_ptr + smin_val; 4673 dst_reg->smax_value = smax_ptr + smax_val; 4674 } 4675 if (umin_ptr + umin_val < umin_ptr || 4676 umax_ptr + umax_val < umax_ptr) { 4677 dst_reg->umin_value = 0; 4678 dst_reg->umax_value = U64_MAX; 4679 } else { 4680 dst_reg->umin_value = umin_ptr + umin_val; 4681 dst_reg->umax_value = umax_ptr + umax_val; 4682 } 4683 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4684 dst_reg->off = ptr_reg->off; 4685 dst_reg->raw = ptr_reg->raw; 4686 if (reg_is_pkt_pointer(ptr_reg)) { 4687 dst_reg->id = ++env->id_gen; 4688 /* something was added to pkt_ptr, set range to zero */ 4689 dst_reg->raw = 0; 4690 } 4691 break; 4692 case BPF_SUB: 4693 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4694 if (ret < 0) { 4695 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4696 return ret; 4697 } 4698 if (dst_reg == off_reg) { 4699 /* scalar -= pointer. Creates an unknown scalar */ 4700 verbose(env, "R%d tried to subtract pointer from scalar\n", 4701 dst); 4702 return -EACCES; 4703 } 4704 /* We don't allow subtraction from FP, because (according to 4705 * test_verifier.c test "invalid fp arithmetic", JITs might not 4706 * be able to deal with it. 4707 */ 4708 if (ptr_reg->type == PTR_TO_STACK) { 4709 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4710 dst); 4711 return -EACCES; 4712 } 4713 if (known && (ptr_reg->off - smin_val == 4714 (s64)(s32)(ptr_reg->off - smin_val))) { 4715 /* pointer -= K. Subtract it from fixed offset */ 4716 dst_reg->smin_value = smin_ptr; 4717 dst_reg->smax_value = smax_ptr; 4718 dst_reg->umin_value = umin_ptr; 4719 dst_reg->umax_value = umax_ptr; 4720 dst_reg->var_off = ptr_reg->var_off; 4721 dst_reg->id = ptr_reg->id; 4722 dst_reg->off = ptr_reg->off - smin_val; 4723 dst_reg->raw = ptr_reg->raw; 4724 break; 4725 } 4726 /* A new variable offset is created. If the subtrahend is known 4727 * nonnegative, then any reg->range we had before is still good. 4728 */ 4729 if (signed_sub_overflows(smin_ptr, smax_val) || 4730 signed_sub_overflows(smax_ptr, smin_val)) { 4731 /* Overflow possible, we know nothing */ 4732 dst_reg->smin_value = S64_MIN; 4733 dst_reg->smax_value = S64_MAX; 4734 } else { 4735 dst_reg->smin_value = smin_ptr - smax_val; 4736 dst_reg->smax_value = smax_ptr - smin_val; 4737 } 4738 if (umin_ptr < umax_val) { 4739 /* Overflow possible, we know nothing */ 4740 dst_reg->umin_value = 0; 4741 dst_reg->umax_value = U64_MAX; 4742 } else { 4743 /* Cannot overflow (as long as bounds are consistent) */ 4744 dst_reg->umin_value = umin_ptr - umax_val; 4745 dst_reg->umax_value = umax_ptr - umin_val; 4746 } 4747 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4748 dst_reg->off = ptr_reg->off; 4749 dst_reg->raw = ptr_reg->raw; 4750 if (reg_is_pkt_pointer(ptr_reg)) { 4751 dst_reg->id = ++env->id_gen; 4752 /* something was added to pkt_ptr, set range to zero */ 4753 if (smin_val < 0) 4754 dst_reg->raw = 0; 4755 } 4756 break; 4757 case BPF_AND: 4758 case BPF_OR: 4759 case BPF_XOR: 4760 /* bitwise ops on pointers are troublesome, prohibit. */ 4761 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4762 dst, bpf_alu_string[opcode >> 4]); 4763 return -EACCES; 4764 default: 4765 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4766 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4767 dst, bpf_alu_string[opcode >> 4]); 4768 return -EACCES; 4769 } 4770 4771 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4772 return -EINVAL; 4773 4774 __update_reg_bounds(dst_reg); 4775 __reg_deduce_bounds(dst_reg); 4776 __reg_bound_offset(dst_reg); 4777 4778 /* For unprivileged we require that resulting offset must be in bounds 4779 * in order to be able to sanitize access later on. 4780 */ 4781 if (!env->allow_ptr_leaks) { 4782 if (dst_reg->type == PTR_TO_MAP_VALUE && 4783 check_map_access(env, dst, dst_reg->off, 1, false)) { 4784 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4785 "prohibited for !root\n", dst); 4786 return -EACCES; 4787 } else if (dst_reg->type == PTR_TO_STACK && 4788 check_stack_access(env, dst_reg, dst_reg->off + 4789 dst_reg->var_off.value, 1)) { 4790 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4791 "prohibited for !root\n", dst); 4792 return -EACCES; 4793 } 4794 } 4795 4796 return 0; 4797 } 4798 4799 /* WARNING: This function does calculations on 64-bit values, but the actual 4800 * execution may occur on 32-bit values. Therefore, things like bitshifts 4801 * need extra checks in the 32-bit case. 4802 */ 4803 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4804 struct bpf_insn *insn, 4805 struct bpf_reg_state *dst_reg, 4806 struct bpf_reg_state src_reg) 4807 { 4808 struct bpf_reg_state *regs = cur_regs(env); 4809 u8 opcode = BPF_OP(insn->code); 4810 bool src_known, dst_known; 4811 s64 smin_val, smax_val; 4812 u64 umin_val, umax_val; 4813 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4814 u32 dst = insn->dst_reg; 4815 int ret; 4816 4817 if (insn_bitness == 32) { 4818 /* Relevant for 32-bit RSH: Information can propagate towards 4819 * LSB, so it isn't sufficient to only truncate the output to 4820 * 32 bits. 4821 */ 4822 coerce_reg_to_size(dst_reg, 4); 4823 coerce_reg_to_size(&src_reg, 4); 4824 } 4825 4826 smin_val = src_reg.smin_value; 4827 smax_val = src_reg.smax_value; 4828 umin_val = src_reg.umin_value; 4829 umax_val = src_reg.umax_value; 4830 src_known = tnum_is_const(src_reg.var_off); 4831 dst_known = tnum_is_const(dst_reg->var_off); 4832 4833 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4834 smin_val > smax_val || umin_val > umax_val) { 4835 /* Taint dst register if offset had invalid bounds derived from 4836 * e.g. dead branches. 4837 */ 4838 __mark_reg_unknown(env, dst_reg); 4839 return 0; 4840 } 4841 4842 if (!src_known && 4843 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4844 __mark_reg_unknown(env, dst_reg); 4845 return 0; 4846 } 4847 4848 switch (opcode) { 4849 case BPF_ADD: 4850 ret = sanitize_val_alu(env, insn); 4851 if (ret < 0) { 4852 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4853 return ret; 4854 } 4855 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4856 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4857 dst_reg->smin_value = S64_MIN; 4858 dst_reg->smax_value = S64_MAX; 4859 } else { 4860 dst_reg->smin_value += smin_val; 4861 dst_reg->smax_value += smax_val; 4862 } 4863 if (dst_reg->umin_value + umin_val < umin_val || 4864 dst_reg->umax_value + umax_val < umax_val) { 4865 dst_reg->umin_value = 0; 4866 dst_reg->umax_value = U64_MAX; 4867 } else { 4868 dst_reg->umin_value += umin_val; 4869 dst_reg->umax_value += umax_val; 4870 } 4871 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4872 break; 4873 case BPF_SUB: 4874 ret = sanitize_val_alu(env, insn); 4875 if (ret < 0) { 4876 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4877 return ret; 4878 } 4879 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4880 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4881 /* Overflow possible, we know nothing */ 4882 dst_reg->smin_value = S64_MIN; 4883 dst_reg->smax_value = S64_MAX; 4884 } else { 4885 dst_reg->smin_value -= smax_val; 4886 dst_reg->smax_value -= smin_val; 4887 } 4888 if (dst_reg->umin_value < umax_val) { 4889 /* Overflow possible, we know nothing */ 4890 dst_reg->umin_value = 0; 4891 dst_reg->umax_value = U64_MAX; 4892 } else { 4893 /* Cannot overflow (as long as bounds are consistent) */ 4894 dst_reg->umin_value -= umax_val; 4895 dst_reg->umax_value -= umin_val; 4896 } 4897 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4898 break; 4899 case BPF_MUL: 4900 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4901 if (smin_val < 0 || dst_reg->smin_value < 0) { 4902 /* Ain't nobody got time to multiply that sign */ 4903 __mark_reg_unbounded(dst_reg); 4904 __update_reg_bounds(dst_reg); 4905 break; 4906 } 4907 /* Both values are positive, so we can work with unsigned and 4908 * copy the result to signed (unless it exceeds S64_MAX). 4909 */ 4910 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4911 /* Potential overflow, we know nothing */ 4912 __mark_reg_unbounded(dst_reg); 4913 /* (except what we can learn from the var_off) */ 4914 __update_reg_bounds(dst_reg); 4915 break; 4916 } 4917 dst_reg->umin_value *= umin_val; 4918 dst_reg->umax_value *= umax_val; 4919 if (dst_reg->umax_value > S64_MAX) { 4920 /* Overflow possible, we know nothing */ 4921 dst_reg->smin_value = S64_MIN; 4922 dst_reg->smax_value = S64_MAX; 4923 } else { 4924 dst_reg->smin_value = dst_reg->umin_value; 4925 dst_reg->smax_value = dst_reg->umax_value; 4926 } 4927 break; 4928 case BPF_AND: 4929 if (src_known && dst_known) { 4930 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4931 src_reg.var_off.value); 4932 break; 4933 } 4934 /* We get our minimum from the var_off, since that's inherently 4935 * bitwise. Our maximum is the minimum of the operands' maxima. 4936 */ 4937 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4938 dst_reg->umin_value = dst_reg->var_off.value; 4939 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4940 if (dst_reg->smin_value < 0 || smin_val < 0) { 4941 /* Lose signed bounds when ANDing negative numbers, 4942 * ain't nobody got time for that. 4943 */ 4944 dst_reg->smin_value = S64_MIN; 4945 dst_reg->smax_value = S64_MAX; 4946 } else { 4947 /* ANDing two positives gives a positive, so safe to 4948 * cast result into s64. 4949 */ 4950 dst_reg->smin_value = dst_reg->umin_value; 4951 dst_reg->smax_value = dst_reg->umax_value; 4952 } 4953 /* We may learn something more from the var_off */ 4954 __update_reg_bounds(dst_reg); 4955 break; 4956 case BPF_OR: 4957 if (src_known && dst_known) { 4958 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4959 src_reg.var_off.value); 4960 break; 4961 } 4962 /* We get our maximum from the var_off, and our minimum is the 4963 * maximum of the operands' minima 4964 */ 4965 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4966 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4967 dst_reg->umax_value = dst_reg->var_off.value | 4968 dst_reg->var_off.mask; 4969 if (dst_reg->smin_value < 0 || smin_val < 0) { 4970 /* Lose signed bounds when ORing negative numbers, 4971 * ain't nobody got time for that. 4972 */ 4973 dst_reg->smin_value = S64_MIN; 4974 dst_reg->smax_value = S64_MAX; 4975 } else { 4976 /* ORing two positives gives a positive, so safe to 4977 * cast result into s64. 4978 */ 4979 dst_reg->smin_value = dst_reg->umin_value; 4980 dst_reg->smax_value = dst_reg->umax_value; 4981 } 4982 /* We may learn something more from the var_off */ 4983 __update_reg_bounds(dst_reg); 4984 break; 4985 case BPF_LSH: 4986 if (umax_val >= insn_bitness) { 4987 /* Shifts greater than 31 or 63 are undefined. 4988 * This includes shifts by a negative number. 4989 */ 4990 mark_reg_unknown(env, regs, insn->dst_reg); 4991 break; 4992 } 4993 /* We lose all sign bit information (except what we can pick 4994 * up from var_off) 4995 */ 4996 dst_reg->smin_value = S64_MIN; 4997 dst_reg->smax_value = S64_MAX; 4998 /* If we might shift our top bit out, then we know nothing */ 4999 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 5000 dst_reg->umin_value = 0; 5001 dst_reg->umax_value = U64_MAX; 5002 } else { 5003 dst_reg->umin_value <<= umin_val; 5004 dst_reg->umax_value <<= umax_val; 5005 } 5006 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 5007 /* We may learn something more from the var_off */ 5008 __update_reg_bounds(dst_reg); 5009 break; 5010 case BPF_RSH: 5011 if (umax_val >= insn_bitness) { 5012 /* Shifts greater than 31 or 63 are undefined. 5013 * This includes shifts by a negative number. 5014 */ 5015 mark_reg_unknown(env, regs, insn->dst_reg); 5016 break; 5017 } 5018 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 5019 * be negative, then either: 5020 * 1) src_reg might be zero, so the sign bit of the result is 5021 * unknown, so we lose our signed bounds 5022 * 2) it's known negative, thus the unsigned bounds capture the 5023 * signed bounds 5024 * 3) the signed bounds cross zero, so they tell us nothing 5025 * about the result 5026 * If the value in dst_reg is known nonnegative, then again the 5027 * unsigned bounts capture the signed bounds. 5028 * Thus, in all cases it suffices to blow away our signed bounds 5029 * and rely on inferring new ones from the unsigned bounds and 5030 * var_off of the result. 5031 */ 5032 dst_reg->smin_value = S64_MIN; 5033 dst_reg->smax_value = S64_MAX; 5034 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 5035 dst_reg->umin_value >>= umax_val; 5036 dst_reg->umax_value >>= umin_val; 5037 /* We may learn something more from the var_off */ 5038 __update_reg_bounds(dst_reg); 5039 break; 5040 case BPF_ARSH: 5041 if (umax_val >= insn_bitness) { 5042 /* Shifts greater than 31 or 63 are undefined. 5043 * This includes shifts by a negative number. 5044 */ 5045 mark_reg_unknown(env, regs, insn->dst_reg); 5046 break; 5047 } 5048 5049 /* Upon reaching here, src_known is true and 5050 * umax_val is equal to umin_val. 5051 */ 5052 dst_reg->smin_value >>= umin_val; 5053 dst_reg->smax_value >>= umin_val; 5054 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 5055 5056 /* blow away the dst_reg umin_value/umax_value and rely on 5057 * dst_reg var_off to refine the result. 5058 */ 5059 dst_reg->umin_value = 0; 5060 dst_reg->umax_value = U64_MAX; 5061 __update_reg_bounds(dst_reg); 5062 break; 5063 default: 5064 mark_reg_unknown(env, regs, insn->dst_reg); 5065 break; 5066 } 5067 5068 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5069 /* 32-bit ALU ops are (32,32)->32 */ 5070 coerce_reg_to_size(dst_reg, 4); 5071 } 5072 5073 __reg_deduce_bounds(dst_reg); 5074 __reg_bound_offset(dst_reg); 5075 return 0; 5076 } 5077 5078 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 5079 * and var_off. 5080 */ 5081 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 5082 struct bpf_insn *insn) 5083 { 5084 struct bpf_verifier_state *vstate = env->cur_state; 5085 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5086 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 5087 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 5088 u8 opcode = BPF_OP(insn->code); 5089 int err; 5090 5091 dst_reg = ®s[insn->dst_reg]; 5092 src_reg = NULL; 5093 if (dst_reg->type != SCALAR_VALUE) 5094 ptr_reg = dst_reg; 5095 if (BPF_SRC(insn->code) == BPF_X) { 5096 src_reg = ®s[insn->src_reg]; 5097 if (src_reg->type != SCALAR_VALUE) { 5098 if (dst_reg->type != SCALAR_VALUE) { 5099 /* Combining two pointers by any ALU op yields 5100 * an arbitrary scalar. Disallow all math except 5101 * pointer subtraction 5102 */ 5103 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5104 mark_reg_unknown(env, regs, insn->dst_reg); 5105 return 0; 5106 } 5107 verbose(env, "R%d pointer %s pointer prohibited\n", 5108 insn->dst_reg, 5109 bpf_alu_string[opcode >> 4]); 5110 return -EACCES; 5111 } else { 5112 /* scalar += pointer 5113 * This is legal, but we have to reverse our 5114 * src/dest handling in computing the range 5115 */ 5116 err = mark_chain_precision(env, insn->dst_reg); 5117 if (err) 5118 return err; 5119 return adjust_ptr_min_max_vals(env, insn, 5120 src_reg, dst_reg); 5121 } 5122 } else if (ptr_reg) { 5123 /* pointer += scalar */ 5124 err = mark_chain_precision(env, insn->src_reg); 5125 if (err) 5126 return err; 5127 return adjust_ptr_min_max_vals(env, insn, 5128 dst_reg, src_reg); 5129 } 5130 } else { 5131 /* Pretend the src is a reg with a known value, since we only 5132 * need to be able to read from this state. 5133 */ 5134 off_reg.type = SCALAR_VALUE; 5135 __mark_reg_known(&off_reg, insn->imm); 5136 src_reg = &off_reg; 5137 if (ptr_reg) /* pointer += K */ 5138 return adjust_ptr_min_max_vals(env, insn, 5139 ptr_reg, src_reg); 5140 } 5141 5142 /* Got here implies adding two SCALAR_VALUEs */ 5143 if (WARN_ON_ONCE(ptr_reg)) { 5144 print_verifier_state(env, state); 5145 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 5146 return -EINVAL; 5147 } 5148 if (WARN_ON(!src_reg)) { 5149 print_verifier_state(env, state); 5150 verbose(env, "verifier internal error: no src_reg\n"); 5151 return -EINVAL; 5152 } 5153 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 5154 } 5155 5156 /* check validity of 32-bit and 64-bit arithmetic operations */ 5157 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 5158 { 5159 struct bpf_reg_state *regs = cur_regs(env); 5160 u8 opcode = BPF_OP(insn->code); 5161 int err; 5162 5163 if (opcode == BPF_END || opcode == BPF_NEG) { 5164 if (opcode == BPF_NEG) { 5165 if (BPF_SRC(insn->code) != 0 || 5166 insn->src_reg != BPF_REG_0 || 5167 insn->off != 0 || insn->imm != 0) { 5168 verbose(env, "BPF_NEG uses reserved fields\n"); 5169 return -EINVAL; 5170 } 5171 } else { 5172 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 5173 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 5174 BPF_CLASS(insn->code) == BPF_ALU64) { 5175 verbose(env, "BPF_END uses reserved fields\n"); 5176 return -EINVAL; 5177 } 5178 } 5179 5180 /* check src operand */ 5181 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5182 if (err) 5183 return err; 5184 5185 if (is_pointer_value(env, insn->dst_reg)) { 5186 verbose(env, "R%d pointer arithmetic prohibited\n", 5187 insn->dst_reg); 5188 return -EACCES; 5189 } 5190 5191 /* check dest operand */ 5192 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5193 if (err) 5194 return err; 5195 5196 } else if (opcode == BPF_MOV) { 5197 5198 if (BPF_SRC(insn->code) == BPF_X) { 5199 if (insn->imm != 0 || insn->off != 0) { 5200 verbose(env, "BPF_MOV uses reserved fields\n"); 5201 return -EINVAL; 5202 } 5203 5204 /* check src operand */ 5205 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5206 if (err) 5207 return err; 5208 } else { 5209 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5210 verbose(env, "BPF_MOV uses reserved fields\n"); 5211 return -EINVAL; 5212 } 5213 } 5214 5215 /* check dest operand, mark as required later */ 5216 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5217 if (err) 5218 return err; 5219 5220 if (BPF_SRC(insn->code) == BPF_X) { 5221 struct bpf_reg_state *src_reg = regs + insn->src_reg; 5222 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 5223 5224 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5225 /* case: R1 = R2 5226 * copy register state to dest reg 5227 */ 5228 *dst_reg = *src_reg; 5229 dst_reg->live |= REG_LIVE_WRITTEN; 5230 dst_reg->subreg_def = DEF_NOT_SUBREG; 5231 } else { 5232 /* R1 = (u32) R2 */ 5233 if (is_pointer_value(env, insn->src_reg)) { 5234 verbose(env, 5235 "R%d partial copy of pointer\n", 5236 insn->src_reg); 5237 return -EACCES; 5238 } else if (src_reg->type == SCALAR_VALUE) { 5239 *dst_reg = *src_reg; 5240 dst_reg->live |= REG_LIVE_WRITTEN; 5241 dst_reg->subreg_def = env->insn_idx + 1; 5242 } else { 5243 mark_reg_unknown(env, regs, 5244 insn->dst_reg); 5245 } 5246 coerce_reg_to_size(dst_reg, 4); 5247 } 5248 } else { 5249 /* case: R = imm 5250 * remember the value we stored into this reg 5251 */ 5252 /* clear any state __mark_reg_known doesn't set */ 5253 mark_reg_unknown(env, regs, insn->dst_reg); 5254 regs[insn->dst_reg].type = SCALAR_VALUE; 5255 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5256 __mark_reg_known(regs + insn->dst_reg, 5257 insn->imm); 5258 } else { 5259 __mark_reg_known(regs + insn->dst_reg, 5260 (u32)insn->imm); 5261 } 5262 } 5263 5264 } else if (opcode > BPF_END) { 5265 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5266 return -EINVAL; 5267 5268 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5269 5270 if (BPF_SRC(insn->code) == BPF_X) { 5271 if (insn->imm != 0 || insn->off != 0) { 5272 verbose(env, "BPF_ALU uses reserved fields\n"); 5273 return -EINVAL; 5274 } 5275 /* check src1 operand */ 5276 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5277 if (err) 5278 return err; 5279 } else { 5280 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5281 verbose(env, "BPF_ALU uses reserved fields\n"); 5282 return -EINVAL; 5283 } 5284 } 5285 5286 /* check src2 operand */ 5287 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5288 if (err) 5289 return err; 5290 5291 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5292 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5293 verbose(env, "div by zero\n"); 5294 return -EINVAL; 5295 } 5296 5297 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5298 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5299 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5300 5301 if (insn->imm < 0 || insn->imm >= size) { 5302 verbose(env, "invalid shift %d\n", insn->imm); 5303 return -EINVAL; 5304 } 5305 } 5306 5307 /* check dest operand */ 5308 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5309 if (err) 5310 return err; 5311 5312 return adjust_reg_min_max_vals(env, insn); 5313 } 5314 5315 return 0; 5316 } 5317 5318 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5319 struct bpf_reg_state *dst_reg, 5320 enum bpf_reg_type type, u16 new_range) 5321 { 5322 struct bpf_reg_state *reg; 5323 int i; 5324 5325 for (i = 0; i < MAX_BPF_REG; i++) { 5326 reg = &state->regs[i]; 5327 if (reg->type == type && reg->id == dst_reg->id) 5328 /* keep the maximum range already checked */ 5329 reg->range = max(reg->range, new_range); 5330 } 5331 5332 bpf_for_each_spilled_reg(i, state, reg) { 5333 if (!reg) 5334 continue; 5335 if (reg->type == type && reg->id == dst_reg->id) 5336 reg->range = max(reg->range, new_range); 5337 } 5338 } 5339 5340 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5341 struct bpf_reg_state *dst_reg, 5342 enum bpf_reg_type type, 5343 bool range_right_open) 5344 { 5345 u16 new_range; 5346 int i; 5347 5348 if (dst_reg->off < 0 || 5349 (dst_reg->off == 0 && range_right_open)) 5350 /* This doesn't give us any range */ 5351 return; 5352 5353 if (dst_reg->umax_value > MAX_PACKET_OFF || 5354 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5355 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5356 * than pkt_end, but that's because it's also less than pkt. 5357 */ 5358 return; 5359 5360 new_range = dst_reg->off; 5361 if (range_right_open) 5362 new_range--; 5363 5364 /* Examples for register markings: 5365 * 5366 * pkt_data in dst register: 5367 * 5368 * r2 = r3; 5369 * r2 += 8; 5370 * if (r2 > pkt_end) goto <handle exception> 5371 * <access okay> 5372 * 5373 * r2 = r3; 5374 * r2 += 8; 5375 * if (r2 < pkt_end) goto <access okay> 5376 * <handle exception> 5377 * 5378 * Where: 5379 * r2 == dst_reg, pkt_end == src_reg 5380 * r2=pkt(id=n,off=8,r=0) 5381 * r3=pkt(id=n,off=0,r=0) 5382 * 5383 * pkt_data in src register: 5384 * 5385 * r2 = r3; 5386 * r2 += 8; 5387 * if (pkt_end >= r2) goto <access okay> 5388 * <handle exception> 5389 * 5390 * r2 = r3; 5391 * r2 += 8; 5392 * if (pkt_end <= r2) goto <handle exception> 5393 * <access okay> 5394 * 5395 * Where: 5396 * pkt_end == dst_reg, r2 == src_reg 5397 * r2=pkt(id=n,off=8,r=0) 5398 * r3=pkt(id=n,off=0,r=0) 5399 * 5400 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5401 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5402 * and [r3, r3 + 8-1) respectively is safe to access depending on 5403 * the check. 5404 */ 5405 5406 /* If our ids match, then we must have the same max_value. And we 5407 * don't care about the other reg's fixed offset, since if it's too big 5408 * the range won't allow anything. 5409 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5410 */ 5411 for (i = 0; i <= vstate->curframe; i++) 5412 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5413 new_range); 5414 } 5415 5416 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5417 * and return: 5418 * 1 - branch will be taken and "goto target" will be executed 5419 * 0 - branch will not be taken and fall-through to next insn 5420 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5421 */ 5422 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5423 bool is_jmp32) 5424 { 5425 struct bpf_reg_state reg_lo; 5426 s64 sval; 5427 5428 if (__is_pointer_value(false, reg)) 5429 return -1; 5430 5431 if (is_jmp32) { 5432 reg_lo = *reg; 5433 reg = ®_lo; 5434 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5435 * could truncate high bits and update umin/umax according to 5436 * information of low bits. 5437 */ 5438 coerce_reg_to_size(reg, 4); 5439 /* smin/smax need special handling. For example, after coerce, 5440 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5441 * used as operand to JMP32. It is a negative number from s32's 5442 * point of view, while it is a positive number when seen as 5443 * s64. The smin/smax are kept as s64, therefore, when used with 5444 * JMP32, they need to be transformed into s32, then sign 5445 * extended back to s64. 5446 * 5447 * Also, smin/smax were copied from umin/umax. If umin/umax has 5448 * different sign bit, then min/max relationship doesn't 5449 * maintain after casting into s32, for this case, set smin/smax 5450 * to safest range. 5451 */ 5452 if ((reg->umax_value ^ reg->umin_value) & 5453 (1ULL << 31)) { 5454 reg->smin_value = S32_MIN; 5455 reg->smax_value = S32_MAX; 5456 } 5457 reg->smin_value = (s64)(s32)reg->smin_value; 5458 reg->smax_value = (s64)(s32)reg->smax_value; 5459 5460 val = (u32)val; 5461 sval = (s64)(s32)val; 5462 } else { 5463 sval = (s64)val; 5464 } 5465 5466 switch (opcode) { 5467 case BPF_JEQ: 5468 if (tnum_is_const(reg->var_off)) 5469 return !!tnum_equals_const(reg->var_off, val); 5470 break; 5471 case BPF_JNE: 5472 if (tnum_is_const(reg->var_off)) 5473 return !tnum_equals_const(reg->var_off, val); 5474 break; 5475 case BPF_JSET: 5476 if ((~reg->var_off.mask & reg->var_off.value) & val) 5477 return 1; 5478 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5479 return 0; 5480 break; 5481 case BPF_JGT: 5482 if (reg->umin_value > val) 5483 return 1; 5484 else if (reg->umax_value <= val) 5485 return 0; 5486 break; 5487 case BPF_JSGT: 5488 if (reg->smin_value > sval) 5489 return 1; 5490 else if (reg->smax_value < sval) 5491 return 0; 5492 break; 5493 case BPF_JLT: 5494 if (reg->umax_value < val) 5495 return 1; 5496 else if (reg->umin_value >= val) 5497 return 0; 5498 break; 5499 case BPF_JSLT: 5500 if (reg->smax_value < sval) 5501 return 1; 5502 else if (reg->smin_value >= sval) 5503 return 0; 5504 break; 5505 case BPF_JGE: 5506 if (reg->umin_value >= val) 5507 return 1; 5508 else if (reg->umax_value < val) 5509 return 0; 5510 break; 5511 case BPF_JSGE: 5512 if (reg->smin_value >= sval) 5513 return 1; 5514 else if (reg->smax_value < sval) 5515 return 0; 5516 break; 5517 case BPF_JLE: 5518 if (reg->umax_value <= val) 5519 return 1; 5520 else if (reg->umin_value > val) 5521 return 0; 5522 break; 5523 case BPF_JSLE: 5524 if (reg->smax_value <= sval) 5525 return 1; 5526 else if (reg->smin_value > sval) 5527 return 0; 5528 break; 5529 } 5530 5531 return -1; 5532 } 5533 5534 /* Generate min value of the high 32-bit from TNUM info. */ 5535 static u64 gen_hi_min(struct tnum var) 5536 { 5537 return var.value & ~0xffffffffULL; 5538 } 5539 5540 /* Generate max value of the high 32-bit from TNUM info. */ 5541 static u64 gen_hi_max(struct tnum var) 5542 { 5543 return (var.value | var.mask) & ~0xffffffffULL; 5544 } 5545 5546 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5547 * are with the same signedness. 5548 */ 5549 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5550 { 5551 return ((s32)sval >= 0 && 5552 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5553 ((s32)sval < 0 && 5554 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5555 } 5556 5557 /* Adjusts the register min/max values in the case that the dst_reg is the 5558 * variable register that we are working on, and src_reg is a constant or we're 5559 * simply doing a BPF_K check. 5560 * In JEQ/JNE cases we also adjust the var_off values. 5561 */ 5562 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5563 struct bpf_reg_state *false_reg, u64 val, 5564 u8 opcode, bool is_jmp32) 5565 { 5566 s64 sval; 5567 5568 /* If the dst_reg is a pointer, we can't learn anything about its 5569 * variable offset from the compare (unless src_reg were a pointer into 5570 * the same object, but we don't bother with that. 5571 * Since false_reg and true_reg have the same type by construction, we 5572 * only need to check one of them for pointerness. 5573 */ 5574 if (__is_pointer_value(false, false_reg)) 5575 return; 5576 5577 val = is_jmp32 ? (u32)val : val; 5578 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5579 5580 switch (opcode) { 5581 case BPF_JEQ: 5582 case BPF_JNE: 5583 { 5584 struct bpf_reg_state *reg = 5585 opcode == BPF_JEQ ? true_reg : false_reg; 5586 5587 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5588 * if it is true we know the value for sure. Likewise for 5589 * BPF_JNE. 5590 */ 5591 if (is_jmp32) { 5592 u64 old_v = reg->var_off.value; 5593 u64 hi_mask = ~0xffffffffULL; 5594 5595 reg->var_off.value = (old_v & hi_mask) | val; 5596 reg->var_off.mask &= hi_mask; 5597 } else { 5598 __mark_reg_known(reg, val); 5599 } 5600 break; 5601 } 5602 case BPF_JSET: 5603 false_reg->var_off = tnum_and(false_reg->var_off, 5604 tnum_const(~val)); 5605 if (is_power_of_2(val)) 5606 true_reg->var_off = tnum_or(true_reg->var_off, 5607 tnum_const(val)); 5608 break; 5609 case BPF_JGE: 5610 case BPF_JGT: 5611 { 5612 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5613 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5614 5615 if (is_jmp32) { 5616 false_umax += gen_hi_max(false_reg->var_off); 5617 true_umin += gen_hi_min(true_reg->var_off); 5618 } 5619 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5620 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5621 break; 5622 } 5623 case BPF_JSGE: 5624 case BPF_JSGT: 5625 { 5626 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5627 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5628 5629 /* If the full s64 was not sign-extended from s32 then don't 5630 * deduct further info. 5631 */ 5632 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5633 break; 5634 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5635 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5636 break; 5637 } 5638 case BPF_JLE: 5639 case BPF_JLT: 5640 { 5641 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5642 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5643 5644 if (is_jmp32) { 5645 false_umin += gen_hi_min(false_reg->var_off); 5646 true_umax += gen_hi_max(true_reg->var_off); 5647 } 5648 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5649 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5650 break; 5651 } 5652 case BPF_JSLE: 5653 case BPF_JSLT: 5654 { 5655 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5656 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5657 5658 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5659 break; 5660 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5661 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5662 break; 5663 } 5664 default: 5665 break; 5666 } 5667 5668 __reg_deduce_bounds(false_reg); 5669 __reg_deduce_bounds(true_reg); 5670 /* We might have learned some bits from the bounds. */ 5671 __reg_bound_offset(false_reg); 5672 __reg_bound_offset(true_reg); 5673 if (is_jmp32) { 5674 __reg_bound_offset32(false_reg); 5675 __reg_bound_offset32(true_reg); 5676 } 5677 /* Intersecting with the old var_off might have improved our bounds 5678 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5679 * then new var_off is (0; 0x7f...fc) which improves our umax. 5680 */ 5681 __update_reg_bounds(false_reg); 5682 __update_reg_bounds(true_reg); 5683 } 5684 5685 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5686 * the variable reg. 5687 */ 5688 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5689 struct bpf_reg_state *false_reg, u64 val, 5690 u8 opcode, bool is_jmp32) 5691 { 5692 s64 sval; 5693 5694 if (__is_pointer_value(false, false_reg)) 5695 return; 5696 5697 val = is_jmp32 ? (u32)val : val; 5698 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5699 5700 switch (opcode) { 5701 case BPF_JEQ: 5702 case BPF_JNE: 5703 { 5704 struct bpf_reg_state *reg = 5705 opcode == BPF_JEQ ? true_reg : false_reg; 5706 5707 if (is_jmp32) { 5708 u64 old_v = reg->var_off.value; 5709 u64 hi_mask = ~0xffffffffULL; 5710 5711 reg->var_off.value = (old_v & hi_mask) | val; 5712 reg->var_off.mask &= hi_mask; 5713 } else { 5714 __mark_reg_known(reg, val); 5715 } 5716 break; 5717 } 5718 case BPF_JSET: 5719 false_reg->var_off = tnum_and(false_reg->var_off, 5720 tnum_const(~val)); 5721 if (is_power_of_2(val)) 5722 true_reg->var_off = tnum_or(true_reg->var_off, 5723 tnum_const(val)); 5724 break; 5725 case BPF_JGE: 5726 case BPF_JGT: 5727 { 5728 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5729 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5730 5731 if (is_jmp32) { 5732 false_umin += gen_hi_min(false_reg->var_off); 5733 true_umax += gen_hi_max(true_reg->var_off); 5734 } 5735 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5736 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5737 break; 5738 } 5739 case BPF_JSGE: 5740 case BPF_JSGT: 5741 { 5742 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5743 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5744 5745 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5746 break; 5747 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5748 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5749 break; 5750 } 5751 case BPF_JLE: 5752 case BPF_JLT: 5753 { 5754 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5755 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5756 5757 if (is_jmp32) { 5758 false_umax += gen_hi_max(false_reg->var_off); 5759 true_umin += gen_hi_min(true_reg->var_off); 5760 } 5761 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5762 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5763 break; 5764 } 5765 case BPF_JSLE: 5766 case BPF_JSLT: 5767 { 5768 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5769 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5770 5771 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5772 break; 5773 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5774 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5775 break; 5776 } 5777 default: 5778 break; 5779 } 5780 5781 __reg_deduce_bounds(false_reg); 5782 __reg_deduce_bounds(true_reg); 5783 /* We might have learned some bits from the bounds. */ 5784 __reg_bound_offset(false_reg); 5785 __reg_bound_offset(true_reg); 5786 if (is_jmp32) { 5787 __reg_bound_offset32(false_reg); 5788 __reg_bound_offset32(true_reg); 5789 } 5790 /* Intersecting with the old var_off might have improved our bounds 5791 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5792 * then new var_off is (0; 0x7f...fc) which improves our umax. 5793 */ 5794 __update_reg_bounds(false_reg); 5795 __update_reg_bounds(true_reg); 5796 } 5797 5798 /* Regs are known to be equal, so intersect their min/max/var_off */ 5799 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5800 struct bpf_reg_state *dst_reg) 5801 { 5802 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5803 dst_reg->umin_value); 5804 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5805 dst_reg->umax_value); 5806 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5807 dst_reg->smin_value); 5808 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5809 dst_reg->smax_value); 5810 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5811 dst_reg->var_off); 5812 /* We might have learned new bounds from the var_off. */ 5813 __update_reg_bounds(src_reg); 5814 __update_reg_bounds(dst_reg); 5815 /* We might have learned something about the sign bit. */ 5816 __reg_deduce_bounds(src_reg); 5817 __reg_deduce_bounds(dst_reg); 5818 /* We might have learned some bits from the bounds. */ 5819 __reg_bound_offset(src_reg); 5820 __reg_bound_offset(dst_reg); 5821 /* Intersecting with the old var_off might have improved our bounds 5822 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5823 * then new var_off is (0; 0x7f...fc) which improves our umax. 5824 */ 5825 __update_reg_bounds(src_reg); 5826 __update_reg_bounds(dst_reg); 5827 } 5828 5829 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5830 struct bpf_reg_state *true_dst, 5831 struct bpf_reg_state *false_src, 5832 struct bpf_reg_state *false_dst, 5833 u8 opcode) 5834 { 5835 switch (opcode) { 5836 case BPF_JEQ: 5837 __reg_combine_min_max(true_src, true_dst); 5838 break; 5839 case BPF_JNE: 5840 __reg_combine_min_max(false_src, false_dst); 5841 break; 5842 } 5843 } 5844 5845 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5846 struct bpf_reg_state *reg, u32 id, 5847 bool is_null) 5848 { 5849 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5850 /* Old offset (both fixed and variable parts) should 5851 * have been known-zero, because we don't allow pointer 5852 * arithmetic on pointers that might be NULL. 5853 */ 5854 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5855 !tnum_equals_const(reg->var_off, 0) || 5856 reg->off)) { 5857 __mark_reg_known_zero(reg); 5858 reg->off = 0; 5859 } 5860 if (is_null) { 5861 reg->type = SCALAR_VALUE; 5862 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5863 if (reg->map_ptr->inner_map_meta) { 5864 reg->type = CONST_PTR_TO_MAP; 5865 reg->map_ptr = reg->map_ptr->inner_map_meta; 5866 } else if (reg->map_ptr->map_type == 5867 BPF_MAP_TYPE_XSKMAP) { 5868 reg->type = PTR_TO_XDP_SOCK; 5869 } else { 5870 reg->type = PTR_TO_MAP_VALUE; 5871 } 5872 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5873 reg->type = PTR_TO_SOCKET; 5874 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5875 reg->type = PTR_TO_SOCK_COMMON; 5876 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5877 reg->type = PTR_TO_TCP_SOCK; 5878 } 5879 if (is_null) { 5880 /* We don't need id and ref_obj_id from this point 5881 * onwards anymore, thus we should better reset it, 5882 * so that state pruning has chances to take effect. 5883 */ 5884 reg->id = 0; 5885 reg->ref_obj_id = 0; 5886 } else if (!reg_may_point_to_spin_lock(reg)) { 5887 /* For not-NULL ptr, reg->ref_obj_id will be reset 5888 * in release_reg_references(). 5889 * 5890 * reg->id is still used by spin_lock ptr. Other 5891 * than spin_lock ptr type, reg->id can be reset. 5892 */ 5893 reg->id = 0; 5894 } 5895 } 5896 } 5897 5898 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5899 bool is_null) 5900 { 5901 struct bpf_reg_state *reg; 5902 int i; 5903 5904 for (i = 0; i < MAX_BPF_REG; i++) 5905 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5906 5907 bpf_for_each_spilled_reg(i, state, reg) { 5908 if (!reg) 5909 continue; 5910 mark_ptr_or_null_reg(state, reg, id, is_null); 5911 } 5912 } 5913 5914 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5915 * be folded together at some point. 5916 */ 5917 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5918 bool is_null) 5919 { 5920 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5921 struct bpf_reg_state *regs = state->regs; 5922 u32 ref_obj_id = regs[regno].ref_obj_id; 5923 u32 id = regs[regno].id; 5924 int i; 5925 5926 if (ref_obj_id && ref_obj_id == id && is_null) 5927 /* regs[regno] is in the " == NULL" branch. 5928 * No one could have freed the reference state before 5929 * doing the NULL check. 5930 */ 5931 WARN_ON_ONCE(release_reference_state(state, id)); 5932 5933 for (i = 0; i <= vstate->curframe; i++) 5934 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5935 } 5936 5937 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5938 struct bpf_reg_state *dst_reg, 5939 struct bpf_reg_state *src_reg, 5940 struct bpf_verifier_state *this_branch, 5941 struct bpf_verifier_state *other_branch) 5942 { 5943 if (BPF_SRC(insn->code) != BPF_X) 5944 return false; 5945 5946 /* Pointers are always 64-bit. */ 5947 if (BPF_CLASS(insn->code) == BPF_JMP32) 5948 return false; 5949 5950 switch (BPF_OP(insn->code)) { 5951 case BPF_JGT: 5952 if ((dst_reg->type == PTR_TO_PACKET && 5953 src_reg->type == PTR_TO_PACKET_END) || 5954 (dst_reg->type == PTR_TO_PACKET_META && 5955 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5956 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5957 find_good_pkt_pointers(this_branch, dst_reg, 5958 dst_reg->type, false); 5959 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5960 src_reg->type == PTR_TO_PACKET) || 5961 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5962 src_reg->type == PTR_TO_PACKET_META)) { 5963 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5964 find_good_pkt_pointers(other_branch, src_reg, 5965 src_reg->type, true); 5966 } else { 5967 return false; 5968 } 5969 break; 5970 case BPF_JLT: 5971 if ((dst_reg->type == PTR_TO_PACKET && 5972 src_reg->type == PTR_TO_PACKET_END) || 5973 (dst_reg->type == PTR_TO_PACKET_META && 5974 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5975 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5976 find_good_pkt_pointers(other_branch, dst_reg, 5977 dst_reg->type, true); 5978 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5979 src_reg->type == PTR_TO_PACKET) || 5980 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5981 src_reg->type == PTR_TO_PACKET_META)) { 5982 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5983 find_good_pkt_pointers(this_branch, src_reg, 5984 src_reg->type, false); 5985 } else { 5986 return false; 5987 } 5988 break; 5989 case BPF_JGE: 5990 if ((dst_reg->type == PTR_TO_PACKET && 5991 src_reg->type == PTR_TO_PACKET_END) || 5992 (dst_reg->type == PTR_TO_PACKET_META && 5993 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5994 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5995 find_good_pkt_pointers(this_branch, dst_reg, 5996 dst_reg->type, true); 5997 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5998 src_reg->type == PTR_TO_PACKET) || 5999 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6000 src_reg->type == PTR_TO_PACKET_META)) { 6001 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 6002 find_good_pkt_pointers(other_branch, src_reg, 6003 src_reg->type, false); 6004 } else { 6005 return false; 6006 } 6007 break; 6008 case BPF_JLE: 6009 if ((dst_reg->type == PTR_TO_PACKET && 6010 src_reg->type == PTR_TO_PACKET_END) || 6011 (dst_reg->type == PTR_TO_PACKET_META && 6012 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 6013 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 6014 find_good_pkt_pointers(other_branch, dst_reg, 6015 dst_reg->type, false); 6016 } else if ((dst_reg->type == PTR_TO_PACKET_END && 6017 src_reg->type == PTR_TO_PACKET) || 6018 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 6019 src_reg->type == PTR_TO_PACKET_META)) { 6020 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 6021 find_good_pkt_pointers(this_branch, src_reg, 6022 src_reg->type, true); 6023 } else { 6024 return false; 6025 } 6026 break; 6027 default: 6028 return false; 6029 } 6030 6031 return true; 6032 } 6033 6034 static int check_cond_jmp_op(struct bpf_verifier_env *env, 6035 struct bpf_insn *insn, int *insn_idx) 6036 { 6037 struct bpf_verifier_state *this_branch = env->cur_state; 6038 struct bpf_verifier_state *other_branch; 6039 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 6040 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 6041 u8 opcode = BPF_OP(insn->code); 6042 bool is_jmp32; 6043 int pred = -1; 6044 int err; 6045 6046 /* Only conditional jumps are expected to reach here. */ 6047 if (opcode == BPF_JA || opcode > BPF_JSLE) { 6048 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 6049 return -EINVAL; 6050 } 6051 6052 if (BPF_SRC(insn->code) == BPF_X) { 6053 if (insn->imm != 0) { 6054 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6055 return -EINVAL; 6056 } 6057 6058 /* check src1 operand */ 6059 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6060 if (err) 6061 return err; 6062 6063 if (is_pointer_value(env, insn->src_reg)) { 6064 verbose(env, "R%d pointer comparison prohibited\n", 6065 insn->src_reg); 6066 return -EACCES; 6067 } 6068 src_reg = ®s[insn->src_reg]; 6069 } else { 6070 if (insn->src_reg != BPF_REG_0) { 6071 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 6072 return -EINVAL; 6073 } 6074 } 6075 6076 /* check src2 operand */ 6077 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6078 if (err) 6079 return err; 6080 6081 dst_reg = ®s[insn->dst_reg]; 6082 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 6083 6084 if (BPF_SRC(insn->code) == BPF_K) 6085 pred = is_branch_taken(dst_reg, insn->imm, 6086 opcode, is_jmp32); 6087 else if (src_reg->type == SCALAR_VALUE && 6088 tnum_is_const(src_reg->var_off)) 6089 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 6090 opcode, is_jmp32); 6091 if (pred >= 0) { 6092 err = mark_chain_precision(env, insn->dst_reg); 6093 if (BPF_SRC(insn->code) == BPF_X && !err) 6094 err = mark_chain_precision(env, insn->src_reg); 6095 if (err) 6096 return err; 6097 } 6098 if (pred == 1) { 6099 /* only follow the goto, ignore fall-through */ 6100 *insn_idx += insn->off; 6101 return 0; 6102 } else if (pred == 0) { 6103 /* only follow fall-through branch, since 6104 * that's where the program will go 6105 */ 6106 return 0; 6107 } 6108 6109 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 6110 false); 6111 if (!other_branch) 6112 return -EFAULT; 6113 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 6114 6115 /* detect if we are comparing against a constant value so we can adjust 6116 * our min/max values for our dst register. 6117 * this is only legit if both are scalars (or pointers to the same 6118 * object, I suppose, but we don't support that right now), because 6119 * otherwise the different base pointers mean the offsets aren't 6120 * comparable. 6121 */ 6122 if (BPF_SRC(insn->code) == BPF_X) { 6123 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 6124 struct bpf_reg_state lo_reg0 = *dst_reg; 6125 struct bpf_reg_state lo_reg1 = *src_reg; 6126 struct bpf_reg_state *src_lo, *dst_lo; 6127 6128 dst_lo = &lo_reg0; 6129 src_lo = &lo_reg1; 6130 coerce_reg_to_size(dst_lo, 4); 6131 coerce_reg_to_size(src_lo, 4); 6132 6133 if (dst_reg->type == SCALAR_VALUE && 6134 src_reg->type == SCALAR_VALUE) { 6135 if (tnum_is_const(src_reg->var_off) || 6136 (is_jmp32 && tnum_is_const(src_lo->var_off))) 6137 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6138 dst_reg, 6139 is_jmp32 6140 ? src_lo->var_off.value 6141 : src_reg->var_off.value, 6142 opcode, is_jmp32); 6143 else if (tnum_is_const(dst_reg->var_off) || 6144 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 6145 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 6146 src_reg, 6147 is_jmp32 6148 ? dst_lo->var_off.value 6149 : dst_reg->var_off.value, 6150 opcode, is_jmp32); 6151 else if (!is_jmp32 && 6152 (opcode == BPF_JEQ || opcode == BPF_JNE)) 6153 /* Comparing for equality, we can combine knowledge */ 6154 reg_combine_min_max(&other_branch_regs[insn->src_reg], 6155 &other_branch_regs[insn->dst_reg], 6156 src_reg, dst_reg, opcode); 6157 } 6158 } else if (dst_reg->type == SCALAR_VALUE) { 6159 reg_set_min_max(&other_branch_regs[insn->dst_reg], 6160 dst_reg, insn->imm, opcode, is_jmp32); 6161 } 6162 6163 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 6164 * NOTE: these optimizations below are related with pointer comparison 6165 * which will never be JMP32. 6166 */ 6167 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 6168 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 6169 reg_type_may_be_null(dst_reg->type)) { 6170 /* Mark all identical registers in each branch as either 6171 * safe or unknown depending R == 0 or R != 0 conditional. 6172 */ 6173 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 6174 opcode == BPF_JNE); 6175 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 6176 opcode == BPF_JEQ); 6177 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 6178 this_branch, other_branch) && 6179 is_pointer_value(env, insn->dst_reg)) { 6180 verbose(env, "R%d pointer comparison prohibited\n", 6181 insn->dst_reg); 6182 return -EACCES; 6183 } 6184 if (env->log.level & BPF_LOG_LEVEL) 6185 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 6186 return 0; 6187 } 6188 6189 /* verify BPF_LD_IMM64 instruction */ 6190 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 6191 { 6192 struct bpf_insn_aux_data *aux = cur_aux(env); 6193 struct bpf_reg_state *regs = cur_regs(env); 6194 struct bpf_map *map; 6195 int err; 6196 6197 if (BPF_SIZE(insn->code) != BPF_DW) { 6198 verbose(env, "invalid BPF_LD_IMM insn\n"); 6199 return -EINVAL; 6200 } 6201 if (insn->off != 0) { 6202 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 6203 return -EINVAL; 6204 } 6205 6206 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6207 if (err) 6208 return err; 6209 6210 if (insn->src_reg == 0) { 6211 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 6212 6213 regs[insn->dst_reg].type = SCALAR_VALUE; 6214 __mark_reg_known(®s[insn->dst_reg], imm); 6215 return 0; 6216 } 6217 6218 map = env->used_maps[aux->map_index]; 6219 mark_reg_known_zero(env, regs, insn->dst_reg); 6220 regs[insn->dst_reg].map_ptr = map; 6221 6222 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 6223 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 6224 regs[insn->dst_reg].off = aux->map_off; 6225 if (map_value_has_spin_lock(map)) 6226 regs[insn->dst_reg].id = ++env->id_gen; 6227 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 6228 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 6229 } else { 6230 verbose(env, "bpf verifier is misconfigured\n"); 6231 return -EINVAL; 6232 } 6233 6234 return 0; 6235 } 6236 6237 static bool may_access_skb(enum bpf_prog_type type) 6238 { 6239 switch (type) { 6240 case BPF_PROG_TYPE_SOCKET_FILTER: 6241 case BPF_PROG_TYPE_SCHED_CLS: 6242 case BPF_PROG_TYPE_SCHED_ACT: 6243 return true; 6244 default: 6245 return false; 6246 } 6247 } 6248 6249 /* verify safety of LD_ABS|LD_IND instructions: 6250 * - they can only appear in the programs where ctx == skb 6251 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6252 * preserve R6-R9, and store return value into R0 6253 * 6254 * Implicit input: 6255 * ctx == skb == R6 == CTX 6256 * 6257 * Explicit input: 6258 * SRC == any register 6259 * IMM == 32-bit immediate 6260 * 6261 * Output: 6262 * R0 - 8/16/32-bit skb data converted to cpu endianness 6263 */ 6264 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6265 { 6266 struct bpf_reg_state *regs = cur_regs(env); 6267 u8 mode = BPF_MODE(insn->code); 6268 int i, err; 6269 6270 if (!may_access_skb(env->prog->type)) { 6271 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6272 return -EINVAL; 6273 } 6274 6275 if (!env->ops->gen_ld_abs) { 6276 verbose(env, "bpf verifier is misconfigured\n"); 6277 return -EINVAL; 6278 } 6279 6280 if (env->subprog_cnt > 1) { 6281 /* when program has LD_ABS insn JITs and interpreter assume 6282 * that r1 == ctx == skb which is not the case for callees 6283 * that can have arbitrary arguments. It's problematic 6284 * for main prog as well since JITs would need to analyze 6285 * all functions in order to make proper register save/restore 6286 * decisions in the main prog. Hence disallow LD_ABS with calls 6287 */ 6288 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6289 return -EINVAL; 6290 } 6291 6292 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6293 BPF_SIZE(insn->code) == BPF_DW || 6294 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6295 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6296 return -EINVAL; 6297 } 6298 6299 /* check whether implicit source operand (register R6) is readable */ 6300 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6301 if (err) 6302 return err; 6303 6304 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6305 * gen_ld_abs() may terminate the program at runtime, leading to 6306 * reference leak. 6307 */ 6308 err = check_reference_leak(env); 6309 if (err) { 6310 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6311 return err; 6312 } 6313 6314 if (env->cur_state->active_spin_lock) { 6315 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6316 return -EINVAL; 6317 } 6318 6319 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6320 verbose(env, 6321 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6322 return -EINVAL; 6323 } 6324 6325 if (mode == BPF_IND) { 6326 /* check explicit source operand */ 6327 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6328 if (err) 6329 return err; 6330 } 6331 6332 /* reset caller saved regs to unreadable */ 6333 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6334 mark_reg_not_init(env, regs, caller_saved[i]); 6335 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6336 } 6337 6338 /* mark destination R0 register as readable, since it contains 6339 * the value fetched from the packet. 6340 * Already marked as written above. 6341 */ 6342 mark_reg_unknown(env, regs, BPF_REG_0); 6343 /* ld_abs load up to 32-bit skb data. */ 6344 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6345 return 0; 6346 } 6347 6348 static int check_return_code(struct bpf_verifier_env *env) 6349 { 6350 struct tnum enforce_attach_type_range = tnum_unknown; 6351 struct bpf_reg_state *reg; 6352 struct tnum range = tnum_range(0, 1); 6353 6354 switch (env->prog->type) { 6355 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6356 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6357 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6358 range = tnum_range(1, 1); 6359 break; 6360 case BPF_PROG_TYPE_CGROUP_SKB: 6361 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6362 range = tnum_range(0, 3); 6363 enforce_attach_type_range = tnum_range(2, 3); 6364 } 6365 break; 6366 case BPF_PROG_TYPE_CGROUP_SOCK: 6367 case BPF_PROG_TYPE_SOCK_OPS: 6368 case BPF_PROG_TYPE_CGROUP_DEVICE: 6369 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6370 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6371 break; 6372 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6373 if (!env->prog->aux->attach_btf_id) 6374 return 0; 6375 range = tnum_const(0); 6376 break; 6377 default: 6378 return 0; 6379 } 6380 6381 reg = cur_regs(env) + BPF_REG_0; 6382 if (reg->type != SCALAR_VALUE) { 6383 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6384 reg_type_str[reg->type]); 6385 return -EINVAL; 6386 } 6387 6388 if (!tnum_in(range, reg->var_off)) { 6389 char tn_buf[48]; 6390 6391 verbose(env, "At program exit the register R0 "); 6392 if (!tnum_is_unknown(reg->var_off)) { 6393 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6394 verbose(env, "has value %s", tn_buf); 6395 } else { 6396 verbose(env, "has unknown scalar value"); 6397 } 6398 tnum_strn(tn_buf, sizeof(tn_buf), range); 6399 verbose(env, " should have been in %s\n", tn_buf); 6400 return -EINVAL; 6401 } 6402 6403 if (!tnum_is_unknown(enforce_attach_type_range) && 6404 tnum_in(enforce_attach_type_range, reg->var_off)) 6405 env->prog->enforce_expected_attach_type = 1; 6406 return 0; 6407 } 6408 6409 /* non-recursive DFS pseudo code 6410 * 1 procedure DFS-iterative(G,v): 6411 * 2 label v as discovered 6412 * 3 let S be a stack 6413 * 4 S.push(v) 6414 * 5 while S is not empty 6415 * 6 t <- S.pop() 6416 * 7 if t is what we're looking for: 6417 * 8 return t 6418 * 9 for all edges e in G.adjacentEdges(t) do 6419 * 10 if edge e is already labelled 6420 * 11 continue with the next edge 6421 * 12 w <- G.adjacentVertex(t,e) 6422 * 13 if vertex w is not discovered and not explored 6423 * 14 label e as tree-edge 6424 * 15 label w as discovered 6425 * 16 S.push(w) 6426 * 17 continue at 5 6427 * 18 else if vertex w is discovered 6428 * 19 label e as back-edge 6429 * 20 else 6430 * 21 // vertex w is explored 6431 * 22 label e as forward- or cross-edge 6432 * 23 label t as explored 6433 * 24 S.pop() 6434 * 6435 * convention: 6436 * 0x10 - discovered 6437 * 0x11 - discovered and fall-through edge labelled 6438 * 0x12 - discovered and fall-through and branch edges labelled 6439 * 0x20 - explored 6440 */ 6441 6442 enum { 6443 DISCOVERED = 0x10, 6444 EXPLORED = 0x20, 6445 FALLTHROUGH = 1, 6446 BRANCH = 2, 6447 }; 6448 6449 static u32 state_htab_size(struct bpf_verifier_env *env) 6450 { 6451 return env->prog->len; 6452 } 6453 6454 static struct bpf_verifier_state_list **explored_state( 6455 struct bpf_verifier_env *env, 6456 int idx) 6457 { 6458 struct bpf_verifier_state *cur = env->cur_state; 6459 struct bpf_func_state *state = cur->frame[cur->curframe]; 6460 6461 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6462 } 6463 6464 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6465 { 6466 env->insn_aux_data[idx].prune_point = true; 6467 } 6468 6469 /* t, w, e - match pseudo-code above: 6470 * t - index of current instruction 6471 * w - next instruction 6472 * e - edge 6473 */ 6474 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6475 bool loop_ok) 6476 { 6477 int *insn_stack = env->cfg.insn_stack; 6478 int *insn_state = env->cfg.insn_state; 6479 6480 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6481 return 0; 6482 6483 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6484 return 0; 6485 6486 if (w < 0 || w >= env->prog->len) { 6487 verbose_linfo(env, t, "%d: ", t); 6488 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6489 return -EINVAL; 6490 } 6491 6492 if (e == BRANCH) 6493 /* mark branch target for state pruning */ 6494 init_explored_state(env, w); 6495 6496 if (insn_state[w] == 0) { 6497 /* tree-edge */ 6498 insn_state[t] = DISCOVERED | e; 6499 insn_state[w] = DISCOVERED; 6500 if (env->cfg.cur_stack >= env->prog->len) 6501 return -E2BIG; 6502 insn_stack[env->cfg.cur_stack++] = w; 6503 return 1; 6504 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6505 if (loop_ok && env->allow_ptr_leaks) 6506 return 0; 6507 verbose_linfo(env, t, "%d: ", t); 6508 verbose_linfo(env, w, "%d: ", w); 6509 verbose(env, "back-edge from insn %d to %d\n", t, w); 6510 return -EINVAL; 6511 } else if (insn_state[w] == EXPLORED) { 6512 /* forward- or cross-edge */ 6513 insn_state[t] = DISCOVERED | e; 6514 } else { 6515 verbose(env, "insn state internal bug\n"); 6516 return -EFAULT; 6517 } 6518 return 0; 6519 } 6520 6521 /* non-recursive depth-first-search to detect loops in BPF program 6522 * loop == back-edge in directed graph 6523 */ 6524 static int check_cfg(struct bpf_verifier_env *env) 6525 { 6526 struct bpf_insn *insns = env->prog->insnsi; 6527 int insn_cnt = env->prog->len; 6528 int *insn_stack, *insn_state; 6529 int ret = 0; 6530 int i, t; 6531 6532 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6533 if (!insn_state) 6534 return -ENOMEM; 6535 6536 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6537 if (!insn_stack) { 6538 kvfree(insn_state); 6539 return -ENOMEM; 6540 } 6541 6542 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6543 insn_stack[0] = 0; /* 0 is the first instruction */ 6544 env->cfg.cur_stack = 1; 6545 6546 peek_stack: 6547 if (env->cfg.cur_stack == 0) 6548 goto check_state; 6549 t = insn_stack[env->cfg.cur_stack - 1]; 6550 6551 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6552 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6553 u8 opcode = BPF_OP(insns[t].code); 6554 6555 if (opcode == BPF_EXIT) { 6556 goto mark_explored; 6557 } else if (opcode == BPF_CALL) { 6558 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6559 if (ret == 1) 6560 goto peek_stack; 6561 else if (ret < 0) 6562 goto err_free; 6563 if (t + 1 < insn_cnt) 6564 init_explored_state(env, t + 1); 6565 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6566 init_explored_state(env, t); 6567 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6568 env, false); 6569 if (ret == 1) 6570 goto peek_stack; 6571 else if (ret < 0) 6572 goto err_free; 6573 } 6574 } else if (opcode == BPF_JA) { 6575 if (BPF_SRC(insns[t].code) != BPF_K) { 6576 ret = -EINVAL; 6577 goto err_free; 6578 } 6579 /* unconditional jump with single edge */ 6580 ret = push_insn(t, t + insns[t].off + 1, 6581 FALLTHROUGH, env, true); 6582 if (ret == 1) 6583 goto peek_stack; 6584 else if (ret < 0) 6585 goto err_free; 6586 /* unconditional jmp is not a good pruning point, 6587 * but it's marked, since backtracking needs 6588 * to record jmp history in is_state_visited(). 6589 */ 6590 init_explored_state(env, t + insns[t].off + 1); 6591 /* tell verifier to check for equivalent states 6592 * after every call and jump 6593 */ 6594 if (t + 1 < insn_cnt) 6595 init_explored_state(env, t + 1); 6596 } else { 6597 /* conditional jump with two edges */ 6598 init_explored_state(env, t); 6599 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6600 if (ret == 1) 6601 goto peek_stack; 6602 else if (ret < 0) 6603 goto err_free; 6604 6605 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6606 if (ret == 1) 6607 goto peek_stack; 6608 else if (ret < 0) 6609 goto err_free; 6610 } 6611 } else { 6612 /* all other non-branch instructions with single 6613 * fall-through edge 6614 */ 6615 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6616 if (ret == 1) 6617 goto peek_stack; 6618 else if (ret < 0) 6619 goto err_free; 6620 } 6621 6622 mark_explored: 6623 insn_state[t] = EXPLORED; 6624 if (env->cfg.cur_stack-- <= 0) { 6625 verbose(env, "pop stack internal bug\n"); 6626 ret = -EFAULT; 6627 goto err_free; 6628 } 6629 goto peek_stack; 6630 6631 check_state: 6632 for (i = 0; i < insn_cnt; i++) { 6633 if (insn_state[i] != EXPLORED) { 6634 verbose(env, "unreachable insn %d\n", i); 6635 ret = -EINVAL; 6636 goto err_free; 6637 } 6638 } 6639 ret = 0; /* cfg looks good */ 6640 6641 err_free: 6642 kvfree(insn_state); 6643 kvfree(insn_stack); 6644 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6645 return ret; 6646 } 6647 6648 /* The minimum supported BTF func info size */ 6649 #define MIN_BPF_FUNCINFO_SIZE 8 6650 #define MAX_FUNCINFO_REC_SIZE 252 6651 6652 static int check_btf_func(struct bpf_verifier_env *env, 6653 const union bpf_attr *attr, 6654 union bpf_attr __user *uattr) 6655 { 6656 u32 i, nfuncs, urec_size, min_size; 6657 u32 krec_size = sizeof(struct bpf_func_info); 6658 struct bpf_func_info *krecord; 6659 struct bpf_func_info_aux *info_aux = NULL; 6660 const struct btf_type *type; 6661 struct bpf_prog *prog; 6662 const struct btf *btf; 6663 void __user *urecord; 6664 u32 prev_offset = 0; 6665 int ret = 0; 6666 6667 nfuncs = attr->func_info_cnt; 6668 if (!nfuncs) 6669 return 0; 6670 6671 if (nfuncs != env->subprog_cnt) { 6672 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6673 return -EINVAL; 6674 } 6675 6676 urec_size = attr->func_info_rec_size; 6677 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6678 urec_size > MAX_FUNCINFO_REC_SIZE || 6679 urec_size % sizeof(u32)) { 6680 verbose(env, "invalid func info rec size %u\n", urec_size); 6681 return -EINVAL; 6682 } 6683 6684 prog = env->prog; 6685 btf = prog->aux->btf; 6686 6687 urecord = u64_to_user_ptr(attr->func_info); 6688 min_size = min_t(u32, krec_size, urec_size); 6689 6690 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6691 if (!krecord) 6692 return -ENOMEM; 6693 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 6694 if (!info_aux) 6695 goto err_free; 6696 6697 for (i = 0; i < nfuncs; i++) { 6698 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6699 if (ret) { 6700 if (ret == -E2BIG) { 6701 verbose(env, "nonzero tailing record in func info"); 6702 /* set the size kernel expects so loader can zero 6703 * out the rest of the record. 6704 */ 6705 if (put_user(min_size, &uattr->func_info_rec_size)) 6706 ret = -EFAULT; 6707 } 6708 goto err_free; 6709 } 6710 6711 if (copy_from_user(&krecord[i], urecord, min_size)) { 6712 ret = -EFAULT; 6713 goto err_free; 6714 } 6715 6716 /* check insn_off */ 6717 if (i == 0) { 6718 if (krecord[i].insn_off) { 6719 verbose(env, 6720 "nonzero insn_off %u for the first func info record", 6721 krecord[i].insn_off); 6722 ret = -EINVAL; 6723 goto err_free; 6724 } 6725 } else if (krecord[i].insn_off <= prev_offset) { 6726 verbose(env, 6727 "same or smaller insn offset (%u) than previous func info record (%u)", 6728 krecord[i].insn_off, prev_offset); 6729 ret = -EINVAL; 6730 goto err_free; 6731 } 6732 6733 if (env->subprog_info[i].start != krecord[i].insn_off) { 6734 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6735 ret = -EINVAL; 6736 goto err_free; 6737 } 6738 6739 /* check type_id */ 6740 type = btf_type_by_id(btf, krecord[i].type_id); 6741 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6742 verbose(env, "invalid type id %d in func info", 6743 krecord[i].type_id); 6744 ret = -EINVAL; 6745 goto err_free; 6746 } 6747 prev_offset = krecord[i].insn_off; 6748 urecord += urec_size; 6749 } 6750 6751 prog->aux->func_info = krecord; 6752 prog->aux->func_info_cnt = nfuncs; 6753 prog->aux->func_info_aux = info_aux; 6754 return 0; 6755 6756 err_free: 6757 kvfree(krecord); 6758 kfree(info_aux); 6759 return ret; 6760 } 6761 6762 static void adjust_btf_func(struct bpf_verifier_env *env) 6763 { 6764 struct bpf_prog_aux *aux = env->prog->aux; 6765 int i; 6766 6767 if (!aux->func_info) 6768 return; 6769 6770 for (i = 0; i < env->subprog_cnt; i++) 6771 aux->func_info[i].insn_off = env->subprog_info[i].start; 6772 } 6773 6774 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6775 sizeof(((struct bpf_line_info *)(0))->line_col)) 6776 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6777 6778 static int check_btf_line(struct bpf_verifier_env *env, 6779 const union bpf_attr *attr, 6780 union bpf_attr __user *uattr) 6781 { 6782 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6783 struct bpf_subprog_info *sub; 6784 struct bpf_line_info *linfo; 6785 struct bpf_prog *prog; 6786 const struct btf *btf; 6787 void __user *ulinfo; 6788 int err; 6789 6790 nr_linfo = attr->line_info_cnt; 6791 if (!nr_linfo) 6792 return 0; 6793 6794 rec_size = attr->line_info_rec_size; 6795 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6796 rec_size > MAX_LINEINFO_REC_SIZE || 6797 rec_size & (sizeof(u32) - 1)) 6798 return -EINVAL; 6799 6800 /* Need to zero it in case the userspace may 6801 * pass in a smaller bpf_line_info object. 6802 */ 6803 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6804 GFP_KERNEL | __GFP_NOWARN); 6805 if (!linfo) 6806 return -ENOMEM; 6807 6808 prog = env->prog; 6809 btf = prog->aux->btf; 6810 6811 s = 0; 6812 sub = env->subprog_info; 6813 ulinfo = u64_to_user_ptr(attr->line_info); 6814 expected_size = sizeof(struct bpf_line_info); 6815 ncopy = min_t(u32, expected_size, rec_size); 6816 for (i = 0; i < nr_linfo; i++) { 6817 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6818 if (err) { 6819 if (err == -E2BIG) { 6820 verbose(env, "nonzero tailing record in line_info"); 6821 if (put_user(expected_size, 6822 &uattr->line_info_rec_size)) 6823 err = -EFAULT; 6824 } 6825 goto err_free; 6826 } 6827 6828 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6829 err = -EFAULT; 6830 goto err_free; 6831 } 6832 6833 /* 6834 * Check insn_off to ensure 6835 * 1) strictly increasing AND 6836 * 2) bounded by prog->len 6837 * 6838 * The linfo[0].insn_off == 0 check logically falls into 6839 * the later "missing bpf_line_info for func..." case 6840 * because the first linfo[0].insn_off must be the 6841 * first sub also and the first sub must have 6842 * subprog_info[0].start == 0. 6843 */ 6844 if ((i && linfo[i].insn_off <= prev_offset) || 6845 linfo[i].insn_off >= prog->len) { 6846 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6847 i, linfo[i].insn_off, prev_offset, 6848 prog->len); 6849 err = -EINVAL; 6850 goto err_free; 6851 } 6852 6853 if (!prog->insnsi[linfo[i].insn_off].code) { 6854 verbose(env, 6855 "Invalid insn code at line_info[%u].insn_off\n", 6856 i); 6857 err = -EINVAL; 6858 goto err_free; 6859 } 6860 6861 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6862 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6863 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6864 err = -EINVAL; 6865 goto err_free; 6866 } 6867 6868 if (s != env->subprog_cnt) { 6869 if (linfo[i].insn_off == sub[s].start) { 6870 sub[s].linfo_idx = i; 6871 s++; 6872 } else if (sub[s].start < linfo[i].insn_off) { 6873 verbose(env, "missing bpf_line_info for func#%u\n", s); 6874 err = -EINVAL; 6875 goto err_free; 6876 } 6877 } 6878 6879 prev_offset = linfo[i].insn_off; 6880 ulinfo += rec_size; 6881 } 6882 6883 if (s != env->subprog_cnt) { 6884 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6885 env->subprog_cnt - s, s); 6886 err = -EINVAL; 6887 goto err_free; 6888 } 6889 6890 prog->aux->linfo = linfo; 6891 prog->aux->nr_linfo = nr_linfo; 6892 6893 return 0; 6894 6895 err_free: 6896 kvfree(linfo); 6897 return err; 6898 } 6899 6900 static int check_btf_info(struct bpf_verifier_env *env, 6901 const union bpf_attr *attr, 6902 union bpf_attr __user *uattr) 6903 { 6904 struct btf *btf; 6905 int err; 6906 6907 if (!attr->func_info_cnt && !attr->line_info_cnt) 6908 return 0; 6909 6910 btf = btf_get_by_fd(attr->prog_btf_fd); 6911 if (IS_ERR(btf)) 6912 return PTR_ERR(btf); 6913 env->prog->aux->btf = btf; 6914 6915 err = check_btf_func(env, attr, uattr); 6916 if (err) 6917 return err; 6918 6919 err = check_btf_line(env, attr, uattr); 6920 if (err) 6921 return err; 6922 6923 return 0; 6924 } 6925 6926 /* check %cur's range satisfies %old's */ 6927 static bool range_within(struct bpf_reg_state *old, 6928 struct bpf_reg_state *cur) 6929 { 6930 return old->umin_value <= cur->umin_value && 6931 old->umax_value >= cur->umax_value && 6932 old->smin_value <= cur->smin_value && 6933 old->smax_value >= cur->smax_value; 6934 } 6935 6936 /* Maximum number of register states that can exist at once */ 6937 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6938 struct idpair { 6939 u32 old; 6940 u32 cur; 6941 }; 6942 6943 /* If in the old state two registers had the same id, then they need to have 6944 * the same id in the new state as well. But that id could be different from 6945 * the old state, so we need to track the mapping from old to new ids. 6946 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6947 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6948 * regs with a different old id could still have new id 9, we don't care about 6949 * that. 6950 * So we look through our idmap to see if this old id has been seen before. If 6951 * so, we require the new id to match; otherwise, we add the id pair to the map. 6952 */ 6953 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6954 { 6955 unsigned int i; 6956 6957 for (i = 0; i < ID_MAP_SIZE; i++) { 6958 if (!idmap[i].old) { 6959 /* Reached an empty slot; haven't seen this id before */ 6960 idmap[i].old = old_id; 6961 idmap[i].cur = cur_id; 6962 return true; 6963 } 6964 if (idmap[i].old == old_id) 6965 return idmap[i].cur == cur_id; 6966 } 6967 /* We ran out of idmap slots, which should be impossible */ 6968 WARN_ON_ONCE(1); 6969 return false; 6970 } 6971 6972 static void clean_func_state(struct bpf_verifier_env *env, 6973 struct bpf_func_state *st) 6974 { 6975 enum bpf_reg_liveness live; 6976 int i, j; 6977 6978 for (i = 0; i < BPF_REG_FP; i++) { 6979 live = st->regs[i].live; 6980 /* liveness must not touch this register anymore */ 6981 st->regs[i].live |= REG_LIVE_DONE; 6982 if (!(live & REG_LIVE_READ)) 6983 /* since the register is unused, clear its state 6984 * to make further comparison simpler 6985 */ 6986 __mark_reg_not_init(env, &st->regs[i]); 6987 } 6988 6989 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6990 live = st->stack[i].spilled_ptr.live; 6991 /* liveness must not touch this stack slot anymore */ 6992 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6993 if (!(live & REG_LIVE_READ)) { 6994 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 6995 for (j = 0; j < BPF_REG_SIZE; j++) 6996 st->stack[i].slot_type[j] = STACK_INVALID; 6997 } 6998 } 6999 } 7000 7001 static void clean_verifier_state(struct bpf_verifier_env *env, 7002 struct bpf_verifier_state *st) 7003 { 7004 int i; 7005 7006 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 7007 /* all regs in this state in all frames were already marked */ 7008 return; 7009 7010 for (i = 0; i <= st->curframe; i++) 7011 clean_func_state(env, st->frame[i]); 7012 } 7013 7014 /* the parentage chains form a tree. 7015 * the verifier states are added to state lists at given insn and 7016 * pushed into state stack for future exploration. 7017 * when the verifier reaches bpf_exit insn some of the verifer states 7018 * stored in the state lists have their final liveness state already, 7019 * but a lot of states will get revised from liveness point of view when 7020 * the verifier explores other branches. 7021 * Example: 7022 * 1: r0 = 1 7023 * 2: if r1 == 100 goto pc+1 7024 * 3: r0 = 2 7025 * 4: exit 7026 * when the verifier reaches exit insn the register r0 in the state list of 7027 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 7028 * of insn 2 and goes exploring further. At the insn 4 it will walk the 7029 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 7030 * 7031 * Since the verifier pushes the branch states as it sees them while exploring 7032 * the program the condition of walking the branch instruction for the second 7033 * time means that all states below this branch were already explored and 7034 * their final liveness markes are already propagated. 7035 * Hence when the verifier completes the search of state list in is_state_visited() 7036 * we can call this clean_live_states() function to mark all liveness states 7037 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 7038 * will not be used. 7039 * This function also clears the registers and stack for states that !READ 7040 * to simplify state merging. 7041 * 7042 * Important note here that walking the same branch instruction in the callee 7043 * doesn't meant that the states are DONE. The verifier has to compare 7044 * the callsites 7045 */ 7046 static void clean_live_states(struct bpf_verifier_env *env, int insn, 7047 struct bpf_verifier_state *cur) 7048 { 7049 struct bpf_verifier_state_list *sl; 7050 int i; 7051 7052 sl = *explored_state(env, insn); 7053 while (sl) { 7054 if (sl->state.branches) 7055 goto next; 7056 if (sl->state.insn_idx != insn || 7057 sl->state.curframe != cur->curframe) 7058 goto next; 7059 for (i = 0; i <= cur->curframe; i++) 7060 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 7061 goto next; 7062 clean_verifier_state(env, &sl->state); 7063 next: 7064 sl = sl->next; 7065 } 7066 } 7067 7068 /* Returns true if (rold safe implies rcur safe) */ 7069 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7070 struct idpair *idmap) 7071 { 7072 bool equal; 7073 7074 if (!(rold->live & REG_LIVE_READ)) 7075 /* explored state didn't use this */ 7076 return true; 7077 7078 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 7079 7080 if (rold->type == PTR_TO_STACK) 7081 /* two stack pointers are equal only if they're pointing to 7082 * the same stack frame, since fp-8 in foo != fp-8 in bar 7083 */ 7084 return equal && rold->frameno == rcur->frameno; 7085 7086 if (equal) 7087 return true; 7088 7089 if (rold->type == NOT_INIT) 7090 /* explored state can't have used this */ 7091 return true; 7092 if (rcur->type == NOT_INIT) 7093 return false; 7094 switch (rold->type) { 7095 case SCALAR_VALUE: 7096 if (rcur->type == SCALAR_VALUE) { 7097 if (!rold->precise && !rcur->precise) 7098 return true; 7099 /* new val must satisfy old val knowledge */ 7100 return range_within(rold, rcur) && 7101 tnum_in(rold->var_off, rcur->var_off); 7102 } else { 7103 /* We're trying to use a pointer in place of a scalar. 7104 * Even if the scalar was unbounded, this could lead to 7105 * pointer leaks because scalars are allowed to leak 7106 * while pointers are not. We could make this safe in 7107 * special cases if root is calling us, but it's 7108 * probably not worth the hassle. 7109 */ 7110 return false; 7111 } 7112 case PTR_TO_MAP_VALUE: 7113 /* If the new min/max/var_off satisfy the old ones and 7114 * everything else matches, we are OK. 7115 * 'id' is not compared, since it's only used for maps with 7116 * bpf_spin_lock inside map element and in such cases if 7117 * the rest of the prog is valid for one map element then 7118 * it's valid for all map elements regardless of the key 7119 * used in bpf_map_lookup() 7120 */ 7121 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 7122 range_within(rold, rcur) && 7123 tnum_in(rold->var_off, rcur->var_off); 7124 case PTR_TO_MAP_VALUE_OR_NULL: 7125 /* a PTR_TO_MAP_VALUE could be safe to use as a 7126 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 7127 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 7128 * checked, doing so could have affected others with the same 7129 * id, and we can't check for that because we lost the id when 7130 * we converted to a PTR_TO_MAP_VALUE. 7131 */ 7132 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 7133 return false; 7134 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 7135 return false; 7136 /* Check our ids match any regs they're supposed to */ 7137 return check_ids(rold->id, rcur->id, idmap); 7138 case PTR_TO_PACKET_META: 7139 case PTR_TO_PACKET: 7140 if (rcur->type != rold->type) 7141 return false; 7142 /* We must have at least as much range as the old ptr 7143 * did, so that any accesses which were safe before are 7144 * still safe. This is true even if old range < old off, 7145 * since someone could have accessed through (ptr - k), or 7146 * even done ptr -= k in a register, to get a safe access. 7147 */ 7148 if (rold->range > rcur->range) 7149 return false; 7150 /* If the offsets don't match, we can't trust our alignment; 7151 * nor can we be sure that we won't fall out of range. 7152 */ 7153 if (rold->off != rcur->off) 7154 return false; 7155 /* id relations must be preserved */ 7156 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 7157 return false; 7158 /* new val must satisfy old val knowledge */ 7159 return range_within(rold, rcur) && 7160 tnum_in(rold->var_off, rcur->var_off); 7161 case PTR_TO_CTX: 7162 case CONST_PTR_TO_MAP: 7163 case PTR_TO_PACKET_END: 7164 case PTR_TO_FLOW_KEYS: 7165 case PTR_TO_SOCKET: 7166 case PTR_TO_SOCKET_OR_NULL: 7167 case PTR_TO_SOCK_COMMON: 7168 case PTR_TO_SOCK_COMMON_OR_NULL: 7169 case PTR_TO_TCP_SOCK: 7170 case PTR_TO_TCP_SOCK_OR_NULL: 7171 case PTR_TO_XDP_SOCK: 7172 /* Only valid matches are exact, which memcmp() above 7173 * would have accepted 7174 */ 7175 default: 7176 /* Don't know what's going on, just say it's not safe */ 7177 return false; 7178 } 7179 7180 /* Shouldn't get here; if we do, say it's not safe */ 7181 WARN_ON_ONCE(1); 7182 return false; 7183 } 7184 7185 static bool stacksafe(struct bpf_func_state *old, 7186 struct bpf_func_state *cur, 7187 struct idpair *idmap) 7188 { 7189 int i, spi; 7190 7191 /* walk slots of the explored stack and ignore any additional 7192 * slots in the current stack, since explored(safe) state 7193 * didn't use them 7194 */ 7195 for (i = 0; i < old->allocated_stack; i++) { 7196 spi = i / BPF_REG_SIZE; 7197 7198 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 7199 i += BPF_REG_SIZE - 1; 7200 /* explored state didn't use this */ 7201 continue; 7202 } 7203 7204 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 7205 continue; 7206 7207 /* explored stack has more populated slots than current stack 7208 * and these slots were used 7209 */ 7210 if (i >= cur->allocated_stack) 7211 return false; 7212 7213 /* if old state was safe with misc data in the stack 7214 * it will be safe with zero-initialized stack. 7215 * The opposite is not true 7216 */ 7217 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 7218 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 7219 continue; 7220 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 7221 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 7222 /* Ex: old explored (safe) state has STACK_SPILL in 7223 * this stack slot, but current has has STACK_MISC -> 7224 * this verifier states are not equivalent, 7225 * return false to continue verification of this path 7226 */ 7227 return false; 7228 if (i % BPF_REG_SIZE) 7229 continue; 7230 if (old->stack[spi].slot_type[0] != STACK_SPILL) 7231 continue; 7232 if (!regsafe(&old->stack[spi].spilled_ptr, 7233 &cur->stack[spi].spilled_ptr, 7234 idmap)) 7235 /* when explored and current stack slot are both storing 7236 * spilled registers, check that stored pointers types 7237 * are the same as well. 7238 * Ex: explored safe path could have stored 7239 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 7240 * but current path has stored: 7241 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 7242 * such verifier states are not equivalent. 7243 * return false to continue verification of this path 7244 */ 7245 return false; 7246 } 7247 return true; 7248 } 7249 7250 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 7251 { 7252 if (old->acquired_refs != cur->acquired_refs) 7253 return false; 7254 return !memcmp(old->refs, cur->refs, 7255 sizeof(*old->refs) * old->acquired_refs); 7256 } 7257 7258 /* compare two verifier states 7259 * 7260 * all states stored in state_list are known to be valid, since 7261 * verifier reached 'bpf_exit' instruction through them 7262 * 7263 * this function is called when verifier exploring different branches of 7264 * execution popped from the state stack. If it sees an old state that has 7265 * more strict register state and more strict stack state then this execution 7266 * branch doesn't need to be explored further, since verifier already 7267 * concluded that more strict state leads to valid finish. 7268 * 7269 * Therefore two states are equivalent if register state is more conservative 7270 * and explored stack state is more conservative than the current one. 7271 * Example: 7272 * explored current 7273 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7274 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7275 * 7276 * In other words if current stack state (one being explored) has more 7277 * valid slots than old one that already passed validation, it means 7278 * the verifier can stop exploring and conclude that current state is valid too 7279 * 7280 * Similarly with registers. If explored state has register type as invalid 7281 * whereas register type in current state is meaningful, it means that 7282 * the current state will reach 'bpf_exit' instruction safely 7283 */ 7284 static bool func_states_equal(struct bpf_func_state *old, 7285 struct bpf_func_state *cur) 7286 { 7287 struct idpair *idmap; 7288 bool ret = false; 7289 int i; 7290 7291 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7292 /* If we failed to allocate the idmap, just say it's not safe */ 7293 if (!idmap) 7294 return false; 7295 7296 for (i = 0; i < MAX_BPF_REG; i++) { 7297 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7298 goto out_free; 7299 } 7300 7301 if (!stacksafe(old, cur, idmap)) 7302 goto out_free; 7303 7304 if (!refsafe(old, cur)) 7305 goto out_free; 7306 ret = true; 7307 out_free: 7308 kfree(idmap); 7309 return ret; 7310 } 7311 7312 static bool states_equal(struct bpf_verifier_env *env, 7313 struct bpf_verifier_state *old, 7314 struct bpf_verifier_state *cur) 7315 { 7316 int i; 7317 7318 if (old->curframe != cur->curframe) 7319 return false; 7320 7321 /* Verification state from speculative execution simulation 7322 * must never prune a non-speculative execution one. 7323 */ 7324 if (old->speculative && !cur->speculative) 7325 return false; 7326 7327 if (old->active_spin_lock != cur->active_spin_lock) 7328 return false; 7329 7330 /* for states to be equal callsites have to be the same 7331 * and all frame states need to be equivalent 7332 */ 7333 for (i = 0; i <= old->curframe; i++) { 7334 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7335 return false; 7336 if (!func_states_equal(old->frame[i], cur->frame[i])) 7337 return false; 7338 } 7339 return true; 7340 } 7341 7342 /* Return 0 if no propagation happened. Return negative error code if error 7343 * happened. Otherwise, return the propagated bit. 7344 */ 7345 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7346 struct bpf_reg_state *reg, 7347 struct bpf_reg_state *parent_reg) 7348 { 7349 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7350 u8 flag = reg->live & REG_LIVE_READ; 7351 int err; 7352 7353 /* When comes here, read flags of PARENT_REG or REG could be any of 7354 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7355 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7356 */ 7357 if (parent_flag == REG_LIVE_READ64 || 7358 /* Or if there is no read flag from REG. */ 7359 !flag || 7360 /* Or if the read flag from REG is the same as PARENT_REG. */ 7361 parent_flag == flag) 7362 return 0; 7363 7364 err = mark_reg_read(env, reg, parent_reg, flag); 7365 if (err) 7366 return err; 7367 7368 return flag; 7369 } 7370 7371 /* A write screens off any subsequent reads; but write marks come from the 7372 * straight-line code between a state and its parent. When we arrive at an 7373 * equivalent state (jump target or such) we didn't arrive by the straight-line 7374 * code, so read marks in the state must propagate to the parent regardless 7375 * of the state's write marks. That's what 'parent == state->parent' comparison 7376 * in mark_reg_read() is for. 7377 */ 7378 static int propagate_liveness(struct bpf_verifier_env *env, 7379 const struct bpf_verifier_state *vstate, 7380 struct bpf_verifier_state *vparent) 7381 { 7382 struct bpf_reg_state *state_reg, *parent_reg; 7383 struct bpf_func_state *state, *parent; 7384 int i, frame, err = 0; 7385 7386 if (vparent->curframe != vstate->curframe) { 7387 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7388 vparent->curframe, vstate->curframe); 7389 return -EFAULT; 7390 } 7391 /* Propagate read liveness of registers... */ 7392 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7393 for (frame = 0; frame <= vstate->curframe; frame++) { 7394 parent = vparent->frame[frame]; 7395 state = vstate->frame[frame]; 7396 parent_reg = parent->regs; 7397 state_reg = state->regs; 7398 /* We don't need to worry about FP liveness, it's read-only */ 7399 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7400 err = propagate_liveness_reg(env, &state_reg[i], 7401 &parent_reg[i]); 7402 if (err < 0) 7403 return err; 7404 if (err == REG_LIVE_READ64) 7405 mark_insn_zext(env, &parent_reg[i]); 7406 } 7407 7408 /* Propagate stack slots. */ 7409 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7410 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7411 parent_reg = &parent->stack[i].spilled_ptr; 7412 state_reg = &state->stack[i].spilled_ptr; 7413 err = propagate_liveness_reg(env, state_reg, 7414 parent_reg); 7415 if (err < 0) 7416 return err; 7417 } 7418 } 7419 return 0; 7420 } 7421 7422 /* find precise scalars in the previous equivalent state and 7423 * propagate them into the current state 7424 */ 7425 static int propagate_precision(struct bpf_verifier_env *env, 7426 const struct bpf_verifier_state *old) 7427 { 7428 struct bpf_reg_state *state_reg; 7429 struct bpf_func_state *state; 7430 int i, err = 0; 7431 7432 state = old->frame[old->curframe]; 7433 state_reg = state->regs; 7434 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7435 if (state_reg->type != SCALAR_VALUE || 7436 !state_reg->precise) 7437 continue; 7438 if (env->log.level & BPF_LOG_LEVEL2) 7439 verbose(env, "propagating r%d\n", i); 7440 err = mark_chain_precision(env, i); 7441 if (err < 0) 7442 return err; 7443 } 7444 7445 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7446 if (state->stack[i].slot_type[0] != STACK_SPILL) 7447 continue; 7448 state_reg = &state->stack[i].spilled_ptr; 7449 if (state_reg->type != SCALAR_VALUE || 7450 !state_reg->precise) 7451 continue; 7452 if (env->log.level & BPF_LOG_LEVEL2) 7453 verbose(env, "propagating fp%d\n", 7454 (-i - 1) * BPF_REG_SIZE); 7455 err = mark_chain_precision_stack(env, i); 7456 if (err < 0) 7457 return err; 7458 } 7459 return 0; 7460 } 7461 7462 static bool states_maybe_looping(struct bpf_verifier_state *old, 7463 struct bpf_verifier_state *cur) 7464 { 7465 struct bpf_func_state *fold, *fcur; 7466 int i, fr = cur->curframe; 7467 7468 if (old->curframe != fr) 7469 return false; 7470 7471 fold = old->frame[fr]; 7472 fcur = cur->frame[fr]; 7473 for (i = 0; i < MAX_BPF_REG; i++) 7474 if (memcmp(&fold->regs[i], &fcur->regs[i], 7475 offsetof(struct bpf_reg_state, parent))) 7476 return false; 7477 return true; 7478 } 7479 7480 7481 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7482 { 7483 struct bpf_verifier_state_list *new_sl; 7484 struct bpf_verifier_state_list *sl, **pprev; 7485 struct bpf_verifier_state *cur = env->cur_state, *new; 7486 int i, j, err, states_cnt = 0; 7487 bool add_new_state = env->test_state_freq ? true : false; 7488 7489 cur->last_insn_idx = env->prev_insn_idx; 7490 if (!env->insn_aux_data[insn_idx].prune_point) 7491 /* this 'insn_idx' instruction wasn't marked, so we will not 7492 * be doing state search here 7493 */ 7494 return 0; 7495 7496 /* bpf progs typically have pruning point every 4 instructions 7497 * http://vger.kernel.org/bpfconf2019.html#session-1 7498 * Do not add new state for future pruning if the verifier hasn't seen 7499 * at least 2 jumps and at least 8 instructions. 7500 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7501 * In tests that amounts to up to 50% reduction into total verifier 7502 * memory consumption and 20% verifier time speedup. 7503 */ 7504 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7505 env->insn_processed - env->prev_insn_processed >= 8) 7506 add_new_state = true; 7507 7508 pprev = explored_state(env, insn_idx); 7509 sl = *pprev; 7510 7511 clean_live_states(env, insn_idx, cur); 7512 7513 while (sl) { 7514 states_cnt++; 7515 if (sl->state.insn_idx != insn_idx) 7516 goto next; 7517 if (sl->state.branches) { 7518 if (states_maybe_looping(&sl->state, cur) && 7519 states_equal(env, &sl->state, cur)) { 7520 verbose_linfo(env, insn_idx, "; "); 7521 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7522 return -EINVAL; 7523 } 7524 /* if the verifier is processing a loop, avoid adding new state 7525 * too often, since different loop iterations have distinct 7526 * states and may not help future pruning. 7527 * This threshold shouldn't be too low to make sure that 7528 * a loop with large bound will be rejected quickly. 7529 * The most abusive loop will be: 7530 * r1 += 1 7531 * if r1 < 1000000 goto pc-2 7532 * 1M insn_procssed limit / 100 == 10k peak states. 7533 * This threshold shouldn't be too high either, since states 7534 * at the end of the loop are likely to be useful in pruning. 7535 */ 7536 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7537 env->insn_processed - env->prev_insn_processed < 100) 7538 add_new_state = false; 7539 goto miss; 7540 } 7541 if (states_equal(env, &sl->state, cur)) { 7542 sl->hit_cnt++; 7543 /* reached equivalent register/stack state, 7544 * prune the search. 7545 * Registers read by the continuation are read by us. 7546 * If we have any write marks in env->cur_state, they 7547 * will prevent corresponding reads in the continuation 7548 * from reaching our parent (an explored_state). Our 7549 * own state will get the read marks recorded, but 7550 * they'll be immediately forgotten as we're pruning 7551 * this state and will pop a new one. 7552 */ 7553 err = propagate_liveness(env, &sl->state, cur); 7554 7555 /* if previous state reached the exit with precision and 7556 * current state is equivalent to it (except precsion marks) 7557 * the precision needs to be propagated back in 7558 * the current state. 7559 */ 7560 err = err ? : push_jmp_history(env, cur); 7561 err = err ? : propagate_precision(env, &sl->state); 7562 if (err) 7563 return err; 7564 return 1; 7565 } 7566 miss: 7567 /* when new state is not going to be added do not increase miss count. 7568 * Otherwise several loop iterations will remove the state 7569 * recorded earlier. The goal of these heuristics is to have 7570 * states from some iterations of the loop (some in the beginning 7571 * and some at the end) to help pruning. 7572 */ 7573 if (add_new_state) 7574 sl->miss_cnt++; 7575 /* heuristic to determine whether this state is beneficial 7576 * to keep checking from state equivalence point of view. 7577 * Higher numbers increase max_states_per_insn and verification time, 7578 * but do not meaningfully decrease insn_processed. 7579 */ 7580 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7581 /* the state is unlikely to be useful. Remove it to 7582 * speed up verification 7583 */ 7584 *pprev = sl->next; 7585 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7586 u32 br = sl->state.branches; 7587 7588 WARN_ONCE(br, 7589 "BUG live_done but branches_to_explore %d\n", 7590 br); 7591 free_verifier_state(&sl->state, false); 7592 kfree(sl); 7593 env->peak_states--; 7594 } else { 7595 /* cannot free this state, since parentage chain may 7596 * walk it later. Add it for free_list instead to 7597 * be freed at the end of verification 7598 */ 7599 sl->next = env->free_list; 7600 env->free_list = sl; 7601 } 7602 sl = *pprev; 7603 continue; 7604 } 7605 next: 7606 pprev = &sl->next; 7607 sl = *pprev; 7608 } 7609 7610 if (env->max_states_per_insn < states_cnt) 7611 env->max_states_per_insn = states_cnt; 7612 7613 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7614 return push_jmp_history(env, cur); 7615 7616 if (!add_new_state) 7617 return push_jmp_history(env, cur); 7618 7619 /* There were no equivalent states, remember the current one. 7620 * Technically the current state is not proven to be safe yet, 7621 * but it will either reach outer most bpf_exit (which means it's safe) 7622 * or it will be rejected. When there are no loops the verifier won't be 7623 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7624 * again on the way to bpf_exit. 7625 * When looping the sl->state.branches will be > 0 and this state 7626 * will not be considered for equivalence until branches == 0. 7627 */ 7628 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7629 if (!new_sl) 7630 return -ENOMEM; 7631 env->total_states++; 7632 env->peak_states++; 7633 env->prev_jmps_processed = env->jmps_processed; 7634 env->prev_insn_processed = env->insn_processed; 7635 7636 /* add new state to the head of linked list */ 7637 new = &new_sl->state; 7638 err = copy_verifier_state(new, cur); 7639 if (err) { 7640 free_verifier_state(new, false); 7641 kfree(new_sl); 7642 return err; 7643 } 7644 new->insn_idx = insn_idx; 7645 WARN_ONCE(new->branches != 1, 7646 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7647 7648 cur->parent = new; 7649 cur->first_insn_idx = insn_idx; 7650 clear_jmp_history(cur); 7651 new_sl->next = *explored_state(env, insn_idx); 7652 *explored_state(env, insn_idx) = new_sl; 7653 /* connect new state to parentage chain. Current frame needs all 7654 * registers connected. Only r6 - r9 of the callers are alive (pushed 7655 * to the stack implicitly by JITs) so in callers' frames connect just 7656 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7657 * the state of the call instruction (with WRITTEN set), and r0 comes 7658 * from callee with its full parentage chain, anyway. 7659 */ 7660 /* clear write marks in current state: the writes we did are not writes 7661 * our child did, so they don't screen off its reads from us. 7662 * (There are no read marks in current state, because reads always mark 7663 * their parent and current state never has children yet. Only 7664 * explored_states can get read marks.) 7665 */ 7666 for (j = 0; j <= cur->curframe; j++) { 7667 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7668 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7669 for (i = 0; i < BPF_REG_FP; i++) 7670 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7671 } 7672 7673 /* all stack frames are accessible from callee, clear them all */ 7674 for (j = 0; j <= cur->curframe; j++) { 7675 struct bpf_func_state *frame = cur->frame[j]; 7676 struct bpf_func_state *newframe = new->frame[j]; 7677 7678 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7679 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7680 frame->stack[i].spilled_ptr.parent = 7681 &newframe->stack[i].spilled_ptr; 7682 } 7683 } 7684 return 0; 7685 } 7686 7687 /* Return true if it's OK to have the same insn return a different type. */ 7688 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7689 { 7690 switch (type) { 7691 case PTR_TO_CTX: 7692 case PTR_TO_SOCKET: 7693 case PTR_TO_SOCKET_OR_NULL: 7694 case PTR_TO_SOCK_COMMON: 7695 case PTR_TO_SOCK_COMMON_OR_NULL: 7696 case PTR_TO_TCP_SOCK: 7697 case PTR_TO_TCP_SOCK_OR_NULL: 7698 case PTR_TO_XDP_SOCK: 7699 case PTR_TO_BTF_ID: 7700 return false; 7701 default: 7702 return true; 7703 } 7704 } 7705 7706 /* If an instruction was previously used with particular pointer types, then we 7707 * need to be careful to avoid cases such as the below, where it may be ok 7708 * for one branch accessing the pointer, but not ok for the other branch: 7709 * 7710 * R1 = sock_ptr 7711 * goto X; 7712 * ... 7713 * R1 = some_other_valid_ptr; 7714 * goto X; 7715 * ... 7716 * R2 = *(u32 *)(R1 + 0); 7717 */ 7718 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7719 { 7720 return src != prev && (!reg_type_mismatch_ok(src) || 7721 !reg_type_mismatch_ok(prev)); 7722 } 7723 7724 static int do_check(struct bpf_verifier_env *env) 7725 { 7726 struct bpf_verifier_state *state; 7727 struct bpf_insn *insns = env->prog->insnsi; 7728 struct bpf_reg_state *regs; 7729 int insn_cnt = env->prog->len; 7730 bool do_print_state = false; 7731 int prev_insn_idx = -1; 7732 7733 env->prev_linfo = NULL; 7734 7735 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7736 if (!state) 7737 return -ENOMEM; 7738 state->curframe = 0; 7739 state->speculative = false; 7740 state->branches = 1; 7741 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7742 if (!state->frame[0]) { 7743 kfree(state); 7744 return -ENOMEM; 7745 } 7746 env->cur_state = state; 7747 init_func_state(env, state->frame[0], 7748 BPF_MAIN_FUNC /* callsite */, 7749 0 /* frameno */, 7750 0 /* subprogno, zero == main subprog */); 7751 7752 if (btf_check_func_arg_match(env, 0)) 7753 return -EINVAL; 7754 7755 for (;;) { 7756 struct bpf_insn *insn; 7757 u8 class; 7758 int err; 7759 7760 env->prev_insn_idx = prev_insn_idx; 7761 if (env->insn_idx >= insn_cnt) { 7762 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7763 env->insn_idx, insn_cnt); 7764 return -EFAULT; 7765 } 7766 7767 insn = &insns[env->insn_idx]; 7768 class = BPF_CLASS(insn->code); 7769 7770 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7771 verbose(env, 7772 "BPF program is too large. Processed %d insn\n", 7773 env->insn_processed); 7774 return -E2BIG; 7775 } 7776 7777 err = is_state_visited(env, env->insn_idx); 7778 if (err < 0) 7779 return err; 7780 if (err == 1) { 7781 /* found equivalent state, can prune the search */ 7782 if (env->log.level & BPF_LOG_LEVEL) { 7783 if (do_print_state) 7784 verbose(env, "\nfrom %d to %d%s: safe\n", 7785 env->prev_insn_idx, env->insn_idx, 7786 env->cur_state->speculative ? 7787 " (speculative execution)" : ""); 7788 else 7789 verbose(env, "%d: safe\n", env->insn_idx); 7790 } 7791 goto process_bpf_exit; 7792 } 7793 7794 if (signal_pending(current)) 7795 return -EAGAIN; 7796 7797 if (need_resched()) 7798 cond_resched(); 7799 7800 if (env->log.level & BPF_LOG_LEVEL2 || 7801 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7802 if (env->log.level & BPF_LOG_LEVEL2) 7803 verbose(env, "%d:", env->insn_idx); 7804 else 7805 verbose(env, "\nfrom %d to %d%s:", 7806 env->prev_insn_idx, env->insn_idx, 7807 env->cur_state->speculative ? 7808 " (speculative execution)" : ""); 7809 print_verifier_state(env, state->frame[state->curframe]); 7810 do_print_state = false; 7811 } 7812 7813 if (env->log.level & BPF_LOG_LEVEL) { 7814 const struct bpf_insn_cbs cbs = { 7815 .cb_print = verbose, 7816 .private_data = env, 7817 }; 7818 7819 verbose_linfo(env, env->insn_idx, "; "); 7820 verbose(env, "%d: ", env->insn_idx); 7821 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7822 } 7823 7824 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7825 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7826 env->prev_insn_idx); 7827 if (err) 7828 return err; 7829 } 7830 7831 regs = cur_regs(env); 7832 env->insn_aux_data[env->insn_idx].seen = true; 7833 prev_insn_idx = env->insn_idx; 7834 7835 if (class == BPF_ALU || class == BPF_ALU64) { 7836 err = check_alu_op(env, insn); 7837 if (err) 7838 return err; 7839 7840 } else if (class == BPF_LDX) { 7841 enum bpf_reg_type *prev_src_type, src_reg_type; 7842 7843 /* check for reserved fields is already done */ 7844 7845 /* check src operand */ 7846 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7847 if (err) 7848 return err; 7849 7850 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7851 if (err) 7852 return err; 7853 7854 src_reg_type = regs[insn->src_reg].type; 7855 7856 /* check that memory (src_reg + off) is readable, 7857 * the state of dst_reg will be updated by this func 7858 */ 7859 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7860 insn->off, BPF_SIZE(insn->code), 7861 BPF_READ, insn->dst_reg, false); 7862 if (err) 7863 return err; 7864 7865 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7866 7867 if (*prev_src_type == NOT_INIT) { 7868 /* saw a valid insn 7869 * dst_reg = *(u32 *)(src_reg + off) 7870 * save type to validate intersecting paths 7871 */ 7872 *prev_src_type = src_reg_type; 7873 7874 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7875 /* ABuser program is trying to use the same insn 7876 * dst_reg = *(u32*) (src_reg + off) 7877 * with different pointer types: 7878 * src_reg == ctx in one branch and 7879 * src_reg == stack|map in some other branch. 7880 * Reject it. 7881 */ 7882 verbose(env, "same insn cannot be used with different pointers\n"); 7883 return -EINVAL; 7884 } 7885 7886 } else if (class == BPF_STX) { 7887 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7888 7889 if (BPF_MODE(insn->code) == BPF_XADD) { 7890 err = check_xadd(env, env->insn_idx, insn); 7891 if (err) 7892 return err; 7893 env->insn_idx++; 7894 continue; 7895 } 7896 7897 /* check src1 operand */ 7898 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7899 if (err) 7900 return err; 7901 /* check src2 operand */ 7902 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7903 if (err) 7904 return err; 7905 7906 dst_reg_type = regs[insn->dst_reg].type; 7907 7908 /* check that memory (dst_reg + off) is writeable */ 7909 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7910 insn->off, BPF_SIZE(insn->code), 7911 BPF_WRITE, insn->src_reg, false); 7912 if (err) 7913 return err; 7914 7915 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7916 7917 if (*prev_dst_type == NOT_INIT) { 7918 *prev_dst_type = dst_reg_type; 7919 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7920 verbose(env, "same insn cannot be used with different pointers\n"); 7921 return -EINVAL; 7922 } 7923 7924 } else if (class == BPF_ST) { 7925 if (BPF_MODE(insn->code) != BPF_MEM || 7926 insn->src_reg != BPF_REG_0) { 7927 verbose(env, "BPF_ST uses reserved fields\n"); 7928 return -EINVAL; 7929 } 7930 /* check src operand */ 7931 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7932 if (err) 7933 return err; 7934 7935 if (is_ctx_reg(env, insn->dst_reg)) { 7936 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7937 insn->dst_reg, 7938 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7939 return -EACCES; 7940 } 7941 7942 /* check that memory (dst_reg + off) is writeable */ 7943 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7944 insn->off, BPF_SIZE(insn->code), 7945 BPF_WRITE, -1, false); 7946 if (err) 7947 return err; 7948 7949 } else if (class == BPF_JMP || class == BPF_JMP32) { 7950 u8 opcode = BPF_OP(insn->code); 7951 7952 env->jmps_processed++; 7953 if (opcode == BPF_CALL) { 7954 if (BPF_SRC(insn->code) != BPF_K || 7955 insn->off != 0 || 7956 (insn->src_reg != BPF_REG_0 && 7957 insn->src_reg != BPF_PSEUDO_CALL) || 7958 insn->dst_reg != BPF_REG_0 || 7959 class == BPF_JMP32) { 7960 verbose(env, "BPF_CALL uses reserved fields\n"); 7961 return -EINVAL; 7962 } 7963 7964 if (env->cur_state->active_spin_lock && 7965 (insn->src_reg == BPF_PSEUDO_CALL || 7966 insn->imm != BPF_FUNC_spin_unlock)) { 7967 verbose(env, "function calls are not allowed while holding a lock\n"); 7968 return -EINVAL; 7969 } 7970 if (insn->src_reg == BPF_PSEUDO_CALL) 7971 err = check_func_call(env, insn, &env->insn_idx); 7972 else 7973 err = check_helper_call(env, insn->imm, env->insn_idx); 7974 if (err) 7975 return err; 7976 7977 } else if (opcode == BPF_JA) { 7978 if (BPF_SRC(insn->code) != BPF_K || 7979 insn->imm != 0 || 7980 insn->src_reg != BPF_REG_0 || 7981 insn->dst_reg != BPF_REG_0 || 7982 class == BPF_JMP32) { 7983 verbose(env, "BPF_JA uses reserved fields\n"); 7984 return -EINVAL; 7985 } 7986 7987 env->insn_idx += insn->off + 1; 7988 continue; 7989 7990 } else if (opcode == BPF_EXIT) { 7991 if (BPF_SRC(insn->code) != BPF_K || 7992 insn->imm != 0 || 7993 insn->src_reg != BPF_REG_0 || 7994 insn->dst_reg != BPF_REG_0 || 7995 class == BPF_JMP32) { 7996 verbose(env, "BPF_EXIT uses reserved fields\n"); 7997 return -EINVAL; 7998 } 7999 8000 if (env->cur_state->active_spin_lock) { 8001 verbose(env, "bpf_spin_unlock is missing\n"); 8002 return -EINVAL; 8003 } 8004 8005 if (state->curframe) { 8006 /* exit from nested function */ 8007 err = prepare_func_exit(env, &env->insn_idx); 8008 if (err) 8009 return err; 8010 do_print_state = true; 8011 continue; 8012 } 8013 8014 err = check_reference_leak(env); 8015 if (err) 8016 return err; 8017 8018 /* eBPF calling convetion is such that R0 is used 8019 * to return the value from eBPF program. 8020 * Make sure that it's readable at this time 8021 * of bpf_exit, which means that program wrote 8022 * something into it earlier 8023 */ 8024 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 8025 if (err) 8026 return err; 8027 8028 if (is_pointer_value(env, BPF_REG_0)) { 8029 verbose(env, "R0 leaks addr as return value\n"); 8030 return -EACCES; 8031 } 8032 8033 err = check_return_code(env); 8034 if (err) 8035 return err; 8036 process_bpf_exit: 8037 update_branch_counts(env, env->cur_state); 8038 err = pop_stack(env, &prev_insn_idx, 8039 &env->insn_idx); 8040 if (err < 0) { 8041 if (err != -ENOENT) 8042 return err; 8043 break; 8044 } else { 8045 do_print_state = true; 8046 continue; 8047 } 8048 } else { 8049 err = check_cond_jmp_op(env, insn, &env->insn_idx); 8050 if (err) 8051 return err; 8052 } 8053 } else if (class == BPF_LD) { 8054 u8 mode = BPF_MODE(insn->code); 8055 8056 if (mode == BPF_ABS || mode == BPF_IND) { 8057 err = check_ld_abs(env, insn); 8058 if (err) 8059 return err; 8060 8061 } else if (mode == BPF_IMM) { 8062 err = check_ld_imm(env, insn); 8063 if (err) 8064 return err; 8065 8066 env->insn_idx++; 8067 env->insn_aux_data[env->insn_idx].seen = true; 8068 } else { 8069 verbose(env, "invalid BPF_LD mode\n"); 8070 return -EINVAL; 8071 } 8072 } else { 8073 verbose(env, "unknown insn class %d\n", class); 8074 return -EINVAL; 8075 } 8076 8077 env->insn_idx++; 8078 } 8079 8080 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 8081 return 0; 8082 } 8083 8084 static int check_map_prealloc(struct bpf_map *map) 8085 { 8086 return (map->map_type != BPF_MAP_TYPE_HASH && 8087 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8088 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 8089 !(map->map_flags & BPF_F_NO_PREALLOC); 8090 } 8091 8092 static bool is_tracing_prog_type(enum bpf_prog_type type) 8093 { 8094 switch (type) { 8095 case BPF_PROG_TYPE_KPROBE: 8096 case BPF_PROG_TYPE_TRACEPOINT: 8097 case BPF_PROG_TYPE_PERF_EVENT: 8098 case BPF_PROG_TYPE_RAW_TRACEPOINT: 8099 return true; 8100 default: 8101 return false; 8102 } 8103 } 8104 8105 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 8106 struct bpf_map *map, 8107 struct bpf_prog *prog) 8108 8109 { 8110 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 8111 * preallocated hash maps, since doing memory allocation 8112 * in overflow_handler can crash depending on where nmi got 8113 * triggered. 8114 */ 8115 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 8116 if (!check_map_prealloc(map)) { 8117 verbose(env, "perf_event programs can only use preallocated hash map\n"); 8118 return -EINVAL; 8119 } 8120 if (map->inner_map_meta && 8121 !check_map_prealloc(map->inner_map_meta)) { 8122 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 8123 return -EINVAL; 8124 } 8125 } 8126 8127 if ((is_tracing_prog_type(prog->type) || 8128 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 8129 map_value_has_spin_lock(map)) { 8130 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 8131 return -EINVAL; 8132 } 8133 8134 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 8135 !bpf_offload_prog_map_match(prog, map)) { 8136 verbose(env, "offload device mismatch between prog and map\n"); 8137 return -EINVAL; 8138 } 8139 8140 return 0; 8141 } 8142 8143 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 8144 { 8145 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 8146 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 8147 } 8148 8149 /* look for pseudo eBPF instructions that access map FDs and 8150 * replace them with actual map pointers 8151 */ 8152 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 8153 { 8154 struct bpf_insn *insn = env->prog->insnsi; 8155 int insn_cnt = env->prog->len; 8156 int i, j, err; 8157 8158 err = bpf_prog_calc_tag(env->prog); 8159 if (err) 8160 return err; 8161 8162 for (i = 0; i < insn_cnt; i++, insn++) { 8163 if (BPF_CLASS(insn->code) == BPF_LDX && 8164 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 8165 verbose(env, "BPF_LDX uses reserved fields\n"); 8166 return -EINVAL; 8167 } 8168 8169 if (BPF_CLASS(insn->code) == BPF_STX && 8170 ((BPF_MODE(insn->code) != BPF_MEM && 8171 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 8172 verbose(env, "BPF_STX uses reserved fields\n"); 8173 return -EINVAL; 8174 } 8175 8176 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 8177 struct bpf_insn_aux_data *aux; 8178 struct bpf_map *map; 8179 struct fd f; 8180 u64 addr; 8181 8182 if (i == insn_cnt - 1 || insn[1].code != 0 || 8183 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 8184 insn[1].off != 0) { 8185 verbose(env, "invalid bpf_ld_imm64 insn\n"); 8186 return -EINVAL; 8187 } 8188 8189 if (insn[0].src_reg == 0) 8190 /* valid generic load 64-bit imm */ 8191 goto next_insn; 8192 8193 /* In final convert_pseudo_ld_imm64() step, this is 8194 * converted into regular 64-bit imm load insn. 8195 */ 8196 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 8197 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 8198 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 8199 insn[1].imm != 0)) { 8200 verbose(env, 8201 "unrecognized bpf_ld_imm64 insn\n"); 8202 return -EINVAL; 8203 } 8204 8205 f = fdget(insn[0].imm); 8206 map = __bpf_map_get(f); 8207 if (IS_ERR(map)) { 8208 verbose(env, "fd %d is not pointing to valid bpf_map\n", 8209 insn[0].imm); 8210 return PTR_ERR(map); 8211 } 8212 8213 err = check_map_prog_compatibility(env, map, env->prog); 8214 if (err) { 8215 fdput(f); 8216 return err; 8217 } 8218 8219 aux = &env->insn_aux_data[i]; 8220 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 8221 addr = (unsigned long)map; 8222 } else { 8223 u32 off = insn[1].imm; 8224 8225 if (off >= BPF_MAX_VAR_OFF) { 8226 verbose(env, "direct value offset of %u is not allowed\n", off); 8227 fdput(f); 8228 return -EINVAL; 8229 } 8230 8231 if (!map->ops->map_direct_value_addr) { 8232 verbose(env, "no direct value access support for this map type\n"); 8233 fdput(f); 8234 return -EINVAL; 8235 } 8236 8237 err = map->ops->map_direct_value_addr(map, &addr, off); 8238 if (err) { 8239 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 8240 map->value_size, off); 8241 fdput(f); 8242 return err; 8243 } 8244 8245 aux->map_off = off; 8246 addr += off; 8247 } 8248 8249 insn[0].imm = (u32)addr; 8250 insn[1].imm = addr >> 32; 8251 8252 /* check whether we recorded this map already */ 8253 for (j = 0; j < env->used_map_cnt; j++) { 8254 if (env->used_maps[j] == map) { 8255 aux->map_index = j; 8256 fdput(f); 8257 goto next_insn; 8258 } 8259 } 8260 8261 if (env->used_map_cnt >= MAX_USED_MAPS) { 8262 fdput(f); 8263 return -E2BIG; 8264 } 8265 8266 /* hold the map. If the program is rejected by verifier, 8267 * the map will be released by release_maps() or it 8268 * will be used by the valid program until it's unloaded 8269 * and all maps are released in free_used_maps() 8270 */ 8271 bpf_map_inc(map); 8272 8273 aux->map_index = env->used_map_cnt; 8274 env->used_maps[env->used_map_cnt++] = map; 8275 8276 if (bpf_map_is_cgroup_storage(map) && 8277 bpf_cgroup_storage_assign(env->prog->aux, map)) { 8278 verbose(env, "only one cgroup storage of each type is allowed\n"); 8279 fdput(f); 8280 return -EBUSY; 8281 } 8282 8283 fdput(f); 8284 next_insn: 8285 insn++; 8286 i++; 8287 continue; 8288 } 8289 8290 /* Basic sanity check before we invest more work here. */ 8291 if (!bpf_opcode_in_insntable(insn->code)) { 8292 verbose(env, "unknown opcode %02x\n", insn->code); 8293 return -EINVAL; 8294 } 8295 } 8296 8297 /* now all pseudo BPF_LD_IMM64 instructions load valid 8298 * 'struct bpf_map *' into a register instead of user map_fd. 8299 * These pointers will be used later by verifier to validate map access. 8300 */ 8301 return 0; 8302 } 8303 8304 /* drop refcnt of maps used by the rejected program */ 8305 static void release_maps(struct bpf_verifier_env *env) 8306 { 8307 __bpf_free_used_maps(env->prog->aux, env->used_maps, 8308 env->used_map_cnt); 8309 } 8310 8311 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8312 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8313 { 8314 struct bpf_insn *insn = env->prog->insnsi; 8315 int insn_cnt = env->prog->len; 8316 int i; 8317 8318 for (i = 0; i < insn_cnt; i++, insn++) 8319 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8320 insn->src_reg = 0; 8321 } 8322 8323 /* single env->prog->insni[off] instruction was replaced with the range 8324 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8325 * [0, off) and [off, end) to new locations, so the patched range stays zero 8326 */ 8327 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8328 struct bpf_prog *new_prog, u32 off, u32 cnt) 8329 { 8330 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8331 struct bpf_insn *insn = new_prog->insnsi; 8332 u32 prog_len; 8333 int i; 8334 8335 /* aux info at OFF always needs adjustment, no matter fast path 8336 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8337 * original insn at old prog. 8338 */ 8339 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8340 8341 if (cnt == 1) 8342 return 0; 8343 prog_len = new_prog->len; 8344 new_data = vzalloc(array_size(prog_len, 8345 sizeof(struct bpf_insn_aux_data))); 8346 if (!new_data) 8347 return -ENOMEM; 8348 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8349 memcpy(new_data + off + cnt - 1, old_data + off, 8350 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8351 for (i = off; i < off + cnt - 1; i++) { 8352 new_data[i].seen = true; 8353 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8354 } 8355 env->insn_aux_data = new_data; 8356 vfree(old_data); 8357 return 0; 8358 } 8359 8360 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8361 { 8362 int i; 8363 8364 if (len == 1) 8365 return; 8366 /* NOTE: fake 'exit' subprog should be updated as well. */ 8367 for (i = 0; i <= env->subprog_cnt; i++) { 8368 if (env->subprog_info[i].start <= off) 8369 continue; 8370 env->subprog_info[i].start += len - 1; 8371 } 8372 } 8373 8374 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8375 const struct bpf_insn *patch, u32 len) 8376 { 8377 struct bpf_prog *new_prog; 8378 8379 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8380 if (IS_ERR(new_prog)) { 8381 if (PTR_ERR(new_prog) == -ERANGE) 8382 verbose(env, 8383 "insn %d cannot be patched due to 16-bit range\n", 8384 env->insn_aux_data[off].orig_idx); 8385 return NULL; 8386 } 8387 if (adjust_insn_aux_data(env, new_prog, off, len)) 8388 return NULL; 8389 adjust_subprog_starts(env, off, len); 8390 return new_prog; 8391 } 8392 8393 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8394 u32 off, u32 cnt) 8395 { 8396 int i, j; 8397 8398 /* find first prog starting at or after off (first to remove) */ 8399 for (i = 0; i < env->subprog_cnt; i++) 8400 if (env->subprog_info[i].start >= off) 8401 break; 8402 /* find first prog starting at or after off + cnt (first to stay) */ 8403 for (j = i; j < env->subprog_cnt; j++) 8404 if (env->subprog_info[j].start >= off + cnt) 8405 break; 8406 /* if j doesn't start exactly at off + cnt, we are just removing 8407 * the front of previous prog 8408 */ 8409 if (env->subprog_info[j].start != off + cnt) 8410 j--; 8411 8412 if (j > i) { 8413 struct bpf_prog_aux *aux = env->prog->aux; 8414 int move; 8415 8416 /* move fake 'exit' subprog as well */ 8417 move = env->subprog_cnt + 1 - j; 8418 8419 memmove(env->subprog_info + i, 8420 env->subprog_info + j, 8421 sizeof(*env->subprog_info) * move); 8422 env->subprog_cnt -= j - i; 8423 8424 /* remove func_info */ 8425 if (aux->func_info) { 8426 move = aux->func_info_cnt - j; 8427 8428 memmove(aux->func_info + i, 8429 aux->func_info + j, 8430 sizeof(*aux->func_info) * move); 8431 aux->func_info_cnt -= j - i; 8432 /* func_info->insn_off is set after all code rewrites, 8433 * in adjust_btf_func() - no need to adjust 8434 */ 8435 } 8436 } else { 8437 /* convert i from "first prog to remove" to "first to adjust" */ 8438 if (env->subprog_info[i].start == off) 8439 i++; 8440 } 8441 8442 /* update fake 'exit' subprog as well */ 8443 for (; i <= env->subprog_cnt; i++) 8444 env->subprog_info[i].start -= cnt; 8445 8446 return 0; 8447 } 8448 8449 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8450 u32 cnt) 8451 { 8452 struct bpf_prog *prog = env->prog; 8453 u32 i, l_off, l_cnt, nr_linfo; 8454 struct bpf_line_info *linfo; 8455 8456 nr_linfo = prog->aux->nr_linfo; 8457 if (!nr_linfo) 8458 return 0; 8459 8460 linfo = prog->aux->linfo; 8461 8462 /* find first line info to remove, count lines to be removed */ 8463 for (i = 0; i < nr_linfo; i++) 8464 if (linfo[i].insn_off >= off) 8465 break; 8466 8467 l_off = i; 8468 l_cnt = 0; 8469 for (; i < nr_linfo; i++) 8470 if (linfo[i].insn_off < off + cnt) 8471 l_cnt++; 8472 else 8473 break; 8474 8475 /* First live insn doesn't match first live linfo, it needs to "inherit" 8476 * last removed linfo. prog is already modified, so prog->len == off 8477 * means no live instructions after (tail of the program was removed). 8478 */ 8479 if (prog->len != off && l_cnt && 8480 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8481 l_cnt--; 8482 linfo[--i].insn_off = off + cnt; 8483 } 8484 8485 /* remove the line info which refer to the removed instructions */ 8486 if (l_cnt) { 8487 memmove(linfo + l_off, linfo + i, 8488 sizeof(*linfo) * (nr_linfo - i)); 8489 8490 prog->aux->nr_linfo -= l_cnt; 8491 nr_linfo = prog->aux->nr_linfo; 8492 } 8493 8494 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8495 for (i = l_off; i < nr_linfo; i++) 8496 linfo[i].insn_off -= cnt; 8497 8498 /* fix up all subprogs (incl. 'exit') which start >= off */ 8499 for (i = 0; i <= env->subprog_cnt; i++) 8500 if (env->subprog_info[i].linfo_idx > l_off) { 8501 /* program may have started in the removed region but 8502 * may not be fully removed 8503 */ 8504 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8505 env->subprog_info[i].linfo_idx -= l_cnt; 8506 else 8507 env->subprog_info[i].linfo_idx = l_off; 8508 } 8509 8510 return 0; 8511 } 8512 8513 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8514 { 8515 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8516 unsigned int orig_prog_len = env->prog->len; 8517 int err; 8518 8519 if (bpf_prog_is_dev_bound(env->prog->aux)) 8520 bpf_prog_offload_remove_insns(env, off, cnt); 8521 8522 err = bpf_remove_insns(env->prog, off, cnt); 8523 if (err) 8524 return err; 8525 8526 err = adjust_subprog_starts_after_remove(env, off, cnt); 8527 if (err) 8528 return err; 8529 8530 err = bpf_adj_linfo_after_remove(env, off, cnt); 8531 if (err) 8532 return err; 8533 8534 memmove(aux_data + off, aux_data + off + cnt, 8535 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8536 8537 return 0; 8538 } 8539 8540 /* The verifier does more data flow analysis than llvm and will not 8541 * explore branches that are dead at run time. Malicious programs can 8542 * have dead code too. Therefore replace all dead at-run-time code 8543 * with 'ja -1'. 8544 * 8545 * Just nops are not optimal, e.g. if they would sit at the end of the 8546 * program and through another bug we would manage to jump there, then 8547 * we'd execute beyond program memory otherwise. Returning exception 8548 * code also wouldn't work since we can have subprogs where the dead 8549 * code could be located. 8550 */ 8551 static void sanitize_dead_code(struct bpf_verifier_env *env) 8552 { 8553 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8554 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8555 struct bpf_insn *insn = env->prog->insnsi; 8556 const int insn_cnt = env->prog->len; 8557 int i; 8558 8559 for (i = 0; i < insn_cnt; i++) { 8560 if (aux_data[i].seen) 8561 continue; 8562 memcpy(insn + i, &trap, sizeof(trap)); 8563 } 8564 } 8565 8566 static bool insn_is_cond_jump(u8 code) 8567 { 8568 u8 op; 8569 8570 if (BPF_CLASS(code) == BPF_JMP32) 8571 return true; 8572 8573 if (BPF_CLASS(code) != BPF_JMP) 8574 return false; 8575 8576 op = BPF_OP(code); 8577 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8578 } 8579 8580 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8581 { 8582 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8583 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8584 struct bpf_insn *insn = env->prog->insnsi; 8585 const int insn_cnt = env->prog->len; 8586 int i; 8587 8588 for (i = 0; i < insn_cnt; i++, insn++) { 8589 if (!insn_is_cond_jump(insn->code)) 8590 continue; 8591 8592 if (!aux_data[i + 1].seen) 8593 ja.off = insn->off; 8594 else if (!aux_data[i + 1 + insn->off].seen) 8595 ja.off = 0; 8596 else 8597 continue; 8598 8599 if (bpf_prog_is_dev_bound(env->prog->aux)) 8600 bpf_prog_offload_replace_insn(env, i, &ja); 8601 8602 memcpy(insn, &ja, sizeof(ja)); 8603 } 8604 } 8605 8606 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8607 { 8608 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8609 int insn_cnt = env->prog->len; 8610 int i, err; 8611 8612 for (i = 0; i < insn_cnt; i++) { 8613 int j; 8614 8615 j = 0; 8616 while (i + j < insn_cnt && !aux_data[i + j].seen) 8617 j++; 8618 if (!j) 8619 continue; 8620 8621 err = verifier_remove_insns(env, i, j); 8622 if (err) 8623 return err; 8624 insn_cnt = env->prog->len; 8625 } 8626 8627 return 0; 8628 } 8629 8630 static int opt_remove_nops(struct bpf_verifier_env *env) 8631 { 8632 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8633 struct bpf_insn *insn = env->prog->insnsi; 8634 int insn_cnt = env->prog->len; 8635 int i, err; 8636 8637 for (i = 0; i < insn_cnt; i++) { 8638 if (memcmp(&insn[i], &ja, sizeof(ja))) 8639 continue; 8640 8641 err = verifier_remove_insns(env, i, 1); 8642 if (err) 8643 return err; 8644 insn_cnt--; 8645 i--; 8646 } 8647 8648 return 0; 8649 } 8650 8651 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8652 const union bpf_attr *attr) 8653 { 8654 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8655 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8656 int i, patch_len, delta = 0, len = env->prog->len; 8657 struct bpf_insn *insns = env->prog->insnsi; 8658 struct bpf_prog *new_prog; 8659 bool rnd_hi32; 8660 8661 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8662 zext_patch[1] = BPF_ZEXT_REG(0); 8663 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8664 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8665 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8666 for (i = 0; i < len; i++) { 8667 int adj_idx = i + delta; 8668 struct bpf_insn insn; 8669 8670 insn = insns[adj_idx]; 8671 if (!aux[adj_idx].zext_dst) { 8672 u8 code, class; 8673 u32 imm_rnd; 8674 8675 if (!rnd_hi32) 8676 continue; 8677 8678 code = insn.code; 8679 class = BPF_CLASS(code); 8680 if (insn_no_def(&insn)) 8681 continue; 8682 8683 /* NOTE: arg "reg" (the fourth one) is only used for 8684 * BPF_STX which has been ruled out in above 8685 * check, it is safe to pass NULL here. 8686 */ 8687 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8688 if (class == BPF_LD && 8689 BPF_MODE(code) == BPF_IMM) 8690 i++; 8691 continue; 8692 } 8693 8694 /* ctx load could be transformed into wider load. */ 8695 if (class == BPF_LDX && 8696 aux[adj_idx].ptr_type == PTR_TO_CTX) 8697 continue; 8698 8699 imm_rnd = get_random_int(); 8700 rnd_hi32_patch[0] = insn; 8701 rnd_hi32_patch[1].imm = imm_rnd; 8702 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8703 patch = rnd_hi32_patch; 8704 patch_len = 4; 8705 goto apply_patch_buffer; 8706 } 8707 8708 if (!bpf_jit_needs_zext()) 8709 continue; 8710 8711 zext_patch[0] = insn; 8712 zext_patch[1].dst_reg = insn.dst_reg; 8713 zext_patch[1].src_reg = insn.dst_reg; 8714 patch = zext_patch; 8715 patch_len = 2; 8716 apply_patch_buffer: 8717 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8718 if (!new_prog) 8719 return -ENOMEM; 8720 env->prog = new_prog; 8721 insns = new_prog->insnsi; 8722 aux = env->insn_aux_data; 8723 delta += patch_len - 1; 8724 } 8725 8726 return 0; 8727 } 8728 8729 /* convert load instructions that access fields of a context type into a 8730 * sequence of instructions that access fields of the underlying structure: 8731 * struct __sk_buff -> struct sk_buff 8732 * struct bpf_sock_ops -> struct sock 8733 */ 8734 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8735 { 8736 const struct bpf_verifier_ops *ops = env->ops; 8737 int i, cnt, size, ctx_field_size, delta = 0; 8738 const int insn_cnt = env->prog->len; 8739 struct bpf_insn insn_buf[16], *insn; 8740 u32 target_size, size_default, off; 8741 struct bpf_prog *new_prog; 8742 enum bpf_access_type type; 8743 bool is_narrower_load; 8744 8745 if (ops->gen_prologue || env->seen_direct_write) { 8746 if (!ops->gen_prologue) { 8747 verbose(env, "bpf verifier is misconfigured\n"); 8748 return -EINVAL; 8749 } 8750 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8751 env->prog); 8752 if (cnt >= ARRAY_SIZE(insn_buf)) { 8753 verbose(env, "bpf verifier is misconfigured\n"); 8754 return -EINVAL; 8755 } else if (cnt) { 8756 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8757 if (!new_prog) 8758 return -ENOMEM; 8759 8760 env->prog = new_prog; 8761 delta += cnt - 1; 8762 } 8763 } 8764 8765 if (bpf_prog_is_dev_bound(env->prog->aux)) 8766 return 0; 8767 8768 insn = env->prog->insnsi + delta; 8769 8770 for (i = 0; i < insn_cnt; i++, insn++) { 8771 bpf_convert_ctx_access_t convert_ctx_access; 8772 8773 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8774 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8775 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8776 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8777 type = BPF_READ; 8778 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8779 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8780 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8781 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8782 type = BPF_WRITE; 8783 else 8784 continue; 8785 8786 if (type == BPF_WRITE && 8787 env->insn_aux_data[i + delta].sanitize_stack_off) { 8788 struct bpf_insn patch[] = { 8789 /* Sanitize suspicious stack slot with zero. 8790 * There are no memory dependencies for this store, 8791 * since it's only using frame pointer and immediate 8792 * constant of zero 8793 */ 8794 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8795 env->insn_aux_data[i + delta].sanitize_stack_off, 8796 0), 8797 /* the original STX instruction will immediately 8798 * overwrite the same stack slot with appropriate value 8799 */ 8800 *insn, 8801 }; 8802 8803 cnt = ARRAY_SIZE(patch); 8804 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8805 if (!new_prog) 8806 return -ENOMEM; 8807 8808 delta += cnt - 1; 8809 env->prog = new_prog; 8810 insn = new_prog->insnsi + i + delta; 8811 continue; 8812 } 8813 8814 switch (env->insn_aux_data[i + delta].ptr_type) { 8815 case PTR_TO_CTX: 8816 if (!ops->convert_ctx_access) 8817 continue; 8818 convert_ctx_access = ops->convert_ctx_access; 8819 break; 8820 case PTR_TO_SOCKET: 8821 case PTR_TO_SOCK_COMMON: 8822 convert_ctx_access = bpf_sock_convert_ctx_access; 8823 break; 8824 case PTR_TO_TCP_SOCK: 8825 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8826 break; 8827 case PTR_TO_XDP_SOCK: 8828 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8829 break; 8830 case PTR_TO_BTF_ID: 8831 if (type == BPF_WRITE) { 8832 verbose(env, "Writes through BTF pointers are not allowed\n"); 8833 return -EINVAL; 8834 } 8835 insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code); 8836 env->prog->aux->num_exentries++; 8837 continue; 8838 default: 8839 continue; 8840 } 8841 8842 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8843 size = BPF_LDST_BYTES(insn); 8844 8845 /* If the read access is a narrower load of the field, 8846 * convert to a 4/8-byte load, to minimum program type specific 8847 * convert_ctx_access changes. If conversion is successful, 8848 * we will apply proper mask to the result. 8849 */ 8850 is_narrower_load = size < ctx_field_size; 8851 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8852 off = insn->off; 8853 if (is_narrower_load) { 8854 u8 size_code; 8855 8856 if (type == BPF_WRITE) { 8857 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8858 return -EINVAL; 8859 } 8860 8861 size_code = BPF_H; 8862 if (ctx_field_size == 4) 8863 size_code = BPF_W; 8864 else if (ctx_field_size == 8) 8865 size_code = BPF_DW; 8866 8867 insn->off = off & ~(size_default - 1); 8868 insn->code = BPF_LDX | BPF_MEM | size_code; 8869 } 8870 8871 target_size = 0; 8872 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8873 &target_size); 8874 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8875 (ctx_field_size && !target_size)) { 8876 verbose(env, "bpf verifier is misconfigured\n"); 8877 return -EINVAL; 8878 } 8879 8880 if (is_narrower_load && size < target_size) { 8881 u8 shift = bpf_ctx_narrow_access_offset( 8882 off, size, size_default) * 8; 8883 if (ctx_field_size <= 4) { 8884 if (shift) 8885 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8886 insn->dst_reg, 8887 shift); 8888 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8889 (1 << size * 8) - 1); 8890 } else { 8891 if (shift) 8892 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8893 insn->dst_reg, 8894 shift); 8895 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8896 (1ULL << size * 8) - 1); 8897 } 8898 } 8899 8900 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8901 if (!new_prog) 8902 return -ENOMEM; 8903 8904 delta += cnt - 1; 8905 8906 /* keep walking new program and skip insns we just inserted */ 8907 env->prog = new_prog; 8908 insn = new_prog->insnsi + i + delta; 8909 } 8910 8911 return 0; 8912 } 8913 8914 static int jit_subprogs(struct bpf_verifier_env *env) 8915 { 8916 struct bpf_prog *prog = env->prog, **func, *tmp; 8917 int i, j, subprog_start, subprog_end = 0, len, subprog; 8918 struct bpf_insn *insn; 8919 void *old_bpf_func; 8920 int err; 8921 8922 if (env->subprog_cnt <= 1) 8923 return 0; 8924 8925 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8926 if (insn->code != (BPF_JMP | BPF_CALL) || 8927 insn->src_reg != BPF_PSEUDO_CALL) 8928 continue; 8929 /* Upon error here we cannot fall back to interpreter but 8930 * need a hard reject of the program. Thus -EFAULT is 8931 * propagated in any case. 8932 */ 8933 subprog = find_subprog(env, i + insn->imm + 1); 8934 if (subprog < 0) { 8935 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8936 i + insn->imm + 1); 8937 return -EFAULT; 8938 } 8939 /* temporarily remember subprog id inside insn instead of 8940 * aux_data, since next loop will split up all insns into funcs 8941 */ 8942 insn->off = subprog; 8943 /* remember original imm in case JIT fails and fallback 8944 * to interpreter will be needed 8945 */ 8946 env->insn_aux_data[i].call_imm = insn->imm; 8947 /* point imm to __bpf_call_base+1 from JITs point of view */ 8948 insn->imm = 1; 8949 } 8950 8951 err = bpf_prog_alloc_jited_linfo(prog); 8952 if (err) 8953 goto out_undo_insn; 8954 8955 err = -ENOMEM; 8956 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8957 if (!func) 8958 goto out_undo_insn; 8959 8960 for (i = 0; i < env->subprog_cnt; i++) { 8961 subprog_start = subprog_end; 8962 subprog_end = env->subprog_info[i + 1].start; 8963 8964 len = subprog_end - subprog_start; 8965 /* BPF_PROG_RUN doesn't call subprogs directly, 8966 * hence main prog stats include the runtime of subprogs. 8967 * subprogs don't have IDs and not reachable via prog_get_next_id 8968 * func[i]->aux->stats will never be accessed and stays NULL 8969 */ 8970 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8971 if (!func[i]) 8972 goto out_free; 8973 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8974 len * sizeof(struct bpf_insn)); 8975 func[i]->type = prog->type; 8976 func[i]->len = len; 8977 if (bpf_prog_calc_tag(func[i])) 8978 goto out_free; 8979 func[i]->is_func = 1; 8980 func[i]->aux->func_idx = i; 8981 /* the btf and func_info will be freed only at prog->aux */ 8982 func[i]->aux->btf = prog->aux->btf; 8983 func[i]->aux->func_info = prog->aux->func_info; 8984 8985 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8986 * Long term would need debug info to populate names 8987 */ 8988 func[i]->aux->name[0] = 'F'; 8989 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8990 func[i]->jit_requested = 1; 8991 func[i]->aux->linfo = prog->aux->linfo; 8992 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8993 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8994 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8995 func[i] = bpf_int_jit_compile(func[i]); 8996 if (!func[i]->jited) { 8997 err = -ENOTSUPP; 8998 goto out_free; 8999 } 9000 cond_resched(); 9001 } 9002 /* at this point all bpf functions were successfully JITed 9003 * now populate all bpf_calls with correct addresses and 9004 * run last pass of JIT 9005 */ 9006 for (i = 0; i < env->subprog_cnt; i++) { 9007 insn = func[i]->insnsi; 9008 for (j = 0; j < func[i]->len; j++, insn++) { 9009 if (insn->code != (BPF_JMP | BPF_CALL) || 9010 insn->src_reg != BPF_PSEUDO_CALL) 9011 continue; 9012 subprog = insn->off; 9013 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 9014 __bpf_call_base; 9015 } 9016 9017 /* we use the aux data to keep a list of the start addresses 9018 * of the JITed images for each function in the program 9019 * 9020 * for some architectures, such as powerpc64, the imm field 9021 * might not be large enough to hold the offset of the start 9022 * address of the callee's JITed image from __bpf_call_base 9023 * 9024 * in such cases, we can lookup the start address of a callee 9025 * by using its subprog id, available from the off field of 9026 * the call instruction, as an index for this list 9027 */ 9028 func[i]->aux->func = func; 9029 func[i]->aux->func_cnt = env->subprog_cnt; 9030 } 9031 for (i = 0; i < env->subprog_cnt; i++) { 9032 old_bpf_func = func[i]->bpf_func; 9033 tmp = bpf_int_jit_compile(func[i]); 9034 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 9035 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 9036 err = -ENOTSUPP; 9037 goto out_free; 9038 } 9039 cond_resched(); 9040 } 9041 9042 /* finally lock prog and jit images for all functions and 9043 * populate kallsysm 9044 */ 9045 for (i = 0; i < env->subprog_cnt; i++) { 9046 bpf_prog_lock_ro(func[i]); 9047 bpf_prog_kallsyms_add(func[i]); 9048 } 9049 9050 /* Last step: make now unused interpreter insns from main 9051 * prog consistent for later dump requests, so they can 9052 * later look the same as if they were interpreted only. 9053 */ 9054 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9055 if (insn->code != (BPF_JMP | BPF_CALL) || 9056 insn->src_reg != BPF_PSEUDO_CALL) 9057 continue; 9058 insn->off = env->insn_aux_data[i].call_imm; 9059 subprog = find_subprog(env, i + insn->off + 1); 9060 insn->imm = subprog; 9061 } 9062 9063 prog->jited = 1; 9064 prog->bpf_func = func[0]->bpf_func; 9065 prog->aux->func = func; 9066 prog->aux->func_cnt = env->subprog_cnt; 9067 bpf_prog_free_unused_jited_linfo(prog); 9068 return 0; 9069 out_free: 9070 for (i = 0; i < env->subprog_cnt; i++) 9071 if (func[i]) 9072 bpf_jit_free(func[i]); 9073 kfree(func); 9074 out_undo_insn: 9075 /* cleanup main prog to be interpreted */ 9076 prog->jit_requested = 0; 9077 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 9078 if (insn->code != (BPF_JMP | BPF_CALL) || 9079 insn->src_reg != BPF_PSEUDO_CALL) 9080 continue; 9081 insn->off = 0; 9082 insn->imm = env->insn_aux_data[i].call_imm; 9083 } 9084 bpf_prog_free_jited_linfo(prog); 9085 return err; 9086 } 9087 9088 static int fixup_call_args(struct bpf_verifier_env *env) 9089 { 9090 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9091 struct bpf_prog *prog = env->prog; 9092 struct bpf_insn *insn = prog->insnsi; 9093 int i, depth; 9094 #endif 9095 int err = 0; 9096 9097 if (env->prog->jit_requested && 9098 !bpf_prog_is_dev_bound(env->prog->aux)) { 9099 err = jit_subprogs(env); 9100 if (err == 0) 9101 return 0; 9102 if (err == -EFAULT) 9103 return err; 9104 } 9105 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 9106 for (i = 0; i < prog->len; i++, insn++) { 9107 if (insn->code != (BPF_JMP | BPF_CALL) || 9108 insn->src_reg != BPF_PSEUDO_CALL) 9109 continue; 9110 depth = get_callee_stack_depth(env, insn, i); 9111 if (depth < 0) 9112 return depth; 9113 bpf_patch_call_args(insn, depth); 9114 } 9115 err = 0; 9116 #endif 9117 return err; 9118 } 9119 9120 /* fixup insn->imm field of bpf_call instructions 9121 * and inline eligible helpers as explicit sequence of BPF instructions 9122 * 9123 * this function is called after eBPF program passed verification 9124 */ 9125 static int fixup_bpf_calls(struct bpf_verifier_env *env) 9126 { 9127 struct bpf_prog *prog = env->prog; 9128 bool expect_blinding = bpf_jit_blinding_enabled(prog); 9129 struct bpf_insn *insn = prog->insnsi; 9130 const struct bpf_func_proto *fn; 9131 const int insn_cnt = prog->len; 9132 const struct bpf_map_ops *ops; 9133 struct bpf_insn_aux_data *aux; 9134 struct bpf_insn insn_buf[16]; 9135 struct bpf_prog *new_prog; 9136 struct bpf_map *map_ptr; 9137 int i, ret, cnt, delta = 0; 9138 9139 for (i = 0; i < insn_cnt; i++, insn++) { 9140 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 9141 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9142 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 9143 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9144 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 9145 struct bpf_insn mask_and_div[] = { 9146 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9147 /* Rx div 0 -> 0 */ 9148 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 9149 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 9150 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 9151 *insn, 9152 }; 9153 struct bpf_insn mask_and_mod[] = { 9154 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 9155 /* Rx mod 0 -> Rx */ 9156 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 9157 *insn, 9158 }; 9159 struct bpf_insn *patchlet; 9160 9161 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 9162 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 9163 patchlet = mask_and_div + (is64 ? 1 : 0); 9164 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 9165 } else { 9166 patchlet = mask_and_mod + (is64 ? 1 : 0); 9167 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 9168 } 9169 9170 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 9171 if (!new_prog) 9172 return -ENOMEM; 9173 9174 delta += cnt - 1; 9175 env->prog = prog = new_prog; 9176 insn = new_prog->insnsi + i + delta; 9177 continue; 9178 } 9179 9180 if (BPF_CLASS(insn->code) == BPF_LD && 9181 (BPF_MODE(insn->code) == BPF_ABS || 9182 BPF_MODE(insn->code) == BPF_IND)) { 9183 cnt = env->ops->gen_ld_abs(insn, insn_buf); 9184 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9185 verbose(env, "bpf verifier is misconfigured\n"); 9186 return -EINVAL; 9187 } 9188 9189 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9190 if (!new_prog) 9191 return -ENOMEM; 9192 9193 delta += cnt - 1; 9194 env->prog = prog = new_prog; 9195 insn = new_prog->insnsi + i + delta; 9196 continue; 9197 } 9198 9199 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 9200 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 9201 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 9202 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 9203 struct bpf_insn insn_buf[16]; 9204 struct bpf_insn *patch = &insn_buf[0]; 9205 bool issrc, isneg; 9206 u32 off_reg; 9207 9208 aux = &env->insn_aux_data[i + delta]; 9209 if (!aux->alu_state || 9210 aux->alu_state == BPF_ALU_NON_POINTER) 9211 continue; 9212 9213 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 9214 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 9215 BPF_ALU_SANITIZE_SRC; 9216 9217 off_reg = issrc ? insn->src_reg : insn->dst_reg; 9218 if (isneg) 9219 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9220 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 9221 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 9222 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 9223 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 9224 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 9225 if (issrc) { 9226 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 9227 off_reg); 9228 insn->src_reg = BPF_REG_AX; 9229 } else { 9230 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 9231 BPF_REG_AX); 9232 } 9233 if (isneg) 9234 insn->code = insn->code == code_add ? 9235 code_sub : code_add; 9236 *patch++ = *insn; 9237 if (issrc && isneg) 9238 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 9239 cnt = patch - insn_buf; 9240 9241 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9242 if (!new_prog) 9243 return -ENOMEM; 9244 9245 delta += cnt - 1; 9246 env->prog = prog = new_prog; 9247 insn = new_prog->insnsi + i + delta; 9248 continue; 9249 } 9250 9251 if (insn->code != (BPF_JMP | BPF_CALL)) 9252 continue; 9253 if (insn->src_reg == BPF_PSEUDO_CALL) 9254 continue; 9255 9256 if (insn->imm == BPF_FUNC_get_route_realm) 9257 prog->dst_needed = 1; 9258 if (insn->imm == BPF_FUNC_get_prandom_u32) 9259 bpf_user_rnd_init_once(); 9260 if (insn->imm == BPF_FUNC_override_return) 9261 prog->kprobe_override = 1; 9262 if (insn->imm == BPF_FUNC_tail_call) { 9263 /* If we tail call into other programs, we 9264 * cannot make any assumptions since they can 9265 * be replaced dynamically during runtime in 9266 * the program array. 9267 */ 9268 prog->cb_access = 1; 9269 env->prog->aux->stack_depth = MAX_BPF_STACK; 9270 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9271 9272 /* mark bpf_tail_call as different opcode to avoid 9273 * conditional branch in the interpeter for every normal 9274 * call and to prevent accidental JITing by JIT compiler 9275 * that doesn't support bpf_tail_call yet 9276 */ 9277 insn->imm = 0; 9278 insn->code = BPF_JMP | BPF_TAIL_CALL; 9279 9280 aux = &env->insn_aux_data[i + delta]; 9281 if (env->allow_ptr_leaks && !expect_blinding && 9282 prog->jit_requested && 9283 !bpf_map_key_poisoned(aux) && 9284 !bpf_map_ptr_poisoned(aux) && 9285 !bpf_map_ptr_unpriv(aux)) { 9286 struct bpf_jit_poke_descriptor desc = { 9287 .reason = BPF_POKE_REASON_TAIL_CALL, 9288 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 9289 .tail_call.key = bpf_map_key_immediate(aux), 9290 }; 9291 9292 ret = bpf_jit_add_poke_descriptor(prog, &desc); 9293 if (ret < 0) { 9294 verbose(env, "adding tail call poke descriptor failed\n"); 9295 return ret; 9296 } 9297 9298 insn->imm = ret + 1; 9299 continue; 9300 } 9301 9302 if (!bpf_map_ptr_unpriv(aux)) 9303 continue; 9304 9305 /* instead of changing every JIT dealing with tail_call 9306 * emit two extra insns: 9307 * if (index >= max_entries) goto out; 9308 * index &= array->index_mask; 9309 * to avoid out-of-bounds cpu speculation 9310 */ 9311 if (bpf_map_ptr_poisoned(aux)) { 9312 verbose(env, "tail_call abusing map_ptr\n"); 9313 return -EINVAL; 9314 } 9315 9316 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9317 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9318 map_ptr->max_entries, 2); 9319 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9320 container_of(map_ptr, 9321 struct bpf_array, 9322 map)->index_mask); 9323 insn_buf[2] = *insn; 9324 cnt = 3; 9325 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9326 if (!new_prog) 9327 return -ENOMEM; 9328 9329 delta += cnt - 1; 9330 env->prog = prog = new_prog; 9331 insn = new_prog->insnsi + i + delta; 9332 continue; 9333 } 9334 9335 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9336 * and other inlining handlers are currently limited to 64 bit 9337 * only. 9338 */ 9339 if (prog->jit_requested && BITS_PER_LONG == 64 && 9340 (insn->imm == BPF_FUNC_map_lookup_elem || 9341 insn->imm == BPF_FUNC_map_update_elem || 9342 insn->imm == BPF_FUNC_map_delete_elem || 9343 insn->imm == BPF_FUNC_map_push_elem || 9344 insn->imm == BPF_FUNC_map_pop_elem || 9345 insn->imm == BPF_FUNC_map_peek_elem)) { 9346 aux = &env->insn_aux_data[i + delta]; 9347 if (bpf_map_ptr_poisoned(aux)) 9348 goto patch_call_imm; 9349 9350 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 9351 ops = map_ptr->ops; 9352 if (insn->imm == BPF_FUNC_map_lookup_elem && 9353 ops->map_gen_lookup) { 9354 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9355 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9356 verbose(env, "bpf verifier is misconfigured\n"); 9357 return -EINVAL; 9358 } 9359 9360 new_prog = bpf_patch_insn_data(env, i + delta, 9361 insn_buf, cnt); 9362 if (!new_prog) 9363 return -ENOMEM; 9364 9365 delta += cnt - 1; 9366 env->prog = prog = new_prog; 9367 insn = new_prog->insnsi + i + delta; 9368 continue; 9369 } 9370 9371 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9372 (void *(*)(struct bpf_map *map, void *key))NULL)); 9373 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9374 (int (*)(struct bpf_map *map, void *key))NULL)); 9375 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9376 (int (*)(struct bpf_map *map, void *key, void *value, 9377 u64 flags))NULL)); 9378 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9379 (int (*)(struct bpf_map *map, void *value, 9380 u64 flags))NULL)); 9381 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9382 (int (*)(struct bpf_map *map, void *value))NULL)); 9383 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9384 (int (*)(struct bpf_map *map, void *value))NULL)); 9385 9386 switch (insn->imm) { 9387 case BPF_FUNC_map_lookup_elem: 9388 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9389 __bpf_call_base; 9390 continue; 9391 case BPF_FUNC_map_update_elem: 9392 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9393 __bpf_call_base; 9394 continue; 9395 case BPF_FUNC_map_delete_elem: 9396 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9397 __bpf_call_base; 9398 continue; 9399 case BPF_FUNC_map_push_elem: 9400 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9401 __bpf_call_base; 9402 continue; 9403 case BPF_FUNC_map_pop_elem: 9404 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9405 __bpf_call_base; 9406 continue; 9407 case BPF_FUNC_map_peek_elem: 9408 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9409 __bpf_call_base; 9410 continue; 9411 } 9412 9413 goto patch_call_imm; 9414 } 9415 9416 patch_call_imm: 9417 fn = env->ops->get_func_proto(insn->imm, env->prog); 9418 /* all functions that have prototype and verifier allowed 9419 * programs to call them, must be real in-kernel functions 9420 */ 9421 if (!fn->func) { 9422 verbose(env, 9423 "kernel subsystem misconfigured func %s#%d\n", 9424 func_id_name(insn->imm), insn->imm); 9425 return -EFAULT; 9426 } 9427 insn->imm = fn->func - __bpf_call_base; 9428 } 9429 9430 /* Since poke tab is now finalized, publish aux to tracker. */ 9431 for (i = 0; i < prog->aux->size_poke_tab; i++) { 9432 map_ptr = prog->aux->poke_tab[i].tail_call.map; 9433 if (!map_ptr->ops->map_poke_track || 9434 !map_ptr->ops->map_poke_untrack || 9435 !map_ptr->ops->map_poke_run) { 9436 verbose(env, "bpf verifier is misconfigured\n"); 9437 return -EINVAL; 9438 } 9439 9440 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 9441 if (ret < 0) { 9442 verbose(env, "tracking tail call prog failed\n"); 9443 return ret; 9444 } 9445 } 9446 9447 return 0; 9448 } 9449 9450 static void free_states(struct bpf_verifier_env *env) 9451 { 9452 struct bpf_verifier_state_list *sl, *sln; 9453 int i; 9454 9455 sl = env->free_list; 9456 while (sl) { 9457 sln = sl->next; 9458 free_verifier_state(&sl->state, false); 9459 kfree(sl); 9460 sl = sln; 9461 } 9462 9463 if (!env->explored_states) 9464 return; 9465 9466 for (i = 0; i < state_htab_size(env); i++) { 9467 sl = env->explored_states[i]; 9468 9469 while (sl) { 9470 sln = sl->next; 9471 free_verifier_state(&sl->state, false); 9472 kfree(sl); 9473 sl = sln; 9474 } 9475 } 9476 9477 kvfree(env->explored_states); 9478 } 9479 9480 static void print_verification_stats(struct bpf_verifier_env *env) 9481 { 9482 int i; 9483 9484 if (env->log.level & BPF_LOG_STATS) { 9485 verbose(env, "verification time %lld usec\n", 9486 div_u64(env->verification_time, 1000)); 9487 verbose(env, "stack depth "); 9488 for (i = 0; i < env->subprog_cnt; i++) { 9489 u32 depth = env->subprog_info[i].stack_depth; 9490 9491 verbose(env, "%d", depth); 9492 if (i + 1 < env->subprog_cnt) 9493 verbose(env, "+"); 9494 } 9495 verbose(env, "\n"); 9496 } 9497 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9498 "total_states %d peak_states %d mark_read %d\n", 9499 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9500 env->max_states_per_insn, env->total_states, 9501 env->peak_states, env->longest_mark_read_walk); 9502 } 9503 9504 static int check_attach_btf_id(struct bpf_verifier_env *env) 9505 { 9506 struct bpf_prog *prog = env->prog; 9507 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 9508 u32 btf_id = prog->aux->attach_btf_id; 9509 const char prefix[] = "btf_trace_"; 9510 int ret = 0, subprog = -1, i; 9511 struct bpf_trampoline *tr; 9512 const struct btf_type *t; 9513 bool conservative = true; 9514 const char *tname; 9515 struct btf *btf; 9516 long addr; 9517 u64 key; 9518 9519 if (prog->type != BPF_PROG_TYPE_TRACING) 9520 return 0; 9521 9522 if (!btf_id) { 9523 verbose(env, "Tracing programs must provide btf_id\n"); 9524 return -EINVAL; 9525 } 9526 btf = bpf_prog_get_target_btf(prog); 9527 if (!btf) { 9528 verbose(env, 9529 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 9530 return -EINVAL; 9531 } 9532 t = btf_type_by_id(btf, btf_id); 9533 if (!t) { 9534 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 9535 return -EINVAL; 9536 } 9537 tname = btf_name_by_offset(btf, t->name_off); 9538 if (!tname) { 9539 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 9540 return -EINVAL; 9541 } 9542 if (tgt_prog) { 9543 struct bpf_prog_aux *aux = tgt_prog->aux; 9544 9545 for (i = 0; i < aux->func_info_cnt; i++) 9546 if (aux->func_info[i].type_id == btf_id) { 9547 subprog = i; 9548 break; 9549 } 9550 if (subprog == -1) { 9551 verbose(env, "Subprog %s doesn't exist\n", tname); 9552 return -EINVAL; 9553 } 9554 conservative = aux->func_info_aux[subprog].unreliable; 9555 key = ((u64)aux->id) << 32 | btf_id; 9556 } else { 9557 key = btf_id; 9558 } 9559 9560 switch (prog->expected_attach_type) { 9561 case BPF_TRACE_RAW_TP: 9562 if (tgt_prog) { 9563 verbose(env, 9564 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 9565 return -EINVAL; 9566 } 9567 if (!btf_type_is_typedef(t)) { 9568 verbose(env, "attach_btf_id %u is not a typedef\n", 9569 btf_id); 9570 return -EINVAL; 9571 } 9572 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 9573 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 9574 btf_id, tname); 9575 return -EINVAL; 9576 } 9577 tname += sizeof(prefix) - 1; 9578 t = btf_type_by_id(btf, t->type); 9579 if (!btf_type_is_ptr(t)) 9580 /* should never happen in valid vmlinux build */ 9581 return -EINVAL; 9582 t = btf_type_by_id(btf, t->type); 9583 if (!btf_type_is_func_proto(t)) 9584 /* should never happen in valid vmlinux build */ 9585 return -EINVAL; 9586 9587 /* remember two read only pointers that are valid for 9588 * the life time of the kernel 9589 */ 9590 prog->aux->attach_func_name = tname; 9591 prog->aux->attach_func_proto = t; 9592 prog->aux->attach_btf_trace = true; 9593 return 0; 9594 case BPF_TRACE_FENTRY: 9595 case BPF_TRACE_FEXIT: 9596 if (!btf_type_is_func(t)) { 9597 verbose(env, "attach_btf_id %u is not a function\n", 9598 btf_id); 9599 return -EINVAL; 9600 } 9601 t = btf_type_by_id(btf, t->type); 9602 if (!btf_type_is_func_proto(t)) 9603 return -EINVAL; 9604 tr = bpf_trampoline_lookup(key); 9605 if (!tr) 9606 return -ENOMEM; 9607 prog->aux->attach_func_name = tname; 9608 /* t is either vmlinux type or another program's type */ 9609 prog->aux->attach_func_proto = t; 9610 mutex_lock(&tr->mutex); 9611 if (tr->func.addr) { 9612 prog->aux->trampoline = tr; 9613 goto out; 9614 } 9615 if (tgt_prog && conservative) { 9616 prog->aux->attach_func_proto = NULL; 9617 t = NULL; 9618 } 9619 ret = btf_distill_func_proto(&env->log, btf, t, 9620 tname, &tr->func.model); 9621 if (ret < 0) 9622 goto out; 9623 if (tgt_prog) { 9624 if (!tgt_prog->jited) { 9625 /* for now */ 9626 verbose(env, "Can trace only JITed BPF progs\n"); 9627 ret = -EINVAL; 9628 goto out; 9629 } 9630 if (tgt_prog->type == BPF_PROG_TYPE_TRACING) { 9631 /* prevent cycles */ 9632 verbose(env, "Cannot recursively attach\n"); 9633 ret = -EINVAL; 9634 goto out; 9635 } 9636 if (subprog == 0) 9637 addr = (long) tgt_prog->bpf_func; 9638 else 9639 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 9640 } else { 9641 addr = kallsyms_lookup_name(tname); 9642 if (!addr) { 9643 verbose(env, 9644 "The address of function %s cannot be found\n", 9645 tname); 9646 ret = -ENOENT; 9647 goto out; 9648 } 9649 } 9650 tr->func.addr = (void *)addr; 9651 prog->aux->trampoline = tr; 9652 out: 9653 mutex_unlock(&tr->mutex); 9654 if (ret) 9655 bpf_trampoline_put(tr); 9656 return ret; 9657 default: 9658 return -EINVAL; 9659 } 9660 } 9661 9662 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9663 union bpf_attr __user *uattr) 9664 { 9665 u64 start_time = ktime_get_ns(); 9666 struct bpf_verifier_env *env; 9667 struct bpf_verifier_log *log; 9668 int i, len, ret = -EINVAL; 9669 bool is_priv; 9670 9671 /* no program is valid */ 9672 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9673 return -EINVAL; 9674 9675 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9676 * allocate/free it every time bpf_check() is called 9677 */ 9678 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9679 if (!env) 9680 return -ENOMEM; 9681 log = &env->log; 9682 9683 len = (*prog)->len; 9684 env->insn_aux_data = 9685 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9686 ret = -ENOMEM; 9687 if (!env->insn_aux_data) 9688 goto err_free_env; 9689 for (i = 0; i < len; i++) 9690 env->insn_aux_data[i].orig_idx = i; 9691 env->prog = *prog; 9692 env->ops = bpf_verifier_ops[env->prog->type]; 9693 is_priv = capable(CAP_SYS_ADMIN); 9694 9695 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 9696 mutex_lock(&bpf_verifier_lock); 9697 if (!btf_vmlinux) 9698 btf_vmlinux = btf_parse_vmlinux(); 9699 mutex_unlock(&bpf_verifier_lock); 9700 } 9701 9702 /* grab the mutex to protect few globals used by verifier */ 9703 if (!is_priv) 9704 mutex_lock(&bpf_verifier_lock); 9705 9706 if (attr->log_level || attr->log_buf || attr->log_size) { 9707 /* user requested verbose verifier output 9708 * and supplied buffer to store the verification trace 9709 */ 9710 log->level = attr->log_level; 9711 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9712 log->len_total = attr->log_size; 9713 9714 ret = -EINVAL; 9715 /* log attributes have to be sane */ 9716 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9717 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9718 goto err_unlock; 9719 } 9720 9721 if (IS_ERR(btf_vmlinux)) { 9722 /* Either gcc or pahole or kernel are broken. */ 9723 verbose(env, "in-kernel BTF is malformed\n"); 9724 ret = PTR_ERR(btf_vmlinux); 9725 goto skip_full_check; 9726 } 9727 9728 ret = check_attach_btf_id(env); 9729 if (ret) 9730 goto skip_full_check; 9731 9732 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9733 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9734 env->strict_alignment = true; 9735 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9736 env->strict_alignment = false; 9737 9738 env->allow_ptr_leaks = is_priv; 9739 9740 if (is_priv) 9741 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 9742 9743 ret = replace_map_fd_with_map_ptr(env); 9744 if (ret < 0) 9745 goto skip_full_check; 9746 9747 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9748 ret = bpf_prog_offload_verifier_prep(env->prog); 9749 if (ret) 9750 goto skip_full_check; 9751 } 9752 9753 env->explored_states = kvcalloc(state_htab_size(env), 9754 sizeof(struct bpf_verifier_state_list *), 9755 GFP_USER); 9756 ret = -ENOMEM; 9757 if (!env->explored_states) 9758 goto skip_full_check; 9759 9760 ret = check_subprogs(env); 9761 if (ret < 0) 9762 goto skip_full_check; 9763 9764 ret = check_btf_info(env, attr, uattr); 9765 if (ret < 0) 9766 goto skip_full_check; 9767 9768 ret = check_cfg(env); 9769 if (ret < 0) 9770 goto skip_full_check; 9771 9772 ret = do_check(env); 9773 if (env->cur_state) { 9774 free_verifier_state(env->cur_state, true); 9775 env->cur_state = NULL; 9776 } 9777 9778 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9779 ret = bpf_prog_offload_finalize(env); 9780 9781 skip_full_check: 9782 while (!pop_stack(env, NULL, NULL)); 9783 free_states(env); 9784 9785 if (ret == 0) 9786 ret = check_max_stack_depth(env); 9787 9788 /* instruction rewrites happen after this point */ 9789 if (is_priv) { 9790 if (ret == 0) 9791 opt_hard_wire_dead_code_branches(env); 9792 if (ret == 0) 9793 ret = opt_remove_dead_code(env); 9794 if (ret == 0) 9795 ret = opt_remove_nops(env); 9796 } else { 9797 if (ret == 0) 9798 sanitize_dead_code(env); 9799 } 9800 9801 if (ret == 0) 9802 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9803 ret = convert_ctx_accesses(env); 9804 9805 if (ret == 0) 9806 ret = fixup_bpf_calls(env); 9807 9808 /* do 32-bit optimization after insn patching has done so those patched 9809 * insns could be handled correctly. 9810 */ 9811 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9812 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9813 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9814 : false; 9815 } 9816 9817 if (ret == 0) 9818 ret = fixup_call_args(env); 9819 9820 env->verification_time = ktime_get_ns() - start_time; 9821 print_verification_stats(env); 9822 9823 if (log->level && bpf_verifier_log_full(log)) 9824 ret = -ENOSPC; 9825 if (log->level && !log->ubuf) { 9826 ret = -EFAULT; 9827 goto err_release_maps; 9828 } 9829 9830 if (ret == 0 && env->used_map_cnt) { 9831 /* if program passed verifier, update used_maps in bpf_prog_info */ 9832 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9833 sizeof(env->used_maps[0]), 9834 GFP_KERNEL); 9835 9836 if (!env->prog->aux->used_maps) { 9837 ret = -ENOMEM; 9838 goto err_release_maps; 9839 } 9840 9841 memcpy(env->prog->aux->used_maps, env->used_maps, 9842 sizeof(env->used_maps[0]) * env->used_map_cnt); 9843 env->prog->aux->used_map_cnt = env->used_map_cnt; 9844 9845 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9846 * bpf_ld_imm64 instructions 9847 */ 9848 convert_pseudo_ld_imm64(env); 9849 } 9850 9851 if (ret == 0) 9852 adjust_btf_func(env); 9853 9854 err_release_maps: 9855 if (!env->prog->aux->used_maps) 9856 /* if we didn't copy map pointers into bpf_prog_info, release 9857 * them now. Otherwise free_used_maps() will release them. 9858 */ 9859 release_maps(env); 9860 *prog = env->prog; 9861 err_unlock: 9862 if (!is_priv) 9863 mutex_unlock(&bpf_verifier_lock); 9864 vfree(env->insn_aux_data); 9865 err_free_env: 9866 kfree(env); 9867 return ret; 9868 } 9869