xref: /openbmc/linux/kernel/bpf/verifier.c (revision 99b75a4e)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12  * General Public License for more details.
13  */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41 
42 /* bpf_check() is a static code analyzer that walks eBPF program
43  * instruction by instruction and updates register/stack state.
44  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45  *
46  * The first pass is depth-first-search to check that the program is a DAG.
47  * It rejects the following programs:
48  * - larger than BPF_MAXINSNS insns
49  * - if loop is present (detected via back-edge)
50  * - unreachable insns exist (shouldn't be a forest. program = one function)
51  * - out of bounds or malformed jumps
52  * The second pass is all possible path descent from the 1st insn.
53  * Since it's analyzing all pathes through the program, the length of the
54  * analysis is limited to 64k insn, which may be hit even if total number of
55  * insn is less then 4K, but there are too many branches that change stack/regs.
56  * Number of 'branches to be analyzed' is limited to 1k
57  *
58  * On entry to each instruction, each register has a type, and the instruction
59  * changes the types of the registers depending on instruction semantics.
60  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61  * copied to R1.
62  *
63  * All registers are 64-bit.
64  * R0 - return register
65  * R1-R5 argument passing registers
66  * R6-R9 callee saved registers
67  * R10 - frame pointer read-only
68  *
69  * At the start of BPF program the register R1 contains a pointer to bpf_context
70  * and has type PTR_TO_CTX.
71  *
72  * Verifier tracks arithmetic operations on pointers in case:
73  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75  * 1st insn copies R10 (which has FRAME_PTR) type into R1
76  * and 2nd arithmetic instruction is pattern matched to recognize
77  * that it wants to construct a pointer to some element within stack.
78  * So after 2nd insn, the register R1 has type PTR_TO_STACK
79  * (and -20 constant is saved for further stack bounds checking).
80  * Meaning that this reg is a pointer to stack plus known immediate constant.
81  *
82  * Most of the time the registers have SCALAR_VALUE type, which
83  * means the register has some value, but it's not a valid pointer.
84  * (like pointer plus pointer becomes SCALAR_VALUE type)
85  *
86  * When verifier sees load or store instructions the type of base register
87  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88  * four pointer types recognized by check_mem_access() function.
89  *
90  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91  * and the range of [ptr, ptr + map's value_size) is accessible.
92  *
93  * registers used to pass values to function calls are checked against
94  * function argument constraints.
95  *
96  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97  * It means that the register type passed to this function must be
98  * PTR_TO_STACK and it will be used inside the function as
99  * 'pointer to map element key'
100  *
101  * For example the argument constraints for bpf_map_lookup_elem():
102  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103  *   .arg1_type = ARG_CONST_MAP_PTR,
104  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
105  *
106  * ret_type says that this function returns 'pointer to map elem value or null'
107  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108  * 2nd argument should be a pointer to stack, which will be used inside
109  * the helper function as a pointer to map element key.
110  *
111  * On the kernel side the helper function looks like:
112  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113  * {
114  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115  *    void *key = (void *) (unsigned long) r2;
116  *    void *value;
117  *
118  *    here kernel can access 'key' and 'map' pointers safely, knowing that
119  *    [key, key + map->key_size) bytes are valid and were initialized on
120  *    the stack of eBPF program.
121  * }
122  *
123  * Corresponding eBPF program may look like:
124  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
125  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
127  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128  * here verifier looks at prototype of map_lookup_elem() and sees:
129  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131  *
132  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134  * and were initialized prior to this call.
135  * If it's ok, then verifier allows this BPF_CALL insn and looks at
136  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138  * returns ether pointer to map value or NULL.
139  *
140  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141  * insn, the register holding that pointer in the true branch changes state to
142  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143  * branch. See check_cond_jmp_op().
144  *
145  * After the call R0 is set to return type of the function and registers R1-R5
146  * are set to NOT_INIT to indicate that they are no longer readable.
147  *
148  * The following reference types represent a potential reference to a kernel
149  * resource which, after first being allocated, must be checked and freed by
150  * the BPF program:
151  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152  *
153  * When the verifier sees a helper call return a reference type, it allocates a
154  * pointer id for the reference and stores it in the current function state.
155  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157  * passes through a NULL-check conditional. For the branch wherein the state is
158  * changed to CONST_IMM, the verifier releases the reference.
159  *
160  * For each helper function that allocates a reference, such as
161  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162  * bpf_sk_release(). When a reference type passes into the release function,
163  * the verifier also releases the reference. If any unchecked or unreleased
164  * reference remains at the end of the program, the verifier rejects it.
165  */
166 
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 	/* verifer state is 'st'
170 	 * before processing instruction 'insn_idx'
171 	 * and after processing instruction 'prev_insn_idx'
172 	 */
173 	struct bpf_verifier_state st;
174 	int insn_idx;
175 	int prev_insn_idx;
176 	struct bpf_verifier_stack_elem *next;
177 };
178 
179 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
180 #define BPF_COMPLEXITY_LIMIT_STACK	1024
181 #define BPF_COMPLEXITY_LIMIT_STATES	64
182 
183 #define BPF_MAP_PTR_UNPRIV	1UL
184 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
185 					  POISON_POINTER_DELTA))
186 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
187 
188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
189 {
190 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
191 }
192 
193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
194 {
195 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
196 }
197 
198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
199 			      const struct bpf_map *map, bool unpriv)
200 {
201 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
202 	unpriv |= bpf_map_ptr_unpriv(aux);
203 	aux->map_state = (unsigned long)map |
204 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
205 }
206 
207 struct bpf_call_arg_meta {
208 	struct bpf_map *map_ptr;
209 	bool raw_mode;
210 	bool pkt_access;
211 	int regno;
212 	int access_size;
213 	s64 msize_smax_value;
214 	u64 msize_umax_value;
215 	int ref_obj_id;
216 	int func_id;
217 };
218 
219 static DEFINE_MUTEX(bpf_verifier_lock);
220 
221 static const struct bpf_line_info *
222 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
223 {
224 	const struct bpf_line_info *linfo;
225 	const struct bpf_prog *prog;
226 	u32 i, nr_linfo;
227 
228 	prog = env->prog;
229 	nr_linfo = prog->aux->nr_linfo;
230 
231 	if (!nr_linfo || insn_off >= prog->len)
232 		return NULL;
233 
234 	linfo = prog->aux->linfo;
235 	for (i = 1; i < nr_linfo; i++)
236 		if (insn_off < linfo[i].insn_off)
237 			break;
238 
239 	return &linfo[i - 1];
240 }
241 
242 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
243 		       va_list args)
244 {
245 	unsigned int n;
246 
247 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
248 
249 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
250 		  "verifier log line truncated - local buffer too short\n");
251 
252 	n = min(log->len_total - log->len_used - 1, n);
253 	log->kbuf[n] = '\0';
254 
255 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
256 		log->len_used += n;
257 	else
258 		log->ubuf = NULL;
259 }
260 
261 /* log_level controls verbosity level of eBPF verifier.
262  * bpf_verifier_log_write() is used to dump the verification trace to the log,
263  * so the user can figure out what's wrong with the program
264  */
265 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
266 					   const char *fmt, ...)
267 {
268 	va_list args;
269 
270 	if (!bpf_verifier_log_needed(&env->log))
271 		return;
272 
273 	va_start(args, fmt);
274 	bpf_verifier_vlog(&env->log, fmt, args);
275 	va_end(args);
276 }
277 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
278 
279 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
280 {
281 	struct bpf_verifier_env *env = private_data;
282 	va_list args;
283 
284 	if (!bpf_verifier_log_needed(&env->log))
285 		return;
286 
287 	va_start(args, fmt);
288 	bpf_verifier_vlog(&env->log, fmt, args);
289 	va_end(args);
290 }
291 
292 static const char *ltrim(const char *s)
293 {
294 	while (isspace(*s))
295 		s++;
296 
297 	return s;
298 }
299 
300 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
301 					 u32 insn_off,
302 					 const char *prefix_fmt, ...)
303 {
304 	const struct bpf_line_info *linfo;
305 
306 	if (!bpf_verifier_log_needed(&env->log))
307 		return;
308 
309 	linfo = find_linfo(env, insn_off);
310 	if (!linfo || linfo == env->prev_linfo)
311 		return;
312 
313 	if (prefix_fmt) {
314 		va_list args;
315 
316 		va_start(args, prefix_fmt);
317 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
318 		va_end(args);
319 	}
320 
321 	verbose(env, "%s\n",
322 		ltrim(btf_name_by_offset(env->prog->aux->btf,
323 					 linfo->line_off)));
324 
325 	env->prev_linfo = linfo;
326 }
327 
328 static bool type_is_pkt_pointer(enum bpf_reg_type type)
329 {
330 	return type == PTR_TO_PACKET ||
331 	       type == PTR_TO_PACKET_META;
332 }
333 
334 static bool type_is_sk_pointer(enum bpf_reg_type type)
335 {
336 	return type == PTR_TO_SOCKET ||
337 		type == PTR_TO_SOCK_COMMON ||
338 		type == PTR_TO_TCP_SOCK;
339 }
340 
341 static bool reg_type_may_be_null(enum bpf_reg_type type)
342 {
343 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
344 	       type == PTR_TO_SOCKET_OR_NULL ||
345 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
346 	       type == PTR_TO_TCP_SOCK_OR_NULL;
347 }
348 
349 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
350 {
351 	return reg->type == PTR_TO_MAP_VALUE &&
352 		map_value_has_spin_lock(reg->map_ptr);
353 }
354 
355 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
356 {
357 	return type == PTR_TO_SOCKET ||
358 		type == PTR_TO_SOCKET_OR_NULL ||
359 		type == PTR_TO_TCP_SOCK ||
360 		type == PTR_TO_TCP_SOCK_OR_NULL;
361 }
362 
363 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
364 {
365 	return type == ARG_PTR_TO_SOCK_COMMON;
366 }
367 
368 /* Determine whether the function releases some resources allocated by another
369  * function call. The first reference type argument will be assumed to be
370  * released by release_reference().
371  */
372 static bool is_release_function(enum bpf_func_id func_id)
373 {
374 	return func_id == BPF_FUNC_sk_release;
375 }
376 
377 static bool is_acquire_function(enum bpf_func_id func_id)
378 {
379 	return func_id == BPF_FUNC_sk_lookup_tcp ||
380 		func_id == BPF_FUNC_sk_lookup_udp;
381 }
382 
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 	return func_id == BPF_FUNC_tcp_sock ||
386 		func_id == BPF_FUNC_sk_fullsock;
387 }
388 
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 	[NOT_INIT]		= "?",
392 	[SCALAR_VALUE]		= "inv",
393 	[PTR_TO_CTX]		= "ctx",
394 	[CONST_PTR_TO_MAP]	= "map_ptr",
395 	[PTR_TO_MAP_VALUE]	= "map_value",
396 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 	[PTR_TO_STACK]		= "fp",
398 	[PTR_TO_PACKET]		= "pkt",
399 	[PTR_TO_PACKET_META]	= "pkt_meta",
400 	[PTR_TO_PACKET_END]	= "pkt_end",
401 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
402 	[PTR_TO_SOCKET]		= "sock",
403 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 	[PTR_TO_SOCK_COMMON]	= "sock_common",
405 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
407 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 };
409 
410 static char slot_type_char[] = {
411 	[STACK_INVALID]	= '?',
412 	[STACK_SPILL]	= 'r',
413 	[STACK_MISC]	= 'm',
414 	[STACK_ZERO]	= '0',
415 };
416 
417 static void print_liveness(struct bpf_verifier_env *env,
418 			   enum bpf_reg_liveness live)
419 {
420 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
421 	    verbose(env, "_");
422 	if (live & REG_LIVE_READ)
423 		verbose(env, "r");
424 	if (live & REG_LIVE_WRITTEN)
425 		verbose(env, "w");
426 	if (live & REG_LIVE_DONE)
427 		verbose(env, "D");
428 }
429 
430 static struct bpf_func_state *func(struct bpf_verifier_env *env,
431 				   const struct bpf_reg_state *reg)
432 {
433 	struct bpf_verifier_state *cur = env->cur_state;
434 
435 	return cur->frame[reg->frameno];
436 }
437 
438 static void print_verifier_state(struct bpf_verifier_env *env,
439 				 const struct bpf_func_state *state)
440 {
441 	const struct bpf_reg_state *reg;
442 	enum bpf_reg_type t;
443 	int i;
444 
445 	if (state->frameno)
446 		verbose(env, " frame%d:", state->frameno);
447 	for (i = 0; i < MAX_BPF_REG; i++) {
448 		reg = &state->regs[i];
449 		t = reg->type;
450 		if (t == NOT_INIT)
451 			continue;
452 		verbose(env, " R%d", i);
453 		print_liveness(env, reg->live);
454 		verbose(env, "=%s", reg_type_str[t]);
455 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
456 		    tnum_is_const(reg->var_off)) {
457 			/* reg->off should be 0 for SCALAR_VALUE */
458 			verbose(env, "%lld", reg->var_off.value + reg->off);
459 			if (t == PTR_TO_STACK)
460 				verbose(env, ",call_%d", func(env, reg)->callsite);
461 		} else {
462 			verbose(env, "(id=%d", reg->id);
463 			if (reg_type_may_be_refcounted_or_null(t))
464 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
465 			if (t != SCALAR_VALUE)
466 				verbose(env, ",off=%d", reg->off);
467 			if (type_is_pkt_pointer(t))
468 				verbose(env, ",r=%d", reg->range);
469 			else if (t == CONST_PTR_TO_MAP ||
470 				 t == PTR_TO_MAP_VALUE ||
471 				 t == PTR_TO_MAP_VALUE_OR_NULL)
472 				verbose(env, ",ks=%d,vs=%d",
473 					reg->map_ptr->key_size,
474 					reg->map_ptr->value_size);
475 			if (tnum_is_const(reg->var_off)) {
476 				/* Typically an immediate SCALAR_VALUE, but
477 				 * could be a pointer whose offset is too big
478 				 * for reg->off
479 				 */
480 				verbose(env, ",imm=%llx", reg->var_off.value);
481 			} else {
482 				if (reg->smin_value != reg->umin_value &&
483 				    reg->smin_value != S64_MIN)
484 					verbose(env, ",smin_value=%lld",
485 						(long long)reg->smin_value);
486 				if (reg->smax_value != reg->umax_value &&
487 				    reg->smax_value != S64_MAX)
488 					verbose(env, ",smax_value=%lld",
489 						(long long)reg->smax_value);
490 				if (reg->umin_value != 0)
491 					verbose(env, ",umin_value=%llu",
492 						(unsigned long long)reg->umin_value);
493 				if (reg->umax_value != U64_MAX)
494 					verbose(env, ",umax_value=%llu",
495 						(unsigned long long)reg->umax_value);
496 				if (!tnum_is_unknown(reg->var_off)) {
497 					char tn_buf[48];
498 
499 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
500 					verbose(env, ",var_off=%s", tn_buf);
501 				}
502 			}
503 			verbose(env, ")");
504 		}
505 	}
506 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
507 		char types_buf[BPF_REG_SIZE + 1];
508 		bool valid = false;
509 		int j;
510 
511 		for (j = 0; j < BPF_REG_SIZE; j++) {
512 			if (state->stack[i].slot_type[j] != STACK_INVALID)
513 				valid = true;
514 			types_buf[j] = slot_type_char[
515 					state->stack[i].slot_type[j]];
516 		}
517 		types_buf[BPF_REG_SIZE] = 0;
518 		if (!valid)
519 			continue;
520 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
521 		print_liveness(env, state->stack[i].spilled_ptr.live);
522 		if (state->stack[i].slot_type[0] == STACK_SPILL)
523 			verbose(env, "=%s",
524 				reg_type_str[state->stack[i].spilled_ptr.type]);
525 		else
526 			verbose(env, "=%s", types_buf);
527 	}
528 	if (state->acquired_refs && state->refs[0].id) {
529 		verbose(env, " refs=%d", state->refs[0].id);
530 		for (i = 1; i < state->acquired_refs; i++)
531 			if (state->refs[i].id)
532 				verbose(env, ",%d", state->refs[i].id);
533 	}
534 	verbose(env, "\n");
535 }
536 
537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
538 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
539 			       const struct bpf_func_state *src)	\
540 {									\
541 	if (!src->FIELD)						\
542 		return 0;						\
543 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
544 		/* internal bug, make state invalid to reject the program */ \
545 		memset(dst, 0, sizeof(*dst));				\
546 		return -EFAULT;						\
547 	}								\
548 	memcpy(dst->FIELD, src->FIELD,					\
549 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
550 	return 0;							\
551 }
552 /* copy_reference_state() */
553 COPY_STATE_FN(reference, acquired_refs, refs, 1)
554 /* copy_stack_state() */
555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
556 #undef COPY_STATE_FN
557 
558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
560 				  bool copy_old)			\
561 {									\
562 	u32 old_size = state->COUNT;					\
563 	struct bpf_##NAME##_state *new_##FIELD;				\
564 	int slot = size / SIZE;						\
565 									\
566 	if (size <= old_size || !size) {				\
567 		if (copy_old)						\
568 			return 0;					\
569 		state->COUNT = slot * SIZE;				\
570 		if (!size && old_size) {				\
571 			kfree(state->FIELD);				\
572 			state->FIELD = NULL;				\
573 		}							\
574 		return 0;						\
575 	}								\
576 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
577 				    GFP_KERNEL);			\
578 	if (!new_##FIELD)						\
579 		return -ENOMEM;						\
580 	if (copy_old) {							\
581 		if (state->FIELD)					\
582 			memcpy(new_##FIELD, state->FIELD,		\
583 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
584 		memset(new_##FIELD + old_size / SIZE, 0,		\
585 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
586 	}								\
587 	state->COUNT = slot * SIZE;					\
588 	kfree(state->FIELD);						\
589 	state->FIELD = new_##FIELD;					\
590 	return 0;							\
591 }
592 /* realloc_reference_state() */
593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
594 /* realloc_stack_state() */
595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
596 #undef REALLOC_STATE_FN
597 
598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
599  * make it consume minimal amount of memory. check_stack_write() access from
600  * the program calls into realloc_func_state() to grow the stack size.
601  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
602  * which realloc_stack_state() copies over. It points to previous
603  * bpf_verifier_state which is never reallocated.
604  */
605 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
606 			      int refs_size, bool copy_old)
607 {
608 	int err = realloc_reference_state(state, refs_size, copy_old);
609 	if (err)
610 		return err;
611 	return realloc_stack_state(state, stack_size, copy_old);
612 }
613 
614 /* Acquire a pointer id from the env and update the state->refs to include
615  * this new pointer reference.
616  * On success, returns a valid pointer id to associate with the register
617  * On failure, returns a negative errno.
618  */
619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
620 {
621 	struct bpf_func_state *state = cur_func(env);
622 	int new_ofs = state->acquired_refs;
623 	int id, err;
624 
625 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
626 	if (err)
627 		return err;
628 	id = ++env->id_gen;
629 	state->refs[new_ofs].id = id;
630 	state->refs[new_ofs].insn_idx = insn_idx;
631 
632 	return id;
633 }
634 
635 /* release function corresponding to acquire_reference_state(). Idempotent. */
636 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
637 {
638 	int i, last_idx;
639 
640 	last_idx = state->acquired_refs - 1;
641 	for (i = 0; i < state->acquired_refs; i++) {
642 		if (state->refs[i].id == ptr_id) {
643 			if (last_idx && i != last_idx)
644 				memcpy(&state->refs[i], &state->refs[last_idx],
645 				       sizeof(*state->refs));
646 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
647 			state->acquired_refs--;
648 			return 0;
649 		}
650 	}
651 	return -EINVAL;
652 }
653 
654 static int transfer_reference_state(struct bpf_func_state *dst,
655 				    struct bpf_func_state *src)
656 {
657 	int err = realloc_reference_state(dst, src->acquired_refs, false);
658 	if (err)
659 		return err;
660 	err = copy_reference_state(dst, src);
661 	if (err)
662 		return err;
663 	return 0;
664 }
665 
666 static void free_func_state(struct bpf_func_state *state)
667 {
668 	if (!state)
669 		return;
670 	kfree(state->refs);
671 	kfree(state->stack);
672 	kfree(state);
673 }
674 
675 static void free_verifier_state(struct bpf_verifier_state *state,
676 				bool free_self)
677 {
678 	int i;
679 
680 	for (i = 0; i <= state->curframe; i++) {
681 		free_func_state(state->frame[i]);
682 		state->frame[i] = NULL;
683 	}
684 	if (free_self)
685 		kfree(state);
686 }
687 
688 /* copy verifier state from src to dst growing dst stack space
689  * when necessary to accommodate larger src stack
690  */
691 static int copy_func_state(struct bpf_func_state *dst,
692 			   const struct bpf_func_state *src)
693 {
694 	int err;
695 
696 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
697 				 false);
698 	if (err)
699 		return err;
700 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
701 	err = copy_reference_state(dst, src);
702 	if (err)
703 		return err;
704 	return copy_stack_state(dst, src);
705 }
706 
707 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
708 			       const struct bpf_verifier_state *src)
709 {
710 	struct bpf_func_state *dst;
711 	int i, err;
712 
713 	/* if dst has more stack frames then src frame, free them */
714 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
715 		free_func_state(dst_state->frame[i]);
716 		dst_state->frame[i] = NULL;
717 	}
718 	dst_state->speculative = src->speculative;
719 	dst_state->curframe = src->curframe;
720 	dst_state->active_spin_lock = src->active_spin_lock;
721 	for (i = 0; i <= src->curframe; i++) {
722 		dst = dst_state->frame[i];
723 		if (!dst) {
724 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
725 			if (!dst)
726 				return -ENOMEM;
727 			dst_state->frame[i] = dst;
728 		}
729 		err = copy_func_state(dst, src->frame[i]);
730 		if (err)
731 			return err;
732 	}
733 	return 0;
734 }
735 
736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
737 		     int *insn_idx)
738 {
739 	struct bpf_verifier_state *cur = env->cur_state;
740 	struct bpf_verifier_stack_elem *elem, *head = env->head;
741 	int err;
742 
743 	if (env->head == NULL)
744 		return -ENOENT;
745 
746 	if (cur) {
747 		err = copy_verifier_state(cur, &head->st);
748 		if (err)
749 			return err;
750 	}
751 	if (insn_idx)
752 		*insn_idx = head->insn_idx;
753 	if (prev_insn_idx)
754 		*prev_insn_idx = head->prev_insn_idx;
755 	elem = head->next;
756 	free_verifier_state(&head->st, false);
757 	kfree(head);
758 	env->head = elem;
759 	env->stack_size--;
760 	return 0;
761 }
762 
763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
764 					     int insn_idx, int prev_insn_idx,
765 					     bool speculative)
766 {
767 	struct bpf_verifier_state *cur = env->cur_state;
768 	struct bpf_verifier_stack_elem *elem;
769 	int err;
770 
771 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
772 	if (!elem)
773 		goto err;
774 
775 	elem->insn_idx = insn_idx;
776 	elem->prev_insn_idx = prev_insn_idx;
777 	elem->next = env->head;
778 	env->head = elem;
779 	env->stack_size++;
780 	err = copy_verifier_state(&elem->st, cur);
781 	if (err)
782 		goto err;
783 	elem->st.speculative |= speculative;
784 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
785 		verbose(env, "BPF program is too complex\n");
786 		goto err;
787 	}
788 	return &elem->st;
789 err:
790 	free_verifier_state(env->cur_state, true);
791 	env->cur_state = NULL;
792 	/* pop all elements and return */
793 	while (!pop_stack(env, NULL, NULL));
794 	return NULL;
795 }
796 
797 #define CALLER_SAVED_REGS 6
798 static const int caller_saved[CALLER_SAVED_REGS] = {
799 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
800 };
801 
802 static void __mark_reg_not_init(struct bpf_reg_state *reg);
803 
804 /* Mark the unknown part of a register (variable offset or scalar value) as
805  * known to have the value @imm.
806  */
807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
808 {
809 	/* Clear id, off, and union(map_ptr, range) */
810 	memset(((u8 *)reg) + sizeof(reg->type), 0,
811 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
812 	reg->var_off = tnum_const(imm);
813 	reg->smin_value = (s64)imm;
814 	reg->smax_value = (s64)imm;
815 	reg->umin_value = imm;
816 	reg->umax_value = imm;
817 }
818 
819 /* Mark the 'variable offset' part of a register as zero.  This should be
820  * used only on registers holding a pointer type.
821  */
822 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
823 {
824 	__mark_reg_known(reg, 0);
825 }
826 
827 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
828 {
829 	__mark_reg_known(reg, 0);
830 	reg->type = SCALAR_VALUE;
831 }
832 
833 static void mark_reg_known_zero(struct bpf_verifier_env *env,
834 				struct bpf_reg_state *regs, u32 regno)
835 {
836 	if (WARN_ON(regno >= MAX_BPF_REG)) {
837 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
838 		/* Something bad happened, let's kill all regs */
839 		for (regno = 0; regno < MAX_BPF_REG; regno++)
840 			__mark_reg_not_init(regs + regno);
841 		return;
842 	}
843 	__mark_reg_known_zero(regs + regno);
844 }
845 
846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
847 {
848 	return type_is_pkt_pointer(reg->type);
849 }
850 
851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
852 {
853 	return reg_is_pkt_pointer(reg) ||
854 	       reg->type == PTR_TO_PACKET_END;
855 }
856 
857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
859 				    enum bpf_reg_type which)
860 {
861 	/* The register can already have a range from prior markings.
862 	 * This is fine as long as it hasn't been advanced from its
863 	 * origin.
864 	 */
865 	return reg->type == which &&
866 	       reg->id == 0 &&
867 	       reg->off == 0 &&
868 	       tnum_equals_const(reg->var_off, 0);
869 }
870 
871 /* Attempts to improve min/max values based on var_off information */
872 static void __update_reg_bounds(struct bpf_reg_state *reg)
873 {
874 	/* min signed is max(sign bit) | min(other bits) */
875 	reg->smin_value = max_t(s64, reg->smin_value,
876 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
877 	/* max signed is min(sign bit) | max(other bits) */
878 	reg->smax_value = min_t(s64, reg->smax_value,
879 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
880 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
881 	reg->umax_value = min(reg->umax_value,
882 			      reg->var_off.value | reg->var_off.mask);
883 }
884 
885 /* Uses signed min/max values to inform unsigned, and vice-versa */
886 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
887 {
888 	/* Learn sign from signed bounds.
889 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
890 	 * are the same, so combine.  This works even in the negative case, e.g.
891 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
892 	 */
893 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
894 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
895 							  reg->umin_value);
896 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
897 							  reg->umax_value);
898 		return;
899 	}
900 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
901 	 * boundary, so we must be careful.
902 	 */
903 	if ((s64)reg->umax_value >= 0) {
904 		/* Positive.  We can't learn anything from the smin, but smax
905 		 * is positive, hence safe.
906 		 */
907 		reg->smin_value = reg->umin_value;
908 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
909 							  reg->umax_value);
910 	} else if ((s64)reg->umin_value < 0) {
911 		/* Negative.  We can't learn anything from the smax, but smin
912 		 * is negative, hence safe.
913 		 */
914 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
915 							  reg->umin_value);
916 		reg->smax_value = reg->umax_value;
917 	}
918 }
919 
920 /* Attempts to improve var_off based on unsigned min/max information */
921 static void __reg_bound_offset(struct bpf_reg_state *reg)
922 {
923 	reg->var_off = tnum_intersect(reg->var_off,
924 				      tnum_range(reg->umin_value,
925 						 reg->umax_value));
926 }
927 
928 /* Reset the min/max bounds of a register */
929 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
930 {
931 	reg->smin_value = S64_MIN;
932 	reg->smax_value = S64_MAX;
933 	reg->umin_value = 0;
934 	reg->umax_value = U64_MAX;
935 }
936 
937 /* Mark a register as having a completely unknown (scalar) value. */
938 static void __mark_reg_unknown(struct bpf_reg_state *reg)
939 {
940 	/*
941 	 * Clear type, id, off, and union(map_ptr, range) and
942 	 * padding between 'type' and union
943 	 */
944 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
945 	reg->type = SCALAR_VALUE;
946 	reg->var_off = tnum_unknown;
947 	reg->frameno = 0;
948 	__mark_reg_unbounded(reg);
949 }
950 
951 static void mark_reg_unknown(struct bpf_verifier_env *env,
952 			     struct bpf_reg_state *regs, u32 regno)
953 {
954 	if (WARN_ON(regno >= MAX_BPF_REG)) {
955 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
956 		/* Something bad happened, let's kill all regs except FP */
957 		for (regno = 0; regno < BPF_REG_FP; regno++)
958 			__mark_reg_not_init(regs + regno);
959 		return;
960 	}
961 	__mark_reg_unknown(regs + regno);
962 }
963 
964 static void __mark_reg_not_init(struct bpf_reg_state *reg)
965 {
966 	__mark_reg_unknown(reg);
967 	reg->type = NOT_INIT;
968 }
969 
970 static void mark_reg_not_init(struct bpf_verifier_env *env,
971 			      struct bpf_reg_state *regs, u32 regno)
972 {
973 	if (WARN_ON(regno >= MAX_BPF_REG)) {
974 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
975 		/* Something bad happened, let's kill all regs except FP */
976 		for (regno = 0; regno < BPF_REG_FP; regno++)
977 			__mark_reg_not_init(regs + regno);
978 		return;
979 	}
980 	__mark_reg_not_init(regs + regno);
981 }
982 
983 static void init_reg_state(struct bpf_verifier_env *env,
984 			   struct bpf_func_state *state)
985 {
986 	struct bpf_reg_state *regs = state->regs;
987 	int i;
988 
989 	for (i = 0; i < MAX_BPF_REG; i++) {
990 		mark_reg_not_init(env, regs, i);
991 		regs[i].live = REG_LIVE_NONE;
992 		regs[i].parent = NULL;
993 	}
994 
995 	/* frame pointer */
996 	regs[BPF_REG_FP].type = PTR_TO_STACK;
997 	mark_reg_known_zero(env, regs, BPF_REG_FP);
998 	regs[BPF_REG_FP].frameno = state->frameno;
999 
1000 	/* 1st arg to a function */
1001 	regs[BPF_REG_1].type = PTR_TO_CTX;
1002 	mark_reg_known_zero(env, regs, BPF_REG_1);
1003 }
1004 
1005 #define BPF_MAIN_FUNC (-1)
1006 static void init_func_state(struct bpf_verifier_env *env,
1007 			    struct bpf_func_state *state,
1008 			    int callsite, int frameno, int subprogno)
1009 {
1010 	state->callsite = callsite;
1011 	state->frameno = frameno;
1012 	state->subprogno = subprogno;
1013 	init_reg_state(env, state);
1014 }
1015 
1016 enum reg_arg_type {
1017 	SRC_OP,		/* register is used as source operand */
1018 	DST_OP,		/* register is used as destination operand */
1019 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1020 };
1021 
1022 static int cmp_subprogs(const void *a, const void *b)
1023 {
1024 	return ((struct bpf_subprog_info *)a)->start -
1025 	       ((struct bpf_subprog_info *)b)->start;
1026 }
1027 
1028 static int find_subprog(struct bpf_verifier_env *env, int off)
1029 {
1030 	struct bpf_subprog_info *p;
1031 
1032 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1033 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1034 	if (!p)
1035 		return -ENOENT;
1036 	return p - env->subprog_info;
1037 
1038 }
1039 
1040 static int add_subprog(struct bpf_verifier_env *env, int off)
1041 {
1042 	int insn_cnt = env->prog->len;
1043 	int ret;
1044 
1045 	if (off >= insn_cnt || off < 0) {
1046 		verbose(env, "call to invalid destination\n");
1047 		return -EINVAL;
1048 	}
1049 	ret = find_subprog(env, off);
1050 	if (ret >= 0)
1051 		return 0;
1052 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1053 		verbose(env, "too many subprograms\n");
1054 		return -E2BIG;
1055 	}
1056 	env->subprog_info[env->subprog_cnt++].start = off;
1057 	sort(env->subprog_info, env->subprog_cnt,
1058 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1059 	return 0;
1060 }
1061 
1062 static int check_subprogs(struct bpf_verifier_env *env)
1063 {
1064 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1065 	struct bpf_subprog_info *subprog = env->subprog_info;
1066 	struct bpf_insn *insn = env->prog->insnsi;
1067 	int insn_cnt = env->prog->len;
1068 
1069 	/* Add entry function. */
1070 	ret = add_subprog(env, 0);
1071 	if (ret < 0)
1072 		return ret;
1073 
1074 	/* determine subprog starts. The end is one before the next starts */
1075 	for (i = 0; i < insn_cnt; i++) {
1076 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1077 			continue;
1078 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1079 			continue;
1080 		if (!env->allow_ptr_leaks) {
1081 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1082 			return -EPERM;
1083 		}
1084 		ret = add_subprog(env, i + insn[i].imm + 1);
1085 		if (ret < 0)
1086 			return ret;
1087 	}
1088 
1089 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1090 	 * logic. 'subprog_cnt' should not be increased.
1091 	 */
1092 	subprog[env->subprog_cnt].start = insn_cnt;
1093 
1094 	if (env->log.level > 1)
1095 		for (i = 0; i < env->subprog_cnt; i++)
1096 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1097 
1098 	/* now check that all jumps are within the same subprog */
1099 	subprog_start = subprog[cur_subprog].start;
1100 	subprog_end = subprog[cur_subprog + 1].start;
1101 	for (i = 0; i < insn_cnt; i++) {
1102 		u8 code = insn[i].code;
1103 
1104 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1105 			goto next;
1106 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1107 			goto next;
1108 		off = i + insn[i].off + 1;
1109 		if (off < subprog_start || off >= subprog_end) {
1110 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1111 			return -EINVAL;
1112 		}
1113 next:
1114 		if (i == subprog_end - 1) {
1115 			/* to avoid fall-through from one subprog into another
1116 			 * the last insn of the subprog should be either exit
1117 			 * or unconditional jump back
1118 			 */
1119 			if (code != (BPF_JMP | BPF_EXIT) &&
1120 			    code != (BPF_JMP | BPF_JA)) {
1121 				verbose(env, "last insn is not an exit or jmp\n");
1122 				return -EINVAL;
1123 			}
1124 			subprog_start = subprog_end;
1125 			cur_subprog++;
1126 			if (cur_subprog < env->subprog_cnt)
1127 				subprog_end = subprog[cur_subprog + 1].start;
1128 		}
1129 	}
1130 	return 0;
1131 }
1132 
1133 /* Parentage chain of this register (or stack slot) should take care of all
1134  * issues like callee-saved registers, stack slot allocation time, etc.
1135  */
1136 static int mark_reg_read(struct bpf_verifier_env *env,
1137 			 const struct bpf_reg_state *state,
1138 			 struct bpf_reg_state *parent)
1139 {
1140 	bool writes = parent == state->parent; /* Observe write marks */
1141 
1142 	while (parent) {
1143 		/* if read wasn't screened by an earlier write ... */
1144 		if (writes && state->live & REG_LIVE_WRITTEN)
1145 			break;
1146 		if (parent->live & REG_LIVE_DONE) {
1147 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1148 				reg_type_str[parent->type],
1149 				parent->var_off.value, parent->off);
1150 			return -EFAULT;
1151 		}
1152 		/* ... then we depend on parent's value */
1153 		parent->live |= REG_LIVE_READ;
1154 		state = parent;
1155 		parent = state->parent;
1156 		writes = true;
1157 	}
1158 	return 0;
1159 }
1160 
1161 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1162 			 enum reg_arg_type t)
1163 {
1164 	struct bpf_verifier_state *vstate = env->cur_state;
1165 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1166 	struct bpf_reg_state *regs = state->regs;
1167 
1168 	if (regno >= MAX_BPF_REG) {
1169 		verbose(env, "R%d is invalid\n", regno);
1170 		return -EINVAL;
1171 	}
1172 
1173 	if (t == SRC_OP) {
1174 		/* check whether register used as source operand can be read */
1175 		if (regs[regno].type == NOT_INIT) {
1176 			verbose(env, "R%d !read_ok\n", regno);
1177 			return -EACCES;
1178 		}
1179 		/* We don't need to worry about FP liveness because it's read-only */
1180 		if (regno != BPF_REG_FP)
1181 			return mark_reg_read(env, &regs[regno],
1182 					     regs[regno].parent);
1183 	} else {
1184 		/* check whether register used as dest operand can be written to */
1185 		if (regno == BPF_REG_FP) {
1186 			verbose(env, "frame pointer is read only\n");
1187 			return -EACCES;
1188 		}
1189 		regs[regno].live |= REG_LIVE_WRITTEN;
1190 		if (t == DST_OP)
1191 			mark_reg_unknown(env, regs, regno);
1192 	}
1193 	return 0;
1194 }
1195 
1196 static bool is_spillable_regtype(enum bpf_reg_type type)
1197 {
1198 	switch (type) {
1199 	case PTR_TO_MAP_VALUE:
1200 	case PTR_TO_MAP_VALUE_OR_NULL:
1201 	case PTR_TO_STACK:
1202 	case PTR_TO_CTX:
1203 	case PTR_TO_PACKET:
1204 	case PTR_TO_PACKET_META:
1205 	case PTR_TO_PACKET_END:
1206 	case PTR_TO_FLOW_KEYS:
1207 	case CONST_PTR_TO_MAP:
1208 	case PTR_TO_SOCKET:
1209 	case PTR_TO_SOCKET_OR_NULL:
1210 	case PTR_TO_SOCK_COMMON:
1211 	case PTR_TO_SOCK_COMMON_OR_NULL:
1212 	case PTR_TO_TCP_SOCK:
1213 	case PTR_TO_TCP_SOCK_OR_NULL:
1214 		return true;
1215 	default:
1216 		return false;
1217 	}
1218 }
1219 
1220 /* Does this register contain a constant zero? */
1221 static bool register_is_null(struct bpf_reg_state *reg)
1222 {
1223 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1224 }
1225 
1226 /* check_stack_read/write functions track spill/fill of registers,
1227  * stack boundary and alignment are checked in check_mem_access()
1228  */
1229 static int check_stack_write(struct bpf_verifier_env *env,
1230 			     struct bpf_func_state *state, /* func where register points to */
1231 			     int off, int size, int value_regno, int insn_idx)
1232 {
1233 	struct bpf_func_state *cur; /* state of the current function */
1234 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1235 	enum bpf_reg_type type;
1236 
1237 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1238 				 state->acquired_refs, true);
1239 	if (err)
1240 		return err;
1241 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1242 	 * so it's aligned access and [off, off + size) are within stack limits
1243 	 */
1244 	if (!env->allow_ptr_leaks &&
1245 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1246 	    size != BPF_REG_SIZE) {
1247 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1248 		return -EACCES;
1249 	}
1250 
1251 	cur = env->cur_state->frame[env->cur_state->curframe];
1252 	if (value_regno >= 0 &&
1253 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1254 
1255 		/* register containing pointer is being spilled into stack */
1256 		if (size != BPF_REG_SIZE) {
1257 			verbose(env, "invalid size of register spill\n");
1258 			return -EACCES;
1259 		}
1260 
1261 		if (state != cur && type == PTR_TO_STACK) {
1262 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1263 			return -EINVAL;
1264 		}
1265 
1266 		/* save register state */
1267 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1268 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1269 
1270 		for (i = 0; i < BPF_REG_SIZE; i++) {
1271 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1272 			    !env->allow_ptr_leaks) {
1273 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1274 				int soff = (-spi - 1) * BPF_REG_SIZE;
1275 
1276 				/* detected reuse of integer stack slot with a pointer
1277 				 * which means either llvm is reusing stack slot or
1278 				 * an attacker is trying to exploit CVE-2018-3639
1279 				 * (speculative store bypass)
1280 				 * Have to sanitize that slot with preemptive
1281 				 * store of zero.
1282 				 */
1283 				if (*poff && *poff != soff) {
1284 					/* disallow programs where single insn stores
1285 					 * into two different stack slots, since verifier
1286 					 * cannot sanitize them
1287 					 */
1288 					verbose(env,
1289 						"insn %d cannot access two stack slots fp%d and fp%d",
1290 						insn_idx, *poff, soff);
1291 					return -EINVAL;
1292 				}
1293 				*poff = soff;
1294 			}
1295 			state->stack[spi].slot_type[i] = STACK_SPILL;
1296 		}
1297 	} else {
1298 		u8 type = STACK_MISC;
1299 
1300 		/* regular write of data into stack destroys any spilled ptr */
1301 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1302 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1303 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1304 			for (i = 0; i < BPF_REG_SIZE; i++)
1305 				state->stack[spi].slot_type[i] = STACK_MISC;
1306 
1307 		/* only mark the slot as written if all 8 bytes were written
1308 		 * otherwise read propagation may incorrectly stop too soon
1309 		 * when stack slots are partially written.
1310 		 * This heuristic means that read propagation will be
1311 		 * conservative, since it will add reg_live_read marks
1312 		 * to stack slots all the way to first state when programs
1313 		 * writes+reads less than 8 bytes
1314 		 */
1315 		if (size == BPF_REG_SIZE)
1316 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1317 
1318 		/* when we zero initialize stack slots mark them as such */
1319 		if (value_regno >= 0 &&
1320 		    register_is_null(&cur->regs[value_regno]))
1321 			type = STACK_ZERO;
1322 
1323 		/* Mark slots affected by this stack write. */
1324 		for (i = 0; i < size; i++)
1325 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1326 				type;
1327 	}
1328 	return 0;
1329 }
1330 
1331 static int check_stack_read(struct bpf_verifier_env *env,
1332 			    struct bpf_func_state *reg_state /* func where register points to */,
1333 			    int off, int size, int value_regno)
1334 {
1335 	struct bpf_verifier_state *vstate = env->cur_state;
1336 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1337 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1338 	u8 *stype;
1339 
1340 	if (reg_state->allocated_stack <= slot) {
1341 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1342 			off, size);
1343 		return -EACCES;
1344 	}
1345 	stype = reg_state->stack[spi].slot_type;
1346 
1347 	if (stype[0] == STACK_SPILL) {
1348 		if (size != BPF_REG_SIZE) {
1349 			verbose(env, "invalid size of register spill\n");
1350 			return -EACCES;
1351 		}
1352 		for (i = 1; i < BPF_REG_SIZE; i++) {
1353 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1354 				verbose(env, "corrupted spill memory\n");
1355 				return -EACCES;
1356 			}
1357 		}
1358 
1359 		if (value_regno >= 0) {
1360 			/* restore register state from stack */
1361 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1362 			/* mark reg as written since spilled pointer state likely
1363 			 * has its liveness marks cleared by is_state_visited()
1364 			 * which resets stack/reg liveness for state transitions
1365 			 */
1366 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1367 		}
1368 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1369 			      reg_state->stack[spi].spilled_ptr.parent);
1370 		return 0;
1371 	} else {
1372 		int zeros = 0;
1373 
1374 		for (i = 0; i < size; i++) {
1375 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1376 				continue;
1377 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1378 				zeros++;
1379 				continue;
1380 			}
1381 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1382 				off, i, size);
1383 			return -EACCES;
1384 		}
1385 		mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1386 			      reg_state->stack[spi].spilled_ptr.parent);
1387 		if (value_regno >= 0) {
1388 			if (zeros == size) {
1389 				/* any size read into register is zero extended,
1390 				 * so the whole register == const_zero
1391 				 */
1392 				__mark_reg_const_zero(&state->regs[value_regno]);
1393 			} else {
1394 				/* have read misc data from the stack */
1395 				mark_reg_unknown(env, state->regs, value_regno);
1396 			}
1397 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1398 		}
1399 		return 0;
1400 	}
1401 }
1402 
1403 static int check_stack_access(struct bpf_verifier_env *env,
1404 			      const struct bpf_reg_state *reg,
1405 			      int off, int size)
1406 {
1407 	/* Stack accesses must be at a fixed offset, so that we
1408 	 * can determine what type of data were returned. See
1409 	 * check_stack_read().
1410 	 */
1411 	if (!tnum_is_const(reg->var_off)) {
1412 		char tn_buf[48];
1413 
1414 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1415 		verbose(env, "variable stack access var_off=%s off=%d size=%d",
1416 			tn_buf, off, size);
1417 		return -EACCES;
1418 	}
1419 
1420 	if (off >= 0 || off < -MAX_BPF_STACK) {
1421 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
1422 		return -EACCES;
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 /* check read/write into map element returned by bpf_map_lookup_elem() */
1429 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1430 			      int size, bool zero_size_allowed)
1431 {
1432 	struct bpf_reg_state *regs = cur_regs(env);
1433 	struct bpf_map *map = regs[regno].map_ptr;
1434 
1435 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1436 	    off + size > map->value_size) {
1437 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1438 			map->value_size, off, size);
1439 		return -EACCES;
1440 	}
1441 	return 0;
1442 }
1443 
1444 /* check read/write into a map element with possible variable offset */
1445 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1446 			    int off, int size, bool zero_size_allowed)
1447 {
1448 	struct bpf_verifier_state *vstate = env->cur_state;
1449 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1450 	struct bpf_reg_state *reg = &state->regs[regno];
1451 	int err;
1452 
1453 	/* We may have adjusted the register to this map value, so we
1454 	 * need to try adding each of min_value and max_value to off
1455 	 * to make sure our theoretical access will be safe.
1456 	 */
1457 	if (env->log.level)
1458 		print_verifier_state(env, state);
1459 
1460 	/* The minimum value is only important with signed
1461 	 * comparisons where we can't assume the floor of a
1462 	 * value is 0.  If we are using signed variables for our
1463 	 * index'es we need to make sure that whatever we use
1464 	 * will have a set floor within our range.
1465 	 */
1466 	if (reg->smin_value < 0 &&
1467 	    (reg->smin_value == S64_MIN ||
1468 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1469 	      reg->smin_value + off < 0)) {
1470 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1471 			regno);
1472 		return -EACCES;
1473 	}
1474 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1475 				 zero_size_allowed);
1476 	if (err) {
1477 		verbose(env, "R%d min value is outside of the array range\n",
1478 			regno);
1479 		return err;
1480 	}
1481 
1482 	/* If we haven't set a max value then we need to bail since we can't be
1483 	 * sure we won't do bad things.
1484 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1485 	 */
1486 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1487 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1488 			regno);
1489 		return -EACCES;
1490 	}
1491 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1492 				 zero_size_allowed);
1493 	if (err)
1494 		verbose(env, "R%d max value is outside of the array range\n",
1495 			regno);
1496 
1497 	if (map_value_has_spin_lock(reg->map_ptr)) {
1498 		u32 lock = reg->map_ptr->spin_lock_off;
1499 
1500 		/* if any part of struct bpf_spin_lock can be touched by
1501 		 * load/store reject this program.
1502 		 * To check that [x1, x2) overlaps with [y1, y2)
1503 		 * it is sufficient to check x1 < y2 && y1 < x2.
1504 		 */
1505 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1506 		     lock < reg->umax_value + off + size) {
1507 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1508 			return -EACCES;
1509 		}
1510 	}
1511 	return err;
1512 }
1513 
1514 #define MAX_PACKET_OFF 0xffff
1515 
1516 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1517 				       const struct bpf_call_arg_meta *meta,
1518 				       enum bpf_access_type t)
1519 {
1520 	switch (env->prog->type) {
1521 	/* Program types only with direct read access go here! */
1522 	case BPF_PROG_TYPE_LWT_IN:
1523 	case BPF_PROG_TYPE_LWT_OUT:
1524 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1525 	case BPF_PROG_TYPE_SK_REUSEPORT:
1526 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
1527 	case BPF_PROG_TYPE_CGROUP_SKB:
1528 		if (t == BPF_WRITE)
1529 			return false;
1530 		/* fallthrough */
1531 
1532 	/* Program types with direct read + write access go here! */
1533 	case BPF_PROG_TYPE_SCHED_CLS:
1534 	case BPF_PROG_TYPE_SCHED_ACT:
1535 	case BPF_PROG_TYPE_XDP:
1536 	case BPF_PROG_TYPE_LWT_XMIT:
1537 	case BPF_PROG_TYPE_SK_SKB:
1538 	case BPF_PROG_TYPE_SK_MSG:
1539 		if (meta)
1540 			return meta->pkt_access;
1541 
1542 		env->seen_direct_write = true;
1543 		return true;
1544 	default:
1545 		return false;
1546 	}
1547 }
1548 
1549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1550 				 int off, int size, bool zero_size_allowed)
1551 {
1552 	struct bpf_reg_state *regs = cur_regs(env);
1553 	struct bpf_reg_state *reg = &regs[regno];
1554 
1555 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1556 	    (u64)off + size > reg->range) {
1557 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1558 			off, size, regno, reg->id, reg->off, reg->range);
1559 		return -EACCES;
1560 	}
1561 	return 0;
1562 }
1563 
1564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1565 			       int size, bool zero_size_allowed)
1566 {
1567 	struct bpf_reg_state *regs = cur_regs(env);
1568 	struct bpf_reg_state *reg = &regs[regno];
1569 	int err;
1570 
1571 	/* We may have added a variable offset to the packet pointer; but any
1572 	 * reg->range we have comes after that.  We are only checking the fixed
1573 	 * offset.
1574 	 */
1575 
1576 	/* We don't allow negative numbers, because we aren't tracking enough
1577 	 * detail to prove they're safe.
1578 	 */
1579 	if (reg->smin_value < 0) {
1580 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1581 			regno);
1582 		return -EACCES;
1583 	}
1584 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1585 	if (err) {
1586 		verbose(env, "R%d offset is outside of the packet\n", regno);
1587 		return err;
1588 	}
1589 
1590 	/* __check_packet_access has made sure "off + size - 1" is within u16.
1591 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1592 	 * otherwise find_good_pkt_pointers would have refused to set range info
1593 	 * that __check_packet_access would have rejected this pkt access.
1594 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1595 	 */
1596 	env->prog->aux->max_pkt_offset =
1597 		max_t(u32, env->prog->aux->max_pkt_offset,
1598 		      off + reg->umax_value + size - 1);
1599 
1600 	return err;
1601 }
1602 
1603 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1605 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1606 {
1607 	struct bpf_insn_access_aux info = {
1608 		.reg_type = *reg_type,
1609 	};
1610 
1611 	if (env->ops->is_valid_access &&
1612 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1613 		/* A non zero info.ctx_field_size indicates that this field is a
1614 		 * candidate for later verifier transformation to load the whole
1615 		 * field and then apply a mask when accessed with a narrower
1616 		 * access than actual ctx access size. A zero info.ctx_field_size
1617 		 * will only allow for whole field access and rejects any other
1618 		 * type of narrower access.
1619 		 */
1620 		*reg_type = info.reg_type;
1621 
1622 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1623 		/* remember the offset of last byte accessed in ctx */
1624 		if (env->prog->aux->max_ctx_offset < off + size)
1625 			env->prog->aux->max_ctx_offset = off + size;
1626 		return 0;
1627 	}
1628 
1629 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1630 	return -EACCES;
1631 }
1632 
1633 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1634 				  int size)
1635 {
1636 	if (size < 0 || off < 0 ||
1637 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
1638 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
1639 			off, size);
1640 		return -EACCES;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1646 			     u32 regno, int off, int size,
1647 			     enum bpf_access_type t)
1648 {
1649 	struct bpf_reg_state *regs = cur_regs(env);
1650 	struct bpf_reg_state *reg = &regs[regno];
1651 	struct bpf_insn_access_aux info = {};
1652 	bool valid;
1653 
1654 	if (reg->smin_value < 0) {
1655 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1656 			regno);
1657 		return -EACCES;
1658 	}
1659 
1660 	switch (reg->type) {
1661 	case PTR_TO_SOCK_COMMON:
1662 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1663 		break;
1664 	case PTR_TO_SOCKET:
1665 		valid = bpf_sock_is_valid_access(off, size, t, &info);
1666 		break;
1667 	case PTR_TO_TCP_SOCK:
1668 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1669 		break;
1670 	default:
1671 		valid = false;
1672 	}
1673 
1674 
1675 	if (valid) {
1676 		env->insn_aux_data[insn_idx].ctx_field_size =
1677 			info.ctx_field_size;
1678 		return 0;
1679 	}
1680 
1681 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
1682 		regno, reg_type_str[reg->type], off, size);
1683 
1684 	return -EACCES;
1685 }
1686 
1687 static bool __is_pointer_value(bool allow_ptr_leaks,
1688 			       const struct bpf_reg_state *reg)
1689 {
1690 	if (allow_ptr_leaks)
1691 		return false;
1692 
1693 	return reg->type != SCALAR_VALUE;
1694 }
1695 
1696 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1697 {
1698 	return cur_regs(env) + regno;
1699 }
1700 
1701 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1702 {
1703 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1704 }
1705 
1706 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1707 {
1708 	const struct bpf_reg_state *reg = reg_state(env, regno);
1709 
1710 	return reg->type == PTR_TO_CTX;
1711 }
1712 
1713 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1714 {
1715 	const struct bpf_reg_state *reg = reg_state(env, regno);
1716 
1717 	return type_is_sk_pointer(reg->type);
1718 }
1719 
1720 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1721 {
1722 	const struct bpf_reg_state *reg = reg_state(env, regno);
1723 
1724 	return type_is_pkt_pointer(reg->type);
1725 }
1726 
1727 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1728 {
1729 	const struct bpf_reg_state *reg = reg_state(env, regno);
1730 
1731 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1732 	return reg->type == PTR_TO_FLOW_KEYS;
1733 }
1734 
1735 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1736 				   const struct bpf_reg_state *reg,
1737 				   int off, int size, bool strict)
1738 {
1739 	struct tnum reg_off;
1740 	int ip_align;
1741 
1742 	/* Byte size accesses are always allowed. */
1743 	if (!strict || size == 1)
1744 		return 0;
1745 
1746 	/* For platforms that do not have a Kconfig enabling
1747 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1748 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1749 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1750 	 * to this code only in strict mode where we want to emulate
1751 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1752 	 * unconditional IP align value of '2'.
1753 	 */
1754 	ip_align = 2;
1755 
1756 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1757 	if (!tnum_is_aligned(reg_off, size)) {
1758 		char tn_buf[48];
1759 
1760 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1761 		verbose(env,
1762 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1763 			ip_align, tn_buf, reg->off, off, size);
1764 		return -EACCES;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1771 				       const struct bpf_reg_state *reg,
1772 				       const char *pointer_desc,
1773 				       int off, int size, bool strict)
1774 {
1775 	struct tnum reg_off;
1776 
1777 	/* Byte size accesses are always allowed. */
1778 	if (!strict || size == 1)
1779 		return 0;
1780 
1781 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1782 	if (!tnum_is_aligned(reg_off, size)) {
1783 		char tn_buf[48];
1784 
1785 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1786 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1787 			pointer_desc, tn_buf, reg->off, off, size);
1788 		return -EACCES;
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int check_ptr_alignment(struct bpf_verifier_env *env,
1795 			       const struct bpf_reg_state *reg, int off,
1796 			       int size, bool strict_alignment_once)
1797 {
1798 	bool strict = env->strict_alignment || strict_alignment_once;
1799 	const char *pointer_desc = "";
1800 
1801 	switch (reg->type) {
1802 	case PTR_TO_PACKET:
1803 	case PTR_TO_PACKET_META:
1804 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1805 		 * right in front, treat it the very same way.
1806 		 */
1807 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1808 	case PTR_TO_FLOW_KEYS:
1809 		pointer_desc = "flow keys ";
1810 		break;
1811 	case PTR_TO_MAP_VALUE:
1812 		pointer_desc = "value ";
1813 		break;
1814 	case PTR_TO_CTX:
1815 		pointer_desc = "context ";
1816 		break;
1817 	case PTR_TO_STACK:
1818 		pointer_desc = "stack ";
1819 		/* The stack spill tracking logic in check_stack_write()
1820 		 * and check_stack_read() relies on stack accesses being
1821 		 * aligned.
1822 		 */
1823 		strict = true;
1824 		break;
1825 	case PTR_TO_SOCKET:
1826 		pointer_desc = "sock ";
1827 		break;
1828 	case PTR_TO_SOCK_COMMON:
1829 		pointer_desc = "sock_common ";
1830 		break;
1831 	case PTR_TO_TCP_SOCK:
1832 		pointer_desc = "tcp_sock ";
1833 		break;
1834 	default:
1835 		break;
1836 	}
1837 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1838 					   strict);
1839 }
1840 
1841 static int update_stack_depth(struct bpf_verifier_env *env,
1842 			      const struct bpf_func_state *func,
1843 			      int off)
1844 {
1845 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1846 
1847 	if (stack >= -off)
1848 		return 0;
1849 
1850 	/* update known max for given subprogram */
1851 	env->subprog_info[func->subprogno].stack_depth = -off;
1852 	return 0;
1853 }
1854 
1855 /* starting from main bpf function walk all instructions of the function
1856  * and recursively walk all callees that given function can call.
1857  * Ignore jump and exit insns.
1858  * Since recursion is prevented by check_cfg() this algorithm
1859  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1860  */
1861 static int check_max_stack_depth(struct bpf_verifier_env *env)
1862 {
1863 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1864 	struct bpf_subprog_info *subprog = env->subprog_info;
1865 	struct bpf_insn *insn = env->prog->insnsi;
1866 	int ret_insn[MAX_CALL_FRAMES];
1867 	int ret_prog[MAX_CALL_FRAMES];
1868 
1869 process_func:
1870 	/* round up to 32-bytes, since this is granularity
1871 	 * of interpreter stack size
1872 	 */
1873 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1874 	if (depth > MAX_BPF_STACK) {
1875 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1876 			frame + 1, depth);
1877 		return -EACCES;
1878 	}
1879 continue_func:
1880 	subprog_end = subprog[idx + 1].start;
1881 	for (; i < subprog_end; i++) {
1882 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1883 			continue;
1884 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1885 			continue;
1886 		/* remember insn and function to return to */
1887 		ret_insn[frame] = i + 1;
1888 		ret_prog[frame] = idx;
1889 
1890 		/* find the callee */
1891 		i = i + insn[i].imm + 1;
1892 		idx = find_subprog(env, i);
1893 		if (idx < 0) {
1894 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1895 				  i);
1896 			return -EFAULT;
1897 		}
1898 		frame++;
1899 		if (frame >= MAX_CALL_FRAMES) {
1900 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1901 			return -EFAULT;
1902 		}
1903 		goto process_func;
1904 	}
1905 	/* end of for() loop means the last insn of the 'subprog'
1906 	 * was reached. Doesn't matter whether it was JA or EXIT
1907 	 */
1908 	if (frame == 0)
1909 		return 0;
1910 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1911 	frame--;
1912 	i = ret_insn[frame];
1913 	idx = ret_prog[frame];
1914 	goto continue_func;
1915 }
1916 
1917 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1918 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1919 				  const struct bpf_insn *insn, int idx)
1920 {
1921 	int start = idx + insn->imm + 1, subprog;
1922 
1923 	subprog = find_subprog(env, start);
1924 	if (subprog < 0) {
1925 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1926 			  start);
1927 		return -EFAULT;
1928 	}
1929 	return env->subprog_info[subprog].stack_depth;
1930 }
1931 #endif
1932 
1933 static int check_ctx_reg(struct bpf_verifier_env *env,
1934 			 const struct bpf_reg_state *reg, int regno)
1935 {
1936 	/* Access to ctx or passing it to a helper is only allowed in
1937 	 * its original, unmodified form.
1938 	 */
1939 
1940 	if (reg->off) {
1941 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1942 			regno, reg->off);
1943 		return -EACCES;
1944 	}
1945 
1946 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1947 		char tn_buf[48];
1948 
1949 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1950 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1951 		return -EACCES;
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 /* truncate register to smaller size (in bytes)
1958  * must be called with size < BPF_REG_SIZE
1959  */
1960 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1961 {
1962 	u64 mask;
1963 
1964 	/* clear high bits in bit representation */
1965 	reg->var_off = tnum_cast(reg->var_off, size);
1966 
1967 	/* fix arithmetic bounds */
1968 	mask = ((u64)1 << (size * 8)) - 1;
1969 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1970 		reg->umin_value &= mask;
1971 		reg->umax_value &= mask;
1972 	} else {
1973 		reg->umin_value = 0;
1974 		reg->umax_value = mask;
1975 	}
1976 	reg->smin_value = reg->umin_value;
1977 	reg->smax_value = reg->umax_value;
1978 }
1979 
1980 /* check whether memory at (regno + off) is accessible for t = (read | write)
1981  * if t==write, value_regno is a register which value is stored into memory
1982  * if t==read, value_regno is a register which will receive the value from memory
1983  * if t==write && value_regno==-1, some unknown value is stored into memory
1984  * if t==read && value_regno==-1, don't care what we read from memory
1985  */
1986 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1987 			    int off, int bpf_size, enum bpf_access_type t,
1988 			    int value_regno, bool strict_alignment_once)
1989 {
1990 	struct bpf_reg_state *regs = cur_regs(env);
1991 	struct bpf_reg_state *reg = regs + regno;
1992 	struct bpf_func_state *state;
1993 	int size, err = 0;
1994 
1995 	size = bpf_size_to_bytes(bpf_size);
1996 	if (size < 0)
1997 		return size;
1998 
1999 	/* alignment checks will add in reg->off themselves */
2000 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2001 	if (err)
2002 		return err;
2003 
2004 	/* for access checks, reg->off is just part of off */
2005 	off += reg->off;
2006 
2007 	if (reg->type == PTR_TO_MAP_VALUE) {
2008 		if (t == BPF_WRITE && value_regno >= 0 &&
2009 		    is_pointer_value(env, value_regno)) {
2010 			verbose(env, "R%d leaks addr into map\n", value_regno);
2011 			return -EACCES;
2012 		}
2013 
2014 		err = check_map_access(env, regno, off, size, false);
2015 		if (!err && t == BPF_READ && value_regno >= 0)
2016 			mark_reg_unknown(env, regs, value_regno);
2017 
2018 	} else if (reg->type == PTR_TO_CTX) {
2019 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2020 
2021 		if (t == BPF_WRITE && value_regno >= 0 &&
2022 		    is_pointer_value(env, value_regno)) {
2023 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2024 			return -EACCES;
2025 		}
2026 
2027 		err = check_ctx_reg(env, reg, regno);
2028 		if (err < 0)
2029 			return err;
2030 
2031 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2032 		if (!err && t == BPF_READ && value_regno >= 0) {
2033 			/* ctx access returns either a scalar, or a
2034 			 * PTR_TO_PACKET[_META,_END]. In the latter
2035 			 * case, we know the offset is zero.
2036 			 */
2037 			if (reg_type == SCALAR_VALUE) {
2038 				mark_reg_unknown(env, regs, value_regno);
2039 			} else {
2040 				mark_reg_known_zero(env, regs,
2041 						    value_regno);
2042 				if (reg_type_may_be_null(reg_type))
2043 					regs[value_regno].id = ++env->id_gen;
2044 			}
2045 			regs[value_regno].type = reg_type;
2046 		}
2047 
2048 	} else if (reg->type == PTR_TO_STACK) {
2049 		off += reg->var_off.value;
2050 		err = check_stack_access(env, reg, off, size);
2051 		if (err)
2052 			return err;
2053 
2054 		state = func(env, reg);
2055 		err = update_stack_depth(env, state, off);
2056 		if (err)
2057 			return err;
2058 
2059 		if (t == BPF_WRITE)
2060 			err = check_stack_write(env, state, off, size,
2061 						value_regno, insn_idx);
2062 		else
2063 			err = check_stack_read(env, state, off, size,
2064 					       value_regno);
2065 	} else if (reg_is_pkt_pointer(reg)) {
2066 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2067 			verbose(env, "cannot write into packet\n");
2068 			return -EACCES;
2069 		}
2070 		if (t == BPF_WRITE && value_regno >= 0 &&
2071 		    is_pointer_value(env, value_regno)) {
2072 			verbose(env, "R%d leaks addr into packet\n",
2073 				value_regno);
2074 			return -EACCES;
2075 		}
2076 		err = check_packet_access(env, regno, off, size, false);
2077 		if (!err && t == BPF_READ && value_regno >= 0)
2078 			mark_reg_unknown(env, regs, value_regno);
2079 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2080 		if (t == BPF_WRITE && value_regno >= 0 &&
2081 		    is_pointer_value(env, value_regno)) {
2082 			verbose(env, "R%d leaks addr into flow keys\n",
2083 				value_regno);
2084 			return -EACCES;
2085 		}
2086 
2087 		err = check_flow_keys_access(env, off, size);
2088 		if (!err && t == BPF_READ && value_regno >= 0)
2089 			mark_reg_unknown(env, regs, value_regno);
2090 	} else if (type_is_sk_pointer(reg->type)) {
2091 		if (t == BPF_WRITE) {
2092 			verbose(env, "R%d cannot write into %s\n",
2093 				regno, reg_type_str[reg->type]);
2094 			return -EACCES;
2095 		}
2096 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2097 		if (!err && value_regno >= 0)
2098 			mark_reg_unknown(env, regs, value_regno);
2099 	} else {
2100 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2101 			reg_type_str[reg->type]);
2102 		return -EACCES;
2103 	}
2104 
2105 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2106 	    regs[value_regno].type == SCALAR_VALUE) {
2107 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2108 		coerce_reg_to_size(&regs[value_regno], size);
2109 	}
2110 	return err;
2111 }
2112 
2113 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2114 {
2115 	int err;
2116 
2117 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2118 	    insn->imm != 0) {
2119 		verbose(env, "BPF_XADD uses reserved fields\n");
2120 		return -EINVAL;
2121 	}
2122 
2123 	/* check src1 operand */
2124 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2125 	if (err)
2126 		return err;
2127 
2128 	/* check src2 operand */
2129 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2130 	if (err)
2131 		return err;
2132 
2133 	if (is_pointer_value(env, insn->src_reg)) {
2134 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2135 		return -EACCES;
2136 	}
2137 
2138 	if (is_ctx_reg(env, insn->dst_reg) ||
2139 	    is_pkt_reg(env, insn->dst_reg) ||
2140 	    is_flow_key_reg(env, insn->dst_reg) ||
2141 	    is_sk_reg(env, insn->dst_reg)) {
2142 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2143 			insn->dst_reg,
2144 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2145 		return -EACCES;
2146 	}
2147 
2148 	/* check whether atomic_add can read the memory */
2149 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2150 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2151 	if (err)
2152 		return err;
2153 
2154 	/* check whether atomic_add can write into the same memory */
2155 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2156 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2157 }
2158 
2159 /* when register 'regno' is passed into function that will read 'access_size'
2160  * bytes from that pointer, make sure that it's within stack boundary
2161  * and all elements of stack are initialized.
2162  * Unlike most pointer bounds-checking functions, this one doesn't take an
2163  * 'off' argument, so it has to add in reg->off itself.
2164  */
2165 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2166 				int access_size, bool zero_size_allowed,
2167 				struct bpf_call_arg_meta *meta)
2168 {
2169 	struct bpf_reg_state *reg = reg_state(env, regno);
2170 	struct bpf_func_state *state = func(env, reg);
2171 	int off, i, slot, spi;
2172 
2173 	if (reg->type != PTR_TO_STACK) {
2174 		/* Allow zero-byte read from NULL, regardless of pointer type */
2175 		if (zero_size_allowed && access_size == 0 &&
2176 		    register_is_null(reg))
2177 			return 0;
2178 
2179 		verbose(env, "R%d type=%s expected=%s\n", regno,
2180 			reg_type_str[reg->type],
2181 			reg_type_str[PTR_TO_STACK]);
2182 		return -EACCES;
2183 	}
2184 
2185 	/* Only allow fixed-offset stack reads */
2186 	if (!tnum_is_const(reg->var_off)) {
2187 		char tn_buf[48];
2188 
2189 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2190 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
2191 			regno, tn_buf);
2192 		return -EACCES;
2193 	}
2194 	off = reg->off + reg->var_off.value;
2195 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2196 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2197 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2198 			regno, off, access_size);
2199 		return -EACCES;
2200 	}
2201 
2202 	if (meta && meta->raw_mode) {
2203 		meta->access_size = access_size;
2204 		meta->regno = regno;
2205 		return 0;
2206 	}
2207 
2208 	for (i = 0; i < access_size; i++) {
2209 		u8 *stype;
2210 
2211 		slot = -(off + i) - 1;
2212 		spi = slot / BPF_REG_SIZE;
2213 		if (state->allocated_stack <= slot)
2214 			goto err;
2215 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2216 		if (*stype == STACK_MISC)
2217 			goto mark;
2218 		if (*stype == STACK_ZERO) {
2219 			/* helper can write anything into the stack */
2220 			*stype = STACK_MISC;
2221 			goto mark;
2222 		}
2223 err:
2224 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2225 			off, i, access_size);
2226 		return -EACCES;
2227 mark:
2228 		/* reading any byte out of 8-byte 'spill_slot' will cause
2229 		 * the whole slot to be marked as 'read'
2230 		 */
2231 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
2232 			      state->stack[spi].spilled_ptr.parent);
2233 	}
2234 	return update_stack_depth(env, state, off);
2235 }
2236 
2237 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2238 				   int access_size, bool zero_size_allowed,
2239 				   struct bpf_call_arg_meta *meta)
2240 {
2241 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2242 
2243 	switch (reg->type) {
2244 	case PTR_TO_PACKET:
2245 	case PTR_TO_PACKET_META:
2246 		return check_packet_access(env, regno, reg->off, access_size,
2247 					   zero_size_allowed);
2248 	case PTR_TO_MAP_VALUE:
2249 		return check_map_access(env, regno, reg->off, access_size,
2250 					zero_size_allowed);
2251 	default: /* scalar_value|ptr_to_stack or invalid ptr */
2252 		return check_stack_boundary(env, regno, access_size,
2253 					    zero_size_allowed, meta);
2254 	}
2255 }
2256 
2257 /* Implementation details:
2258  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2259  * Two bpf_map_lookups (even with the same key) will have different reg->id.
2260  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2261  * value_or_null->value transition, since the verifier only cares about
2262  * the range of access to valid map value pointer and doesn't care about actual
2263  * address of the map element.
2264  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2265  * reg->id > 0 after value_or_null->value transition. By doing so
2266  * two bpf_map_lookups will be considered two different pointers that
2267  * point to different bpf_spin_locks.
2268  * The verifier allows taking only one bpf_spin_lock at a time to avoid
2269  * dead-locks.
2270  * Since only one bpf_spin_lock is allowed the checks are simpler than
2271  * reg_is_refcounted() logic. The verifier needs to remember only
2272  * one spin_lock instead of array of acquired_refs.
2273  * cur_state->active_spin_lock remembers which map value element got locked
2274  * and clears it after bpf_spin_unlock.
2275  */
2276 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2277 			     bool is_lock)
2278 {
2279 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2280 	struct bpf_verifier_state *cur = env->cur_state;
2281 	bool is_const = tnum_is_const(reg->var_off);
2282 	struct bpf_map *map = reg->map_ptr;
2283 	u64 val = reg->var_off.value;
2284 
2285 	if (reg->type != PTR_TO_MAP_VALUE) {
2286 		verbose(env, "R%d is not a pointer to map_value\n", regno);
2287 		return -EINVAL;
2288 	}
2289 	if (!is_const) {
2290 		verbose(env,
2291 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2292 			regno);
2293 		return -EINVAL;
2294 	}
2295 	if (!map->btf) {
2296 		verbose(env,
2297 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
2298 			map->name);
2299 		return -EINVAL;
2300 	}
2301 	if (!map_value_has_spin_lock(map)) {
2302 		if (map->spin_lock_off == -E2BIG)
2303 			verbose(env,
2304 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
2305 				map->name);
2306 		else if (map->spin_lock_off == -ENOENT)
2307 			verbose(env,
2308 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
2309 				map->name);
2310 		else
2311 			verbose(env,
2312 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2313 				map->name);
2314 		return -EINVAL;
2315 	}
2316 	if (map->spin_lock_off != val + reg->off) {
2317 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2318 			val + reg->off);
2319 		return -EINVAL;
2320 	}
2321 	if (is_lock) {
2322 		if (cur->active_spin_lock) {
2323 			verbose(env,
2324 				"Locking two bpf_spin_locks are not allowed\n");
2325 			return -EINVAL;
2326 		}
2327 		cur->active_spin_lock = reg->id;
2328 	} else {
2329 		if (!cur->active_spin_lock) {
2330 			verbose(env, "bpf_spin_unlock without taking a lock\n");
2331 			return -EINVAL;
2332 		}
2333 		if (cur->active_spin_lock != reg->id) {
2334 			verbose(env, "bpf_spin_unlock of different lock\n");
2335 			return -EINVAL;
2336 		}
2337 		cur->active_spin_lock = 0;
2338 	}
2339 	return 0;
2340 }
2341 
2342 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2343 {
2344 	return type == ARG_PTR_TO_MEM ||
2345 	       type == ARG_PTR_TO_MEM_OR_NULL ||
2346 	       type == ARG_PTR_TO_UNINIT_MEM;
2347 }
2348 
2349 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2350 {
2351 	return type == ARG_CONST_SIZE ||
2352 	       type == ARG_CONST_SIZE_OR_ZERO;
2353 }
2354 
2355 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2356 			  enum bpf_arg_type arg_type,
2357 			  struct bpf_call_arg_meta *meta)
2358 {
2359 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2360 	enum bpf_reg_type expected_type, type = reg->type;
2361 	int err = 0;
2362 
2363 	if (arg_type == ARG_DONTCARE)
2364 		return 0;
2365 
2366 	err = check_reg_arg(env, regno, SRC_OP);
2367 	if (err)
2368 		return err;
2369 
2370 	if (arg_type == ARG_ANYTHING) {
2371 		if (is_pointer_value(env, regno)) {
2372 			verbose(env, "R%d leaks addr into helper function\n",
2373 				regno);
2374 			return -EACCES;
2375 		}
2376 		return 0;
2377 	}
2378 
2379 	if (type_is_pkt_pointer(type) &&
2380 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2381 		verbose(env, "helper access to the packet is not allowed\n");
2382 		return -EACCES;
2383 	}
2384 
2385 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
2386 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
2387 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2388 		expected_type = PTR_TO_STACK;
2389 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
2390 		    type != expected_type)
2391 			goto err_type;
2392 	} else if (arg_type == ARG_CONST_SIZE ||
2393 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
2394 		expected_type = SCALAR_VALUE;
2395 		if (type != expected_type)
2396 			goto err_type;
2397 	} else if (arg_type == ARG_CONST_MAP_PTR) {
2398 		expected_type = CONST_PTR_TO_MAP;
2399 		if (type != expected_type)
2400 			goto err_type;
2401 	} else if (arg_type == ARG_PTR_TO_CTX) {
2402 		expected_type = PTR_TO_CTX;
2403 		if (type != expected_type)
2404 			goto err_type;
2405 		err = check_ctx_reg(env, reg, regno);
2406 		if (err < 0)
2407 			return err;
2408 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2409 		expected_type = PTR_TO_SOCK_COMMON;
2410 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2411 		if (!type_is_sk_pointer(type))
2412 			goto err_type;
2413 		if (reg->ref_obj_id) {
2414 			if (meta->ref_obj_id) {
2415 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2416 					regno, reg->ref_obj_id,
2417 					meta->ref_obj_id);
2418 				return -EFAULT;
2419 			}
2420 			meta->ref_obj_id = reg->ref_obj_id;
2421 		}
2422 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2423 		if (meta->func_id == BPF_FUNC_spin_lock) {
2424 			if (process_spin_lock(env, regno, true))
2425 				return -EACCES;
2426 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
2427 			if (process_spin_lock(env, regno, false))
2428 				return -EACCES;
2429 		} else {
2430 			verbose(env, "verifier internal error\n");
2431 			return -EFAULT;
2432 		}
2433 	} else if (arg_type_is_mem_ptr(arg_type)) {
2434 		expected_type = PTR_TO_STACK;
2435 		/* One exception here. In case function allows for NULL to be
2436 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
2437 		 * happens during stack boundary checking.
2438 		 */
2439 		if (register_is_null(reg) &&
2440 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
2441 			/* final test in check_stack_boundary() */;
2442 		else if (!type_is_pkt_pointer(type) &&
2443 			 type != PTR_TO_MAP_VALUE &&
2444 			 type != expected_type)
2445 			goto err_type;
2446 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2447 	} else {
2448 		verbose(env, "unsupported arg_type %d\n", arg_type);
2449 		return -EFAULT;
2450 	}
2451 
2452 	if (arg_type == ARG_CONST_MAP_PTR) {
2453 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2454 		meta->map_ptr = reg->map_ptr;
2455 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2456 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2457 		 * check that [key, key + map->key_size) are within
2458 		 * stack limits and initialized
2459 		 */
2460 		if (!meta->map_ptr) {
2461 			/* in function declaration map_ptr must come before
2462 			 * map_key, so that it's verified and known before
2463 			 * we have to check map_key here. Otherwise it means
2464 			 * that kernel subsystem misconfigured verifier
2465 			 */
2466 			verbose(env, "invalid map_ptr to access map->key\n");
2467 			return -EACCES;
2468 		}
2469 		err = check_helper_mem_access(env, regno,
2470 					      meta->map_ptr->key_size, false,
2471 					      NULL);
2472 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2473 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2474 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2475 		 * check [value, value + map->value_size) validity
2476 		 */
2477 		if (!meta->map_ptr) {
2478 			/* kernel subsystem misconfigured verifier */
2479 			verbose(env, "invalid map_ptr to access map->value\n");
2480 			return -EACCES;
2481 		}
2482 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2483 		err = check_helper_mem_access(env, regno,
2484 					      meta->map_ptr->value_size, false,
2485 					      meta);
2486 	} else if (arg_type_is_mem_size(arg_type)) {
2487 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2488 
2489 		/* remember the mem_size which may be used later
2490 		 * to refine return values.
2491 		 */
2492 		meta->msize_smax_value = reg->smax_value;
2493 		meta->msize_umax_value = reg->umax_value;
2494 
2495 		/* The register is SCALAR_VALUE; the access check
2496 		 * happens using its boundaries.
2497 		 */
2498 		if (!tnum_is_const(reg->var_off))
2499 			/* For unprivileged variable accesses, disable raw
2500 			 * mode so that the program is required to
2501 			 * initialize all the memory that the helper could
2502 			 * just partially fill up.
2503 			 */
2504 			meta = NULL;
2505 
2506 		if (reg->smin_value < 0) {
2507 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2508 				regno);
2509 			return -EACCES;
2510 		}
2511 
2512 		if (reg->umin_value == 0) {
2513 			err = check_helper_mem_access(env, regno - 1, 0,
2514 						      zero_size_allowed,
2515 						      meta);
2516 			if (err)
2517 				return err;
2518 		}
2519 
2520 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2521 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2522 				regno);
2523 			return -EACCES;
2524 		}
2525 		err = check_helper_mem_access(env, regno - 1,
2526 					      reg->umax_value,
2527 					      zero_size_allowed, meta);
2528 	}
2529 
2530 	return err;
2531 err_type:
2532 	verbose(env, "R%d type=%s expected=%s\n", regno,
2533 		reg_type_str[type], reg_type_str[expected_type]);
2534 	return -EACCES;
2535 }
2536 
2537 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2538 					struct bpf_map *map, int func_id)
2539 {
2540 	if (!map)
2541 		return 0;
2542 
2543 	/* We need a two way check, first is from map perspective ... */
2544 	switch (map->map_type) {
2545 	case BPF_MAP_TYPE_PROG_ARRAY:
2546 		if (func_id != BPF_FUNC_tail_call)
2547 			goto error;
2548 		break;
2549 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2550 		if (func_id != BPF_FUNC_perf_event_read &&
2551 		    func_id != BPF_FUNC_perf_event_output &&
2552 		    func_id != BPF_FUNC_perf_event_read_value)
2553 			goto error;
2554 		break;
2555 	case BPF_MAP_TYPE_STACK_TRACE:
2556 		if (func_id != BPF_FUNC_get_stackid)
2557 			goto error;
2558 		break;
2559 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2560 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2561 		    func_id != BPF_FUNC_current_task_under_cgroup)
2562 			goto error;
2563 		break;
2564 	case BPF_MAP_TYPE_CGROUP_STORAGE:
2565 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2566 		if (func_id != BPF_FUNC_get_local_storage)
2567 			goto error;
2568 		break;
2569 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2570 	 * allow to be modified from bpf side. So do not allow lookup elements
2571 	 * for now.
2572 	 */
2573 	case BPF_MAP_TYPE_DEVMAP:
2574 		if (func_id != BPF_FUNC_redirect_map)
2575 			goto error;
2576 		break;
2577 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2578 	 * appear.
2579 	 */
2580 	case BPF_MAP_TYPE_CPUMAP:
2581 	case BPF_MAP_TYPE_XSKMAP:
2582 		if (func_id != BPF_FUNC_redirect_map)
2583 			goto error;
2584 		break;
2585 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2586 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2587 		if (func_id != BPF_FUNC_map_lookup_elem)
2588 			goto error;
2589 		break;
2590 	case BPF_MAP_TYPE_SOCKMAP:
2591 		if (func_id != BPF_FUNC_sk_redirect_map &&
2592 		    func_id != BPF_FUNC_sock_map_update &&
2593 		    func_id != BPF_FUNC_map_delete_elem &&
2594 		    func_id != BPF_FUNC_msg_redirect_map)
2595 			goto error;
2596 		break;
2597 	case BPF_MAP_TYPE_SOCKHASH:
2598 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2599 		    func_id != BPF_FUNC_sock_hash_update &&
2600 		    func_id != BPF_FUNC_map_delete_elem &&
2601 		    func_id != BPF_FUNC_msg_redirect_hash)
2602 			goto error;
2603 		break;
2604 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2605 		if (func_id != BPF_FUNC_sk_select_reuseport)
2606 			goto error;
2607 		break;
2608 	case BPF_MAP_TYPE_QUEUE:
2609 	case BPF_MAP_TYPE_STACK:
2610 		if (func_id != BPF_FUNC_map_peek_elem &&
2611 		    func_id != BPF_FUNC_map_pop_elem &&
2612 		    func_id != BPF_FUNC_map_push_elem)
2613 			goto error;
2614 		break;
2615 	default:
2616 		break;
2617 	}
2618 
2619 	/* ... and second from the function itself. */
2620 	switch (func_id) {
2621 	case BPF_FUNC_tail_call:
2622 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2623 			goto error;
2624 		if (env->subprog_cnt > 1) {
2625 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2626 			return -EINVAL;
2627 		}
2628 		break;
2629 	case BPF_FUNC_perf_event_read:
2630 	case BPF_FUNC_perf_event_output:
2631 	case BPF_FUNC_perf_event_read_value:
2632 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2633 			goto error;
2634 		break;
2635 	case BPF_FUNC_get_stackid:
2636 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2637 			goto error;
2638 		break;
2639 	case BPF_FUNC_current_task_under_cgroup:
2640 	case BPF_FUNC_skb_under_cgroup:
2641 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2642 			goto error;
2643 		break;
2644 	case BPF_FUNC_redirect_map:
2645 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2646 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2647 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2648 			goto error;
2649 		break;
2650 	case BPF_FUNC_sk_redirect_map:
2651 	case BPF_FUNC_msg_redirect_map:
2652 	case BPF_FUNC_sock_map_update:
2653 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2654 			goto error;
2655 		break;
2656 	case BPF_FUNC_sk_redirect_hash:
2657 	case BPF_FUNC_msg_redirect_hash:
2658 	case BPF_FUNC_sock_hash_update:
2659 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2660 			goto error;
2661 		break;
2662 	case BPF_FUNC_get_local_storage:
2663 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2664 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2665 			goto error;
2666 		break;
2667 	case BPF_FUNC_sk_select_reuseport:
2668 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2669 			goto error;
2670 		break;
2671 	case BPF_FUNC_map_peek_elem:
2672 	case BPF_FUNC_map_pop_elem:
2673 	case BPF_FUNC_map_push_elem:
2674 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2675 		    map->map_type != BPF_MAP_TYPE_STACK)
2676 			goto error;
2677 		break;
2678 	default:
2679 		break;
2680 	}
2681 
2682 	return 0;
2683 error:
2684 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2685 		map->map_type, func_id_name(func_id), func_id);
2686 	return -EINVAL;
2687 }
2688 
2689 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2690 {
2691 	int count = 0;
2692 
2693 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2694 		count++;
2695 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2696 		count++;
2697 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2698 		count++;
2699 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2700 		count++;
2701 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2702 		count++;
2703 
2704 	/* We only support one arg being in raw mode at the moment,
2705 	 * which is sufficient for the helper functions we have
2706 	 * right now.
2707 	 */
2708 	return count <= 1;
2709 }
2710 
2711 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2712 				    enum bpf_arg_type arg_next)
2713 {
2714 	return (arg_type_is_mem_ptr(arg_curr) &&
2715 	        !arg_type_is_mem_size(arg_next)) ||
2716 	       (!arg_type_is_mem_ptr(arg_curr) &&
2717 		arg_type_is_mem_size(arg_next));
2718 }
2719 
2720 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2721 {
2722 	/* bpf_xxx(..., buf, len) call will access 'len'
2723 	 * bytes from memory 'buf'. Both arg types need
2724 	 * to be paired, so make sure there's no buggy
2725 	 * helper function specification.
2726 	 */
2727 	if (arg_type_is_mem_size(fn->arg1_type) ||
2728 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2729 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2730 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2731 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2732 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2733 		return false;
2734 
2735 	return true;
2736 }
2737 
2738 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2739 {
2740 	int count = 0;
2741 
2742 	if (arg_type_may_be_refcounted(fn->arg1_type))
2743 		count++;
2744 	if (arg_type_may_be_refcounted(fn->arg2_type))
2745 		count++;
2746 	if (arg_type_may_be_refcounted(fn->arg3_type))
2747 		count++;
2748 	if (arg_type_may_be_refcounted(fn->arg4_type))
2749 		count++;
2750 	if (arg_type_may_be_refcounted(fn->arg5_type))
2751 		count++;
2752 
2753 	/* A reference acquiring function cannot acquire
2754 	 * another refcounted ptr.
2755 	 */
2756 	if (is_acquire_function(func_id) && count)
2757 		return false;
2758 
2759 	/* We only support one arg being unreferenced at the moment,
2760 	 * which is sufficient for the helper functions we have right now.
2761 	 */
2762 	return count <= 1;
2763 }
2764 
2765 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2766 {
2767 	return check_raw_mode_ok(fn) &&
2768 	       check_arg_pair_ok(fn) &&
2769 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2770 }
2771 
2772 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2773  * are now invalid, so turn them into unknown SCALAR_VALUE.
2774  */
2775 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2776 				     struct bpf_func_state *state)
2777 {
2778 	struct bpf_reg_state *regs = state->regs, *reg;
2779 	int i;
2780 
2781 	for (i = 0; i < MAX_BPF_REG; i++)
2782 		if (reg_is_pkt_pointer_any(&regs[i]))
2783 			mark_reg_unknown(env, regs, i);
2784 
2785 	bpf_for_each_spilled_reg(i, state, reg) {
2786 		if (!reg)
2787 			continue;
2788 		if (reg_is_pkt_pointer_any(reg))
2789 			__mark_reg_unknown(reg);
2790 	}
2791 }
2792 
2793 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2794 {
2795 	struct bpf_verifier_state *vstate = env->cur_state;
2796 	int i;
2797 
2798 	for (i = 0; i <= vstate->curframe; i++)
2799 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2800 }
2801 
2802 static void release_reg_references(struct bpf_verifier_env *env,
2803 				   struct bpf_func_state *state,
2804 				   int ref_obj_id)
2805 {
2806 	struct bpf_reg_state *regs = state->regs, *reg;
2807 	int i;
2808 
2809 	for (i = 0; i < MAX_BPF_REG; i++)
2810 		if (regs[i].ref_obj_id == ref_obj_id)
2811 			mark_reg_unknown(env, regs, i);
2812 
2813 	bpf_for_each_spilled_reg(i, state, reg) {
2814 		if (!reg)
2815 			continue;
2816 		if (reg->ref_obj_id == ref_obj_id)
2817 			__mark_reg_unknown(reg);
2818 	}
2819 }
2820 
2821 /* The pointer with the specified id has released its reference to kernel
2822  * resources. Identify all copies of the same pointer and clear the reference.
2823  */
2824 static int release_reference(struct bpf_verifier_env *env,
2825 			     int ref_obj_id)
2826 {
2827 	struct bpf_verifier_state *vstate = env->cur_state;
2828 	int err;
2829 	int i;
2830 
2831 	err = release_reference_state(cur_func(env), ref_obj_id);
2832 	if (err)
2833 		return err;
2834 
2835 	for (i = 0; i <= vstate->curframe; i++)
2836 		release_reg_references(env, vstate->frame[i], ref_obj_id);
2837 
2838 	return 0;
2839 }
2840 
2841 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2842 			   int *insn_idx)
2843 {
2844 	struct bpf_verifier_state *state = env->cur_state;
2845 	struct bpf_func_state *caller, *callee;
2846 	int i, err, subprog, target_insn;
2847 
2848 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2849 		verbose(env, "the call stack of %d frames is too deep\n",
2850 			state->curframe + 2);
2851 		return -E2BIG;
2852 	}
2853 
2854 	target_insn = *insn_idx + insn->imm;
2855 	subprog = find_subprog(env, target_insn + 1);
2856 	if (subprog < 0) {
2857 		verbose(env, "verifier bug. No program starts at insn %d\n",
2858 			target_insn + 1);
2859 		return -EFAULT;
2860 	}
2861 
2862 	caller = state->frame[state->curframe];
2863 	if (state->frame[state->curframe + 1]) {
2864 		verbose(env, "verifier bug. Frame %d already allocated\n",
2865 			state->curframe + 1);
2866 		return -EFAULT;
2867 	}
2868 
2869 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2870 	if (!callee)
2871 		return -ENOMEM;
2872 	state->frame[state->curframe + 1] = callee;
2873 
2874 	/* callee cannot access r0, r6 - r9 for reading and has to write
2875 	 * into its own stack before reading from it.
2876 	 * callee can read/write into caller's stack
2877 	 */
2878 	init_func_state(env, callee,
2879 			/* remember the callsite, it will be used by bpf_exit */
2880 			*insn_idx /* callsite */,
2881 			state->curframe + 1 /* frameno within this callchain */,
2882 			subprog /* subprog number within this prog */);
2883 
2884 	/* Transfer references to the callee */
2885 	err = transfer_reference_state(callee, caller);
2886 	if (err)
2887 		return err;
2888 
2889 	/* copy r1 - r5 args that callee can access.  The copy includes parent
2890 	 * pointers, which connects us up to the liveness chain
2891 	 */
2892 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2893 		callee->regs[i] = caller->regs[i];
2894 
2895 	/* after the call registers r0 - r5 were scratched */
2896 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2897 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2898 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2899 	}
2900 
2901 	/* only increment it after check_reg_arg() finished */
2902 	state->curframe++;
2903 
2904 	/* and go analyze first insn of the callee */
2905 	*insn_idx = target_insn;
2906 
2907 	if (env->log.level) {
2908 		verbose(env, "caller:\n");
2909 		print_verifier_state(env, caller);
2910 		verbose(env, "callee:\n");
2911 		print_verifier_state(env, callee);
2912 	}
2913 	return 0;
2914 }
2915 
2916 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2917 {
2918 	struct bpf_verifier_state *state = env->cur_state;
2919 	struct bpf_func_state *caller, *callee;
2920 	struct bpf_reg_state *r0;
2921 	int err;
2922 
2923 	callee = state->frame[state->curframe];
2924 	r0 = &callee->regs[BPF_REG_0];
2925 	if (r0->type == PTR_TO_STACK) {
2926 		/* technically it's ok to return caller's stack pointer
2927 		 * (or caller's caller's pointer) back to the caller,
2928 		 * since these pointers are valid. Only current stack
2929 		 * pointer will be invalid as soon as function exits,
2930 		 * but let's be conservative
2931 		 */
2932 		verbose(env, "cannot return stack pointer to the caller\n");
2933 		return -EINVAL;
2934 	}
2935 
2936 	state->curframe--;
2937 	caller = state->frame[state->curframe];
2938 	/* return to the caller whatever r0 had in the callee */
2939 	caller->regs[BPF_REG_0] = *r0;
2940 
2941 	/* Transfer references to the caller */
2942 	err = transfer_reference_state(caller, callee);
2943 	if (err)
2944 		return err;
2945 
2946 	*insn_idx = callee->callsite + 1;
2947 	if (env->log.level) {
2948 		verbose(env, "returning from callee:\n");
2949 		print_verifier_state(env, callee);
2950 		verbose(env, "to caller at %d:\n", *insn_idx);
2951 		print_verifier_state(env, caller);
2952 	}
2953 	/* clear everything in the callee */
2954 	free_func_state(callee);
2955 	state->frame[state->curframe + 1] = NULL;
2956 	return 0;
2957 }
2958 
2959 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2960 				   int func_id,
2961 				   struct bpf_call_arg_meta *meta)
2962 {
2963 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2964 
2965 	if (ret_type != RET_INTEGER ||
2966 	    (func_id != BPF_FUNC_get_stack &&
2967 	     func_id != BPF_FUNC_probe_read_str))
2968 		return;
2969 
2970 	ret_reg->smax_value = meta->msize_smax_value;
2971 	ret_reg->umax_value = meta->msize_umax_value;
2972 	__reg_deduce_bounds(ret_reg);
2973 	__reg_bound_offset(ret_reg);
2974 }
2975 
2976 static int
2977 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2978 		int func_id, int insn_idx)
2979 {
2980 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2981 
2982 	if (func_id != BPF_FUNC_tail_call &&
2983 	    func_id != BPF_FUNC_map_lookup_elem &&
2984 	    func_id != BPF_FUNC_map_update_elem &&
2985 	    func_id != BPF_FUNC_map_delete_elem &&
2986 	    func_id != BPF_FUNC_map_push_elem &&
2987 	    func_id != BPF_FUNC_map_pop_elem &&
2988 	    func_id != BPF_FUNC_map_peek_elem)
2989 		return 0;
2990 
2991 	if (meta->map_ptr == NULL) {
2992 		verbose(env, "kernel subsystem misconfigured verifier\n");
2993 		return -EINVAL;
2994 	}
2995 
2996 	if (!BPF_MAP_PTR(aux->map_state))
2997 		bpf_map_ptr_store(aux, meta->map_ptr,
2998 				  meta->map_ptr->unpriv_array);
2999 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3000 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3001 				  meta->map_ptr->unpriv_array);
3002 	return 0;
3003 }
3004 
3005 static int check_reference_leak(struct bpf_verifier_env *env)
3006 {
3007 	struct bpf_func_state *state = cur_func(env);
3008 	int i;
3009 
3010 	for (i = 0; i < state->acquired_refs; i++) {
3011 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3012 			state->refs[i].id, state->refs[i].insn_idx);
3013 	}
3014 	return state->acquired_refs ? -EINVAL : 0;
3015 }
3016 
3017 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3018 {
3019 	const struct bpf_func_proto *fn = NULL;
3020 	struct bpf_reg_state *regs;
3021 	struct bpf_call_arg_meta meta;
3022 	bool changes_data;
3023 	int i, err;
3024 
3025 	/* find function prototype */
3026 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3027 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3028 			func_id);
3029 		return -EINVAL;
3030 	}
3031 
3032 	if (env->ops->get_func_proto)
3033 		fn = env->ops->get_func_proto(func_id, env->prog);
3034 	if (!fn) {
3035 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3036 			func_id);
3037 		return -EINVAL;
3038 	}
3039 
3040 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3041 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3042 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3043 		return -EINVAL;
3044 	}
3045 
3046 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3047 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3048 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3049 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3050 			func_id_name(func_id), func_id);
3051 		return -EINVAL;
3052 	}
3053 
3054 	memset(&meta, 0, sizeof(meta));
3055 	meta.pkt_access = fn->pkt_access;
3056 
3057 	err = check_func_proto(fn, func_id);
3058 	if (err) {
3059 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3060 			func_id_name(func_id), func_id);
3061 		return err;
3062 	}
3063 
3064 	meta.func_id = func_id;
3065 	/* check args */
3066 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3067 	if (err)
3068 		return err;
3069 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3070 	if (err)
3071 		return err;
3072 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3073 	if (err)
3074 		return err;
3075 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3076 	if (err)
3077 		return err;
3078 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3079 	if (err)
3080 		return err;
3081 
3082 	err = record_func_map(env, &meta, func_id, insn_idx);
3083 	if (err)
3084 		return err;
3085 
3086 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
3087 	 * is inferred from register state.
3088 	 */
3089 	for (i = 0; i < meta.access_size; i++) {
3090 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3091 				       BPF_WRITE, -1, false);
3092 		if (err)
3093 			return err;
3094 	}
3095 
3096 	if (func_id == BPF_FUNC_tail_call) {
3097 		err = check_reference_leak(env);
3098 		if (err) {
3099 			verbose(env, "tail_call would lead to reference leak\n");
3100 			return err;
3101 		}
3102 	} else if (is_release_function(func_id)) {
3103 		err = release_reference(env, meta.ref_obj_id);
3104 		if (err) {
3105 			verbose(env, "func %s#%d reference has not been acquired before\n",
3106 				func_id_name(func_id), func_id);
3107 			return err;
3108 		}
3109 	}
3110 
3111 	regs = cur_regs(env);
3112 
3113 	/* check that flags argument in get_local_storage(map, flags) is 0,
3114 	 * this is required because get_local_storage() can't return an error.
3115 	 */
3116 	if (func_id == BPF_FUNC_get_local_storage &&
3117 	    !register_is_null(&regs[BPF_REG_2])) {
3118 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3119 		return -EINVAL;
3120 	}
3121 
3122 	/* reset caller saved regs */
3123 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3124 		mark_reg_not_init(env, regs, caller_saved[i]);
3125 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3126 	}
3127 
3128 	/* update return register (already marked as written above) */
3129 	if (fn->ret_type == RET_INTEGER) {
3130 		/* sets type to SCALAR_VALUE */
3131 		mark_reg_unknown(env, regs, BPF_REG_0);
3132 	} else if (fn->ret_type == RET_VOID) {
3133 		regs[BPF_REG_0].type = NOT_INIT;
3134 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3135 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3136 		/* There is no offset yet applied, variable or fixed */
3137 		mark_reg_known_zero(env, regs, BPF_REG_0);
3138 		/* remember map_ptr, so that check_map_access()
3139 		 * can check 'value_size' boundary of memory access
3140 		 * to map element returned from bpf_map_lookup_elem()
3141 		 */
3142 		if (meta.map_ptr == NULL) {
3143 			verbose(env,
3144 				"kernel subsystem misconfigured verifier\n");
3145 			return -EINVAL;
3146 		}
3147 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
3148 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3149 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3150 			if (map_value_has_spin_lock(meta.map_ptr))
3151 				regs[BPF_REG_0].id = ++env->id_gen;
3152 		} else {
3153 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3154 			regs[BPF_REG_0].id = ++env->id_gen;
3155 		}
3156 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3157 		mark_reg_known_zero(env, regs, BPF_REG_0);
3158 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3159 		if (is_acquire_function(func_id)) {
3160 			int id = acquire_reference_state(env, insn_idx);
3161 
3162 			if (id < 0)
3163 				return id;
3164 			/* For mark_ptr_or_null_reg() */
3165 			regs[BPF_REG_0].id = id;
3166 			/* For release_reference() */
3167 			regs[BPF_REG_0].ref_obj_id = id;
3168 		} else {
3169 			/* For mark_ptr_or_null_reg() */
3170 			regs[BPF_REG_0].id = ++env->id_gen;
3171 		}
3172 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3173 		mark_reg_known_zero(env, regs, BPF_REG_0);
3174 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3175 		regs[BPF_REG_0].id = ++env->id_gen;
3176 	} else {
3177 		verbose(env, "unknown return type %d of func %s#%d\n",
3178 			fn->ret_type, func_id_name(func_id), func_id);
3179 		return -EINVAL;
3180 	}
3181 
3182 	if (is_ptr_cast_function(func_id))
3183 		/* For release_reference() */
3184 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3185 
3186 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3187 
3188 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3189 	if (err)
3190 		return err;
3191 
3192 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3193 		const char *err_str;
3194 
3195 #ifdef CONFIG_PERF_EVENTS
3196 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
3197 		err_str = "cannot get callchain buffer for func %s#%d\n";
3198 #else
3199 		err = -ENOTSUPP;
3200 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3201 #endif
3202 		if (err) {
3203 			verbose(env, err_str, func_id_name(func_id), func_id);
3204 			return err;
3205 		}
3206 
3207 		env->prog->has_callchain_buf = true;
3208 	}
3209 
3210 	if (changes_data)
3211 		clear_all_pkt_pointers(env);
3212 	return 0;
3213 }
3214 
3215 static bool signed_add_overflows(s64 a, s64 b)
3216 {
3217 	/* Do the add in u64, where overflow is well-defined */
3218 	s64 res = (s64)((u64)a + (u64)b);
3219 
3220 	if (b < 0)
3221 		return res > a;
3222 	return res < a;
3223 }
3224 
3225 static bool signed_sub_overflows(s64 a, s64 b)
3226 {
3227 	/* Do the sub in u64, where overflow is well-defined */
3228 	s64 res = (s64)((u64)a - (u64)b);
3229 
3230 	if (b < 0)
3231 		return res < a;
3232 	return res > a;
3233 }
3234 
3235 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3236 				  const struct bpf_reg_state *reg,
3237 				  enum bpf_reg_type type)
3238 {
3239 	bool known = tnum_is_const(reg->var_off);
3240 	s64 val = reg->var_off.value;
3241 	s64 smin = reg->smin_value;
3242 
3243 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3244 		verbose(env, "math between %s pointer and %lld is not allowed\n",
3245 			reg_type_str[type], val);
3246 		return false;
3247 	}
3248 
3249 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3250 		verbose(env, "%s pointer offset %d is not allowed\n",
3251 			reg_type_str[type], reg->off);
3252 		return false;
3253 	}
3254 
3255 	if (smin == S64_MIN) {
3256 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3257 			reg_type_str[type]);
3258 		return false;
3259 	}
3260 
3261 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3262 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
3263 			smin, reg_type_str[type]);
3264 		return false;
3265 	}
3266 
3267 	return true;
3268 }
3269 
3270 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3271 {
3272 	return &env->insn_aux_data[env->insn_idx];
3273 }
3274 
3275 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3276 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
3277 {
3278 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
3279 			    (opcode == BPF_SUB && !off_is_neg);
3280 	u32 off;
3281 
3282 	switch (ptr_reg->type) {
3283 	case PTR_TO_STACK:
3284 		off = ptr_reg->off + ptr_reg->var_off.value;
3285 		if (mask_to_left)
3286 			*ptr_limit = MAX_BPF_STACK + off;
3287 		else
3288 			*ptr_limit = -off;
3289 		return 0;
3290 	case PTR_TO_MAP_VALUE:
3291 		if (mask_to_left) {
3292 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3293 		} else {
3294 			off = ptr_reg->smin_value + ptr_reg->off;
3295 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
3296 		}
3297 		return 0;
3298 	default:
3299 		return -EINVAL;
3300 	}
3301 }
3302 
3303 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3304 				    const struct bpf_insn *insn)
3305 {
3306 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3307 }
3308 
3309 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3310 				       u32 alu_state, u32 alu_limit)
3311 {
3312 	/* If we arrived here from different branches with different
3313 	 * state or limits to sanitize, then this won't work.
3314 	 */
3315 	if (aux->alu_state &&
3316 	    (aux->alu_state != alu_state ||
3317 	     aux->alu_limit != alu_limit))
3318 		return -EACCES;
3319 
3320 	/* Corresponding fixup done in fixup_bpf_calls(). */
3321 	aux->alu_state = alu_state;
3322 	aux->alu_limit = alu_limit;
3323 	return 0;
3324 }
3325 
3326 static int sanitize_val_alu(struct bpf_verifier_env *env,
3327 			    struct bpf_insn *insn)
3328 {
3329 	struct bpf_insn_aux_data *aux = cur_aux(env);
3330 
3331 	if (can_skip_alu_sanitation(env, insn))
3332 		return 0;
3333 
3334 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3335 }
3336 
3337 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3338 			    struct bpf_insn *insn,
3339 			    const struct bpf_reg_state *ptr_reg,
3340 			    struct bpf_reg_state *dst_reg,
3341 			    bool off_is_neg)
3342 {
3343 	struct bpf_verifier_state *vstate = env->cur_state;
3344 	struct bpf_insn_aux_data *aux = cur_aux(env);
3345 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
3346 	u8 opcode = BPF_OP(insn->code);
3347 	u32 alu_state, alu_limit;
3348 	struct bpf_reg_state tmp;
3349 	bool ret;
3350 
3351 	if (can_skip_alu_sanitation(env, insn))
3352 		return 0;
3353 
3354 	/* We already marked aux for masking from non-speculative
3355 	 * paths, thus we got here in the first place. We only care
3356 	 * to explore bad access from here.
3357 	 */
3358 	if (vstate->speculative)
3359 		goto do_sim;
3360 
3361 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3362 	alu_state |= ptr_is_dst_reg ?
3363 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3364 
3365 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3366 		return 0;
3367 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3368 		return -EACCES;
3369 do_sim:
3370 	/* Simulate and find potential out-of-bounds access under
3371 	 * speculative execution from truncation as a result of
3372 	 * masking when off was not within expected range. If off
3373 	 * sits in dst, then we temporarily need to move ptr there
3374 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3375 	 * for cases where we use K-based arithmetic in one direction
3376 	 * and truncated reg-based in the other in order to explore
3377 	 * bad access.
3378 	 */
3379 	if (!ptr_is_dst_reg) {
3380 		tmp = *dst_reg;
3381 		*dst_reg = *ptr_reg;
3382 	}
3383 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3384 	if (!ptr_is_dst_reg && ret)
3385 		*dst_reg = tmp;
3386 	return !ret ? -EFAULT : 0;
3387 }
3388 
3389 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3390  * Caller should also handle BPF_MOV case separately.
3391  * If we return -EACCES, caller may want to try again treating pointer as a
3392  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
3393  */
3394 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3395 				   struct bpf_insn *insn,
3396 				   const struct bpf_reg_state *ptr_reg,
3397 				   const struct bpf_reg_state *off_reg)
3398 {
3399 	struct bpf_verifier_state *vstate = env->cur_state;
3400 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3401 	struct bpf_reg_state *regs = state->regs, *dst_reg;
3402 	bool known = tnum_is_const(off_reg->var_off);
3403 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3404 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3405 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3406 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3407 	u32 dst = insn->dst_reg, src = insn->src_reg;
3408 	u8 opcode = BPF_OP(insn->code);
3409 	int ret;
3410 
3411 	dst_reg = &regs[dst];
3412 
3413 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3414 	    smin_val > smax_val || umin_val > umax_val) {
3415 		/* Taint dst register if offset had invalid bounds derived from
3416 		 * e.g. dead branches.
3417 		 */
3418 		__mark_reg_unknown(dst_reg);
3419 		return 0;
3420 	}
3421 
3422 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3423 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
3424 		verbose(env,
3425 			"R%d 32-bit pointer arithmetic prohibited\n",
3426 			dst);
3427 		return -EACCES;
3428 	}
3429 
3430 	switch (ptr_reg->type) {
3431 	case PTR_TO_MAP_VALUE_OR_NULL:
3432 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3433 			dst, reg_type_str[ptr_reg->type]);
3434 		return -EACCES;
3435 	case CONST_PTR_TO_MAP:
3436 	case PTR_TO_PACKET_END:
3437 	case PTR_TO_SOCKET:
3438 	case PTR_TO_SOCKET_OR_NULL:
3439 	case PTR_TO_SOCK_COMMON:
3440 	case PTR_TO_SOCK_COMMON_OR_NULL:
3441 	case PTR_TO_TCP_SOCK:
3442 	case PTR_TO_TCP_SOCK_OR_NULL:
3443 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3444 			dst, reg_type_str[ptr_reg->type]);
3445 		return -EACCES;
3446 	case PTR_TO_MAP_VALUE:
3447 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3448 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3449 				off_reg == dst_reg ? dst : src);
3450 			return -EACCES;
3451 		}
3452 		/* fall-through */
3453 	default:
3454 		break;
3455 	}
3456 
3457 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3458 	 * The id may be overwritten later if we create a new variable offset.
3459 	 */
3460 	dst_reg->type = ptr_reg->type;
3461 	dst_reg->id = ptr_reg->id;
3462 
3463 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3464 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3465 		return -EINVAL;
3466 
3467 	switch (opcode) {
3468 	case BPF_ADD:
3469 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3470 		if (ret < 0) {
3471 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
3472 			return ret;
3473 		}
3474 		/* We can take a fixed offset as long as it doesn't overflow
3475 		 * the s32 'off' field
3476 		 */
3477 		if (known && (ptr_reg->off + smin_val ==
3478 			      (s64)(s32)(ptr_reg->off + smin_val))) {
3479 			/* pointer += K.  Accumulate it into fixed offset */
3480 			dst_reg->smin_value = smin_ptr;
3481 			dst_reg->smax_value = smax_ptr;
3482 			dst_reg->umin_value = umin_ptr;
3483 			dst_reg->umax_value = umax_ptr;
3484 			dst_reg->var_off = ptr_reg->var_off;
3485 			dst_reg->off = ptr_reg->off + smin_val;
3486 			dst_reg->raw = ptr_reg->raw;
3487 			break;
3488 		}
3489 		/* A new variable offset is created.  Note that off_reg->off
3490 		 * == 0, since it's a scalar.
3491 		 * dst_reg gets the pointer type and since some positive
3492 		 * integer value was added to the pointer, give it a new 'id'
3493 		 * if it's a PTR_TO_PACKET.
3494 		 * this creates a new 'base' pointer, off_reg (variable) gets
3495 		 * added into the variable offset, and we copy the fixed offset
3496 		 * from ptr_reg.
3497 		 */
3498 		if (signed_add_overflows(smin_ptr, smin_val) ||
3499 		    signed_add_overflows(smax_ptr, smax_val)) {
3500 			dst_reg->smin_value = S64_MIN;
3501 			dst_reg->smax_value = S64_MAX;
3502 		} else {
3503 			dst_reg->smin_value = smin_ptr + smin_val;
3504 			dst_reg->smax_value = smax_ptr + smax_val;
3505 		}
3506 		if (umin_ptr + umin_val < umin_ptr ||
3507 		    umax_ptr + umax_val < umax_ptr) {
3508 			dst_reg->umin_value = 0;
3509 			dst_reg->umax_value = U64_MAX;
3510 		} else {
3511 			dst_reg->umin_value = umin_ptr + umin_val;
3512 			dst_reg->umax_value = umax_ptr + umax_val;
3513 		}
3514 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3515 		dst_reg->off = ptr_reg->off;
3516 		dst_reg->raw = ptr_reg->raw;
3517 		if (reg_is_pkt_pointer(ptr_reg)) {
3518 			dst_reg->id = ++env->id_gen;
3519 			/* something was added to pkt_ptr, set range to zero */
3520 			dst_reg->raw = 0;
3521 		}
3522 		break;
3523 	case BPF_SUB:
3524 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3525 		if (ret < 0) {
3526 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3527 			return ret;
3528 		}
3529 		if (dst_reg == off_reg) {
3530 			/* scalar -= pointer.  Creates an unknown scalar */
3531 			verbose(env, "R%d tried to subtract pointer from scalar\n",
3532 				dst);
3533 			return -EACCES;
3534 		}
3535 		/* We don't allow subtraction from FP, because (according to
3536 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
3537 		 * be able to deal with it.
3538 		 */
3539 		if (ptr_reg->type == PTR_TO_STACK) {
3540 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
3541 				dst);
3542 			return -EACCES;
3543 		}
3544 		if (known && (ptr_reg->off - smin_val ==
3545 			      (s64)(s32)(ptr_reg->off - smin_val))) {
3546 			/* pointer -= K.  Subtract it from fixed offset */
3547 			dst_reg->smin_value = smin_ptr;
3548 			dst_reg->smax_value = smax_ptr;
3549 			dst_reg->umin_value = umin_ptr;
3550 			dst_reg->umax_value = umax_ptr;
3551 			dst_reg->var_off = ptr_reg->var_off;
3552 			dst_reg->id = ptr_reg->id;
3553 			dst_reg->off = ptr_reg->off - smin_val;
3554 			dst_reg->raw = ptr_reg->raw;
3555 			break;
3556 		}
3557 		/* A new variable offset is created.  If the subtrahend is known
3558 		 * nonnegative, then any reg->range we had before is still good.
3559 		 */
3560 		if (signed_sub_overflows(smin_ptr, smax_val) ||
3561 		    signed_sub_overflows(smax_ptr, smin_val)) {
3562 			/* Overflow possible, we know nothing */
3563 			dst_reg->smin_value = S64_MIN;
3564 			dst_reg->smax_value = S64_MAX;
3565 		} else {
3566 			dst_reg->smin_value = smin_ptr - smax_val;
3567 			dst_reg->smax_value = smax_ptr - smin_val;
3568 		}
3569 		if (umin_ptr < umax_val) {
3570 			/* Overflow possible, we know nothing */
3571 			dst_reg->umin_value = 0;
3572 			dst_reg->umax_value = U64_MAX;
3573 		} else {
3574 			/* Cannot overflow (as long as bounds are consistent) */
3575 			dst_reg->umin_value = umin_ptr - umax_val;
3576 			dst_reg->umax_value = umax_ptr - umin_val;
3577 		}
3578 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3579 		dst_reg->off = ptr_reg->off;
3580 		dst_reg->raw = ptr_reg->raw;
3581 		if (reg_is_pkt_pointer(ptr_reg)) {
3582 			dst_reg->id = ++env->id_gen;
3583 			/* something was added to pkt_ptr, set range to zero */
3584 			if (smin_val < 0)
3585 				dst_reg->raw = 0;
3586 		}
3587 		break;
3588 	case BPF_AND:
3589 	case BPF_OR:
3590 	case BPF_XOR:
3591 		/* bitwise ops on pointers are troublesome, prohibit. */
3592 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3593 			dst, bpf_alu_string[opcode >> 4]);
3594 		return -EACCES;
3595 	default:
3596 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
3597 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3598 			dst, bpf_alu_string[opcode >> 4]);
3599 		return -EACCES;
3600 	}
3601 
3602 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3603 		return -EINVAL;
3604 
3605 	__update_reg_bounds(dst_reg);
3606 	__reg_deduce_bounds(dst_reg);
3607 	__reg_bound_offset(dst_reg);
3608 
3609 	/* For unprivileged we require that resulting offset must be in bounds
3610 	 * in order to be able to sanitize access later on.
3611 	 */
3612 	if (!env->allow_ptr_leaks) {
3613 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
3614 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
3615 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3616 				"prohibited for !root\n", dst);
3617 			return -EACCES;
3618 		} else if (dst_reg->type == PTR_TO_STACK &&
3619 			   check_stack_access(env, dst_reg, dst_reg->off +
3620 					      dst_reg->var_off.value, 1)) {
3621 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
3622 				"prohibited for !root\n", dst);
3623 			return -EACCES;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 /* WARNING: This function does calculations on 64-bit values, but the actual
3631  * execution may occur on 32-bit values. Therefore, things like bitshifts
3632  * need extra checks in the 32-bit case.
3633  */
3634 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3635 				      struct bpf_insn *insn,
3636 				      struct bpf_reg_state *dst_reg,
3637 				      struct bpf_reg_state src_reg)
3638 {
3639 	struct bpf_reg_state *regs = cur_regs(env);
3640 	u8 opcode = BPF_OP(insn->code);
3641 	bool src_known, dst_known;
3642 	s64 smin_val, smax_val;
3643 	u64 umin_val, umax_val;
3644 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3645 	u32 dst = insn->dst_reg;
3646 	int ret;
3647 
3648 	if (insn_bitness == 32) {
3649 		/* Relevant for 32-bit RSH: Information can propagate towards
3650 		 * LSB, so it isn't sufficient to only truncate the output to
3651 		 * 32 bits.
3652 		 */
3653 		coerce_reg_to_size(dst_reg, 4);
3654 		coerce_reg_to_size(&src_reg, 4);
3655 	}
3656 
3657 	smin_val = src_reg.smin_value;
3658 	smax_val = src_reg.smax_value;
3659 	umin_val = src_reg.umin_value;
3660 	umax_val = src_reg.umax_value;
3661 	src_known = tnum_is_const(src_reg.var_off);
3662 	dst_known = tnum_is_const(dst_reg->var_off);
3663 
3664 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3665 	    smin_val > smax_val || umin_val > umax_val) {
3666 		/* Taint dst register if offset had invalid bounds derived from
3667 		 * e.g. dead branches.
3668 		 */
3669 		__mark_reg_unknown(dst_reg);
3670 		return 0;
3671 	}
3672 
3673 	if (!src_known &&
3674 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3675 		__mark_reg_unknown(dst_reg);
3676 		return 0;
3677 	}
3678 
3679 	switch (opcode) {
3680 	case BPF_ADD:
3681 		ret = sanitize_val_alu(env, insn);
3682 		if (ret < 0) {
3683 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3684 			return ret;
3685 		}
3686 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3687 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
3688 			dst_reg->smin_value = S64_MIN;
3689 			dst_reg->smax_value = S64_MAX;
3690 		} else {
3691 			dst_reg->smin_value += smin_val;
3692 			dst_reg->smax_value += smax_val;
3693 		}
3694 		if (dst_reg->umin_value + umin_val < umin_val ||
3695 		    dst_reg->umax_value + umax_val < umax_val) {
3696 			dst_reg->umin_value = 0;
3697 			dst_reg->umax_value = U64_MAX;
3698 		} else {
3699 			dst_reg->umin_value += umin_val;
3700 			dst_reg->umax_value += umax_val;
3701 		}
3702 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3703 		break;
3704 	case BPF_SUB:
3705 		ret = sanitize_val_alu(env, insn);
3706 		if (ret < 0) {
3707 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3708 			return ret;
3709 		}
3710 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3711 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3712 			/* Overflow possible, we know nothing */
3713 			dst_reg->smin_value = S64_MIN;
3714 			dst_reg->smax_value = S64_MAX;
3715 		} else {
3716 			dst_reg->smin_value -= smax_val;
3717 			dst_reg->smax_value -= smin_val;
3718 		}
3719 		if (dst_reg->umin_value < umax_val) {
3720 			/* Overflow possible, we know nothing */
3721 			dst_reg->umin_value = 0;
3722 			dst_reg->umax_value = U64_MAX;
3723 		} else {
3724 			/* Cannot overflow (as long as bounds are consistent) */
3725 			dst_reg->umin_value -= umax_val;
3726 			dst_reg->umax_value -= umin_val;
3727 		}
3728 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3729 		break;
3730 	case BPF_MUL:
3731 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3732 		if (smin_val < 0 || dst_reg->smin_value < 0) {
3733 			/* Ain't nobody got time to multiply that sign */
3734 			__mark_reg_unbounded(dst_reg);
3735 			__update_reg_bounds(dst_reg);
3736 			break;
3737 		}
3738 		/* Both values are positive, so we can work with unsigned and
3739 		 * copy the result to signed (unless it exceeds S64_MAX).
3740 		 */
3741 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3742 			/* Potential overflow, we know nothing */
3743 			__mark_reg_unbounded(dst_reg);
3744 			/* (except what we can learn from the var_off) */
3745 			__update_reg_bounds(dst_reg);
3746 			break;
3747 		}
3748 		dst_reg->umin_value *= umin_val;
3749 		dst_reg->umax_value *= umax_val;
3750 		if (dst_reg->umax_value > S64_MAX) {
3751 			/* Overflow possible, we know nothing */
3752 			dst_reg->smin_value = S64_MIN;
3753 			dst_reg->smax_value = S64_MAX;
3754 		} else {
3755 			dst_reg->smin_value = dst_reg->umin_value;
3756 			dst_reg->smax_value = dst_reg->umax_value;
3757 		}
3758 		break;
3759 	case BPF_AND:
3760 		if (src_known && dst_known) {
3761 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
3762 						  src_reg.var_off.value);
3763 			break;
3764 		}
3765 		/* We get our minimum from the var_off, since that's inherently
3766 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
3767 		 */
3768 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3769 		dst_reg->umin_value = dst_reg->var_off.value;
3770 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3771 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3772 			/* Lose signed bounds when ANDing negative numbers,
3773 			 * ain't nobody got time for that.
3774 			 */
3775 			dst_reg->smin_value = S64_MIN;
3776 			dst_reg->smax_value = S64_MAX;
3777 		} else {
3778 			/* ANDing two positives gives a positive, so safe to
3779 			 * cast result into s64.
3780 			 */
3781 			dst_reg->smin_value = dst_reg->umin_value;
3782 			dst_reg->smax_value = dst_reg->umax_value;
3783 		}
3784 		/* We may learn something more from the var_off */
3785 		__update_reg_bounds(dst_reg);
3786 		break;
3787 	case BPF_OR:
3788 		if (src_known && dst_known) {
3789 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
3790 						  src_reg.var_off.value);
3791 			break;
3792 		}
3793 		/* We get our maximum from the var_off, and our minimum is the
3794 		 * maximum of the operands' minima
3795 		 */
3796 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
3797 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
3798 		dst_reg->umax_value = dst_reg->var_off.value |
3799 				      dst_reg->var_off.mask;
3800 		if (dst_reg->smin_value < 0 || smin_val < 0) {
3801 			/* Lose signed bounds when ORing negative numbers,
3802 			 * ain't nobody got time for that.
3803 			 */
3804 			dst_reg->smin_value = S64_MIN;
3805 			dst_reg->smax_value = S64_MAX;
3806 		} else {
3807 			/* ORing two positives gives a positive, so safe to
3808 			 * cast result into s64.
3809 			 */
3810 			dst_reg->smin_value = dst_reg->umin_value;
3811 			dst_reg->smax_value = dst_reg->umax_value;
3812 		}
3813 		/* We may learn something more from the var_off */
3814 		__update_reg_bounds(dst_reg);
3815 		break;
3816 	case BPF_LSH:
3817 		if (umax_val >= insn_bitness) {
3818 			/* Shifts greater than 31 or 63 are undefined.
3819 			 * This includes shifts by a negative number.
3820 			 */
3821 			mark_reg_unknown(env, regs, insn->dst_reg);
3822 			break;
3823 		}
3824 		/* We lose all sign bit information (except what we can pick
3825 		 * up from var_off)
3826 		 */
3827 		dst_reg->smin_value = S64_MIN;
3828 		dst_reg->smax_value = S64_MAX;
3829 		/* If we might shift our top bit out, then we know nothing */
3830 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3831 			dst_reg->umin_value = 0;
3832 			dst_reg->umax_value = U64_MAX;
3833 		} else {
3834 			dst_reg->umin_value <<= umin_val;
3835 			dst_reg->umax_value <<= umax_val;
3836 		}
3837 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3838 		/* We may learn something more from the var_off */
3839 		__update_reg_bounds(dst_reg);
3840 		break;
3841 	case BPF_RSH:
3842 		if (umax_val >= insn_bitness) {
3843 			/* Shifts greater than 31 or 63 are undefined.
3844 			 * This includes shifts by a negative number.
3845 			 */
3846 			mark_reg_unknown(env, regs, insn->dst_reg);
3847 			break;
3848 		}
3849 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3850 		 * be negative, then either:
3851 		 * 1) src_reg might be zero, so the sign bit of the result is
3852 		 *    unknown, so we lose our signed bounds
3853 		 * 2) it's known negative, thus the unsigned bounds capture the
3854 		 *    signed bounds
3855 		 * 3) the signed bounds cross zero, so they tell us nothing
3856 		 *    about the result
3857 		 * If the value in dst_reg is known nonnegative, then again the
3858 		 * unsigned bounts capture the signed bounds.
3859 		 * Thus, in all cases it suffices to blow away our signed bounds
3860 		 * and rely on inferring new ones from the unsigned bounds and
3861 		 * var_off of the result.
3862 		 */
3863 		dst_reg->smin_value = S64_MIN;
3864 		dst_reg->smax_value = S64_MAX;
3865 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3866 		dst_reg->umin_value >>= umax_val;
3867 		dst_reg->umax_value >>= umin_val;
3868 		/* We may learn something more from the var_off */
3869 		__update_reg_bounds(dst_reg);
3870 		break;
3871 	case BPF_ARSH:
3872 		if (umax_val >= insn_bitness) {
3873 			/* Shifts greater than 31 or 63 are undefined.
3874 			 * This includes shifts by a negative number.
3875 			 */
3876 			mark_reg_unknown(env, regs, insn->dst_reg);
3877 			break;
3878 		}
3879 
3880 		/* Upon reaching here, src_known is true and
3881 		 * umax_val is equal to umin_val.
3882 		 */
3883 		dst_reg->smin_value >>= umin_val;
3884 		dst_reg->smax_value >>= umin_val;
3885 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3886 
3887 		/* blow away the dst_reg umin_value/umax_value and rely on
3888 		 * dst_reg var_off to refine the result.
3889 		 */
3890 		dst_reg->umin_value = 0;
3891 		dst_reg->umax_value = U64_MAX;
3892 		__update_reg_bounds(dst_reg);
3893 		break;
3894 	default:
3895 		mark_reg_unknown(env, regs, insn->dst_reg);
3896 		break;
3897 	}
3898 
3899 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3900 		/* 32-bit ALU ops are (32,32)->32 */
3901 		coerce_reg_to_size(dst_reg, 4);
3902 	}
3903 
3904 	__reg_deduce_bounds(dst_reg);
3905 	__reg_bound_offset(dst_reg);
3906 	return 0;
3907 }
3908 
3909 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3910  * and var_off.
3911  */
3912 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3913 				   struct bpf_insn *insn)
3914 {
3915 	struct bpf_verifier_state *vstate = env->cur_state;
3916 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3917 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3918 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3919 	u8 opcode = BPF_OP(insn->code);
3920 
3921 	dst_reg = &regs[insn->dst_reg];
3922 	src_reg = NULL;
3923 	if (dst_reg->type != SCALAR_VALUE)
3924 		ptr_reg = dst_reg;
3925 	if (BPF_SRC(insn->code) == BPF_X) {
3926 		src_reg = &regs[insn->src_reg];
3927 		if (src_reg->type != SCALAR_VALUE) {
3928 			if (dst_reg->type != SCALAR_VALUE) {
3929 				/* Combining two pointers by any ALU op yields
3930 				 * an arbitrary scalar. Disallow all math except
3931 				 * pointer subtraction
3932 				 */
3933 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
3934 					mark_reg_unknown(env, regs, insn->dst_reg);
3935 					return 0;
3936 				}
3937 				verbose(env, "R%d pointer %s pointer prohibited\n",
3938 					insn->dst_reg,
3939 					bpf_alu_string[opcode >> 4]);
3940 				return -EACCES;
3941 			} else {
3942 				/* scalar += pointer
3943 				 * This is legal, but we have to reverse our
3944 				 * src/dest handling in computing the range
3945 				 */
3946 				return adjust_ptr_min_max_vals(env, insn,
3947 							       src_reg, dst_reg);
3948 			}
3949 		} else if (ptr_reg) {
3950 			/* pointer += scalar */
3951 			return adjust_ptr_min_max_vals(env, insn,
3952 						       dst_reg, src_reg);
3953 		}
3954 	} else {
3955 		/* Pretend the src is a reg with a known value, since we only
3956 		 * need to be able to read from this state.
3957 		 */
3958 		off_reg.type = SCALAR_VALUE;
3959 		__mark_reg_known(&off_reg, insn->imm);
3960 		src_reg = &off_reg;
3961 		if (ptr_reg) /* pointer += K */
3962 			return adjust_ptr_min_max_vals(env, insn,
3963 						       ptr_reg, src_reg);
3964 	}
3965 
3966 	/* Got here implies adding two SCALAR_VALUEs */
3967 	if (WARN_ON_ONCE(ptr_reg)) {
3968 		print_verifier_state(env, state);
3969 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3970 		return -EINVAL;
3971 	}
3972 	if (WARN_ON(!src_reg)) {
3973 		print_verifier_state(env, state);
3974 		verbose(env, "verifier internal error: no src_reg\n");
3975 		return -EINVAL;
3976 	}
3977 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3978 }
3979 
3980 /* check validity of 32-bit and 64-bit arithmetic operations */
3981 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3982 {
3983 	struct bpf_reg_state *regs = cur_regs(env);
3984 	u8 opcode = BPF_OP(insn->code);
3985 	int err;
3986 
3987 	if (opcode == BPF_END || opcode == BPF_NEG) {
3988 		if (opcode == BPF_NEG) {
3989 			if (BPF_SRC(insn->code) != 0 ||
3990 			    insn->src_reg != BPF_REG_0 ||
3991 			    insn->off != 0 || insn->imm != 0) {
3992 				verbose(env, "BPF_NEG uses reserved fields\n");
3993 				return -EINVAL;
3994 			}
3995 		} else {
3996 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3997 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3998 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3999 				verbose(env, "BPF_END uses reserved fields\n");
4000 				return -EINVAL;
4001 			}
4002 		}
4003 
4004 		/* check src operand */
4005 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4006 		if (err)
4007 			return err;
4008 
4009 		if (is_pointer_value(env, insn->dst_reg)) {
4010 			verbose(env, "R%d pointer arithmetic prohibited\n",
4011 				insn->dst_reg);
4012 			return -EACCES;
4013 		}
4014 
4015 		/* check dest operand */
4016 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4017 		if (err)
4018 			return err;
4019 
4020 	} else if (opcode == BPF_MOV) {
4021 
4022 		if (BPF_SRC(insn->code) == BPF_X) {
4023 			if (insn->imm != 0 || insn->off != 0) {
4024 				verbose(env, "BPF_MOV uses reserved fields\n");
4025 				return -EINVAL;
4026 			}
4027 
4028 			/* check src operand */
4029 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4030 			if (err)
4031 				return err;
4032 		} else {
4033 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4034 				verbose(env, "BPF_MOV uses reserved fields\n");
4035 				return -EINVAL;
4036 			}
4037 		}
4038 
4039 		/* check dest operand, mark as required later */
4040 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4041 		if (err)
4042 			return err;
4043 
4044 		if (BPF_SRC(insn->code) == BPF_X) {
4045 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4046 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4047 
4048 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4049 				/* case: R1 = R2
4050 				 * copy register state to dest reg
4051 				 */
4052 				*dst_reg = *src_reg;
4053 				dst_reg->live |= REG_LIVE_WRITTEN;
4054 			} else {
4055 				/* R1 = (u32) R2 */
4056 				if (is_pointer_value(env, insn->src_reg)) {
4057 					verbose(env,
4058 						"R%d partial copy of pointer\n",
4059 						insn->src_reg);
4060 					return -EACCES;
4061 				} else if (src_reg->type == SCALAR_VALUE) {
4062 					*dst_reg = *src_reg;
4063 					dst_reg->live |= REG_LIVE_WRITTEN;
4064 				} else {
4065 					mark_reg_unknown(env, regs,
4066 							 insn->dst_reg);
4067 				}
4068 				coerce_reg_to_size(dst_reg, 4);
4069 			}
4070 		} else {
4071 			/* case: R = imm
4072 			 * remember the value we stored into this reg
4073 			 */
4074 			/* clear any state __mark_reg_known doesn't set */
4075 			mark_reg_unknown(env, regs, insn->dst_reg);
4076 			regs[insn->dst_reg].type = SCALAR_VALUE;
4077 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4078 				__mark_reg_known(regs + insn->dst_reg,
4079 						 insn->imm);
4080 			} else {
4081 				__mark_reg_known(regs + insn->dst_reg,
4082 						 (u32)insn->imm);
4083 			}
4084 		}
4085 
4086 	} else if (opcode > BPF_END) {
4087 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4088 		return -EINVAL;
4089 
4090 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
4091 
4092 		if (BPF_SRC(insn->code) == BPF_X) {
4093 			if (insn->imm != 0 || insn->off != 0) {
4094 				verbose(env, "BPF_ALU uses reserved fields\n");
4095 				return -EINVAL;
4096 			}
4097 			/* check src1 operand */
4098 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4099 			if (err)
4100 				return err;
4101 		} else {
4102 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4103 				verbose(env, "BPF_ALU uses reserved fields\n");
4104 				return -EINVAL;
4105 			}
4106 		}
4107 
4108 		/* check src2 operand */
4109 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4110 		if (err)
4111 			return err;
4112 
4113 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4114 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4115 			verbose(env, "div by zero\n");
4116 			return -EINVAL;
4117 		}
4118 
4119 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4120 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4121 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4122 
4123 			if (insn->imm < 0 || insn->imm >= size) {
4124 				verbose(env, "invalid shift %d\n", insn->imm);
4125 				return -EINVAL;
4126 			}
4127 		}
4128 
4129 		/* check dest operand */
4130 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4131 		if (err)
4132 			return err;
4133 
4134 		return adjust_reg_min_max_vals(env, insn);
4135 	}
4136 
4137 	return 0;
4138 }
4139 
4140 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4141 				   struct bpf_reg_state *dst_reg,
4142 				   enum bpf_reg_type type,
4143 				   bool range_right_open)
4144 {
4145 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4146 	struct bpf_reg_state *regs = state->regs, *reg;
4147 	u16 new_range;
4148 	int i, j;
4149 
4150 	if (dst_reg->off < 0 ||
4151 	    (dst_reg->off == 0 && range_right_open))
4152 		/* This doesn't give us any range */
4153 		return;
4154 
4155 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
4156 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4157 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
4158 		 * than pkt_end, but that's because it's also less than pkt.
4159 		 */
4160 		return;
4161 
4162 	new_range = dst_reg->off;
4163 	if (range_right_open)
4164 		new_range--;
4165 
4166 	/* Examples for register markings:
4167 	 *
4168 	 * pkt_data in dst register:
4169 	 *
4170 	 *   r2 = r3;
4171 	 *   r2 += 8;
4172 	 *   if (r2 > pkt_end) goto <handle exception>
4173 	 *   <access okay>
4174 	 *
4175 	 *   r2 = r3;
4176 	 *   r2 += 8;
4177 	 *   if (r2 < pkt_end) goto <access okay>
4178 	 *   <handle exception>
4179 	 *
4180 	 *   Where:
4181 	 *     r2 == dst_reg, pkt_end == src_reg
4182 	 *     r2=pkt(id=n,off=8,r=0)
4183 	 *     r3=pkt(id=n,off=0,r=0)
4184 	 *
4185 	 * pkt_data in src register:
4186 	 *
4187 	 *   r2 = r3;
4188 	 *   r2 += 8;
4189 	 *   if (pkt_end >= r2) goto <access okay>
4190 	 *   <handle exception>
4191 	 *
4192 	 *   r2 = r3;
4193 	 *   r2 += 8;
4194 	 *   if (pkt_end <= r2) goto <handle exception>
4195 	 *   <access okay>
4196 	 *
4197 	 *   Where:
4198 	 *     pkt_end == dst_reg, r2 == src_reg
4199 	 *     r2=pkt(id=n,off=8,r=0)
4200 	 *     r3=pkt(id=n,off=0,r=0)
4201 	 *
4202 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4203 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4204 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
4205 	 * the check.
4206 	 */
4207 
4208 	/* If our ids match, then we must have the same max_value.  And we
4209 	 * don't care about the other reg's fixed offset, since if it's too big
4210 	 * the range won't allow anything.
4211 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4212 	 */
4213 	for (i = 0; i < MAX_BPF_REG; i++)
4214 		if (regs[i].type == type && regs[i].id == dst_reg->id)
4215 			/* keep the maximum range already checked */
4216 			regs[i].range = max(regs[i].range, new_range);
4217 
4218 	for (j = 0; j <= vstate->curframe; j++) {
4219 		state = vstate->frame[j];
4220 		bpf_for_each_spilled_reg(i, state, reg) {
4221 			if (!reg)
4222 				continue;
4223 			if (reg->type == type && reg->id == dst_reg->id)
4224 				reg->range = max(reg->range, new_range);
4225 		}
4226 	}
4227 }
4228 
4229 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4230  * and return:
4231  *  1 - branch will be taken and "goto target" will be executed
4232  *  0 - branch will not be taken and fall-through to next insn
4233  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4234  */
4235 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4236 			   bool is_jmp32)
4237 {
4238 	struct bpf_reg_state reg_lo;
4239 	s64 sval;
4240 
4241 	if (__is_pointer_value(false, reg))
4242 		return -1;
4243 
4244 	if (is_jmp32) {
4245 		reg_lo = *reg;
4246 		reg = &reg_lo;
4247 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4248 		 * could truncate high bits and update umin/umax according to
4249 		 * information of low bits.
4250 		 */
4251 		coerce_reg_to_size(reg, 4);
4252 		/* smin/smax need special handling. For example, after coerce,
4253 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4254 		 * used as operand to JMP32. It is a negative number from s32's
4255 		 * point of view, while it is a positive number when seen as
4256 		 * s64. The smin/smax are kept as s64, therefore, when used with
4257 		 * JMP32, they need to be transformed into s32, then sign
4258 		 * extended back to s64.
4259 		 *
4260 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
4261 		 * different sign bit, then min/max relationship doesn't
4262 		 * maintain after casting into s32, for this case, set smin/smax
4263 		 * to safest range.
4264 		 */
4265 		if ((reg->umax_value ^ reg->umin_value) &
4266 		    (1ULL << 31)) {
4267 			reg->smin_value = S32_MIN;
4268 			reg->smax_value = S32_MAX;
4269 		}
4270 		reg->smin_value = (s64)(s32)reg->smin_value;
4271 		reg->smax_value = (s64)(s32)reg->smax_value;
4272 
4273 		val = (u32)val;
4274 		sval = (s64)(s32)val;
4275 	} else {
4276 		sval = (s64)val;
4277 	}
4278 
4279 	switch (opcode) {
4280 	case BPF_JEQ:
4281 		if (tnum_is_const(reg->var_off))
4282 			return !!tnum_equals_const(reg->var_off, val);
4283 		break;
4284 	case BPF_JNE:
4285 		if (tnum_is_const(reg->var_off))
4286 			return !tnum_equals_const(reg->var_off, val);
4287 		break;
4288 	case BPF_JSET:
4289 		if ((~reg->var_off.mask & reg->var_off.value) & val)
4290 			return 1;
4291 		if (!((reg->var_off.mask | reg->var_off.value) & val))
4292 			return 0;
4293 		break;
4294 	case BPF_JGT:
4295 		if (reg->umin_value > val)
4296 			return 1;
4297 		else if (reg->umax_value <= val)
4298 			return 0;
4299 		break;
4300 	case BPF_JSGT:
4301 		if (reg->smin_value > sval)
4302 			return 1;
4303 		else if (reg->smax_value < sval)
4304 			return 0;
4305 		break;
4306 	case BPF_JLT:
4307 		if (reg->umax_value < val)
4308 			return 1;
4309 		else if (reg->umin_value >= val)
4310 			return 0;
4311 		break;
4312 	case BPF_JSLT:
4313 		if (reg->smax_value < sval)
4314 			return 1;
4315 		else if (reg->smin_value >= sval)
4316 			return 0;
4317 		break;
4318 	case BPF_JGE:
4319 		if (reg->umin_value >= val)
4320 			return 1;
4321 		else if (reg->umax_value < val)
4322 			return 0;
4323 		break;
4324 	case BPF_JSGE:
4325 		if (reg->smin_value >= sval)
4326 			return 1;
4327 		else if (reg->smax_value < sval)
4328 			return 0;
4329 		break;
4330 	case BPF_JLE:
4331 		if (reg->umax_value <= val)
4332 			return 1;
4333 		else if (reg->umin_value > val)
4334 			return 0;
4335 		break;
4336 	case BPF_JSLE:
4337 		if (reg->smax_value <= sval)
4338 			return 1;
4339 		else if (reg->smin_value > sval)
4340 			return 0;
4341 		break;
4342 	}
4343 
4344 	return -1;
4345 }
4346 
4347 /* Generate min value of the high 32-bit from TNUM info. */
4348 static u64 gen_hi_min(struct tnum var)
4349 {
4350 	return var.value & ~0xffffffffULL;
4351 }
4352 
4353 /* Generate max value of the high 32-bit from TNUM info. */
4354 static u64 gen_hi_max(struct tnum var)
4355 {
4356 	return (var.value | var.mask) & ~0xffffffffULL;
4357 }
4358 
4359 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4360  * are with the same signedness.
4361  */
4362 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4363 {
4364 	return ((s32)sval >= 0 &&
4365 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4366 	       ((s32)sval < 0 &&
4367 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4368 }
4369 
4370 /* Adjusts the register min/max values in the case that the dst_reg is the
4371  * variable register that we are working on, and src_reg is a constant or we're
4372  * simply doing a BPF_K check.
4373  * In JEQ/JNE cases we also adjust the var_off values.
4374  */
4375 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4376 			    struct bpf_reg_state *false_reg, u64 val,
4377 			    u8 opcode, bool is_jmp32)
4378 {
4379 	s64 sval;
4380 
4381 	/* If the dst_reg is a pointer, we can't learn anything about its
4382 	 * variable offset from the compare (unless src_reg were a pointer into
4383 	 * the same object, but we don't bother with that.
4384 	 * Since false_reg and true_reg have the same type by construction, we
4385 	 * only need to check one of them for pointerness.
4386 	 */
4387 	if (__is_pointer_value(false, false_reg))
4388 		return;
4389 
4390 	val = is_jmp32 ? (u32)val : val;
4391 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4392 
4393 	switch (opcode) {
4394 	case BPF_JEQ:
4395 	case BPF_JNE:
4396 	{
4397 		struct bpf_reg_state *reg =
4398 			opcode == BPF_JEQ ? true_reg : false_reg;
4399 
4400 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4401 		 * if it is true we know the value for sure. Likewise for
4402 		 * BPF_JNE.
4403 		 */
4404 		if (is_jmp32) {
4405 			u64 old_v = reg->var_off.value;
4406 			u64 hi_mask = ~0xffffffffULL;
4407 
4408 			reg->var_off.value = (old_v & hi_mask) | val;
4409 			reg->var_off.mask &= hi_mask;
4410 		} else {
4411 			__mark_reg_known(reg, val);
4412 		}
4413 		break;
4414 	}
4415 	case BPF_JSET:
4416 		false_reg->var_off = tnum_and(false_reg->var_off,
4417 					      tnum_const(~val));
4418 		if (is_power_of_2(val))
4419 			true_reg->var_off = tnum_or(true_reg->var_off,
4420 						    tnum_const(val));
4421 		break;
4422 	case BPF_JGE:
4423 	case BPF_JGT:
4424 	{
4425 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
4426 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4427 
4428 		if (is_jmp32) {
4429 			false_umax += gen_hi_max(false_reg->var_off);
4430 			true_umin += gen_hi_min(true_reg->var_off);
4431 		}
4432 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4433 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4434 		break;
4435 	}
4436 	case BPF_JSGE:
4437 	case BPF_JSGT:
4438 	{
4439 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
4440 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4441 
4442 		/* If the full s64 was not sign-extended from s32 then don't
4443 		 * deduct further info.
4444 		 */
4445 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4446 			break;
4447 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4448 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4449 		break;
4450 	}
4451 	case BPF_JLE:
4452 	case BPF_JLT:
4453 	{
4454 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
4455 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4456 
4457 		if (is_jmp32) {
4458 			false_umin += gen_hi_min(false_reg->var_off);
4459 			true_umax += gen_hi_max(true_reg->var_off);
4460 		}
4461 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4462 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4463 		break;
4464 	}
4465 	case BPF_JSLE:
4466 	case BPF_JSLT:
4467 	{
4468 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
4469 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4470 
4471 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4472 			break;
4473 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4474 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4475 		break;
4476 	}
4477 	default:
4478 		break;
4479 	}
4480 
4481 	__reg_deduce_bounds(false_reg);
4482 	__reg_deduce_bounds(true_reg);
4483 	/* We might have learned some bits from the bounds. */
4484 	__reg_bound_offset(false_reg);
4485 	__reg_bound_offset(true_reg);
4486 	/* Intersecting with the old var_off might have improved our bounds
4487 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4488 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4489 	 */
4490 	__update_reg_bounds(false_reg);
4491 	__update_reg_bounds(true_reg);
4492 }
4493 
4494 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4495  * the variable reg.
4496  */
4497 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4498 				struct bpf_reg_state *false_reg, u64 val,
4499 				u8 opcode, bool is_jmp32)
4500 {
4501 	s64 sval;
4502 
4503 	if (__is_pointer_value(false, false_reg))
4504 		return;
4505 
4506 	val = is_jmp32 ? (u32)val : val;
4507 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4508 
4509 	switch (opcode) {
4510 	case BPF_JEQ:
4511 	case BPF_JNE:
4512 	{
4513 		struct bpf_reg_state *reg =
4514 			opcode == BPF_JEQ ? true_reg : false_reg;
4515 
4516 		if (is_jmp32) {
4517 			u64 old_v = reg->var_off.value;
4518 			u64 hi_mask = ~0xffffffffULL;
4519 
4520 			reg->var_off.value = (old_v & hi_mask) | val;
4521 			reg->var_off.mask &= hi_mask;
4522 		} else {
4523 			__mark_reg_known(reg, val);
4524 		}
4525 		break;
4526 	}
4527 	case BPF_JSET:
4528 		false_reg->var_off = tnum_and(false_reg->var_off,
4529 					      tnum_const(~val));
4530 		if (is_power_of_2(val))
4531 			true_reg->var_off = tnum_or(true_reg->var_off,
4532 						    tnum_const(val));
4533 		break;
4534 	case BPF_JGE:
4535 	case BPF_JGT:
4536 	{
4537 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
4538 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4539 
4540 		if (is_jmp32) {
4541 			false_umin += gen_hi_min(false_reg->var_off);
4542 			true_umax += gen_hi_max(true_reg->var_off);
4543 		}
4544 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
4545 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
4546 		break;
4547 	}
4548 	case BPF_JSGE:
4549 	case BPF_JSGT:
4550 	{
4551 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
4552 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4553 
4554 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4555 			break;
4556 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
4557 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
4558 		break;
4559 	}
4560 	case BPF_JLE:
4561 	case BPF_JLT:
4562 	{
4563 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
4564 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4565 
4566 		if (is_jmp32) {
4567 			false_umax += gen_hi_max(false_reg->var_off);
4568 			true_umin += gen_hi_min(true_reg->var_off);
4569 		}
4570 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
4571 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
4572 		break;
4573 	}
4574 	case BPF_JSLE:
4575 	case BPF_JSLT:
4576 	{
4577 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
4578 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4579 
4580 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4581 			break;
4582 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
4583 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
4584 		break;
4585 	}
4586 	default:
4587 		break;
4588 	}
4589 
4590 	__reg_deduce_bounds(false_reg);
4591 	__reg_deduce_bounds(true_reg);
4592 	/* We might have learned some bits from the bounds. */
4593 	__reg_bound_offset(false_reg);
4594 	__reg_bound_offset(true_reg);
4595 	/* Intersecting with the old var_off might have improved our bounds
4596 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4597 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4598 	 */
4599 	__update_reg_bounds(false_reg);
4600 	__update_reg_bounds(true_reg);
4601 }
4602 
4603 /* Regs are known to be equal, so intersect their min/max/var_off */
4604 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4605 				  struct bpf_reg_state *dst_reg)
4606 {
4607 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4608 							dst_reg->umin_value);
4609 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4610 							dst_reg->umax_value);
4611 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4612 							dst_reg->smin_value);
4613 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4614 							dst_reg->smax_value);
4615 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4616 							     dst_reg->var_off);
4617 	/* We might have learned new bounds from the var_off. */
4618 	__update_reg_bounds(src_reg);
4619 	__update_reg_bounds(dst_reg);
4620 	/* We might have learned something about the sign bit. */
4621 	__reg_deduce_bounds(src_reg);
4622 	__reg_deduce_bounds(dst_reg);
4623 	/* We might have learned some bits from the bounds. */
4624 	__reg_bound_offset(src_reg);
4625 	__reg_bound_offset(dst_reg);
4626 	/* Intersecting with the old var_off might have improved our bounds
4627 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4628 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
4629 	 */
4630 	__update_reg_bounds(src_reg);
4631 	__update_reg_bounds(dst_reg);
4632 }
4633 
4634 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4635 				struct bpf_reg_state *true_dst,
4636 				struct bpf_reg_state *false_src,
4637 				struct bpf_reg_state *false_dst,
4638 				u8 opcode)
4639 {
4640 	switch (opcode) {
4641 	case BPF_JEQ:
4642 		__reg_combine_min_max(true_src, true_dst);
4643 		break;
4644 	case BPF_JNE:
4645 		__reg_combine_min_max(false_src, false_dst);
4646 		break;
4647 	}
4648 }
4649 
4650 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4651 				 struct bpf_reg_state *reg, u32 id,
4652 				 bool is_null)
4653 {
4654 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
4655 		/* Old offset (both fixed and variable parts) should
4656 		 * have been known-zero, because we don't allow pointer
4657 		 * arithmetic on pointers that might be NULL.
4658 		 */
4659 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4660 				 !tnum_equals_const(reg->var_off, 0) ||
4661 				 reg->off)) {
4662 			__mark_reg_known_zero(reg);
4663 			reg->off = 0;
4664 		}
4665 		if (is_null) {
4666 			reg->type = SCALAR_VALUE;
4667 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4668 			if (reg->map_ptr->inner_map_meta) {
4669 				reg->type = CONST_PTR_TO_MAP;
4670 				reg->map_ptr = reg->map_ptr->inner_map_meta;
4671 			} else {
4672 				reg->type = PTR_TO_MAP_VALUE;
4673 			}
4674 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4675 			reg->type = PTR_TO_SOCKET;
4676 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4677 			reg->type = PTR_TO_SOCK_COMMON;
4678 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4679 			reg->type = PTR_TO_TCP_SOCK;
4680 		}
4681 		if (is_null) {
4682 			/* We don't need id and ref_obj_id from this point
4683 			 * onwards anymore, thus we should better reset it,
4684 			 * so that state pruning has chances to take effect.
4685 			 */
4686 			reg->id = 0;
4687 			reg->ref_obj_id = 0;
4688 		} else if (!reg_may_point_to_spin_lock(reg)) {
4689 			/* For not-NULL ptr, reg->ref_obj_id will be reset
4690 			 * in release_reg_references().
4691 			 *
4692 			 * reg->id is still used by spin_lock ptr. Other
4693 			 * than spin_lock ptr type, reg->id can be reset.
4694 			 */
4695 			reg->id = 0;
4696 		}
4697 	}
4698 }
4699 
4700 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4701  * be folded together at some point.
4702  */
4703 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4704 				  bool is_null)
4705 {
4706 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4707 	struct bpf_reg_state *reg, *regs = state->regs;
4708 	u32 ref_obj_id = regs[regno].ref_obj_id;
4709 	u32 id = regs[regno].id;
4710 	int i, j;
4711 
4712 	if (ref_obj_id && ref_obj_id == id && is_null)
4713 		/* regs[regno] is in the " == NULL" branch.
4714 		 * No one could have freed the reference state before
4715 		 * doing the NULL check.
4716 		 */
4717 		WARN_ON_ONCE(release_reference_state(state, id));
4718 
4719 	for (i = 0; i < MAX_BPF_REG; i++)
4720 		mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4721 
4722 	for (j = 0; j <= vstate->curframe; j++) {
4723 		state = vstate->frame[j];
4724 		bpf_for_each_spilled_reg(i, state, reg) {
4725 			if (!reg)
4726 				continue;
4727 			mark_ptr_or_null_reg(state, reg, id, is_null);
4728 		}
4729 	}
4730 }
4731 
4732 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4733 				   struct bpf_reg_state *dst_reg,
4734 				   struct bpf_reg_state *src_reg,
4735 				   struct bpf_verifier_state *this_branch,
4736 				   struct bpf_verifier_state *other_branch)
4737 {
4738 	if (BPF_SRC(insn->code) != BPF_X)
4739 		return false;
4740 
4741 	/* Pointers are always 64-bit. */
4742 	if (BPF_CLASS(insn->code) == BPF_JMP32)
4743 		return false;
4744 
4745 	switch (BPF_OP(insn->code)) {
4746 	case BPF_JGT:
4747 		if ((dst_reg->type == PTR_TO_PACKET &&
4748 		     src_reg->type == PTR_TO_PACKET_END) ||
4749 		    (dst_reg->type == PTR_TO_PACKET_META &&
4750 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4751 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4752 			find_good_pkt_pointers(this_branch, dst_reg,
4753 					       dst_reg->type, false);
4754 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4755 			    src_reg->type == PTR_TO_PACKET) ||
4756 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4757 			    src_reg->type == PTR_TO_PACKET_META)) {
4758 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
4759 			find_good_pkt_pointers(other_branch, src_reg,
4760 					       src_reg->type, true);
4761 		} else {
4762 			return false;
4763 		}
4764 		break;
4765 	case BPF_JLT:
4766 		if ((dst_reg->type == PTR_TO_PACKET &&
4767 		     src_reg->type == PTR_TO_PACKET_END) ||
4768 		    (dst_reg->type == PTR_TO_PACKET_META &&
4769 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4770 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4771 			find_good_pkt_pointers(other_branch, dst_reg,
4772 					       dst_reg->type, true);
4773 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4774 			    src_reg->type == PTR_TO_PACKET) ||
4775 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4776 			    src_reg->type == PTR_TO_PACKET_META)) {
4777 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
4778 			find_good_pkt_pointers(this_branch, src_reg,
4779 					       src_reg->type, false);
4780 		} else {
4781 			return false;
4782 		}
4783 		break;
4784 	case BPF_JGE:
4785 		if ((dst_reg->type == PTR_TO_PACKET &&
4786 		     src_reg->type == PTR_TO_PACKET_END) ||
4787 		    (dst_reg->type == PTR_TO_PACKET_META &&
4788 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4789 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
4790 			find_good_pkt_pointers(this_branch, dst_reg,
4791 					       dst_reg->type, true);
4792 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4793 			    src_reg->type == PTR_TO_PACKET) ||
4794 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4795 			    src_reg->type == PTR_TO_PACKET_META)) {
4796 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
4797 			find_good_pkt_pointers(other_branch, src_reg,
4798 					       src_reg->type, false);
4799 		} else {
4800 			return false;
4801 		}
4802 		break;
4803 	case BPF_JLE:
4804 		if ((dst_reg->type == PTR_TO_PACKET &&
4805 		     src_reg->type == PTR_TO_PACKET_END) ||
4806 		    (dst_reg->type == PTR_TO_PACKET_META &&
4807 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4808 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
4809 			find_good_pkt_pointers(other_branch, dst_reg,
4810 					       dst_reg->type, false);
4811 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
4812 			    src_reg->type == PTR_TO_PACKET) ||
4813 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4814 			    src_reg->type == PTR_TO_PACKET_META)) {
4815 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
4816 			find_good_pkt_pointers(this_branch, src_reg,
4817 					       src_reg->type, true);
4818 		} else {
4819 			return false;
4820 		}
4821 		break;
4822 	default:
4823 		return false;
4824 	}
4825 
4826 	return true;
4827 }
4828 
4829 static int check_cond_jmp_op(struct bpf_verifier_env *env,
4830 			     struct bpf_insn *insn, int *insn_idx)
4831 {
4832 	struct bpf_verifier_state *this_branch = env->cur_state;
4833 	struct bpf_verifier_state *other_branch;
4834 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
4835 	struct bpf_reg_state *dst_reg, *other_branch_regs;
4836 	u8 opcode = BPF_OP(insn->code);
4837 	bool is_jmp32;
4838 	int err;
4839 
4840 	/* Only conditional jumps are expected to reach here. */
4841 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
4842 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
4843 		return -EINVAL;
4844 	}
4845 
4846 	if (BPF_SRC(insn->code) == BPF_X) {
4847 		if (insn->imm != 0) {
4848 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4849 			return -EINVAL;
4850 		}
4851 
4852 		/* check src1 operand */
4853 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
4854 		if (err)
4855 			return err;
4856 
4857 		if (is_pointer_value(env, insn->src_reg)) {
4858 			verbose(env, "R%d pointer comparison prohibited\n",
4859 				insn->src_reg);
4860 			return -EACCES;
4861 		}
4862 	} else {
4863 		if (insn->src_reg != BPF_REG_0) {
4864 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
4865 			return -EINVAL;
4866 		}
4867 	}
4868 
4869 	/* check src2 operand */
4870 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4871 	if (err)
4872 		return err;
4873 
4874 	dst_reg = &regs[insn->dst_reg];
4875 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
4876 
4877 	if (BPF_SRC(insn->code) == BPF_K) {
4878 		int pred = is_branch_taken(dst_reg, insn->imm, opcode,
4879 					   is_jmp32);
4880 
4881 		if (pred == 1) {
4882 			 /* only follow the goto, ignore fall-through */
4883 			*insn_idx += insn->off;
4884 			return 0;
4885 		} else if (pred == 0) {
4886 			/* only follow fall-through branch, since
4887 			 * that's where the program will go
4888 			 */
4889 			return 0;
4890 		}
4891 	}
4892 
4893 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
4894 				  false);
4895 	if (!other_branch)
4896 		return -EFAULT;
4897 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
4898 
4899 	/* detect if we are comparing against a constant value so we can adjust
4900 	 * our min/max values for our dst register.
4901 	 * this is only legit if both are scalars (or pointers to the same
4902 	 * object, I suppose, but we don't support that right now), because
4903 	 * otherwise the different base pointers mean the offsets aren't
4904 	 * comparable.
4905 	 */
4906 	if (BPF_SRC(insn->code) == BPF_X) {
4907 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
4908 		struct bpf_reg_state lo_reg0 = *dst_reg;
4909 		struct bpf_reg_state lo_reg1 = *src_reg;
4910 		struct bpf_reg_state *src_lo, *dst_lo;
4911 
4912 		dst_lo = &lo_reg0;
4913 		src_lo = &lo_reg1;
4914 		coerce_reg_to_size(dst_lo, 4);
4915 		coerce_reg_to_size(src_lo, 4);
4916 
4917 		if (dst_reg->type == SCALAR_VALUE &&
4918 		    src_reg->type == SCALAR_VALUE) {
4919 			if (tnum_is_const(src_reg->var_off) ||
4920 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
4921 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
4922 						dst_reg,
4923 						is_jmp32
4924 						? src_lo->var_off.value
4925 						: src_reg->var_off.value,
4926 						opcode, is_jmp32);
4927 			else if (tnum_is_const(dst_reg->var_off) ||
4928 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
4929 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
4930 						    src_reg,
4931 						    is_jmp32
4932 						    ? dst_lo->var_off.value
4933 						    : dst_reg->var_off.value,
4934 						    opcode, is_jmp32);
4935 			else if (!is_jmp32 &&
4936 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
4937 				/* Comparing for equality, we can combine knowledge */
4938 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
4939 						    &other_branch_regs[insn->dst_reg],
4940 						    src_reg, dst_reg, opcode);
4941 		}
4942 	} else if (dst_reg->type == SCALAR_VALUE) {
4943 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
4944 					dst_reg, insn->imm, opcode, is_jmp32);
4945 	}
4946 
4947 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
4948 	 * NOTE: these optimizations below are related with pointer comparison
4949 	 *       which will never be JMP32.
4950 	 */
4951 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
4952 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
4953 	    reg_type_may_be_null(dst_reg->type)) {
4954 		/* Mark all identical registers in each branch as either
4955 		 * safe or unknown depending R == 0 or R != 0 conditional.
4956 		 */
4957 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
4958 				      opcode == BPF_JNE);
4959 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
4960 				      opcode == BPF_JEQ);
4961 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
4962 					   this_branch, other_branch) &&
4963 		   is_pointer_value(env, insn->dst_reg)) {
4964 		verbose(env, "R%d pointer comparison prohibited\n",
4965 			insn->dst_reg);
4966 		return -EACCES;
4967 	}
4968 	if (env->log.level)
4969 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
4970 	return 0;
4971 }
4972 
4973 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
4974 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
4975 {
4976 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
4977 
4978 	return (struct bpf_map *) (unsigned long) imm64;
4979 }
4980 
4981 /* verify BPF_LD_IMM64 instruction */
4982 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
4983 {
4984 	struct bpf_reg_state *regs = cur_regs(env);
4985 	int err;
4986 
4987 	if (BPF_SIZE(insn->code) != BPF_DW) {
4988 		verbose(env, "invalid BPF_LD_IMM insn\n");
4989 		return -EINVAL;
4990 	}
4991 	if (insn->off != 0) {
4992 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
4993 		return -EINVAL;
4994 	}
4995 
4996 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
4997 	if (err)
4998 		return err;
4999 
5000 	if (insn->src_reg == 0) {
5001 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5002 
5003 		regs[insn->dst_reg].type = SCALAR_VALUE;
5004 		__mark_reg_known(&regs[insn->dst_reg], imm);
5005 		return 0;
5006 	}
5007 
5008 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
5009 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
5010 
5011 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5012 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
5013 	return 0;
5014 }
5015 
5016 static bool may_access_skb(enum bpf_prog_type type)
5017 {
5018 	switch (type) {
5019 	case BPF_PROG_TYPE_SOCKET_FILTER:
5020 	case BPF_PROG_TYPE_SCHED_CLS:
5021 	case BPF_PROG_TYPE_SCHED_ACT:
5022 		return true;
5023 	default:
5024 		return false;
5025 	}
5026 }
5027 
5028 /* verify safety of LD_ABS|LD_IND instructions:
5029  * - they can only appear in the programs where ctx == skb
5030  * - since they are wrappers of function calls, they scratch R1-R5 registers,
5031  *   preserve R6-R9, and store return value into R0
5032  *
5033  * Implicit input:
5034  *   ctx == skb == R6 == CTX
5035  *
5036  * Explicit input:
5037  *   SRC == any register
5038  *   IMM == 32-bit immediate
5039  *
5040  * Output:
5041  *   R0 - 8/16/32-bit skb data converted to cpu endianness
5042  */
5043 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5044 {
5045 	struct bpf_reg_state *regs = cur_regs(env);
5046 	u8 mode = BPF_MODE(insn->code);
5047 	int i, err;
5048 
5049 	if (!may_access_skb(env->prog->type)) {
5050 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5051 		return -EINVAL;
5052 	}
5053 
5054 	if (!env->ops->gen_ld_abs) {
5055 		verbose(env, "bpf verifier is misconfigured\n");
5056 		return -EINVAL;
5057 	}
5058 
5059 	if (env->subprog_cnt > 1) {
5060 		/* when program has LD_ABS insn JITs and interpreter assume
5061 		 * that r1 == ctx == skb which is not the case for callees
5062 		 * that can have arbitrary arguments. It's problematic
5063 		 * for main prog as well since JITs would need to analyze
5064 		 * all functions in order to make proper register save/restore
5065 		 * decisions in the main prog. Hence disallow LD_ABS with calls
5066 		 */
5067 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5068 		return -EINVAL;
5069 	}
5070 
5071 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5072 	    BPF_SIZE(insn->code) == BPF_DW ||
5073 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5074 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5075 		return -EINVAL;
5076 	}
5077 
5078 	/* check whether implicit source operand (register R6) is readable */
5079 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5080 	if (err)
5081 		return err;
5082 
5083 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5084 	 * gen_ld_abs() may terminate the program at runtime, leading to
5085 	 * reference leak.
5086 	 */
5087 	err = check_reference_leak(env);
5088 	if (err) {
5089 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5090 		return err;
5091 	}
5092 
5093 	if (env->cur_state->active_spin_lock) {
5094 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5095 		return -EINVAL;
5096 	}
5097 
5098 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5099 		verbose(env,
5100 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5101 		return -EINVAL;
5102 	}
5103 
5104 	if (mode == BPF_IND) {
5105 		/* check explicit source operand */
5106 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5107 		if (err)
5108 			return err;
5109 	}
5110 
5111 	/* reset caller saved regs to unreadable */
5112 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5113 		mark_reg_not_init(env, regs, caller_saved[i]);
5114 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5115 	}
5116 
5117 	/* mark destination R0 register as readable, since it contains
5118 	 * the value fetched from the packet.
5119 	 * Already marked as written above.
5120 	 */
5121 	mark_reg_unknown(env, regs, BPF_REG_0);
5122 	return 0;
5123 }
5124 
5125 static int check_return_code(struct bpf_verifier_env *env)
5126 {
5127 	struct bpf_reg_state *reg;
5128 	struct tnum range = tnum_range(0, 1);
5129 
5130 	switch (env->prog->type) {
5131 	case BPF_PROG_TYPE_CGROUP_SKB:
5132 	case BPF_PROG_TYPE_CGROUP_SOCK:
5133 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5134 	case BPF_PROG_TYPE_SOCK_OPS:
5135 	case BPF_PROG_TYPE_CGROUP_DEVICE:
5136 		break;
5137 	default:
5138 		return 0;
5139 	}
5140 
5141 	reg = cur_regs(env) + BPF_REG_0;
5142 	if (reg->type != SCALAR_VALUE) {
5143 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5144 			reg_type_str[reg->type]);
5145 		return -EINVAL;
5146 	}
5147 
5148 	if (!tnum_in(range, reg->var_off)) {
5149 		verbose(env, "At program exit the register R0 ");
5150 		if (!tnum_is_unknown(reg->var_off)) {
5151 			char tn_buf[48];
5152 
5153 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5154 			verbose(env, "has value %s", tn_buf);
5155 		} else {
5156 			verbose(env, "has unknown scalar value");
5157 		}
5158 		verbose(env, " should have been 0 or 1\n");
5159 		return -EINVAL;
5160 	}
5161 	return 0;
5162 }
5163 
5164 /* non-recursive DFS pseudo code
5165  * 1  procedure DFS-iterative(G,v):
5166  * 2      label v as discovered
5167  * 3      let S be a stack
5168  * 4      S.push(v)
5169  * 5      while S is not empty
5170  * 6            t <- S.pop()
5171  * 7            if t is what we're looking for:
5172  * 8                return t
5173  * 9            for all edges e in G.adjacentEdges(t) do
5174  * 10               if edge e is already labelled
5175  * 11                   continue with the next edge
5176  * 12               w <- G.adjacentVertex(t,e)
5177  * 13               if vertex w is not discovered and not explored
5178  * 14                   label e as tree-edge
5179  * 15                   label w as discovered
5180  * 16                   S.push(w)
5181  * 17                   continue at 5
5182  * 18               else if vertex w is discovered
5183  * 19                   label e as back-edge
5184  * 20               else
5185  * 21                   // vertex w is explored
5186  * 22                   label e as forward- or cross-edge
5187  * 23           label t as explored
5188  * 24           S.pop()
5189  *
5190  * convention:
5191  * 0x10 - discovered
5192  * 0x11 - discovered and fall-through edge labelled
5193  * 0x12 - discovered and fall-through and branch edges labelled
5194  * 0x20 - explored
5195  */
5196 
5197 enum {
5198 	DISCOVERED = 0x10,
5199 	EXPLORED = 0x20,
5200 	FALLTHROUGH = 1,
5201 	BRANCH = 2,
5202 };
5203 
5204 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5205 
5206 static int *insn_stack;	/* stack of insns to process */
5207 static int cur_stack;	/* current stack index */
5208 static int *insn_state;
5209 
5210 /* t, w, e - match pseudo-code above:
5211  * t - index of current instruction
5212  * w - next instruction
5213  * e - edge
5214  */
5215 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5216 {
5217 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5218 		return 0;
5219 
5220 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5221 		return 0;
5222 
5223 	if (w < 0 || w >= env->prog->len) {
5224 		verbose_linfo(env, t, "%d: ", t);
5225 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
5226 		return -EINVAL;
5227 	}
5228 
5229 	if (e == BRANCH)
5230 		/* mark branch target for state pruning */
5231 		env->explored_states[w] = STATE_LIST_MARK;
5232 
5233 	if (insn_state[w] == 0) {
5234 		/* tree-edge */
5235 		insn_state[t] = DISCOVERED | e;
5236 		insn_state[w] = DISCOVERED;
5237 		if (cur_stack >= env->prog->len)
5238 			return -E2BIG;
5239 		insn_stack[cur_stack++] = w;
5240 		return 1;
5241 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5242 		verbose_linfo(env, t, "%d: ", t);
5243 		verbose_linfo(env, w, "%d: ", w);
5244 		verbose(env, "back-edge from insn %d to %d\n", t, w);
5245 		return -EINVAL;
5246 	} else if (insn_state[w] == EXPLORED) {
5247 		/* forward- or cross-edge */
5248 		insn_state[t] = DISCOVERED | e;
5249 	} else {
5250 		verbose(env, "insn state internal bug\n");
5251 		return -EFAULT;
5252 	}
5253 	return 0;
5254 }
5255 
5256 /* non-recursive depth-first-search to detect loops in BPF program
5257  * loop == back-edge in directed graph
5258  */
5259 static int check_cfg(struct bpf_verifier_env *env)
5260 {
5261 	struct bpf_insn *insns = env->prog->insnsi;
5262 	int insn_cnt = env->prog->len;
5263 	int ret = 0;
5264 	int i, t;
5265 
5266 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5267 	if (!insn_state)
5268 		return -ENOMEM;
5269 
5270 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5271 	if (!insn_stack) {
5272 		kfree(insn_state);
5273 		return -ENOMEM;
5274 	}
5275 
5276 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5277 	insn_stack[0] = 0; /* 0 is the first instruction */
5278 	cur_stack = 1;
5279 
5280 peek_stack:
5281 	if (cur_stack == 0)
5282 		goto check_state;
5283 	t = insn_stack[cur_stack - 1];
5284 
5285 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5286 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
5287 		u8 opcode = BPF_OP(insns[t].code);
5288 
5289 		if (opcode == BPF_EXIT) {
5290 			goto mark_explored;
5291 		} else if (opcode == BPF_CALL) {
5292 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5293 			if (ret == 1)
5294 				goto peek_stack;
5295 			else if (ret < 0)
5296 				goto err_free;
5297 			if (t + 1 < insn_cnt)
5298 				env->explored_states[t + 1] = STATE_LIST_MARK;
5299 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5300 				env->explored_states[t] = STATE_LIST_MARK;
5301 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5302 				if (ret == 1)
5303 					goto peek_stack;
5304 				else if (ret < 0)
5305 					goto err_free;
5306 			}
5307 		} else if (opcode == BPF_JA) {
5308 			if (BPF_SRC(insns[t].code) != BPF_K) {
5309 				ret = -EINVAL;
5310 				goto err_free;
5311 			}
5312 			/* unconditional jump with single edge */
5313 			ret = push_insn(t, t + insns[t].off + 1,
5314 					FALLTHROUGH, env);
5315 			if (ret == 1)
5316 				goto peek_stack;
5317 			else if (ret < 0)
5318 				goto err_free;
5319 			/* tell verifier to check for equivalent states
5320 			 * after every call and jump
5321 			 */
5322 			if (t + 1 < insn_cnt)
5323 				env->explored_states[t + 1] = STATE_LIST_MARK;
5324 		} else {
5325 			/* conditional jump with two edges */
5326 			env->explored_states[t] = STATE_LIST_MARK;
5327 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
5328 			if (ret == 1)
5329 				goto peek_stack;
5330 			else if (ret < 0)
5331 				goto err_free;
5332 
5333 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5334 			if (ret == 1)
5335 				goto peek_stack;
5336 			else if (ret < 0)
5337 				goto err_free;
5338 		}
5339 	} else {
5340 		/* all other non-branch instructions with single
5341 		 * fall-through edge
5342 		 */
5343 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
5344 		if (ret == 1)
5345 			goto peek_stack;
5346 		else if (ret < 0)
5347 			goto err_free;
5348 	}
5349 
5350 mark_explored:
5351 	insn_state[t] = EXPLORED;
5352 	if (cur_stack-- <= 0) {
5353 		verbose(env, "pop stack internal bug\n");
5354 		ret = -EFAULT;
5355 		goto err_free;
5356 	}
5357 	goto peek_stack;
5358 
5359 check_state:
5360 	for (i = 0; i < insn_cnt; i++) {
5361 		if (insn_state[i] != EXPLORED) {
5362 			verbose(env, "unreachable insn %d\n", i);
5363 			ret = -EINVAL;
5364 			goto err_free;
5365 		}
5366 	}
5367 	ret = 0; /* cfg looks good */
5368 
5369 err_free:
5370 	kfree(insn_state);
5371 	kfree(insn_stack);
5372 	return ret;
5373 }
5374 
5375 /* The minimum supported BTF func info size */
5376 #define MIN_BPF_FUNCINFO_SIZE	8
5377 #define MAX_FUNCINFO_REC_SIZE	252
5378 
5379 static int check_btf_func(struct bpf_verifier_env *env,
5380 			  const union bpf_attr *attr,
5381 			  union bpf_attr __user *uattr)
5382 {
5383 	u32 i, nfuncs, urec_size, min_size;
5384 	u32 krec_size = sizeof(struct bpf_func_info);
5385 	struct bpf_func_info *krecord;
5386 	const struct btf_type *type;
5387 	struct bpf_prog *prog;
5388 	const struct btf *btf;
5389 	void __user *urecord;
5390 	u32 prev_offset = 0;
5391 	int ret = 0;
5392 
5393 	nfuncs = attr->func_info_cnt;
5394 	if (!nfuncs)
5395 		return 0;
5396 
5397 	if (nfuncs != env->subprog_cnt) {
5398 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5399 		return -EINVAL;
5400 	}
5401 
5402 	urec_size = attr->func_info_rec_size;
5403 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5404 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
5405 	    urec_size % sizeof(u32)) {
5406 		verbose(env, "invalid func info rec size %u\n", urec_size);
5407 		return -EINVAL;
5408 	}
5409 
5410 	prog = env->prog;
5411 	btf = prog->aux->btf;
5412 
5413 	urecord = u64_to_user_ptr(attr->func_info);
5414 	min_size = min_t(u32, krec_size, urec_size);
5415 
5416 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5417 	if (!krecord)
5418 		return -ENOMEM;
5419 
5420 	for (i = 0; i < nfuncs; i++) {
5421 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5422 		if (ret) {
5423 			if (ret == -E2BIG) {
5424 				verbose(env, "nonzero tailing record in func info");
5425 				/* set the size kernel expects so loader can zero
5426 				 * out the rest of the record.
5427 				 */
5428 				if (put_user(min_size, &uattr->func_info_rec_size))
5429 					ret = -EFAULT;
5430 			}
5431 			goto err_free;
5432 		}
5433 
5434 		if (copy_from_user(&krecord[i], urecord, min_size)) {
5435 			ret = -EFAULT;
5436 			goto err_free;
5437 		}
5438 
5439 		/* check insn_off */
5440 		if (i == 0) {
5441 			if (krecord[i].insn_off) {
5442 				verbose(env,
5443 					"nonzero insn_off %u for the first func info record",
5444 					krecord[i].insn_off);
5445 				ret = -EINVAL;
5446 				goto err_free;
5447 			}
5448 		} else if (krecord[i].insn_off <= prev_offset) {
5449 			verbose(env,
5450 				"same or smaller insn offset (%u) than previous func info record (%u)",
5451 				krecord[i].insn_off, prev_offset);
5452 			ret = -EINVAL;
5453 			goto err_free;
5454 		}
5455 
5456 		if (env->subprog_info[i].start != krecord[i].insn_off) {
5457 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5458 			ret = -EINVAL;
5459 			goto err_free;
5460 		}
5461 
5462 		/* check type_id */
5463 		type = btf_type_by_id(btf, krecord[i].type_id);
5464 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5465 			verbose(env, "invalid type id %d in func info",
5466 				krecord[i].type_id);
5467 			ret = -EINVAL;
5468 			goto err_free;
5469 		}
5470 
5471 		prev_offset = krecord[i].insn_off;
5472 		urecord += urec_size;
5473 	}
5474 
5475 	prog->aux->func_info = krecord;
5476 	prog->aux->func_info_cnt = nfuncs;
5477 	return 0;
5478 
5479 err_free:
5480 	kvfree(krecord);
5481 	return ret;
5482 }
5483 
5484 static void adjust_btf_func(struct bpf_verifier_env *env)
5485 {
5486 	int i;
5487 
5488 	if (!env->prog->aux->func_info)
5489 		return;
5490 
5491 	for (i = 0; i < env->subprog_cnt; i++)
5492 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5493 }
5494 
5495 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
5496 		sizeof(((struct bpf_line_info *)(0))->line_col))
5497 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
5498 
5499 static int check_btf_line(struct bpf_verifier_env *env,
5500 			  const union bpf_attr *attr,
5501 			  union bpf_attr __user *uattr)
5502 {
5503 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5504 	struct bpf_subprog_info *sub;
5505 	struct bpf_line_info *linfo;
5506 	struct bpf_prog *prog;
5507 	const struct btf *btf;
5508 	void __user *ulinfo;
5509 	int err;
5510 
5511 	nr_linfo = attr->line_info_cnt;
5512 	if (!nr_linfo)
5513 		return 0;
5514 
5515 	rec_size = attr->line_info_rec_size;
5516 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5517 	    rec_size > MAX_LINEINFO_REC_SIZE ||
5518 	    rec_size & (sizeof(u32) - 1))
5519 		return -EINVAL;
5520 
5521 	/* Need to zero it in case the userspace may
5522 	 * pass in a smaller bpf_line_info object.
5523 	 */
5524 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5525 			 GFP_KERNEL | __GFP_NOWARN);
5526 	if (!linfo)
5527 		return -ENOMEM;
5528 
5529 	prog = env->prog;
5530 	btf = prog->aux->btf;
5531 
5532 	s = 0;
5533 	sub = env->subprog_info;
5534 	ulinfo = u64_to_user_ptr(attr->line_info);
5535 	expected_size = sizeof(struct bpf_line_info);
5536 	ncopy = min_t(u32, expected_size, rec_size);
5537 	for (i = 0; i < nr_linfo; i++) {
5538 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5539 		if (err) {
5540 			if (err == -E2BIG) {
5541 				verbose(env, "nonzero tailing record in line_info");
5542 				if (put_user(expected_size,
5543 					     &uattr->line_info_rec_size))
5544 					err = -EFAULT;
5545 			}
5546 			goto err_free;
5547 		}
5548 
5549 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5550 			err = -EFAULT;
5551 			goto err_free;
5552 		}
5553 
5554 		/*
5555 		 * Check insn_off to ensure
5556 		 * 1) strictly increasing AND
5557 		 * 2) bounded by prog->len
5558 		 *
5559 		 * The linfo[0].insn_off == 0 check logically falls into
5560 		 * the later "missing bpf_line_info for func..." case
5561 		 * because the first linfo[0].insn_off must be the
5562 		 * first sub also and the first sub must have
5563 		 * subprog_info[0].start == 0.
5564 		 */
5565 		if ((i && linfo[i].insn_off <= prev_offset) ||
5566 		    linfo[i].insn_off >= prog->len) {
5567 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5568 				i, linfo[i].insn_off, prev_offset,
5569 				prog->len);
5570 			err = -EINVAL;
5571 			goto err_free;
5572 		}
5573 
5574 		if (!prog->insnsi[linfo[i].insn_off].code) {
5575 			verbose(env,
5576 				"Invalid insn code at line_info[%u].insn_off\n",
5577 				i);
5578 			err = -EINVAL;
5579 			goto err_free;
5580 		}
5581 
5582 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5583 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5584 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5585 			err = -EINVAL;
5586 			goto err_free;
5587 		}
5588 
5589 		if (s != env->subprog_cnt) {
5590 			if (linfo[i].insn_off == sub[s].start) {
5591 				sub[s].linfo_idx = i;
5592 				s++;
5593 			} else if (sub[s].start < linfo[i].insn_off) {
5594 				verbose(env, "missing bpf_line_info for func#%u\n", s);
5595 				err = -EINVAL;
5596 				goto err_free;
5597 			}
5598 		}
5599 
5600 		prev_offset = linfo[i].insn_off;
5601 		ulinfo += rec_size;
5602 	}
5603 
5604 	if (s != env->subprog_cnt) {
5605 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5606 			env->subprog_cnt - s, s);
5607 		err = -EINVAL;
5608 		goto err_free;
5609 	}
5610 
5611 	prog->aux->linfo = linfo;
5612 	prog->aux->nr_linfo = nr_linfo;
5613 
5614 	return 0;
5615 
5616 err_free:
5617 	kvfree(linfo);
5618 	return err;
5619 }
5620 
5621 static int check_btf_info(struct bpf_verifier_env *env,
5622 			  const union bpf_attr *attr,
5623 			  union bpf_attr __user *uattr)
5624 {
5625 	struct btf *btf;
5626 	int err;
5627 
5628 	if (!attr->func_info_cnt && !attr->line_info_cnt)
5629 		return 0;
5630 
5631 	btf = btf_get_by_fd(attr->prog_btf_fd);
5632 	if (IS_ERR(btf))
5633 		return PTR_ERR(btf);
5634 	env->prog->aux->btf = btf;
5635 
5636 	err = check_btf_func(env, attr, uattr);
5637 	if (err)
5638 		return err;
5639 
5640 	err = check_btf_line(env, attr, uattr);
5641 	if (err)
5642 		return err;
5643 
5644 	return 0;
5645 }
5646 
5647 /* check %cur's range satisfies %old's */
5648 static bool range_within(struct bpf_reg_state *old,
5649 			 struct bpf_reg_state *cur)
5650 {
5651 	return old->umin_value <= cur->umin_value &&
5652 	       old->umax_value >= cur->umax_value &&
5653 	       old->smin_value <= cur->smin_value &&
5654 	       old->smax_value >= cur->smax_value;
5655 }
5656 
5657 /* Maximum number of register states that can exist at once */
5658 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5659 struct idpair {
5660 	u32 old;
5661 	u32 cur;
5662 };
5663 
5664 /* If in the old state two registers had the same id, then they need to have
5665  * the same id in the new state as well.  But that id could be different from
5666  * the old state, so we need to track the mapping from old to new ids.
5667  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5668  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
5669  * regs with a different old id could still have new id 9, we don't care about
5670  * that.
5671  * So we look through our idmap to see if this old id has been seen before.  If
5672  * so, we require the new id to match; otherwise, we add the id pair to the map.
5673  */
5674 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5675 {
5676 	unsigned int i;
5677 
5678 	for (i = 0; i < ID_MAP_SIZE; i++) {
5679 		if (!idmap[i].old) {
5680 			/* Reached an empty slot; haven't seen this id before */
5681 			idmap[i].old = old_id;
5682 			idmap[i].cur = cur_id;
5683 			return true;
5684 		}
5685 		if (idmap[i].old == old_id)
5686 			return idmap[i].cur == cur_id;
5687 	}
5688 	/* We ran out of idmap slots, which should be impossible */
5689 	WARN_ON_ONCE(1);
5690 	return false;
5691 }
5692 
5693 static void clean_func_state(struct bpf_verifier_env *env,
5694 			     struct bpf_func_state *st)
5695 {
5696 	enum bpf_reg_liveness live;
5697 	int i, j;
5698 
5699 	for (i = 0; i < BPF_REG_FP; i++) {
5700 		live = st->regs[i].live;
5701 		/* liveness must not touch this register anymore */
5702 		st->regs[i].live |= REG_LIVE_DONE;
5703 		if (!(live & REG_LIVE_READ))
5704 			/* since the register is unused, clear its state
5705 			 * to make further comparison simpler
5706 			 */
5707 			__mark_reg_not_init(&st->regs[i]);
5708 	}
5709 
5710 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5711 		live = st->stack[i].spilled_ptr.live;
5712 		/* liveness must not touch this stack slot anymore */
5713 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5714 		if (!(live & REG_LIVE_READ)) {
5715 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
5716 			for (j = 0; j < BPF_REG_SIZE; j++)
5717 				st->stack[i].slot_type[j] = STACK_INVALID;
5718 		}
5719 	}
5720 }
5721 
5722 static void clean_verifier_state(struct bpf_verifier_env *env,
5723 				 struct bpf_verifier_state *st)
5724 {
5725 	int i;
5726 
5727 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5728 		/* all regs in this state in all frames were already marked */
5729 		return;
5730 
5731 	for (i = 0; i <= st->curframe; i++)
5732 		clean_func_state(env, st->frame[i]);
5733 }
5734 
5735 /* the parentage chains form a tree.
5736  * the verifier states are added to state lists at given insn and
5737  * pushed into state stack for future exploration.
5738  * when the verifier reaches bpf_exit insn some of the verifer states
5739  * stored in the state lists have their final liveness state already,
5740  * but a lot of states will get revised from liveness point of view when
5741  * the verifier explores other branches.
5742  * Example:
5743  * 1: r0 = 1
5744  * 2: if r1 == 100 goto pc+1
5745  * 3: r0 = 2
5746  * 4: exit
5747  * when the verifier reaches exit insn the register r0 in the state list of
5748  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5749  * of insn 2 and goes exploring further. At the insn 4 it will walk the
5750  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5751  *
5752  * Since the verifier pushes the branch states as it sees them while exploring
5753  * the program the condition of walking the branch instruction for the second
5754  * time means that all states below this branch were already explored and
5755  * their final liveness markes are already propagated.
5756  * Hence when the verifier completes the search of state list in is_state_visited()
5757  * we can call this clean_live_states() function to mark all liveness states
5758  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5759  * will not be used.
5760  * This function also clears the registers and stack for states that !READ
5761  * to simplify state merging.
5762  *
5763  * Important note here that walking the same branch instruction in the callee
5764  * doesn't meant that the states are DONE. The verifier has to compare
5765  * the callsites
5766  */
5767 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5768 			      struct bpf_verifier_state *cur)
5769 {
5770 	struct bpf_verifier_state_list *sl;
5771 	int i;
5772 
5773 	sl = env->explored_states[insn];
5774 	if (!sl)
5775 		return;
5776 
5777 	while (sl != STATE_LIST_MARK) {
5778 		if (sl->state.curframe != cur->curframe)
5779 			goto next;
5780 		for (i = 0; i <= cur->curframe; i++)
5781 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
5782 				goto next;
5783 		clean_verifier_state(env, &sl->state);
5784 next:
5785 		sl = sl->next;
5786 	}
5787 }
5788 
5789 /* Returns true if (rold safe implies rcur safe) */
5790 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
5791 		    struct idpair *idmap)
5792 {
5793 	bool equal;
5794 
5795 	if (!(rold->live & REG_LIVE_READ))
5796 		/* explored state didn't use this */
5797 		return true;
5798 
5799 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
5800 
5801 	if (rold->type == PTR_TO_STACK)
5802 		/* two stack pointers are equal only if they're pointing to
5803 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
5804 		 */
5805 		return equal && rold->frameno == rcur->frameno;
5806 
5807 	if (equal)
5808 		return true;
5809 
5810 	if (rold->type == NOT_INIT)
5811 		/* explored state can't have used this */
5812 		return true;
5813 	if (rcur->type == NOT_INIT)
5814 		return false;
5815 	switch (rold->type) {
5816 	case SCALAR_VALUE:
5817 		if (rcur->type == SCALAR_VALUE) {
5818 			/* new val must satisfy old val knowledge */
5819 			return range_within(rold, rcur) &&
5820 			       tnum_in(rold->var_off, rcur->var_off);
5821 		} else {
5822 			/* We're trying to use a pointer in place of a scalar.
5823 			 * Even if the scalar was unbounded, this could lead to
5824 			 * pointer leaks because scalars are allowed to leak
5825 			 * while pointers are not. We could make this safe in
5826 			 * special cases if root is calling us, but it's
5827 			 * probably not worth the hassle.
5828 			 */
5829 			return false;
5830 		}
5831 	case PTR_TO_MAP_VALUE:
5832 		/* If the new min/max/var_off satisfy the old ones and
5833 		 * everything else matches, we are OK.
5834 		 * 'id' is not compared, since it's only used for maps with
5835 		 * bpf_spin_lock inside map element and in such cases if
5836 		 * the rest of the prog is valid for one map element then
5837 		 * it's valid for all map elements regardless of the key
5838 		 * used in bpf_map_lookup()
5839 		 */
5840 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
5841 		       range_within(rold, rcur) &&
5842 		       tnum_in(rold->var_off, rcur->var_off);
5843 	case PTR_TO_MAP_VALUE_OR_NULL:
5844 		/* a PTR_TO_MAP_VALUE could be safe to use as a
5845 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
5846 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
5847 		 * checked, doing so could have affected others with the same
5848 		 * id, and we can't check for that because we lost the id when
5849 		 * we converted to a PTR_TO_MAP_VALUE.
5850 		 */
5851 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
5852 			return false;
5853 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
5854 			return false;
5855 		/* Check our ids match any regs they're supposed to */
5856 		return check_ids(rold->id, rcur->id, idmap);
5857 	case PTR_TO_PACKET_META:
5858 	case PTR_TO_PACKET:
5859 		if (rcur->type != rold->type)
5860 			return false;
5861 		/* We must have at least as much range as the old ptr
5862 		 * did, so that any accesses which were safe before are
5863 		 * still safe.  This is true even if old range < old off,
5864 		 * since someone could have accessed through (ptr - k), or
5865 		 * even done ptr -= k in a register, to get a safe access.
5866 		 */
5867 		if (rold->range > rcur->range)
5868 			return false;
5869 		/* If the offsets don't match, we can't trust our alignment;
5870 		 * nor can we be sure that we won't fall out of range.
5871 		 */
5872 		if (rold->off != rcur->off)
5873 			return false;
5874 		/* id relations must be preserved */
5875 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
5876 			return false;
5877 		/* new val must satisfy old val knowledge */
5878 		return range_within(rold, rcur) &&
5879 		       tnum_in(rold->var_off, rcur->var_off);
5880 	case PTR_TO_CTX:
5881 	case CONST_PTR_TO_MAP:
5882 	case PTR_TO_PACKET_END:
5883 	case PTR_TO_FLOW_KEYS:
5884 	case PTR_TO_SOCKET:
5885 	case PTR_TO_SOCKET_OR_NULL:
5886 	case PTR_TO_SOCK_COMMON:
5887 	case PTR_TO_SOCK_COMMON_OR_NULL:
5888 	case PTR_TO_TCP_SOCK:
5889 	case PTR_TO_TCP_SOCK_OR_NULL:
5890 		/* Only valid matches are exact, which memcmp() above
5891 		 * would have accepted
5892 		 */
5893 	default:
5894 		/* Don't know what's going on, just say it's not safe */
5895 		return false;
5896 	}
5897 
5898 	/* Shouldn't get here; if we do, say it's not safe */
5899 	WARN_ON_ONCE(1);
5900 	return false;
5901 }
5902 
5903 static bool stacksafe(struct bpf_func_state *old,
5904 		      struct bpf_func_state *cur,
5905 		      struct idpair *idmap)
5906 {
5907 	int i, spi;
5908 
5909 	/* walk slots of the explored stack and ignore any additional
5910 	 * slots in the current stack, since explored(safe) state
5911 	 * didn't use them
5912 	 */
5913 	for (i = 0; i < old->allocated_stack; i++) {
5914 		spi = i / BPF_REG_SIZE;
5915 
5916 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
5917 			i += BPF_REG_SIZE - 1;
5918 			/* explored state didn't use this */
5919 			continue;
5920 		}
5921 
5922 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
5923 			continue;
5924 
5925 		/* explored stack has more populated slots than current stack
5926 		 * and these slots were used
5927 		 */
5928 		if (i >= cur->allocated_stack)
5929 			return false;
5930 
5931 		/* if old state was safe with misc data in the stack
5932 		 * it will be safe with zero-initialized stack.
5933 		 * The opposite is not true
5934 		 */
5935 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
5936 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
5937 			continue;
5938 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
5939 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
5940 			/* Ex: old explored (safe) state has STACK_SPILL in
5941 			 * this stack slot, but current has has STACK_MISC ->
5942 			 * this verifier states are not equivalent,
5943 			 * return false to continue verification of this path
5944 			 */
5945 			return false;
5946 		if (i % BPF_REG_SIZE)
5947 			continue;
5948 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
5949 			continue;
5950 		if (!regsafe(&old->stack[spi].spilled_ptr,
5951 			     &cur->stack[spi].spilled_ptr,
5952 			     idmap))
5953 			/* when explored and current stack slot are both storing
5954 			 * spilled registers, check that stored pointers types
5955 			 * are the same as well.
5956 			 * Ex: explored safe path could have stored
5957 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
5958 			 * but current path has stored:
5959 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
5960 			 * such verifier states are not equivalent.
5961 			 * return false to continue verification of this path
5962 			 */
5963 			return false;
5964 	}
5965 	return true;
5966 }
5967 
5968 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
5969 {
5970 	if (old->acquired_refs != cur->acquired_refs)
5971 		return false;
5972 	return !memcmp(old->refs, cur->refs,
5973 		       sizeof(*old->refs) * old->acquired_refs);
5974 }
5975 
5976 /* compare two verifier states
5977  *
5978  * all states stored in state_list are known to be valid, since
5979  * verifier reached 'bpf_exit' instruction through them
5980  *
5981  * this function is called when verifier exploring different branches of
5982  * execution popped from the state stack. If it sees an old state that has
5983  * more strict register state and more strict stack state then this execution
5984  * branch doesn't need to be explored further, since verifier already
5985  * concluded that more strict state leads to valid finish.
5986  *
5987  * Therefore two states are equivalent if register state is more conservative
5988  * and explored stack state is more conservative than the current one.
5989  * Example:
5990  *       explored                   current
5991  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
5992  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
5993  *
5994  * In other words if current stack state (one being explored) has more
5995  * valid slots than old one that already passed validation, it means
5996  * the verifier can stop exploring and conclude that current state is valid too
5997  *
5998  * Similarly with registers. If explored state has register type as invalid
5999  * whereas register type in current state is meaningful, it means that
6000  * the current state will reach 'bpf_exit' instruction safely
6001  */
6002 static bool func_states_equal(struct bpf_func_state *old,
6003 			      struct bpf_func_state *cur)
6004 {
6005 	struct idpair *idmap;
6006 	bool ret = false;
6007 	int i;
6008 
6009 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6010 	/* If we failed to allocate the idmap, just say it's not safe */
6011 	if (!idmap)
6012 		return false;
6013 
6014 	for (i = 0; i < MAX_BPF_REG; i++) {
6015 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6016 			goto out_free;
6017 	}
6018 
6019 	if (!stacksafe(old, cur, idmap))
6020 		goto out_free;
6021 
6022 	if (!refsafe(old, cur))
6023 		goto out_free;
6024 	ret = true;
6025 out_free:
6026 	kfree(idmap);
6027 	return ret;
6028 }
6029 
6030 static bool states_equal(struct bpf_verifier_env *env,
6031 			 struct bpf_verifier_state *old,
6032 			 struct bpf_verifier_state *cur)
6033 {
6034 	int i;
6035 
6036 	if (old->curframe != cur->curframe)
6037 		return false;
6038 
6039 	/* Verification state from speculative execution simulation
6040 	 * must never prune a non-speculative execution one.
6041 	 */
6042 	if (old->speculative && !cur->speculative)
6043 		return false;
6044 
6045 	if (old->active_spin_lock != cur->active_spin_lock)
6046 		return false;
6047 
6048 	/* for states to be equal callsites have to be the same
6049 	 * and all frame states need to be equivalent
6050 	 */
6051 	for (i = 0; i <= old->curframe; i++) {
6052 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
6053 			return false;
6054 		if (!func_states_equal(old->frame[i], cur->frame[i]))
6055 			return false;
6056 	}
6057 	return true;
6058 }
6059 
6060 /* A write screens off any subsequent reads; but write marks come from the
6061  * straight-line code between a state and its parent.  When we arrive at an
6062  * equivalent state (jump target or such) we didn't arrive by the straight-line
6063  * code, so read marks in the state must propagate to the parent regardless
6064  * of the state's write marks. That's what 'parent == state->parent' comparison
6065  * in mark_reg_read() is for.
6066  */
6067 static int propagate_liveness(struct bpf_verifier_env *env,
6068 			      const struct bpf_verifier_state *vstate,
6069 			      struct bpf_verifier_state *vparent)
6070 {
6071 	int i, frame, err = 0;
6072 	struct bpf_func_state *state, *parent;
6073 
6074 	if (vparent->curframe != vstate->curframe) {
6075 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
6076 		     vparent->curframe, vstate->curframe);
6077 		return -EFAULT;
6078 	}
6079 	/* Propagate read liveness of registers... */
6080 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6081 	for (frame = 0; frame <= vstate->curframe; frame++) {
6082 		/* We don't need to worry about FP liveness, it's read-only */
6083 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6084 			if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ)
6085 				continue;
6086 			if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) {
6087 				err = mark_reg_read(env, &vstate->frame[frame]->regs[i],
6088 						    &vparent->frame[frame]->regs[i]);
6089 				if (err)
6090 					return err;
6091 			}
6092 		}
6093 	}
6094 
6095 	/* ... and stack slots */
6096 	for (frame = 0; frame <= vstate->curframe; frame++) {
6097 		state = vstate->frame[frame];
6098 		parent = vparent->frame[frame];
6099 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6100 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6101 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
6102 				continue;
6103 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
6104 				mark_reg_read(env, &state->stack[i].spilled_ptr,
6105 					      &parent->stack[i].spilled_ptr);
6106 		}
6107 	}
6108 	return err;
6109 }
6110 
6111 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6112 {
6113 	struct bpf_verifier_state_list *new_sl;
6114 	struct bpf_verifier_state_list *sl;
6115 	struct bpf_verifier_state *cur = env->cur_state, *new;
6116 	int i, j, err, states_cnt = 0;
6117 
6118 	sl = env->explored_states[insn_idx];
6119 	if (!sl)
6120 		/* this 'insn_idx' instruction wasn't marked, so we will not
6121 		 * be doing state search here
6122 		 */
6123 		return 0;
6124 
6125 	clean_live_states(env, insn_idx, cur);
6126 
6127 	while (sl != STATE_LIST_MARK) {
6128 		if (states_equal(env, &sl->state, cur)) {
6129 			/* reached equivalent register/stack state,
6130 			 * prune the search.
6131 			 * Registers read by the continuation are read by us.
6132 			 * If we have any write marks in env->cur_state, they
6133 			 * will prevent corresponding reads in the continuation
6134 			 * from reaching our parent (an explored_state).  Our
6135 			 * own state will get the read marks recorded, but
6136 			 * they'll be immediately forgotten as we're pruning
6137 			 * this state and will pop a new one.
6138 			 */
6139 			err = propagate_liveness(env, &sl->state, cur);
6140 			if (err)
6141 				return err;
6142 			return 1;
6143 		}
6144 		sl = sl->next;
6145 		states_cnt++;
6146 	}
6147 
6148 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6149 		return 0;
6150 
6151 	/* there were no equivalent states, remember current one.
6152 	 * technically the current state is not proven to be safe yet,
6153 	 * but it will either reach outer most bpf_exit (which means it's safe)
6154 	 * or it will be rejected. Since there are no loops, we won't be
6155 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6156 	 * again on the way to bpf_exit
6157 	 */
6158 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6159 	if (!new_sl)
6160 		return -ENOMEM;
6161 
6162 	/* add new state to the head of linked list */
6163 	new = &new_sl->state;
6164 	err = copy_verifier_state(new, cur);
6165 	if (err) {
6166 		free_verifier_state(new, false);
6167 		kfree(new_sl);
6168 		return err;
6169 	}
6170 	new_sl->next = env->explored_states[insn_idx];
6171 	env->explored_states[insn_idx] = new_sl;
6172 	/* connect new state to parentage chain. Current frame needs all
6173 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
6174 	 * to the stack implicitly by JITs) so in callers' frames connect just
6175 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6176 	 * the state of the call instruction (with WRITTEN set), and r0 comes
6177 	 * from callee with its full parentage chain, anyway.
6178 	 */
6179 	for (j = 0; j <= cur->curframe; j++)
6180 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6181 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6182 	/* clear write marks in current state: the writes we did are not writes
6183 	 * our child did, so they don't screen off its reads from us.
6184 	 * (There are no read marks in current state, because reads always mark
6185 	 * their parent and current state never has children yet.  Only
6186 	 * explored_states can get read marks.)
6187 	 */
6188 	for (i = 0; i < BPF_REG_FP; i++)
6189 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6190 
6191 	/* all stack frames are accessible from callee, clear them all */
6192 	for (j = 0; j <= cur->curframe; j++) {
6193 		struct bpf_func_state *frame = cur->frame[j];
6194 		struct bpf_func_state *newframe = new->frame[j];
6195 
6196 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6197 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6198 			frame->stack[i].spilled_ptr.parent =
6199 						&newframe->stack[i].spilled_ptr;
6200 		}
6201 	}
6202 	return 0;
6203 }
6204 
6205 /* Return true if it's OK to have the same insn return a different type. */
6206 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6207 {
6208 	switch (type) {
6209 	case PTR_TO_CTX:
6210 	case PTR_TO_SOCKET:
6211 	case PTR_TO_SOCKET_OR_NULL:
6212 	case PTR_TO_SOCK_COMMON:
6213 	case PTR_TO_SOCK_COMMON_OR_NULL:
6214 	case PTR_TO_TCP_SOCK:
6215 	case PTR_TO_TCP_SOCK_OR_NULL:
6216 		return false;
6217 	default:
6218 		return true;
6219 	}
6220 }
6221 
6222 /* If an instruction was previously used with particular pointer types, then we
6223  * need to be careful to avoid cases such as the below, where it may be ok
6224  * for one branch accessing the pointer, but not ok for the other branch:
6225  *
6226  * R1 = sock_ptr
6227  * goto X;
6228  * ...
6229  * R1 = some_other_valid_ptr;
6230  * goto X;
6231  * ...
6232  * R2 = *(u32 *)(R1 + 0);
6233  */
6234 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6235 {
6236 	return src != prev && (!reg_type_mismatch_ok(src) ||
6237 			       !reg_type_mismatch_ok(prev));
6238 }
6239 
6240 static int do_check(struct bpf_verifier_env *env)
6241 {
6242 	struct bpf_verifier_state *state;
6243 	struct bpf_insn *insns = env->prog->insnsi;
6244 	struct bpf_reg_state *regs;
6245 	int insn_cnt = env->prog->len, i;
6246 	int insn_processed = 0;
6247 	bool do_print_state = false;
6248 
6249 	env->prev_linfo = NULL;
6250 
6251 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6252 	if (!state)
6253 		return -ENOMEM;
6254 	state->curframe = 0;
6255 	state->speculative = false;
6256 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6257 	if (!state->frame[0]) {
6258 		kfree(state);
6259 		return -ENOMEM;
6260 	}
6261 	env->cur_state = state;
6262 	init_func_state(env, state->frame[0],
6263 			BPF_MAIN_FUNC /* callsite */,
6264 			0 /* frameno */,
6265 			0 /* subprogno, zero == main subprog */);
6266 
6267 	for (;;) {
6268 		struct bpf_insn *insn;
6269 		u8 class;
6270 		int err;
6271 
6272 		if (env->insn_idx >= insn_cnt) {
6273 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
6274 				env->insn_idx, insn_cnt);
6275 			return -EFAULT;
6276 		}
6277 
6278 		insn = &insns[env->insn_idx];
6279 		class = BPF_CLASS(insn->code);
6280 
6281 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6282 			verbose(env,
6283 				"BPF program is too large. Processed %d insn\n",
6284 				insn_processed);
6285 			return -E2BIG;
6286 		}
6287 
6288 		err = is_state_visited(env, env->insn_idx);
6289 		if (err < 0)
6290 			return err;
6291 		if (err == 1) {
6292 			/* found equivalent state, can prune the search */
6293 			if (env->log.level) {
6294 				if (do_print_state)
6295 					verbose(env, "\nfrom %d to %d%s: safe\n",
6296 						env->prev_insn_idx, env->insn_idx,
6297 						env->cur_state->speculative ?
6298 						" (speculative execution)" : "");
6299 				else
6300 					verbose(env, "%d: safe\n", env->insn_idx);
6301 			}
6302 			goto process_bpf_exit;
6303 		}
6304 
6305 		if (signal_pending(current))
6306 			return -EAGAIN;
6307 
6308 		if (need_resched())
6309 			cond_resched();
6310 
6311 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
6312 			if (env->log.level > 1)
6313 				verbose(env, "%d:", env->insn_idx);
6314 			else
6315 				verbose(env, "\nfrom %d to %d%s:",
6316 					env->prev_insn_idx, env->insn_idx,
6317 					env->cur_state->speculative ?
6318 					" (speculative execution)" : "");
6319 			print_verifier_state(env, state->frame[state->curframe]);
6320 			do_print_state = false;
6321 		}
6322 
6323 		if (env->log.level) {
6324 			const struct bpf_insn_cbs cbs = {
6325 				.cb_print	= verbose,
6326 				.private_data	= env,
6327 			};
6328 
6329 			verbose_linfo(env, env->insn_idx, "; ");
6330 			verbose(env, "%d: ", env->insn_idx);
6331 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6332 		}
6333 
6334 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
6335 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6336 							   env->prev_insn_idx);
6337 			if (err)
6338 				return err;
6339 		}
6340 
6341 		regs = cur_regs(env);
6342 		env->insn_aux_data[env->insn_idx].seen = true;
6343 
6344 		if (class == BPF_ALU || class == BPF_ALU64) {
6345 			err = check_alu_op(env, insn);
6346 			if (err)
6347 				return err;
6348 
6349 		} else if (class == BPF_LDX) {
6350 			enum bpf_reg_type *prev_src_type, src_reg_type;
6351 
6352 			/* check for reserved fields is already done */
6353 
6354 			/* check src operand */
6355 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6356 			if (err)
6357 				return err;
6358 
6359 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6360 			if (err)
6361 				return err;
6362 
6363 			src_reg_type = regs[insn->src_reg].type;
6364 
6365 			/* check that memory (src_reg + off) is readable,
6366 			 * the state of dst_reg will be updated by this func
6367 			 */
6368 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
6369 					       insn->off, BPF_SIZE(insn->code),
6370 					       BPF_READ, insn->dst_reg, false);
6371 			if (err)
6372 				return err;
6373 
6374 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6375 
6376 			if (*prev_src_type == NOT_INIT) {
6377 				/* saw a valid insn
6378 				 * dst_reg = *(u32 *)(src_reg + off)
6379 				 * save type to validate intersecting paths
6380 				 */
6381 				*prev_src_type = src_reg_type;
6382 
6383 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6384 				/* ABuser program is trying to use the same insn
6385 				 * dst_reg = *(u32*) (src_reg + off)
6386 				 * with different pointer types:
6387 				 * src_reg == ctx in one branch and
6388 				 * src_reg == stack|map in some other branch.
6389 				 * Reject it.
6390 				 */
6391 				verbose(env, "same insn cannot be used with different pointers\n");
6392 				return -EINVAL;
6393 			}
6394 
6395 		} else if (class == BPF_STX) {
6396 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
6397 
6398 			if (BPF_MODE(insn->code) == BPF_XADD) {
6399 				err = check_xadd(env, env->insn_idx, insn);
6400 				if (err)
6401 					return err;
6402 				env->insn_idx++;
6403 				continue;
6404 			}
6405 
6406 			/* check src1 operand */
6407 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6408 			if (err)
6409 				return err;
6410 			/* check src2 operand */
6411 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6412 			if (err)
6413 				return err;
6414 
6415 			dst_reg_type = regs[insn->dst_reg].type;
6416 
6417 			/* check that memory (dst_reg + off) is writeable */
6418 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6419 					       insn->off, BPF_SIZE(insn->code),
6420 					       BPF_WRITE, insn->src_reg, false);
6421 			if (err)
6422 				return err;
6423 
6424 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6425 
6426 			if (*prev_dst_type == NOT_INIT) {
6427 				*prev_dst_type = dst_reg_type;
6428 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6429 				verbose(env, "same insn cannot be used with different pointers\n");
6430 				return -EINVAL;
6431 			}
6432 
6433 		} else if (class == BPF_ST) {
6434 			if (BPF_MODE(insn->code) != BPF_MEM ||
6435 			    insn->src_reg != BPF_REG_0) {
6436 				verbose(env, "BPF_ST uses reserved fields\n");
6437 				return -EINVAL;
6438 			}
6439 			/* check src operand */
6440 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6441 			if (err)
6442 				return err;
6443 
6444 			if (is_ctx_reg(env, insn->dst_reg)) {
6445 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6446 					insn->dst_reg,
6447 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
6448 				return -EACCES;
6449 			}
6450 
6451 			/* check that memory (dst_reg + off) is writeable */
6452 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6453 					       insn->off, BPF_SIZE(insn->code),
6454 					       BPF_WRITE, -1, false);
6455 			if (err)
6456 				return err;
6457 
6458 		} else if (class == BPF_JMP || class == BPF_JMP32) {
6459 			u8 opcode = BPF_OP(insn->code);
6460 
6461 			if (opcode == BPF_CALL) {
6462 				if (BPF_SRC(insn->code) != BPF_K ||
6463 				    insn->off != 0 ||
6464 				    (insn->src_reg != BPF_REG_0 &&
6465 				     insn->src_reg != BPF_PSEUDO_CALL) ||
6466 				    insn->dst_reg != BPF_REG_0 ||
6467 				    class == BPF_JMP32) {
6468 					verbose(env, "BPF_CALL uses reserved fields\n");
6469 					return -EINVAL;
6470 				}
6471 
6472 				if (env->cur_state->active_spin_lock &&
6473 				    (insn->src_reg == BPF_PSEUDO_CALL ||
6474 				     insn->imm != BPF_FUNC_spin_unlock)) {
6475 					verbose(env, "function calls are not allowed while holding a lock\n");
6476 					return -EINVAL;
6477 				}
6478 				if (insn->src_reg == BPF_PSEUDO_CALL)
6479 					err = check_func_call(env, insn, &env->insn_idx);
6480 				else
6481 					err = check_helper_call(env, insn->imm, env->insn_idx);
6482 				if (err)
6483 					return err;
6484 
6485 			} else if (opcode == BPF_JA) {
6486 				if (BPF_SRC(insn->code) != BPF_K ||
6487 				    insn->imm != 0 ||
6488 				    insn->src_reg != BPF_REG_0 ||
6489 				    insn->dst_reg != BPF_REG_0 ||
6490 				    class == BPF_JMP32) {
6491 					verbose(env, "BPF_JA uses reserved fields\n");
6492 					return -EINVAL;
6493 				}
6494 
6495 				env->insn_idx += insn->off + 1;
6496 				continue;
6497 
6498 			} else if (opcode == BPF_EXIT) {
6499 				if (BPF_SRC(insn->code) != BPF_K ||
6500 				    insn->imm != 0 ||
6501 				    insn->src_reg != BPF_REG_0 ||
6502 				    insn->dst_reg != BPF_REG_0 ||
6503 				    class == BPF_JMP32) {
6504 					verbose(env, "BPF_EXIT uses reserved fields\n");
6505 					return -EINVAL;
6506 				}
6507 
6508 				if (env->cur_state->active_spin_lock) {
6509 					verbose(env, "bpf_spin_unlock is missing\n");
6510 					return -EINVAL;
6511 				}
6512 
6513 				if (state->curframe) {
6514 					/* exit from nested function */
6515 					env->prev_insn_idx = env->insn_idx;
6516 					err = prepare_func_exit(env, &env->insn_idx);
6517 					if (err)
6518 						return err;
6519 					do_print_state = true;
6520 					continue;
6521 				}
6522 
6523 				err = check_reference_leak(env);
6524 				if (err)
6525 					return err;
6526 
6527 				/* eBPF calling convetion is such that R0 is used
6528 				 * to return the value from eBPF program.
6529 				 * Make sure that it's readable at this time
6530 				 * of bpf_exit, which means that program wrote
6531 				 * something into it earlier
6532 				 */
6533 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6534 				if (err)
6535 					return err;
6536 
6537 				if (is_pointer_value(env, BPF_REG_0)) {
6538 					verbose(env, "R0 leaks addr as return value\n");
6539 					return -EACCES;
6540 				}
6541 
6542 				err = check_return_code(env);
6543 				if (err)
6544 					return err;
6545 process_bpf_exit:
6546 				err = pop_stack(env, &env->prev_insn_idx,
6547 						&env->insn_idx);
6548 				if (err < 0) {
6549 					if (err != -ENOENT)
6550 						return err;
6551 					break;
6552 				} else {
6553 					do_print_state = true;
6554 					continue;
6555 				}
6556 			} else {
6557 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
6558 				if (err)
6559 					return err;
6560 			}
6561 		} else if (class == BPF_LD) {
6562 			u8 mode = BPF_MODE(insn->code);
6563 
6564 			if (mode == BPF_ABS || mode == BPF_IND) {
6565 				err = check_ld_abs(env, insn);
6566 				if (err)
6567 					return err;
6568 
6569 			} else if (mode == BPF_IMM) {
6570 				err = check_ld_imm(env, insn);
6571 				if (err)
6572 					return err;
6573 
6574 				env->insn_idx++;
6575 				env->insn_aux_data[env->insn_idx].seen = true;
6576 			} else {
6577 				verbose(env, "invalid BPF_LD mode\n");
6578 				return -EINVAL;
6579 			}
6580 		} else {
6581 			verbose(env, "unknown insn class %d\n", class);
6582 			return -EINVAL;
6583 		}
6584 
6585 		env->insn_idx++;
6586 	}
6587 
6588 	verbose(env, "processed %d insns (limit %d), stack depth ",
6589 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
6590 	for (i = 0; i < env->subprog_cnt; i++) {
6591 		u32 depth = env->subprog_info[i].stack_depth;
6592 
6593 		verbose(env, "%d", depth);
6594 		if (i + 1 < env->subprog_cnt)
6595 			verbose(env, "+");
6596 	}
6597 	verbose(env, "\n");
6598 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6599 	return 0;
6600 }
6601 
6602 static int check_map_prealloc(struct bpf_map *map)
6603 {
6604 	return (map->map_type != BPF_MAP_TYPE_HASH &&
6605 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6606 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6607 		!(map->map_flags & BPF_F_NO_PREALLOC);
6608 }
6609 
6610 static bool is_tracing_prog_type(enum bpf_prog_type type)
6611 {
6612 	switch (type) {
6613 	case BPF_PROG_TYPE_KPROBE:
6614 	case BPF_PROG_TYPE_TRACEPOINT:
6615 	case BPF_PROG_TYPE_PERF_EVENT:
6616 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6617 		return true;
6618 	default:
6619 		return false;
6620 	}
6621 }
6622 
6623 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6624 					struct bpf_map *map,
6625 					struct bpf_prog *prog)
6626 
6627 {
6628 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6629 	 * preallocated hash maps, since doing memory allocation
6630 	 * in overflow_handler can crash depending on where nmi got
6631 	 * triggered.
6632 	 */
6633 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6634 		if (!check_map_prealloc(map)) {
6635 			verbose(env, "perf_event programs can only use preallocated hash map\n");
6636 			return -EINVAL;
6637 		}
6638 		if (map->inner_map_meta &&
6639 		    !check_map_prealloc(map->inner_map_meta)) {
6640 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6641 			return -EINVAL;
6642 		}
6643 	}
6644 
6645 	if ((is_tracing_prog_type(prog->type) ||
6646 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6647 	    map_value_has_spin_lock(map)) {
6648 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6649 		return -EINVAL;
6650 	}
6651 
6652 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6653 	    !bpf_offload_prog_map_match(prog, map)) {
6654 		verbose(env, "offload device mismatch between prog and map\n");
6655 		return -EINVAL;
6656 	}
6657 
6658 	return 0;
6659 }
6660 
6661 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6662 {
6663 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6664 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6665 }
6666 
6667 /* look for pseudo eBPF instructions that access map FDs and
6668  * replace them with actual map pointers
6669  */
6670 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6671 {
6672 	struct bpf_insn *insn = env->prog->insnsi;
6673 	int insn_cnt = env->prog->len;
6674 	int i, j, err;
6675 
6676 	err = bpf_prog_calc_tag(env->prog);
6677 	if (err)
6678 		return err;
6679 
6680 	for (i = 0; i < insn_cnt; i++, insn++) {
6681 		if (BPF_CLASS(insn->code) == BPF_LDX &&
6682 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6683 			verbose(env, "BPF_LDX uses reserved fields\n");
6684 			return -EINVAL;
6685 		}
6686 
6687 		if (BPF_CLASS(insn->code) == BPF_STX &&
6688 		    ((BPF_MODE(insn->code) != BPF_MEM &&
6689 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6690 			verbose(env, "BPF_STX uses reserved fields\n");
6691 			return -EINVAL;
6692 		}
6693 
6694 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6695 			struct bpf_map *map;
6696 			struct fd f;
6697 
6698 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
6699 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6700 			    insn[1].off != 0) {
6701 				verbose(env, "invalid bpf_ld_imm64 insn\n");
6702 				return -EINVAL;
6703 			}
6704 
6705 			if (insn->src_reg == 0)
6706 				/* valid generic load 64-bit imm */
6707 				goto next_insn;
6708 
6709 			if (insn[0].src_reg != BPF_PSEUDO_MAP_FD ||
6710 			    insn[1].imm != 0) {
6711 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
6712 				return -EINVAL;
6713 			}
6714 
6715 			f = fdget(insn[0].imm);
6716 			map = __bpf_map_get(f);
6717 			if (IS_ERR(map)) {
6718 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
6719 					insn[0].imm);
6720 				return PTR_ERR(map);
6721 			}
6722 
6723 			err = check_map_prog_compatibility(env, map, env->prog);
6724 			if (err) {
6725 				fdput(f);
6726 				return err;
6727 			}
6728 
6729 			/* store map pointer inside BPF_LD_IMM64 instruction */
6730 			insn[0].imm = (u32) (unsigned long) map;
6731 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
6732 
6733 			/* check whether we recorded this map already */
6734 			for (j = 0; j < env->used_map_cnt; j++)
6735 				if (env->used_maps[j] == map) {
6736 					fdput(f);
6737 					goto next_insn;
6738 				}
6739 
6740 			if (env->used_map_cnt >= MAX_USED_MAPS) {
6741 				fdput(f);
6742 				return -E2BIG;
6743 			}
6744 
6745 			/* hold the map. If the program is rejected by verifier,
6746 			 * the map will be released by release_maps() or it
6747 			 * will be used by the valid program until it's unloaded
6748 			 * and all maps are released in free_used_maps()
6749 			 */
6750 			map = bpf_map_inc(map, false);
6751 			if (IS_ERR(map)) {
6752 				fdput(f);
6753 				return PTR_ERR(map);
6754 			}
6755 			env->used_maps[env->used_map_cnt++] = map;
6756 
6757 			if (bpf_map_is_cgroup_storage(map) &&
6758 			    bpf_cgroup_storage_assign(env->prog, map)) {
6759 				verbose(env, "only one cgroup storage of each type is allowed\n");
6760 				fdput(f);
6761 				return -EBUSY;
6762 			}
6763 
6764 			fdput(f);
6765 next_insn:
6766 			insn++;
6767 			i++;
6768 			continue;
6769 		}
6770 
6771 		/* Basic sanity check before we invest more work here. */
6772 		if (!bpf_opcode_in_insntable(insn->code)) {
6773 			verbose(env, "unknown opcode %02x\n", insn->code);
6774 			return -EINVAL;
6775 		}
6776 	}
6777 
6778 	/* now all pseudo BPF_LD_IMM64 instructions load valid
6779 	 * 'struct bpf_map *' into a register instead of user map_fd.
6780 	 * These pointers will be used later by verifier to validate map access.
6781 	 */
6782 	return 0;
6783 }
6784 
6785 /* drop refcnt of maps used by the rejected program */
6786 static void release_maps(struct bpf_verifier_env *env)
6787 {
6788 	enum bpf_cgroup_storage_type stype;
6789 	int i;
6790 
6791 	for_each_cgroup_storage_type(stype) {
6792 		if (!env->prog->aux->cgroup_storage[stype])
6793 			continue;
6794 		bpf_cgroup_storage_release(env->prog,
6795 			env->prog->aux->cgroup_storage[stype]);
6796 	}
6797 
6798 	for (i = 0; i < env->used_map_cnt; i++)
6799 		bpf_map_put(env->used_maps[i]);
6800 }
6801 
6802 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
6803 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
6804 {
6805 	struct bpf_insn *insn = env->prog->insnsi;
6806 	int insn_cnt = env->prog->len;
6807 	int i;
6808 
6809 	for (i = 0; i < insn_cnt; i++, insn++)
6810 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
6811 			insn->src_reg = 0;
6812 }
6813 
6814 /* single env->prog->insni[off] instruction was replaced with the range
6815  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
6816  * [0, off) and [off, end) to new locations, so the patched range stays zero
6817  */
6818 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
6819 				u32 off, u32 cnt)
6820 {
6821 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
6822 	int i;
6823 
6824 	if (cnt == 1)
6825 		return 0;
6826 	new_data = vzalloc(array_size(prog_len,
6827 				      sizeof(struct bpf_insn_aux_data)));
6828 	if (!new_data)
6829 		return -ENOMEM;
6830 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
6831 	memcpy(new_data + off + cnt - 1, old_data + off,
6832 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
6833 	for (i = off; i < off + cnt - 1; i++)
6834 		new_data[i].seen = true;
6835 	env->insn_aux_data = new_data;
6836 	vfree(old_data);
6837 	return 0;
6838 }
6839 
6840 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
6841 {
6842 	int i;
6843 
6844 	if (len == 1)
6845 		return;
6846 	/* NOTE: fake 'exit' subprog should be updated as well. */
6847 	for (i = 0; i <= env->subprog_cnt; i++) {
6848 		if (env->subprog_info[i].start <= off)
6849 			continue;
6850 		env->subprog_info[i].start += len - 1;
6851 	}
6852 }
6853 
6854 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
6855 					    const struct bpf_insn *patch, u32 len)
6856 {
6857 	struct bpf_prog *new_prog;
6858 
6859 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
6860 	if (!new_prog)
6861 		return NULL;
6862 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
6863 		return NULL;
6864 	adjust_subprog_starts(env, off, len);
6865 	return new_prog;
6866 }
6867 
6868 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
6869 					      u32 off, u32 cnt)
6870 {
6871 	int i, j;
6872 
6873 	/* find first prog starting at or after off (first to remove) */
6874 	for (i = 0; i < env->subprog_cnt; i++)
6875 		if (env->subprog_info[i].start >= off)
6876 			break;
6877 	/* find first prog starting at or after off + cnt (first to stay) */
6878 	for (j = i; j < env->subprog_cnt; j++)
6879 		if (env->subprog_info[j].start >= off + cnt)
6880 			break;
6881 	/* if j doesn't start exactly at off + cnt, we are just removing
6882 	 * the front of previous prog
6883 	 */
6884 	if (env->subprog_info[j].start != off + cnt)
6885 		j--;
6886 
6887 	if (j > i) {
6888 		struct bpf_prog_aux *aux = env->prog->aux;
6889 		int move;
6890 
6891 		/* move fake 'exit' subprog as well */
6892 		move = env->subprog_cnt + 1 - j;
6893 
6894 		memmove(env->subprog_info + i,
6895 			env->subprog_info + j,
6896 			sizeof(*env->subprog_info) * move);
6897 		env->subprog_cnt -= j - i;
6898 
6899 		/* remove func_info */
6900 		if (aux->func_info) {
6901 			move = aux->func_info_cnt - j;
6902 
6903 			memmove(aux->func_info + i,
6904 				aux->func_info + j,
6905 				sizeof(*aux->func_info) * move);
6906 			aux->func_info_cnt -= j - i;
6907 			/* func_info->insn_off is set after all code rewrites,
6908 			 * in adjust_btf_func() - no need to adjust
6909 			 */
6910 		}
6911 	} else {
6912 		/* convert i from "first prog to remove" to "first to adjust" */
6913 		if (env->subprog_info[i].start == off)
6914 			i++;
6915 	}
6916 
6917 	/* update fake 'exit' subprog as well */
6918 	for (; i <= env->subprog_cnt; i++)
6919 		env->subprog_info[i].start -= cnt;
6920 
6921 	return 0;
6922 }
6923 
6924 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
6925 				      u32 cnt)
6926 {
6927 	struct bpf_prog *prog = env->prog;
6928 	u32 i, l_off, l_cnt, nr_linfo;
6929 	struct bpf_line_info *linfo;
6930 
6931 	nr_linfo = prog->aux->nr_linfo;
6932 	if (!nr_linfo)
6933 		return 0;
6934 
6935 	linfo = prog->aux->linfo;
6936 
6937 	/* find first line info to remove, count lines to be removed */
6938 	for (i = 0; i < nr_linfo; i++)
6939 		if (linfo[i].insn_off >= off)
6940 			break;
6941 
6942 	l_off = i;
6943 	l_cnt = 0;
6944 	for (; i < nr_linfo; i++)
6945 		if (linfo[i].insn_off < off + cnt)
6946 			l_cnt++;
6947 		else
6948 			break;
6949 
6950 	/* First live insn doesn't match first live linfo, it needs to "inherit"
6951 	 * last removed linfo.  prog is already modified, so prog->len == off
6952 	 * means no live instructions after (tail of the program was removed).
6953 	 */
6954 	if (prog->len != off && l_cnt &&
6955 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
6956 		l_cnt--;
6957 		linfo[--i].insn_off = off + cnt;
6958 	}
6959 
6960 	/* remove the line info which refer to the removed instructions */
6961 	if (l_cnt) {
6962 		memmove(linfo + l_off, linfo + i,
6963 			sizeof(*linfo) * (nr_linfo - i));
6964 
6965 		prog->aux->nr_linfo -= l_cnt;
6966 		nr_linfo = prog->aux->nr_linfo;
6967 	}
6968 
6969 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
6970 	for (i = l_off; i < nr_linfo; i++)
6971 		linfo[i].insn_off -= cnt;
6972 
6973 	/* fix up all subprogs (incl. 'exit') which start >= off */
6974 	for (i = 0; i <= env->subprog_cnt; i++)
6975 		if (env->subprog_info[i].linfo_idx > l_off) {
6976 			/* program may have started in the removed region but
6977 			 * may not be fully removed
6978 			 */
6979 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
6980 				env->subprog_info[i].linfo_idx -= l_cnt;
6981 			else
6982 				env->subprog_info[i].linfo_idx = l_off;
6983 		}
6984 
6985 	return 0;
6986 }
6987 
6988 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
6989 {
6990 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
6991 	unsigned int orig_prog_len = env->prog->len;
6992 	int err;
6993 
6994 	if (bpf_prog_is_dev_bound(env->prog->aux))
6995 		bpf_prog_offload_remove_insns(env, off, cnt);
6996 
6997 	err = bpf_remove_insns(env->prog, off, cnt);
6998 	if (err)
6999 		return err;
7000 
7001 	err = adjust_subprog_starts_after_remove(env, off, cnt);
7002 	if (err)
7003 		return err;
7004 
7005 	err = bpf_adj_linfo_after_remove(env, off, cnt);
7006 	if (err)
7007 		return err;
7008 
7009 	memmove(aux_data + off,	aux_data + off + cnt,
7010 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
7011 
7012 	return 0;
7013 }
7014 
7015 /* The verifier does more data flow analysis than llvm and will not
7016  * explore branches that are dead at run time. Malicious programs can
7017  * have dead code too. Therefore replace all dead at-run-time code
7018  * with 'ja -1'.
7019  *
7020  * Just nops are not optimal, e.g. if they would sit at the end of the
7021  * program and through another bug we would manage to jump there, then
7022  * we'd execute beyond program memory otherwise. Returning exception
7023  * code also wouldn't work since we can have subprogs where the dead
7024  * code could be located.
7025  */
7026 static void sanitize_dead_code(struct bpf_verifier_env *env)
7027 {
7028 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7029 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7030 	struct bpf_insn *insn = env->prog->insnsi;
7031 	const int insn_cnt = env->prog->len;
7032 	int i;
7033 
7034 	for (i = 0; i < insn_cnt; i++) {
7035 		if (aux_data[i].seen)
7036 			continue;
7037 		memcpy(insn + i, &trap, sizeof(trap));
7038 	}
7039 }
7040 
7041 static bool insn_is_cond_jump(u8 code)
7042 {
7043 	u8 op;
7044 
7045 	if (BPF_CLASS(code) == BPF_JMP32)
7046 		return true;
7047 
7048 	if (BPF_CLASS(code) != BPF_JMP)
7049 		return false;
7050 
7051 	op = BPF_OP(code);
7052 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7053 }
7054 
7055 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7056 {
7057 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7058 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7059 	struct bpf_insn *insn = env->prog->insnsi;
7060 	const int insn_cnt = env->prog->len;
7061 	int i;
7062 
7063 	for (i = 0; i < insn_cnt; i++, insn++) {
7064 		if (!insn_is_cond_jump(insn->code))
7065 			continue;
7066 
7067 		if (!aux_data[i + 1].seen)
7068 			ja.off = insn->off;
7069 		else if (!aux_data[i + 1 + insn->off].seen)
7070 			ja.off = 0;
7071 		else
7072 			continue;
7073 
7074 		if (bpf_prog_is_dev_bound(env->prog->aux))
7075 			bpf_prog_offload_replace_insn(env, i, &ja);
7076 
7077 		memcpy(insn, &ja, sizeof(ja));
7078 	}
7079 }
7080 
7081 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7082 {
7083 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7084 	int insn_cnt = env->prog->len;
7085 	int i, err;
7086 
7087 	for (i = 0; i < insn_cnt; i++) {
7088 		int j;
7089 
7090 		j = 0;
7091 		while (i + j < insn_cnt && !aux_data[i + j].seen)
7092 			j++;
7093 		if (!j)
7094 			continue;
7095 
7096 		err = verifier_remove_insns(env, i, j);
7097 		if (err)
7098 			return err;
7099 		insn_cnt = env->prog->len;
7100 	}
7101 
7102 	return 0;
7103 }
7104 
7105 static int opt_remove_nops(struct bpf_verifier_env *env)
7106 {
7107 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7108 	struct bpf_insn *insn = env->prog->insnsi;
7109 	int insn_cnt = env->prog->len;
7110 	int i, err;
7111 
7112 	for (i = 0; i < insn_cnt; i++) {
7113 		if (memcmp(&insn[i], &ja, sizeof(ja)))
7114 			continue;
7115 
7116 		err = verifier_remove_insns(env, i, 1);
7117 		if (err)
7118 			return err;
7119 		insn_cnt--;
7120 		i--;
7121 	}
7122 
7123 	return 0;
7124 }
7125 
7126 /* convert load instructions that access fields of a context type into a
7127  * sequence of instructions that access fields of the underlying structure:
7128  *     struct __sk_buff    -> struct sk_buff
7129  *     struct bpf_sock_ops -> struct sock
7130  */
7131 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7132 {
7133 	const struct bpf_verifier_ops *ops = env->ops;
7134 	int i, cnt, size, ctx_field_size, delta = 0;
7135 	const int insn_cnt = env->prog->len;
7136 	struct bpf_insn insn_buf[16], *insn;
7137 	u32 target_size, size_default, off;
7138 	struct bpf_prog *new_prog;
7139 	enum bpf_access_type type;
7140 	bool is_narrower_load;
7141 
7142 	if (ops->gen_prologue || env->seen_direct_write) {
7143 		if (!ops->gen_prologue) {
7144 			verbose(env, "bpf verifier is misconfigured\n");
7145 			return -EINVAL;
7146 		}
7147 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7148 					env->prog);
7149 		if (cnt >= ARRAY_SIZE(insn_buf)) {
7150 			verbose(env, "bpf verifier is misconfigured\n");
7151 			return -EINVAL;
7152 		} else if (cnt) {
7153 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7154 			if (!new_prog)
7155 				return -ENOMEM;
7156 
7157 			env->prog = new_prog;
7158 			delta += cnt - 1;
7159 		}
7160 	}
7161 
7162 	if (bpf_prog_is_dev_bound(env->prog->aux))
7163 		return 0;
7164 
7165 	insn = env->prog->insnsi + delta;
7166 
7167 	for (i = 0; i < insn_cnt; i++, insn++) {
7168 		bpf_convert_ctx_access_t convert_ctx_access;
7169 
7170 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7171 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7172 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7173 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7174 			type = BPF_READ;
7175 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7176 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7177 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7178 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7179 			type = BPF_WRITE;
7180 		else
7181 			continue;
7182 
7183 		if (type == BPF_WRITE &&
7184 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
7185 			struct bpf_insn patch[] = {
7186 				/* Sanitize suspicious stack slot with zero.
7187 				 * There are no memory dependencies for this store,
7188 				 * since it's only using frame pointer and immediate
7189 				 * constant of zero
7190 				 */
7191 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7192 					   env->insn_aux_data[i + delta].sanitize_stack_off,
7193 					   0),
7194 				/* the original STX instruction will immediately
7195 				 * overwrite the same stack slot with appropriate value
7196 				 */
7197 				*insn,
7198 			};
7199 
7200 			cnt = ARRAY_SIZE(patch);
7201 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7202 			if (!new_prog)
7203 				return -ENOMEM;
7204 
7205 			delta    += cnt - 1;
7206 			env->prog = new_prog;
7207 			insn      = new_prog->insnsi + i + delta;
7208 			continue;
7209 		}
7210 
7211 		switch (env->insn_aux_data[i + delta].ptr_type) {
7212 		case PTR_TO_CTX:
7213 			if (!ops->convert_ctx_access)
7214 				continue;
7215 			convert_ctx_access = ops->convert_ctx_access;
7216 			break;
7217 		case PTR_TO_SOCKET:
7218 		case PTR_TO_SOCK_COMMON:
7219 			convert_ctx_access = bpf_sock_convert_ctx_access;
7220 			break;
7221 		case PTR_TO_TCP_SOCK:
7222 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7223 			break;
7224 		default:
7225 			continue;
7226 		}
7227 
7228 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7229 		size = BPF_LDST_BYTES(insn);
7230 
7231 		/* If the read access is a narrower load of the field,
7232 		 * convert to a 4/8-byte load, to minimum program type specific
7233 		 * convert_ctx_access changes. If conversion is successful,
7234 		 * we will apply proper mask to the result.
7235 		 */
7236 		is_narrower_load = size < ctx_field_size;
7237 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7238 		off = insn->off;
7239 		if (is_narrower_load) {
7240 			u8 size_code;
7241 
7242 			if (type == BPF_WRITE) {
7243 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7244 				return -EINVAL;
7245 			}
7246 
7247 			size_code = BPF_H;
7248 			if (ctx_field_size == 4)
7249 				size_code = BPF_W;
7250 			else if (ctx_field_size == 8)
7251 				size_code = BPF_DW;
7252 
7253 			insn->off = off & ~(size_default - 1);
7254 			insn->code = BPF_LDX | BPF_MEM | size_code;
7255 		}
7256 
7257 		target_size = 0;
7258 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7259 					 &target_size);
7260 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7261 		    (ctx_field_size && !target_size)) {
7262 			verbose(env, "bpf verifier is misconfigured\n");
7263 			return -EINVAL;
7264 		}
7265 
7266 		if (is_narrower_load && size < target_size) {
7267 			u8 shift = (off & (size_default - 1)) * 8;
7268 
7269 			if (ctx_field_size <= 4) {
7270 				if (shift)
7271 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7272 									insn->dst_reg,
7273 									shift);
7274 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7275 								(1 << size * 8) - 1);
7276 			} else {
7277 				if (shift)
7278 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7279 									insn->dst_reg,
7280 									shift);
7281 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7282 								(1 << size * 8) - 1);
7283 			}
7284 		}
7285 
7286 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7287 		if (!new_prog)
7288 			return -ENOMEM;
7289 
7290 		delta += cnt - 1;
7291 
7292 		/* keep walking new program and skip insns we just inserted */
7293 		env->prog = new_prog;
7294 		insn      = new_prog->insnsi + i + delta;
7295 	}
7296 
7297 	return 0;
7298 }
7299 
7300 static int jit_subprogs(struct bpf_verifier_env *env)
7301 {
7302 	struct bpf_prog *prog = env->prog, **func, *tmp;
7303 	int i, j, subprog_start, subprog_end = 0, len, subprog;
7304 	struct bpf_insn *insn;
7305 	void *old_bpf_func;
7306 	int err;
7307 
7308 	if (env->subprog_cnt <= 1)
7309 		return 0;
7310 
7311 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7312 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7313 		    insn->src_reg != BPF_PSEUDO_CALL)
7314 			continue;
7315 		/* Upon error here we cannot fall back to interpreter but
7316 		 * need a hard reject of the program. Thus -EFAULT is
7317 		 * propagated in any case.
7318 		 */
7319 		subprog = find_subprog(env, i + insn->imm + 1);
7320 		if (subprog < 0) {
7321 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7322 				  i + insn->imm + 1);
7323 			return -EFAULT;
7324 		}
7325 		/* temporarily remember subprog id inside insn instead of
7326 		 * aux_data, since next loop will split up all insns into funcs
7327 		 */
7328 		insn->off = subprog;
7329 		/* remember original imm in case JIT fails and fallback
7330 		 * to interpreter will be needed
7331 		 */
7332 		env->insn_aux_data[i].call_imm = insn->imm;
7333 		/* point imm to __bpf_call_base+1 from JITs point of view */
7334 		insn->imm = 1;
7335 	}
7336 
7337 	err = bpf_prog_alloc_jited_linfo(prog);
7338 	if (err)
7339 		goto out_undo_insn;
7340 
7341 	err = -ENOMEM;
7342 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7343 	if (!func)
7344 		goto out_undo_insn;
7345 
7346 	for (i = 0; i < env->subprog_cnt; i++) {
7347 		subprog_start = subprog_end;
7348 		subprog_end = env->subprog_info[i + 1].start;
7349 
7350 		len = subprog_end - subprog_start;
7351 		/* BPF_PROG_RUN doesn't call subprogs directly,
7352 		 * hence main prog stats include the runtime of subprogs.
7353 		 * subprogs don't have IDs and not reachable via prog_get_next_id
7354 		 * func[i]->aux->stats will never be accessed and stays NULL
7355 		 */
7356 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7357 		if (!func[i])
7358 			goto out_free;
7359 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7360 		       len * sizeof(struct bpf_insn));
7361 		func[i]->type = prog->type;
7362 		func[i]->len = len;
7363 		if (bpf_prog_calc_tag(func[i]))
7364 			goto out_free;
7365 		func[i]->is_func = 1;
7366 		func[i]->aux->func_idx = i;
7367 		/* the btf and func_info will be freed only at prog->aux */
7368 		func[i]->aux->btf = prog->aux->btf;
7369 		func[i]->aux->func_info = prog->aux->func_info;
7370 
7371 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
7372 		 * Long term would need debug info to populate names
7373 		 */
7374 		func[i]->aux->name[0] = 'F';
7375 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7376 		func[i]->jit_requested = 1;
7377 		func[i]->aux->linfo = prog->aux->linfo;
7378 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7379 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7380 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7381 		func[i] = bpf_int_jit_compile(func[i]);
7382 		if (!func[i]->jited) {
7383 			err = -ENOTSUPP;
7384 			goto out_free;
7385 		}
7386 		cond_resched();
7387 	}
7388 	/* at this point all bpf functions were successfully JITed
7389 	 * now populate all bpf_calls with correct addresses and
7390 	 * run last pass of JIT
7391 	 */
7392 	for (i = 0; i < env->subprog_cnt; i++) {
7393 		insn = func[i]->insnsi;
7394 		for (j = 0; j < func[i]->len; j++, insn++) {
7395 			if (insn->code != (BPF_JMP | BPF_CALL) ||
7396 			    insn->src_reg != BPF_PSEUDO_CALL)
7397 				continue;
7398 			subprog = insn->off;
7399 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
7400 				func[subprog]->bpf_func -
7401 				__bpf_call_base;
7402 		}
7403 
7404 		/* we use the aux data to keep a list of the start addresses
7405 		 * of the JITed images for each function in the program
7406 		 *
7407 		 * for some architectures, such as powerpc64, the imm field
7408 		 * might not be large enough to hold the offset of the start
7409 		 * address of the callee's JITed image from __bpf_call_base
7410 		 *
7411 		 * in such cases, we can lookup the start address of a callee
7412 		 * by using its subprog id, available from the off field of
7413 		 * the call instruction, as an index for this list
7414 		 */
7415 		func[i]->aux->func = func;
7416 		func[i]->aux->func_cnt = env->subprog_cnt;
7417 	}
7418 	for (i = 0; i < env->subprog_cnt; i++) {
7419 		old_bpf_func = func[i]->bpf_func;
7420 		tmp = bpf_int_jit_compile(func[i]);
7421 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7422 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7423 			err = -ENOTSUPP;
7424 			goto out_free;
7425 		}
7426 		cond_resched();
7427 	}
7428 
7429 	/* finally lock prog and jit images for all functions and
7430 	 * populate kallsysm
7431 	 */
7432 	for (i = 0; i < env->subprog_cnt; i++) {
7433 		bpf_prog_lock_ro(func[i]);
7434 		bpf_prog_kallsyms_add(func[i]);
7435 	}
7436 
7437 	/* Last step: make now unused interpreter insns from main
7438 	 * prog consistent for later dump requests, so they can
7439 	 * later look the same as if they were interpreted only.
7440 	 */
7441 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7442 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7443 		    insn->src_reg != BPF_PSEUDO_CALL)
7444 			continue;
7445 		insn->off = env->insn_aux_data[i].call_imm;
7446 		subprog = find_subprog(env, i + insn->off + 1);
7447 		insn->imm = subprog;
7448 	}
7449 
7450 	prog->jited = 1;
7451 	prog->bpf_func = func[0]->bpf_func;
7452 	prog->aux->func = func;
7453 	prog->aux->func_cnt = env->subprog_cnt;
7454 	bpf_prog_free_unused_jited_linfo(prog);
7455 	return 0;
7456 out_free:
7457 	for (i = 0; i < env->subprog_cnt; i++)
7458 		if (func[i])
7459 			bpf_jit_free(func[i]);
7460 	kfree(func);
7461 out_undo_insn:
7462 	/* cleanup main prog to be interpreted */
7463 	prog->jit_requested = 0;
7464 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7465 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7466 		    insn->src_reg != BPF_PSEUDO_CALL)
7467 			continue;
7468 		insn->off = 0;
7469 		insn->imm = env->insn_aux_data[i].call_imm;
7470 	}
7471 	bpf_prog_free_jited_linfo(prog);
7472 	return err;
7473 }
7474 
7475 static int fixup_call_args(struct bpf_verifier_env *env)
7476 {
7477 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7478 	struct bpf_prog *prog = env->prog;
7479 	struct bpf_insn *insn = prog->insnsi;
7480 	int i, depth;
7481 #endif
7482 	int err = 0;
7483 
7484 	if (env->prog->jit_requested &&
7485 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
7486 		err = jit_subprogs(env);
7487 		if (err == 0)
7488 			return 0;
7489 		if (err == -EFAULT)
7490 			return err;
7491 	}
7492 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7493 	for (i = 0; i < prog->len; i++, insn++) {
7494 		if (insn->code != (BPF_JMP | BPF_CALL) ||
7495 		    insn->src_reg != BPF_PSEUDO_CALL)
7496 			continue;
7497 		depth = get_callee_stack_depth(env, insn, i);
7498 		if (depth < 0)
7499 			return depth;
7500 		bpf_patch_call_args(insn, depth);
7501 	}
7502 	err = 0;
7503 #endif
7504 	return err;
7505 }
7506 
7507 /* fixup insn->imm field of bpf_call instructions
7508  * and inline eligible helpers as explicit sequence of BPF instructions
7509  *
7510  * this function is called after eBPF program passed verification
7511  */
7512 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7513 {
7514 	struct bpf_prog *prog = env->prog;
7515 	struct bpf_insn *insn = prog->insnsi;
7516 	const struct bpf_func_proto *fn;
7517 	const int insn_cnt = prog->len;
7518 	const struct bpf_map_ops *ops;
7519 	struct bpf_insn_aux_data *aux;
7520 	struct bpf_insn insn_buf[16];
7521 	struct bpf_prog *new_prog;
7522 	struct bpf_map *map_ptr;
7523 	int i, cnt, delta = 0;
7524 
7525 	for (i = 0; i < insn_cnt; i++, insn++) {
7526 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7527 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7528 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7529 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7530 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7531 			struct bpf_insn mask_and_div[] = {
7532 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7533 				/* Rx div 0 -> 0 */
7534 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7535 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7536 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7537 				*insn,
7538 			};
7539 			struct bpf_insn mask_and_mod[] = {
7540 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7541 				/* Rx mod 0 -> Rx */
7542 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7543 				*insn,
7544 			};
7545 			struct bpf_insn *patchlet;
7546 
7547 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7548 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7549 				patchlet = mask_and_div + (is64 ? 1 : 0);
7550 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7551 			} else {
7552 				patchlet = mask_and_mod + (is64 ? 1 : 0);
7553 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7554 			}
7555 
7556 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7557 			if (!new_prog)
7558 				return -ENOMEM;
7559 
7560 			delta    += cnt - 1;
7561 			env->prog = prog = new_prog;
7562 			insn      = new_prog->insnsi + i + delta;
7563 			continue;
7564 		}
7565 
7566 		if (BPF_CLASS(insn->code) == BPF_LD &&
7567 		    (BPF_MODE(insn->code) == BPF_ABS ||
7568 		     BPF_MODE(insn->code) == BPF_IND)) {
7569 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
7570 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7571 				verbose(env, "bpf verifier is misconfigured\n");
7572 				return -EINVAL;
7573 			}
7574 
7575 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7576 			if (!new_prog)
7577 				return -ENOMEM;
7578 
7579 			delta    += cnt - 1;
7580 			env->prog = prog = new_prog;
7581 			insn      = new_prog->insnsi + i + delta;
7582 			continue;
7583 		}
7584 
7585 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7586 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7587 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7588 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7589 			struct bpf_insn insn_buf[16];
7590 			struct bpf_insn *patch = &insn_buf[0];
7591 			bool issrc, isneg;
7592 			u32 off_reg;
7593 
7594 			aux = &env->insn_aux_data[i + delta];
7595 			if (!aux->alu_state ||
7596 			    aux->alu_state == BPF_ALU_NON_POINTER)
7597 				continue;
7598 
7599 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7600 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7601 				BPF_ALU_SANITIZE_SRC;
7602 
7603 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
7604 			if (isneg)
7605 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7606 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7607 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7608 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7609 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7610 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7611 			if (issrc) {
7612 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7613 							 off_reg);
7614 				insn->src_reg = BPF_REG_AX;
7615 			} else {
7616 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7617 							 BPF_REG_AX);
7618 			}
7619 			if (isneg)
7620 				insn->code = insn->code == code_add ?
7621 					     code_sub : code_add;
7622 			*patch++ = *insn;
7623 			if (issrc && isneg)
7624 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7625 			cnt = patch - insn_buf;
7626 
7627 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7628 			if (!new_prog)
7629 				return -ENOMEM;
7630 
7631 			delta    += cnt - 1;
7632 			env->prog = prog = new_prog;
7633 			insn      = new_prog->insnsi + i + delta;
7634 			continue;
7635 		}
7636 
7637 		if (insn->code != (BPF_JMP | BPF_CALL))
7638 			continue;
7639 		if (insn->src_reg == BPF_PSEUDO_CALL)
7640 			continue;
7641 
7642 		if (insn->imm == BPF_FUNC_get_route_realm)
7643 			prog->dst_needed = 1;
7644 		if (insn->imm == BPF_FUNC_get_prandom_u32)
7645 			bpf_user_rnd_init_once();
7646 		if (insn->imm == BPF_FUNC_override_return)
7647 			prog->kprobe_override = 1;
7648 		if (insn->imm == BPF_FUNC_tail_call) {
7649 			/* If we tail call into other programs, we
7650 			 * cannot make any assumptions since they can
7651 			 * be replaced dynamically during runtime in
7652 			 * the program array.
7653 			 */
7654 			prog->cb_access = 1;
7655 			env->prog->aux->stack_depth = MAX_BPF_STACK;
7656 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7657 
7658 			/* mark bpf_tail_call as different opcode to avoid
7659 			 * conditional branch in the interpeter for every normal
7660 			 * call and to prevent accidental JITing by JIT compiler
7661 			 * that doesn't support bpf_tail_call yet
7662 			 */
7663 			insn->imm = 0;
7664 			insn->code = BPF_JMP | BPF_TAIL_CALL;
7665 
7666 			aux = &env->insn_aux_data[i + delta];
7667 			if (!bpf_map_ptr_unpriv(aux))
7668 				continue;
7669 
7670 			/* instead of changing every JIT dealing with tail_call
7671 			 * emit two extra insns:
7672 			 * if (index >= max_entries) goto out;
7673 			 * index &= array->index_mask;
7674 			 * to avoid out-of-bounds cpu speculation
7675 			 */
7676 			if (bpf_map_ptr_poisoned(aux)) {
7677 				verbose(env, "tail_call abusing map_ptr\n");
7678 				return -EINVAL;
7679 			}
7680 
7681 			map_ptr = BPF_MAP_PTR(aux->map_state);
7682 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7683 						  map_ptr->max_entries, 2);
7684 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7685 						    container_of(map_ptr,
7686 								 struct bpf_array,
7687 								 map)->index_mask);
7688 			insn_buf[2] = *insn;
7689 			cnt = 3;
7690 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7691 			if (!new_prog)
7692 				return -ENOMEM;
7693 
7694 			delta    += cnt - 1;
7695 			env->prog = prog = new_prog;
7696 			insn      = new_prog->insnsi + i + delta;
7697 			continue;
7698 		}
7699 
7700 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
7701 		 * and other inlining handlers are currently limited to 64 bit
7702 		 * only.
7703 		 */
7704 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
7705 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
7706 		     insn->imm == BPF_FUNC_map_update_elem ||
7707 		     insn->imm == BPF_FUNC_map_delete_elem ||
7708 		     insn->imm == BPF_FUNC_map_push_elem   ||
7709 		     insn->imm == BPF_FUNC_map_pop_elem    ||
7710 		     insn->imm == BPF_FUNC_map_peek_elem)) {
7711 			aux = &env->insn_aux_data[i + delta];
7712 			if (bpf_map_ptr_poisoned(aux))
7713 				goto patch_call_imm;
7714 
7715 			map_ptr = BPF_MAP_PTR(aux->map_state);
7716 			ops = map_ptr->ops;
7717 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
7718 			    ops->map_gen_lookup) {
7719 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
7720 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7721 					verbose(env, "bpf verifier is misconfigured\n");
7722 					return -EINVAL;
7723 				}
7724 
7725 				new_prog = bpf_patch_insn_data(env, i + delta,
7726 							       insn_buf, cnt);
7727 				if (!new_prog)
7728 					return -ENOMEM;
7729 
7730 				delta    += cnt - 1;
7731 				env->prog = prog = new_prog;
7732 				insn      = new_prog->insnsi + i + delta;
7733 				continue;
7734 			}
7735 
7736 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
7737 				     (void *(*)(struct bpf_map *map, void *key))NULL));
7738 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
7739 				     (int (*)(struct bpf_map *map, void *key))NULL));
7740 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
7741 				     (int (*)(struct bpf_map *map, void *key, void *value,
7742 					      u64 flags))NULL));
7743 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
7744 				     (int (*)(struct bpf_map *map, void *value,
7745 					      u64 flags))NULL));
7746 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
7747 				     (int (*)(struct bpf_map *map, void *value))NULL));
7748 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
7749 				     (int (*)(struct bpf_map *map, void *value))NULL));
7750 
7751 			switch (insn->imm) {
7752 			case BPF_FUNC_map_lookup_elem:
7753 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
7754 					    __bpf_call_base;
7755 				continue;
7756 			case BPF_FUNC_map_update_elem:
7757 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
7758 					    __bpf_call_base;
7759 				continue;
7760 			case BPF_FUNC_map_delete_elem:
7761 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
7762 					    __bpf_call_base;
7763 				continue;
7764 			case BPF_FUNC_map_push_elem:
7765 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
7766 					    __bpf_call_base;
7767 				continue;
7768 			case BPF_FUNC_map_pop_elem:
7769 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
7770 					    __bpf_call_base;
7771 				continue;
7772 			case BPF_FUNC_map_peek_elem:
7773 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
7774 					    __bpf_call_base;
7775 				continue;
7776 			}
7777 
7778 			goto patch_call_imm;
7779 		}
7780 
7781 patch_call_imm:
7782 		fn = env->ops->get_func_proto(insn->imm, env->prog);
7783 		/* all functions that have prototype and verifier allowed
7784 		 * programs to call them, must be real in-kernel functions
7785 		 */
7786 		if (!fn->func) {
7787 			verbose(env,
7788 				"kernel subsystem misconfigured func %s#%d\n",
7789 				func_id_name(insn->imm), insn->imm);
7790 			return -EFAULT;
7791 		}
7792 		insn->imm = fn->func - __bpf_call_base;
7793 	}
7794 
7795 	return 0;
7796 }
7797 
7798 static void free_states(struct bpf_verifier_env *env)
7799 {
7800 	struct bpf_verifier_state_list *sl, *sln;
7801 	int i;
7802 
7803 	if (!env->explored_states)
7804 		return;
7805 
7806 	for (i = 0; i < env->prog->len; i++) {
7807 		sl = env->explored_states[i];
7808 
7809 		if (sl)
7810 			while (sl != STATE_LIST_MARK) {
7811 				sln = sl->next;
7812 				free_verifier_state(&sl->state, false);
7813 				kfree(sl);
7814 				sl = sln;
7815 			}
7816 	}
7817 
7818 	kfree(env->explored_states);
7819 }
7820 
7821 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
7822 	      union bpf_attr __user *uattr)
7823 {
7824 	struct bpf_verifier_env *env;
7825 	struct bpf_verifier_log *log;
7826 	int i, len, ret = -EINVAL;
7827 	bool is_priv;
7828 
7829 	/* no program is valid */
7830 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
7831 		return -EINVAL;
7832 
7833 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
7834 	 * allocate/free it every time bpf_check() is called
7835 	 */
7836 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
7837 	if (!env)
7838 		return -ENOMEM;
7839 	log = &env->log;
7840 
7841 	len = (*prog)->len;
7842 	env->insn_aux_data =
7843 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
7844 	ret = -ENOMEM;
7845 	if (!env->insn_aux_data)
7846 		goto err_free_env;
7847 	for (i = 0; i < len; i++)
7848 		env->insn_aux_data[i].orig_idx = i;
7849 	env->prog = *prog;
7850 	env->ops = bpf_verifier_ops[env->prog->type];
7851 
7852 	/* grab the mutex to protect few globals used by verifier */
7853 	mutex_lock(&bpf_verifier_lock);
7854 
7855 	if (attr->log_level || attr->log_buf || attr->log_size) {
7856 		/* user requested verbose verifier output
7857 		 * and supplied buffer to store the verification trace
7858 		 */
7859 		log->level = attr->log_level;
7860 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
7861 		log->len_total = attr->log_size;
7862 
7863 		ret = -EINVAL;
7864 		/* log attributes have to be sane */
7865 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
7866 		    !log->level || !log->ubuf)
7867 			goto err_unlock;
7868 	}
7869 
7870 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
7871 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
7872 		env->strict_alignment = true;
7873 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
7874 		env->strict_alignment = false;
7875 
7876 	is_priv = capable(CAP_SYS_ADMIN);
7877 	env->allow_ptr_leaks = is_priv;
7878 
7879 	ret = replace_map_fd_with_map_ptr(env);
7880 	if (ret < 0)
7881 		goto skip_full_check;
7882 
7883 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
7884 		ret = bpf_prog_offload_verifier_prep(env->prog);
7885 		if (ret)
7886 			goto skip_full_check;
7887 	}
7888 
7889 	env->explored_states = kcalloc(env->prog->len,
7890 				       sizeof(struct bpf_verifier_state_list *),
7891 				       GFP_USER);
7892 	ret = -ENOMEM;
7893 	if (!env->explored_states)
7894 		goto skip_full_check;
7895 
7896 	ret = check_subprogs(env);
7897 	if (ret < 0)
7898 		goto skip_full_check;
7899 
7900 	ret = check_btf_info(env, attr, uattr);
7901 	if (ret < 0)
7902 		goto skip_full_check;
7903 
7904 	ret = check_cfg(env);
7905 	if (ret < 0)
7906 		goto skip_full_check;
7907 
7908 	ret = do_check(env);
7909 	if (env->cur_state) {
7910 		free_verifier_state(env->cur_state, true);
7911 		env->cur_state = NULL;
7912 	}
7913 
7914 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
7915 		ret = bpf_prog_offload_finalize(env);
7916 
7917 skip_full_check:
7918 	while (!pop_stack(env, NULL, NULL));
7919 	free_states(env);
7920 
7921 	if (ret == 0)
7922 		ret = check_max_stack_depth(env);
7923 
7924 	/* instruction rewrites happen after this point */
7925 	if (is_priv) {
7926 		if (ret == 0)
7927 			opt_hard_wire_dead_code_branches(env);
7928 		if (ret == 0)
7929 			ret = opt_remove_dead_code(env);
7930 		if (ret == 0)
7931 			ret = opt_remove_nops(env);
7932 	} else {
7933 		if (ret == 0)
7934 			sanitize_dead_code(env);
7935 	}
7936 
7937 	if (ret == 0)
7938 		/* program is valid, convert *(u32*)(ctx + off) accesses */
7939 		ret = convert_ctx_accesses(env);
7940 
7941 	if (ret == 0)
7942 		ret = fixup_bpf_calls(env);
7943 
7944 	if (ret == 0)
7945 		ret = fixup_call_args(env);
7946 
7947 	if (log->level && bpf_verifier_log_full(log))
7948 		ret = -ENOSPC;
7949 	if (log->level && !log->ubuf) {
7950 		ret = -EFAULT;
7951 		goto err_release_maps;
7952 	}
7953 
7954 	if (ret == 0 && env->used_map_cnt) {
7955 		/* if program passed verifier, update used_maps in bpf_prog_info */
7956 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
7957 							  sizeof(env->used_maps[0]),
7958 							  GFP_KERNEL);
7959 
7960 		if (!env->prog->aux->used_maps) {
7961 			ret = -ENOMEM;
7962 			goto err_release_maps;
7963 		}
7964 
7965 		memcpy(env->prog->aux->used_maps, env->used_maps,
7966 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
7967 		env->prog->aux->used_map_cnt = env->used_map_cnt;
7968 
7969 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
7970 		 * bpf_ld_imm64 instructions
7971 		 */
7972 		convert_pseudo_ld_imm64(env);
7973 	}
7974 
7975 	if (ret == 0)
7976 		adjust_btf_func(env);
7977 
7978 err_release_maps:
7979 	if (!env->prog->aux->used_maps)
7980 		/* if we didn't copy map pointers into bpf_prog_info, release
7981 		 * them now. Otherwise free_used_maps() will release them.
7982 		 */
7983 		release_maps(env);
7984 	*prog = env->prog;
7985 err_unlock:
7986 	mutex_unlock(&bpf_verifier_lock);
7987 	vfree(env->insn_aux_data);
7988 err_free_env:
7989 	kfree(env);
7990 	return ret;
7991 }
7992