xref: /openbmc/linux/kernel/bpf/verifier.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_KEY_POISON	(1ULL << 63)
175 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
176 
177 #define BPF_MAP_PTR_UNPRIV	1UL
178 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
179 					  POISON_POINTER_DELTA))
180 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181 
182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183 {
184 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
185 }
186 
187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188 {
189 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
190 }
191 
192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 			      const struct bpf_map *map, bool unpriv)
194 {
195 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 	unpriv |= bpf_map_ptr_unpriv(aux);
197 	aux->map_ptr_state = (unsigned long)map |
198 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199 }
200 
201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202 {
203 	return aux->map_key_state & BPF_MAP_KEY_POISON;
204 }
205 
206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207 {
208 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209 }
210 
211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212 {
213 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214 }
215 
216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217 {
218 	bool poisoned = bpf_map_key_poisoned(aux);
219 
220 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
222 }
223 
224 struct bpf_call_arg_meta {
225 	struct bpf_map *map_ptr;
226 	bool raw_mode;
227 	bool pkt_access;
228 	int regno;
229 	int access_size;
230 	s64 msize_smax_value;
231 	u64 msize_umax_value;
232 	int ref_obj_id;
233 	int func_id;
234 	u32 btf_id;
235 };
236 
237 struct btf *btf_vmlinux;
238 
239 static DEFINE_MUTEX(bpf_verifier_lock);
240 
241 static const struct bpf_line_info *
242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243 {
244 	const struct bpf_line_info *linfo;
245 	const struct bpf_prog *prog;
246 	u32 i, nr_linfo;
247 
248 	prog = env->prog;
249 	nr_linfo = prog->aux->nr_linfo;
250 
251 	if (!nr_linfo || insn_off >= prog->len)
252 		return NULL;
253 
254 	linfo = prog->aux->linfo;
255 	for (i = 1; i < nr_linfo; i++)
256 		if (insn_off < linfo[i].insn_off)
257 			break;
258 
259 	return &linfo[i - 1];
260 }
261 
262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 		       va_list args)
264 {
265 	unsigned int n;
266 
267 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
268 
269 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 		  "verifier log line truncated - local buffer too short\n");
271 
272 	n = min(log->len_total - log->len_used - 1, n);
273 	log->kbuf[n] = '\0';
274 
275 	if (log->level == BPF_LOG_KERNEL) {
276 		pr_err("BPF:%s\n", log->kbuf);
277 		return;
278 	}
279 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 		log->len_used += n;
281 	else
282 		log->ubuf = NULL;
283 }
284 
285 /* log_level controls verbosity level of eBPF verifier.
286  * bpf_verifier_log_write() is used to dump the verification trace to the log,
287  * so the user can figure out what's wrong with the program
288  */
289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 					   const char *fmt, ...)
291 {
292 	va_list args;
293 
294 	if (!bpf_verifier_log_needed(&env->log))
295 		return;
296 
297 	va_start(args, fmt);
298 	bpf_verifier_vlog(&env->log, fmt, args);
299 	va_end(args);
300 }
301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302 
303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304 {
305 	struct bpf_verifier_env *env = private_data;
306 	va_list args;
307 
308 	if (!bpf_verifier_log_needed(&env->log))
309 		return;
310 
311 	va_start(args, fmt);
312 	bpf_verifier_vlog(&env->log, fmt, args);
313 	va_end(args);
314 }
315 
316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 			    const char *fmt, ...)
318 {
319 	va_list args;
320 
321 	if (!bpf_verifier_log_needed(log))
322 		return;
323 
324 	va_start(args, fmt);
325 	bpf_verifier_vlog(log, fmt, args);
326 	va_end(args);
327 }
328 
329 static const char *ltrim(const char *s)
330 {
331 	while (isspace(*s))
332 		s++;
333 
334 	return s;
335 }
336 
337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 					 u32 insn_off,
339 					 const char *prefix_fmt, ...)
340 {
341 	const struct bpf_line_info *linfo;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	linfo = find_linfo(env, insn_off);
347 	if (!linfo || linfo == env->prev_linfo)
348 		return;
349 
350 	if (prefix_fmt) {
351 		va_list args;
352 
353 		va_start(args, prefix_fmt);
354 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 		va_end(args);
356 	}
357 
358 	verbose(env, "%s\n",
359 		ltrim(btf_name_by_offset(env->prog->aux->btf,
360 					 linfo->line_off)));
361 
362 	env->prev_linfo = linfo;
363 }
364 
365 static bool type_is_pkt_pointer(enum bpf_reg_type type)
366 {
367 	return type == PTR_TO_PACKET ||
368 	       type == PTR_TO_PACKET_META;
369 }
370 
371 static bool type_is_sk_pointer(enum bpf_reg_type type)
372 {
373 	return type == PTR_TO_SOCKET ||
374 		type == PTR_TO_SOCK_COMMON ||
375 		type == PTR_TO_TCP_SOCK ||
376 		type == PTR_TO_XDP_SOCK;
377 }
378 
379 static bool reg_type_may_be_null(enum bpf_reg_type type)
380 {
381 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
382 	       type == PTR_TO_SOCKET_OR_NULL ||
383 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 	       type == PTR_TO_TCP_SOCK_OR_NULL;
385 }
386 
387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388 {
389 	return reg->type == PTR_TO_MAP_VALUE &&
390 		map_value_has_spin_lock(reg->map_ptr);
391 }
392 
393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCKET_OR_NULL ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_TCP_SOCK_OR_NULL;
399 }
400 
401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
402 {
403 	return type == ARG_PTR_TO_SOCK_COMMON;
404 }
405 
406 /* Determine whether the function releases some resources allocated by another
407  * function call. The first reference type argument will be assumed to be
408  * released by release_reference().
409  */
410 static bool is_release_function(enum bpf_func_id func_id)
411 {
412 	return func_id == BPF_FUNC_sk_release;
413 }
414 
415 static bool is_acquire_function(enum bpf_func_id func_id)
416 {
417 	return func_id == BPF_FUNC_sk_lookup_tcp ||
418 		func_id == BPF_FUNC_sk_lookup_udp ||
419 		func_id == BPF_FUNC_skc_lookup_tcp;
420 }
421 
422 static bool is_ptr_cast_function(enum bpf_func_id func_id)
423 {
424 	return func_id == BPF_FUNC_tcp_sock ||
425 		func_id == BPF_FUNC_sk_fullsock;
426 }
427 
428 /* string representation of 'enum bpf_reg_type' */
429 static const char * const reg_type_str[] = {
430 	[NOT_INIT]		= "?",
431 	[SCALAR_VALUE]		= "inv",
432 	[PTR_TO_CTX]		= "ctx",
433 	[CONST_PTR_TO_MAP]	= "map_ptr",
434 	[PTR_TO_MAP_VALUE]	= "map_value",
435 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
436 	[PTR_TO_STACK]		= "fp",
437 	[PTR_TO_PACKET]		= "pkt",
438 	[PTR_TO_PACKET_META]	= "pkt_meta",
439 	[PTR_TO_PACKET_END]	= "pkt_end",
440 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
441 	[PTR_TO_SOCKET]		= "sock",
442 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
443 	[PTR_TO_SOCK_COMMON]	= "sock_common",
444 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
445 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
446 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
447 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
448 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
449 	[PTR_TO_BTF_ID]		= "ptr_",
450 };
451 
452 static char slot_type_char[] = {
453 	[STACK_INVALID]	= '?',
454 	[STACK_SPILL]	= 'r',
455 	[STACK_MISC]	= 'm',
456 	[STACK_ZERO]	= '0',
457 };
458 
459 static void print_liveness(struct bpf_verifier_env *env,
460 			   enum bpf_reg_liveness live)
461 {
462 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
463 	    verbose(env, "_");
464 	if (live & REG_LIVE_READ)
465 		verbose(env, "r");
466 	if (live & REG_LIVE_WRITTEN)
467 		verbose(env, "w");
468 	if (live & REG_LIVE_DONE)
469 		verbose(env, "D");
470 }
471 
472 static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 				   const struct bpf_reg_state *reg)
474 {
475 	struct bpf_verifier_state *cur = env->cur_state;
476 
477 	return cur->frame[reg->frameno];
478 }
479 
480 const char *kernel_type_name(u32 id)
481 {
482 	return btf_name_by_offset(btf_vmlinux,
483 				  btf_type_by_id(btf_vmlinux, id)->name_off);
484 }
485 
486 static void print_verifier_state(struct bpf_verifier_env *env,
487 				 const struct bpf_func_state *state)
488 {
489 	const struct bpf_reg_state *reg;
490 	enum bpf_reg_type t;
491 	int i;
492 
493 	if (state->frameno)
494 		verbose(env, " frame%d:", state->frameno);
495 	for (i = 0; i < MAX_BPF_REG; i++) {
496 		reg = &state->regs[i];
497 		t = reg->type;
498 		if (t == NOT_INIT)
499 			continue;
500 		verbose(env, " R%d", i);
501 		print_liveness(env, reg->live);
502 		verbose(env, "=%s", reg_type_str[t]);
503 		if (t == SCALAR_VALUE && reg->precise)
504 			verbose(env, "P");
505 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 		    tnum_is_const(reg->var_off)) {
507 			/* reg->off should be 0 for SCALAR_VALUE */
508 			verbose(env, "%lld", reg->var_off.value + reg->off);
509 		} else {
510 			if (t == PTR_TO_BTF_ID)
511 				verbose(env, "%s", kernel_type_name(reg->btf_id));
512 			verbose(env, "(id=%d", reg->id);
513 			if (reg_type_may_be_refcounted_or_null(t))
514 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
515 			if (t != SCALAR_VALUE)
516 				verbose(env, ",off=%d", reg->off);
517 			if (type_is_pkt_pointer(t))
518 				verbose(env, ",r=%d", reg->range);
519 			else if (t == CONST_PTR_TO_MAP ||
520 				 t == PTR_TO_MAP_VALUE ||
521 				 t == PTR_TO_MAP_VALUE_OR_NULL)
522 				verbose(env, ",ks=%d,vs=%d",
523 					reg->map_ptr->key_size,
524 					reg->map_ptr->value_size);
525 			if (tnum_is_const(reg->var_off)) {
526 				/* Typically an immediate SCALAR_VALUE, but
527 				 * could be a pointer whose offset is too big
528 				 * for reg->off
529 				 */
530 				verbose(env, ",imm=%llx", reg->var_off.value);
531 			} else {
532 				if (reg->smin_value != reg->umin_value &&
533 				    reg->smin_value != S64_MIN)
534 					verbose(env, ",smin_value=%lld",
535 						(long long)reg->smin_value);
536 				if (reg->smax_value != reg->umax_value &&
537 				    reg->smax_value != S64_MAX)
538 					verbose(env, ",smax_value=%lld",
539 						(long long)reg->smax_value);
540 				if (reg->umin_value != 0)
541 					verbose(env, ",umin_value=%llu",
542 						(unsigned long long)reg->umin_value);
543 				if (reg->umax_value != U64_MAX)
544 					verbose(env, ",umax_value=%llu",
545 						(unsigned long long)reg->umax_value);
546 				if (!tnum_is_unknown(reg->var_off)) {
547 					char tn_buf[48];
548 
549 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
550 					verbose(env, ",var_off=%s", tn_buf);
551 				}
552 			}
553 			verbose(env, ")");
554 		}
555 	}
556 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
557 		char types_buf[BPF_REG_SIZE + 1];
558 		bool valid = false;
559 		int j;
560 
561 		for (j = 0; j < BPF_REG_SIZE; j++) {
562 			if (state->stack[i].slot_type[j] != STACK_INVALID)
563 				valid = true;
564 			types_buf[j] = slot_type_char[
565 					state->stack[i].slot_type[j]];
566 		}
567 		types_buf[BPF_REG_SIZE] = 0;
568 		if (!valid)
569 			continue;
570 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 		print_liveness(env, state->stack[i].spilled_ptr.live);
572 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 			reg = &state->stack[i].spilled_ptr;
574 			t = reg->type;
575 			verbose(env, "=%s", reg_type_str[t]);
576 			if (t == SCALAR_VALUE && reg->precise)
577 				verbose(env, "P");
578 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 				verbose(env, "%lld", reg->var_off.value + reg->off);
580 		} else {
581 			verbose(env, "=%s", types_buf);
582 		}
583 	}
584 	if (state->acquired_refs && state->refs[0].id) {
585 		verbose(env, " refs=%d", state->refs[0].id);
586 		for (i = 1; i < state->acquired_refs; i++)
587 			if (state->refs[i].id)
588 				verbose(env, ",%d", state->refs[i].id);
589 	}
590 	verbose(env, "\n");
591 }
592 
593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
594 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
595 			       const struct bpf_func_state *src)	\
596 {									\
597 	if (!src->FIELD)						\
598 		return 0;						\
599 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
600 		/* internal bug, make state invalid to reject the program */ \
601 		memset(dst, 0, sizeof(*dst));				\
602 		return -EFAULT;						\
603 	}								\
604 	memcpy(dst->FIELD, src->FIELD,					\
605 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
606 	return 0;							\
607 }
608 /* copy_reference_state() */
609 COPY_STATE_FN(reference, acquired_refs, refs, 1)
610 /* copy_stack_state() */
611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612 #undef COPY_STATE_FN
613 
614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 				  bool copy_old)			\
617 {									\
618 	u32 old_size = state->COUNT;					\
619 	struct bpf_##NAME##_state *new_##FIELD;				\
620 	int slot = size / SIZE;						\
621 									\
622 	if (size <= old_size || !size) {				\
623 		if (copy_old)						\
624 			return 0;					\
625 		state->COUNT = slot * SIZE;				\
626 		if (!size && old_size) {				\
627 			kfree(state->FIELD);				\
628 			state->FIELD = NULL;				\
629 		}							\
630 		return 0;						\
631 	}								\
632 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 				    GFP_KERNEL);			\
634 	if (!new_##FIELD)						\
635 		return -ENOMEM;						\
636 	if (copy_old) {							\
637 		if (state->FIELD)					\
638 			memcpy(new_##FIELD, state->FIELD,		\
639 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 		memset(new_##FIELD + old_size / SIZE, 0,		\
641 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 	}								\
643 	state->COUNT = slot * SIZE;					\
644 	kfree(state->FIELD);						\
645 	state->FIELD = new_##FIELD;					\
646 	return 0;							\
647 }
648 /* realloc_reference_state() */
649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
650 /* realloc_stack_state() */
651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652 #undef REALLOC_STATE_FN
653 
654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655  * make it consume minimal amount of memory. check_stack_write() access from
656  * the program calls into realloc_func_state() to grow the stack size.
657  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658  * which realloc_stack_state() copies over. It points to previous
659  * bpf_verifier_state which is never reallocated.
660  */
661 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 			      int refs_size, bool copy_old)
663 {
664 	int err = realloc_reference_state(state, refs_size, copy_old);
665 	if (err)
666 		return err;
667 	return realloc_stack_state(state, stack_size, copy_old);
668 }
669 
670 /* Acquire a pointer id from the env and update the state->refs to include
671  * this new pointer reference.
672  * On success, returns a valid pointer id to associate with the register
673  * On failure, returns a negative errno.
674  */
675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
676 {
677 	struct bpf_func_state *state = cur_func(env);
678 	int new_ofs = state->acquired_refs;
679 	int id, err;
680 
681 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 	if (err)
683 		return err;
684 	id = ++env->id_gen;
685 	state->refs[new_ofs].id = id;
686 	state->refs[new_ofs].insn_idx = insn_idx;
687 
688 	return id;
689 }
690 
691 /* release function corresponding to acquire_reference_state(). Idempotent. */
692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
693 {
694 	int i, last_idx;
695 
696 	last_idx = state->acquired_refs - 1;
697 	for (i = 0; i < state->acquired_refs; i++) {
698 		if (state->refs[i].id == ptr_id) {
699 			if (last_idx && i != last_idx)
700 				memcpy(&state->refs[i], &state->refs[last_idx],
701 				       sizeof(*state->refs));
702 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 			state->acquired_refs--;
704 			return 0;
705 		}
706 	}
707 	return -EINVAL;
708 }
709 
710 static int transfer_reference_state(struct bpf_func_state *dst,
711 				    struct bpf_func_state *src)
712 {
713 	int err = realloc_reference_state(dst, src->acquired_refs, false);
714 	if (err)
715 		return err;
716 	err = copy_reference_state(dst, src);
717 	if (err)
718 		return err;
719 	return 0;
720 }
721 
722 static void free_func_state(struct bpf_func_state *state)
723 {
724 	if (!state)
725 		return;
726 	kfree(state->refs);
727 	kfree(state->stack);
728 	kfree(state);
729 }
730 
731 static void clear_jmp_history(struct bpf_verifier_state *state)
732 {
733 	kfree(state->jmp_history);
734 	state->jmp_history = NULL;
735 	state->jmp_history_cnt = 0;
736 }
737 
738 static void free_verifier_state(struct bpf_verifier_state *state,
739 				bool free_self)
740 {
741 	int i;
742 
743 	for (i = 0; i <= state->curframe; i++) {
744 		free_func_state(state->frame[i]);
745 		state->frame[i] = NULL;
746 	}
747 	clear_jmp_history(state);
748 	if (free_self)
749 		kfree(state);
750 }
751 
752 /* copy verifier state from src to dst growing dst stack space
753  * when necessary to accommodate larger src stack
754  */
755 static int copy_func_state(struct bpf_func_state *dst,
756 			   const struct bpf_func_state *src)
757 {
758 	int err;
759 
760 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 				 false);
762 	if (err)
763 		return err;
764 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 	err = copy_reference_state(dst, src);
766 	if (err)
767 		return err;
768 	return copy_stack_state(dst, src);
769 }
770 
771 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 			       const struct bpf_verifier_state *src)
773 {
774 	struct bpf_func_state *dst;
775 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
776 	int i, err;
777 
778 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 		kfree(dst_state->jmp_history);
780 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 		if (!dst_state->jmp_history)
782 			return -ENOMEM;
783 	}
784 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
786 
787 	/* if dst has more stack frames then src frame, free them */
788 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 		free_func_state(dst_state->frame[i]);
790 		dst_state->frame[i] = NULL;
791 	}
792 	dst_state->speculative = src->speculative;
793 	dst_state->curframe = src->curframe;
794 	dst_state->active_spin_lock = src->active_spin_lock;
795 	dst_state->branches = src->branches;
796 	dst_state->parent = src->parent;
797 	dst_state->first_insn_idx = src->first_insn_idx;
798 	dst_state->last_insn_idx = src->last_insn_idx;
799 	for (i = 0; i <= src->curframe; i++) {
800 		dst = dst_state->frame[i];
801 		if (!dst) {
802 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 			if (!dst)
804 				return -ENOMEM;
805 			dst_state->frame[i] = dst;
806 		}
807 		err = copy_func_state(dst, src->frame[i]);
808 		if (err)
809 			return err;
810 	}
811 	return 0;
812 }
813 
814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815 {
816 	while (st) {
817 		u32 br = --st->branches;
818 
819 		/* WARN_ON(br > 1) technically makes sense here,
820 		 * but see comment in push_stack(), hence:
821 		 */
822 		WARN_ONCE((int)br < 0,
823 			  "BUG update_branch_counts:branches_to_explore=%d\n",
824 			  br);
825 		if (br)
826 			break;
827 		st = st->parent;
828 	}
829 }
830 
831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 		     int *insn_idx)
833 {
834 	struct bpf_verifier_state *cur = env->cur_state;
835 	struct bpf_verifier_stack_elem *elem, *head = env->head;
836 	int err;
837 
838 	if (env->head == NULL)
839 		return -ENOENT;
840 
841 	if (cur) {
842 		err = copy_verifier_state(cur, &head->st);
843 		if (err)
844 			return err;
845 	}
846 	if (insn_idx)
847 		*insn_idx = head->insn_idx;
848 	if (prev_insn_idx)
849 		*prev_insn_idx = head->prev_insn_idx;
850 	elem = head->next;
851 	free_verifier_state(&head->st, false);
852 	kfree(head);
853 	env->head = elem;
854 	env->stack_size--;
855 	return 0;
856 }
857 
858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
859 					     int insn_idx, int prev_insn_idx,
860 					     bool speculative)
861 {
862 	struct bpf_verifier_state *cur = env->cur_state;
863 	struct bpf_verifier_stack_elem *elem;
864 	int err;
865 
866 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
867 	if (!elem)
868 		goto err;
869 
870 	elem->insn_idx = insn_idx;
871 	elem->prev_insn_idx = prev_insn_idx;
872 	elem->next = env->head;
873 	env->head = elem;
874 	env->stack_size++;
875 	err = copy_verifier_state(&elem->st, cur);
876 	if (err)
877 		goto err;
878 	elem->st.speculative |= speculative;
879 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 		verbose(env, "The sequence of %d jumps is too complex.\n",
881 			env->stack_size);
882 		goto err;
883 	}
884 	if (elem->st.parent) {
885 		++elem->st.parent->branches;
886 		/* WARN_ON(branches > 2) technically makes sense here,
887 		 * but
888 		 * 1. speculative states will bump 'branches' for non-branch
889 		 * instructions
890 		 * 2. is_state_visited() heuristics may decide not to create
891 		 * a new state for a sequence of branches and all such current
892 		 * and cloned states will be pointing to a single parent state
893 		 * which might have large 'branches' count.
894 		 */
895 	}
896 	return &elem->st;
897 err:
898 	free_verifier_state(env->cur_state, true);
899 	env->cur_state = NULL;
900 	/* pop all elements and return */
901 	while (!pop_stack(env, NULL, NULL));
902 	return NULL;
903 }
904 
905 #define CALLER_SAVED_REGS 6
906 static const int caller_saved[CALLER_SAVED_REGS] = {
907 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908 };
909 
910 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 				struct bpf_reg_state *reg);
912 
913 /* Mark the unknown part of a register (variable offset or scalar value) as
914  * known to have the value @imm.
915  */
916 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917 {
918 	/* Clear id, off, and union(map_ptr, range) */
919 	memset(((u8 *)reg) + sizeof(reg->type), 0,
920 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
921 	reg->var_off = tnum_const(imm);
922 	reg->smin_value = (s64)imm;
923 	reg->smax_value = (s64)imm;
924 	reg->umin_value = imm;
925 	reg->umax_value = imm;
926 }
927 
928 /* Mark the 'variable offset' part of a register as zero.  This should be
929  * used only on registers holding a pointer type.
930  */
931 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
932 {
933 	__mark_reg_known(reg, 0);
934 }
935 
936 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937 {
938 	__mark_reg_known(reg, 0);
939 	reg->type = SCALAR_VALUE;
940 }
941 
942 static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 				struct bpf_reg_state *regs, u32 regno)
944 {
945 	if (WARN_ON(regno >= MAX_BPF_REG)) {
946 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
947 		/* Something bad happened, let's kill all regs */
948 		for (regno = 0; regno < MAX_BPF_REG; regno++)
949 			__mark_reg_not_init(env, regs + regno);
950 		return;
951 	}
952 	__mark_reg_known_zero(regs + regno);
953 }
954 
955 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956 {
957 	return type_is_pkt_pointer(reg->type);
958 }
959 
960 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961 {
962 	return reg_is_pkt_pointer(reg) ||
963 	       reg->type == PTR_TO_PACKET_END;
964 }
965 
966 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 				    enum bpf_reg_type which)
969 {
970 	/* The register can already have a range from prior markings.
971 	 * This is fine as long as it hasn't been advanced from its
972 	 * origin.
973 	 */
974 	return reg->type == which &&
975 	       reg->id == 0 &&
976 	       reg->off == 0 &&
977 	       tnum_equals_const(reg->var_off, 0);
978 }
979 
980 /* Attempts to improve min/max values based on var_off information */
981 static void __update_reg_bounds(struct bpf_reg_state *reg)
982 {
983 	/* min signed is max(sign bit) | min(other bits) */
984 	reg->smin_value = max_t(s64, reg->smin_value,
985 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 	/* max signed is min(sign bit) | max(other bits) */
987 	reg->smax_value = min_t(s64, reg->smax_value,
988 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 	reg->umax_value = min(reg->umax_value,
991 			      reg->var_off.value | reg->var_off.mask);
992 }
993 
994 /* Uses signed min/max values to inform unsigned, and vice-versa */
995 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996 {
997 	/* Learn sign from signed bounds.
998 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 	 * are the same, so combine.  This works even in the negative case, e.g.
1000 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 	 */
1002 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 							  reg->umin_value);
1005 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 							  reg->umax_value);
1007 		return;
1008 	}
1009 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1010 	 * boundary, so we must be careful.
1011 	 */
1012 	if ((s64)reg->umax_value >= 0) {
1013 		/* Positive.  We can't learn anything from the smin, but smax
1014 		 * is positive, hence safe.
1015 		 */
1016 		reg->smin_value = reg->umin_value;
1017 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 							  reg->umax_value);
1019 	} else if ((s64)reg->umin_value < 0) {
1020 		/* Negative.  We can't learn anything from the smax, but smin
1021 		 * is negative, hence safe.
1022 		 */
1023 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 							  reg->umin_value);
1025 		reg->smax_value = reg->umax_value;
1026 	}
1027 }
1028 
1029 /* Attempts to improve var_off based on unsigned min/max information */
1030 static void __reg_bound_offset(struct bpf_reg_state *reg)
1031 {
1032 	reg->var_off = tnum_intersect(reg->var_off,
1033 				      tnum_range(reg->umin_value,
1034 						 reg->umax_value));
1035 }
1036 
1037 static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038 {
1039 	u64 mask = 0xffffFFFF;
1040 	struct tnum range = tnum_range(reg->umin_value & mask,
1041 				       reg->umax_value & mask);
1042 	struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 	struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044 
1045 	reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046 }
1047 
1048 /* Reset the min/max bounds of a register */
1049 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050 {
1051 	reg->smin_value = S64_MIN;
1052 	reg->smax_value = S64_MAX;
1053 	reg->umin_value = 0;
1054 	reg->umax_value = U64_MAX;
1055 }
1056 
1057 /* Mark a register as having a completely unknown (scalar) value. */
1058 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 			       struct bpf_reg_state *reg)
1060 {
1061 	/*
1062 	 * Clear type, id, off, and union(map_ptr, range) and
1063 	 * padding between 'type' and union
1064 	 */
1065 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1066 	reg->type = SCALAR_VALUE;
1067 	reg->var_off = tnum_unknown;
1068 	reg->frameno = 0;
1069 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 		       true : false;
1071 	__mark_reg_unbounded(reg);
1072 }
1073 
1074 static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 			     struct bpf_reg_state *regs, u32 regno)
1076 {
1077 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1078 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1079 		/* Something bad happened, let's kill all regs except FP */
1080 		for (regno = 0; regno < BPF_REG_FP; regno++)
1081 			__mark_reg_not_init(env, regs + regno);
1082 		return;
1083 	}
1084 	__mark_reg_unknown(env, regs + regno);
1085 }
1086 
1087 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 				struct bpf_reg_state *reg)
1089 {
1090 	__mark_reg_unknown(env, reg);
1091 	reg->type = NOT_INIT;
1092 }
1093 
1094 static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 			      struct bpf_reg_state *regs, u32 regno)
1096 {
1097 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1098 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1099 		/* Something bad happened, let's kill all regs except FP */
1100 		for (regno = 0; regno < BPF_REG_FP; regno++)
1101 			__mark_reg_not_init(env, regs + regno);
1102 		return;
1103 	}
1104 	__mark_reg_not_init(env, regs + regno);
1105 }
1106 
1107 #define DEF_NOT_SUBREG	(0)
1108 static void init_reg_state(struct bpf_verifier_env *env,
1109 			   struct bpf_func_state *state)
1110 {
1111 	struct bpf_reg_state *regs = state->regs;
1112 	int i;
1113 
1114 	for (i = 0; i < MAX_BPF_REG; i++) {
1115 		mark_reg_not_init(env, regs, i);
1116 		regs[i].live = REG_LIVE_NONE;
1117 		regs[i].parent = NULL;
1118 		regs[i].subreg_def = DEF_NOT_SUBREG;
1119 	}
1120 
1121 	/* frame pointer */
1122 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1123 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1124 	regs[BPF_REG_FP].frameno = state->frameno;
1125 
1126 	/* 1st arg to a function */
1127 	regs[BPF_REG_1].type = PTR_TO_CTX;
1128 	mark_reg_known_zero(env, regs, BPF_REG_1);
1129 }
1130 
1131 #define BPF_MAIN_FUNC (-1)
1132 static void init_func_state(struct bpf_verifier_env *env,
1133 			    struct bpf_func_state *state,
1134 			    int callsite, int frameno, int subprogno)
1135 {
1136 	state->callsite = callsite;
1137 	state->frameno = frameno;
1138 	state->subprogno = subprogno;
1139 	init_reg_state(env, state);
1140 }
1141 
1142 enum reg_arg_type {
1143 	SRC_OP,		/* register is used as source operand */
1144 	DST_OP,		/* register is used as destination operand */
1145 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1146 };
1147 
1148 static int cmp_subprogs(const void *a, const void *b)
1149 {
1150 	return ((struct bpf_subprog_info *)a)->start -
1151 	       ((struct bpf_subprog_info *)b)->start;
1152 }
1153 
1154 static int find_subprog(struct bpf_verifier_env *env, int off)
1155 {
1156 	struct bpf_subprog_info *p;
1157 
1158 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1159 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1160 	if (!p)
1161 		return -ENOENT;
1162 	return p - env->subprog_info;
1163 
1164 }
1165 
1166 static int add_subprog(struct bpf_verifier_env *env, int off)
1167 {
1168 	int insn_cnt = env->prog->len;
1169 	int ret;
1170 
1171 	if (off >= insn_cnt || off < 0) {
1172 		verbose(env, "call to invalid destination\n");
1173 		return -EINVAL;
1174 	}
1175 	ret = find_subprog(env, off);
1176 	if (ret >= 0)
1177 		return 0;
1178 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1179 		verbose(env, "too many subprograms\n");
1180 		return -E2BIG;
1181 	}
1182 	env->subprog_info[env->subprog_cnt++].start = off;
1183 	sort(env->subprog_info, env->subprog_cnt,
1184 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1185 	return 0;
1186 }
1187 
1188 static int check_subprogs(struct bpf_verifier_env *env)
1189 {
1190 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1191 	struct bpf_subprog_info *subprog = env->subprog_info;
1192 	struct bpf_insn *insn = env->prog->insnsi;
1193 	int insn_cnt = env->prog->len;
1194 
1195 	/* Add entry function. */
1196 	ret = add_subprog(env, 0);
1197 	if (ret < 0)
1198 		return ret;
1199 
1200 	/* determine subprog starts. The end is one before the next starts */
1201 	for (i = 0; i < insn_cnt; i++) {
1202 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1203 			continue;
1204 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1205 			continue;
1206 		if (!env->allow_ptr_leaks) {
1207 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1208 			return -EPERM;
1209 		}
1210 		ret = add_subprog(env, i + insn[i].imm + 1);
1211 		if (ret < 0)
1212 			return ret;
1213 	}
1214 
1215 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1216 	 * logic. 'subprog_cnt' should not be increased.
1217 	 */
1218 	subprog[env->subprog_cnt].start = insn_cnt;
1219 
1220 	if (env->log.level & BPF_LOG_LEVEL2)
1221 		for (i = 0; i < env->subprog_cnt; i++)
1222 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1223 
1224 	/* now check that all jumps are within the same subprog */
1225 	subprog_start = subprog[cur_subprog].start;
1226 	subprog_end = subprog[cur_subprog + 1].start;
1227 	for (i = 0; i < insn_cnt; i++) {
1228 		u8 code = insn[i].code;
1229 
1230 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1231 			goto next;
1232 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1233 			goto next;
1234 		off = i + insn[i].off + 1;
1235 		if (off < subprog_start || off >= subprog_end) {
1236 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1237 			return -EINVAL;
1238 		}
1239 next:
1240 		if (i == subprog_end - 1) {
1241 			/* to avoid fall-through from one subprog into another
1242 			 * the last insn of the subprog should be either exit
1243 			 * or unconditional jump back
1244 			 */
1245 			if (code != (BPF_JMP | BPF_EXIT) &&
1246 			    code != (BPF_JMP | BPF_JA)) {
1247 				verbose(env, "last insn is not an exit or jmp\n");
1248 				return -EINVAL;
1249 			}
1250 			subprog_start = subprog_end;
1251 			cur_subprog++;
1252 			if (cur_subprog < env->subprog_cnt)
1253 				subprog_end = subprog[cur_subprog + 1].start;
1254 		}
1255 	}
1256 	return 0;
1257 }
1258 
1259 /* Parentage chain of this register (or stack slot) should take care of all
1260  * issues like callee-saved registers, stack slot allocation time, etc.
1261  */
1262 static int mark_reg_read(struct bpf_verifier_env *env,
1263 			 const struct bpf_reg_state *state,
1264 			 struct bpf_reg_state *parent, u8 flag)
1265 {
1266 	bool writes = parent == state->parent; /* Observe write marks */
1267 	int cnt = 0;
1268 
1269 	while (parent) {
1270 		/* if read wasn't screened by an earlier write ... */
1271 		if (writes && state->live & REG_LIVE_WRITTEN)
1272 			break;
1273 		if (parent->live & REG_LIVE_DONE) {
1274 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1275 				reg_type_str[parent->type],
1276 				parent->var_off.value, parent->off);
1277 			return -EFAULT;
1278 		}
1279 		/* The first condition is more likely to be true than the
1280 		 * second, checked it first.
1281 		 */
1282 		if ((parent->live & REG_LIVE_READ) == flag ||
1283 		    parent->live & REG_LIVE_READ64)
1284 			/* The parentage chain never changes and
1285 			 * this parent was already marked as LIVE_READ.
1286 			 * There is no need to keep walking the chain again and
1287 			 * keep re-marking all parents as LIVE_READ.
1288 			 * This case happens when the same register is read
1289 			 * multiple times without writes into it in-between.
1290 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1291 			 * then no need to set the weak REG_LIVE_READ32.
1292 			 */
1293 			break;
1294 		/* ... then we depend on parent's value */
1295 		parent->live |= flag;
1296 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1297 		if (flag == REG_LIVE_READ64)
1298 			parent->live &= ~REG_LIVE_READ32;
1299 		state = parent;
1300 		parent = state->parent;
1301 		writes = true;
1302 		cnt++;
1303 	}
1304 
1305 	if (env->longest_mark_read_walk < cnt)
1306 		env->longest_mark_read_walk = cnt;
1307 	return 0;
1308 }
1309 
1310 /* This function is supposed to be used by the following 32-bit optimization
1311  * code only. It returns TRUE if the source or destination register operates
1312  * on 64-bit, otherwise return FALSE.
1313  */
1314 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1315 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1316 {
1317 	u8 code, class, op;
1318 
1319 	code = insn->code;
1320 	class = BPF_CLASS(code);
1321 	op = BPF_OP(code);
1322 	if (class == BPF_JMP) {
1323 		/* BPF_EXIT for "main" will reach here. Return TRUE
1324 		 * conservatively.
1325 		 */
1326 		if (op == BPF_EXIT)
1327 			return true;
1328 		if (op == BPF_CALL) {
1329 			/* BPF to BPF call will reach here because of marking
1330 			 * caller saved clobber with DST_OP_NO_MARK for which we
1331 			 * don't care the register def because they are anyway
1332 			 * marked as NOT_INIT already.
1333 			 */
1334 			if (insn->src_reg == BPF_PSEUDO_CALL)
1335 				return false;
1336 			/* Helper call will reach here because of arg type
1337 			 * check, conservatively return TRUE.
1338 			 */
1339 			if (t == SRC_OP)
1340 				return true;
1341 
1342 			return false;
1343 		}
1344 	}
1345 
1346 	if (class == BPF_ALU64 || class == BPF_JMP ||
1347 	    /* BPF_END always use BPF_ALU class. */
1348 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1349 		return true;
1350 
1351 	if (class == BPF_ALU || class == BPF_JMP32)
1352 		return false;
1353 
1354 	if (class == BPF_LDX) {
1355 		if (t != SRC_OP)
1356 			return BPF_SIZE(code) == BPF_DW;
1357 		/* LDX source must be ptr. */
1358 		return true;
1359 	}
1360 
1361 	if (class == BPF_STX) {
1362 		if (reg->type != SCALAR_VALUE)
1363 			return true;
1364 		return BPF_SIZE(code) == BPF_DW;
1365 	}
1366 
1367 	if (class == BPF_LD) {
1368 		u8 mode = BPF_MODE(code);
1369 
1370 		/* LD_IMM64 */
1371 		if (mode == BPF_IMM)
1372 			return true;
1373 
1374 		/* Both LD_IND and LD_ABS return 32-bit data. */
1375 		if (t != SRC_OP)
1376 			return  false;
1377 
1378 		/* Implicit ctx ptr. */
1379 		if (regno == BPF_REG_6)
1380 			return true;
1381 
1382 		/* Explicit source could be any width. */
1383 		return true;
1384 	}
1385 
1386 	if (class == BPF_ST)
1387 		/* The only source register for BPF_ST is a ptr. */
1388 		return true;
1389 
1390 	/* Conservatively return true at default. */
1391 	return true;
1392 }
1393 
1394 /* Return TRUE if INSN doesn't have explicit value define. */
1395 static bool insn_no_def(struct bpf_insn *insn)
1396 {
1397 	u8 class = BPF_CLASS(insn->code);
1398 
1399 	return (class == BPF_JMP || class == BPF_JMP32 ||
1400 		class == BPF_STX || class == BPF_ST);
1401 }
1402 
1403 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1404 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1405 {
1406 	if (insn_no_def(insn))
1407 		return false;
1408 
1409 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1410 }
1411 
1412 static void mark_insn_zext(struct bpf_verifier_env *env,
1413 			   struct bpf_reg_state *reg)
1414 {
1415 	s32 def_idx = reg->subreg_def;
1416 
1417 	if (def_idx == DEF_NOT_SUBREG)
1418 		return;
1419 
1420 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1421 	/* The dst will be zero extended, so won't be sub-register anymore. */
1422 	reg->subreg_def = DEF_NOT_SUBREG;
1423 }
1424 
1425 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1426 			 enum reg_arg_type t)
1427 {
1428 	struct bpf_verifier_state *vstate = env->cur_state;
1429 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1430 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1431 	struct bpf_reg_state *reg, *regs = state->regs;
1432 	bool rw64;
1433 
1434 	if (regno >= MAX_BPF_REG) {
1435 		verbose(env, "R%d is invalid\n", regno);
1436 		return -EINVAL;
1437 	}
1438 
1439 	reg = &regs[regno];
1440 	rw64 = is_reg64(env, insn, regno, reg, t);
1441 	if (t == SRC_OP) {
1442 		/* check whether register used as source operand can be read */
1443 		if (reg->type == NOT_INIT) {
1444 			verbose(env, "R%d !read_ok\n", regno);
1445 			return -EACCES;
1446 		}
1447 		/* We don't need to worry about FP liveness because it's read-only */
1448 		if (regno == BPF_REG_FP)
1449 			return 0;
1450 
1451 		if (rw64)
1452 			mark_insn_zext(env, reg);
1453 
1454 		return mark_reg_read(env, reg, reg->parent,
1455 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1456 	} else {
1457 		/* check whether register used as dest operand can be written to */
1458 		if (regno == BPF_REG_FP) {
1459 			verbose(env, "frame pointer is read only\n");
1460 			return -EACCES;
1461 		}
1462 		reg->live |= REG_LIVE_WRITTEN;
1463 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1464 		if (t == DST_OP)
1465 			mark_reg_unknown(env, regs, regno);
1466 	}
1467 	return 0;
1468 }
1469 
1470 /* for any branch, call, exit record the history of jmps in the given state */
1471 static int push_jmp_history(struct bpf_verifier_env *env,
1472 			    struct bpf_verifier_state *cur)
1473 {
1474 	u32 cnt = cur->jmp_history_cnt;
1475 	struct bpf_idx_pair *p;
1476 
1477 	cnt++;
1478 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1479 	if (!p)
1480 		return -ENOMEM;
1481 	p[cnt - 1].idx = env->insn_idx;
1482 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1483 	cur->jmp_history = p;
1484 	cur->jmp_history_cnt = cnt;
1485 	return 0;
1486 }
1487 
1488 /* Backtrack one insn at a time. If idx is not at the top of recorded
1489  * history then previous instruction came from straight line execution.
1490  */
1491 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1492 			     u32 *history)
1493 {
1494 	u32 cnt = *history;
1495 
1496 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1497 		i = st->jmp_history[cnt - 1].prev_idx;
1498 		(*history)--;
1499 	} else {
1500 		i--;
1501 	}
1502 	return i;
1503 }
1504 
1505 /* For given verifier state backtrack_insn() is called from the last insn to
1506  * the first insn. Its purpose is to compute a bitmask of registers and
1507  * stack slots that needs precision in the parent verifier state.
1508  */
1509 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1510 			  u32 *reg_mask, u64 *stack_mask)
1511 {
1512 	const struct bpf_insn_cbs cbs = {
1513 		.cb_print	= verbose,
1514 		.private_data	= env,
1515 	};
1516 	struct bpf_insn *insn = env->prog->insnsi + idx;
1517 	u8 class = BPF_CLASS(insn->code);
1518 	u8 opcode = BPF_OP(insn->code);
1519 	u8 mode = BPF_MODE(insn->code);
1520 	u32 dreg = 1u << insn->dst_reg;
1521 	u32 sreg = 1u << insn->src_reg;
1522 	u32 spi;
1523 
1524 	if (insn->code == 0)
1525 		return 0;
1526 	if (env->log.level & BPF_LOG_LEVEL) {
1527 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1528 		verbose(env, "%d: ", idx);
1529 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1530 	}
1531 
1532 	if (class == BPF_ALU || class == BPF_ALU64) {
1533 		if (!(*reg_mask & dreg))
1534 			return 0;
1535 		if (opcode == BPF_MOV) {
1536 			if (BPF_SRC(insn->code) == BPF_X) {
1537 				/* dreg = sreg
1538 				 * dreg needs precision after this insn
1539 				 * sreg needs precision before this insn
1540 				 */
1541 				*reg_mask &= ~dreg;
1542 				*reg_mask |= sreg;
1543 			} else {
1544 				/* dreg = K
1545 				 * dreg needs precision after this insn.
1546 				 * Corresponding register is already marked
1547 				 * as precise=true in this verifier state.
1548 				 * No further markings in parent are necessary
1549 				 */
1550 				*reg_mask &= ~dreg;
1551 			}
1552 		} else {
1553 			if (BPF_SRC(insn->code) == BPF_X) {
1554 				/* dreg += sreg
1555 				 * both dreg and sreg need precision
1556 				 * before this insn
1557 				 */
1558 				*reg_mask |= sreg;
1559 			} /* else dreg += K
1560 			   * dreg still needs precision before this insn
1561 			   */
1562 		}
1563 	} else if (class == BPF_LDX) {
1564 		if (!(*reg_mask & dreg))
1565 			return 0;
1566 		*reg_mask &= ~dreg;
1567 
1568 		/* scalars can only be spilled into stack w/o losing precision.
1569 		 * Load from any other memory can be zero extended.
1570 		 * The desire to keep that precision is already indicated
1571 		 * by 'precise' mark in corresponding register of this state.
1572 		 * No further tracking necessary.
1573 		 */
1574 		if (insn->src_reg != BPF_REG_FP)
1575 			return 0;
1576 		if (BPF_SIZE(insn->code) != BPF_DW)
1577 			return 0;
1578 
1579 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1580 		 * that [fp - off] slot contains scalar that needs to be
1581 		 * tracked with precision
1582 		 */
1583 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1584 		if (spi >= 64) {
1585 			verbose(env, "BUG spi %d\n", spi);
1586 			WARN_ONCE(1, "verifier backtracking bug");
1587 			return -EFAULT;
1588 		}
1589 		*stack_mask |= 1ull << spi;
1590 	} else if (class == BPF_STX || class == BPF_ST) {
1591 		if (*reg_mask & dreg)
1592 			/* stx & st shouldn't be using _scalar_ dst_reg
1593 			 * to access memory. It means backtracking
1594 			 * encountered a case of pointer subtraction.
1595 			 */
1596 			return -ENOTSUPP;
1597 		/* scalars can only be spilled into stack */
1598 		if (insn->dst_reg != BPF_REG_FP)
1599 			return 0;
1600 		if (BPF_SIZE(insn->code) != BPF_DW)
1601 			return 0;
1602 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1603 		if (spi >= 64) {
1604 			verbose(env, "BUG spi %d\n", spi);
1605 			WARN_ONCE(1, "verifier backtracking bug");
1606 			return -EFAULT;
1607 		}
1608 		if (!(*stack_mask & (1ull << spi)))
1609 			return 0;
1610 		*stack_mask &= ~(1ull << spi);
1611 		if (class == BPF_STX)
1612 			*reg_mask |= sreg;
1613 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1614 		if (opcode == BPF_CALL) {
1615 			if (insn->src_reg == BPF_PSEUDO_CALL)
1616 				return -ENOTSUPP;
1617 			/* regular helper call sets R0 */
1618 			*reg_mask &= ~1;
1619 			if (*reg_mask & 0x3f) {
1620 				/* if backtracing was looking for registers R1-R5
1621 				 * they should have been found already.
1622 				 */
1623 				verbose(env, "BUG regs %x\n", *reg_mask);
1624 				WARN_ONCE(1, "verifier backtracking bug");
1625 				return -EFAULT;
1626 			}
1627 		} else if (opcode == BPF_EXIT) {
1628 			return -ENOTSUPP;
1629 		}
1630 	} else if (class == BPF_LD) {
1631 		if (!(*reg_mask & dreg))
1632 			return 0;
1633 		*reg_mask &= ~dreg;
1634 		/* It's ld_imm64 or ld_abs or ld_ind.
1635 		 * For ld_imm64 no further tracking of precision
1636 		 * into parent is necessary
1637 		 */
1638 		if (mode == BPF_IND || mode == BPF_ABS)
1639 			/* to be analyzed */
1640 			return -ENOTSUPP;
1641 	}
1642 	return 0;
1643 }
1644 
1645 /* the scalar precision tracking algorithm:
1646  * . at the start all registers have precise=false.
1647  * . scalar ranges are tracked as normal through alu and jmp insns.
1648  * . once precise value of the scalar register is used in:
1649  *   .  ptr + scalar alu
1650  *   . if (scalar cond K|scalar)
1651  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1652  *   backtrack through the verifier states and mark all registers and
1653  *   stack slots with spilled constants that these scalar regisers
1654  *   should be precise.
1655  * . during state pruning two registers (or spilled stack slots)
1656  *   are equivalent if both are not precise.
1657  *
1658  * Note the verifier cannot simply walk register parentage chain,
1659  * since many different registers and stack slots could have been
1660  * used to compute single precise scalar.
1661  *
1662  * The approach of starting with precise=true for all registers and then
1663  * backtrack to mark a register as not precise when the verifier detects
1664  * that program doesn't care about specific value (e.g., when helper
1665  * takes register as ARG_ANYTHING parameter) is not safe.
1666  *
1667  * It's ok to walk single parentage chain of the verifier states.
1668  * It's possible that this backtracking will go all the way till 1st insn.
1669  * All other branches will be explored for needing precision later.
1670  *
1671  * The backtracking needs to deal with cases like:
1672  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1673  * r9 -= r8
1674  * r5 = r9
1675  * if r5 > 0x79f goto pc+7
1676  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1677  * r5 += 1
1678  * ...
1679  * call bpf_perf_event_output#25
1680  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1681  *
1682  * and this case:
1683  * r6 = 1
1684  * call foo // uses callee's r6 inside to compute r0
1685  * r0 += r6
1686  * if r0 == 0 goto
1687  *
1688  * to track above reg_mask/stack_mask needs to be independent for each frame.
1689  *
1690  * Also if parent's curframe > frame where backtracking started,
1691  * the verifier need to mark registers in both frames, otherwise callees
1692  * may incorrectly prune callers. This is similar to
1693  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1694  *
1695  * For now backtracking falls back into conservative marking.
1696  */
1697 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1698 				     struct bpf_verifier_state *st)
1699 {
1700 	struct bpf_func_state *func;
1701 	struct bpf_reg_state *reg;
1702 	int i, j;
1703 
1704 	/* big hammer: mark all scalars precise in this path.
1705 	 * pop_stack may still get !precise scalars.
1706 	 */
1707 	for (; st; st = st->parent)
1708 		for (i = 0; i <= st->curframe; i++) {
1709 			func = st->frame[i];
1710 			for (j = 0; j < BPF_REG_FP; j++) {
1711 				reg = &func->regs[j];
1712 				if (reg->type != SCALAR_VALUE)
1713 					continue;
1714 				reg->precise = true;
1715 			}
1716 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1717 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1718 					continue;
1719 				reg = &func->stack[j].spilled_ptr;
1720 				if (reg->type != SCALAR_VALUE)
1721 					continue;
1722 				reg->precise = true;
1723 			}
1724 		}
1725 }
1726 
1727 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1728 				  int spi)
1729 {
1730 	struct bpf_verifier_state *st = env->cur_state;
1731 	int first_idx = st->first_insn_idx;
1732 	int last_idx = env->insn_idx;
1733 	struct bpf_func_state *func;
1734 	struct bpf_reg_state *reg;
1735 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1736 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1737 	bool skip_first = true;
1738 	bool new_marks = false;
1739 	int i, err;
1740 
1741 	if (!env->allow_ptr_leaks)
1742 		/* backtracking is root only for now */
1743 		return 0;
1744 
1745 	func = st->frame[st->curframe];
1746 	if (regno >= 0) {
1747 		reg = &func->regs[regno];
1748 		if (reg->type != SCALAR_VALUE) {
1749 			WARN_ONCE(1, "backtracing misuse");
1750 			return -EFAULT;
1751 		}
1752 		if (!reg->precise)
1753 			new_marks = true;
1754 		else
1755 			reg_mask = 0;
1756 		reg->precise = true;
1757 	}
1758 
1759 	while (spi >= 0) {
1760 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1761 			stack_mask = 0;
1762 			break;
1763 		}
1764 		reg = &func->stack[spi].spilled_ptr;
1765 		if (reg->type != SCALAR_VALUE) {
1766 			stack_mask = 0;
1767 			break;
1768 		}
1769 		if (!reg->precise)
1770 			new_marks = true;
1771 		else
1772 			stack_mask = 0;
1773 		reg->precise = true;
1774 		break;
1775 	}
1776 
1777 	if (!new_marks)
1778 		return 0;
1779 	if (!reg_mask && !stack_mask)
1780 		return 0;
1781 	for (;;) {
1782 		DECLARE_BITMAP(mask, 64);
1783 		u32 history = st->jmp_history_cnt;
1784 
1785 		if (env->log.level & BPF_LOG_LEVEL)
1786 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1787 		for (i = last_idx;;) {
1788 			if (skip_first) {
1789 				err = 0;
1790 				skip_first = false;
1791 			} else {
1792 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1793 			}
1794 			if (err == -ENOTSUPP) {
1795 				mark_all_scalars_precise(env, st);
1796 				return 0;
1797 			} else if (err) {
1798 				return err;
1799 			}
1800 			if (!reg_mask && !stack_mask)
1801 				/* Found assignment(s) into tracked register in this state.
1802 				 * Since this state is already marked, just return.
1803 				 * Nothing to be tracked further in the parent state.
1804 				 */
1805 				return 0;
1806 			if (i == first_idx)
1807 				break;
1808 			i = get_prev_insn_idx(st, i, &history);
1809 			if (i >= env->prog->len) {
1810 				/* This can happen if backtracking reached insn 0
1811 				 * and there are still reg_mask or stack_mask
1812 				 * to backtrack.
1813 				 * It means the backtracking missed the spot where
1814 				 * particular register was initialized with a constant.
1815 				 */
1816 				verbose(env, "BUG backtracking idx %d\n", i);
1817 				WARN_ONCE(1, "verifier backtracking bug");
1818 				return -EFAULT;
1819 			}
1820 		}
1821 		st = st->parent;
1822 		if (!st)
1823 			break;
1824 
1825 		new_marks = false;
1826 		func = st->frame[st->curframe];
1827 		bitmap_from_u64(mask, reg_mask);
1828 		for_each_set_bit(i, mask, 32) {
1829 			reg = &func->regs[i];
1830 			if (reg->type != SCALAR_VALUE) {
1831 				reg_mask &= ~(1u << i);
1832 				continue;
1833 			}
1834 			if (!reg->precise)
1835 				new_marks = true;
1836 			reg->precise = true;
1837 		}
1838 
1839 		bitmap_from_u64(mask, stack_mask);
1840 		for_each_set_bit(i, mask, 64) {
1841 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1842 				/* the sequence of instructions:
1843 				 * 2: (bf) r3 = r10
1844 				 * 3: (7b) *(u64 *)(r3 -8) = r0
1845 				 * 4: (79) r4 = *(u64 *)(r10 -8)
1846 				 * doesn't contain jmps. It's backtracked
1847 				 * as a single block.
1848 				 * During backtracking insn 3 is not recognized as
1849 				 * stack access, so at the end of backtracking
1850 				 * stack slot fp-8 is still marked in stack_mask.
1851 				 * However the parent state may not have accessed
1852 				 * fp-8 and it's "unallocated" stack space.
1853 				 * In such case fallback to conservative.
1854 				 */
1855 				mark_all_scalars_precise(env, st);
1856 				return 0;
1857 			}
1858 
1859 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1860 				stack_mask &= ~(1ull << i);
1861 				continue;
1862 			}
1863 			reg = &func->stack[i].spilled_ptr;
1864 			if (reg->type != SCALAR_VALUE) {
1865 				stack_mask &= ~(1ull << i);
1866 				continue;
1867 			}
1868 			if (!reg->precise)
1869 				new_marks = true;
1870 			reg->precise = true;
1871 		}
1872 		if (env->log.level & BPF_LOG_LEVEL) {
1873 			print_verifier_state(env, func);
1874 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1875 				new_marks ? "didn't have" : "already had",
1876 				reg_mask, stack_mask);
1877 		}
1878 
1879 		if (!reg_mask && !stack_mask)
1880 			break;
1881 		if (!new_marks)
1882 			break;
1883 
1884 		last_idx = st->last_insn_idx;
1885 		first_idx = st->first_insn_idx;
1886 	}
1887 	return 0;
1888 }
1889 
1890 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1891 {
1892 	return __mark_chain_precision(env, regno, -1);
1893 }
1894 
1895 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1896 {
1897 	return __mark_chain_precision(env, -1, spi);
1898 }
1899 
1900 static bool is_spillable_regtype(enum bpf_reg_type type)
1901 {
1902 	switch (type) {
1903 	case PTR_TO_MAP_VALUE:
1904 	case PTR_TO_MAP_VALUE_OR_NULL:
1905 	case PTR_TO_STACK:
1906 	case PTR_TO_CTX:
1907 	case PTR_TO_PACKET:
1908 	case PTR_TO_PACKET_META:
1909 	case PTR_TO_PACKET_END:
1910 	case PTR_TO_FLOW_KEYS:
1911 	case CONST_PTR_TO_MAP:
1912 	case PTR_TO_SOCKET:
1913 	case PTR_TO_SOCKET_OR_NULL:
1914 	case PTR_TO_SOCK_COMMON:
1915 	case PTR_TO_SOCK_COMMON_OR_NULL:
1916 	case PTR_TO_TCP_SOCK:
1917 	case PTR_TO_TCP_SOCK_OR_NULL:
1918 	case PTR_TO_XDP_SOCK:
1919 		return true;
1920 	default:
1921 		return false;
1922 	}
1923 }
1924 
1925 /* Does this register contain a constant zero? */
1926 static bool register_is_null(struct bpf_reg_state *reg)
1927 {
1928 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1929 }
1930 
1931 static bool register_is_const(struct bpf_reg_state *reg)
1932 {
1933 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1934 }
1935 
1936 static void save_register_state(struct bpf_func_state *state,
1937 				int spi, struct bpf_reg_state *reg)
1938 {
1939 	int i;
1940 
1941 	state->stack[spi].spilled_ptr = *reg;
1942 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1943 
1944 	for (i = 0; i < BPF_REG_SIZE; i++)
1945 		state->stack[spi].slot_type[i] = STACK_SPILL;
1946 }
1947 
1948 /* check_stack_read/write functions track spill/fill of registers,
1949  * stack boundary and alignment are checked in check_mem_access()
1950  */
1951 static int check_stack_write(struct bpf_verifier_env *env,
1952 			     struct bpf_func_state *state, /* func where register points to */
1953 			     int off, int size, int value_regno, int insn_idx)
1954 {
1955 	struct bpf_func_state *cur; /* state of the current function */
1956 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1957 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1958 	struct bpf_reg_state *reg = NULL;
1959 
1960 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1961 				 state->acquired_refs, true);
1962 	if (err)
1963 		return err;
1964 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1965 	 * so it's aligned access and [off, off + size) are within stack limits
1966 	 */
1967 	if (!env->allow_ptr_leaks &&
1968 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1969 	    size != BPF_REG_SIZE) {
1970 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1971 		return -EACCES;
1972 	}
1973 
1974 	cur = env->cur_state->frame[env->cur_state->curframe];
1975 	if (value_regno >= 0)
1976 		reg = &cur->regs[value_regno];
1977 
1978 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1979 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1980 		if (dst_reg != BPF_REG_FP) {
1981 			/* The backtracking logic can only recognize explicit
1982 			 * stack slot address like [fp - 8]. Other spill of
1983 			 * scalar via different register has to be conervative.
1984 			 * Backtrack from here and mark all registers as precise
1985 			 * that contributed into 'reg' being a constant.
1986 			 */
1987 			err = mark_chain_precision(env, value_regno);
1988 			if (err)
1989 				return err;
1990 		}
1991 		save_register_state(state, spi, reg);
1992 	} else if (reg && is_spillable_regtype(reg->type)) {
1993 		/* register containing pointer is being spilled into stack */
1994 		if (size != BPF_REG_SIZE) {
1995 			verbose_linfo(env, insn_idx, "; ");
1996 			verbose(env, "invalid size of register spill\n");
1997 			return -EACCES;
1998 		}
1999 
2000 		if (state != cur && reg->type == PTR_TO_STACK) {
2001 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2002 			return -EINVAL;
2003 		}
2004 
2005 		if (!env->allow_ptr_leaks) {
2006 			bool sanitize = false;
2007 
2008 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2009 			    register_is_const(&state->stack[spi].spilled_ptr))
2010 				sanitize = true;
2011 			for (i = 0; i < BPF_REG_SIZE; i++)
2012 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2013 					sanitize = true;
2014 					break;
2015 				}
2016 			if (sanitize) {
2017 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2018 				int soff = (-spi - 1) * BPF_REG_SIZE;
2019 
2020 				/* detected reuse of integer stack slot with a pointer
2021 				 * which means either llvm is reusing stack slot or
2022 				 * an attacker is trying to exploit CVE-2018-3639
2023 				 * (speculative store bypass)
2024 				 * Have to sanitize that slot with preemptive
2025 				 * store of zero.
2026 				 */
2027 				if (*poff && *poff != soff) {
2028 					/* disallow programs where single insn stores
2029 					 * into two different stack slots, since verifier
2030 					 * cannot sanitize them
2031 					 */
2032 					verbose(env,
2033 						"insn %d cannot access two stack slots fp%d and fp%d",
2034 						insn_idx, *poff, soff);
2035 					return -EINVAL;
2036 				}
2037 				*poff = soff;
2038 			}
2039 		}
2040 		save_register_state(state, spi, reg);
2041 	} else {
2042 		u8 type = STACK_MISC;
2043 
2044 		/* regular write of data into stack destroys any spilled ptr */
2045 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2046 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2047 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2048 			for (i = 0; i < BPF_REG_SIZE; i++)
2049 				state->stack[spi].slot_type[i] = STACK_MISC;
2050 
2051 		/* only mark the slot as written if all 8 bytes were written
2052 		 * otherwise read propagation may incorrectly stop too soon
2053 		 * when stack slots are partially written.
2054 		 * This heuristic means that read propagation will be
2055 		 * conservative, since it will add reg_live_read marks
2056 		 * to stack slots all the way to first state when programs
2057 		 * writes+reads less than 8 bytes
2058 		 */
2059 		if (size == BPF_REG_SIZE)
2060 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2061 
2062 		/* when we zero initialize stack slots mark them as such */
2063 		if (reg && register_is_null(reg)) {
2064 			/* backtracking doesn't work for STACK_ZERO yet. */
2065 			err = mark_chain_precision(env, value_regno);
2066 			if (err)
2067 				return err;
2068 			type = STACK_ZERO;
2069 		}
2070 
2071 		/* Mark slots affected by this stack write. */
2072 		for (i = 0; i < size; i++)
2073 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2074 				type;
2075 	}
2076 	return 0;
2077 }
2078 
2079 static int check_stack_read(struct bpf_verifier_env *env,
2080 			    struct bpf_func_state *reg_state /* func where register points to */,
2081 			    int off, int size, int value_regno)
2082 {
2083 	struct bpf_verifier_state *vstate = env->cur_state;
2084 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2085 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2086 	struct bpf_reg_state *reg;
2087 	u8 *stype;
2088 
2089 	if (reg_state->allocated_stack <= slot) {
2090 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2091 			off, size);
2092 		return -EACCES;
2093 	}
2094 	stype = reg_state->stack[spi].slot_type;
2095 	reg = &reg_state->stack[spi].spilled_ptr;
2096 
2097 	if (stype[0] == STACK_SPILL) {
2098 		if (size != BPF_REG_SIZE) {
2099 			if (reg->type != SCALAR_VALUE) {
2100 				verbose_linfo(env, env->insn_idx, "; ");
2101 				verbose(env, "invalid size of register fill\n");
2102 				return -EACCES;
2103 			}
2104 			if (value_regno >= 0) {
2105 				mark_reg_unknown(env, state->regs, value_regno);
2106 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2107 			}
2108 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2109 			return 0;
2110 		}
2111 		for (i = 1; i < BPF_REG_SIZE; i++) {
2112 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2113 				verbose(env, "corrupted spill memory\n");
2114 				return -EACCES;
2115 			}
2116 		}
2117 
2118 		if (value_regno >= 0) {
2119 			/* restore register state from stack */
2120 			state->regs[value_regno] = *reg;
2121 			/* mark reg as written since spilled pointer state likely
2122 			 * has its liveness marks cleared by is_state_visited()
2123 			 * which resets stack/reg liveness for state transitions
2124 			 */
2125 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2126 		}
2127 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2128 	} else {
2129 		int zeros = 0;
2130 
2131 		for (i = 0; i < size; i++) {
2132 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2133 				continue;
2134 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2135 				zeros++;
2136 				continue;
2137 			}
2138 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2139 				off, i, size);
2140 			return -EACCES;
2141 		}
2142 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2143 		if (value_regno >= 0) {
2144 			if (zeros == size) {
2145 				/* any size read into register is zero extended,
2146 				 * so the whole register == const_zero
2147 				 */
2148 				__mark_reg_const_zero(&state->regs[value_regno]);
2149 				/* backtracking doesn't support STACK_ZERO yet,
2150 				 * so mark it precise here, so that later
2151 				 * backtracking can stop here.
2152 				 * Backtracking may not need this if this register
2153 				 * doesn't participate in pointer adjustment.
2154 				 * Forward propagation of precise flag is not
2155 				 * necessary either. This mark is only to stop
2156 				 * backtracking. Any register that contributed
2157 				 * to const 0 was marked precise before spill.
2158 				 */
2159 				state->regs[value_regno].precise = true;
2160 			} else {
2161 				/* have read misc data from the stack */
2162 				mark_reg_unknown(env, state->regs, value_regno);
2163 			}
2164 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2165 		}
2166 	}
2167 	return 0;
2168 }
2169 
2170 static int check_stack_access(struct bpf_verifier_env *env,
2171 			      const struct bpf_reg_state *reg,
2172 			      int off, int size)
2173 {
2174 	/* Stack accesses must be at a fixed offset, so that we
2175 	 * can determine what type of data were returned. See
2176 	 * check_stack_read().
2177 	 */
2178 	if (!tnum_is_const(reg->var_off)) {
2179 		char tn_buf[48];
2180 
2181 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2182 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2183 			tn_buf, off, size);
2184 		return -EACCES;
2185 	}
2186 
2187 	if (off >= 0 || off < -MAX_BPF_STACK) {
2188 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2189 		return -EACCES;
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2196 				 int off, int size, enum bpf_access_type type)
2197 {
2198 	struct bpf_reg_state *regs = cur_regs(env);
2199 	struct bpf_map *map = regs[regno].map_ptr;
2200 	u32 cap = bpf_map_flags_to_cap(map);
2201 
2202 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2203 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2204 			map->value_size, off, size);
2205 		return -EACCES;
2206 	}
2207 
2208 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2209 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2210 			map->value_size, off, size);
2211 		return -EACCES;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /* check read/write into map element returned by bpf_map_lookup_elem() */
2218 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2219 			      int size, bool zero_size_allowed)
2220 {
2221 	struct bpf_reg_state *regs = cur_regs(env);
2222 	struct bpf_map *map = regs[regno].map_ptr;
2223 
2224 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2225 	    off + size > map->value_size) {
2226 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2227 			map->value_size, off, size);
2228 		return -EACCES;
2229 	}
2230 	return 0;
2231 }
2232 
2233 /* check read/write into a map element with possible variable offset */
2234 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2235 			    int off, int size, bool zero_size_allowed)
2236 {
2237 	struct bpf_verifier_state *vstate = env->cur_state;
2238 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2239 	struct bpf_reg_state *reg = &state->regs[regno];
2240 	int err;
2241 
2242 	/* We may have adjusted the register to this map value, so we
2243 	 * need to try adding each of min_value and max_value to off
2244 	 * to make sure our theoretical access will be safe.
2245 	 */
2246 	if (env->log.level & BPF_LOG_LEVEL)
2247 		print_verifier_state(env, state);
2248 
2249 	/* The minimum value is only important with signed
2250 	 * comparisons where we can't assume the floor of a
2251 	 * value is 0.  If we are using signed variables for our
2252 	 * index'es we need to make sure that whatever we use
2253 	 * will have a set floor within our range.
2254 	 */
2255 	if (reg->smin_value < 0 &&
2256 	    (reg->smin_value == S64_MIN ||
2257 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2258 	      reg->smin_value + off < 0)) {
2259 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2260 			regno);
2261 		return -EACCES;
2262 	}
2263 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2264 				 zero_size_allowed);
2265 	if (err) {
2266 		verbose(env, "R%d min value is outside of the array range\n",
2267 			regno);
2268 		return err;
2269 	}
2270 
2271 	/* If we haven't set a max value then we need to bail since we can't be
2272 	 * sure we won't do bad things.
2273 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2274 	 */
2275 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2276 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2277 			regno);
2278 		return -EACCES;
2279 	}
2280 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2281 				 zero_size_allowed);
2282 	if (err)
2283 		verbose(env, "R%d max value is outside of the array range\n",
2284 			regno);
2285 
2286 	if (map_value_has_spin_lock(reg->map_ptr)) {
2287 		u32 lock = reg->map_ptr->spin_lock_off;
2288 
2289 		/* if any part of struct bpf_spin_lock can be touched by
2290 		 * load/store reject this program.
2291 		 * To check that [x1, x2) overlaps with [y1, y2)
2292 		 * it is sufficient to check x1 < y2 && y1 < x2.
2293 		 */
2294 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2295 		     lock < reg->umax_value + off + size) {
2296 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2297 			return -EACCES;
2298 		}
2299 	}
2300 	return err;
2301 }
2302 
2303 #define MAX_PACKET_OFF 0xffff
2304 
2305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2306 				       const struct bpf_call_arg_meta *meta,
2307 				       enum bpf_access_type t)
2308 {
2309 	switch (env->prog->type) {
2310 	/* Program types only with direct read access go here! */
2311 	case BPF_PROG_TYPE_LWT_IN:
2312 	case BPF_PROG_TYPE_LWT_OUT:
2313 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2314 	case BPF_PROG_TYPE_SK_REUSEPORT:
2315 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2316 	case BPF_PROG_TYPE_CGROUP_SKB:
2317 		if (t == BPF_WRITE)
2318 			return false;
2319 		/* fallthrough */
2320 
2321 	/* Program types with direct read + write access go here! */
2322 	case BPF_PROG_TYPE_SCHED_CLS:
2323 	case BPF_PROG_TYPE_SCHED_ACT:
2324 	case BPF_PROG_TYPE_XDP:
2325 	case BPF_PROG_TYPE_LWT_XMIT:
2326 	case BPF_PROG_TYPE_SK_SKB:
2327 	case BPF_PROG_TYPE_SK_MSG:
2328 		if (meta)
2329 			return meta->pkt_access;
2330 
2331 		env->seen_direct_write = true;
2332 		return true;
2333 
2334 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2335 		if (t == BPF_WRITE)
2336 			env->seen_direct_write = true;
2337 
2338 		return true;
2339 
2340 	default:
2341 		return false;
2342 	}
2343 }
2344 
2345 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2346 				 int off, int size, bool zero_size_allowed)
2347 {
2348 	struct bpf_reg_state *regs = cur_regs(env);
2349 	struct bpf_reg_state *reg = &regs[regno];
2350 
2351 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2352 	    (u64)off + size > reg->range) {
2353 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2354 			off, size, regno, reg->id, reg->off, reg->range);
2355 		return -EACCES;
2356 	}
2357 	return 0;
2358 }
2359 
2360 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2361 			       int size, bool zero_size_allowed)
2362 {
2363 	struct bpf_reg_state *regs = cur_regs(env);
2364 	struct bpf_reg_state *reg = &regs[regno];
2365 	int err;
2366 
2367 	/* We may have added a variable offset to the packet pointer; but any
2368 	 * reg->range we have comes after that.  We are only checking the fixed
2369 	 * offset.
2370 	 */
2371 
2372 	/* We don't allow negative numbers, because we aren't tracking enough
2373 	 * detail to prove they're safe.
2374 	 */
2375 	if (reg->smin_value < 0) {
2376 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2377 			regno);
2378 		return -EACCES;
2379 	}
2380 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2381 	if (err) {
2382 		verbose(env, "R%d offset is outside of the packet\n", regno);
2383 		return err;
2384 	}
2385 
2386 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2387 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2388 	 * otherwise find_good_pkt_pointers would have refused to set range info
2389 	 * that __check_packet_access would have rejected this pkt access.
2390 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2391 	 */
2392 	env->prog->aux->max_pkt_offset =
2393 		max_t(u32, env->prog->aux->max_pkt_offset,
2394 		      off + reg->umax_value + size - 1);
2395 
2396 	return err;
2397 }
2398 
2399 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2400 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2401 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2402 			    u32 *btf_id)
2403 {
2404 	struct bpf_insn_access_aux info = {
2405 		.reg_type = *reg_type,
2406 		.log = &env->log,
2407 	};
2408 
2409 	if (env->ops->is_valid_access &&
2410 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2411 		/* A non zero info.ctx_field_size indicates that this field is a
2412 		 * candidate for later verifier transformation to load the whole
2413 		 * field and then apply a mask when accessed with a narrower
2414 		 * access than actual ctx access size. A zero info.ctx_field_size
2415 		 * will only allow for whole field access and rejects any other
2416 		 * type of narrower access.
2417 		 */
2418 		*reg_type = info.reg_type;
2419 
2420 		if (*reg_type == PTR_TO_BTF_ID)
2421 			*btf_id = info.btf_id;
2422 		else
2423 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2424 		/* remember the offset of last byte accessed in ctx */
2425 		if (env->prog->aux->max_ctx_offset < off + size)
2426 			env->prog->aux->max_ctx_offset = off + size;
2427 		return 0;
2428 	}
2429 
2430 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2431 	return -EACCES;
2432 }
2433 
2434 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2435 				  int size)
2436 {
2437 	if (size < 0 || off < 0 ||
2438 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2439 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2440 			off, size);
2441 		return -EACCES;
2442 	}
2443 	return 0;
2444 }
2445 
2446 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2447 			     u32 regno, int off, int size,
2448 			     enum bpf_access_type t)
2449 {
2450 	struct bpf_reg_state *regs = cur_regs(env);
2451 	struct bpf_reg_state *reg = &regs[regno];
2452 	struct bpf_insn_access_aux info = {};
2453 	bool valid;
2454 
2455 	if (reg->smin_value < 0) {
2456 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2457 			regno);
2458 		return -EACCES;
2459 	}
2460 
2461 	switch (reg->type) {
2462 	case PTR_TO_SOCK_COMMON:
2463 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2464 		break;
2465 	case PTR_TO_SOCKET:
2466 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2467 		break;
2468 	case PTR_TO_TCP_SOCK:
2469 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2470 		break;
2471 	case PTR_TO_XDP_SOCK:
2472 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2473 		break;
2474 	default:
2475 		valid = false;
2476 	}
2477 
2478 
2479 	if (valid) {
2480 		env->insn_aux_data[insn_idx].ctx_field_size =
2481 			info.ctx_field_size;
2482 		return 0;
2483 	}
2484 
2485 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2486 		regno, reg_type_str[reg->type], off, size);
2487 
2488 	return -EACCES;
2489 }
2490 
2491 static bool __is_pointer_value(bool allow_ptr_leaks,
2492 			       const struct bpf_reg_state *reg)
2493 {
2494 	if (allow_ptr_leaks)
2495 		return false;
2496 
2497 	return reg->type != SCALAR_VALUE;
2498 }
2499 
2500 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2501 {
2502 	return cur_regs(env) + regno;
2503 }
2504 
2505 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2506 {
2507 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2508 }
2509 
2510 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2511 {
2512 	const struct bpf_reg_state *reg = reg_state(env, regno);
2513 
2514 	return reg->type == PTR_TO_CTX;
2515 }
2516 
2517 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2518 {
2519 	const struct bpf_reg_state *reg = reg_state(env, regno);
2520 
2521 	return type_is_sk_pointer(reg->type);
2522 }
2523 
2524 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2525 {
2526 	const struct bpf_reg_state *reg = reg_state(env, regno);
2527 
2528 	return type_is_pkt_pointer(reg->type);
2529 }
2530 
2531 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2532 {
2533 	const struct bpf_reg_state *reg = reg_state(env, regno);
2534 
2535 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2536 	return reg->type == PTR_TO_FLOW_KEYS;
2537 }
2538 
2539 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2540 				   const struct bpf_reg_state *reg,
2541 				   int off, int size, bool strict)
2542 {
2543 	struct tnum reg_off;
2544 	int ip_align;
2545 
2546 	/* Byte size accesses are always allowed. */
2547 	if (!strict || size == 1)
2548 		return 0;
2549 
2550 	/* For platforms that do not have a Kconfig enabling
2551 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2552 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2553 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2554 	 * to this code only in strict mode where we want to emulate
2555 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2556 	 * unconditional IP align value of '2'.
2557 	 */
2558 	ip_align = 2;
2559 
2560 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2561 	if (!tnum_is_aligned(reg_off, size)) {
2562 		char tn_buf[48];
2563 
2564 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2565 		verbose(env,
2566 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2567 			ip_align, tn_buf, reg->off, off, size);
2568 		return -EACCES;
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2575 				       const struct bpf_reg_state *reg,
2576 				       const char *pointer_desc,
2577 				       int off, int size, bool strict)
2578 {
2579 	struct tnum reg_off;
2580 
2581 	/* Byte size accesses are always allowed. */
2582 	if (!strict || size == 1)
2583 		return 0;
2584 
2585 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2586 	if (!tnum_is_aligned(reg_off, size)) {
2587 		char tn_buf[48];
2588 
2589 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2590 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2591 			pointer_desc, tn_buf, reg->off, off, size);
2592 		return -EACCES;
2593 	}
2594 
2595 	return 0;
2596 }
2597 
2598 static int check_ptr_alignment(struct bpf_verifier_env *env,
2599 			       const struct bpf_reg_state *reg, int off,
2600 			       int size, bool strict_alignment_once)
2601 {
2602 	bool strict = env->strict_alignment || strict_alignment_once;
2603 	const char *pointer_desc = "";
2604 
2605 	switch (reg->type) {
2606 	case PTR_TO_PACKET:
2607 	case PTR_TO_PACKET_META:
2608 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2609 		 * right in front, treat it the very same way.
2610 		 */
2611 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2612 	case PTR_TO_FLOW_KEYS:
2613 		pointer_desc = "flow keys ";
2614 		break;
2615 	case PTR_TO_MAP_VALUE:
2616 		pointer_desc = "value ";
2617 		break;
2618 	case PTR_TO_CTX:
2619 		pointer_desc = "context ";
2620 		break;
2621 	case PTR_TO_STACK:
2622 		pointer_desc = "stack ";
2623 		/* The stack spill tracking logic in check_stack_write()
2624 		 * and check_stack_read() relies on stack accesses being
2625 		 * aligned.
2626 		 */
2627 		strict = true;
2628 		break;
2629 	case PTR_TO_SOCKET:
2630 		pointer_desc = "sock ";
2631 		break;
2632 	case PTR_TO_SOCK_COMMON:
2633 		pointer_desc = "sock_common ";
2634 		break;
2635 	case PTR_TO_TCP_SOCK:
2636 		pointer_desc = "tcp_sock ";
2637 		break;
2638 	case PTR_TO_XDP_SOCK:
2639 		pointer_desc = "xdp_sock ";
2640 		break;
2641 	default:
2642 		break;
2643 	}
2644 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2645 					   strict);
2646 }
2647 
2648 static int update_stack_depth(struct bpf_verifier_env *env,
2649 			      const struct bpf_func_state *func,
2650 			      int off)
2651 {
2652 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2653 
2654 	if (stack >= -off)
2655 		return 0;
2656 
2657 	/* update known max for given subprogram */
2658 	env->subprog_info[func->subprogno].stack_depth = -off;
2659 	return 0;
2660 }
2661 
2662 /* starting from main bpf function walk all instructions of the function
2663  * and recursively walk all callees that given function can call.
2664  * Ignore jump and exit insns.
2665  * Since recursion is prevented by check_cfg() this algorithm
2666  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2667  */
2668 static int check_max_stack_depth(struct bpf_verifier_env *env)
2669 {
2670 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2671 	struct bpf_subprog_info *subprog = env->subprog_info;
2672 	struct bpf_insn *insn = env->prog->insnsi;
2673 	int ret_insn[MAX_CALL_FRAMES];
2674 	int ret_prog[MAX_CALL_FRAMES];
2675 
2676 process_func:
2677 	/* round up to 32-bytes, since this is granularity
2678 	 * of interpreter stack size
2679 	 */
2680 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2681 	if (depth > MAX_BPF_STACK) {
2682 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2683 			frame + 1, depth);
2684 		return -EACCES;
2685 	}
2686 continue_func:
2687 	subprog_end = subprog[idx + 1].start;
2688 	for (; i < subprog_end; i++) {
2689 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2690 			continue;
2691 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2692 			continue;
2693 		/* remember insn and function to return to */
2694 		ret_insn[frame] = i + 1;
2695 		ret_prog[frame] = idx;
2696 
2697 		/* find the callee */
2698 		i = i + insn[i].imm + 1;
2699 		idx = find_subprog(env, i);
2700 		if (idx < 0) {
2701 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2702 				  i);
2703 			return -EFAULT;
2704 		}
2705 		frame++;
2706 		if (frame >= MAX_CALL_FRAMES) {
2707 			verbose(env, "the call stack of %d frames is too deep !\n",
2708 				frame);
2709 			return -E2BIG;
2710 		}
2711 		goto process_func;
2712 	}
2713 	/* end of for() loop means the last insn of the 'subprog'
2714 	 * was reached. Doesn't matter whether it was JA or EXIT
2715 	 */
2716 	if (frame == 0)
2717 		return 0;
2718 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2719 	frame--;
2720 	i = ret_insn[frame];
2721 	idx = ret_prog[frame];
2722 	goto continue_func;
2723 }
2724 
2725 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2726 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2727 				  const struct bpf_insn *insn, int idx)
2728 {
2729 	int start = idx + insn->imm + 1, subprog;
2730 
2731 	subprog = find_subprog(env, start);
2732 	if (subprog < 0) {
2733 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2734 			  start);
2735 		return -EFAULT;
2736 	}
2737 	return env->subprog_info[subprog].stack_depth;
2738 }
2739 #endif
2740 
2741 static int check_ctx_reg(struct bpf_verifier_env *env,
2742 			 const struct bpf_reg_state *reg, int regno)
2743 {
2744 	/* Access to ctx or passing it to a helper is only allowed in
2745 	 * its original, unmodified form.
2746 	 */
2747 
2748 	if (reg->off) {
2749 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2750 			regno, reg->off);
2751 		return -EACCES;
2752 	}
2753 
2754 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2755 		char tn_buf[48];
2756 
2757 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2758 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2759 		return -EACCES;
2760 	}
2761 
2762 	return 0;
2763 }
2764 
2765 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2766 				  const struct bpf_reg_state *reg,
2767 				  int regno, int off, int size)
2768 {
2769 	if (off < 0) {
2770 		verbose(env,
2771 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2772 			regno, off, size);
2773 		return -EACCES;
2774 	}
2775 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2776 		char tn_buf[48];
2777 
2778 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2779 		verbose(env,
2780 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2781 			regno, off, tn_buf);
2782 		return -EACCES;
2783 	}
2784 	if (off + size > env->prog->aux->max_tp_access)
2785 		env->prog->aux->max_tp_access = off + size;
2786 
2787 	return 0;
2788 }
2789 
2790 
2791 /* truncate register to smaller size (in bytes)
2792  * must be called with size < BPF_REG_SIZE
2793  */
2794 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2795 {
2796 	u64 mask;
2797 
2798 	/* clear high bits in bit representation */
2799 	reg->var_off = tnum_cast(reg->var_off, size);
2800 
2801 	/* fix arithmetic bounds */
2802 	mask = ((u64)1 << (size * 8)) - 1;
2803 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2804 		reg->umin_value &= mask;
2805 		reg->umax_value &= mask;
2806 	} else {
2807 		reg->umin_value = 0;
2808 		reg->umax_value = mask;
2809 	}
2810 	reg->smin_value = reg->umin_value;
2811 	reg->smax_value = reg->umax_value;
2812 }
2813 
2814 static bool bpf_map_is_rdonly(const struct bpf_map *map)
2815 {
2816 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2817 }
2818 
2819 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2820 {
2821 	void *ptr;
2822 	u64 addr;
2823 	int err;
2824 
2825 	err = map->ops->map_direct_value_addr(map, &addr, off);
2826 	if (err)
2827 		return err;
2828 	ptr = (void *)(long)addr + off;
2829 
2830 	switch (size) {
2831 	case sizeof(u8):
2832 		*val = (u64)*(u8 *)ptr;
2833 		break;
2834 	case sizeof(u16):
2835 		*val = (u64)*(u16 *)ptr;
2836 		break;
2837 	case sizeof(u32):
2838 		*val = (u64)*(u32 *)ptr;
2839 		break;
2840 	case sizeof(u64):
2841 		*val = *(u64 *)ptr;
2842 		break;
2843 	default:
2844 		return -EINVAL;
2845 	}
2846 	return 0;
2847 }
2848 
2849 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2850 				   struct bpf_reg_state *regs,
2851 				   int regno, int off, int size,
2852 				   enum bpf_access_type atype,
2853 				   int value_regno)
2854 {
2855 	struct bpf_reg_state *reg = regs + regno;
2856 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2857 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2858 	u32 btf_id;
2859 	int ret;
2860 
2861 	if (atype != BPF_READ) {
2862 		verbose(env, "only read is supported\n");
2863 		return -EACCES;
2864 	}
2865 
2866 	if (off < 0) {
2867 		verbose(env,
2868 			"R%d is ptr_%s invalid negative access: off=%d\n",
2869 			regno, tname, off);
2870 		return -EACCES;
2871 	}
2872 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2873 		char tn_buf[48];
2874 
2875 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2876 		verbose(env,
2877 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2878 			regno, tname, off, tn_buf);
2879 		return -EACCES;
2880 	}
2881 
2882 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
2883 	if (ret < 0)
2884 		return ret;
2885 
2886 	if (ret == SCALAR_VALUE) {
2887 		mark_reg_unknown(env, regs, value_regno);
2888 		return 0;
2889 	}
2890 	mark_reg_known_zero(env, regs, value_regno);
2891 	regs[value_regno].type = PTR_TO_BTF_ID;
2892 	regs[value_regno].btf_id = btf_id;
2893 	return 0;
2894 }
2895 
2896 /* check whether memory at (regno + off) is accessible for t = (read | write)
2897  * if t==write, value_regno is a register which value is stored into memory
2898  * if t==read, value_regno is a register which will receive the value from memory
2899  * if t==write && value_regno==-1, some unknown value is stored into memory
2900  * if t==read && value_regno==-1, don't care what we read from memory
2901  */
2902 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2903 			    int off, int bpf_size, enum bpf_access_type t,
2904 			    int value_regno, bool strict_alignment_once)
2905 {
2906 	struct bpf_reg_state *regs = cur_regs(env);
2907 	struct bpf_reg_state *reg = regs + regno;
2908 	struct bpf_func_state *state;
2909 	int size, err = 0;
2910 
2911 	size = bpf_size_to_bytes(bpf_size);
2912 	if (size < 0)
2913 		return size;
2914 
2915 	/* alignment checks will add in reg->off themselves */
2916 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2917 	if (err)
2918 		return err;
2919 
2920 	/* for access checks, reg->off is just part of off */
2921 	off += reg->off;
2922 
2923 	if (reg->type == PTR_TO_MAP_VALUE) {
2924 		if (t == BPF_WRITE && value_regno >= 0 &&
2925 		    is_pointer_value(env, value_regno)) {
2926 			verbose(env, "R%d leaks addr into map\n", value_regno);
2927 			return -EACCES;
2928 		}
2929 		err = check_map_access_type(env, regno, off, size, t);
2930 		if (err)
2931 			return err;
2932 		err = check_map_access(env, regno, off, size, false);
2933 		if (!err && t == BPF_READ && value_regno >= 0) {
2934 			struct bpf_map *map = reg->map_ptr;
2935 
2936 			/* if map is read-only, track its contents as scalars */
2937 			if (tnum_is_const(reg->var_off) &&
2938 			    bpf_map_is_rdonly(map) &&
2939 			    map->ops->map_direct_value_addr) {
2940 				int map_off = off + reg->var_off.value;
2941 				u64 val = 0;
2942 
2943 				err = bpf_map_direct_read(map, map_off, size,
2944 							  &val);
2945 				if (err)
2946 					return err;
2947 
2948 				regs[value_regno].type = SCALAR_VALUE;
2949 				__mark_reg_known(&regs[value_regno], val);
2950 			} else {
2951 				mark_reg_unknown(env, regs, value_regno);
2952 			}
2953 		}
2954 	} else if (reg->type == PTR_TO_CTX) {
2955 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2956 		u32 btf_id = 0;
2957 
2958 		if (t == BPF_WRITE && value_regno >= 0 &&
2959 		    is_pointer_value(env, value_regno)) {
2960 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2961 			return -EACCES;
2962 		}
2963 
2964 		err = check_ctx_reg(env, reg, regno);
2965 		if (err < 0)
2966 			return err;
2967 
2968 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2969 		if (err)
2970 			verbose_linfo(env, insn_idx, "; ");
2971 		if (!err && t == BPF_READ && value_regno >= 0) {
2972 			/* ctx access returns either a scalar, or a
2973 			 * PTR_TO_PACKET[_META,_END]. In the latter
2974 			 * case, we know the offset is zero.
2975 			 */
2976 			if (reg_type == SCALAR_VALUE) {
2977 				mark_reg_unknown(env, regs, value_regno);
2978 			} else {
2979 				mark_reg_known_zero(env, regs,
2980 						    value_regno);
2981 				if (reg_type_may_be_null(reg_type))
2982 					regs[value_regno].id = ++env->id_gen;
2983 				/* A load of ctx field could have different
2984 				 * actual load size with the one encoded in the
2985 				 * insn. When the dst is PTR, it is for sure not
2986 				 * a sub-register.
2987 				 */
2988 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2989 				if (reg_type == PTR_TO_BTF_ID)
2990 					regs[value_regno].btf_id = btf_id;
2991 			}
2992 			regs[value_regno].type = reg_type;
2993 		}
2994 
2995 	} else if (reg->type == PTR_TO_STACK) {
2996 		off += reg->var_off.value;
2997 		err = check_stack_access(env, reg, off, size);
2998 		if (err)
2999 			return err;
3000 
3001 		state = func(env, reg);
3002 		err = update_stack_depth(env, state, off);
3003 		if (err)
3004 			return err;
3005 
3006 		if (t == BPF_WRITE)
3007 			err = check_stack_write(env, state, off, size,
3008 						value_regno, insn_idx);
3009 		else
3010 			err = check_stack_read(env, state, off, size,
3011 					       value_regno);
3012 	} else if (reg_is_pkt_pointer(reg)) {
3013 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3014 			verbose(env, "cannot write into packet\n");
3015 			return -EACCES;
3016 		}
3017 		if (t == BPF_WRITE && value_regno >= 0 &&
3018 		    is_pointer_value(env, value_regno)) {
3019 			verbose(env, "R%d leaks addr into packet\n",
3020 				value_regno);
3021 			return -EACCES;
3022 		}
3023 		err = check_packet_access(env, regno, off, size, false);
3024 		if (!err && t == BPF_READ && value_regno >= 0)
3025 			mark_reg_unknown(env, regs, value_regno);
3026 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3027 		if (t == BPF_WRITE && value_regno >= 0 &&
3028 		    is_pointer_value(env, value_regno)) {
3029 			verbose(env, "R%d leaks addr into flow keys\n",
3030 				value_regno);
3031 			return -EACCES;
3032 		}
3033 
3034 		err = check_flow_keys_access(env, off, size);
3035 		if (!err && t == BPF_READ && value_regno >= 0)
3036 			mark_reg_unknown(env, regs, value_regno);
3037 	} else if (type_is_sk_pointer(reg->type)) {
3038 		if (t == BPF_WRITE) {
3039 			verbose(env, "R%d cannot write into %s\n",
3040 				regno, reg_type_str[reg->type]);
3041 			return -EACCES;
3042 		}
3043 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3044 		if (!err && value_regno >= 0)
3045 			mark_reg_unknown(env, regs, value_regno);
3046 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3047 		err = check_tp_buffer_access(env, reg, regno, off, size);
3048 		if (!err && t == BPF_READ && value_regno >= 0)
3049 			mark_reg_unknown(env, regs, value_regno);
3050 	} else if (reg->type == PTR_TO_BTF_ID) {
3051 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3052 					      value_regno);
3053 	} else {
3054 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3055 			reg_type_str[reg->type]);
3056 		return -EACCES;
3057 	}
3058 
3059 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3060 	    regs[value_regno].type == SCALAR_VALUE) {
3061 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3062 		coerce_reg_to_size(&regs[value_regno], size);
3063 	}
3064 	return err;
3065 }
3066 
3067 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3068 {
3069 	int err;
3070 
3071 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3072 	    insn->imm != 0) {
3073 		verbose(env, "BPF_XADD uses reserved fields\n");
3074 		return -EINVAL;
3075 	}
3076 
3077 	/* check src1 operand */
3078 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3079 	if (err)
3080 		return err;
3081 
3082 	/* check src2 operand */
3083 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3084 	if (err)
3085 		return err;
3086 
3087 	if (is_pointer_value(env, insn->src_reg)) {
3088 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3089 		return -EACCES;
3090 	}
3091 
3092 	if (is_ctx_reg(env, insn->dst_reg) ||
3093 	    is_pkt_reg(env, insn->dst_reg) ||
3094 	    is_flow_key_reg(env, insn->dst_reg) ||
3095 	    is_sk_reg(env, insn->dst_reg)) {
3096 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3097 			insn->dst_reg,
3098 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3099 		return -EACCES;
3100 	}
3101 
3102 	/* check whether atomic_add can read the memory */
3103 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3104 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3105 	if (err)
3106 		return err;
3107 
3108 	/* check whether atomic_add can write into the same memory */
3109 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3110 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3111 }
3112 
3113 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3114 				  int off, int access_size,
3115 				  bool zero_size_allowed)
3116 {
3117 	struct bpf_reg_state *reg = reg_state(env, regno);
3118 
3119 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3120 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3121 		if (tnum_is_const(reg->var_off)) {
3122 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3123 				regno, off, access_size);
3124 		} else {
3125 			char tn_buf[48];
3126 
3127 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3128 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3129 				regno, tn_buf, access_size);
3130 		}
3131 		return -EACCES;
3132 	}
3133 	return 0;
3134 }
3135 
3136 /* when register 'regno' is passed into function that will read 'access_size'
3137  * bytes from that pointer, make sure that it's within stack boundary
3138  * and all elements of stack are initialized.
3139  * Unlike most pointer bounds-checking functions, this one doesn't take an
3140  * 'off' argument, so it has to add in reg->off itself.
3141  */
3142 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3143 				int access_size, bool zero_size_allowed,
3144 				struct bpf_call_arg_meta *meta)
3145 {
3146 	struct bpf_reg_state *reg = reg_state(env, regno);
3147 	struct bpf_func_state *state = func(env, reg);
3148 	int err, min_off, max_off, i, j, slot, spi;
3149 
3150 	if (reg->type != PTR_TO_STACK) {
3151 		/* Allow zero-byte read from NULL, regardless of pointer type */
3152 		if (zero_size_allowed && access_size == 0 &&
3153 		    register_is_null(reg))
3154 			return 0;
3155 
3156 		verbose(env, "R%d type=%s expected=%s\n", regno,
3157 			reg_type_str[reg->type],
3158 			reg_type_str[PTR_TO_STACK]);
3159 		return -EACCES;
3160 	}
3161 
3162 	if (tnum_is_const(reg->var_off)) {
3163 		min_off = max_off = reg->var_off.value + reg->off;
3164 		err = __check_stack_boundary(env, regno, min_off, access_size,
3165 					     zero_size_allowed);
3166 		if (err)
3167 			return err;
3168 	} else {
3169 		/* Variable offset is prohibited for unprivileged mode for
3170 		 * simplicity since it requires corresponding support in
3171 		 * Spectre masking for stack ALU.
3172 		 * See also retrieve_ptr_limit().
3173 		 */
3174 		if (!env->allow_ptr_leaks) {
3175 			char tn_buf[48];
3176 
3177 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3178 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3179 				regno, tn_buf);
3180 			return -EACCES;
3181 		}
3182 		/* Only initialized buffer on stack is allowed to be accessed
3183 		 * with variable offset. With uninitialized buffer it's hard to
3184 		 * guarantee that whole memory is marked as initialized on
3185 		 * helper return since specific bounds are unknown what may
3186 		 * cause uninitialized stack leaking.
3187 		 */
3188 		if (meta && meta->raw_mode)
3189 			meta = NULL;
3190 
3191 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3192 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3193 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3194 				regno);
3195 			return -EACCES;
3196 		}
3197 		min_off = reg->smin_value + reg->off;
3198 		max_off = reg->smax_value + reg->off;
3199 		err = __check_stack_boundary(env, regno, min_off, access_size,
3200 					     zero_size_allowed);
3201 		if (err) {
3202 			verbose(env, "R%d min value is outside of stack bound\n",
3203 				regno);
3204 			return err;
3205 		}
3206 		err = __check_stack_boundary(env, regno, max_off, access_size,
3207 					     zero_size_allowed);
3208 		if (err) {
3209 			verbose(env, "R%d max value is outside of stack bound\n",
3210 				regno);
3211 			return err;
3212 		}
3213 	}
3214 
3215 	if (meta && meta->raw_mode) {
3216 		meta->access_size = access_size;
3217 		meta->regno = regno;
3218 		return 0;
3219 	}
3220 
3221 	for (i = min_off; i < max_off + access_size; i++) {
3222 		u8 *stype;
3223 
3224 		slot = -i - 1;
3225 		spi = slot / BPF_REG_SIZE;
3226 		if (state->allocated_stack <= slot)
3227 			goto err;
3228 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3229 		if (*stype == STACK_MISC)
3230 			goto mark;
3231 		if (*stype == STACK_ZERO) {
3232 			/* helper can write anything into the stack */
3233 			*stype = STACK_MISC;
3234 			goto mark;
3235 		}
3236 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3237 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3238 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3239 			for (j = 0; j < BPF_REG_SIZE; j++)
3240 				state->stack[spi].slot_type[j] = STACK_MISC;
3241 			goto mark;
3242 		}
3243 
3244 err:
3245 		if (tnum_is_const(reg->var_off)) {
3246 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3247 				min_off, i - min_off, access_size);
3248 		} else {
3249 			char tn_buf[48];
3250 
3251 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3252 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3253 				tn_buf, i - min_off, access_size);
3254 		}
3255 		return -EACCES;
3256 mark:
3257 		/* reading any byte out of 8-byte 'spill_slot' will cause
3258 		 * the whole slot to be marked as 'read'
3259 		 */
3260 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3261 			      state->stack[spi].spilled_ptr.parent,
3262 			      REG_LIVE_READ64);
3263 	}
3264 	return update_stack_depth(env, state, min_off);
3265 }
3266 
3267 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3268 				   int access_size, bool zero_size_allowed,
3269 				   struct bpf_call_arg_meta *meta)
3270 {
3271 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3272 
3273 	switch (reg->type) {
3274 	case PTR_TO_PACKET:
3275 	case PTR_TO_PACKET_META:
3276 		return check_packet_access(env, regno, reg->off, access_size,
3277 					   zero_size_allowed);
3278 	case PTR_TO_MAP_VALUE:
3279 		if (check_map_access_type(env, regno, reg->off, access_size,
3280 					  meta && meta->raw_mode ? BPF_WRITE :
3281 					  BPF_READ))
3282 			return -EACCES;
3283 		return check_map_access(env, regno, reg->off, access_size,
3284 					zero_size_allowed);
3285 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3286 		return check_stack_boundary(env, regno, access_size,
3287 					    zero_size_allowed, meta);
3288 	}
3289 }
3290 
3291 /* Implementation details:
3292  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3293  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3294  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3295  * value_or_null->value transition, since the verifier only cares about
3296  * the range of access to valid map value pointer and doesn't care about actual
3297  * address of the map element.
3298  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3299  * reg->id > 0 after value_or_null->value transition. By doing so
3300  * two bpf_map_lookups will be considered two different pointers that
3301  * point to different bpf_spin_locks.
3302  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3303  * dead-locks.
3304  * Since only one bpf_spin_lock is allowed the checks are simpler than
3305  * reg_is_refcounted() logic. The verifier needs to remember only
3306  * one spin_lock instead of array of acquired_refs.
3307  * cur_state->active_spin_lock remembers which map value element got locked
3308  * and clears it after bpf_spin_unlock.
3309  */
3310 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3311 			     bool is_lock)
3312 {
3313 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3314 	struct bpf_verifier_state *cur = env->cur_state;
3315 	bool is_const = tnum_is_const(reg->var_off);
3316 	struct bpf_map *map = reg->map_ptr;
3317 	u64 val = reg->var_off.value;
3318 
3319 	if (reg->type != PTR_TO_MAP_VALUE) {
3320 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3321 		return -EINVAL;
3322 	}
3323 	if (!is_const) {
3324 		verbose(env,
3325 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3326 			regno);
3327 		return -EINVAL;
3328 	}
3329 	if (!map->btf) {
3330 		verbose(env,
3331 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3332 			map->name);
3333 		return -EINVAL;
3334 	}
3335 	if (!map_value_has_spin_lock(map)) {
3336 		if (map->spin_lock_off == -E2BIG)
3337 			verbose(env,
3338 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3339 				map->name);
3340 		else if (map->spin_lock_off == -ENOENT)
3341 			verbose(env,
3342 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3343 				map->name);
3344 		else
3345 			verbose(env,
3346 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3347 				map->name);
3348 		return -EINVAL;
3349 	}
3350 	if (map->spin_lock_off != val + reg->off) {
3351 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3352 			val + reg->off);
3353 		return -EINVAL;
3354 	}
3355 	if (is_lock) {
3356 		if (cur->active_spin_lock) {
3357 			verbose(env,
3358 				"Locking two bpf_spin_locks are not allowed\n");
3359 			return -EINVAL;
3360 		}
3361 		cur->active_spin_lock = reg->id;
3362 	} else {
3363 		if (!cur->active_spin_lock) {
3364 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3365 			return -EINVAL;
3366 		}
3367 		if (cur->active_spin_lock != reg->id) {
3368 			verbose(env, "bpf_spin_unlock of different lock\n");
3369 			return -EINVAL;
3370 		}
3371 		cur->active_spin_lock = 0;
3372 	}
3373 	return 0;
3374 }
3375 
3376 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3377 {
3378 	return type == ARG_PTR_TO_MEM ||
3379 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3380 	       type == ARG_PTR_TO_UNINIT_MEM;
3381 }
3382 
3383 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3384 {
3385 	return type == ARG_CONST_SIZE ||
3386 	       type == ARG_CONST_SIZE_OR_ZERO;
3387 }
3388 
3389 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3390 {
3391 	return type == ARG_PTR_TO_INT ||
3392 	       type == ARG_PTR_TO_LONG;
3393 }
3394 
3395 static int int_ptr_type_to_size(enum bpf_arg_type type)
3396 {
3397 	if (type == ARG_PTR_TO_INT)
3398 		return sizeof(u32);
3399 	else if (type == ARG_PTR_TO_LONG)
3400 		return sizeof(u64);
3401 
3402 	return -EINVAL;
3403 }
3404 
3405 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3406 			  enum bpf_arg_type arg_type,
3407 			  struct bpf_call_arg_meta *meta)
3408 {
3409 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3410 	enum bpf_reg_type expected_type, type = reg->type;
3411 	int err = 0;
3412 
3413 	if (arg_type == ARG_DONTCARE)
3414 		return 0;
3415 
3416 	err = check_reg_arg(env, regno, SRC_OP);
3417 	if (err)
3418 		return err;
3419 
3420 	if (arg_type == ARG_ANYTHING) {
3421 		if (is_pointer_value(env, regno)) {
3422 			verbose(env, "R%d leaks addr into helper function\n",
3423 				regno);
3424 			return -EACCES;
3425 		}
3426 		return 0;
3427 	}
3428 
3429 	if (type_is_pkt_pointer(type) &&
3430 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3431 		verbose(env, "helper access to the packet is not allowed\n");
3432 		return -EACCES;
3433 	}
3434 
3435 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3436 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3437 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3438 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3439 		expected_type = PTR_TO_STACK;
3440 		if (register_is_null(reg) &&
3441 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3442 			/* final test in check_stack_boundary() */;
3443 		else if (!type_is_pkt_pointer(type) &&
3444 			 type != PTR_TO_MAP_VALUE &&
3445 			 type != expected_type)
3446 			goto err_type;
3447 	} else if (arg_type == ARG_CONST_SIZE ||
3448 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3449 		expected_type = SCALAR_VALUE;
3450 		if (type != expected_type)
3451 			goto err_type;
3452 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3453 		expected_type = CONST_PTR_TO_MAP;
3454 		if (type != expected_type)
3455 			goto err_type;
3456 	} else if (arg_type == ARG_PTR_TO_CTX) {
3457 		expected_type = PTR_TO_CTX;
3458 		if (type != expected_type)
3459 			goto err_type;
3460 		err = check_ctx_reg(env, reg, regno);
3461 		if (err < 0)
3462 			return err;
3463 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3464 		expected_type = PTR_TO_SOCK_COMMON;
3465 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3466 		if (!type_is_sk_pointer(type))
3467 			goto err_type;
3468 		if (reg->ref_obj_id) {
3469 			if (meta->ref_obj_id) {
3470 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3471 					regno, reg->ref_obj_id,
3472 					meta->ref_obj_id);
3473 				return -EFAULT;
3474 			}
3475 			meta->ref_obj_id = reg->ref_obj_id;
3476 		}
3477 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3478 		expected_type = PTR_TO_SOCKET;
3479 		if (type != expected_type)
3480 			goto err_type;
3481 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3482 		expected_type = PTR_TO_BTF_ID;
3483 		if (type != expected_type)
3484 			goto err_type;
3485 		if (reg->btf_id != meta->btf_id) {
3486 			verbose(env, "Helper has type %s got %s in R%d\n",
3487 				kernel_type_name(meta->btf_id),
3488 				kernel_type_name(reg->btf_id), regno);
3489 
3490 			return -EACCES;
3491 		}
3492 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3493 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3494 				regno);
3495 			return -EACCES;
3496 		}
3497 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3498 		if (meta->func_id == BPF_FUNC_spin_lock) {
3499 			if (process_spin_lock(env, regno, true))
3500 				return -EACCES;
3501 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3502 			if (process_spin_lock(env, regno, false))
3503 				return -EACCES;
3504 		} else {
3505 			verbose(env, "verifier internal error\n");
3506 			return -EFAULT;
3507 		}
3508 	} else if (arg_type_is_mem_ptr(arg_type)) {
3509 		expected_type = PTR_TO_STACK;
3510 		/* One exception here. In case function allows for NULL to be
3511 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3512 		 * happens during stack boundary checking.
3513 		 */
3514 		if (register_is_null(reg) &&
3515 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3516 			/* final test in check_stack_boundary() */;
3517 		else if (!type_is_pkt_pointer(type) &&
3518 			 type != PTR_TO_MAP_VALUE &&
3519 			 type != expected_type)
3520 			goto err_type;
3521 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3522 	} else if (arg_type_is_int_ptr(arg_type)) {
3523 		expected_type = PTR_TO_STACK;
3524 		if (!type_is_pkt_pointer(type) &&
3525 		    type != PTR_TO_MAP_VALUE &&
3526 		    type != expected_type)
3527 			goto err_type;
3528 	} else {
3529 		verbose(env, "unsupported arg_type %d\n", arg_type);
3530 		return -EFAULT;
3531 	}
3532 
3533 	if (arg_type == ARG_CONST_MAP_PTR) {
3534 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3535 		meta->map_ptr = reg->map_ptr;
3536 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3537 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3538 		 * check that [key, key + map->key_size) are within
3539 		 * stack limits and initialized
3540 		 */
3541 		if (!meta->map_ptr) {
3542 			/* in function declaration map_ptr must come before
3543 			 * map_key, so that it's verified and known before
3544 			 * we have to check map_key here. Otherwise it means
3545 			 * that kernel subsystem misconfigured verifier
3546 			 */
3547 			verbose(env, "invalid map_ptr to access map->key\n");
3548 			return -EACCES;
3549 		}
3550 		err = check_helper_mem_access(env, regno,
3551 					      meta->map_ptr->key_size, false,
3552 					      NULL);
3553 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3554 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3555 		    !register_is_null(reg)) ||
3556 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3557 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3558 		 * check [value, value + map->value_size) validity
3559 		 */
3560 		if (!meta->map_ptr) {
3561 			/* kernel subsystem misconfigured verifier */
3562 			verbose(env, "invalid map_ptr to access map->value\n");
3563 			return -EACCES;
3564 		}
3565 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3566 		err = check_helper_mem_access(env, regno,
3567 					      meta->map_ptr->value_size, false,
3568 					      meta);
3569 	} else if (arg_type_is_mem_size(arg_type)) {
3570 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3571 
3572 		/* remember the mem_size which may be used later
3573 		 * to refine return values.
3574 		 */
3575 		meta->msize_smax_value = reg->smax_value;
3576 		meta->msize_umax_value = reg->umax_value;
3577 
3578 		/* The register is SCALAR_VALUE; the access check
3579 		 * happens using its boundaries.
3580 		 */
3581 		if (!tnum_is_const(reg->var_off))
3582 			/* For unprivileged variable accesses, disable raw
3583 			 * mode so that the program is required to
3584 			 * initialize all the memory that the helper could
3585 			 * just partially fill up.
3586 			 */
3587 			meta = NULL;
3588 
3589 		if (reg->smin_value < 0) {
3590 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3591 				regno);
3592 			return -EACCES;
3593 		}
3594 
3595 		if (reg->umin_value == 0) {
3596 			err = check_helper_mem_access(env, regno - 1, 0,
3597 						      zero_size_allowed,
3598 						      meta);
3599 			if (err)
3600 				return err;
3601 		}
3602 
3603 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3604 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3605 				regno);
3606 			return -EACCES;
3607 		}
3608 		err = check_helper_mem_access(env, regno - 1,
3609 					      reg->umax_value,
3610 					      zero_size_allowed, meta);
3611 		if (!err)
3612 			err = mark_chain_precision(env, regno);
3613 	} else if (arg_type_is_int_ptr(arg_type)) {
3614 		int size = int_ptr_type_to_size(arg_type);
3615 
3616 		err = check_helper_mem_access(env, regno, size, false, meta);
3617 		if (err)
3618 			return err;
3619 		err = check_ptr_alignment(env, reg, 0, size, true);
3620 	}
3621 
3622 	return err;
3623 err_type:
3624 	verbose(env, "R%d type=%s expected=%s\n", regno,
3625 		reg_type_str[type], reg_type_str[expected_type]);
3626 	return -EACCES;
3627 }
3628 
3629 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3630 					struct bpf_map *map, int func_id)
3631 {
3632 	if (!map)
3633 		return 0;
3634 
3635 	/* We need a two way check, first is from map perspective ... */
3636 	switch (map->map_type) {
3637 	case BPF_MAP_TYPE_PROG_ARRAY:
3638 		if (func_id != BPF_FUNC_tail_call)
3639 			goto error;
3640 		break;
3641 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3642 		if (func_id != BPF_FUNC_perf_event_read &&
3643 		    func_id != BPF_FUNC_perf_event_output &&
3644 		    func_id != BPF_FUNC_skb_output &&
3645 		    func_id != BPF_FUNC_perf_event_read_value)
3646 			goto error;
3647 		break;
3648 	case BPF_MAP_TYPE_STACK_TRACE:
3649 		if (func_id != BPF_FUNC_get_stackid)
3650 			goto error;
3651 		break;
3652 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3653 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3654 		    func_id != BPF_FUNC_current_task_under_cgroup)
3655 			goto error;
3656 		break;
3657 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3658 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3659 		if (func_id != BPF_FUNC_get_local_storage)
3660 			goto error;
3661 		break;
3662 	case BPF_MAP_TYPE_DEVMAP:
3663 	case BPF_MAP_TYPE_DEVMAP_HASH:
3664 		if (func_id != BPF_FUNC_redirect_map &&
3665 		    func_id != BPF_FUNC_map_lookup_elem)
3666 			goto error;
3667 		break;
3668 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3669 	 * appear.
3670 	 */
3671 	case BPF_MAP_TYPE_CPUMAP:
3672 		if (func_id != BPF_FUNC_redirect_map)
3673 			goto error;
3674 		break;
3675 	case BPF_MAP_TYPE_XSKMAP:
3676 		if (func_id != BPF_FUNC_redirect_map &&
3677 		    func_id != BPF_FUNC_map_lookup_elem)
3678 			goto error;
3679 		break;
3680 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3681 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3682 		if (func_id != BPF_FUNC_map_lookup_elem)
3683 			goto error;
3684 		break;
3685 	case BPF_MAP_TYPE_SOCKMAP:
3686 		if (func_id != BPF_FUNC_sk_redirect_map &&
3687 		    func_id != BPF_FUNC_sock_map_update &&
3688 		    func_id != BPF_FUNC_map_delete_elem &&
3689 		    func_id != BPF_FUNC_msg_redirect_map)
3690 			goto error;
3691 		break;
3692 	case BPF_MAP_TYPE_SOCKHASH:
3693 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3694 		    func_id != BPF_FUNC_sock_hash_update &&
3695 		    func_id != BPF_FUNC_map_delete_elem &&
3696 		    func_id != BPF_FUNC_msg_redirect_hash)
3697 			goto error;
3698 		break;
3699 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3700 		if (func_id != BPF_FUNC_sk_select_reuseport)
3701 			goto error;
3702 		break;
3703 	case BPF_MAP_TYPE_QUEUE:
3704 	case BPF_MAP_TYPE_STACK:
3705 		if (func_id != BPF_FUNC_map_peek_elem &&
3706 		    func_id != BPF_FUNC_map_pop_elem &&
3707 		    func_id != BPF_FUNC_map_push_elem)
3708 			goto error;
3709 		break;
3710 	case BPF_MAP_TYPE_SK_STORAGE:
3711 		if (func_id != BPF_FUNC_sk_storage_get &&
3712 		    func_id != BPF_FUNC_sk_storage_delete)
3713 			goto error;
3714 		break;
3715 	default:
3716 		break;
3717 	}
3718 
3719 	/* ... and second from the function itself. */
3720 	switch (func_id) {
3721 	case BPF_FUNC_tail_call:
3722 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3723 			goto error;
3724 		if (env->subprog_cnt > 1) {
3725 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3726 			return -EINVAL;
3727 		}
3728 		break;
3729 	case BPF_FUNC_perf_event_read:
3730 	case BPF_FUNC_perf_event_output:
3731 	case BPF_FUNC_perf_event_read_value:
3732 	case BPF_FUNC_skb_output:
3733 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3734 			goto error;
3735 		break;
3736 	case BPF_FUNC_get_stackid:
3737 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3738 			goto error;
3739 		break;
3740 	case BPF_FUNC_current_task_under_cgroup:
3741 	case BPF_FUNC_skb_under_cgroup:
3742 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3743 			goto error;
3744 		break;
3745 	case BPF_FUNC_redirect_map:
3746 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3747 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3748 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3749 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3750 			goto error;
3751 		break;
3752 	case BPF_FUNC_sk_redirect_map:
3753 	case BPF_FUNC_msg_redirect_map:
3754 	case BPF_FUNC_sock_map_update:
3755 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3756 			goto error;
3757 		break;
3758 	case BPF_FUNC_sk_redirect_hash:
3759 	case BPF_FUNC_msg_redirect_hash:
3760 	case BPF_FUNC_sock_hash_update:
3761 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3762 			goto error;
3763 		break;
3764 	case BPF_FUNC_get_local_storage:
3765 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3766 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3767 			goto error;
3768 		break;
3769 	case BPF_FUNC_sk_select_reuseport:
3770 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3771 			goto error;
3772 		break;
3773 	case BPF_FUNC_map_peek_elem:
3774 	case BPF_FUNC_map_pop_elem:
3775 	case BPF_FUNC_map_push_elem:
3776 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3777 		    map->map_type != BPF_MAP_TYPE_STACK)
3778 			goto error;
3779 		break;
3780 	case BPF_FUNC_sk_storage_get:
3781 	case BPF_FUNC_sk_storage_delete:
3782 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3783 			goto error;
3784 		break;
3785 	default:
3786 		break;
3787 	}
3788 
3789 	return 0;
3790 error:
3791 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3792 		map->map_type, func_id_name(func_id), func_id);
3793 	return -EINVAL;
3794 }
3795 
3796 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3797 {
3798 	int count = 0;
3799 
3800 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3801 		count++;
3802 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3803 		count++;
3804 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3805 		count++;
3806 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3807 		count++;
3808 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3809 		count++;
3810 
3811 	/* We only support one arg being in raw mode at the moment,
3812 	 * which is sufficient for the helper functions we have
3813 	 * right now.
3814 	 */
3815 	return count <= 1;
3816 }
3817 
3818 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3819 				    enum bpf_arg_type arg_next)
3820 {
3821 	return (arg_type_is_mem_ptr(arg_curr) &&
3822 	        !arg_type_is_mem_size(arg_next)) ||
3823 	       (!arg_type_is_mem_ptr(arg_curr) &&
3824 		arg_type_is_mem_size(arg_next));
3825 }
3826 
3827 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3828 {
3829 	/* bpf_xxx(..., buf, len) call will access 'len'
3830 	 * bytes from memory 'buf'. Both arg types need
3831 	 * to be paired, so make sure there's no buggy
3832 	 * helper function specification.
3833 	 */
3834 	if (arg_type_is_mem_size(fn->arg1_type) ||
3835 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3836 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3837 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3838 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3839 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3840 		return false;
3841 
3842 	return true;
3843 }
3844 
3845 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3846 {
3847 	int count = 0;
3848 
3849 	if (arg_type_may_be_refcounted(fn->arg1_type))
3850 		count++;
3851 	if (arg_type_may_be_refcounted(fn->arg2_type))
3852 		count++;
3853 	if (arg_type_may_be_refcounted(fn->arg3_type))
3854 		count++;
3855 	if (arg_type_may_be_refcounted(fn->arg4_type))
3856 		count++;
3857 	if (arg_type_may_be_refcounted(fn->arg5_type))
3858 		count++;
3859 
3860 	/* A reference acquiring function cannot acquire
3861 	 * another refcounted ptr.
3862 	 */
3863 	if (is_acquire_function(func_id) && count)
3864 		return false;
3865 
3866 	/* We only support one arg being unreferenced at the moment,
3867 	 * which is sufficient for the helper functions we have right now.
3868 	 */
3869 	return count <= 1;
3870 }
3871 
3872 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3873 {
3874 	return check_raw_mode_ok(fn) &&
3875 	       check_arg_pair_ok(fn) &&
3876 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3877 }
3878 
3879 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3880  * are now invalid, so turn them into unknown SCALAR_VALUE.
3881  */
3882 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3883 				     struct bpf_func_state *state)
3884 {
3885 	struct bpf_reg_state *regs = state->regs, *reg;
3886 	int i;
3887 
3888 	for (i = 0; i < MAX_BPF_REG; i++)
3889 		if (reg_is_pkt_pointer_any(&regs[i]))
3890 			mark_reg_unknown(env, regs, i);
3891 
3892 	bpf_for_each_spilled_reg(i, state, reg) {
3893 		if (!reg)
3894 			continue;
3895 		if (reg_is_pkt_pointer_any(reg))
3896 			__mark_reg_unknown(env, reg);
3897 	}
3898 }
3899 
3900 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3901 {
3902 	struct bpf_verifier_state *vstate = env->cur_state;
3903 	int i;
3904 
3905 	for (i = 0; i <= vstate->curframe; i++)
3906 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3907 }
3908 
3909 static void release_reg_references(struct bpf_verifier_env *env,
3910 				   struct bpf_func_state *state,
3911 				   int ref_obj_id)
3912 {
3913 	struct bpf_reg_state *regs = state->regs, *reg;
3914 	int i;
3915 
3916 	for (i = 0; i < MAX_BPF_REG; i++)
3917 		if (regs[i].ref_obj_id == ref_obj_id)
3918 			mark_reg_unknown(env, regs, i);
3919 
3920 	bpf_for_each_spilled_reg(i, state, reg) {
3921 		if (!reg)
3922 			continue;
3923 		if (reg->ref_obj_id == ref_obj_id)
3924 			__mark_reg_unknown(env, reg);
3925 	}
3926 }
3927 
3928 /* The pointer with the specified id has released its reference to kernel
3929  * resources. Identify all copies of the same pointer and clear the reference.
3930  */
3931 static int release_reference(struct bpf_verifier_env *env,
3932 			     int ref_obj_id)
3933 {
3934 	struct bpf_verifier_state *vstate = env->cur_state;
3935 	int err;
3936 	int i;
3937 
3938 	err = release_reference_state(cur_func(env), ref_obj_id);
3939 	if (err)
3940 		return err;
3941 
3942 	for (i = 0; i <= vstate->curframe; i++)
3943 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3944 
3945 	return 0;
3946 }
3947 
3948 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3949 			   int *insn_idx)
3950 {
3951 	struct bpf_verifier_state *state = env->cur_state;
3952 	struct bpf_func_state *caller, *callee;
3953 	int i, err, subprog, target_insn;
3954 
3955 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3956 		verbose(env, "the call stack of %d frames is too deep\n",
3957 			state->curframe + 2);
3958 		return -E2BIG;
3959 	}
3960 
3961 	target_insn = *insn_idx + insn->imm;
3962 	subprog = find_subprog(env, target_insn + 1);
3963 	if (subprog < 0) {
3964 		verbose(env, "verifier bug. No program starts at insn %d\n",
3965 			target_insn + 1);
3966 		return -EFAULT;
3967 	}
3968 
3969 	caller = state->frame[state->curframe];
3970 	if (state->frame[state->curframe + 1]) {
3971 		verbose(env, "verifier bug. Frame %d already allocated\n",
3972 			state->curframe + 1);
3973 		return -EFAULT;
3974 	}
3975 
3976 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3977 	if (!callee)
3978 		return -ENOMEM;
3979 	state->frame[state->curframe + 1] = callee;
3980 
3981 	/* callee cannot access r0, r6 - r9 for reading and has to write
3982 	 * into its own stack before reading from it.
3983 	 * callee can read/write into caller's stack
3984 	 */
3985 	init_func_state(env, callee,
3986 			/* remember the callsite, it will be used by bpf_exit */
3987 			*insn_idx /* callsite */,
3988 			state->curframe + 1 /* frameno within this callchain */,
3989 			subprog /* subprog number within this prog */);
3990 
3991 	/* Transfer references to the callee */
3992 	err = transfer_reference_state(callee, caller);
3993 	if (err)
3994 		return err;
3995 
3996 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3997 	 * pointers, which connects us up to the liveness chain
3998 	 */
3999 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4000 		callee->regs[i] = caller->regs[i];
4001 
4002 	/* after the call registers r0 - r5 were scratched */
4003 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4004 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
4005 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4006 	}
4007 
4008 	/* only increment it after check_reg_arg() finished */
4009 	state->curframe++;
4010 
4011 	if (btf_check_func_arg_match(env, subprog))
4012 		return -EINVAL;
4013 
4014 	/* and go analyze first insn of the callee */
4015 	*insn_idx = target_insn;
4016 
4017 	if (env->log.level & BPF_LOG_LEVEL) {
4018 		verbose(env, "caller:\n");
4019 		print_verifier_state(env, caller);
4020 		verbose(env, "callee:\n");
4021 		print_verifier_state(env, callee);
4022 	}
4023 	return 0;
4024 }
4025 
4026 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4027 {
4028 	struct bpf_verifier_state *state = env->cur_state;
4029 	struct bpf_func_state *caller, *callee;
4030 	struct bpf_reg_state *r0;
4031 	int err;
4032 
4033 	callee = state->frame[state->curframe];
4034 	r0 = &callee->regs[BPF_REG_0];
4035 	if (r0->type == PTR_TO_STACK) {
4036 		/* technically it's ok to return caller's stack pointer
4037 		 * (or caller's caller's pointer) back to the caller,
4038 		 * since these pointers are valid. Only current stack
4039 		 * pointer will be invalid as soon as function exits,
4040 		 * but let's be conservative
4041 		 */
4042 		verbose(env, "cannot return stack pointer to the caller\n");
4043 		return -EINVAL;
4044 	}
4045 
4046 	state->curframe--;
4047 	caller = state->frame[state->curframe];
4048 	/* return to the caller whatever r0 had in the callee */
4049 	caller->regs[BPF_REG_0] = *r0;
4050 
4051 	/* Transfer references to the caller */
4052 	err = transfer_reference_state(caller, callee);
4053 	if (err)
4054 		return err;
4055 
4056 	*insn_idx = callee->callsite + 1;
4057 	if (env->log.level & BPF_LOG_LEVEL) {
4058 		verbose(env, "returning from callee:\n");
4059 		print_verifier_state(env, callee);
4060 		verbose(env, "to caller at %d:\n", *insn_idx);
4061 		print_verifier_state(env, caller);
4062 	}
4063 	/* clear everything in the callee */
4064 	free_func_state(callee);
4065 	state->frame[state->curframe + 1] = NULL;
4066 	return 0;
4067 }
4068 
4069 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4070 				   int func_id,
4071 				   struct bpf_call_arg_meta *meta)
4072 {
4073 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4074 
4075 	if (ret_type != RET_INTEGER ||
4076 	    (func_id != BPF_FUNC_get_stack &&
4077 	     func_id != BPF_FUNC_probe_read_str))
4078 		return;
4079 
4080 	ret_reg->smax_value = meta->msize_smax_value;
4081 	ret_reg->umax_value = meta->msize_umax_value;
4082 	__reg_deduce_bounds(ret_reg);
4083 	__reg_bound_offset(ret_reg);
4084 }
4085 
4086 static int
4087 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4088 		int func_id, int insn_idx)
4089 {
4090 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4091 	struct bpf_map *map = meta->map_ptr;
4092 
4093 	if (func_id != BPF_FUNC_tail_call &&
4094 	    func_id != BPF_FUNC_map_lookup_elem &&
4095 	    func_id != BPF_FUNC_map_update_elem &&
4096 	    func_id != BPF_FUNC_map_delete_elem &&
4097 	    func_id != BPF_FUNC_map_push_elem &&
4098 	    func_id != BPF_FUNC_map_pop_elem &&
4099 	    func_id != BPF_FUNC_map_peek_elem)
4100 		return 0;
4101 
4102 	if (map == NULL) {
4103 		verbose(env, "kernel subsystem misconfigured verifier\n");
4104 		return -EINVAL;
4105 	}
4106 
4107 	/* In case of read-only, some additional restrictions
4108 	 * need to be applied in order to prevent altering the
4109 	 * state of the map from program side.
4110 	 */
4111 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4112 	    (func_id == BPF_FUNC_map_delete_elem ||
4113 	     func_id == BPF_FUNC_map_update_elem ||
4114 	     func_id == BPF_FUNC_map_push_elem ||
4115 	     func_id == BPF_FUNC_map_pop_elem)) {
4116 		verbose(env, "write into map forbidden\n");
4117 		return -EACCES;
4118 	}
4119 
4120 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4121 		bpf_map_ptr_store(aux, meta->map_ptr,
4122 				  meta->map_ptr->unpriv_array);
4123 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4124 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4125 				  meta->map_ptr->unpriv_array);
4126 	return 0;
4127 }
4128 
4129 static int
4130 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4131 		int func_id, int insn_idx)
4132 {
4133 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4134 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4135 	struct bpf_map *map = meta->map_ptr;
4136 	struct tnum range;
4137 	u64 val;
4138 	int err;
4139 
4140 	if (func_id != BPF_FUNC_tail_call)
4141 		return 0;
4142 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4143 		verbose(env, "kernel subsystem misconfigured verifier\n");
4144 		return -EINVAL;
4145 	}
4146 
4147 	range = tnum_range(0, map->max_entries - 1);
4148 	reg = &regs[BPF_REG_3];
4149 
4150 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4151 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4152 		return 0;
4153 	}
4154 
4155 	err = mark_chain_precision(env, BPF_REG_3);
4156 	if (err)
4157 		return err;
4158 
4159 	val = reg->var_off.value;
4160 	if (bpf_map_key_unseen(aux))
4161 		bpf_map_key_store(aux, val);
4162 	else if (!bpf_map_key_poisoned(aux) &&
4163 		  bpf_map_key_immediate(aux) != val)
4164 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4165 	return 0;
4166 }
4167 
4168 static int check_reference_leak(struct bpf_verifier_env *env)
4169 {
4170 	struct bpf_func_state *state = cur_func(env);
4171 	int i;
4172 
4173 	for (i = 0; i < state->acquired_refs; i++) {
4174 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4175 			state->refs[i].id, state->refs[i].insn_idx);
4176 	}
4177 	return state->acquired_refs ? -EINVAL : 0;
4178 }
4179 
4180 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4181 {
4182 	const struct bpf_func_proto *fn = NULL;
4183 	struct bpf_reg_state *regs;
4184 	struct bpf_call_arg_meta meta;
4185 	bool changes_data;
4186 	int i, err;
4187 
4188 	/* find function prototype */
4189 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4190 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4191 			func_id);
4192 		return -EINVAL;
4193 	}
4194 
4195 	if (env->ops->get_func_proto)
4196 		fn = env->ops->get_func_proto(func_id, env->prog);
4197 	if (!fn) {
4198 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4199 			func_id);
4200 		return -EINVAL;
4201 	}
4202 
4203 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4204 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4205 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4206 		return -EINVAL;
4207 	}
4208 
4209 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4210 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4211 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4212 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4213 			func_id_name(func_id), func_id);
4214 		return -EINVAL;
4215 	}
4216 
4217 	memset(&meta, 0, sizeof(meta));
4218 	meta.pkt_access = fn->pkt_access;
4219 
4220 	err = check_func_proto(fn, func_id);
4221 	if (err) {
4222 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4223 			func_id_name(func_id), func_id);
4224 		return err;
4225 	}
4226 
4227 	meta.func_id = func_id;
4228 	/* check args */
4229 	for (i = 0; i < 5; i++) {
4230 		err = btf_resolve_helper_id(&env->log, fn, i);
4231 		if (err > 0)
4232 			meta.btf_id = err;
4233 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4234 		if (err)
4235 			return err;
4236 	}
4237 
4238 	err = record_func_map(env, &meta, func_id, insn_idx);
4239 	if (err)
4240 		return err;
4241 
4242 	err = record_func_key(env, &meta, func_id, insn_idx);
4243 	if (err)
4244 		return err;
4245 
4246 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4247 	 * is inferred from register state.
4248 	 */
4249 	for (i = 0; i < meta.access_size; i++) {
4250 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4251 				       BPF_WRITE, -1, false);
4252 		if (err)
4253 			return err;
4254 	}
4255 
4256 	if (func_id == BPF_FUNC_tail_call) {
4257 		err = check_reference_leak(env);
4258 		if (err) {
4259 			verbose(env, "tail_call would lead to reference leak\n");
4260 			return err;
4261 		}
4262 	} else if (is_release_function(func_id)) {
4263 		err = release_reference(env, meta.ref_obj_id);
4264 		if (err) {
4265 			verbose(env, "func %s#%d reference has not been acquired before\n",
4266 				func_id_name(func_id), func_id);
4267 			return err;
4268 		}
4269 	}
4270 
4271 	regs = cur_regs(env);
4272 
4273 	/* check that flags argument in get_local_storage(map, flags) is 0,
4274 	 * this is required because get_local_storage() can't return an error.
4275 	 */
4276 	if (func_id == BPF_FUNC_get_local_storage &&
4277 	    !register_is_null(&regs[BPF_REG_2])) {
4278 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4279 		return -EINVAL;
4280 	}
4281 
4282 	/* reset caller saved regs */
4283 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4284 		mark_reg_not_init(env, regs, caller_saved[i]);
4285 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4286 	}
4287 
4288 	/* helper call returns 64-bit value. */
4289 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4290 
4291 	/* update return register (already marked as written above) */
4292 	if (fn->ret_type == RET_INTEGER) {
4293 		/* sets type to SCALAR_VALUE */
4294 		mark_reg_unknown(env, regs, BPF_REG_0);
4295 	} else if (fn->ret_type == RET_VOID) {
4296 		regs[BPF_REG_0].type = NOT_INIT;
4297 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4298 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4299 		/* There is no offset yet applied, variable or fixed */
4300 		mark_reg_known_zero(env, regs, BPF_REG_0);
4301 		/* remember map_ptr, so that check_map_access()
4302 		 * can check 'value_size' boundary of memory access
4303 		 * to map element returned from bpf_map_lookup_elem()
4304 		 */
4305 		if (meta.map_ptr == NULL) {
4306 			verbose(env,
4307 				"kernel subsystem misconfigured verifier\n");
4308 			return -EINVAL;
4309 		}
4310 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4311 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4312 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4313 			if (map_value_has_spin_lock(meta.map_ptr))
4314 				regs[BPF_REG_0].id = ++env->id_gen;
4315 		} else {
4316 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4317 			regs[BPF_REG_0].id = ++env->id_gen;
4318 		}
4319 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4320 		mark_reg_known_zero(env, regs, BPF_REG_0);
4321 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4322 		regs[BPF_REG_0].id = ++env->id_gen;
4323 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4324 		mark_reg_known_zero(env, regs, BPF_REG_0);
4325 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4326 		regs[BPF_REG_0].id = ++env->id_gen;
4327 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4328 		mark_reg_known_zero(env, regs, BPF_REG_0);
4329 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4330 		regs[BPF_REG_0].id = ++env->id_gen;
4331 	} else {
4332 		verbose(env, "unknown return type %d of func %s#%d\n",
4333 			fn->ret_type, func_id_name(func_id), func_id);
4334 		return -EINVAL;
4335 	}
4336 
4337 	if (is_ptr_cast_function(func_id)) {
4338 		/* For release_reference() */
4339 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4340 	} else if (is_acquire_function(func_id)) {
4341 		int id = acquire_reference_state(env, insn_idx);
4342 
4343 		if (id < 0)
4344 			return id;
4345 		/* For mark_ptr_or_null_reg() */
4346 		regs[BPF_REG_0].id = id;
4347 		/* For release_reference() */
4348 		regs[BPF_REG_0].ref_obj_id = id;
4349 	}
4350 
4351 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4352 
4353 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4354 	if (err)
4355 		return err;
4356 
4357 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4358 		const char *err_str;
4359 
4360 #ifdef CONFIG_PERF_EVENTS
4361 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4362 		err_str = "cannot get callchain buffer for func %s#%d\n";
4363 #else
4364 		err = -ENOTSUPP;
4365 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4366 #endif
4367 		if (err) {
4368 			verbose(env, err_str, func_id_name(func_id), func_id);
4369 			return err;
4370 		}
4371 
4372 		env->prog->has_callchain_buf = true;
4373 	}
4374 
4375 	if (changes_data)
4376 		clear_all_pkt_pointers(env);
4377 	return 0;
4378 }
4379 
4380 static bool signed_add_overflows(s64 a, s64 b)
4381 {
4382 	/* Do the add in u64, where overflow is well-defined */
4383 	s64 res = (s64)((u64)a + (u64)b);
4384 
4385 	if (b < 0)
4386 		return res > a;
4387 	return res < a;
4388 }
4389 
4390 static bool signed_sub_overflows(s64 a, s64 b)
4391 {
4392 	/* Do the sub in u64, where overflow is well-defined */
4393 	s64 res = (s64)((u64)a - (u64)b);
4394 
4395 	if (b < 0)
4396 		return res < a;
4397 	return res > a;
4398 }
4399 
4400 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4401 				  const struct bpf_reg_state *reg,
4402 				  enum bpf_reg_type type)
4403 {
4404 	bool known = tnum_is_const(reg->var_off);
4405 	s64 val = reg->var_off.value;
4406 	s64 smin = reg->smin_value;
4407 
4408 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4409 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4410 			reg_type_str[type], val);
4411 		return false;
4412 	}
4413 
4414 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4415 		verbose(env, "%s pointer offset %d is not allowed\n",
4416 			reg_type_str[type], reg->off);
4417 		return false;
4418 	}
4419 
4420 	if (smin == S64_MIN) {
4421 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4422 			reg_type_str[type]);
4423 		return false;
4424 	}
4425 
4426 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4427 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4428 			smin, reg_type_str[type]);
4429 		return false;
4430 	}
4431 
4432 	return true;
4433 }
4434 
4435 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4436 {
4437 	return &env->insn_aux_data[env->insn_idx];
4438 }
4439 
4440 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4441 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4442 {
4443 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4444 			    (opcode == BPF_SUB && !off_is_neg);
4445 	u32 off;
4446 
4447 	switch (ptr_reg->type) {
4448 	case PTR_TO_STACK:
4449 		/* Indirect variable offset stack access is prohibited in
4450 		 * unprivileged mode so it's not handled here.
4451 		 */
4452 		off = ptr_reg->off + ptr_reg->var_off.value;
4453 		if (mask_to_left)
4454 			*ptr_limit = MAX_BPF_STACK + off;
4455 		else
4456 			*ptr_limit = -off;
4457 		return 0;
4458 	case PTR_TO_MAP_VALUE:
4459 		if (mask_to_left) {
4460 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4461 		} else {
4462 			off = ptr_reg->smin_value + ptr_reg->off;
4463 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4464 		}
4465 		return 0;
4466 	default:
4467 		return -EINVAL;
4468 	}
4469 }
4470 
4471 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4472 				    const struct bpf_insn *insn)
4473 {
4474 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4475 }
4476 
4477 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4478 				       u32 alu_state, u32 alu_limit)
4479 {
4480 	/* If we arrived here from different branches with different
4481 	 * state or limits to sanitize, then this won't work.
4482 	 */
4483 	if (aux->alu_state &&
4484 	    (aux->alu_state != alu_state ||
4485 	     aux->alu_limit != alu_limit))
4486 		return -EACCES;
4487 
4488 	/* Corresponding fixup done in fixup_bpf_calls(). */
4489 	aux->alu_state = alu_state;
4490 	aux->alu_limit = alu_limit;
4491 	return 0;
4492 }
4493 
4494 static int sanitize_val_alu(struct bpf_verifier_env *env,
4495 			    struct bpf_insn *insn)
4496 {
4497 	struct bpf_insn_aux_data *aux = cur_aux(env);
4498 
4499 	if (can_skip_alu_sanitation(env, insn))
4500 		return 0;
4501 
4502 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4503 }
4504 
4505 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4506 			    struct bpf_insn *insn,
4507 			    const struct bpf_reg_state *ptr_reg,
4508 			    struct bpf_reg_state *dst_reg,
4509 			    bool off_is_neg)
4510 {
4511 	struct bpf_verifier_state *vstate = env->cur_state;
4512 	struct bpf_insn_aux_data *aux = cur_aux(env);
4513 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4514 	u8 opcode = BPF_OP(insn->code);
4515 	u32 alu_state, alu_limit;
4516 	struct bpf_reg_state tmp;
4517 	bool ret;
4518 
4519 	if (can_skip_alu_sanitation(env, insn))
4520 		return 0;
4521 
4522 	/* We already marked aux for masking from non-speculative
4523 	 * paths, thus we got here in the first place. We only care
4524 	 * to explore bad access from here.
4525 	 */
4526 	if (vstate->speculative)
4527 		goto do_sim;
4528 
4529 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4530 	alu_state |= ptr_is_dst_reg ?
4531 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4532 
4533 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4534 		return 0;
4535 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4536 		return -EACCES;
4537 do_sim:
4538 	/* Simulate and find potential out-of-bounds access under
4539 	 * speculative execution from truncation as a result of
4540 	 * masking when off was not within expected range. If off
4541 	 * sits in dst, then we temporarily need to move ptr there
4542 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4543 	 * for cases where we use K-based arithmetic in one direction
4544 	 * and truncated reg-based in the other in order to explore
4545 	 * bad access.
4546 	 */
4547 	if (!ptr_is_dst_reg) {
4548 		tmp = *dst_reg;
4549 		*dst_reg = *ptr_reg;
4550 	}
4551 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4552 	if (!ptr_is_dst_reg && ret)
4553 		*dst_reg = tmp;
4554 	return !ret ? -EFAULT : 0;
4555 }
4556 
4557 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4558  * Caller should also handle BPF_MOV case separately.
4559  * If we return -EACCES, caller may want to try again treating pointer as a
4560  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4561  */
4562 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4563 				   struct bpf_insn *insn,
4564 				   const struct bpf_reg_state *ptr_reg,
4565 				   const struct bpf_reg_state *off_reg)
4566 {
4567 	struct bpf_verifier_state *vstate = env->cur_state;
4568 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4569 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4570 	bool known = tnum_is_const(off_reg->var_off);
4571 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4572 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4573 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4574 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4575 	u32 dst = insn->dst_reg, src = insn->src_reg;
4576 	u8 opcode = BPF_OP(insn->code);
4577 	int ret;
4578 
4579 	dst_reg = &regs[dst];
4580 
4581 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4582 	    smin_val > smax_val || umin_val > umax_val) {
4583 		/* Taint dst register if offset had invalid bounds derived from
4584 		 * e.g. dead branches.
4585 		 */
4586 		__mark_reg_unknown(env, dst_reg);
4587 		return 0;
4588 	}
4589 
4590 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4591 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4592 		verbose(env,
4593 			"R%d 32-bit pointer arithmetic prohibited\n",
4594 			dst);
4595 		return -EACCES;
4596 	}
4597 
4598 	switch (ptr_reg->type) {
4599 	case PTR_TO_MAP_VALUE_OR_NULL:
4600 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4601 			dst, reg_type_str[ptr_reg->type]);
4602 		return -EACCES;
4603 	case CONST_PTR_TO_MAP:
4604 	case PTR_TO_PACKET_END:
4605 	case PTR_TO_SOCKET:
4606 	case PTR_TO_SOCKET_OR_NULL:
4607 	case PTR_TO_SOCK_COMMON:
4608 	case PTR_TO_SOCK_COMMON_OR_NULL:
4609 	case PTR_TO_TCP_SOCK:
4610 	case PTR_TO_TCP_SOCK_OR_NULL:
4611 	case PTR_TO_XDP_SOCK:
4612 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4613 			dst, reg_type_str[ptr_reg->type]);
4614 		return -EACCES;
4615 	case PTR_TO_MAP_VALUE:
4616 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4617 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4618 				off_reg == dst_reg ? dst : src);
4619 			return -EACCES;
4620 		}
4621 		/* fall-through */
4622 	default:
4623 		break;
4624 	}
4625 
4626 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4627 	 * The id may be overwritten later if we create a new variable offset.
4628 	 */
4629 	dst_reg->type = ptr_reg->type;
4630 	dst_reg->id = ptr_reg->id;
4631 
4632 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4633 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4634 		return -EINVAL;
4635 
4636 	switch (opcode) {
4637 	case BPF_ADD:
4638 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4639 		if (ret < 0) {
4640 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4641 			return ret;
4642 		}
4643 		/* We can take a fixed offset as long as it doesn't overflow
4644 		 * the s32 'off' field
4645 		 */
4646 		if (known && (ptr_reg->off + smin_val ==
4647 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4648 			/* pointer += K.  Accumulate it into fixed offset */
4649 			dst_reg->smin_value = smin_ptr;
4650 			dst_reg->smax_value = smax_ptr;
4651 			dst_reg->umin_value = umin_ptr;
4652 			dst_reg->umax_value = umax_ptr;
4653 			dst_reg->var_off = ptr_reg->var_off;
4654 			dst_reg->off = ptr_reg->off + smin_val;
4655 			dst_reg->raw = ptr_reg->raw;
4656 			break;
4657 		}
4658 		/* A new variable offset is created.  Note that off_reg->off
4659 		 * == 0, since it's a scalar.
4660 		 * dst_reg gets the pointer type and since some positive
4661 		 * integer value was added to the pointer, give it a new 'id'
4662 		 * if it's a PTR_TO_PACKET.
4663 		 * this creates a new 'base' pointer, off_reg (variable) gets
4664 		 * added into the variable offset, and we copy the fixed offset
4665 		 * from ptr_reg.
4666 		 */
4667 		if (signed_add_overflows(smin_ptr, smin_val) ||
4668 		    signed_add_overflows(smax_ptr, smax_val)) {
4669 			dst_reg->smin_value = S64_MIN;
4670 			dst_reg->smax_value = S64_MAX;
4671 		} else {
4672 			dst_reg->smin_value = smin_ptr + smin_val;
4673 			dst_reg->smax_value = smax_ptr + smax_val;
4674 		}
4675 		if (umin_ptr + umin_val < umin_ptr ||
4676 		    umax_ptr + umax_val < umax_ptr) {
4677 			dst_reg->umin_value = 0;
4678 			dst_reg->umax_value = U64_MAX;
4679 		} else {
4680 			dst_reg->umin_value = umin_ptr + umin_val;
4681 			dst_reg->umax_value = umax_ptr + umax_val;
4682 		}
4683 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4684 		dst_reg->off = ptr_reg->off;
4685 		dst_reg->raw = ptr_reg->raw;
4686 		if (reg_is_pkt_pointer(ptr_reg)) {
4687 			dst_reg->id = ++env->id_gen;
4688 			/* something was added to pkt_ptr, set range to zero */
4689 			dst_reg->raw = 0;
4690 		}
4691 		break;
4692 	case BPF_SUB:
4693 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4694 		if (ret < 0) {
4695 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4696 			return ret;
4697 		}
4698 		if (dst_reg == off_reg) {
4699 			/* scalar -= pointer.  Creates an unknown scalar */
4700 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4701 				dst);
4702 			return -EACCES;
4703 		}
4704 		/* We don't allow subtraction from FP, because (according to
4705 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4706 		 * be able to deal with it.
4707 		 */
4708 		if (ptr_reg->type == PTR_TO_STACK) {
4709 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4710 				dst);
4711 			return -EACCES;
4712 		}
4713 		if (known && (ptr_reg->off - smin_val ==
4714 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4715 			/* pointer -= K.  Subtract it from fixed offset */
4716 			dst_reg->smin_value = smin_ptr;
4717 			dst_reg->smax_value = smax_ptr;
4718 			dst_reg->umin_value = umin_ptr;
4719 			dst_reg->umax_value = umax_ptr;
4720 			dst_reg->var_off = ptr_reg->var_off;
4721 			dst_reg->id = ptr_reg->id;
4722 			dst_reg->off = ptr_reg->off - smin_val;
4723 			dst_reg->raw = ptr_reg->raw;
4724 			break;
4725 		}
4726 		/* A new variable offset is created.  If the subtrahend is known
4727 		 * nonnegative, then any reg->range we had before is still good.
4728 		 */
4729 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4730 		    signed_sub_overflows(smax_ptr, smin_val)) {
4731 			/* Overflow possible, we know nothing */
4732 			dst_reg->smin_value = S64_MIN;
4733 			dst_reg->smax_value = S64_MAX;
4734 		} else {
4735 			dst_reg->smin_value = smin_ptr - smax_val;
4736 			dst_reg->smax_value = smax_ptr - smin_val;
4737 		}
4738 		if (umin_ptr < umax_val) {
4739 			/* Overflow possible, we know nothing */
4740 			dst_reg->umin_value = 0;
4741 			dst_reg->umax_value = U64_MAX;
4742 		} else {
4743 			/* Cannot overflow (as long as bounds are consistent) */
4744 			dst_reg->umin_value = umin_ptr - umax_val;
4745 			dst_reg->umax_value = umax_ptr - umin_val;
4746 		}
4747 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4748 		dst_reg->off = ptr_reg->off;
4749 		dst_reg->raw = ptr_reg->raw;
4750 		if (reg_is_pkt_pointer(ptr_reg)) {
4751 			dst_reg->id = ++env->id_gen;
4752 			/* something was added to pkt_ptr, set range to zero */
4753 			if (smin_val < 0)
4754 				dst_reg->raw = 0;
4755 		}
4756 		break;
4757 	case BPF_AND:
4758 	case BPF_OR:
4759 	case BPF_XOR:
4760 		/* bitwise ops on pointers are troublesome, prohibit. */
4761 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4762 			dst, bpf_alu_string[opcode >> 4]);
4763 		return -EACCES;
4764 	default:
4765 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4766 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4767 			dst, bpf_alu_string[opcode >> 4]);
4768 		return -EACCES;
4769 	}
4770 
4771 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4772 		return -EINVAL;
4773 
4774 	__update_reg_bounds(dst_reg);
4775 	__reg_deduce_bounds(dst_reg);
4776 	__reg_bound_offset(dst_reg);
4777 
4778 	/* For unprivileged we require that resulting offset must be in bounds
4779 	 * in order to be able to sanitize access later on.
4780 	 */
4781 	if (!env->allow_ptr_leaks) {
4782 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4783 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4784 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4785 				"prohibited for !root\n", dst);
4786 			return -EACCES;
4787 		} else if (dst_reg->type == PTR_TO_STACK &&
4788 			   check_stack_access(env, dst_reg, dst_reg->off +
4789 					      dst_reg->var_off.value, 1)) {
4790 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4791 				"prohibited for !root\n", dst);
4792 			return -EACCES;
4793 		}
4794 	}
4795 
4796 	return 0;
4797 }
4798 
4799 /* WARNING: This function does calculations on 64-bit values, but the actual
4800  * execution may occur on 32-bit values. Therefore, things like bitshifts
4801  * need extra checks in the 32-bit case.
4802  */
4803 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4804 				      struct bpf_insn *insn,
4805 				      struct bpf_reg_state *dst_reg,
4806 				      struct bpf_reg_state src_reg)
4807 {
4808 	struct bpf_reg_state *regs = cur_regs(env);
4809 	u8 opcode = BPF_OP(insn->code);
4810 	bool src_known, dst_known;
4811 	s64 smin_val, smax_val;
4812 	u64 umin_val, umax_val;
4813 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4814 	u32 dst = insn->dst_reg;
4815 	int ret;
4816 
4817 	if (insn_bitness == 32) {
4818 		/* Relevant for 32-bit RSH: Information can propagate towards
4819 		 * LSB, so it isn't sufficient to only truncate the output to
4820 		 * 32 bits.
4821 		 */
4822 		coerce_reg_to_size(dst_reg, 4);
4823 		coerce_reg_to_size(&src_reg, 4);
4824 	}
4825 
4826 	smin_val = src_reg.smin_value;
4827 	smax_val = src_reg.smax_value;
4828 	umin_val = src_reg.umin_value;
4829 	umax_val = src_reg.umax_value;
4830 	src_known = tnum_is_const(src_reg.var_off);
4831 	dst_known = tnum_is_const(dst_reg->var_off);
4832 
4833 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4834 	    smin_val > smax_val || umin_val > umax_val) {
4835 		/* Taint dst register if offset had invalid bounds derived from
4836 		 * e.g. dead branches.
4837 		 */
4838 		__mark_reg_unknown(env, dst_reg);
4839 		return 0;
4840 	}
4841 
4842 	if (!src_known &&
4843 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4844 		__mark_reg_unknown(env, dst_reg);
4845 		return 0;
4846 	}
4847 
4848 	switch (opcode) {
4849 	case BPF_ADD:
4850 		ret = sanitize_val_alu(env, insn);
4851 		if (ret < 0) {
4852 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4853 			return ret;
4854 		}
4855 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4856 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4857 			dst_reg->smin_value = S64_MIN;
4858 			dst_reg->smax_value = S64_MAX;
4859 		} else {
4860 			dst_reg->smin_value += smin_val;
4861 			dst_reg->smax_value += smax_val;
4862 		}
4863 		if (dst_reg->umin_value + umin_val < umin_val ||
4864 		    dst_reg->umax_value + umax_val < umax_val) {
4865 			dst_reg->umin_value = 0;
4866 			dst_reg->umax_value = U64_MAX;
4867 		} else {
4868 			dst_reg->umin_value += umin_val;
4869 			dst_reg->umax_value += umax_val;
4870 		}
4871 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4872 		break;
4873 	case BPF_SUB:
4874 		ret = sanitize_val_alu(env, insn);
4875 		if (ret < 0) {
4876 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4877 			return ret;
4878 		}
4879 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4880 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4881 			/* Overflow possible, we know nothing */
4882 			dst_reg->smin_value = S64_MIN;
4883 			dst_reg->smax_value = S64_MAX;
4884 		} else {
4885 			dst_reg->smin_value -= smax_val;
4886 			dst_reg->smax_value -= smin_val;
4887 		}
4888 		if (dst_reg->umin_value < umax_val) {
4889 			/* Overflow possible, we know nothing */
4890 			dst_reg->umin_value = 0;
4891 			dst_reg->umax_value = U64_MAX;
4892 		} else {
4893 			/* Cannot overflow (as long as bounds are consistent) */
4894 			dst_reg->umin_value -= umax_val;
4895 			dst_reg->umax_value -= umin_val;
4896 		}
4897 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4898 		break;
4899 	case BPF_MUL:
4900 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4901 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4902 			/* Ain't nobody got time to multiply that sign */
4903 			__mark_reg_unbounded(dst_reg);
4904 			__update_reg_bounds(dst_reg);
4905 			break;
4906 		}
4907 		/* Both values are positive, so we can work with unsigned and
4908 		 * copy the result to signed (unless it exceeds S64_MAX).
4909 		 */
4910 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4911 			/* Potential overflow, we know nothing */
4912 			__mark_reg_unbounded(dst_reg);
4913 			/* (except what we can learn from the var_off) */
4914 			__update_reg_bounds(dst_reg);
4915 			break;
4916 		}
4917 		dst_reg->umin_value *= umin_val;
4918 		dst_reg->umax_value *= umax_val;
4919 		if (dst_reg->umax_value > S64_MAX) {
4920 			/* Overflow possible, we know nothing */
4921 			dst_reg->smin_value = S64_MIN;
4922 			dst_reg->smax_value = S64_MAX;
4923 		} else {
4924 			dst_reg->smin_value = dst_reg->umin_value;
4925 			dst_reg->smax_value = dst_reg->umax_value;
4926 		}
4927 		break;
4928 	case BPF_AND:
4929 		if (src_known && dst_known) {
4930 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4931 						  src_reg.var_off.value);
4932 			break;
4933 		}
4934 		/* We get our minimum from the var_off, since that's inherently
4935 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4936 		 */
4937 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4938 		dst_reg->umin_value = dst_reg->var_off.value;
4939 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4940 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4941 			/* Lose signed bounds when ANDing negative numbers,
4942 			 * ain't nobody got time for that.
4943 			 */
4944 			dst_reg->smin_value = S64_MIN;
4945 			dst_reg->smax_value = S64_MAX;
4946 		} else {
4947 			/* ANDing two positives gives a positive, so safe to
4948 			 * cast result into s64.
4949 			 */
4950 			dst_reg->smin_value = dst_reg->umin_value;
4951 			dst_reg->smax_value = dst_reg->umax_value;
4952 		}
4953 		/* We may learn something more from the var_off */
4954 		__update_reg_bounds(dst_reg);
4955 		break;
4956 	case BPF_OR:
4957 		if (src_known && dst_known) {
4958 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4959 						  src_reg.var_off.value);
4960 			break;
4961 		}
4962 		/* We get our maximum from the var_off, and our minimum is the
4963 		 * maximum of the operands' minima
4964 		 */
4965 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4966 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4967 		dst_reg->umax_value = dst_reg->var_off.value |
4968 				      dst_reg->var_off.mask;
4969 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4970 			/* Lose signed bounds when ORing negative numbers,
4971 			 * ain't nobody got time for that.
4972 			 */
4973 			dst_reg->smin_value = S64_MIN;
4974 			dst_reg->smax_value = S64_MAX;
4975 		} else {
4976 			/* ORing two positives gives a positive, so safe to
4977 			 * cast result into s64.
4978 			 */
4979 			dst_reg->smin_value = dst_reg->umin_value;
4980 			dst_reg->smax_value = dst_reg->umax_value;
4981 		}
4982 		/* We may learn something more from the var_off */
4983 		__update_reg_bounds(dst_reg);
4984 		break;
4985 	case BPF_LSH:
4986 		if (umax_val >= insn_bitness) {
4987 			/* Shifts greater than 31 or 63 are undefined.
4988 			 * This includes shifts by a negative number.
4989 			 */
4990 			mark_reg_unknown(env, regs, insn->dst_reg);
4991 			break;
4992 		}
4993 		/* We lose all sign bit information (except what we can pick
4994 		 * up from var_off)
4995 		 */
4996 		dst_reg->smin_value = S64_MIN;
4997 		dst_reg->smax_value = S64_MAX;
4998 		/* If we might shift our top bit out, then we know nothing */
4999 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5000 			dst_reg->umin_value = 0;
5001 			dst_reg->umax_value = U64_MAX;
5002 		} else {
5003 			dst_reg->umin_value <<= umin_val;
5004 			dst_reg->umax_value <<= umax_val;
5005 		}
5006 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5007 		/* We may learn something more from the var_off */
5008 		__update_reg_bounds(dst_reg);
5009 		break;
5010 	case BPF_RSH:
5011 		if (umax_val >= insn_bitness) {
5012 			/* Shifts greater than 31 or 63 are undefined.
5013 			 * This includes shifts by a negative number.
5014 			 */
5015 			mark_reg_unknown(env, regs, insn->dst_reg);
5016 			break;
5017 		}
5018 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5019 		 * be negative, then either:
5020 		 * 1) src_reg might be zero, so the sign bit of the result is
5021 		 *    unknown, so we lose our signed bounds
5022 		 * 2) it's known negative, thus the unsigned bounds capture the
5023 		 *    signed bounds
5024 		 * 3) the signed bounds cross zero, so they tell us nothing
5025 		 *    about the result
5026 		 * If the value in dst_reg is known nonnegative, then again the
5027 		 * unsigned bounts capture the signed bounds.
5028 		 * Thus, in all cases it suffices to blow away our signed bounds
5029 		 * and rely on inferring new ones from the unsigned bounds and
5030 		 * var_off of the result.
5031 		 */
5032 		dst_reg->smin_value = S64_MIN;
5033 		dst_reg->smax_value = S64_MAX;
5034 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5035 		dst_reg->umin_value >>= umax_val;
5036 		dst_reg->umax_value >>= umin_val;
5037 		/* We may learn something more from the var_off */
5038 		__update_reg_bounds(dst_reg);
5039 		break;
5040 	case BPF_ARSH:
5041 		if (umax_val >= insn_bitness) {
5042 			/* Shifts greater than 31 or 63 are undefined.
5043 			 * This includes shifts by a negative number.
5044 			 */
5045 			mark_reg_unknown(env, regs, insn->dst_reg);
5046 			break;
5047 		}
5048 
5049 		/* Upon reaching here, src_known is true and
5050 		 * umax_val is equal to umin_val.
5051 		 */
5052 		dst_reg->smin_value >>= umin_val;
5053 		dst_reg->smax_value >>= umin_val;
5054 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
5055 
5056 		/* blow away the dst_reg umin_value/umax_value and rely on
5057 		 * dst_reg var_off to refine the result.
5058 		 */
5059 		dst_reg->umin_value = 0;
5060 		dst_reg->umax_value = U64_MAX;
5061 		__update_reg_bounds(dst_reg);
5062 		break;
5063 	default:
5064 		mark_reg_unknown(env, regs, insn->dst_reg);
5065 		break;
5066 	}
5067 
5068 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5069 		/* 32-bit ALU ops are (32,32)->32 */
5070 		coerce_reg_to_size(dst_reg, 4);
5071 	}
5072 
5073 	__reg_deduce_bounds(dst_reg);
5074 	__reg_bound_offset(dst_reg);
5075 	return 0;
5076 }
5077 
5078 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5079  * and var_off.
5080  */
5081 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5082 				   struct bpf_insn *insn)
5083 {
5084 	struct bpf_verifier_state *vstate = env->cur_state;
5085 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5086 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5087 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5088 	u8 opcode = BPF_OP(insn->code);
5089 	int err;
5090 
5091 	dst_reg = &regs[insn->dst_reg];
5092 	src_reg = NULL;
5093 	if (dst_reg->type != SCALAR_VALUE)
5094 		ptr_reg = dst_reg;
5095 	if (BPF_SRC(insn->code) == BPF_X) {
5096 		src_reg = &regs[insn->src_reg];
5097 		if (src_reg->type != SCALAR_VALUE) {
5098 			if (dst_reg->type != SCALAR_VALUE) {
5099 				/* Combining two pointers by any ALU op yields
5100 				 * an arbitrary scalar. Disallow all math except
5101 				 * pointer subtraction
5102 				 */
5103 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5104 					mark_reg_unknown(env, regs, insn->dst_reg);
5105 					return 0;
5106 				}
5107 				verbose(env, "R%d pointer %s pointer prohibited\n",
5108 					insn->dst_reg,
5109 					bpf_alu_string[opcode >> 4]);
5110 				return -EACCES;
5111 			} else {
5112 				/* scalar += pointer
5113 				 * This is legal, but we have to reverse our
5114 				 * src/dest handling in computing the range
5115 				 */
5116 				err = mark_chain_precision(env, insn->dst_reg);
5117 				if (err)
5118 					return err;
5119 				return adjust_ptr_min_max_vals(env, insn,
5120 							       src_reg, dst_reg);
5121 			}
5122 		} else if (ptr_reg) {
5123 			/* pointer += scalar */
5124 			err = mark_chain_precision(env, insn->src_reg);
5125 			if (err)
5126 				return err;
5127 			return adjust_ptr_min_max_vals(env, insn,
5128 						       dst_reg, src_reg);
5129 		}
5130 	} else {
5131 		/* Pretend the src is a reg with a known value, since we only
5132 		 * need to be able to read from this state.
5133 		 */
5134 		off_reg.type = SCALAR_VALUE;
5135 		__mark_reg_known(&off_reg, insn->imm);
5136 		src_reg = &off_reg;
5137 		if (ptr_reg) /* pointer += K */
5138 			return adjust_ptr_min_max_vals(env, insn,
5139 						       ptr_reg, src_reg);
5140 	}
5141 
5142 	/* Got here implies adding two SCALAR_VALUEs */
5143 	if (WARN_ON_ONCE(ptr_reg)) {
5144 		print_verifier_state(env, state);
5145 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5146 		return -EINVAL;
5147 	}
5148 	if (WARN_ON(!src_reg)) {
5149 		print_verifier_state(env, state);
5150 		verbose(env, "verifier internal error: no src_reg\n");
5151 		return -EINVAL;
5152 	}
5153 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5154 }
5155 
5156 /* check validity of 32-bit and 64-bit arithmetic operations */
5157 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5158 {
5159 	struct bpf_reg_state *regs = cur_regs(env);
5160 	u8 opcode = BPF_OP(insn->code);
5161 	int err;
5162 
5163 	if (opcode == BPF_END || opcode == BPF_NEG) {
5164 		if (opcode == BPF_NEG) {
5165 			if (BPF_SRC(insn->code) != 0 ||
5166 			    insn->src_reg != BPF_REG_0 ||
5167 			    insn->off != 0 || insn->imm != 0) {
5168 				verbose(env, "BPF_NEG uses reserved fields\n");
5169 				return -EINVAL;
5170 			}
5171 		} else {
5172 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5173 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5174 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5175 				verbose(env, "BPF_END uses reserved fields\n");
5176 				return -EINVAL;
5177 			}
5178 		}
5179 
5180 		/* check src operand */
5181 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5182 		if (err)
5183 			return err;
5184 
5185 		if (is_pointer_value(env, insn->dst_reg)) {
5186 			verbose(env, "R%d pointer arithmetic prohibited\n",
5187 				insn->dst_reg);
5188 			return -EACCES;
5189 		}
5190 
5191 		/* check dest operand */
5192 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5193 		if (err)
5194 			return err;
5195 
5196 	} else if (opcode == BPF_MOV) {
5197 
5198 		if (BPF_SRC(insn->code) == BPF_X) {
5199 			if (insn->imm != 0 || insn->off != 0) {
5200 				verbose(env, "BPF_MOV uses reserved fields\n");
5201 				return -EINVAL;
5202 			}
5203 
5204 			/* check src operand */
5205 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5206 			if (err)
5207 				return err;
5208 		} else {
5209 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5210 				verbose(env, "BPF_MOV uses reserved fields\n");
5211 				return -EINVAL;
5212 			}
5213 		}
5214 
5215 		/* check dest operand, mark as required later */
5216 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5217 		if (err)
5218 			return err;
5219 
5220 		if (BPF_SRC(insn->code) == BPF_X) {
5221 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5222 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5223 
5224 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5225 				/* case: R1 = R2
5226 				 * copy register state to dest reg
5227 				 */
5228 				*dst_reg = *src_reg;
5229 				dst_reg->live |= REG_LIVE_WRITTEN;
5230 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5231 			} else {
5232 				/* R1 = (u32) R2 */
5233 				if (is_pointer_value(env, insn->src_reg)) {
5234 					verbose(env,
5235 						"R%d partial copy of pointer\n",
5236 						insn->src_reg);
5237 					return -EACCES;
5238 				} else if (src_reg->type == SCALAR_VALUE) {
5239 					*dst_reg = *src_reg;
5240 					dst_reg->live |= REG_LIVE_WRITTEN;
5241 					dst_reg->subreg_def = env->insn_idx + 1;
5242 				} else {
5243 					mark_reg_unknown(env, regs,
5244 							 insn->dst_reg);
5245 				}
5246 				coerce_reg_to_size(dst_reg, 4);
5247 			}
5248 		} else {
5249 			/* case: R = imm
5250 			 * remember the value we stored into this reg
5251 			 */
5252 			/* clear any state __mark_reg_known doesn't set */
5253 			mark_reg_unknown(env, regs, insn->dst_reg);
5254 			regs[insn->dst_reg].type = SCALAR_VALUE;
5255 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5256 				__mark_reg_known(regs + insn->dst_reg,
5257 						 insn->imm);
5258 			} else {
5259 				__mark_reg_known(regs + insn->dst_reg,
5260 						 (u32)insn->imm);
5261 			}
5262 		}
5263 
5264 	} else if (opcode > BPF_END) {
5265 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5266 		return -EINVAL;
5267 
5268 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5269 
5270 		if (BPF_SRC(insn->code) == BPF_X) {
5271 			if (insn->imm != 0 || insn->off != 0) {
5272 				verbose(env, "BPF_ALU uses reserved fields\n");
5273 				return -EINVAL;
5274 			}
5275 			/* check src1 operand */
5276 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5277 			if (err)
5278 				return err;
5279 		} else {
5280 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5281 				verbose(env, "BPF_ALU uses reserved fields\n");
5282 				return -EINVAL;
5283 			}
5284 		}
5285 
5286 		/* check src2 operand */
5287 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5288 		if (err)
5289 			return err;
5290 
5291 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5292 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5293 			verbose(env, "div by zero\n");
5294 			return -EINVAL;
5295 		}
5296 
5297 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5298 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5299 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5300 
5301 			if (insn->imm < 0 || insn->imm >= size) {
5302 				verbose(env, "invalid shift %d\n", insn->imm);
5303 				return -EINVAL;
5304 			}
5305 		}
5306 
5307 		/* check dest operand */
5308 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5309 		if (err)
5310 			return err;
5311 
5312 		return adjust_reg_min_max_vals(env, insn);
5313 	}
5314 
5315 	return 0;
5316 }
5317 
5318 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5319 				     struct bpf_reg_state *dst_reg,
5320 				     enum bpf_reg_type type, u16 new_range)
5321 {
5322 	struct bpf_reg_state *reg;
5323 	int i;
5324 
5325 	for (i = 0; i < MAX_BPF_REG; i++) {
5326 		reg = &state->regs[i];
5327 		if (reg->type == type && reg->id == dst_reg->id)
5328 			/* keep the maximum range already checked */
5329 			reg->range = max(reg->range, new_range);
5330 	}
5331 
5332 	bpf_for_each_spilled_reg(i, state, reg) {
5333 		if (!reg)
5334 			continue;
5335 		if (reg->type == type && reg->id == dst_reg->id)
5336 			reg->range = max(reg->range, new_range);
5337 	}
5338 }
5339 
5340 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5341 				   struct bpf_reg_state *dst_reg,
5342 				   enum bpf_reg_type type,
5343 				   bool range_right_open)
5344 {
5345 	u16 new_range;
5346 	int i;
5347 
5348 	if (dst_reg->off < 0 ||
5349 	    (dst_reg->off == 0 && range_right_open))
5350 		/* This doesn't give us any range */
5351 		return;
5352 
5353 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5354 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5355 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5356 		 * than pkt_end, but that's because it's also less than pkt.
5357 		 */
5358 		return;
5359 
5360 	new_range = dst_reg->off;
5361 	if (range_right_open)
5362 		new_range--;
5363 
5364 	/* Examples for register markings:
5365 	 *
5366 	 * pkt_data in dst register:
5367 	 *
5368 	 *   r2 = r3;
5369 	 *   r2 += 8;
5370 	 *   if (r2 > pkt_end) goto <handle exception>
5371 	 *   <access okay>
5372 	 *
5373 	 *   r2 = r3;
5374 	 *   r2 += 8;
5375 	 *   if (r2 < pkt_end) goto <access okay>
5376 	 *   <handle exception>
5377 	 *
5378 	 *   Where:
5379 	 *     r2 == dst_reg, pkt_end == src_reg
5380 	 *     r2=pkt(id=n,off=8,r=0)
5381 	 *     r3=pkt(id=n,off=0,r=0)
5382 	 *
5383 	 * pkt_data in src register:
5384 	 *
5385 	 *   r2 = r3;
5386 	 *   r2 += 8;
5387 	 *   if (pkt_end >= r2) goto <access okay>
5388 	 *   <handle exception>
5389 	 *
5390 	 *   r2 = r3;
5391 	 *   r2 += 8;
5392 	 *   if (pkt_end <= r2) goto <handle exception>
5393 	 *   <access okay>
5394 	 *
5395 	 *   Where:
5396 	 *     pkt_end == dst_reg, r2 == src_reg
5397 	 *     r2=pkt(id=n,off=8,r=0)
5398 	 *     r3=pkt(id=n,off=0,r=0)
5399 	 *
5400 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5401 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5402 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5403 	 * the check.
5404 	 */
5405 
5406 	/* If our ids match, then we must have the same max_value.  And we
5407 	 * don't care about the other reg's fixed offset, since if it's too big
5408 	 * the range won't allow anything.
5409 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5410 	 */
5411 	for (i = 0; i <= vstate->curframe; i++)
5412 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5413 					 new_range);
5414 }
5415 
5416 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5417  * and return:
5418  *  1 - branch will be taken and "goto target" will be executed
5419  *  0 - branch will not be taken and fall-through to next insn
5420  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5421  */
5422 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5423 			   bool is_jmp32)
5424 {
5425 	struct bpf_reg_state reg_lo;
5426 	s64 sval;
5427 
5428 	if (__is_pointer_value(false, reg))
5429 		return -1;
5430 
5431 	if (is_jmp32) {
5432 		reg_lo = *reg;
5433 		reg = &reg_lo;
5434 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5435 		 * could truncate high bits and update umin/umax according to
5436 		 * information of low bits.
5437 		 */
5438 		coerce_reg_to_size(reg, 4);
5439 		/* smin/smax need special handling. For example, after coerce,
5440 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5441 		 * used as operand to JMP32. It is a negative number from s32's
5442 		 * point of view, while it is a positive number when seen as
5443 		 * s64. The smin/smax are kept as s64, therefore, when used with
5444 		 * JMP32, they need to be transformed into s32, then sign
5445 		 * extended back to s64.
5446 		 *
5447 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5448 		 * different sign bit, then min/max relationship doesn't
5449 		 * maintain after casting into s32, for this case, set smin/smax
5450 		 * to safest range.
5451 		 */
5452 		if ((reg->umax_value ^ reg->umin_value) &
5453 		    (1ULL << 31)) {
5454 			reg->smin_value = S32_MIN;
5455 			reg->smax_value = S32_MAX;
5456 		}
5457 		reg->smin_value = (s64)(s32)reg->smin_value;
5458 		reg->smax_value = (s64)(s32)reg->smax_value;
5459 
5460 		val = (u32)val;
5461 		sval = (s64)(s32)val;
5462 	} else {
5463 		sval = (s64)val;
5464 	}
5465 
5466 	switch (opcode) {
5467 	case BPF_JEQ:
5468 		if (tnum_is_const(reg->var_off))
5469 			return !!tnum_equals_const(reg->var_off, val);
5470 		break;
5471 	case BPF_JNE:
5472 		if (tnum_is_const(reg->var_off))
5473 			return !tnum_equals_const(reg->var_off, val);
5474 		break;
5475 	case BPF_JSET:
5476 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5477 			return 1;
5478 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5479 			return 0;
5480 		break;
5481 	case BPF_JGT:
5482 		if (reg->umin_value > val)
5483 			return 1;
5484 		else if (reg->umax_value <= val)
5485 			return 0;
5486 		break;
5487 	case BPF_JSGT:
5488 		if (reg->smin_value > sval)
5489 			return 1;
5490 		else if (reg->smax_value < sval)
5491 			return 0;
5492 		break;
5493 	case BPF_JLT:
5494 		if (reg->umax_value < val)
5495 			return 1;
5496 		else if (reg->umin_value >= val)
5497 			return 0;
5498 		break;
5499 	case BPF_JSLT:
5500 		if (reg->smax_value < sval)
5501 			return 1;
5502 		else if (reg->smin_value >= sval)
5503 			return 0;
5504 		break;
5505 	case BPF_JGE:
5506 		if (reg->umin_value >= val)
5507 			return 1;
5508 		else if (reg->umax_value < val)
5509 			return 0;
5510 		break;
5511 	case BPF_JSGE:
5512 		if (reg->smin_value >= sval)
5513 			return 1;
5514 		else if (reg->smax_value < sval)
5515 			return 0;
5516 		break;
5517 	case BPF_JLE:
5518 		if (reg->umax_value <= val)
5519 			return 1;
5520 		else if (reg->umin_value > val)
5521 			return 0;
5522 		break;
5523 	case BPF_JSLE:
5524 		if (reg->smax_value <= sval)
5525 			return 1;
5526 		else if (reg->smin_value > sval)
5527 			return 0;
5528 		break;
5529 	}
5530 
5531 	return -1;
5532 }
5533 
5534 /* Generate min value of the high 32-bit from TNUM info. */
5535 static u64 gen_hi_min(struct tnum var)
5536 {
5537 	return var.value & ~0xffffffffULL;
5538 }
5539 
5540 /* Generate max value of the high 32-bit from TNUM info. */
5541 static u64 gen_hi_max(struct tnum var)
5542 {
5543 	return (var.value | var.mask) & ~0xffffffffULL;
5544 }
5545 
5546 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5547  * are with the same signedness.
5548  */
5549 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5550 {
5551 	return ((s32)sval >= 0 &&
5552 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5553 	       ((s32)sval < 0 &&
5554 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5555 }
5556 
5557 /* Adjusts the register min/max values in the case that the dst_reg is the
5558  * variable register that we are working on, and src_reg is a constant or we're
5559  * simply doing a BPF_K check.
5560  * In JEQ/JNE cases we also adjust the var_off values.
5561  */
5562 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5563 			    struct bpf_reg_state *false_reg, u64 val,
5564 			    u8 opcode, bool is_jmp32)
5565 {
5566 	s64 sval;
5567 
5568 	/* If the dst_reg is a pointer, we can't learn anything about its
5569 	 * variable offset from the compare (unless src_reg were a pointer into
5570 	 * the same object, but we don't bother with that.
5571 	 * Since false_reg and true_reg have the same type by construction, we
5572 	 * only need to check one of them for pointerness.
5573 	 */
5574 	if (__is_pointer_value(false, false_reg))
5575 		return;
5576 
5577 	val = is_jmp32 ? (u32)val : val;
5578 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5579 
5580 	switch (opcode) {
5581 	case BPF_JEQ:
5582 	case BPF_JNE:
5583 	{
5584 		struct bpf_reg_state *reg =
5585 			opcode == BPF_JEQ ? true_reg : false_reg;
5586 
5587 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5588 		 * if it is true we know the value for sure. Likewise for
5589 		 * BPF_JNE.
5590 		 */
5591 		if (is_jmp32) {
5592 			u64 old_v = reg->var_off.value;
5593 			u64 hi_mask = ~0xffffffffULL;
5594 
5595 			reg->var_off.value = (old_v & hi_mask) | val;
5596 			reg->var_off.mask &= hi_mask;
5597 		} else {
5598 			__mark_reg_known(reg, val);
5599 		}
5600 		break;
5601 	}
5602 	case BPF_JSET:
5603 		false_reg->var_off = tnum_and(false_reg->var_off,
5604 					      tnum_const(~val));
5605 		if (is_power_of_2(val))
5606 			true_reg->var_off = tnum_or(true_reg->var_off,
5607 						    tnum_const(val));
5608 		break;
5609 	case BPF_JGE:
5610 	case BPF_JGT:
5611 	{
5612 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5613 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5614 
5615 		if (is_jmp32) {
5616 			false_umax += gen_hi_max(false_reg->var_off);
5617 			true_umin += gen_hi_min(true_reg->var_off);
5618 		}
5619 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5620 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5621 		break;
5622 	}
5623 	case BPF_JSGE:
5624 	case BPF_JSGT:
5625 	{
5626 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5627 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5628 
5629 		/* If the full s64 was not sign-extended from s32 then don't
5630 		 * deduct further info.
5631 		 */
5632 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5633 			break;
5634 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5635 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5636 		break;
5637 	}
5638 	case BPF_JLE:
5639 	case BPF_JLT:
5640 	{
5641 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5642 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5643 
5644 		if (is_jmp32) {
5645 			false_umin += gen_hi_min(false_reg->var_off);
5646 			true_umax += gen_hi_max(true_reg->var_off);
5647 		}
5648 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5649 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5650 		break;
5651 	}
5652 	case BPF_JSLE:
5653 	case BPF_JSLT:
5654 	{
5655 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5656 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5657 
5658 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5659 			break;
5660 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5661 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5662 		break;
5663 	}
5664 	default:
5665 		break;
5666 	}
5667 
5668 	__reg_deduce_bounds(false_reg);
5669 	__reg_deduce_bounds(true_reg);
5670 	/* We might have learned some bits from the bounds. */
5671 	__reg_bound_offset(false_reg);
5672 	__reg_bound_offset(true_reg);
5673 	if (is_jmp32) {
5674 		__reg_bound_offset32(false_reg);
5675 		__reg_bound_offset32(true_reg);
5676 	}
5677 	/* Intersecting with the old var_off might have improved our bounds
5678 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5679 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5680 	 */
5681 	__update_reg_bounds(false_reg);
5682 	__update_reg_bounds(true_reg);
5683 }
5684 
5685 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5686  * the variable reg.
5687  */
5688 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5689 				struct bpf_reg_state *false_reg, u64 val,
5690 				u8 opcode, bool is_jmp32)
5691 {
5692 	s64 sval;
5693 
5694 	if (__is_pointer_value(false, false_reg))
5695 		return;
5696 
5697 	val = is_jmp32 ? (u32)val : val;
5698 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5699 
5700 	switch (opcode) {
5701 	case BPF_JEQ:
5702 	case BPF_JNE:
5703 	{
5704 		struct bpf_reg_state *reg =
5705 			opcode == BPF_JEQ ? true_reg : false_reg;
5706 
5707 		if (is_jmp32) {
5708 			u64 old_v = reg->var_off.value;
5709 			u64 hi_mask = ~0xffffffffULL;
5710 
5711 			reg->var_off.value = (old_v & hi_mask) | val;
5712 			reg->var_off.mask &= hi_mask;
5713 		} else {
5714 			__mark_reg_known(reg, val);
5715 		}
5716 		break;
5717 	}
5718 	case BPF_JSET:
5719 		false_reg->var_off = tnum_and(false_reg->var_off,
5720 					      tnum_const(~val));
5721 		if (is_power_of_2(val))
5722 			true_reg->var_off = tnum_or(true_reg->var_off,
5723 						    tnum_const(val));
5724 		break;
5725 	case BPF_JGE:
5726 	case BPF_JGT:
5727 	{
5728 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5729 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5730 
5731 		if (is_jmp32) {
5732 			false_umin += gen_hi_min(false_reg->var_off);
5733 			true_umax += gen_hi_max(true_reg->var_off);
5734 		}
5735 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5736 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5737 		break;
5738 	}
5739 	case BPF_JSGE:
5740 	case BPF_JSGT:
5741 	{
5742 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5743 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5744 
5745 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5746 			break;
5747 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5748 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5749 		break;
5750 	}
5751 	case BPF_JLE:
5752 	case BPF_JLT:
5753 	{
5754 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5755 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5756 
5757 		if (is_jmp32) {
5758 			false_umax += gen_hi_max(false_reg->var_off);
5759 			true_umin += gen_hi_min(true_reg->var_off);
5760 		}
5761 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5762 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5763 		break;
5764 	}
5765 	case BPF_JSLE:
5766 	case BPF_JSLT:
5767 	{
5768 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5769 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5770 
5771 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5772 			break;
5773 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5774 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5775 		break;
5776 	}
5777 	default:
5778 		break;
5779 	}
5780 
5781 	__reg_deduce_bounds(false_reg);
5782 	__reg_deduce_bounds(true_reg);
5783 	/* We might have learned some bits from the bounds. */
5784 	__reg_bound_offset(false_reg);
5785 	__reg_bound_offset(true_reg);
5786 	if (is_jmp32) {
5787 		__reg_bound_offset32(false_reg);
5788 		__reg_bound_offset32(true_reg);
5789 	}
5790 	/* Intersecting with the old var_off might have improved our bounds
5791 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5792 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5793 	 */
5794 	__update_reg_bounds(false_reg);
5795 	__update_reg_bounds(true_reg);
5796 }
5797 
5798 /* Regs are known to be equal, so intersect their min/max/var_off */
5799 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5800 				  struct bpf_reg_state *dst_reg)
5801 {
5802 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5803 							dst_reg->umin_value);
5804 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5805 							dst_reg->umax_value);
5806 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5807 							dst_reg->smin_value);
5808 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5809 							dst_reg->smax_value);
5810 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5811 							     dst_reg->var_off);
5812 	/* We might have learned new bounds from the var_off. */
5813 	__update_reg_bounds(src_reg);
5814 	__update_reg_bounds(dst_reg);
5815 	/* We might have learned something about the sign bit. */
5816 	__reg_deduce_bounds(src_reg);
5817 	__reg_deduce_bounds(dst_reg);
5818 	/* We might have learned some bits from the bounds. */
5819 	__reg_bound_offset(src_reg);
5820 	__reg_bound_offset(dst_reg);
5821 	/* Intersecting with the old var_off might have improved our bounds
5822 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5823 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5824 	 */
5825 	__update_reg_bounds(src_reg);
5826 	__update_reg_bounds(dst_reg);
5827 }
5828 
5829 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5830 				struct bpf_reg_state *true_dst,
5831 				struct bpf_reg_state *false_src,
5832 				struct bpf_reg_state *false_dst,
5833 				u8 opcode)
5834 {
5835 	switch (opcode) {
5836 	case BPF_JEQ:
5837 		__reg_combine_min_max(true_src, true_dst);
5838 		break;
5839 	case BPF_JNE:
5840 		__reg_combine_min_max(false_src, false_dst);
5841 		break;
5842 	}
5843 }
5844 
5845 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5846 				 struct bpf_reg_state *reg, u32 id,
5847 				 bool is_null)
5848 {
5849 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5850 		/* Old offset (both fixed and variable parts) should
5851 		 * have been known-zero, because we don't allow pointer
5852 		 * arithmetic on pointers that might be NULL.
5853 		 */
5854 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5855 				 !tnum_equals_const(reg->var_off, 0) ||
5856 				 reg->off)) {
5857 			__mark_reg_known_zero(reg);
5858 			reg->off = 0;
5859 		}
5860 		if (is_null) {
5861 			reg->type = SCALAR_VALUE;
5862 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5863 			if (reg->map_ptr->inner_map_meta) {
5864 				reg->type = CONST_PTR_TO_MAP;
5865 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5866 			} else if (reg->map_ptr->map_type ==
5867 				   BPF_MAP_TYPE_XSKMAP) {
5868 				reg->type = PTR_TO_XDP_SOCK;
5869 			} else {
5870 				reg->type = PTR_TO_MAP_VALUE;
5871 			}
5872 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5873 			reg->type = PTR_TO_SOCKET;
5874 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5875 			reg->type = PTR_TO_SOCK_COMMON;
5876 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5877 			reg->type = PTR_TO_TCP_SOCK;
5878 		}
5879 		if (is_null) {
5880 			/* We don't need id and ref_obj_id from this point
5881 			 * onwards anymore, thus we should better reset it,
5882 			 * so that state pruning has chances to take effect.
5883 			 */
5884 			reg->id = 0;
5885 			reg->ref_obj_id = 0;
5886 		} else if (!reg_may_point_to_spin_lock(reg)) {
5887 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5888 			 * in release_reg_references().
5889 			 *
5890 			 * reg->id is still used by spin_lock ptr. Other
5891 			 * than spin_lock ptr type, reg->id can be reset.
5892 			 */
5893 			reg->id = 0;
5894 		}
5895 	}
5896 }
5897 
5898 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5899 				    bool is_null)
5900 {
5901 	struct bpf_reg_state *reg;
5902 	int i;
5903 
5904 	for (i = 0; i < MAX_BPF_REG; i++)
5905 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5906 
5907 	bpf_for_each_spilled_reg(i, state, reg) {
5908 		if (!reg)
5909 			continue;
5910 		mark_ptr_or_null_reg(state, reg, id, is_null);
5911 	}
5912 }
5913 
5914 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5915  * be folded together at some point.
5916  */
5917 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5918 				  bool is_null)
5919 {
5920 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5921 	struct bpf_reg_state *regs = state->regs;
5922 	u32 ref_obj_id = regs[regno].ref_obj_id;
5923 	u32 id = regs[regno].id;
5924 	int i;
5925 
5926 	if (ref_obj_id && ref_obj_id == id && is_null)
5927 		/* regs[regno] is in the " == NULL" branch.
5928 		 * No one could have freed the reference state before
5929 		 * doing the NULL check.
5930 		 */
5931 		WARN_ON_ONCE(release_reference_state(state, id));
5932 
5933 	for (i = 0; i <= vstate->curframe; i++)
5934 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5935 }
5936 
5937 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5938 				   struct bpf_reg_state *dst_reg,
5939 				   struct bpf_reg_state *src_reg,
5940 				   struct bpf_verifier_state *this_branch,
5941 				   struct bpf_verifier_state *other_branch)
5942 {
5943 	if (BPF_SRC(insn->code) != BPF_X)
5944 		return false;
5945 
5946 	/* Pointers are always 64-bit. */
5947 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5948 		return false;
5949 
5950 	switch (BPF_OP(insn->code)) {
5951 	case BPF_JGT:
5952 		if ((dst_reg->type == PTR_TO_PACKET &&
5953 		     src_reg->type == PTR_TO_PACKET_END) ||
5954 		    (dst_reg->type == PTR_TO_PACKET_META &&
5955 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5956 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5957 			find_good_pkt_pointers(this_branch, dst_reg,
5958 					       dst_reg->type, false);
5959 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5960 			    src_reg->type == PTR_TO_PACKET) ||
5961 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5962 			    src_reg->type == PTR_TO_PACKET_META)) {
5963 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5964 			find_good_pkt_pointers(other_branch, src_reg,
5965 					       src_reg->type, true);
5966 		} else {
5967 			return false;
5968 		}
5969 		break;
5970 	case BPF_JLT:
5971 		if ((dst_reg->type == PTR_TO_PACKET &&
5972 		     src_reg->type == PTR_TO_PACKET_END) ||
5973 		    (dst_reg->type == PTR_TO_PACKET_META &&
5974 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5975 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5976 			find_good_pkt_pointers(other_branch, dst_reg,
5977 					       dst_reg->type, true);
5978 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5979 			    src_reg->type == PTR_TO_PACKET) ||
5980 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5981 			    src_reg->type == PTR_TO_PACKET_META)) {
5982 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5983 			find_good_pkt_pointers(this_branch, src_reg,
5984 					       src_reg->type, false);
5985 		} else {
5986 			return false;
5987 		}
5988 		break;
5989 	case BPF_JGE:
5990 		if ((dst_reg->type == PTR_TO_PACKET &&
5991 		     src_reg->type == PTR_TO_PACKET_END) ||
5992 		    (dst_reg->type == PTR_TO_PACKET_META &&
5993 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5994 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5995 			find_good_pkt_pointers(this_branch, dst_reg,
5996 					       dst_reg->type, true);
5997 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5998 			    src_reg->type == PTR_TO_PACKET) ||
5999 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6000 			    src_reg->type == PTR_TO_PACKET_META)) {
6001 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6002 			find_good_pkt_pointers(other_branch, src_reg,
6003 					       src_reg->type, false);
6004 		} else {
6005 			return false;
6006 		}
6007 		break;
6008 	case BPF_JLE:
6009 		if ((dst_reg->type == PTR_TO_PACKET &&
6010 		     src_reg->type == PTR_TO_PACKET_END) ||
6011 		    (dst_reg->type == PTR_TO_PACKET_META &&
6012 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6013 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6014 			find_good_pkt_pointers(other_branch, dst_reg,
6015 					       dst_reg->type, false);
6016 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6017 			    src_reg->type == PTR_TO_PACKET) ||
6018 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6019 			    src_reg->type == PTR_TO_PACKET_META)) {
6020 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6021 			find_good_pkt_pointers(this_branch, src_reg,
6022 					       src_reg->type, true);
6023 		} else {
6024 			return false;
6025 		}
6026 		break;
6027 	default:
6028 		return false;
6029 	}
6030 
6031 	return true;
6032 }
6033 
6034 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6035 			     struct bpf_insn *insn, int *insn_idx)
6036 {
6037 	struct bpf_verifier_state *this_branch = env->cur_state;
6038 	struct bpf_verifier_state *other_branch;
6039 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6040 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6041 	u8 opcode = BPF_OP(insn->code);
6042 	bool is_jmp32;
6043 	int pred = -1;
6044 	int err;
6045 
6046 	/* Only conditional jumps are expected to reach here. */
6047 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6048 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6049 		return -EINVAL;
6050 	}
6051 
6052 	if (BPF_SRC(insn->code) == BPF_X) {
6053 		if (insn->imm != 0) {
6054 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6055 			return -EINVAL;
6056 		}
6057 
6058 		/* check src1 operand */
6059 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6060 		if (err)
6061 			return err;
6062 
6063 		if (is_pointer_value(env, insn->src_reg)) {
6064 			verbose(env, "R%d pointer comparison prohibited\n",
6065 				insn->src_reg);
6066 			return -EACCES;
6067 		}
6068 		src_reg = &regs[insn->src_reg];
6069 	} else {
6070 		if (insn->src_reg != BPF_REG_0) {
6071 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6072 			return -EINVAL;
6073 		}
6074 	}
6075 
6076 	/* check src2 operand */
6077 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6078 	if (err)
6079 		return err;
6080 
6081 	dst_reg = &regs[insn->dst_reg];
6082 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6083 
6084 	if (BPF_SRC(insn->code) == BPF_K)
6085 		pred = is_branch_taken(dst_reg, insn->imm,
6086 				       opcode, is_jmp32);
6087 	else if (src_reg->type == SCALAR_VALUE &&
6088 		 tnum_is_const(src_reg->var_off))
6089 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6090 				       opcode, is_jmp32);
6091 	if (pred >= 0) {
6092 		err = mark_chain_precision(env, insn->dst_reg);
6093 		if (BPF_SRC(insn->code) == BPF_X && !err)
6094 			err = mark_chain_precision(env, insn->src_reg);
6095 		if (err)
6096 			return err;
6097 	}
6098 	if (pred == 1) {
6099 		/* only follow the goto, ignore fall-through */
6100 		*insn_idx += insn->off;
6101 		return 0;
6102 	} else if (pred == 0) {
6103 		/* only follow fall-through branch, since
6104 		 * that's where the program will go
6105 		 */
6106 		return 0;
6107 	}
6108 
6109 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6110 				  false);
6111 	if (!other_branch)
6112 		return -EFAULT;
6113 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6114 
6115 	/* detect if we are comparing against a constant value so we can adjust
6116 	 * our min/max values for our dst register.
6117 	 * this is only legit if both are scalars (or pointers to the same
6118 	 * object, I suppose, but we don't support that right now), because
6119 	 * otherwise the different base pointers mean the offsets aren't
6120 	 * comparable.
6121 	 */
6122 	if (BPF_SRC(insn->code) == BPF_X) {
6123 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6124 		struct bpf_reg_state lo_reg0 = *dst_reg;
6125 		struct bpf_reg_state lo_reg1 = *src_reg;
6126 		struct bpf_reg_state *src_lo, *dst_lo;
6127 
6128 		dst_lo = &lo_reg0;
6129 		src_lo = &lo_reg1;
6130 		coerce_reg_to_size(dst_lo, 4);
6131 		coerce_reg_to_size(src_lo, 4);
6132 
6133 		if (dst_reg->type == SCALAR_VALUE &&
6134 		    src_reg->type == SCALAR_VALUE) {
6135 			if (tnum_is_const(src_reg->var_off) ||
6136 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
6137 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6138 						dst_reg,
6139 						is_jmp32
6140 						? src_lo->var_off.value
6141 						: src_reg->var_off.value,
6142 						opcode, is_jmp32);
6143 			else if (tnum_is_const(dst_reg->var_off) ||
6144 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
6145 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6146 						    src_reg,
6147 						    is_jmp32
6148 						    ? dst_lo->var_off.value
6149 						    : dst_reg->var_off.value,
6150 						    opcode, is_jmp32);
6151 			else if (!is_jmp32 &&
6152 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6153 				/* Comparing for equality, we can combine knowledge */
6154 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6155 						    &other_branch_regs[insn->dst_reg],
6156 						    src_reg, dst_reg, opcode);
6157 		}
6158 	} else if (dst_reg->type == SCALAR_VALUE) {
6159 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6160 					dst_reg, insn->imm, opcode, is_jmp32);
6161 	}
6162 
6163 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6164 	 * NOTE: these optimizations below are related with pointer comparison
6165 	 *       which will never be JMP32.
6166 	 */
6167 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6168 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6169 	    reg_type_may_be_null(dst_reg->type)) {
6170 		/* Mark all identical registers in each branch as either
6171 		 * safe or unknown depending R == 0 or R != 0 conditional.
6172 		 */
6173 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6174 				      opcode == BPF_JNE);
6175 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6176 				      opcode == BPF_JEQ);
6177 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6178 					   this_branch, other_branch) &&
6179 		   is_pointer_value(env, insn->dst_reg)) {
6180 		verbose(env, "R%d pointer comparison prohibited\n",
6181 			insn->dst_reg);
6182 		return -EACCES;
6183 	}
6184 	if (env->log.level & BPF_LOG_LEVEL)
6185 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6186 	return 0;
6187 }
6188 
6189 /* verify BPF_LD_IMM64 instruction */
6190 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6191 {
6192 	struct bpf_insn_aux_data *aux = cur_aux(env);
6193 	struct bpf_reg_state *regs = cur_regs(env);
6194 	struct bpf_map *map;
6195 	int err;
6196 
6197 	if (BPF_SIZE(insn->code) != BPF_DW) {
6198 		verbose(env, "invalid BPF_LD_IMM insn\n");
6199 		return -EINVAL;
6200 	}
6201 	if (insn->off != 0) {
6202 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6203 		return -EINVAL;
6204 	}
6205 
6206 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6207 	if (err)
6208 		return err;
6209 
6210 	if (insn->src_reg == 0) {
6211 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6212 
6213 		regs[insn->dst_reg].type = SCALAR_VALUE;
6214 		__mark_reg_known(&regs[insn->dst_reg], imm);
6215 		return 0;
6216 	}
6217 
6218 	map = env->used_maps[aux->map_index];
6219 	mark_reg_known_zero(env, regs, insn->dst_reg);
6220 	regs[insn->dst_reg].map_ptr = map;
6221 
6222 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6223 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6224 		regs[insn->dst_reg].off = aux->map_off;
6225 		if (map_value_has_spin_lock(map))
6226 			regs[insn->dst_reg].id = ++env->id_gen;
6227 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6228 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6229 	} else {
6230 		verbose(env, "bpf verifier is misconfigured\n");
6231 		return -EINVAL;
6232 	}
6233 
6234 	return 0;
6235 }
6236 
6237 static bool may_access_skb(enum bpf_prog_type type)
6238 {
6239 	switch (type) {
6240 	case BPF_PROG_TYPE_SOCKET_FILTER:
6241 	case BPF_PROG_TYPE_SCHED_CLS:
6242 	case BPF_PROG_TYPE_SCHED_ACT:
6243 		return true;
6244 	default:
6245 		return false;
6246 	}
6247 }
6248 
6249 /* verify safety of LD_ABS|LD_IND instructions:
6250  * - they can only appear in the programs where ctx == skb
6251  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6252  *   preserve R6-R9, and store return value into R0
6253  *
6254  * Implicit input:
6255  *   ctx == skb == R6 == CTX
6256  *
6257  * Explicit input:
6258  *   SRC == any register
6259  *   IMM == 32-bit immediate
6260  *
6261  * Output:
6262  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6263  */
6264 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6265 {
6266 	struct bpf_reg_state *regs = cur_regs(env);
6267 	u8 mode = BPF_MODE(insn->code);
6268 	int i, err;
6269 
6270 	if (!may_access_skb(env->prog->type)) {
6271 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6272 		return -EINVAL;
6273 	}
6274 
6275 	if (!env->ops->gen_ld_abs) {
6276 		verbose(env, "bpf verifier is misconfigured\n");
6277 		return -EINVAL;
6278 	}
6279 
6280 	if (env->subprog_cnt > 1) {
6281 		/* when program has LD_ABS insn JITs and interpreter assume
6282 		 * that r1 == ctx == skb which is not the case for callees
6283 		 * that can have arbitrary arguments. It's problematic
6284 		 * for main prog as well since JITs would need to analyze
6285 		 * all functions in order to make proper register save/restore
6286 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6287 		 */
6288 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6289 		return -EINVAL;
6290 	}
6291 
6292 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6293 	    BPF_SIZE(insn->code) == BPF_DW ||
6294 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6295 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6296 		return -EINVAL;
6297 	}
6298 
6299 	/* check whether implicit source operand (register R6) is readable */
6300 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6301 	if (err)
6302 		return err;
6303 
6304 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6305 	 * gen_ld_abs() may terminate the program at runtime, leading to
6306 	 * reference leak.
6307 	 */
6308 	err = check_reference_leak(env);
6309 	if (err) {
6310 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6311 		return err;
6312 	}
6313 
6314 	if (env->cur_state->active_spin_lock) {
6315 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6316 		return -EINVAL;
6317 	}
6318 
6319 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6320 		verbose(env,
6321 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6322 		return -EINVAL;
6323 	}
6324 
6325 	if (mode == BPF_IND) {
6326 		/* check explicit source operand */
6327 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6328 		if (err)
6329 			return err;
6330 	}
6331 
6332 	/* reset caller saved regs to unreadable */
6333 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6334 		mark_reg_not_init(env, regs, caller_saved[i]);
6335 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6336 	}
6337 
6338 	/* mark destination R0 register as readable, since it contains
6339 	 * the value fetched from the packet.
6340 	 * Already marked as written above.
6341 	 */
6342 	mark_reg_unknown(env, regs, BPF_REG_0);
6343 	/* ld_abs load up to 32-bit skb data. */
6344 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6345 	return 0;
6346 }
6347 
6348 static int check_return_code(struct bpf_verifier_env *env)
6349 {
6350 	struct tnum enforce_attach_type_range = tnum_unknown;
6351 	struct bpf_reg_state *reg;
6352 	struct tnum range = tnum_range(0, 1);
6353 
6354 	switch (env->prog->type) {
6355 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6356 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6357 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6358 			range = tnum_range(1, 1);
6359 		break;
6360 	case BPF_PROG_TYPE_CGROUP_SKB:
6361 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6362 			range = tnum_range(0, 3);
6363 			enforce_attach_type_range = tnum_range(2, 3);
6364 		}
6365 		break;
6366 	case BPF_PROG_TYPE_CGROUP_SOCK:
6367 	case BPF_PROG_TYPE_SOCK_OPS:
6368 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6369 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6370 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6371 		break;
6372 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6373 		if (!env->prog->aux->attach_btf_id)
6374 			return 0;
6375 		range = tnum_const(0);
6376 		break;
6377 	default:
6378 		return 0;
6379 	}
6380 
6381 	reg = cur_regs(env) + BPF_REG_0;
6382 	if (reg->type != SCALAR_VALUE) {
6383 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6384 			reg_type_str[reg->type]);
6385 		return -EINVAL;
6386 	}
6387 
6388 	if (!tnum_in(range, reg->var_off)) {
6389 		char tn_buf[48];
6390 
6391 		verbose(env, "At program exit the register R0 ");
6392 		if (!tnum_is_unknown(reg->var_off)) {
6393 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6394 			verbose(env, "has value %s", tn_buf);
6395 		} else {
6396 			verbose(env, "has unknown scalar value");
6397 		}
6398 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6399 		verbose(env, " should have been in %s\n", tn_buf);
6400 		return -EINVAL;
6401 	}
6402 
6403 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6404 	    tnum_in(enforce_attach_type_range, reg->var_off))
6405 		env->prog->enforce_expected_attach_type = 1;
6406 	return 0;
6407 }
6408 
6409 /* non-recursive DFS pseudo code
6410  * 1  procedure DFS-iterative(G,v):
6411  * 2      label v as discovered
6412  * 3      let S be a stack
6413  * 4      S.push(v)
6414  * 5      while S is not empty
6415  * 6            t <- S.pop()
6416  * 7            if t is what we're looking for:
6417  * 8                return t
6418  * 9            for all edges e in G.adjacentEdges(t) do
6419  * 10               if edge e is already labelled
6420  * 11                   continue with the next edge
6421  * 12               w <- G.adjacentVertex(t,e)
6422  * 13               if vertex w is not discovered and not explored
6423  * 14                   label e as tree-edge
6424  * 15                   label w as discovered
6425  * 16                   S.push(w)
6426  * 17                   continue at 5
6427  * 18               else if vertex w is discovered
6428  * 19                   label e as back-edge
6429  * 20               else
6430  * 21                   // vertex w is explored
6431  * 22                   label e as forward- or cross-edge
6432  * 23           label t as explored
6433  * 24           S.pop()
6434  *
6435  * convention:
6436  * 0x10 - discovered
6437  * 0x11 - discovered and fall-through edge labelled
6438  * 0x12 - discovered and fall-through and branch edges labelled
6439  * 0x20 - explored
6440  */
6441 
6442 enum {
6443 	DISCOVERED = 0x10,
6444 	EXPLORED = 0x20,
6445 	FALLTHROUGH = 1,
6446 	BRANCH = 2,
6447 };
6448 
6449 static u32 state_htab_size(struct bpf_verifier_env *env)
6450 {
6451 	return env->prog->len;
6452 }
6453 
6454 static struct bpf_verifier_state_list **explored_state(
6455 					struct bpf_verifier_env *env,
6456 					int idx)
6457 {
6458 	struct bpf_verifier_state *cur = env->cur_state;
6459 	struct bpf_func_state *state = cur->frame[cur->curframe];
6460 
6461 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6462 }
6463 
6464 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6465 {
6466 	env->insn_aux_data[idx].prune_point = true;
6467 }
6468 
6469 /* t, w, e - match pseudo-code above:
6470  * t - index of current instruction
6471  * w - next instruction
6472  * e - edge
6473  */
6474 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6475 		     bool loop_ok)
6476 {
6477 	int *insn_stack = env->cfg.insn_stack;
6478 	int *insn_state = env->cfg.insn_state;
6479 
6480 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6481 		return 0;
6482 
6483 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6484 		return 0;
6485 
6486 	if (w < 0 || w >= env->prog->len) {
6487 		verbose_linfo(env, t, "%d: ", t);
6488 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6489 		return -EINVAL;
6490 	}
6491 
6492 	if (e == BRANCH)
6493 		/* mark branch target for state pruning */
6494 		init_explored_state(env, w);
6495 
6496 	if (insn_state[w] == 0) {
6497 		/* tree-edge */
6498 		insn_state[t] = DISCOVERED | e;
6499 		insn_state[w] = DISCOVERED;
6500 		if (env->cfg.cur_stack >= env->prog->len)
6501 			return -E2BIG;
6502 		insn_stack[env->cfg.cur_stack++] = w;
6503 		return 1;
6504 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6505 		if (loop_ok && env->allow_ptr_leaks)
6506 			return 0;
6507 		verbose_linfo(env, t, "%d: ", t);
6508 		verbose_linfo(env, w, "%d: ", w);
6509 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6510 		return -EINVAL;
6511 	} else if (insn_state[w] == EXPLORED) {
6512 		/* forward- or cross-edge */
6513 		insn_state[t] = DISCOVERED | e;
6514 	} else {
6515 		verbose(env, "insn state internal bug\n");
6516 		return -EFAULT;
6517 	}
6518 	return 0;
6519 }
6520 
6521 /* non-recursive depth-first-search to detect loops in BPF program
6522  * loop == back-edge in directed graph
6523  */
6524 static int check_cfg(struct bpf_verifier_env *env)
6525 {
6526 	struct bpf_insn *insns = env->prog->insnsi;
6527 	int insn_cnt = env->prog->len;
6528 	int *insn_stack, *insn_state;
6529 	int ret = 0;
6530 	int i, t;
6531 
6532 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6533 	if (!insn_state)
6534 		return -ENOMEM;
6535 
6536 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6537 	if (!insn_stack) {
6538 		kvfree(insn_state);
6539 		return -ENOMEM;
6540 	}
6541 
6542 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6543 	insn_stack[0] = 0; /* 0 is the first instruction */
6544 	env->cfg.cur_stack = 1;
6545 
6546 peek_stack:
6547 	if (env->cfg.cur_stack == 0)
6548 		goto check_state;
6549 	t = insn_stack[env->cfg.cur_stack - 1];
6550 
6551 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6552 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6553 		u8 opcode = BPF_OP(insns[t].code);
6554 
6555 		if (opcode == BPF_EXIT) {
6556 			goto mark_explored;
6557 		} else if (opcode == BPF_CALL) {
6558 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6559 			if (ret == 1)
6560 				goto peek_stack;
6561 			else if (ret < 0)
6562 				goto err_free;
6563 			if (t + 1 < insn_cnt)
6564 				init_explored_state(env, t + 1);
6565 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6566 				init_explored_state(env, t);
6567 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6568 						env, false);
6569 				if (ret == 1)
6570 					goto peek_stack;
6571 				else if (ret < 0)
6572 					goto err_free;
6573 			}
6574 		} else if (opcode == BPF_JA) {
6575 			if (BPF_SRC(insns[t].code) != BPF_K) {
6576 				ret = -EINVAL;
6577 				goto err_free;
6578 			}
6579 			/* unconditional jump with single edge */
6580 			ret = push_insn(t, t + insns[t].off + 1,
6581 					FALLTHROUGH, env, true);
6582 			if (ret == 1)
6583 				goto peek_stack;
6584 			else if (ret < 0)
6585 				goto err_free;
6586 			/* unconditional jmp is not a good pruning point,
6587 			 * but it's marked, since backtracking needs
6588 			 * to record jmp history in is_state_visited().
6589 			 */
6590 			init_explored_state(env, t + insns[t].off + 1);
6591 			/* tell verifier to check for equivalent states
6592 			 * after every call and jump
6593 			 */
6594 			if (t + 1 < insn_cnt)
6595 				init_explored_state(env, t + 1);
6596 		} else {
6597 			/* conditional jump with two edges */
6598 			init_explored_state(env, t);
6599 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6600 			if (ret == 1)
6601 				goto peek_stack;
6602 			else if (ret < 0)
6603 				goto err_free;
6604 
6605 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6606 			if (ret == 1)
6607 				goto peek_stack;
6608 			else if (ret < 0)
6609 				goto err_free;
6610 		}
6611 	} else {
6612 		/* all other non-branch instructions with single
6613 		 * fall-through edge
6614 		 */
6615 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6616 		if (ret == 1)
6617 			goto peek_stack;
6618 		else if (ret < 0)
6619 			goto err_free;
6620 	}
6621 
6622 mark_explored:
6623 	insn_state[t] = EXPLORED;
6624 	if (env->cfg.cur_stack-- <= 0) {
6625 		verbose(env, "pop stack internal bug\n");
6626 		ret = -EFAULT;
6627 		goto err_free;
6628 	}
6629 	goto peek_stack;
6630 
6631 check_state:
6632 	for (i = 0; i < insn_cnt; i++) {
6633 		if (insn_state[i] != EXPLORED) {
6634 			verbose(env, "unreachable insn %d\n", i);
6635 			ret = -EINVAL;
6636 			goto err_free;
6637 		}
6638 	}
6639 	ret = 0; /* cfg looks good */
6640 
6641 err_free:
6642 	kvfree(insn_state);
6643 	kvfree(insn_stack);
6644 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6645 	return ret;
6646 }
6647 
6648 /* The minimum supported BTF func info size */
6649 #define MIN_BPF_FUNCINFO_SIZE	8
6650 #define MAX_FUNCINFO_REC_SIZE	252
6651 
6652 static int check_btf_func(struct bpf_verifier_env *env,
6653 			  const union bpf_attr *attr,
6654 			  union bpf_attr __user *uattr)
6655 {
6656 	u32 i, nfuncs, urec_size, min_size;
6657 	u32 krec_size = sizeof(struct bpf_func_info);
6658 	struct bpf_func_info *krecord;
6659 	struct bpf_func_info_aux *info_aux = NULL;
6660 	const struct btf_type *type;
6661 	struct bpf_prog *prog;
6662 	const struct btf *btf;
6663 	void __user *urecord;
6664 	u32 prev_offset = 0;
6665 	int ret = 0;
6666 
6667 	nfuncs = attr->func_info_cnt;
6668 	if (!nfuncs)
6669 		return 0;
6670 
6671 	if (nfuncs != env->subprog_cnt) {
6672 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6673 		return -EINVAL;
6674 	}
6675 
6676 	urec_size = attr->func_info_rec_size;
6677 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6678 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6679 	    urec_size % sizeof(u32)) {
6680 		verbose(env, "invalid func info rec size %u\n", urec_size);
6681 		return -EINVAL;
6682 	}
6683 
6684 	prog = env->prog;
6685 	btf = prog->aux->btf;
6686 
6687 	urecord = u64_to_user_ptr(attr->func_info);
6688 	min_size = min_t(u32, krec_size, urec_size);
6689 
6690 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6691 	if (!krecord)
6692 		return -ENOMEM;
6693 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6694 	if (!info_aux)
6695 		goto err_free;
6696 
6697 	for (i = 0; i < nfuncs; i++) {
6698 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6699 		if (ret) {
6700 			if (ret == -E2BIG) {
6701 				verbose(env, "nonzero tailing record in func info");
6702 				/* set the size kernel expects so loader can zero
6703 				 * out the rest of the record.
6704 				 */
6705 				if (put_user(min_size, &uattr->func_info_rec_size))
6706 					ret = -EFAULT;
6707 			}
6708 			goto err_free;
6709 		}
6710 
6711 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6712 			ret = -EFAULT;
6713 			goto err_free;
6714 		}
6715 
6716 		/* check insn_off */
6717 		if (i == 0) {
6718 			if (krecord[i].insn_off) {
6719 				verbose(env,
6720 					"nonzero insn_off %u for the first func info record",
6721 					krecord[i].insn_off);
6722 				ret = -EINVAL;
6723 				goto err_free;
6724 			}
6725 		} else if (krecord[i].insn_off <= prev_offset) {
6726 			verbose(env,
6727 				"same or smaller insn offset (%u) than previous func info record (%u)",
6728 				krecord[i].insn_off, prev_offset);
6729 			ret = -EINVAL;
6730 			goto err_free;
6731 		}
6732 
6733 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6734 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6735 			ret = -EINVAL;
6736 			goto err_free;
6737 		}
6738 
6739 		/* check type_id */
6740 		type = btf_type_by_id(btf, krecord[i].type_id);
6741 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6742 			verbose(env, "invalid type id %d in func info",
6743 				krecord[i].type_id);
6744 			ret = -EINVAL;
6745 			goto err_free;
6746 		}
6747 		prev_offset = krecord[i].insn_off;
6748 		urecord += urec_size;
6749 	}
6750 
6751 	prog->aux->func_info = krecord;
6752 	prog->aux->func_info_cnt = nfuncs;
6753 	prog->aux->func_info_aux = info_aux;
6754 	return 0;
6755 
6756 err_free:
6757 	kvfree(krecord);
6758 	kfree(info_aux);
6759 	return ret;
6760 }
6761 
6762 static void adjust_btf_func(struct bpf_verifier_env *env)
6763 {
6764 	struct bpf_prog_aux *aux = env->prog->aux;
6765 	int i;
6766 
6767 	if (!aux->func_info)
6768 		return;
6769 
6770 	for (i = 0; i < env->subprog_cnt; i++)
6771 		aux->func_info[i].insn_off = env->subprog_info[i].start;
6772 }
6773 
6774 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6775 		sizeof(((struct bpf_line_info *)(0))->line_col))
6776 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6777 
6778 static int check_btf_line(struct bpf_verifier_env *env,
6779 			  const union bpf_attr *attr,
6780 			  union bpf_attr __user *uattr)
6781 {
6782 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6783 	struct bpf_subprog_info *sub;
6784 	struct bpf_line_info *linfo;
6785 	struct bpf_prog *prog;
6786 	const struct btf *btf;
6787 	void __user *ulinfo;
6788 	int err;
6789 
6790 	nr_linfo = attr->line_info_cnt;
6791 	if (!nr_linfo)
6792 		return 0;
6793 
6794 	rec_size = attr->line_info_rec_size;
6795 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6796 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6797 	    rec_size & (sizeof(u32) - 1))
6798 		return -EINVAL;
6799 
6800 	/* Need to zero it in case the userspace may
6801 	 * pass in a smaller bpf_line_info object.
6802 	 */
6803 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6804 			 GFP_KERNEL | __GFP_NOWARN);
6805 	if (!linfo)
6806 		return -ENOMEM;
6807 
6808 	prog = env->prog;
6809 	btf = prog->aux->btf;
6810 
6811 	s = 0;
6812 	sub = env->subprog_info;
6813 	ulinfo = u64_to_user_ptr(attr->line_info);
6814 	expected_size = sizeof(struct bpf_line_info);
6815 	ncopy = min_t(u32, expected_size, rec_size);
6816 	for (i = 0; i < nr_linfo; i++) {
6817 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6818 		if (err) {
6819 			if (err == -E2BIG) {
6820 				verbose(env, "nonzero tailing record in line_info");
6821 				if (put_user(expected_size,
6822 					     &uattr->line_info_rec_size))
6823 					err = -EFAULT;
6824 			}
6825 			goto err_free;
6826 		}
6827 
6828 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6829 			err = -EFAULT;
6830 			goto err_free;
6831 		}
6832 
6833 		/*
6834 		 * Check insn_off to ensure
6835 		 * 1) strictly increasing AND
6836 		 * 2) bounded by prog->len
6837 		 *
6838 		 * The linfo[0].insn_off == 0 check logically falls into
6839 		 * the later "missing bpf_line_info for func..." case
6840 		 * because the first linfo[0].insn_off must be the
6841 		 * first sub also and the first sub must have
6842 		 * subprog_info[0].start == 0.
6843 		 */
6844 		if ((i && linfo[i].insn_off <= prev_offset) ||
6845 		    linfo[i].insn_off >= prog->len) {
6846 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6847 				i, linfo[i].insn_off, prev_offset,
6848 				prog->len);
6849 			err = -EINVAL;
6850 			goto err_free;
6851 		}
6852 
6853 		if (!prog->insnsi[linfo[i].insn_off].code) {
6854 			verbose(env,
6855 				"Invalid insn code at line_info[%u].insn_off\n",
6856 				i);
6857 			err = -EINVAL;
6858 			goto err_free;
6859 		}
6860 
6861 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6862 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6863 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6864 			err = -EINVAL;
6865 			goto err_free;
6866 		}
6867 
6868 		if (s != env->subprog_cnt) {
6869 			if (linfo[i].insn_off == sub[s].start) {
6870 				sub[s].linfo_idx = i;
6871 				s++;
6872 			} else if (sub[s].start < linfo[i].insn_off) {
6873 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6874 				err = -EINVAL;
6875 				goto err_free;
6876 			}
6877 		}
6878 
6879 		prev_offset = linfo[i].insn_off;
6880 		ulinfo += rec_size;
6881 	}
6882 
6883 	if (s != env->subprog_cnt) {
6884 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6885 			env->subprog_cnt - s, s);
6886 		err = -EINVAL;
6887 		goto err_free;
6888 	}
6889 
6890 	prog->aux->linfo = linfo;
6891 	prog->aux->nr_linfo = nr_linfo;
6892 
6893 	return 0;
6894 
6895 err_free:
6896 	kvfree(linfo);
6897 	return err;
6898 }
6899 
6900 static int check_btf_info(struct bpf_verifier_env *env,
6901 			  const union bpf_attr *attr,
6902 			  union bpf_attr __user *uattr)
6903 {
6904 	struct btf *btf;
6905 	int err;
6906 
6907 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6908 		return 0;
6909 
6910 	btf = btf_get_by_fd(attr->prog_btf_fd);
6911 	if (IS_ERR(btf))
6912 		return PTR_ERR(btf);
6913 	env->prog->aux->btf = btf;
6914 
6915 	err = check_btf_func(env, attr, uattr);
6916 	if (err)
6917 		return err;
6918 
6919 	err = check_btf_line(env, attr, uattr);
6920 	if (err)
6921 		return err;
6922 
6923 	return 0;
6924 }
6925 
6926 /* check %cur's range satisfies %old's */
6927 static bool range_within(struct bpf_reg_state *old,
6928 			 struct bpf_reg_state *cur)
6929 {
6930 	return old->umin_value <= cur->umin_value &&
6931 	       old->umax_value >= cur->umax_value &&
6932 	       old->smin_value <= cur->smin_value &&
6933 	       old->smax_value >= cur->smax_value;
6934 }
6935 
6936 /* Maximum number of register states that can exist at once */
6937 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6938 struct idpair {
6939 	u32 old;
6940 	u32 cur;
6941 };
6942 
6943 /* If in the old state two registers had the same id, then they need to have
6944  * the same id in the new state as well.  But that id could be different from
6945  * the old state, so we need to track the mapping from old to new ids.
6946  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6947  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6948  * regs with a different old id could still have new id 9, we don't care about
6949  * that.
6950  * So we look through our idmap to see if this old id has been seen before.  If
6951  * so, we require the new id to match; otherwise, we add the id pair to the map.
6952  */
6953 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6954 {
6955 	unsigned int i;
6956 
6957 	for (i = 0; i < ID_MAP_SIZE; i++) {
6958 		if (!idmap[i].old) {
6959 			/* Reached an empty slot; haven't seen this id before */
6960 			idmap[i].old = old_id;
6961 			idmap[i].cur = cur_id;
6962 			return true;
6963 		}
6964 		if (idmap[i].old == old_id)
6965 			return idmap[i].cur == cur_id;
6966 	}
6967 	/* We ran out of idmap slots, which should be impossible */
6968 	WARN_ON_ONCE(1);
6969 	return false;
6970 }
6971 
6972 static void clean_func_state(struct bpf_verifier_env *env,
6973 			     struct bpf_func_state *st)
6974 {
6975 	enum bpf_reg_liveness live;
6976 	int i, j;
6977 
6978 	for (i = 0; i < BPF_REG_FP; i++) {
6979 		live = st->regs[i].live;
6980 		/* liveness must not touch this register anymore */
6981 		st->regs[i].live |= REG_LIVE_DONE;
6982 		if (!(live & REG_LIVE_READ))
6983 			/* since the register is unused, clear its state
6984 			 * to make further comparison simpler
6985 			 */
6986 			__mark_reg_not_init(env, &st->regs[i]);
6987 	}
6988 
6989 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6990 		live = st->stack[i].spilled_ptr.live;
6991 		/* liveness must not touch this stack slot anymore */
6992 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6993 		if (!(live & REG_LIVE_READ)) {
6994 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
6995 			for (j = 0; j < BPF_REG_SIZE; j++)
6996 				st->stack[i].slot_type[j] = STACK_INVALID;
6997 		}
6998 	}
6999 }
7000 
7001 static void clean_verifier_state(struct bpf_verifier_env *env,
7002 				 struct bpf_verifier_state *st)
7003 {
7004 	int i;
7005 
7006 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7007 		/* all regs in this state in all frames were already marked */
7008 		return;
7009 
7010 	for (i = 0; i <= st->curframe; i++)
7011 		clean_func_state(env, st->frame[i]);
7012 }
7013 
7014 /* the parentage chains form a tree.
7015  * the verifier states are added to state lists at given insn and
7016  * pushed into state stack for future exploration.
7017  * when the verifier reaches bpf_exit insn some of the verifer states
7018  * stored in the state lists have their final liveness state already,
7019  * but a lot of states will get revised from liveness point of view when
7020  * the verifier explores other branches.
7021  * Example:
7022  * 1: r0 = 1
7023  * 2: if r1 == 100 goto pc+1
7024  * 3: r0 = 2
7025  * 4: exit
7026  * when the verifier reaches exit insn the register r0 in the state list of
7027  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7028  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7029  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7030  *
7031  * Since the verifier pushes the branch states as it sees them while exploring
7032  * the program the condition of walking the branch instruction for the second
7033  * time means that all states below this branch were already explored and
7034  * their final liveness markes are already propagated.
7035  * Hence when the verifier completes the search of state list in is_state_visited()
7036  * we can call this clean_live_states() function to mark all liveness states
7037  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7038  * will not be used.
7039  * This function also clears the registers and stack for states that !READ
7040  * to simplify state merging.
7041  *
7042  * Important note here that walking the same branch instruction in the callee
7043  * doesn't meant that the states are DONE. The verifier has to compare
7044  * the callsites
7045  */
7046 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7047 			      struct bpf_verifier_state *cur)
7048 {
7049 	struct bpf_verifier_state_list *sl;
7050 	int i;
7051 
7052 	sl = *explored_state(env, insn);
7053 	while (sl) {
7054 		if (sl->state.branches)
7055 			goto next;
7056 		if (sl->state.insn_idx != insn ||
7057 		    sl->state.curframe != cur->curframe)
7058 			goto next;
7059 		for (i = 0; i <= cur->curframe; i++)
7060 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7061 				goto next;
7062 		clean_verifier_state(env, &sl->state);
7063 next:
7064 		sl = sl->next;
7065 	}
7066 }
7067 
7068 /* Returns true if (rold safe implies rcur safe) */
7069 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7070 		    struct idpair *idmap)
7071 {
7072 	bool equal;
7073 
7074 	if (!(rold->live & REG_LIVE_READ))
7075 		/* explored state didn't use this */
7076 		return true;
7077 
7078 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7079 
7080 	if (rold->type == PTR_TO_STACK)
7081 		/* two stack pointers are equal only if they're pointing to
7082 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7083 		 */
7084 		return equal && rold->frameno == rcur->frameno;
7085 
7086 	if (equal)
7087 		return true;
7088 
7089 	if (rold->type == NOT_INIT)
7090 		/* explored state can't have used this */
7091 		return true;
7092 	if (rcur->type == NOT_INIT)
7093 		return false;
7094 	switch (rold->type) {
7095 	case SCALAR_VALUE:
7096 		if (rcur->type == SCALAR_VALUE) {
7097 			if (!rold->precise && !rcur->precise)
7098 				return true;
7099 			/* new val must satisfy old val knowledge */
7100 			return range_within(rold, rcur) &&
7101 			       tnum_in(rold->var_off, rcur->var_off);
7102 		} else {
7103 			/* We're trying to use a pointer in place of a scalar.
7104 			 * Even if the scalar was unbounded, this could lead to
7105 			 * pointer leaks because scalars are allowed to leak
7106 			 * while pointers are not. We could make this safe in
7107 			 * special cases if root is calling us, but it's
7108 			 * probably not worth the hassle.
7109 			 */
7110 			return false;
7111 		}
7112 	case PTR_TO_MAP_VALUE:
7113 		/* If the new min/max/var_off satisfy the old ones and
7114 		 * everything else matches, we are OK.
7115 		 * 'id' is not compared, since it's only used for maps with
7116 		 * bpf_spin_lock inside map element and in such cases if
7117 		 * the rest of the prog is valid for one map element then
7118 		 * it's valid for all map elements regardless of the key
7119 		 * used in bpf_map_lookup()
7120 		 */
7121 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7122 		       range_within(rold, rcur) &&
7123 		       tnum_in(rold->var_off, rcur->var_off);
7124 	case PTR_TO_MAP_VALUE_OR_NULL:
7125 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7126 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7127 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7128 		 * checked, doing so could have affected others with the same
7129 		 * id, and we can't check for that because we lost the id when
7130 		 * we converted to a PTR_TO_MAP_VALUE.
7131 		 */
7132 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7133 			return false;
7134 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7135 			return false;
7136 		/* Check our ids match any regs they're supposed to */
7137 		return check_ids(rold->id, rcur->id, idmap);
7138 	case PTR_TO_PACKET_META:
7139 	case PTR_TO_PACKET:
7140 		if (rcur->type != rold->type)
7141 			return false;
7142 		/* We must have at least as much range as the old ptr
7143 		 * did, so that any accesses which were safe before are
7144 		 * still safe.  This is true even if old range < old off,
7145 		 * since someone could have accessed through (ptr - k), or
7146 		 * even done ptr -= k in a register, to get a safe access.
7147 		 */
7148 		if (rold->range > rcur->range)
7149 			return false;
7150 		/* If the offsets don't match, we can't trust our alignment;
7151 		 * nor can we be sure that we won't fall out of range.
7152 		 */
7153 		if (rold->off != rcur->off)
7154 			return false;
7155 		/* id relations must be preserved */
7156 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7157 			return false;
7158 		/* new val must satisfy old val knowledge */
7159 		return range_within(rold, rcur) &&
7160 		       tnum_in(rold->var_off, rcur->var_off);
7161 	case PTR_TO_CTX:
7162 	case CONST_PTR_TO_MAP:
7163 	case PTR_TO_PACKET_END:
7164 	case PTR_TO_FLOW_KEYS:
7165 	case PTR_TO_SOCKET:
7166 	case PTR_TO_SOCKET_OR_NULL:
7167 	case PTR_TO_SOCK_COMMON:
7168 	case PTR_TO_SOCK_COMMON_OR_NULL:
7169 	case PTR_TO_TCP_SOCK:
7170 	case PTR_TO_TCP_SOCK_OR_NULL:
7171 	case PTR_TO_XDP_SOCK:
7172 		/* Only valid matches are exact, which memcmp() above
7173 		 * would have accepted
7174 		 */
7175 	default:
7176 		/* Don't know what's going on, just say it's not safe */
7177 		return false;
7178 	}
7179 
7180 	/* Shouldn't get here; if we do, say it's not safe */
7181 	WARN_ON_ONCE(1);
7182 	return false;
7183 }
7184 
7185 static bool stacksafe(struct bpf_func_state *old,
7186 		      struct bpf_func_state *cur,
7187 		      struct idpair *idmap)
7188 {
7189 	int i, spi;
7190 
7191 	/* walk slots of the explored stack and ignore any additional
7192 	 * slots in the current stack, since explored(safe) state
7193 	 * didn't use them
7194 	 */
7195 	for (i = 0; i < old->allocated_stack; i++) {
7196 		spi = i / BPF_REG_SIZE;
7197 
7198 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7199 			i += BPF_REG_SIZE - 1;
7200 			/* explored state didn't use this */
7201 			continue;
7202 		}
7203 
7204 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7205 			continue;
7206 
7207 		/* explored stack has more populated slots than current stack
7208 		 * and these slots were used
7209 		 */
7210 		if (i >= cur->allocated_stack)
7211 			return false;
7212 
7213 		/* if old state was safe with misc data in the stack
7214 		 * it will be safe with zero-initialized stack.
7215 		 * The opposite is not true
7216 		 */
7217 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7218 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7219 			continue;
7220 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7221 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7222 			/* Ex: old explored (safe) state has STACK_SPILL in
7223 			 * this stack slot, but current has has STACK_MISC ->
7224 			 * this verifier states are not equivalent,
7225 			 * return false to continue verification of this path
7226 			 */
7227 			return false;
7228 		if (i % BPF_REG_SIZE)
7229 			continue;
7230 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7231 			continue;
7232 		if (!regsafe(&old->stack[spi].spilled_ptr,
7233 			     &cur->stack[spi].spilled_ptr,
7234 			     idmap))
7235 			/* when explored and current stack slot are both storing
7236 			 * spilled registers, check that stored pointers types
7237 			 * are the same as well.
7238 			 * Ex: explored safe path could have stored
7239 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7240 			 * but current path has stored:
7241 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7242 			 * such verifier states are not equivalent.
7243 			 * return false to continue verification of this path
7244 			 */
7245 			return false;
7246 	}
7247 	return true;
7248 }
7249 
7250 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7251 {
7252 	if (old->acquired_refs != cur->acquired_refs)
7253 		return false;
7254 	return !memcmp(old->refs, cur->refs,
7255 		       sizeof(*old->refs) * old->acquired_refs);
7256 }
7257 
7258 /* compare two verifier states
7259  *
7260  * all states stored in state_list are known to be valid, since
7261  * verifier reached 'bpf_exit' instruction through them
7262  *
7263  * this function is called when verifier exploring different branches of
7264  * execution popped from the state stack. If it sees an old state that has
7265  * more strict register state and more strict stack state then this execution
7266  * branch doesn't need to be explored further, since verifier already
7267  * concluded that more strict state leads to valid finish.
7268  *
7269  * Therefore two states are equivalent if register state is more conservative
7270  * and explored stack state is more conservative than the current one.
7271  * Example:
7272  *       explored                   current
7273  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7274  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7275  *
7276  * In other words if current stack state (one being explored) has more
7277  * valid slots than old one that already passed validation, it means
7278  * the verifier can stop exploring and conclude that current state is valid too
7279  *
7280  * Similarly with registers. If explored state has register type as invalid
7281  * whereas register type in current state is meaningful, it means that
7282  * the current state will reach 'bpf_exit' instruction safely
7283  */
7284 static bool func_states_equal(struct bpf_func_state *old,
7285 			      struct bpf_func_state *cur)
7286 {
7287 	struct idpair *idmap;
7288 	bool ret = false;
7289 	int i;
7290 
7291 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7292 	/* If we failed to allocate the idmap, just say it's not safe */
7293 	if (!idmap)
7294 		return false;
7295 
7296 	for (i = 0; i < MAX_BPF_REG; i++) {
7297 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7298 			goto out_free;
7299 	}
7300 
7301 	if (!stacksafe(old, cur, idmap))
7302 		goto out_free;
7303 
7304 	if (!refsafe(old, cur))
7305 		goto out_free;
7306 	ret = true;
7307 out_free:
7308 	kfree(idmap);
7309 	return ret;
7310 }
7311 
7312 static bool states_equal(struct bpf_verifier_env *env,
7313 			 struct bpf_verifier_state *old,
7314 			 struct bpf_verifier_state *cur)
7315 {
7316 	int i;
7317 
7318 	if (old->curframe != cur->curframe)
7319 		return false;
7320 
7321 	/* Verification state from speculative execution simulation
7322 	 * must never prune a non-speculative execution one.
7323 	 */
7324 	if (old->speculative && !cur->speculative)
7325 		return false;
7326 
7327 	if (old->active_spin_lock != cur->active_spin_lock)
7328 		return false;
7329 
7330 	/* for states to be equal callsites have to be the same
7331 	 * and all frame states need to be equivalent
7332 	 */
7333 	for (i = 0; i <= old->curframe; i++) {
7334 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7335 			return false;
7336 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7337 			return false;
7338 	}
7339 	return true;
7340 }
7341 
7342 /* Return 0 if no propagation happened. Return negative error code if error
7343  * happened. Otherwise, return the propagated bit.
7344  */
7345 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7346 				  struct bpf_reg_state *reg,
7347 				  struct bpf_reg_state *parent_reg)
7348 {
7349 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7350 	u8 flag = reg->live & REG_LIVE_READ;
7351 	int err;
7352 
7353 	/* When comes here, read flags of PARENT_REG or REG could be any of
7354 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7355 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7356 	 */
7357 	if (parent_flag == REG_LIVE_READ64 ||
7358 	    /* Or if there is no read flag from REG. */
7359 	    !flag ||
7360 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7361 	    parent_flag == flag)
7362 		return 0;
7363 
7364 	err = mark_reg_read(env, reg, parent_reg, flag);
7365 	if (err)
7366 		return err;
7367 
7368 	return flag;
7369 }
7370 
7371 /* A write screens off any subsequent reads; but write marks come from the
7372  * straight-line code between a state and its parent.  When we arrive at an
7373  * equivalent state (jump target or such) we didn't arrive by the straight-line
7374  * code, so read marks in the state must propagate to the parent regardless
7375  * of the state's write marks. That's what 'parent == state->parent' comparison
7376  * in mark_reg_read() is for.
7377  */
7378 static int propagate_liveness(struct bpf_verifier_env *env,
7379 			      const struct bpf_verifier_state *vstate,
7380 			      struct bpf_verifier_state *vparent)
7381 {
7382 	struct bpf_reg_state *state_reg, *parent_reg;
7383 	struct bpf_func_state *state, *parent;
7384 	int i, frame, err = 0;
7385 
7386 	if (vparent->curframe != vstate->curframe) {
7387 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7388 		     vparent->curframe, vstate->curframe);
7389 		return -EFAULT;
7390 	}
7391 	/* Propagate read liveness of registers... */
7392 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7393 	for (frame = 0; frame <= vstate->curframe; frame++) {
7394 		parent = vparent->frame[frame];
7395 		state = vstate->frame[frame];
7396 		parent_reg = parent->regs;
7397 		state_reg = state->regs;
7398 		/* We don't need to worry about FP liveness, it's read-only */
7399 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7400 			err = propagate_liveness_reg(env, &state_reg[i],
7401 						     &parent_reg[i]);
7402 			if (err < 0)
7403 				return err;
7404 			if (err == REG_LIVE_READ64)
7405 				mark_insn_zext(env, &parent_reg[i]);
7406 		}
7407 
7408 		/* Propagate stack slots. */
7409 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7410 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7411 			parent_reg = &parent->stack[i].spilled_ptr;
7412 			state_reg = &state->stack[i].spilled_ptr;
7413 			err = propagate_liveness_reg(env, state_reg,
7414 						     parent_reg);
7415 			if (err < 0)
7416 				return err;
7417 		}
7418 	}
7419 	return 0;
7420 }
7421 
7422 /* find precise scalars in the previous equivalent state and
7423  * propagate them into the current state
7424  */
7425 static int propagate_precision(struct bpf_verifier_env *env,
7426 			       const struct bpf_verifier_state *old)
7427 {
7428 	struct bpf_reg_state *state_reg;
7429 	struct bpf_func_state *state;
7430 	int i, err = 0;
7431 
7432 	state = old->frame[old->curframe];
7433 	state_reg = state->regs;
7434 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7435 		if (state_reg->type != SCALAR_VALUE ||
7436 		    !state_reg->precise)
7437 			continue;
7438 		if (env->log.level & BPF_LOG_LEVEL2)
7439 			verbose(env, "propagating r%d\n", i);
7440 		err = mark_chain_precision(env, i);
7441 		if (err < 0)
7442 			return err;
7443 	}
7444 
7445 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7446 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7447 			continue;
7448 		state_reg = &state->stack[i].spilled_ptr;
7449 		if (state_reg->type != SCALAR_VALUE ||
7450 		    !state_reg->precise)
7451 			continue;
7452 		if (env->log.level & BPF_LOG_LEVEL2)
7453 			verbose(env, "propagating fp%d\n",
7454 				(-i - 1) * BPF_REG_SIZE);
7455 		err = mark_chain_precision_stack(env, i);
7456 		if (err < 0)
7457 			return err;
7458 	}
7459 	return 0;
7460 }
7461 
7462 static bool states_maybe_looping(struct bpf_verifier_state *old,
7463 				 struct bpf_verifier_state *cur)
7464 {
7465 	struct bpf_func_state *fold, *fcur;
7466 	int i, fr = cur->curframe;
7467 
7468 	if (old->curframe != fr)
7469 		return false;
7470 
7471 	fold = old->frame[fr];
7472 	fcur = cur->frame[fr];
7473 	for (i = 0; i < MAX_BPF_REG; i++)
7474 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7475 			   offsetof(struct bpf_reg_state, parent)))
7476 			return false;
7477 	return true;
7478 }
7479 
7480 
7481 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7482 {
7483 	struct bpf_verifier_state_list *new_sl;
7484 	struct bpf_verifier_state_list *sl, **pprev;
7485 	struct bpf_verifier_state *cur = env->cur_state, *new;
7486 	int i, j, err, states_cnt = 0;
7487 	bool add_new_state = env->test_state_freq ? true : false;
7488 
7489 	cur->last_insn_idx = env->prev_insn_idx;
7490 	if (!env->insn_aux_data[insn_idx].prune_point)
7491 		/* this 'insn_idx' instruction wasn't marked, so we will not
7492 		 * be doing state search here
7493 		 */
7494 		return 0;
7495 
7496 	/* bpf progs typically have pruning point every 4 instructions
7497 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7498 	 * Do not add new state for future pruning if the verifier hasn't seen
7499 	 * at least 2 jumps and at least 8 instructions.
7500 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7501 	 * In tests that amounts to up to 50% reduction into total verifier
7502 	 * memory consumption and 20% verifier time speedup.
7503 	 */
7504 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7505 	    env->insn_processed - env->prev_insn_processed >= 8)
7506 		add_new_state = true;
7507 
7508 	pprev = explored_state(env, insn_idx);
7509 	sl = *pprev;
7510 
7511 	clean_live_states(env, insn_idx, cur);
7512 
7513 	while (sl) {
7514 		states_cnt++;
7515 		if (sl->state.insn_idx != insn_idx)
7516 			goto next;
7517 		if (sl->state.branches) {
7518 			if (states_maybe_looping(&sl->state, cur) &&
7519 			    states_equal(env, &sl->state, cur)) {
7520 				verbose_linfo(env, insn_idx, "; ");
7521 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7522 				return -EINVAL;
7523 			}
7524 			/* if the verifier is processing a loop, avoid adding new state
7525 			 * too often, since different loop iterations have distinct
7526 			 * states and may not help future pruning.
7527 			 * This threshold shouldn't be too low to make sure that
7528 			 * a loop with large bound will be rejected quickly.
7529 			 * The most abusive loop will be:
7530 			 * r1 += 1
7531 			 * if r1 < 1000000 goto pc-2
7532 			 * 1M insn_procssed limit / 100 == 10k peak states.
7533 			 * This threshold shouldn't be too high either, since states
7534 			 * at the end of the loop are likely to be useful in pruning.
7535 			 */
7536 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7537 			    env->insn_processed - env->prev_insn_processed < 100)
7538 				add_new_state = false;
7539 			goto miss;
7540 		}
7541 		if (states_equal(env, &sl->state, cur)) {
7542 			sl->hit_cnt++;
7543 			/* reached equivalent register/stack state,
7544 			 * prune the search.
7545 			 * Registers read by the continuation are read by us.
7546 			 * If we have any write marks in env->cur_state, they
7547 			 * will prevent corresponding reads in the continuation
7548 			 * from reaching our parent (an explored_state).  Our
7549 			 * own state will get the read marks recorded, but
7550 			 * they'll be immediately forgotten as we're pruning
7551 			 * this state and will pop a new one.
7552 			 */
7553 			err = propagate_liveness(env, &sl->state, cur);
7554 
7555 			/* if previous state reached the exit with precision and
7556 			 * current state is equivalent to it (except precsion marks)
7557 			 * the precision needs to be propagated back in
7558 			 * the current state.
7559 			 */
7560 			err = err ? : push_jmp_history(env, cur);
7561 			err = err ? : propagate_precision(env, &sl->state);
7562 			if (err)
7563 				return err;
7564 			return 1;
7565 		}
7566 miss:
7567 		/* when new state is not going to be added do not increase miss count.
7568 		 * Otherwise several loop iterations will remove the state
7569 		 * recorded earlier. The goal of these heuristics is to have
7570 		 * states from some iterations of the loop (some in the beginning
7571 		 * and some at the end) to help pruning.
7572 		 */
7573 		if (add_new_state)
7574 			sl->miss_cnt++;
7575 		/* heuristic to determine whether this state is beneficial
7576 		 * to keep checking from state equivalence point of view.
7577 		 * Higher numbers increase max_states_per_insn and verification time,
7578 		 * but do not meaningfully decrease insn_processed.
7579 		 */
7580 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7581 			/* the state is unlikely to be useful. Remove it to
7582 			 * speed up verification
7583 			 */
7584 			*pprev = sl->next;
7585 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7586 				u32 br = sl->state.branches;
7587 
7588 				WARN_ONCE(br,
7589 					  "BUG live_done but branches_to_explore %d\n",
7590 					  br);
7591 				free_verifier_state(&sl->state, false);
7592 				kfree(sl);
7593 				env->peak_states--;
7594 			} else {
7595 				/* cannot free this state, since parentage chain may
7596 				 * walk it later. Add it for free_list instead to
7597 				 * be freed at the end of verification
7598 				 */
7599 				sl->next = env->free_list;
7600 				env->free_list = sl;
7601 			}
7602 			sl = *pprev;
7603 			continue;
7604 		}
7605 next:
7606 		pprev = &sl->next;
7607 		sl = *pprev;
7608 	}
7609 
7610 	if (env->max_states_per_insn < states_cnt)
7611 		env->max_states_per_insn = states_cnt;
7612 
7613 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7614 		return push_jmp_history(env, cur);
7615 
7616 	if (!add_new_state)
7617 		return push_jmp_history(env, cur);
7618 
7619 	/* There were no equivalent states, remember the current one.
7620 	 * Technically the current state is not proven to be safe yet,
7621 	 * but it will either reach outer most bpf_exit (which means it's safe)
7622 	 * or it will be rejected. When there are no loops the verifier won't be
7623 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7624 	 * again on the way to bpf_exit.
7625 	 * When looping the sl->state.branches will be > 0 and this state
7626 	 * will not be considered for equivalence until branches == 0.
7627 	 */
7628 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7629 	if (!new_sl)
7630 		return -ENOMEM;
7631 	env->total_states++;
7632 	env->peak_states++;
7633 	env->prev_jmps_processed = env->jmps_processed;
7634 	env->prev_insn_processed = env->insn_processed;
7635 
7636 	/* add new state to the head of linked list */
7637 	new = &new_sl->state;
7638 	err = copy_verifier_state(new, cur);
7639 	if (err) {
7640 		free_verifier_state(new, false);
7641 		kfree(new_sl);
7642 		return err;
7643 	}
7644 	new->insn_idx = insn_idx;
7645 	WARN_ONCE(new->branches != 1,
7646 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7647 
7648 	cur->parent = new;
7649 	cur->first_insn_idx = insn_idx;
7650 	clear_jmp_history(cur);
7651 	new_sl->next = *explored_state(env, insn_idx);
7652 	*explored_state(env, insn_idx) = new_sl;
7653 	/* connect new state to parentage chain. Current frame needs all
7654 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7655 	 * to the stack implicitly by JITs) so in callers' frames connect just
7656 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7657 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7658 	 * from callee with its full parentage chain, anyway.
7659 	 */
7660 	/* clear write marks in current state: the writes we did are not writes
7661 	 * our child did, so they don't screen off its reads from us.
7662 	 * (There are no read marks in current state, because reads always mark
7663 	 * their parent and current state never has children yet.  Only
7664 	 * explored_states can get read marks.)
7665 	 */
7666 	for (j = 0; j <= cur->curframe; j++) {
7667 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7668 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7669 		for (i = 0; i < BPF_REG_FP; i++)
7670 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7671 	}
7672 
7673 	/* all stack frames are accessible from callee, clear them all */
7674 	for (j = 0; j <= cur->curframe; j++) {
7675 		struct bpf_func_state *frame = cur->frame[j];
7676 		struct bpf_func_state *newframe = new->frame[j];
7677 
7678 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7679 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7680 			frame->stack[i].spilled_ptr.parent =
7681 						&newframe->stack[i].spilled_ptr;
7682 		}
7683 	}
7684 	return 0;
7685 }
7686 
7687 /* Return true if it's OK to have the same insn return a different type. */
7688 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7689 {
7690 	switch (type) {
7691 	case PTR_TO_CTX:
7692 	case PTR_TO_SOCKET:
7693 	case PTR_TO_SOCKET_OR_NULL:
7694 	case PTR_TO_SOCK_COMMON:
7695 	case PTR_TO_SOCK_COMMON_OR_NULL:
7696 	case PTR_TO_TCP_SOCK:
7697 	case PTR_TO_TCP_SOCK_OR_NULL:
7698 	case PTR_TO_XDP_SOCK:
7699 	case PTR_TO_BTF_ID:
7700 		return false;
7701 	default:
7702 		return true;
7703 	}
7704 }
7705 
7706 /* If an instruction was previously used with particular pointer types, then we
7707  * need to be careful to avoid cases such as the below, where it may be ok
7708  * for one branch accessing the pointer, but not ok for the other branch:
7709  *
7710  * R1 = sock_ptr
7711  * goto X;
7712  * ...
7713  * R1 = some_other_valid_ptr;
7714  * goto X;
7715  * ...
7716  * R2 = *(u32 *)(R1 + 0);
7717  */
7718 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7719 {
7720 	return src != prev && (!reg_type_mismatch_ok(src) ||
7721 			       !reg_type_mismatch_ok(prev));
7722 }
7723 
7724 static int do_check(struct bpf_verifier_env *env)
7725 {
7726 	struct bpf_verifier_state *state;
7727 	struct bpf_insn *insns = env->prog->insnsi;
7728 	struct bpf_reg_state *regs;
7729 	int insn_cnt = env->prog->len;
7730 	bool do_print_state = false;
7731 	int prev_insn_idx = -1;
7732 
7733 	env->prev_linfo = NULL;
7734 
7735 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7736 	if (!state)
7737 		return -ENOMEM;
7738 	state->curframe = 0;
7739 	state->speculative = false;
7740 	state->branches = 1;
7741 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7742 	if (!state->frame[0]) {
7743 		kfree(state);
7744 		return -ENOMEM;
7745 	}
7746 	env->cur_state = state;
7747 	init_func_state(env, state->frame[0],
7748 			BPF_MAIN_FUNC /* callsite */,
7749 			0 /* frameno */,
7750 			0 /* subprogno, zero == main subprog */);
7751 
7752 	if (btf_check_func_arg_match(env, 0))
7753 		return -EINVAL;
7754 
7755 	for (;;) {
7756 		struct bpf_insn *insn;
7757 		u8 class;
7758 		int err;
7759 
7760 		env->prev_insn_idx = prev_insn_idx;
7761 		if (env->insn_idx >= insn_cnt) {
7762 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7763 				env->insn_idx, insn_cnt);
7764 			return -EFAULT;
7765 		}
7766 
7767 		insn = &insns[env->insn_idx];
7768 		class = BPF_CLASS(insn->code);
7769 
7770 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7771 			verbose(env,
7772 				"BPF program is too large. Processed %d insn\n",
7773 				env->insn_processed);
7774 			return -E2BIG;
7775 		}
7776 
7777 		err = is_state_visited(env, env->insn_idx);
7778 		if (err < 0)
7779 			return err;
7780 		if (err == 1) {
7781 			/* found equivalent state, can prune the search */
7782 			if (env->log.level & BPF_LOG_LEVEL) {
7783 				if (do_print_state)
7784 					verbose(env, "\nfrom %d to %d%s: safe\n",
7785 						env->prev_insn_idx, env->insn_idx,
7786 						env->cur_state->speculative ?
7787 						" (speculative execution)" : "");
7788 				else
7789 					verbose(env, "%d: safe\n", env->insn_idx);
7790 			}
7791 			goto process_bpf_exit;
7792 		}
7793 
7794 		if (signal_pending(current))
7795 			return -EAGAIN;
7796 
7797 		if (need_resched())
7798 			cond_resched();
7799 
7800 		if (env->log.level & BPF_LOG_LEVEL2 ||
7801 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7802 			if (env->log.level & BPF_LOG_LEVEL2)
7803 				verbose(env, "%d:", env->insn_idx);
7804 			else
7805 				verbose(env, "\nfrom %d to %d%s:",
7806 					env->prev_insn_idx, env->insn_idx,
7807 					env->cur_state->speculative ?
7808 					" (speculative execution)" : "");
7809 			print_verifier_state(env, state->frame[state->curframe]);
7810 			do_print_state = false;
7811 		}
7812 
7813 		if (env->log.level & BPF_LOG_LEVEL) {
7814 			const struct bpf_insn_cbs cbs = {
7815 				.cb_print	= verbose,
7816 				.private_data	= env,
7817 			};
7818 
7819 			verbose_linfo(env, env->insn_idx, "; ");
7820 			verbose(env, "%d: ", env->insn_idx);
7821 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7822 		}
7823 
7824 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7825 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7826 							   env->prev_insn_idx);
7827 			if (err)
7828 				return err;
7829 		}
7830 
7831 		regs = cur_regs(env);
7832 		env->insn_aux_data[env->insn_idx].seen = true;
7833 		prev_insn_idx = env->insn_idx;
7834 
7835 		if (class == BPF_ALU || class == BPF_ALU64) {
7836 			err = check_alu_op(env, insn);
7837 			if (err)
7838 				return err;
7839 
7840 		} else if (class == BPF_LDX) {
7841 			enum bpf_reg_type *prev_src_type, src_reg_type;
7842 
7843 			/* check for reserved fields is already done */
7844 
7845 			/* check src operand */
7846 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7847 			if (err)
7848 				return err;
7849 
7850 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7851 			if (err)
7852 				return err;
7853 
7854 			src_reg_type = regs[insn->src_reg].type;
7855 
7856 			/* check that memory (src_reg + off) is readable,
7857 			 * the state of dst_reg will be updated by this func
7858 			 */
7859 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7860 					       insn->off, BPF_SIZE(insn->code),
7861 					       BPF_READ, insn->dst_reg, false);
7862 			if (err)
7863 				return err;
7864 
7865 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7866 
7867 			if (*prev_src_type == NOT_INIT) {
7868 				/* saw a valid insn
7869 				 * dst_reg = *(u32 *)(src_reg + off)
7870 				 * save type to validate intersecting paths
7871 				 */
7872 				*prev_src_type = src_reg_type;
7873 
7874 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7875 				/* ABuser program is trying to use the same insn
7876 				 * dst_reg = *(u32*) (src_reg + off)
7877 				 * with different pointer types:
7878 				 * src_reg == ctx in one branch and
7879 				 * src_reg == stack|map in some other branch.
7880 				 * Reject it.
7881 				 */
7882 				verbose(env, "same insn cannot be used with different pointers\n");
7883 				return -EINVAL;
7884 			}
7885 
7886 		} else if (class == BPF_STX) {
7887 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7888 
7889 			if (BPF_MODE(insn->code) == BPF_XADD) {
7890 				err = check_xadd(env, env->insn_idx, insn);
7891 				if (err)
7892 					return err;
7893 				env->insn_idx++;
7894 				continue;
7895 			}
7896 
7897 			/* check src1 operand */
7898 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7899 			if (err)
7900 				return err;
7901 			/* check src2 operand */
7902 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7903 			if (err)
7904 				return err;
7905 
7906 			dst_reg_type = regs[insn->dst_reg].type;
7907 
7908 			/* check that memory (dst_reg + off) is writeable */
7909 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7910 					       insn->off, BPF_SIZE(insn->code),
7911 					       BPF_WRITE, insn->src_reg, false);
7912 			if (err)
7913 				return err;
7914 
7915 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7916 
7917 			if (*prev_dst_type == NOT_INIT) {
7918 				*prev_dst_type = dst_reg_type;
7919 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7920 				verbose(env, "same insn cannot be used with different pointers\n");
7921 				return -EINVAL;
7922 			}
7923 
7924 		} else if (class == BPF_ST) {
7925 			if (BPF_MODE(insn->code) != BPF_MEM ||
7926 			    insn->src_reg != BPF_REG_0) {
7927 				verbose(env, "BPF_ST uses reserved fields\n");
7928 				return -EINVAL;
7929 			}
7930 			/* check src operand */
7931 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7932 			if (err)
7933 				return err;
7934 
7935 			if (is_ctx_reg(env, insn->dst_reg)) {
7936 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7937 					insn->dst_reg,
7938 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7939 				return -EACCES;
7940 			}
7941 
7942 			/* check that memory (dst_reg + off) is writeable */
7943 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7944 					       insn->off, BPF_SIZE(insn->code),
7945 					       BPF_WRITE, -1, false);
7946 			if (err)
7947 				return err;
7948 
7949 		} else if (class == BPF_JMP || class == BPF_JMP32) {
7950 			u8 opcode = BPF_OP(insn->code);
7951 
7952 			env->jmps_processed++;
7953 			if (opcode == BPF_CALL) {
7954 				if (BPF_SRC(insn->code) != BPF_K ||
7955 				    insn->off != 0 ||
7956 				    (insn->src_reg != BPF_REG_0 &&
7957 				     insn->src_reg != BPF_PSEUDO_CALL) ||
7958 				    insn->dst_reg != BPF_REG_0 ||
7959 				    class == BPF_JMP32) {
7960 					verbose(env, "BPF_CALL uses reserved fields\n");
7961 					return -EINVAL;
7962 				}
7963 
7964 				if (env->cur_state->active_spin_lock &&
7965 				    (insn->src_reg == BPF_PSEUDO_CALL ||
7966 				     insn->imm != BPF_FUNC_spin_unlock)) {
7967 					verbose(env, "function calls are not allowed while holding a lock\n");
7968 					return -EINVAL;
7969 				}
7970 				if (insn->src_reg == BPF_PSEUDO_CALL)
7971 					err = check_func_call(env, insn, &env->insn_idx);
7972 				else
7973 					err = check_helper_call(env, insn->imm, env->insn_idx);
7974 				if (err)
7975 					return err;
7976 
7977 			} else if (opcode == BPF_JA) {
7978 				if (BPF_SRC(insn->code) != BPF_K ||
7979 				    insn->imm != 0 ||
7980 				    insn->src_reg != BPF_REG_0 ||
7981 				    insn->dst_reg != BPF_REG_0 ||
7982 				    class == BPF_JMP32) {
7983 					verbose(env, "BPF_JA uses reserved fields\n");
7984 					return -EINVAL;
7985 				}
7986 
7987 				env->insn_idx += insn->off + 1;
7988 				continue;
7989 
7990 			} else if (opcode == BPF_EXIT) {
7991 				if (BPF_SRC(insn->code) != BPF_K ||
7992 				    insn->imm != 0 ||
7993 				    insn->src_reg != BPF_REG_0 ||
7994 				    insn->dst_reg != BPF_REG_0 ||
7995 				    class == BPF_JMP32) {
7996 					verbose(env, "BPF_EXIT uses reserved fields\n");
7997 					return -EINVAL;
7998 				}
7999 
8000 				if (env->cur_state->active_spin_lock) {
8001 					verbose(env, "bpf_spin_unlock is missing\n");
8002 					return -EINVAL;
8003 				}
8004 
8005 				if (state->curframe) {
8006 					/* exit from nested function */
8007 					err = prepare_func_exit(env, &env->insn_idx);
8008 					if (err)
8009 						return err;
8010 					do_print_state = true;
8011 					continue;
8012 				}
8013 
8014 				err = check_reference_leak(env);
8015 				if (err)
8016 					return err;
8017 
8018 				/* eBPF calling convetion is such that R0 is used
8019 				 * to return the value from eBPF program.
8020 				 * Make sure that it's readable at this time
8021 				 * of bpf_exit, which means that program wrote
8022 				 * something into it earlier
8023 				 */
8024 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8025 				if (err)
8026 					return err;
8027 
8028 				if (is_pointer_value(env, BPF_REG_0)) {
8029 					verbose(env, "R0 leaks addr as return value\n");
8030 					return -EACCES;
8031 				}
8032 
8033 				err = check_return_code(env);
8034 				if (err)
8035 					return err;
8036 process_bpf_exit:
8037 				update_branch_counts(env, env->cur_state);
8038 				err = pop_stack(env, &prev_insn_idx,
8039 						&env->insn_idx);
8040 				if (err < 0) {
8041 					if (err != -ENOENT)
8042 						return err;
8043 					break;
8044 				} else {
8045 					do_print_state = true;
8046 					continue;
8047 				}
8048 			} else {
8049 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8050 				if (err)
8051 					return err;
8052 			}
8053 		} else if (class == BPF_LD) {
8054 			u8 mode = BPF_MODE(insn->code);
8055 
8056 			if (mode == BPF_ABS || mode == BPF_IND) {
8057 				err = check_ld_abs(env, insn);
8058 				if (err)
8059 					return err;
8060 
8061 			} else if (mode == BPF_IMM) {
8062 				err = check_ld_imm(env, insn);
8063 				if (err)
8064 					return err;
8065 
8066 				env->insn_idx++;
8067 				env->insn_aux_data[env->insn_idx].seen = true;
8068 			} else {
8069 				verbose(env, "invalid BPF_LD mode\n");
8070 				return -EINVAL;
8071 			}
8072 		} else {
8073 			verbose(env, "unknown insn class %d\n", class);
8074 			return -EINVAL;
8075 		}
8076 
8077 		env->insn_idx++;
8078 	}
8079 
8080 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
8081 	return 0;
8082 }
8083 
8084 static int check_map_prealloc(struct bpf_map *map)
8085 {
8086 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8087 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8088 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8089 		!(map->map_flags & BPF_F_NO_PREALLOC);
8090 }
8091 
8092 static bool is_tracing_prog_type(enum bpf_prog_type type)
8093 {
8094 	switch (type) {
8095 	case BPF_PROG_TYPE_KPROBE:
8096 	case BPF_PROG_TYPE_TRACEPOINT:
8097 	case BPF_PROG_TYPE_PERF_EVENT:
8098 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8099 		return true;
8100 	default:
8101 		return false;
8102 	}
8103 }
8104 
8105 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8106 					struct bpf_map *map,
8107 					struct bpf_prog *prog)
8108 
8109 {
8110 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8111 	 * preallocated hash maps, since doing memory allocation
8112 	 * in overflow_handler can crash depending on where nmi got
8113 	 * triggered.
8114 	 */
8115 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8116 		if (!check_map_prealloc(map)) {
8117 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8118 			return -EINVAL;
8119 		}
8120 		if (map->inner_map_meta &&
8121 		    !check_map_prealloc(map->inner_map_meta)) {
8122 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8123 			return -EINVAL;
8124 		}
8125 	}
8126 
8127 	if ((is_tracing_prog_type(prog->type) ||
8128 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8129 	    map_value_has_spin_lock(map)) {
8130 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8131 		return -EINVAL;
8132 	}
8133 
8134 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8135 	    !bpf_offload_prog_map_match(prog, map)) {
8136 		verbose(env, "offload device mismatch between prog and map\n");
8137 		return -EINVAL;
8138 	}
8139 
8140 	return 0;
8141 }
8142 
8143 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8144 {
8145 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8146 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8147 }
8148 
8149 /* look for pseudo eBPF instructions that access map FDs and
8150  * replace them with actual map pointers
8151  */
8152 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8153 {
8154 	struct bpf_insn *insn = env->prog->insnsi;
8155 	int insn_cnt = env->prog->len;
8156 	int i, j, err;
8157 
8158 	err = bpf_prog_calc_tag(env->prog);
8159 	if (err)
8160 		return err;
8161 
8162 	for (i = 0; i < insn_cnt; i++, insn++) {
8163 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8164 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8165 			verbose(env, "BPF_LDX uses reserved fields\n");
8166 			return -EINVAL;
8167 		}
8168 
8169 		if (BPF_CLASS(insn->code) == BPF_STX &&
8170 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8171 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8172 			verbose(env, "BPF_STX uses reserved fields\n");
8173 			return -EINVAL;
8174 		}
8175 
8176 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8177 			struct bpf_insn_aux_data *aux;
8178 			struct bpf_map *map;
8179 			struct fd f;
8180 			u64 addr;
8181 
8182 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8183 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8184 			    insn[1].off != 0) {
8185 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8186 				return -EINVAL;
8187 			}
8188 
8189 			if (insn[0].src_reg == 0)
8190 				/* valid generic load 64-bit imm */
8191 				goto next_insn;
8192 
8193 			/* In final convert_pseudo_ld_imm64() step, this is
8194 			 * converted into regular 64-bit imm load insn.
8195 			 */
8196 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8197 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8198 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8199 			     insn[1].imm != 0)) {
8200 				verbose(env,
8201 					"unrecognized bpf_ld_imm64 insn\n");
8202 				return -EINVAL;
8203 			}
8204 
8205 			f = fdget(insn[0].imm);
8206 			map = __bpf_map_get(f);
8207 			if (IS_ERR(map)) {
8208 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8209 					insn[0].imm);
8210 				return PTR_ERR(map);
8211 			}
8212 
8213 			err = check_map_prog_compatibility(env, map, env->prog);
8214 			if (err) {
8215 				fdput(f);
8216 				return err;
8217 			}
8218 
8219 			aux = &env->insn_aux_data[i];
8220 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8221 				addr = (unsigned long)map;
8222 			} else {
8223 				u32 off = insn[1].imm;
8224 
8225 				if (off >= BPF_MAX_VAR_OFF) {
8226 					verbose(env, "direct value offset of %u is not allowed\n", off);
8227 					fdput(f);
8228 					return -EINVAL;
8229 				}
8230 
8231 				if (!map->ops->map_direct_value_addr) {
8232 					verbose(env, "no direct value access support for this map type\n");
8233 					fdput(f);
8234 					return -EINVAL;
8235 				}
8236 
8237 				err = map->ops->map_direct_value_addr(map, &addr, off);
8238 				if (err) {
8239 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8240 						map->value_size, off);
8241 					fdput(f);
8242 					return err;
8243 				}
8244 
8245 				aux->map_off = off;
8246 				addr += off;
8247 			}
8248 
8249 			insn[0].imm = (u32)addr;
8250 			insn[1].imm = addr >> 32;
8251 
8252 			/* check whether we recorded this map already */
8253 			for (j = 0; j < env->used_map_cnt; j++) {
8254 				if (env->used_maps[j] == map) {
8255 					aux->map_index = j;
8256 					fdput(f);
8257 					goto next_insn;
8258 				}
8259 			}
8260 
8261 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8262 				fdput(f);
8263 				return -E2BIG;
8264 			}
8265 
8266 			/* hold the map. If the program is rejected by verifier,
8267 			 * the map will be released by release_maps() or it
8268 			 * will be used by the valid program until it's unloaded
8269 			 * and all maps are released in free_used_maps()
8270 			 */
8271 			bpf_map_inc(map);
8272 
8273 			aux->map_index = env->used_map_cnt;
8274 			env->used_maps[env->used_map_cnt++] = map;
8275 
8276 			if (bpf_map_is_cgroup_storage(map) &&
8277 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8278 				verbose(env, "only one cgroup storage of each type is allowed\n");
8279 				fdput(f);
8280 				return -EBUSY;
8281 			}
8282 
8283 			fdput(f);
8284 next_insn:
8285 			insn++;
8286 			i++;
8287 			continue;
8288 		}
8289 
8290 		/* Basic sanity check before we invest more work here. */
8291 		if (!bpf_opcode_in_insntable(insn->code)) {
8292 			verbose(env, "unknown opcode %02x\n", insn->code);
8293 			return -EINVAL;
8294 		}
8295 	}
8296 
8297 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8298 	 * 'struct bpf_map *' into a register instead of user map_fd.
8299 	 * These pointers will be used later by verifier to validate map access.
8300 	 */
8301 	return 0;
8302 }
8303 
8304 /* drop refcnt of maps used by the rejected program */
8305 static void release_maps(struct bpf_verifier_env *env)
8306 {
8307 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
8308 			     env->used_map_cnt);
8309 }
8310 
8311 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8312 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8313 {
8314 	struct bpf_insn *insn = env->prog->insnsi;
8315 	int insn_cnt = env->prog->len;
8316 	int i;
8317 
8318 	for (i = 0; i < insn_cnt; i++, insn++)
8319 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8320 			insn->src_reg = 0;
8321 }
8322 
8323 /* single env->prog->insni[off] instruction was replaced with the range
8324  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8325  * [0, off) and [off, end) to new locations, so the patched range stays zero
8326  */
8327 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8328 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8329 {
8330 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8331 	struct bpf_insn *insn = new_prog->insnsi;
8332 	u32 prog_len;
8333 	int i;
8334 
8335 	/* aux info at OFF always needs adjustment, no matter fast path
8336 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8337 	 * original insn at old prog.
8338 	 */
8339 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8340 
8341 	if (cnt == 1)
8342 		return 0;
8343 	prog_len = new_prog->len;
8344 	new_data = vzalloc(array_size(prog_len,
8345 				      sizeof(struct bpf_insn_aux_data)));
8346 	if (!new_data)
8347 		return -ENOMEM;
8348 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8349 	memcpy(new_data + off + cnt - 1, old_data + off,
8350 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8351 	for (i = off; i < off + cnt - 1; i++) {
8352 		new_data[i].seen = true;
8353 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8354 	}
8355 	env->insn_aux_data = new_data;
8356 	vfree(old_data);
8357 	return 0;
8358 }
8359 
8360 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8361 {
8362 	int i;
8363 
8364 	if (len == 1)
8365 		return;
8366 	/* NOTE: fake 'exit' subprog should be updated as well. */
8367 	for (i = 0; i <= env->subprog_cnt; i++) {
8368 		if (env->subprog_info[i].start <= off)
8369 			continue;
8370 		env->subprog_info[i].start += len - 1;
8371 	}
8372 }
8373 
8374 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8375 					    const struct bpf_insn *patch, u32 len)
8376 {
8377 	struct bpf_prog *new_prog;
8378 
8379 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8380 	if (IS_ERR(new_prog)) {
8381 		if (PTR_ERR(new_prog) == -ERANGE)
8382 			verbose(env,
8383 				"insn %d cannot be patched due to 16-bit range\n",
8384 				env->insn_aux_data[off].orig_idx);
8385 		return NULL;
8386 	}
8387 	if (adjust_insn_aux_data(env, new_prog, off, len))
8388 		return NULL;
8389 	adjust_subprog_starts(env, off, len);
8390 	return new_prog;
8391 }
8392 
8393 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8394 					      u32 off, u32 cnt)
8395 {
8396 	int i, j;
8397 
8398 	/* find first prog starting at or after off (first to remove) */
8399 	for (i = 0; i < env->subprog_cnt; i++)
8400 		if (env->subprog_info[i].start >= off)
8401 			break;
8402 	/* find first prog starting at or after off + cnt (first to stay) */
8403 	for (j = i; j < env->subprog_cnt; j++)
8404 		if (env->subprog_info[j].start >= off + cnt)
8405 			break;
8406 	/* if j doesn't start exactly at off + cnt, we are just removing
8407 	 * the front of previous prog
8408 	 */
8409 	if (env->subprog_info[j].start != off + cnt)
8410 		j--;
8411 
8412 	if (j > i) {
8413 		struct bpf_prog_aux *aux = env->prog->aux;
8414 		int move;
8415 
8416 		/* move fake 'exit' subprog as well */
8417 		move = env->subprog_cnt + 1 - j;
8418 
8419 		memmove(env->subprog_info + i,
8420 			env->subprog_info + j,
8421 			sizeof(*env->subprog_info) * move);
8422 		env->subprog_cnt -= j - i;
8423 
8424 		/* remove func_info */
8425 		if (aux->func_info) {
8426 			move = aux->func_info_cnt - j;
8427 
8428 			memmove(aux->func_info + i,
8429 				aux->func_info + j,
8430 				sizeof(*aux->func_info) * move);
8431 			aux->func_info_cnt -= j - i;
8432 			/* func_info->insn_off is set after all code rewrites,
8433 			 * in adjust_btf_func() - no need to adjust
8434 			 */
8435 		}
8436 	} else {
8437 		/* convert i from "first prog to remove" to "first to adjust" */
8438 		if (env->subprog_info[i].start == off)
8439 			i++;
8440 	}
8441 
8442 	/* update fake 'exit' subprog as well */
8443 	for (; i <= env->subprog_cnt; i++)
8444 		env->subprog_info[i].start -= cnt;
8445 
8446 	return 0;
8447 }
8448 
8449 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8450 				      u32 cnt)
8451 {
8452 	struct bpf_prog *prog = env->prog;
8453 	u32 i, l_off, l_cnt, nr_linfo;
8454 	struct bpf_line_info *linfo;
8455 
8456 	nr_linfo = prog->aux->nr_linfo;
8457 	if (!nr_linfo)
8458 		return 0;
8459 
8460 	linfo = prog->aux->linfo;
8461 
8462 	/* find first line info to remove, count lines to be removed */
8463 	for (i = 0; i < nr_linfo; i++)
8464 		if (linfo[i].insn_off >= off)
8465 			break;
8466 
8467 	l_off = i;
8468 	l_cnt = 0;
8469 	for (; i < nr_linfo; i++)
8470 		if (linfo[i].insn_off < off + cnt)
8471 			l_cnt++;
8472 		else
8473 			break;
8474 
8475 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8476 	 * last removed linfo.  prog is already modified, so prog->len == off
8477 	 * means no live instructions after (tail of the program was removed).
8478 	 */
8479 	if (prog->len != off && l_cnt &&
8480 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8481 		l_cnt--;
8482 		linfo[--i].insn_off = off + cnt;
8483 	}
8484 
8485 	/* remove the line info which refer to the removed instructions */
8486 	if (l_cnt) {
8487 		memmove(linfo + l_off, linfo + i,
8488 			sizeof(*linfo) * (nr_linfo - i));
8489 
8490 		prog->aux->nr_linfo -= l_cnt;
8491 		nr_linfo = prog->aux->nr_linfo;
8492 	}
8493 
8494 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8495 	for (i = l_off; i < nr_linfo; i++)
8496 		linfo[i].insn_off -= cnt;
8497 
8498 	/* fix up all subprogs (incl. 'exit') which start >= off */
8499 	for (i = 0; i <= env->subprog_cnt; i++)
8500 		if (env->subprog_info[i].linfo_idx > l_off) {
8501 			/* program may have started in the removed region but
8502 			 * may not be fully removed
8503 			 */
8504 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8505 				env->subprog_info[i].linfo_idx -= l_cnt;
8506 			else
8507 				env->subprog_info[i].linfo_idx = l_off;
8508 		}
8509 
8510 	return 0;
8511 }
8512 
8513 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8514 {
8515 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8516 	unsigned int orig_prog_len = env->prog->len;
8517 	int err;
8518 
8519 	if (bpf_prog_is_dev_bound(env->prog->aux))
8520 		bpf_prog_offload_remove_insns(env, off, cnt);
8521 
8522 	err = bpf_remove_insns(env->prog, off, cnt);
8523 	if (err)
8524 		return err;
8525 
8526 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8527 	if (err)
8528 		return err;
8529 
8530 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8531 	if (err)
8532 		return err;
8533 
8534 	memmove(aux_data + off,	aux_data + off + cnt,
8535 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8536 
8537 	return 0;
8538 }
8539 
8540 /* The verifier does more data flow analysis than llvm and will not
8541  * explore branches that are dead at run time. Malicious programs can
8542  * have dead code too. Therefore replace all dead at-run-time code
8543  * with 'ja -1'.
8544  *
8545  * Just nops are not optimal, e.g. if they would sit at the end of the
8546  * program and through another bug we would manage to jump there, then
8547  * we'd execute beyond program memory otherwise. Returning exception
8548  * code also wouldn't work since we can have subprogs where the dead
8549  * code could be located.
8550  */
8551 static void sanitize_dead_code(struct bpf_verifier_env *env)
8552 {
8553 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8554 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8555 	struct bpf_insn *insn = env->prog->insnsi;
8556 	const int insn_cnt = env->prog->len;
8557 	int i;
8558 
8559 	for (i = 0; i < insn_cnt; i++) {
8560 		if (aux_data[i].seen)
8561 			continue;
8562 		memcpy(insn + i, &trap, sizeof(trap));
8563 	}
8564 }
8565 
8566 static bool insn_is_cond_jump(u8 code)
8567 {
8568 	u8 op;
8569 
8570 	if (BPF_CLASS(code) == BPF_JMP32)
8571 		return true;
8572 
8573 	if (BPF_CLASS(code) != BPF_JMP)
8574 		return false;
8575 
8576 	op = BPF_OP(code);
8577 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8578 }
8579 
8580 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8581 {
8582 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8583 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8584 	struct bpf_insn *insn = env->prog->insnsi;
8585 	const int insn_cnt = env->prog->len;
8586 	int i;
8587 
8588 	for (i = 0; i < insn_cnt; i++, insn++) {
8589 		if (!insn_is_cond_jump(insn->code))
8590 			continue;
8591 
8592 		if (!aux_data[i + 1].seen)
8593 			ja.off = insn->off;
8594 		else if (!aux_data[i + 1 + insn->off].seen)
8595 			ja.off = 0;
8596 		else
8597 			continue;
8598 
8599 		if (bpf_prog_is_dev_bound(env->prog->aux))
8600 			bpf_prog_offload_replace_insn(env, i, &ja);
8601 
8602 		memcpy(insn, &ja, sizeof(ja));
8603 	}
8604 }
8605 
8606 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8607 {
8608 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8609 	int insn_cnt = env->prog->len;
8610 	int i, err;
8611 
8612 	for (i = 0; i < insn_cnt; i++) {
8613 		int j;
8614 
8615 		j = 0;
8616 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8617 			j++;
8618 		if (!j)
8619 			continue;
8620 
8621 		err = verifier_remove_insns(env, i, j);
8622 		if (err)
8623 			return err;
8624 		insn_cnt = env->prog->len;
8625 	}
8626 
8627 	return 0;
8628 }
8629 
8630 static int opt_remove_nops(struct bpf_verifier_env *env)
8631 {
8632 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8633 	struct bpf_insn *insn = env->prog->insnsi;
8634 	int insn_cnt = env->prog->len;
8635 	int i, err;
8636 
8637 	for (i = 0; i < insn_cnt; i++) {
8638 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8639 			continue;
8640 
8641 		err = verifier_remove_insns(env, i, 1);
8642 		if (err)
8643 			return err;
8644 		insn_cnt--;
8645 		i--;
8646 	}
8647 
8648 	return 0;
8649 }
8650 
8651 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8652 					 const union bpf_attr *attr)
8653 {
8654 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8655 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8656 	int i, patch_len, delta = 0, len = env->prog->len;
8657 	struct bpf_insn *insns = env->prog->insnsi;
8658 	struct bpf_prog *new_prog;
8659 	bool rnd_hi32;
8660 
8661 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8662 	zext_patch[1] = BPF_ZEXT_REG(0);
8663 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8664 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8665 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8666 	for (i = 0; i < len; i++) {
8667 		int adj_idx = i + delta;
8668 		struct bpf_insn insn;
8669 
8670 		insn = insns[adj_idx];
8671 		if (!aux[adj_idx].zext_dst) {
8672 			u8 code, class;
8673 			u32 imm_rnd;
8674 
8675 			if (!rnd_hi32)
8676 				continue;
8677 
8678 			code = insn.code;
8679 			class = BPF_CLASS(code);
8680 			if (insn_no_def(&insn))
8681 				continue;
8682 
8683 			/* NOTE: arg "reg" (the fourth one) is only used for
8684 			 *       BPF_STX which has been ruled out in above
8685 			 *       check, it is safe to pass NULL here.
8686 			 */
8687 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8688 				if (class == BPF_LD &&
8689 				    BPF_MODE(code) == BPF_IMM)
8690 					i++;
8691 				continue;
8692 			}
8693 
8694 			/* ctx load could be transformed into wider load. */
8695 			if (class == BPF_LDX &&
8696 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8697 				continue;
8698 
8699 			imm_rnd = get_random_int();
8700 			rnd_hi32_patch[0] = insn;
8701 			rnd_hi32_patch[1].imm = imm_rnd;
8702 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8703 			patch = rnd_hi32_patch;
8704 			patch_len = 4;
8705 			goto apply_patch_buffer;
8706 		}
8707 
8708 		if (!bpf_jit_needs_zext())
8709 			continue;
8710 
8711 		zext_patch[0] = insn;
8712 		zext_patch[1].dst_reg = insn.dst_reg;
8713 		zext_patch[1].src_reg = insn.dst_reg;
8714 		patch = zext_patch;
8715 		patch_len = 2;
8716 apply_patch_buffer:
8717 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8718 		if (!new_prog)
8719 			return -ENOMEM;
8720 		env->prog = new_prog;
8721 		insns = new_prog->insnsi;
8722 		aux = env->insn_aux_data;
8723 		delta += patch_len - 1;
8724 	}
8725 
8726 	return 0;
8727 }
8728 
8729 /* convert load instructions that access fields of a context type into a
8730  * sequence of instructions that access fields of the underlying structure:
8731  *     struct __sk_buff    -> struct sk_buff
8732  *     struct bpf_sock_ops -> struct sock
8733  */
8734 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8735 {
8736 	const struct bpf_verifier_ops *ops = env->ops;
8737 	int i, cnt, size, ctx_field_size, delta = 0;
8738 	const int insn_cnt = env->prog->len;
8739 	struct bpf_insn insn_buf[16], *insn;
8740 	u32 target_size, size_default, off;
8741 	struct bpf_prog *new_prog;
8742 	enum bpf_access_type type;
8743 	bool is_narrower_load;
8744 
8745 	if (ops->gen_prologue || env->seen_direct_write) {
8746 		if (!ops->gen_prologue) {
8747 			verbose(env, "bpf verifier is misconfigured\n");
8748 			return -EINVAL;
8749 		}
8750 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8751 					env->prog);
8752 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8753 			verbose(env, "bpf verifier is misconfigured\n");
8754 			return -EINVAL;
8755 		} else if (cnt) {
8756 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8757 			if (!new_prog)
8758 				return -ENOMEM;
8759 
8760 			env->prog = new_prog;
8761 			delta += cnt - 1;
8762 		}
8763 	}
8764 
8765 	if (bpf_prog_is_dev_bound(env->prog->aux))
8766 		return 0;
8767 
8768 	insn = env->prog->insnsi + delta;
8769 
8770 	for (i = 0; i < insn_cnt; i++, insn++) {
8771 		bpf_convert_ctx_access_t convert_ctx_access;
8772 
8773 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8774 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8775 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8776 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8777 			type = BPF_READ;
8778 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8779 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8780 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8781 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8782 			type = BPF_WRITE;
8783 		else
8784 			continue;
8785 
8786 		if (type == BPF_WRITE &&
8787 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8788 			struct bpf_insn patch[] = {
8789 				/* Sanitize suspicious stack slot with zero.
8790 				 * There are no memory dependencies for this store,
8791 				 * since it's only using frame pointer and immediate
8792 				 * constant of zero
8793 				 */
8794 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8795 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8796 					   0),
8797 				/* the original STX instruction will immediately
8798 				 * overwrite the same stack slot with appropriate value
8799 				 */
8800 				*insn,
8801 			};
8802 
8803 			cnt = ARRAY_SIZE(patch);
8804 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8805 			if (!new_prog)
8806 				return -ENOMEM;
8807 
8808 			delta    += cnt - 1;
8809 			env->prog = new_prog;
8810 			insn      = new_prog->insnsi + i + delta;
8811 			continue;
8812 		}
8813 
8814 		switch (env->insn_aux_data[i + delta].ptr_type) {
8815 		case PTR_TO_CTX:
8816 			if (!ops->convert_ctx_access)
8817 				continue;
8818 			convert_ctx_access = ops->convert_ctx_access;
8819 			break;
8820 		case PTR_TO_SOCKET:
8821 		case PTR_TO_SOCK_COMMON:
8822 			convert_ctx_access = bpf_sock_convert_ctx_access;
8823 			break;
8824 		case PTR_TO_TCP_SOCK:
8825 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8826 			break;
8827 		case PTR_TO_XDP_SOCK:
8828 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8829 			break;
8830 		case PTR_TO_BTF_ID:
8831 			if (type == BPF_WRITE) {
8832 				verbose(env, "Writes through BTF pointers are not allowed\n");
8833 				return -EINVAL;
8834 			}
8835 			insn->code = BPF_LDX | BPF_PROBE_MEM | BPF_SIZE((insn)->code);
8836 			env->prog->aux->num_exentries++;
8837 			continue;
8838 		default:
8839 			continue;
8840 		}
8841 
8842 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8843 		size = BPF_LDST_BYTES(insn);
8844 
8845 		/* If the read access is a narrower load of the field,
8846 		 * convert to a 4/8-byte load, to minimum program type specific
8847 		 * convert_ctx_access changes. If conversion is successful,
8848 		 * we will apply proper mask to the result.
8849 		 */
8850 		is_narrower_load = size < ctx_field_size;
8851 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8852 		off = insn->off;
8853 		if (is_narrower_load) {
8854 			u8 size_code;
8855 
8856 			if (type == BPF_WRITE) {
8857 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8858 				return -EINVAL;
8859 			}
8860 
8861 			size_code = BPF_H;
8862 			if (ctx_field_size == 4)
8863 				size_code = BPF_W;
8864 			else if (ctx_field_size == 8)
8865 				size_code = BPF_DW;
8866 
8867 			insn->off = off & ~(size_default - 1);
8868 			insn->code = BPF_LDX | BPF_MEM | size_code;
8869 		}
8870 
8871 		target_size = 0;
8872 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8873 					 &target_size);
8874 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8875 		    (ctx_field_size && !target_size)) {
8876 			verbose(env, "bpf verifier is misconfigured\n");
8877 			return -EINVAL;
8878 		}
8879 
8880 		if (is_narrower_load && size < target_size) {
8881 			u8 shift = bpf_ctx_narrow_access_offset(
8882 				off, size, size_default) * 8;
8883 			if (ctx_field_size <= 4) {
8884 				if (shift)
8885 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8886 									insn->dst_reg,
8887 									shift);
8888 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8889 								(1 << size * 8) - 1);
8890 			} else {
8891 				if (shift)
8892 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8893 									insn->dst_reg,
8894 									shift);
8895 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8896 								(1ULL << size * 8) - 1);
8897 			}
8898 		}
8899 
8900 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8901 		if (!new_prog)
8902 			return -ENOMEM;
8903 
8904 		delta += cnt - 1;
8905 
8906 		/* keep walking new program and skip insns we just inserted */
8907 		env->prog = new_prog;
8908 		insn      = new_prog->insnsi + i + delta;
8909 	}
8910 
8911 	return 0;
8912 }
8913 
8914 static int jit_subprogs(struct bpf_verifier_env *env)
8915 {
8916 	struct bpf_prog *prog = env->prog, **func, *tmp;
8917 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8918 	struct bpf_insn *insn;
8919 	void *old_bpf_func;
8920 	int err;
8921 
8922 	if (env->subprog_cnt <= 1)
8923 		return 0;
8924 
8925 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8926 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8927 		    insn->src_reg != BPF_PSEUDO_CALL)
8928 			continue;
8929 		/* Upon error here we cannot fall back to interpreter but
8930 		 * need a hard reject of the program. Thus -EFAULT is
8931 		 * propagated in any case.
8932 		 */
8933 		subprog = find_subprog(env, i + insn->imm + 1);
8934 		if (subprog < 0) {
8935 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8936 				  i + insn->imm + 1);
8937 			return -EFAULT;
8938 		}
8939 		/* temporarily remember subprog id inside insn instead of
8940 		 * aux_data, since next loop will split up all insns into funcs
8941 		 */
8942 		insn->off = subprog;
8943 		/* remember original imm in case JIT fails and fallback
8944 		 * to interpreter will be needed
8945 		 */
8946 		env->insn_aux_data[i].call_imm = insn->imm;
8947 		/* point imm to __bpf_call_base+1 from JITs point of view */
8948 		insn->imm = 1;
8949 	}
8950 
8951 	err = bpf_prog_alloc_jited_linfo(prog);
8952 	if (err)
8953 		goto out_undo_insn;
8954 
8955 	err = -ENOMEM;
8956 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8957 	if (!func)
8958 		goto out_undo_insn;
8959 
8960 	for (i = 0; i < env->subprog_cnt; i++) {
8961 		subprog_start = subprog_end;
8962 		subprog_end = env->subprog_info[i + 1].start;
8963 
8964 		len = subprog_end - subprog_start;
8965 		/* BPF_PROG_RUN doesn't call subprogs directly,
8966 		 * hence main prog stats include the runtime of subprogs.
8967 		 * subprogs don't have IDs and not reachable via prog_get_next_id
8968 		 * func[i]->aux->stats will never be accessed and stays NULL
8969 		 */
8970 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8971 		if (!func[i])
8972 			goto out_free;
8973 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8974 		       len * sizeof(struct bpf_insn));
8975 		func[i]->type = prog->type;
8976 		func[i]->len = len;
8977 		if (bpf_prog_calc_tag(func[i]))
8978 			goto out_free;
8979 		func[i]->is_func = 1;
8980 		func[i]->aux->func_idx = i;
8981 		/* the btf and func_info will be freed only at prog->aux */
8982 		func[i]->aux->btf = prog->aux->btf;
8983 		func[i]->aux->func_info = prog->aux->func_info;
8984 
8985 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
8986 		 * Long term would need debug info to populate names
8987 		 */
8988 		func[i]->aux->name[0] = 'F';
8989 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8990 		func[i]->jit_requested = 1;
8991 		func[i]->aux->linfo = prog->aux->linfo;
8992 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8993 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8994 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8995 		func[i] = bpf_int_jit_compile(func[i]);
8996 		if (!func[i]->jited) {
8997 			err = -ENOTSUPP;
8998 			goto out_free;
8999 		}
9000 		cond_resched();
9001 	}
9002 	/* at this point all bpf functions were successfully JITed
9003 	 * now populate all bpf_calls with correct addresses and
9004 	 * run last pass of JIT
9005 	 */
9006 	for (i = 0; i < env->subprog_cnt; i++) {
9007 		insn = func[i]->insnsi;
9008 		for (j = 0; j < func[i]->len; j++, insn++) {
9009 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9010 			    insn->src_reg != BPF_PSEUDO_CALL)
9011 				continue;
9012 			subprog = insn->off;
9013 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9014 				    __bpf_call_base;
9015 		}
9016 
9017 		/* we use the aux data to keep a list of the start addresses
9018 		 * of the JITed images for each function in the program
9019 		 *
9020 		 * for some architectures, such as powerpc64, the imm field
9021 		 * might not be large enough to hold the offset of the start
9022 		 * address of the callee's JITed image from __bpf_call_base
9023 		 *
9024 		 * in such cases, we can lookup the start address of a callee
9025 		 * by using its subprog id, available from the off field of
9026 		 * the call instruction, as an index for this list
9027 		 */
9028 		func[i]->aux->func = func;
9029 		func[i]->aux->func_cnt = env->subprog_cnt;
9030 	}
9031 	for (i = 0; i < env->subprog_cnt; i++) {
9032 		old_bpf_func = func[i]->bpf_func;
9033 		tmp = bpf_int_jit_compile(func[i]);
9034 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9035 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9036 			err = -ENOTSUPP;
9037 			goto out_free;
9038 		}
9039 		cond_resched();
9040 	}
9041 
9042 	/* finally lock prog and jit images for all functions and
9043 	 * populate kallsysm
9044 	 */
9045 	for (i = 0; i < env->subprog_cnt; i++) {
9046 		bpf_prog_lock_ro(func[i]);
9047 		bpf_prog_kallsyms_add(func[i]);
9048 	}
9049 
9050 	/* Last step: make now unused interpreter insns from main
9051 	 * prog consistent for later dump requests, so they can
9052 	 * later look the same as if they were interpreted only.
9053 	 */
9054 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9055 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9056 		    insn->src_reg != BPF_PSEUDO_CALL)
9057 			continue;
9058 		insn->off = env->insn_aux_data[i].call_imm;
9059 		subprog = find_subprog(env, i + insn->off + 1);
9060 		insn->imm = subprog;
9061 	}
9062 
9063 	prog->jited = 1;
9064 	prog->bpf_func = func[0]->bpf_func;
9065 	prog->aux->func = func;
9066 	prog->aux->func_cnt = env->subprog_cnt;
9067 	bpf_prog_free_unused_jited_linfo(prog);
9068 	return 0;
9069 out_free:
9070 	for (i = 0; i < env->subprog_cnt; i++)
9071 		if (func[i])
9072 			bpf_jit_free(func[i]);
9073 	kfree(func);
9074 out_undo_insn:
9075 	/* cleanup main prog to be interpreted */
9076 	prog->jit_requested = 0;
9077 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9078 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9079 		    insn->src_reg != BPF_PSEUDO_CALL)
9080 			continue;
9081 		insn->off = 0;
9082 		insn->imm = env->insn_aux_data[i].call_imm;
9083 	}
9084 	bpf_prog_free_jited_linfo(prog);
9085 	return err;
9086 }
9087 
9088 static int fixup_call_args(struct bpf_verifier_env *env)
9089 {
9090 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9091 	struct bpf_prog *prog = env->prog;
9092 	struct bpf_insn *insn = prog->insnsi;
9093 	int i, depth;
9094 #endif
9095 	int err = 0;
9096 
9097 	if (env->prog->jit_requested &&
9098 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9099 		err = jit_subprogs(env);
9100 		if (err == 0)
9101 			return 0;
9102 		if (err == -EFAULT)
9103 			return err;
9104 	}
9105 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9106 	for (i = 0; i < prog->len; i++, insn++) {
9107 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9108 		    insn->src_reg != BPF_PSEUDO_CALL)
9109 			continue;
9110 		depth = get_callee_stack_depth(env, insn, i);
9111 		if (depth < 0)
9112 			return depth;
9113 		bpf_patch_call_args(insn, depth);
9114 	}
9115 	err = 0;
9116 #endif
9117 	return err;
9118 }
9119 
9120 /* fixup insn->imm field of bpf_call instructions
9121  * and inline eligible helpers as explicit sequence of BPF instructions
9122  *
9123  * this function is called after eBPF program passed verification
9124  */
9125 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9126 {
9127 	struct bpf_prog *prog = env->prog;
9128 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9129 	struct bpf_insn *insn = prog->insnsi;
9130 	const struct bpf_func_proto *fn;
9131 	const int insn_cnt = prog->len;
9132 	const struct bpf_map_ops *ops;
9133 	struct bpf_insn_aux_data *aux;
9134 	struct bpf_insn insn_buf[16];
9135 	struct bpf_prog *new_prog;
9136 	struct bpf_map *map_ptr;
9137 	int i, ret, cnt, delta = 0;
9138 
9139 	for (i = 0; i < insn_cnt; i++, insn++) {
9140 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9141 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9142 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9143 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9144 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9145 			struct bpf_insn mask_and_div[] = {
9146 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9147 				/* Rx div 0 -> 0 */
9148 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9149 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9150 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9151 				*insn,
9152 			};
9153 			struct bpf_insn mask_and_mod[] = {
9154 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9155 				/* Rx mod 0 -> Rx */
9156 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9157 				*insn,
9158 			};
9159 			struct bpf_insn *patchlet;
9160 
9161 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9162 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9163 				patchlet = mask_and_div + (is64 ? 1 : 0);
9164 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9165 			} else {
9166 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9167 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9168 			}
9169 
9170 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9171 			if (!new_prog)
9172 				return -ENOMEM;
9173 
9174 			delta    += cnt - 1;
9175 			env->prog = prog = new_prog;
9176 			insn      = new_prog->insnsi + i + delta;
9177 			continue;
9178 		}
9179 
9180 		if (BPF_CLASS(insn->code) == BPF_LD &&
9181 		    (BPF_MODE(insn->code) == BPF_ABS ||
9182 		     BPF_MODE(insn->code) == BPF_IND)) {
9183 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9184 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9185 				verbose(env, "bpf verifier is misconfigured\n");
9186 				return -EINVAL;
9187 			}
9188 
9189 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9190 			if (!new_prog)
9191 				return -ENOMEM;
9192 
9193 			delta    += cnt - 1;
9194 			env->prog = prog = new_prog;
9195 			insn      = new_prog->insnsi + i + delta;
9196 			continue;
9197 		}
9198 
9199 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9200 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9201 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9202 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9203 			struct bpf_insn insn_buf[16];
9204 			struct bpf_insn *patch = &insn_buf[0];
9205 			bool issrc, isneg;
9206 			u32 off_reg;
9207 
9208 			aux = &env->insn_aux_data[i + delta];
9209 			if (!aux->alu_state ||
9210 			    aux->alu_state == BPF_ALU_NON_POINTER)
9211 				continue;
9212 
9213 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9214 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9215 				BPF_ALU_SANITIZE_SRC;
9216 
9217 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9218 			if (isneg)
9219 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9220 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9221 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9222 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9223 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9224 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9225 			if (issrc) {
9226 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9227 							 off_reg);
9228 				insn->src_reg = BPF_REG_AX;
9229 			} else {
9230 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9231 							 BPF_REG_AX);
9232 			}
9233 			if (isneg)
9234 				insn->code = insn->code == code_add ?
9235 					     code_sub : code_add;
9236 			*patch++ = *insn;
9237 			if (issrc && isneg)
9238 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9239 			cnt = patch - insn_buf;
9240 
9241 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9242 			if (!new_prog)
9243 				return -ENOMEM;
9244 
9245 			delta    += cnt - 1;
9246 			env->prog = prog = new_prog;
9247 			insn      = new_prog->insnsi + i + delta;
9248 			continue;
9249 		}
9250 
9251 		if (insn->code != (BPF_JMP | BPF_CALL))
9252 			continue;
9253 		if (insn->src_reg == BPF_PSEUDO_CALL)
9254 			continue;
9255 
9256 		if (insn->imm == BPF_FUNC_get_route_realm)
9257 			prog->dst_needed = 1;
9258 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9259 			bpf_user_rnd_init_once();
9260 		if (insn->imm == BPF_FUNC_override_return)
9261 			prog->kprobe_override = 1;
9262 		if (insn->imm == BPF_FUNC_tail_call) {
9263 			/* If we tail call into other programs, we
9264 			 * cannot make any assumptions since they can
9265 			 * be replaced dynamically during runtime in
9266 			 * the program array.
9267 			 */
9268 			prog->cb_access = 1;
9269 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9270 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9271 
9272 			/* mark bpf_tail_call as different opcode to avoid
9273 			 * conditional branch in the interpeter for every normal
9274 			 * call and to prevent accidental JITing by JIT compiler
9275 			 * that doesn't support bpf_tail_call yet
9276 			 */
9277 			insn->imm = 0;
9278 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9279 
9280 			aux = &env->insn_aux_data[i + delta];
9281 			if (env->allow_ptr_leaks && !expect_blinding &&
9282 			    prog->jit_requested &&
9283 			    !bpf_map_key_poisoned(aux) &&
9284 			    !bpf_map_ptr_poisoned(aux) &&
9285 			    !bpf_map_ptr_unpriv(aux)) {
9286 				struct bpf_jit_poke_descriptor desc = {
9287 					.reason = BPF_POKE_REASON_TAIL_CALL,
9288 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9289 					.tail_call.key = bpf_map_key_immediate(aux),
9290 				};
9291 
9292 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9293 				if (ret < 0) {
9294 					verbose(env, "adding tail call poke descriptor failed\n");
9295 					return ret;
9296 				}
9297 
9298 				insn->imm = ret + 1;
9299 				continue;
9300 			}
9301 
9302 			if (!bpf_map_ptr_unpriv(aux))
9303 				continue;
9304 
9305 			/* instead of changing every JIT dealing with tail_call
9306 			 * emit two extra insns:
9307 			 * if (index >= max_entries) goto out;
9308 			 * index &= array->index_mask;
9309 			 * to avoid out-of-bounds cpu speculation
9310 			 */
9311 			if (bpf_map_ptr_poisoned(aux)) {
9312 				verbose(env, "tail_call abusing map_ptr\n");
9313 				return -EINVAL;
9314 			}
9315 
9316 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9317 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9318 						  map_ptr->max_entries, 2);
9319 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9320 						    container_of(map_ptr,
9321 								 struct bpf_array,
9322 								 map)->index_mask);
9323 			insn_buf[2] = *insn;
9324 			cnt = 3;
9325 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9326 			if (!new_prog)
9327 				return -ENOMEM;
9328 
9329 			delta    += cnt - 1;
9330 			env->prog = prog = new_prog;
9331 			insn      = new_prog->insnsi + i + delta;
9332 			continue;
9333 		}
9334 
9335 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9336 		 * and other inlining handlers are currently limited to 64 bit
9337 		 * only.
9338 		 */
9339 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9340 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9341 		     insn->imm == BPF_FUNC_map_update_elem ||
9342 		     insn->imm == BPF_FUNC_map_delete_elem ||
9343 		     insn->imm == BPF_FUNC_map_push_elem   ||
9344 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9345 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9346 			aux = &env->insn_aux_data[i + delta];
9347 			if (bpf_map_ptr_poisoned(aux))
9348 				goto patch_call_imm;
9349 
9350 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9351 			ops = map_ptr->ops;
9352 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9353 			    ops->map_gen_lookup) {
9354 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9355 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9356 					verbose(env, "bpf verifier is misconfigured\n");
9357 					return -EINVAL;
9358 				}
9359 
9360 				new_prog = bpf_patch_insn_data(env, i + delta,
9361 							       insn_buf, cnt);
9362 				if (!new_prog)
9363 					return -ENOMEM;
9364 
9365 				delta    += cnt - 1;
9366 				env->prog = prog = new_prog;
9367 				insn      = new_prog->insnsi + i + delta;
9368 				continue;
9369 			}
9370 
9371 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9372 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9373 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9374 				     (int (*)(struct bpf_map *map, void *key))NULL));
9375 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9376 				     (int (*)(struct bpf_map *map, void *key, void *value,
9377 					      u64 flags))NULL));
9378 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9379 				     (int (*)(struct bpf_map *map, void *value,
9380 					      u64 flags))NULL));
9381 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9382 				     (int (*)(struct bpf_map *map, void *value))NULL));
9383 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9384 				     (int (*)(struct bpf_map *map, void *value))NULL));
9385 
9386 			switch (insn->imm) {
9387 			case BPF_FUNC_map_lookup_elem:
9388 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9389 					    __bpf_call_base;
9390 				continue;
9391 			case BPF_FUNC_map_update_elem:
9392 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9393 					    __bpf_call_base;
9394 				continue;
9395 			case BPF_FUNC_map_delete_elem:
9396 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9397 					    __bpf_call_base;
9398 				continue;
9399 			case BPF_FUNC_map_push_elem:
9400 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9401 					    __bpf_call_base;
9402 				continue;
9403 			case BPF_FUNC_map_pop_elem:
9404 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9405 					    __bpf_call_base;
9406 				continue;
9407 			case BPF_FUNC_map_peek_elem:
9408 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9409 					    __bpf_call_base;
9410 				continue;
9411 			}
9412 
9413 			goto patch_call_imm;
9414 		}
9415 
9416 patch_call_imm:
9417 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9418 		/* all functions that have prototype and verifier allowed
9419 		 * programs to call them, must be real in-kernel functions
9420 		 */
9421 		if (!fn->func) {
9422 			verbose(env,
9423 				"kernel subsystem misconfigured func %s#%d\n",
9424 				func_id_name(insn->imm), insn->imm);
9425 			return -EFAULT;
9426 		}
9427 		insn->imm = fn->func - __bpf_call_base;
9428 	}
9429 
9430 	/* Since poke tab is now finalized, publish aux to tracker. */
9431 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
9432 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
9433 		if (!map_ptr->ops->map_poke_track ||
9434 		    !map_ptr->ops->map_poke_untrack ||
9435 		    !map_ptr->ops->map_poke_run) {
9436 			verbose(env, "bpf verifier is misconfigured\n");
9437 			return -EINVAL;
9438 		}
9439 
9440 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9441 		if (ret < 0) {
9442 			verbose(env, "tracking tail call prog failed\n");
9443 			return ret;
9444 		}
9445 	}
9446 
9447 	return 0;
9448 }
9449 
9450 static void free_states(struct bpf_verifier_env *env)
9451 {
9452 	struct bpf_verifier_state_list *sl, *sln;
9453 	int i;
9454 
9455 	sl = env->free_list;
9456 	while (sl) {
9457 		sln = sl->next;
9458 		free_verifier_state(&sl->state, false);
9459 		kfree(sl);
9460 		sl = sln;
9461 	}
9462 
9463 	if (!env->explored_states)
9464 		return;
9465 
9466 	for (i = 0; i < state_htab_size(env); i++) {
9467 		sl = env->explored_states[i];
9468 
9469 		while (sl) {
9470 			sln = sl->next;
9471 			free_verifier_state(&sl->state, false);
9472 			kfree(sl);
9473 			sl = sln;
9474 		}
9475 	}
9476 
9477 	kvfree(env->explored_states);
9478 }
9479 
9480 static void print_verification_stats(struct bpf_verifier_env *env)
9481 {
9482 	int i;
9483 
9484 	if (env->log.level & BPF_LOG_STATS) {
9485 		verbose(env, "verification time %lld usec\n",
9486 			div_u64(env->verification_time, 1000));
9487 		verbose(env, "stack depth ");
9488 		for (i = 0; i < env->subprog_cnt; i++) {
9489 			u32 depth = env->subprog_info[i].stack_depth;
9490 
9491 			verbose(env, "%d", depth);
9492 			if (i + 1 < env->subprog_cnt)
9493 				verbose(env, "+");
9494 		}
9495 		verbose(env, "\n");
9496 	}
9497 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9498 		"total_states %d peak_states %d mark_read %d\n",
9499 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9500 		env->max_states_per_insn, env->total_states,
9501 		env->peak_states, env->longest_mark_read_walk);
9502 }
9503 
9504 static int check_attach_btf_id(struct bpf_verifier_env *env)
9505 {
9506 	struct bpf_prog *prog = env->prog;
9507 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
9508 	u32 btf_id = prog->aux->attach_btf_id;
9509 	const char prefix[] = "btf_trace_";
9510 	int ret = 0, subprog = -1, i;
9511 	struct bpf_trampoline *tr;
9512 	const struct btf_type *t;
9513 	bool conservative = true;
9514 	const char *tname;
9515 	struct btf *btf;
9516 	long addr;
9517 	u64 key;
9518 
9519 	if (prog->type != BPF_PROG_TYPE_TRACING)
9520 		return 0;
9521 
9522 	if (!btf_id) {
9523 		verbose(env, "Tracing programs must provide btf_id\n");
9524 		return -EINVAL;
9525 	}
9526 	btf = bpf_prog_get_target_btf(prog);
9527 	if (!btf) {
9528 		verbose(env,
9529 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9530 		return -EINVAL;
9531 	}
9532 	t = btf_type_by_id(btf, btf_id);
9533 	if (!t) {
9534 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9535 		return -EINVAL;
9536 	}
9537 	tname = btf_name_by_offset(btf, t->name_off);
9538 	if (!tname) {
9539 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9540 		return -EINVAL;
9541 	}
9542 	if (tgt_prog) {
9543 		struct bpf_prog_aux *aux = tgt_prog->aux;
9544 
9545 		for (i = 0; i < aux->func_info_cnt; i++)
9546 			if (aux->func_info[i].type_id == btf_id) {
9547 				subprog = i;
9548 				break;
9549 			}
9550 		if (subprog == -1) {
9551 			verbose(env, "Subprog %s doesn't exist\n", tname);
9552 			return -EINVAL;
9553 		}
9554 		conservative = aux->func_info_aux[subprog].unreliable;
9555 		key = ((u64)aux->id) << 32 | btf_id;
9556 	} else {
9557 		key = btf_id;
9558 	}
9559 
9560 	switch (prog->expected_attach_type) {
9561 	case BPF_TRACE_RAW_TP:
9562 		if (tgt_prog) {
9563 			verbose(env,
9564 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9565 			return -EINVAL;
9566 		}
9567 		if (!btf_type_is_typedef(t)) {
9568 			verbose(env, "attach_btf_id %u is not a typedef\n",
9569 				btf_id);
9570 			return -EINVAL;
9571 		}
9572 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
9573 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9574 				btf_id, tname);
9575 			return -EINVAL;
9576 		}
9577 		tname += sizeof(prefix) - 1;
9578 		t = btf_type_by_id(btf, t->type);
9579 		if (!btf_type_is_ptr(t))
9580 			/* should never happen in valid vmlinux build */
9581 			return -EINVAL;
9582 		t = btf_type_by_id(btf, t->type);
9583 		if (!btf_type_is_func_proto(t))
9584 			/* should never happen in valid vmlinux build */
9585 			return -EINVAL;
9586 
9587 		/* remember two read only pointers that are valid for
9588 		 * the life time of the kernel
9589 		 */
9590 		prog->aux->attach_func_name = tname;
9591 		prog->aux->attach_func_proto = t;
9592 		prog->aux->attach_btf_trace = true;
9593 		return 0;
9594 	case BPF_TRACE_FENTRY:
9595 	case BPF_TRACE_FEXIT:
9596 		if (!btf_type_is_func(t)) {
9597 			verbose(env, "attach_btf_id %u is not a function\n",
9598 				btf_id);
9599 			return -EINVAL;
9600 		}
9601 		t = btf_type_by_id(btf, t->type);
9602 		if (!btf_type_is_func_proto(t))
9603 			return -EINVAL;
9604 		tr = bpf_trampoline_lookup(key);
9605 		if (!tr)
9606 			return -ENOMEM;
9607 		prog->aux->attach_func_name = tname;
9608 		/* t is either vmlinux type or another program's type */
9609 		prog->aux->attach_func_proto = t;
9610 		mutex_lock(&tr->mutex);
9611 		if (tr->func.addr) {
9612 			prog->aux->trampoline = tr;
9613 			goto out;
9614 		}
9615 		if (tgt_prog && conservative) {
9616 			prog->aux->attach_func_proto = NULL;
9617 			t = NULL;
9618 		}
9619 		ret = btf_distill_func_proto(&env->log, btf, t,
9620 					     tname, &tr->func.model);
9621 		if (ret < 0)
9622 			goto out;
9623 		if (tgt_prog) {
9624 			if (!tgt_prog->jited) {
9625 				/* for now */
9626 				verbose(env, "Can trace only JITed BPF progs\n");
9627 				ret = -EINVAL;
9628 				goto out;
9629 			}
9630 			if (tgt_prog->type == BPF_PROG_TYPE_TRACING) {
9631 				/* prevent cycles */
9632 				verbose(env, "Cannot recursively attach\n");
9633 				ret = -EINVAL;
9634 				goto out;
9635 			}
9636 			if (subprog == 0)
9637 				addr = (long) tgt_prog->bpf_func;
9638 			else
9639 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
9640 		} else {
9641 			addr = kallsyms_lookup_name(tname);
9642 			if (!addr) {
9643 				verbose(env,
9644 					"The address of function %s cannot be found\n",
9645 					tname);
9646 				ret = -ENOENT;
9647 				goto out;
9648 			}
9649 		}
9650 		tr->func.addr = (void *)addr;
9651 		prog->aux->trampoline = tr;
9652 out:
9653 		mutex_unlock(&tr->mutex);
9654 		if (ret)
9655 			bpf_trampoline_put(tr);
9656 		return ret;
9657 	default:
9658 		return -EINVAL;
9659 	}
9660 }
9661 
9662 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9663 	      union bpf_attr __user *uattr)
9664 {
9665 	u64 start_time = ktime_get_ns();
9666 	struct bpf_verifier_env *env;
9667 	struct bpf_verifier_log *log;
9668 	int i, len, ret = -EINVAL;
9669 	bool is_priv;
9670 
9671 	/* no program is valid */
9672 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9673 		return -EINVAL;
9674 
9675 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9676 	 * allocate/free it every time bpf_check() is called
9677 	 */
9678 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9679 	if (!env)
9680 		return -ENOMEM;
9681 	log = &env->log;
9682 
9683 	len = (*prog)->len;
9684 	env->insn_aux_data =
9685 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9686 	ret = -ENOMEM;
9687 	if (!env->insn_aux_data)
9688 		goto err_free_env;
9689 	for (i = 0; i < len; i++)
9690 		env->insn_aux_data[i].orig_idx = i;
9691 	env->prog = *prog;
9692 	env->ops = bpf_verifier_ops[env->prog->type];
9693 	is_priv = capable(CAP_SYS_ADMIN);
9694 
9695 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
9696 		mutex_lock(&bpf_verifier_lock);
9697 		if (!btf_vmlinux)
9698 			btf_vmlinux = btf_parse_vmlinux();
9699 		mutex_unlock(&bpf_verifier_lock);
9700 	}
9701 
9702 	/* grab the mutex to protect few globals used by verifier */
9703 	if (!is_priv)
9704 		mutex_lock(&bpf_verifier_lock);
9705 
9706 	if (attr->log_level || attr->log_buf || attr->log_size) {
9707 		/* user requested verbose verifier output
9708 		 * and supplied buffer to store the verification trace
9709 		 */
9710 		log->level = attr->log_level;
9711 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9712 		log->len_total = attr->log_size;
9713 
9714 		ret = -EINVAL;
9715 		/* log attributes have to be sane */
9716 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9717 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9718 			goto err_unlock;
9719 	}
9720 
9721 	if (IS_ERR(btf_vmlinux)) {
9722 		/* Either gcc or pahole or kernel are broken. */
9723 		verbose(env, "in-kernel BTF is malformed\n");
9724 		ret = PTR_ERR(btf_vmlinux);
9725 		goto skip_full_check;
9726 	}
9727 
9728 	ret = check_attach_btf_id(env);
9729 	if (ret)
9730 		goto skip_full_check;
9731 
9732 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9733 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9734 		env->strict_alignment = true;
9735 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9736 		env->strict_alignment = false;
9737 
9738 	env->allow_ptr_leaks = is_priv;
9739 
9740 	if (is_priv)
9741 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9742 
9743 	ret = replace_map_fd_with_map_ptr(env);
9744 	if (ret < 0)
9745 		goto skip_full_check;
9746 
9747 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9748 		ret = bpf_prog_offload_verifier_prep(env->prog);
9749 		if (ret)
9750 			goto skip_full_check;
9751 	}
9752 
9753 	env->explored_states = kvcalloc(state_htab_size(env),
9754 				       sizeof(struct bpf_verifier_state_list *),
9755 				       GFP_USER);
9756 	ret = -ENOMEM;
9757 	if (!env->explored_states)
9758 		goto skip_full_check;
9759 
9760 	ret = check_subprogs(env);
9761 	if (ret < 0)
9762 		goto skip_full_check;
9763 
9764 	ret = check_btf_info(env, attr, uattr);
9765 	if (ret < 0)
9766 		goto skip_full_check;
9767 
9768 	ret = check_cfg(env);
9769 	if (ret < 0)
9770 		goto skip_full_check;
9771 
9772 	ret = do_check(env);
9773 	if (env->cur_state) {
9774 		free_verifier_state(env->cur_state, true);
9775 		env->cur_state = NULL;
9776 	}
9777 
9778 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9779 		ret = bpf_prog_offload_finalize(env);
9780 
9781 skip_full_check:
9782 	while (!pop_stack(env, NULL, NULL));
9783 	free_states(env);
9784 
9785 	if (ret == 0)
9786 		ret = check_max_stack_depth(env);
9787 
9788 	/* instruction rewrites happen after this point */
9789 	if (is_priv) {
9790 		if (ret == 0)
9791 			opt_hard_wire_dead_code_branches(env);
9792 		if (ret == 0)
9793 			ret = opt_remove_dead_code(env);
9794 		if (ret == 0)
9795 			ret = opt_remove_nops(env);
9796 	} else {
9797 		if (ret == 0)
9798 			sanitize_dead_code(env);
9799 	}
9800 
9801 	if (ret == 0)
9802 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9803 		ret = convert_ctx_accesses(env);
9804 
9805 	if (ret == 0)
9806 		ret = fixup_bpf_calls(env);
9807 
9808 	/* do 32-bit optimization after insn patching has done so those patched
9809 	 * insns could be handled correctly.
9810 	 */
9811 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9812 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9813 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9814 								     : false;
9815 	}
9816 
9817 	if (ret == 0)
9818 		ret = fixup_call_args(env);
9819 
9820 	env->verification_time = ktime_get_ns() - start_time;
9821 	print_verification_stats(env);
9822 
9823 	if (log->level && bpf_verifier_log_full(log))
9824 		ret = -ENOSPC;
9825 	if (log->level && !log->ubuf) {
9826 		ret = -EFAULT;
9827 		goto err_release_maps;
9828 	}
9829 
9830 	if (ret == 0 && env->used_map_cnt) {
9831 		/* if program passed verifier, update used_maps in bpf_prog_info */
9832 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9833 							  sizeof(env->used_maps[0]),
9834 							  GFP_KERNEL);
9835 
9836 		if (!env->prog->aux->used_maps) {
9837 			ret = -ENOMEM;
9838 			goto err_release_maps;
9839 		}
9840 
9841 		memcpy(env->prog->aux->used_maps, env->used_maps,
9842 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9843 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9844 
9845 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9846 		 * bpf_ld_imm64 instructions
9847 		 */
9848 		convert_pseudo_ld_imm64(env);
9849 	}
9850 
9851 	if (ret == 0)
9852 		adjust_btf_func(env);
9853 
9854 err_release_maps:
9855 	if (!env->prog->aux->used_maps)
9856 		/* if we didn't copy map pointers into bpf_prog_info, release
9857 		 * them now. Otherwise free_used_maps() will release them.
9858 		 */
9859 		release_maps(env);
9860 	*prog = env->prog;
9861 err_unlock:
9862 	if (!is_priv)
9863 		mutex_unlock(&bpf_verifier_lock);
9864 	vfree(env->insn_aux_data);
9865 err_free_env:
9866 	kfree(env);
9867 	return ret;
9868 }
9869