1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ref_obj_id; 216 int func_id; 217 }; 218 219 static DEFINE_MUTEX(bpf_verifier_lock); 220 221 static const struct bpf_line_info * 222 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 223 { 224 const struct bpf_line_info *linfo; 225 const struct bpf_prog *prog; 226 u32 i, nr_linfo; 227 228 prog = env->prog; 229 nr_linfo = prog->aux->nr_linfo; 230 231 if (!nr_linfo || insn_off >= prog->len) 232 return NULL; 233 234 linfo = prog->aux->linfo; 235 for (i = 1; i < nr_linfo; i++) 236 if (insn_off < linfo[i].insn_off) 237 break; 238 239 return &linfo[i - 1]; 240 } 241 242 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 243 va_list args) 244 { 245 unsigned int n; 246 247 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 248 249 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 250 "verifier log line truncated - local buffer too short\n"); 251 252 n = min(log->len_total - log->len_used - 1, n); 253 log->kbuf[n] = '\0'; 254 255 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 256 log->len_used += n; 257 else 258 log->ubuf = NULL; 259 } 260 261 /* log_level controls verbosity level of eBPF verifier. 262 * bpf_verifier_log_write() is used to dump the verification trace to the log, 263 * so the user can figure out what's wrong with the program 264 */ 265 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 266 const char *fmt, ...) 267 { 268 va_list args; 269 270 if (!bpf_verifier_log_needed(&env->log)) 271 return; 272 273 va_start(args, fmt); 274 bpf_verifier_vlog(&env->log, fmt, args); 275 va_end(args); 276 } 277 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 278 279 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 280 { 281 struct bpf_verifier_env *env = private_data; 282 va_list args; 283 284 if (!bpf_verifier_log_needed(&env->log)) 285 return; 286 287 va_start(args, fmt); 288 bpf_verifier_vlog(&env->log, fmt, args); 289 va_end(args); 290 } 291 292 static const char *ltrim(const char *s) 293 { 294 while (isspace(*s)) 295 s++; 296 297 return s; 298 } 299 300 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 301 u32 insn_off, 302 const char *prefix_fmt, ...) 303 { 304 const struct bpf_line_info *linfo; 305 306 if (!bpf_verifier_log_needed(&env->log)) 307 return; 308 309 linfo = find_linfo(env, insn_off); 310 if (!linfo || linfo == env->prev_linfo) 311 return; 312 313 if (prefix_fmt) { 314 va_list args; 315 316 va_start(args, prefix_fmt); 317 bpf_verifier_vlog(&env->log, prefix_fmt, args); 318 va_end(args); 319 } 320 321 verbose(env, "%s\n", 322 ltrim(btf_name_by_offset(env->prog->aux->btf, 323 linfo->line_off))); 324 325 env->prev_linfo = linfo; 326 } 327 328 static bool type_is_pkt_pointer(enum bpf_reg_type type) 329 { 330 return type == PTR_TO_PACKET || 331 type == PTR_TO_PACKET_META; 332 } 333 334 static bool type_is_sk_pointer(enum bpf_reg_type type) 335 { 336 return type == PTR_TO_SOCKET || 337 type == PTR_TO_SOCK_COMMON || 338 type == PTR_TO_TCP_SOCK; 339 } 340 341 static bool reg_type_may_be_null(enum bpf_reg_type type) 342 { 343 return type == PTR_TO_MAP_VALUE_OR_NULL || 344 type == PTR_TO_SOCKET_OR_NULL || 345 type == PTR_TO_SOCK_COMMON_OR_NULL || 346 type == PTR_TO_TCP_SOCK_OR_NULL; 347 } 348 349 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 350 { 351 return reg->type == PTR_TO_MAP_VALUE && 352 map_value_has_spin_lock(reg->map_ptr); 353 } 354 355 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 356 { 357 return type == PTR_TO_SOCKET || 358 type == PTR_TO_SOCKET_OR_NULL || 359 type == PTR_TO_TCP_SOCK || 360 type == PTR_TO_TCP_SOCK_OR_NULL; 361 } 362 363 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 364 { 365 return type == ARG_PTR_TO_SOCK_COMMON; 366 } 367 368 /* Determine whether the function releases some resources allocated by another 369 * function call. The first reference type argument will be assumed to be 370 * released by release_reference(). 371 */ 372 static bool is_release_function(enum bpf_func_id func_id) 373 { 374 return func_id == BPF_FUNC_sk_release; 375 } 376 377 static bool is_acquire_function(enum bpf_func_id func_id) 378 { 379 return func_id == BPF_FUNC_sk_lookup_tcp || 380 func_id == BPF_FUNC_sk_lookup_udp; 381 } 382 383 static bool is_ptr_cast_function(enum bpf_func_id func_id) 384 { 385 return func_id == BPF_FUNC_tcp_sock || 386 func_id == BPF_FUNC_sk_fullsock; 387 } 388 389 /* string representation of 'enum bpf_reg_type' */ 390 static const char * const reg_type_str[] = { 391 [NOT_INIT] = "?", 392 [SCALAR_VALUE] = "inv", 393 [PTR_TO_CTX] = "ctx", 394 [CONST_PTR_TO_MAP] = "map_ptr", 395 [PTR_TO_MAP_VALUE] = "map_value", 396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 397 [PTR_TO_STACK] = "fp", 398 [PTR_TO_PACKET] = "pkt", 399 [PTR_TO_PACKET_META] = "pkt_meta", 400 [PTR_TO_PACKET_END] = "pkt_end", 401 [PTR_TO_FLOW_KEYS] = "flow_keys", 402 [PTR_TO_SOCKET] = "sock", 403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 404 [PTR_TO_SOCK_COMMON] = "sock_common", 405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 406 [PTR_TO_TCP_SOCK] = "tcp_sock", 407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 408 }; 409 410 static char slot_type_char[] = { 411 [STACK_INVALID] = '?', 412 [STACK_SPILL] = 'r', 413 [STACK_MISC] = 'm', 414 [STACK_ZERO] = '0', 415 }; 416 417 static void print_liveness(struct bpf_verifier_env *env, 418 enum bpf_reg_liveness live) 419 { 420 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 421 verbose(env, "_"); 422 if (live & REG_LIVE_READ) 423 verbose(env, "r"); 424 if (live & REG_LIVE_WRITTEN) 425 verbose(env, "w"); 426 if (live & REG_LIVE_DONE) 427 verbose(env, "D"); 428 } 429 430 static struct bpf_func_state *func(struct bpf_verifier_env *env, 431 const struct bpf_reg_state *reg) 432 { 433 struct bpf_verifier_state *cur = env->cur_state; 434 435 return cur->frame[reg->frameno]; 436 } 437 438 static void print_verifier_state(struct bpf_verifier_env *env, 439 const struct bpf_func_state *state) 440 { 441 const struct bpf_reg_state *reg; 442 enum bpf_reg_type t; 443 int i; 444 445 if (state->frameno) 446 verbose(env, " frame%d:", state->frameno); 447 for (i = 0; i < MAX_BPF_REG; i++) { 448 reg = &state->regs[i]; 449 t = reg->type; 450 if (t == NOT_INIT) 451 continue; 452 verbose(env, " R%d", i); 453 print_liveness(env, reg->live); 454 verbose(env, "=%s", reg_type_str[t]); 455 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 456 tnum_is_const(reg->var_off)) { 457 /* reg->off should be 0 for SCALAR_VALUE */ 458 verbose(env, "%lld", reg->var_off.value + reg->off); 459 if (t == PTR_TO_STACK) 460 verbose(env, ",call_%d", func(env, reg)->callsite); 461 } else { 462 verbose(env, "(id=%d", reg->id); 463 if (reg_type_may_be_refcounted_or_null(t)) 464 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 465 if (t != SCALAR_VALUE) 466 verbose(env, ",off=%d", reg->off); 467 if (type_is_pkt_pointer(t)) 468 verbose(env, ",r=%d", reg->range); 469 else if (t == CONST_PTR_TO_MAP || 470 t == PTR_TO_MAP_VALUE || 471 t == PTR_TO_MAP_VALUE_OR_NULL) 472 verbose(env, ",ks=%d,vs=%d", 473 reg->map_ptr->key_size, 474 reg->map_ptr->value_size); 475 if (tnum_is_const(reg->var_off)) { 476 /* Typically an immediate SCALAR_VALUE, but 477 * could be a pointer whose offset is too big 478 * for reg->off 479 */ 480 verbose(env, ",imm=%llx", reg->var_off.value); 481 } else { 482 if (reg->smin_value != reg->umin_value && 483 reg->smin_value != S64_MIN) 484 verbose(env, ",smin_value=%lld", 485 (long long)reg->smin_value); 486 if (reg->smax_value != reg->umax_value && 487 reg->smax_value != S64_MAX) 488 verbose(env, ",smax_value=%lld", 489 (long long)reg->smax_value); 490 if (reg->umin_value != 0) 491 verbose(env, ",umin_value=%llu", 492 (unsigned long long)reg->umin_value); 493 if (reg->umax_value != U64_MAX) 494 verbose(env, ",umax_value=%llu", 495 (unsigned long long)reg->umax_value); 496 if (!tnum_is_unknown(reg->var_off)) { 497 char tn_buf[48]; 498 499 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 500 verbose(env, ",var_off=%s", tn_buf); 501 } 502 } 503 verbose(env, ")"); 504 } 505 } 506 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 507 char types_buf[BPF_REG_SIZE + 1]; 508 bool valid = false; 509 int j; 510 511 for (j = 0; j < BPF_REG_SIZE; j++) { 512 if (state->stack[i].slot_type[j] != STACK_INVALID) 513 valid = true; 514 types_buf[j] = slot_type_char[ 515 state->stack[i].slot_type[j]]; 516 } 517 types_buf[BPF_REG_SIZE] = 0; 518 if (!valid) 519 continue; 520 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 521 print_liveness(env, state->stack[i].spilled_ptr.live); 522 if (state->stack[i].slot_type[0] == STACK_SPILL) 523 verbose(env, "=%s", 524 reg_type_str[state->stack[i].spilled_ptr.type]); 525 else 526 verbose(env, "=%s", types_buf); 527 } 528 if (state->acquired_refs && state->refs[0].id) { 529 verbose(env, " refs=%d", state->refs[0].id); 530 for (i = 1; i < state->acquired_refs; i++) 531 if (state->refs[i].id) 532 verbose(env, ",%d", state->refs[i].id); 533 } 534 verbose(env, "\n"); 535 } 536 537 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 538 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 539 const struct bpf_func_state *src) \ 540 { \ 541 if (!src->FIELD) \ 542 return 0; \ 543 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 544 /* internal bug, make state invalid to reject the program */ \ 545 memset(dst, 0, sizeof(*dst)); \ 546 return -EFAULT; \ 547 } \ 548 memcpy(dst->FIELD, src->FIELD, \ 549 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 550 return 0; \ 551 } 552 /* copy_reference_state() */ 553 COPY_STATE_FN(reference, acquired_refs, refs, 1) 554 /* copy_stack_state() */ 555 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 556 #undef COPY_STATE_FN 557 558 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 559 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 560 bool copy_old) \ 561 { \ 562 u32 old_size = state->COUNT; \ 563 struct bpf_##NAME##_state *new_##FIELD; \ 564 int slot = size / SIZE; \ 565 \ 566 if (size <= old_size || !size) { \ 567 if (copy_old) \ 568 return 0; \ 569 state->COUNT = slot * SIZE; \ 570 if (!size && old_size) { \ 571 kfree(state->FIELD); \ 572 state->FIELD = NULL; \ 573 } \ 574 return 0; \ 575 } \ 576 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 577 GFP_KERNEL); \ 578 if (!new_##FIELD) \ 579 return -ENOMEM; \ 580 if (copy_old) { \ 581 if (state->FIELD) \ 582 memcpy(new_##FIELD, state->FIELD, \ 583 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 584 memset(new_##FIELD + old_size / SIZE, 0, \ 585 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 586 } \ 587 state->COUNT = slot * SIZE; \ 588 kfree(state->FIELD); \ 589 state->FIELD = new_##FIELD; \ 590 return 0; \ 591 } 592 /* realloc_reference_state() */ 593 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 594 /* realloc_stack_state() */ 595 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 596 #undef REALLOC_STATE_FN 597 598 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 599 * make it consume minimal amount of memory. check_stack_write() access from 600 * the program calls into realloc_func_state() to grow the stack size. 601 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 602 * which realloc_stack_state() copies over. It points to previous 603 * bpf_verifier_state which is never reallocated. 604 */ 605 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 606 int refs_size, bool copy_old) 607 { 608 int err = realloc_reference_state(state, refs_size, copy_old); 609 if (err) 610 return err; 611 return realloc_stack_state(state, stack_size, copy_old); 612 } 613 614 /* Acquire a pointer id from the env and update the state->refs to include 615 * this new pointer reference. 616 * On success, returns a valid pointer id to associate with the register 617 * On failure, returns a negative errno. 618 */ 619 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 620 { 621 struct bpf_func_state *state = cur_func(env); 622 int new_ofs = state->acquired_refs; 623 int id, err; 624 625 err = realloc_reference_state(state, state->acquired_refs + 1, true); 626 if (err) 627 return err; 628 id = ++env->id_gen; 629 state->refs[new_ofs].id = id; 630 state->refs[new_ofs].insn_idx = insn_idx; 631 632 return id; 633 } 634 635 /* release function corresponding to acquire_reference_state(). Idempotent. */ 636 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 637 { 638 int i, last_idx; 639 640 last_idx = state->acquired_refs - 1; 641 for (i = 0; i < state->acquired_refs; i++) { 642 if (state->refs[i].id == ptr_id) { 643 if (last_idx && i != last_idx) 644 memcpy(&state->refs[i], &state->refs[last_idx], 645 sizeof(*state->refs)); 646 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 647 state->acquired_refs--; 648 return 0; 649 } 650 } 651 return -EINVAL; 652 } 653 654 static int transfer_reference_state(struct bpf_func_state *dst, 655 struct bpf_func_state *src) 656 { 657 int err = realloc_reference_state(dst, src->acquired_refs, false); 658 if (err) 659 return err; 660 err = copy_reference_state(dst, src); 661 if (err) 662 return err; 663 return 0; 664 } 665 666 static void free_func_state(struct bpf_func_state *state) 667 { 668 if (!state) 669 return; 670 kfree(state->refs); 671 kfree(state->stack); 672 kfree(state); 673 } 674 675 static void free_verifier_state(struct bpf_verifier_state *state, 676 bool free_self) 677 { 678 int i; 679 680 for (i = 0; i <= state->curframe; i++) { 681 free_func_state(state->frame[i]); 682 state->frame[i] = NULL; 683 } 684 if (free_self) 685 kfree(state); 686 } 687 688 /* copy verifier state from src to dst growing dst stack space 689 * when necessary to accommodate larger src stack 690 */ 691 static int copy_func_state(struct bpf_func_state *dst, 692 const struct bpf_func_state *src) 693 { 694 int err; 695 696 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 697 false); 698 if (err) 699 return err; 700 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 701 err = copy_reference_state(dst, src); 702 if (err) 703 return err; 704 return copy_stack_state(dst, src); 705 } 706 707 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 708 const struct bpf_verifier_state *src) 709 { 710 struct bpf_func_state *dst; 711 int i, err; 712 713 /* if dst has more stack frames then src frame, free them */ 714 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 715 free_func_state(dst_state->frame[i]); 716 dst_state->frame[i] = NULL; 717 } 718 dst_state->speculative = src->speculative; 719 dst_state->curframe = src->curframe; 720 dst_state->active_spin_lock = src->active_spin_lock; 721 for (i = 0; i <= src->curframe; i++) { 722 dst = dst_state->frame[i]; 723 if (!dst) { 724 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 725 if (!dst) 726 return -ENOMEM; 727 dst_state->frame[i] = dst; 728 } 729 err = copy_func_state(dst, src->frame[i]); 730 if (err) 731 return err; 732 } 733 return 0; 734 } 735 736 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 737 int *insn_idx) 738 { 739 struct bpf_verifier_state *cur = env->cur_state; 740 struct bpf_verifier_stack_elem *elem, *head = env->head; 741 int err; 742 743 if (env->head == NULL) 744 return -ENOENT; 745 746 if (cur) { 747 err = copy_verifier_state(cur, &head->st); 748 if (err) 749 return err; 750 } 751 if (insn_idx) 752 *insn_idx = head->insn_idx; 753 if (prev_insn_idx) 754 *prev_insn_idx = head->prev_insn_idx; 755 elem = head->next; 756 free_verifier_state(&head->st, false); 757 kfree(head); 758 env->head = elem; 759 env->stack_size--; 760 return 0; 761 } 762 763 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 764 int insn_idx, int prev_insn_idx, 765 bool speculative) 766 { 767 struct bpf_verifier_state *cur = env->cur_state; 768 struct bpf_verifier_stack_elem *elem; 769 int err; 770 771 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 772 if (!elem) 773 goto err; 774 775 elem->insn_idx = insn_idx; 776 elem->prev_insn_idx = prev_insn_idx; 777 elem->next = env->head; 778 env->head = elem; 779 env->stack_size++; 780 err = copy_verifier_state(&elem->st, cur); 781 if (err) 782 goto err; 783 elem->st.speculative |= speculative; 784 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 785 verbose(env, "BPF program is too complex\n"); 786 goto err; 787 } 788 return &elem->st; 789 err: 790 free_verifier_state(env->cur_state, true); 791 env->cur_state = NULL; 792 /* pop all elements and return */ 793 while (!pop_stack(env, NULL, NULL)); 794 return NULL; 795 } 796 797 #define CALLER_SAVED_REGS 6 798 static const int caller_saved[CALLER_SAVED_REGS] = { 799 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 800 }; 801 802 static void __mark_reg_not_init(struct bpf_reg_state *reg); 803 804 /* Mark the unknown part of a register (variable offset or scalar value) as 805 * known to have the value @imm. 806 */ 807 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 808 { 809 /* Clear id, off, and union(map_ptr, range) */ 810 memset(((u8 *)reg) + sizeof(reg->type), 0, 811 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 812 reg->var_off = tnum_const(imm); 813 reg->smin_value = (s64)imm; 814 reg->smax_value = (s64)imm; 815 reg->umin_value = imm; 816 reg->umax_value = imm; 817 } 818 819 /* Mark the 'variable offset' part of a register as zero. This should be 820 * used only on registers holding a pointer type. 821 */ 822 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 823 { 824 __mark_reg_known(reg, 0); 825 } 826 827 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 828 { 829 __mark_reg_known(reg, 0); 830 reg->type = SCALAR_VALUE; 831 } 832 833 static void mark_reg_known_zero(struct bpf_verifier_env *env, 834 struct bpf_reg_state *regs, u32 regno) 835 { 836 if (WARN_ON(regno >= MAX_BPF_REG)) { 837 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 838 /* Something bad happened, let's kill all regs */ 839 for (regno = 0; regno < MAX_BPF_REG; regno++) 840 __mark_reg_not_init(regs + regno); 841 return; 842 } 843 __mark_reg_known_zero(regs + regno); 844 } 845 846 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 847 { 848 return type_is_pkt_pointer(reg->type); 849 } 850 851 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 852 { 853 return reg_is_pkt_pointer(reg) || 854 reg->type == PTR_TO_PACKET_END; 855 } 856 857 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 858 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 859 enum bpf_reg_type which) 860 { 861 /* The register can already have a range from prior markings. 862 * This is fine as long as it hasn't been advanced from its 863 * origin. 864 */ 865 return reg->type == which && 866 reg->id == 0 && 867 reg->off == 0 && 868 tnum_equals_const(reg->var_off, 0); 869 } 870 871 /* Attempts to improve min/max values based on var_off information */ 872 static void __update_reg_bounds(struct bpf_reg_state *reg) 873 { 874 /* min signed is max(sign bit) | min(other bits) */ 875 reg->smin_value = max_t(s64, reg->smin_value, 876 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 877 /* max signed is min(sign bit) | max(other bits) */ 878 reg->smax_value = min_t(s64, reg->smax_value, 879 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 880 reg->umin_value = max(reg->umin_value, reg->var_off.value); 881 reg->umax_value = min(reg->umax_value, 882 reg->var_off.value | reg->var_off.mask); 883 } 884 885 /* Uses signed min/max values to inform unsigned, and vice-versa */ 886 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 887 { 888 /* Learn sign from signed bounds. 889 * If we cannot cross the sign boundary, then signed and unsigned bounds 890 * are the same, so combine. This works even in the negative case, e.g. 891 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 892 */ 893 if (reg->smin_value >= 0 || reg->smax_value < 0) { 894 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 895 reg->umin_value); 896 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 897 reg->umax_value); 898 return; 899 } 900 /* Learn sign from unsigned bounds. Signed bounds cross the sign 901 * boundary, so we must be careful. 902 */ 903 if ((s64)reg->umax_value >= 0) { 904 /* Positive. We can't learn anything from the smin, but smax 905 * is positive, hence safe. 906 */ 907 reg->smin_value = reg->umin_value; 908 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 909 reg->umax_value); 910 } else if ((s64)reg->umin_value < 0) { 911 /* Negative. We can't learn anything from the smax, but smin 912 * is negative, hence safe. 913 */ 914 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 915 reg->umin_value); 916 reg->smax_value = reg->umax_value; 917 } 918 } 919 920 /* Attempts to improve var_off based on unsigned min/max information */ 921 static void __reg_bound_offset(struct bpf_reg_state *reg) 922 { 923 reg->var_off = tnum_intersect(reg->var_off, 924 tnum_range(reg->umin_value, 925 reg->umax_value)); 926 } 927 928 /* Reset the min/max bounds of a register */ 929 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 930 { 931 reg->smin_value = S64_MIN; 932 reg->smax_value = S64_MAX; 933 reg->umin_value = 0; 934 reg->umax_value = U64_MAX; 935 } 936 937 /* Mark a register as having a completely unknown (scalar) value. */ 938 static void __mark_reg_unknown(struct bpf_reg_state *reg) 939 { 940 /* 941 * Clear type, id, off, and union(map_ptr, range) and 942 * padding between 'type' and union 943 */ 944 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 945 reg->type = SCALAR_VALUE; 946 reg->var_off = tnum_unknown; 947 reg->frameno = 0; 948 __mark_reg_unbounded(reg); 949 } 950 951 static void mark_reg_unknown(struct bpf_verifier_env *env, 952 struct bpf_reg_state *regs, u32 regno) 953 { 954 if (WARN_ON(regno >= MAX_BPF_REG)) { 955 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 956 /* Something bad happened, let's kill all regs except FP */ 957 for (regno = 0; regno < BPF_REG_FP; regno++) 958 __mark_reg_not_init(regs + regno); 959 return; 960 } 961 __mark_reg_unknown(regs + regno); 962 } 963 964 static void __mark_reg_not_init(struct bpf_reg_state *reg) 965 { 966 __mark_reg_unknown(reg); 967 reg->type = NOT_INIT; 968 } 969 970 static void mark_reg_not_init(struct bpf_verifier_env *env, 971 struct bpf_reg_state *regs, u32 regno) 972 { 973 if (WARN_ON(regno >= MAX_BPF_REG)) { 974 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 975 /* Something bad happened, let's kill all regs except FP */ 976 for (regno = 0; regno < BPF_REG_FP; regno++) 977 __mark_reg_not_init(regs + regno); 978 return; 979 } 980 __mark_reg_not_init(regs + regno); 981 } 982 983 static void init_reg_state(struct bpf_verifier_env *env, 984 struct bpf_func_state *state) 985 { 986 struct bpf_reg_state *regs = state->regs; 987 int i; 988 989 for (i = 0; i < MAX_BPF_REG; i++) { 990 mark_reg_not_init(env, regs, i); 991 regs[i].live = REG_LIVE_NONE; 992 regs[i].parent = NULL; 993 } 994 995 /* frame pointer */ 996 regs[BPF_REG_FP].type = PTR_TO_STACK; 997 mark_reg_known_zero(env, regs, BPF_REG_FP); 998 regs[BPF_REG_FP].frameno = state->frameno; 999 1000 /* 1st arg to a function */ 1001 regs[BPF_REG_1].type = PTR_TO_CTX; 1002 mark_reg_known_zero(env, regs, BPF_REG_1); 1003 } 1004 1005 #define BPF_MAIN_FUNC (-1) 1006 static void init_func_state(struct bpf_verifier_env *env, 1007 struct bpf_func_state *state, 1008 int callsite, int frameno, int subprogno) 1009 { 1010 state->callsite = callsite; 1011 state->frameno = frameno; 1012 state->subprogno = subprogno; 1013 init_reg_state(env, state); 1014 } 1015 1016 enum reg_arg_type { 1017 SRC_OP, /* register is used as source operand */ 1018 DST_OP, /* register is used as destination operand */ 1019 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1020 }; 1021 1022 static int cmp_subprogs(const void *a, const void *b) 1023 { 1024 return ((struct bpf_subprog_info *)a)->start - 1025 ((struct bpf_subprog_info *)b)->start; 1026 } 1027 1028 static int find_subprog(struct bpf_verifier_env *env, int off) 1029 { 1030 struct bpf_subprog_info *p; 1031 1032 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1033 sizeof(env->subprog_info[0]), cmp_subprogs); 1034 if (!p) 1035 return -ENOENT; 1036 return p - env->subprog_info; 1037 1038 } 1039 1040 static int add_subprog(struct bpf_verifier_env *env, int off) 1041 { 1042 int insn_cnt = env->prog->len; 1043 int ret; 1044 1045 if (off >= insn_cnt || off < 0) { 1046 verbose(env, "call to invalid destination\n"); 1047 return -EINVAL; 1048 } 1049 ret = find_subprog(env, off); 1050 if (ret >= 0) 1051 return 0; 1052 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1053 verbose(env, "too many subprograms\n"); 1054 return -E2BIG; 1055 } 1056 env->subprog_info[env->subprog_cnt++].start = off; 1057 sort(env->subprog_info, env->subprog_cnt, 1058 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1059 return 0; 1060 } 1061 1062 static int check_subprogs(struct bpf_verifier_env *env) 1063 { 1064 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1065 struct bpf_subprog_info *subprog = env->subprog_info; 1066 struct bpf_insn *insn = env->prog->insnsi; 1067 int insn_cnt = env->prog->len; 1068 1069 /* Add entry function. */ 1070 ret = add_subprog(env, 0); 1071 if (ret < 0) 1072 return ret; 1073 1074 /* determine subprog starts. The end is one before the next starts */ 1075 for (i = 0; i < insn_cnt; i++) { 1076 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1077 continue; 1078 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1079 continue; 1080 if (!env->allow_ptr_leaks) { 1081 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1082 return -EPERM; 1083 } 1084 ret = add_subprog(env, i + insn[i].imm + 1); 1085 if (ret < 0) 1086 return ret; 1087 } 1088 1089 /* Add a fake 'exit' subprog which could simplify subprog iteration 1090 * logic. 'subprog_cnt' should not be increased. 1091 */ 1092 subprog[env->subprog_cnt].start = insn_cnt; 1093 1094 if (env->log.level > 1) 1095 for (i = 0; i < env->subprog_cnt; i++) 1096 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1097 1098 /* now check that all jumps are within the same subprog */ 1099 subprog_start = subprog[cur_subprog].start; 1100 subprog_end = subprog[cur_subprog + 1].start; 1101 for (i = 0; i < insn_cnt; i++) { 1102 u8 code = insn[i].code; 1103 1104 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1105 goto next; 1106 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1107 goto next; 1108 off = i + insn[i].off + 1; 1109 if (off < subprog_start || off >= subprog_end) { 1110 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1111 return -EINVAL; 1112 } 1113 next: 1114 if (i == subprog_end - 1) { 1115 /* to avoid fall-through from one subprog into another 1116 * the last insn of the subprog should be either exit 1117 * or unconditional jump back 1118 */ 1119 if (code != (BPF_JMP | BPF_EXIT) && 1120 code != (BPF_JMP | BPF_JA)) { 1121 verbose(env, "last insn is not an exit or jmp\n"); 1122 return -EINVAL; 1123 } 1124 subprog_start = subprog_end; 1125 cur_subprog++; 1126 if (cur_subprog < env->subprog_cnt) 1127 subprog_end = subprog[cur_subprog + 1].start; 1128 } 1129 } 1130 return 0; 1131 } 1132 1133 /* Parentage chain of this register (or stack slot) should take care of all 1134 * issues like callee-saved registers, stack slot allocation time, etc. 1135 */ 1136 static int mark_reg_read(struct bpf_verifier_env *env, 1137 const struct bpf_reg_state *state, 1138 struct bpf_reg_state *parent) 1139 { 1140 bool writes = parent == state->parent; /* Observe write marks */ 1141 1142 while (parent) { 1143 /* if read wasn't screened by an earlier write ... */ 1144 if (writes && state->live & REG_LIVE_WRITTEN) 1145 break; 1146 if (parent->live & REG_LIVE_DONE) { 1147 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1148 reg_type_str[parent->type], 1149 parent->var_off.value, parent->off); 1150 return -EFAULT; 1151 } 1152 /* ... then we depend on parent's value */ 1153 parent->live |= REG_LIVE_READ; 1154 state = parent; 1155 parent = state->parent; 1156 writes = true; 1157 } 1158 return 0; 1159 } 1160 1161 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1162 enum reg_arg_type t) 1163 { 1164 struct bpf_verifier_state *vstate = env->cur_state; 1165 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1166 struct bpf_reg_state *regs = state->regs; 1167 1168 if (regno >= MAX_BPF_REG) { 1169 verbose(env, "R%d is invalid\n", regno); 1170 return -EINVAL; 1171 } 1172 1173 if (t == SRC_OP) { 1174 /* check whether register used as source operand can be read */ 1175 if (regs[regno].type == NOT_INIT) { 1176 verbose(env, "R%d !read_ok\n", regno); 1177 return -EACCES; 1178 } 1179 /* We don't need to worry about FP liveness because it's read-only */ 1180 if (regno != BPF_REG_FP) 1181 return mark_reg_read(env, ®s[regno], 1182 regs[regno].parent); 1183 } else { 1184 /* check whether register used as dest operand can be written to */ 1185 if (regno == BPF_REG_FP) { 1186 verbose(env, "frame pointer is read only\n"); 1187 return -EACCES; 1188 } 1189 regs[regno].live |= REG_LIVE_WRITTEN; 1190 if (t == DST_OP) 1191 mark_reg_unknown(env, regs, regno); 1192 } 1193 return 0; 1194 } 1195 1196 static bool is_spillable_regtype(enum bpf_reg_type type) 1197 { 1198 switch (type) { 1199 case PTR_TO_MAP_VALUE: 1200 case PTR_TO_MAP_VALUE_OR_NULL: 1201 case PTR_TO_STACK: 1202 case PTR_TO_CTX: 1203 case PTR_TO_PACKET: 1204 case PTR_TO_PACKET_META: 1205 case PTR_TO_PACKET_END: 1206 case PTR_TO_FLOW_KEYS: 1207 case CONST_PTR_TO_MAP: 1208 case PTR_TO_SOCKET: 1209 case PTR_TO_SOCKET_OR_NULL: 1210 case PTR_TO_SOCK_COMMON: 1211 case PTR_TO_SOCK_COMMON_OR_NULL: 1212 case PTR_TO_TCP_SOCK: 1213 case PTR_TO_TCP_SOCK_OR_NULL: 1214 return true; 1215 default: 1216 return false; 1217 } 1218 } 1219 1220 /* Does this register contain a constant zero? */ 1221 static bool register_is_null(struct bpf_reg_state *reg) 1222 { 1223 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1224 } 1225 1226 /* check_stack_read/write functions track spill/fill of registers, 1227 * stack boundary and alignment are checked in check_mem_access() 1228 */ 1229 static int check_stack_write(struct bpf_verifier_env *env, 1230 struct bpf_func_state *state, /* func where register points to */ 1231 int off, int size, int value_regno, int insn_idx) 1232 { 1233 struct bpf_func_state *cur; /* state of the current function */ 1234 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1235 enum bpf_reg_type type; 1236 1237 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1238 state->acquired_refs, true); 1239 if (err) 1240 return err; 1241 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1242 * so it's aligned access and [off, off + size) are within stack limits 1243 */ 1244 if (!env->allow_ptr_leaks && 1245 state->stack[spi].slot_type[0] == STACK_SPILL && 1246 size != BPF_REG_SIZE) { 1247 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1248 return -EACCES; 1249 } 1250 1251 cur = env->cur_state->frame[env->cur_state->curframe]; 1252 if (value_regno >= 0 && 1253 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1254 1255 /* register containing pointer is being spilled into stack */ 1256 if (size != BPF_REG_SIZE) { 1257 verbose(env, "invalid size of register spill\n"); 1258 return -EACCES; 1259 } 1260 1261 if (state != cur && type == PTR_TO_STACK) { 1262 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1263 return -EINVAL; 1264 } 1265 1266 /* save register state */ 1267 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1268 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1269 1270 for (i = 0; i < BPF_REG_SIZE; i++) { 1271 if (state->stack[spi].slot_type[i] == STACK_MISC && 1272 !env->allow_ptr_leaks) { 1273 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1274 int soff = (-spi - 1) * BPF_REG_SIZE; 1275 1276 /* detected reuse of integer stack slot with a pointer 1277 * which means either llvm is reusing stack slot or 1278 * an attacker is trying to exploit CVE-2018-3639 1279 * (speculative store bypass) 1280 * Have to sanitize that slot with preemptive 1281 * store of zero. 1282 */ 1283 if (*poff && *poff != soff) { 1284 /* disallow programs where single insn stores 1285 * into two different stack slots, since verifier 1286 * cannot sanitize them 1287 */ 1288 verbose(env, 1289 "insn %d cannot access two stack slots fp%d and fp%d", 1290 insn_idx, *poff, soff); 1291 return -EINVAL; 1292 } 1293 *poff = soff; 1294 } 1295 state->stack[spi].slot_type[i] = STACK_SPILL; 1296 } 1297 } else { 1298 u8 type = STACK_MISC; 1299 1300 /* regular write of data into stack destroys any spilled ptr */ 1301 state->stack[spi].spilled_ptr.type = NOT_INIT; 1302 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1303 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1304 for (i = 0; i < BPF_REG_SIZE; i++) 1305 state->stack[spi].slot_type[i] = STACK_MISC; 1306 1307 /* only mark the slot as written if all 8 bytes were written 1308 * otherwise read propagation may incorrectly stop too soon 1309 * when stack slots are partially written. 1310 * This heuristic means that read propagation will be 1311 * conservative, since it will add reg_live_read marks 1312 * to stack slots all the way to first state when programs 1313 * writes+reads less than 8 bytes 1314 */ 1315 if (size == BPF_REG_SIZE) 1316 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1317 1318 /* when we zero initialize stack slots mark them as such */ 1319 if (value_regno >= 0 && 1320 register_is_null(&cur->regs[value_regno])) 1321 type = STACK_ZERO; 1322 1323 /* Mark slots affected by this stack write. */ 1324 for (i = 0; i < size; i++) 1325 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1326 type; 1327 } 1328 return 0; 1329 } 1330 1331 static int check_stack_read(struct bpf_verifier_env *env, 1332 struct bpf_func_state *reg_state /* func where register points to */, 1333 int off, int size, int value_regno) 1334 { 1335 struct bpf_verifier_state *vstate = env->cur_state; 1336 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1337 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1338 u8 *stype; 1339 1340 if (reg_state->allocated_stack <= slot) { 1341 verbose(env, "invalid read from stack off %d+0 size %d\n", 1342 off, size); 1343 return -EACCES; 1344 } 1345 stype = reg_state->stack[spi].slot_type; 1346 1347 if (stype[0] == STACK_SPILL) { 1348 if (size != BPF_REG_SIZE) { 1349 verbose(env, "invalid size of register spill\n"); 1350 return -EACCES; 1351 } 1352 for (i = 1; i < BPF_REG_SIZE; i++) { 1353 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1354 verbose(env, "corrupted spill memory\n"); 1355 return -EACCES; 1356 } 1357 } 1358 1359 if (value_regno >= 0) { 1360 /* restore register state from stack */ 1361 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1362 /* mark reg as written since spilled pointer state likely 1363 * has its liveness marks cleared by is_state_visited() 1364 * which resets stack/reg liveness for state transitions 1365 */ 1366 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1367 } 1368 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1369 reg_state->stack[spi].spilled_ptr.parent); 1370 return 0; 1371 } else { 1372 int zeros = 0; 1373 1374 for (i = 0; i < size; i++) { 1375 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1376 continue; 1377 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1378 zeros++; 1379 continue; 1380 } 1381 verbose(env, "invalid read from stack off %d+%d size %d\n", 1382 off, i, size); 1383 return -EACCES; 1384 } 1385 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1386 reg_state->stack[spi].spilled_ptr.parent); 1387 if (value_regno >= 0) { 1388 if (zeros == size) { 1389 /* any size read into register is zero extended, 1390 * so the whole register == const_zero 1391 */ 1392 __mark_reg_const_zero(&state->regs[value_regno]); 1393 } else { 1394 /* have read misc data from the stack */ 1395 mark_reg_unknown(env, state->regs, value_regno); 1396 } 1397 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1398 } 1399 return 0; 1400 } 1401 } 1402 1403 static int check_stack_access(struct bpf_verifier_env *env, 1404 const struct bpf_reg_state *reg, 1405 int off, int size) 1406 { 1407 /* Stack accesses must be at a fixed offset, so that we 1408 * can determine what type of data were returned. See 1409 * check_stack_read(). 1410 */ 1411 if (!tnum_is_const(reg->var_off)) { 1412 char tn_buf[48]; 1413 1414 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1415 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1416 tn_buf, off, size); 1417 return -EACCES; 1418 } 1419 1420 if (off >= 0 || off < -MAX_BPF_STACK) { 1421 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1422 return -EACCES; 1423 } 1424 1425 return 0; 1426 } 1427 1428 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1429 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1430 int size, bool zero_size_allowed) 1431 { 1432 struct bpf_reg_state *regs = cur_regs(env); 1433 struct bpf_map *map = regs[regno].map_ptr; 1434 1435 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1436 off + size > map->value_size) { 1437 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1438 map->value_size, off, size); 1439 return -EACCES; 1440 } 1441 return 0; 1442 } 1443 1444 /* check read/write into a map element with possible variable offset */ 1445 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1446 int off, int size, bool zero_size_allowed) 1447 { 1448 struct bpf_verifier_state *vstate = env->cur_state; 1449 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1450 struct bpf_reg_state *reg = &state->regs[regno]; 1451 int err; 1452 1453 /* We may have adjusted the register to this map value, so we 1454 * need to try adding each of min_value and max_value to off 1455 * to make sure our theoretical access will be safe. 1456 */ 1457 if (env->log.level) 1458 print_verifier_state(env, state); 1459 1460 /* The minimum value is only important with signed 1461 * comparisons where we can't assume the floor of a 1462 * value is 0. If we are using signed variables for our 1463 * index'es we need to make sure that whatever we use 1464 * will have a set floor within our range. 1465 */ 1466 if (reg->smin_value < 0 && 1467 (reg->smin_value == S64_MIN || 1468 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1469 reg->smin_value + off < 0)) { 1470 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1471 regno); 1472 return -EACCES; 1473 } 1474 err = __check_map_access(env, regno, reg->smin_value + off, size, 1475 zero_size_allowed); 1476 if (err) { 1477 verbose(env, "R%d min value is outside of the array range\n", 1478 regno); 1479 return err; 1480 } 1481 1482 /* If we haven't set a max value then we need to bail since we can't be 1483 * sure we won't do bad things. 1484 * If reg->umax_value + off could overflow, treat that as unbounded too. 1485 */ 1486 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1487 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1488 regno); 1489 return -EACCES; 1490 } 1491 err = __check_map_access(env, regno, reg->umax_value + off, size, 1492 zero_size_allowed); 1493 if (err) 1494 verbose(env, "R%d max value is outside of the array range\n", 1495 regno); 1496 1497 if (map_value_has_spin_lock(reg->map_ptr)) { 1498 u32 lock = reg->map_ptr->spin_lock_off; 1499 1500 /* if any part of struct bpf_spin_lock can be touched by 1501 * load/store reject this program. 1502 * To check that [x1, x2) overlaps with [y1, y2) 1503 * it is sufficient to check x1 < y2 && y1 < x2. 1504 */ 1505 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 1506 lock < reg->umax_value + off + size) { 1507 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 1508 return -EACCES; 1509 } 1510 } 1511 return err; 1512 } 1513 1514 #define MAX_PACKET_OFF 0xffff 1515 1516 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1517 const struct bpf_call_arg_meta *meta, 1518 enum bpf_access_type t) 1519 { 1520 switch (env->prog->type) { 1521 /* Program types only with direct read access go here! */ 1522 case BPF_PROG_TYPE_LWT_IN: 1523 case BPF_PROG_TYPE_LWT_OUT: 1524 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1525 case BPF_PROG_TYPE_SK_REUSEPORT: 1526 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1527 case BPF_PROG_TYPE_CGROUP_SKB: 1528 if (t == BPF_WRITE) 1529 return false; 1530 /* fallthrough */ 1531 1532 /* Program types with direct read + write access go here! */ 1533 case BPF_PROG_TYPE_SCHED_CLS: 1534 case BPF_PROG_TYPE_SCHED_ACT: 1535 case BPF_PROG_TYPE_XDP: 1536 case BPF_PROG_TYPE_LWT_XMIT: 1537 case BPF_PROG_TYPE_SK_SKB: 1538 case BPF_PROG_TYPE_SK_MSG: 1539 if (meta) 1540 return meta->pkt_access; 1541 1542 env->seen_direct_write = true; 1543 return true; 1544 default: 1545 return false; 1546 } 1547 } 1548 1549 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1550 int off, int size, bool zero_size_allowed) 1551 { 1552 struct bpf_reg_state *regs = cur_regs(env); 1553 struct bpf_reg_state *reg = ®s[regno]; 1554 1555 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1556 (u64)off + size > reg->range) { 1557 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1558 off, size, regno, reg->id, reg->off, reg->range); 1559 return -EACCES; 1560 } 1561 return 0; 1562 } 1563 1564 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1565 int size, bool zero_size_allowed) 1566 { 1567 struct bpf_reg_state *regs = cur_regs(env); 1568 struct bpf_reg_state *reg = ®s[regno]; 1569 int err; 1570 1571 /* We may have added a variable offset to the packet pointer; but any 1572 * reg->range we have comes after that. We are only checking the fixed 1573 * offset. 1574 */ 1575 1576 /* We don't allow negative numbers, because we aren't tracking enough 1577 * detail to prove they're safe. 1578 */ 1579 if (reg->smin_value < 0) { 1580 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1581 regno); 1582 return -EACCES; 1583 } 1584 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1585 if (err) { 1586 verbose(env, "R%d offset is outside of the packet\n", regno); 1587 return err; 1588 } 1589 1590 /* __check_packet_access has made sure "off + size - 1" is within u16. 1591 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1592 * otherwise find_good_pkt_pointers would have refused to set range info 1593 * that __check_packet_access would have rejected this pkt access. 1594 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1595 */ 1596 env->prog->aux->max_pkt_offset = 1597 max_t(u32, env->prog->aux->max_pkt_offset, 1598 off + reg->umax_value + size - 1); 1599 1600 return err; 1601 } 1602 1603 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1604 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1605 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1606 { 1607 struct bpf_insn_access_aux info = { 1608 .reg_type = *reg_type, 1609 }; 1610 1611 if (env->ops->is_valid_access && 1612 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1613 /* A non zero info.ctx_field_size indicates that this field is a 1614 * candidate for later verifier transformation to load the whole 1615 * field and then apply a mask when accessed with a narrower 1616 * access than actual ctx access size. A zero info.ctx_field_size 1617 * will only allow for whole field access and rejects any other 1618 * type of narrower access. 1619 */ 1620 *reg_type = info.reg_type; 1621 1622 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1623 /* remember the offset of last byte accessed in ctx */ 1624 if (env->prog->aux->max_ctx_offset < off + size) 1625 env->prog->aux->max_ctx_offset = off + size; 1626 return 0; 1627 } 1628 1629 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1630 return -EACCES; 1631 } 1632 1633 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1634 int size) 1635 { 1636 if (size < 0 || off < 0 || 1637 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1638 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1639 off, size); 1640 return -EACCES; 1641 } 1642 return 0; 1643 } 1644 1645 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1646 u32 regno, int off, int size, 1647 enum bpf_access_type t) 1648 { 1649 struct bpf_reg_state *regs = cur_regs(env); 1650 struct bpf_reg_state *reg = ®s[regno]; 1651 struct bpf_insn_access_aux info = {}; 1652 bool valid; 1653 1654 if (reg->smin_value < 0) { 1655 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1656 regno); 1657 return -EACCES; 1658 } 1659 1660 switch (reg->type) { 1661 case PTR_TO_SOCK_COMMON: 1662 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 1663 break; 1664 case PTR_TO_SOCKET: 1665 valid = bpf_sock_is_valid_access(off, size, t, &info); 1666 break; 1667 case PTR_TO_TCP_SOCK: 1668 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 1669 break; 1670 default: 1671 valid = false; 1672 } 1673 1674 1675 if (valid) { 1676 env->insn_aux_data[insn_idx].ctx_field_size = 1677 info.ctx_field_size; 1678 return 0; 1679 } 1680 1681 verbose(env, "R%d invalid %s access off=%d size=%d\n", 1682 regno, reg_type_str[reg->type], off, size); 1683 1684 return -EACCES; 1685 } 1686 1687 static bool __is_pointer_value(bool allow_ptr_leaks, 1688 const struct bpf_reg_state *reg) 1689 { 1690 if (allow_ptr_leaks) 1691 return false; 1692 1693 return reg->type != SCALAR_VALUE; 1694 } 1695 1696 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1697 { 1698 return cur_regs(env) + regno; 1699 } 1700 1701 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1702 { 1703 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1704 } 1705 1706 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1707 { 1708 const struct bpf_reg_state *reg = reg_state(env, regno); 1709 1710 return reg->type == PTR_TO_CTX; 1711 } 1712 1713 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 1714 { 1715 const struct bpf_reg_state *reg = reg_state(env, regno); 1716 1717 return type_is_sk_pointer(reg->type); 1718 } 1719 1720 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1721 { 1722 const struct bpf_reg_state *reg = reg_state(env, regno); 1723 1724 return type_is_pkt_pointer(reg->type); 1725 } 1726 1727 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1728 { 1729 const struct bpf_reg_state *reg = reg_state(env, regno); 1730 1731 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1732 return reg->type == PTR_TO_FLOW_KEYS; 1733 } 1734 1735 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1736 const struct bpf_reg_state *reg, 1737 int off, int size, bool strict) 1738 { 1739 struct tnum reg_off; 1740 int ip_align; 1741 1742 /* Byte size accesses are always allowed. */ 1743 if (!strict || size == 1) 1744 return 0; 1745 1746 /* For platforms that do not have a Kconfig enabling 1747 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1748 * NET_IP_ALIGN is universally set to '2'. And on platforms 1749 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1750 * to this code only in strict mode where we want to emulate 1751 * the NET_IP_ALIGN==2 checking. Therefore use an 1752 * unconditional IP align value of '2'. 1753 */ 1754 ip_align = 2; 1755 1756 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1757 if (!tnum_is_aligned(reg_off, size)) { 1758 char tn_buf[48]; 1759 1760 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1761 verbose(env, 1762 "misaligned packet access off %d+%s+%d+%d size %d\n", 1763 ip_align, tn_buf, reg->off, off, size); 1764 return -EACCES; 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1771 const struct bpf_reg_state *reg, 1772 const char *pointer_desc, 1773 int off, int size, bool strict) 1774 { 1775 struct tnum reg_off; 1776 1777 /* Byte size accesses are always allowed. */ 1778 if (!strict || size == 1) 1779 return 0; 1780 1781 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1782 if (!tnum_is_aligned(reg_off, size)) { 1783 char tn_buf[48]; 1784 1785 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1786 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1787 pointer_desc, tn_buf, reg->off, off, size); 1788 return -EACCES; 1789 } 1790 1791 return 0; 1792 } 1793 1794 static int check_ptr_alignment(struct bpf_verifier_env *env, 1795 const struct bpf_reg_state *reg, int off, 1796 int size, bool strict_alignment_once) 1797 { 1798 bool strict = env->strict_alignment || strict_alignment_once; 1799 const char *pointer_desc = ""; 1800 1801 switch (reg->type) { 1802 case PTR_TO_PACKET: 1803 case PTR_TO_PACKET_META: 1804 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1805 * right in front, treat it the very same way. 1806 */ 1807 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1808 case PTR_TO_FLOW_KEYS: 1809 pointer_desc = "flow keys "; 1810 break; 1811 case PTR_TO_MAP_VALUE: 1812 pointer_desc = "value "; 1813 break; 1814 case PTR_TO_CTX: 1815 pointer_desc = "context "; 1816 break; 1817 case PTR_TO_STACK: 1818 pointer_desc = "stack "; 1819 /* The stack spill tracking logic in check_stack_write() 1820 * and check_stack_read() relies on stack accesses being 1821 * aligned. 1822 */ 1823 strict = true; 1824 break; 1825 case PTR_TO_SOCKET: 1826 pointer_desc = "sock "; 1827 break; 1828 case PTR_TO_SOCK_COMMON: 1829 pointer_desc = "sock_common "; 1830 break; 1831 case PTR_TO_TCP_SOCK: 1832 pointer_desc = "tcp_sock "; 1833 break; 1834 default: 1835 break; 1836 } 1837 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1838 strict); 1839 } 1840 1841 static int update_stack_depth(struct bpf_verifier_env *env, 1842 const struct bpf_func_state *func, 1843 int off) 1844 { 1845 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1846 1847 if (stack >= -off) 1848 return 0; 1849 1850 /* update known max for given subprogram */ 1851 env->subprog_info[func->subprogno].stack_depth = -off; 1852 return 0; 1853 } 1854 1855 /* starting from main bpf function walk all instructions of the function 1856 * and recursively walk all callees that given function can call. 1857 * Ignore jump and exit insns. 1858 * Since recursion is prevented by check_cfg() this algorithm 1859 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1860 */ 1861 static int check_max_stack_depth(struct bpf_verifier_env *env) 1862 { 1863 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1864 struct bpf_subprog_info *subprog = env->subprog_info; 1865 struct bpf_insn *insn = env->prog->insnsi; 1866 int ret_insn[MAX_CALL_FRAMES]; 1867 int ret_prog[MAX_CALL_FRAMES]; 1868 1869 process_func: 1870 /* round up to 32-bytes, since this is granularity 1871 * of interpreter stack size 1872 */ 1873 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1874 if (depth > MAX_BPF_STACK) { 1875 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1876 frame + 1, depth); 1877 return -EACCES; 1878 } 1879 continue_func: 1880 subprog_end = subprog[idx + 1].start; 1881 for (; i < subprog_end; i++) { 1882 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1883 continue; 1884 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1885 continue; 1886 /* remember insn and function to return to */ 1887 ret_insn[frame] = i + 1; 1888 ret_prog[frame] = idx; 1889 1890 /* find the callee */ 1891 i = i + insn[i].imm + 1; 1892 idx = find_subprog(env, i); 1893 if (idx < 0) { 1894 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1895 i); 1896 return -EFAULT; 1897 } 1898 frame++; 1899 if (frame >= MAX_CALL_FRAMES) { 1900 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1901 return -EFAULT; 1902 } 1903 goto process_func; 1904 } 1905 /* end of for() loop means the last insn of the 'subprog' 1906 * was reached. Doesn't matter whether it was JA or EXIT 1907 */ 1908 if (frame == 0) 1909 return 0; 1910 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1911 frame--; 1912 i = ret_insn[frame]; 1913 idx = ret_prog[frame]; 1914 goto continue_func; 1915 } 1916 1917 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1918 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1919 const struct bpf_insn *insn, int idx) 1920 { 1921 int start = idx + insn->imm + 1, subprog; 1922 1923 subprog = find_subprog(env, start); 1924 if (subprog < 0) { 1925 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1926 start); 1927 return -EFAULT; 1928 } 1929 return env->subprog_info[subprog].stack_depth; 1930 } 1931 #endif 1932 1933 static int check_ctx_reg(struct bpf_verifier_env *env, 1934 const struct bpf_reg_state *reg, int regno) 1935 { 1936 /* Access to ctx or passing it to a helper is only allowed in 1937 * its original, unmodified form. 1938 */ 1939 1940 if (reg->off) { 1941 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1942 regno, reg->off); 1943 return -EACCES; 1944 } 1945 1946 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1947 char tn_buf[48]; 1948 1949 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1950 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1951 return -EACCES; 1952 } 1953 1954 return 0; 1955 } 1956 1957 /* truncate register to smaller size (in bytes) 1958 * must be called with size < BPF_REG_SIZE 1959 */ 1960 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1961 { 1962 u64 mask; 1963 1964 /* clear high bits in bit representation */ 1965 reg->var_off = tnum_cast(reg->var_off, size); 1966 1967 /* fix arithmetic bounds */ 1968 mask = ((u64)1 << (size * 8)) - 1; 1969 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1970 reg->umin_value &= mask; 1971 reg->umax_value &= mask; 1972 } else { 1973 reg->umin_value = 0; 1974 reg->umax_value = mask; 1975 } 1976 reg->smin_value = reg->umin_value; 1977 reg->smax_value = reg->umax_value; 1978 } 1979 1980 /* check whether memory at (regno + off) is accessible for t = (read | write) 1981 * if t==write, value_regno is a register which value is stored into memory 1982 * if t==read, value_regno is a register which will receive the value from memory 1983 * if t==write && value_regno==-1, some unknown value is stored into memory 1984 * if t==read && value_regno==-1, don't care what we read from memory 1985 */ 1986 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1987 int off, int bpf_size, enum bpf_access_type t, 1988 int value_regno, bool strict_alignment_once) 1989 { 1990 struct bpf_reg_state *regs = cur_regs(env); 1991 struct bpf_reg_state *reg = regs + regno; 1992 struct bpf_func_state *state; 1993 int size, err = 0; 1994 1995 size = bpf_size_to_bytes(bpf_size); 1996 if (size < 0) 1997 return size; 1998 1999 /* alignment checks will add in reg->off themselves */ 2000 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2001 if (err) 2002 return err; 2003 2004 /* for access checks, reg->off is just part of off */ 2005 off += reg->off; 2006 2007 if (reg->type == PTR_TO_MAP_VALUE) { 2008 if (t == BPF_WRITE && value_regno >= 0 && 2009 is_pointer_value(env, value_regno)) { 2010 verbose(env, "R%d leaks addr into map\n", value_regno); 2011 return -EACCES; 2012 } 2013 2014 err = check_map_access(env, regno, off, size, false); 2015 if (!err && t == BPF_READ && value_regno >= 0) 2016 mark_reg_unknown(env, regs, value_regno); 2017 2018 } else if (reg->type == PTR_TO_CTX) { 2019 enum bpf_reg_type reg_type = SCALAR_VALUE; 2020 2021 if (t == BPF_WRITE && value_regno >= 0 && 2022 is_pointer_value(env, value_regno)) { 2023 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2024 return -EACCES; 2025 } 2026 2027 err = check_ctx_reg(env, reg, regno); 2028 if (err < 0) 2029 return err; 2030 2031 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2032 if (!err && t == BPF_READ && value_regno >= 0) { 2033 /* ctx access returns either a scalar, or a 2034 * PTR_TO_PACKET[_META,_END]. In the latter 2035 * case, we know the offset is zero. 2036 */ 2037 if (reg_type == SCALAR_VALUE) { 2038 mark_reg_unknown(env, regs, value_regno); 2039 } else { 2040 mark_reg_known_zero(env, regs, 2041 value_regno); 2042 if (reg_type_may_be_null(reg_type)) 2043 regs[value_regno].id = ++env->id_gen; 2044 } 2045 regs[value_regno].type = reg_type; 2046 } 2047 2048 } else if (reg->type == PTR_TO_STACK) { 2049 off += reg->var_off.value; 2050 err = check_stack_access(env, reg, off, size); 2051 if (err) 2052 return err; 2053 2054 state = func(env, reg); 2055 err = update_stack_depth(env, state, off); 2056 if (err) 2057 return err; 2058 2059 if (t == BPF_WRITE) 2060 err = check_stack_write(env, state, off, size, 2061 value_regno, insn_idx); 2062 else 2063 err = check_stack_read(env, state, off, size, 2064 value_regno); 2065 } else if (reg_is_pkt_pointer(reg)) { 2066 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2067 verbose(env, "cannot write into packet\n"); 2068 return -EACCES; 2069 } 2070 if (t == BPF_WRITE && value_regno >= 0 && 2071 is_pointer_value(env, value_regno)) { 2072 verbose(env, "R%d leaks addr into packet\n", 2073 value_regno); 2074 return -EACCES; 2075 } 2076 err = check_packet_access(env, regno, off, size, false); 2077 if (!err && t == BPF_READ && value_regno >= 0) 2078 mark_reg_unknown(env, regs, value_regno); 2079 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2080 if (t == BPF_WRITE && value_regno >= 0 && 2081 is_pointer_value(env, value_regno)) { 2082 verbose(env, "R%d leaks addr into flow keys\n", 2083 value_regno); 2084 return -EACCES; 2085 } 2086 2087 err = check_flow_keys_access(env, off, size); 2088 if (!err && t == BPF_READ && value_regno >= 0) 2089 mark_reg_unknown(env, regs, value_regno); 2090 } else if (type_is_sk_pointer(reg->type)) { 2091 if (t == BPF_WRITE) { 2092 verbose(env, "R%d cannot write into %s\n", 2093 regno, reg_type_str[reg->type]); 2094 return -EACCES; 2095 } 2096 err = check_sock_access(env, insn_idx, regno, off, size, t); 2097 if (!err && value_regno >= 0) 2098 mark_reg_unknown(env, regs, value_regno); 2099 } else { 2100 verbose(env, "R%d invalid mem access '%s'\n", regno, 2101 reg_type_str[reg->type]); 2102 return -EACCES; 2103 } 2104 2105 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2106 regs[value_regno].type == SCALAR_VALUE) { 2107 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2108 coerce_reg_to_size(®s[value_regno], size); 2109 } 2110 return err; 2111 } 2112 2113 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2114 { 2115 int err; 2116 2117 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2118 insn->imm != 0) { 2119 verbose(env, "BPF_XADD uses reserved fields\n"); 2120 return -EINVAL; 2121 } 2122 2123 /* check src1 operand */ 2124 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2125 if (err) 2126 return err; 2127 2128 /* check src2 operand */ 2129 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2130 if (err) 2131 return err; 2132 2133 if (is_pointer_value(env, insn->src_reg)) { 2134 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2135 return -EACCES; 2136 } 2137 2138 if (is_ctx_reg(env, insn->dst_reg) || 2139 is_pkt_reg(env, insn->dst_reg) || 2140 is_flow_key_reg(env, insn->dst_reg) || 2141 is_sk_reg(env, insn->dst_reg)) { 2142 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2143 insn->dst_reg, 2144 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2145 return -EACCES; 2146 } 2147 2148 /* check whether atomic_add can read the memory */ 2149 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2150 BPF_SIZE(insn->code), BPF_READ, -1, true); 2151 if (err) 2152 return err; 2153 2154 /* check whether atomic_add can write into the same memory */ 2155 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2156 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2157 } 2158 2159 /* when register 'regno' is passed into function that will read 'access_size' 2160 * bytes from that pointer, make sure that it's within stack boundary 2161 * and all elements of stack are initialized. 2162 * Unlike most pointer bounds-checking functions, this one doesn't take an 2163 * 'off' argument, so it has to add in reg->off itself. 2164 */ 2165 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2166 int access_size, bool zero_size_allowed, 2167 struct bpf_call_arg_meta *meta) 2168 { 2169 struct bpf_reg_state *reg = reg_state(env, regno); 2170 struct bpf_func_state *state = func(env, reg); 2171 int off, i, slot, spi; 2172 2173 if (reg->type != PTR_TO_STACK) { 2174 /* Allow zero-byte read from NULL, regardless of pointer type */ 2175 if (zero_size_allowed && access_size == 0 && 2176 register_is_null(reg)) 2177 return 0; 2178 2179 verbose(env, "R%d type=%s expected=%s\n", regno, 2180 reg_type_str[reg->type], 2181 reg_type_str[PTR_TO_STACK]); 2182 return -EACCES; 2183 } 2184 2185 /* Only allow fixed-offset stack reads */ 2186 if (!tnum_is_const(reg->var_off)) { 2187 char tn_buf[48]; 2188 2189 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2190 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2191 regno, tn_buf); 2192 return -EACCES; 2193 } 2194 off = reg->off + reg->var_off.value; 2195 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2196 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2197 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2198 regno, off, access_size); 2199 return -EACCES; 2200 } 2201 2202 if (meta && meta->raw_mode) { 2203 meta->access_size = access_size; 2204 meta->regno = regno; 2205 return 0; 2206 } 2207 2208 for (i = 0; i < access_size; i++) { 2209 u8 *stype; 2210 2211 slot = -(off + i) - 1; 2212 spi = slot / BPF_REG_SIZE; 2213 if (state->allocated_stack <= slot) 2214 goto err; 2215 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2216 if (*stype == STACK_MISC) 2217 goto mark; 2218 if (*stype == STACK_ZERO) { 2219 /* helper can write anything into the stack */ 2220 *stype = STACK_MISC; 2221 goto mark; 2222 } 2223 err: 2224 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2225 off, i, access_size); 2226 return -EACCES; 2227 mark: 2228 /* reading any byte out of 8-byte 'spill_slot' will cause 2229 * the whole slot to be marked as 'read' 2230 */ 2231 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2232 state->stack[spi].spilled_ptr.parent); 2233 } 2234 return update_stack_depth(env, state, off); 2235 } 2236 2237 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2238 int access_size, bool zero_size_allowed, 2239 struct bpf_call_arg_meta *meta) 2240 { 2241 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2242 2243 switch (reg->type) { 2244 case PTR_TO_PACKET: 2245 case PTR_TO_PACKET_META: 2246 return check_packet_access(env, regno, reg->off, access_size, 2247 zero_size_allowed); 2248 case PTR_TO_MAP_VALUE: 2249 return check_map_access(env, regno, reg->off, access_size, 2250 zero_size_allowed); 2251 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2252 return check_stack_boundary(env, regno, access_size, 2253 zero_size_allowed, meta); 2254 } 2255 } 2256 2257 /* Implementation details: 2258 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 2259 * Two bpf_map_lookups (even with the same key) will have different reg->id. 2260 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 2261 * value_or_null->value transition, since the verifier only cares about 2262 * the range of access to valid map value pointer and doesn't care about actual 2263 * address of the map element. 2264 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 2265 * reg->id > 0 after value_or_null->value transition. By doing so 2266 * two bpf_map_lookups will be considered two different pointers that 2267 * point to different bpf_spin_locks. 2268 * The verifier allows taking only one bpf_spin_lock at a time to avoid 2269 * dead-locks. 2270 * Since only one bpf_spin_lock is allowed the checks are simpler than 2271 * reg_is_refcounted() logic. The verifier needs to remember only 2272 * one spin_lock instead of array of acquired_refs. 2273 * cur_state->active_spin_lock remembers which map value element got locked 2274 * and clears it after bpf_spin_unlock. 2275 */ 2276 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 2277 bool is_lock) 2278 { 2279 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2280 struct bpf_verifier_state *cur = env->cur_state; 2281 bool is_const = tnum_is_const(reg->var_off); 2282 struct bpf_map *map = reg->map_ptr; 2283 u64 val = reg->var_off.value; 2284 2285 if (reg->type != PTR_TO_MAP_VALUE) { 2286 verbose(env, "R%d is not a pointer to map_value\n", regno); 2287 return -EINVAL; 2288 } 2289 if (!is_const) { 2290 verbose(env, 2291 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 2292 regno); 2293 return -EINVAL; 2294 } 2295 if (!map->btf) { 2296 verbose(env, 2297 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 2298 map->name); 2299 return -EINVAL; 2300 } 2301 if (!map_value_has_spin_lock(map)) { 2302 if (map->spin_lock_off == -E2BIG) 2303 verbose(env, 2304 "map '%s' has more than one 'struct bpf_spin_lock'\n", 2305 map->name); 2306 else if (map->spin_lock_off == -ENOENT) 2307 verbose(env, 2308 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 2309 map->name); 2310 else 2311 verbose(env, 2312 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 2313 map->name); 2314 return -EINVAL; 2315 } 2316 if (map->spin_lock_off != val + reg->off) { 2317 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 2318 val + reg->off); 2319 return -EINVAL; 2320 } 2321 if (is_lock) { 2322 if (cur->active_spin_lock) { 2323 verbose(env, 2324 "Locking two bpf_spin_locks are not allowed\n"); 2325 return -EINVAL; 2326 } 2327 cur->active_spin_lock = reg->id; 2328 } else { 2329 if (!cur->active_spin_lock) { 2330 verbose(env, "bpf_spin_unlock without taking a lock\n"); 2331 return -EINVAL; 2332 } 2333 if (cur->active_spin_lock != reg->id) { 2334 verbose(env, "bpf_spin_unlock of different lock\n"); 2335 return -EINVAL; 2336 } 2337 cur->active_spin_lock = 0; 2338 } 2339 return 0; 2340 } 2341 2342 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2343 { 2344 return type == ARG_PTR_TO_MEM || 2345 type == ARG_PTR_TO_MEM_OR_NULL || 2346 type == ARG_PTR_TO_UNINIT_MEM; 2347 } 2348 2349 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2350 { 2351 return type == ARG_CONST_SIZE || 2352 type == ARG_CONST_SIZE_OR_ZERO; 2353 } 2354 2355 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2356 enum bpf_arg_type arg_type, 2357 struct bpf_call_arg_meta *meta) 2358 { 2359 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2360 enum bpf_reg_type expected_type, type = reg->type; 2361 int err = 0; 2362 2363 if (arg_type == ARG_DONTCARE) 2364 return 0; 2365 2366 err = check_reg_arg(env, regno, SRC_OP); 2367 if (err) 2368 return err; 2369 2370 if (arg_type == ARG_ANYTHING) { 2371 if (is_pointer_value(env, regno)) { 2372 verbose(env, "R%d leaks addr into helper function\n", 2373 regno); 2374 return -EACCES; 2375 } 2376 return 0; 2377 } 2378 2379 if (type_is_pkt_pointer(type) && 2380 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2381 verbose(env, "helper access to the packet is not allowed\n"); 2382 return -EACCES; 2383 } 2384 2385 if (arg_type == ARG_PTR_TO_MAP_KEY || 2386 arg_type == ARG_PTR_TO_MAP_VALUE || 2387 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2388 expected_type = PTR_TO_STACK; 2389 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2390 type != expected_type) 2391 goto err_type; 2392 } else if (arg_type == ARG_CONST_SIZE || 2393 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2394 expected_type = SCALAR_VALUE; 2395 if (type != expected_type) 2396 goto err_type; 2397 } else if (arg_type == ARG_CONST_MAP_PTR) { 2398 expected_type = CONST_PTR_TO_MAP; 2399 if (type != expected_type) 2400 goto err_type; 2401 } else if (arg_type == ARG_PTR_TO_CTX) { 2402 expected_type = PTR_TO_CTX; 2403 if (type != expected_type) 2404 goto err_type; 2405 err = check_ctx_reg(env, reg, regno); 2406 if (err < 0) 2407 return err; 2408 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 2409 expected_type = PTR_TO_SOCK_COMMON; 2410 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 2411 if (!type_is_sk_pointer(type)) 2412 goto err_type; 2413 if (reg->ref_obj_id) { 2414 if (meta->ref_obj_id) { 2415 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 2416 regno, reg->ref_obj_id, 2417 meta->ref_obj_id); 2418 return -EFAULT; 2419 } 2420 meta->ref_obj_id = reg->ref_obj_id; 2421 } 2422 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 2423 if (meta->func_id == BPF_FUNC_spin_lock) { 2424 if (process_spin_lock(env, regno, true)) 2425 return -EACCES; 2426 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 2427 if (process_spin_lock(env, regno, false)) 2428 return -EACCES; 2429 } else { 2430 verbose(env, "verifier internal error\n"); 2431 return -EFAULT; 2432 } 2433 } else if (arg_type_is_mem_ptr(arg_type)) { 2434 expected_type = PTR_TO_STACK; 2435 /* One exception here. In case function allows for NULL to be 2436 * passed in as argument, it's a SCALAR_VALUE type. Final test 2437 * happens during stack boundary checking. 2438 */ 2439 if (register_is_null(reg) && 2440 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2441 /* final test in check_stack_boundary() */; 2442 else if (!type_is_pkt_pointer(type) && 2443 type != PTR_TO_MAP_VALUE && 2444 type != expected_type) 2445 goto err_type; 2446 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2447 } else { 2448 verbose(env, "unsupported arg_type %d\n", arg_type); 2449 return -EFAULT; 2450 } 2451 2452 if (arg_type == ARG_CONST_MAP_PTR) { 2453 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2454 meta->map_ptr = reg->map_ptr; 2455 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2456 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2457 * check that [key, key + map->key_size) are within 2458 * stack limits and initialized 2459 */ 2460 if (!meta->map_ptr) { 2461 /* in function declaration map_ptr must come before 2462 * map_key, so that it's verified and known before 2463 * we have to check map_key here. Otherwise it means 2464 * that kernel subsystem misconfigured verifier 2465 */ 2466 verbose(env, "invalid map_ptr to access map->key\n"); 2467 return -EACCES; 2468 } 2469 err = check_helper_mem_access(env, regno, 2470 meta->map_ptr->key_size, false, 2471 NULL); 2472 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2473 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2474 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2475 * check [value, value + map->value_size) validity 2476 */ 2477 if (!meta->map_ptr) { 2478 /* kernel subsystem misconfigured verifier */ 2479 verbose(env, "invalid map_ptr to access map->value\n"); 2480 return -EACCES; 2481 } 2482 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2483 err = check_helper_mem_access(env, regno, 2484 meta->map_ptr->value_size, false, 2485 meta); 2486 } else if (arg_type_is_mem_size(arg_type)) { 2487 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2488 2489 /* remember the mem_size which may be used later 2490 * to refine return values. 2491 */ 2492 meta->msize_smax_value = reg->smax_value; 2493 meta->msize_umax_value = reg->umax_value; 2494 2495 /* The register is SCALAR_VALUE; the access check 2496 * happens using its boundaries. 2497 */ 2498 if (!tnum_is_const(reg->var_off)) 2499 /* For unprivileged variable accesses, disable raw 2500 * mode so that the program is required to 2501 * initialize all the memory that the helper could 2502 * just partially fill up. 2503 */ 2504 meta = NULL; 2505 2506 if (reg->smin_value < 0) { 2507 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2508 regno); 2509 return -EACCES; 2510 } 2511 2512 if (reg->umin_value == 0) { 2513 err = check_helper_mem_access(env, regno - 1, 0, 2514 zero_size_allowed, 2515 meta); 2516 if (err) 2517 return err; 2518 } 2519 2520 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2521 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2522 regno); 2523 return -EACCES; 2524 } 2525 err = check_helper_mem_access(env, regno - 1, 2526 reg->umax_value, 2527 zero_size_allowed, meta); 2528 } 2529 2530 return err; 2531 err_type: 2532 verbose(env, "R%d type=%s expected=%s\n", regno, 2533 reg_type_str[type], reg_type_str[expected_type]); 2534 return -EACCES; 2535 } 2536 2537 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2538 struct bpf_map *map, int func_id) 2539 { 2540 if (!map) 2541 return 0; 2542 2543 /* We need a two way check, first is from map perspective ... */ 2544 switch (map->map_type) { 2545 case BPF_MAP_TYPE_PROG_ARRAY: 2546 if (func_id != BPF_FUNC_tail_call) 2547 goto error; 2548 break; 2549 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2550 if (func_id != BPF_FUNC_perf_event_read && 2551 func_id != BPF_FUNC_perf_event_output && 2552 func_id != BPF_FUNC_perf_event_read_value) 2553 goto error; 2554 break; 2555 case BPF_MAP_TYPE_STACK_TRACE: 2556 if (func_id != BPF_FUNC_get_stackid) 2557 goto error; 2558 break; 2559 case BPF_MAP_TYPE_CGROUP_ARRAY: 2560 if (func_id != BPF_FUNC_skb_under_cgroup && 2561 func_id != BPF_FUNC_current_task_under_cgroup) 2562 goto error; 2563 break; 2564 case BPF_MAP_TYPE_CGROUP_STORAGE: 2565 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2566 if (func_id != BPF_FUNC_get_local_storage) 2567 goto error; 2568 break; 2569 /* devmap returns a pointer to a live net_device ifindex that we cannot 2570 * allow to be modified from bpf side. So do not allow lookup elements 2571 * for now. 2572 */ 2573 case BPF_MAP_TYPE_DEVMAP: 2574 if (func_id != BPF_FUNC_redirect_map) 2575 goto error; 2576 break; 2577 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2578 * appear. 2579 */ 2580 case BPF_MAP_TYPE_CPUMAP: 2581 case BPF_MAP_TYPE_XSKMAP: 2582 if (func_id != BPF_FUNC_redirect_map) 2583 goto error; 2584 break; 2585 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2586 case BPF_MAP_TYPE_HASH_OF_MAPS: 2587 if (func_id != BPF_FUNC_map_lookup_elem) 2588 goto error; 2589 break; 2590 case BPF_MAP_TYPE_SOCKMAP: 2591 if (func_id != BPF_FUNC_sk_redirect_map && 2592 func_id != BPF_FUNC_sock_map_update && 2593 func_id != BPF_FUNC_map_delete_elem && 2594 func_id != BPF_FUNC_msg_redirect_map) 2595 goto error; 2596 break; 2597 case BPF_MAP_TYPE_SOCKHASH: 2598 if (func_id != BPF_FUNC_sk_redirect_hash && 2599 func_id != BPF_FUNC_sock_hash_update && 2600 func_id != BPF_FUNC_map_delete_elem && 2601 func_id != BPF_FUNC_msg_redirect_hash) 2602 goto error; 2603 break; 2604 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2605 if (func_id != BPF_FUNC_sk_select_reuseport) 2606 goto error; 2607 break; 2608 case BPF_MAP_TYPE_QUEUE: 2609 case BPF_MAP_TYPE_STACK: 2610 if (func_id != BPF_FUNC_map_peek_elem && 2611 func_id != BPF_FUNC_map_pop_elem && 2612 func_id != BPF_FUNC_map_push_elem) 2613 goto error; 2614 break; 2615 default: 2616 break; 2617 } 2618 2619 /* ... and second from the function itself. */ 2620 switch (func_id) { 2621 case BPF_FUNC_tail_call: 2622 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2623 goto error; 2624 if (env->subprog_cnt > 1) { 2625 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2626 return -EINVAL; 2627 } 2628 break; 2629 case BPF_FUNC_perf_event_read: 2630 case BPF_FUNC_perf_event_output: 2631 case BPF_FUNC_perf_event_read_value: 2632 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2633 goto error; 2634 break; 2635 case BPF_FUNC_get_stackid: 2636 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2637 goto error; 2638 break; 2639 case BPF_FUNC_current_task_under_cgroup: 2640 case BPF_FUNC_skb_under_cgroup: 2641 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2642 goto error; 2643 break; 2644 case BPF_FUNC_redirect_map: 2645 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2646 map->map_type != BPF_MAP_TYPE_CPUMAP && 2647 map->map_type != BPF_MAP_TYPE_XSKMAP) 2648 goto error; 2649 break; 2650 case BPF_FUNC_sk_redirect_map: 2651 case BPF_FUNC_msg_redirect_map: 2652 case BPF_FUNC_sock_map_update: 2653 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2654 goto error; 2655 break; 2656 case BPF_FUNC_sk_redirect_hash: 2657 case BPF_FUNC_msg_redirect_hash: 2658 case BPF_FUNC_sock_hash_update: 2659 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2660 goto error; 2661 break; 2662 case BPF_FUNC_get_local_storage: 2663 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2664 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2665 goto error; 2666 break; 2667 case BPF_FUNC_sk_select_reuseport: 2668 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2669 goto error; 2670 break; 2671 case BPF_FUNC_map_peek_elem: 2672 case BPF_FUNC_map_pop_elem: 2673 case BPF_FUNC_map_push_elem: 2674 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2675 map->map_type != BPF_MAP_TYPE_STACK) 2676 goto error; 2677 break; 2678 default: 2679 break; 2680 } 2681 2682 return 0; 2683 error: 2684 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2685 map->map_type, func_id_name(func_id), func_id); 2686 return -EINVAL; 2687 } 2688 2689 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2690 { 2691 int count = 0; 2692 2693 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2694 count++; 2695 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2696 count++; 2697 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2698 count++; 2699 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2700 count++; 2701 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2702 count++; 2703 2704 /* We only support one arg being in raw mode at the moment, 2705 * which is sufficient for the helper functions we have 2706 * right now. 2707 */ 2708 return count <= 1; 2709 } 2710 2711 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2712 enum bpf_arg_type arg_next) 2713 { 2714 return (arg_type_is_mem_ptr(arg_curr) && 2715 !arg_type_is_mem_size(arg_next)) || 2716 (!arg_type_is_mem_ptr(arg_curr) && 2717 arg_type_is_mem_size(arg_next)); 2718 } 2719 2720 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2721 { 2722 /* bpf_xxx(..., buf, len) call will access 'len' 2723 * bytes from memory 'buf'. Both arg types need 2724 * to be paired, so make sure there's no buggy 2725 * helper function specification. 2726 */ 2727 if (arg_type_is_mem_size(fn->arg1_type) || 2728 arg_type_is_mem_ptr(fn->arg5_type) || 2729 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2730 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2731 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2732 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2733 return false; 2734 2735 return true; 2736 } 2737 2738 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 2739 { 2740 int count = 0; 2741 2742 if (arg_type_may_be_refcounted(fn->arg1_type)) 2743 count++; 2744 if (arg_type_may_be_refcounted(fn->arg2_type)) 2745 count++; 2746 if (arg_type_may_be_refcounted(fn->arg3_type)) 2747 count++; 2748 if (arg_type_may_be_refcounted(fn->arg4_type)) 2749 count++; 2750 if (arg_type_may_be_refcounted(fn->arg5_type)) 2751 count++; 2752 2753 /* A reference acquiring function cannot acquire 2754 * another refcounted ptr. 2755 */ 2756 if (is_acquire_function(func_id) && count) 2757 return false; 2758 2759 /* We only support one arg being unreferenced at the moment, 2760 * which is sufficient for the helper functions we have right now. 2761 */ 2762 return count <= 1; 2763 } 2764 2765 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 2766 { 2767 return check_raw_mode_ok(fn) && 2768 check_arg_pair_ok(fn) && 2769 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 2770 } 2771 2772 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2773 * are now invalid, so turn them into unknown SCALAR_VALUE. 2774 */ 2775 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2776 struct bpf_func_state *state) 2777 { 2778 struct bpf_reg_state *regs = state->regs, *reg; 2779 int i; 2780 2781 for (i = 0; i < MAX_BPF_REG; i++) 2782 if (reg_is_pkt_pointer_any(®s[i])) 2783 mark_reg_unknown(env, regs, i); 2784 2785 bpf_for_each_spilled_reg(i, state, reg) { 2786 if (!reg) 2787 continue; 2788 if (reg_is_pkt_pointer_any(reg)) 2789 __mark_reg_unknown(reg); 2790 } 2791 } 2792 2793 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2794 { 2795 struct bpf_verifier_state *vstate = env->cur_state; 2796 int i; 2797 2798 for (i = 0; i <= vstate->curframe; i++) 2799 __clear_all_pkt_pointers(env, vstate->frame[i]); 2800 } 2801 2802 static void release_reg_references(struct bpf_verifier_env *env, 2803 struct bpf_func_state *state, 2804 int ref_obj_id) 2805 { 2806 struct bpf_reg_state *regs = state->regs, *reg; 2807 int i; 2808 2809 for (i = 0; i < MAX_BPF_REG; i++) 2810 if (regs[i].ref_obj_id == ref_obj_id) 2811 mark_reg_unknown(env, regs, i); 2812 2813 bpf_for_each_spilled_reg(i, state, reg) { 2814 if (!reg) 2815 continue; 2816 if (reg->ref_obj_id == ref_obj_id) 2817 __mark_reg_unknown(reg); 2818 } 2819 } 2820 2821 /* The pointer with the specified id has released its reference to kernel 2822 * resources. Identify all copies of the same pointer and clear the reference. 2823 */ 2824 static int release_reference(struct bpf_verifier_env *env, 2825 int ref_obj_id) 2826 { 2827 struct bpf_verifier_state *vstate = env->cur_state; 2828 int err; 2829 int i; 2830 2831 err = release_reference_state(cur_func(env), ref_obj_id); 2832 if (err) 2833 return err; 2834 2835 for (i = 0; i <= vstate->curframe; i++) 2836 release_reg_references(env, vstate->frame[i], ref_obj_id); 2837 2838 return 0; 2839 } 2840 2841 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2842 int *insn_idx) 2843 { 2844 struct bpf_verifier_state *state = env->cur_state; 2845 struct bpf_func_state *caller, *callee; 2846 int i, err, subprog, target_insn; 2847 2848 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2849 verbose(env, "the call stack of %d frames is too deep\n", 2850 state->curframe + 2); 2851 return -E2BIG; 2852 } 2853 2854 target_insn = *insn_idx + insn->imm; 2855 subprog = find_subprog(env, target_insn + 1); 2856 if (subprog < 0) { 2857 verbose(env, "verifier bug. No program starts at insn %d\n", 2858 target_insn + 1); 2859 return -EFAULT; 2860 } 2861 2862 caller = state->frame[state->curframe]; 2863 if (state->frame[state->curframe + 1]) { 2864 verbose(env, "verifier bug. Frame %d already allocated\n", 2865 state->curframe + 1); 2866 return -EFAULT; 2867 } 2868 2869 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2870 if (!callee) 2871 return -ENOMEM; 2872 state->frame[state->curframe + 1] = callee; 2873 2874 /* callee cannot access r0, r6 - r9 for reading and has to write 2875 * into its own stack before reading from it. 2876 * callee can read/write into caller's stack 2877 */ 2878 init_func_state(env, callee, 2879 /* remember the callsite, it will be used by bpf_exit */ 2880 *insn_idx /* callsite */, 2881 state->curframe + 1 /* frameno within this callchain */, 2882 subprog /* subprog number within this prog */); 2883 2884 /* Transfer references to the callee */ 2885 err = transfer_reference_state(callee, caller); 2886 if (err) 2887 return err; 2888 2889 /* copy r1 - r5 args that callee can access. The copy includes parent 2890 * pointers, which connects us up to the liveness chain 2891 */ 2892 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2893 callee->regs[i] = caller->regs[i]; 2894 2895 /* after the call registers r0 - r5 were scratched */ 2896 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2897 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2898 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2899 } 2900 2901 /* only increment it after check_reg_arg() finished */ 2902 state->curframe++; 2903 2904 /* and go analyze first insn of the callee */ 2905 *insn_idx = target_insn; 2906 2907 if (env->log.level) { 2908 verbose(env, "caller:\n"); 2909 print_verifier_state(env, caller); 2910 verbose(env, "callee:\n"); 2911 print_verifier_state(env, callee); 2912 } 2913 return 0; 2914 } 2915 2916 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2917 { 2918 struct bpf_verifier_state *state = env->cur_state; 2919 struct bpf_func_state *caller, *callee; 2920 struct bpf_reg_state *r0; 2921 int err; 2922 2923 callee = state->frame[state->curframe]; 2924 r0 = &callee->regs[BPF_REG_0]; 2925 if (r0->type == PTR_TO_STACK) { 2926 /* technically it's ok to return caller's stack pointer 2927 * (or caller's caller's pointer) back to the caller, 2928 * since these pointers are valid. Only current stack 2929 * pointer will be invalid as soon as function exits, 2930 * but let's be conservative 2931 */ 2932 verbose(env, "cannot return stack pointer to the caller\n"); 2933 return -EINVAL; 2934 } 2935 2936 state->curframe--; 2937 caller = state->frame[state->curframe]; 2938 /* return to the caller whatever r0 had in the callee */ 2939 caller->regs[BPF_REG_0] = *r0; 2940 2941 /* Transfer references to the caller */ 2942 err = transfer_reference_state(caller, callee); 2943 if (err) 2944 return err; 2945 2946 *insn_idx = callee->callsite + 1; 2947 if (env->log.level) { 2948 verbose(env, "returning from callee:\n"); 2949 print_verifier_state(env, callee); 2950 verbose(env, "to caller at %d:\n", *insn_idx); 2951 print_verifier_state(env, caller); 2952 } 2953 /* clear everything in the callee */ 2954 free_func_state(callee); 2955 state->frame[state->curframe + 1] = NULL; 2956 return 0; 2957 } 2958 2959 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2960 int func_id, 2961 struct bpf_call_arg_meta *meta) 2962 { 2963 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2964 2965 if (ret_type != RET_INTEGER || 2966 (func_id != BPF_FUNC_get_stack && 2967 func_id != BPF_FUNC_probe_read_str)) 2968 return; 2969 2970 ret_reg->smax_value = meta->msize_smax_value; 2971 ret_reg->umax_value = meta->msize_umax_value; 2972 __reg_deduce_bounds(ret_reg); 2973 __reg_bound_offset(ret_reg); 2974 } 2975 2976 static int 2977 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2978 int func_id, int insn_idx) 2979 { 2980 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2981 2982 if (func_id != BPF_FUNC_tail_call && 2983 func_id != BPF_FUNC_map_lookup_elem && 2984 func_id != BPF_FUNC_map_update_elem && 2985 func_id != BPF_FUNC_map_delete_elem && 2986 func_id != BPF_FUNC_map_push_elem && 2987 func_id != BPF_FUNC_map_pop_elem && 2988 func_id != BPF_FUNC_map_peek_elem) 2989 return 0; 2990 2991 if (meta->map_ptr == NULL) { 2992 verbose(env, "kernel subsystem misconfigured verifier\n"); 2993 return -EINVAL; 2994 } 2995 2996 if (!BPF_MAP_PTR(aux->map_state)) 2997 bpf_map_ptr_store(aux, meta->map_ptr, 2998 meta->map_ptr->unpriv_array); 2999 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3000 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3001 meta->map_ptr->unpriv_array); 3002 return 0; 3003 } 3004 3005 static int check_reference_leak(struct bpf_verifier_env *env) 3006 { 3007 struct bpf_func_state *state = cur_func(env); 3008 int i; 3009 3010 for (i = 0; i < state->acquired_refs; i++) { 3011 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3012 state->refs[i].id, state->refs[i].insn_idx); 3013 } 3014 return state->acquired_refs ? -EINVAL : 0; 3015 } 3016 3017 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3018 { 3019 const struct bpf_func_proto *fn = NULL; 3020 struct bpf_reg_state *regs; 3021 struct bpf_call_arg_meta meta; 3022 bool changes_data; 3023 int i, err; 3024 3025 /* find function prototype */ 3026 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3027 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3028 func_id); 3029 return -EINVAL; 3030 } 3031 3032 if (env->ops->get_func_proto) 3033 fn = env->ops->get_func_proto(func_id, env->prog); 3034 if (!fn) { 3035 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3036 func_id); 3037 return -EINVAL; 3038 } 3039 3040 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3041 if (!env->prog->gpl_compatible && fn->gpl_only) { 3042 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3043 return -EINVAL; 3044 } 3045 3046 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3047 changes_data = bpf_helper_changes_pkt_data(fn->func); 3048 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3049 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3050 func_id_name(func_id), func_id); 3051 return -EINVAL; 3052 } 3053 3054 memset(&meta, 0, sizeof(meta)); 3055 meta.pkt_access = fn->pkt_access; 3056 3057 err = check_func_proto(fn, func_id); 3058 if (err) { 3059 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3060 func_id_name(func_id), func_id); 3061 return err; 3062 } 3063 3064 meta.func_id = func_id; 3065 /* check args */ 3066 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3067 if (err) 3068 return err; 3069 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3070 if (err) 3071 return err; 3072 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3073 if (err) 3074 return err; 3075 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3076 if (err) 3077 return err; 3078 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3079 if (err) 3080 return err; 3081 3082 err = record_func_map(env, &meta, func_id, insn_idx); 3083 if (err) 3084 return err; 3085 3086 /* Mark slots with STACK_MISC in case of raw mode, stack offset 3087 * is inferred from register state. 3088 */ 3089 for (i = 0; i < meta.access_size; i++) { 3090 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 3091 BPF_WRITE, -1, false); 3092 if (err) 3093 return err; 3094 } 3095 3096 if (func_id == BPF_FUNC_tail_call) { 3097 err = check_reference_leak(env); 3098 if (err) { 3099 verbose(env, "tail_call would lead to reference leak\n"); 3100 return err; 3101 } 3102 } else if (is_release_function(func_id)) { 3103 err = release_reference(env, meta.ref_obj_id); 3104 if (err) { 3105 verbose(env, "func %s#%d reference has not been acquired before\n", 3106 func_id_name(func_id), func_id); 3107 return err; 3108 } 3109 } 3110 3111 regs = cur_regs(env); 3112 3113 /* check that flags argument in get_local_storage(map, flags) is 0, 3114 * this is required because get_local_storage() can't return an error. 3115 */ 3116 if (func_id == BPF_FUNC_get_local_storage && 3117 !register_is_null(®s[BPF_REG_2])) { 3118 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 3119 return -EINVAL; 3120 } 3121 3122 /* reset caller saved regs */ 3123 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3124 mark_reg_not_init(env, regs, caller_saved[i]); 3125 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3126 } 3127 3128 /* update return register (already marked as written above) */ 3129 if (fn->ret_type == RET_INTEGER) { 3130 /* sets type to SCALAR_VALUE */ 3131 mark_reg_unknown(env, regs, BPF_REG_0); 3132 } else if (fn->ret_type == RET_VOID) { 3133 regs[BPF_REG_0].type = NOT_INIT; 3134 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 3135 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3136 /* There is no offset yet applied, variable or fixed */ 3137 mark_reg_known_zero(env, regs, BPF_REG_0); 3138 /* remember map_ptr, so that check_map_access() 3139 * can check 'value_size' boundary of memory access 3140 * to map element returned from bpf_map_lookup_elem() 3141 */ 3142 if (meta.map_ptr == NULL) { 3143 verbose(env, 3144 "kernel subsystem misconfigured verifier\n"); 3145 return -EINVAL; 3146 } 3147 regs[BPF_REG_0].map_ptr = meta.map_ptr; 3148 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 3149 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 3150 if (map_value_has_spin_lock(meta.map_ptr)) 3151 regs[BPF_REG_0].id = ++env->id_gen; 3152 } else { 3153 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 3154 regs[BPF_REG_0].id = ++env->id_gen; 3155 } 3156 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 3157 mark_reg_known_zero(env, regs, BPF_REG_0); 3158 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 3159 if (is_acquire_function(func_id)) { 3160 int id = acquire_reference_state(env, insn_idx); 3161 3162 if (id < 0) 3163 return id; 3164 /* For mark_ptr_or_null_reg() */ 3165 regs[BPF_REG_0].id = id; 3166 /* For release_reference() */ 3167 regs[BPF_REG_0].ref_obj_id = id; 3168 } else { 3169 /* For mark_ptr_or_null_reg() */ 3170 regs[BPF_REG_0].id = ++env->id_gen; 3171 } 3172 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 3173 mark_reg_known_zero(env, regs, BPF_REG_0); 3174 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 3175 regs[BPF_REG_0].id = ++env->id_gen; 3176 } else { 3177 verbose(env, "unknown return type %d of func %s#%d\n", 3178 fn->ret_type, func_id_name(func_id), func_id); 3179 return -EINVAL; 3180 } 3181 3182 if (is_ptr_cast_function(func_id)) 3183 /* For release_reference() */ 3184 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 3185 3186 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 3187 3188 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 3189 if (err) 3190 return err; 3191 3192 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 3193 const char *err_str; 3194 3195 #ifdef CONFIG_PERF_EVENTS 3196 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3197 err_str = "cannot get callchain buffer for func %s#%d\n"; 3198 #else 3199 err = -ENOTSUPP; 3200 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3201 #endif 3202 if (err) { 3203 verbose(env, err_str, func_id_name(func_id), func_id); 3204 return err; 3205 } 3206 3207 env->prog->has_callchain_buf = true; 3208 } 3209 3210 if (changes_data) 3211 clear_all_pkt_pointers(env); 3212 return 0; 3213 } 3214 3215 static bool signed_add_overflows(s64 a, s64 b) 3216 { 3217 /* Do the add in u64, where overflow is well-defined */ 3218 s64 res = (s64)((u64)a + (u64)b); 3219 3220 if (b < 0) 3221 return res > a; 3222 return res < a; 3223 } 3224 3225 static bool signed_sub_overflows(s64 a, s64 b) 3226 { 3227 /* Do the sub in u64, where overflow is well-defined */ 3228 s64 res = (s64)((u64)a - (u64)b); 3229 3230 if (b < 0) 3231 return res < a; 3232 return res > a; 3233 } 3234 3235 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3236 const struct bpf_reg_state *reg, 3237 enum bpf_reg_type type) 3238 { 3239 bool known = tnum_is_const(reg->var_off); 3240 s64 val = reg->var_off.value; 3241 s64 smin = reg->smin_value; 3242 3243 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3244 verbose(env, "math between %s pointer and %lld is not allowed\n", 3245 reg_type_str[type], val); 3246 return false; 3247 } 3248 3249 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3250 verbose(env, "%s pointer offset %d is not allowed\n", 3251 reg_type_str[type], reg->off); 3252 return false; 3253 } 3254 3255 if (smin == S64_MIN) { 3256 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3257 reg_type_str[type]); 3258 return false; 3259 } 3260 3261 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3262 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3263 smin, reg_type_str[type]); 3264 return false; 3265 } 3266 3267 return true; 3268 } 3269 3270 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3271 { 3272 return &env->insn_aux_data[env->insn_idx]; 3273 } 3274 3275 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3276 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3277 { 3278 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3279 (opcode == BPF_SUB && !off_is_neg); 3280 u32 off; 3281 3282 switch (ptr_reg->type) { 3283 case PTR_TO_STACK: 3284 off = ptr_reg->off + ptr_reg->var_off.value; 3285 if (mask_to_left) 3286 *ptr_limit = MAX_BPF_STACK + off; 3287 else 3288 *ptr_limit = -off; 3289 return 0; 3290 case PTR_TO_MAP_VALUE: 3291 if (mask_to_left) { 3292 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3293 } else { 3294 off = ptr_reg->smin_value + ptr_reg->off; 3295 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3296 } 3297 return 0; 3298 default: 3299 return -EINVAL; 3300 } 3301 } 3302 3303 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3304 const struct bpf_insn *insn) 3305 { 3306 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3307 } 3308 3309 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3310 u32 alu_state, u32 alu_limit) 3311 { 3312 /* If we arrived here from different branches with different 3313 * state or limits to sanitize, then this won't work. 3314 */ 3315 if (aux->alu_state && 3316 (aux->alu_state != alu_state || 3317 aux->alu_limit != alu_limit)) 3318 return -EACCES; 3319 3320 /* Corresponding fixup done in fixup_bpf_calls(). */ 3321 aux->alu_state = alu_state; 3322 aux->alu_limit = alu_limit; 3323 return 0; 3324 } 3325 3326 static int sanitize_val_alu(struct bpf_verifier_env *env, 3327 struct bpf_insn *insn) 3328 { 3329 struct bpf_insn_aux_data *aux = cur_aux(env); 3330 3331 if (can_skip_alu_sanitation(env, insn)) 3332 return 0; 3333 3334 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3335 } 3336 3337 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3338 struct bpf_insn *insn, 3339 const struct bpf_reg_state *ptr_reg, 3340 struct bpf_reg_state *dst_reg, 3341 bool off_is_neg) 3342 { 3343 struct bpf_verifier_state *vstate = env->cur_state; 3344 struct bpf_insn_aux_data *aux = cur_aux(env); 3345 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3346 u8 opcode = BPF_OP(insn->code); 3347 u32 alu_state, alu_limit; 3348 struct bpf_reg_state tmp; 3349 bool ret; 3350 3351 if (can_skip_alu_sanitation(env, insn)) 3352 return 0; 3353 3354 /* We already marked aux for masking from non-speculative 3355 * paths, thus we got here in the first place. We only care 3356 * to explore bad access from here. 3357 */ 3358 if (vstate->speculative) 3359 goto do_sim; 3360 3361 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3362 alu_state |= ptr_is_dst_reg ? 3363 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3364 3365 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3366 return 0; 3367 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3368 return -EACCES; 3369 do_sim: 3370 /* Simulate and find potential out-of-bounds access under 3371 * speculative execution from truncation as a result of 3372 * masking when off was not within expected range. If off 3373 * sits in dst, then we temporarily need to move ptr there 3374 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3375 * for cases where we use K-based arithmetic in one direction 3376 * and truncated reg-based in the other in order to explore 3377 * bad access. 3378 */ 3379 if (!ptr_is_dst_reg) { 3380 tmp = *dst_reg; 3381 *dst_reg = *ptr_reg; 3382 } 3383 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3384 if (!ptr_is_dst_reg && ret) 3385 *dst_reg = tmp; 3386 return !ret ? -EFAULT : 0; 3387 } 3388 3389 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3390 * Caller should also handle BPF_MOV case separately. 3391 * If we return -EACCES, caller may want to try again treating pointer as a 3392 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3393 */ 3394 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3395 struct bpf_insn *insn, 3396 const struct bpf_reg_state *ptr_reg, 3397 const struct bpf_reg_state *off_reg) 3398 { 3399 struct bpf_verifier_state *vstate = env->cur_state; 3400 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3401 struct bpf_reg_state *regs = state->regs, *dst_reg; 3402 bool known = tnum_is_const(off_reg->var_off); 3403 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3404 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3405 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3406 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3407 u32 dst = insn->dst_reg, src = insn->src_reg; 3408 u8 opcode = BPF_OP(insn->code); 3409 int ret; 3410 3411 dst_reg = ®s[dst]; 3412 3413 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3414 smin_val > smax_val || umin_val > umax_val) { 3415 /* Taint dst register if offset had invalid bounds derived from 3416 * e.g. dead branches. 3417 */ 3418 __mark_reg_unknown(dst_reg); 3419 return 0; 3420 } 3421 3422 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3423 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3424 verbose(env, 3425 "R%d 32-bit pointer arithmetic prohibited\n", 3426 dst); 3427 return -EACCES; 3428 } 3429 3430 switch (ptr_reg->type) { 3431 case PTR_TO_MAP_VALUE_OR_NULL: 3432 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3433 dst, reg_type_str[ptr_reg->type]); 3434 return -EACCES; 3435 case CONST_PTR_TO_MAP: 3436 case PTR_TO_PACKET_END: 3437 case PTR_TO_SOCKET: 3438 case PTR_TO_SOCKET_OR_NULL: 3439 case PTR_TO_SOCK_COMMON: 3440 case PTR_TO_SOCK_COMMON_OR_NULL: 3441 case PTR_TO_TCP_SOCK: 3442 case PTR_TO_TCP_SOCK_OR_NULL: 3443 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3444 dst, reg_type_str[ptr_reg->type]); 3445 return -EACCES; 3446 case PTR_TO_MAP_VALUE: 3447 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3448 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3449 off_reg == dst_reg ? dst : src); 3450 return -EACCES; 3451 } 3452 /* fall-through */ 3453 default: 3454 break; 3455 } 3456 3457 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3458 * The id may be overwritten later if we create a new variable offset. 3459 */ 3460 dst_reg->type = ptr_reg->type; 3461 dst_reg->id = ptr_reg->id; 3462 3463 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3464 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3465 return -EINVAL; 3466 3467 switch (opcode) { 3468 case BPF_ADD: 3469 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3470 if (ret < 0) { 3471 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3472 return ret; 3473 } 3474 /* We can take a fixed offset as long as it doesn't overflow 3475 * the s32 'off' field 3476 */ 3477 if (known && (ptr_reg->off + smin_val == 3478 (s64)(s32)(ptr_reg->off + smin_val))) { 3479 /* pointer += K. Accumulate it into fixed offset */ 3480 dst_reg->smin_value = smin_ptr; 3481 dst_reg->smax_value = smax_ptr; 3482 dst_reg->umin_value = umin_ptr; 3483 dst_reg->umax_value = umax_ptr; 3484 dst_reg->var_off = ptr_reg->var_off; 3485 dst_reg->off = ptr_reg->off + smin_val; 3486 dst_reg->raw = ptr_reg->raw; 3487 break; 3488 } 3489 /* A new variable offset is created. Note that off_reg->off 3490 * == 0, since it's a scalar. 3491 * dst_reg gets the pointer type and since some positive 3492 * integer value was added to the pointer, give it a new 'id' 3493 * if it's a PTR_TO_PACKET. 3494 * this creates a new 'base' pointer, off_reg (variable) gets 3495 * added into the variable offset, and we copy the fixed offset 3496 * from ptr_reg. 3497 */ 3498 if (signed_add_overflows(smin_ptr, smin_val) || 3499 signed_add_overflows(smax_ptr, smax_val)) { 3500 dst_reg->smin_value = S64_MIN; 3501 dst_reg->smax_value = S64_MAX; 3502 } else { 3503 dst_reg->smin_value = smin_ptr + smin_val; 3504 dst_reg->smax_value = smax_ptr + smax_val; 3505 } 3506 if (umin_ptr + umin_val < umin_ptr || 3507 umax_ptr + umax_val < umax_ptr) { 3508 dst_reg->umin_value = 0; 3509 dst_reg->umax_value = U64_MAX; 3510 } else { 3511 dst_reg->umin_value = umin_ptr + umin_val; 3512 dst_reg->umax_value = umax_ptr + umax_val; 3513 } 3514 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3515 dst_reg->off = ptr_reg->off; 3516 dst_reg->raw = ptr_reg->raw; 3517 if (reg_is_pkt_pointer(ptr_reg)) { 3518 dst_reg->id = ++env->id_gen; 3519 /* something was added to pkt_ptr, set range to zero */ 3520 dst_reg->raw = 0; 3521 } 3522 break; 3523 case BPF_SUB: 3524 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3525 if (ret < 0) { 3526 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3527 return ret; 3528 } 3529 if (dst_reg == off_reg) { 3530 /* scalar -= pointer. Creates an unknown scalar */ 3531 verbose(env, "R%d tried to subtract pointer from scalar\n", 3532 dst); 3533 return -EACCES; 3534 } 3535 /* We don't allow subtraction from FP, because (according to 3536 * test_verifier.c test "invalid fp arithmetic", JITs might not 3537 * be able to deal with it. 3538 */ 3539 if (ptr_reg->type == PTR_TO_STACK) { 3540 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3541 dst); 3542 return -EACCES; 3543 } 3544 if (known && (ptr_reg->off - smin_val == 3545 (s64)(s32)(ptr_reg->off - smin_val))) { 3546 /* pointer -= K. Subtract it from fixed offset */ 3547 dst_reg->smin_value = smin_ptr; 3548 dst_reg->smax_value = smax_ptr; 3549 dst_reg->umin_value = umin_ptr; 3550 dst_reg->umax_value = umax_ptr; 3551 dst_reg->var_off = ptr_reg->var_off; 3552 dst_reg->id = ptr_reg->id; 3553 dst_reg->off = ptr_reg->off - smin_val; 3554 dst_reg->raw = ptr_reg->raw; 3555 break; 3556 } 3557 /* A new variable offset is created. If the subtrahend is known 3558 * nonnegative, then any reg->range we had before is still good. 3559 */ 3560 if (signed_sub_overflows(smin_ptr, smax_val) || 3561 signed_sub_overflows(smax_ptr, smin_val)) { 3562 /* Overflow possible, we know nothing */ 3563 dst_reg->smin_value = S64_MIN; 3564 dst_reg->smax_value = S64_MAX; 3565 } else { 3566 dst_reg->smin_value = smin_ptr - smax_val; 3567 dst_reg->smax_value = smax_ptr - smin_val; 3568 } 3569 if (umin_ptr < umax_val) { 3570 /* Overflow possible, we know nothing */ 3571 dst_reg->umin_value = 0; 3572 dst_reg->umax_value = U64_MAX; 3573 } else { 3574 /* Cannot overflow (as long as bounds are consistent) */ 3575 dst_reg->umin_value = umin_ptr - umax_val; 3576 dst_reg->umax_value = umax_ptr - umin_val; 3577 } 3578 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3579 dst_reg->off = ptr_reg->off; 3580 dst_reg->raw = ptr_reg->raw; 3581 if (reg_is_pkt_pointer(ptr_reg)) { 3582 dst_reg->id = ++env->id_gen; 3583 /* something was added to pkt_ptr, set range to zero */ 3584 if (smin_val < 0) 3585 dst_reg->raw = 0; 3586 } 3587 break; 3588 case BPF_AND: 3589 case BPF_OR: 3590 case BPF_XOR: 3591 /* bitwise ops on pointers are troublesome, prohibit. */ 3592 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3593 dst, bpf_alu_string[opcode >> 4]); 3594 return -EACCES; 3595 default: 3596 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3597 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3598 dst, bpf_alu_string[opcode >> 4]); 3599 return -EACCES; 3600 } 3601 3602 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3603 return -EINVAL; 3604 3605 __update_reg_bounds(dst_reg); 3606 __reg_deduce_bounds(dst_reg); 3607 __reg_bound_offset(dst_reg); 3608 3609 /* For unprivileged we require that resulting offset must be in bounds 3610 * in order to be able to sanitize access later on. 3611 */ 3612 if (!env->allow_ptr_leaks) { 3613 if (dst_reg->type == PTR_TO_MAP_VALUE && 3614 check_map_access(env, dst, dst_reg->off, 1, false)) { 3615 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3616 "prohibited for !root\n", dst); 3617 return -EACCES; 3618 } else if (dst_reg->type == PTR_TO_STACK && 3619 check_stack_access(env, dst_reg, dst_reg->off + 3620 dst_reg->var_off.value, 1)) { 3621 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3622 "prohibited for !root\n", dst); 3623 return -EACCES; 3624 } 3625 } 3626 3627 return 0; 3628 } 3629 3630 /* WARNING: This function does calculations on 64-bit values, but the actual 3631 * execution may occur on 32-bit values. Therefore, things like bitshifts 3632 * need extra checks in the 32-bit case. 3633 */ 3634 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3635 struct bpf_insn *insn, 3636 struct bpf_reg_state *dst_reg, 3637 struct bpf_reg_state src_reg) 3638 { 3639 struct bpf_reg_state *regs = cur_regs(env); 3640 u8 opcode = BPF_OP(insn->code); 3641 bool src_known, dst_known; 3642 s64 smin_val, smax_val; 3643 u64 umin_val, umax_val; 3644 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3645 u32 dst = insn->dst_reg; 3646 int ret; 3647 3648 if (insn_bitness == 32) { 3649 /* Relevant for 32-bit RSH: Information can propagate towards 3650 * LSB, so it isn't sufficient to only truncate the output to 3651 * 32 bits. 3652 */ 3653 coerce_reg_to_size(dst_reg, 4); 3654 coerce_reg_to_size(&src_reg, 4); 3655 } 3656 3657 smin_val = src_reg.smin_value; 3658 smax_val = src_reg.smax_value; 3659 umin_val = src_reg.umin_value; 3660 umax_val = src_reg.umax_value; 3661 src_known = tnum_is_const(src_reg.var_off); 3662 dst_known = tnum_is_const(dst_reg->var_off); 3663 3664 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3665 smin_val > smax_val || umin_val > umax_val) { 3666 /* Taint dst register if offset had invalid bounds derived from 3667 * e.g. dead branches. 3668 */ 3669 __mark_reg_unknown(dst_reg); 3670 return 0; 3671 } 3672 3673 if (!src_known && 3674 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3675 __mark_reg_unknown(dst_reg); 3676 return 0; 3677 } 3678 3679 switch (opcode) { 3680 case BPF_ADD: 3681 ret = sanitize_val_alu(env, insn); 3682 if (ret < 0) { 3683 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3684 return ret; 3685 } 3686 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3687 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3688 dst_reg->smin_value = S64_MIN; 3689 dst_reg->smax_value = S64_MAX; 3690 } else { 3691 dst_reg->smin_value += smin_val; 3692 dst_reg->smax_value += smax_val; 3693 } 3694 if (dst_reg->umin_value + umin_val < umin_val || 3695 dst_reg->umax_value + umax_val < umax_val) { 3696 dst_reg->umin_value = 0; 3697 dst_reg->umax_value = U64_MAX; 3698 } else { 3699 dst_reg->umin_value += umin_val; 3700 dst_reg->umax_value += umax_val; 3701 } 3702 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3703 break; 3704 case BPF_SUB: 3705 ret = sanitize_val_alu(env, insn); 3706 if (ret < 0) { 3707 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3708 return ret; 3709 } 3710 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3711 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3712 /* Overflow possible, we know nothing */ 3713 dst_reg->smin_value = S64_MIN; 3714 dst_reg->smax_value = S64_MAX; 3715 } else { 3716 dst_reg->smin_value -= smax_val; 3717 dst_reg->smax_value -= smin_val; 3718 } 3719 if (dst_reg->umin_value < umax_val) { 3720 /* Overflow possible, we know nothing */ 3721 dst_reg->umin_value = 0; 3722 dst_reg->umax_value = U64_MAX; 3723 } else { 3724 /* Cannot overflow (as long as bounds are consistent) */ 3725 dst_reg->umin_value -= umax_val; 3726 dst_reg->umax_value -= umin_val; 3727 } 3728 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3729 break; 3730 case BPF_MUL: 3731 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3732 if (smin_val < 0 || dst_reg->smin_value < 0) { 3733 /* Ain't nobody got time to multiply that sign */ 3734 __mark_reg_unbounded(dst_reg); 3735 __update_reg_bounds(dst_reg); 3736 break; 3737 } 3738 /* Both values are positive, so we can work with unsigned and 3739 * copy the result to signed (unless it exceeds S64_MAX). 3740 */ 3741 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3742 /* Potential overflow, we know nothing */ 3743 __mark_reg_unbounded(dst_reg); 3744 /* (except what we can learn from the var_off) */ 3745 __update_reg_bounds(dst_reg); 3746 break; 3747 } 3748 dst_reg->umin_value *= umin_val; 3749 dst_reg->umax_value *= umax_val; 3750 if (dst_reg->umax_value > S64_MAX) { 3751 /* Overflow possible, we know nothing */ 3752 dst_reg->smin_value = S64_MIN; 3753 dst_reg->smax_value = S64_MAX; 3754 } else { 3755 dst_reg->smin_value = dst_reg->umin_value; 3756 dst_reg->smax_value = dst_reg->umax_value; 3757 } 3758 break; 3759 case BPF_AND: 3760 if (src_known && dst_known) { 3761 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3762 src_reg.var_off.value); 3763 break; 3764 } 3765 /* We get our minimum from the var_off, since that's inherently 3766 * bitwise. Our maximum is the minimum of the operands' maxima. 3767 */ 3768 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3769 dst_reg->umin_value = dst_reg->var_off.value; 3770 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3771 if (dst_reg->smin_value < 0 || smin_val < 0) { 3772 /* Lose signed bounds when ANDing negative numbers, 3773 * ain't nobody got time for that. 3774 */ 3775 dst_reg->smin_value = S64_MIN; 3776 dst_reg->smax_value = S64_MAX; 3777 } else { 3778 /* ANDing two positives gives a positive, so safe to 3779 * cast result into s64. 3780 */ 3781 dst_reg->smin_value = dst_reg->umin_value; 3782 dst_reg->smax_value = dst_reg->umax_value; 3783 } 3784 /* We may learn something more from the var_off */ 3785 __update_reg_bounds(dst_reg); 3786 break; 3787 case BPF_OR: 3788 if (src_known && dst_known) { 3789 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3790 src_reg.var_off.value); 3791 break; 3792 } 3793 /* We get our maximum from the var_off, and our minimum is the 3794 * maximum of the operands' minima 3795 */ 3796 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3797 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3798 dst_reg->umax_value = dst_reg->var_off.value | 3799 dst_reg->var_off.mask; 3800 if (dst_reg->smin_value < 0 || smin_val < 0) { 3801 /* Lose signed bounds when ORing negative numbers, 3802 * ain't nobody got time for that. 3803 */ 3804 dst_reg->smin_value = S64_MIN; 3805 dst_reg->smax_value = S64_MAX; 3806 } else { 3807 /* ORing two positives gives a positive, so safe to 3808 * cast result into s64. 3809 */ 3810 dst_reg->smin_value = dst_reg->umin_value; 3811 dst_reg->smax_value = dst_reg->umax_value; 3812 } 3813 /* We may learn something more from the var_off */ 3814 __update_reg_bounds(dst_reg); 3815 break; 3816 case BPF_LSH: 3817 if (umax_val >= insn_bitness) { 3818 /* Shifts greater than 31 or 63 are undefined. 3819 * This includes shifts by a negative number. 3820 */ 3821 mark_reg_unknown(env, regs, insn->dst_reg); 3822 break; 3823 } 3824 /* We lose all sign bit information (except what we can pick 3825 * up from var_off) 3826 */ 3827 dst_reg->smin_value = S64_MIN; 3828 dst_reg->smax_value = S64_MAX; 3829 /* If we might shift our top bit out, then we know nothing */ 3830 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3831 dst_reg->umin_value = 0; 3832 dst_reg->umax_value = U64_MAX; 3833 } else { 3834 dst_reg->umin_value <<= umin_val; 3835 dst_reg->umax_value <<= umax_val; 3836 } 3837 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3838 /* We may learn something more from the var_off */ 3839 __update_reg_bounds(dst_reg); 3840 break; 3841 case BPF_RSH: 3842 if (umax_val >= insn_bitness) { 3843 /* Shifts greater than 31 or 63 are undefined. 3844 * This includes shifts by a negative number. 3845 */ 3846 mark_reg_unknown(env, regs, insn->dst_reg); 3847 break; 3848 } 3849 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3850 * be negative, then either: 3851 * 1) src_reg might be zero, so the sign bit of the result is 3852 * unknown, so we lose our signed bounds 3853 * 2) it's known negative, thus the unsigned bounds capture the 3854 * signed bounds 3855 * 3) the signed bounds cross zero, so they tell us nothing 3856 * about the result 3857 * If the value in dst_reg is known nonnegative, then again the 3858 * unsigned bounts capture the signed bounds. 3859 * Thus, in all cases it suffices to blow away our signed bounds 3860 * and rely on inferring new ones from the unsigned bounds and 3861 * var_off of the result. 3862 */ 3863 dst_reg->smin_value = S64_MIN; 3864 dst_reg->smax_value = S64_MAX; 3865 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3866 dst_reg->umin_value >>= umax_val; 3867 dst_reg->umax_value >>= umin_val; 3868 /* We may learn something more from the var_off */ 3869 __update_reg_bounds(dst_reg); 3870 break; 3871 case BPF_ARSH: 3872 if (umax_val >= insn_bitness) { 3873 /* Shifts greater than 31 or 63 are undefined. 3874 * This includes shifts by a negative number. 3875 */ 3876 mark_reg_unknown(env, regs, insn->dst_reg); 3877 break; 3878 } 3879 3880 /* Upon reaching here, src_known is true and 3881 * umax_val is equal to umin_val. 3882 */ 3883 dst_reg->smin_value >>= umin_val; 3884 dst_reg->smax_value >>= umin_val; 3885 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3886 3887 /* blow away the dst_reg umin_value/umax_value and rely on 3888 * dst_reg var_off to refine the result. 3889 */ 3890 dst_reg->umin_value = 0; 3891 dst_reg->umax_value = U64_MAX; 3892 __update_reg_bounds(dst_reg); 3893 break; 3894 default: 3895 mark_reg_unknown(env, regs, insn->dst_reg); 3896 break; 3897 } 3898 3899 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3900 /* 32-bit ALU ops are (32,32)->32 */ 3901 coerce_reg_to_size(dst_reg, 4); 3902 } 3903 3904 __reg_deduce_bounds(dst_reg); 3905 __reg_bound_offset(dst_reg); 3906 return 0; 3907 } 3908 3909 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3910 * and var_off. 3911 */ 3912 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3913 struct bpf_insn *insn) 3914 { 3915 struct bpf_verifier_state *vstate = env->cur_state; 3916 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3917 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3918 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3919 u8 opcode = BPF_OP(insn->code); 3920 3921 dst_reg = ®s[insn->dst_reg]; 3922 src_reg = NULL; 3923 if (dst_reg->type != SCALAR_VALUE) 3924 ptr_reg = dst_reg; 3925 if (BPF_SRC(insn->code) == BPF_X) { 3926 src_reg = ®s[insn->src_reg]; 3927 if (src_reg->type != SCALAR_VALUE) { 3928 if (dst_reg->type != SCALAR_VALUE) { 3929 /* Combining two pointers by any ALU op yields 3930 * an arbitrary scalar. Disallow all math except 3931 * pointer subtraction 3932 */ 3933 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3934 mark_reg_unknown(env, regs, insn->dst_reg); 3935 return 0; 3936 } 3937 verbose(env, "R%d pointer %s pointer prohibited\n", 3938 insn->dst_reg, 3939 bpf_alu_string[opcode >> 4]); 3940 return -EACCES; 3941 } else { 3942 /* scalar += pointer 3943 * This is legal, but we have to reverse our 3944 * src/dest handling in computing the range 3945 */ 3946 return adjust_ptr_min_max_vals(env, insn, 3947 src_reg, dst_reg); 3948 } 3949 } else if (ptr_reg) { 3950 /* pointer += scalar */ 3951 return adjust_ptr_min_max_vals(env, insn, 3952 dst_reg, src_reg); 3953 } 3954 } else { 3955 /* Pretend the src is a reg with a known value, since we only 3956 * need to be able to read from this state. 3957 */ 3958 off_reg.type = SCALAR_VALUE; 3959 __mark_reg_known(&off_reg, insn->imm); 3960 src_reg = &off_reg; 3961 if (ptr_reg) /* pointer += K */ 3962 return adjust_ptr_min_max_vals(env, insn, 3963 ptr_reg, src_reg); 3964 } 3965 3966 /* Got here implies adding two SCALAR_VALUEs */ 3967 if (WARN_ON_ONCE(ptr_reg)) { 3968 print_verifier_state(env, state); 3969 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3970 return -EINVAL; 3971 } 3972 if (WARN_ON(!src_reg)) { 3973 print_verifier_state(env, state); 3974 verbose(env, "verifier internal error: no src_reg\n"); 3975 return -EINVAL; 3976 } 3977 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3978 } 3979 3980 /* check validity of 32-bit and 64-bit arithmetic operations */ 3981 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3982 { 3983 struct bpf_reg_state *regs = cur_regs(env); 3984 u8 opcode = BPF_OP(insn->code); 3985 int err; 3986 3987 if (opcode == BPF_END || opcode == BPF_NEG) { 3988 if (opcode == BPF_NEG) { 3989 if (BPF_SRC(insn->code) != 0 || 3990 insn->src_reg != BPF_REG_0 || 3991 insn->off != 0 || insn->imm != 0) { 3992 verbose(env, "BPF_NEG uses reserved fields\n"); 3993 return -EINVAL; 3994 } 3995 } else { 3996 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3997 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3998 BPF_CLASS(insn->code) == BPF_ALU64) { 3999 verbose(env, "BPF_END uses reserved fields\n"); 4000 return -EINVAL; 4001 } 4002 } 4003 4004 /* check src operand */ 4005 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4006 if (err) 4007 return err; 4008 4009 if (is_pointer_value(env, insn->dst_reg)) { 4010 verbose(env, "R%d pointer arithmetic prohibited\n", 4011 insn->dst_reg); 4012 return -EACCES; 4013 } 4014 4015 /* check dest operand */ 4016 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4017 if (err) 4018 return err; 4019 4020 } else if (opcode == BPF_MOV) { 4021 4022 if (BPF_SRC(insn->code) == BPF_X) { 4023 if (insn->imm != 0 || insn->off != 0) { 4024 verbose(env, "BPF_MOV uses reserved fields\n"); 4025 return -EINVAL; 4026 } 4027 4028 /* check src operand */ 4029 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4030 if (err) 4031 return err; 4032 } else { 4033 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4034 verbose(env, "BPF_MOV uses reserved fields\n"); 4035 return -EINVAL; 4036 } 4037 } 4038 4039 /* check dest operand, mark as required later */ 4040 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4041 if (err) 4042 return err; 4043 4044 if (BPF_SRC(insn->code) == BPF_X) { 4045 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4046 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4047 4048 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4049 /* case: R1 = R2 4050 * copy register state to dest reg 4051 */ 4052 *dst_reg = *src_reg; 4053 dst_reg->live |= REG_LIVE_WRITTEN; 4054 } else { 4055 /* R1 = (u32) R2 */ 4056 if (is_pointer_value(env, insn->src_reg)) { 4057 verbose(env, 4058 "R%d partial copy of pointer\n", 4059 insn->src_reg); 4060 return -EACCES; 4061 } else if (src_reg->type == SCALAR_VALUE) { 4062 *dst_reg = *src_reg; 4063 dst_reg->live |= REG_LIVE_WRITTEN; 4064 } else { 4065 mark_reg_unknown(env, regs, 4066 insn->dst_reg); 4067 } 4068 coerce_reg_to_size(dst_reg, 4); 4069 } 4070 } else { 4071 /* case: R = imm 4072 * remember the value we stored into this reg 4073 */ 4074 /* clear any state __mark_reg_known doesn't set */ 4075 mark_reg_unknown(env, regs, insn->dst_reg); 4076 regs[insn->dst_reg].type = SCALAR_VALUE; 4077 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4078 __mark_reg_known(regs + insn->dst_reg, 4079 insn->imm); 4080 } else { 4081 __mark_reg_known(regs + insn->dst_reg, 4082 (u32)insn->imm); 4083 } 4084 } 4085 4086 } else if (opcode > BPF_END) { 4087 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 4088 return -EINVAL; 4089 4090 } else { /* all other ALU ops: and, sub, xor, add, ... */ 4091 4092 if (BPF_SRC(insn->code) == BPF_X) { 4093 if (insn->imm != 0 || insn->off != 0) { 4094 verbose(env, "BPF_ALU uses reserved fields\n"); 4095 return -EINVAL; 4096 } 4097 /* check src1 operand */ 4098 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4099 if (err) 4100 return err; 4101 } else { 4102 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4103 verbose(env, "BPF_ALU uses reserved fields\n"); 4104 return -EINVAL; 4105 } 4106 } 4107 4108 /* check src2 operand */ 4109 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4110 if (err) 4111 return err; 4112 4113 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 4114 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 4115 verbose(env, "div by zero\n"); 4116 return -EINVAL; 4117 } 4118 4119 if ((opcode == BPF_LSH || opcode == BPF_RSH || 4120 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 4121 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 4122 4123 if (insn->imm < 0 || insn->imm >= size) { 4124 verbose(env, "invalid shift %d\n", insn->imm); 4125 return -EINVAL; 4126 } 4127 } 4128 4129 /* check dest operand */ 4130 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4131 if (err) 4132 return err; 4133 4134 return adjust_reg_min_max_vals(env, insn); 4135 } 4136 4137 return 0; 4138 } 4139 4140 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 4141 struct bpf_reg_state *dst_reg, 4142 enum bpf_reg_type type, 4143 bool range_right_open) 4144 { 4145 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4146 struct bpf_reg_state *regs = state->regs, *reg; 4147 u16 new_range; 4148 int i, j; 4149 4150 if (dst_reg->off < 0 || 4151 (dst_reg->off == 0 && range_right_open)) 4152 /* This doesn't give us any range */ 4153 return; 4154 4155 if (dst_reg->umax_value > MAX_PACKET_OFF || 4156 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 4157 /* Risk of overflow. For instance, ptr + (1<<63) may be less 4158 * than pkt_end, but that's because it's also less than pkt. 4159 */ 4160 return; 4161 4162 new_range = dst_reg->off; 4163 if (range_right_open) 4164 new_range--; 4165 4166 /* Examples for register markings: 4167 * 4168 * pkt_data in dst register: 4169 * 4170 * r2 = r3; 4171 * r2 += 8; 4172 * if (r2 > pkt_end) goto <handle exception> 4173 * <access okay> 4174 * 4175 * r2 = r3; 4176 * r2 += 8; 4177 * if (r2 < pkt_end) goto <access okay> 4178 * <handle exception> 4179 * 4180 * Where: 4181 * r2 == dst_reg, pkt_end == src_reg 4182 * r2=pkt(id=n,off=8,r=0) 4183 * r3=pkt(id=n,off=0,r=0) 4184 * 4185 * pkt_data in src register: 4186 * 4187 * r2 = r3; 4188 * r2 += 8; 4189 * if (pkt_end >= r2) goto <access okay> 4190 * <handle exception> 4191 * 4192 * r2 = r3; 4193 * r2 += 8; 4194 * if (pkt_end <= r2) goto <handle exception> 4195 * <access okay> 4196 * 4197 * Where: 4198 * pkt_end == dst_reg, r2 == src_reg 4199 * r2=pkt(id=n,off=8,r=0) 4200 * r3=pkt(id=n,off=0,r=0) 4201 * 4202 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4203 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4204 * and [r3, r3 + 8-1) respectively is safe to access depending on 4205 * the check. 4206 */ 4207 4208 /* If our ids match, then we must have the same max_value. And we 4209 * don't care about the other reg's fixed offset, since if it's too big 4210 * the range won't allow anything. 4211 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4212 */ 4213 for (i = 0; i < MAX_BPF_REG; i++) 4214 if (regs[i].type == type && regs[i].id == dst_reg->id) 4215 /* keep the maximum range already checked */ 4216 regs[i].range = max(regs[i].range, new_range); 4217 4218 for (j = 0; j <= vstate->curframe; j++) { 4219 state = vstate->frame[j]; 4220 bpf_for_each_spilled_reg(i, state, reg) { 4221 if (!reg) 4222 continue; 4223 if (reg->type == type && reg->id == dst_reg->id) 4224 reg->range = max(reg->range, new_range); 4225 } 4226 } 4227 } 4228 4229 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4230 * and return: 4231 * 1 - branch will be taken and "goto target" will be executed 4232 * 0 - branch will not be taken and fall-through to next insn 4233 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4234 */ 4235 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4236 bool is_jmp32) 4237 { 4238 struct bpf_reg_state reg_lo; 4239 s64 sval; 4240 4241 if (__is_pointer_value(false, reg)) 4242 return -1; 4243 4244 if (is_jmp32) { 4245 reg_lo = *reg; 4246 reg = ®_lo; 4247 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4248 * could truncate high bits and update umin/umax according to 4249 * information of low bits. 4250 */ 4251 coerce_reg_to_size(reg, 4); 4252 /* smin/smax need special handling. For example, after coerce, 4253 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4254 * used as operand to JMP32. It is a negative number from s32's 4255 * point of view, while it is a positive number when seen as 4256 * s64. The smin/smax are kept as s64, therefore, when used with 4257 * JMP32, they need to be transformed into s32, then sign 4258 * extended back to s64. 4259 * 4260 * Also, smin/smax were copied from umin/umax. If umin/umax has 4261 * different sign bit, then min/max relationship doesn't 4262 * maintain after casting into s32, for this case, set smin/smax 4263 * to safest range. 4264 */ 4265 if ((reg->umax_value ^ reg->umin_value) & 4266 (1ULL << 31)) { 4267 reg->smin_value = S32_MIN; 4268 reg->smax_value = S32_MAX; 4269 } 4270 reg->smin_value = (s64)(s32)reg->smin_value; 4271 reg->smax_value = (s64)(s32)reg->smax_value; 4272 4273 val = (u32)val; 4274 sval = (s64)(s32)val; 4275 } else { 4276 sval = (s64)val; 4277 } 4278 4279 switch (opcode) { 4280 case BPF_JEQ: 4281 if (tnum_is_const(reg->var_off)) 4282 return !!tnum_equals_const(reg->var_off, val); 4283 break; 4284 case BPF_JNE: 4285 if (tnum_is_const(reg->var_off)) 4286 return !tnum_equals_const(reg->var_off, val); 4287 break; 4288 case BPF_JSET: 4289 if ((~reg->var_off.mask & reg->var_off.value) & val) 4290 return 1; 4291 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4292 return 0; 4293 break; 4294 case BPF_JGT: 4295 if (reg->umin_value > val) 4296 return 1; 4297 else if (reg->umax_value <= val) 4298 return 0; 4299 break; 4300 case BPF_JSGT: 4301 if (reg->smin_value > sval) 4302 return 1; 4303 else if (reg->smax_value < sval) 4304 return 0; 4305 break; 4306 case BPF_JLT: 4307 if (reg->umax_value < val) 4308 return 1; 4309 else if (reg->umin_value >= val) 4310 return 0; 4311 break; 4312 case BPF_JSLT: 4313 if (reg->smax_value < sval) 4314 return 1; 4315 else if (reg->smin_value >= sval) 4316 return 0; 4317 break; 4318 case BPF_JGE: 4319 if (reg->umin_value >= val) 4320 return 1; 4321 else if (reg->umax_value < val) 4322 return 0; 4323 break; 4324 case BPF_JSGE: 4325 if (reg->smin_value >= sval) 4326 return 1; 4327 else if (reg->smax_value < sval) 4328 return 0; 4329 break; 4330 case BPF_JLE: 4331 if (reg->umax_value <= val) 4332 return 1; 4333 else if (reg->umin_value > val) 4334 return 0; 4335 break; 4336 case BPF_JSLE: 4337 if (reg->smax_value <= sval) 4338 return 1; 4339 else if (reg->smin_value > sval) 4340 return 0; 4341 break; 4342 } 4343 4344 return -1; 4345 } 4346 4347 /* Generate min value of the high 32-bit from TNUM info. */ 4348 static u64 gen_hi_min(struct tnum var) 4349 { 4350 return var.value & ~0xffffffffULL; 4351 } 4352 4353 /* Generate max value of the high 32-bit from TNUM info. */ 4354 static u64 gen_hi_max(struct tnum var) 4355 { 4356 return (var.value | var.mask) & ~0xffffffffULL; 4357 } 4358 4359 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4360 * are with the same signedness. 4361 */ 4362 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4363 { 4364 return ((s32)sval >= 0 && 4365 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4366 ((s32)sval < 0 && 4367 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4368 } 4369 4370 /* Adjusts the register min/max values in the case that the dst_reg is the 4371 * variable register that we are working on, and src_reg is a constant or we're 4372 * simply doing a BPF_K check. 4373 * In JEQ/JNE cases we also adjust the var_off values. 4374 */ 4375 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4376 struct bpf_reg_state *false_reg, u64 val, 4377 u8 opcode, bool is_jmp32) 4378 { 4379 s64 sval; 4380 4381 /* If the dst_reg is a pointer, we can't learn anything about its 4382 * variable offset from the compare (unless src_reg were a pointer into 4383 * the same object, but we don't bother with that. 4384 * Since false_reg and true_reg have the same type by construction, we 4385 * only need to check one of them for pointerness. 4386 */ 4387 if (__is_pointer_value(false, false_reg)) 4388 return; 4389 4390 val = is_jmp32 ? (u32)val : val; 4391 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4392 4393 switch (opcode) { 4394 case BPF_JEQ: 4395 case BPF_JNE: 4396 { 4397 struct bpf_reg_state *reg = 4398 opcode == BPF_JEQ ? true_reg : false_reg; 4399 4400 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4401 * if it is true we know the value for sure. Likewise for 4402 * BPF_JNE. 4403 */ 4404 if (is_jmp32) { 4405 u64 old_v = reg->var_off.value; 4406 u64 hi_mask = ~0xffffffffULL; 4407 4408 reg->var_off.value = (old_v & hi_mask) | val; 4409 reg->var_off.mask &= hi_mask; 4410 } else { 4411 __mark_reg_known(reg, val); 4412 } 4413 break; 4414 } 4415 case BPF_JSET: 4416 false_reg->var_off = tnum_and(false_reg->var_off, 4417 tnum_const(~val)); 4418 if (is_power_of_2(val)) 4419 true_reg->var_off = tnum_or(true_reg->var_off, 4420 tnum_const(val)); 4421 break; 4422 case BPF_JGE: 4423 case BPF_JGT: 4424 { 4425 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4426 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4427 4428 if (is_jmp32) { 4429 false_umax += gen_hi_max(false_reg->var_off); 4430 true_umin += gen_hi_min(true_reg->var_off); 4431 } 4432 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4433 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4434 break; 4435 } 4436 case BPF_JSGE: 4437 case BPF_JSGT: 4438 { 4439 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4440 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4441 4442 /* If the full s64 was not sign-extended from s32 then don't 4443 * deduct further info. 4444 */ 4445 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4446 break; 4447 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4448 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4449 break; 4450 } 4451 case BPF_JLE: 4452 case BPF_JLT: 4453 { 4454 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4455 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4456 4457 if (is_jmp32) { 4458 false_umin += gen_hi_min(false_reg->var_off); 4459 true_umax += gen_hi_max(true_reg->var_off); 4460 } 4461 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4462 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4463 break; 4464 } 4465 case BPF_JSLE: 4466 case BPF_JSLT: 4467 { 4468 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4469 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4470 4471 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4472 break; 4473 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4474 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4475 break; 4476 } 4477 default: 4478 break; 4479 } 4480 4481 __reg_deduce_bounds(false_reg); 4482 __reg_deduce_bounds(true_reg); 4483 /* We might have learned some bits from the bounds. */ 4484 __reg_bound_offset(false_reg); 4485 __reg_bound_offset(true_reg); 4486 /* Intersecting with the old var_off might have improved our bounds 4487 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4488 * then new var_off is (0; 0x7f...fc) which improves our umax. 4489 */ 4490 __update_reg_bounds(false_reg); 4491 __update_reg_bounds(true_reg); 4492 } 4493 4494 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4495 * the variable reg. 4496 */ 4497 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4498 struct bpf_reg_state *false_reg, u64 val, 4499 u8 opcode, bool is_jmp32) 4500 { 4501 s64 sval; 4502 4503 if (__is_pointer_value(false, false_reg)) 4504 return; 4505 4506 val = is_jmp32 ? (u32)val : val; 4507 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4508 4509 switch (opcode) { 4510 case BPF_JEQ: 4511 case BPF_JNE: 4512 { 4513 struct bpf_reg_state *reg = 4514 opcode == BPF_JEQ ? true_reg : false_reg; 4515 4516 if (is_jmp32) { 4517 u64 old_v = reg->var_off.value; 4518 u64 hi_mask = ~0xffffffffULL; 4519 4520 reg->var_off.value = (old_v & hi_mask) | val; 4521 reg->var_off.mask &= hi_mask; 4522 } else { 4523 __mark_reg_known(reg, val); 4524 } 4525 break; 4526 } 4527 case BPF_JSET: 4528 false_reg->var_off = tnum_and(false_reg->var_off, 4529 tnum_const(~val)); 4530 if (is_power_of_2(val)) 4531 true_reg->var_off = tnum_or(true_reg->var_off, 4532 tnum_const(val)); 4533 break; 4534 case BPF_JGE: 4535 case BPF_JGT: 4536 { 4537 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4538 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4539 4540 if (is_jmp32) { 4541 false_umin += gen_hi_min(false_reg->var_off); 4542 true_umax += gen_hi_max(true_reg->var_off); 4543 } 4544 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4545 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4546 break; 4547 } 4548 case BPF_JSGE: 4549 case BPF_JSGT: 4550 { 4551 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4552 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4553 4554 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4555 break; 4556 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4557 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4558 break; 4559 } 4560 case BPF_JLE: 4561 case BPF_JLT: 4562 { 4563 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4564 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4565 4566 if (is_jmp32) { 4567 false_umax += gen_hi_max(false_reg->var_off); 4568 true_umin += gen_hi_min(true_reg->var_off); 4569 } 4570 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4571 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4572 break; 4573 } 4574 case BPF_JSLE: 4575 case BPF_JSLT: 4576 { 4577 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4578 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4579 4580 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4581 break; 4582 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4583 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4584 break; 4585 } 4586 default: 4587 break; 4588 } 4589 4590 __reg_deduce_bounds(false_reg); 4591 __reg_deduce_bounds(true_reg); 4592 /* We might have learned some bits from the bounds. */ 4593 __reg_bound_offset(false_reg); 4594 __reg_bound_offset(true_reg); 4595 /* Intersecting with the old var_off might have improved our bounds 4596 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4597 * then new var_off is (0; 0x7f...fc) which improves our umax. 4598 */ 4599 __update_reg_bounds(false_reg); 4600 __update_reg_bounds(true_reg); 4601 } 4602 4603 /* Regs are known to be equal, so intersect their min/max/var_off */ 4604 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4605 struct bpf_reg_state *dst_reg) 4606 { 4607 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4608 dst_reg->umin_value); 4609 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4610 dst_reg->umax_value); 4611 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4612 dst_reg->smin_value); 4613 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4614 dst_reg->smax_value); 4615 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4616 dst_reg->var_off); 4617 /* We might have learned new bounds from the var_off. */ 4618 __update_reg_bounds(src_reg); 4619 __update_reg_bounds(dst_reg); 4620 /* We might have learned something about the sign bit. */ 4621 __reg_deduce_bounds(src_reg); 4622 __reg_deduce_bounds(dst_reg); 4623 /* We might have learned some bits from the bounds. */ 4624 __reg_bound_offset(src_reg); 4625 __reg_bound_offset(dst_reg); 4626 /* Intersecting with the old var_off might have improved our bounds 4627 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4628 * then new var_off is (0; 0x7f...fc) which improves our umax. 4629 */ 4630 __update_reg_bounds(src_reg); 4631 __update_reg_bounds(dst_reg); 4632 } 4633 4634 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4635 struct bpf_reg_state *true_dst, 4636 struct bpf_reg_state *false_src, 4637 struct bpf_reg_state *false_dst, 4638 u8 opcode) 4639 { 4640 switch (opcode) { 4641 case BPF_JEQ: 4642 __reg_combine_min_max(true_src, true_dst); 4643 break; 4644 case BPF_JNE: 4645 __reg_combine_min_max(false_src, false_dst); 4646 break; 4647 } 4648 } 4649 4650 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4651 struct bpf_reg_state *reg, u32 id, 4652 bool is_null) 4653 { 4654 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4655 /* Old offset (both fixed and variable parts) should 4656 * have been known-zero, because we don't allow pointer 4657 * arithmetic on pointers that might be NULL. 4658 */ 4659 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4660 !tnum_equals_const(reg->var_off, 0) || 4661 reg->off)) { 4662 __mark_reg_known_zero(reg); 4663 reg->off = 0; 4664 } 4665 if (is_null) { 4666 reg->type = SCALAR_VALUE; 4667 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4668 if (reg->map_ptr->inner_map_meta) { 4669 reg->type = CONST_PTR_TO_MAP; 4670 reg->map_ptr = reg->map_ptr->inner_map_meta; 4671 } else { 4672 reg->type = PTR_TO_MAP_VALUE; 4673 } 4674 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4675 reg->type = PTR_TO_SOCKET; 4676 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 4677 reg->type = PTR_TO_SOCK_COMMON; 4678 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 4679 reg->type = PTR_TO_TCP_SOCK; 4680 } 4681 if (is_null) { 4682 /* We don't need id and ref_obj_id from this point 4683 * onwards anymore, thus we should better reset it, 4684 * so that state pruning has chances to take effect. 4685 */ 4686 reg->id = 0; 4687 reg->ref_obj_id = 0; 4688 } else if (!reg_may_point_to_spin_lock(reg)) { 4689 /* For not-NULL ptr, reg->ref_obj_id will be reset 4690 * in release_reg_references(). 4691 * 4692 * reg->id is still used by spin_lock ptr. Other 4693 * than spin_lock ptr type, reg->id can be reset. 4694 */ 4695 reg->id = 0; 4696 } 4697 } 4698 } 4699 4700 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4701 * be folded together at some point. 4702 */ 4703 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4704 bool is_null) 4705 { 4706 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4707 struct bpf_reg_state *reg, *regs = state->regs; 4708 u32 ref_obj_id = regs[regno].ref_obj_id; 4709 u32 id = regs[regno].id; 4710 int i, j; 4711 4712 if (ref_obj_id && ref_obj_id == id && is_null) 4713 /* regs[regno] is in the " == NULL" branch. 4714 * No one could have freed the reference state before 4715 * doing the NULL check. 4716 */ 4717 WARN_ON_ONCE(release_reference_state(state, id)); 4718 4719 for (i = 0; i < MAX_BPF_REG; i++) 4720 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4721 4722 for (j = 0; j <= vstate->curframe; j++) { 4723 state = vstate->frame[j]; 4724 bpf_for_each_spilled_reg(i, state, reg) { 4725 if (!reg) 4726 continue; 4727 mark_ptr_or_null_reg(state, reg, id, is_null); 4728 } 4729 } 4730 } 4731 4732 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4733 struct bpf_reg_state *dst_reg, 4734 struct bpf_reg_state *src_reg, 4735 struct bpf_verifier_state *this_branch, 4736 struct bpf_verifier_state *other_branch) 4737 { 4738 if (BPF_SRC(insn->code) != BPF_X) 4739 return false; 4740 4741 /* Pointers are always 64-bit. */ 4742 if (BPF_CLASS(insn->code) == BPF_JMP32) 4743 return false; 4744 4745 switch (BPF_OP(insn->code)) { 4746 case BPF_JGT: 4747 if ((dst_reg->type == PTR_TO_PACKET && 4748 src_reg->type == PTR_TO_PACKET_END) || 4749 (dst_reg->type == PTR_TO_PACKET_META && 4750 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4751 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4752 find_good_pkt_pointers(this_branch, dst_reg, 4753 dst_reg->type, false); 4754 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4755 src_reg->type == PTR_TO_PACKET) || 4756 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4757 src_reg->type == PTR_TO_PACKET_META)) { 4758 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4759 find_good_pkt_pointers(other_branch, src_reg, 4760 src_reg->type, true); 4761 } else { 4762 return false; 4763 } 4764 break; 4765 case BPF_JLT: 4766 if ((dst_reg->type == PTR_TO_PACKET && 4767 src_reg->type == PTR_TO_PACKET_END) || 4768 (dst_reg->type == PTR_TO_PACKET_META && 4769 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4770 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4771 find_good_pkt_pointers(other_branch, dst_reg, 4772 dst_reg->type, true); 4773 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4774 src_reg->type == PTR_TO_PACKET) || 4775 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4776 src_reg->type == PTR_TO_PACKET_META)) { 4777 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4778 find_good_pkt_pointers(this_branch, src_reg, 4779 src_reg->type, false); 4780 } else { 4781 return false; 4782 } 4783 break; 4784 case BPF_JGE: 4785 if ((dst_reg->type == PTR_TO_PACKET && 4786 src_reg->type == PTR_TO_PACKET_END) || 4787 (dst_reg->type == PTR_TO_PACKET_META && 4788 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4789 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4790 find_good_pkt_pointers(this_branch, dst_reg, 4791 dst_reg->type, true); 4792 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4793 src_reg->type == PTR_TO_PACKET) || 4794 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4795 src_reg->type == PTR_TO_PACKET_META)) { 4796 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4797 find_good_pkt_pointers(other_branch, src_reg, 4798 src_reg->type, false); 4799 } else { 4800 return false; 4801 } 4802 break; 4803 case BPF_JLE: 4804 if ((dst_reg->type == PTR_TO_PACKET && 4805 src_reg->type == PTR_TO_PACKET_END) || 4806 (dst_reg->type == PTR_TO_PACKET_META && 4807 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4808 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4809 find_good_pkt_pointers(other_branch, dst_reg, 4810 dst_reg->type, false); 4811 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4812 src_reg->type == PTR_TO_PACKET) || 4813 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4814 src_reg->type == PTR_TO_PACKET_META)) { 4815 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4816 find_good_pkt_pointers(this_branch, src_reg, 4817 src_reg->type, true); 4818 } else { 4819 return false; 4820 } 4821 break; 4822 default: 4823 return false; 4824 } 4825 4826 return true; 4827 } 4828 4829 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4830 struct bpf_insn *insn, int *insn_idx) 4831 { 4832 struct bpf_verifier_state *this_branch = env->cur_state; 4833 struct bpf_verifier_state *other_branch; 4834 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4835 struct bpf_reg_state *dst_reg, *other_branch_regs; 4836 u8 opcode = BPF_OP(insn->code); 4837 bool is_jmp32; 4838 int err; 4839 4840 /* Only conditional jumps are expected to reach here. */ 4841 if (opcode == BPF_JA || opcode > BPF_JSLE) { 4842 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 4843 return -EINVAL; 4844 } 4845 4846 if (BPF_SRC(insn->code) == BPF_X) { 4847 if (insn->imm != 0) { 4848 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4849 return -EINVAL; 4850 } 4851 4852 /* check src1 operand */ 4853 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4854 if (err) 4855 return err; 4856 4857 if (is_pointer_value(env, insn->src_reg)) { 4858 verbose(env, "R%d pointer comparison prohibited\n", 4859 insn->src_reg); 4860 return -EACCES; 4861 } 4862 } else { 4863 if (insn->src_reg != BPF_REG_0) { 4864 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4865 return -EINVAL; 4866 } 4867 } 4868 4869 /* check src2 operand */ 4870 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4871 if (err) 4872 return err; 4873 4874 dst_reg = ®s[insn->dst_reg]; 4875 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 4876 4877 if (BPF_SRC(insn->code) == BPF_K) { 4878 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 4879 is_jmp32); 4880 4881 if (pred == 1) { 4882 /* only follow the goto, ignore fall-through */ 4883 *insn_idx += insn->off; 4884 return 0; 4885 } else if (pred == 0) { 4886 /* only follow fall-through branch, since 4887 * that's where the program will go 4888 */ 4889 return 0; 4890 } 4891 } 4892 4893 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 4894 false); 4895 if (!other_branch) 4896 return -EFAULT; 4897 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4898 4899 /* detect if we are comparing against a constant value so we can adjust 4900 * our min/max values for our dst register. 4901 * this is only legit if both are scalars (or pointers to the same 4902 * object, I suppose, but we don't support that right now), because 4903 * otherwise the different base pointers mean the offsets aren't 4904 * comparable. 4905 */ 4906 if (BPF_SRC(insn->code) == BPF_X) { 4907 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 4908 struct bpf_reg_state lo_reg0 = *dst_reg; 4909 struct bpf_reg_state lo_reg1 = *src_reg; 4910 struct bpf_reg_state *src_lo, *dst_lo; 4911 4912 dst_lo = &lo_reg0; 4913 src_lo = &lo_reg1; 4914 coerce_reg_to_size(dst_lo, 4); 4915 coerce_reg_to_size(src_lo, 4); 4916 4917 if (dst_reg->type == SCALAR_VALUE && 4918 src_reg->type == SCALAR_VALUE) { 4919 if (tnum_is_const(src_reg->var_off) || 4920 (is_jmp32 && tnum_is_const(src_lo->var_off))) 4921 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4922 dst_reg, 4923 is_jmp32 4924 ? src_lo->var_off.value 4925 : src_reg->var_off.value, 4926 opcode, is_jmp32); 4927 else if (tnum_is_const(dst_reg->var_off) || 4928 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 4929 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4930 src_reg, 4931 is_jmp32 4932 ? dst_lo->var_off.value 4933 : dst_reg->var_off.value, 4934 opcode, is_jmp32); 4935 else if (!is_jmp32 && 4936 (opcode == BPF_JEQ || opcode == BPF_JNE)) 4937 /* Comparing for equality, we can combine knowledge */ 4938 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4939 &other_branch_regs[insn->dst_reg], 4940 src_reg, dst_reg, opcode); 4941 } 4942 } else if (dst_reg->type == SCALAR_VALUE) { 4943 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4944 dst_reg, insn->imm, opcode, is_jmp32); 4945 } 4946 4947 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 4948 * NOTE: these optimizations below are related with pointer comparison 4949 * which will never be JMP32. 4950 */ 4951 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 4952 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4953 reg_type_may_be_null(dst_reg->type)) { 4954 /* Mark all identical registers in each branch as either 4955 * safe or unknown depending R == 0 or R != 0 conditional. 4956 */ 4957 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4958 opcode == BPF_JNE); 4959 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4960 opcode == BPF_JEQ); 4961 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4962 this_branch, other_branch) && 4963 is_pointer_value(env, insn->dst_reg)) { 4964 verbose(env, "R%d pointer comparison prohibited\n", 4965 insn->dst_reg); 4966 return -EACCES; 4967 } 4968 if (env->log.level) 4969 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4970 return 0; 4971 } 4972 4973 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4974 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4975 { 4976 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4977 4978 return (struct bpf_map *) (unsigned long) imm64; 4979 } 4980 4981 /* verify BPF_LD_IMM64 instruction */ 4982 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4983 { 4984 struct bpf_reg_state *regs = cur_regs(env); 4985 int err; 4986 4987 if (BPF_SIZE(insn->code) != BPF_DW) { 4988 verbose(env, "invalid BPF_LD_IMM insn\n"); 4989 return -EINVAL; 4990 } 4991 if (insn->off != 0) { 4992 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4993 return -EINVAL; 4994 } 4995 4996 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4997 if (err) 4998 return err; 4999 5000 if (insn->src_reg == 0) { 5001 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5002 5003 regs[insn->dst_reg].type = SCALAR_VALUE; 5004 __mark_reg_known(®s[insn->dst_reg], imm); 5005 return 0; 5006 } 5007 5008 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 5009 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 5010 5011 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5012 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 5013 return 0; 5014 } 5015 5016 static bool may_access_skb(enum bpf_prog_type type) 5017 { 5018 switch (type) { 5019 case BPF_PROG_TYPE_SOCKET_FILTER: 5020 case BPF_PROG_TYPE_SCHED_CLS: 5021 case BPF_PROG_TYPE_SCHED_ACT: 5022 return true; 5023 default: 5024 return false; 5025 } 5026 } 5027 5028 /* verify safety of LD_ABS|LD_IND instructions: 5029 * - they can only appear in the programs where ctx == skb 5030 * - since they are wrappers of function calls, they scratch R1-R5 registers, 5031 * preserve R6-R9, and store return value into R0 5032 * 5033 * Implicit input: 5034 * ctx == skb == R6 == CTX 5035 * 5036 * Explicit input: 5037 * SRC == any register 5038 * IMM == 32-bit immediate 5039 * 5040 * Output: 5041 * R0 - 8/16/32-bit skb data converted to cpu endianness 5042 */ 5043 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 5044 { 5045 struct bpf_reg_state *regs = cur_regs(env); 5046 u8 mode = BPF_MODE(insn->code); 5047 int i, err; 5048 5049 if (!may_access_skb(env->prog->type)) { 5050 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 5051 return -EINVAL; 5052 } 5053 5054 if (!env->ops->gen_ld_abs) { 5055 verbose(env, "bpf verifier is misconfigured\n"); 5056 return -EINVAL; 5057 } 5058 5059 if (env->subprog_cnt > 1) { 5060 /* when program has LD_ABS insn JITs and interpreter assume 5061 * that r1 == ctx == skb which is not the case for callees 5062 * that can have arbitrary arguments. It's problematic 5063 * for main prog as well since JITs would need to analyze 5064 * all functions in order to make proper register save/restore 5065 * decisions in the main prog. Hence disallow LD_ABS with calls 5066 */ 5067 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 5068 return -EINVAL; 5069 } 5070 5071 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 5072 BPF_SIZE(insn->code) == BPF_DW || 5073 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 5074 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 5075 return -EINVAL; 5076 } 5077 5078 /* check whether implicit source operand (register R6) is readable */ 5079 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 5080 if (err) 5081 return err; 5082 5083 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 5084 * gen_ld_abs() may terminate the program at runtime, leading to 5085 * reference leak. 5086 */ 5087 err = check_reference_leak(env); 5088 if (err) { 5089 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 5090 return err; 5091 } 5092 5093 if (env->cur_state->active_spin_lock) { 5094 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 5095 return -EINVAL; 5096 } 5097 5098 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 5099 verbose(env, 5100 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 5101 return -EINVAL; 5102 } 5103 5104 if (mode == BPF_IND) { 5105 /* check explicit source operand */ 5106 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5107 if (err) 5108 return err; 5109 } 5110 5111 /* reset caller saved regs to unreadable */ 5112 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5113 mark_reg_not_init(env, regs, caller_saved[i]); 5114 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5115 } 5116 5117 /* mark destination R0 register as readable, since it contains 5118 * the value fetched from the packet. 5119 * Already marked as written above. 5120 */ 5121 mark_reg_unknown(env, regs, BPF_REG_0); 5122 return 0; 5123 } 5124 5125 static int check_return_code(struct bpf_verifier_env *env) 5126 { 5127 struct bpf_reg_state *reg; 5128 struct tnum range = tnum_range(0, 1); 5129 5130 switch (env->prog->type) { 5131 case BPF_PROG_TYPE_CGROUP_SKB: 5132 case BPF_PROG_TYPE_CGROUP_SOCK: 5133 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 5134 case BPF_PROG_TYPE_SOCK_OPS: 5135 case BPF_PROG_TYPE_CGROUP_DEVICE: 5136 break; 5137 default: 5138 return 0; 5139 } 5140 5141 reg = cur_regs(env) + BPF_REG_0; 5142 if (reg->type != SCALAR_VALUE) { 5143 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 5144 reg_type_str[reg->type]); 5145 return -EINVAL; 5146 } 5147 5148 if (!tnum_in(range, reg->var_off)) { 5149 verbose(env, "At program exit the register R0 "); 5150 if (!tnum_is_unknown(reg->var_off)) { 5151 char tn_buf[48]; 5152 5153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5154 verbose(env, "has value %s", tn_buf); 5155 } else { 5156 verbose(env, "has unknown scalar value"); 5157 } 5158 verbose(env, " should have been 0 or 1\n"); 5159 return -EINVAL; 5160 } 5161 return 0; 5162 } 5163 5164 /* non-recursive DFS pseudo code 5165 * 1 procedure DFS-iterative(G,v): 5166 * 2 label v as discovered 5167 * 3 let S be a stack 5168 * 4 S.push(v) 5169 * 5 while S is not empty 5170 * 6 t <- S.pop() 5171 * 7 if t is what we're looking for: 5172 * 8 return t 5173 * 9 for all edges e in G.adjacentEdges(t) do 5174 * 10 if edge e is already labelled 5175 * 11 continue with the next edge 5176 * 12 w <- G.adjacentVertex(t,e) 5177 * 13 if vertex w is not discovered and not explored 5178 * 14 label e as tree-edge 5179 * 15 label w as discovered 5180 * 16 S.push(w) 5181 * 17 continue at 5 5182 * 18 else if vertex w is discovered 5183 * 19 label e as back-edge 5184 * 20 else 5185 * 21 // vertex w is explored 5186 * 22 label e as forward- or cross-edge 5187 * 23 label t as explored 5188 * 24 S.pop() 5189 * 5190 * convention: 5191 * 0x10 - discovered 5192 * 0x11 - discovered and fall-through edge labelled 5193 * 0x12 - discovered and fall-through and branch edges labelled 5194 * 0x20 - explored 5195 */ 5196 5197 enum { 5198 DISCOVERED = 0x10, 5199 EXPLORED = 0x20, 5200 FALLTHROUGH = 1, 5201 BRANCH = 2, 5202 }; 5203 5204 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 5205 5206 static int *insn_stack; /* stack of insns to process */ 5207 static int cur_stack; /* current stack index */ 5208 static int *insn_state; 5209 5210 /* t, w, e - match pseudo-code above: 5211 * t - index of current instruction 5212 * w - next instruction 5213 * e - edge 5214 */ 5215 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 5216 { 5217 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 5218 return 0; 5219 5220 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 5221 return 0; 5222 5223 if (w < 0 || w >= env->prog->len) { 5224 verbose_linfo(env, t, "%d: ", t); 5225 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5226 return -EINVAL; 5227 } 5228 5229 if (e == BRANCH) 5230 /* mark branch target for state pruning */ 5231 env->explored_states[w] = STATE_LIST_MARK; 5232 5233 if (insn_state[w] == 0) { 5234 /* tree-edge */ 5235 insn_state[t] = DISCOVERED | e; 5236 insn_state[w] = DISCOVERED; 5237 if (cur_stack >= env->prog->len) 5238 return -E2BIG; 5239 insn_stack[cur_stack++] = w; 5240 return 1; 5241 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5242 verbose_linfo(env, t, "%d: ", t); 5243 verbose_linfo(env, w, "%d: ", w); 5244 verbose(env, "back-edge from insn %d to %d\n", t, w); 5245 return -EINVAL; 5246 } else if (insn_state[w] == EXPLORED) { 5247 /* forward- or cross-edge */ 5248 insn_state[t] = DISCOVERED | e; 5249 } else { 5250 verbose(env, "insn state internal bug\n"); 5251 return -EFAULT; 5252 } 5253 return 0; 5254 } 5255 5256 /* non-recursive depth-first-search to detect loops in BPF program 5257 * loop == back-edge in directed graph 5258 */ 5259 static int check_cfg(struct bpf_verifier_env *env) 5260 { 5261 struct bpf_insn *insns = env->prog->insnsi; 5262 int insn_cnt = env->prog->len; 5263 int ret = 0; 5264 int i, t; 5265 5266 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5267 if (!insn_state) 5268 return -ENOMEM; 5269 5270 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5271 if (!insn_stack) { 5272 kfree(insn_state); 5273 return -ENOMEM; 5274 } 5275 5276 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5277 insn_stack[0] = 0; /* 0 is the first instruction */ 5278 cur_stack = 1; 5279 5280 peek_stack: 5281 if (cur_stack == 0) 5282 goto check_state; 5283 t = insn_stack[cur_stack - 1]; 5284 5285 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5286 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5287 u8 opcode = BPF_OP(insns[t].code); 5288 5289 if (opcode == BPF_EXIT) { 5290 goto mark_explored; 5291 } else if (opcode == BPF_CALL) { 5292 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5293 if (ret == 1) 5294 goto peek_stack; 5295 else if (ret < 0) 5296 goto err_free; 5297 if (t + 1 < insn_cnt) 5298 env->explored_states[t + 1] = STATE_LIST_MARK; 5299 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5300 env->explored_states[t] = STATE_LIST_MARK; 5301 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5302 if (ret == 1) 5303 goto peek_stack; 5304 else if (ret < 0) 5305 goto err_free; 5306 } 5307 } else if (opcode == BPF_JA) { 5308 if (BPF_SRC(insns[t].code) != BPF_K) { 5309 ret = -EINVAL; 5310 goto err_free; 5311 } 5312 /* unconditional jump with single edge */ 5313 ret = push_insn(t, t + insns[t].off + 1, 5314 FALLTHROUGH, env); 5315 if (ret == 1) 5316 goto peek_stack; 5317 else if (ret < 0) 5318 goto err_free; 5319 /* tell verifier to check for equivalent states 5320 * after every call and jump 5321 */ 5322 if (t + 1 < insn_cnt) 5323 env->explored_states[t + 1] = STATE_LIST_MARK; 5324 } else { 5325 /* conditional jump with two edges */ 5326 env->explored_states[t] = STATE_LIST_MARK; 5327 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5328 if (ret == 1) 5329 goto peek_stack; 5330 else if (ret < 0) 5331 goto err_free; 5332 5333 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5334 if (ret == 1) 5335 goto peek_stack; 5336 else if (ret < 0) 5337 goto err_free; 5338 } 5339 } else { 5340 /* all other non-branch instructions with single 5341 * fall-through edge 5342 */ 5343 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5344 if (ret == 1) 5345 goto peek_stack; 5346 else if (ret < 0) 5347 goto err_free; 5348 } 5349 5350 mark_explored: 5351 insn_state[t] = EXPLORED; 5352 if (cur_stack-- <= 0) { 5353 verbose(env, "pop stack internal bug\n"); 5354 ret = -EFAULT; 5355 goto err_free; 5356 } 5357 goto peek_stack; 5358 5359 check_state: 5360 for (i = 0; i < insn_cnt; i++) { 5361 if (insn_state[i] != EXPLORED) { 5362 verbose(env, "unreachable insn %d\n", i); 5363 ret = -EINVAL; 5364 goto err_free; 5365 } 5366 } 5367 ret = 0; /* cfg looks good */ 5368 5369 err_free: 5370 kfree(insn_state); 5371 kfree(insn_stack); 5372 return ret; 5373 } 5374 5375 /* The minimum supported BTF func info size */ 5376 #define MIN_BPF_FUNCINFO_SIZE 8 5377 #define MAX_FUNCINFO_REC_SIZE 252 5378 5379 static int check_btf_func(struct bpf_verifier_env *env, 5380 const union bpf_attr *attr, 5381 union bpf_attr __user *uattr) 5382 { 5383 u32 i, nfuncs, urec_size, min_size; 5384 u32 krec_size = sizeof(struct bpf_func_info); 5385 struct bpf_func_info *krecord; 5386 const struct btf_type *type; 5387 struct bpf_prog *prog; 5388 const struct btf *btf; 5389 void __user *urecord; 5390 u32 prev_offset = 0; 5391 int ret = 0; 5392 5393 nfuncs = attr->func_info_cnt; 5394 if (!nfuncs) 5395 return 0; 5396 5397 if (nfuncs != env->subprog_cnt) { 5398 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5399 return -EINVAL; 5400 } 5401 5402 urec_size = attr->func_info_rec_size; 5403 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5404 urec_size > MAX_FUNCINFO_REC_SIZE || 5405 urec_size % sizeof(u32)) { 5406 verbose(env, "invalid func info rec size %u\n", urec_size); 5407 return -EINVAL; 5408 } 5409 5410 prog = env->prog; 5411 btf = prog->aux->btf; 5412 5413 urecord = u64_to_user_ptr(attr->func_info); 5414 min_size = min_t(u32, krec_size, urec_size); 5415 5416 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5417 if (!krecord) 5418 return -ENOMEM; 5419 5420 for (i = 0; i < nfuncs; i++) { 5421 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5422 if (ret) { 5423 if (ret == -E2BIG) { 5424 verbose(env, "nonzero tailing record in func info"); 5425 /* set the size kernel expects so loader can zero 5426 * out the rest of the record. 5427 */ 5428 if (put_user(min_size, &uattr->func_info_rec_size)) 5429 ret = -EFAULT; 5430 } 5431 goto err_free; 5432 } 5433 5434 if (copy_from_user(&krecord[i], urecord, min_size)) { 5435 ret = -EFAULT; 5436 goto err_free; 5437 } 5438 5439 /* check insn_off */ 5440 if (i == 0) { 5441 if (krecord[i].insn_off) { 5442 verbose(env, 5443 "nonzero insn_off %u for the first func info record", 5444 krecord[i].insn_off); 5445 ret = -EINVAL; 5446 goto err_free; 5447 } 5448 } else if (krecord[i].insn_off <= prev_offset) { 5449 verbose(env, 5450 "same or smaller insn offset (%u) than previous func info record (%u)", 5451 krecord[i].insn_off, prev_offset); 5452 ret = -EINVAL; 5453 goto err_free; 5454 } 5455 5456 if (env->subprog_info[i].start != krecord[i].insn_off) { 5457 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5458 ret = -EINVAL; 5459 goto err_free; 5460 } 5461 5462 /* check type_id */ 5463 type = btf_type_by_id(btf, krecord[i].type_id); 5464 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5465 verbose(env, "invalid type id %d in func info", 5466 krecord[i].type_id); 5467 ret = -EINVAL; 5468 goto err_free; 5469 } 5470 5471 prev_offset = krecord[i].insn_off; 5472 urecord += urec_size; 5473 } 5474 5475 prog->aux->func_info = krecord; 5476 prog->aux->func_info_cnt = nfuncs; 5477 return 0; 5478 5479 err_free: 5480 kvfree(krecord); 5481 return ret; 5482 } 5483 5484 static void adjust_btf_func(struct bpf_verifier_env *env) 5485 { 5486 int i; 5487 5488 if (!env->prog->aux->func_info) 5489 return; 5490 5491 for (i = 0; i < env->subprog_cnt; i++) 5492 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5493 } 5494 5495 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5496 sizeof(((struct bpf_line_info *)(0))->line_col)) 5497 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5498 5499 static int check_btf_line(struct bpf_verifier_env *env, 5500 const union bpf_attr *attr, 5501 union bpf_attr __user *uattr) 5502 { 5503 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5504 struct bpf_subprog_info *sub; 5505 struct bpf_line_info *linfo; 5506 struct bpf_prog *prog; 5507 const struct btf *btf; 5508 void __user *ulinfo; 5509 int err; 5510 5511 nr_linfo = attr->line_info_cnt; 5512 if (!nr_linfo) 5513 return 0; 5514 5515 rec_size = attr->line_info_rec_size; 5516 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5517 rec_size > MAX_LINEINFO_REC_SIZE || 5518 rec_size & (sizeof(u32) - 1)) 5519 return -EINVAL; 5520 5521 /* Need to zero it in case the userspace may 5522 * pass in a smaller bpf_line_info object. 5523 */ 5524 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5525 GFP_KERNEL | __GFP_NOWARN); 5526 if (!linfo) 5527 return -ENOMEM; 5528 5529 prog = env->prog; 5530 btf = prog->aux->btf; 5531 5532 s = 0; 5533 sub = env->subprog_info; 5534 ulinfo = u64_to_user_ptr(attr->line_info); 5535 expected_size = sizeof(struct bpf_line_info); 5536 ncopy = min_t(u32, expected_size, rec_size); 5537 for (i = 0; i < nr_linfo; i++) { 5538 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5539 if (err) { 5540 if (err == -E2BIG) { 5541 verbose(env, "nonzero tailing record in line_info"); 5542 if (put_user(expected_size, 5543 &uattr->line_info_rec_size)) 5544 err = -EFAULT; 5545 } 5546 goto err_free; 5547 } 5548 5549 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5550 err = -EFAULT; 5551 goto err_free; 5552 } 5553 5554 /* 5555 * Check insn_off to ensure 5556 * 1) strictly increasing AND 5557 * 2) bounded by prog->len 5558 * 5559 * The linfo[0].insn_off == 0 check logically falls into 5560 * the later "missing bpf_line_info for func..." case 5561 * because the first linfo[0].insn_off must be the 5562 * first sub also and the first sub must have 5563 * subprog_info[0].start == 0. 5564 */ 5565 if ((i && linfo[i].insn_off <= prev_offset) || 5566 linfo[i].insn_off >= prog->len) { 5567 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5568 i, linfo[i].insn_off, prev_offset, 5569 prog->len); 5570 err = -EINVAL; 5571 goto err_free; 5572 } 5573 5574 if (!prog->insnsi[linfo[i].insn_off].code) { 5575 verbose(env, 5576 "Invalid insn code at line_info[%u].insn_off\n", 5577 i); 5578 err = -EINVAL; 5579 goto err_free; 5580 } 5581 5582 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5583 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5584 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5585 err = -EINVAL; 5586 goto err_free; 5587 } 5588 5589 if (s != env->subprog_cnt) { 5590 if (linfo[i].insn_off == sub[s].start) { 5591 sub[s].linfo_idx = i; 5592 s++; 5593 } else if (sub[s].start < linfo[i].insn_off) { 5594 verbose(env, "missing bpf_line_info for func#%u\n", s); 5595 err = -EINVAL; 5596 goto err_free; 5597 } 5598 } 5599 5600 prev_offset = linfo[i].insn_off; 5601 ulinfo += rec_size; 5602 } 5603 5604 if (s != env->subprog_cnt) { 5605 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5606 env->subprog_cnt - s, s); 5607 err = -EINVAL; 5608 goto err_free; 5609 } 5610 5611 prog->aux->linfo = linfo; 5612 prog->aux->nr_linfo = nr_linfo; 5613 5614 return 0; 5615 5616 err_free: 5617 kvfree(linfo); 5618 return err; 5619 } 5620 5621 static int check_btf_info(struct bpf_verifier_env *env, 5622 const union bpf_attr *attr, 5623 union bpf_attr __user *uattr) 5624 { 5625 struct btf *btf; 5626 int err; 5627 5628 if (!attr->func_info_cnt && !attr->line_info_cnt) 5629 return 0; 5630 5631 btf = btf_get_by_fd(attr->prog_btf_fd); 5632 if (IS_ERR(btf)) 5633 return PTR_ERR(btf); 5634 env->prog->aux->btf = btf; 5635 5636 err = check_btf_func(env, attr, uattr); 5637 if (err) 5638 return err; 5639 5640 err = check_btf_line(env, attr, uattr); 5641 if (err) 5642 return err; 5643 5644 return 0; 5645 } 5646 5647 /* check %cur's range satisfies %old's */ 5648 static bool range_within(struct bpf_reg_state *old, 5649 struct bpf_reg_state *cur) 5650 { 5651 return old->umin_value <= cur->umin_value && 5652 old->umax_value >= cur->umax_value && 5653 old->smin_value <= cur->smin_value && 5654 old->smax_value >= cur->smax_value; 5655 } 5656 5657 /* Maximum number of register states that can exist at once */ 5658 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5659 struct idpair { 5660 u32 old; 5661 u32 cur; 5662 }; 5663 5664 /* If in the old state two registers had the same id, then they need to have 5665 * the same id in the new state as well. But that id could be different from 5666 * the old state, so we need to track the mapping from old to new ids. 5667 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5668 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5669 * regs with a different old id could still have new id 9, we don't care about 5670 * that. 5671 * So we look through our idmap to see if this old id has been seen before. If 5672 * so, we require the new id to match; otherwise, we add the id pair to the map. 5673 */ 5674 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5675 { 5676 unsigned int i; 5677 5678 for (i = 0; i < ID_MAP_SIZE; i++) { 5679 if (!idmap[i].old) { 5680 /* Reached an empty slot; haven't seen this id before */ 5681 idmap[i].old = old_id; 5682 idmap[i].cur = cur_id; 5683 return true; 5684 } 5685 if (idmap[i].old == old_id) 5686 return idmap[i].cur == cur_id; 5687 } 5688 /* We ran out of idmap slots, which should be impossible */ 5689 WARN_ON_ONCE(1); 5690 return false; 5691 } 5692 5693 static void clean_func_state(struct bpf_verifier_env *env, 5694 struct bpf_func_state *st) 5695 { 5696 enum bpf_reg_liveness live; 5697 int i, j; 5698 5699 for (i = 0; i < BPF_REG_FP; i++) { 5700 live = st->regs[i].live; 5701 /* liveness must not touch this register anymore */ 5702 st->regs[i].live |= REG_LIVE_DONE; 5703 if (!(live & REG_LIVE_READ)) 5704 /* since the register is unused, clear its state 5705 * to make further comparison simpler 5706 */ 5707 __mark_reg_not_init(&st->regs[i]); 5708 } 5709 5710 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5711 live = st->stack[i].spilled_ptr.live; 5712 /* liveness must not touch this stack slot anymore */ 5713 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5714 if (!(live & REG_LIVE_READ)) { 5715 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5716 for (j = 0; j < BPF_REG_SIZE; j++) 5717 st->stack[i].slot_type[j] = STACK_INVALID; 5718 } 5719 } 5720 } 5721 5722 static void clean_verifier_state(struct bpf_verifier_env *env, 5723 struct bpf_verifier_state *st) 5724 { 5725 int i; 5726 5727 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5728 /* all regs in this state in all frames were already marked */ 5729 return; 5730 5731 for (i = 0; i <= st->curframe; i++) 5732 clean_func_state(env, st->frame[i]); 5733 } 5734 5735 /* the parentage chains form a tree. 5736 * the verifier states are added to state lists at given insn and 5737 * pushed into state stack for future exploration. 5738 * when the verifier reaches bpf_exit insn some of the verifer states 5739 * stored in the state lists have their final liveness state already, 5740 * but a lot of states will get revised from liveness point of view when 5741 * the verifier explores other branches. 5742 * Example: 5743 * 1: r0 = 1 5744 * 2: if r1 == 100 goto pc+1 5745 * 3: r0 = 2 5746 * 4: exit 5747 * when the verifier reaches exit insn the register r0 in the state list of 5748 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5749 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5750 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5751 * 5752 * Since the verifier pushes the branch states as it sees them while exploring 5753 * the program the condition of walking the branch instruction for the second 5754 * time means that all states below this branch were already explored and 5755 * their final liveness markes are already propagated. 5756 * Hence when the verifier completes the search of state list in is_state_visited() 5757 * we can call this clean_live_states() function to mark all liveness states 5758 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5759 * will not be used. 5760 * This function also clears the registers and stack for states that !READ 5761 * to simplify state merging. 5762 * 5763 * Important note here that walking the same branch instruction in the callee 5764 * doesn't meant that the states are DONE. The verifier has to compare 5765 * the callsites 5766 */ 5767 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5768 struct bpf_verifier_state *cur) 5769 { 5770 struct bpf_verifier_state_list *sl; 5771 int i; 5772 5773 sl = env->explored_states[insn]; 5774 if (!sl) 5775 return; 5776 5777 while (sl != STATE_LIST_MARK) { 5778 if (sl->state.curframe != cur->curframe) 5779 goto next; 5780 for (i = 0; i <= cur->curframe; i++) 5781 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5782 goto next; 5783 clean_verifier_state(env, &sl->state); 5784 next: 5785 sl = sl->next; 5786 } 5787 } 5788 5789 /* Returns true if (rold safe implies rcur safe) */ 5790 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5791 struct idpair *idmap) 5792 { 5793 bool equal; 5794 5795 if (!(rold->live & REG_LIVE_READ)) 5796 /* explored state didn't use this */ 5797 return true; 5798 5799 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5800 5801 if (rold->type == PTR_TO_STACK) 5802 /* two stack pointers are equal only if they're pointing to 5803 * the same stack frame, since fp-8 in foo != fp-8 in bar 5804 */ 5805 return equal && rold->frameno == rcur->frameno; 5806 5807 if (equal) 5808 return true; 5809 5810 if (rold->type == NOT_INIT) 5811 /* explored state can't have used this */ 5812 return true; 5813 if (rcur->type == NOT_INIT) 5814 return false; 5815 switch (rold->type) { 5816 case SCALAR_VALUE: 5817 if (rcur->type == SCALAR_VALUE) { 5818 /* new val must satisfy old val knowledge */ 5819 return range_within(rold, rcur) && 5820 tnum_in(rold->var_off, rcur->var_off); 5821 } else { 5822 /* We're trying to use a pointer in place of a scalar. 5823 * Even if the scalar was unbounded, this could lead to 5824 * pointer leaks because scalars are allowed to leak 5825 * while pointers are not. We could make this safe in 5826 * special cases if root is calling us, but it's 5827 * probably not worth the hassle. 5828 */ 5829 return false; 5830 } 5831 case PTR_TO_MAP_VALUE: 5832 /* If the new min/max/var_off satisfy the old ones and 5833 * everything else matches, we are OK. 5834 * 'id' is not compared, since it's only used for maps with 5835 * bpf_spin_lock inside map element and in such cases if 5836 * the rest of the prog is valid for one map element then 5837 * it's valid for all map elements regardless of the key 5838 * used in bpf_map_lookup() 5839 */ 5840 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5841 range_within(rold, rcur) && 5842 tnum_in(rold->var_off, rcur->var_off); 5843 case PTR_TO_MAP_VALUE_OR_NULL: 5844 /* a PTR_TO_MAP_VALUE could be safe to use as a 5845 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5846 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5847 * checked, doing so could have affected others with the same 5848 * id, and we can't check for that because we lost the id when 5849 * we converted to a PTR_TO_MAP_VALUE. 5850 */ 5851 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5852 return false; 5853 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5854 return false; 5855 /* Check our ids match any regs they're supposed to */ 5856 return check_ids(rold->id, rcur->id, idmap); 5857 case PTR_TO_PACKET_META: 5858 case PTR_TO_PACKET: 5859 if (rcur->type != rold->type) 5860 return false; 5861 /* We must have at least as much range as the old ptr 5862 * did, so that any accesses which were safe before are 5863 * still safe. This is true even if old range < old off, 5864 * since someone could have accessed through (ptr - k), or 5865 * even done ptr -= k in a register, to get a safe access. 5866 */ 5867 if (rold->range > rcur->range) 5868 return false; 5869 /* If the offsets don't match, we can't trust our alignment; 5870 * nor can we be sure that we won't fall out of range. 5871 */ 5872 if (rold->off != rcur->off) 5873 return false; 5874 /* id relations must be preserved */ 5875 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5876 return false; 5877 /* new val must satisfy old val knowledge */ 5878 return range_within(rold, rcur) && 5879 tnum_in(rold->var_off, rcur->var_off); 5880 case PTR_TO_CTX: 5881 case CONST_PTR_TO_MAP: 5882 case PTR_TO_PACKET_END: 5883 case PTR_TO_FLOW_KEYS: 5884 case PTR_TO_SOCKET: 5885 case PTR_TO_SOCKET_OR_NULL: 5886 case PTR_TO_SOCK_COMMON: 5887 case PTR_TO_SOCK_COMMON_OR_NULL: 5888 case PTR_TO_TCP_SOCK: 5889 case PTR_TO_TCP_SOCK_OR_NULL: 5890 /* Only valid matches are exact, which memcmp() above 5891 * would have accepted 5892 */ 5893 default: 5894 /* Don't know what's going on, just say it's not safe */ 5895 return false; 5896 } 5897 5898 /* Shouldn't get here; if we do, say it's not safe */ 5899 WARN_ON_ONCE(1); 5900 return false; 5901 } 5902 5903 static bool stacksafe(struct bpf_func_state *old, 5904 struct bpf_func_state *cur, 5905 struct idpair *idmap) 5906 { 5907 int i, spi; 5908 5909 /* walk slots of the explored stack and ignore any additional 5910 * slots in the current stack, since explored(safe) state 5911 * didn't use them 5912 */ 5913 for (i = 0; i < old->allocated_stack; i++) { 5914 spi = i / BPF_REG_SIZE; 5915 5916 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5917 i += BPF_REG_SIZE - 1; 5918 /* explored state didn't use this */ 5919 continue; 5920 } 5921 5922 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5923 continue; 5924 5925 /* explored stack has more populated slots than current stack 5926 * and these slots were used 5927 */ 5928 if (i >= cur->allocated_stack) 5929 return false; 5930 5931 /* if old state was safe with misc data in the stack 5932 * it will be safe with zero-initialized stack. 5933 * The opposite is not true 5934 */ 5935 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5936 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5937 continue; 5938 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5939 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5940 /* Ex: old explored (safe) state has STACK_SPILL in 5941 * this stack slot, but current has has STACK_MISC -> 5942 * this verifier states are not equivalent, 5943 * return false to continue verification of this path 5944 */ 5945 return false; 5946 if (i % BPF_REG_SIZE) 5947 continue; 5948 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5949 continue; 5950 if (!regsafe(&old->stack[spi].spilled_ptr, 5951 &cur->stack[spi].spilled_ptr, 5952 idmap)) 5953 /* when explored and current stack slot are both storing 5954 * spilled registers, check that stored pointers types 5955 * are the same as well. 5956 * Ex: explored safe path could have stored 5957 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5958 * but current path has stored: 5959 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5960 * such verifier states are not equivalent. 5961 * return false to continue verification of this path 5962 */ 5963 return false; 5964 } 5965 return true; 5966 } 5967 5968 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5969 { 5970 if (old->acquired_refs != cur->acquired_refs) 5971 return false; 5972 return !memcmp(old->refs, cur->refs, 5973 sizeof(*old->refs) * old->acquired_refs); 5974 } 5975 5976 /* compare two verifier states 5977 * 5978 * all states stored in state_list are known to be valid, since 5979 * verifier reached 'bpf_exit' instruction through them 5980 * 5981 * this function is called when verifier exploring different branches of 5982 * execution popped from the state stack. If it sees an old state that has 5983 * more strict register state and more strict stack state then this execution 5984 * branch doesn't need to be explored further, since verifier already 5985 * concluded that more strict state leads to valid finish. 5986 * 5987 * Therefore two states are equivalent if register state is more conservative 5988 * and explored stack state is more conservative than the current one. 5989 * Example: 5990 * explored current 5991 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5992 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5993 * 5994 * In other words if current stack state (one being explored) has more 5995 * valid slots than old one that already passed validation, it means 5996 * the verifier can stop exploring and conclude that current state is valid too 5997 * 5998 * Similarly with registers. If explored state has register type as invalid 5999 * whereas register type in current state is meaningful, it means that 6000 * the current state will reach 'bpf_exit' instruction safely 6001 */ 6002 static bool func_states_equal(struct bpf_func_state *old, 6003 struct bpf_func_state *cur) 6004 { 6005 struct idpair *idmap; 6006 bool ret = false; 6007 int i; 6008 6009 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 6010 /* If we failed to allocate the idmap, just say it's not safe */ 6011 if (!idmap) 6012 return false; 6013 6014 for (i = 0; i < MAX_BPF_REG; i++) { 6015 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 6016 goto out_free; 6017 } 6018 6019 if (!stacksafe(old, cur, idmap)) 6020 goto out_free; 6021 6022 if (!refsafe(old, cur)) 6023 goto out_free; 6024 ret = true; 6025 out_free: 6026 kfree(idmap); 6027 return ret; 6028 } 6029 6030 static bool states_equal(struct bpf_verifier_env *env, 6031 struct bpf_verifier_state *old, 6032 struct bpf_verifier_state *cur) 6033 { 6034 int i; 6035 6036 if (old->curframe != cur->curframe) 6037 return false; 6038 6039 /* Verification state from speculative execution simulation 6040 * must never prune a non-speculative execution one. 6041 */ 6042 if (old->speculative && !cur->speculative) 6043 return false; 6044 6045 if (old->active_spin_lock != cur->active_spin_lock) 6046 return false; 6047 6048 /* for states to be equal callsites have to be the same 6049 * and all frame states need to be equivalent 6050 */ 6051 for (i = 0; i <= old->curframe; i++) { 6052 if (old->frame[i]->callsite != cur->frame[i]->callsite) 6053 return false; 6054 if (!func_states_equal(old->frame[i], cur->frame[i])) 6055 return false; 6056 } 6057 return true; 6058 } 6059 6060 /* A write screens off any subsequent reads; but write marks come from the 6061 * straight-line code between a state and its parent. When we arrive at an 6062 * equivalent state (jump target or such) we didn't arrive by the straight-line 6063 * code, so read marks in the state must propagate to the parent regardless 6064 * of the state's write marks. That's what 'parent == state->parent' comparison 6065 * in mark_reg_read() is for. 6066 */ 6067 static int propagate_liveness(struct bpf_verifier_env *env, 6068 const struct bpf_verifier_state *vstate, 6069 struct bpf_verifier_state *vparent) 6070 { 6071 int i, frame, err = 0; 6072 struct bpf_func_state *state, *parent; 6073 6074 if (vparent->curframe != vstate->curframe) { 6075 WARN(1, "propagate_live: parent frame %d current frame %d\n", 6076 vparent->curframe, vstate->curframe); 6077 return -EFAULT; 6078 } 6079 /* Propagate read liveness of registers... */ 6080 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 6081 for (frame = 0; frame <= vstate->curframe; frame++) { 6082 /* We don't need to worry about FP liveness, it's read-only */ 6083 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 6084 if (vparent->frame[frame]->regs[i].live & REG_LIVE_READ) 6085 continue; 6086 if (vstate->frame[frame]->regs[i].live & REG_LIVE_READ) { 6087 err = mark_reg_read(env, &vstate->frame[frame]->regs[i], 6088 &vparent->frame[frame]->regs[i]); 6089 if (err) 6090 return err; 6091 } 6092 } 6093 } 6094 6095 /* ... and stack slots */ 6096 for (frame = 0; frame <= vstate->curframe; frame++) { 6097 state = vstate->frame[frame]; 6098 parent = vparent->frame[frame]; 6099 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 6100 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 6101 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 6102 continue; 6103 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 6104 mark_reg_read(env, &state->stack[i].spilled_ptr, 6105 &parent->stack[i].spilled_ptr); 6106 } 6107 } 6108 return err; 6109 } 6110 6111 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 6112 { 6113 struct bpf_verifier_state_list *new_sl; 6114 struct bpf_verifier_state_list *sl; 6115 struct bpf_verifier_state *cur = env->cur_state, *new; 6116 int i, j, err, states_cnt = 0; 6117 6118 sl = env->explored_states[insn_idx]; 6119 if (!sl) 6120 /* this 'insn_idx' instruction wasn't marked, so we will not 6121 * be doing state search here 6122 */ 6123 return 0; 6124 6125 clean_live_states(env, insn_idx, cur); 6126 6127 while (sl != STATE_LIST_MARK) { 6128 if (states_equal(env, &sl->state, cur)) { 6129 /* reached equivalent register/stack state, 6130 * prune the search. 6131 * Registers read by the continuation are read by us. 6132 * If we have any write marks in env->cur_state, they 6133 * will prevent corresponding reads in the continuation 6134 * from reaching our parent (an explored_state). Our 6135 * own state will get the read marks recorded, but 6136 * they'll be immediately forgotten as we're pruning 6137 * this state and will pop a new one. 6138 */ 6139 err = propagate_liveness(env, &sl->state, cur); 6140 if (err) 6141 return err; 6142 return 1; 6143 } 6144 sl = sl->next; 6145 states_cnt++; 6146 } 6147 6148 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 6149 return 0; 6150 6151 /* there were no equivalent states, remember current one. 6152 * technically the current state is not proven to be safe yet, 6153 * but it will either reach outer most bpf_exit (which means it's safe) 6154 * or it will be rejected. Since there are no loops, we won't be 6155 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 6156 * again on the way to bpf_exit 6157 */ 6158 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 6159 if (!new_sl) 6160 return -ENOMEM; 6161 6162 /* add new state to the head of linked list */ 6163 new = &new_sl->state; 6164 err = copy_verifier_state(new, cur); 6165 if (err) { 6166 free_verifier_state(new, false); 6167 kfree(new_sl); 6168 return err; 6169 } 6170 new_sl->next = env->explored_states[insn_idx]; 6171 env->explored_states[insn_idx] = new_sl; 6172 /* connect new state to parentage chain. Current frame needs all 6173 * registers connected. Only r6 - r9 of the callers are alive (pushed 6174 * to the stack implicitly by JITs) so in callers' frames connect just 6175 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 6176 * the state of the call instruction (with WRITTEN set), and r0 comes 6177 * from callee with its full parentage chain, anyway. 6178 */ 6179 for (j = 0; j <= cur->curframe; j++) 6180 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 6181 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 6182 /* clear write marks in current state: the writes we did are not writes 6183 * our child did, so they don't screen off its reads from us. 6184 * (There are no read marks in current state, because reads always mark 6185 * their parent and current state never has children yet. Only 6186 * explored_states can get read marks.) 6187 */ 6188 for (i = 0; i < BPF_REG_FP; i++) 6189 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 6190 6191 /* all stack frames are accessible from callee, clear them all */ 6192 for (j = 0; j <= cur->curframe; j++) { 6193 struct bpf_func_state *frame = cur->frame[j]; 6194 struct bpf_func_state *newframe = new->frame[j]; 6195 6196 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 6197 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 6198 frame->stack[i].spilled_ptr.parent = 6199 &newframe->stack[i].spilled_ptr; 6200 } 6201 } 6202 return 0; 6203 } 6204 6205 /* Return true if it's OK to have the same insn return a different type. */ 6206 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 6207 { 6208 switch (type) { 6209 case PTR_TO_CTX: 6210 case PTR_TO_SOCKET: 6211 case PTR_TO_SOCKET_OR_NULL: 6212 case PTR_TO_SOCK_COMMON: 6213 case PTR_TO_SOCK_COMMON_OR_NULL: 6214 case PTR_TO_TCP_SOCK: 6215 case PTR_TO_TCP_SOCK_OR_NULL: 6216 return false; 6217 default: 6218 return true; 6219 } 6220 } 6221 6222 /* If an instruction was previously used with particular pointer types, then we 6223 * need to be careful to avoid cases such as the below, where it may be ok 6224 * for one branch accessing the pointer, but not ok for the other branch: 6225 * 6226 * R1 = sock_ptr 6227 * goto X; 6228 * ... 6229 * R1 = some_other_valid_ptr; 6230 * goto X; 6231 * ... 6232 * R2 = *(u32 *)(R1 + 0); 6233 */ 6234 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 6235 { 6236 return src != prev && (!reg_type_mismatch_ok(src) || 6237 !reg_type_mismatch_ok(prev)); 6238 } 6239 6240 static int do_check(struct bpf_verifier_env *env) 6241 { 6242 struct bpf_verifier_state *state; 6243 struct bpf_insn *insns = env->prog->insnsi; 6244 struct bpf_reg_state *regs; 6245 int insn_cnt = env->prog->len, i; 6246 int insn_processed = 0; 6247 bool do_print_state = false; 6248 6249 env->prev_linfo = NULL; 6250 6251 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6252 if (!state) 6253 return -ENOMEM; 6254 state->curframe = 0; 6255 state->speculative = false; 6256 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6257 if (!state->frame[0]) { 6258 kfree(state); 6259 return -ENOMEM; 6260 } 6261 env->cur_state = state; 6262 init_func_state(env, state->frame[0], 6263 BPF_MAIN_FUNC /* callsite */, 6264 0 /* frameno */, 6265 0 /* subprogno, zero == main subprog */); 6266 6267 for (;;) { 6268 struct bpf_insn *insn; 6269 u8 class; 6270 int err; 6271 6272 if (env->insn_idx >= insn_cnt) { 6273 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6274 env->insn_idx, insn_cnt); 6275 return -EFAULT; 6276 } 6277 6278 insn = &insns[env->insn_idx]; 6279 class = BPF_CLASS(insn->code); 6280 6281 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6282 verbose(env, 6283 "BPF program is too large. Processed %d insn\n", 6284 insn_processed); 6285 return -E2BIG; 6286 } 6287 6288 err = is_state_visited(env, env->insn_idx); 6289 if (err < 0) 6290 return err; 6291 if (err == 1) { 6292 /* found equivalent state, can prune the search */ 6293 if (env->log.level) { 6294 if (do_print_state) 6295 verbose(env, "\nfrom %d to %d%s: safe\n", 6296 env->prev_insn_idx, env->insn_idx, 6297 env->cur_state->speculative ? 6298 " (speculative execution)" : ""); 6299 else 6300 verbose(env, "%d: safe\n", env->insn_idx); 6301 } 6302 goto process_bpf_exit; 6303 } 6304 6305 if (signal_pending(current)) 6306 return -EAGAIN; 6307 6308 if (need_resched()) 6309 cond_resched(); 6310 6311 if (env->log.level > 1 || (env->log.level && do_print_state)) { 6312 if (env->log.level > 1) 6313 verbose(env, "%d:", env->insn_idx); 6314 else 6315 verbose(env, "\nfrom %d to %d%s:", 6316 env->prev_insn_idx, env->insn_idx, 6317 env->cur_state->speculative ? 6318 " (speculative execution)" : ""); 6319 print_verifier_state(env, state->frame[state->curframe]); 6320 do_print_state = false; 6321 } 6322 6323 if (env->log.level) { 6324 const struct bpf_insn_cbs cbs = { 6325 .cb_print = verbose, 6326 .private_data = env, 6327 }; 6328 6329 verbose_linfo(env, env->insn_idx, "; "); 6330 verbose(env, "%d: ", env->insn_idx); 6331 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6332 } 6333 6334 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6335 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6336 env->prev_insn_idx); 6337 if (err) 6338 return err; 6339 } 6340 6341 regs = cur_regs(env); 6342 env->insn_aux_data[env->insn_idx].seen = true; 6343 6344 if (class == BPF_ALU || class == BPF_ALU64) { 6345 err = check_alu_op(env, insn); 6346 if (err) 6347 return err; 6348 6349 } else if (class == BPF_LDX) { 6350 enum bpf_reg_type *prev_src_type, src_reg_type; 6351 6352 /* check for reserved fields is already done */ 6353 6354 /* check src operand */ 6355 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6356 if (err) 6357 return err; 6358 6359 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6360 if (err) 6361 return err; 6362 6363 src_reg_type = regs[insn->src_reg].type; 6364 6365 /* check that memory (src_reg + off) is readable, 6366 * the state of dst_reg will be updated by this func 6367 */ 6368 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6369 insn->off, BPF_SIZE(insn->code), 6370 BPF_READ, insn->dst_reg, false); 6371 if (err) 6372 return err; 6373 6374 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6375 6376 if (*prev_src_type == NOT_INIT) { 6377 /* saw a valid insn 6378 * dst_reg = *(u32 *)(src_reg + off) 6379 * save type to validate intersecting paths 6380 */ 6381 *prev_src_type = src_reg_type; 6382 6383 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6384 /* ABuser program is trying to use the same insn 6385 * dst_reg = *(u32*) (src_reg + off) 6386 * with different pointer types: 6387 * src_reg == ctx in one branch and 6388 * src_reg == stack|map in some other branch. 6389 * Reject it. 6390 */ 6391 verbose(env, "same insn cannot be used with different pointers\n"); 6392 return -EINVAL; 6393 } 6394 6395 } else if (class == BPF_STX) { 6396 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6397 6398 if (BPF_MODE(insn->code) == BPF_XADD) { 6399 err = check_xadd(env, env->insn_idx, insn); 6400 if (err) 6401 return err; 6402 env->insn_idx++; 6403 continue; 6404 } 6405 6406 /* check src1 operand */ 6407 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6408 if (err) 6409 return err; 6410 /* check src2 operand */ 6411 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6412 if (err) 6413 return err; 6414 6415 dst_reg_type = regs[insn->dst_reg].type; 6416 6417 /* check that memory (dst_reg + off) is writeable */ 6418 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6419 insn->off, BPF_SIZE(insn->code), 6420 BPF_WRITE, insn->src_reg, false); 6421 if (err) 6422 return err; 6423 6424 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6425 6426 if (*prev_dst_type == NOT_INIT) { 6427 *prev_dst_type = dst_reg_type; 6428 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6429 verbose(env, "same insn cannot be used with different pointers\n"); 6430 return -EINVAL; 6431 } 6432 6433 } else if (class == BPF_ST) { 6434 if (BPF_MODE(insn->code) != BPF_MEM || 6435 insn->src_reg != BPF_REG_0) { 6436 verbose(env, "BPF_ST uses reserved fields\n"); 6437 return -EINVAL; 6438 } 6439 /* check src operand */ 6440 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6441 if (err) 6442 return err; 6443 6444 if (is_ctx_reg(env, insn->dst_reg)) { 6445 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6446 insn->dst_reg, 6447 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6448 return -EACCES; 6449 } 6450 6451 /* check that memory (dst_reg + off) is writeable */ 6452 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6453 insn->off, BPF_SIZE(insn->code), 6454 BPF_WRITE, -1, false); 6455 if (err) 6456 return err; 6457 6458 } else if (class == BPF_JMP || class == BPF_JMP32) { 6459 u8 opcode = BPF_OP(insn->code); 6460 6461 if (opcode == BPF_CALL) { 6462 if (BPF_SRC(insn->code) != BPF_K || 6463 insn->off != 0 || 6464 (insn->src_reg != BPF_REG_0 && 6465 insn->src_reg != BPF_PSEUDO_CALL) || 6466 insn->dst_reg != BPF_REG_0 || 6467 class == BPF_JMP32) { 6468 verbose(env, "BPF_CALL uses reserved fields\n"); 6469 return -EINVAL; 6470 } 6471 6472 if (env->cur_state->active_spin_lock && 6473 (insn->src_reg == BPF_PSEUDO_CALL || 6474 insn->imm != BPF_FUNC_spin_unlock)) { 6475 verbose(env, "function calls are not allowed while holding a lock\n"); 6476 return -EINVAL; 6477 } 6478 if (insn->src_reg == BPF_PSEUDO_CALL) 6479 err = check_func_call(env, insn, &env->insn_idx); 6480 else 6481 err = check_helper_call(env, insn->imm, env->insn_idx); 6482 if (err) 6483 return err; 6484 6485 } else if (opcode == BPF_JA) { 6486 if (BPF_SRC(insn->code) != BPF_K || 6487 insn->imm != 0 || 6488 insn->src_reg != BPF_REG_0 || 6489 insn->dst_reg != BPF_REG_0 || 6490 class == BPF_JMP32) { 6491 verbose(env, "BPF_JA uses reserved fields\n"); 6492 return -EINVAL; 6493 } 6494 6495 env->insn_idx += insn->off + 1; 6496 continue; 6497 6498 } else if (opcode == BPF_EXIT) { 6499 if (BPF_SRC(insn->code) != BPF_K || 6500 insn->imm != 0 || 6501 insn->src_reg != BPF_REG_0 || 6502 insn->dst_reg != BPF_REG_0 || 6503 class == BPF_JMP32) { 6504 verbose(env, "BPF_EXIT uses reserved fields\n"); 6505 return -EINVAL; 6506 } 6507 6508 if (env->cur_state->active_spin_lock) { 6509 verbose(env, "bpf_spin_unlock is missing\n"); 6510 return -EINVAL; 6511 } 6512 6513 if (state->curframe) { 6514 /* exit from nested function */ 6515 env->prev_insn_idx = env->insn_idx; 6516 err = prepare_func_exit(env, &env->insn_idx); 6517 if (err) 6518 return err; 6519 do_print_state = true; 6520 continue; 6521 } 6522 6523 err = check_reference_leak(env); 6524 if (err) 6525 return err; 6526 6527 /* eBPF calling convetion is such that R0 is used 6528 * to return the value from eBPF program. 6529 * Make sure that it's readable at this time 6530 * of bpf_exit, which means that program wrote 6531 * something into it earlier 6532 */ 6533 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6534 if (err) 6535 return err; 6536 6537 if (is_pointer_value(env, BPF_REG_0)) { 6538 verbose(env, "R0 leaks addr as return value\n"); 6539 return -EACCES; 6540 } 6541 6542 err = check_return_code(env); 6543 if (err) 6544 return err; 6545 process_bpf_exit: 6546 err = pop_stack(env, &env->prev_insn_idx, 6547 &env->insn_idx); 6548 if (err < 0) { 6549 if (err != -ENOENT) 6550 return err; 6551 break; 6552 } else { 6553 do_print_state = true; 6554 continue; 6555 } 6556 } else { 6557 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6558 if (err) 6559 return err; 6560 } 6561 } else if (class == BPF_LD) { 6562 u8 mode = BPF_MODE(insn->code); 6563 6564 if (mode == BPF_ABS || mode == BPF_IND) { 6565 err = check_ld_abs(env, insn); 6566 if (err) 6567 return err; 6568 6569 } else if (mode == BPF_IMM) { 6570 err = check_ld_imm(env, insn); 6571 if (err) 6572 return err; 6573 6574 env->insn_idx++; 6575 env->insn_aux_data[env->insn_idx].seen = true; 6576 } else { 6577 verbose(env, "invalid BPF_LD mode\n"); 6578 return -EINVAL; 6579 } 6580 } else { 6581 verbose(env, "unknown insn class %d\n", class); 6582 return -EINVAL; 6583 } 6584 6585 env->insn_idx++; 6586 } 6587 6588 verbose(env, "processed %d insns (limit %d), stack depth ", 6589 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 6590 for (i = 0; i < env->subprog_cnt; i++) { 6591 u32 depth = env->subprog_info[i].stack_depth; 6592 6593 verbose(env, "%d", depth); 6594 if (i + 1 < env->subprog_cnt) 6595 verbose(env, "+"); 6596 } 6597 verbose(env, "\n"); 6598 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6599 return 0; 6600 } 6601 6602 static int check_map_prealloc(struct bpf_map *map) 6603 { 6604 return (map->map_type != BPF_MAP_TYPE_HASH && 6605 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6606 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6607 !(map->map_flags & BPF_F_NO_PREALLOC); 6608 } 6609 6610 static bool is_tracing_prog_type(enum bpf_prog_type type) 6611 { 6612 switch (type) { 6613 case BPF_PROG_TYPE_KPROBE: 6614 case BPF_PROG_TYPE_TRACEPOINT: 6615 case BPF_PROG_TYPE_PERF_EVENT: 6616 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6617 return true; 6618 default: 6619 return false; 6620 } 6621 } 6622 6623 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6624 struct bpf_map *map, 6625 struct bpf_prog *prog) 6626 6627 { 6628 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6629 * preallocated hash maps, since doing memory allocation 6630 * in overflow_handler can crash depending on where nmi got 6631 * triggered. 6632 */ 6633 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6634 if (!check_map_prealloc(map)) { 6635 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6636 return -EINVAL; 6637 } 6638 if (map->inner_map_meta && 6639 !check_map_prealloc(map->inner_map_meta)) { 6640 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6641 return -EINVAL; 6642 } 6643 } 6644 6645 if ((is_tracing_prog_type(prog->type) || 6646 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 6647 map_value_has_spin_lock(map)) { 6648 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 6649 return -EINVAL; 6650 } 6651 6652 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6653 !bpf_offload_prog_map_match(prog, map)) { 6654 verbose(env, "offload device mismatch between prog and map\n"); 6655 return -EINVAL; 6656 } 6657 6658 return 0; 6659 } 6660 6661 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6662 { 6663 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6664 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6665 } 6666 6667 /* look for pseudo eBPF instructions that access map FDs and 6668 * replace them with actual map pointers 6669 */ 6670 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6671 { 6672 struct bpf_insn *insn = env->prog->insnsi; 6673 int insn_cnt = env->prog->len; 6674 int i, j, err; 6675 6676 err = bpf_prog_calc_tag(env->prog); 6677 if (err) 6678 return err; 6679 6680 for (i = 0; i < insn_cnt; i++, insn++) { 6681 if (BPF_CLASS(insn->code) == BPF_LDX && 6682 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6683 verbose(env, "BPF_LDX uses reserved fields\n"); 6684 return -EINVAL; 6685 } 6686 6687 if (BPF_CLASS(insn->code) == BPF_STX && 6688 ((BPF_MODE(insn->code) != BPF_MEM && 6689 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6690 verbose(env, "BPF_STX uses reserved fields\n"); 6691 return -EINVAL; 6692 } 6693 6694 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6695 struct bpf_map *map; 6696 struct fd f; 6697 6698 if (i == insn_cnt - 1 || insn[1].code != 0 || 6699 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6700 insn[1].off != 0) { 6701 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6702 return -EINVAL; 6703 } 6704 6705 if (insn->src_reg == 0) 6706 /* valid generic load 64-bit imm */ 6707 goto next_insn; 6708 6709 if (insn[0].src_reg != BPF_PSEUDO_MAP_FD || 6710 insn[1].imm != 0) { 6711 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 6712 return -EINVAL; 6713 } 6714 6715 f = fdget(insn[0].imm); 6716 map = __bpf_map_get(f); 6717 if (IS_ERR(map)) { 6718 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6719 insn[0].imm); 6720 return PTR_ERR(map); 6721 } 6722 6723 err = check_map_prog_compatibility(env, map, env->prog); 6724 if (err) { 6725 fdput(f); 6726 return err; 6727 } 6728 6729 /* store map pointer inside BPF_LD_IMM64 instruction */ 6730 insn[0].imm = (u32) (unsigned long) map; 6731 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6732 6733 /* check whether we recorded this map already */ 6734 for (j = 0; j < env->used_map_cnt; j++) 6735 if (env->used_maps[j] == map) { 6736 fdput(f); 6737 goto next_insn; 6738 } 6739 6740 if (env->used_map_cnt >= MAX_USED_MAPS) { 6741 fdput(f); 6742 return -E2BIG; 6743 } 6744 6745 /* hold the map. If the program is rejected by verifier, 6746 * the map will be released by release_maps() or it 6747 * will be used by the valid program until it's unloaded 6748 * and all maps are released in free_used_maps() 6749 */ 6750 map = bpf_map_inc(map, false); 6751 if (IS_ERR(map)) { 6752 fdput(f); 6753 return PTR_ERR(map); 6754 } 6755 env->used_maps[env->used_map_cnt++] = map; 6756 6757 if (bpf_map_is_cgroup_storage(map) && 6758 bpf_cgroup_storage_assign(env->prog, map)) { 6759 verbose(env, "only one cgroup storage of each type is allowed\n"); 6760 fdput(f); 6761 return -EBUSY; 6762 } 6763 6764 fdput(f); 6765 next_insn: 6766 insn++; 6767 i++; 6768 continue; 6769 } 6770 6771 /* Basic sanity check before we invest more work here. */ 6772 if (!bpf_opcode_in_insntable(insn->code)) { 6773 verbose(env, "unknown opcode %02x\n", insn->code); 6774 return -EINVAL; 6775 } 6776 } 6777 6778 /* now all pseudo BPF_LD_IMM64 instructions load valid 6779 * 'struct bpf_map *' into a register instead of user map_fd. 6780 * These pointers will be used later by verifier to validate map access. 6781 */ 6782 return 0; 6783 } 6784 6785 /* drop refcnt of maps used by the rejected program */ 6786 static void release_maps(struct bpf_verifier_env *env) 6787 { 6788 enum bpf_cgroup_storage_type stype; 6789 int i; 6790 6791 for_each_cgroup_storage_type(stype) { 6792 if (!env->prog->aux->cgroup_storage[stype]) 6793 continue; 6794 bpf_cgroup_storage_release(env->prog, 6795 env->prog->aux->cgroup_storage[stype]); 6796 } 6797 6798 for (i = 0; i < env->used_map_cnt; i++) 6799 bpf_map_put(env->used_maps[i]); 6800 } 6801 6802 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6803 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6804 { 6805 struct bpf_insn *insn = env->prog->insnsi; 6806 int insn_cnt = env->prog->len; 6807 int i; 6808 6809 for (i = 0; i < insn_cnt; i++, insn++) 6810 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6811 insn->src_reg = 0; 6812 } 6813 6814 /* single env->prog->insni[off] instruction was replaced with the range 6815 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6816 * [0, off) and [off, end) to new locations, so the patched range stays zero 6817 */ 6818 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6819 u32 off, u32 cnt) 6820 { 6821 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6822 int i; 6823 6824 if (cnt == 1) 6825 return 0; 6826 new_data = vzalloc(array_size(prog_len, 6827 sizeof(struct bpf_insn_aux_data))); 6828 if (!new_data) 6829 return -ENOMEM; 6830 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6831 memcpy(new_data + off + cnt - 1, old_data + off, 6832 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6833 for (i = off; i < off + cnt - 1; i++) 6834 new_data[i].seen = true; 6835 env->insn_aux_data = new_data; 6836 vfree(old_data); 6837 return 0; 6838 } 6839 6840 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6841 { 6842 int i; 6843 6844 if (len == 1) 6845 return; 6846 /* NOTE: fake 'exit' subprog should be updated as well. */ 6847 for (i = 0; i <= env->subprog_cnt; i++) { 6848 if (env->subprog_info[i].start <= off) 6849 continue; 6850 env->subprog_info[i].start += len - 1; 6851 } 6852 } 6853 6854 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6855 const struct bpf_insn *patch, u32 len) 6856 { 6857 struct bpf_prog *new_prog; 6858 6859 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6860 if (!new_prog) 6861 return NULL; 6862 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6863 return NULL; 6864 adjust_subprog_starts(env, off, len); 6865 return new_prog; 6866 } 6867 6868 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 6869 u32 off, u32 cnt) 6870 { 6871 int i, j; 6872 6873 /* find first prog starting at or after off (first to remove) */ 6874 for (i = 0; i < env->subprog_cnt; i++) 6875 if (env->subprog_info[i].start >= off) 6876 break; 6877 /* find first prog starting at or after off + cnt (first to stay) */ 6878 for (j = i; j < env->subprog_cnt; j++) 6879 if (env->subprog_info[j].start >= off + cnt) 6880 break; 6881 /* if j doesn't start exactly at off + cnt, we are just removing 6882 * the front of previous prog 6883 */ 6884 if (env->subprog_info[j].start != off + cnt) 6885 j--; 6886 6887 if (j > i) { 6888 struct bpf_prog_aux *aux = env->prog->aux; 6889 int move; 6890 6891 /* move fake 'exit' subprog as well */ 6892 move = env->subprog_cnt + 1 - j; 6893 6894 memmove(env->subprog_info + i, 6895 env->subprog_info + j, 6896 sizeof(*env->subprog_info) * move); 6897 env->subprog_cnt -= j - i; 6898 6899 /* remove func_info */ 6900 if (aux->func_info) { 6901 move = aux->func_info_cnt - j; 6902 6903 memmove(aux->func_info + i, 6904 aux->func_info + j, 6905 sizeof(*aux->func_info) * move); 6906 aux->func_info_cnt -= j - i; 6907 /* func_info->insn_off is set after all code rewrites, 6908 * in adjust_btf_func() - no need to adjust 6909 */ 6910 } 6911 } else { 6912 /* convert i from "first prog to remove" to "first to adjust" */ 6913 if (env->subprog_info[i].start == off) 6914 i++; 6915 } 6916 6917 /* update fake 'exit' subprog as well */ 6918 for (; i <= env->subprog_cnt; i++) 6919 env->subprog_info[i].start -= cnt; 6920 6921 return 0; 6922 } 6923 6924 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 6925 u32 cnt) 6926 { 6927 struct bpf_prog *prog = env->prog; 6928 u32 i, l_off, l_cnt, nr_linfo; 6929 struct bpf_line_info *linfo; 6930 6931 nr_linfo = prog->aux->nr_linfo; 6932 if (!nr_linfo) 6933 return 0; 6934 6935 linfo = prog->aux->linfo; 6936 6937 /* find first line info to remove, count lines to be removed */ 6938 for (i = 0; i < nr_linfo; i++) 6939 if (linfo[i].insn_off >= off) 6940 break; 6941 6942 l_off = i; 6943 l_cnt = 0; 6944 for (; i < nr_linfo; i++) 6945 if (linfo[i].insn_off < off + cnt) 6946 l_cnt++; 6947 else 6948 break; 6949 6950 /* First live insn doesn't match first live linfo, it needs to "inherit" 6951 * last removed linfo. prog is already modified, so prog->len == off 6952 * means no live instructions after (tail of the program was removed). 6953 */ 6954 if (prog->len != off && l_cnt && 6955 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 6956 l_cnt--; 6957 linfo[--i].insn_off = off + cnt; 6958 } 6959 6960 /* remove the line info which refer to the removed instructions */ 6961 if (l_cnt) { 6962 memmove(linfo + l_off, linfo + i, 6963 sizeof(*linfo) * (nr_linfo - i)); 6964 6965 prog->aux->nr_linfo -= l_cnt; 6966 nr_linfo = prog->aux->nr_linfo; 6967 } 6968 6969 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 6970 for (i = l_off; i < nr_linfo; i++) 6971 linfo[i].insn_off -= cnt; 6972 6973 /* fix up all subprogs (incl. 'exit') which start >= off */ 6974 for (i = 0; i <= env->subprog_cnt; i++) 6975 if (env->subprog_info[i].linfo_idx > l_off) { 6976 /* program may have started in the removed region but 6977 * may not be fully removed 6978 */ 6979 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 6980 env->subprog_info[i].linfo_idx -= l_cnt; 6981 else 6982 env->subprog_info[i].linfo_idx = l_off; 6983 } 6984 6985 return 0; 6986 } 6987 6988 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 6989 { 6990 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6991 unsigned int orig_prog_len = env->prog->len; 6992 int err; 6993 6994 if (bpf_prog_is_dev_bound(env->prog->aux)) 6995 bpf_prog_offload_remove_insns(env, off, cnt); 6996 6997 err = bpf_remove_insns(env->prog, off, cnt); 6998 if (err) 6999 return err; 7000 7001 err = adjust_subprog_starts_after_remove(env, off, cnt); 7002 if (err) 7003 return err; 7004 7005 err = bpf_adj_linfo_after_remove(env, off, cnt); 7006 if (err) 7007 return err; 7008 7009 memmove(aux_data + off, aux_data + off + cnt, 7010 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 7011 7012 return 0; 7013 } 7014 7015 /* The verifier does more data flow analysis than llvm and will not 7016 * explore branches that are dead at run time. Malicious programs can 7017 * have dead code too. Therefore replace all dead at-run-time code 7018 * with 'ja -1'. 7019 * 7020 * Just nops are not optimal, e.g. if they would sit at the end of the 7021 * program and through another bug we would manage to jump there, then 7022 * we'd execute beyond program memory otherwise. Returning exception 7023 * code also wouldn't work since we can have subprogs where the dead 7024 * code could be located. 7025 */ 7026 static void sanitize_dead_code(struct bpf_verifier_env *env) 7027 { 7028 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7029 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 7030 struct bpf_insn *insn = env->prog->insnsi; 7031 const int insn_cnt = env->prog->len; 7032 int i; 7033 7034 for (i = 0; i < insn_cnt; i++) { 7035 if (aux_data[i].seen) 7036 continue; 7037 memcpy(insn + i, &trap, sizeof(trap)); 7038 } 7039 } 7040 7041 static bool insn_is_cond_jump(u8 code) 7042 { 7043 u8 op; 7044 7045 if (BPF_CLASS(code) == BPF_JMP32) 7046 return true; 7047 7048 if (BPF_CLASS(code) != BPF_JMP) 7049 return false; 7050 7051 op = BPF_OP(code); 7052 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 7053 } 7054 7055 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 7056 { 7057 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7058 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7059 struct bpf_insn *insn = env->prog->insnsi; 7060 const int insn_cnt = env->prog->len; 7061 int i; 7062 7063 for (i = 0; i < insn_cnt; i++, insn++) { 7064 if (!insn_is_cond_jump(insn->code)) 7065 continue; 7066 7067 if (!aux_data[i + 1].seen) 7068 ja.off = insn->off; 7069 else if (!aux_data[i + 1 + insn->off].seen) 7070 ja.off = 0; 7071 else 7072 continue; 7073 7074 if (bpf_prog_is_dev_bound(env->prog->aux)) 7075 bpf_prog_offload_replace_insn(env, i, &ja); 7076 7077 memcpy(insn, &ja, sizeof(ja)); 7078 } 7079 } 7080 7081 static int opt_remove_dead_code(struct bpf_verifier_env *env) 7082 { 7083 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 7084 int insn_cnt = env->prog->len; 7085 int i, err; 7086 7087 for (i = 0; i < insn_cnt; i++) { 7088 int j; 7089 7090 j = 0; 7091 while (i + j < insn_cnt && !aux_data[i + j].seen) 7092 j++; 7093 if (!j) 7094 continue; 7095 7096 err = verifier_remove_insns(env, i, j); 7097 if (err) 7098 return err; 7099 insn_cnt = env->prog->len; 7100 } 7101 7102 return 0; 7103 } 7104 7105 static int opt_remove_nops(struct bpf_verifier_env *env) 7106 { 7107 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 7108 struct bpf_insn *insn = env->prog->insnsi; 7109 int insn_cnt = env->prog->len; 7110 int i, err; 7111 7112 for (i = 0; i < insn_cnt; i++) { 7113 if (memcmp(&insn[i], &ja, sizeof(ja))) 7114 continue; 7115 7116 err = verifier_remove_insns(env, i, 1); 7117 if (err) 7118 return err; 7119 insn_cnt--; 7120 i--; 7121 } 7122 7123 return 0; 7124 } 7125 7126 /* convert load instructions that access fields of a context type into a 7127 * sequence of instructions that access fields of the underlying structure: 7128 * struct __sk_buff -> struct sk_buff 7129 * struct bpf_sock_ops -> struct sock 7130 */ 7131 static int convert_ctx_accesses(struct bpf_verifier_env *env) 7132 { 7133 const struct bpf_verifier_ops *ops = env->ops; 7134 int i, cnt, size, ctx_field_size, delta = 0; 7135 const int insn_cnt = env->prog->len; 7136 struct bpf_insn insn_buf[16], *insn; 7137 u32 target_size, size_default, off; 7138 struct bpf_prog *new_prog; 7139 enum bpf_access_type type; 7140 bool is_narrower_load; 7141 7142 if (ops->gen_prologue || env->seen_direct_write) { 7143 if (!ops->gen_prologue) { 7144 verbose(env, "bpf verifier is misconfigured\n"); 7145 return -EINVAL; 7146 } 7147 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 7148 env->prog); 7149 if (cnt >= ARRAY_SIZE(insn_buf)) { 7150 verbose(env, "bpf verifier is misconfigured\n"); 7151 return -EINVAL; 7152 } else if (cnt) { 7153 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 7154 if (!new_prog) 7155 return -ENOMEM; 7156 7157 env->prog = new_prog; 7158 delta += cnt - 1; 7159 } 7160 } 7161 7162 if (bpf_prog_is_dev_bound(env->prog->aux)) 7163 return 0; 7164 7165 insn = env->prog->insnsi + delta; 7166 7167 for (i = 0; i < insn_cnt; i++, insn++) { 7168 bpf_convert_ctx_access_t convert_ctx_access; 7169 7170 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 7171 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 7172 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 7173 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 7174 type = BPF_READ; 7175 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 7176 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 7177 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 7178 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 7179 type = BPF_WRITE; 7180 else 7181 continue; 7182 7183 if (type == BPF_WRITE && 7184 env->insn_aux_data[i + delta].sanitize_stack_off) { 7185 struct bpf_insn patch[] = { 7186 /* Sanitize suspicious stack slot with zero. 7187 * There are no memory dependencies for this store, 7188 * since it's only using frame pointer and immediate 7189 * constant of zero 7190 */ 7191 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 7192 env->insn_aux_data[i + delta].sanitize_stack_off, 7193 0), 7194 /* the original STX instruction will immediately 7195 * overwrite the same stack slot with appropriate value 7196 */ 7197 *insn, 7198 }; 7199 7200 cnt = ARRAY_SIZE(patch); 7201 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 7202 if (!new_prog) 7203 return -ENOMEM; 7204 7205 delta += cnt - 1; 7206 env->prog = new_prog; 7207 insn = new_prog->insnsi + i + delta; 7208 continue; 7209 } 7210 7211 switch (env->insn_aux_data[i + delta].ptr_type) { 7212 case PTR_TO_CTX: 7213 if (!ops->convert_ctx_access) 7214 continue; 7215 convert_ctx_access = ops->convert_ctx_access; 7216 break; 7217 case PTR_TO_SOCKET: 7218 case PTR_TO_SOCK_COMMON: 7219 convert_ctx_access = bpf_sock_convert_ctx_access; 7220 break; 7221 case PTR_TO_TCP_SOCK: 7222 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 7223 break; 7224 default: 7225 continue; 7226 } 7227 7228 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 7229 size = BPF_LDST_BYTES(insn); 7230 7231 /* If the read access is a narrower load of the field, 7232 * convert to a 4/8-byte load, to minimum program type specific 7233 * convert_ctx_access changes. If conversion is successful, 7234 * we will apply proper mask to the result. 7235 */ 7236 is_narrower_load = size < ctx_field_size; 7237 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 7238 off = insn->off; 7239 if (is_narrower_load) { 7240 u8 size_code; 7241 7242 if (type == BPF_WRITE) { 7243 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 7244 return -EINVAL; 7245 } 7246 7247 size_code = BPF_H; 7248 if (ctx_field_size == 4) 7249 size_code = BPF_W; 7250 else if (ctx_field_size == 8) 7251 size_code = BPF_DW; 7252 7253 insn->off = off & ~(size_default - 1); 7254 insn->code = BPF_LDX | BPF_MEM | size_code; 7255 } 7256 7257 target_size = 0; 7258 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 7259 &target_size); 7260 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 7261 (ctx_field_size && !target_size)) { 7262 verbose(env, "bpf verifier is misconfigured\n"); 7263 return -EINVAL; 7264 } 7265 7266 if (is_narrower_load && size < target_size) { 7267 u8 shift = (off & (size_default - 1)) * 8; 7268 7269 if (ctx_field_size <= 4) { 7270 if (shift) 7271 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 7272 insn->dst_reg, 7273 shift); 7274 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7275 (1 << size * 8) - 1); 7276 } else { 7277 if (shift) 7278 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7279 insn->dst_reg, 7280 shift); 7281 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7282 (1 << size * 8) - 1); 7283 } 7284 } 7285 7286 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7287 if (!new_prog) 7288 return -ENOMEM; 7289 7290 delta += cnt - 1; 7291 7292 /* keep walking new program and skip insns we just inserted */ 7293 env->prog = new_prog; 7294 insn = new_prog->insnsi + i + delta; 7295 } 7296 7297 return 0; 7298 } 7299 7300 static int jit_subprogs(struct bpf_verifier_env *env) 7301 { 7302 struct bpf_prog *prog = env->prog, **func, *tmp; 7303 int i, j, subprog_start, subprog_end = 0, len, subprog; 7304 struct bpf_insn *insn; 7305 void *old_bpf_func; 7306 int err; 7307 7308 if (env->subprog_cnt <= 1) 7309 return 0; 7310 7311 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7312 if (insn->code != (BPF_JMP | BPF_CALL) || 7313 insn->src_reg != BPF_PSEUDO_CALL) 7314 continue; 7315 /* Upon error here we cannot fall back to interpreter but 7316 * need a hard reject of the program. Thus -EFAULT is 7317 * propagated in any case. 7318 */ 7319 subprog = find_subprog(env, i + insn->imm + 1); 7320 if (subprog < 0) { 7321 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7322 i + insn->imm + 1); 7323 return -EFAULT; 7324 } 7325 /* temporarily remember subprog id inside insn instead of 7326 * aux_data, since next loop will split up all insns into funcs 7327 */ 7328 insn->off = subprog; 7329 /* remember original imm in case JIT fails and fallback 7330 * to interpreter will be needed 7331 */ 7332 env->insn_aux_data[i].call_imm = insn->imm; 7333 /* point imm to __bpf_call_base+1 from JITs point of view */ 7334 insn->imm = 1; 7335 } 7336 7337 err = bpf_prog_alloc_jited_linfo(prog); 7338 if (err) 7339 goto out_undo_insn; 7340 7341 err = -ENOMEM; 7342 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7343 if (!func) 7344 goto out_undo_insn; 7345 7346 for (i = 0; i < env->subprog_cnt; i++) { 7347 subprog_start = subprog_end; 7348 subprog_end = env->subprog_info[i + 1].start; 7349 7350 len = subprog_end - subprog_start; 7351 /* BPF_PROG_RUN doesn't call subprogs directly, 7352 * hence main prog stats include the runtime of subprogs. 7353 * subprogs don't have IDs and not reachable via prog_get_next_id 7354 * func[i]->aux->stats will never be accessed and stays NULL 7355 */ 7356 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 7357 if (!func[i]) 7358 goto out_free; 7359 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7360 len * sizeof(struct bpf_insn)); 7361 func[i]->type = prog->type; 7362 func[i]->len = len; 7363 if (bpf_prog_calc_tag(func[i])) 7364 goto out_free; 7365 func[i]->is_func = 1; 7366 func[i]->aux->func_idx = i; 7367 /* the btf and func_info will be freed only at prog->aux */ 7368 func[i]->aux->btf = prog->aux->btf; 7369 func[i]->aux->func_info = prog->aux->func_info; 7370 7371 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7372 * Long term would need debug info to populate names 7373 */ 7374 func[i]->aux->name[0] = 'F'; 7375 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7376 func[i]->jit_requested = 1; 7377 func[i]->aux->linfo = prog->aux->linfo; 7378 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7379 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7380 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7381 func[i] = bpf_int_jit_compile(func[i]); 7382 if (!func[i]->jited) { 7383 err = -ENOTSUPP; 7384 goto out_free; 7385 } 7386 cond_resched(); 7387 } 7388 /* at this point all bpf functions were successfully JITed 7389 * now populate all bpf_calls with correct addresses and 7390 * run last pass of JIT 7391 */ 7392 for (i = 0; i < env->subprog_cnt; i++) { 7393 insn = func[i]->insnsi; 7394 for (j = 0; j < func[i]->len; j++, insn++) { 7395 if (insn->code != (BPF_JMP | BPF_CALL) || 7396 insn->src_reg != BPF_PSEUDO_CALL) 7397 continue; 7398 subprog = insn->off; 7399 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 7400 func[subprog]->bpf_func - 7401 __bpf_call_base; 7402 } 7403 7404 /* we use the aux data to keep a list of the start addresses 7405 * of the JITed images for each function in the program 7406 * 7407 * for some architectures, such as powerpc64, the imm field 7408 * might not be large enough to hold the offset of the start 7409 * address of the callee's JITed image from __bpf_call_base 7410 * 7411 * in such cases, we can lookup the start address of a callee 7412 * by using its subprog id, available from the off field of 7413 * the call instruction, as an index for this list 7414 */ 7415 func[i]->aux->func = func; 7416 func[i]->aux->func_cnt = env->subprog_cnt; 7417 } 7418 for (i = 0; i < env->subprog_cnt; i++) { 7419 old_bpf_func = func[i]->bpf_func; 7420 tmp = bpf_int_jit_compile(func[i]); 7421 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7422 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7423 err = -ENOTSUPP; 7424 goto out_free; 7425 } 7426 cond_resched(); 7427 } 7428 7429 /* finally lock prog and jit images for all functions and 7430 * populate kallsysm 7431 */ 7432 for (i = 0; i < env->subprog_cnt; i++) { 7433 bpf_prog_lock_ro(func[i]); 7434 bpf_prog_kallsyms_add(func[i]); 7435 } 7436 7437 /* Last step: make now unused interpreter insns from main 7438 * prog consistent for later dump requests, so they can 7439 * later look the same as if they were interpreted only. 7440 */ 7441 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7442 if (insn->code != (BPF_JMP | BPF_CALL) || 7443 insn->src_reg != BPF_PSEUDO_CALL) 7444 continue; 7445 insn->off = env->insn_aux_data[i].call_imm; 7446 subprog = find_subprog(env, i + insn->off + 1); 7447 insn->imm = subprog; 7448 } 7449 7450 prog->jited = 1; 7451 prog->bpf_func = func[0]->bpf_func; 7452 prog->aux->func = func; 7453 prog->aux->func_cnt = env->subprog_cnt; 7454 bpf_prog_free_unused_jited_linfo(prog); 7455 return 0; 7456 out_free: 7457 for (i = 0; i < env->subprog_cnt; i++) 7458 if (func[i]) 7459 bpf_jit_free(func[i]); 7460 kfree(func); 7461 out_undo_insn: 7462 /* cleanup main prog to be interpreted */ 7463 prog->jit_requested = 0; 7464 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7465 if (insn->code != (BPF_JMP | BPF_CALL) || 7466 insn->src_reg != BPF_PSEUDO_CALL) 7467 continue; 7468 insn->off = 0; 7469 insn->imm = env->insn_aux_data[i].call_imm; 7470 } 7471 bpf_prog_free_jited_linfo(prog); 7472 return err; 7473 } 7474 7475 static int fixup_call_args(struct bpf_verifier_env *env) 7476 { 7477 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7478 struct bpf_prog *prog = env->prog; 7479 struct bpf_insn *insn = prog->insnsi; 7480 int i, depth; 7481 #endif 7482 int err = 0; 7483 7484 if (env->prog->jit_requested && 7485 !bpf_prog_is_dev_bound(env->prog->aux)) { 7486 err = jit_subprogs(env); 7487 if (err == 0) 7488 return 0; 7489 if (err == -EFAULT) 7490 return err; 7491 } 7492 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7493 for (i = 0; i < prog->len; i++, insn++) { 7494 if (insn->code != (BPF_JMP | BPF_CALL) || 7495 insn->src_reg != BPF_PSEUDO_CALL) 7496 continue; 7497 depth = get_callee_stack_depth(env, insn, i); 7498 if (depth < 0) 7499 return depth; 7500 bpf_patch_call_args(insn, depth); 7501 } 7502 err = 0; 7503 #endif 7504 return err; 7505 } 7506 7507 /* fixup insn->imm field of bpf_call instructions 7508 * and inline eligible helpers as explicit sequence of BPF instructions 7509 * 7510 * this function is called after eBPF program passed verification 7511 */ 7512 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7513 { 7514 struct bpf_prog *prog = env->prog; 7515 struct bpf_insn *insn = prog->insnsi; 7516 const struct bpf_func_proto *fn; 7517 const int insn_cnt = prog->len; 7518 const struct bpf_map_ops *ops; 7519 struct bpf_insn_aux_data *aux; 7520 struct bpf_insn insn_buf[16]; 7521 struct bpf_prog *new_prog; 7522 struct bpf_map *map_ptr; 7523 int i, cnt, delta = 0; 7524 7525 for (i = 0; i < insn_cnt; i++, insn++) { 7526 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7527 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7528 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7529 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7530 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7531 struct bpf_insn mask_and_div[] = { 7532 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7533 /* Rx div 0 -> 0 */ 7534 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7535 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7536 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7537 *insn, 7538 }; 7539 struct bpf_insn mask_and_mod[] = { 7540 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7541 /* Rx mod 0 -> Rx */ 7542 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7543 *insn, 7544 }; 7545 struct bpf_insn *patchlet; 7546 7547 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7548 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7549 patchlet = mask_and_div + (is64 ? 1 : 0); 7550 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7551 } else { 7552 patchlet = mask_and_mod + (is64 ? 1 : 0); 7553 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7554 } 7555 7556 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7557 if (!new_prog) 7558 return -ENOMEM; 7559 7560 delta += cnt - 1; 7561 env->prog = prog = new_prog; 7562 insn = new_prog->insnsi + i + delta; 7563 continue; 7564 } 7565 7566 if (BPF_CLASS(insn->code) == BPF_LD && 7567 (BPF_MODE(insn->code) == BPF_ABS || 7568 BPF_MODE(insn->code) == BPF_IND)) { 7569 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7570 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7571 verbose(env, "bpf verifier is misconfigured\n"); 7572 return -EINVAL; 7573 } 7574 7575 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7576 if (!new_prog) 7577 return -ENOMEM; 7578 7579 delta += cnt - 1; 7580 env->prog = prog = new_prog; 7581 insn = new_prog->insnsi + i + delta; 7582 continue; 7583 } 7584 7585 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7586 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7587 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7588 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7589 struct bpf_insn insn_buf[16]; 7590 struct bpf_insn *patch = &insn_buf[0]; 7591 bool issrc, isneg; 7592 u32 off_reg; 7593 7594 aux = &env->insn_aux_data[i + delta]; 7595 if (!aux->alu_state || 7596 aux->alu_state == BPF_ALU_NON_POINTER) 7597 continue; 7598 7599 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7600 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7601 BPF_ALU_SANITIZE_SRC; 7602 7603 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7604 if (isneg) 7605 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7606 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7607 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7608 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7609 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7610 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7611 if (issrc) { 7612 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7613 off_reg); 7614 insn->src_reg = BPF_REG_AX; 7615 } else { 7616 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7617 BPF_REG_AX); 7618 } 7619 if (isneg) 7620 insn->code = insn->code == code_add ? 7621 code_sub : code_add; 7622 *patch++ = *insn; 7623 if (issrc && isneg) 7624 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7625 cnt = patch - insn_buf; 7626 7627 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7628 if (!new_prog) 7629 return -ENOMEM; 7630 7631 delta += cnt - 1; 7632 env->prog = prog = new_prog; 7633 insn = new_prog->insnsi + i + delta; 7634 continue; 7635 } 7636 7637 if (insn->code != (BPF_JMP | BPF_CALL)) 7638 continue; 7639 if (insn->src_reg == BPF_PSEUDO_CALL) 7640 continue; 7641 7642 if (insn->imm == BPF_FUNC_get_route_realm) 7643 prog->dst_needed = 1; 7644 if (insn->imm == BPF_FUNC_get_prandom_u32) 7645 bpf_user_rnd_init_once(); 7646 if (insn->imm == BPF_FUNC_override_return) 7647 prog->kprobe_override = 1; 7648 if (insn->imm == BPF_FUNC_tail_call) { 7649 /* If we tail call into other programs, we 7650 * cannot make any assumptions since they can 7651 * be replaced dynamically during runtime in 7652 * the program array. 7653 */ 7654 prog->cb_access = 1; 7655 env->prog->aux->stack_depth = MAX_BPF_STACK; 7656 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7657 7658 /* mark bpf_tail_call as different opcode to avoid 7659 * conditional branch in the interpeter for every normal 7660 * call and to prevent accidental JITing by JIT compiler 7661 * that doesn't support bpf_tail_call yet 7662 */ 7663 insn->imm = 0; 7664 insn->code = BPF_JMP | BPF_TAIL_CALL; 7665 7666 aux = &env->insn_aux_data[i + delta]; 7667 if (!bpf_map_ptr_unpriv(aux)) 7668 continue; 7669 7670 /* instead of changing every JIT dealing with tail_call 7671 * emit two extra insns: 7672 * if (index >= max_entries) goto out; 7673 * index &= array->index_mask; 7674 * to avoid out-of-bounds cpu speculation 7675 */ 7676 if (bpf_map_ptr_poisoned(aux)) { 7677 verbose(env, "tail_call abusing map_ptr\n"); 7678 return -EINVAL; 7679 } 7680 7681 map_ptr = BPF_MAP_PTR(aux->map_state); 7682 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7683 map_ptr->max_entries, 2); 7684 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7685 container_of(map_ptr, 7686 struct bpf_array, 7687 map)->index_mask); 7688 insn_buf[2] = *insn; 7689 cnt = 3; 7690 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7691 if (!new_prog) 7692 return -ENOMEM; 7693 7694 delta += cnt - 1; 7695 env->prog = prog = new_prog; 7696 insn = new_prog->insnsi + i + delta; 7697 continue; 7698 } 7699 7700 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 7701 * and other inlining handlers are currently limited to 64 bit 7702 * only. 7703 */ 7704 if (prog->jit_requested && BITS_PER_LONG == 64 && 7705 (insn->imm == BPF_FUNC_map_lookup_elem || 7706 insn->imm == BPF_FUNC_map_update_elem || 7707 insn->imm == BPF_FUNC_map_delete_elem || 7708 insn->imm == BPF_FUNC_map_push_elem || 7709 insn->imm == BPF_FUNC_map_pop_elem || 7710 insn->imm == BPF_FUNC_map_peek_elem)) { 7711 aux = &env->insn_aux_data[i + delta]; 7712 if (bpf_map_ptr_poisoned(aux)) 7713 goto patch_call_imm; 7714 7715 map_ptr = BPF_MAP_PTR(aux->map_state); 7716 ops = map_ptr->ops; 7717 if (insn->imm == BPF_FUNC_map_lookup_elem && 7718 ops->map_gen_lookup) { 7719 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7720 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7721 verbose(env, "bpf verifier is misconfigured\n"); 7722 return -EINVAL; 7723 } 7724 7725 new_prog = bpf_patch_insn_data(env, i + delta, 7726 insn_buf, cnt); 7727 if (!new_prog) 7728 return -ENOMEM; 7729 7730 delta += cnt - 1; 7731 env->prog = prog = new_prog; 7732 insn = new_prog->insnsi + i + delta; 7733 continue; 7734 } 7735 7736 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7737 (void *(*)(struct bpf_map *map, void *key))NULL)); 7738 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7739 (int (*)(struct bpf_map *map, void *key))NULL)); 7740 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7741 (int (*)(struct bpf_map *map, void *key, void *value, 7742 u64 flags))NULL)); 7743 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7744 (int (*)(struct bpf_map *map, void *value, 7745 u64 flags))NULL)); 7746 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7747 (int (*)(struct bpf_map *map, void *value))NULL)); 7748 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7749 (int (*)(struct bpf_map *map, void *value))NULL)); 7750 7751 switch (insn->imm) { 7752 case BPF_FUNC_map_lookup_elem: 7753 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7754 __bpf_call_base; 7755 continue; 7756 case BPF_FUNC_map_update_elem: 7757 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7758 __bpf_call_base; 7759 continue; 7760 case BPF_FUNC_map_delete_elem: 7761 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7762 __bpf_call_base; 7763 continue; 7764 case BPF_FUNC_map_push_elem: 7765 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7766 __bpf_call_base; 7767 continue; 7768 case BPF_FUNC_map_pop_elem: 7769 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7770 __bpf_call_base; 7771 continue; 7772 case BPF_FUNC_map_peek_elem: 7773 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7774 __bpf_call_base; 7775 continue; 7776 } 7777 7778 goto patch_call_imm; 7779 } 7780 7781 patch_call_imm: 7782 fn = env->ops->get_func_proto(insn->imm, env->prog); 7783 /* all functions that have prototype and verifier allowed 7784 * programs to call them, must be real in-kernel functions 7785 */ 7786 if (!fn->func) { 7787 verbose(env, 7788 "kernel subsystem misconfigured func %s#%d\n", 7789 func_id_name(insn->imm), insn->imm); 7790 return -EFAULT; 7791 } 7792 insn->imm = fn->func - __bpf_call_base; 7793 } 7794 7795 return 0; 7796 } 7797 7798 static void free_states(struct bpf_verifier_env *env) 7799 { 7800 struct bpf_verifier_state_list *sl, *sln; 7801 int i; 7802 7803 if (!env->explored_states) 7804 return; 7805 7806 for (i = 0; i < env->prog->len; i++) { 7807 sl = env->explored_states[i]; 7808 7809 if (sl) 7810 while (sl != STATE_LIST_MARK) { 7811 sln = sl->next; 7812 free_verifier_state(&sl->state, false); 7813 kfree(sl); 7814 sl = sln; 7815 } 7816 } 7817 7818 kfree(env->explored_states); 7819 } 7820 7821 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 7822 union bpf_attr __user *uattr) 7823 { 7824 struct bpf_verifier_env *env; 7825 struct bpf_verifier_log *log; 7826 int i, len, ret = -EINVAL; 7827 bool is_priv; 7828 7829 /* no program is valid */ 7830 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 7831 return -EINVAL; 7832 7833 /* 'struct bpf_verifier_env' can be global, but since it's not small, 7834 * allocate/free it every time bpf_check() is called 7835 */ 7836 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 7837 if (!env) 7838 return -ENOMEM; 7839 log = &env->log; 7840 7841 len = (*prog)->len; 7842 env->insn_aux_data = 7843 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 7844 ret = -ENOMEM; 7845 if (!env->insn_aux_data) 7846 goto err_free_env; 7847 for (i = 0; i < len; i++) 7848 env->insn_aux_data[i].orig_idx = i; 7849 env->prog = *prog; 7850 env->ops = bpf_verifier_ops[env->prog->type]; 7851 7852 /* grab the mutex to protect few globals used by verifier */ 7853 mutex_lock(&bpf_verifier_lock); 7854 7855 if (attr->log_level || attr->log_buf || attr->log_size) { 7856 /* user requested verbose verifier output 7857 * and supplied buffer to store the verification trace 7858 */ 7859 log->level = attr->log_level; 7860 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 7861 log->len_total = attr->log_size; 7862 7863 ret = -EINVAL; 7864 /* log attributes have to be sane */ 7865 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 7866 !log->level || !log->ubuf) 7867 goto err_unlock; 7868 } 7869 7870 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 7871 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 7872 env->strict_alignment = true; 7873 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 7874 env->strict_alignment = false; 7875 7876 is_priv = capable(CAP_SYS_ADMIN); 7877 env->allow_ptr_leaks = is_priv; 7878 7879 ret = replace_map_fd_with_map_ptr(env); 7880 if (ret < 0) 7881 goto skip_full_check; 7882 7883 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7884 ret = bpf_prog_offload_verifier_prep(env->prog); 7885 if (ret) 7886 goto skip_full_check; 7887 } 7888 7889 env->explored_states = kcalloc(env->prog->len, 7890 sizeof(struct bpf_verifier_state_list *), 7891 GFP_USER); 7892 ret = -ENOMEM; 7893 if (!env->explored_states) 7894 goto skip_full_check; 7895 7896 ret = check_subprogs(env); 7897 if (ret < 0) 7898 goto skip_full_check; 7899 7900 ret = check_btf_info(env, attr, uattr); 7901 if (ret < 0) 7902 goto skip_full_check; 7903 7904 ret = check_cfg(env); 7905 if (ret < 0) 7906 goto skip_full_check; 7907 7908 ret = do_check(env); 7909 if (env->cur_state) { 7910 free_verifier_state(env->cur_state, true); 7911 env->cur_state = NULL; 7912 } 7913 7914 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 7915 ret = bpf_prog_offload_finalize(env); 7916 7917 skip_full_check: 7918 while (!pop_stack(env, NULL, NULL)); 7919 free_states(env); 7920 7921 if (ret == 0) 7922 ret = check_max_stack_depth(env); 7923 7924 /* instruction rewrites happen after this point */ 7925 if (is_priv) { 7926 if (ret == 0) 7927 opt_hard_wire_dead_code_branches(env); 7928 if (ret == 0) 7929 ret = opt_remove_dead_code(env); 7930 if (ret == 0) 7931 ret = opt_remove_nops(env); 7932 } else { 7933 if (ret == 0) 7934 sanitize_dead_code(env); 7935 } 7936 7937 if (ret == 0) 7938 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7939 ret = convert_ctx_accesses(env); 7940 7941 if (ret == 0) 7942 ret = fixup_bpf_calls(env); 7943 7944 if (ret == 0) 7945 ret = fixup_call_args(env); 7946 7947 if (log->level && bpf_verifier_log_full(log)) 7948 ret = -ENOSPC; 7949 if (log->level && !log->ubuf) { 7950 ret = -EFAULT; 7951 goto err_release_maps; 7952 } 7953 7954 if (ret == 0 && env->used_map_cnt) { 7955 /* if program passed verifier, update used_maps in bpf_prog_info */ 7956 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7957 sizeof(env->used_maps[0]), 7958 GFP_KERNEL); 7959 7960 if (!env->prog->aux->used_maps) { 7961 ret = -ENOMEM; 7962 goto err_release_maps; 7963 } 7964 7965 memcpy(env->prog->aux->used_maps, env->used_maps, 7966 sizeof(env->used_maps[0]) * env->used_map_cnt); 7967 env->prog->aux->used_map_cnt = env->used_map_cnt; 7968 7969 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7970 * bpf_ld_imm64 instructions 7971 */ 7972 convert_pseudo_ld_imm64(env); 7973 } 7974 7975 if (ret == 0) 7976 adjust_btf_func(env); 7977 7978 err_release_maps: 7979 if (!env->prog->aux->used_maps) 7980 /* if we didn't copy map pointers into bpf_prog_info, release 7981 * them now. Otherwise free_used_maps() will release them. 7982 */ 7983 release_maps(env); 7984 *prog = env->prog; 7985 err_unlock: 7986 mutex_unlock(&bpf_verifier_lock); 7987 vfree(env->insn_aux_data); 7988 err_free_env: 7989 kfree(env); 7990 return ret; 7991 } 7992