xref: /openbmc/linux/kernel/bpf/verifier.c (revision 911b8eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 };
242 
243 struct btf *btf_vmlinux;
244 
245 static DEFINE_MUTEX(bpf_verifier_lock);
246 
247 static const struct bpf_line_info *
248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
249 {
250 	const struct bpf_line_info *linfo;
251 	const struct bpf_prog *prog;
252 	u32 i, nr_linfo;
253 
254 	prog = env->prog;
255 	nr_linfo = prog->aux->nr_linfo;
256 
257 	if (!nr_linfo || insn_off >= prog->len)
258 		return NULL;
259 
260 	linfo = prog->aux->linfo;
261 	for (i = 1; i < nr_linfo; i++)
262 		if (insn_off < linfo[i].insn_off)
263 			break;
264 
265 	return &linfo[i - 1];
266 }
267 
268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
269 		       va_list args)
270 {
271 	unsigned int n;
272 
273 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
274 
275 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
276 		  "verifier log line truncated - local buffer too short\n");
277 
278 	n = min(log->len_total - log->len_used - 1, n);
279 	log->kbuf[n] = '\0';
280 
281 	if (log->level == BPF_LOG_KERNEL) {
282 		pr_err("BPF:%s\n", log->kbuf);
283 		return;
284 	}
285 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
286 		log->len_used += n;
287 	else
288 		log->ubuf = NULL;
289 }
290 
291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
292 {
293 	char zero = 0;
294 
295 	if (!bpf_verifier_log_needed(log))
296 		return;
297 
298 	log->len_used = new_pos;
299 	if (put_user(zero, log->ubuf + new_pos))
300 		log->ubuf = NULL;
301 }
302 
303 /* log_level controls verbosity level of eBPF verifier.
304  * bpf_verifier_log_write() is used to dump the verification trace to the log,
305  * so the user can figure out what's wrong with the program
306  */
307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
308 					   const char *fmt, ...)
309 {
310 	va_list args;
311 
312 	if (!bpf_verifier_log_needed(&env->log))
313 		return;
314 
315 	va_start(args, fmt);
316 	bpf_verifier_vlog(&env->log, fmt, args);
317 	va_end(args);
318 }
319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
320 
321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
322 {
323 	struct bpf_verifier_env *env = private_data;
324 	va_list args;
325 
326 	if (!bpf_verifier_log_needed(&env->log))
327 		return;
328 
329 	va_start(args, fmt);
330 	bpf_verifier_vlog(&env->log, fmt, args);
331 	va_end(args);
332 }
333 
334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
335 			    const char *fmt, ...)
336 {
337 	va_list args;
338 
339 	if (!bpf_verifier_log_needed(log))
340 		return;
341 
342 	va_start(args, fmt);
343 	bpf_verifier_vlog(log, fmt, args);
344 	va_end(args);
345 }
346 
347 static const char *ltrim(const char *s)
348 {
349 	while (isspace(*s))
350 		s++;
351 
352 	return s;
353 }
354 
355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
356 					 u32 insn_off,
357 					 const char *prefix_fmt, ...)
358 {
359 	const struct bpf_line_info *linfo;
360 
361 	if (!bpf_verifier_log_needed(&env->log))
362 		return;
363 
364 	linfo = find_linfo(env, insn_off);
365 	if (!linfo || linfo == env->prev_linfo)
366 		return;
367 
368 	if (prefix_fmt) {
369 		va_list args;
370 
371 		va_start(args, prefix_fmt);
372 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
373 		va_end(args);
374 	}
375 
376 	verbose(env, "%s\n",
377 		ltrim(btf_name_by_offset(env->prog->aux->btf,
378 					 linfo->line_off)));
379 
380 	env->prev_linfo = linfo;
381 }
382 
383 static bool type_is_pkt_pointer(enum bpf_reg_type type)
384 {
385 	return type == PTR_TO_PACKET ||
386 	       type == PTR_TO_PACKET_META;
387 }
388 
389 static bool type_is_sk_pointer(enum bpf_reg_type type)
390 {
391 	return type == PTR_TO_SOCKET ||
392 		type == PTR_TO_SOCK_COMMON ||
393 		type == PTR_TO_TCP_SOCK ||
394 		type == PTR_TO_XDP_SOCK;
395 }
396 
397 static bool reg_type_not_null(enum bpf_reg_type type)
398 {
399 	return type == PTR_TO_SOCKET ||
400 		type == PTR_TO_TCP_SOCK ||
401 		type == PTR_TO_MAP_VALUE ||
402 		type == PTR_TO_SOCK_COMMON;
403 }
404 
405 static bool reg_type_may_be_null(enum bpf_reg_type type)
406 {
407 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
408 	       type == PTR_TO_SOCKET_OR_NULL ||
409 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
410 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
411 	       type == PTR_TO_BTF_ID_OR_NULL ||
412 	       type == PTR_TO_MEM_OR_NULL ||
413 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
414 	       type == PTR_TO_RDWR_BUF_OR_NULL;
415 }
416 
417 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
418 {
419 	return reg->type == PTR_TO_MAP_VALUE &&
420 		map_value_has_spin_lock(reg->map_ptr);
421 }
422 
423 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
424 {
425 	return type == PTR_TO_SOCKET ||
426 		type == PTR_TO_SOCKET_OR_NULL ||
427 		type == PTR_TO_TCP_SOCK ||
428 		type == PTR_TO_TCP_SOCK_OR_NULL ||
429 		type == PTR_TO_MEM ||
430 		type == PTR_TO_MEM_OR_NULL;
431 }
432 
433 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
434 {
435 	return type == ARG_PTR_TO_SOCK_COMMON;
436 }
437 
438 static bool arg_type_may_be_null(enum bpf_arg_type type)
439 {
440 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
441 	       type == ARG_PTR_TO_MEM_OR_NULL ||
442 	       type == ARG_PTR_TO_CTX_OR_NULL ||
443 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
444 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
445 }
446 
447 /* Determine whether the function releases some resources allocated by another
448  * function call. The first reference type argument will be assumed to be
449  * released by release_reference().
450  */
451 static bool is_release_function(enum bpf_func_id func_id)
452 {
453 	return func_id == BPF_FUNC_sk_release ||
454 	       func_id == BPF_FUNC_ringbuf_submit ||
455 	       func_id == BPF_FUNC_ringbuf_discard;
456 }
457 
458 static bool may_be_acquire_function(enum bpf_func_id func_id)
459 {
460 	return func_id == BPF_FUNC_sk_lookup_tcp ||
461 		func_id == BPF_FUNC_sk_lookup_udp ||
462 		func_id == BPF_FUNC_skc_lookup_tcp ||
463 		func_id == BPF_FUNC_map_lookup_elem ||
464 	        func_id == BPF_FUNC_ringbuf_reserve;
465 }
466 
467 static bool is_acquire_function(enum bpf_func_id func_id,
468 				const struct bpf_map *map)
469 {
470 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
471 
472 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
473 	    func_id == BPF_FUNC_sk_lookup_udp ||
474 	    func_id == BPF_FUNC_skc_lookup_tcp ||
475 	    func_id == BPF_FUNC_ringbuf_reserve)
476 		return true;
477 
478 	if (func_id == BPF_FUNC_map_lookup_elem &&
479 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
480 	     map_type == BPF_MAP_TYPE_SOCKHASH))
481 		return true;
482 
483 	return false;
484 }
485 
486 static bool is_ptr_cast_function(enum bpf_func_id func_id)
487 {
488 	return func_id == BPF_FUNC_tcp_sock ||
489 		func_id == BPF_FUNC_sk_fullsock;
490 }
491 
492 /* string representation of 'enum bpf_reg_type' */
493 static const char * const reg_type_str[] = {
494 	[NOT_INIT]		= "?",
495 	[SCALAR_VALUE]		= "inv",
496 	[PTR_TO_CTX]		= "ctx",
497 	[CONST_PTR_TO_MAP]	= "map_ptr",
498 	[PTR_TO_MAP_VALUE]	= "map_value",
499 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
500 	[PTR_TO_STACK]		= "fp",
501 	[PTR_TO_PACKET]		= "pkt",
502 	[PTR_TO_PACKET_META]	= "pkt_meta",
503 	[PTR_TO_PACKET_END]	= "pkt_end",
504 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
505 	[PTR_TO_SOCKET]		= "sock",
506 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
507 	[PTR_TO_SOCK_COMMON]	= "sock_common",
508 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
509 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
510 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
511 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
512 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
513 	[PTR_TO_BTF_ID]		= "ptr_",
514 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
515 	[PTR_TO_MEM]		= "mem",
516 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
517 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
518 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
519 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
520 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
521 };
522 
523 static char slot_type_char[] = {
524 	[STACK_INVALID]	= '?',
525 	[STACK_SPILL]	= 'r',
526 	[STACK_MISC]	= 'm',
527 	[STACK_ZERO]	= '0',
528 };
529 
530 static void print_liveness(struct bpf_verifier_env *env,
531 			   enum bpf_reg_liveness live)
532 {
533 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
534 	    verbose(env, "_");
535 	if (live & REG_LIVE_READ)
536 		verbose(env, "r");
537 	if (live & REG_LIVE_WRITTEN)
538 		verbose(env, "w");
539 	if (live & REG_LIVE_DONE)
540 		verbose(env, "D");
541 }
542 
543 static struct bpf_func_state *func(struct bpf_verifier_env *env,
544 				   const struct bpf_reg_state *reg)
545 {
546 	struct bpf_verifier_state *cur = env->cur_state;
547 
548 	return cur->frame[reg->frameno];
549 }
550 
551 const char *kernel_type_name(u32 id)
552 {
553 	return btf_name_by_offset(btf_vmlinux,
554 				  btf_type_by_id(btf_vmlinux, id)->name_off);
555 }
556 
557 static void print_verifier_state(struct bpf_verifier_env *env,
558 				 const struct bpf_func_state *state)
559 {
560 	const struct bpf_reg_state *reg;
561 	enum bpf_reg_type t;
562 	int i;
563 
564 	if (state->frameno)
565 		verbose(env, " frame%d:", state->frameno);
566 	for (i = 0; i < MAX_BPF_REG; i++) {
567 		reg = &state->regs[i];
568 		t = reg->type;
569 		if (t == NOT_INIT)
570 			continue;
571 		verbose(env, " R%d", i);
572 		print_liveness(env, reg->live);
573 		verbose(env, "=%s", reg_type_str[t]);
574 		if (t == SCALAR_VALUE && reg->precise)
575 			verbose(env, "P");
576 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
577 		    tnum_is_const(reg->var_off)) {
578 			/* reg->off should be 0 for SCALAR_VALUE */
579 			verbose(env, "%lld", reg->var_off.value + reg->off);
580 		} else {
581 			if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL)
582 				verbose(env, "%s", kernel_type_name(reg->btf_id));
583 			verbose(env, "(id=%d", reg->id);
584 			if (reg_type_may_be_refcounted_or_null(t))
585 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
586 			if (t != SCALAR_VALUE)
587 				verbose(env, ",off=%d", reg->off);
588 			if (type_is_pkt_pointer(t))
589 				verbose(env, ",r=%d", reg->range);
590 			else if (t == CONST_PTR_TO_MAP ||
591 				 t == PTR_TO_MAP_VALUE ||
592 				 t == PTR_TO_MAP_VALUE_OR_NULL)
593 				verbose(env, ",ks=%d,vs=%d",
594 					reg->map_ptr->key_size,
595 					reg->map_ptr->value_size);
596 			if (tnum_is_const(reg->var_off)) {
597 				/* Typically an immediate SCALAR_VALUE, but
598 				 * could be a pointer whose offset is too big
599 				 * for reg->off
600 				 */
601 				verbose(env, ",imm=%llx", reg->var_off.value);
602 			} else {
603 				if (reg->smin_value != reg->umin_value &&
604 				    reg->smin_value != S64_MIN)
605 					verbose(env, ",smin_value=%lld",
606 						(long long)reg->smin_value);
607 				if (reg->smax_value != reg->umax_value &&
608 				    reg->smax_value != S64_MAX)
609 					verbose(env, ",smax_value=%lld",
610 						(long long)reg->smax_value);
611 				if (reg->umin_value != 0)
612 					verbose(env, ",umin_value=%llu",
613 						(unsigned long long)reg->umin_value);
614 				if (reg->umax_value != U64_MAX)
615 					verbose(env, ",umax_value=%llu",
616 						(unsigned long long)reg->umax_value);
617 				if (!tnum_is_unknown(reg->var_off)) {
618 					char tn_buf[48];
619 
620 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
621 					verbose(env, ",var_off=%s", tn_buf);
622 				}
623 				if (reg->s32_min_value != reg->smin_value &&
624 				    reg->s32_min_value != S32_MIN)
625 					verbose(env, ",s32_min_value=%d",
626 						(int)(reg->s32_min_value));
627 				if (reg->s32_max_value != reg->smax_value &&
628 				    reg->s32_max_value != S32_MAX)
629 					verbose(env, ",s32_max_value=%d",
630 						(int)(reg->s32_max_value));
631 				if (reg->u32_min_value != reg->umin_value &&
632 				    reg->u32_min_value != U32_MIN)
633 					verbose(env, ",u32_min_value=%d",
634 						(int)(reg->u32_min_value));
635 				if (reg->u32_max_value != reg->umax_value &&
636 				    reg->u32_max_value != U32_MAX)
637 					verbose(env, ",u32_max_value=%d",
638 						(int)(reg->u32_max_value));
639 			}
640 			verbose(env, ")");
641 		}
642 	}
643 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
644 		char types_buf[BPF_REG_SIZE + 1];
645 		bool valid = false;
646 		int j;
647 
648 		for (j = 0; j < BPF_REG_SIZE; j++) {
649 			if (state->stack[i].slot_type[j] != STACK_INVALID)
650 				valid = true;
651 			types_buf[j] = slot_type_char[
652 					state->stack[i].slot_type[j]];
653 		}
654 		types_buf[BPF_REG_SIZE] = 0;
655 		if (!valid)
656 			continue;
657 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
658 		print_liveness(env, state->stack[i].spilled_ptr.live);
659 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
660 			reg = &state->stack[i].spilled_ptr;
661 			t = reg->type;
662 			verbose(env, "=%s", reg_type_str[t]);
663 			if (t == SCALAR_VALUE && reg->precise)
664 				verbose(env, "P");
665 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
666 				verbose(env, "%lld", reg->var_off.value + reg->off);
667 		} else {
668 			verbose(env, "=%s", types_buf);
669 		}
670 	}
671 	if (state->acquired_refs && state->refs[0].id) {
672 		verbose(env, " refs=%d", state->refs[0].id);
673 		for (i = 1; i < state->acquired_refs; i++)
674 			if (state->refs[i].id)
675 				verbose(env, ",%d", state->refs[i].id);
676 	}
677 	verbose(env, "\n");
678 }
679 
680 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
681 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
682 			       const struct bpf_func_state *src)	\
683 {									\
684 	if (!src->FIELD)						\
685 		return 0;						\
686 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
687 		/* internal bug, make state invalid to reject the program */ \
688 		memset(dst, 0, sizeof(*dst));				\
689 		return -EFAULT;						\
690 	}								\
691 	memcpy(dst->FIELD, src->FIELD,					\
692 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
693 	return 0;							\
694 }
695 /* copy_reference_state() */
696 COPY_STATE_FN(reference, acquired_refs, refs, 1)
697 /* copy_stack_state() */
698 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
699 #undef COPY_STATE_FN
700 
701 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
702 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
703 				  bool copy_old)			\
704 {									\
705 	u32 old_size = state->COUNT;					\
706 	struct bpf_##NAME##_state *new_##FIELD;				\
707 	int slot = size / SIZE;						\
708 									\
709 	if (size <= old_size || !size) {				\
710 		if (copy_old)						\
711 			return 0;					\
712 		state->COUNT = slot * SIZE;				\
713 		if (!size && old_size) {				\
714 			kfree(state->FIELD);				\
715 			state->FIELD = NULL;				\
716 		}							\
717 		return 0;						\
718 	}								\
719 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
720 				    GFP_KERNEL);			\
721 	if (!new_##FIELD)						\
722 		return -ENOMEM;						\
723 	if (copy_old) {							\
724 		if (state->FIELD)					\
725 			memcpy(new_##FIELD, state->FIELD,		\
726 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
727 		memset(new_##FIELD + old_size / SIZE, 0,		\
728 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
729 	}								\
730 	state->COUNT = slot * SIZE;					\
731 	kfree(state->FIELD);						\
732 	state->FIELD = new_##FIELD;					\
733 	return 0;							\
734 }
735 /* realloc_reference_state() */
736 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
737 /* realloc_stack_state() */
738 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
739 #undef REALLOC_STATE_FN
740 
741 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
742  * make it consume minimal amount of memory. check_stack_write() access from
743  * the program calls into realloc_func_state() to grow the stack size.
744  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
745  * which realloc_stack_state() copies over. It points to previous
746  * bpf_verifier_state which is never reallocated.
747  */
748 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
749 			      int refs_size, bool copy_old)
750 {
751 	int err = realloc_reference_state(state, refs_size, copy_old);
752 	if (err)
753 		return err;
754 	return realloc_stack_state(state, stack_size, copy_old);
755 }
756 
757 /* Acquire a pointer id from the env and update the state->refs to include
758  * this new pointer reference.
759  * On success, returns a valid pointer id to associate with the register
760  * On failure, returns a negative errno.
761  */
762 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
763 {
764 	struct bpf_func_state *state = cur_func(env);
765 	int new_ofs = state->acquired_refs;
766 	int id, err;
767 
768 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
769 	if (err)
770 		return err;
771 	id = ++env->id_gen;
772 	state->refs[new_ofs].id = id;
773 	state->refs[new_ofs].insn_idx = insn_idx;
774 
775 	return id;
776 }
777 
778 /* release function corresponding to acquire_reference_state(). Idempotent. */
779 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
780 {
781 	int i, last_idx;
782 
783 	last_idx = state->acquired_refs - 1;
784 	for (i = 0; i < state->acquired_refs; i++) {
785 		if (state->refs[i].id == ptr_id) {
786 			if (last_idx && i != last_idx)
787 				memcpy(&state->refs[i], &state->refs[last_idx],
788 				       sizeof(*state->refs));
789 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
790 			state->acquired_refs--;
791 			return 0;
792 		}
793 	}
794 	return -EINVAL;
795 }
796 
797 static int transfer_reference_state(struct bpf_func_state *dst,
798 				    struct bpf_func_state *src)
799 {
800 	int err = realloc_reference_state(dst, src->acquired_refs, false);
801 	if (err)
802 		return err;
803 	err = copy_reference_state(dst, src);
804 	if (err)
805 		return err;
806 	return 0;
807 }
808 
809 static void free_func_state(struct bpf_func_state *state)
810 {
811 	if (!state)
812 		return;
813 	kfree(state->refs);
814 	kfree(state->stack);
815 	kfree(state);
816 }
817 
818 static void clear_jmp_history(struct bpf_verifier_state *state)
819 {
820 	kfree(state->jmp_history);
821 	state->jmp_history = NULL;
822 	state->jmp_history_cnt = 0;
823 }
824 
825 static void free_verifier_state(struct bpf_verifier_state *state,
826 				bool free_self)
827 {
828 	int i;
829 
830 	for (i = 0; i <= state->curframe; i++) {
831 		free_func_state(state->frame[i]);
832 		state->frame[i] = NULL;
833 	}
834 	clear_jmp_history(state);
835 	if (free_self)
836 		kfree(state);
837 }
838 
839 /* copy verifier state from src to dst growing dst stack space
840  * when necessary to accommodate larger src stack
841  */
842 static int copy_func_state(struct bpf_func_state *dst,
843 			   const struct bpf_func_state *src)
844 {
845 	int err;
846 
847 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
848 				 false);
849 	if (err)
850 		return err;
851 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
852 	err = copy_reference_state(dst, src);
853 	if (err)
854 		return err;
855 	return copy_stack_state(dst, src);
856 }
857 
858 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
859 			       const struct bpf_verifier_state *src)
860 {
861 	struct bpf_func_state *dst;
862 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
863 	int i, err;
864 
865 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
866 		kfree(dst_state->jmp_history);
867 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
868 		if (!dst_state->jmp_history)
869 			return -ENOMEM;
870 	}
871 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
872 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
873 
874 	/* if dst has more stack frames then src frame, free them */
875 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
876 		free_func_state(dst_state->frame[i]);
877 		dst_state->frame[i] = NULL;
878 	}
879 	dst_state->speculative = src->speculative;
880 	dst_state->curframe = src->curframe;
881 	dst_state->active_spin_lock = src->active_spin_lock;
882 	dst_state->branches = src->branches;
883 	dst_state->parent = src->parent;
884 	dst_state->first_insn_idx = src->first_insn_idx;
885 	dst_state->last_insn_idx = src->last_insn_idx;
886 	for (i = 0; i <= src->curframe; i++) {
887 		dst = dst_state->frame[i];
888 		if (!dst) {
889 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
890 			if (!dst)
891 				return -ENOMEM;
892 			dst_state->frame[i] = dst;
893 		}
894 		err = copy_func_state(dst, src->frame[i]);
895 		if (err)
896 			return err;
897 	}
898 	return 0;
899 }
900 
901 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
902 {
903 	while (st) {
904 		u32 br = --st->branches;
905 
906 		/* WARN_ON(br > 1) technically makes sense here,
907 		 * but see comment in push_stack(), hence:
908 		 */
909 		WARN_ONCE((int)br < 0,
910 			  "BUG update_branch_counts:branches_to_explore=%d\n",
911 			  br);
912 		if (br)
913 			break;
914 		st = st->parent;
915 	}
916 }
917 
918 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
919 		     int *insn_idx, bool pop_log)
920 {
921 	struct bpf_verifier_state *cur = env->cur_state;
922 	struct bpf_verifier_stack_elem *elem, *head = env->head;
923 	int err;
924 
925 	if (env->head == NULL)
926 		return -ENOENT;
927 
928 	if (cur) {
929 		err = copy_verifier_state(cur, &head->st);
930 		if (err)
931 			return err;
932 	}
933 	if (pop_log)
934 		bpf_vlog_reset(&env->log, head->log_pos);
935 	if (insn_idx)
936 		*insn_idx = head->insn_idx;
937 	if (prev_insn_idx)
938 		*prev_insn_idx = head->prev_insn_idx;
939 	elem = head->next;
940 	free_verifier_state(&head->st, false);
941 	kfree(head);
942 	env->head = elem;
943 	env->stack_size--;
944 	return 0;
945 }
946 
947 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
948 					     int insn_idx, int prev_insn_idx,
949 					     bool speculative)
950 {
951 	struct bpf_verifier_state *cur = env->cur_state;
952 	struct bpf_verifier_stack_elem *elem;
953 	int err;
954 
955 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
956 	if (!elem)
957 		goto err;
958 
959 	elem->insn_idx = insn_idx;
960 	elem->prev_insn_idx = prev_insn_idx;
961 	elem->next = env->head;
962 	elem->log_pos = env->log.len_used;
963 	env->head = elem;
964 	env->stack_size++;
965 	err = copy_verifier_state(&elem->st, cur);
966 	if (err)
967 		goto err;
968 	elem->st.speculative |= speculative;
969 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
970 		verbose(env, "The sequence of %d jumps is too complex.\n",
971 			env->stack_size);
972 		goto err;
973 	}
974 	if (elem->st.parent) {
975 		++elem->st.parent->branches;
976 		/* WARN_ON(branches > 2) technically makes sense here,
977 		 * but
978 		 * 1. speculative states will bump 'branches' for non-branch
979 		 * instructions
980 		 * 2. is_state_visited() heuristics may decide not to create
981 		 * a new state for a sequence of branches and all such current
982 		 * and cloned states will be pointing to a single parent state
983 		 * which might have large 'branches' count.
984 		 */
985 	}
986 	return &elem->st;
987 err:
988 	free_verifier_state(env->cur_state, true);
989 	env->cur_state = NULL;
990 	/* pop all elements and return */
991 	while (!pop_stack(env, NULL, NULL, false));
992 	return NULL;
993 }
994 
995 #define CALLER_SAVED_REGS 6
996 static const int caller_saved[CALLER_SAVED_REGS] = {
997 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
998 };
999 
1000 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1001 				struct bpf_reg_state *reg);
1002 
1003 /* Mark the unknown part of a register (variable offset or scalar value) as
1004  * known to have the value @imm.
1005  */
1006 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1007 {
1008 	/* Clear id, off, and union(map_ptr, range) */
1009 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1010 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1011 	reg->var_off = tnum_const(imm);
1012 	reg->smin_value = (s64)imm;
1013 	reg->smax_value = (s64)imm;
1014 	reg->umin_value = imm;
1015 	reg->umax_value = imm;
1016 
1017 	reg->s32_min_value = (s32)imm;
1018 	reg->s32_max_value = (s32)imm;
1019 	reg->u32_min_value = (u32)imm;
1020 	reg->u32_max_value = (u32)imm;
1021 }
1022 
1023 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1024 {
1025 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1026 	reg->s32_min_value = (s32)imm;
1027 	reg->s32_max_value = (s32)imm;
1028 	reg->u32_min_value = (u32)imm;
1029 	reg->u32_max_value = (u32)imm;
1030 }
1031 
1032 /* Mark the 'variable offset' part of a register as zero.  This should be
1033  * used only on registers holding a pointer type.
1034  */
1035 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1036 {
1037 	__mark_reg_known(reg, 0);
1038 }
1039 
1040 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1041 {
1042 	__mark_reg_known(reg, 0);
1043 	reg->type = SCALAR_VALUE;
1044 }
1045 
1046 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1047 				struct bpf_reg_state *regs, u32 regno)
1048 {
1049 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1050 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1051 		/* Something bad happened, let's kill all regs */
1052 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1053 			__mark_reg_not_init(env, regs + regno);
1054 		return;
1055 	}
1056 	__mark_reg_known_zero(regs + regno);
1057 }
1058 
1059 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1060 {
1061 	return type_is_pkt_pointer(reg->type);
1062 }
1063 
1064 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1065 {
1066 	return reg_is_pkt_pointer(reg) ||
1067 	       reg->type == PTR_TO_PACKET_END;
1068 }
1069 
1070 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1071 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1072 				    enum bpf_reg_type which)
1073 {
1074 	/* The register can already have a range from prior markings.
1075 	 * This is fine as long as it hasn't been advanced from its
1076 	 * origin.
1077 	 */
1078 	return reg->type == which &&
1079 	       reg->id == 0 &&
1080 	       reg->off == 0 &&
1081 	       tnum_equals_const(reg->var_off, 0);
1082 }
1083 
1084 /* Reset the min/max bounds of a register */
1085 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1086 {
1087 	reg->smin_value = S64_MIN;
1088 	reg->smax_value = S64_MAX;
1089 	reg->umin_value = 0;
1090 	reg->umax_value = U64_MAX;
1091 
1092 	reg->s32_min_value = S32_MIN;
1093 	reg->s32_max_value = S32_MAX;
1094 	reg->u32_min_value = 0;
1095 	reg->u32_max_value = U32_MAX;
1096 }
1097 
1098 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1099 {
1100 	reg->smin_value = S64_MIN;
1101 	reg->smax_value = S64_MAX;
1102 	reg->umin_value = 0;
1103 	reg->umax_value = U64_MAX;
1104 }
1105 
1106 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1107 {
1108 	reg->s32_min_value = S32_MIN;
1109 	reg->s32_max_value = S32_MAX;
1110 	reg->u32_min_value = 0;
1111 	reg->u32_max_value = U32_MAX;
1112 }
1113 
1114 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1115 {
1116 	struct tnum var32_off = tnum_subreg(reg->var_off);
1117 
1118 	/* min signed is max(sign bit) | min(other bits) */
1119 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1120 			var32_off.value | (var32_off.mask & S32_MIN));
1121 	/* max signed is min(sign bit) | max(other bits) */
1122 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1123 			var32_off.value | (var32_off.mask & S32_MAX));
1124 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1125 	reg->u32_max_value = min(reg->u32_max_value,
1126 				 (u32)(var32_off.value | var32_off.mask));
1127 }
1128 
1129 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1130 {
1131 	/* min signed is max(sign bit) | min(other bits) */
1132 	reg->smin_value = max_t(s64, reg->smin_value,
1133 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1134 	/* max signed is min(sign bit) | max(other bits) */
1135 	reg->smax_value = min_t(s64, reg->smax_value,
1136 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1137 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1138 	reg->umax_value = min(reg->umax_value,
1139 			      reg->var_off.value | reg->var_off.mask);
1140 }
1141 
1142 static void __update_reg_bounds(struct bpf_reg_state *reg)
1143 {
1144 	__update_reg32_bounds(reg);
1145 	__update_reg64_bounds(reg);
1146 }
1147 
1148 /* Uses signed min/max values to inform unsigned, and vice-versa */
1149 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1150 {
1151 	/* Learn sign from signed bounds.
1152 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1153 	 * are the same, so combine.  This works even in the negative case, e.g.
1154 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1155 	 */
1156 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1157 		reg->s32_min_value = reg->u32_min_value =
1158 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1159 		reg->s32_max_value = reg->u32_max_value =
1160 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1161 		return;
1162 	}
1163 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1164 	 * boundary, so we must be careful.
1165 	 */
1166 	if ((s32)reg->u32_max_value >= 0) {
1167 		/* Positive.  We can't learn anything from the smin, but smax
1168 		 * is positive, hence safe.
1169 		 */
1170 		reg->s32_min_value = reg->u32_min_value;
1171 		reg->s32_max_value = reg->u32_max_value =
1172 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1173 	} else if ((s32)reg->u32_min_value < 0) {
1174 		/* Negative.  We can't learn anything from the smax, but smin
1175 		 * is negative, hence safe.
1176 		 */
1177 		reg->s32_min_value = reg->u32_min_value =
1178 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1179 		reg->s32_max_value = reg->u32_max_value;
1180 	}
1181 }
1182 
1183 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1184 {
1185 	/* Learn sign from signed bounds.
1186 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1187 	 * are the same, so combine.  This works even in the negative case, e.g.
1188 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1189 	 */
1190 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1191 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1192 							  reg->umin_value);
1193 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1194 							  reg->umax_value);
1195 		return;
1196 	}
1197 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1198 	 * boundary, so we must be careful.
1199 	 */
1200 	if ((s64)reg->umax_value >= 0) {
1201 		/* Positive.  We can't learn anything from the smin, but smax
1202 		 * is positive, hence safe.
1203 		 */
1204 		reg->smin_value = reg->umin_value;
1205 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1206 							  reg->umax_value);
1207 	} else if ((s64)reg->umin_value < 0) {
1208 		/* Negative.  We can't learn anything from the smax, but smin
1209 		 * is negative, hence safe.
1210 		 */
1211 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1212 							  reg->umin_value);
1213 		reg->smax_value = reg->umax_value;
1214 	}
1215 }
1216 
1217 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1218 {
1219 	__reg32_deduce_bounds(reg);
1220 	__reg64_deduce_bounds(reg);
1221 }
1222 
1223 /* Attempts to improve var_off based on unsigned min/max information */
1224 static void __reg_bound_offset(struct bpf_reg_state *reg)
1225 {
1226 	struct tnum var64_off = tnum_intersect(reg->var_off,
1227 					       tnum_range(reg->umin_value,
1228 							  reg->umax_value));
1229 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1230 						tnum_range(reg->u32_min_value,
1231 							   reg->u32_max_value));
1232 
1233 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1234 }
1235 
1236 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1237 {
1238 	reg->umin_value = reg->u32_min_value;
1239 	reg->umax_value = reg->u32_max_value;
1240 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1241 	 * but must be positive otherwise set to worse case bounds
1242 	 * and refine later from tnum.
1243 	 */
1244 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1245 		reg->smax_value = reg->s32_max_value;
1246 	else
1247 		reg->smax_value = U32_MAX;
1248 	if (reg->s32_min_value >= 0)
1249 		reg->smin_value = reg->s32_min_value;
1250 	else
1251 		reg->smin_value = 0;
1252 }
1253 
1254 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1255 {
1256 	/* special case when 64-bit register has upper 32-bit register
1257 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1258 	 * allowing us to use 32-bit bounds directly,
1259 	 */
1260 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1261 		__reg_assign_32_into_64(reg);
1262 	} else {
1263 		/* Otherwise the best we can do is push lower 32bit known and
1264 		 * unknown bits into register (var_off set from jmp logic)
1265 		 * then learn as much as possible from the 64-bit tnum
1266 		 * known and unknown bits. The previous smin/smax bounds are
1267 		 * invalid here because of jmp32 compare so mark them unknown
1268 		 * so they do not impact tnum bounds calculation.
1269 		 */
1270 		__mark_reg64_unbounded(reg);
1271 		__update_reg_bounds(reg);
1272 	}
1273 
1274 	/* Intersecting with the old var_off might have improved our bounds
1275 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1276 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1277 	 */
1278 	__reg_deduce_bounds(reg);
1279 	__reg_bound_offset(reg);
1280 	__update_reg_bounds(reg);
1281 }
1282 
1283 static bool __reg64_bound_s32(s64 a)
1284 {
1285 	if (a > S32_MIN && a < S32_MAX)
1286 		return true;
1287 	return false;
1288 }
1289 
1290 static bool __reg64_bound_u32(u64 a)
1291 {
1292 	if (a > U32_MIN && a < U32_MAX)
1293 		return true;
1294 	return false;
1295 }
1296 
1297 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1298 {
1299 	__mark_reg32_unbounded(reg);
1300 
1301 	if (__reg64_bound_s32(reg->smin_value))
1302 		reg->s32_min_value = (s32)reg->smin_value;
1303 	if (__reg64_bound_s32(reg->smax_value))
1304 		reg->s32_max_value = (s32)reg->smax_value;
1305 	if (__reg64_bound_u32(reg->umin_value))
1306 		reg->u32_min_value = (u32)reg->umin_value;
1307 	if (__reg64_bound_u32(reg->umax_value))
1308 		reg->u32_max_value = (u32)reg->umax_value;
1309 
1310 	/* Intersecting with the old var_off might have improved our bounds
1311 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1312 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1313 	 */
1314 	__reg_deduce_bounds(reg);
1315 	__reg_bound_offset(reg);
1316 	__update_reg_bounds(reg);
1317 }
1318 
1319 /* Mark a register as having a completely unknown (scalar) value. */
1320 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1321 			       struct bpf_reg_state *reg)
1322 {
1323 	/*
1324 	 * Clear type, id, off, and union(map_ptr, range) and
1325 	 * padding between 'type' and union
1326 	 */
1327 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1328 	reg->type = SCALAR_VALUE;
1329 	reg->var_off = tnum_unknown;
1330 	reg->frameno = 0;
1331 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1332 	__mark_reg_unbounded(reg);
1333 }
1334 
1335 static void mark_reg_unknown(struct bpf_verifier_env *env,
1336 			     struct bpf_reg_state *regs, u32 regno)
1337 {
1338 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1339 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1340 		/* Something bad happened, let's kill all regs except FP */
1341 		for (regno = 0; regno < BPF_REG_FP; regno++)
1342 			__mark_reg_not_init(env, regs + regno);
1343 		return;
1344 	}
1345 	__mark_reg_unknown(env, regs + regno);
1346 }
1347 
1348 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1349 				struct bpf_reg_state *reg)
1350 {
1351 	__mark_reg_unknown(env, reg);
1352 	reg->type = NOT_INIT;
1353 }
1354 
1355 static void mark_reg_not_init(struct bpf_verifier_env *env,
1356 			      struct bpf_reg_state *regs, u32 regno)
1357 {
1358 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1359 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1360 		/* Something bad happened, let's kill all regs except FP */
1361 		for (regno = 0; regno < BPF_REG_FP; regno++)
1362 			__mark_reg_not_init(env, regs + regno);
1363 		return;
1364 	}
1365 	__mark_reg_not_init(env, regs + regno);
1366 }
1367 
1368 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1369 			    struct bpf_reg_state *regs, u32 regno,
1370 			    enum bpf_reg_type reg_type, u32 btf_id)
1371 {
1372 	if (reg_type == SCALAR_VALUE) {
1373 		mark_reg_unknown(env, regs, regno);
1374 		return;
1375 	}
1376 	mark_reg_known_zero(env, regs, regno);
1377 	regs[regno].type = PTR_TO_BTF_ID;
1378 	regs[regno].btf_id = btf_id;
1379 }
1380 
1381 #define DEF_NOT_SUBREG	(0)
1382 static void init_reg_state(struct bpf_verifier_env *env,
1383 			   struct bpf_func_state *state)
1384 {
1385 	struct bpf_reg_state *regs = state->regs;
1386 	int i;
1387 
1388 	for (i = 0; i < MAX_BPF_REG; i++) {
1389 		mark_reg_not_init(env, regs, i);
1390 		regs[i].live = REG_LIVE_NONE;
1391 		regs[i].parent = NULL;
1392 		regs[i].subreg_def = DEF_NOT_SUBREG;
1393 	}
1394 
1395 	/* frame pointer */
1396 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1397 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1398 	regs[BPF_REG_FP].frameno = state->frameno;
1399 }
1400 
1401 #define BPF_MAIN_FUNC (-1)
1402 static void init_func_state(struct bpf_verifier_env *env,
1403 			    struct bpf_func_state *state,
1404 			    int callsite, int frameno, int subprogno)
1405 {
1406 	state->callsite = callsite;
1407 	state->frameno = frameno;
1408 	state->subprogno = subprogno;
1409 	init_reg_state(env, state);
1410 }
1411 
1412 enum reg_arg_type {
1413 	SRC_OP,		/* register is used as source operand */
1414 	DST_OP,		/* register is used as destination operand */
1415 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1416 };
1417 
1418 static int cmp_subprogs(const void *a, const void *b)
1419 {
1420 	return ((struct bpf_subprog_info *)a)->start -
1421 	       ((struct bpf_subprog_info *)b)->start;
1422 }
1423 
1424 static int find_subprog(struct bpf_verifier_env *env, int off)
1425 {
1426 	struct bpf_subprog_info *p;
1427 
1428 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1429 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1430 	if (!p)
1431 		return -ENOENT;
1432 	return p - env->subprog_info;
1433 
1434 }
1435 
1436 static int add_subprog(struct bpf_verifier_env *env, int off)
1437 {
1438 	int insn_cnt = env->prog->len;
1439 	int ret;
1440 
1441 	if (off >= insn_cnt || off < 0) {
1442 		verbose(env, "call to invalid destination\n");
1443 		return -EINVAL;
1444 	}
1445 	ret = find_subprog(env, off);
1446 	if (ret >= 0)
1447 		return 0;
1448 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1449 		verbose(env, "too many subprograms\n");
1450 		return -E2BIG;
1451 	}
1452 	env->subprog_info[env->subprog_cnt++].start = off;
1453 	sort(env->subprog_info, env->subprog_cnt,
1454 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1455 	return 0;
1456 }
1457 
1458 static int check_subprogs(struct bpf_verifier_env *env)
1459 {
1460 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1461 	struct bpf_subprog_info *subprog = env->subprog_info;
1462 	struct bpf_insn *insn = env->prog->insnsi;
1463 	int insn_cnt = env->prog->len;
1464 
1465 	/* Add entry function. */
1466 	ret = add_subprog(env, 0);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	/* determine subprog starts. The end is one before the next starts */
1471 	for (i = 0; i < insn_cnt; i++) {
1472 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1473 			continue;
1474 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1475 			continue;
1476 		if (!env->bpf_capable) {
1477 			verbose(env,
1478 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1479 			return -EPERM;
1480 		}
1481 		ret = add_subprog(env, i + insn[i].imm + 1);
1482 		if (ret < 0)
1483 			return ret;
1484 	}
1485 
1486 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1487 	 * logic. 'subprog_cnt' should not be increased.
1488 	 */
1489 	subprog[env->subprog_cnt].start = insn_cnt;
1490 
1491 	if (env->log.level & BPF_LOG_LEVEL2)
1492 		for (i = 0; i < env->subprog_cnt; i++)
1493 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1494 
1495 	/* now check that all jumps are within the same subprog */
1496 	subprog_start = subprog[cur_subprog].start;
1497 	subprog_end = subprog[cur_subprog + 1].start;
1498 	for (i = 0; i < insn_cnt; i++) {
1499 		u8 code = insn[i].code;
1500 
1501 		if (code == (BPF_JMP | BPF_CALL) &&
1502 		    insn[i].imm == BPF_FUNC_tail_call &&
1503 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1504 			subprog[cur_subprog].has_tail_call = true;
1505 		if (BPF_CLASS(code) == BPF_LD &&
1506 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1507 			subprog[cur_subprog].has_ld_abs = true;
1508 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1509 			goto next;
1510 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1511 			goto next;
1512 		off = i + insn[i].off + 1;
1513 		if (off < subprog_start || off >= subprog_end) {
1514 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1515 			return -EINVAL;
1516 		}
1517 next:
1518 		if (i == subprog_end - 1) {
1519 			/* to avoid fall-through from one subprog into another
1520 			 * the last insn of the subprog should be either exit
1521 			 * or unconditional jump back
1522 			 */
1523 			if (code != (BPF_JMP | BPF_EXIT) &&
1524 			    code != (BPF_JMP | BPF_JA)) {
1525 				verbose(env, "last insn is not an exit or jmp\n");
1526 				return -EINVAL;
1527 			}
1528 			subprog_start = subprog_end;
1529 			cur_subprog++;
1530 			if (cur_subprog < env->subprog_cnt)
1531 				subprog_end = subprog[cur_subprog + 1].start;
1532 		}
1533 	}
1534 	return 0;
1535 }
1536 
1537 /* Parentage chain of this register (or stack slot) should take care of all
1538  * issues like callee-saved registers, stack slot allocation time, etc.
1539  */
1540 static int mark_reg_read(struct bpf_verifier_env *env,
1541 			 const struct bpf_reg_state *state,
1542 			 struct bpf_reg_state *parent, u8 flag)
1543 {
1544 	bool writes = parent == state->parent; /* Observe write marks */
1545 	int cnt = 0;
1546 
1547 	while (parent) {
1548 		/* if read wasn't screened by an earlier write ... */
1549 		if (writes && state->live & REG_LIVE_WRITTEN)
1550 			break;
1551 		if (parent->live & REG_LIVE_DONE) {
1552 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1553 				reg_type_str[parent->type],
1554 				parent->var_off.value, parent->off);
1555 			return -EFAULT;
1556 		}
1557 		/* The first condition is more likely to be true than the
1558 		 * second, checked it first.
1559 		 */
1560 		if ((parent->live & REG_LIVE_READ) == flag ||
1561 		    parent->live & REG_LIVE_READ64)
1562 			/* The parentage chain never changes and
1563 			 * this parent was already marked as LIVE_READ.
1564 			 * There is no need to keep walking the chain again and
1565 			 * keep re-marking all parents as LIVE_READ.
1566 			 * This case happens when the same register is read
1567 			 * multiple times without writes into it in-between.
1568 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1569 			 * then no need to set the weak REG_LIVE_READ32.
1570 			 */
1571 			break;
1572 		/* ... then we depend on parent's value */
1573 		parent->live |= flag;
1574 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1575 		if (flag == REG_LIVE_READ64)
1576 			parent->live &= ~REG_LIVE_READ32;
1577 		state = parent;
1578 		parent = state->parent;
1579 		writes = true;
1580 		cnt++;
1581 	}
1582 
1583 	if (env->longest_mark_read_walk < cnt)
1584 		env->longest_mark_read_walk = cnt;
1585 	return 0;
1586 }
1587 
1588 /* This function is supposed to be used by the following 32-bit optimization
1589  * code only. It returns TRUE if the source or destination register operates
1590  * on 64-bit, otherwise return FALSE.
1591  */
1592 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1593 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1594 {
1595 	u8 code, class, op;
1596 
1597 	code = insn->code;
1598 	class = BPF_CLASS(code);
1599 	op = BPF_OP(code);
1600 	if (class == BPF_JMP) {
1601 		/* BPF_EXIT for "main" will reach here. Return TRUE
1602 		 * conservatively.
1603 		 */
1604 		if (op == BPF_EXIT)
1605 			return true;
1606 		if (op == BPF_CALL) {
1607 			/* BPF to BPF call will reach here because of marking
1608 			 * caller saved clobber with DST_OP_NO_MARK for which we
1609 			 * don't care the register def because they are anyway
1610 			 * marked as NOT_INIT already.
1611 			 */
1612 			if (insn->src_reg == BPF_PSEUDO_CALL)
1613 				return false;
1614 			/* Helper call will reach here because of arg type
1615 			 * check, conservatively return TRUE.
1616 			 */
1617 			if (t == SRC_OP)
1618 				return true;
1619 
1620 			return false;
1621 		}
1622 	}
1623 
1624 	if (class == BPF_ALU64 || class == BPF_JMP ||
1625 	    /* BPF_END always use BPF_ALU class. */
1626 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1627 		return true;
1628 
1629 	if (class == BPF_ALU || class == BPF_JMP32)
1630 		return false;
1631 
1632 	if (class == BPF_LDX) {
1633 		if (t != SRC_OP)
1634 			return BPF_SIZE(code) == BPF_DW;
1635 		/* LDX source must be ptr. */
1636 		return true;
1637 	}
1638 
1639 	if (class == BPF_STX) {
1640 		if (reg->type != SCALAR_VALUE)
1641 			return true;
1642 		return BPF_SIZE(code) == BPF_DW;
1643 	}
1644 
1645 	if (class == BPF_LD) {
1646 		u8 mode = BPF_MODE(code);
1647 
1648 		/* LD_IMM64 */
1649 		if (mode == BPF_IMM)
1650 			return true;
1651 
1652 		/* Both LD_IND and LD_ABS return 32-bit data. */
1653 		if (t != SRC_OP)
1654 			return  false;
1655 
1656 		/* Implicit ctx ptr. */
1657 		if (regno == BPF_REG_6)
1658 			return true;
1659 
1660 		/* Explicit source could be any width. */
1661 		return true;
1662 	}
1663 
1664 	if (class == BPF_ST)
1665 		/* The only source register for BPF_ST is a ptr. */
1666 		return true;
1667 
1668 	/* Conservatively return true at default. */
1669 	return true;
1670 }
1671 
1672 /* Return TRUE if INSN doesn't have explicit value define. */
1673 static bool insn_no_def(struct bpf_insn *insn)
1674 {
1675 	u8 class = BPF_CLASS(insn->code);
1676 
1677 	return (class == BPF_JMP || class == BPF_JMP32 ||
1678 		class == BPF_STX || class == BPF_ST);
1679 }
1680 
1681 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1682 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1683 {
1684 	if (insn_no_def(insn))
1685 		return false;
1686 
1687 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1688 }
1689 
1690 static void mark_insn_zext(struct bpf_verifier_env *env,
1691 			   struct bpf_reg_state *reg)
1692 {
1693 	s32 def_idx = reg->subreg_def;
1694 
1695 	if (def_idx == DEF_NOT_SUBREG)
1696 		return;
1697 
1698 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1699 	/* The dst will be zero extended, so won't be sub-register anymore. */
1700 	reg->subreg_def = DEF_NOT_SUBREG;
1701 }
1702 
1703 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1704 			 enum reg_arg_type t)
1705 {
1706 	struct bpf_verifier_state *vstate = env->cur_state;
1707 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1708 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1709 	struct bpf_reg_state *reg, *regs = state->regs;
1710 	bool rw64;
1711 
1712 	if (regno >= MAX_BPF_REG) {
1713 		verbose(env, "R%d is invalid\n", regno);
1714 		return -EINVAL;
1715 	}
1716 
1717 	reg = &regs[regno];
1718 	rw64 = is_reg64(env, insn, regno, reg, t);
1719 	if (t == SRC_OP) {
1720 		/* check whether register used as source operand can be read */
1721 		if (reg->type == NOT_INIT) {
1722 			verbose(env, "R%d !read_ok\n", regno);
1723 			return -EACCES;
1724 		}
1725 		/* We don't need to worry about FP liveness because it's read-only */
1726 		if (regno == BPF_REG_FP)
1727 			return 0;
1728 
1729 		if (rw64)
1730 			mark_insn_zext(env, reg);
1731 
1732 		return mark_reg_read(env, reg, reg->parent,
1733 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1734 	} else {
1735 		/* check whether register used as dest operand can be written to */
1736 		if (regno == BPF_REG_FP) {
1737 			verbose(env, "frame pointer is read only\n");
1738 			return -EACCES;
1739 		}
1740 		reg->live |= REG_LIVE_WRITTEN;
1741 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1742 		if (t == DST_OP)
1743 			mark_reg_unknown(env, regs, regno);
1744 	}
1745 	return 0;
1746 }
1747 
1748 /* for any branch, call, exit record the history of jmps in the given state */
1749 static int push_jmp_history(struct bpf_verifier_env *env,
1750 			    struct bpf_verifier_state *cur)
1751 {
1752 	u32 cnt = cur->jmp_history_cnt;
1753 	struct bpf_idx_pair *p;
1754 
1755 	cnt++;
1756 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1757 	if (!p)
1758 		return -ENOMEM;
1759 	p[cnt - 1].idx = env->insn_idx;
1760 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1761 	cur->jmp_history = p;
1762 	cur->jmp_history_cnt = cnt;
1763 	return 0;
1764 }
1765 
1766 /* Backtrack one insn at a time. If idx is not at the top of recorded
1767  * history then previous instruction came from straight line execution.
1768  */
1769 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1770 			     u32 *history)
1771 {
1772 	u32 cnt = *history;
1773 
1774 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1775 		i = st->jmp_history[cnt - 1].prev_idx;
1776 		(*history)--;
1777 	} else {
1778 		i--;
1779 	}
1780 	return i;
1781 }
1782 
1783 /* For given verifier state backtrack_insn() is called from the last insn to
1784  * the first insn. Its purpose is to compute a bitmask of registers and
1785  * stack slots that needs precision in the parent verifier state.
1786  */
1787 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1788 			  u32 *reg_mask, u64 *stack_mask)
1789 {
1790 	const struct bpf_insn_cbs cbs = {
1791 		.cb_print	= verbose,
1792 		.private_data	= env,
1793 	};
1794 	struct bpf_insn *insn = env->prog->insnsi + idx;
1795 	u8 class = BPF_CLASS(insn->code);
1796 	u8 opcode = BPF_OP(insn->code);
1797 	u8 mode = BPF_MODE(insn->code);
1798 	u32 dreg = 1u << insn->dst_reg;
1799 	u32 sreg = 1u << insn->src_reg;
1800 	u32 spi;
1801 
1802 	if (insn->code == 0)
1803 		return 0;
1804 	if (env->log.level & BPF_LOG_LEVEL) {
1805 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1806 		verbose(env, "%d: ", idx);
1807 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1808 	}
1809 
1810 	if (class == BPF_ALU || class == BPF_ALU64) {
1811 		if (!(*reg_mask & dreg))
1812 			return 0;
1813 		if (opcode == BPF_MOV) {
1814 			if (BPF_SRC(insn->code) == BPF_X) {
1815 				/* dreg = sreg
1816 				 * dreg needs precision after this insn
1817 				 * sreg needs precision before this insn
1818 				 */
1819 				*reg_mask &= ~dreg;
1820 				*reg_mask |= sreg;
1821 			} else {
1822 				/* dreg = K
1823 				 * dreg needs precision after this insn.
1824 				 * Corresponding register is already marked
1825 				 * as precise=true in this verifier state.
1826 				 * No further markings in parent are necessary
1827 				 */
1828 				*reg_mask &= ~dreg;
1829 			}
1830 		} else {
1831 			if (BPF_SRC(insn->code) == BPF_X) {
1832 				/* dreg += sreg
1833 				 * both dreg and sreg need precision
1834 				 * before this insn
1835 				 */
1836 				*reg_mask |= sreg;
1837 			} /* else dreg += K
1838 			   * dreg still needs precision before this insn
1839 			   */
1840 		}
1841 	} else if (class == BPF_LDX) {
1842 		if (!(*reg_mask & dreg))
1843 			return 0;
1844 		*reg_mask &= ~dreg;
1845 
1846 		/* scalars can only be spilled into stack w/o losing precision.
1847 		 * Load from any other memory can be zero extended.
1848 		 * The desire to keep that precision is already indicated
1849 		 * by 'precise' mark in corresponding register of this state.
1850 		 * No further tracking necessary.
1851 		 */
1852 		if (insn->src_reg != BPF_REG_FP)
1853 			return 0;
1854 		if (BPF_SIZE(insn->code) != BPF_DW)
1855 			return 0;
1856 
1857 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1858 		 * that [fp - off] slot contains scalar that needs to be
1859 		 * tracked with precision
1860 		 */
1861 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1862 		if (spi >= 64) {
1863 			verbose(env, "BUG spi %d\n", spi);
1864 			WARN_ONCE(1, "verifier backtracking bug");
1865 			return -EFAULT;
1866 		}
1867 		*stack_mask |= 1ull << spi;
1868 	} else if (class == BPF_STX || class == BPF_ST) {
1869 		if (*reg_mask & dreg)
1870 			/* stx & st shouldn't be using _scalar_ dst_reg
1871 			 * to access memory. It means backtracking
1872 			 * encountered a case of pointer subtraction.
1873 			 */
1874 			return -ENOTSUPP;
1875 		/* scalars can only be spilled into stack */
1876 		if (insn->dst_reg != BPF_REG_FP)
1877 			return 0;
1878 		if (BPF_SIZE(insn->code) != BPF_DW)
1879 			return 0;
1880 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1881 		if (spi >= 64) {
1882 			verbose(env, "BUG spi %d\n", spi);
1883 			WARN_ONCE(1, "verifier backtracking bug");
1884 			return -EFAULT;
1885 		}
1886 		if (!(*stack_mask & (1ull << spi)))
1887 			return 0;
1888 		*stack_mask &= ~(1ull << spi);
1889 		if (class == BPF_STX)
1890 			*reg_mask |= sreg;
1891 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1892 		if (opcode == BPF_CALL) {
1893 			if (insn->src_reg == BPF_PSEUDO_CALL)
1894 				return -ENOTSUPP;
1895 			/* regular helper call sets R0 */
1896 			*reg_mask &= ~1;
1897 			if (*reg_mask & 0x3f) {
1898 				/* if backtracing was looking for registers R1-R5
1899 				 * they should have been found already.
1900 				 */
1901 				verbose(env, "BUG regs %x\n", *reg_mask);
1902 				WARN_ONCE(1, "verifier backtracking bug");
1903 				return -EFAULT;
1904 			}
1905 		} else if (opcode == BPF_EXIT) {
1906 			return -ENOTSUPP;
1907 		}
1908 	} else if (class == BPF_LD) {
1909 		if (!(*reg_mask & dreg))
1910 			return 0;
1911 		*reg_mask &= ~dreg;
1912 		/* It's ld_imm64 or ld_abs or ld_ind.
1913 		 * For ld_imm64 no further tracking of precision
1914 		 * into parent is necessary
1915 		 */
1916 		if (mode == BPF_IND || mode == BPF_ABS)
1917 			/* to be analyzed */
1918 			return -ENOTSUPP;
1919 	}
1920 	return 0;
1921 }
1922 
1923 /* the scalar precision tracking algorithm:
1924  * . at the start all registers have precise=false.
1925  * . scalar ranges are tracked as normal through alu and jmp insns.
1926  * . once precise value of the scalar register is used in:
1927  *   .  ptr + scalar alu
1928  *   . if (scalar cond K|scalar)
1929  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1930  *   backtrack through the verifier states and mark all registers and
1931  *   stack slots with spilled constants that these scalar regisers
1932  *   should be precise.
1933  * . during state pruning two registers (or spilled stack slots)
1934  *   are equivalent if both are not precise.
1935  *
1936  * Note the verifier cannot simply walk register parentage chain,
1937  * since many different registers and stack slots could have been
1938  * used to compute single precise scalar.
1939  *
1940  * The approach of starting with precise=true for all registers and then
1941  * backtrack to mark a register as not precise when the verifier detects
1942  * that program doesn't care about specific value (e.g., when helper
1943  * takes register as ARG_ANYTHING parameter) is not safe.
1944  *
1945  * It's ok to walk single parentage chain of the verifier states.
1946  * It's possible that this backtracking will go all the way till 1st insn.
1947  * All other branches will be explored for needing precision later.
1948  *
1949  * The backtracking needs to deal with cases like:
1950  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1951  * r9 -= r8
1952  * r5 = r9
1953  * if r5 > 0x79f goto pc+7
1954  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1955  * r5 += 1
1956  * ...
1957  * call bpf_perf_event_output#25
1958  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1959  *
1960  * and this case:
1961  * r6 = 1
1962  * call foo // uses callee's r6 inside to compute r0
1963  * r0 += r6
1964  * if r0 == 0 goto
1965  *
1966  * to track above reg_mask/stack_mask needs to be independent for each frame.
1967  *
1968  * Also if parent's curframe > frame where backtracking started,
1969  * the verifier need to mark registers in both frames, otherwise callees
1970  * may incorrectly prune callers. This is similar to
1971  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1972  *
1973  * For now backtracking falls back into conservative marking.
1974  */
1975 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1976 				     struct bpf_verifier_state *st)
1977 {
1978 	struct bpf_func_state *func;
1979 	struct bpf_reg_state *reg;
1980 	int i, j;
1981 
1982 	/* big hammer: mark all scalars precise in this path.
1983 	 * pop_stack may still get !precise scalars.
1984 	 */
1985 	for (; st; st = st->parent)
1986 		for (i = 0; i <= st->curframe; i++) {
1987 			func = st->frame[i];
1988 			for (j = 0; j < BPF_REG_FP; j++) {
1989 				reg = &func->regs[j];
1990 				if (reg->type != SCALAR_VALUE)
1991 					continue;
1992 				reg->precise = true;
1993 			}
1994 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1995 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1996 					continue;
1997 				reg = &func->stack[j].spilled_ptr;
1998 				if (reg->type != SCALAR_VALUE)
1999 					continue;
2000 				reg->precise = true;
2001 			}
2002 		}
2003 }
2004 
2005 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2006 				  int spi)
2007 {
2008 	struct bpf_verifier_state *st = env->cur_state;
2009 	int first_idx = st->first_insn_idx;
2010 	int last_idx = env->insn_idx;
2011 	struct bpf_func_state *func;
2012 	struct bpf_reg_state *reg;
2013 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2014 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2015 	bool skip_first = true;
2016 	bool new_marks = false;
2017 	int i, err;
2018 
2019 	if (!env->bpf_capable)
2020 		return 0;
2021 
2022 	func = st->frame[st->curframe];
2023 	if (regno >= 0) {
2024 		reg = &func->regs[regno];
2025 		if (reg->type != SCALAR_VALUE) {
2026 			WARN_ONCE(1, "backtracing misuse");
2027 			return -EFAULT;
2028 		}
2029 		if (!reg->precise)
2030 			new_marks = true;
2031 		else
2032 			reg_mask = 0;
2033 		reg->precise = true;
2034 	}
2035 
2036 	while (spi >= 0) {
2037 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2038 			stack_mask = 0;
2039 			break;
2040 		}
2041 		reg = &func->stack[spi].spilled_ptr;
2042 		if (reg->type != SCALAR_VALUE) {
2043 			stack_mask = 0;
2044 			break;
2045 		}
2046 		if (!reg->precise)
2047 			new_marks = true;
2048 		else
2049 			stack_mask = 0;
2050 		reg->precise = true;
2051 		break;
2052 	}
2053 
2054 	if (!new_marks)
2055 		return 0;
2056 	if (!reg_mask && !stack_mask)
2057 		return 0;
2058 	for (;;) {
2059 		DECLARE_BITMAP(mask, 64);
2060 		u32 history = st->jmp_history_cnt;
2061 
2062 		if (env->log.level & BPF_LOG_LEVEL)
2063 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2064 		for (i = last_idx;;) {
2065 			if (skip_first) {
2066 				err = 0;
2067 				skip_first = false;
2068 			} else {
2069 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2070 			}
2071 			if (err == -ENOTSUPP) {
2072 				mark_all_scalars_precise(env, st);
2073 				return 0;
2074 			} else if (err) {
2075 				return err;
2076 			}
2077 			if (!reg_mask && !stack_mask)
2078 				/* Found assignment(s) into tracked register in this state.
2079 				 * Since this state is already marked, just return.
2080 				 * Nothing to be tracked further in the parent state.
2081 				 */
2082 				return 0;
2083 			if (i == first_idx)
2084 				break;
2085 			i = get_prev_insn_idx(st, i, &history);
2086 			if (i >= env->prog->len) {
2087 				/* This can happen if backtracking reached insn 0
2088 				 * and there are still reg_mask or stack_mask
2089 				 * to backtrack.
2090 				 * It means the backtracking missed the spot where
2091 				 * particular register was initialized with a constant.
2092 				 */
2093 				verbose(env, "BUG backtracking idx %d\n", i);
2094 				WARN_ONCE(1, "verifier backtracking bug");
2095 				return -EFAULT;
2096 			}
2097 		}
2098 		st = st->parent;
2099 		if (!st)
2100 			break;
2101 
2102 		new_marks = false;
2103 		func = st->frame[st->curframe];
2104 		bitmap_from_u64(mask, reg_mask);
2105 		for_each_set_bit(i, mask, 32) {
2106 			reg = &func->regs[i];
2107 			if (reg->type != SCALAR_VALUE) {
2108 				reg_mask &= ~(1u << i);
2109 				continue;
2110 			}
2111 			if (!reg->precise)
2112 				new_marks = true;
2113 			reg->precise = true;
2114 		}
2115 
2116 		bitmap_from_u64(mask, stack_mask);
2117 		for_each_set_bit(i, mask, 64) {
2118 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2119 				/* the sequence of instructions:
2120 				 * 2: (bf) r3 = r10
2121 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2122 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2123 				 * doesn't contain jmps. It's backtracked
2124 				 * as a single block.
2125 				 * During backtracking insn 3 is not recognized as
2126 				 * stack access, so at the end of backtracking
2127 				 * stack slot fp-8 is still marked in stack_mask.
2128 				 * However the parent state may not have accessed
2129 				 * fp-8 and it's "unallocated" stack space.
2130 				 * In such case fallback to conservative.
2131 				 */
2132 				mark_all_scalars_precise(env, st);
2133 				return 0;
2134 			}
2135 
2136 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2137 				stack_mask &= ~(1ull << i);
2138 				continue;
2139 			}
2140 			reg = &func->stack[i].spilled_ptr;
2141 			if (reg->type != SCALAR_VALUE) {
2142 				stack_mask &= ~(1ull << i);
2143 				continue;
2144 			}
2145 			if (!reg->precise)
2146 				new_marks = true;
2147 			reg->precise = true;
2148 		}
2149 		if (env->log.level & BPF_LOG_LEVEL) {
2150 			print_verifier_state(env, func);
2151 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2152 				new_marks ? "didn't have" : "already had",
2153 				reg_mask, stack_mask);
2154 		}
2155 
2156 		if (!reg_mask && !stack_mask)
2157 			break;
2158 		if (!new_marks)
2159 			break;
2160 
2161 		last_idx = st->last_insn_idx;
2162 		first_idx = st->first_insn_idx;
2163 	}
2164 	return 0;
2165 }
2166 
2167 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2168 {
2169 	return __mark_chain_precision(env, regno, -1);
2170 }
2171 
2172 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2173 {
2174 	return __mark_chain_precision(env, -1, spi);
2175 }
2176 
2177 static bool is_spillable_regtype(enum bpf_reg_type type)
2178 {
2179 	switch (type) {
2180 	case PTR_TO_MAP_VALUE:
2181 	case PTR_TO_MAP_VALUE_OR_NULL:
2182 	case PTR_TO_STACK:
2183 	case PTR_TO_CTX:
2184 	case PTR_TO_PACKET:
2185 	case PTR_TO_PACKET_META:
2186 	case PTR_TO_PACKET_END:
2187 	case PTR_TO_FLOW_KEYS:
2188 	case CONST_PTR_TO_MAP:
2189 	case PTR_TO_SOCKET:
2190 	case PTR_TO_SOCKET_OR_NULL:
2191 	case PTR_TO_SOCK_COMMON:
2192 	case PTR_TO_SOCK_COMMON_OR_NULL:
2193 	case PTR_TO_TCP_SOCK:
2194 	case PTR_TO_TCP_SOCK_OR_NULL:
2195 	case PTR_TO_XDP_SOCK:
2196 	case PTR_TO_BTF_ID:
2197 	case PTR_TO_BTF_ID_OR_NULL:
2198 	case PTR_TO_RDONLY_BUF:
2199 	case PTR_TO_RDONLY_BUF_OR_NULL:
2200 	case PTR_TO_RDWR_BUF:
2201 	case PTR_TO_RDWR_BUF_OR_NULL:
2202 		return true;
2203 	default:
2204 		return false;
2205 	}
2206 }
2207 
2208 /* Does this register contain a constant zero? */
2209 static bool register_is_null(struct bpf_reg_state *reg)
2210 {
2211 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2212 }
2213 
2214 static bool register_is_const(struct bpf_reg_state *reg)
2215 {
2216 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2217 }
2218 
2219 static bool __is_pointer_value(bool allow_ptr_leaks,
2220 			       const struct bpf_reg_state *reg)
2221 {
2222 	if (allow_ptr_leaks)
2223 		return false;
2224 
2225 	return reg->type != SCALAR_VALUE;
2226 }
2227 
2228 static void save_register_state(struct bpf_func_state *state,
2229 				int spi, struct bpf_reg_state *reg)
2230 {
2231 	int i;
2232 
2233 	state->stack[spi].spilled_ptr = *reg;
2234 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2235 
2236 	for (i = 0; i < BPF_REG_SIZE; i++)
2237 		state->stack[spi].slot_type[i] = STACK_SPILL;
2238 }
2239 
2240 /* check_stack_read/write functions track spill/fill of registers,
2241  * stack boundary and alignment are checked in check_mem_access()
2242  */
2243 static int check_stack_write(struct bpf_verifier_env *env,
2244 			     struct bpf_func_state *state, /* func where register points to */
2245 			     int off, int size, int value_regno, int insn_idx)
2246 {
2247 	struct bpf_func_state *cur; /* state of the current function */
2248 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2249 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2250 	struct bpf_reg_state *reg = NULL;
2251 
2252 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2253 				 state->acquired_refs, true);
2254 	if (err)
2255 		return err;
2256 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2257 	 * so it's aligned access and [off, off + size) are within stack limits
2258 	 */
2259 	if (!env->allow_ptr_leaks &&
2260 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2261 	    size != BPF_REG_SIZE) {
2262 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2263 		return -EACCES;
2264 	}
2265 
2266 	cur = env->cur_state->frame[env->cur_state->curframe];
2267 	if (value_regno >= 0)
2268 		reg = &cur->regs[value_regno];
2269 
2270 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
2271 	    !register_is_null(reg) && env->bpf_capable) {
2272 		if (dst_reg != BPF_REG_FP) {
2273 			/* The backtracking logic can only recognize explicit
2274 			 * stack slot address like [fp - 8]. Other spill of
2275 			 * scalar via different register has to be conervative.
2276 			 * Backtrack from here and mark all registers as precise
2277 			 * that contributed into 'reg' being a constant.
2278 			 */
2279 			err = mark_chain_precision(env, value_regno);
2280 			if (err)
2281 				return err;
2282 		}
2283 		save_register_state(state, spi, reg);
2284 	} else if (reg && is_spillable_regtype(reg->type)) {
2285 		/* register containing pointer is being spilled into stack */
2286 		if (size != BPF_REG_SIZE) {
2287 			verbose_linfo(env, insn_idx, "; ");
2288 			verbose(env, "invalid size of register spill\n");
2289 			return -EACCES;
2290 		}
2291 
2292 		if (state != cur && reg->type == PTR_TO_STACK) {
2293 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2294 			return -EINVAL;
2295 		}
2296 
2297 		if (!env->bypass_spec_v4) {
2298 			bool sanitize = false;
2299 
2300 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2301 			    register_is_const(&state->stack[spi].spilled_ptr))
2302 				sanitize = true;
2303 			for (i = 0; i < BPF_REG_SIZE; i++)
2304 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2305 					sanitize = true;
2306 					break;
2307 				}
2308 			if (sanitize) {
2309 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2310 				int soff = (-spi - 1) * BPF_REG_SIZE;
2311 
2312 				/* detected reuse of integer stack slot with a pointer
2313 				 * which means either llvm is reusing stack slot or
2314 				 * an attacker is trying to exploit CVE-2018-3639
2315 				 * (speculative store bypass)
2316 				 * Have to sanitize that slot with preemptive
2317 				 * store of zero.
2318 				 */
2319 				if (*poff && *poff != soff) {
2320 					/* disallow programs where single insn stores
2321 					 * into two different stack slots, since verifier
2322 					 * cannot sanitize them
2323 					 */
2324 					verbose(env,
2325 						"insn %d cannot access two stack slots fp%d and fp%d",
2326 						insn_idx, *poff, soff);
2327 					return -EINVAL;
2328 				}
2329 				*poff = soff;
2330 			}
2331 		}
2332 		save_register_state(state, spi, reg);
2333 	} else {
2334 		u8 type = STACK_MISC;
2335 
2336 		/* regular write of data into stack destroys any spilled ptr */
2337 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2338 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2339 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2340 			for (i = 0; i < BPF_REG_SIZE; i++)
2341 				state->stack[spi].slot_type[i] = STACK_MISC;
2342 
2343 		/* only mark the slot as written if all 8 bytes were written
2344 		 * otherwise read propagation may incorrectly stop too soon
2345 		 * when stack slots are partially written.
2346 		 * This heuristic means that read propagation will be
2347 		 * conservative, since it will add reg_live_read marks
2348 		 * to stack slots all the way to first state when programs
2349 		 * writes+reads less than 8 bytes
2350 		 */
2351 		if (size == BPF_REG_SIZE)
2352 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2353 
2354 		/* when we zero initialize stack slots mark them as such */
2355 		if (reg && register_is_null(reg)) {
2356 			/* backtracking doesn't work for STACK_ZERO yet. */
2357 			err = mark_chain_precision(env, value_regno);
2358 			if (err)
2359 				return err;
2360 			type = STACK_ZERO;
2361 		}
2362 
2363 		/* Mark slots affected by this stack write. */
2364 		for (i = 0; i < size; i++)
2365 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2366 				type;
2367 	}
2368 	return 0;
2369 }
2370 
2371 static int check_stack_read(struct bpf_verifier_env *env,
2372 			    struct bpf_func_state *reg_state /* func where register points to */,
2373 			    int off, int size, int value_regno)
2374 {
2375 	struct bpf_verifier_state *vstate = env->cur_state;
2376 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2377 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2378 	struct bpf_reg_state *reg;
2379 	u8 *stype;
2380 
2381 	if (reg_state->allocated_stack <= slot) {
2382 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2383 			off, size);
2384 		return -EACCES;
2385 	}
2386 	stype = reg_state->stack[spi].slot_type;
2387 	reg = &reg_state->stack[spi].spilled_ptr;
2388 
2389 	if (stype[0] == STACK_SPILL) {
2390 		if (size != BPF_REG_SIZE) {
2391 			if (reg->type != SCALAR_VALUE) {
2392 				verbose_linfo(env, env->insn_idx, "; ");
2393 				verbose(env, "invalid size of register fill\n");
2394 				return -EACCES;
2395 			}
2396 			if (value_regno >= 0) {
2397 				mark_reg_unknown(env, state->regs, value_regno);
2398 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2399 			}
2400 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2401 			return 0;
2402 		}
2403 		for (i = 1; i < BPF_REG_SIZE; i++) {
2404 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2405 				verbose(env, "corrupted spill memory\n");
2406 				return -EACCES;
2407 			}
2408 		}
2409 
2410 		if (value_regno >= 0) {
2411 			/* restore register state from stack */
2412 			state->regs[value_regno] = *reg;
2413 			/* mark reg as written since spilled pointer state likely
2414 			 * has its liveness marks cleared by is_state_visited()
2415 			 * which resets stack/reg liveness for state transitions
2416 			 */
2417 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2418 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2419 			/* If value_regno==-1, the caller is asking us whether
2420 			 * it is acceptable to use this value as a SCALAR_VALUE
2421 			 * (e.g. for XADD).
2422 			 * We must not allow unprivileged callers to do that
2423 			 * with spilled pointers.
2424 			 */
2425 			verbose(env, "leaking pointer from stack off %d\n",
2426 				off);
2427 			return -EACCES;
2428 		}
2429 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2430 	} else {
2431 		int zeros = 0;
2432 
2433 		for (i = 0; i < size; i++) {
2434 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2435 				continue;
2436 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2437 				zeros++;
2438 				continue;
2439 			}
2440 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2441 				off, i, size);
2442 			return -EACCES;
2443 		}
2444 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2445 		if (value_regno >= 0) {
2446 			if (zeros == size) {
2447 				/* any size read into register is zero extended,
2448 				 * so the whole register == const_zero
2449 				 */
2450 				__mark_reg_const_zero(&state->regs[value_regno]);
2451 				/* backtracking doesn't support STACK_ZERO yet,
2452 				 * so mark it precise here, so that later
2453 				 * backtracking can stop here.
2454 				 * Backtracking may not need this if this register
2455 				 * doesn't participate in pointer adjustment.
2456 				 * Forward propagation of precise flag is not
2457 				 * necessary either. This mark is only to stop
2458 				 * backtracking. Any register that contributed
2459 				 * to const 0 was marked precise before spill.
2460 				 */
2461 				state->regs[value_regno].precise = true;
2462 			} else {
2463 				/* have read misc data from the stack */
2464 				mark_reg_unknown(env, state->regs, value_regno);
2465 			}
2466 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2467 		}
2468 	}
2469 	return 0;
2470 }
2471 
2472 static int check_stack_access(struct bpf_verifier_env *env,
2473 			      const struct bpf_reg_state *reg,
2474 			      int off, int size)
2475 {
2476 	/* Stack accesses must be at a fixed offset, so that we
2477 	 * can determine what type of data were returned. See
2478 	 * check_stack_read().
2479 	 */
2480 	if (!tnum_is_const(reg->var_off)) {
2481 		char tn_buf[48];
2482 
2483 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2484 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2485 			tn_buf, off, size);
2486 		return -EACCES;
2487 	}
2488 
2489 	if (off >= 0 || off < -MAX_BPF_STACK) {
2490 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2491 		return -EACCES;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2498 				 int off, int size, enum bpf_access_type type)
2499 {
2500 	struct bpf_reg_state *regs = cur_regs(env);
2501 	struct bpf_map *map = regs[regno].map_ptr;
2502 	u32 cap = bpf_map_flags_to_cap(map);
2503 
2504 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2505 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2506 			map->value_size, off, size);
2507 		return -EACCES;
2508 	}
2509 
2510 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2511 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2512 			map->value_size, off, size);
2513 		return -EACCES;
2514 	}
2515 
2516 	return 0;
2517 }
2518 
2519 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2520 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2521 			      int off, int size, u32 mem_size,
2522 			      bool zero_size_allowed)
2523 {
2524 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2525 	struct bpf_reg_state *reg;
2526 
2527 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2528 		return 0;
2529 
2530 	reg = &cur_regs(env)[regno];
2531 	switch (reg->type) {
2532 	case PTR_TO_MAP_VALUE:
2533 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2534 			mem_size, off, size);
2535 		break;
2536 	case PTR_TO_PACKET:
2537 	case PTR_TO_PACKET_META:
2538 	case PTR_TO_PACKET_END:
2539 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2540 			off, size, regno, reg->id, off, mem_size);
2541 		break;
2542 	case PTR_TO_MEM:
2543 	default:
2544 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2545 			mem_size, off, size);
2546 	}
2547 
2548 	return -EACCES;
2549 }
2550 
2551 /* check read/write into a memory region with possible variable offset */
2552 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2553 				   int off, int size, u32 mem_size,
2554 				   bool zero_size_allowed)
2555 {
2556 	struct bpf_verifier_state *vstate = env->cur_state;
2557 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2558 	struct bpf_reg_state *reg = &state->regs[regno];
2559 	int err;
2560 
2561 	/* We may have adjusted the register pointing to memory region, so we
2562 	 * need to try adding each of min_value and max_value to off
2563 	 * to make sure our theoretical access will be safe.
2564 	 */
2565 	if (env->log.level & BPF_LOG_LEVEL)
2566 		print_verifier_state(env, state);
2567 
2568 	/* The minimum value is only important with signed
2569 	 * comparisons where we can't assume the floor of a
2570 	 * value is 0.  If we are using signed variables for our
2571 	 * index'es we need to make sure that whatever we use
2572 	 * will have a set floor within our range.
2573 	 */
2574 	if (reg->smin_value < 0 &&
2575 	    (reg->smin_value == S64_MIN ||
2576 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2577 	      reg->smin_value + off < 0)) {
2578 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2579 			regno);
2580 		return -EACCES;
2581 	}
2582 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2583 				 mem_size, zero_size_allowed);
2584 	if (err) {
2585 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2586 			regno);
2587 		return err;
2588 	}
2589 
2590 	/* If we haven't set a max value then we need to bail since we can't be
2591 	 * sure we won't do bad things.
2592 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2593 	 */
2594 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2595 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2596 			regno);
2597 		return -EACCES;
2598 	}
2599 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2600 				 mem_size, zero_size_allowed);
2601 	if (err) {
2602 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2603 			regno);
2604 		return err;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /* check read/write into a map element with possible variable offset */
2611 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2612 			    int off, int size, bool zero_size_allowed)
2613 {
2614 	struct bpf_verifier_state *vstate = env->cur_state;
2615 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2616 	struct bpf_reg_state *reg = &state->regs[regno];
2617 	struct bpf_map *map = reg->map_ptr;
2618 	int err;
2619 
2620 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2621 				      zero_size_allowed);
2622 	if (err)
2623 		return err;
2624 
2625 	if (map_value_has_spin_lock(map)) {
2626 		u32 lock = map->spin_lock_off;
2627 
2628 		/* if any part of struct bpf_spin_lock can be touched by
2629 		 * load/store reject this program.
2630 		 * To check that [x1, x2) overlaps with [y1, y2)
2631 		 * it is sufficient to check x1 < y2 && y1 < x2.
2632 		 */
2633 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2634 		     lock < reg->umax_value + off + size) {
2635 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2636 			return -EACCES;
2637 		}
2638 	}
2639 	return err;
2640 }
2641 
2642 #define MAX_PACKET_OFF 0xffff
2643 
2644 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2645 {
2646 	return prog->aux->linked_prog ? prog->aux->linked_prog->type
2647 				      : prog->type;
2648 }
2649 
2650 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2651 				       const struct bpf_call_arg_meta *meta,
2652 				       enum bpf_access_type t)
2653 {
2654 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2655 
2656 	switch (prog_type) {
2657 	/* Program types only with direct read access go here! */
2658 	case BPF_PROG_TYPE_LWT_IN:
2659 	case BPF_PROG_TYPE_LWT_OUT:
2660 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2661 	case BPF_PROG_TYPE_SK_REUSEPORT:
2662 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2663 	case BPF_PROG_TYPE_CGROUP_SKB:
2664 		if (t == BPF_WRITE)
2665 			return false;
2666 		/* fallthrough */
2667 
2668 	/* Program types with direct read + write access go here! */
2669 	case BPF_PROG_TYPE_SCHED_CLS:
2670 	case BPF_PROG_TYPE_SCHED_ACT:
2671 	case BPF_PROG_TYPE_XDP:
2672 	case BPF_PROG_TYPE_LWT_XMIT:
2673 	case BPF_PROG_TYPE_SK_SKB:
2674 	case BPF_PROG_TYPE_SK_MSG:
2675 		if (meta)
2676 			return meta->pkt_access;
2677 
2678 		env->seen_direct_write = true;
2679 		return true;
2680 
2681 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2682 		if (t == BPF_WRITE)
2683 			env->seen_direct_write = true;
2684 
2685 		return true;
2686 
2687 	default:
2688 		return false;
2689 	}
2690 }
2691 
2692 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2693 			       int size, bool zero_size_allowed)
2694 {
2695 	struct bpf_reg_state *regs = cur_regs(env);
2696 	struct bpf_reg_state *reg = &regs[regno];
2697 	int err;
2698 
2699 	/* We may have added a variable offset to the packet pointer; but any
2700 	 * reg->range we have comes after that.  We are only checking the fixed
2701 	 * offset.
2702 	 */
2703 
2704 	/* We don't allow negative numbers, because we aren't tracking enough
2705 	 * detail to prove they're safe.
2706 	 */
2707 	if (reg->smin_value < 0) {
2708 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2709 			regno);
2710 		return -EACCES;
2711 	}
2712 	err = __check_mem_access(env, regno, off, size, reg->range,
2713 				 zero_size_allowed);
2714 	if (err) {
2715 		verbose(env, "R%d offset is outside of the packet\n", regno);
2716 		return err;
2717 	}
2718 
2719 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2720 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2721 	 * otherwise find_good_pkt_pointers would have refused to set range info
2722 	 * that __check_mem_access would have rejected this pkt access.
2723 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2724 	 */
2725 	env->prog->aux->max_pkt_offset =
2726 		max_t(u32, env->prog->aux->max_pkt_offset,
2727 		      off + reg->umax_value + size - 1);
2728 
2729 	return err;
2730 }
2731 
2732 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2733 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2734 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2735 			    u32 *btf_id)
2736 {
2737 	struct bpf_insn_access_aux info = {
2738 		.reg_type = *reg_type,
2739 		.log = &env->log,
2740 	};
2741 
2742 	if (env->ops->is_valid_access &&
2743 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2744 		/* A non zero info.ctx_field_size indicates that this field is a
2745 		 * candidate for later verifier transformation to load the whole
2746 		 * field and then apply a mask when accessed with a narrower
2747 		 * access than actual ctx access size. A zero info.ctx_field_size
2748 		 * will only allow for whole field access and rejects any other
2749 		 * type of narrower access.
2750 		 */
2751 		*reg_type = info.reg_type;
2752 
2753 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL)
2754 			*btf_id = info.btf_id;
2755 		else
2756 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2757 		/* remember the offset of last byte accessed in ctx */
2758 		if (env->prog->aux->max_ctx_offset < off + size)
2759 			env->prog->aux->max_ctx_offset = off + size;
2760 		return 0;
2761 	}
2762 
2763 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2764 	return -EACCES;
2765 }
2766 
2767 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2768 				  int size)
2769 {
2770 	if (size < 0 || off < 0 ||
2771 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2772 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2773 			off, size);
2774 		return -EACCES;
2775 	}
2776 	return 0;
2777 }
2778 
2779 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2780 			     u32 regno, int off, int size,
2781 			     enum bpf_access_type t)
2782 {
2783 	struct bpf_reg_state *regs = cur_regs(env);
2784 	struct bpf_reg_state *reg = &regs[regno];
2785 	struct bpf_insn_access_aux info = {};
2786 	bool valid;
2787 
2788 	if (reg->smin_value < 0) {
2789 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2790 			regno);
2791 		return -EACCES;
2792 	}
2793 
2794 	switch (reg->type) {
2795 	case PTR_TO_SOCK_COMMON:
2796 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2797 		break;
2798 	case PTR_TO_SOCKET:
2799 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2800 		break;
2801 	case PTR_TO_TCP_SOCK:
2802 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2803 		break;
2804 	case PTR_TO_XDP_SOCK:
2805 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2806 		break;
2807 	default:
2808 		valid = false;
2809 	}
2810 
2811 
2812 	if (valid) {
2813 		env->insn_aux_data[insn_idx].ctx_field_size =
2814 			info.ctx_field_size;
2815 		return 0;
2816 	}
2817 
2818 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2819 		regno, reg_type_str[reg->type], off, size);
2820 
2821 	return -EACCES;
2822 }
2823 
2824 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2825 {
2826 	return cur_regs(env) + regno;
2827 }
2828 
2829 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2830 {
2831 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2832 }
2833 
2834 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2835 {
2836 	const struct bpf_reg_state *reg = reg_state(env, regno);
2837 
2838 	return reg->type == PTR_TO_CTX;
2839 }
2840 
2841 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2842 {
2843 	const struct bpf_reg_state *reg = reg_state(env, regno);
2844 
2845 	return type_is_sk_pointer(reg->type);
2846 }
2847 
2848 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2849 {
2850 	const struct bpf_reg_state *reg = reg_state(env, regno);
2851 
2852 	return type_is_pkt_pointer(reg->type);
2853 }
2854 
2855 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2856 {
2857 	const struct bpf_reg_state *reg = reg_state(env, regno);
2858 
2859 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2860 	return reg->type == PTR_TO_FLOW_KEYS;
2861 }
2862 
2863 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2864 				   const struct bpf_reg_state *reg,
2865 				   int off, int size, bool strict)
2866 {
2867 	struct tnum reg_off;
2868 	int ip_align;
2869 
2870 	/* Byte size accesses are always allowed. */
2871 	if (!strict || size == 1)
2872 		return 0;
2873 
2874 	/* For platforms that do not have a Kconfig enabling
2875 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2876 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2877 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2878 	 * to this code only in strict mode where we want to emulate
2879 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2880 	 * unconditional IP align value of '2'.
2881 	 */
2882 	ip_align = 2;
2883 
2884 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2885 	if (!tnum_is_aligned(reg_off, size)) {
2886 		char tn_buf[48];
2887 
2888 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2889 		verbose(env,
2890 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2891 			ip_align, tn_buf, reg->off, off, size);
2892 		return -EACCES;
2893 	}
2894 
2895 	return 0;
2896 }
2897 
2898 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2899 				       const struct bpf_reg_state *reg,
2900 				       const char *pointer_desc,
2901 				       int off, int size, bool strict)
2902 {
2903 	struct tnum reg_off;
2904 
2905 	/* Byte size accesses are always allowed. */
2906 	if (!strict || size == 1)
2907 		return 0;
2908 
2909 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2910 	if (!tnum_is_aligned(reg_off, size)) {
2911 		char tn_buf[48];
2912 
2913 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2914 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2915 			pointer_desc, tn_buf, reg->off, off, size);
2916 		return -EACCES;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 static int check_ptr_alignment(struct bpf_verifier_env *env,
2923 			       const struct bpf_reg_state *reg, int off,
2924 			       int size, bool strict_alignment_once)
2925 {
2926 	bool strict = env->strict_alignment || strict_alignment_once;
2927 	const char *pointer_desc = "";
2928 
2929 	switch (reg->type) {
2930 	case PTR_TO_PACKET:
2931 	case PTR_TO_PACKET_META:
2932 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2933 		 * right in front, treat it the very same way.
2934 		 */
2935 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2936 	case PTR_TO_FLOW_KEYS:
2937 		pointer_desc = "flow keys ";
2938 		break;
2939 	case PTR_TO_MAP_VALUE:
2940 		pointer_desc = "value ";
2941 		break;
2942 	case PTR_TO_CTX:
2943 		pointer_desc = "context ";
2944 		break;
2945 	case PTR_TO_STACK:
2946 		pointer_desc = "stack ";
2947 		/* The stack spill tracking logic in check_stack_write()
2948 		 * and check_stack_read() relies on stack accesses being
2949 		 * aligned.
2950 		 */
2951 		strict = true;
2952 		break;
2953 	case PTR_TO_SOCKET:
2954 		pointer_desc = "sock ";
2955 		break;
2956 	case PTR_TO_SOCK_COMMON:
2957 		pointer_desc = "sock_common ";
2958 		break;
2959 	case PTR_TO_TCP_SOCK:
2960 		pointer_desc = "tcp_sock ";
2961 		break;
2962 	case PTR_TO_XDP_SOCK:
2963 		pointer_desc = "xdp_sock ";
2964 		break;
2965 	default:
2966 		break;
2967 	}
2968 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2969 					   strict);
2970 }
2971 
2972 static int update_stack_depth(struct bpf_verifier_env *env,
2973 			      const struct bpf_func_state *func,
2974 			      int off)
2975 {
2976 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2977 
2978 	if (stack >= -off)
2979 		return 0;
2980 
2981 	/* update known max for given subprogram */
2982 	env->subprog_info[func->subprogno].stack_depth = -off;
2983 	return 0;
2984 }
2985 
2986 /* starting from main bpf function walk all instructions of the function
2987  * and recursively walk all callees that given function can call.
2988  * Ignore jump and exit insns.
2989  * Since recursion is prevented by check_cfg() this algorithm
2990  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2991  */
2992 static int check_max_stack_depth(struct bpf_verifier_env *env)
2993 {
2994 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2995 	struct bpf_subprog_info *subprog = env->subprog_info;
2996 	struct bpf_insn *insn = env->prog->insnsi;
2997 	bool tail_call_reachable = false;
2998 	int ret_insn[MAX_CALL_FRAMES];
2999 	int ret_prog[MAX_CALL_FRAMES];
3000 	int j;
3001 
3002 process_func:
3003 	/* protect against potential stack overflow that might happen when
3004 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3005 	 * depth for such case down to 256 so that the worst case scenario
3006 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3007 	 * 8k).
3008 	 *
3009 	 * To get the idea what might happen, see an example:
3010 	 * func1 -> sub rsp, 128
3011 	 *  subfunc1 -> sub rsp, 256
3012 	 *  tailcall1 -> add rsp, 256
3013 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3014 	 *   subfunc2 -> sub rsp, 64
3015 	 *   subfunc22 -> sub rsp, 128
3016 	 *   tailcall2 -> add rsp, 128
3017 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3018 	 *
3019 	 * tailcall will unwind the current stack frame but it will not get rid
3020 	 * of caller's stack as shown on the example above.
3021 	 */
3022 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3023 		verbose(env,
3024 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3025 			depth);
3026 		return -EACCES;
3027 	}
3028 	/* round up to 32-bytes, since this is granularity
3029 	 * of interpreter stack size
3030 	 */
3031 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3032 	if (depth > MAX_BPF_STACK) {
3033 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3034 			frame + 1, depth);
3035 		return -EACCES;
3036 	}
3037 continue_func:
3038 	subprog_end = subprog[idx + 1].start;
3039 	for (; i < subprog_end; i++) {
3040 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3041 			continue;
3042 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3043 			continue;
3044 		/* remember insn and function to return to */
3045 		ret_insn[frame] = i + 1;
3046 		ret_prog[frame] = idx;
3047 
3048 		/* find the callee */
3049 		i = i + insn[i].imm + 1;
3050 		idx = find_subprog(env, i);
3051 		if (idx < 0) {
3052 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3053 				  i);
3054 			return -EFAULT;
3055 		}
3056 
3057 		if (subprog[idx].has_tail_call)
3058 			tail_call_reachable = true;
3059 
3060 		frame++;
3061 		if (frame >= MAX_CALL_FRAMES) {
3062 			verbose(env, "the call stack of %d frames is too deep !\n",
3063 				frame);
3064 			return -E2BIG;
3065 		}
3066 		goto process_func;
3067 	}
3068 	/* if tail call got detected across bpf2bpf calls then mark each of the
3069 	 * currently present subprog frames as tail call reachable subprogs;
3070 	 * this info will be utilized by JIT so that we will be preserving the
3071 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3072 	 */
3073 	if (tail_call_reachable)
3074 		for (j = 0; j < frame; j++)
3075 			subprog[ret_prog[j]].tail_call_reachable = true;
3076 
3077 	/* end of for() loop means the last insn of the 'subprog'
3078 	 * was reached. Doesn't matter whether it was JA or EXIT
3079 	 */
3080 	if (frame == 0)
3081 		return 0;
3082 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3083 	frame--;
3084 	i = ret_insn[frame];
3085 	idx = ret_prog[frame];
3086 	goto continue_func;
3087 }
3088 
3089 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3090 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3091 				  const struct bpf_insn *insn, int idx)
3092 {
3093 	int start = idx + insn->imm + 1, subprog;
3094 
3095 	subprog = find_subprog(env, start);
3096 	if (subprog < 0) {
3097 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3098 			  start);
3099 		return -EFAULT;
3100 	}
3101 	return env->subprog_info[subprog].stack_depth;
3102 }
3103 #endif
3104 
3105 int check_ctx_reg(struct bpf_verifier_env *env,
3106 		  const struct bpf_reg_state *reg, int regno)
3107 {
3108 	/* Access to ctx or passing it to a helper is only allowed in
3109 	 * its original, unmodified form.
3110 	 */
3111 
3112 	if (reg->off) {
3113 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3114 			regno, reg->off);
3115 		return -EACCES;
3116 	}
3117 
3118 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3119 		char tn_buf[48];
3120 
3121 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3122 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3123 		return -EACCES;
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 static int __check_buffer_access(struct bpf_verifier_env *env,
3130 				 const char *buf_info,
3131 				 const struct bpf_reg_state *reg,
3132 				 int regno, int off, int size)
3133 {
3134 	if (off < 0) {
3135 		verbose(env,
3136 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3137 			regno, buf_info, off, size);
3138 		return -EACCES;
3139 	}
3140 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3141 		char tn_buf[48];
3142 
3143 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3144 		verbose(env,
3145 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3146 			regno, off, tn_buf);
3147 		return -EACCES;
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3154 				  const struct bpf_reg_state *reg,
3155 				  int regno, int off, int size)
3156 {
3157 	int err;
3158 
3159 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3160 	if (err)
3161 		return err;
3162 
3163 	if (off + size > env->prog->aux->max_tp_access)
3164 		env->prog->aux->max_tp_access = off + size;
3165 
3166 	return 0;
3167 }
3168 
3169 static int check_buffer_access(struct bpf_verifier_env *env,
3170 			       const struct bpf_reg_state *reg,
3171 			       int regno, int off, int size,
3172 			       bool zero_size_allowed,
3173 			       const char *buf_info,
3174 			       u32 *max_access)
3175 {
3176 	int err;
3177 
3178 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3179 	if (err)
3180 		return err;
3181 
3182 	if (off + size > *max_access)
3183 		*max_access = off + size;
3184 
3185 	return 0;
3186 }
3187 
3188 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3189 static void zext_32_to_64(struct bpf_reg_state *reg)
3190 {
3191 	reg->var_off = tnum_subreg(reg->var_off);
3192 	__reg_assign_32_into_64(reg);
3193 }
3194 
3195 /* truncate register to smaller size (in bytes)
3196  * must be called with size < BPF_REG_SIZE
3197  */
3198 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3199 {
3200 	u64 mask;
3201 
3202 	/* clear high bits in bit representation */
3203 	reg->var_off = tnum_cast(reg->var_off, size);
3204 
3205 	/* fix arithmetic bounds */
3206 	mask = ((u64)1 << (size * 8)) - 1;
3207 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3208 		reg->umin_value &= mask;
3209 		reg->umax_value &= mask;
3210 	} else {
3211 		reg->umin_value = 0;
3212 		reg->umax_value = mask;
3213 	}
3214 	reg->smin_value = reg->umin_value;
3215 	reg->smax_value = reg->umax_value;
3216 
3217 	/* If size is smaller than 32bit register the 32bit register
3218 	 * values are also truncated so we push 64-bit bounds into
3219 	 * 32-bit bounds. Above were truncated < 32-bits already.
3220 	 */
3221 	if (size >= 4)
3222 		return;
3223 	__reg_combine_64_into_32(reg);
3224 }
3225 
3226 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3227 {
3228 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3229 }
3230 
3231 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3232 {
3233 	void *ptr;
3234 	u64 addr;
3235 	int err;
3236 
3237 	err = map->ops->map_direct_value_addr(map, &addr, off);
3238 	if (err)
3239 		return err;
3240 	ptr = (void *)(long)addr + off;
3241 
3242 	switch (size) {
3243 	case sizeof(u8):
3244 		*val = (u64)*(u8 *)ptr;
3245 		break;
3246 	case sizeof(u16):
3247 		*val = (u64)*(u16 *)ptr;
3248 		break;
3249 	case sizeof(u32):
3250 		*val = (u64)*(u32 *)ptr;
3251 		break;
3252 	case sizeof(u64):
3253 		*val = *(u64 *)ptr;
3254 		break;
3255 	default:
3256 		return -EINVAL;
3257 	}
3258 	return 0;
3259 }
3260 
3261 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3262 				   struct bpf_reg_state *regs,
3263 				   int regno, int off, int size,
3264 				   enum bpf_access_type atype,
3265 				   int value_regno)
3266 {
3267 	struct bpf_reg_state *reg = regs + regno;
3268 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
3269 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3270 	u32 btf_id;
3271 	int ret;
3272 
3273 	if (off < 0) {
3274 		verbose(env,
3275 			"R%d is ptr_%s invalid negative access: off=%d\n",
3276 			regno, tname, off);
3277 		return -EACCES;
3278 	}
3279 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3280 		char tn_buf[48];
3281 
3282 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3283 		verbose(env,
3284 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3285 			regno, tname, off, tn_buf);
3286 		return -EACCES;
3287 	}
3288 
3289 	if (env->ops->btf_struct_access) {
3290 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
3291 						  atype, &btf_id);
3292 	} else {
3293 		if (atype != BPF_READ) {
3294 			verbose(env, "only read is supported\n");
3295 			return -EACCES;
3296 		}
3297 
3298 		ret = btf_struct_access(&env->log, t, off, size, atype,
3299 					&btf_id);
3300 	}
3301 
3302 	if (ret < 0)
3303 		return ret;
3304 
3305 	if (atype == BPF_READ && value_regno >= 0)
3306 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3307 
3308 	return 0;
3309 }
3310 
3311 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3312 				   struct bpf_reg_state *regs,
3313 				   int regno, int off, int size,
3314 				   enum bpf_access_type atype,
3315 				   int value_regno)
3316 {
3317 	struct bpf_reg_state *reg = regs + regno;
3318 	struct bpf_map *map = reg->map_ptr;
3319 	const struct btf_type *t;
3320 	const char *tname;
3321 	u32 btf_id;
3322 	int ret;
3323 
3324 	if (!btf_vmlinux) {
3325 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3326 		return -ENOTSUPP;
3327 	}
3328 
3329 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3330 		verbose(env, "map_ptr access not supported for map type %d\n",
3331 			map->map_type);
3332 		return -ENOTSUPP;
3333 	}
3334 
3335 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3336 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3337 
3338 	if (!env->allow_ptr_to_map_access) {
3339 		verbose(env,
3340 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3341 			tname);
3342 		return -EPERM;
3343 	}
3344 
3345 	if (off < 0) {
3346 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3347 			regno, tname, off);
3348 		return -EACCES;
3349 	}
3350 
3351 	if (atype != BPF_READ) {
3352 		verbose(env, "only read from %s is supported\n", tname);
3353 		return -EACCES;
3354 	}
3355 
3356 	ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id);
3357 	if (ret < 0)
3358 		return ret;
3359 
3360 	if (value_regno >= 0)
3361 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_id);
3362 
3363 	return 0;
3364 }
3365 
3366 
3367 /* check whether memory at (regno + off) is accessible for t = (read | write)
3368  * if t==write, value_regno is a register which value is stored into memory
3369  * if t==read, value_regno is a register which will receive the value from memory
3370  * if t==write && value_regno==-1, some unknown value is stored into memory
3371  * if t==read && value_regno==-1, don't care what we read from memory
3372  */
3373 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3374 			    int off, int bpf_size, enum bpf_access_type t,
3375 			    int value_regno, bool strict_alignment_once)
3376 {
3377 	struct bpf_reg_state *regs = cur_regs(env);
3378 	struct bpf_reg_state *reg = regs + regno;
3379 	struct bpf_func_state *state;
3380 	int size, err = 0;
3381 
3382 	size = bpf_size_to_bytes(bpf_size);
3383 	if (size < 0)
3384 		return size;
3385 
3386 	/* alignment checks will add in reg->off themselves */
3387 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3388 	if (err)
3389 		return err;
3390 
3391 	/* for access checks, reg->off is just part of off */
3392 	off += reg->off;
3393 
3394 	if (reg->type == PTR_TO_MAP_VALUE) {
3395 		if (t == BPF_WRITE && value_regno >= 0 &&
3396 		    is_pointer_value(env, value_regno)) {
3397 			verbose(env, "R%d leaks addr into map\n", value_regno);
3398 			return -EACCES;
3399 		}
3400 		err = check_map_access_type(env, regno, off, size, t);
3401 		if (err)
3402 			return err;
3403 		err = check_map_access(env, regno, off, size, false);
3404 		if (!err && t == BPF_READ && value_regno >= 0) {
3405 			struct bpf_map *map = reg->map_ptr;
3406 
3407 			/* if map is read-only, track its contents as scalars */
3408 			if (tnum_is_const(reg->var_off) &&
3409 			    bpf_map_is_rdonly(map) &&
3410 			    map->ops->map_direct_value_addr) {
3411 				int map_off = off + reg->var_off.value;
3412 				u64 val = 0;
3413 
3414 				err = bpf_map_direct_read(map, map_off, size,
3415 							  &val);
3416 				if (err)
3417 					return err;
3418 
3419 				regs[value_regno].type = SCALAR_VALUE;
3420 				__mark_reg_known(&regs[value_regno], val);
3421 			} else {
3422 				mark_reg_unknown(env, regs, value_regno);
3423 			}
3424 		}
3425 	} else if (reg->type == PTR_TO_MEM) {
3426 		if (t == BPF_WRITE && value_regno >= 0 &&
3427 		    is_pointer_value(env, value_regno)) {
3428 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3429 			return -EACCES;
3430 		}
3431 		err = check_mem_region_access(env, regno, off, size,
3432 					      reg->mem_size, false);
3433 		if (!err && t == BPF_READ && value_regno >= 0)
3434 			mark_reg_unknown(env, regs, value_regno);
3435 	} else if (reg->type == PTR_TO_CTX) {
3436 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3437 		u32 btf_id = 0;
3438 
3439 		if (t == BPF_WRITE && value_regno >= 0 &&
3440 		    is_pointer_value(env, value_regno)) {
3441 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3442 			return -EACCES;
3443 		}
3444 
3445 		err = check_ctx_reg(env, reg, regno);
3446 		if (err < 0)
3447 			return err;
3448 
3449 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
3450 		if (err)
3451 			verbose_linfo(env, insn_idx, "; ");
3452 		if (!err && t == BPF_READ && value_regno >= 0) {
3453 			/* ctx access returns either a scalar, or a
3454 			 * PTR_TO_PACKET[_META,_END]. In the latter
3455 			 * case, we know the offset is zero.
3456 			 */
3457 			if (reg_type == SCALAR_VALUE) {
3458 				mark_reg_unknown(env, regs, value_regno);
3459 			} else {
3460 				mark_reg_known_zero(env, regs,
3461 						    value_regno);
3462 				if (reg_type_may_be_null(reg_type))
3463 					regs[value_regno].id = ++env->id_gen;
3464 				/* A load of ctx field could have different
3465 				 * actual load size with the one encoded in the
3466 				 * insn. When the dst is PTR, it is for sure not
3467 				 * a sub-register.
3468 				 */
3469 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3470 				if (reg_type == PTR_TO_BTF_ID ||
3471 				    reg_type == PTR_TO_BTF_ID_OR_NULL)
3472 					regs[value_regno].btf_id = btf_id;
3473 			}
3474 			regs[value_regno].type = reg_type;
3475 		}
3476 
3477 	} else if (reg->type == PTR_TO_STACK) {
3478 		off += reg->var_off.value;
3479 		err = check_stack_access(env, reg, off, size);
3480 		if (err)
3481 			return err;
3482 
3483 		state = func(env, reg);
3484 		err = update_stack_depth(env, state, off);
3485 		if (err)
3486 			return err;
3487 
3488 		if (t == BPF_WRITE)
3489 			err = check_stack_write(env, state, off, size,
3490 						value_regno, insn_idx);
3491 		else
3492 			err = check_stack_read(env, state, off, size,
3493 					       value_regno);
3494 	} else if (reg_is_pkt_pointer(reg)) {
3495 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3496 			verbose(env, "cannot write into packet\n");
3497 			return -EACCES;
3498 		}
3499 		if (t == BPF_WRITE && value_regno >= 0 &&
3500 		    is_pointer_value(env, value_regno)) {
3501 			verbose(env, "R%d leaks addr into packet\n",
3502 				value_regno);
3503 			return -EACCES;
3504 		}
3505 		err = check_packet_access(env, regno, off, size, false);
3506 		if (!err && t == BPF_READ && value_regno >= 0)
3507 			mark_reg_unknown(env, regs, value_regno);
3508 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3509 		if (t == BPF_WRITE && value_regno >= 0 &&
3510 		    is_pointer_value(env, value_regno)) {
3511 			verbose(env, "R%d leaks addr into flow keys\n",
3512 				value_regno);
3513 			return -EACCES;
3514 		}
3515 
3516 		err = check_flow_keys_access(env, off, size);
3517 		if (!err && t == BPF_READ && value_regno >= 0)
3518 			mark_reg_unknown(env, regs, value_regno);
3519 	} else if (type_is_sk_pointer(reg->type)) {
3520 		if (t == BPF_WRITE) {
3521 			verbose(env, "R%d cannot write into %s\n",
3522 				regno, reg_type_str[reg->type]);
3523 			return -EACCES;
3524 		}
3525 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3526 		if (!err && value_regno >= 0)
3527 			mark_reg_unknown(env, regs, value_regno);
3528 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3529 		err = check_tp_buffer_access(env, reg, regno, off, size);
3530 		if (!err && t == BPF_READ && value_regno >= 0)
3531 			mark_reg_unknown(env, regs, value_regno);
3532 	} else if (reg->type == PTR_TO_BTF_ID) {
3533 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3534 					      value_regno);
3535 	} else if (reg->type == CONST_PTR_TO_MAP) {
3536 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3537 					      value_regno);
3538 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3539 		if (t == BPF_WRITE) {
3540 			verbose(env, "R%d cannot write into %s\n",
3541 				regno, reg_type_str[reg->type]);
3542 			return -EACCES;
3543 		}
3544 		err = check_buffer_access(env, reg, regno, off, size, false,
3545 					  "rdonly",
3546 					  &env->prog->aux->max_rdonly_access);
3547 		if (!err && value_regno >= 0)
3548 			mark_reg_unknown(env, regs, value_regno);
3549 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3550 		err = check_buffer_access(env, reg, regno, off, size, false,
3551 					  "rdwr",
3552 					  &env->prog->aux->max_rdwr_access);
3553 		if (!err && t == BPF_READ && value_regno >= 0)
3554 			mark_reg_unknown(env, regs, value_regno);
3555 	} else {
3556 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3557 			reg_type_str[reg->type]);
3558 		return -EACCES;
3559 	}
3560 
3561 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3562 	    regs[value_regno].type == SCALAR_VALUE) {
3563 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3564 		coerce_reg_to_size(&regs[value_regno], size);
3565 	}
3566 	return err;
3567 }
3568 
3569 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3570 {
3571 	int err;
3572 
3573 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3574 	    insn->imm != 0) {
3575 		verbose(env, "BPF_XADD uses reserved fields\n");
3576 		return -EINVAL;
3577 	}
3578 
3579 	/* check src1 operand */
3580 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3581 	if (err)
3582 		return err;
3583 
3584 	/* check src2 operand */
3585 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3586 	if (err)
3587 		return err;
3588 
3589 	if (is_pointer_value(env, insn->src_reg)) {
3590 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3591 		return -EACCES;
3592 	}
3593 
3594 	if (is_ctx_reg(env, insn->dst_reg) ||
3595 	    is_pkt_reg(env, insn->dst_reg) ||
3596 	    is_flow_key_reg(env, insn->dst_reg) ||
3597 	    is_sk_reg(env, insn->dst_reg)) {
3598 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3599 			insn->dst_reg,
3600 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3601 		return -EACCES;
3602 	}
3603 
3604 	/* check whether atomic_add can read the memory */
3605 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3606 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3607 	if (err)
3608 		return err;
3609 
3610 	/* check whether atomic_add can write into the same memory */
3611 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3612 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3613 }
3614 
3615 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3616 				  int off, int access_size,
3617 				  bool zero_size_allowed)
3618 {
3619 	struct bpf_reg_state *reg = reg_state(env, regno);
3620 
3621 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3622 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3623 		if (tnum_is_const(reg->var_off)) {
3624 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3625 				regno, off, access_size);
3626 		} else {
3627 			char tn_buf[48];
3628 
3629 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3630 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3631 				regno, tn_buf, access_size);
3632 		}
3633 		return -EACCES;
3634 	}
3635 	return 0;
3636 }
3637 
3638 /* when register 'regno' is passed into function that will read 'access_size'
3639  * bytes from that pointer, make sure that it's within stack boundary
3640  * and all elements of stack are initialized.
3641  * Unlike most pointer bounds-checking functions, this one doesn't take an
3642  * 'off' argument, so it has to add in reg->off itself.
3643  */
3644 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3645 				int access_size, bool zero_size_allowed,
3646 				struct bpf_call_arg_meta *meta)
3647 {
3648 	struct bpf_reg_state *reg = reg_state(env, regno);
3649 	struct bpf_func_state *state = func(env, reg);
3650 	int err, min_off, max_off, i, j, slot, spi;
3651 
3652 	if (tnum_is_const(reg->var_off)) {
3653 		min_off = max_off = reg->var_off.value + reg->off;
3654 		err = __check_stack_boundary(env, regno, min_off, access_size,
3655 					     zero_size_allowed);
3656 		if (err)
3657 			return err;
3658 	} else {
3659 		/* Variable offset is prohibited for unprivileged mode for
3660 		 * simplicity since it requires corresponding support in
3661 		 * Spectre masking for stack ALU.
3662 		 * See also retrieve_ptr_limit().
3663 		 */
3664 		if (!env->bypass_spec_v1) {
3665 			char tn_buf[48];
3666 
3667 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3668 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3669 				regno, tn_buf);
3670 			return -EACCES;
3671 		}
3672 		/* Only initialized buffer on stack is allowed to be accessed
3673 		 * with variable offset. With uninitialized buffer it's hard to
3674 		 * guarantee that whole memory is marked as initialized on
3675 		 * helper return since specific bounds are unknown what may
3676 		 * cause uninitialized stack leaking.
3677 		 */
3678 		if (meta && meta->raw_mode)
3679 			meta = NULL;
3680 
3681 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3682 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3683 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3684 				regno);
3685 			return -EACCES;
3686 		}
3687 		min_off = reg->smin_value + reg->off;
3688 		max_off = reg->smax_value + reg->off;
3689 		err = __check_stack_boundary(env, regno, min_off, access_size,
3690 					     zero_size_allowed);
3691 		if (err) {
3692 			verbose(env, "R%d min value is outside of stack bound\n",
3693 				regno);
3694 			return err;
3695 		}
3696 		err = __check_stack_boundary(env, regno, max_off, access_size,
3697 					     zero_size_allowed);
3698 		if (err) {
3699 			verbose(env, "R%d max value is outside of stack bound\n",
3700 				regno);
3701 			return err;
3702 		}
3703 	}
3704 
3705 	if (meta && meta->raw_mode) {
3706 		meta->access_size = access_size;
3707 		meta->regno = regno;
3708 		return 0;
3709 	}
3710 
3711 	for (i = min_off; i < max_off + access_size; i++) {
3712 		u8 *stype;
3713 
3714 		slot = -i - 1;
3715 		spi = slot / BPF_REG_SIZE;
3716 		if (state->allocated_stack <= slot)
3717 			goto err;
3718 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3719 		if (*stype == STACK_MISC)
3720 			goto mark;
3721 		if (*stype == STACK_ZERO) {
3722 			/* helper can write anything into the stack */
3723 			*stype = STACK_MISC;
3724 			goto mark;
3725 		}
3726 
3727 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3728 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3729 			goto mark;
3730 
3731 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3732 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3733 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3734 			for (j = 0; j < BPF_REG_SIZE; j++)
3735 				state->stack[spi].slot_type[j] = STACK_MISC;
3736 			goto mark;
3737 		}
3738 
3739 err:
3740 		if (tnum_is_const(reg->var_off)) {
3741 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3742 				min_off, i - min_off, access_size);
3743 		} else {
3744 			char tn_buf[48];
3745 
3746 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3747 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3748 				tn_buf, i - min_off, access_size);
3749 		}
3750 		return -EACCES;
3751 mark:
3752 		/* reading any byte out of 8-byte 'spill_slot' will cause
3753 		 * the whole slot to be marked as 'read'
3754 		 */
3755 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3756 			      state->stack[spi].spilled_ptr.parent,
3757 			      REG_LIVE_READ64);
3758 	}
3759 	return update_stack_depth(env, state, min_off);
3760 }
3761 
3762 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3763 				   int access_size, bool zero_size_allowed,
3764 				   struct bpf_call_arg_meta *meta)
3765 {
3766 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3767 
3768 	switch (reg->type) {
3769 	case PTR_TO_PACKET:
3770 	case PTR_TO_PACKET_META:
3771 		return check_packet_access(env, regno, reg->off, access_size,
3772 					   zero_size_allowed);
3773 	case PTR_TO_MAP_VALUE:
3774 		if (check_map_access_type(env, regno, reg->off, access_size,
3775 					  meta && meta->raw_mode ? BPF_WRITE :
3776 					  BPF_READ))
3777 			return -EACCES;
3778 		return check_map_access(env, regno, reg->off, access_size,
3779 					zero_size_allowed);
3780 	case PTR_TO_MEM:
3781 		return check_mem_region_access(env, regno, reg->off,
3782 					       access_size, reg->mem_size,
3783 					       zero_size_allowed);
3784 	case PTR_TO_RDONLY_BUF:
3785 		if (meta && meta->raw_mode)
3786 			return -EACCES;
3787 		return check_buffer_access(env, reg, regno, reg->off,
3788 					   access_size, zero_size_allowed,
3789 					   "rdonly",
3790 					   &env->prog->aux->max_rdonly_access);
3791 	case PTR_TO_RDWR_BUF:
3792 		return check_buffer_access(env, reg, regno, reg->off,
3793 					   access_size, zero_size_allowed,
3794 					   "rdwr",
3795 					   &env->prog->aux->max_rdwr_access);
3796 	case PTR_TO_STACK:
3797 		return check_stack_boundary(env, regno, access_size,
3798 					    zero_size_allowed, meta);
3799 	default: /* scalar_value or invalid ptr */
3800 		/* Allow zero-byte read from NULL, regardless of pointer type */
3801 		if (zero_size_allowed && access_size == 0 &&
3802 		    register_is_null(reg))
3803 			return 0;
3804 
3805 		verbose(env, "R%d type=%s expected=%s\n", regno,
3806 			reg_type_str[reg->type],
3807 			reg_type_str[PTR_TO_STACK]);
3808 		return -EACCES;
3809 	}
3810 }
3811 
3812 /* Implementation details:
3813  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3814  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3815  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3816  * value_or_null->value transition, since the verifier only cares about
3817  * the range of access to valid map value pointer and doesn't care about actual
3818  * address of the map element.
3819  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3820  * reg->id > 0 after value_or_null->value transition. By doing so
3821  * two bpf_map_lookups will be considered two different pointers that
3822  * point to different bpf_spin_locks.
3823  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3824  * dead-locks.
3825  * Since only one bpf_spin_lock is allowed the checks are simpler than
3826  * reg_is_refcounted() logic. The verifier needs to remember only
3827  * one spin_lock instead of array of acquired_refs.
3828  * cur_state->active_spin_lock remembers which map value element got locked
3829  * and clears it after bpf_spin_unlock.
3830  */
3831 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3832 			     bool is_lock)
3833 {
3834 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3835 	struct bpf_verifier_state *cur = env->cur_state;
3836 	bool is_const = tnum_is_const(reg->var_off);
3837 	struct bpf_map *map = reg->map_ptr;
3838 	u64 val = reg->var_off.value;
3839 
3840 	if (!is_const) {
3841 		verbose(env,
3842 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3843 			regno);
3844 		return -EINVAL;
3845 	}
3846 	if (!map->btf) {
3847 		verbose(env,
3848 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3849 			map->name);
3850 		return -EINVAL;
3851 	}
3852 	if (!map_value_has_spin_lock(map)) {
3853 		if (map->spin_lock_off == -E2BIG)
3854 			verbose(env,
3855 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3856 				map->name);
3857 		else if (map->spin_lock_off == -ENOENT)
3858 			verbose(env,
3859 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3860 				map->name);
3861 		else
3862 			verbose(env,
3863 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3864 				map->name);
3865 		return -EINVAL;
3866 	}
3867 	if (map->spin_lock_off != val + reg->off) {
3868 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3869 			val + reg->off);
3870 		return -EINVAL;
3871 	}
3872 	if (is_lock) {
3873 		if (cur->active_spin_lock) {
3874 			verbose(env,
3875 				"Locking two bpf_spin_locks are not allowed\n");
3876 			return -EINVAL;
3877 		}
3878 		cur->active_spin_lock = reg->id;
3879 	} else {
3880 		if (!cur->active_spin_lock) {
3881 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3882 			return -EINVAL;
3883 		}
3884 		if (cur->active_spin_lock != reg->id) {
3885 			verbose(env, "bpf_spin_unlock of different lock\n");
3886 			return -EINVAL;
3887 		}
3888 		cur->active_spin_lock = 0;
3889 	}
3890 	return 0;
3891 }
3892 
3893 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3894 {
3895 	return type == ARG_PTR_TO_MEM ||
3896 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3897 	       type == ARG_PTR_TO_UNINIT_MEM;
3898 }
3899 
3900 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3901 {
3902 	return type == ARG_CONST_SIZE ||
3903 	       type == ARG_CONST_SIZE_OR_ZERO;
3904 }
3905 
3906 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3907 {
3908 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3909 }
3910 
3911 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3912 {
3913 	return type == ARG_PTR_TO_INT ||
3914 	       type == ARG_PTR_TO_LONG;
3915 }
3916 
3917 static int int_ptr_type_to_size(enum bpf_arg_type type)
3918 {
3919 	if (type == ARG_PTR_TO_INT)
3920 		return sizeof(u32);
3921 	else if (type == ARG_PTR_TO_LONG)
3922 		return sizeof(u64);
3923 
3924 	return -EINVAL;
3925 }
3926 
3927 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3928 				 const struct bpf_call_arg_meta *meta,
3929 				 enum bpf_arg_type *arg_type)
3930 {
3931 	if (!meta->map_ptr) {
3932 		/* kernel subsystem misconfigured verifier */
3933 		verbose(env, "invalid map_ptr to access map->type\n");
3934 		return -EACCES;
3935 	}
3936 
3937 	switch (meta->map_ptr->map_type) {
3938 	case BPF_MAP_TYPE_SOCKMAP:
3939 	case BPF_MAP_TYPE_SOCKHASH:
3940 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3941 			*arg_type = ARG_PTR_TO_SOCKET;
3942 		} else {
3943 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
3944 			return -EINVAL;
3945 		}
3946 		break;
3947 
3948 	default:
3949 		break;
3950 	}
3951 	return 0;
3952 }
3953 
3954 struct bpf_reg_types {
3955 	const enum bpf_reg_type types[10];
3956 };
3957 
3958 static const struct bpf_reg_types map_key_value_types = {
3959 	.types = {
3960 		PTR_TO_STACK,
3961 		PTR_TO_PACKET,
3962 		PTR_TO_PACKET_META,
3963 		PTR_TO_MAP_VALUE,
3964 	},
3965 };
3966 
3967 static const struct bpf_reg_types sock_types = {
3968 	.types = {
3969 		PTR_TO_SOCK_COMMON,
3970 		PTR_TO_SOCKET,
3971 		PTR_TO_TCP_SOCK,
3972 		PTR_TO_XDP_SOCK,
3973 	},
3974 };
3975 
3976 static const struct bpf_reg_types mem_types = {
3977 	.types = {
3978 		PTR_TO_STACK,
3979 		PTR_TO_PACKET,
3980 		PTR_TO_PACKET_META,
3981 		PTR_TO_MAP_VALUE,
3982 		PTR_TO_MEM,
3983 		PTR_TO_RDONLY_BUF,
3984 		PTR_TO_RDWR_BUF,
3985 	},
3986 };
3987 
3988 static const struct bpf_reg_types int_ptr_types = {
3989 	.types = {
3990 		PTR_TO_STACK,
3991 		PTR_TO_PACKET,
3992 		PTR_TO_PACKET_META,
3993 		PTR_TO_MAP_VALUE,
3994 	},
3995 };
3996 
3997 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
3998 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
3999 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4000 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4001 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4002 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4003 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4004 
4005 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4006 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4007 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4008 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4009 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4010 	[ARG_CONST_SIZE]		= &scalar_types,
4011 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4012 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4013 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4014 	[ARG_PTR_TO_CTX]		= &context_types,
4015 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4016 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4017 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4018 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4019 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4020 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4021 	[ARG_PTR_TO_MEM]		= &mem_types,
4022 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4023 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4024 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4025 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4026 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4027 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4028 };
4029 
4030 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4031 			  const struct bpf_reg_types *compatible)
4032 {
4033 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4034 	enum bpf_reg_type expected, type = reg->type;
4035 	int i, j;
4036 
4037 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4038 		expected = compatible->types[i];
4039 		if (expected == NOT_INIT)
4040 			break;
4041 
4042 		if (type == expected)
4043 			return 0;
4044 	}
4045 
4046 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4047 	for (j = 0; j + 1 < i; j++)
4048 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4049 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4050 	return -EACCES;
4051 }
4052 
4053 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4054 			  struct bpf_call_arg_meta *meta,
4055 			  const struct bpf_func_proto *fn)
4056 {
4057 	u32 regno = BPF_REG_1 + arg;
4058 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4059 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4060 	const struct bpf_reg_types *compatible;
4061 	enum bpf_reg_type type = reg->type;
4062 	int err = 0;
4063 
4064 	if (arg_type == ARG_DONTCARE)
4065 		return 0;
4066 
4067 	err = check_reg_arg(env, regno, SRC_OP);
4068 	if (err)
4069 		return err;
4070 
4071 	if (arg_type == ARG_ANYTHING) {
4072 		if (is_pointer_value(env, regno)) {
4073 			verbose(env, "R%d leaks addr into helper function\n",
4074 				regno);
4075 			return -EACCES;
4076 		}
4077 		return 0;
4078 	}
4079 
4080 	if (type_is_pkt_pointer(type) &&
4081 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4082 		verbose(env, "helper access to the packet is not allowed\n");
4083 		return -EACCES;
4084 	}
4085 
4086 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4087 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4088 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4089 		err = resolve_map_arg_type(env, meta, &arg_type);
4090 		if (err)
4091 			return err;
4092 	}
4093 
4094 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4095 		/* A NULL register has a SCALAR_VALUE type, so skip
4096 		 * type checking.
4097 		 */
4098 		goto skip_type_check;
4099 
4100 	compatible = compatible_reg_types[arg_type];
4101 	if (!compatible) {
4102 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4103 		return -EFAULT;
4104 	}
4105 
4106 	err = check_reg_type(env, regno, compatible);
4107 	if (err)
4108 		return err;
4109 
4110 	if (type == PTR_TO_BTF_ID) {
4111 		const u32 *btf_id = fn->arg_btf_id[arg];
4112 
4113 		if (!btf_id) {
4114 			verbose(env, "verifier internal error: missing BTF ID\n");
4115 			return -EFAULT;
4116 		}
4117 
4118 		if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, *btf_id)) {
4119 			verbose(env, "R%d is of type %s but %s is expected\n",
4120 				regno, kernel_type_name(reg->btf_id), kernel_type_name(*btf_id));
4121 			return -EACCES;
4122 		}
4123 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4124 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4125 				regno);
4126 			return -EACCES;
4127 		}
4128 	} else if (type == PTR_TO_CTX) {
4129 		err = check_ctx_reg(env, reg, regno);
4130 		if (err < 0)
4131 			return err;
4132 	}
4133 
4134 skip_type_check:
4135 	if (reg->ref_obj_id) {
4136 		if (meta->ref_obj_id) {
4137 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4138 				regno, reg->ref_obj_id,
4139 				meta->ref_obj_id);
4140 			return -EFAULT;
4141 		}
4142 		meta->ref_obj_id = reg->ref_obj_id;
4143 	}
4144 
4145 	if (arg_type == ARG_CONST_MAP_PTR) {
4146 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4147 		meta->map_ptr = reg->map_ptr;
4148 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4149 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4150 		 * check that [key, key + map->key_size) are within
4151 		 * stack limits and initialized
4152 		 */
4153 		if (!meta->map_ptr) {
4154 			/* in function declaration map_ptr must come before
4155 			 * map_key, so that it's verified and known before
4156 			 * we have to check map_key here. Otherwise it means
4157 			 * that kernel subsystem misconfigured verifier
4158 			 */
4159 			verbose(env, "invalid map_ptr to access map->key\n");
4160 			return -EACCES;
4161 		}
4162 		err = check_helper_mem_access(env, regno,
4163 					      meta->map_ptr->key_size, false,
4164 					      NULL);
4165 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4166 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4167 		    !register_is_null(reg)) ||
4168 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4169 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4170 		 * check [value, value + map->value_size) validity
4171 		 */
4172 		if (!meta->map_ptr) {
4173 			/* kernel subsystem misconfigured verifier */
4174 			verbose(env, "invalid map_ptr to access map->value\n");
4175 			return -EACCES;
4176 		}
4177 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4178 		err = check_helper_mem_access(env, regno,
4179 					      meta->map_ptr->value_size, false,
4180 					      meta);
4181 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4182 		if (meta->func_id == BPF_FUNC_spin_lock) {
4183 			if (process_spin_lock(env, regno, true))
4184 				return -EACCES;
4185 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4186 			if (process_spin_lock(env, regno, false))
4187 				return -EACCES;
4188 		} else {
4189 			verbose(env, "verifier internal error\n");
4190 			return -EFAULT;
4191 		}
4192 	} else if (arg_type_is_mem_ptr(arg_type)) {
4193 		/* The access to this pointer is only checked when we hit the
4194 		 * next is_mem_size argument below.
4195 		 */
4196 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4197 	} else if (arg_type_is_mem_size(arg_type)) {
4198 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4199 
4200 		/* This is used to refine r0 return value bounds for helpers
4201 		 * that enforce this value as an upper bound on return values.
4202 		 * See do_refine_retval_range() for helpers that can refine
4203 		 * the return value. C type of helper is u32 so we pull register
4204 		 * bound from umax_value however, if negative verifier errors
4205 		 * out. Only upper bounds can be learned because retval is an
4206 		 * int type and negative retvals are allowed.
4207 		 */
4208 		meta->msize_max_value = reg->umax_value;
4209 
4210 		/* The register is SCALAR_VALUE; the access check
4211 		 * happens using its boundaries.
4212 		 */
4213 		if (!tnum_is_const(reg->var_off))
4214 			/* For unprivileged variable accesses, disable raw
4215 			 * mode so that the program is required to
4216 			 * initialize all the memory that the helper could
4217 			 * just partially fill up.
4218 			 */
4219 			meta = NULL;
4220 
4221 		if (reg->smin_value < 0) {
4222 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4223 				regno);
4224 			return -EACCES;
4225 		}
4226 
4227 		if (reg->umin_value == 0) {
4228 			err = check_helper_mem_access(env, regno - 1, 0,
4229 						      zero_size_allowed,
4230 						      meta);
4231 			if (err)
4232 				return err;
4233 		}
4234 
4235 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4236 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4237 				regno);
4238 			return -EACCES;
4239 		}
4240 		err = check_helper_mem_access(env, regno - 1,
4241 					      reg->umax_value,
4242 					      zero_size_allowed, meta);
4243 		if (!err)
4244 			err = mark_chain_precision(env, regno);
4245 	} else if (arg_type_is_alloc_size(arg_type)) {
4246 		if (!tnum_is_const(reg->var_off)) {
4247 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4248 				regno);
4249 			return -EACCES;
4250 		}
4251 		meta->mem_size = reg->var_off.value;
4252 	} else if (arg_type_is_int_ptr(arg_type)) {
4253 		int size = int_ptr_type_to_size(arg_type);
4254 
4255 		err = check_helper_mem_access(env, regno, size, false, meta);
4256 		if (err)
4257 			return err;
4258 		err = check_ptr_alignment(env, reg, 0, size, true);
4259 	}
4260 
4261 	return err;
4262 }
4263 
4264 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4265 {
4266 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4267 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4268 
4269 	if (func_id != BPF_FUNC_map_update_elem)
4270 		return false;
4271 
4272 	/* It's not possible to get access to a locked struct sock in these
4273 	 * contexts, so updating is safe.
4274 	 */
4275 	switch (type) {
4276 	case BPF_PROG_TYPE_TRACING:
4277 		if (eatype == BPF_TRACE_ITER)
4278 			return true;
4279 		break;
4280 	case BPF_PROG_TYPE_SOCKET_FILTER:
4281 	case BPF_PROG_TYPE_SCHED_CLS:
4282 	case BPF_PROG_TYPE_SCHED_ACT:
4283 	case BPF_PROG_TYPE_XDP:
4284 	case BPF_PROG_TYPE_SK_REUSEPORT:
4285 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4286 	case BPF_PROG_TYPE_SK_LOOKUP:
4287 		return true;
4288 	default:
4289 		break;
4290 	}
4291 
4292 	verbose(env, "cannot update sockmap in this context\n");
4293 	return false;
4294 }
4295 
4296 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4297 {
4298 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4299 }
4300 
4301 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4302 					struct bpf_map *map, int func_id)
4303 {
4304 	if (!map)
4305 		return 0;
4306 
4307 	/* We need a two way check, first is from map perspective ... */
4308 	switch (map->map_type) {
4309 	case BPF_MAP_TYPE_PROG_ARRAY:
4310 		if (func_id != BPF_FUNC_tail_call)
4311 			goto error;
4312 		break;
4313 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4314 		if (func_id != BPF_FUNC_perf_event_read &&
4315 		    func_id != BPF_FUNC_perf_event_output &&
4316 		    func_id != BPF_FUNC_skb_output &&
4317 		    func_id != BPF_FUNC_perf_event_read_value &&
4318 		    func_id != BPF_FUNC_xdp_output)
4319 			goto error;
4320 		break;
4321 	case BPF_MAP_TYPE_RINGBUF:
4322 		if (func_id != BPF_FUNC_ringbuf_output &&
4323 		    func_id != BPF_FUNC_ringbuf_reserve &&
4324 		    func_id != BPF_FUNC_ringbuf_submit &&
4325 		    func_id != BPF_FUNC_ringbuf_discard &&
4326 		    func_id != BPF_FUNC_ringbuf_query)
4327 			goto error;
4328 		break;
4329 	case BPF_MAP_TYPE_STACK_TRACE:
4330 		if (func_id != BPF_FUNC_get_stackid)
4331 			goto error;
4332 		break;
4333 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4334 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4335 		    func_id != BPF_FUNC_current_task_under_cgroup)
4336 			goto error;
4337 		break;
4338 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4339 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4340 		if (func_id != BPF_FUNC_get_local_storage)
4341 			goto error;
4342 		break;
4343 	case BPF_MAP_TYPE_DEVMAP:
4344 	case BPF_MAP_TYPE_DEVMAP_HASH:
4345 		if (func_id != BPF_FUNC_redirect_map &&
4346 		    func_id != BPF_FUNC_map_lookup_elem)
4347 			goto error;
4348 		break;
4349 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4350 	 * appear.
4351 	 */
4352 	case BPF_MAP_TYPE_CPUMAP:
4353 		if (func_id != BPF_FUNC_redirect_map)
4354 			goto error;
4355 		break;
4356 	case BPF_MAP_TYPE_XSKMAP:
4357 		if (func_id != BPF_FUNC_redirect_map &&
4358 		    func_id != BPF_FUNC_map_lookup_elem)
4359 			goto error;
4360 		break;
4361 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4362 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4363 		if (func_id != BPF_FUNC_map_lookup_elem)
4364 			goto error;
4365 		break;
4366 	case BPF_MAP_TYPE_SOCKMAP:
4367 		if (func_id != BPF_FUNC_sk_redirect_map &&
4368 		    func_id != BPF_FUNC_sock_map_update &&
4369 		    func_id != BPF_FUNC_map_delete_elem &&
4370 		    func_id != BPF_FUNC_msg_redirect_map &&
4371 		    func_id != BPF_FUNC_sk_select_reuseport &&
4372 		    func_id != BPF_FUNC_map_lookup_elem &&
4373 		    !may_update_sockmap(env, func_id))
4374 			goto error;
4375 		break;
4376 	case BPF_MAP_TYPE_SOCKHASH:
4377 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4378 		    func_id != BPF_FUNC_sock_hash_update &&
4379 		    func_id != BPF_FUNC_map_delete_elem &&
4380 		    func_id != BPF_FUNC_msg_redirect_hash &&
4381 		    func_id != BPF_FUNC_sk_select_reuseport &&
4382 		    func_id != BPF_FUNC_map_lookup_elem &&
4383 		    !may_update_sockmap(env, func_id))
4384 			goto error;
4385 		break;
4386 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4387 		if (func_id != BPF_FUNC_sk_select_reuseport)
4388 			goto error;
4389 		break;
4390 	case BPF_MAP_TYPE_QUEUE:
4391 	case BPF_MAP_TYPE_STACK:
4392 		if (func_id != BPF_FUNC_map_peek_elem &&
4393 		    func_id != BPF_FUNC_map_pop_elem &&
4394 		    func_id != BPF_FUNC_map_push_elem)
4395 			goto error;
4396 		break;
4397 	case BPF_MAP_TYPE_SK_STORAGE:
4398 		if (func_id != BPF_FUNC_sk_storage_get &&
4399 		    func_id != BPF_FUNC_sk_storage_delete)
4400 			goto error;
4401 		break;
4402 	case BPF_MAP_TYPE_INODE_STORAGE:
4403 		if (func_id != BPF_FUNC_inode_storage_get &&
4404 		    func_id != BPF_FUNC_inode_storage_delete)
4405 			goto error;
4406 		break;
4407 	default:
4408 		break;
4409 	}
4410 
4411 	/* ... and second from the function itself. */
4412 	switch (func_id) {
4413 	case BPF_FUNC_tail_call:
4414 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4415 			goto error;
4416 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4417 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4418 			return -EINVAL;
4419 		}
4420 		break;
4421 	case BPF_FUNC_perf_event_read:
4422 	case BPF_FUNC_perf_event_output:
4423 	case BPF_FUNC_perf_event_read_value:
4424 	case BPF_FUNC_skb_output:
4425 	case BPF_FUNC_xdp_output:
4426 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4427 			goto error;
4428 		break;
4429 	case BPF_FUNC_get_stackid:
4430 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4431 			goto error;
4432 		break;
4433 	case BPF_FUNC_current_task_under_cgroup:
4434 	case BPF_FUNC_skb_under_cgroup:
4435 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4436 			goto error;
4437 		break;
4438 	case BPF_FUNC_redirect_map:
4439 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4440 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4441 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4442 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4443 			goto error;
4444 		break;
4445 	case BPF_FUNC_sk_redirect_map:
4446 	case BPF_FUNC_msg_redirect_map:
4447 	case BPF_FUNC_sock_map_update:
4448 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4449 			goto error;
4450 		break;
4451 	case BPF_FUNC_sk_redirect_hash:
4452 	case BPF_FUNC_msg_redirect_hash:
4453 	case BPF_FUNC_sock_hash_update:
4454 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4455 			goto error;
4456 		break;
4457 	case BPF_FUNC_get_local_storage:
4458 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4459 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4460 			goto error;
4461 		break;
4462 	case BPF_FUNC_sk_select_reuseport:
4463 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4464 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4465 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4466 			goto error;
4467 		break;
4468 	case BPF_FUNC_map_peek_elem:
4469 	case BPF_FUNC_map_pop_elem:
4470 	case BPF_FUNC_map_push_elem:
4471 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4472 		    map->map_type != BPF_MAP_TYPE_STACK)
4473 			goto error;
4474 		break;
4475 	case BPF_FUNC_sk_storage_get:
4476 	case BPF_FUNC_sk_storage_delete:
4477 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4478 			goto error;
4479 		break;
4480 	case BPF_FUNC_inode_storage_get:
4481 	case BPF_FUNC_inode_storage_delete:
4482 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4483 			goto error;
4484 		break;
4485 	default:
4486 		break;
4487 	}
4488 
4489 	return 0;
4490 error:
4491 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4492 		map->map_type, func_id_name(func_id), func_id);
4493 	return -EINVAL;
4494 }
4495 
4496 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4497 {
4498 	int count = 0;
4499 
4500 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4501 		count++;
4502 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4503 		count++;
4504 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4505 		count++;
4506 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4507 		count++;
4508 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4509 		count++;
4510 
4511 	/* We only support one arg being in raw mode at the moment,
4512 	 * which is sufficient for the helper functions we have
4513 	 * right now.
4514 	 */
4515 	return count <= 1;
4516 }
4517 
4518 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4519 				    enum bpf_arg_type arg_next)
4520 {
4521 	return (arg_type_is_mem_ptr(arg_curr) &&
4522 	        !arg_type_is_mem_size(arg_next)) ||
4523 	       (!arg_type_is_mem_ptr(arg_curr) &&
4524 		arg_type_is_mem_size(arg_next));
4525 }
4526 
4527 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4528 {
4529 	/* bpf_xxx(..., buf, len) call will access 'len'
4530 	 * bytes from memory 'buf'. Both arg types need
4531 	 * to be paired, so make sure there's no buggy
4532 	 * helper function specification.
4533 	 */
4534 	if (arg_type_is_mem_size(fn->arg1_type) ||
4535 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4536 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4537 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4538 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4539 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4540 		return false;
4541 
4542 	return true;
4543 }
4544 
4545 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4546 {
4547 	int count = 0;
4548 
4549 	if (arg_type_may_be_refcounted(fn->arg1_type))
4550 		count++;
4551 	if (arg_type_may_be_refcounted(fn->arg2_type))
4552 		count++;
4553 	if (arg_type_may_be_refcounted(fn->arg3_type))
4554 		count++;
4555 	if (arg_type_may_be_refcounted(fn->arg4_type))
4556 		count++;
4557 	if (arg_type_may_be_refcounted(fn->arg5_type))
4558 		count++;
4559 
4560 	/* A reference acquiring function cannot acquire
4561 	 * another refcounted ptr.
4562 	 */
4563 	if (may_be_acquire_function(func_id) && count)
4564 		return false;
4565 
4566 	/* We only support one arg being unreferenced at the moment,
4567 	 * which is sufficient for the helper functions we have right now.
4568 	 */
4569 	return count <= 1;
4570 }
4571 
4572 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4573 {
4574 	int i;
4575 
4576 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++)
4577 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4578 			return false;
4579 
4580 	return true;
4581 }
4582 
4583 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4584 {
4585 	return check_raw_mode_ok(fn) &&
4586 	       check_arg_pair_ok(fn) &&
4587 	       check_btf_id_ok(fn) &&
4588 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4589 }
4590 
4591 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4592  * are now invalid, so turn them into unknown SCALAR_VALUE.
4593  */
4594 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4595 				     struct bpf_func_state *state)
4596 {
4597 	struct bpf_reg_state *regs = state->regs, *reg;
4598 	int i;
4599 
4600 	for (i = 0; i < MAX_BPF_REG; i++)
4601 		if (reg_is_pkt_pointer_any(&regs[i]))
4602 			mark_reg_unknown(env, regs, i);
4603 
4604 	bpf_for_each_spilled_reg(i, state, reg) {
4605 		if (!reg)
4606 			continue;
4607 		if (reg_is_pkt_pointer_any(reg))
4608 			__mark_reg_unknown(env, reg);
4609 	}
4610 }
4611 
4612 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4613 {
4614 	struct bpf_verifier_state *vstate = env->cur_state;
4615 	int i;
4616 
4617 	for (i = 0; i <= vstate->curframe; i++)
4618 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4619 }
4620 
4621 static void release_reg_references(struct bpf_verifier_env *env,
4622 				   struct bpf_func_state *state,
4623 				   int ref_obj_id)
4624 {
4625 	struct bpf_reg_state *regs = state->regs, *reg;
4626 	int i;
4627 
4628 	for (i = 0; i < MAX_BPF_REG; i++)
4629 		if (regs[i].ref_obj_id == ref_obj_id)
4630 			mark_reg_unknown(env, regs, i);
4631 
4632 	bpf_for_each_spilled_reg(i, state, reg) {
4633 		if (!reg)
4634 			continue;
4635 		if (reg->ref_obj_id == ref_obj_id)
4636 			__mark_reg_unknown(env, reg);
4637 	}
4638 }
4639 
4640 /* The pointer with the specified id has released its reference to kernel
4641  * resources. Identify all copies of the same pointer and clear the reference.
4642  */
4643 static int release_reference(struct bpf_verifier_env *env,
4644 			     int ref_obj_id)
4645 {
4646 	struct bpf_verifier_state *vstate = env->cur_state;
4647 	int err;
4648 	int i;
4649 
4650 	err = release_reference_state(cur_func(env), ref_obj_id);
4651 	if (err)
4652 		return err;
4653 
4654 	for (i = 0; i <= vstate->curframe; i++)
4655 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4656 
4657 	return 0;
4658 }
4659 
4660 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4661 				    struct bpf_reg_state *regs)
4662 {
4663 	int i;
4664 
4665 	/* after the call registers r0 - r5 were scratched */
4666 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4667 		mark_reg_not_init(env, regs, caller_saved[i]);
4668 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4669 	}
4670 }
4671 
4672 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4673 			   int *insn_idx)
4674 {
4675 	struct bpf_verifier_state *state = env->cur_state;
4676 	struct bpf_func_info_aux *func_info_aux;
4677 	struct bpf_func_state *caller, *callee;
4678 	int i, err, subprog, target_insn;
4679 	bool is_global = false;
4680 
4681 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4682 		verbose(env, "the call stack of %d frames is too deep\n",
4683 			state->curframe + 2);
4684 		return -E2BIG;
4685 	}
4686 
4687 	target_insn = *insn_idx + insn->imm;
4688 	subprog = find_subprog(env, target_insn + 1);
4689 	if (subprog < 0) {
4690 		verbose(env, "verifier bug. No program starts at insn %d\n",
4691 			target_insn + 1);
4692 		return -EFAULT;
4693 	}
4694 
4695 	caller = state->frame[state->curframe];
4696 	if (state->frame[state->curframe + 1]) {
4697 		verbose(env, "verifier bug. Frame %d already allocated\n",
4698 			state->curframe + 1);
4699 		return -EFAULT;
4700 	}
4701 
4702 	func_info_aux = env->prog->aux->func_info_aux;
4703 	if (func_info_aux)
4704 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4705 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4706 	if (err == -EFAULT)
4707 		return err;
4708 	if (is_global) {
4709 		if (err) {
4710 			verbose(env, "Caller passes invalid args into func#%d\n",
4711 				subprog);
4712 			return err;
4713 		} else {
4714 			if (env->log.level & BPF_LOG_LEVEL)
4715 				verbose(env,
4716 					"Func#%d is global and valid. Skipping.\n",
4717 					subprog);
4718 			clear_caller_saved_regs(env, caller->regs);
4719 
4720 			/* All global functions return SCALAR_VALUE */
4721 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4722 
4723 			/* continue with next insn after call */
4724 			return 0;
4725 		}
4726 	}
4727 
4728 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4729 	if (!callee)
4730 		return -ENOMEM;
4731 	state->frame[state->curframe + 1] = callee;
4732 
4733 	/* callee cannot access r0, r6 - r9 for reading and has to write
4734 	 * into its own stack before reading from it.
4735 	 * callee can read/write into caller's stack
4736 	 */
4737 	init_func_state(env, callee,
4738 			/* remember the callsite, it will be used by bpf_exit */
4739 			*insn_idx /* callsite */,
4740 			state->curframe + 1 /* frameno within this callchain */,
4741 			subprog /* subprog number within this prog */);
4742 
4743 	/* Transfer references to the callee */
4744 	err = transfer_reference_state(callee, caller);
4745 	if (err)
4746 		return err;
4747 
4748 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4749 	 * pointers, which connects us up to the liveness chain
4750 	 */
4751 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4752 		callee->regs[i] = caller->regs[i];
4753 
4754 	clear_caller_saved_regs(env, caller->regs);
4755 
4756 	/* only increment it after check_reg_arg() finished */
4757 	state->curframe++;
4758 
4759 	/* and go analyze first insn of the callee */
4760 	*insn_idx = target_insn;
4761 
4762 	if (env->log.level & BPF_LOG_LEVEL) {
4763 		verbose(env, "caller:\n");
4764 		print_verifier_state(env, caller);
4765 		verbose(env, "callee:\n");
4766 		print_verifier_state(env, callee);
4767 	}
4768 	return 0;
4769 }
4770 
4771 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4772 {
4773 	struct bpf_verifier_state *state = env->cur_state;
4774 	struct bpf_func_state *caller, *callee;
4775 	struct bpf_reg_state *r0;
4776 	int err;
4777 
4778 	callee = state->frame[state->curframe];
4779 	r0 = &callee->regs[BPF_REG_0];
4780 	if (r0->type == PTR_TO_STACK) {
4781 		/* technically it's ok to return caller's stack pointer
4782 		 * (or caller's caller's pointer) back to the caller,
4783 		 * since these pointers are valid. Only current stack
4784 		 * pointer will be invalid as soon as function exits,
4785 		 * but let's be conservative
4786 		 */
4787 		verbose(env, "cannot return stack pointer to the caller\n");
4788 		return -EINVAL;
4789 	}
4790 
4791 	state->curframe--;
4792 	caller = state->frame[state->curframe];
4793 	/* return to the caller whatever r0 had in the callee */
4794 	caller->regs[BPF_REG_0] = *r0;
4795 
4796 	/* Transfer references to the caller */
4797 	err = transfer_reference_state(caller, callee);
4798 	if (err)
4799 		return err;
4800 
4801 	*insn_idx = callee->callsite + 1;
4802 	if (env->log.level & BPF_LOG_LEVEL) {
4803 		verbose(env, "returning from callee:\n");
4804 		print_verifier_state(env, callee);
4805 		verbose(env, "to caller at %d:\n", *insn_idx);
4806 		print_verifier_state(env, caller);
4807 	}
4808 	/* clear everything in the callee */
4809 	free_func_state(callee);
4810 	state->frame[state->curframe + 1] = NULL;
4811 	return 0;
4812 }
4813 
4814 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4815 				   int func_id,
4816 				   struct bpf_call_arg_meta *meta)
4817 {
4818 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4819 
4820 	if (ret_type != RET_INTEGER ||
4821 	    (func_id != BPF_FUNC_get_stack &&
4822 	     func_id != BPF_FUNC_probe_read_str &&
4823 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4824 	     func_id != BPF_FUNC_probe_read_user_str))
4825 		return;
4826 
4827 	ret_reg->smax_value = meta->msize_max_value;
4828 	ret_reg->s32_max_value = meta->msize_max_value;
4829 	__reg_deduce_bounds(ret_reg);
4830 	__reg_bound_offset(ret_reg);
4831 	__update_reg_bounds(ret_reg);
4832 }
4833 
4834 static int
4835 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4836 		int func_id, int insn_idx)
4837 {
4838 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4839 	struct bpf_map *map = meta->map_ptr;
4840 
4841 	if (func_id != BPF_FUNC_tail_call &&
4842 	    func_id != BPF_FUNC_map_lookup_elem &&
4843 	    func_id != BPF_FUNC_map_update_elem &&
4844 	    func_id != BPF_FUNC_map_delete_elem &&
4845 	    func_id != BPF_FUNC_map_push_elem &&
4846 	    func_id != BPF_FUNC_map_pop_elem &&
4847 	    func_id != BPF_FUNC_map_peek_elem)
4848 		return 0;
4849 
4850 	if (map == NULL) {
4851 		verbose(env, "kernel subsystem misconfigured verifier\n");
4852 		return -EINVAL;
4853 	}
4854 
4855 	/* In case of read-only, some additional restrictions
4856 	 * need to be applied in order to prevent altering the
4857 	 * state of the map from program side.
4858 	 */
4859 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4860 	    (func_id == BPF_FUNC_map_delete_elem ||
4861 	     func_id == BPF_FUNC_map_update_elem ||
4862 	     func_id == BPF_FUNC_map_push_elem ||
4863 	     func_id == BPF_FUNC_map_pop_elem)) {
4864 		verbose(env, "write into map forbidden\n");
4865 		return -EACCES;
4866 	}
4867 
4868 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4869 		bpf_map_ptr_store(aux, meta->map_ptr,
4870 				  !meta->map_ptr->bypass_spec_v1);
4871 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4872 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4873 				  !meta->map_ptr->bypass_spec_v1);
4874 	return 0;
4875 }
4876 
4877 static int
4878 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4879 		int func_id, int insn_idx)
4880 {
4881 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4882 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4883 	struct bpf_map *map = meta->map_ptr;
4884 	struct tnum range;
4885 	u64 val;
4886 	int err;
4887 
4888 	if (func_id != BPF_FUNC_tail_call)
4889 		return 0;
4890 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4891 		verbose(env, "kernel subsystem misconfigured verifier\n");
4892 		return -EINVAL;
4893 	}
4894 
4895 	range = tnum_range(0, map->max_entries - 1);
4896 	reg = &regs[BPF_REG_3];
4897 
4898 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4899 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4900 		return 0;
4901 	}
4902 
4903 	err = mark_chain_precision(env, BPF_REG_3);
4904 	if (err)
4905 		return err;
4906 
4907 	val = reg->var_off.value;
4908 	if (bpf_map_key_unseen(aux))
4909 		bpf_map_key_store(aux, val);
4910 	else if (!bpf_map_key_poisoned(aux) &&
4911 		  bpf_map_key_immediate(aux) != val)
4912 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4913 	return 0;
4914 }
4915 
4916 static int check_reference_leak(struct bpf_verifier_env *env)
4917 {
4918 	struct bpf_func_state *state = cur_func(env);
4919 	int i;
4920 
4921 	for (i = 0; i < state->acquired_refs; i++) {
4922 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4923 			state->refs[i].id, state->refs[i].insn_idx);
4924 	}
4925 	return state->acquired_refs ? -EINVAL : 0;
4926 }
4927 
4928 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4929 {
4930 	const struct bpf_func_proto *fn = NULL;
4931 	struct bpf_reg_state *regs;
4932 	struct bpf_call_arg_meta meta;
4933 	bool changes_data;
4934 	int i, err;
4935 
4936 	/* find function prototype */
4937 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4938 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4939 			func_id);
4940 		return -EINVAL;
4941 	}
4942 
4943 	if (env->ops->get_func_proto)
4944 		fn = env->ops->get_func_proto(func_id, env->prog);
4945 	if (!fn) {
4946 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4947 			func_id);
4948 		return -EINVAL;
4949 	}
4950 
4951 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4952 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4953 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4954 		return -EINVAL;
4955 	}
4956 
4957 	if (fn->allowed && !fn->allowed(env->prog)) {
4958 		verbose(env, "helper call is not allowed in probe\n");
4959 		return -EINVAL;
4960 	}
4961 
4962 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4963 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4964 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4965 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4966 			func_id_name(func_id), func_id);
4967 		return -EINVAL;
4968 	}
4969 
4970 	memset(&meta, 0, sizeof(meta));
4971 	meta.pkt_access = fn->pkt_access;
4972 
4973 	err = check_func_proto(fn, func_id);
4974 	if (err) {
4975 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4976 			func_id_name(func_id), func_id);
4977 		return err;
4978 	}
4979 
4980 	meta.func_id = func_id;
4981 	/* check args */
4982 	for (i = 0; i < 5; i++) {
4983 		err = check_func_arg(env, i, &meta, fn);
4984 		if (err)
4985 			return err;
4986 	}
4987 
4988 	err = record_func_map(env, &meta, func_id, insn_idx);
4989 	if (err)
4990 		return err;
4991 
4992 	err = record_func_key(env, &meta, func_id, insn_idx);
4993 	if (err)
4994 		return err;
4995 
4996 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4997 	 * is inferred from register state.
4998 	 */
4999 	for (i = 0; i < meta.access_size; i++) {
5000 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5001 				       BPF_WRITE, -1, false);
5002 		if (err)
5003 			return err;
5004 	}
5005 
5006 	if (func_id == BPF_FUNC_tail_call) {
5007 		err = check_reference_leak(env);
5008 		if (err) {
5009 			verbose(env, "tail_call would lead to reference leak\n");
5010 			return err;
5011 		}
5012 	} else if (is_release_function(func_id)) {
5013 		err = release_reference(env, meta.ref_obj_id);
5014 		if (err) {
5015 			verbose(env, "func %s#%d reference has not been acquired before\n",
5016 				func_id_name(func_id), func_id);
5017 			return err;
5018 		}
5019 	}
5020 
5021 	regs = cur_regs(env);
5022 
5023 	/* check that flags argument in get_local_storage(map, flags) is 0,
5024 	 * this is required because get_local_storage() can't return an error.
5025 	 */
5026 	if (func_id == BPF_FUNC_get_local_storage &&
5027 	    !register_is_null(&regs[BPF_REG_2])) {
5028 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5029 		return -EINVAL;
5030 	}
5031 
5032 	/* reset caller saved regs */
5033 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5034 		mark_reg_not_init(env, regs, caller_saved[i]);
5035 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5036 	}
5037 
5038 	/* helper call returns 64-bit value. */
5039 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5040 
5041 	/* update return register (already marked as written above) */
5042 	if (fn->ret_type == RET_INTEGER) {
5043 		/* sets type to SCALAR_VALUE */
5044 		mark_reg_unknown(env, regs, BPF_REG_0);
5045 	} else if (fn->ret_type == RET_VOID) {
5046 		regs[BPF_REG_0].type = NOT_INIT;
5047 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5048 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5049 		/* There is no offset yet applied, variable or fixed */
5050 		mark_reg_known_zero(env, regs, BPF_REG_0);
5051 		/* remember map_ptr, so that check_map_access()
5052 		 * can check 'value_size' boundary of memory access
5053 		 * to map element returned from bpf_map_lookup_elem()
5054 		 */
5055 		if (meta.map_ptr == NULL) {
5056 			verbose(env,
5057 				"kernel subsystem misconfigured verifier\n");
5058 			return -EINVAL;
5059 		}
5060 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5061 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5062 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5063 			if (map_value_has_spin_lock(meta.map_ptr))
5064 				regs[BPF_REG_0].id = ++env->id_gen;
5065 		} else {
5066 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5067 			regs[BPF_REG_0].id = ++env->id_gen;
5068 		}
5069 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5070 		mark_reg_known_zero(env, regs, BPF_REG_0);
5071 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5072 		regs[BPF_REG_0].id = ++env->id_gen;
5073 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5074 		mark_reg_known_zero(env, regs, BPF_REG_0);
5075 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5076 		regs[BPF_REG_0].id = ++env->id_gen;
5077 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5078 		mark_reg_known_zero(env, regs, BPF_REG_0);
5079 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5080 		regs[BPF_REG_0].id = ++env->id_gen;
5081 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5082 		mark_reg_known_zero(env, regs, BPF_REG_0);
5083 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5084 		regs[BPF_REG_0].id = ++env->id_gen;
5085 		regs[BPF_REG_0].mem_size = meta.mem_size;
5086 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) {
5087 		int ret_btf_id;
5088 
5089 		mark_reg_known_zero(env, regs, BPF_REG_0);
5090 		regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL;
5091 		ret_btf_id = *fn->ret_btf_id;
5092 		if (ret_btf_id == 0) {
5093 			verbose(env, "invalid return type %d of func %s#%d\n",
5094 				fn->ret_type, func_id_name(func_id), func_id);
5095 			return -EINVAL;
5096 		}
5097 		regs[BPF_REG_0].btf_id = ret_btf_id;
5098 	} else {
5099 		verbose(env, "unknown return type %d of func %s#%d\n",
5100 			fn->ret_type, func_id_name(func_id), func_id);
5101 		return -EINVAL;
5102 	}
5103 
5104 	if (is_ptr_cast_function(func_id)) {
5105 		/* For release_reference() */
5106 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5107 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5108 		int id = acquire_reference_state(env, insn_idx);
5109 
5110 		if (id < 0)
5111 			return id;
5112 		/* For mark_ptr_or_null_reg() */
5113 		regs[BPF_REG_0].id = id;
5114 		/* For release_reference() */
5115 		regs[BPF_REG_0].ref_obj_id = id;
5116 	}
5117 
5118 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5119 
5120 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5121 	if (err)
5122 		return err;
5123 
5124 	if ((func_id == BPF_FUNC_get_stack ||
5125 	     func_id == BPF_FUNC_get_task_stack) &&
5126 	    !env->prog->has_callchain_buf) {
5127 		const char *err_str;
5128 
5129 #ifdef CONFIG_PERF_EVENTS
5130 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5131 		err_str = "cannot get callchain buffer for func %s#%d\n";
5132 #else
5133 		err = -ENOTSUPP;
5134 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5135 #endif
5136 		if (err) {
5137 			verbose(env, err_str, func_id_name(func_id), func_id);
5138 			return err;
5139 		}
5140 
5141 		env->prog->has_callchain_buf = true;
5142 	}
5143 
5144 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5145 		env->prog->call_get_stack = true;
5146 
5147 	if (changes_data)
5148 		clear_all_pkt_pointers(env);
5149 	return 0;
5150 }
5151 
5152 static bool signed_add_overflows(s64 a, s64 b)
5153 {
5154 	/* Do the add in u64, where overflow is well-defined */
5155 	s64 res = (s64)((u64)a + (u64)b);
5156 
5157 	if (b < 0)
5158 		return res > a;
5159 	return res < a;
5160 }
5161 
5162 static bool signed_add32_overflows(s64 a, s64 b)
5163 {
5164 	/* Do the add in u32, where overflow is well-defined */
5165 	s32 res = (s32)((u32)a + (u32)b);
5166 
5167 	if (b < 0)
5168 		return res > a;
5169 	return res < a;
5170 }
5171 
5172 static bool signed_sub_overflows(s32 a, s32 b)
5173 {
5174 	/* Do the sub in u64, where overflow is well-defined */
5175 	s64 res = (s64)((u64)a - (u64)b);
5176 
5177 	if (b < 0)
5178 		return res < a;
5179 	return res > a;
5180 }
5181 
5182 static bool signed_sub32_overflows(s32 a, s32 b)
5183 {
5184 	/* Do the sub in u64, where overflow is well-defined */
5185 	s32 res = (s32)((u32)a - (u32)b);
5186 
5187 	if (b < 0)
5188 		return res < a;
5189 	return res > a;
5190 }
5191 
5192 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5193 				  const struct bpf_reg_state *reg,
5194 				  enum bpf_reg_type type)
5195 {
5196 	bool known = tnum_is_const(reg->var_off);
5197 	s64 val = reg->var_off.value;
5198 	s64 smin = reg->smin_value;
5199 
5200 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5201 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5202 			reg_type_str[type], val);
5203 		return false;
5204 	}
5205 
5206 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5207 		verbose(env, "%s pointer offset %d is not allowed\n",
5208 			reg_type_str[type], reg->off);
5209 		return false;
5210 	}
5211 
5212 	if (smin == S64_MIN) {
5213 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5214 			reg_type_str[type]);
5215 		return false;
5216 	}
5217 
5218 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5219 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5220 			smin, reg_type_str[type]);
5221 		return false;
5222 	}
5223 
5224 	return true;
5225 }
5226 
5227 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5228 {
5229 	return &env->insn_aux_data[env->insn_idx];
5230 }
5231 
5232 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5233 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5234 {
5235 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5236 			    (opcode == BPF_SUB && !off_is_neg);
5237 	u32 off;
5238 
5239 	switch (ptr_reg->type) {
5240 	case PTR_TO_STACK:
5241 		/* Indirect variable offset stack access is prohibited in
5242 		 * unprivileged mode so it's not handled here.
5243 		 */
5244 		off = ptr_reg->off + ptr_reg->var_off.value;
5245 		if (mask_to_left)
5246 			*ptr_limit = MAX_BPF_STACK + off;
5247 		else
5248 			*ptr_limit = -off;
5249 		return 0;
5250 	case PTR_TO_MAP_VALUE:
5251 		if (mask_to_left) {
5252 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5253 		} else {
5254 			off = ptr_reg->smin_value + ptr_reg->off;
5255 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5256 		}
5257 		return 0;
5258 	default:
5259 		return -EINVAL;
5260 	}
5261 }
5262 
5263 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5264 				    const struct bpf_insn *insn)
5265 {
5266 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5267 }
5268 
5269 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5270 				       u32 alu_state, u32 alu_limit)
5271 {
5272 	/* If we arrived here from different branches with different
5273 	 * state or limits to sanitize, then this won't work.
5274 	 */
5275 	if (aux->alu_state &&
5276 	    (aux->alu_state != alu_state ||
5277 	     aux->alu_limit != alu_limit))
5278 		return -EACCES;
5279 
5280 	/* Corresponding fixup done in fixup_bpf_calls(). */
5281 	aux->alu_state = alu_state;
5282 	aux->alu_limit = alu_limit;
5283 	return 0;
5284 }
5285 
5286 static int sanitize_val_alu(struct bpf_verifier_env *env,
5287 			    struct bpf_insn *insn)
5288 {
5289 	struct bpf_insn_aux_data *aux = cur_aux(env);
5290 
5291 	if (can_skip_alu_sanitation(env, insn))
5292 		return 0;
5293 
5294 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5295 }
5296 
5297 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5298 			    struct bpf_insn *insn,
5299 			    const struct bpf_reg_state *ptr_reg,
5300 			    struct bpf_reg_state *dst_reg,
5301 			    bool off_is_neg)
5302 {
5303 	struct bpf_verifier_state *vstate = env->cur_state;
5304 	struct bpf_insn_aux_data *aux = cur_aux(env);
5305 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5306 	u8 opcode = BPF_OP(insn->code);
5307 	u32 alu_state, alu_limit;
5308 	struct bpf_reg_state tmp;
5309 	bool ret;
5310 
5311 	if (can_skip_alu_sanitation(env, insn))
5312 		return 0;
5313 
5314 	/* We already marked aux for masking from non-speculative
5315 	 * paths, thus we got here in the first place. We only care
5316 	 * to explore bad access from here.
5317 	 */
5318 	if (vstate->speculative)
5319 		goto do_sim;
5320 
5321 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5322 	alu_state |= ptr_is_dst_reg ?
5323 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5324 
5325 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5326 		return 0;
5327 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5328 		return -EACCES;
5329 do_sim:
5330 	/* Simulate and find potential out-of-bounds access under
5331 	 * speculative execution from truncation as a result of
5332 	 * masking when off was not within expected range. If off
5333 	 * sits in dst, then we temporarily need to move ptr there
5334 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5335 	 * for cases where we use K-based arithmetic in one direction
5336 	 * and truncated reg-based in the other in order to explore
5337 	 * bad access.
5338 	 */
5339 	if (!ptr_is_dst_reg) {
5340 		tmp = *dst_reg;
5341 		*dst_reg = *ptr_reg;
5342 	}
5343 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5344 	if (!ptr_is_dst_reg && ret)
5345 		*dst_reg = tmp;
5346 	return !ret ? -EFAULT : 0;
5347 }
5348 
5349 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5350  * Caller should also handle BPF_MOV case separately.
5351  * If we return -EACCES, caller may want to try again treating pointer as a
5352  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5353  */
5354 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5355 				   struct bpf_insn *insn,
5356 				   const struct bpf_reg_state *ptr_reg,
5357 				   const struct bpf_reg_state *off_reg)
5358 {
5359 	struct bpf_verifier_state *vstate = env->cur_state;
5360 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5361 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5362 	bool known = tnum_is_const(off_reg->var_off);
5363 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5364 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5365 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5366 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5367 	u32 dst = insn->dst_reg, src = insn->src_reg;
5368 	u8 opcode = BPF_OP(insn->code);
5369 	int ret;
5370 
5371 	dst_reg = &regs[dst];
5372 
5373 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5374 	    smin_val > smax_val || umin_val > umax_val) {
5375 		/* Taint dst register if offset had invalid bounds derived from
5376 		 * e.g. dead branches.
5377 		 */
5378 		__mark_reg_unknown(env, dst_reg);
5379 		return 0;
5380 	}
5381 
5382 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5383 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5384 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5385 			__mark_reg_unknown(env, dst_reg);
5386 			return 0;
5387 		}
5388 
5389 		verbose(env,
5390 			"R%d 32-bit pointer arithmetic prohibited\n",
5391 			dst);
5392 		return -EACCES;
5393 	}
5394 
5395 	switch (ptr_reg->type) {
5396 	case PTR_TO_MAP_VALUE_OR_NULL:
5397 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5398 			dst, reg_type_str[ptr_reg->type]);
5399 		return -EACCES;
5400 	case CONST_PTR_TO_MAP:
5401 		/* smin_val represents the known value */
5402 		if (known && smin_val == 0 && opcode == BPF_ADD)
5403 			break;
5404 		/* fall-through */
5405 	case PTR_TO_PACKET_END:
5406 	case PTR_TO_SOCKET:
5407 	case PTR_TO_SOCKET_OR_NULL:
5408 	case PTR_TO_SOCK_COMMON:
5409 	case PTR_TO_SOCK_COMMON_OR_NULL:
5410 	case PTR_TO_TCP_SOCK:
5411 	case PTR_TO_TCP_SOCK_OR_NULL:
5412 	case PTR_TO_XDP_SOCK:
5413 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5414 			dst, reg_type_str[ptr_reg->type]);
5415 		return -EACCES;
5416 	case PTR_TO_MAP_VALUE:
5417 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5418 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5419 				off_reg == dst_reg ? dst : src);
5420 			return -EACCES;
5421 		}
5422 		fallthrough;
5423 	default:
5424 		break;
5425 	}
5426 
5427 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5428 	 * The id may be overwritten later if we create a new variable offset.
5429 	 */
5430 	dst_reg->type = ptr_reg->type;
5431 	dst_reg->id = ptr_reg->id;
5432 
5433 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5434 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5435 		return -EINVAL;
5436 
5437 	/* pointer types do not carry 32-bit bounds at the moment. */
5438 	__mark_reg32_unbounded(dst_reg);
5439 
5440 	switch (opcode) {
5441 	case BPF_ADD:
5442 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5443 		if (ret < 0) {
5444 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5445 			return ret;
5446 		}
5447 		/* We can take a fixed offset as long as it doesn't overflow
5448 		 * the s32 'off' field
5449 		 */
5450 		if (known && (ptr_reg->off + smin_val ==
5451 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5452 			/* pointer += K.  Accumulate it into fixed offset */
5453 			dst_reg->smin_value = smin_ptr;
5454 			dst_reg->smax_value = smax_ptr;
5455 			dst_reg->umin_value = umin_ptr;
5456 			dst_reg->umax_value = umax_ptr;
5457 			dst_reg->var_off = ptr_reg->var_off;
5458 			dst_reg->off = ptr_reg->off + smin_val;
5459 			dst_reg->raw = ptr_reg->raw;
5460 			break;
5461 		}
5462 		/* A new variable offset is created.  Note that off_reg->off
5463 		 * == 0, since it's a scalar.
5464 		 * dst_reg gets the pointer type and since some positive
5465 		 * integer value was added to the pointer, give it a new 'id'
5466 		 * if it's a PTR_TO_PACKET.
5467 		 * this creates a new 'base' pointer, off_reg (variable) gets
5468 		 * added into the variable offset, and we copy the fixed offset
5469 		 * from ptr_reg.
5470 		 */
5471 		if (signed_add_overflows(smin_ptr, smin_val) ||
5472 		    signed_add_overflows(smax_ptr, smax_val)) {
5473 			dst_reg->smin_value = S64_MIN;
5474 			dst_reg->smax_value = S64_MAX;
5475 		} else {
5476 			dst_reg->smin_value = smin_ptr + smin_val;
5477 			dst_reg->smax_value = smax_ptr + smax_val;
5478 		}
5479 		if (umin_ptr + umin_val < umin_ptr ||
5480 		    umax_ptr + umax_val < umax_ptr) {
5481 			dst_reg->umin_value = 0;
5482 			dst_reg->umax_value = U64_MAX;
5483 		} else {
5484 			dst_reg->umin_value = umin_ptr + umin_val;
5485 			dst_reg->umax_value = umax_ptr + umax_val;
5486 		}
5487 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5488 		dst_reg->off = ptr_reg->off;
5489 		dst_reg->raw = ptr_reg->raw;
5490 		if (reg_is_pkt_pointer(ptr_reg)) {
5491 			dst_reg->id = ++env->id_gen;
5492 			/* something was added to pkt_ptr, set range to zero */
5493 			dst_reg->raw = 0;
5494 		}
5495 		break;
5496 	case BPF_SUB:
5497 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5498 		if (ret < 0) {
5499 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5500 			return ret;
5501 		}
5502 		if (dst_reg == off_reg) {
5503 			/* scalar -= pointer.  Creates an unknown scalar */
5504 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5505 				dst);
5506 			return -EACCES;
5507 		}
5508 		/* We don't allow subtraction from FP, because (according to
5509 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5510 		 * be able to deal with it.
5511 		 */
5512 		if (ptr_reg->type == PTR_TO_STACK) {
5513 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5514 				dst);
5515 			return -EACCES;
5516 		}
5517 		if (known && (ptr_reg->off - smin_val ==
5518 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5519 			/* pointer -= K.  Subtract it from fixed offset */
5520 			dst_reg->smin_value = smin_ptr;
5521 			dst_reg->smax_value = smax_ptr;
5522 			dst_reg->umin_value = umin_ptr;
5523 			dst_reg->umax_value = umax_ptr;
5524 			dst_reg->var_off = ptr_reg->var_off;
5525 			dst_reg->id = ptr_reg->id;
5526 			dst_reg->off = ptr_reg->off - smin_val;
5527 			dst_reg->raw = ptr_reg->raw;
5528 			break;
5529 		}
5530 		/* A new variable offset is created.  If the subtrahend is known
5531 		 * nonnegative, then any reg->range we had before is still good.
5532 		 */
5533 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5534 		    signed_sub_overflows(smax_ptr, smin_val)) {
5535 			/* Overflow possible, we know nothing */
5536 			dst_reg->smin_value = S64_MIN;
5537 			dst_reg->smax_value = S64_MAX;
5538 		} else {
5539 			dst_reg->smin_value = smin_ptr - smax_val;
5540 			dst_reg->smax_value = smax_ptr - smin_val;
5541 		}
5542 		if (umin_ptr < umax_val) {
5543 			/* Overflow possible, we know nothing */
5544 			dst_reg->umin_value = 0;
5545 			dst_reg->umax_value = U64_MAX;
5546 		} else {
5547 			/* Cannot overflow (as long as bounds are consistent) */
5548 			dst_reg->umin_value = umin_ptr - umax_val;
5549 			dst_reg->umax_value = umax_ptr - umin_val;
5550 		}
5551 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5552 		dst_reg->off = ptr_reg->off;
5553 		dst_reg->raw = ptr_reg->raw;
5554 		if (reg_is_pkt_pointer(ptr_reg)) {
5555 			dst_reg->id = ++env->id_gen;
5556 			/* something was added to pkt_ptr, set range to zero */
5557 			if (smin_val < 0)
5558 				dst_reg->raw = 0;
5559 		}
5560 		break;
5561 	case BPF_AND:
5562 	case BPF_OR:
5563 	case BPF_XOR:
5564 		/* bitwise ops on pointers are troublesome, prohibit. */
5565 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5566 			dst, bpf_alu_string[opcode >> 4]);
5567 		return -EACCES;
5568 	default:
5569 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5570 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5571 			dst, bpf_alu_string[opcode >> 4]);
5572 		return -EACCES;
5573 	}
5574 
5575 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5576 		return -EINVAL;
5577 
5578 	__update_reg_bounds(dst_reg);
5579 	__reg_deduce_bounds(dst_reg);
5580 	__reg_bound_offset(dst_reg);
5581 
5582 	/* For unprivileged we require that resulting offset must be in bounds
5583 	 * in order to be able to sanitize access later on.
5584 	 */
5585 	if (!env->bypass_spec_v1) {
5586 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5587 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5588 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5589 				"prohibited for !root\n", dst);
5590 			return -EACCES;
5591 		} else if (dst_reg->type == PTR_TO_STACK &&
5592 			   check_stack_access(env, dst_reg, dst_reg->off +
5593 					      dst_reg->var_off.value, 1)) {
5594 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5595 				"prohibited for !root\n", dst);
5596 			return -EACCES;
5597 		}
5598 	}
5599 
5600 	return 0;
5601 }
5602 
5603 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5604 				 struct bpf_reg_state *src_reg)
5605 {
5606 	s32 smin_val = src_reg->s32_min_value;
5607 	s32 smax_val = src_reg->s32_max_value;
5608 	u32 umin_val = src_reg->u32_min_value;
5609 	u32 umax_val = src_reg->u32_max_value;
5610 
5611 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5612 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5613 		dst_reg->s32_min_value = S32_MIN;
5614 		dst_reg->s32_max_value = S32_MAX;
5615 	} else {
5616 		dst_reg->s32_min_value += smin_val;
5617 		dst_reg->s32_max_value += smax_val;
5618 	}
5619 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5620 	    dst_reg->u32_max_value + umax_val < umax_val) {
5621 		dst_reg->u32_min_value = 0;
5622 		dst_reg->u32_max_value = U32_MAX;
5623 	} else {
5624 		dst_reg->u32_min_value += umin_val;
5625 		dst_reg->u32_max_value += umax_val;
5626 	}
5627 }
5628 
5629 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5630 			       struct bpf_reg_state *src_reg)
5631 {
5632 	s64 smin_val = src_reg->smin_value;
5633 	s64 smax_val = src_reg->smax_value;
5634 	u64 umin_val = src_reg->umin_value;
5635 	u64 umax_val = src_reg->umax_value;
5636 
5637 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5638 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5639 		dst_reg->smin_value = S64_MIN;
5640 		dst_reg->smax_value = S64_MAX;
5641 	} else {
5642 		dst_reg->smin_value += smin_val;
5643 		dst_reg->smax_value += smax_val;
5644 	}
5645 	if (dst_reg->umin_value + umin_val < umin_val ||
5646 	    dst_reg->umax_value + umax_val < umax_val) {
5647 		dst_reg->umin_value = 0;
5648 		dst_reg->umax_value = U64_MAX;
5649 	} else {
5650 		dst_reg->umin_value += umin_val;
5651 		dst_reg->umax_value += umax_val;
5652 	}
5653 }
5654 
5655 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5656 				 struct bpf_reg_state *src_reg)
5657 {
5658 	s32 smin_val = src_reg->s32_min_value;
5659 	s32 smax_val = src_reg->s32_max_value;
5660 	u32 umin_val = src_reg->u32_min_value;
5661 	u32 umax_val = src_reg->u32_max_value;
5662 
5663 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5664 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5665 		/* Overflow possible, we know nothing */
5666 		dst_reg->s32_min_value = S32_MIN;
5667 		dst_reg->s32_max_value = S32_MAX;
5668 	} else {
5669 		dst_reg->s32_min_value -= smax_val;
5670 		dst_reg->s32_max_value -= smin_val;
5671 	}
5672 	if (dst_reg->u32_min_value < umax_val) {
5673 		/* Overflow possible, we know nothing */
5674 		dst_reg->u32_min_value = 0;
5675 		dst_reg->u32_max_value = U32_MAX;
5676 	} else {
5677 		/* Cannot overflow (as long as bounds are consistent) */
5678 		dst_reg->u32_min_value -= umax_val;
5679 		dst_reg->u32_max_value -= umin_val;
5680 	}
5681 }
5682 
5683 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5684 			       struct bpf_reg_state *src_reg)
5685 {
5686 	s64 smin_val = src_reg->smin_value;
5687 	s64 smax_val = src_reg->smax_value;
5688 	u64 umin_val = src_reg->umin_value;
5689 	u64 umax_val = src_reg->umax_value;
5690 
5691 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5692 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5693 		/* Overflow possible, we know nothing */
5694 		dst_reg->smin_value = S64_MIN;
5695 		dst_reg->smax_value = S64_MAX;
5696 	} else {
5697 		dst_reg->smin_value -= smax_val;
5698 		dst_reg->smax_value -= smin_val;
5699 	}
5700 	if (dst_reg->umin_value < umax_val) {
5701 		/* Overflow possible, we know nothing */
5702 		dst_reg->umin_value = 0;
5703 		dst_reg->umax_value = U64_MAX;
5704 	} else {
5705 		/* Cannot overflow (as long as bounds are consistent) */
5706 		dst_reg->umin_value -= umax_val;
5707 		dst_reg->umax_value -= umin_val;
5708 	}
5709 }
5710 
5711 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5712 				 struct bpf_reg_state *src_reg)
5713 {
5714 	s32 smin_val = src_reg->s32_min_value;
5715 	u32 umin_val = src_reg->u32_min_value;
5716 	u32 umax_val = src_reg->u32_max_value;
5717 
5718 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5719 		/* Ain't nobody got time to multiply that sign */
5720 		__mark_reg32_unbounded(dst_reg);
5721 		return;
5722 	}
5723 	/* Both values are positive, so we can work with unsigned and
5724 	 * copy the result to signed (unless it exceeds S32_MAX).
5725 	 */
5726 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5727 		/* Potential overflow, we know nothing */
5728 		__mark_reg32_unbounded(dst_reg);
5729 		return;
5730 	}
5731 	dst_reg->u32_min_value *= umin_val;
5732 	dst_reg->u32_max_value *= umax_val;
5733 	if (dst_reg->u32_max_value > S32_MAX) {
5734 		/* Overflow possible, we know nothing */
5735 		dst_reg->s32_min_value = S32_MIN;
5736 		dst_reg->s32_max_value = S32_MAX;
5737 	} else {
5738 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5739 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5740 	}
5741 }
5742 
5743 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5744 			       struct bpf_reg_state *src_reg)
5745 {
5746 	s64 smin_val = src_reg->smin_value;
5747 	u64 umin_val = src_reg->umin_value;
5748 	u64 umax_val = src_reg->umax_value;
5749 
5750 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5751 		/* Ain't nobody got time to multiply that sign */
5752 		__mark_reg64_unbounded(dst_reg);
5753 		return;
5754 	}
5755 	/* Both values are positive, so we can work with unsigned and
5756 	 * copy the result to signed (unless it exceeds S64_MAX).
5757 	 */
5758 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5759 		/* Potential overflow, we know nothing */
5760 		__mark_reg64_unbounded(dst_reg);
5761 		return;
5762 	}
5763 	dst_reg->umin_value *= umin_val;
5764 	dst_reg->umax_value *= umax_val;
5765 	if (dst_reg->umax_value > S64_MAX) {
5766 		/* Overflow possible, we know nothing */
5767 		dst_reg->smin_value = S64_MIN;
5768 		dst_reg->smax_value = S64_MAX;
5769 	} else {
5770 		dst_reg->smin_value = dst_reg->umin_value;
5771 		dst_reg->smax_value = dst_reg->umax_value;
5772 	}
5773 }
5774 
5775 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5776 				 struct bpf_reg_state *src_reg)
5777 {
5778 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5779 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5780 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5781 	s32 smin_val = src_reg->s32_min_value;
5782 	u32 umax_val = src_reg->u32_max_value;
5783 
5784 	/* Assuming scalar64_min_max_and will be called so its safe
5785 	 * to skip updating register for known 32-bit case.
5786 	 */
5787 	if (src_known && dst_known)
5788 		return;
5789 
5790 	/* We get our minimum from the var_off, since that's inherently
5791 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5792 	 */
5793 	dst_reg->u32_min_value = var32_off.value;
5794 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5795 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5796 		/* Lose signed bounds when ANDing negative numbers,
5797 		 * ain't nobody got time for that.
5798 		 */
5799 		dst_reg->s32_min_value = S32_MIN;
5800 		dst_reg->s32_max_value = S32_MAX;
5801 	} else {
5802 		/* ANDing two positives gives a positive, so safe to
5803 		 * cast result into s64.
5804 		 */
5805 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5806 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5807 	}
5808 
5809 }
5810 
5811 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5812 			       struct bpf_reg_state *src_reg)
5813 {
5814 	bool src_known = tnum_is_const(src_reg->var_off);
5815 	bool dst_known = tnum_is_const(dst_reg->var_off);
5816 	s64 smin_val = src_reg->smin_value;
5817 	u64 umax_val = src_reg->umax_value;
5818 
5819 	if (src_known && dst_known) {
5820 		__mark_reg_known(dst_reg, dst_reg->var_off.value &
5821 					  src_reg->var_off.value);
5822 		return;
5823 	}
5824 
5825 	/* We get our minimum from the var_off, since that's inherently
5826 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5827 	 */
5828 	dst_reg->umin_value = dst_reg->var_off.value;
5829 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5830 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5831 		/* Lose signed bounds when ANDing negative numbers,
5832 		 * ain't nobody got time for that.
5833 		 */
5834 		dst_reg->smin_value = S64_MIN;
5835 		dst_reg->smax_value = S64_MAX;
5836 	} else {
5837 		/* ANDing two positives gives a positive, so safe to
5838 		 * cast result into s64.
5839 		 */
5840 		dst_reg->smin_value = dst_reg->umin_value;
5841 		dst_reg->smax_value = dst_reg->umax_value;
5842 	}
5843 	/* We may learn something more from the var_off */
5844 	__update_reg_bounds(dst_reg);
5845 }
5846 
5847 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5848 				struct bpf_reg_state *src_reg)
5849 {
5850 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5851 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5852 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5853 	s32 smin_val = src_reg->smin_value;
5854 	u32 umin_val = src_reg->umin_value;
5855 
5856 	/* Assuming scalar64_min_max_or will be called so it is safe
5857 	 * to skip updating register for known case.
5858 	 */
5859 	if (src_known && dst_known)
5860 		return;
5861 
5862 	/* We get our maximum from the var_off, and our minimum is the
5863 	 * maximum of the operands' minima
5864 	 */
5865 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
5866 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5867 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5868 		/* Lose signed bounds when ORing negative numbers,
5869 		 * ain't nobody got time for that.
5870 		 */
5871 		dst_reg->s32_min_value = S32_MIN;
5872 		dst_reg->s32_max_value = S32_MAX;
5873 	} else {
5874 		/* ORing two positives gives a positive, so safe to
5875 		 * cast result into s64.
5876 		 */
5877 		dst_reg->s32_min_value = dst_reg->umin_value;
5878 		dst_reg->s32_max_value = dst_reg->umax_value;
5879 	}
5880 }
5881 
5882 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
5883 			      struct bpf_reg_state *src_reg)
5884 {
5885 	bool src_known = tnum_is_const(src_reg->var_off);
5886 	bool dst_known = tnum_is_const(dst_reg->var_off);
5887 	s64 smin_val = src_reg->smin_value;
5888 	u64 umin_val = src_reg->umin_value;
5889 
5890 	if (src_known && dst_known) {
5891 		__mark_reg_known(dst_reg, dst_reg->var_off.value |
5892 					  src_reg->var_off.value);
5893 		return;
5894 	}
5895 
5896 	/* We get our maximum from the var_off, and our minimum is the
5897 	 * maximum of the operands' minima
5898 	 */
5899 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5900 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5901 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5902 		/* Lose signed bounds when ORing negative numbers,
5903 		 * ain't nobody got time for that.
5904 		 */
5905 		dst_reg->smin_value = S64_MIN;
5906 		dst_reg->smax_value = S64_MAX;
5907 	} else {
5908 		/* ORing two positives gives a positive, so safe to
5909 		 * cast result into s64.
5910 		 */
5911 		dst_reg->smin_value = dst_reg->umin_value;
5912 		dst_reg->smax_value = dst_reg->umax_value;
5913 	}
5914 	/* We may learn something more from the var_off */
5915 	__update_reg_bounds(dst_reg);
5916 }
5917 
5918 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
5919 				 struct bpf_reg_state *src_reg)
5920 {
5921 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5922 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5923 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5924 	s32 smin_val = src_reg->s32_min_value;
5925 
5926 	/* Assuming scalar64_min_max_xor will be called so it is safe
5927 	 * to skip updating register for known case.
5928 	 */
5929 	if (src_known && dst_known)
5930 		return;
5931 
5932 	/* We get both minimum and maximum from the var32_off. */
5933 	dst_reg->u32_min_value = var32_off.value;
5934 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
5935 
5936 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
5937 		/* XORing two positive sign numbers gives a positive,
5938 		 * so safe to cast u32 result into s32.
5939 		 */
5940 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5941 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5942 	} else {
5943 		dst_reg->s32_min_value = S32_MIN;
5944 		dst_reg->s32_max_value = S32_MAX;
5945 	}
5946 }
5947 
5948 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
5949 			       struct bpf_reg_state *src_reg)
5950 {
5951 	bool src_known = tnum_is_const(src_reg->var_off);
5952 	bool dst_known = tnum_is_const(dst_reg->var_off);
5953 	s64 smin_val = src_reg->smin_value;
5954 
5955 	if (src_known && dst_known) {
5956 		/* dst_reg->var_off.value has been updated earlier */
5957 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5958 		return;
5959 	}
5960 
5961 	/* We get both minimum and maximum from the var_off. */
5962 	dst_reg->umin_value = dst_reg->var_off.value;
5963 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
5964 
5965 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
5966 		/* XORing two positive sign numbers gives a positive,
5967 		 * so safe to cast u64 result into s64.
5968 		 */
5969 		dst_reg->smin_value = dst_reg->umin_value;
5970 		dst_reg->smax_value = dst_reg->umax_value;
5971 	} else {
5972 		dst_reg->smin_value = S64_MIN;
5973 		dst_reg->smax_value = S64_MAX;
5974 	}
5975 
5976 	__update_reg_bounds(dst_reg);
5977 }
5978 
5979 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5980 				   u64 umin_val, u64 umax_val)
5981 {
5982 	/* We lose all sign bit information (except what we can pick
5983 	 * up from var_off)
5984 	 */
5985 	dst_reg->s32_min_value = S32_MIN;
5986 	dst_reg->s32_max_value = S32_MAX;
5987 	/* If we might shift our top bit out, then we know nothing */
5988 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
5989 		dst_reg->u32_min_value = 0;
5990 		dst_reg->u32_max_value = U32_MAX;
5991 	} else {
5992 		dst_reg->u32_min_value <<= umin_val;
5993 		dst_reg->u32_max_value <<= umax_val;
5994 	}
5995 }
5996 
5997 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
5998 				 struct bpf_reg_state *src_reg)
5999 {
6000 	u32 umax_val = src_reg->u32_max_value;
6001 	u32 umin_val = src_reg->u32_min_value;
6002 	/* u32 alu operation will zext upper bits */
6003 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6004 
6005 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6006 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6007 	/* Not required but being careful mark reg64 bounds as unknown so
6008 	 * that we are forced to pick them up from tnum and zext later and
6009 	 * if some path skips this step we are still safe.
6010 	 */
6011 	__mark_reg64_unbounded(dst_reg);
6012 	__update_reg32_bounds(dst_reg);
6013 }
6014 
6015 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6016 				   u64 umin_val, u64 umax_val)
6017 {
6018 	/* Special case <<32 because it is a common compiler pattern to sign
6019 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6020 	 * positive we know this shift will also be positive so we can track
6021 	 * bounds correctly. Otherwise we lose all sign bit information except
6022 	 * what we can pick up from var_off. Perhaps we can generalize this
6023 	 * later to shifts of any length.
6024 	 */
6025 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6026 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6027 	else
6028 		dst_reg->smax_value = S64_MAX;
6029 
6030 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6031 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6032 	else
6033 		dst_reg->smin_value = S64_MIN;
6034 
6035 	/* If we might shift our top bit out, then we know nothing */
6036 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6037 		dst_reg->umin_value = 0;
6038 		dst_reg->umax_value = U64_MAX;
6039 	} else {
6040 		dst_reg->umin_value <<= umin_val;
6041 		dst_reg->umax_value <<= umax_val;
6042 	}
6043 }
6044 
6045 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6046 			       struct bpf_reg_state *src_reg)
6047 {
6048 	u64 umax_val = src_reg->umax_value;
6049 	u64 umin_val = src_reg->umin_value;
6050 
6051 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6052 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6053 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6054 
6055 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6056 	/* We may learn something more from the var_off */
6057 	__update_reg_bounds(dst_reg);
6058 }
6059 
6060 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6061 				 struct bpf_reg_state *src_reg)
6062 {
6063 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6064 	u32 umax_val = src_reg->u32_max_value;
6065 	u32 umin_val = src_reg->u32_min_value;
6066 
6067 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6068 	 * be negative, then either:
6069 	 * 1) src_reg might be zero, so the sign bit of the result is
6070 	 *    unknown, so we lose our signed bounds
6071 	 * 2) it's known negative, thus the unsigned bounds capture the
6072 	 *    signed bounds
6073 	 * 3) the signed bounds cross zero, so they tell us nothing
6074 	 *    about the result
6075 	 * If the value in dst_reg is known nonnegative, then again the
6076 	 * unsigned bounts capture the signed bounds.
6077 	 * Thus, in all cases it suffices to blow away our signed bounds
6078 	 * and rely on inferring new ones from the unsigned bounds and
6079 	 * var_off of the result.
6080 	 */
6081 	dst_reg->s32_min_value = S32_MIN;
6082 	dst_reg->s32_max_value = S32_MAX;
6083 
6084 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6085 	dst_reg->u32_min_value >>= umax_val;
6086 	dst_reg->u32_max_value >>= umin_val;
6087 
6088 	__mark_reg64_unbounded(dst_reg);
6089 	__update_reg32_bounds(dst_reg);
6090 }
6091 
6092 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6093 			       struct bpf_reg_state *src_reg)
6094 {
6095 	u64 umax_val = src_reg->umax_value;
6096 	u64 umin_val = src_reg->umin_value;
6097 
6098 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6099 	 * be negative, then either:
6100 	 * 1) src_reg might be zero, so the sign bit of the result is
6101 	 *    unknown, so we lose our signed bounds
6102 	 * 2) it's known negative, thus the unsigned bounds capture the
6103 	 *    signed bounds
6104 	 * 3) the signed bounds cross zero, so they tell us nothing
6105 	 *    about the result
6106 	 * If the value in dst_reg is known nonnegative, then again the
6107 	 * unsigned bounts capture the signed bounds.
6108 	 * Thus, in all cases it suffices to blow away our signed bounds
6109 	 * and rely on inferring new ones from the unsigned bounds and
6110 	 * var_off of the result.
6111 	 */
6112 	dst_reg->smin_value = S64_MIN;
6113 	dst_reg->smax_value = S64_MAX;
6114 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6115 	dst_reg->umin_value >>= umax_val;
6116 	dst_reg->umax_value >>= umin_val;
6117 
6118 	/* Its not easy to operate on alu32 bounds here because it depends
6119 	 * on bits being shifted in. Take easy way out and mark unbounded
6120 	 * so we can recalculate later from tnum.
6121 	 */
6122 	__mark_reg32_unbounded(dst_reg);
6123 	__update_reg_bounds(dst_reg);
6124 }
6125 
6126 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6127 				  struct bpf_reg_state *src_reg)
6128 {
6129 	u64 umin_val = src_reg->u32_min_value;
6130 
6131 	/* Upon reaching here, src_known is true and
6132 	 * umax_val is equal to umin_val.
6133 	 */
6134 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6135 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6136 
6137 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6138 
6139 	/* blow away the dst_reg umin_value/umax_value and rely on
6140 	 * dst_reg var_off to refine the result.
6141 	 */
6142 	dst_reg->u32_min_value = 0;
6143 	dst_reg->u32_max_value = U32_MAX;
6144 
6145 	__mark_reg64_unbounded(dst_reg);
6146 	__update_reg32_bounds(dst_reg);
6147 }
6148 
6149 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6150 				struct bpf_reg_state *src_reg)
6151 {
6152 	u64 umin_val = src_reg->umin_value;
6153 
6154 	/* Upon reaching here, src_known is true and umax_val is equal
6155 	 * to umin_val.
6156 	 */
6157 	dst_reg->smin_value >>= umin_val;
6158 	dst_reg->smax_value >>= umin_val;
6159 
6160 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6161 
6162 	/* blow away the dst_reg umin_value/umax_value and rely on
6163 	 * dst_reg var_off to refine the result.
6164 	 */
6165 	dst_reg->umin_value = 0;
6166 	dst_reg->umax_value = U64_MAX;
6167 
6168 	/* Its not easy to operate on alu32 bounds here because it depends
6169 	 * on bits being shifted in from upper 32-bits. Take easy way out
6170 	 * and mark unbounded so we can recalculate later from tnum.
6171 	 */
6172 	__mark_reg32_unbounded(dst_reg);
6173 	__update_reg_bounds(dst_reg);
6174 }
6175 
6176 /* WARNING: This function does calculations on 64-bit values, but the actual
6177  * execution may occur on 32-bit values. Therefore, things like bitshifts
6178  * need extra checks in the 32-bit case.
6179  */
6180 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6181 				      struct bpf_insn *insn,
6182 				      struct bpf_reg_state *dst_reg,
6183 				      struct bpf_reg_state src_reg)
6184 {
6185 	struct bpf_reg_state *regs = cur_regs(env);
6186 	u8 opcode = BPF_OP(insn->code);
6187 	bool src_known;
6188 	s64 smin_val, smax_val;
6189 	u64 umin_val, umax_val;
6190 	s32 s32_min_val, s32_max_val;
6191 	u32 u32_min_val, u32_max_val;
6192 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6193 	u32 dst = insn->dst_reg;
6194 	int ret;
6195 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6196 
6197 	smin_val = src_reg.smin_value;
6198 	smax_val = src_reg.smax_value;
6199 	umin_val = src_reg.umin_value;
6200 	umax_val = src_reg.umax_value;
6201 
6202 	s32_min_val = src_reg.s32_min_value;
6203 	s32_max_val = src_reg.s32_max_value;
6204 	u32_min_val = src_reg.u32_min_value;
6205 	u32_max_val = src_reg.u32_max_value;
6206 
6207 	if (alu32) {
6208 		src_known = tnum_subreg_is_const(src_reg.var_off);
6209 		if ((src_known &&
6210 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6211 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6212 			/* Taint dst register if offset had invalid bounds
6213 			 * derived from e.g. dead branches.
6214 			 */
6215 			__mark_reg_unknown(env, dst_reg);
6216 			return 0;
6217 		}
6218 	} else {
6219 		src_known = tnum_is_const(src_reg.var_off);
6220 		if ((src_known &&
6221 		     (smin_val != smax_val || umin_val != umax_val)) ||
6222 		    smin_val > smax_val || umin_val > umax_val) {
6223 			/* Taint dst register if offset had invalid bounds
6224 			 * derived from e.g. dead branches.
6225 			 */
6226 			__mark_reg_unknown(env, dst_reg);
6227 			return 0;
6228 		}
6229 	}
6230 
6231 	if (!src_known &&
6232 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6233 		__mark_reg_unknown(env, dst_reg);
6234 		return 0;
6235 	}
6236 
6237 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6238 	 * There are two classes of instructions: The first class we track both
6239 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6240 	 * greatest amount of precision when alu operations are mixed with jmp32
6241 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6242 	 * and BPF_OR. This is possible because these ops have fairly easy to
6243 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6244 	 * See alu32 verifier tests for examples. The second class of
6245 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6246 	 * with regards to tracking sign/unsigned bounds because the bits may
6247 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6248 	 * the reg unbounded in the subreg bound space and use the resulting
6249 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6250 	 */
6251 	switch (opcode) {
6252 	case BPF_ADD:
6253 		ret = sanitize_val_alu(env, insn);
6254 		if (ret < 0) {
6255 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6256 			return ret;
6257 		}
6258 		scalar32_min_max_add(dst_reg, &src_reg);
6259 		scalar_min_max_add(dst_reg, &src_reg);
6260 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6261 		break;
6262 	case BPF_SUB:
6263 		ret = sanitize_val_alu(env, insn);
6264 		if (ret < 0) {
6265 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6266 			return ret;
6267 		}
6268 		scalar32_min_max_sub(dst_reg, &src_reg);
6269 		scalar_min_max_sub(dst_reg, &src_reg);
6270 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6271 		break;
6272 	case BPF_MUL:
6273 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6274 		scalar32_min_max_mul(dst_reg, &src_reg);
6275 		scalar_min_max_mul(dst_reg, &src_reg);
6276 		break;
6277 	case BPF_AND:
6278 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6279 		scalar32_min_max_and(dst_reg, &src_reg);
6280 		scalar_min_max_and(dst_reg, &src_reg);
6281 		break;
6282 	case BPF_OR:
6283 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6284 		scalar32_min_max_or(dst_reg, &src_reg);
6285 		scalar_min_max_or(dst_reg, &src_reg);
6286 		break;
6287 	case BPF_XOR:
6288 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6289 		scalar32_min_max_xor(dst_reg, &src_reg);
6290 		scalar_min_max_xor(dst_reg, &src_reg);
6291 		break;
6292 	case BPF_LSH:
6293 		if (umax_val >= insn_bitness) {
6294 			/* Shifts greater than 31 or 63 are undefined.
6295 			 * This includes shifts by a negative number.
6296 			 */
6297 			mark_reg_unknown(env, regs, insn->dst_reg);
6298 			break;
6299 		}
6300 		if (alu32)
6301 			scalar32_min_max_lsh(dst_reg, &src_reg);
6302 		else
6303 			scalar_min_max_lsh(dst_reg, &src_reg);
6304 		break;
6305 	case BPF_RSH:
6306 		if (umax_val >= insn_bitness) {
6307 			/* Shifts greater than 31 or 63 are undefined.
6308 			 * This includes shifts by a negative number.
6309 			 */
6310 			mark_reg_unknown(env, regs, insn->dst_reg);
6311 			break;
6312 		}
6313 		if (alu32)
6314 			scalar32_min_max_rsh(dst_reg, &src_reg);
6315 		else
6316 			scalar_min_max_rsh(dst_reg, &src_reg);
6317 		break;
6318 	case BPF_ARSH:
6319 		if (umax_val >= insn_bitness) {
6320 			/* Shifts greater than 31 or 63 are undefined.
6321 			 * This includes shifts by a negative number.
6322 			 */
6323 			mark_reg_unknown(env, regs, insn->dst_reg);
6324 			break;
6325 		}
6326 		if (alu32)
6327 			scalar32_min_max_arsh(dst_reg, &src_reg);
6328 		else
6329 			scalar_min_max_arsh(dst_reg, &src_reg);
6330 		break;
6331 	default:
6332 		mark_reg_unknown(env, regs, insn->dst_reg);
6333 		break;
6334 	}
6335 
6336 	/* ALU32 ops are zero extended into 64bit register */
6337 	if (alu32)
6338 		zext_32_to_64(dst_reg);
6339 
6340 	__update_reg_bounds(dst_reg);
6341 	__reg_deduce_bounds(dst_reg);
6342 	__reg_bound_offset(dst_reg);
6343 	return 0;
6344 }
6345 
6346 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6347  * and var_off.
6348  */
6349 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6350 				   struct bpf_insn *insn)
6351 {
6352 	struct bpf_verifier_state *vstate = env->cur_state;
6353 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6354 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6355 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6356 	u8 opcode = BPF_OP(insn->code);
6357 	int err;
6358 
6359 	dst_reg = &regs[insn->dst_reg];
6360 	src_reg = NULL;
6361 	if (dst_reg->type != SCALAR_VALUE)
6362 		ptr_reg = dst_reg;
6363 	if (BPF_SRC(insn->code) == BPF_X) {
6364 		src_reg = &regs[insn->src_reg];
6365 		if (src_reg->type != SCALAR_VALUE) {
6366 			if (dst_reg->type != SCALAR_VALUE) {
6367 				/* Combining two pointers by any ALU op yields
6368 				 * an arbitrary scalar. Disallow all math except
6369 				 * pointer subtraction
6370 				 */
6371 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6372 					mark_reg_unknown(env, regs, insn->dst_reg);
6373 					return 0;
6374 				}
6375 				verbose(env, "R%d pointer %s pointer prohibited\n",
6376 					insn->dst_reg,
6377 					bpf_alu_string[opcode >> 4]);
6378 				return -EACCES;
6379 			} else {
6380 				/* scalar += pointer
6381 				 * This is legal, but we have to reverse our
6382 				 * src/dest handling in computing the range
6383 				 */
6384 				err = mark_chain_precision(env, insn->dst_reg);
6385 				if (err)
6386 					return err;
6387 				return adjust_ptr_min_max_vals(env, insn,
6388 							       src_reg, dst_reg);
6389 			}
6390 		} else if (ptr_reg) {
6391 			/* pointer += scalar */
6392 			err = mark_chain_precision(env, insn->src_reg);
6393 			if (err)
6394 				return err;
6395 			return adjust_ptr_min_max_vals(env, insn,
6396 						       dst_reg, src_reg);
6397 		}
6398 	} else {
6399 		/* Pretend the src is a reg with a known value, since we only
6400 		 * need to be able to read from this state.
6401 		 */
6402 		off_reg.type = SCALAR_VALUE;
6403 		__mark_reg_known(&off_reg, insn->imm);
6404 		src_reg = &off_reg;
6405 		if (ptr_reg) /* pointer += K */
6406 			return adjust_ptr_min_max_vals(env, insn,
6407 						       ptr_reg, src_reg);
6408 	}
6409 
6410 	/* Got here implies adding two SCALAR_VALUEs */
6411 	if (WARN_ON_ONCE(ptr_reg)) {
6412 		print_verifier_state(env, state);
6413 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6414 		return -EINVAL;
6415 	}
6416 	if (WARN_ON(!src_reg)) {
6417 		print_verifier_state(env, state);
6418 		verbose(env, "verifier internal error: no src_reg\n");
6419 		return -EINVAL;
6420 	}
6421 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6422 }
6423 
6424 /* check validity of 32-bit and 64-bit arithmetic operations */
6425 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6426 {
6427 	struct bpf_reg_state *regs = cur_regs(env);
6428 	u8 opcode = BPF_OP(insn->code);
6429 	int err;
6430 
6431 	if (opcode == BPF_END || opcode == BPF_NEG) {
6432 		if (opcode == BPF_NEG) {
6433 			if (BPF_SRC(insn->code) != 0 ||
6434 			    insn->src_reg != BPF_REG_0 ||
6435 			    insn->off != 0 || insn->imm != 0) {
6436 				verbose(env, "BPF_NEG uses reserved fields\n");
6437 				return -EINVAL;
6438 			}
6439 		} else {
6440 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6441 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6442 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6443 				verbose(env, "BPF_END uses reserved fields\n");
6444 				return -EINVAL;
6445 			}
6446 		}
6447 
6448 		/* check src operand */
6449 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6450 		if (err)
6451 			return err;
6452 
6453 		if (is_pointer_value(env, insn->dst_reg)) {
6454 			verbose(env, "R%d pointer arithmetic prohibited\n",
6455 				insn->dst_reg);
6456 			return -EACCES;
6457 		}
6458 
6459 		/* check dest operand */
6460 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6461 		if (err)
6462 			return err;
6463 
6464 	} else if (opcode == BPF_MOV) {
6465 
6466 		if (BPF_SRC(insn->code) == BPF_X) {
6467 			if (insn->imm != 0 || insn->off != 0) {
6468 				verbose(env, "BPF_MOV uses reserved fields\n");
6469 				return -EINVAL;
6470 			}
6471 
6472 			/* check src operand */
6473 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6474 			if (err)
6475 				return err;
6476 		} else {
6477 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6478 				verbose(env, "BPF_MOV uses reserved fields\n");
6479 				return -EINVAL;
6480 			}
6481 		}
6482 
6483 		/* check dest operand, mark as required later */
6484 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6485 		if (err)
6486 			return err;
6487 
6488 		if (BPF_SRC(insn->code) == BPF_X) {
6489 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6490 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6491 
6492 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6493 				/* case: R1 = R2
6494 				 * copy register state to dest reg
6495 				 */
6496 				*dst_reg = *src_reg;
6497 				dst_reg->live |= REG_LIVE_WRITTEN;
6498 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6499 			} else {
6500 				/* R1 = (u32) R2 */
6501 				if (is_pointer_value(env, insn->src_reg)) {
6502 					verbose(env,
6503 						"R%d partial copy of pointer\n",
6504 						insn->src_reg);
6505 					return -EACCES;
6506 				} else if (src_reg->type == SCALAR_VALUE) {
6507 					*dst_reg = *src_reg;
6508 					dst_reg->live |= REG_LIVE_WRITTEN;
6509 					dst_reg->subreg_def = env->insn_idx + 1;
6510 				} else {
6511 					mark_reg_unknown(env, regs,
6512 							 insn->dst_reg);
6513 				}
6514 				zext_32_to_64(dst_reg);
6515 			}
6516 		} else {
6517 			/* case: R = imm
6518 			 * remember the value we stored into this reg
6519 			 */
6520 			/* clear any state __mark_reg_known doesn't set */
6521 			mark_reg_unknown(env, regs, insn->dst_reg);
6522 			regs[insn->dst_reg].type = SCALAR_VALUE;
6523 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6524 				__mark_reg_known(regs + insn->dst_reg,
6525 						 insn->imm);
6526 			} else {
6527 				__mark_reg_known(regs + insn->dst_reg,
6528 						 (u32)insn->imm);
6529 			}
6530 		}
6531 
6532 	} else if (opcode > BPF_END) {
6533 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6534 		return -EINVAL;
6535 
6536 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6537 
6538 		if (BPF_SRC(insn->code) == BPF_X) {
6539 			if (insn->imm != 0 || insn->off != 0) {
6540 				verbose(env, "BPF_ALU uses reserved fields\n");
6541 				return -EINVAL;
6542 			}
6543 			/* check src1 operand */
6544 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6545 			if (err)
6546 				return err;
6547 		} else {
6548 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6549 				verbose(env, "BPF_ALU uses reserved fields\n");
6550 				return -EINVAL;
6551 			}
6552 		}
6553 
6554 		/* check src2 operand */
6555 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6556 		if (err)
6557 			return err;
6558 
6559 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6560 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6561 			verbose(env, "div by zero\n");
6562 			return -EINVAL;
6563 		}
6564 
6565 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6566 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6567 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6568 
6569 			if (insn->imm < 0 || insn->imm >= size) {
6570 				verbose(env, "invalid shift %d\n", insn->imm);
6571 				return -EINVAL;
6572 			}
6573 		}
6574 
6575 		/* check dest operand */
6576 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6577 		if (err)
6578 			return err;
6579 
6580 		return adjust_reg_min_max_vals(env, insn);
6581 	}
6582 
6583 	return 0;
6584 }
6585 
6586 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6587 				     struct bpf_reg_state *dst_reg,
6588 				     enum bpf_reg_type type, u16 new_range)
6589 {
6590 	struct bpf_reg_state *reg;
6591 	int i;
6592 
6593 	for (i = 0; i < MAX_BPF_REG; i++) {
6594 		reg = &state->regs[i];
6595 		if (reg->type == type && reg->id == dst_reg->id)
6596 			/* keep the maximum range already checked */
6597 			reg->range = max(reg->range, new_range);
6598 	}
6599 
6600 	bpf_for_each_spilled_reg(i, state, reg) {
6601 		if (!reg)
6602 			continue;
6603 		if (reg->type == type && reg->id == dst_reg->id)
6604 			reg->range = max(reg->range, new_range);
6605 	}
6606 }
6607 
6608 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6609 				   struct bpf_reg_state *dst_reg,
6610 				   enum bpf_reg_type type,
6611 				   bool range_right_open)
6612 {
6613 	u16 new_range;
6614 	int i;
6615 
6616 	if (dst_reg->off < 0 ||
6617 	    (dst_reg->off == 0 && range_right_open))
6618 		/* This doesn't give us any range */
6619 		return;
6620 
6621 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6622 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6623 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6624 		 * than pkt_end, but that's because it's also less than pkt.
6625 		 */
6626 		return;
6627 
6628 	new_range = dst_reg->off;
6629 	if (range_right_open)
6630 		new_range--;
6631 
6632 	/* Examples for register markings:
6633 	 *
6634 	 * pkt_data in dst register:
6635 	 *
6636 	 *   r2 = r3;
6637 	 *   r2 += 8;
6638 	 *   if (r2 > pkt_end) goto <handle exception>
6639 	 *   <access okay>
6640 	 *
6641 	 *   r2 = r3;
6642 	 *   r2 += 8;
6643 	 *   if (r2 < pkt_end) goto <access okay>
6644 	 *   <handle exception>
6645 	 *
6646 	 *   Where:
6647 	 *     r2 == dst_reg, pkt_end == src_reg
6648 	 *     r2=pkt(id=n,off=8,r=0)
6649 	 *     r3=pkt(id=n,off=0,r=0)
6650 	 *
6651 	 * pkt_data in src register:
6652 	 *
6653 	 *   r2 = r3;
6654 	 *   r2 += 8;
6655 	 *   if (pkt_end >= r2) goto <access okay>
6656 	 *   <handle exception>
6657 	 *
6658 	 *   r2 = r3;
6659 	 *   r2 += 8;
6660 	 *   if (pkt_end <= r2) goto <handle exception>
6661 	 *   <access okay>
6662 	 *
6663 	 *   Where:
6664 	 *     pkt_end == dst_reg, r2 == src_reg
6665 	 *     r2=pkt(id=n,off=8,r=0)
6666 	 *     r3=pkt(id=n,off=0,r=0)
6667 	 *
6668 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6669 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6670 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6671 	 * the check.
6672 	 */
6673 
6674 	/* If our ids match, then we must have the same max_value.  And we
6675 	 * don't care about the other reg's fixed offset, since if it's too big
6676 	 * the range won't allow anything.
6677 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6678 	 */
6679 	for (i = 0; i <= vstate->curframe; i++)
6680 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6681 					 new_range);
6682 }
6683 
6684 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6685 {
6686 	struct tnum subreg = tnum_subreg(reg->var_off);
6687 	s32 sval = (s32)val;
6688 
6689 	switch (opcode) {
6690 	case BPF_JEQ:
6691 		if (tnum_is_const(subreg))
6692 			return !!tnum_equals_const(subreg, val);
6693 		break;
6694 	case BPF_JNE:
6695 		if (tnum_is_const(subreg))
6696 			return !tnum_equals_const(subreg, val);
6697 		break;
6698 	case BPF_JSET:
6699 		if ((~subreg.mask & subreg.value) & val)
6700 			return 1;
6701 		if (!((subreg.mask | subreg.value) & val))
6702 			return 0;
6703 		break;
6704 	case BPF_JGT:
6705 		if (reg->u32_min_value > val)
6706 			return 1;
6707 		else if (reg->u32_max_value <= val)
6708 			return 0;
6709 		break;
6710 	case BPF_JSGT:
6711 		if (reg->s32_min_value > sval)
6712 			return 1;
6713 		else if (reg->s32_max_value < sval)
6714 			return 0;
6715 		break;
6716 	case BPF_JLT:
6717 		if (reg->u32_max_value < val)
6718 			return 1;
6719 		else if (reg->u32_min_value >= val)
6720 			return 0;
6721 		break;
6722 	case BPF_JSLT:
6723 		if (reg->s32_max_value < sval)
6724 			return 1;
6725 		else if (reg->s32_min_value >= sval)
6726 			return 0;
6727 		break;
6728 	case BPF_JGE:
6729 		if (reg->u32_min_value >= val)
6730 			return 1;
6731 		else if (reg->u32_max_value < val)
6732 			return 0;
6733 		break;
6734 	case BPF_JSGE:
6735 		if (reg->s32_min_value >= sval)
6736 			return 1;
6737 		else if (reg->s32_max_value < sval)
6738 			return 0;
6739 		break;
6740 	case BPF_JLE:
6741 		if (reg->u32_max_value <= val)
6742 			return 1;
6743 		else if (reg->u32_min_value > val)
6744 			return 0;
6745 		break;
6746 	case BPF_JSLE:
6747 		if (reg->s32_max_value <= sval)
6748 			return 1;
6749 		else if (reg->s32_min_value > sval)
6750 			return 0;
6751 		break;
6752 	}
6753 
6754 	return -1;
6755 }
6756 
6757 
6758 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6759 {
6760 	s64 sval = (s64)val;
6761 
6762 	switch (opcode) {
6763 	case BPF_JEQ:
6764 		if (tnum_is_const(reg->var_off))
6765 			return !!tnum_equals_const(reg->var_off, val);
6766 		break;
6767 	case BPF_JNE:
6768 		if (tnum_is_const(reg->var_off))
6769 			return !tnum_equals_const(reg->var_off, val);
6770 		break;
6771 	case BPF_JSET:
6772 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6773 			return 1;
6774 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6775 			return 0;
6776 		break;
6777 	case BPF_JGT:
6778 		if (reg->umin_value > val)
6779 			return 1;
6780 		else if (reg->umax_value <= val)
6781 			return 0;
6782 		break;
6783 	case BPF_JSGT:
6784 		if (reg->smin_value > sval)
6785 			return 1;
6786 		else if (reg->smax_value < sval)
6787 			return 0;
6788 		break;
6789 	case BPF_JLT:
6790 		if (reg->umax_value < val)
6791 			return 1;
6792 		else if (reg->umin_value >= val)
6793 			return 0;
6794 		break;
6795 	case BPF_JSLT:
6796 		if (reg->smax_value < sval)
6797 			return 1;
6798 		else if (reg->smin_value >= sval)
6799 			return 0;
6800 		break;
6801 	case BPF_JGE:
6802 		if (reg->umin_value >= val)
6803 			return 1;
6804 		else if (reg->umax_value < val)
6805 			return 0;
6806 		break;
6807 	case BPF_JSGE:
6808 		if (reg->smin_value >= sval)
6809 			return 1;
6810 		else if (reg->smax_value < sval)
6811 			return 0;
6812 		break;
6813 	case BPF_JLE:
6814 		if (reg->umax_value <= val)
6815 			return 1;
6816 		else if (reg->umin_value > val)
6817 			return 0;
6818 		break;
6819 	case BPF_JSLE:
6820 		if (reg->smax_value <= sval)
6821 			return 1;
6822 		else if (reg->smin_value > sval)
6823 			return 0;
6824 		break;
6825 	}
6826 
6827 	return -1;
6828 }
6829 
6830 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6831  * and return:
6832  *  1 - branch will be taken and "goto target" will be executed
6833  *  0 - branch will not be taken and fall-through to next insn
6834  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
6835  *      range [0,10]
6836  */
6837 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
6838 			   bool is_jmp32)
6839 {
6840 	if (__is_pointer_value(false, reg)) {
6841 		if (!reg_type_not_null(reg->type))
6842 			return -1;
6843 
6844 		/* If pointer is valid tests against zero will fail so we can
6845 		 * use this to direct branch taken.
6846 		 */
6847 		if (val != 0)
6848 			return -1;
6849 
6850 		switch (opcode) {
6851 		case BPF_JEQ:
6852 			return 0;
6853 		case BPF_JNE:
6854 			return 1;
6855 		default:
6856 			return -1;
6857 		}
6858 	}
6859 
6860 	if (is_jmp32)
6861 		return is_branch32_taken(reg, val, opcode);
6862 	return is_branch64_taken(reg, val, opcode);
6863 }
6864 
6865 /* Adjusts the register min/max values in the case that the dst_reg is the
6866  * variable register that we are working on, and src_reg is a constant or we're
6867  * simply doing a BPF_K check.
6868  * In JEQ/JNE cases we also adjust the var_off values.
6869  */
6870 static void reg_set_min_max(struct bpf_reg_state *true_reg,
6871 			    struct bpf_reg_state *false_reg,
6872 			    u64 val, u32 val32,
6873 			    u8 opcode, bool is_jmp32)
6874 {
6875 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
6876 	struct tnum false_64off = false_reg->var_off;
6877 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
6878 	struct tnum true_64off = true_reg->var_off;
6879 	s64 sval = (s64)val;
6880 	s32 sval32 = (s32)val32;
6881 
6882 	/* If the dst_reg is a pointer, we can't learn anything about its
6883 	 * variable offset from the compare (unless src_reg were a pointer into
6884 	 * the same object, but we don't bother with that.
6885 	 * Since false_reg and true_reg have the same type by construction, we
6886 	 * only need to check one of them for pointerness.
6887 	 */
6888 	if (__is_pointer_value(false, false_reg))
6889 		return;
6890 
6891 	switch (opcode) {
6892 	case BPF_JEQ:
6893 	case BPF_JNE:
6894 	{
6895 		struct bpf_reg_state *reg =
6896 			opcode == BPF_JEQ ? true_reg : false_reg;
6897 
6898 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
6899 		 * if it is true we know the value for sure. Likewise for
6900 		 * BPF_JNE.
6901 		 */
6902 		if (is_jmp32)
6903 			__mark_reg32_known(reg, val32);
6904 		else
6905 			__mark_reg_known(reg, val);
6906 		break;
6907 	}
6908 	case BPF_JSET:
6909 		if (is_jmp32) {
6910 			false_32off = tnum_and(false_32off, tnum_const(~val32));
6911 			if (is_power_of_2(val32))
6912 				true_32off = tnum_or(true_32off,
6913 						     tnum_const(val32));
6914 		} else {
6915 			false_64off = tnum_and(false_64off, tnum_const(~val));
6916 			if (is_power_of_2(val))
6917 				true_64off = tnum_or(true_64off,
6918 						     tnum_const(val));
6919 		}
6920 		break;
6921 	case BPF_JGE:
6922 	case BPF_JGT:
6923 	{
6924 		if (is_jmp32) {
6925 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
6926 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
6927 
6928 			false_reg->u32_max_value = min(false_reg->u32_max_value,
6929 						       false_umax);
6930 			true_reg->u32_min_value = max(true_reg->u32_min_value,
6931 						      true_umin);
6932 		} else {
6933 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
6934 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
6935 
6936 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
6937 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
6938 		}
6939 		break;
6940 	}
6941 	case BPF_JSGE:
6942 	case BPF_JSGT:
6943 	{
6944 		if (is_jmp32) {
6945 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
6946 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
6947 
6948 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
6949 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
6950 		} else {
6951 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
6952 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
6953 
6954 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
6955 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
6956 		}
6957 		break;
6958 	}
6959 	case BPF_JLE:
6960 	case BPF_JLT:
6961 	{
6962 		if (is_jmp32) {
6963 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
6964 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
6965 
6966 			false_reg->u32_min_value = max(false_reg->u32_min_value,
6967 						       false_umin);
6968 			true_reg->u32_max_value = min(true_reg->u32_max_value,
6969 						      true_umax);
6970 		} else {
6971 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
6972 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
6973 
6974 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
6975 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
6976 		}
6977 		break;
6978 	}
6979 	case BPF_JSLE:
6980 	case BPF_JSLT:
6981 	{
6982 		if (is_jmp32) {
6983 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
6984 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
6985 
6986 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
6987 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
6988 		} else {
6989 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
6990 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
6991 
6992 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
6993 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
6994 		}
6995 		break;
6996 	}
6997 	default:
6998 		return;
6999 	}
7000 
7001 	if (is_jmp32) {
7002 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7003 					     tnum_subreg(false_32off));
7004 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7005 					    tnum_subreg(true_32off));
7006 		__reg_combine_32_into_64(false_reg);
7007 		__reg_combine_32_into_64(true_reg);
7008 	} else {
7009 		false_reg->var_off = false_64off;
7010 		true_reg->var_off = true_64off;
7011 		__reg_combine_64_into_32(false_reg);
7012 		__reg_combine_64_into_32(true_reg);
7013 	}
7014 }
7015 
7016 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7017  * the variable reg.
7018  */
7019 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7020 				struct bpf_reg_state *false_reg,
7021 				u64 val, u32 val32,
7022 				u8 opcode, bool is_jmp32)
7023 {
7024 	/* How can we transform "a <op> b" into "b <op> a"? */
7025 	static const u8 opcode_flip[16] = {
7026 		/* these stay the same */
7027 		[BPF_JEQ  >> 4] = BPF_JEQ,
7028 		[BPF_JNE  >> 4] = BPF_JNE,
7029 		[BPF_JSET >> 4] = BPF_JSET,
7030 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7031 		[BPF_JGE  >> 4] = BPF_JLE,
7032 		[BPF_JGT  >> 4] = BPF_JLT,
7033 		[BPF_JLE  >> 4] = BPF_JGE,
7034 		[BPF_JLT  >> 4] = BPF_JGT,
7035 		[BPF_JSGE >> 4] = BPF_JSLE,
7036 		[BPF_JSGT >> 4] = BPF_JSLT,
7037 		[BPF_JSLE >> 4] = BPF_JSGE,
7038 		[BPF_JSLT >> 4] = BPF_JSGT
7039 	};
7040 	opcode = opcode_flip[opcode >> 4];
7041 	/* This uses zero as "not present in table"; luckily the zero opcode,
7042 	 * BPF_JA, can't get here.
7043 	 */
7044 	if (opcode)
7045 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7046 }
7047 
7048 /* Regs are known to be equal, so intersect their min/max/var_off */
7049 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7050 				  struct bpf_reg_state *dst_reg)
7051 {
7052 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7053 							dst_reg->umin_value);
7054 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7055 							dst_reg->umax_value);
7056 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7057 							dst_reg->smin_value);
7058 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7059 							dst_reg->smax_value);
7060 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7061 							     dst_reg->var_off);
7062 	/* We might have learned new bounds from the var_off. */
7063 	__update_reg_bounds(src_reg);
7064 	__update_reg_bounds(dst_reg);
7065 	/* We might have learned something about the sign bit. */
7066 	__reg_deduce_bounds(src_reg);
7067 	__reg_deduce_bounds(dst_reg);
7068 	/* We might have learned some bits from the bounds. */
7069 	__reg_bound_offset(src_reg);
7070 	__reg_bound_offset(dst_reg);
7071 	/* Intersecting with the old var_off might have improved our bounds
7072 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7073 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7074 	 */
7075 	__update_reg_bounds(src_reg);
7076 	__update_reg_bounds(dst_reg);
7077 }
7078 
7079 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7080 				struct bpf_reg_state *true_dst,
7081 				struct bpf_reg_state *false_src,
7082 				struct bpf_reg_state *false_dst,
7083 				u8 opcode)
7084 {
7085 	switch (opcode) {
7086 	case BPF_JEQ:
7087 		__reg_combine_min_max(true_src, true_dst);
7088 		break;
7089 	case BPF_JNE:
7090 		__reg_combine_min_max(false_src, false_dst);
7091 		break;
7092 	}
7093 }
7094 
7095 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7096 				 struct bpf_reg_state *reg, u32 id,
7097 				 bool is_null)
7098 {
7099 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
7100 		/* Old offset (both fixed and variable parts) should
7101 		 * have been known-zero, because we don't allow pointer
7102 		 * arithmetic on pointers that might be NULL.
7103 		 */
7104 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7105 				 !tnum_equals_const(reg->var_off, 0) ||
7106 				 reg->off)) {
7107 			__mark_reg_known_zero(reg);
7108 			reg->off = 0;
7109 		}
7110 		if (is_null) {
7111 			reg->type = SCALAR_VALUE;
7112 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7113 			const struct bpf_map *map = reg->map_ptr;
7114 
7115 			if (map->inner_map_meta) {
7116 				reg->type = CONST_PTR_TO_MAP;
7117 				reg->map_ptr = map->inner_map_meta;
7118 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7119 				reg->type = PTR_TO_XDP_SOCK;
7120 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7121 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7122 				reg->type = PTR_TO_SOCKET;
7123 			} else {
7124 				reg->type = PTR_TO_MAP_VALUE;
7125 			}
7126 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7127 			reg->type = PTR_TO_SOCKET;
7128 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7129 			reg->type = PTR_TO_SOCK_COMMON;
7130 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7131 			reg->type = PTR_TO_TCP_SOCK;
7132 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7133 			reg->type = PTR_TO_BTF_ID;
7134 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7135 			reg->type = PTR_TO_MEM;
7136 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7137 			reg->type = PTR_TO_RDONLY_BUF;
7138 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7139 			reg->type = PTR_TO_RDWR_BUF;
7140 		}
7141 		if (is_null) {
7142 			/* We don't need id and ref_obj_id from this point
7143 			 * onwards anymore, thus we should better reset it,
7144 			 * so that state pruning has chances to take effect.
7145 			 */
7146 			reg->id = 0;
7147 			reg->ref_obj_id = 0;
7148 		} else if (!reg_may_point_to_spin_lock(reg)) {
7149 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7150 			 * in release_reg_references().
7151 			 *
7152 			 * reg->id is still used by spin_lock ptr. Other
7153 			 * than spin_lock ptr type, reg->id can be reset.
7154 			 */
7155 			reg->id = 0;
7156 		}
7157 	}
7158 }
7159 
7160 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7161 				    bool is_null)
7162 {
7163 	struct bpf_reg_state *reg;
7164 	int i;
7165 
7166 	for (i = 0; i < MAX_BPF_REG; i++)
7167 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7168 
7169 	bpf_for_each_spilled_reg(i, state, reg) {
7170 		if (!reg)
7171 			continue;
7172 		mark_ptr_or_null_reg(state, reg, id, is_null);
7173 	}
7174 }
7175 
7176 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7177  * be folded together at some point.
7178  */
7179 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7180 				  bool is_null)
7181 {
7182 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7183 	struct bpf_reg_state *regs = state->regs;
7184 	u32 ref_obj_id = regs[regno].ref_obj_id;
7185 	u32 id = regs[regno].id;
7186 	int i;
7187 
7188 	if (ref_obj_id && ref_obj_id == id && is_null)
7189 		/* regs[regno] is in the " == NULL" branch.
7190 		 * No one could have freed the reference state before
7191 		 * doing the NULL check.
7192 		 */
7193 		WARN_ON_ONCE(release_reference_state(state, id));
7194 
7195 	for (i = 0; i <= vstate->curframe; i++)
7196 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7197 }
7198 
7199 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7200 				   struct bpf_reg_state *dst_reg,
7201 				   struct bpf_reg_state *src_reg,
7202 				   struct bpf_verifier_state *this_branch,
7203 				   struct bpf_verifier_state *other_branch)
7204 {
7205 	if (BPF_SRC(insn->code) != BPF_X)
7206 		return false;
7207 
7208 	/* Pointers are always 64-bit. */
7209 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7210 		return false;
7211 
7212 	switch (BPF_OP(insn->code)) {
7213 	case BPF_JGT:
7214 		if ((dst_reg->type == PTR_TO_PACKET &&
7215 		     src_reg->type == PTR_TO_PACKET_END) ||
7216 		    (dst_reg->type == PTR_TO_PACKET_META &&
7217 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7218 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7219 			find_good_pkt_pointers(this_branch, dst_reg,
7220 					       dst_reg->type, false);
7221 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7222 			    src_reg->type == PTR_TO_PACKET) ||
7223 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7224 			    src_reg->type == PTR_TO_PACKET_META)) {
7225 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7226 			find_good_pkt_pointers(other_branch, src_reg,
7227 					       src_reg->type, true);
7228 		} else {
7229 			return false;
7230 		}
7231 		break;
7232 	case BPF_JLT:
7233 		if ((dst_reg->type == PTR_TO_PACKET &&
7234 		     src_reg->type == PTR_TO_PACKET_END) ||
7235 		    (dst_reg->type == PTR_TO_PACKET_META &&
7236 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7237 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7238 			find_good_pkt_pointers(other_branch, dst_reg,
7239 					       dst_reg->type, true);
7240 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7241 			    src_reg->type == PTR_TO_PACKET) ||
7242 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7243 			    src_reg->type == PTR_TO_PACKET_META)) {
7244 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7245 			find_good_pkt_pointers(this_branch, src_reg,
7246 					       src_reg->type, false);
7247 		} else {
7248 			return false;
7249 		}
7250 		break;
7251 	case BPF_JGE:
7252 		if ((dst_reg->type == PTR_TO_PACKET &&
7253 		     src_reg->type == PTR_TO_PACKET_END) ||
7254 		    (dst_reg->type == PTR_TO_PACKET_META &&
7255 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7256 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7257 			find_good_pkt_pointers(this_branch, dst_reg,
7258 					       dst_reg->type, true);
7259 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7260 			    src_reg->type == PTR_TO_PACKET) ||
7261 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7262 			    src_reg->type == PTR_TO_PACKET_META)) {
7263 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7264 			find_good_pkt_pointers(other_branch, src_reg,
7265 					       src_reg->type, false);
7266 		} else {
7267 			return false;
7268 		}
7269 		break;
7270 	case BPF_JLE:
7271 		if ((dst_reg->type == PTR_TO_PACKET &&
7272 		     src_reg->type == PTR_TO_PACKET_END) ||
7273 		    (dst_reg->type == PTR_TO_PACKET_META &&
7274 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7275 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7276 			find_good_pkt_pointers(other_branch, dst_reg,
7277 					       dst_reg->type, false);
7278 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7279 			    src_reg->type == PTR_TO_PACKET) ||
7280 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7281 			    src_reg->type == PTR_TO_PACKET_META)) {
7282 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7283 			find_good_pkt_pointers(this_branch, src_reg,
7284 					       src_reg->type, true);
7285 		} else {
7286 			return false;
7287 		}
7288 		break;
7289 	default:
7290 		return false;
7291 	}
7292 
7293 	return true;
7294 }
7295 
7296 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7297 			     struct bpf_insn *insn, int *insn_idx)
7298 {
7299 	struct bpf_verifier_state *this_branch = env->cur_state;
7300 	struct bpf_verifier_state *other_branch;
7301 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7302 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7303 	u8 opcode = BPF_OP(insn->code);
7304 	bool is_jmp32;
7305 	int pred = -1;
7306 	int err;
7307 
7308 	/* Only conditional jumps are expected to reach here. */
7309 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7310 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7311 		return -EINVAL;
7312 	}
7313 
7314 	if (BPF_SRC(insn->code) == BPF_X) {
7315 		if (insn->imm != 0) {
7316 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7317 			return -EINVAL;
7318 		}
7319 
7320 		/* check src1 operand */
7321 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7322 		if (err)
7323 			return err;
7324 
7325 		if (is_pointer_value(env, insn->src_reg)) {
7326 			verbose(env, "R%d pointer comparison prohibited\n",
7327 				insn->src_reg);
7328 			return -EACCES;
7329 		}
7330 		src_reg = &regs[insn->src_reg];
7331 	} else {
7332 		if (insn->src_reg != BPF_REG_0) {
7333 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7334 			return -EINVAL;
7335 		}
7336 	}
7337 
7338 	/* check src2 operand */
7339 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7340 	if (err)
7341 		return err;
7342 
7343 	dst_reg = &regs[insn->dst_reg];
7344 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7345 
7346 	if (BPF_SRC(insn->code) == BPF_K) {
7347 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7348 	} else if (src_reg->type == SCALAR_VALUE &&
7349 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7350 		pred = is_branch_taken(dst_reg,
7351 				       tnum_subreg(src_reg->var_off).value,
7352 				       opcode,
7353 				       is_jmp32);
7354 	} else if (src_reg->type == SCALAR_VALUE &&
7355 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7356 		pred = is_branch_taken(dst_reg,
7357 				       src_reg->var_off.value,
7358 				       opcode,
7359 				       is_jmp32);
7360 	}
7361 
7362 	if (pred >= 0) {
7363 		/* If we get here with a dst_reg pointer type it is because
7364 		 * above is_branch_taken() special cased the 0 comparison.
7365 		 */
7366 		if (!__is_pointer_value(false, dst_reg))
7367 			err = mark_chain_precision(env, insn->dst_reg);
7368 		if (BPF_SRC(insn->code) == BPF_X && !err)
7369 			err = mark_chain_precision(env, insn->src_reg);
7370 		if (err)
7371 			return err;
7372 	}
7373 	if (pred == 1) {
7374 		/* only follow the goto, ignore fall-through */
7375 		*insn_idx += insn->off;
7376 		return 0;
7377 	} else if (pred == 0) {
7378 		/* only follow fall-through branch, since
7379 		 * that's where the program will go
7380 		 */
7381 		return 0;
7382 	}
7383 
7384 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7385 				  false);
7386 	if (!other_branch)
7387 		return -EFAULT;
7388 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7389 
7390 	/* detect if we are comparing against a constant value so we can adjust
7391 	 * our min/max values for our dst register.
7392 	 * this is only legit if both are scalars (or pointers to the same
7393 	 * object, I suppose, but we don't support that right now), because
7394 	 * otherwise the different base pointers mean the offsets aren't
7395 	 * comparable.
7396 	 */
7397 	if (BPF_SRC(insn->code) == BPF_X) {
7398 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7399 
7400 		if (dst_reg->type == SCALAR_VALUE &&
7401 		    src_reg->type == SCALAR_VALUE) {
7402 			if (tnum_is_const(src_reg->var_off) ||
7403 			    (is_jmp32 &&
7404 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7405 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7406 						dst_reg,
7407 						src_reg->var_off.value,
7408 						tnum_subreg(src_reg->var_off).value,
7409 						opcode, is_jmp32);
7410 			else if (tnum_is_const(dst_reg->var_off) ||
7411 				 (is_jmp32 &&
7412 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7413 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7414 						    src_reg,
7415 						    dst_reg->var_off.value,
7416 						    tnum_subreg(dst_reg->var_off).value,
7417 						    opcode, is_jmp32);
7418 			else if (!is_jmp32 &&
7419 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7420 				/* Comparing for equality, we can combine knowledge */
7421 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7422 						    &other_branch_regs[insn->dst_reg],
7423 						    src_reg, dst_reg, opcode);
7424 		}
7425 	} else if (dst_reg->type == SCALAR_VALUE) {
7426 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7427 					dst_reg, insn->imm, (u32)insn->imm,
7428 					opcode, is_jmp32);
7429 	}
7430 
7431 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7432 	 * NOTE: these optimizations below are related with pointer comparison
7433 	 *       which will never be JMP32.
7434 	 */
7435 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7436 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7437 	    reg_type_may_be_null(dst_reg->type)) {
7438 		/* Mark all identical registers in each branch as either
7439 		 * safe or unknown depending R == 0 or R != 0 conditional.
7440 		 */
7441 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7442 				      opcode == BPF_JNE);
7443 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7444 				      opcode == BPF_JEQ);
7445 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7446 					   this_branch, other_branch) &&
7447 		   is_pointer_value(env, insn->dst_reg)) {
7448 		verbose(env, "R%d pointer comparison prohibited\n",
7449 			insn->dst_reg);
7450 		return -EACCES;
7451 	}
7452 	if (env->log.level & BPF_LOG_LEVEL)
7453 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7454 	return 0;
7455 }
7456 
7457 /* verify BPF_LD_IMM64 instruction */
7458 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7459 {
7460 	struct bpf_insn_aux_data *aux = cur_aux(env);
7461 	struct bpf_reg_state *regs = cur_regs(env);
7462 	struct bpf_map *map;
7463 	int err;
7464 
7465 	if (BPF_SIZE(insn->code) != BPF_DW) {
7466 		verbose(env, "invalid BPF_LD_IMM insn\n");
7467 		return -EINVAL;
7468 	}
7469 	if (insn->off != 0) {
7470 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7471 		return -EINVAL;
7472 	}
7473 
7474 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7475 	if (err)
7476 		return err;
7477 
7478 	if (insn->src_reg == 0) {
7479 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7480 
7481 		regs[insn->dst_reg].type = SCALAR_VALUE;
7482 		__mark_reg_known(&regs[insn->dst_reg], imm);
7483 		return 0;
7484 	}
7485 
7486 	map = env->used_maps[aux->map_index];
7487 	mark_reg_known_zero(env, regs, insn->dst_reg);
7488 	regs[insn->dst_reg].map_ptr = map;
7489 
7490 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7491 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
7492 		regs[insn->dst_reg].off = aux->map_off;
7493 		if (map_value_has_spin_lock(map))
7494 			regs[insn->dst_reg].id = ++env->id_gen;
7495 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7496 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
7497 	} else {
7498 		verbose(env, "bpf verifier is misconfigured\n");
7499 		return -EINVAL;
7500 	}
7501 
7502 	return 0;
7503 }
7504 
7505 static bool may_access_skb(enum bpf_prog_type type)
7506 {
7507 	switch (type) {
7508 	case BPF_PROG_TYPE_SOCKET_FILTER:
7509 	case BPF_PROG_TYPE_SCHED_CLS:
7510 	case BPF_PROG_TYPE_SCHED_ACT:
7511 		return true;
7512 	default:
7513 		return false;
7514 	}
7515 }
7516 
7517 /* verify safety of LD_ABS|LD_IND instructions:
7518  * - they can only appear in the programs where ctx == skb
7519  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7520  *   preserve R6-R9, and store return value into R0
7521  *
7522  * Implicit input:
7523  *   ctx == skb == R6 == CTX
7524  *
7525  * Explicit input:
7526  *   SRC == any register
7527  *   IMM == 32-bit immediate
7528  *
7529  * Output:
7530  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7531  */
7532 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7533 {
7534 	struct bpf_reg_state *regs = cur_regs(env);
7535 	static const int ctx_reg = BPF_REG_6;
7536 	u8 mode = BPF_MODE(insn->code);
7537 	int i, err;
7538 
7539 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7540 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7541 		return -EINVAL;
7542 	}
7543 
7544 	if (!env->ops->gen_ld_abs) {
7545 		verbose(env, "bpf verifier is misconfigured\n");
7546 		return -EINVAL;
7547 	}
7548 
7549 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7550 	    BPF_SIZE(insn->code) == BPF_DW ||
7551 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7552 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7553 		return -EINVAL;
7554 	}
7555 
7556 	/* check whether implicit source operand (register R6) is readable */
7557 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7558 	if (err)
7559 		return err;
7560 
7561 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7562 	 * gen_ld_abs() may terminate the program at runtime, leading to
7563 	 * reference leak.
7564 	 */
7565 	err = check_reference_leak(env);
7566 	if (err) {
7567 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7568 		return err;
7569 	}
7570 
7571 	if (env->cur_state->active_spin_lock) {
7572 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7573 		return -EINVAL;
7574 	}
7575 
7576 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7577 		verbose(env,
7578 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7579 		return -EINVAL;
7580 	}
7581 
7582 	if (mode == BPF_IND) {
7583 		/* check explicit source operand */
7584 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7585 		if (err)
7586 			return err;
7587 	}
7588 
7589 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7590 	if (err < 0)
7591 		return err;
7592 
7593 	/* reset caller saved regs to unreadable */
7594 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7595 		mark_reg_not_init(env, regs, caller_saved[i]);
7596 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7597 	}
7598 
7599 	/* mark destination R0 register as readable, since it contains
7600 	 * the value fetched from the packet.
7601 	 * Already marked as written above.
7602 	 */
7603 	mark_reg_unknown(env, regs, BPF_REG_0);
7604 	/* ld_abs load up to 32-bit skb data. */
7605 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7606 	return 0;
7607 }
7608 
7609 static int check_return_code(struct bpf_verifier_env *env)
7610 {
7611 	struct tnum enforce_attach_type_range = tnum_unknown;
7612 	const struct bpf_prog *prog = env->prog;
7613 	struct bpf_reg_state *reg;
7614 	struct tnum range = tnum_range(0, 1);
7615 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7616 	int err;
7617 
7618 	/* LSM and struct_ops func-ptr's return type could be "void" */
7619 	if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7620 	     prog_type == BPF_PROG_TYPE_LSM) &&
7621 	    !prog->aux->attach_func_proto->type)
7622 		return 0;
7623 
7624 	/* eBPF calling convetion is such that R0 is used
7625 	 * to return the value from eBPF program.
7626 	 * Make sure that it's readable at this time
7627 	 * of bpf_exit, which means that program wrote
7628 	 * something into it earlier
7629 	 */
7630 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7631 	if (err)
7632 		return err;
7633 
7634 	if (is_pointer_value(env, BPF_REG_0)) {
7635 		verbose(env, "R0 leaks addr as return value\n");
7636 		return -EACCES;
7637 	}
7638 
7639 	switch (prog_type) {
7640 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7641 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7642 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7643 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7644 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7645 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7646 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7647 			range = tnum_range(1, 1);
7648 		break;
7649 	case BPF_PROG_TYPE_CGROUP_SKB:
7650 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7651 			range = tnum_range(0, 3);
7652 			enforce_attach_type_range = tnum_range(2, 3);
7653 		}
7654 		break;
7655 	case BPF_PROG_TYPE_CGROUP_SOCK:
7656 	case BPF_PROG_TYPE_SOCK_OPS:
7657 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7658 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7659 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7660 		break;
7661 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7662 		if (!env->prog->aux->attach_btf_id)
7663 			return 0;
7664 		range = tnum_const(0);
7665 		break;
7666 	case BPF_PROG_TYPE_TRACING:
7667 		switch (env->prog->expected_attach_type) {
7668 		case BPF_TRACE_FENTRY:
7669 		case BPF_TRACE_FEXIT:
7670 			range = tnum_const(0);
7671 			break;
7672 		case BPF_TRACE_RAW_TP:
7673 		case BPF_MODIFY_RETURN:
7674 			return 0;
7675 		case BPF_TRACE_ITER:
7676 			break;
7677 		default:
7678 			return -ENOTSUPP;
7679 		}
7680 		break;
7681 	case BPF_PROG_TYPE_SK_LOOKUP:
7682 		range = tnum_range(SK_DROP, SK_PASS);
7683 		break;
7684 	case BPF_PROG_TYPE_EXT:
7685 		/* freplace program can return anything as its return value
7686 		 * depends on the to-be-replaced kernel func or bpf program.
7687 		 */
7688 	default:
7689 		return 0;
7690 	}
7691 
7692 	reg = cur_regs(env) + BPF_REG_0;
7693 	if (reg->type != SCALAR_VALUE) {
7694 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7695 			reg_type_str[reg->type]);
7696 		return -EINVAL;
7697 	}
7698 
7699 	if (!tnum_in(range, reg->var_off)) {
7700 		char tn_buf[48];
7701 
7702 		verbose(env, "At program exit the register R0 ");
7703 		if (!tnum_is_unknown(reg->var_off)) {
7704 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
7705 			verbose(env, "has value %s", tn_buf);
7706 		} else {
7707 			verbose(env, "has unknown scalar value");
7708 		}
7709 		tnum_strn(tn_buf, sizeof(tn_buf), range);
7710 		verbose(env, " should have been in %s\n", tn_buf);
7711 		return -EINVAL;
7712 	}
7713 
7714 	if (!tnum_is_unknown(enforce_attach_type_range) &&
7715 	    tnum_in(enforce_attach_type_range, reg->var_off))
7716 		env->prog->enforce_expected_attach_type = 1;
7717 	return 0;
7718 }
7719 
7720 /* non-recursive DFS pseudo code
7721  * 1  procedure DFS-iterative(G,v):
7722  * 2      label v as discovered
7723  * 3      let S be a stack
7724  * 4      S.push(v)
7725  * 5      while S is not empty
7726  * 6            t <- S.pop()
7727  * 7            if t is what we're looking for:
7728  * 8                return t
7729  * 9            for all edges e in G.adjacentEdges(t) do
7730  * 10               if edge e is already labelled
7731  * 11                   continue with the next edge
7732  * 12               w <- G.adjacentVertex(t,e)
7733  * 13               if vertex w is not discovered and not explored
7734  * 14                   label e as tree-edge
7735  * 15                   label w as discovered
7736  * 16                   S.push(w)
7737  * 17                   continue at 5
7738  * 18               else if vertex w is discovered
7739  * 19                   label e as back-edge
7740  * 20               else
7741  * 21                   // vertex w is explored
7742  * 22                   label e as forward- or cross-edge
7743  * 23           label t as explored
7744  * 24           S.pop()
7745  *
7746  * convention:
7747  * 0x10 - discovered
7748  * 0x11 - discovered and fall-through edge labelled
7749  * 0x12 - discovered and fall-through and branch edges labelled
7750  * 0x20 - explored
7751  */
7752 
7753 enum {
7754 	DISCOVERED = 0x10,
7755 	EXPLORED = 0x20,
7756 	FALLTHROUGH = 1,
7757 	BRANCH = 2,
7758 };
7759 
7760 static u32 state_htab_size(struct bpf_verifier_env *env)
7761 {
7762 	return env->prog->len;
7763 }
7764 
7765 static struct bpf_verifier_state_list **explored_state(
7766 					struct bpf_verifier_env *env,
7767 					int idx)
7768 {
7769 	struct bpf_verifier_state *cur = env->cur_state;
7770 	struct bpf_func_state *state = cur->frame[cur->curframe];
7771 
7772 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
7773 }
7774 
7775 static void init_explored_state(struct bpf_verifier_env *env, int idx)
7776 {
7777 	env->insn_aux_data[idx].prune_point = true;
7778 }
7779 
7780 /* t, w, e - match pseudo-code above:
7781  * t - index of current instruction
7782  * w - next instruction
7783  * e - edge
7784  */
7785 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
7786 		     bool loop_ok)
7787 {
7788 	int *insn_stack = env->cfg.insn_stack;
7789 	int *insn_state = env->cfg.insn_state;
7790 
7791 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
7792 		return 0;
7793 
7794 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
7795 		return 0;
7796 
7797 	if (w < 0 || w >= env->prog->len) {
7798 		verbose_linfo(env, t, "%d: ", t);
7799 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
7800 		return -EINVAL;
7801 	}
7802 
7803 	if (e == BRANCH)
7804 		/* mark branch target for state pruning */
7805 		init_explored_state(env, w);
7806 
7807 	if (insn_state[w] == 0) {
7808 		/* tree-edge */
7809 		insn_state[t] = DISCOVERED | e;
7810 		insn_state[w] = DISCOVERED;
7811 		if (env->cfg.cur_stack >= env->prog->len)
7812 			return -E2BIG;
7813 		insn_stack[env->cfg.cur_stack++] = w;
7814 		return 1;
7815 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
7816 		if (loop_ok && env->bpf_capable)
7817 			return 0;
7818 		verbose_linfo(env, t, "%d: ", t);
7819 		verbose_linfo(env, w, "%d: ", w);
7820 		verbose(env, "back-edge from insn %d to %d\n", t, w);
7821 		return -EINVAL;
7822 	} else if (insn_state[w] == EXPLORED) {
7823 		/* forward- or cross-edge */
7824 		insn_state[t] = DISCOVERED | e;
7825 	} else {
7826 		verbose(env, "insn state internal bug\n");
7827 		return -EFAULT;
7828 	}
7829 	return 0;
7830 }
7831 
7832 /* non-recursive depth-first-search to detect loops in BPF program
7833  * loop == back-edge in directed graph
7834  */
7835 static int check_cfg(struct bpf_verifier_env *env)
7836 {
7837 	struct bpf_insn *insns = env->prog->insnsi;
7838 	int insn_cnt = env->prog->len;
7839 	int *insn_stack, *insn_state;
7840 	int ret = 0;
7841 	int i, t;
7842 
7843 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7844 	if (!insn_state)
7845 		return -ENOMEM;
7846 
7847 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
7848 	if (!insn_stack) {
7849 		kvfree(insn_state);
7850 		return -ENOMEM;
7851 	}
7852 
7853 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
7854 	insn_stack[0] = 0; /* 0 is the first instruction */
7855 	env->cfg.cur_stack = 1;
7856 
7857 peek_stack:
7858 	if (env->cfg.cur_stack == 0)
7859 		goto check_state;
7860 	t = insn_stack[env->cfg.cur_stack - 1];
7861 
7862 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
7863 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
7864 		u8 opcode = BPF_OP(insns[t].code);
7865 
7866 		if (opcode == BPF_EXIT) {
7867 			goto mark_explored;
7868 		} else if (opcode == BPF_CALL) {
7869 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7870 			if (ret == 1)
7871 				goto peek_stack;
7872 			else if (ret < 0)
7873 				goto err_free;
7874 			if (t + 1 < insn_cnt)
7875 				init_explored_state(env, t + 1);
7876 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
7877 				init_explored_state(env, t);
7878 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
7879 						env, false);
7880 				if (ret == 1)
7881 					goto peek_stack;
7882 				else if (ret < 0)
7883 					goto err_free;
7884 			}
7885 		} else if (opcode == BPF_JA) {
7886 			if (BPF_SRC(insns[t].code) != BPF_K) {
7887 				ret = -EINVAL;
7888 				goto err_free;
7889 			}
7890 			/* unconditional jump with single edge */
7891 			ret = push_insn(t, t + insns[t].off + 1,
7892 					FALLTHROUGH, env, true);
7893 			if (ret == 1)
7894 				goto peek_stack;
7895 			else if (ret < 0)
7896 				goto err_free;
7897 			/* unconditional jmp is not a good pruning point,
7898 			 * but it's marked, since backtracking needs
7899 			 * to record jmp history in is_state_visited().
7900 			 */
7901 			init_explored_state(env, t + insns[t].off + 1);
7902 			/* tell verifier to check for equivalent states
7903 			 * after every call and jump
7904 			 */
7905 			if (t + 1 < insn_cnt)
7906 				init_explored_state(env, t + 1);
7907 		} else {
7908 			/* conditional jump with two edges */
7909 			init_explored_state(env, t);
7910 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
7911 			if (ret == 1)
7912 				goto peek_stack;
7913 			else if (ret < 0)
7914 				goto err_free;
7915 
7916 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
7917 			if (ret == 1)
7918 				goto peek_stack;
7919 			else if (ret < 0)
7920 				goto err_free;
7921 		}
7922 	} else {
7923 		/* all other non-branch instructions with single
7924 		 * fall-through edge
7925 		 */
7926 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
7927 		if (ret == 1)
7928 			goto peek_stack;
7929 		else if (ret < 0)
7930 			goto err_free;
7931 	}
7932 
7933 mark_explored:
7934 	insn_state[t] = EXPLORED;
7935 	if (env->cfg.cur_stack-- <= 0) {
7936 		verbose(env, "pop stack internal bug\n");
7937 		ret = -EFAULT;
7938 		goto err_free;
7939 	}
7940 	goto peek_stack;
7941 
7942 check_state:
7943 	for (i = 0; i < insn_cnt; i++) {
7944 		if (insn_state[i] != EXPLORED) {
7945 			verbose(env, "unreachable insn %d\n", i);
7946 			ret = -EINVAL;
7947 			goto err_free;
7948 		}
7949 	}
7950 	ret = 0; /* cfg looks good */
7951 
7952 err_free:
7953 	kvfree(insn_state);
7954 	kvfree(insn_stack);
7955 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
7956 	return ret;
7957 }
7958 
7959 static int check_abnormal_return(struct bpf_verifier_env *env)
7960 {
7961 	int i;
7962 
7963 	for (i = 1; i < env->subprog_cnt; i++) {
7964 		if (env->subprog_info[i].has_ld_abs) {
7965 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
7966 			return -EINVAL;
7967 		}
7968 		if (env->subprog_info[i].has_tail_call) {
7969 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
7970 			return -EINVAL;
7971 		}
7972 	}
7973 	return 0;
7974 }
7975 
7976 /* The minimum supported BTF func info size */
7977 #define MIN_BPF_FUNCINFO_SIZE	8
7978 #define MAX_FUNCINFO_REC_SIZE	252
7979 
7980 static int check_btf_func(struct bpf_verifier_env *env,
7981 			  const union bpf_attr *attr,
7982 			  union bpf_attr __user *uattr)
7983 {
7984 	const struct btf_type *type, *func_proto, *ret_type;
7985 	u32 i, nfuncs, urec_size, min_size;
7986 	u32 krec_size = sizeof(struct bpf_func_info);
7987 	struct bpf_func_info *krecord;
7988 	struct bpf_func_info_aux *info_aux = NULL;
7989 	struct bpf_prog *prog;
7990 	const struct btf *btf;
7991 	void __user *urecord;
7992 	u32 prev_offset = 0;
7993 	bool scalar_return;
7994 	int ret = -ENOMEM;
7995 
7996 	nfuncs = attr->func_info_cnt;
7997 	if (!nfuncs) {
7998 		if (check_abnormal_return(env))
7999 			return -EINVAL;
8000 		return 0;
8001 	}
8002 
8003 	if (nfuncs != env->subprog_cnt) {
8004 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8005 		return -EINVAL;
8006 	}
8007 
8008 	urec_size = attr->func_info_rec_size;
8009 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8010 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8011 	    urec_size % sizeof(u32)) {
8012 		verbose(env, "invalid func info rec size %u\n", urec_size);
8013 		return -EINVAL;
8014 	}
8015 
8016 	prog = env->prog;
8017 	btf = prog->aux->btf;
8018 
8019 	urecord = u64_to_user_ptr(attr->func_info);
8020 	min_size = min_t(u32, krec_size, urec_size);
8021 
8022 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8023 	if (!krecord)
8024 		return -ENOMEM;
8025 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8026 	if (!info_aux)
8027 		goto err_free;
8028 
8029 	for (i = 0; i < nfuncs; i++) {
8030 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8031 		if (ret) {
8032 			if (ret == -E2BIG) {
8033 				verbose(env, "nonzero tailing record in func info");
8034 				/* set the size kernel expects so loader can zero
8035 				 * out the rest of the record.
8036 				 */
8037 				if (put_user(min_size, &uattr->func_info_rec_size))
8038 					ret = -EFAULT;
8039 			}
8040 			goto err_free;
8041 		}
8042 
8043 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8044 			ret = -EFAULT;
8045 			goto err_free;
8046 		}
8047 
8048 		/* check insn_off */
8049 		ret = -EINVAL;
8050 		if (i == 0) {
8051 			if (krecord[i].insn_off) {
8052 				verbose(env,
8053 					"nonzero insn_off %u for the first func info record",
8054 					krecord[i].insn_off);
8055 				goto err_free;
8056 			}
8057 		} else if (krecord[i].insn_off <= prev_offset) {
8058 			verbose(env,
8059 				"same or smaller insn offset (%u) than previous func info record (%u)",
8060 				krecord[i].insn_off, prev_offset);
8061 			goto err_free;
8062 		}
8063 
8064 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8065 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8066 			goto err_free;
8067 		}
8068 
8069 		/* check type_id */
8070 		type = btf_type_by_id(btf, krecord[i].type_id);
8071 		if (!type || !btf_type_is_func(type)) {
8072 			verbose(env, "invalid type id %d in func info",
8073 				krecord[i].type_id);
8074 			goto err_free;
8075 		}
8076 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8077 
8078 		func_proto = btf_type_by_id(btf, type->type);
8079 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8080 			/* btf_func_check() already verified it during BTF load */
8081 			goto err_free;
8082 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8083 		scalar_return =
8084 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8085 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8086 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8087 			goto err_free;
8088 		}
8089 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8090 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8091 			goto err_free;
8092 		}
8093 
8094 		prev_offset = krecord[i].insn_off;
8095 		urecord += urec_size;
8096 	}
8097 
8098 	prog->aux->func_info = krecord;
8099 	prog->aux->func_info_cnt = nfuncs;
8100 	prog->aux->func_info_aux = info_aux;
8101 	return 0;
8102 
8103 err_free:
8104 	kvfree(krecord);
8105 	kfree(info_aux);
8106 	return ret;
8107 }
8108 
8109 static void adjust_btf_func(struct bpf_verifier_env *env)
8110 {
8111 	struct bpf_prog_aux *aux = env->prog->aux;
8112 	int i;
8113 
8114 	if (!aux->func_info)
8115 		return;
8116 
8117 	for (i = 0; i < env->subprog_cnt; i++)
8118 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8119 }
8120 
8121 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8122 		sizeof(((struct bpf_line_info *)(0))->line_col))
8123 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8124 
8125 static int check_btf_line(struct bpf_verifier_env *env,
8126 			  const union bpf_attr *attr,
8127 			  union bpf_attr __user *uattr)
8128 {
8129 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8130 	struct bpf_subprog_info *sub;
8131 	struct bpf_line_info *linfo;
8132 	struct bpf_prog *prog;
8133 	const struct btf *btf;
8134 	void __user *ulinfo;
8135 	int err;
8136 
8137 	nr_linfo = attr->line_info_cnt;
8138 	if (!nr_linfo)
8139 		return 0;
8140 
8141 	rec_size = attr->line_info_rec_size;
8142 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8143 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8144 	    rec_size & (sizeof(u32) - 1))
8145 		return -EINVAL;
8146 
8147 	/* Need to zero it in case the userspace may
8148 	 * pass in a smaller bpf_line_info object.
8149 	 */
8150 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8151 			 GFP_KERNEL | __GFP_NOWARN);
8152 	if (!linfo)
8153 		return -ENOMEM;
8154 
8155 	prog = env->prog;
8156 	btf = prog->aux->btf;
8157 
8158 	s = 0;
8159 	sub = env->subprog_info;
8160 	ulinfo = u64_to_user_ptr(attr->line_info);
8161 	expected_size = sizeof(struct bpf_line_info);
8162 	ncopy = min_t(u32, expected_size, rec_size);
8163 	for (i = 0; i < nr_linfo; i++) {
8164 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8165 		if (err) {
8166 			if (err == -E2BIG) {
8167 				verbose(env, "nonzero tailing record in line_info");
8168 				if (put_user(expected_size,
8169 					     &uattr->line_info_rec_size))
8170 					err = -EFAULT;
8171 			}
8172 			goto err_free;
8173 		}
8174 
8175 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8176 			err = -EFAULT;
8177 			goto err_free;
8178 		}
8179 
8180 		/*
8181 		 * Check insn_off to ensure
8182 		 * 1) strictly increasing AND
8183 		 * 2) bounded by prog->len
8184 		 *
8185 		 * The linfo[0].insn_off == 0 check logically falls into
8186 		 * the later "missing bpf_line_info for func..." case
8187 		 * because the first linfo[0].insn_off must be the
8188 		 * first sub also and the first sub must have
8189 		 * subprog_info[0].start == 0.
8190 		 */
8191 		if ((i && linfo[i].insn_off <= prev_offset) ||
8192 		    linfo[i].insn_off >= prog->len) {
8193 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8194 				i, linfo[i].insn_off, prev_offset,
8195 				prog->len);
8196 			err = -EINVAL;
8197 			goto err_free;
8198 		}
8199 
8200 		if (!prog->insnsi[linfo[i].insn_off].code) {
8201 			verbose(env,
8202 				"Invalid insn code at line_info[%u].insn_off\n",
8203 				i);
8204 			err = -EINVAL;
8205 			goto err_free;
8206 		}
8207 
8208 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8209 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8210 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8211 			err = -EINVAL;
8212 			goto err_free;
8213 		}
8214 
8215 		if (s != env->subprog_cnt) {
8216 			if (linfo[i].insn_off == sub[s].start) {
8217 				sub[s].linfo_idx = i;
8218 				s++;
8219 			} else if (sub[s].start < linfo[i].insn_off) {
8220 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8221 				err = -EINVAL;
8222 				goto err_free;
8223 			}
8224 		}
8225 
8226 		prev_offset = linfo[i].insn_off;
8227 		ulinfo += rec_size;
8228 	}
8229 
8230 	if (s != env->subprog_cnt) {
8231 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8232 			env->subprog_cnt - s, s);
8233 		err = -EINVAL;
8234 		goto err_free;
8235 	}
8236 
8237 	prog->aux->linfo = linfo;
8238 	prog->aux->nr_linfo = nr_linfo;
8239 
8240 	return 0;
8241 
8242 err_free:
8243 	kvfree(linfo);
8244 	return err;
8245 }
8246 
8247 static int check_btf_info(struct bpf_verifier_env *env,
8248 			  const union bpf_attr *attr,
8249 			  union bpf_attr __user *uattr)
8250 {
8251 	struct btf *btf;
8252 	int err;
8253 
8254 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8255 		if (check_abnormal_return(env))
8256 			return -EINVAL;
8257 		return 0;
8258 	}
8259 
8260 	btf = btf_get_by_fd(attr->prog_btf_fd);
8261 	if (IS_ERR(btf))
8262 		return PTR_ERR(btf);
8263 	env->prog->aux->btf = btf;
8264 
8265 	err = check_btf_func(env, attr, uattr);
8266 	if (err)
8267 		return err;
8268 
8269 	err = check_btf_line(env, attr, uattr);
8270 	if (err)
8271 		return err;
8272 
8273 	return 0;
8274 }
8275 
8276 /* check %cur's range satisfies %old's */
8277 static bool range_within(struct bpf_reg_state *old,
8278 			 struct bpf_reg_state *cur)
8279 {
8280 	return old->umin_value <= cur->umin_value &&
8281 	       old->umax_value >= cur->umax_value &&
8282 	       old->smin_value <= cur->smin_value &&
8283 	       old->smax_value >= cur->smax_value;
8284 }
8285 
8286 /* Maximum number of register states that can exist at once */
8287 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8288 struct idpair {
8289 	u32 old;
8290 	u32 cur;
8291 };
8292 
8293 /* If in the old state two registers had the same id, then they need to have
8294  * the same id in the new state as well.  But that id could be different from
8295  * the old state, so we need to track the mapping from old to new ids.
8296  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8297  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8298  * regs with a different old id could still have new id 9, we don't care about
8299  * that.
8300  * So we look through our idmap to see if this old id has been seen before.  If
8301  * so, we require the new id to match; otherwise, we add the id pair to the map.
8302  */
8303 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8304 {
8305 	unsigned int i;
8306 
8307 	for (i = 0; i < ID_MAP_SIZE; i++) {
8308 		if (!idmap[i].old) {
8309 			/* Reached an empty slot; haven't seen this id before */
8310 			idmap[i].old = old_id;
8311 			idmap[i].cur = cur_id;
8312 			return true;
8313 		}
8314 		if (idmap[i].old == old_id)
8315 			return idmap[i].cur == cur_id;
8316 	}
8317 	/* We ran out of idmap slots, which should be impossible */
8318 	WARN_ON_ONCE(1);
8319 	return false;
8320 }
8321 
8322 static void clean_func_state(struct bpf_verifier_env *env,
8323 			     struct bpf_func_state *st)
8324 {
8325 	enum bpf_reg_liveness live;
8326 	int i, j;
8327 
8328 	for (i = 0; i < BPF_REG_FP; i++) {
8329 		live = st->regs[i].live;
8330 		/* liveness must not touch this register anymore */
8331 		st->regs[i].live |= REG_LIVE_DONE;
8332 		if (!(live & REG_LIVE_READ))
8333 			/* since the register is unused, clear its state
8334 			 * to make further comparison simpler
8335 			 */
8336 			__mark_reg_not_init(env, &st->regs[i]);
8337 	}
8338 
8339 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8340 		live = st->stack[i].spilled_ptr.live;
8341 		/* liveness must not touch this stack slot anymore */
8342 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8343 		if (!(live & REG_LIVE_READ)) {
8344 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8345 			for (j = 0; j < BPF_REG_SIZE; j++)
8346 				st->stack[i].slot_type[j] = STACK_INVALID;
8347 		}
8348 	}
8349 }
8350 
8351 static void clean_verifier_state(struct bpf_verifier_env *env,
8352 				 struct bpf_verifier_state *st)
8353 {
8354 	int i;
8355 
8356 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8357 		/* all regs in this state in all frames were already marked */
8358 		return;
8359 
8360 	for (i = 0; i <= st->curframe; i++)
8361 		clean_func_state(env, st->frame[i]);
8362 }
8363 
8364 /* the parentage chains form a tree.
8365  * the verifier states are added to state lists at given insn and
8366  * pushed into state stack for future exploration.
8367  * when the verifier reaches bpf_exit insn some of the verifer states
8368  * stored in the state lists have their final liveness state already,
8369  * but a lot of states will get revised from liveness point of view when
8370  * the verifier explores other branches.
8371  * Example:
8372  * 1: r0 = 1
8373  * 2: if r1 == 100 goto pc+1
8374  * 3: r0 = 2
8375  * 4: exit
8376  * when the verifier reaches exit insn the register r0 in the state list of
8377  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8378  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8379  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8380  *
8381  * Since the verifier pushes the branch states as it sees them while exploring
8382  * the program the condition of walking the branch instruction for the second
8383  * time means that all states below this branch were already explored and
8384  * their final liveness markes are already propagated.
8385  * Hence when the verifier completes the search of state list in is_state_visited()
8386  * we can call this clean_live_states() function to mark all liveness states
8387  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8388  * will not be used.
8389  * This function also clears the registers and stack for states that !READ
8390  * to simplify state merging.
8391  *
8392  * Important note here that walking the same branch instruction in the callee
8393  * doesn't meant that the states are DONE. The verifier has to compare
8394  * the callsites
8395  */
8396 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8397 			      struct bpf_verifier_state *cur)
8398 {
8399 	struct bpf_verifier_state_list *sl;
8400 	int i;
8401 
8402 	sl = *explored_state(env, insn);
8403 	while (sl) {
8404 		if (sl->state.branches)
8405 			goto next;
8406 		if (sl->state.insn_idx != insn ||
8407 		    sl->state.curframe != cur->curframe)
8408 			goto next;
8409 		for (i = 0; i <= cur->curframe; i++)
8410 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8411 				goto next;
8412 		clean_verifier_state(env, &sl->state);
8413 next:
8414 		sl = sl->next;
8415 	}
8416 }
8417 
8418 /* Returns true if (rold safe implies rcur safe) */
8419 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8420 		    struct idpair *idmap)
8421 {
8422 	bool equal;
8423 
8424 	if (!(rold->live & REG_LIVE_READ))
8425 		/* explored state didn't use this */
8426 		return true;
8427 
8428 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8429 
8430 	if (rold->type == PTR_TO_STACK)
8431 		/* two stack pointers are equal only if they're pointing to
8432 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8433 		 */
8434 		return equal && rold->frameno == rcur->frameno;
8435 
8436 	if (equal)
8437 		return true;
8438 
8439 	if (rold->type == NOT_INIT)
8440 		/* explored state can't have used this */
8441 		return true;
8442 	if (rcur->type == NOT_INIT)
8443 		return false;
8444 	switch (rold->type) {
8445 	case SCALAR_VALUE:
8446 		if (rcur->type == SCALAR_VALUE) {
8447 			if (!rold->precise && !rcur->precise)
8448 				return true;
8449 			/* new val must satisfy old val knowledge */
8450 			return range_within(rold, rcur) &&
8451 			       tnum_in(rold->var_off, rcur->var_off);
8452 		} else {
8453 			/* We're trying to use a pointer in place of a scalar.
8454 			 * Even if the scalar was unbounded, this could lead to
8455 			 * pointer leaks because scalars are allowed to leak
8456 			 * while pointers are not. We could make this safe in
8457 			 * special cases if root is calling us, but it's
8458 			 * probably not worth the hassle.
8459 			 */
8460 			return false;
8461 		}
8462 	case PTR_TO_MAP_VALUE:
8463 		/* If the new min/max/var_off satisfy the old ones and
8464 		 * everything else matches, we are OK.
8465 		 * 'id' is not compared, since it's only used for maps with
8466 		 * bpf_spin_lock inside map element and in such cases if
8467 		 * the rest of the prog is valid for one map element then
8468 		 * it's valid for all map elements regardless of the key
8469 		 * used in bpf_map_lookup()
8470 		 */
8471 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8472 		       range_within(rold, rcur) &&
8473 		       tnum_in(rold->var_off, rcur->var_off);
8474 	case PTR_TO_MAP_VALUE_OR_NULL:
8475 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8476 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8477 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8478 		 * checked, doing so could have affected others with the same
8479 		 * id, and we can't check for that because we lost the id when
8480 		 * we converted to a PTR_TO_MAP_VALUE.
8481 		 */
8482 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8483 			return false;
8484 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8485 			return false;
8486 		/* Check our ids match any regs they're supposed to */
8487 		return check_ids(rold->id, rcur->id, idmap);
8488 	case PTR_TO_PACKET_META:
8489 	case PTR_TO_PACKET:
8490 		if (rcur->type != rold->type)
8491 			return false;
8492 		/* We must have at least as much range as the old ptr
8493 		 * did, so that any accesses which were safe before are
8494 		 * still safe.  This is true even if old range < old off,
8495 		 * since someone could have accessed through (ptr - k), or
8496 		 * even done ptr -= k in a register, to get a safe access.
8497 		 */
8498 		if (rold->range > rcur->range)
8499 			return false;
8500 		/* If the offsets don't match, we can't trust our alignment;
8501 		 * nor can we be sure that we won't fall out of range.
8502 		 */
8503 		if (rold->off != rcur->off)
8504 			return false;
8505 		/* id relations must be preserved */
8506 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8507 			return false;
8508 		/* new val must satisfy old val knowledge */
8509 		return range_within(rold, rcur) &&
8510 		       tnum_in(rold->var_off, rcur->var_off);
8511 	case PTR_TO_CTX:
8512 	case CONST_PTR_TO_MAP:
8513 	case PTR_TO_PACKET_END:
8514 	case PTR_TO_FLOW_KEYS:
8515 	case PTR_TO_SOCKET:
8516 	case PTR_TO_SOCKET_OR_NULL:
8517 	case PTR_TO_SOCK_COMMON:
8518 	case PTR_TO_SOCK_COMMON_OR_NULL:
8519 	case PTR_TO_TCP_SOCK:
8520 	case PTR_TO_TCP_SOCK_OR_NULL:
8521 	case PTR_TO_XDP_SOCK:
8522 		/* Only valid matches are exact, which memcmp() above
8523 		 * would have accepted
8524 		 */
8525 	default:
8526 		/* Don't know what's going on, just say it's not safe */
8527 		return false;
8528 	}
8529 
8530 	/* Shouldn't get here; if we do, say it's not safe */
8531 	WARN_ON_ONCE(1);
8532 	return false;
8533 }
8534 
8535 static bool stacksafe(struct bpf_func_state *old,
8536 		      struct bpf_func_state *cur,
8537 		      struct idpair *idmap)
8538 {
8539 	int i, spi;
8540 
8541 	/* walk slots of the explored stack and ignore any additional
8542 	 * slots in the current stack, since explored(safe) state
8543 	 * didn't use them
8544 	 */
8545 	for (i = 0; i < old->allocated_stack; i++) {
8546 		spi = i / BPF_REG_SIZE;
8547 
8548 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8549 			i += BPF_REG_SIZE - 1;
8550 			/* explored state didn't use this */
8551 			continue;
8552 		}
8553 
8554 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8555 			continue;
8556 
8557 		/* explored stack has more populated slots than current stack
8558 		 * and these slots were used
8559 		 */
8560 		if (i >= cur->allocated_stack)
8561 			return false;
8562 
8563 		/* if old state was safe with misc data in the stack
8564 		 * it will be safe with zero-initialized stack.
8565 		 * The opposite is not true
8566 		 */
8567 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8568 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8569 			continue;
8570 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8571 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8572 			/* Ex: old explored (safe) state has STACK_SPILL in
8573 			 * this stack slot, but current has STACK_MISC ->
8574 			 * this verifier states are not equivalent,
8575 			 * return false to continue verification of this path
8576 			 */
8577 			return false;
8578 		if (i % BPF_REG_SIZE)
8579 			continue;
8580 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8581 			continue;
8582 		if (!regsafe(&old->stack[spi].spilled_ptr,
8583 			     &cur->stack[spi].spilled_ptr,
8584 			     idmap))
8585 			/* when explored and current stack slot are both storing
8586 			 * spilled registers, check that stored pointers types
8587 			 * are the same as well.
8588 			 * Ex: explored safe path could have stored
8589 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8590 			 * but current path has stored:
8591 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8592 			 * such verifier states are not equivalent.
8593 			 * return false to continue verification of this path
8594 			 */
8595 			return false;
8596 	}
8597 	return true;
8598 }
8599 
8600 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8601 {
8602 	if (old->acquired_refs != cur->acquired_refs)
8603 		return false;
8604 	return !memcmp(old->refs, cur->refs,
8605 		       sizeof(*old->refs) * old->acquired_refs);
8606 }
8607 
8608 /* compare two verifier states
8609  *
8610  * all states stored in state_list are known to be valid, since
8611  * verifier reached 'bpf_exit' instruction through them
8612  *
8613  * this function is called when verifier exploring different branches of
8614  * execution popped from the state stack. If it sees an old state that has
8615  * more strict register state and more strict stack state then this execution
8616  * branch doesn't need to be explored further, since verifier already
8617  * concluded that more strict state leads to valid finish.
8618  *
8619  * Therefore two states are equivalent if register state is more conservative
8620  * and explored stack state is more conservative than the current one.
8621  * Example:
8622  *       explored                   current
8623  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8624  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8625  *
8626  * In other words if current stack state (one being explored) has more
8627  * valid slots than old one that already passed validation, it means
8628  * the verifier can stop exploring and conclude that current state is valid too
8629  *
8630  * Similarly with registers. If explored state has register type as invalid
8631  * whereas register type in current state is meaningful, it means that
8632  * the current state will reach 'bpf_exit' instruction safely
8633  */
8634 static bool func_states_equal(struct bpf_func_state *old,
8635 			      struct bpf_func_state *cur)
8636 {
8637 	struct idpair *idmap;
8638 	bool ret = false;
8639 	int i;
8640 
8641 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8642 	/* If we failed to allocate the idmap, just say it's not safe */
8643 	if (!idmap)
8644 		return false;
8645 
8646 	for (i = 0; i < MAX_BPF_REG; i++) {
8647 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8648 			goto out_free;
8649 	}
8650 
8651 	if (!stacksafe(old, cur, idmap))
8652 		goto out_free;
8653 
8654 	if (!refsafe(old, cur))
8655 		goto out_free;
8656 	ret = true;
8657 out_free:
8658 	kfree(idmap);
8659 	return ret;
8660 }
8661 
8662 static bool states_equal(struct bpf_verifier_env *env,
8663 			 struct bpf_verifier_state *old,
8664 			 struct bpf_verifier_state *cur)
8665 {
8666 	int i;
8667 
8668 	if (old->curframe != cur->curframe)
8669 		return false;
8670 
8671 	/* Verification state from speculative execution simulation
8672 	 * must never prune a non-speculative execution one.
8673 	 */
8674 	if (old->speculative && !cur->speculative)
8675 		return false;
8676 
8677 	if (old->active_spin_lock != cur->active_spin_lock)
8678 		return false;
8679 
8680 	/* for states to be equal callsites have to be the same
8681 	 * and all frame states need to be equivalent
8682 	 */
8683 	for (i = 0; i <= old->curframe; i++) {
8684 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8685 			return false;
8686 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8687 			return false;
8688 	}
8689 	return true;
8690 }
8691 
8692 /* Return 0 if no propagation happened. Return negative error code if error
8693  * happened. Otherwise, return the propagated bit.
8694  */
8695 static int propagate_liveness_reg(struct bpf_verifier_env *env,
8696 				  struct bpf_reg_state *reg,
8697 				  struct bpf_reg_state *parent_reg)
8698 {
8699 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
8700 	u8 flag = reg->live & REG_LIVE_READ;
8701 	int err;
8702 
8703 	/* When comes here, read flags of PARENT_REG or REG could be any of
8704 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
8705 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
8706 	 */
8707 	if (parent_flag == REG_LIVE_READ64 ||
8708 	    /* Or if there is no read flag from REG. */
8709 	    !flag ||
8710 	    /* Or if the read flag from REG is the same as PARENT_REG. */
8711 	    parent_flag == flag)
8712 		return 0;
8713 
8714 	err = mark_reg_read(env, reg, parent_reg, flag);
8715 	if (err)
8716 		return err;
8717 
8718 	return flag;
8719 }
8720 
8721 /* A write screens off any subsequent reads; but write marks come from the
8722  * straight-line code between a state and its parent.  When we arrive at an
8723  * equivalent state (jump target or such) we didn't arrive by the straight-line
8724  * code, so read marks in the state must propagate to the parent regardless
8725  * of the state's write marks. That's what 'parent == state->parent' comparison
8726  * in mark_reg_read() is for.
8727  */
8728 static int propagate_liveness(struct bpf_verifier_env *env,
8729 			      const struct bpf_verifier_state *vstate,
8730 			      struct bpf_verifier_state *vparent)
8731 {
8732 	struct bpf_reg_state *state_reg, *parent_reg;
8733 	struct bpf_func_state *state, *parent;
8734 	int i, frame, err = 0;
8735 
8736 	if (vparent->curframe != vstate->curframe) {
8737 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
8738 		     vparent->curframe, vstate->curframe);
8739 		return -EFAULT;
8740 	}
8741 	/* Propagate read liveness of registers... */
8742 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
8743 	for (frame = 0; frame <= vstate->curframe; frame++) {
8744 		parent = vparent->frame[frame];
8745 		state = vstate->frame[frame];
8746 		parent_reg = parent->regs;
8747 		state_reg = state->regs;
8748 		/* We don't need to worry about FP liveness, it's read-only */
8749 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
8750 			err = propagate_liveness_reg(env, &state_reg[i],
8751 						     &parent_reg[i]);
8752 			if (err < 0)
8753 				return err;
8754 			if (err == REG_LIVE_READ64)
8755 				mark_insn_zext(env, &parent_reg[i]);
8756 		}
8757 
8758 		/* Propagate stack slots. */
8759 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
8760 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
8761 			parent_reg = &parent->stack[i].spilled_ptr;
8762 			state_reg = &state->stack[i].spilled_ptr;
8763 			err = propagate_liveness_reg(env, state_reg,
8764 						     parent_reg);
8765 			if (err < 0)
8766 				return err;
8767 		}
8768 	}
8769 	return 0;
8770 }
8771 
8772 /* find precise scalars in the previous equivalent state and
8773  * propagate them into the current state
8774  */
8775 static int propagate_precision(struct bpf_verifier_env *env,
8776 			       const struct bpf_verifier_state *old)
8777 {
8778 	struct bpf_reg_state *state_reg;
8779 	struct bpf_func_state *state;
8780 	int i, err = 0;
8781 
8782 	state = old->frame[old->curframe];
8783 	state_reg = state->regs;
8784 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
8785 		if (state_reg->type != SCALAR_VALUE ||
8786 		    !state_reg->precise)
8787 			continue;
8788 		if (env->log.level & BPF_LOG_LEVEL2)
8789 			verbose(env, "propagating r%d\n", i);
8790 		err = mark_chain_precision(env, i);
8791 		if (err < 0)
8792 			return err;
8793 	}
8794 
8795 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
8796 		if (state->stack[i].slot_type[0] != STACK_SPILL)
8797 			continue;
8798 		state_reg = &state->stack[i].spilled_ptr;
8799 		if (state_reg->type != SCALAR_VALUE ||
8800 		    !state_reg->precise)
8801 			continue;
8802 		if (env->log.level & BPF_LOG_LEVEL2)
8803 			verbose(env, "propagating fp%d\n",
8804 				(-i - 1) * BPF_REG_SIZE);
8805 		err = mark_chain_precision_stack(env, i);
8806 		if (err < 0)
8807 			return err;
8808 	}
8809 	return 0;
8810 }
8811 
8812 static bool states_maybe_looping(struct bpf_verifier_state *old,
8813 				 struct bpf_verifier_state *cur)
8814 {
8815 	struct bpf_func_state *fold, *fcur;
8816 	int i, fr = cur->curframe;
8817 
8818 	if (old->curframe != fr)
8819 		return false;
8820 
8821 	fold = old->frame[fr];
8822 	fcur = cur->frame[fr];
8823 	for (i = 0; i < MAX_BPF_REG; i++)
8824 		if (memcmp(&fold->regs[i], &fcur->regs[i],
8825 			   offsetof(struct bpf_reg_state, parent)))
8826 			return false;
8827 	return true;
8828 }
8829 
8830 
8831 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
8832 {
8833 	struct bpf_verifier_state_list *new_sl;
8834 	struct bpf_verifier_state_list *sl, **pprev;
8835 	struct bpf_verifier_state *cur = env->cur_state, *new;
8836 	int i, j, err, states_cnt = 0;
8837 	bool add_new_state = env->test_state_freq ? true : false;
8838 
8839 	cur->last_insn_idx = env->prev_insn_idx;
8840 	if (!env->insn_aux_data[insn_idx].prune_point)
8841 		/* this 'insn_idx' instruction wasn't marked, so we will not
8842 		 * be doing state search here
8843 		 */
8844 		return 0;
8845 
8846 	/* bpf progs typically have pruning point every 4 instructions
8847 	 * http://vger.kernel.org/bpfconf2019.html#session-1
8848 	 * Do not add new state for future pruning if the verifier hasn't seen
8849 	 * at least 2 jumps and at least 8 instructions.
8850 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
8851 	 * In tests that amounts to up to 50% reduction into total verifier
8852 	 * memory consumption and 20% verifier time speedup.
8853 	 */
8854 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
8855 	    env->insn_processed - env->prev_insn_processed >= 8)
8856 		add_new_state = true;
8857 
8858 	pprev = explored_state(env, insn_idx);
8859 	sl = *pprev;
8860 
8861 	clean_live_states(env, insn_idx, cur);
8862 
8863 	while (sl) {
8864 		states_cnt++;
8865 		if (sl->state.insn_idx != insn_idx)
8866 			goto next;
8867 		if (sl->state.branches) {
8868 			if (states_maybe_looping(&sl->state, cur) &&
8869 			    states_equal(env, &sl->state, cur)) {
8870 				verbose_linfo(env, insn_idx, "; ");
8871 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
8872 				return -EINVAL;
8873 			}
8874 			/* if the verifier is processing a loop, avoid adding new state
8875 			 * too often, since different loop iterations have distinct
8876 			 * states and may not help future pruning.
8877 			 * This threshold shouldn't be too low to make sure that
8878 			 * a loop with large bound will be rejected quickly.
8879 			 * The most abusive loop will be:
8880 			 * r1 += 1
8881 			 * if r1 < 1000000 goto pc-2
8882 			 * 1M insn_procssed limit / 100 == 10k peak states.
8883 			 * This threshold shouldn't be too high either, since states
8884 			 * at the end of the loop are likely to be useful in pruning.
8885 			 */
8886 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
8887 			    env->insn_processed - env->prev_insn_processed < 100)
8888 				add_new_state = false;
8889 			goto miss;
8890 		}
8891 		if (states_equal(env, &sl->state, cur)) {
8892 			sl->hit_cnt++;
8893 			/* reached equivalent register/stack state,
8894 			 * prune the search.
8895 			 * Registers read by the continuation are read by us.
8896 			 * If we have any write marks in env->cur_state, they
8897 			 * will prevent corresponding reads in the continuation
8898 			 * from reaching our parent (an explored_state).  Our
8899 			 * own state will get the read marks recorded, but
8900 			 * they'll be immediately forgotten as we're pruning
8901 			 * this state and will pop a new one.
8902 			 */
8903 			err = propagate_liveness(env, &sl->state, cur);
8904 
8905 			/* if previous state reached the exit with precision and
8906 			 * current state is equivalent to it (except precsion marks)
8907 			 * the precision needs to be propagated back in
8908 			 * the current state.
8909 			 */
8910 			err = err ? : push_jmp_history(env, cur);
8911 			err = err ? : propagate_precision(env, &sl->state);
8912 			if (err)
8913 				return err;
8914 			return 1;
8915 		}
8916 miss:
8917 		/* when new state is not going to be added do not increase miss count.
8918 		 * Otherwise several loop iterations will remove the state
8919 		 * recorded earlier. The goal of these heuristics is to have
8920 		 * states from some iterations of the loop (some in the beginning
8921 		 * and some at the end) to help pruning.
8922 		 */
8923 		if (add_new_state)
8924 			sl->miss_cnt++;
8925 		/* heuristic to determine whether this state is beneficial
8926 		 * to keep checking from state equivalence point of view.
8927 		 * Higher numbers increase max_states_per_insn and verification time,
8928 		 * but do not meaningfully decrease insn_processed.
8929 		 */
8930 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
8931 			/* the state is unlikely to be useful. Remove it to
8932 			 * speed up verification
8933 			 */
8934 			*pprev = sl->next;
8935 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
8936 				u32 br = sl->state.branches;
8937 
8938 				WARN_ONCE(br,
8939 					  "BUG live_done but branches_to_explore %d\n",
8940 					  br);
8941 				free_verifier_state(&sl->state, false);
8942 				kfree(sl);
8943 				env->peak_states--;
8944 			} else {
8945 				/* cannot free this state, since parentage chain may
8946 				 * walk it later. Add it for free_list instead to
8947 				 * be freed at the end of verification
8948 				 */
8949 				sl->next = env->free_list;
8950 				env->free_list = sl;
8951 			}
8952 			sl = *pprev;
8953 			continue;
8954 		}
8955 next:
8956 		pprev = &sl->next;
8957 		sl = *pprev;
8958 	}
8959 
8960 	if (env->max_states_per_insn < states_cnt)
8961 		env->max_states_per_insn = states_cnt;
8962 
8963 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
8964 		return push_jmp_history(env, cur);
8965 
8966 	if (!add_new_state)
8967 		return push_jmp_history(env, cur);
8968 
8969 	/* There were no equivalent states, remember the current one.
8970 	 * Technically the current state is not proven to be safe yet,
8971 	 * but it will either reach outer most bpf_exit (which means it's safe)
8972 	 * or it will be rejected. When there are no loops the verifier won't be
8973 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
8974 	 * again on the way to bpf_exit.
8975 	 * When looping the sl->state.branches will be > 0 and this state
8976 	 * will not be considered for equivalence until branches == 0.
8977 	 */
8978 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
8979 	if (!new_sl)
8980 		return -ENOMEM;
8981 	env->total_states++;
8982 	env->peak_states++;
8983 	env->prev_jmps_processed = env->jmps_processed;
8984 	env->prev_insn_processed = env->insn_processed;
8985 
8986 	/* add new state to the head of linked list */
8987 	new = &new_sl->state;
8988 	err = copy_verifier_state(new, cur);
8989 	if (err) {
8990 		free_verifier_state(new, false);
8991 		kfree(new_sl);
8992 		return err;
8993 	}
8994 	new->insn_idx = insn_idx;
8995 	WARN_ONCE(new->branches != 1,
8996 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
8997 
8998 	cur->parent = new;
8999 	cur->first_insn_idx = insn_idx;
9000 	clear_jmp_history(cur);
9001 	new_sl->next = *explored_state(env, insn_idx);
9002 	*explored_state(env, insn_idx) = new_sl;
9003 	/* connect new state to parentage chain. Current frame needs all
9004 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9005 	 * to the stack implicitly by JITs) so in callers' frames connect just
9006 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9007 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9008 	 * from callee with its full parentage chain, anyway.
9009 	 */
9010 	/* clear write marks in current state: the writes we did are not writes
9011 	 * our child did, so they don't screen off its reads from us.
9012 	 * (There are no read marks in current state, because reads always mark
9013 	 * their parent and current state never has children yet.  Only
9014 	 * explored_states can get read marks.)
9015 	 */
9016 	for (j = 0; j <= cur->curframe; j++) {
9017 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9018 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9019 		for (i = 0; i < BPF_REG_FP; i++)
9020 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9021 	}
9022 
9023 	/* all stack frames are accessible from callee, clear them all */
9024 	for (j = 0; j <= cur->curframe; j++) {
9025 		struct bpf_func_state *frame = cur->frame[j];
9026 		struct bpf_func_state *newframe = new->frame[j];
9027 
9028 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9029 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9030 			frame->stack[i].spilled_ptr.parent =
9031 						&newframe->stack[i].spilled_ptr;
9032 		}
9033 	}
9034 	return 0;
9035 }
9036 
9037 /* Return true if it's OK to have the same insn return a different type. */
9038 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9039 {
9040 	switch (type) {
9041 	case PTR_TO_CTX:
9042 	case PTR_TO_SOCKET:
9043 	case PTR_TO_SOCKET_OR_NULL:
9044 	case PTR_TO_SOCK_COMMON:
9045 	case PTR_TO_SOCK_COMMON_OR_NULL:
9046 	case PTR_TO_TCP_SOCK:
9047 	case PTR_TO_TCP_SOCK_OR_NULL:
9048 	case PTR_TO_XDP_SOCK:
9049 	case PTR_TO_BTF_ID:
9050 	case PTR_TO_BTF_ID_OR_NULL:
9051 		return false;
9052 	default:
9053 		return true;
9054 	}
9055 }
9056 
9057 /* If an instruction was previously used with particular pointer types, then we
9058  * need to be careful to avoid cases such as the below, where it may be ok
9059  * for one branch accessing the pointer, but not ok for the other branch:
9060  *
9061  * R1 = sock_ptr
9062  * goto X;
9063  * ...
9064  * R1 = some_other_valid_ptr;
9065  * goto X;
9066  * ...
9067  * R2 = *(u32 *)(R1 + 0);
9068  */
9069 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9070 {
9071 	return src != prev && (!reg_type_mismatch_ok(src) ||
9072 			       !reg_type_mismatch_ok(prev));
9073 }
9074 
9075 static int do_check(struct bpf_verifier_env *env)
9076 {
9077 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9078 	struct bpf_verifier_state *state = env->cur_state;
9079 	struct bpf_insn *insns = env->prog->insnsi;
9080 	struct bpf_reg_state *regs;
9081 	int insn_cnt = env->prog->len;
9082 	bool do_print_state = false;
9083 	int prev_insn_idx = -1;
9084 
9085 	for (;;) {
9086 		struct bpf_insn *insn;
9087 		u8 class;
9088 		int err;
9089 
9090 		env->prev_insn_idx = prev_insn_idx;
9091 		if (env->insn_idx >= insn_cnt) {
9092 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9093 				env->insn_idx, insn_cnt);
9094 			return -EFAULT;
9095 		}
9096 
9097 		insn = &insns[env->insn_idx];
9098 		class = BPF_CLASS(insn->code);
9099 
9100 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9101 			verbose(env,
9102 				"BPF program is too large. Processed %d insn\n",
9103 				env->insn_processed);
9104 			return -E2BIG;
9105 		}
9106 
9107 		err = is_state_visited(env, env->insn_idx);
9108 		if (err < 0)
9109 			return err;
9110 		if (err == 1) {
9111 			/* found equivalent state, can prune the search */
9112 			if (env->log.level & BPF_LOG_LEVEL) {
9113 				if (do_print_state)
9114 					verbose(env, "\nfrom %d to %d%s: safe\n",
9115 						env->prev_insn_idx, env->insn_idx,
9116 						env->cur_state->speculative ?
9117 						" (speculative execution)" : "");
9118 				else
9119 					verbose(env, "%d: safe\n", env->insn_idx);
9120 			}
9121 			goto process_bpf_exit;
9122 		}
9123 
9124 		if (signal_pending(current))
9125 			return -EAGAIN;
9126 
9127 		if (need_resched())
9128 			cond_resched();
9129 
9130 		if (env->log.level & BPF_LOG_LEVEL2 ||
9131 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9132 			if (env->log.level & BPF_LOG_LEVEL2)
9133 				verbose(env, "%d:", env->insn_idx);
9134 			else
9135 				verbose(env, "\nfrom %d to %d%s:",
9136 					env->prev_insn_idx, env->insn_idx,
9137 					env->cur_state->speculative ?
9138 					" (speculative execution)" : "");
9139 			print_verifier_state(env, state->frame[state->curframe]);
9140 			do_print_state = false;
9141 		}
9142 
9143 		if (env->log.level & BPF_LOG_LEVEL) {
9144 			const struct bpf_insn_cbs cbs = {
9145 				.cb_print	= verbose,
9146 				.private_data	= env,
9147 			};
9148 
9149 			verbose_linfo(env, env->insn_idx, "; ");
9150 			verbose(env, "%d: ", env->insn_idx);
9151 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9152 		}
9153 
9154 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9155 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9156 							   env->prev_insn_idx);
9157 			if (err)
9158 				return err;
9159 		}
9160 
9161 		regs = cur_regs(env);
9162 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9163 		prev_insn_idx = env->insn_idx;
9164 
9165 		if (class == BPF_ALU || class == BPF_ALU64) {
9166 			err = check_alu_op(env, insn);
9167 			if (err)
9168 				return err;
9169 
9170 		} else if (class == BPF_LDX) {
9171 			enum bpf_reg_type *prev_src_type, src_reg_type;
9172 
9173 			/* check for reserved fields is already done */
9174 
9175 			/* check src operand */
9176 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9177 			if (err)
9178 				return err;
9179 
9180 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9181 			if (err)
9182 				return err;
9183 
9184 			src_reg_type = regs[insn->src_reg].type;
9185 
9186 			/* check that memory (src_reg + off) is readable,
9187 			 * the state of dst_reg will be updated by this func
9188 			 */
9189 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9190 					       insn->off, BPF_SIZE(insn->code),
9191 					       BPF_READ, insn->dst_reg, false);
9192 			if (err)
9193 				return err;
9194 
9195 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9196 
9197 			if (*prev_src_type == NOT_INIT) {
9198 				/* saw a valid insn
9199 				 * dst_reg = *(u32 *)(src_reg + off)
9200 				 * save type to validate intersecting paths
9201 				 */
9202 				*prev_src_type = src_reg_type;
9203 
9204 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9205 				/* ABuser program is trying to use the same insn
9206 				 * dst_reg = *(u32*) (src_reg + off)
9207 				 * with different pointer types:
9208 				 * src_reg == ctx in one branch and
9209 				 * src_reg == stack|map in some other branch.
9210 				 * Reject it.
9211 				 */
9212 				verbose(env, "same insn cannot be used with different pointers\n");
9213 				return -EINVAL;
9214 			}
9215 
9216 		} else if (class == BPF_STX) {
9217 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9218 
9219 			if (BPF_MODE(insn->code) == BPF_XADD) {
9220 				err = check_xadd(env, env->insn_idx, insn);
9221 				if (err)
9222 					return err;
9223 				env->insn_idx++;
9224 				continue;
9225 			}
9226 
9227 			/* check src1 operand */
9228 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9229 			if (err)
9230 				return err;
9231 			/* check src2 operand */
9232 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9233 			if (err)
9234 				return err;
9235 
9236 			dst_reg_type = regs[insn->dst_reg].type;
9237 
9238 			/* check that memory (dst_reg + off) is writeable */
9239 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9240 					       insn->off, BPF_SIZE(insn->code),
9241 					       BPF_WRITE, insn->src_reg, false);
9242 			if (err)
9243 				return err;
9244 
9245 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9246 
9247 			if (*prev_dst_type == NOT_INIT) {
9248 				*prev_dst_type = dst_reg_type;
9249 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9250 				verbose(env, "same insn cannot be used with different pointers\n");
9251 				return -EINVAL;
9252 			}
9253 
9254 		} else if (class == BPF_ST) {
9255 			if (BPF_MODE(insn->code) != BPF_MEM ||
9256 			    insn->src_reg != BPF_REG_0) {
9257 				verbose(env, "BPF_ST uses reserved fields\n");
9258 				return -EINVAL;
9259 			}
9260 			/* check src operand */
9261 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9262 			if (err)
9263 				return err;
9264 
9265 			if (is_ctx_reg(env, insn->dst_reg)) {
9266 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9267 					insn->dst_reg,
9268 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9269 				return -EACCES;
9270 			}
9271 
9272 			/* check that memory (dst_reg + off) is writeable */
9273 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9274 					       insn->off, BPF_SIZE(insn->code),
9275 					       BPF_WRITE, -1, false);
9276 			if (err)
9277 				return err;
9278 
9279 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9280 			u8 opcode = BPF_OP(insn->code);
9281 
9282 			env->jmps_processed++;
9283 			if (opcode == BPF_CALL) {
9284 				if (BPF_SRC(insn->code) != BPF_K ||
9285 				    insn->off != 0 ||
9286 				    (insn->src_reg != BPF_REG_0 &&
9287 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9288 				    insn->dst_reg != BPF_REG_0 ||
9289 				    class == BPF_JMP32) {
9290 					verbose(env, "BPF_CALL uses reserved fields\n");
9291 					return -EINVAL;
9292 				}
9293 
9294 				if (env->cur_state->active_spin_lock &&
9295 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9296 				     insn->imm != BPF_FUNC_spin_unlock)) {
9297 					verbose(env, "function calls are not allowed while holding a lock\n");
9298 					return -EINVAL;
9299 				}
9300 				if (insn->src_reg == BPF_PSEUDO_CALL)
9301 					err = check_func_call(env, insn, &env->insn_idx);
9302 				else
9303 					err = check_helper_call(env, insn->imm, env->insn_idx);
9304 				if (err)
9305 					return err;
9306 
9307 			} else if (opcode == BPF_JA) {
9308 				if (BPF_SRC(insn->code) != BPF_K ||
9309 				    insn->imm != 0 ||
9310 				    insn->src_reg != BPF_REG_0 ||
9311 				    insn->dst_reg != BPF_REG_0 ||
9312 				    class == BPF_JMP32) {
9313 					verbose(env, "BPF_JA uses reserved fields\n");
9314 					return -EINVAL;
9315 				}
9316 
9317 				env->insn_idx += insn->off + 1;
9318 				continue;
9319 
9320 			} else if (opcode == BPF_EXIT) {
9321 				if (BPF_SRC(insn->code) != BPF_K ||
9322 				    insn->imm != 0 ||
9323 				    insn->src_reg != BPF_REG_0 ||
9324 				    insn->dst_reg != BPF_REG_0 ||
9325 				    class == BPF_JMP32) {
9326 					verbose(env, "BPF_EXIT uses reserved fields\n");
9327 					return -EINVAL;
9328 				}
9329 
9330 				if (env->cur_state->active_spin_lock) {
9331 					verbose(env, "bpf_spin_unlock is missing\n");
9332 					return -EINVAL;
9333 				}
9334 
9335 				if (state->curframe) {
9336 					/* exit from nested function */
9337 					err = prepare_func_exit(env, &env->insn_idx);
9338 					if (err)
9339 						return err;
9340 					do_print_state = true;
9341 					continue;
9342 				}
9343 
9344 				err = check_reference_leak(env);
9345 				if (err)
9346 					return err;
9347 
9348 				err = check_return_code(env);
9349 				if (err)
9350 					return err;
9351 process_bpf_exit:
9352 				update_branch_counts(env, env->cur_state);
9353 				err = pop_stack(env, &prev_insn_idx,
9354 						&env->insn_idx, pop_log);
9355 				if (err < 0) {
9356 					if (err != -ENOENT)
9357 						return err;
9358 					break;
9359 				} else {
9360 					do_print_state = true;
9361 					continue;
9362 				}
9363 			} else {
9364 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9365 				if (err)
9366 					return err;
9367 			}
9368 		} else if (class == BPF_LD) {
9369 			u8 mode = BPF_MODE(insn->code);
9370 
9371 			if (mode == BPF_ABS || mode == BPF_IND) {
9372 				err = check_ld_abs(env, insn);
9373 				if (err)
9374 					return err;
9375 
9376 			} else if (mode == BPF_IMM) {
9377 				err = check_ld_imm(env, insn);
9378 				if (err)
9379 					return err;
9380 
9381 				env->insn_idx++;
9382 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9383 			} else {
9384 				verbose(env, "invalid BPF_LD mode\n");
9385 				return -EINVAL;
9386 			}
9387 		} else {
9388 			verbose(env, "unknown insn class %d\n", class);
9389 			return -EINVAL;
9390 		}
9391 
9392 		env->insn_idx++;
9393 	}
9394 
9395 	return 0;
9396 }
9397 
9398 static int check_map_prealloc(struct bpf_map *map)
9399 {
9400 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9401 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9402 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9403 		!(map->map_flags & BPF_F_NO_PREALLOC);
9404 }
9405 
9406 static bool is_tracing_prog_type(enum bpf_prog_type type)
9407 {
9408 	switch (type) {
9409 	case BPF_PROG_TYPE_KPROBE:
9410 	case BPF_PROG_TYPE_TRACEPOINT:
9411 	case BPF_PROG_TYPE_PERF_EVENT:
9412 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9413 		return true;
9414 	default:
9415 		return false;
9416 	}
9417 }
9418 
9419 static bool is_preallocated_map(struct bpf_map *map)
9420 {
9421 	if (!check_map_prealloc(map))
9422 		return false;
9423 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9424 		return false;
9425 	return true;
9426 }
9427 
9428 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9429 					struct bpf_map *map,
9430 					struct bpf_prog *prog)
9431 
9432 {
9433 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9434 	/*
9435 	 * Validate that trace type programs use preallocated hash maps.
9436 	 *
9437 	 * For programs attached to PERF events this is mandatory as the
9438 	 * perf NMI can hit any arbitrary code sequence.
9439 	 *
9440 	 * All other trace types using preallocated hash maps are unsafe as
9441 	 * well because tracepoint or kprobes can be inside locked regions
9442 	 * of the memory allocator or at a place where a recursion into the
9443 	 * memory allocator would see inconsistent state.
9444 	 *
9445 	 * On RT enabled kernels run-time allocation of all trace type
9446 	 * programs is strictly prohibited due to lock type constraints. On
9447 	 * !RT kernels it is allowed for backwards compatibility reasons for
9448 	 * now, but warnings are emitted so developers are made aware of
9449 	 * the unsafety and can fix their programs before this is enforced.
9450 	 */
9451 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9452 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9453 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9454 			return -EINVAL;
9455 		}
9456 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9457 			verbose(env, "trace type programs can only use preallocated hash map\n");
9458 			return -EINVAL;
9459 		}
9460 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9461 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9462 	}
9463 
9464 	if ((is_tracing_prog_type(prog_type) ||
9465 	     prog_type == BPF_PROG_TYPE_SOCKET_FILTER) &&
9466 	    map_value_has_spin_lock(map)) {
9467 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9468 		return -EINVAL;
9469 	}
9470 
9471 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9472 	    !bpf_offload_prog_map_match(prog, map)) {
9473 		verbose(env, "offload device mismatch between prog and map\n");
9474 		return -EINVAL;
9475 	}
9476 
9477 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9478 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9479 		return -EINVAL;
9480 	}
9481 
9482 	if (prog->aux->sleepable)
9483 		switch (map->map_type) {
9484 		case BPF_MAP_TYPE_HASH:
9485 		case BPF_MAP_TYPE_LRU_HASH:
9486 		case BPF_MAP_TYPE_ARRAY:
9487 			if (!is_preallocated_map(map)) {
9488 				verbose(env,
9489 					"Sleepable programs can only use preallocated hash maps\n");
9490 				return -EINVAL;
9491 			}
9492 			break;
9493 		default:
9494 			verbose(env,
9495 				"Sleepable programs can only use array and hash maps\n");
9496 			return -EINVAL;
9497 		}
9498 
9499 	return 0;
9500 }
9501 
9502 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9503 {
9504 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9505 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9506 }
9507 
9508 /* look for pseudo eBPF instructions that access map FDs and
9509  * replace them with actual map pointers
9510  */
9511 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
9512 {
9513 	struct bpf_insn *insn = env->prog->insnsi;
9514 	int insn_cnt = env->prog->len;
9515 	int i, j, err;
9516 
9517 	err = bpf_prog_calc_tag(env->prog);
9518 	if (err)
9519 		return err;
9520 
9521 	for (i = 0; i < insn_cnt; i++, insn++) {
9522 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9523 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9524 			verbose(env, "BPF_LDX uses reserved fields\n");
9525 			return -EINVAL;
9526 		}
9527 
9528 		if (BPF_CLASS(insn->code) == BPF_STX &&
9529 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9530 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9531 			verbose(env, "BPF_STX uses reserved fields\n");
9532 			return -EINVAL;
9533 		}
9534 
9535 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9536 			struct bpf_insn_aux_data *aux;
9537 			struct bpf_map *map;
9538 			struct fd f;
9539 			u64 addr;
9540 
9541 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9542 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9543 			    insn[1].off != 0) {
9544 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9545 				return -EINVAL;
9546 			}
9547 
9548 			if (insn[0].src_reg == 0)
9549 				/* valid generic load 64-bit imm */
9550 				goto next_insn;
9551 
9552 			/* In final convert_pseudo_ld_imm64() step, this is
9553 			 * converted into regular 64-bit imm load insn.
9554 			 */
9555 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9556 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9557 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9558 			     insn[1].imm != 0)) {
9559 				verbose(env,
9560 					"unrecognized bpf_ld_imm64 insn\n");
9561 				return -EINVAL;
9562 			}
9563 
9564 			f = fdget(insn[0].imm);
9565 			map = __bpf_map_get(f);
9566 			if (IS_ERR(map)) {
9567 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9568 					insn[0].imm);
9569 				return PTR_ERR(map);
9570 			}
9571 
9572 			err = check_map_prog_compatibility(env, map, env->prog);
9573 			if (err) {
9574 				fdput(f);
9575 				return err;
9576 			}
9577 
9578 			aux = &env->insn_aux_data[i];
9579 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9580 				addr = (unsigned long)map;
9581 			} else {
9582 				u32 off = insn[1].imm;
9583 
9584 				if (off >= BPF_MAX_VAR_OFF) {
9585 					verbose(env, "direct value offset of %u is not allowed\n", off);
9586 					fdput(f);
9587 					return -EINVAL;
9588 				}
9589 
9590 				if (!map->ops->map_direct_value_addr) {
9591 					verbose(env, "no direct value access support for this map type\n");
9592 					fdput(f);
9593 					return -EINVAL;
9594 				}
9595 
9596 				err = map->ops->map_direct_value_addr(map, &addr, off);
9597 				if (err) {
9598 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
9599 						map->value_size, off);
9600 					fdput(f);
9601 					return err;
9602 				}
9603 
9604 				aux->map_off = off;
9605 				addr += off;
9606 			}
9607 
9608 			insn[0].imm = (u32)addr;
9609 			insn[1].imm = addr >> 32;
9610 
9611 			/* check whether we recorded this map already */
9612 			for (j = 0; j < env->used_map_cnt; j++) {
9613 				if (env->used_maps[j] == map) {
9614 					aux->map_index = j;
9615 					fdput(f);
9616 					goto next_insn;
9617 				}
9618 			}
9619 
9620 			if (env->used_map_cnt >= MAX_USED_MAPS) {
9621 				fdput(f);
9622 				return -E2BIG;
9623 			}
9624 
9625 			/* hold the map. If the program is rejected by verifier,
9626 			 * the map will be released by release_maps() or it
9627 			 * will be used by the valid program until it's unloaded
9628 			 * and all maps are released in free_used_maps()
9629 			 */
9630 			bpf_map_inc(map);
9631 
9632 			aux->map_index = env->used_map_cnt;
9633 			env->used_maps[env->used_map_cnt++] = map;
9634 
9635 			if (bpf_map_is_cgroup_storage(map) &&
9636 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
9637 				verbose(env, "only one cgroup storage of each type is allowed\n");
9638 				fdput(f);
9639 				return -EBUSY;
9640 			}
9641 
9642 			fdput(f);
9643 next_insn:
9644 			insn++;
9645 			i++;
9646 			continue;
9647 		}
9648 
9649 		/* Basic sanity check before we invest more work here. */
9650 		if (!bpf_opcode_in_insntable(insn->code)) {
9651 			verbose(env, "unknown opcode %02x\n", insn->code);
9652 			return -EINVAL;
9653 		}
9654 	}
9655 
9656 	/* now all pseudo BPF_LD_IMM64 instructions load valid
9657 	 * 'struct bpf_map *' into a register instead of user map_fd.
9658 	 * These pointers will be used later by verifier to validate map access.
9659 	 */
9660 	return 0;
9661 }
9662 
9663 /* drop refcnt of maps used by the rejected program */
9664 static void release_maps(struct bpf_verifier_env *env)
9665 {
9666 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
9667 			     env->used_map_cnt);
9668 }
9669 
9670 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
9671 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
9672 {
9673 	struct bpf_insn *insn = env->prog->insnsi;
9674 	int insn_cnt = env->prog->len;
9675 	int i;
9676 
9677 	for (i = 0; i < insn_cnt; i++, insn++)
9678 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
9679 			insn->src_reg = 0;
9680 }
9681 
9682 /* single env->prog->insni[off] instruction was replaced with the range
9683  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
9684  * [0, off) and [off, end) to new locations, so the patched range stays zero
9685  */
9686 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
9687 				struct bpf_prog *new_prog, u32 off, u32 cnt)
9688 {
9689 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
9690 	struct bpf_insn *insn = new_prog->insnsi;
9691 	u32 prog_len;
9692 	int i;
9693 
9694 	/* aux info at OFF always needs adjustment, no matter fast path
9695 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
9696 	 * original insn at old prog.
9697 	 */
9698 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
9699 
9700 	if (cnt == 1)
9701 		return 0;
9702 	prog_len = new_prog->len;
9703 	new_data = vzalloc(array_size(prog_len,
9704 				      sizeof(struct bpf_insn_aux_data)));
9705 	if (!new_data)
9706 		return -ENOMEM;
9707 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
9708 	memcpy(new_data + off + cnt - 1, old_data + off,
9709 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
9710 	for (i = off; i < off + cnt - 1; i++) {
9711 		new_data[i].seen = env->pass_cnt;
9712 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
9713 	}
9714 	env->insn_aux_data = new_data;
9715 	vfree(old_data);
9716 	return 0;
9717 }
9718 
9719 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
9720 {
9721 	int i;
9722 
9723 	if (len == 1)
9724 		return;
9725 	/* NOTE: fake 'exit' subprog should be updated as well. */
9726 	for (i = 0; i <= env->subprog_cnt; i++) {
9727 		if (env->subprog_info[i].start <= off)
9728 			continue;
9729 		env->subprog_info[i].start += len - 1;
9730 	}
9731 }
9732 
9733 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
9734 {
9735 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
9736 	int i, sz = prog->aux->size_poke_tab;
9737 	struct bpf_jit_poke_descriptor *desc;
9738 
9739 	for (i = 0; i < sz; i++) {
9740 		desc = &tab[i];
9741 		desc->insn_idx += len - 1;
9742 	}
9743 }
9744 
9745 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
9746 					    const struct bpf_insn *patch, u32 len)
9747 {
9748 	struct bpf_prog *new_prog;
9749 
9750 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
9751 	if (IS_ERR(new_prog)) {
9752 		if (PTR_ERR(new_prog) == -ERANGE)
9753 			verbose(env,
9754 				"insn %d cannot be patched due to 16-bit range\n",
9755 				env->insn_aux_data[off].orig_idx);
9756 		return NULL;
9757 	}
9758 	if (adjust_insn_aux_data(env, new_prog, off, len))
9759 		return NULL;
9760 	adjust_subprog_starts(env, off, len);
9761 	adjust_poke_descs(new_prog, len);
9762 	return new_prog;
9763 }
9764 
9765 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
9766 					      u32 off, u32 cnt)
9767 {
9768 	int i, j;
9769 
9770 	/* find first prog starting at or after off (first to remove) */
9771 	for (i = 0; i < env->subprog_cnt; i++)
9772 		if (env->subprog_info[i].start >= off)
9773 			break;
9774 	/* find first prog starting at or after off + cnt (first to stay) */
9775 	for (j = i; j < env->subprog_cnt; j++)
9776 		if (env->subprog_info[j].start >= off + cnt)
9777 			break;
9778 	/* if j doesn't start exactly at off + cnt, we are just removing
9779 	 * the front of previous prog
9780 	 */
9781 	if (env->subprog_info[j].start != off + cnt)
9782 		j--;
9783 
9784 	if (j > i) {
9785 		struct bpf_prog_aux *aux = env->prog->aux;
9786 		int move;
9787 
9788 		/* move fake 'exit' subprog as well */
9789 		move = env->subprog_cnt + 1 - j;
9790 
9791 		memmove(env->subprog_info + i,
9792 			env->subprog_info + j,
9793 			sizeof(*env->subprog_info) * move);
9794 		env->subprog_cnt -= j - i;
9795 
9796 		/* remove func_info */
9797 		if (aux->func_info) {
9798 			move = aux->func_info_cnt - j;
9799 
9800 			memmove(aux->func_info + i,
9801 				aux->func_info + j,
9802 				sizeof(*aux->func_info) * move);
9803 			aux->func_info_cnt -= j - i;
9804 			/* func_info->insn_off is set after all code rewrites,
9805 			 * in adjust_btf_func() - no need to adjust
9806 			 */
9807 		}
9808 	} else {
9809 		/* convert i from "first prog to remove" to "first to adjust" */
9810 		if (env->subprog_info[i].start == off)
9811 			i++;
9812 	}
9813 
9814 	/* update fake 'exit' subprog as well */
9815 	for (; i <= env->subprog_cnt; i++)
9816 		env->subprog_info[i].start -= cnt;
9817 
9818 	return 0;
9819 }
9820 
9821 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
9822 				      u32 cnt)
9823 {
9824 	struct bpf_prog *prog = env->prog;
9825 	u32 i, l_off, l_cnt, nr_linfo;
9826 	struct bpf_line_info *linfo;
9827 
9828 	nr_linfo = prog->aux->nr_linfo;
9829 	if (!nr_linfo)
9830 		return 0;
9831 
9832 	linfo = prog->aux->linfo;
9833 
9834 	/* find first line info to remove, count lines to be removed */
9835 	for (i = 0; i < nr_linfo; i++)
9836 		if (linfo[i].insn_off >= off)
9837 			break;
9838 
9839 	l_off = i;
9840 	l_cnt = 0;
9841 	for (; i < nr_linfo; i++)
9842 		if (linfo[i].insn_off < off + cnt)
9843 			l_cnt++;
9844 		else
9845 			break;
9846 
9847 	/* First live insn doesn't match first live linfo, it needs to "inherit"
9848 	 * last removed linfo.  prog is already modified, so prog->len == off
9849 	 * means no live instructions after (tail of the program was removed).
9850 	 */
9851 	if (prog->len != off && l_cnt &&
9852 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
9853 		l_cnt--;
9854 		linfo[--i].insn_off = off + cnt;
9855 	}
9856 
9857 	/* remove the line info which refer to the removed instructions */
9858 	if (l_cnt) {
9859 		memmove(linfo + l_off, linfo + i,
9860 			sizeof(*linfo) * (nr_linfo - i));
9861 
9862 		prog->aux->nr_linfo -= l_cnt;
9863 		nr_linfo = prog->aux->nr_linfo;
9864 	}
9865 
9866 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
9867 	for (i = l_off; i < nr_linfo; i++)
9868 		linfo[i].insn_off -= cnt;
9869 
9870 	/* fix up all subprogs (incl. 'exit') which start >= off */
9871 	for (i = 0; i <= env->subprog_cnt; i++)
9872 		if (env->subprog_info[i].linfo_idx > l_off) {
9873 			/* program may have started in the removed region but
9874 			 * may not be fully removed
9875 			 */
9876 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
9877 				env->subprog_info[i].linfo_idx -= l_cnt;
9878 			else
9879 				env->subprog_info[i].linfo_idx = l_off;
9880 		}
9881 
9882 	return 0;
9883 }
9884 
9885 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
9886 {
9887 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9888 	unsigned int orig_prog_len = env->prog->len;
9889 	int err;
9890 
9891 	if (bpf_prog_is_dev_bound(env->prog->aux))
9892 		bpf_prog_offload_remove_insns(env, off, cnt);
9893 
9894 	err = bpf_remove_insns(env->prog, off, cnt);
9895 	if (err)
9896 		return err;
9897 
9898 	err = adjust_subprog_starts_after_remove(env, off, cnt);
9899 	if (err)
9900 		return err;
9901 
9902 	err = bpf_adj_linfo_after_remove(env, off, cnt);
9903 	if (err)
9904 		return err;
9905 
9906 	memmove(aux_data + off,	aux_data + off + cnt,
9907 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
9908 
9909 	return 0;
9910 }
9911 
9912 /* The verifier does more data flow analysis than llvm and will not
9913  * explore branches that are dead at run time. Malicious programs can
9914  * have dead code too. Therefore replace all dead at-run-time code
9915  * with 'ja -1'.
9916  *
9917  * Just nops are not optimal, e.g. if they would sit at the end of the
9918  * program and through another bug we would manage to jump there, then
9919  * we'd execute beyond program memory otherwise. Returning exception
9920  * code also wouldn't work since we can have subprogs where the dead
9921  * code could be located.
9922  */
9923 static void sanitize_dead_code(struct bpf_verifier_env *env)
9924 {
9925 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9926 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
9927 	struct bpf_insn *insn = env->prog->insnsi;
9928 	const int insn_cnt = env->prog->len;
9929 	int i;
9930 
9931 	for (i = 0; i < insn_cnt; i++) {
9932 		if (aux_data[i].seen)
9933 			continue;
9934 		memcpy(insn + i, &trap, sizeof(trap));
9935 	}
9936 }
9937 
9938 static bool insn_is_cond_jump(u8 code)
9939 {
9940 	u8 op;
9941 
9942 	if (BPF_CLASS(code) == BPF_JMP32)
9943 		return true;
9944 
9945 	if (BPF_CLASS(code) != BPF_JMP)
9946 		return false;
9947 
9948 	op = BPF_OP(code);
9949 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
9950 }
9951 
9952 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
9953 {
9954 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9955 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
9956 	struct bpf_insn *insn = env->prog->insnsi;
9957 	const int insn_cnt = env->prog->len;
9958 	int i;
9959 
9960 	for (i = 0; i < insn_cnt; i++, insn++) {
9961 		if (!insn_is_cond_jump(insn->code))
9962 			continue;
9963 
9964 		if (!aux_data[i + 1].seen)
9965 			ja.off = insn->off;
9966 		else if (!aux_data[i + 1 + insn->off].seen)
9967 			ja.off = 0;
9968 		else
9969 			continue;
9970 
9971 		if (bpf_prog_is_dev_bound(env->prog->aux))
9972 			bpf_prog_offload_replace_insn(env, i, &ja);
9973 
9974 		memcpy(insn, &ja, sizeof(ja));
9975 	}
9976 }
9977 
9978 static int opt_remove_dead_code(struct bpf_verifier_env *env)
9979 {
9980 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
9981 	int insn_cnt = env->prog->len;
9982 	int i, err;
9983 
9984 	for (i = 0; i < insn_cnt; i++) {
9985 		int j;
9986 
9987 		j = 0;
9988 		while (i + j < insn_cnt && !aux_data[i + j].seen)
9989 			j++;
9990 		if (!j)
9991 			continue;
9992 
9993 		err = verifier_remove_insns(env, i, j);
9994 		if (err)
9995 			return err;
9996 		insn_cnt = env->prog->len;
9997 	}
9998 
9999 	return 0;
10000 }
10001 
10002 static int opt_remove_nops(struct bpf_verifier_env *env)
10003 {
10004 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10005 	struct bpf_insn *insn = env->prog->insnsi;
10006 	int insn_cnt = env->prog->len;
10007 	int i, err;
10008 
10009 	for (i = 0; i < insn_cnt; i++) {
10010 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10011 			continue;
10012 
10013 		err = verifier_remove_insns(env, i, 1);
10014 		if (err)
10015 			return err;
10016 		insn_cnt--;
10017 		i--;
10018 	}
10019 
10020 	return 0;
10021 }
10022 
10023 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10024 					 const union bpf_attr *attr)
10025 {
10026 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10027 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10028 	int i, patch_len, delta = 0, len = env->prog->len;
10029 	struct bpf_insn *insns = env->prog->insnsi;
10030 	struct bpf_prog *new_prog;
10031 	bool rnd_hi32;
10032 
10033 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10034 	zext_patch[1] = BPF_ZEXT_REG(0);
10035 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10036 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10037 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10038 	for (i = 0; i < len; i++) {
10039 		int adj_idx = i + delta;
10040 		struct bpf_insn insn;
10041 
10042 		insn = insns[adj_idx];
10043 		if (!aux[adj_idx].zext_dst) {
10044 			u8 code, class;
10045 			u32 imm_rnd;
10046 
10047 			if (!rnd_hi32)
10048 				continue;
10049 
10050 			code = insn.code;
10051 			class = BPF_CLASS(code);
10052 			if (insn_no_def(&insn))
10053 				continue;
10054 
10055 			/* NOTE: arg "reg" (the fourth one) is only used for
10056 			 *       BPF_STX which has been ruled out in above
10057 			 *       check, it is safe to pass NULL here.
10058 			 */
10059 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10060 				if (class == BPF_LD &&
10061 				    BPF_MODE(code) == BPF_IMM)
10062 					i++;
10063 				continue;
10064 			}
10065 
10066 			/* ctx load could be transformed into wider load. */
10067 			if (class == BPF_LDX &&
10068 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10069 				continue;
10070 
10071 			imm_rnd = get_random_int();
10072 			rnd_hi32_patch[0] = insn;
10073 			rnd_hi32_patch[1].imm = imm_rnd;
10074 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10075 			patch = rnd_hi32_patch;
10076 			patch_len = 4;
10077 			goto apply_patch_buffer;
10078 		}
10079 
10080 		if (!bpf_jit_needs_zext())
10081 			continue;
10082 
10083 		zext_patch[0] = insn;
10084 		zext_patch[1].dst_reg = insn.dst_reg;
10085 		zext_patch[1].src_reg = insn.dst_reg;
10086 		patch = zext_patch;
10087 		patch_len = 2;
10088 apply_patch_buffer:
10089 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10090 		if (!new_prog)
10091 			return -ENOMEM;
10092 		env->prog = new_prog;
10093 		insns = new_prog->insnsi;
10094 		aux = env->insn_aux_data;
10095 		delta += patch_len - 1;
10096 	}
10097 
10098 	return 0;
10099 }
10100 
10101 /* convert load instructions that access fields of a context type into a
10102  * sequence of instructions that access fields of the underlying structure:
10103  *     struct __sk_buff    -> struct sk_buff
10104  *     struct bpf_sock_ops -> struct sock
10105  */
10106 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10107 {
10108 	const struct bpf_verifier_ops *ops = env->ops;
10109 	int i, cnt, size, ctx_field_size, delta = 0;
10110 	const int insn_cnt = env->prog->len;
10111 	struct bpf_insn insn_buf[16], *insn;
10112 	u32 target_size, size_default, off;
10113 	struct bpf_prog *new_prog;
10114 	enum bpf_access_type type;
10115 	bool is_narrower_load;
10116 
10117 	if (ops->gen_prologue || env->seen_direct_write) {
10118 		if (!ops->gen_prologue) {
10119 			verbose(env, "bpf verifier is misconfigured\n");
10120 			return -EINVAL;
10121 		}
10122 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10123 					env->prog);
10124 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10125 			verbose(env, "bpf verifier is misconfigured\n");
10126 			return -EINVAL;
10127 		} else if (cnt) {
10128 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10129 			if (!new_prog)
10130 				return -ENOMEM;
10131 
10132 			env->prog = new_prog;
10133 			delta += cnt - 1;
10134 		}
10135 	}
10136 
10137 	if (bpf_prog_is_dev_bound(env->prog->aux))
10138 		return 0;
10139 
10140 	insn = env->prog->insnsi + delta;
10141 
10142 	for (i = 0; i < insn_cnt; i++, insn++) {
10143 		bpf_convert_ctx_access_t convert_ctx_access;
10144 
10145 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10146 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10147 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10148 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10149 			type = BPF_READ;
10150 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10151 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10152 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10153 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10154 			type = BPF_WRITE;
10155 		else
10156 			continue;
10157 
10158 		if (type == BPF_WRITE &&
10159 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10160 			struct bpf_insn patch[] = {
10161 				/* Sanitize suspicious stack slot with zero.
10162 				 * There are no memory dependencies for this store,
10163 				 * since it's only using frame pointer and immediate
10164 				 * constant of zero
10165 				 */
10166 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10167 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10168 					   0),
10169 				/* the original STX instruction will immediately
10170 				 * overwrite the same stack slot with appropriate value
10171 				 */
10172 				*insn,
10173 			};
10174 
10175 			cnt = ARRAY_SIZE(patch);
10176 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10177 			if (!new_prog)
10178 				return -ENOMEM;
10179 
10180 			delta    += cnt - 1;
10181 			env->prog = new_prog;
10182 			insn      = new_prog->insnsi + i + delta;
10183 			continue;
10184 		}
10185 
10186 		switch (env->insn_aux_data[i + delta].ptr_type) {
10187 		case PTR_TO_CTX:
10188 			if (!ops->convert_ctx_access)
10189 				continue;
10190 			convert_ctx_access = ops->convert_ctx_access;
10191 			break;
10192 		case PTR_TO_SOCKET:
10193 		case PTR_TO_SOCK_COMMON:
10194 			convert_ctx_access = bpf_sock_convert_ctx_access;
10195 			break;
10196 		case PTR_TO_TCP_SOCK:
10197 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10198 			break;
10199 		case PTR_TO_XDP_SOCK:
10200 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10201 			break;
10202 		case PTR_TO_BTF_ID:
10203 			if (type == BPF_READ) {
10204 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10205 					BPF_SIZE((insn)->code);
10206 				env->prog->aux->num_exentries++;
10207 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10208 				verbose(env, "Writes through BTF pointers are not allowed\n");
10209 				return -EINVAL;
10210 			}
10211 			continue;
10212 		default:
10213 			continue;
10214 		}
10215 
10216 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10217 		size = BPF_LDST_BYTES(insn);
10218 
10219 		/* If the read access is a narrower load of the field,
10220 		 * convert to a 4/8-byte load, to minimum program type specific
10221 		 * convert_ctx_access changes. If conversion is successful,
10222 		 * we will apply proper mask to the result.
10223 		 */
10224 		is_narrower_load = size < ctx_field_size;
10225 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10226 		off = insn->off;
10227 		if (is_narrower_load) {
10228 			u8 size_code;
10229 
10230 			if (type == BPF_WRITE) {
10231 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10232 				return -EINVAL;
10233 			}
10234 
10235 			size_code = BPF_H;
10236 			if (ctx_field_size == 4)
10237 				size_code = BPF_W;
10238 			else if (ctx_field_size == 8)
10239 				size_code = BPF_DW;
10240 
10241 			insn->off = off & ~(size_default - 1);
10242 			insn->code = BPF_LDX | BPF_MEM | size_code;
10243 		}
10244 
10245 		target_size = 0;
10246 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10247 					 &target_size);
10248 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10249 		    (ctx_field_size && !target_size)) {
10250 			verbose(env, "bpf verifier is misconfigured\n");
10251 			return -EINVAL;
10252 		}
10253 
10254 		if (is_narrower_load && size < target_size) {
10255 			u8 shift = bpf_ctx_narrow_access_offset(
10256 				off, size, size_default) * 8;
10257 			if (ctx_field_size <= 4) {
10258 				if (shift)
10259 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10260 									insn->dst_reg,
10261 									shift);
10262 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10263 								(1 << size * 8) - 1);
10264 			} else {
10265 				if (shift)
10266 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10267 									insn->dst_reg,
10268 									shift);
10269 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10270 								(1ULL << size * 8) - 1);
10271 			}
10272 		}
10273 
10274 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10275 		if (!new_prog)
10276 			return -ENOMEM;
10277 
10278 		delta += cnt - 1;
10279 
10280 		/* keep walking new program and skip insns we just inserted */
10281 		env->prog = new_prog;
10282 		insn      = new_prog->insnsi + i + delta;
10283 	}
10284 
10285 	return 0;
10286 }
10287 
10288 static int jit_subprogs(struct bpf_verifier_env *env)
10289 {
10290 	struct bpf_prog *prog = env->prog, **func, *tmp;
10291 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10292 	struct bpf_map *map_ptr;
10293 	struct bpf_insn *insn;
10294 	void *old_bpf_func;
10295 	int err, num_exentries;
10296 
10297 	if (env->subprog_cnt <= 1)
10298 		return 0;
10299 
10300 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10301 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10302 		    insn->src_reg != BPF_PSEUDO_CALL)
10303 			continue;
10304 		/* Upon error here we cannot fall back to interpreter but
10305 		 * need a hard reject of the program. Thus -EFAULT is
10306 		 * propagated in any case.
10307 		 */
10308 		subprog = find_subprog(env, i + insn->imm + 1);
10309 		if (subprog < 0) {
10310 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10311 				  i + insn->imm + 1);
10312 			return -EFAULT;
10313 		}
10314 		/* temporarily remember subprog id inside insn instead of
10315 		 * aux_data, since next loop will split up all insns into funcs
10316 		 */
10317 		insn->off = subprog;
10318 		/* remember original imm in case JIT fails and fallback
10319 		 * to interpreter will be needed
10320 		 */
10321 		env->insn_aux_data[i].call_imm = insn->imm;
10322 		/* point imm to __bpf_call_base+1 from JITs point of view */
10323 		insn->imm = 1;
10324 	}
10325 
10326 	err = bpf_prog_alloc_jited_linfo(prog);
10327 	if (err)
10328 		goto out_undo_insn;
10329 
10330 	err = -ENOMEM;
10331 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10332 	if (!func)
10333 		goto out_undo_insn;
10334 
10335 	for (i = 0; i < env->subprog_cnt; i++) {
10336 		subprog_start = subprog_end;
10337 		subprog_end = env->subprog_info[i + 1].start;
10338 
10339 		len = subprog_end - subprog_start;
10340 		/* BPF_PROG_RUN doesn't call subprogs directly,
10341 		 * hence main prog stats include the runtime of subprogs.
10342 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10343 		 * func[i]->aux->stats will never be accessed and stays NULL
10344 		 */
10345 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10346 		if (!func[i])
10347 			goto out_free;
10348 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10349 		       len * sizeof(struct bpf_insn));
10350 		func[i]->type = prog->type;
10351 		func[i]->len = len;
10352 		if (bpf_prog_calc_tag(func[i]))
10353 			goto out_free;
10354 		func[i]->is_func = 1;
10355 		func[i]->aux->func_idx = i;
10356 		/* the btf and func_info will be freed only at prog->aux */
10357 		func[i]->aux->btf = prog->aux->btf;
10358 		func[i]->aux->func_info = prog->aux->func_info;
10359 
10360 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10361 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10362 			int ret;
10363 
10364 			if (!(insn_idx >= subprog_start &&
10365 			      insn_idx <= subprog_end))
10366 				continue;
10367 
10368 			ret = bpf_jit_add_poke_descriptor(func[i],
10369 							  &prog->aux->poke_tab[j]);
10370 			if (ret < 0) {
10371 				verbose(env, "adding tail call poke descriptor failed\n");
10372 				goto out_free;
10373 			}
10374 
10375 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10376 
10377 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10378 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10379 			if (ret < 0) {
10380 				verbose(env, "tracking tail call prog failed\n");
10381 				goto out_free;
10382 			}
10383 		}
10384 
10385 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10386 		 * Long term would need debug info to populate names
10387 		 */
10388 		func[i]->aux->name[0] = 'F';
10389 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10390 		func[i]->jit_requested = 1;
10391 		func[i]->aux->linfo = prog->aux->linfo;
10392 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10393 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10394 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10395 		num_exentries = 0;
10396 		insn = func[i]->insnsi;
10397 		for (j = 0; j < func[i]->len; j++, insn++) {
10398 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10399 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10400 				num_exentries++;
10401 		}
10402 		func[i]->aux->num_exentries = num_exentries;
10403 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10404 		func[i] = bpf_int_jit_compile(func[i]);
10405 		if (!func[i]->jited) {
10406 			err = -ENOTSUPP;
10407 			goto out_free;
10408 		}
10409 		cond_resched();
10410 	}
10411 
10412 	/* Untrack main program's aux structs so that during map_poke_run()
10413 	 * we will not stumble upon the unfilled poke descriptors; each
10414 	 * of the main program's poke descs got distributed across subprogs
10415 	 * and got tracked onto map, so we are sure that none of them will
10416 	 * be missed after the operation below
10417 	 */
10418 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10419 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10420 
10421 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10422 	}
10423 
10424 	/* at this point all bpf functions were successfully JITed
10425 	 * now populate all bpf_calls with correct addresses and
10426 	 * run last pass of JIT
10427 	 */
10428 	for (i = 0; i < env->subprog_cnt; i++) {
10429 		insn = func[i]->insnsi;
10430 		for (j = 0; j < func[i]->len; j++, insn++) {
10431 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10432 			    insn->src_reg != BPF_PSEUDO_CALL)
10433 				continue;
10434 			subprog = insn->off;
10435 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10436 				    __bpf_call_base;
10437 		}
10438 
10439 		/* we use the aux data to keep a list of the start addresses
10440 		 * of the JITed images for each function in the program
10441 		 *
10442 		 * for some architectures, such as powerpc64, the imm field
10443 		 * might not be large enough to hold the offset of the start
10444 		 * address of the callee's JITed image from __bpf_call_base
10445 		 *
10446 		 * in such cases, we can lookup the start address of a callee
10447 		 * by using its subprog id, available from the off field of
10448 		 * the call instruction, as an index for this list
10449 		 */
10450 		func[i]->aux->func = func;
10451 		func[i]->aux->func_cnt = env->subprog_cnt;
10452 	}
10453 	for (i = 0; i < env->subprog_cnt; i++) {
10454 		old_bpf_func = func[i]->bpf_func;
10455 		tmp = bpf_int_jit_compile(func[i]);
10456 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10457 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10458 			err = -ENOTSUPP;
10459 			goto out_free;
10460 		}
10461 		cond_resched();
10462 	}
10463 
10464 	/* finally lock prog and jit images for all functions and
10465 	 * populate kallsysm
10466 	 */
10467 	for (i = 0; i < env->subprog_cnt; i++) {
10468 		bpf_prog_lock_ro(func[i]);
10469 		bpf_prog_kallsyms_add(func[i]);
10470 	}
10471 
10472 	/* Last step: make now unused interpreter insns from main
10473 	 * prog consistent for later dump requests, so they can
10474 	 * later look the same as if they were interpreted only.
10475 	 */
10476 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10477 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10478 		    insn->src_reg != BPF_PSEUDO_CALL)
10479 			continue;
10480 		insn->off = env->insn_aux_data[i].call_imm;
10481 		subprog = find_subprog(env, i + insn->off + 1);
10482 		insn->imm = subprog;
10483 	}
10484 
10485 	prog->jited = 1;
10486 	prog->bpf_func = func[0]->bpf_func;
10487 	prog->aux->func = func;
10488 	prog->aux->func_cnt = env->subprog_cnt;
10489 	bpf_prog_free_unused_jited_linfo(prog);
10490 	return 0;
10491 out_free:
10492 	for (i = 0; i < env->subprog_cnt; i++) {
10493 		if (!func[i])
10494 			continue;
10495 
10496 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10497 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10498 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10499 		}
10500 		bpf_jit_free(func[i]);
10501 	}
10502 	kfree(func);
10503 out_undo_insn:
10504 	/* cleanup main prog to be interpreted */
10505 	prog->jit_requested = 0;
10506 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10507 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10508 		    insn->src_reg != BPF_PSEUDO_CALL)
10509 			continue;
10510 		insn->off = 0;
10511 		insn->imm = env->insn_aux_data[i].call_imm;
10512 	}
10513 	bpf_prog_free_jited_linfo(prog);
10514 	return err;
10515 }
10516 
10517 static int fixup_call_args(struct bpf_verifier_env *env)
10518 {
10519 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10520 	struct bpf_prog *prog = env->prog;
10521 	struct bpf_insn *insn = prog->insnsi;
10522 	int i, depth;
10523 #endif
10524 	int err = 0;
10525 
10526 	if (env->prog->jit_requested &&
10527 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10528 		err = jit_subprogs(env);
10529 		if (err == 0)
10530 			return 0;
10531 		if (err == -EFAULT)
10532 			return err;
10533 	}
10534 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10535 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10536 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
10537 		 * have to be rejected, since interpreter doesn't support them yet.
10538 		 */
10539 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10540 		return -EINVAL;
10541 	}
10542 	for (i = 0; i < prog->len; i++, insn++) {
10543 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10544 		    insn->src_reg != BPF_PSEUDO_CALL)
10545 			continue;
10546 		depth = get_callee_stack_depth(env, insn, i);
10547 		if (depth < 0)
10548 			return depth;
10549 		bpf_patch_call_args(insn, depth);
10550 	}
10551 	err = 0;
10552 #endif
10553 	return err;
10554 }
10555 
10556 /* fixup insn->imm field of bpf_call instructions
10557  * and inline eligible helpers as explicit sequence of BPF instructions
10558  *
10559  * this function is called after eBPF program passed verification
10560  */
10561 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10562 {
10563 	struct bpf_prog *prog = env->prog;
10564 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10565 	struct bpf_insn *insn = prog->insnsi;
10566 	const struct bpf_func_proto *fn;
10567 	const int insn_cnt = prog->len;
10568 	const struct bpf_map_ops *ops;
10569 	struct bpf_insn_aux_data *aux;
10570 	struct bpf_insn insn_buf[16];
10571 	struct bpf_prog *new_prog;
10572 	struct bpf_map *map_ptr;
10573 	int i, ret, cnt, delta = 0;
10574 
10575 	for (i = 0; i < insn_cnt; i++, insn++) {
10576 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10577 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10578 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10579 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10580 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
10581 			struct bpf_insn mask_and_div[] = {
10582 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10583 				/* Rx div 0 -> 0 */
10584 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
10585 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
10586 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
10587 				*insn,
10588 			};
10589 			struct bpf_insn mask_and_mod[] = {
10590 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
10591 				/* Rx mod 0 -> Rx */
10592 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
10593 				*insn,
10594 			};
10595 			struct bpf_insn *patchlet;
10596 
10597 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10598 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10599 				patchlet = mask_and_div + (is64 ? 1 : 0);
10600 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
10601 			} else {
10602 				patchlet = mask_and_mod + (is64 ? 1 : 0);
10603 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
10604 			}
10605 
10606 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
10607 			if (!new_prog)
10608 				return -ENOMEM;
10609 
10610 			delta    += cnt - 1;
10611 			env->prog = prog = new_prog;
10612 			insn      = new_prog->insnsi + i + delta;
10613 			continue;
10614 		}
10615 
10616 		if (BPF_CLASS(insn->code) == BPF_LD &&
10617 		    (BPF_MODE(insn->code) == BPF_ABS ||
10618 		     BPF_MODE(insn->code) == BPF_IND)) {
10619 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
10620 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10621 				verbose(env, "bpf verifier is misconfigured\n");
10622 				return -EINVAL;
10623 			}
10624 
10625 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10626 			if (!new_prog)
10627 				return -ENOMEM;
10628 
10629 			delta    += cnt - 1;
10630 			env->prog = prog = new_prog;
10631 			insn      = new_prog->insnsi + i + delta;
10632 			continue;
10633 		}
10634 
10635 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
10636 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
10637 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
10638 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
10639 			struct bpf_insn insn_buf[16];
10640 			struct bpf_insn *patch = &insn_buf[0];
10641 			bool issrc, isneg;
10642 			u32 off_reg;
10643 
10644 			aux = &env->insn_aux_data[i + delta];
10645 			if (!aux->alu_state ||
10646 			    aux->alu_state == BPF_ALU_NON_POINTER)
10647 				continue;
10648 
10649 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
10650 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
10651 				BPF_ALU_SANITIZE_SRC;
10652 
10653 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
10654 			if (isneg)
10655 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10656 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
10657 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
10658 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
10659 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
10660 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
10661 			if (issrc) {
10662 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
10663 							 off_reg);
10664 				insn->src_reg = BPF_REG_AX;
10665 			} else {
10666 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
10667 							 BPF_REG_AX);
10668 			}
10669 			if (isneg)
10670 				insn->code = insn->code == code_add ?
10671 					     code_sub : code_add;
10672 			*patch++ = *insn;
10673 			if (issrc && isneg)
10674 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
10675 			cnt = patch - insn_buf;
10676 
10677 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10678 			if (!new_prog)
10679 				return -ENOMEM;
10680 
10681 			delta    += cnt - 1;
10682 			env->prog = prog = new_prog;
10683 			insn      = new_prog->insnsi + i + delta;
10684 			continue;
10685 		}
10686 
10687 		if (insn->code != (BPF_JMP | BPF_CALL))
10688 			continue;
10689 		if (insn->src_reg == BPF_PSEUDO_CALL)
10690 			continue;
10691 
10692 		if (insn->imm == BPF_FUNC_get_route_realm)
10693 			prog->dst_needed = 1;
10694 		if (insn->imm == BPF_FUNC_get_prandom_u32)
10695 			bpf_user_rnd_init_once();
10696 		if (insn->imm == BPF_FUNC_override_return)
10697 			prog->kprobe_override = 1;
10698 		if (insn->imm == BPF_FUNC_tail_call) {
10699 			/* If we tail call into other programs, we
10700 			 * cannot make any assumptions since they can
10701 			 * be replaced dynamically during runtime in
10702 			 * the program array.
10703 			 */
10704 			prog->cb_access = 1;
10705 			if (!allow_tail_call_in_subprogs(env))
10706 				prog->aux->stack_depth = MAX_BPF_STACK;
10707 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
10708 
10709 			/* mark bpf_tail_call as different opcode to avoid
10710 			 * conditional branch in the interpeter for every normal
10711 			 * call and to prevent accidental JITing by JIT compiler
10712 			 * that doesn't support bpf_tail_call yet
10713 			 */
10714 			insn->imm = 0;
10715 			insn->code = BPF_JMP | BPF_TAIL_CALL;
10716 
10717 			aux = &env->insn_aux_data[i + delta];
10718 			if (env->bpf_capable && !expect_blinding &&
10719 			    prog->jit_requested &&
10720 			    !bpf_map_key_poisoned(aux) &&
10721 			    !bpf_map_ptr_poisoned(aux) &&
10722 			    !bpf_map_ptr_unpriv(aux)) {
10723 				struct bpf_jit_poke_descriptor desc = {
10724 					.reason = BPF_POKE_REASON_TAIL_CALL,
10725 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
10726 					.tail_call.key = bpf_map_key_immediate(aux),
10727 					.insn_idx = i + delta,
10728 				};
10729 
10730 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
10731 				if (ret < 0) {
10732 					verbose(env, "adding tail call poke descriptor failed\n");
10733 					return ret;
10734 				}
10735 
10736 				insn->imm = ret + 1;
10737 				continue;
10738 			}
10739 
10740 			if (!bpf_map_ptr_unpriv(aux))
10741 				continue;
10742 
10743 			/* instead of changing every JIT dealing with tail_call
10744 			 * emit two extra insns:
10745 			 * if (index >= max_entries) goto out;
10746 			 * index &= array->index_mask;
10747 			 * to avoid out-of-bounds cpu speculation
10748 			 */
10749 			if (bpf_map_ptr_poisoned(aux)) {
10750 				verbose(env, "tail_call abusing map_ptr\n");
10751 				return -EINVAL;
10752 			}
10753 
10754 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10755 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
10756 						  map_ptr->max_entries, 2);
10757 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
10758 						    container_of(map_ptr,
10759 								 struct bpf_array,
10760 								 map)->index_mask);
10761 			insn_buf[2] = *insn;
10762 			cnt = 3;
10763 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10764 			if (!new_prog)
10765 				return -ENOMEM;
10766 
10767 			delta    += cnt - 1;
10768 			env->prog = prog = new_prog;
10769 			insn      = new_prog->insnsi + i + delta;
10770 			continue;
10771 		}
10772 
10773 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
10774 		 * and other inlining handlers are currently limited to 64 bit
10775 		 * only.
10776 		 */
10777 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10778 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
10779 		     insn->imm == BPF_FUNC_map_update_elem ||
10780 		     insn->imm == BPF_FUNC_map_delete_elem ||
10781 		     insn->imm == BPF_FUNC_map_push_elem   ||
10782 		     insn->imm == BPF_FUNC_map_pop_elem    ||
10783 		     insn->imm == BPF_FUNC_map_peek_elem)) {
10784 			aux = &env->insn_aux_data[i + delta];
10785 			if (bpf_map_ptr_poisoned(aux))
10786 				goto patch_call_imm;
10787 
10788 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
10789 			ops = map_ptr->ops;
10790 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
10791 			    ops->map_gen_lookup) {
10792 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
10793 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
10794 					verbose(env, "bpf verifier is misconfigured\n");
10795 					return -EINVAL;
10796 				}
10797 
10798 				new_prog = bpf_patch_insn_data(env, i + delta,
10799 							       insn_buf, cnt);
10800 				if (!new_prog)
10801 					return -ENOMEM;
10802 
10803 				delta    += cnt - 1;
10804 				env->prog = prog = new_prog;
10805 				insn      = new_prog->insnsi + i + delta;
10806 				continue;
10807 			}
10808 
10809 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
10810 				     (void *(*)(struct bpf_map *map, void *key))NULL));
10811 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
10812 				     (int (*)(struct bpf_map *map, void *key))NULL));
10813 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
10814 				     (int (*)(struct bpf_map *map, void *key, void *value,
10815 					      u64 flags))NULL));
10816 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
10817 				     (int (*)(struct bpf_map *map, void *value,
10818 					      u64 flags))NULL));
10819 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
10820 				     (int (*)(struct bpf_map *map, void *value))NULL));
10821 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
10822 				     (int (*)(struct bpf_map *map, void *value))NULL));
10823 
10824 			switch (insn->imm) {
10825 			case BPF_FUNC_map_lookup_elem:
10826 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
10827 					    __bpf_call_base;
10828 				continue;
10829 			case BPF_FUNC_map_update_elem:
10830 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
10831 					    __bpf_call_base;
10832 				continue;
10833 			case BPF_FUNC_map_delete_elem:
10834 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
10835 					    __bpf_call_base;
10836 				continue;
10837 			case BPF_FUNC_map_push_elem:
10838 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
10839 					    __bpf_call_base;
10840 				continue;
10841 			case BPF_FUNC_map_pop_elem:
10842 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
10843 					    __bpf_call_base;
10844 				continue;
10845 			case BPF_FUNC_map_peek_elem:
10846 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
10847 					    __bpf_call_base;
10848 				continue;
10849 			}
10850 
10851 			goto patch_call_imm;
10852 		}
10853 
10854 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
10855 		    insn->imm == BPF_FUNC_jiffies64) {
10856 			struct bpf_insn ld_jiffies_addr[2] = {
10857 				BPF_LD_IMM64(BPF_REG_0,
10858 					     (unsigned long)&jiffies),
10859 			};
10860 
10861 			insn_buf[0] = ld_jiffies_addr[0];
10862 			insn_buf[1] = ld_jiffies_addr[1];
10863 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
10864 						  BPF_REG_0, 0);
10865 			cnt = 3;
10866 
10867 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
10868 						       cnt);
10869 			if (!new_prog)
10870 				return -ENOMEM;
10871 
10872 			delta    += cnt - 1;
10873 			env->prog = prog = new_prog;
10874 			insn      = new_prog->insnsi + i + delta;
10875 			continue;
10876 		}
10877 
10878 patch_call_imm:
10879 		fn = env->ops->get_func_proto(insn->imm, env->prog);
10880 		/* all functions that have prototype and verifier allowed
10881 		 * programs to call them, must be real in-kernel functions
10882 		 */
10883 		if (!fn->func) {
10884 			verbose(env,
10885 				"kernel subsystem misconfigured func %s#%d\n",
10886 				func_id_name(insn->imm), insn->imm);
10887 			return -EFAULT;
10888 		}
10889 		insn->imm = fn->func - __bpf_call_base;
10890 	}
10891 
10892 	/* Since poke tab is now finalized, publish aux to tracker. */
10893 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10894 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10895 		if (!map_ptr->ops->map_poke_track ||
10896 		    !map_ptr->ops->map_poke_untrack ||
10897 		    !map_ptr->ops->map_poke_run) {
10898 			verbose(env, "bpf verifier is misconfigured\n");
10899 			return -EINVAL;
10900 		}
10901 
10902 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
10903 		if (ret < 0) {
10904 			verbose(env, "tracking tail call prog failed\n");
10905 			return ret;
10906 		}
10907 	}
10908 
10909 	return 0;
10910 }
10911 
10912 static void free_states(struct bpf_verifier_env *env)
10913 {
10914 	struct bpf_verifier_state_list *sl, *sln;
10915 	int i;
10916 
10917 	sl = env->free_list;
10918 	while (sl) {
10919 		sln = sl->next;
10920 		free_verifier_state(&sl->state, false);
10921 		kfree(sl);
10922 		sl = sln;
10923 	}
10924 	env->free_list = NULL;
10925 
10926 	if (!env->explored_states)
10927 		return;
10928 
10929 	for (i = 0; i < state_htab_size(env); i++) {
10930 		sl = env->explored_states[i];
10931 
10932 		while (sl) {
10933 			sln = sl->next;
10934 			free_verifier_state(&sl->state, false);
10935 			kfree(sl);
10936 			sl = sln;
10937 		}
10938 		env->explored_states[i] = NULL;
10939 	}
10940 }
10941 
10942 /* The verifier is using insn_aux_data[] to store temporary data during
10943  * verification and to store information for passes that run after the
10944  * verification like dead code sanitization. do_check_common() for subprogram N
10945  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
10946  * temporary data after do_check_common() finds that subprogram N cannot be
10947  * verified independently. pass_cnt counts the number of times
10948  * do_check_common() was run and insn->aux->seen tells the pass number
10949  * insn_aux_data was touched. These variables are compared to clear temporary
10950  * data from failed pass. For testing and experiments do_check_common() can be
10951  * run multiple times even when prior attempt to verify is unsuccessful.
10952  */
10953 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
10954 {
10955 	struct bpf_insn *insn = env->prog->insnsi;
10956 	struct bpf_insn_aux_data *aux;
10957 	int i, class;
10958 
10959 	for (i = 0; i < env->prog->len; i++) {
10960 		class = BPF_CLASS(insn[i].code);
10961 		if (class != BPF_LDX && class != BPF_STX)
10962 			continue;
10963 		aux = &env->insn_aux_data[i];
10964 		if (aux->seen != env->pass_cnt)
10965 			continue;
10966 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
10967 	}
10968 }
10969 
10970 static int do_check_common(struct bpf_verifier_env *env, int subprog)
10971 {
10972 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10973 	struct bpf_verifier_state *state;
10974 	struct bpf_reg_state *regs;
10975 	int ret, i;
10976 
10977 	env->prev_linfo = NULL;
10978 	env->pass_cnt++;
10979 
10980 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
10981 	if (!state)
10982 		return -ENOMEM;
10983 	state->curframe = 0;
10984 	state->speculative = false;
10985 	state->branches = 1;
10986 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
10987 	if (!state->frame[0]) {
10988 		kfree(state);
10989 		return -ENOMEM;
10990 	}
10991 	env->cur_state = state;
10992 	init_func_state(env, state->frame[0],
10993 			BPF_MAIN_FUNC /* callsite */,
10994 			0 /* frameno */,
10995 			subprog);
10996 
10997 	regs = state->frame[state->curframe]->regs;
10998 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
10999 		ret = btf_prepare_func_args(env, subprog, regs);
11000 		if (ret)
11001 			goto out;
11002 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11003 			if (regs[i].type == PTR_TO_CTX)
11004 				mark_reg_known_zero(env, regs, i);
11005 			else if (regs[i].type == SCALAR_VALUE)
11006 				mark_reg_unknown(env, regs, i);
11007 		}
11008 	} else {
11009 		/* 1st arg to a function */
11010 		regs[BPF_REG_1].type = PTR_TO_CTX;
11011 		mark_reg_known_zero(env, regs, BPF_REG_1);
11012 		ret = btf_check_func_arg_match(env, subprog, regs);
11013 		if (ret == -EFAULT)
11014 			/* unlikely verifier bug. abort.
11015 			 * ret == 0 and ret < 0 are sadly acceptable for
11016 			 * main() function due to backward compatibility.
11017 			 * Like socket filter program may be written as:
11018 			 * int bpf_prog(struct pt_regs *ctx)
11019 			 * and never dereference that ctx in the program.
11020 			 * 'struct pt_regs' is a type mismatch for socket
11021 			 * filter that should be using 'struct __sk_buff'.
11022 			 */
11023 			goto out;
11024 	}
11025 
11026 	ret = do_check(env);
11027 out:
11028 	/* check for NULL is necessary, since cur_state can be freed inside
11029 	 * do_check() under memory pressure.
11030 	 */
11031 	if (env->cur_state) {
11032 		free_verifier_state(env->cur_state, true);
11033 		env->cur_state = NULL;
11034 	}
11035 	while (!pop_stack(env, NULL, NULL, false));
11036 	if (!ret && pop_log)
11037 		bpf_vlog_reset(&env->log, 0);
11038 	free_states(env);
11039 	if (ret)
11040 		/* clean aux data in case subprog was rejected */
11041 		sanitize_insn_aux_data(env);
11042 	return ret;
11043 }
11044 
11045 /* Verify all global functions in a BPF program one by one based on their BTF.
11046  * All global functions must pass verification. Otherwise the whole program is rejected.
11047  * Consider:
11048  * int bar(int);
11049  * int foo(int f)
11050  * {
11051  *    return bar(f);
11052  * }
11053  * int bar(int b)
11054  * {
11055  *    ...
11056  * }
11057  * foo() will be verified first for R1=any_scalar_value. During verification it
11058  * will be assumed that bar() already verified successfully and call to bar()
11059  * from foo() will be checked for type match only. Later bar() will be verified
11060  * independently to check that it's safe for R1=any_scalar_value.
11061  */
11062 static int do_check_subprogs(struct bpf_verifier_env *env)
11063 {
11064 	struct bpf_prog_aux *aux = env->prog->aux;
11065 	int i, ret;
11066 
11067 	if (!aux->func_info)
11068 		return 0;
11069 
11070 	for (i = 1; i < env->subprog_cnt; i++) {
11071 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11072 			continue;
11073 		env->insn_idx = env->subprog_info[i].start;
11074 		WARN_ON_ONCE(env->insn_idx == 0);
11075 		ret = do_check_common(env, i);
11076 		if (ret) {
11077 			return ret;
11078 		} else if (env->log.level & BPF_LOG_LEVEL) {
11079 			verbose(env,
11080 				"Func#%d is safe for any args that match its prototype\n",
11081 				i);
11082 		}
11083 	}
11084 	return 0;
11085 }
11086 
11087 static int do_check_main(struct bpf_verifier_env *env)
11088 {
11089 	int ret;
11090 
11091 	env->insn_idx = 0;
11092 	ret = do_check_common(env, 0);
11093 	if (!ret)
11094 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11095 	return ret;
11096 }
11097 
11098 
11099 static void print_verification_stats(struct bpf_verifier_env *env)
11100 {
11101 	int i;
11102 
11103 	if (env->log.level & BPF_LOG_STATS) {
11104 		verbose(env, "verification time %lld usec\n",
11105 			div_u64(env->verification_time, 1000));
11106 		verbose(env, "stack depth ");
11107 		for (i = 0; i < env->subprog_cnt; i++) {
11108 			u32 depth = env->subprog_info[i].stack_depth;
11109 
11110 			verbose(env, "%d", depth);
11111 			if (i + 1 < env->subprog_cnt)
11112 				verbose(env, "+");
11113 		}
11114 		verbose(env, "\n");
11115 	}
11116 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11117 		"total_states %d peak_states %d mark_read %d\n",
11118 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11119 		env->max_states_per_insn, env->total_states,
11120 		env->peak_states, env->longest_mark_read_walk);
11121 }
11122 
11123 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11124 {
11125 	const struct btf_type *t, *func_proto;
11126 	const struct bpf_struct_ops *st_ops;
11127 	const struct btf_member *member;
11128 	struct bpf_prog *prog = env->prog;
11129 	u32 btf_id, member_idx;
11130 	const char *mname;
11131 
11132 	btf_id = prog->aux->attach_btf_id;
11133 	st_ops = bpf_struct_ops_find(btf_id);
11134 	if (!st_ops) {
11135 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11136 			btf_id);
11137 		return -ENOTSUPP;
11138 	}
11139 
11140 	t = st_ops->type;
11141 	member_idx = prog->expected_attach_type;
11142 	if (member_idx >= btf_type_vlen(t)) {
11143 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11144 			member_idx, st_ops->name);
11145 		return -EINVAL;
11146 	}
11147 
11148 	member = &btf_type_member(t)[member_idx];
11149 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11150 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11151 					       NULL);
11152 	if (!func_proto) {
11153 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11154 			mname, member_idx, st_ops->name);
11155 		return -EINVAL;
11156 	}
11157 
11158 	if (st_ops->check_member) {
11159 		int err = st_ops->check_member(t, member);
11160 
11161 		if (err) {
11162 			verbose(env, "attach to unsupported member %s of struct %s\n",
11163 				mname, st_ops->name);
11164 			return err;
11165 		}
11166 	}
11167 
11168 	prog->aux->attach_func_proto = func_proto;
11169 	prog->aux->attach_func_name = mname;
11170 	env->ops = st_ops->verifier_ops;
11171 
11172 	return 0;
11173 }
11174 #define SECURITY_PREFIX "security_"
11175 
11176 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr)
11177 {
11178 	if (within_error_injection_list(addr) ||
11179 	    !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name,
11180 		     sizeof(SECURITY_PREFIX) - 1))
11181 		return 0;
11182 
11183 	return -EINVAL;
11184 }
11185 
11186 /* non exhaustive list of sleepable bpf_lsm_*() functions */
11187 BTF_SET_START(btf_sleepable_lsm_hooks)
11188 #ifdef CONFIG_BPF_LSM
11189 BTF_ID(func, bpf_lsm_bprm_committed_creds)
11190 #else
11191 BTF_ID_UNUSED
11192 #endif
11193 BTF_SET_END(btf_sleepable_lsm_hooks)
11194 
11195 static int check_sleepable_lsm_hook(u32 btf_id)
11196 {
11197 	return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id);
11198 }
11199 
11200 /* list of non-sleepable functions that are otherwise on
11201  * ALLOW_ERROR_INJECTION list
11202  */
11203 BTF_SET_START(btf_non_sleepable_error_inject)
11204 /* Three functions below can be called from sleepable and non-sleepable context.
11205  * Assume non-sleepable from bpf safety point of view.
11206  */
11207 BTF_ID(func, __add_to_page_cache_locked)
11208 BTF_ID(func, should_fail_alloc_page)
11209 BTF_ID(func, should_failslab)
11210 BTF_SET_END(btf_non_sleepable_error_inject)
11211 
11212 static int check_non_sleepable_error_inject(u32 btf_id)
11213 {
11214 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11215 }
11216 
11217 static int check_attach_btf_id(struct bpf_verifier_env *env)
11218 {
11219 	struct bpf_prog *prog = env->prog;
11220 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11221 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
11222 	u32 btf_id = prog->aux->attach_btf_id;
11223 	const char prefix[] = "btf_trace_";
11224 	struct btf_func_model fmodel;
11225 	int ret = 0, subprog = -1, i;
11226 	struct bpf_trampoline *tr;
11227 	const struct btf_type *t;
11228 	bool conservative = true;
11229 	const char *tname;
11230 	struct btf *btf;
11231 	long addr;
11232 	u64 key;
11233 
11234 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11235 	    prog->type != BPF_PROG_TYPE_LSM) {
11236 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11237 		return -EINVAL;
11238 	}
11239 
11240 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11241 		return check_struct_ops_btf_id(env);
11242 
11243 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11244 	    prog->type != BPF_PROG_TYPE_LSM &&
11245 	    !prog_extension)
11246 		return 0;
11247 
11248 	if (!btf_id) {
11249 		verbose(env, "Tracing programs must provide btf_id\n");
11250 		return -EINVAL;
11251 	}
11252 	btf = bpf_prog_get_target_btf(prog);
11253 	if (!btf) {
11254 		verbose(env,
11255 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11256 		return -EINVAL;
11257 	}
11258 	t = btf_type_by_id(btf, btf_id);
11259 	if (!t) {
11260 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
11261 		return -EINVAL;
11262 	}
11263 	tname = btf_name_by_offset(btf, t->name_off);
11264 	if (!tname) {
11265 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
11266 		return -EINVAL;
11267 	}
11268 	if (tgt_prog) {
11269 		struct bpf_prog_aux *aux = tgt_prog->aux;
11270 
11271 		for (i = 0; i < aux->func_info_cnt; i++)
11272 			if (aux->func_info[i].type_id == btf_id) {
11273 				subprog = i;
11274 				break;
11275 			}
11276 		if (subprog == -1) {
11277 			verbose(env, "Subprog %s doesn't exist\n", tname);
11278 			return -EINVAL;
11279 		}
11280 		conservative = aux->func_info_aux[subprog].unreliable;
11281 		if (prog_extension) {
11282 			if (conservative) {
11283 				verbose(env,
11284 					"Cannot replace static functions\n");
11285 				return -EINVAL;
11286 			}
11287 			if (!prog->jit_requested) {
11288 				verbose(env,
11289 					"Extension programs should be JITed\n");
11290 				return -EINVAL;
11291 			}
11292 			env->ops = bpf_verifier_ops[tgt_prog->type];
11293 			prog->expected_attach_type = tgt_prog->expected_attach_type;
11294 		}
11295 		if (!tgt_prog->jited) {
11296 			verbose(env, "Can attach to only JITed progs\n");
11297 			return -EINVAL;
11298 		}
11299 		if (tgt_prog->type == prog->type) {
11300 			/* Cannot fentry/fexit another fentry/fexit program.
11301 			 * Cannot attach program extension to another extension.
11302 			 * It's ok to attach fentry/fexit to extension program.
11303 			 */
11304 			verbose(env, "Cannot recursively attach\n");
11305 			return -EINVAL;
11306 		}
11307 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11308 		    prog_extension &&
11309 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11310 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11311 			/* Program extensions can extend all program types
11312 			 * except fentry/fexit. The reason is the following.
11313 			 * The fentry/fexit programs are used for performance
11314 			 * analysis, stats and can be attached to any program
11315 			 * type except themselves. When extension program is
11316 			 * replacing XDP function it is necessary to allow
11317 			 * performance analysis of all functions. Both original
11318 			 * XDP program and its program extension. Hence
11319 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11320 			 * allowed. If extending of fentry/fexit was allowed it
11321 			 * would be possible to create long call chain
11322 			 * fentry->extension->fentry->extension beyond
11323 			 * reasonable stack size. Hence extending fentry is not
11324 			 * allowed.
11325 			 */
11326 			verbose(env, "Cannot extend fentry/fexit\n");
11327 			return -EINVAL;
11328 		}
11329 		key = ((u64)aux->id) << 32 | btf_id;
11330 	} else {
11331 		if (prog_extension) {
11332 			verbose(env, "Cannot replace kernel functions\n");
11333 			return -EINVAL;
11334 		}
11335 		key = btf_id;
11336 	}
11337 
11338 	switch (prog->expected_attach_type) {
11339 	case BPF_TRACE_RAW_TP:
11340 		if (tgt_prog) {
11341 			verbose(env,
11342 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11343 			return -EINVAL;
11344 		}
11345 		if (!btf_type_is_typedef(t)) {
11346 			verbose(env, "attach_btf_id %u is not a typedef\n",
11347 				btf_id);
11348 			return -EINVAL;
11349 		}
11350 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11351 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
11352 				btf_id, tname);
11353 			return -EINVAL;
11354 		}
11355 		tname += sizeof(prefix) - 1;
11356 		t = btf_type_by_id(btf, t->type);
11357 		if (!btf_type_is_ptr(t))
11358 			/* should never happen in valid vmlinux build */
11359 			return -EINVAL;
11360 		t = btf_type_by_id(btf, t->type);
11361 		if (!btf_type_is_func_proto(t))
11362 			/* should never happen in valid vmlinux build */
11363 			return -EINVAL;
11364 
11365 		/* remember two read only pointers that are valid for
11366 		 * the life time of the kernel
11367 		 */
11368 		prog->aux->attach_func_name = tname;
11369 		prog->aux->attach_func_proto = t;
11370 		prog->aux->attach_btf_trace = true;
11371 		return 0;
11372 	case BPF_TRACE_ITER:
11373 		if (!btf_type_is_func(t)) {
11374 			verbose(env, "attach_btf_id %u is not a function\n",
11375 				btf_id);
11376 			return -EINVAL;
11377 		}
11378 		t = btf_type_by_id(btf, t->type);
11379 		if (!btf_type_is_func_proto(t))
11380 			return -EINVAL;
11381 		prog->aux->attach_func_name = tname;
11382 		prog->aux->attach_func_proto = t;
11383 		if (!bpf_iter_prog_supported(prog))
11384 			return -EINVAL;
11385 		ret = btf_distill_func_proto(&env->log, btf, t,
11386 					     tname, &fmodel);
11387 		return ret;
11388 	default:
11389 		if (!prog_extension)
11390 			return -EINVAL;
11391 		fallthrough;
11392 	case BPF_MODIFY_RETURN:
11393 	case BPF_LSM_MAC:
11394 	case BPF_TRACE_FENTRY:
11395 	case BPF_TRACE_FEXIT:
11396 		prog->aux->attach_func_name = tname;
11397 		if (prog->type == BPF_PROG_TYPE_LSM) {
11398 			ret = bpf_lsm_verify_prog(&env->log, prog);
11399 			if (ret < 0)
11400 				return ret;
11401 		}
11402 
11403 		if (!btf_type_is_func(t)) {
11404 			verbose(env, "attach_btf_id %u is not a function\n",
11405 				btf_id);
11406 			return -EINVAL;
11407 		}
11408 		if (prog_extension &&
11409 		    btf_check_type_match(env, prog, btf, t))
11410 			return -EINVAL;
11411 		t = btf_type_by_id(btf, t->type);
11412 		if (!btf_type_is_func_proto(t))
11413 			return -EINVAL;
11414 		tr = bpf_trampoline_lookup(key);
11415 		if (!tr)
11416 			return -ENOMEM;
11417 		/* t is either vmlinux type or another program's type */
11418 		prog->aux->attach_func_proto = t;
11419 		mutex_lock(&tr->mutex);
11420 		if (tr->func.addr) {
11421 			prog->aux->trampoline = tr;
11422 			goto out;
11423 		}
11424 		if (tgt_prog && conservative) {
11425 			prog->aux->attach_func_proto = NULL;
11426 			t = NULL;
11427 		}
11428 		ret = btf_distill_func_proto(&env->log, btf, t,
11429 					     tname, &tr->func.model);
11430 		if (ret < 0)
11431 			goto out;
11432 		if (tgt_prog) {
11433 			if (subprog == 0)
11434 				addr = (long) tgt_prog->bpf_func;
11435 			else
11436 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11437 		} else {
11438 			addr = kallsyms_lookup_name(tname);
11439 			if (!addr) {
11440 				verbose(env,
11441 					"The address of function %s cannot be found\n",
11442 					tname);
11443 				ret = -ENOENT;
11444 				goto out;
11445 			}
11446 		}
11447 
11448 		if (prog->aux->sleepable) {
11449 			ret = -EINVAL;
11450 			switch (prog->type) {
11451 			case BPF_PROG_TYPE_TRACING:
11452 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11453 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11454 				 */
11455 				if (!check_non_sleepable_error_inject(btf_id) &&
11456 				    within_error_injection_list(addr))
11457 					ret = 0;
11458 				break;
11459 			case BPF_PROG_TYPE_LSM:
11460 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11461 				 * Only some of them are sleepable.
11462 				 */
11463 				if (check_sleepable_lsm_hook(btf_id))
11464 					ret = 0;
11465 				break;
11466 			default:
11467 				break;
11468 			}
11469 			if (ret)
11470 				verbose(env, "%s is not sleepable\n",
11471 					prog->aux->attach_func_name);
11472 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11473 			ret = check_attach_modify_return(prog, addr);
11474 			if (ret)
11475 				verbose(env, "%s() is not modifiable\n",
11476 					prog->aux->attach_func_name);
11477 		}
11478 		if (ret)
11479 			goto out;
11480 		tr->func.addr = (void *)addr;
11481 		prog->aux->trampoline = tr;
11482 out:
11483 		mutex_unlock(&tr->mutex);
11484 		if (ret)
11485 			bpf_trampoline_put(tr);
11486 		return ret;
11487 	}
11488 }
11489 
11490 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11491 	      union bpf_attr __user *uattr)
11492 {
11493 	u64 start_time = ktime_get_ns();
11494 	struct bpf_verifier_env *env;
11495 	struct bpf_verifier_log *log;
11496 	int i, len, ret = -EINVAL;
11497 	bool is_priv;
11498 
11499 	/* no program is valid */
11500 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11501 		return -EINVAL;
11502 
11503 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
11504 	 * allocate/free it every time bpf_check() is called
11505 	 */
11506 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11507 	if (!env)
11508 		return -ENOMEM;
11509 	log = &env->log;
11510 
11511 	len = (*prog)->len;
11512 	env->insn_aux_data =
11513 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11514 	ret = -ENOMEM;
11515 	if (!env->insn_aux_data)
11516 		goto err_free_env;
11517 	for (i = 0; i < len; i++)
11518 		env->insn_aux_data[i].orig_idx = i;
11519 	env->prog = *prog;
11520 	env->ops = bpf_verifier_ops[env->prog->type];
11521 	is_priv = bpf_capable();
11522 
11523 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11524 		mutex_lock(&bpf_verifier_lock);
11525 		if (!btf_vmlinux)
11526 			btf_vmlinux = btf_parse_vmlinux();
11527 		mutex_unlock(&bpf_verifier_lock);
11528 	}
11529 
11530 	/* grab the mutex to protect few globals used by verifier */
11531 	if (!is_priv)
11532 		mutex_lock(&bpf_verifier_lock);
11533 
11534 	if (attr->log_level || attr->log_buf || attr->log_size) {
11535 		/* user requested verbose verifier output
11536 		 * and supplied buffer to store the verification trace
11537 		 */
11538 		log->level = attr->log_level;
11539 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11540 		log->len_total = attr->log_size;
11541 
11542 		ret = -EINVAL;
11543 		/* log attributes have to be sane */
11544 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11545 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11546 			goto err_unlock;
11547 	}
11548 
11549 	if (IS_ERR(btf_vmlinux)) {
11550 		/* Either gcc or pahole or kernel are broken. */
11551 		verbose(env, "in-kernel BTF is malformed\n");
11552 		ret = PTR_ERR(btf_vmlinux);
11553 		goto skip_full_check;
11554 	}
11555 
11556 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
11557 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
11558 		env->strict_alignment = true;
11559 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
11560 		env->strict_alignment = false;
11561 
11562 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
11563 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
11564 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
11565 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
11566 	env->bpf_capable = bpf_capable();
11567 
11568 	if (is_priv)
11569 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
11570 
11571 	ret = replace_map_fd_with_map_ptr(env);
11572 	if (ret < 0)
11573 		goto skip_full_check;
11574 
11575 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
11576 		ret = bpf_prog_offload_verifier_prep(env->prog);
11577 		if (ret)
11578 			goto skip_full_check;
11579 	}
11580 
11581 	env->explored_states = kvcalloc(state_htab_size(env),
11582 				       sizeof(struct bpf_verifier_state_list *),
11583 				       GFP_USER);
11584 	ret = -ENOMEM;
11585 	if (!env->explored_states)
11586 		goto skip_full_check;
11587 
11588 	ret = check_subprogs(env);
11589 	if (ret < 0)
11590 		goto skip_full_check;
11591 
11592 	ret = check_btf_info(env, attr, uattr);
11593 	if (ret < 0)
11594 		goto skip_full_check;
11595 
11596 	ret = check_attach_btf_id(env);
11597 	if (ret)
11598 		goto skip_full_check;
11599 
11600 	ret = check_cfg(env);
11601 	if (ret < 0)
11602 		goto skip_full_check;
11603 
11604 	ret = do_check_subprogs(env);
11605 	ret = ret ?: do_check_main(env);
11606 
11607 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
11608 		ret = bpf_prog_offload_finalize(env);
11609 
11610 skip_full_check:
11611 	kvfree(env->explored_states);
11612 
11613 	if (ret == 0)
11614 		ret = check_max_stack_depth(env);
11615 
11616 	/* instruction rewrites happen after this point */
11617 	if (is_priv) {
11618 		if (ret == 0)
11619 			opt_hard_wire_dead_code_branches(env);
11620 		if (ret == 0)
11621 			ret = opt_remove_dead_code(env);
11622 		if (ret == 0)
11623 			ret = opt_remove_nops(env);
11624 	} else {
11625 		if (ret == 0)
11626 			sanitize_dead_code(env);
11627 	}
11628 
11629 	if (ret == 0)
11630 		/* program is valid, convert *(u32*)(ctx + off) accesses */
11631 		ret = convert_ctx_accesses(env);
11632 
11633 	if (ret == 0)
11634 		ret = fixup_bpf_calls(env);
11635 
11636 	/* do 32-bit optimization after insn patching has done so those patched
11637 	 * insns could be handled correctly.
11638 	 */
11639 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
11640 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
11641 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
11642 								     : false;
11643 	}
11644 
11645 	if (ret == 0)
11646 		ret = fixup_call_args(env);
11647 
11648 	env->verification_time = ktime_get_ns() - start_time;
11649 	print_verification_stats(env);
11650 
11651 	if (log->level && bpf_verifier_log_full(log))
11652 		ret = -ENOSPC;
11653 	if (log->level && !log->ubuf) {
11654 		ret = -EFAULT;
11655 		goto err_release_maps;
11656 	}
11657 
11658 	if (ret == 0 && env->used_map_cnt) {
11659 		/* if program passed verifier, update used_maps in bpf_prog_info */
11660 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
11661 							  sizeof(env->used_maps[0]),
11662 							  GFP_KERNEL);
11663 
11664 		if (!env->prog->aux->used_maps) {
11665 			ret = -ENOMEM;
11666 			goto err_release_maps;
11667 		}
11668 
11669 		memcpy(env->prog->aux->used_maps, env->used_maps,
11670 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
11671 		env->prog->aux->used_map_cnt = env->used_map_cnt;
11672 
11673 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
11674 		 * bpf_ld_imm64 instructions
11675 		 */
11676 		convert_pseudo_ld_imm64(env);
11677 	}
11678 
11679 	if (ret == 0)
11680 		adjust_btf_func(env);
11681 
11682 err_release_maps:
11683 	if (!env->prog->aux->used_maps)
11684 		/* if we didn't copy map pointers into bpf_prog_info, release
11685 		 * them now. Otherwise free_used_maps() will release them.
11686 		 */
11687 		release_maps(env);
11688 
11689 	/* extension progs temporarily inherit the attach_type of their targets
11690 	   for verification purposes, so set it back to zero before returning
11691 	 */
11692 	if (env->prog->type == BPF_PROG_TYPE_EXT)
11693 		env->prog->expected_attach_type = 0;
11694 
11695 	*prog = env->prog;
11696 err_unlock:
11697 	if (!is_priv)
11698 		mutex_unlock(&bpf_verifier_lock);
11699 	vfree(env->insn_aux_data);
11700 err_free_env:
11701 	kfree(env);
11702 	return ret;
11703 }
11704