1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 }; 242 243 struct btf *btf_vmlinux; 244 245 static DEFINE_MUTEX(bpf_verifier_lock); 246 247 static const struct bpf_line_info * 248 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 249 { 250 const struct bpf_line_info *linfo; 251 const struct bpf_prog *prog; 252 u32 i, nr_linfo; 253 254 prog = env->prog; 255 nr_linfo = prog->aux->nr_linfo; 256 257 if (!nr_linfo || insn_off >= prog->len) 258 return NULL; 259 260 linfo = prog->aux->linfo; 261 for (i = 1; i < nr_linfo; i++) 262 if (insn_off < linfo[i].insn_off) 263 break; 264 265 return &linfo[i - 1]; 266 } 267 268 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 269 va_list args) 270 { 271 unsigned int n; 272 273 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 274 275 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 276 "verifier log line truncated - local buffer too short\n"); 277 278 n = min(log->len_total - log->len_used - 1, n); 279 log->kbuf[n] = '\0'; 280 281 if (log->level == BPF_LOG_KERNEL) { 282 pr_err("BPF:%s\n", log->kbuf); 283 return; 284 } 285 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 286 log->len_used += n; 287 else 288 log->ubuf = NULL; 289 } 290 291 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 292 { 293 char zero = 0; 294 295 if (!bpf_verifier_log_needed(log)) 296 return; 297 298 log->len_used = new_pos; 299 if (put_user(zero, log->ubuf + new_pos)) 300 log->ubuf = NULL; 301 } 302 303 /* log_level controls verbosity level of eBPF verifier. 304 * bpf_verifier_log_write() is used to dump the verification trace to the log, 305 * so the user can figure out what's wrong with the program 306 */ 307 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 308 const char *fmt, ...) 309 { 310 va_list args; 311 312 if (!bpf_verifier_log_needed(&env->log)) 313 return; 314 315 va_start(args, fmt); 316 bpf_verifier_vlog(&env->log, fmt, args); 317 va_end(args); 318 } 319 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 320 321 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 322 { 323 struct bpf_verifier_env *env = private_data; 324 va_list args; 325 326 if (!bpf_verifier_log_needed(&env->log)) 327 return; 328 329 va_start(args, fmt); 330 bpf_verifier_vlog(&env->log, fmt, args); 331 va_end(args); 332 } 333 334 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 335 const char *fmt, ...) 336 { 337 va_list args; 338 339 if (!bpf_verifier_log_needed(log)) 340 return; 341 342 va_start(args, fmt); 343 bpf_verifier_vlog(log, fmt, args); 344 va_end(args); 345 } 346 347 static const char *ltrim(const char *s) 348 { 349 while (isspace(*s)) 350 s++; 351 352 return s; 353 } 354 355 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 356 u32 insn_off, 357 const char *prefix_fmt, ...) 358 { 359 const struct bpf_line_info *linfo; 360 361 if (!bpf_verifier_log_needed(&env->log)) 362 return; 363 364 linfo = find_linfo(env, insn_off); 365 if (!linfo || linfo == env->prev_linfo) 366 return; 367 368 if (prefix_fmt) { 369 va_list args; 370 371 va_start(args, prefix_fmt); 372 bpf_verifier_vlog(&env->log, prefix_fmt, args); 373 va_end(args); 374 } 375 376 verbose(env, "%s\n", 377 ltrim(btf_name_by_offset(env->prog->aux->btf, 378 linfo->line_off))); 379 380 env->prev_linfo = linfo; 381 } 382 383 static bool type_is_pkt_pointer(enum bpf_reg_type type) 384 { 385 return type == PTR_TO_PACKET || 386 type == PTR_TO_PACKET_META; 387 } 388 389 static bool type_is_sk_pointer(enum bpf_reg_type type) 390 { 391 return type == PTR_TO_SOCKET || 392 type == PTR_TO_SOCK_COMMON || 393 type == PTR_TO_TCP_SOCK || 394 type == PTR_TO_XDP_SOCK; 395 } 396 397 static bool reg_type_not_null(enum bpf_reg_type type) 398 { 399 return type == PTR_TO_SOCKET || 400 type == PTR_TO_TCP_SOCK || 401 type == PTR_TO_MAP_VALUE || 402 type == PTR_TO_SOCK_COMMON; 403 } 404 405 static bool reg_type_may_be_null(enum bpf_reg_type type) 406 { 407 return type == PTR_TO_MAP_VALUE_OR_NULL || 408 type == PTR_TO_SOCKET_OR_NULL || 409 type == PTR_TO_SOCK_COMMON_OR_NULL || 410 type == PTR_TO_TCP_SOCK_OR_NULL || 411 type == PTR_TO_BTF_ID_OR_NULL || 412 type == PTR_TO_MEM_OR_NULL || 413 type == PTR_TO_RDONLY_BUF_OR_NULL || 414 type == PTR_TO_RDWR_BUF_OR_NULL; 415 } 416 417 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 418 { 419 return reg->type == PTR_TO_MAP_VALUE && 420 map_value_has_spin_lock(reg->map_ptr); 421 } 422 423 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 424 { 425 return type == PTR_TO_SOCKET || 426 type == PTR_TO_SOCKET_OR_NULL || 427 type == PTR_TO_TCP_SOCK || 428 type == PTR_TO_TCP_SOCK_OR_NULL || 429 type == PTR_TO_MEM || 430 type == PTR_TO_MEM_OR_NULL; 431 } 432 433 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 434 { 435 return type == ARG_PTR_TO_SOCK_COMMON; 436 } 437 438 static bool arg_type_may_be_null(enum bpf_arg_type type) 439 { 440 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 441 type == ARG_PTR_TO_MEM_OR_NULL || 442 type == ARG_PTR_TO_CTX_OR_NULL || 443 type == ARG_PTR_TO_SOCKET_OR_NULL || 444 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 445 } 446 447 /* Determine whether the function releases some resources allocated by another 448 * function call. The first reference type argument will be assumed to be 449 * released by release_reference(). 450 */ 451 static bool is_release_function(enum bpf_func_id func_id) 452 { 453 return func_id == BPF_FUNC_sk_release || 454 func_id == BPF_FUNC_ringbuf_submit || 455 func_id == BPF_FUNC_ringbuf_discard; 456 } 457 458 static bool may_be_acquire_function(enum bpf_func_id func_id) 459 { 460 return func_id == BPF_FUNC_sk_lookup_tcp || 461 func_id == BPF_FUNC_sk_lookup_udp || 462 func_id == BPF_FUNC_skc_lookup_tcp || 463 func_id == BPF_FUNC_map_lookup_elem || 464 func_id == BPF_FUNC_ringbuf_reserve; 465 } 466 467 static bool is_acquire_function(enum bpf_func_id func_id, 468 const struct bpf_map *map) 469 { 470 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 471 472 if (func_id == BPF_FUNC_sk_lookup_tcp || 473 func_id == BPF_FUNC_sk_lookup_udp || 474 func_id == BPF_FUNC_skc_lookup_tcp || 475 func_id == BPF_FUNC_ringbuf_reserve) 476 return true; 477 478 if (func_id == BPF_FUNC_map_lookup_elem && 479 (map_type == BPF_MAP_TYPE_SOCKMAP || 480 map_type == BPF_MAP_TYPE_SOCKHASH)) 481 return true; 482 483 return false; 484 } 485 486 static bool is_ptr_cast_function(enum bpf_func_id func_id) 487 { 488 return func_id == BPF_FUNC_tcp_sock || 489 func_id == BPF_FUNC_sk_fullsock; 490 } 491 492 /* string representation of 'enum bpf_reg_type' */ 493 static const char * const reg_type_str[] = { 494 [NOT_INIT] = "?", 495 [SCALAR_VALUE] = "inv", 496 [PTR_TO_CTX] = "ctx", 497 [CONST_PTR_TO_MAP] = "map_ptr", 498 [PTR_TO_MAP_VALUE] = "map_value", 499 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 500 [PTR_TO_STACK] = "fp", 501 [PTR_TO_PACKET] = "pkt", 502 [PTR_TO_PACKET_META] = "pkt_meta", 503 [PTR_TO_PACKET_END] = "pkt_end", 504 [PTR_TO_FLOW_KEYS] = "flow_keys", 505 [PTR_TO_SOCKET] = "sock", 506 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 507 [PTR_TO_SOCK_COMMON] = "sock_common", 508 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 509 [PTR_TO_TCP_SOCK] = "tcp_sock", 510 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 511 [PTR_TO_TP_BUFFER] = "tp_buffer", 512 [PTR_TO_XDP_SOCK] = "xdp_sock", 513 [PTR_TO_BTF_ID] = "ptr_", 514 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 515 [PTR_TO_MEM] = "mem", 516 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 517 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 518 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 519 [PTR_TO_RDWR_BUF] = "rdwr_buf", 520 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 521 }; 522 523 static char slot_type_char[] = { 524 [STACK_INVALID] = '?', 525 [STACK_SPILL] = 'r', 526 [STACK_MISC] = 'm', 527 [STACK_ZERO] = '0', 528 }; 529 530 static void print_liveness(struct bpf_verifier_env *env, 531 enum bpf_reg_liveness live) 532 { 533 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 534 verbose(env, "_"); 535 if (live & REG_LIVE_READ) 536 verbose(env, "r"); 537 if (live & REG_LIVE_WRITTEN) 538 verbose(env, "w"); 539 if (live & REG_LIVE_DONE) 540 verbose(env, "D"); 541 } 542 543 static struct bpf_func_state *func(struct bpf_verifier_env *env, 544 const struct bpf_reg_state *reg) 545 { 546 struct bpf_verifier_state *cur = env->cur_state; 547 548 return cur->frame[reg->frameno]; 549 } 550 551 const char *kernel_type_name(u32 id) 552 { 553 return btf_name_by_offset(btf_vmlinux, 554 btf_type_by_id(btf_vmlinux, id)->name_off); 555 } 556 557 static void print_verifier_state(struct bpf_verifier_env *env, 558 const struct bpf_func_state *state) 559 { 560 const struct bpf_reg_state *reg; 561 enum bpf_reg_type t; 562 int i; 563 564 if (state->frameno) 565 verbose(env, " frame%d:", state->frameno); 566 for (i = 0; i < MAX_BPF_REG; i++) { 567 reg = &state->regs[i]; 568 t = reg->type; 569 if (t == NOT_INIT) 570 continue; 571 verbose(env, " R%d", i); 572 print_liveness(env, reg->live); 573 verbose(env, "=%s", reg_type_str[t]); 574 if (t == SCALAR_VALUE && reg->precise) 575 verbose(env, "P"); 576 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 577 tnum_is_const(reg->var_off)) { 578 /* reg->off should be 0 for SCALAR_VALUE */ 579 verbose(env, "%lld", reg->var_off.value + reg->off); 580 } else { 581 if (t == PTR_TO_BTF_ID || t == PTR_TO_BTF_ID_OR_NULL) 582 verbose(env, "%s", kernel_type_name(reg->btf_id)); 583 verbose(env, "(id=%d", reg->id); 584 if (reg_type_may_be_refcounted_or_null(t)) 585 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 586 if (t != SCALAR_VALUE) 587 verbose(env, ",off=%d", reg->off); 588 if (type_is_pkt_pointer(t)) 589 verbose(env, ",r=%d", reg->range); 590 else if (t == CONST_PTR_TO_MAP || 591 t == PTR_TO_MAP_VALUE || 592 t == PTR_TO_MAP_VALUE_OR_NULL) 593 verbose(env, ",ks=%d,vs=%d", 594 reg->map_ptr->key_size, 595 reg->map_ptr->value_size); 596 if (tnum_is_const(reg->var_off)) { 597 /* Typically an immediate SCALAR_VALUE, but 598 * could be a pointer whose offset is too big 599 * for reg->off 600 */ 601 verbose(env, ",imm=%llx", reg->var_off.value); 602 } else { 603 if (reg->smin_value != reg->umin_value && 604 reg->smin_value != S64_MIN) 605 verbose(env, ",smin_value=%lld", 606 (long long)reg->smin_value); 607 if (reg->smax_value != reg->umax_value && 608 reg->smax_value != S64_MAX) 609 verbose(env, ",smax_value=%lld", 610 (long long)reg->smax_value); 611 if (reg->umin_value != 0) 612 verbose(env, ",umin_value=%llu", 613 (unsigned long long)reg->umin_value); 614 if (reg->umax_value != U64_MAX) 615 verbose(env, ",umax_value=%llu", 616 (unsigned long long)reg->umax_value); 617 if (!tnum_is_unknown(reg->var_off)) { 618 char tn_buf[48]; 619 620 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 621 verbose(env, ",var_off=%s", tn_buf); 622 } 623 if (reg->s32_min_value != reg->smin_value && 624 reg->s32_min_value != S32_MIN) 625 verbose(env, ",s32_min_value=%d", 626 (int)(reg->s32_min_value)); 627 if (reg->s32_max_value != reg->smax_value && 628 reg->s32_max_value != S32_MAX) 629 verbose(env, ",s32_max_value=%d", 630 (int)(reg->s32_max_value)); 631 if (reg->u32_min_value != reg->umin_value && 632 reg->u32_min_value != U32_MIN) 633 verbose(env, ",u32_min_value=%d", 634 (int)(reg->u32_min_value)); 635 if (reg->u32_max_value != reg->umax_value && 636 reg->u32_max_value != U32_MAX) 637 verbose(env, ",u32_max_value=%d", 638 (int)(reg->u32_max_value)); 639 } 640 verbose(env, ")"); 641 } 642 } 643 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 644 char types_buf[BPF_REG_SIZE + 1]; 645 bool valid = false; 646 int j; 647 648 for (j = 0; j < BPF_REG_SIZE; j++) { 649 if (state->stack[i].slot_type[j] != STACK_INVALID) 650 valid = true; 651 types_buf[j] = slot_type_char[ 652 state->stack[i].slot_type[j]]; 653 } 654 types_buf[BPF_REG_SIZE] = 0; 655 if (!valid) 656 continue; 657 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 658 print_liveness(env, state->stack[i].spilled_ptr.live); 659 if (state->stack[i].slot_type[0] == STACK_SPILL) { 660 reg = &state->stack[i].spilled_ptr; 661 t = reg->type; 662 verbose(env, "=%s", reg_type_str[t]); 663 if (t == SCALAR_VALUE && reg->precise) 664 verbose(env, "P"); 665 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 666 verbose(env, "%lld", reg->var_off.value + reg->off); 667 } else { 668 verbose(env, "=%s", types_buf); 669 } 670 } 671 if (state->acquired_refs && state->refs[0].id) { 672 verbose(env, " refs=%d", state->refs[0].id); 673 for (i = 1; i < state->acquired_refs; i++) 674 if (state->refs[i].id) 675 verbose(env, ",%d", state->refs[i].id); 676 } 677 verbose(env, "\n"); 678 } 679 680 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 681 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 682 const struct bpf_func_state *src) \ 683 { \ 684 if (!src->FIELD) \ 685 return 0; \ 686 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 687 /* internal bug, make state invalid to reject the program */ \ 688 memset(dst, 0, sizeof(*dst)); \ 689 return -EFAULT; \ 690 } \ 691 memcpy(dst->FIELD, src->FIELD, \ 692 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 693 return 0; \ 694 } 695 /* copy_reference_state() */ 696 COPY_STATE_FN(reference, acquired_refs, refs, 1) 697 /* copy_stack_state() */ 698 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 699 #undef COPY_STATE_FN 700 701 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 702 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 703 bool copy_old) \ 704 { \ 705 u32 old_size = state->COUNT; \ 706 struct bpf_##NAME##_state *new_##FIELD; \ 707 int slot = size / SIZE; \ 708 \ 709 if (size <= old_size || !size) { \ 710 if (copy_old) \ 711 return 0; \ 712 state->COUNT = slot * SIZE; \ 713 if (!size && old_size) { \ 714 kfree(state->FIELD); \ 715 state->FIELD = NULL; \ 716 } \ 717 return 0; \ 718 } \ 719 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 720 GFP_KERNEL); \ 721 if (!new_##FIELD) \ 722 return -ENOMEM; \ 723 if (copy_old) { \ 724 if (state->FIELD) \ 725 memcpy(new_##FIELD, state->FIELD, \ 726 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 727 memset(new_##FIELD + old_size / SIZE, 0, \ 728 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 729 } \ 730 state->COUNT = slot * SIZE; \ 731 kfree(state->FIELD); \ 732 state->FIELD = new_##FIELD; \ 733 return 0; \ 734 } 735 /* realloc_reference_state() */ 736 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 737 /* realloc_stack_state() */ 738 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 739 #undef REALLOC_STATE_FN 740 741 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 742 * make it consume minimal amount of memory. check_stack_write() access from 743 * the program calls into realloc_func_state() to grow the stack size. 744 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 745 * which realloc_stack_state() copies over. It points to previous 746 * bpf_verifier_state which is never reallocated. 747 */ 748 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 749 int refs_size, bool copy_old) 750 { 751 int err = realloc_reference_state(state, refs_size, copy_old); 752 if (err) 753 return err; 754 return realloc_stack_state(state, stack_size, copy_old); 755 } 756 757 /* Acquire a pointer id from the env and update the state->refs to include 758 * this new pointer reference. 759 * On success, returns a valid pointer id to associate with the register 760 * On failure, returns a negative errno. 761 */ 762 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 763 { 764 struct bpf_func_state *state = cur_func(env); 765 int new_ofs = state->acquired_refs; 766 int id, err; 767 768 err = realloc_reference_state(state, state->acquired_refs + 1, true); 769 if (err) 770 return err; 771 id = ++env->id_gen; 772 state->refs[new_ofs].id = id; 773 state->refs[new_ofs].insn_idx = insn_idx; 774 775 return id; 776 } 777 778 /* release function corresponding to acquire_reference_state(). Idempotent. */ 779 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 780 { 781 int i, last_idx; 782 783 last_idx = state->acquired_refs - 1; 784 for (i = 0; i < state->acquired_refs; i++) { 785 if (state->refs[i].id == ptr_id) { 786 if (last_idx && i != last_idx) 787 memcpy(&state->refs[i], &state->refs[last_idx], 788 sizeof(*state->refs)); 789 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 790 state->acquired_refs--; 791 return 0; 792 } 793 } 794 return -EINVAL; 795 } 796 797 static int transfer_reference_state(struct bpf_func_state *dst, 798 struct bpf_func_state *src) 799 { 800 int err = realloc_reference_state(dst, src->acquired_refs, false); 801 if (err) 802 return err; 803 err = copy_reference_state(dst, src); 804 if (err) 805 return err; 806 return 0; 807 } 808 809 static void free_func_state(struct bpf_func_state *state) 810 { 811 if (!state) 812 return; 813 kfree(state->refs); 814 kfree(state->stack); 815 kfree(state); 816 } 817 818 static void clear_jmp_history(struct bpf_verifier_state *state) 819 { 820 kfree(state->jmp_history); 821 state->jmp_history = NULL; 822 state->jmp_history_cnt = 0; 823 } 824 825 static void free_verifier_state(struct bpf_verifier_state *state, 826 bool free_self) 827 { 828 int i; 829 830 for (i = 0; i <= state->curframe; i++) { 831 free_func_state(state->frame[i]); 832 state->frame[i] = NULL; 833 } 834 clear_jmp_history(state); 835 if (free_self) 836 kfree(state); 837 } 838 839 /* copy verifier state from src to dst growing dst stack space 840 * when necessary to accommodate larger src stack 841 */ 842 static int copy_func_state(struct bpf_func_state *dst, 843 const struct bpf_func_state *src) 844 { 845 int err; 846 847 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 848 false); 849 if (err) 850 return err; 851 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 852 err = copy_reference_state(dst, src); 853 if (err) 854 return err; 855 return copy_stack_state(dst, src); 856 } 857 858 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 859 const struct bpf_verifier_state *src) 860 { 861 struct bpf_func_state *dst; 862 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 863 int i, err; 864 865 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 866 kfree(dst_state->jmp_history); 867 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 868 if (!dst_state->jmp_history) 869 return -ENOMEM; 870 } 871 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 872 dst_state->jmp_history_cnt = src->jmp_history_cnt; 873 874 /* if dst has more stack frames then src frame, free them */ 875 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 876 free_func_state(dst_state->frame[i]); 877 dst_state->frame[i] = NULL; 878 } 879 dst_state->speculative = src->speculative; 880 dst_state->curframe = src->curframe; 881 dst_state->active_spin_lock = src->active_spin_lock; 882 dst_state->branches = src->branches; 883 dst_state->parent = src->parent; 884 dst_state->first_insn_idx = src->first_insn_idx; 885 dst_state->last_insn_idx = src->last_insn_idx; 886 for (i = 0; i <= src->curframe; i++) { 887 dst = dst_state->frame[i]; 888 if (!dst) { 889 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 890 if (!dst) 891 return -ENOMEM; 892 dst_state->frame[i] = dst; 893 } 894 err = copy_func_state(dst, src->frame[i]); 895 if (err) 896 return err; 897 } 898 return 0; 899 } 900 901 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 902 { 903 while (st) { 904 u32 br = --st->branches; 905 906 /* WARN_ON(br > 1) technically makes sense here, 907 * but see comment in push_stack(), hence: 908 */ 909 WARN_ONCE((int)br < 0, 910 "BUG update_branch_counts:branches_to_explore=%d\n", 911 br); 912 if (br) 913 break; 914 st = st->parent; 915 } 916 } 917 918 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 919 int *insn_idx, bool pop_log) 920 { 921 struct bpf_verifier_state *cur = env->cur_state; 922 struct bpf_verifier_stack_elem *elem, *head = env->head; 923 int err; 924 925 if (env->head == NULL) 926 return -ENOENT; 927 928 if (cur) { 929 err = copy_verifier_state(cur, &head->st); 930 if (err) 931 return err; 932 } 933 if (pop_log) 934 bpf_vlog_reset(&env->log, head->log_pos); 935 if (insn_idx) 936 *insn_idx = head->insn_idx; 937 if (prev_insn_idx) 938 *prev_insn_idx = head->prev_insn_idx; 939 elem = head->next; 940 free_verifier_state(&head->st, false); 941 kfree(head); 942 env->head = elem; 943 env->stack_size--; 944 return 0; 945 } 946 947 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 948 int insn_idx, int prev_insn_idx, 949 bool speculative) 950 { 951 struct bpf_verifier_state *cur = env->cur_state; 952 struct bpf_verifier_stack_elem *elem; 953 int err; 954 955 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 956 if (!elem) 957 goto err; 958 959 elem->insn_idx = insn_idx; 960 elem->prev_insn_idx = prev_insn_idx; 961 elem->next = env->head; 962 elem->log_pos = env->log.len_used; 963 env->head = elem; 964 env->stack_size++; 965 err = copy_verifier_state(&elem->st, cur); 966 if (err) 967 goto err; 968 elem->st.speculative |= speculative; 969 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 970 verbose(env, "The sequence of %d jumps is too complex.\n", 971 env->stack_size); 972 goto err; 973 } 974 if (elem->st.parent) { 975 ++elem->st.parent->branches; 976 /* WARN_ON(branches > 2) technically makes sense here, 977 * but 978 * 1. speculative states will bump 'branches' for non-branch 979 * instructions 980 * 2. is_state_visited() heuristics may decide not to create 981 * a new state for a sequence of branches and all such current 982 * and cloned states will be pointing to a single parent state 983 * which might have large 'branches' count. 984 */ 985 } 986 return &elem->st; 987 err: 988 free_verifier_state(env->cur_state, true); 989 env->cur_state = NULL; 990 /* pop all elements and return */ 991 while (!pop_stack(env, NULL, NULL, false)); 992 return NULL; 993 } 994 995 #define CALLER_SAVED_REGS 6 996 static const int caller_saved[CALLER_SAVED_REGS] = { 997 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 998 }; 999 1000 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1001 struct bpf_reg_state *reg); 1002 1003 /* Mark the unknown part of a register (variable offset or scalar value) as 1004 * known to have the value @imm. 1005 */ 1006 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1007 { 1008 /* Clear id, off, and union(map_ptr, range) */ 1009 memset(((u8 *)reg) + sizeof(reg->type), 0, 1010 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1011 reg->var_off = tnum_const(imm); 1012 reg->smin_value = (s64)imm; 1013 reg->smax_value = (s64)imm; 1014 reg->umin_value = imm; 1015 reg->umax_value = imm; 1016 1017 reg->s32_min_value = (s32)imm; 1018 reg->s32_max_value = (s32)imm; 1019 reg->u32_min_value = (u32)imm; 1020 reg->u32_max_value = (u32)imm; 1021 } 1022 1023 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1024 { 1025 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1026 reg->s32_min_value = (s32)imm; 1027 reg->s32_max_value = (s32)imm; 1028 reg->u32_min_value = (u32)imm; 1029 reg->u32_max_value = (u32)imm; 1030 } 1031 1032 /* Mark the 'variable offset' part of a register as zero. This should be 1033 * used only on registers holding a pointer type. 1034 */ 1035 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1036 { 1037 __mark_reg_known(reg, 0); 1038 } 1039 1040 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1041 { 1042 __mark_reg_known(reg, 0); 1043 reg->type = SCALAR_VALUE; 1044 } 1045 1046 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1047 struct bpf_reg_state *regs, u32 regno) 1048 { 1049 if (WARN_ON(regno >= MAX_BPF_REG)) { 1050 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1051 /* Something bad happened, let's kill all regs */ 1052 for (regno = 0; regno < MAX_BPF_REG; regno++) 1053 __mark_reg_not_init(env, regs + regno); 1054 return; 1055 } 1056 __mark_reg_known_zero(regs + regno); 1057 } 1058 1059 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1060 { 1061 return type_is_pkt_pointer(reg->type); 1062 } 1063 1064 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1065 { 1066 return reg_is_pkt_pointer(reg) || 1067 reg->type == PTR_TO_PACKET_END; 1068 } 1069 1070 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1071 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1072 enum bpf_reg_type which) 1073 { 1074 /* The register can already have a range from prior markings. 1075 * This is fine as long as it hasn't been advanced from its 1076 * origin. 1077 */ 1078 return reg->type == which && 1079 reg->id == 0 && 1080 reg->off == 0 && 1081 tnum_equals_const(reg->var_off, 0); 1082 } 1083 1084 /* Reset the min/max bounds of a register */ 1085 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1086 { 1087 reg->smin_value = S64_MIN; 1088 reg->smax_value = S64_MAX; 1089 reg->umin_value = 0; 1090 reg->umax_value = U64_MAX; 1091 1092 reg->s32_min_value = S32_MIN; 1093 reg->s32_max_value = S32_MAX; 1094 reg->u32_min_value = 0; 1095 reg->u32_max_value = U32_MAX; 1096 } 1097 1098 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1099 { 1100 reg->smin_value = S64_MIN; 1101 reg->smax_value = S64_MAX; 1102 reg->umin_value = 0; 1103 reg->umax_value = U64_MAX; 1104 } 1105 1106 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1107 { 1108 reg->s32_min_value = S32_MIN; 1109 reg->s32_max_value = S32_MAX; 1110 reg->u32_min_value = 0; 1111 reg->u32_max_value = U32_MAX; 1112 } 1113 1114 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1115 { 1116 struct tnum var32_off = tnum_subreg(reg->var_off); 1117 1118 /* min signed is max(sign bit) | min(other bits) */ 1119 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1120 var32_off.value | (var32_off.mask & S32_MIN)); 1121 /* max signed is min(sign bit) | max(other bits) */ 1122 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1123 var32_off.value | (var32_off.mask & S32_MAX)); 1124 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1125 reg->u32_max_value = min(reg->u32_max_value, 1126 (u32)(var32_off.value | var32_off.mask)); 1127 } 1128 1129 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1130 { 1131 /* min signed is max(sign bit) | min(other bits) */ 1132 reg->smin_value = max_t(s64, reg->smin_value, 1133 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1134 /* max signed is min(sign bit) | max(other bits) */ 1135 reg->smax_value = min_t(s64, reg->smax_value, 1136 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1137 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1138 reg->umax_value = min(reg->umax_value, 1139 reg->var_off.value | reg->var_off.mask); 1140 } 1141 1142 static void __update_reg_bounds(struct bpf_reg_state *reg) 1143 { 1144 __update_reg32_bounds(reg); 1145 __update_reg64_bounds(reg); 1146 } 1147 1148 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1149 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1150 { 1151 /* Learn sign from signed bounds. 1152 * If we cannot cross the sign boundary, then signed and unsigned bounds 1153 * are the same, so combine. This works even in the negative case, e.g. 1154 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1155 */ 1156 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1157 reg->s32_min_value = reg->u32_min_value = 1158 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1159 reg->s32_max_value = reg->u32_max_value = 1160 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1161 return; 1162 } 1163 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1164 * boundary, so we must be careful. 1165 */ 1166 if ((s32)reg->u32_max_value >= 0) { 1167 /* Positive. We can't learn anything from the smin, but smax 1168 * is positive, hence safe. 1169 */ 1170 reg->s32_min_value = reg->u32_min_value; 1171 reg->s32_max_value = reg->u32_max_value = 1172 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1173 } else if ((s32)reg->u32_min_value < 0) { 1174 /* Negative. We can't learn anything from the smax, but smin 1175 * is negative, hence safe. 1176 */ 1177 reg->s32_min_value = reg->u32_min_value = 1178 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1179 reg->s32_max_value = reg->u32_max_value; 1180 } 1181 } 1182 1183 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1184 { 1185 /* Learn sign from signed bounds. 1186 * If we cannot cross the sign boundary, then signed and unsigned bounds 1187 * are the same, so combine. This works even in the negative case, e.g. 1188 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1189 */ 1190 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1191 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1192 reg->umin_value); 1193 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1194 reg->umax_value); 1195 return; 1196 } 1197 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1198 * boundary, so we must be careful. 1199 */ 1200 if ((s64)reg->umax_value >= 0) { 1201 /* Positive. We can't learn anything from the smin, but smax 1202 * is positive, hence safe. 1203 */ 1204 reg->smin_value = reg->umin_value; 1205 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1206 reg->umax_value); 1207 } else if ((s64)reg->umin_value < 0) { 1208 /* Negative. We can't learn anything from the smax, but smin 1209 * is negative, hence safe. 1210 */ 1211 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1212 reg->umin_value); 1213 reg->smax_value = reg->umax_value; 1214 } 1215 } 1216 1217 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1218 { 1219 __reg32_deduce_bounds(reg); 1220 __reg64_deduce_bounds(reg); 1221 } 1222 1223 /* Attempts to improve var_off based on unsigned min/max information */ 1224 static void __reg_bound_offset(struct bpf_reg_state *reg) 1225 { 1226 struct tnum var64_off = tnum_intersect(reg->var_off, 1227 tnum_range(reg->umin_value, 1228 reg->umax_value)); 1229 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1230 tnum_range(reg->u32_min_value, 1231 reg->u32_max_value)); 1232 1233 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1234 } 1235 1236 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1237 { 1238 reg->umin_value = reg->u32_min_value; 1239 reg->umax_value = reg->u32_max_value; 1240 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1241 * but must be positive otherwise set to worse case bounds 1242 * and refine later from tnum. 1243 */ 1244 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1245 reg->smax_value = reg->s32_max_value; 1246 else 1247 reg->smax_value = U32_MAX; 1248 if (reg->s32_min_value >= 0) 1249 reg->smin_value = reg->s32_min_value; 1250 else 1251 reg->smin_value = 0; 1252 } 1253 1254 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1255 { 1256 /* special case when 64-bit register has upper 32-bit register 1257 * zeroed. Typically happens after zext or <<32, >>32 sequence 1258 * allowing us to use 32-bit bounds directly, 1259 */ 1260 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1261 __reg_assign_32_into_64(reg); 1262 } else { 1263 /* Otherwise the best we can do is push lower 32bit known and 1264 * unknown bits into register (var_off set from jmp logic) 1265 * then learn as much as possible from the 64-bit tnum 1266 * known and unknown bits. The previous smin/smax bounds are 1267 * invalid here because of jmp32 compare so mark them unknown 1268 * so they do not impact tnum bounds calculation. 1269 */ 1270 __mark_reg64_unbounded(reg); 1271 __update_reg_bounds(reg); 1272 } 1273 1274 /* Intersecting with the old var_off might have improved our bounds 1275 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1276 * then new var_off is (0; 0x7f...fc) which improves our umax. 1277 */ 1278 __reg_deduce_bounds(reg); 1279 __reg_bound_offset(reg); 1280 __update_reg_bounds(reg); 1281 } 1282 1283 static bool __reg64_bound_s32(s64 a) 1284 { 1285 if (a > S32_MIN && a < S32_MAX) 1286 return true; 1287 return false; 1288 } 1289 1290 static bool __reg64_bound_u32(u64 a) 1291 { 1292 if (a > U32_MIN && a < U32_MAX) 1293 return true; 1294 return false; 1295 } 1296 1297 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1298 { 1299 __mark_reg32_unbounded(reg); 1300 1301 if (__reg64_bound_s32(reg->smin_value)) 1302 reg->s32_min_value = (s32)reg->smin_value; 1303 if (__reg64_bound_s32(reg->smax_value)) 1304 reg->s32_max_value = (s32)reg->smax_value; 1305 if (__reg64_bound_u32(reg->umin_value)) 1306 reg->u32_min_value = (u32)reg->umin_value; 1307 if (__reg64_bound_u32(reg->umax_value)) 1308 reg->u32_max_value = (u32)reg->umax_value; 1309 1310 /* Intersecting with the old var_off might have improved our bounds 1311 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1312 * then new var_off is (0; 0x7f...fc) which improves our umax. 1313 */ 1314 __reg_deduce_bounds(reg); 1315 __reg_bound_offset(reg); 1316 __update_reg_bounds(reg); 1317 } 1318 1319 /* Mark a register as having a completely unknown (scalar) value. */ 1320 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1321 struct bpf_reg_state *reg) 1322 { 1323 /* 1324 * Clear type, id, off, and union(map_ptr, range) and 1325 * padding between 'type' and union 1326 */ 1327 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1328 reg->type = SCALAR_VALUE; 1329 reg->var_off = tnum_unknown; 1330 reg->frameno = 0; 1331 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1332 __mark_reg_unbounded(reg); 1333 } 1334 1335 static void mark_reg_unknown(struct bpf_verifier_env *env, 1336 struct bpf_reg_state *regs, u32 regno) 1337 { 1338 if (WARN_ON(regno >= MAX_BPF_REG)) { 1339 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1340 /* Something bad happened, let's kill all regs except FP */ 1341 for (regno = 0; regno < BPF_REG_FP; regno++) 1342 __mark_reg_not_init(env, regs + regno); 1343 return; 1344 } 1345 __mark_reg_unknown(env, regs + regno); 1346 } 1347 1348 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1349 struct bpf_reg_state *reg) 1350 { 1351 __mark_reg_unknown(env, reg); 1352 reg->type = NOT_INIT; 1353 } 1354 1355 static void mark_reg_not_init(struct bpf_verifier_env *env, 1356 struct bpf_reg_state *regs, u32 regno) 1357 { 1358 if (WARN_ON(regno >= MAX_BPF_REG)) { 1359 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1360 /* Something bad happened, let's kill all regs except FP */ 1361 for (regno = 0; regno < BPF_REG_FP; regno++) 1362 __mark_reg_not_init(env, regs + regno); 1363 return; 1364 } 1365 __mark_reg_not_init(env, regs + regno); 1366 } 1367 1368 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1369 struct bpf_reg_state *regs, u32 regno, 1370 enum bpf_reg_type reg_type, u32 btf_id) 1371 { 1372 if (reg_type == SCALAR_VALUE) { 1373 mark_reg_unknown(env, regs, regno); 1374 return; 1375 } 1376 mark_reg_known_zero(env, regs, regno); 1377 regs[regno].type = PTR_TO_BTF_ID; 1378 regs[regno].btf_id = btf_id; 1379 } 1380 1381 #define DEF_NOT_SUBREG (0) 1382 static void init_reg_state(struct bpf_verifier_env *env, 1383 struct bpf_func_state *state) 1384 { 1385 struct bpf_reg_state *regs = state->regs; 1386 int i; 1387 1388 for (i = 0; i < MAX_BPF_REG; i++) { 1389 mark_reg_not_init(env, regs, i); 1390 regs[i].live = REG_LIVE_NONE; 1391 regs[i].parent = NULL; 1392 regs[i].subreg_def = DEF_NOT_SUBREG; 1393 } 1394 1395 /* frame pointer */ 1396 regs[BPF_REG_FP].type = PTR_TO_STACK; 1397 mark_reg_known_zero(env, regs, BPF_REG_FP); 1398 regs[BPF_REG_FP].frameno = state->frameno; 1399 } 1400 1401 #define BPF_MAIN_FUNC (-1) 1402 static void init_func_state(struct bpf_verifier_env *env, 1403 struct bpf_func_state *state, 1404 int callsite, int frameno, int subprogno) 1405 { 1406 state->callsite = callsite; 1407 state->frameno = frameno; 1408 state->subprogno = subprogno; 1409 init_reg_state(env, state); 1410 } 1411 1412 enum reg_arg_type { 1413 SRC_OP, /* register is used as source operand */ 1414 DST_OP, /* register is used as destination operand */ 1415 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1416 }; 1417 1418 static int cmp_subprogs(const void *a, const void *b) 1419 { 1420 return ((struct bpf_subprog_info *)a)->start - 1421 ((struct bpf_subprog_info *)b)->start; 1422 } 1423 1424 static int find_subprog(struct bpf_verifier_env *env, int off) 1425 { 1426 struct bpf_subprog_info *p; 1427 1428 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1429 sizeof(env->subprog_info[0]), cmp_subprogs); 1430 if (!p) 1431 return -ENOENT; 1432 return p - env->subprog_info; 1433 1434 } 1435 1436 static int add_subprog(struct bpf_verifier_env *env, int off) 1437 { 1438 int insn_cnt = env->prog->len; 1439 int ret; 1440 1441 if (off >= insn_cnt || off < 0) { 1442 verbose(env, "call to invalid destination\n"); 1443 return -EINVAL; 1444 } 1445 ret = find_subprog(env, off); 1446 if (ret >= 0) 1447 return 0; 1448 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1449 verbose(env, "too many subprograms\n"); 1450 return -E2BIG; 1451 } 1452 env->subprog_info[env->subprog_cnt++].start = off; 1453 sort(env->subprog_info, env->subprog_cnt, 1454 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1455 return 0; 1456 } 1457 1458 static int check_subprogs(struct bpf_verifier_env *env) 1459 { 1460 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1461 struct bpf_subprog_info *subprog = env->subprog_info; 1462 struct bpf_insn *insn = env->prog->insnsi; 1463 int insn_cnt = env->prog->len; 1464 1465 /* Add entry function. */ 1466 ret = add_subprog(env, 0); 1467 if (ret < 0) 1468 return ret; 1469 1470 /* determine subprog starts. The end is one before the next starts */ 1471 for (i = 0; i < insn_cnt; i++) { 1472 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1473 continue; 1474 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1475 continue; 1476 if (!env->bpf_capable) { 1477 verbose(env, 1478 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1479 return -EPERM; 1480 } 1481 ret = add_subprog(env, i + insn[i].imm + 1); 1482 if (ret < 0) 1483 return ret; 1484 } 1485 1486 /* Add a fake 'exit' subprog which could simplify subprog iteration 1487 * logic. 'subprog_cnt' should not be increased. 1488 */ 1489 subprog[env->subprog_cnt].start = insn_cnt; 1490 1491 if (env->log.level & BPF_LOG_LEVEL2) 1492 for (i = 0; i < env->subprog_cnt; i++) 1493 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1494 1495 /* now check that all jumps are within the same subprog */ 1496 subprog_start = subprog[cur_subprog].start; 1497 subprog_end = subprog[cur_subprog + 1].start; 1498 for (i = 0; i < insn_cnt; i++) { 1499 u8 code = insn[i].code; 1500 1501 if (code == (BPF_JMP | BPF_CALL) && 1502 insn[i].imm == BPF_FUNC_tail_call && 1503 insn[i].src_reg != BPF_PSEUDO_CALL) 1504 subprog[cur_subprog].has_tail_call = true; 1505 if (BPF_CLASS(code) == BPF_LD && 1506 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1507 subprog[cur_subprog].has_ld_abs = true; 1508 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1509 goto next; 1510 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1511 goto next; 1512 off = i + insn[i].off + 1; 1513 if (off < subprog_start || off >= subprog_end) { 1514 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1515 return -EINVAL; 1516 } 1517 next: 1518 if (i == subprog_end - 1) { 1519 /* to avoid fall-through from one subprog into another 1520 * the last insn of the subprog should be either exit 1521 * or unconditional jump back 1522 */ 1523 if (code != (BPF_JMP | BPF_EXIT) && 1524 code != (BPF_JMP | BPF_JA)) { 1525 verbose(env, "last insn is not an exit or jmp\n"); 1526 return -EINVAL; 1527 } 1528 subprog_start = subprog_end; 1529 cur_subprog++; 1530 if (cur_subprog < env->subprog_cnt) 1531 subprog_end = subprog[cur_subprog + 1].start; 1532 } 1533 } 1534 return 0; 1535 } 1536 1537 /* Parentage chain of this register (or stack slot) should take care of all 1538 * issues like callee-saved registers, stack slot allocation time, etc. 1539 */ 1540 static int mark_reg_read(struct bpf_verifier_env *env, 1541 const struct bpf_reg_state *state, 1542 struct bpf_reg_state *parent, u8 flag) 1543 { 1544 bool writes = parent == state->parent; /* Observe write marks */ 1545 int cnt = 0; 1546 1547 while (parent) { 1548 /* if read wasn't screened by an earlier write ... */ 1549 if (writes && state->live & REG_LIVE_WRITTEN) 1550 break; 1551 if (parent->live & REG_LIVE_DONE) { 1552 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1553 reg_type_str[parent->type], 1554 parent->var_off.value, parent->off); 1555 return -EFAULT; 1556 } 1557 /* The first condition is more likely to be true than the 1558 * second, checked it first. 1559 */ 1560 if ((parent->live & REG_LIVE_READ) == flag || 1561 parent->live & REG_LIVE_READ64) 1562 /* The parentage chain never changes and 1563 * this parent was already marked as LIVE_READ. 1564 * There is no need to keep walking the chain again and 1565 * keep re-marking all parents as LIVE_READ. 1566 * This case happens when the same register is read 1567 * multiple times without writes into it in-between. 1568 * Also, if parent has the stronger REG_LIVE_READ64 set, 1569 * then no need to set the weak REG_LIVE_READ32. 1570 */ 1571 break; 1572 /* ... then we depend on parent's value */ 1573 parent->live |= flag; 1574 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1575 if (flag == REG_LIVE_READ64) 1576 parent->live &= ~REG_LIVE_READ32; 1577 state = parent; 1578 parent = state->parent; 1579 writes = true; 1580 cnt++; 1581 } 1582 1583 if (env->longest_mark_read_walk < cnt) 1584 env->longest_mark_read_walk = cnt; 1585 return 0; 1586 } 1587 1588 /* This function is supposed to be used by the following 32-bit optimization 1589 * code only. It returns TRUE if the source or destination register operates 1590 * on 64-bit, otherwise return FALSE. 1591 */ 1592 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1593 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1594 { 1595 u8 code, class, op; 1596 1597 code = insn->code; 1598 class = BPF_CLASS(code); 1599 op = BPF_OP(code); 1600 if (class == BPF_JMP) { 1601 /* BPF_EXIT for "main" will reach here. Return TRUE 1602 * conservatively. 1603 */ 1604 if (op == BPF_EXIT) 1605 return true; 1606 if (op == BPF_CALL) { 1607 /* BPF to BPF call will reach here because of marking 1608 * caller saved clobber with DST_OP_NO_MARK for which we 1609 * don't care the register def because they are anyway 1610 * marked as NOT_INIT already. 1611 */ 1612 if (insn->src_reg == BPF_PSEUDO_CALL) 1613 return false; 1614 /* Helper call will reach here because of arg type 1615 * check, conservatively return TRUE. 1616 */ 1617 if (t == SRC_OP) 1618 return true; 1619 1620 return false; 1621 } 1622 } 1623 1624 if (class == BPF_ALU64 || class == BPF_JMP || 1625 /* BPF_END always use BPF_ALU class. */ 1626 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1627 return true; 1628 1629 if (class == BPF_ALU || class == BPF_JMP32) 1630 return false; 1631 1632 if (class == BPF_LDX) { 1633 if (t != SRC_OP) 1634 return BPF_SIZE(code) == BPF_DW; 1635 /* LDX source must be ptr. */ 1636 return true; 1637 } 1638 1639 if (class == BPF_STX) { 1640 if (reg->type != SCALAR_VALUE) 1641 return true; 1642 return BPF_SIZE(code) == BPF_DW; 1643 } 1644 1645 if (class == BPF_LD) { 1646 u8 mode = BPF_MODE(code); 1647 1648 /* LD_IMM64 */ 1649 if (mode == BPF_IMM) 1650 return true; 1651 1652 /* Both LD_IND and LD_ABS return 32-bit data. */ 1653 if (t != SRC_OP) 1654 return false; 1655 1656 /* Implicit ctx ptr. */ 1657 if (regno == BPF_REG_6) 1658 return true; 1659 1660 /* Explicit source could be any width. */ 1661 return true; 1662 } 1663 1664 if (class == BPF_ST) 1665 /* The only source register for BPF_ST is a ptr. */ 1666 return true; 1667 1668 /* Conservatively return true at default. */ 1669 return true; 1670 } 1671 1672 /* Return TRUE if INSN doesn't have explicit value define. */ 1673 static bool insn_no_def(struct bpf_insn *insn) 1674 { 1675 u8 class = BPF_CLASS(insn->code); 1676 1677 return (class == BPF_JMP || class == BPF_JMP32 || 1678 class == BPF_STX || class == BPF_ST); 1679 } 1680 1681 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1682 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1683 { 1684 if (insn_no_def(insn)) 1685 return false; 1686 1687 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1688 } 1689 1690 static void mark_insn_zext(struct bpf_verifier_env *env, 1691 struct bpf_reg_state *reg) 1692 { 1693 s32 def_idx = reg->subreg_def; 1694 1695 if (def_idx == DEF_NOT_SUBREG) 1696 return; 1697 1698 env->insn_aux_data[def_idx - 1].zext_dst = true; 1699 /* The dst will be zero extended, so won't be sub-register anymore. */ 1700 reg->subreg_def = DEF_NOT_SUBREG; 1701 } 1702 1703 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1704 enum reg_arg_type t) 1705 { 1706 struct bpf_verifier_state *vstate = env->cur_state; 1707 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1708 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1709 struct bpf_reg_state *reg, *regs = state->regs; 1710 bool rw64; 1711 1712 if (regno >= MAX_BPF_REG) { 1713 verbose(env, "R%d is invalid\n", regno); 1714 return -EINVAL; 1715 } 1716 1717 reg = ®s[regno]; 1718 rw64 = is_reg64(env, insn, regno, reg, t); 1719 if (t == SRC_OP) { 1720 /* check whether register used as source operand can be read */ 1721 if (reg->type == NOT_INIT) { 1722 verbose(env, "R%d !read_ok\n", regno); 1723 return -EACCES; 1724 } 1725 /* We don't need to worry about FP liveness because it's read-only */ 1726 if (regno == BPF_REG_FP) 1727 return 0; 1728 1729 if (rw64) 1730 mark_insn_zext(env, reg); 1731 1732 return mark_reg_read(env, reg, reg->parent, 1733 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1734 } else { 1735 /* check whether register used as dest operand can be written to */ 1736 if (regno == BPF_REG_FP) { 1737 verbose(env, "frame pointer is read only\n"); 1738 return -EACCES; 1739 } 1740 reg->live |= REG_LIVE_WRITTEN; 1741 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1742 if (t == DST_OP) 1743 mark_reg_unknown(env, regs, regno); 1744 } 1745 return 0; 1746 } 1747 1748 /* for any branch, call, exit record the history of jmps in the given state */ 1749 static int push_jmp_history(struct bpf_verifier_env *env, 1750 struct bpf_verifier_state *cur) 1751 { 1752 u32 cnt = cur->jmp_history_cnt; 1753 struct bpf_idx_pair *p; 1754 1755 cnt++; 1756 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1757 if (!p) 1758 return -ENOMEM; 1759 p[cnt - 1].idx = env->insn_idx; 1760 p[cnt - 1].prev_idx = env->prev_insn_idx; 1761 cur->jmp_history = p; 1762 cur->jmp_history_cnt = cnt; 1763 return 0; 1764 } 1765 1766 /* Backtrack one insn at a time. If idx is not at the top of recorded 1767 * history then previous instruction came from straight line execution. 1768 */ 1769 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1770 u32 *history) 1771 { 1772 u32 cnt = *history; 1773 1774 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1775 i = st->jmp_history[cnt - 1].prev_idx; 1776 (*history)--; 1777 } else { 1778 i--; 1779 } 1780 return i; 1781 } 1782 1783 /* For given verifier state backtrack_insn() is called from the last insn to 1784 * the first insn. Its purpose is to compute a bitmask of registers and 1785 * stack slots that needs precision in the parent verifier state. 1786 */ 1787 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1788 u32 *reg_mask, u64 *stack_mask) 1789 { 1790 const struct bpf_insn_cbs cbs = { 1791 .cb_print = verbose, 1792 .private_data = env, 1793 }; 1794 struct bpf_insn *insn = env->prog->insnsi + idx; 1795 u8 class = BPF_CLASS(insn->code); 1796 u8 opcode = BPF_OP(insn->code); 1797 u8 mode = BPF_MODE(insn->code); 1798 u32 dreg = 1u << insn->dst_reg; 1799 u32 sreg = 1u << insn->src_reg; 1800 u32 spi; 1801 1802 if (insn->code == 0) 1803 return 0; 1804 if (env->log.level & BPF_LOG_LEVEL) { 1805 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1806 verbose(env, "%d: ", idx); 1807 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1808 } 1809 1810 if (class == BPF_ALU || class == BPF_ALU64) { 1811 if (!(*reg_mask & dreg)) 1812 return 0; 1813 if (opcode == BPF_MOV) { 1814 if (BPF_SRC(insn->code) == BPF_X) { 1815 /* dreg = sreg 1816 * dreg needs precision after this insn 1817 * sreg needs precision before this insn 1818 */ 1819 *reg_mask &= ~dreg; 1820 *reg_mask |= sreg; 1821 } else { 1822 /* dreg = K 1823 * dreg needs precision after this insn. 1824 * Corresponding register is already marked 1825 * as precise=true in this verifier state. 1826 * No further markings in parent are necessary 1827 */ 1828 *reg_mask &= ~dreg; 1829 } 1830 } else { 1831 if (BPF_SRC(insn->code) == BPF_X) { 1832 /* dreg += sreg 1833 * both dreg and sreg need precision 1834 * before this insn 1835 */ 1836 *reg_mask |= sreg; 1837 } /* else dreg += K 1838 * dreg still needs precision before this insn 1839 */ 1840 } 1841 } else if (class == BPF_LDX) { 1842 if (!(*reg_mask & dreg)) 1843 return 0; 1844 *reg_mask &= ~dreg; 1845 1846 /* scalars can only be spilled into stack w/o losing precision. 1847 * Load from any other memory can be zero extended. 1848 * The desire to keep that precision is already indicated 1849 * by 'precise' mark in corresponding register of this state. 1850 * No further tracking necessary. 1851 */ 1852 if (insn->src_reg != BPF_REG_FP) 1853 return 0; 1854 if (BPF_SIZE(insn->code) != BPF_DW) 1855 return 0; 1856 1857 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1858 * that [fp - off] slot contains scalar that needs to be 1859 * tracked with precision 1860 */ 1861 spi = (-insn->off - 1) / BPF_REG_SIZE; 1862 if (spi >= 64) { 1863 verbose(env, "BUG spi %d\n", spi); 1864 WARN_ONCE(1, "verifier backtracking bug"); 1865 return -EFAULT; 1866 } 1867 *stack_mask |= 1ull << spi; 1868 } else if (class == BPF_STX || class == BPF_ST) { 1869 if (*reg_mask & dreg) 1870 /* stx & st shouldn't be using _scalar_ dst_reg 1871 * to access memory. It means backtracking 1872 * encountered a case of pointer subtraction. 1873 */ 1874 return -ENOTSUPP; 1875 /* scalars can only be spilled into stack */ 1876 if (insn->dst_reg != BPF_REG_FP) 1877 return 0; 1878 if (BPF_SIZE(insn->code) != BPF_DW) 1879 return 0; 1880 spi = (-insn->off - 1) / BPF_REG_SIZE; 1881 if (spi >= 64) { 1882 verbose(env, "BUG spi %d\n", spi); 1883 WARN_ONCE(1, "verifier backtracking bug"); 1884 return -EFAULT; 1885 } 1886 if (!(*stack_mask & (1ull << spi))) 1887 return 0; 1888 *stack_mask &= ~(1ull << spi); 1889 if (class == BPF_STX) 1890 *reg_mask |= sreg; 1891 } else if (class == BPF_JMP || class == BPF_JMP32) { 1892 if (opcode == BPF_CALL) { 1893 if (insn->src_reg == BPF_PSEUDO_CALL) 1894 return -ENOTSUPP; 1895 /* regular helper call sets R0 */ 1896 *reg_mask &= ~1; 1897 if (*reg_mask & 0x3f) { 1898 /* if backtracing was looking for registers R1-R5 1899 * they should have been found already. 1900 */ 1901 verbose(env, "BUG regs %x\n", *reg_mask); 1902 WARN_ONCE(1, "verifier backtracking bug"); 1903 return -EFAULT; 1904 } 1905 } else if (opcode == BPF_EXIT) { 1906 return -ENOTSUPP; 1907 } 1908 } else if (class == BPF_LD) { 1909 if (!(*reg_mask & dreg)) 1910 return 0; 1911 *reg_mask &= ~dreg; 1912 /* It's ld_imm64 or ld_abs or ld_ind. 1913 * For ld_imm64 no further tracking of precision 1914 * into parent is necessary 1915 */ 1916 if (mode == BPF_IND || mode == BPF_ABS) 1917 /* to be analyzed */ 1918 return -ENOTSUPP; 1919 } 1920 return 0; 1921 } 1922 1923 /* the scalar precision tracking algorithm: 1924 * . at the start all registers have precise=false. 1925 * . scalar ranges are tracked as normal through alu and jmp insns. 1926 * . once precise value of the scalar register is used in: 1927 * . ptr + scalar alu 1928 * . if (scalar cond K|scalar) 1929 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1930 * backtrack through the verifier states and mark all registers and 1931 * stack slots with spilled constants that these scalar regisers 1932 * should be precise. 1933 * . during state pruning two registers (or spilled stack slots) 1934 * are equivalent if both are not precise. 1935 * 1936 * Note the verifier cannot simply walk register parentage chain, 1937 * since many different registers and stack slots could have been 1938 * used to compute single precise scalar. 1939 * 1940 * The approach of starting with precise=true for all registers and then 1941 * backtrack to mark a register as not precise when the verifier detects 1942 * that program doesn't care about specific value (e.g., when helper 1943 * takes register as ARG_ANYTHING parameter) is not safe. 1944 * 1945 * It's ok to walk single parentage chain of the verifier states. 1946 * It's possible that this backtracking will go all the way till 1st insn. 1947 * All other branches will be explored for needing precision later. 1948 * 1949 * The backtracking needs to deal with cases like: 1950 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1951 * r9 -= r8 1952 * r5 = r9 1953 * if r5 > 0x79f goto pc+7 1954 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1955 * r5 += 1 1956 * ... 1957 * call bpf_perf_event_output#25 1958 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1959 * 1960 * and this case: 1961 * r6 = 1 1962 * call foo // uses callee's r6 inside to compute r0 1963 * r0 += r6 1964 * if r0 == 0 goto 1965 * 1966 * to track above reg_mask/stack_mask needs to be independent for each frame. 1967 * 1968 * Also if parent's curframe > frame where backtracking started, 1969 * the verifier need to mark registers in both frames, otherwise callees 1970 * may incorrectly prune callers. This is similar to 1971 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1972 * 1973 * For now backtracking falls back into conservative marking. 1974 */ 1975 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1976 struct bpf_verifier_state *st) 1977 { 1978 struct bpf_func_state *func; 1979 struct bpf_reg_state *reg; 1980 int i, j; 1981 1982 /* big hammer: mark all scalars precise in this path. 1983 * pop_stack may still get !precise scalars. 1984 */ 1985 for (; st; st = st->parent) 1986 for (i = 0; i <= st->curframe; i++) { 1987 func = st->frame[i]; 1988 for (j = 0; j < BPF_REG_FP; j++) { 1989 reg = &func->regs[j]; 1990 if (reg->type != SCALAR_VALUE) 1991 continue; 1992 reg->precise = true; 1993 } 1994 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1995 if (func->stack[j].slot_type[0] != STACK_SPILL) 1996 continue; 1997 reg = &func->stack[j].spilled_ptr; 1998 if (reg->type != SCALAR_VALUE) 1999 continue; 2000 reg->precise = true; 2001 } 2002 } 2003 } 2004 2005 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2006 int spi) 2007 { 2008 struct bpf_verifier_state *st = env->cur_state; 2009 int first_idx = st->first_insn_idx; 2010 int last_idx = env->insn_idx; 2011 struct bpf_func_state *func; 2012 struct bpf_reg_state *reg; 2013 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2014 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2015 bool skip_first = true; 2016 bool new_marks = false; 2017 int i, err; 2018 2019 if (!env->bpf_capable) 2020 return 0; 2021 2022 func = st->frame[st->curframe]; 2023 if (regno >= 0) { 2024 reg = &func->regs[regno]; 2025 if (reg->type != SCALAR_VALUE) { 2026 WARN_ONCE(1, "backtracing misuse"); 2027 return -EFAULT; 2028 } 2029 if (!reg->precise) 2030 new_marks = true; 2031 else 2032 reg_mask = 0; 2033 reg->precise = true; 2034 } 2035 2036 while (spi >= 0) { 2037 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2038 stack_mask = 0; 2039 break; 2040 } 2041 reg = &func->stack[spi].spilled_ptr; 2042 if (reg->type != SCALAR_VALUE) { 2043 stack_mask = 0; 2044 break; 2045 } 2046 if (!reg->precise) 2047 new_marks = true; 2048 else 2049 stack_mask = 0; 2050 reg->precise = true; 2051 break; 2052 } 2053 2054 if (!new_marks) 2055 return 0; 2056 if (!reg_mask && !stack_mask) 2057 return 0; 2058 for (;;) { 2059 DECLARE_BITMAP(mask, 64); 2060 u32 history = st->jmp_history_cnt; 2061 2062 if (env->log.level & BPF_LOG_LEVEL) 2063 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2064 for (i = last_idx;;) { 2065 if (skip_first) { 2066 err = 0; 2067 skip_first = false; 2068 } else { 2069 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2070 } 2071 if (err == -ENOTSUPP) { 2072 mark_all_scalars_precise(env, st); 2073 return 0; 2074 } else if (err) { 2075 return err; 2076 } 2077 if (!reg_mask && !stack_mask) 2078 /* Found assignment(s) into tracked register in this state. 2079 * Since this state is already marked, just return. 2080 * Nothing to be tracked further in the parent state. 2081 */ 2082 return 0; 2083 if (i == first_idx) 2084 break; 2085 i = get_prev_insn_idx(st, i, &history); 2086 if (i >= env->prog->len) { 2087 /* This can happen if backtracking reached insn 0 2088 * and there are still reg_mask or stack_mask 2089 * to backtrack. 2090 * It means the backtracking missed the spot where 2091 * particular register was initialized with a constant. 2092 */ 2093 verbose(env, "BUG backtracking idx %d\n", i); 2094 WARN_ONCE(1, "verifier backtracking bug"); 2095 return -EFAULT; 2096 } 2097 } 2098 st = st->parent; 2099 if (!st) 2100 break; 2101 2102 new_marks = false; 2103 func = st->frame[st->curframe]; 2104 bitmap_from_u64(mask, reg_mask); 2105 for_each_set_bit(i, mask, 32) { 2106 reg = &func->regs[i]; 2107 if (reg->type != SCALAR_VALUE) { 2108 reg_mask &= ~(1u << i); 2109 continue; 2110 } 2111 if (!reg->precise) 2112 new_marks = true; 2113 reg->precise = true; 2114 } 2115 2116 bitmap_from_u64(mask, stack_mask); 2117 for_each_set_bit(i, mask, 64) { 2118 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2119 /* the sequence of instructions: 2120 * 2: (bf) r3 = r10 2121 * 3: (7b) *(u64 *)(r3 -8) = r0 2122 * 4: (79) r4 = *(u64 *)(r10 -8) 2123 * doesn't contain jmps. It's backtracked 2124 * as a single block. 2125 * During backtracking insn 3 is not recognized as 2126 * stack access, so at the end of backtracking 2127 * stack slot fp-8 is still marked in stack_mask. 2128 * However the parent state may not have accessed 2129 * fp-8 and it's "unallocated" stack space. 2130 * In such case fallback to conservative. 2131 */ 2132 mark_all_scalars_precise(env, st); 2133 return 0; 2134 } 2135 2136 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2137 stack_mask &= ~(1ull << i); 2138 continue; 2139 } 2140 reg = &func->stack[i].spilled_ptr; 2141 if (reg->type != SCALAR_VALUE) { 2142 stack_mask &= ~(1ull << i); 2143 continue; 2144 } 2145 if (!reg->precise) 2146 new_marks = true; 2147 reg->precise = true; 2148 } 2149 if (env->log.level & BPF_LOG_LEVEL) { 2150 print_verifier_state(env, func); 2151 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2152 new_marks ? "didn't have" : "already had", 2153 reg_mask, stack_mask); 2154 } 2155 2156 if (!reg_mask && !stack_mask) 2157 break; 2158 if (!new_marks) 2159 break; 2160 2161 last_idx = st->last_insn_idx; 2162 first_idx = st->first_insn_idx; 2163 } 2164 return 0; 2165 } 2166 2167 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2168 { 2169 return __mark_chain_precision(env, regno, -1); 2170 } 2171 2172 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2173 { 2174 return __mark_chain_precision(env, -1, spi); 2175 } 2176 2177 static bool is_spillable_regtype(enum bpf_reg_type type) 2178 { 2179 switch (type) { 2180 case PTR_TO_MAP_VALUE: 2181 case PTR_TO_MAP_VALUE_OR_NULL: 2182 case PTR_TO_STACK: 2183 case PTR_TO_CTX: 2184 case PTR_TO_PACKET: 2185 case PTR_TO_PACKET_META: 2186 case PTR_TO_PACKET_END: 2187 case PTR_TO_FLOW_KEYS: 2188 case CONST_PTR_TO_MAP: 2189 case PTR_TO_SOCKET: 2190 case PTR_TO_SOCKET_OR_NULL: 2191 case PTR_TO_SOCK_COMMON: 2192 case PTR_TO_SOCK_COMMON_OR_NULL: 2193 case PTR_TO_TCP_SOCK: 2194 case PTR_TO_TCP_SOCK_OR_NULL: 2195 case PTR_TO_XDP_SOCK: 2196 case PTR_TO_BTF_ID: 2197 case PTR_TO_BTF_ID_OR_NULL: 2198 case PTR_TO_RDONLY_BUF: 2199 case PTR_TO_RDONLY_BUF_OR_NULL: 2200 case PTR_TO_RDWR_BUF: 2201 case PTR_TO_RDWR_BUF_OR_NULL: 2202 return true; 2203 default: 2204 return false; 2205 } 2206 } 2207 2208 /* Does this register contain a constant zero? */ 2209 static bool register_is_null(struct bpf_reg_state *reg) 2210 { 2211 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2212 } 2213 2214 static bool register_is_const(struct bpf_reg_state *reg) 2215 { 2216 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2217 } 2218 2219 static bool __is_pointer_value(bool allow_ptr_leaks, 2220 const struct bpf_reg_state *reg) 2221 { 2222 if (allow_ptr_leaks) 2223 return false; 2224 2225 return reg->type != SCALAR_VALUE; 2226 } 2227 2228 static void save_register_state(struct bpf_func_state *state, 2229 int spi, struct bpf_reg_state *reg) 2230 { 2231 int i; 2232 2233 state->stack[spi].spilled_ptr = *reg; 2234 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2235 2236 for (i = 0; i < BPF_REG_SIZE; i++) 2237 state->stack[spi].slot_type[i] = STACK_SPILL; 2238 } 2239 2240 /* check_stack_read/write functions track spill/fill of registers, 2241 * stack boundary and alignment are checked in check_mem_access() 2242 */ 2243 static int check_stack_write(struct bpf_verifier_env *env, 2244 struct bpf_func_state *state, /* func where register points to */ 2245 int off, int size, int value_regno, int insn_idx) 2246 { 2247 struct bpf_func_state *cur; /* state of the current function */ 2248 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2249 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2250 struct bpf_reg_state *reg = NULL; 2251 2252 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2253 state->acquired_refs, true); 2254 if (err) 2255 return err; 2256 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2257 * so it's aligned access and [off, off + size) are within stack limits 2258 */ 2259 if (!env->allow_ptr_leaks && 2260 state->stack[spi].slot_type[0] == STACK_SPILL && 2261 size != BPF_REG_SIZE) { 2262 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2263 return -EACCES; 2264 } 2265 2266 cur = env->cur_state->frame[env->cur_state->curframe]; 2267 if (value_regno >= 0) 2268 reg = &cur->regs[value_regno]; 2269 2270 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 2271 !register_is_null(reg) && env->bpf_capable) { 2272 if (dst_reg != BPF_REG_FP) { 2273 /* The backtracking logic can only recognize explicit 2274 * stack slot address like [fp - 8]. Other spill of 2275 * scalar via different register has to be conervative. 2276 * Backtrack from here and mark all registers as precise 2277 * that contributed into 'reg' being a constant. 2278 */ 2279 err = mark_chain_precision(env, value_regno); 2280 if (err) 2281 return err; 2282 } 2283 save_register_state(state, spi, reg); 2284 } else if (reg && is_spillable_regtype(reg->type)) { 2285 /* register containing pointer is being spilled into stack */ 2286 if (size != BPF_REG_SIZE) { 2287 verbose_linfo(env, insn_idx, "; "); 2288 verbose(env, "invalid size of register spill\n"); 2289 return -EACCES; 2290 } 2291 2292 if (state != cur && reg->type == PTR_TO_STACK) { 2293 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2294 return -EINVAL; 2295 } 2296 2297 if (!env->bypass_spec_v4) { 2298 bool sanitize = false; 2299 2300 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2301 register_is_const(&state->stack[spi].spilled_ptr)) 2302 sanitize = true; 2303 for (i = 0; i < BPF_REG_SIZE; i++) 2304 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2305 sanitize = true; 2306 break; 2307 } 2308 if (sanitize) { 2309 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2310 int soff = (-spi - 1) * BPF_REG_SIZE; 2311 2312 /* detected reuse of integer stack slot with a pointer 2313 * which means either llvm is reusing stack slot or 2314 * an attacker is trying to exploit CVE-2018-3639 2315 * (speculative store bypass) 2316 * Have to sanitize that slot with preemptive 2317 * store of zero. 2318 */ 2319 if (*poff && *poff != soff) { 2320 /* disallow programs where single insn stores 2321 * into two different stack slots, since verifier 2322 * cannot sanitize them 2323 */ 2324 verbose(env, 2325 "insn %d cannot access two stack slots fp%d and fp%d", 2326 insn_idx, *poff, soff); 2327 return -EINVAL; 2328 } 2329 *poff = soff; 2330 } 2331 } 2332 save_register_state(state, spi, reg); 2333 } else { 2334 u8 type = STACK_MISC; 2335 2336 /* regular write of data into stack destroys any spilled ptr */ 2337 state->stack[spi].spilled_ptr.type = NOT_INIT; 2338 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2339 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2340 for (i = 0; i < BPF_REG_SIZE; i++) 2341 state->stack[spi].slot_type[i] = STACK_MISC; 2342 2343 /* only mark the slot as written if all 8 bytes were written 2344 * otherwise read propagation may incorrectly stop too soon 2345 * when stack slots are partially written. 2346 * This heuristic means that read propagation will be 2347 * conservative, since it will add reg_live_read marks 2348 * to stack slots all the way to first state when programs 2349 * writes+reads less than 8 bytes 2350 */ 2351 if (size == BPF_REG_SIZE) 2352 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2353 2354 /* when we zero initialize stack slots mark them as such */ 2355 if (reg && register_is_null(reg)) { 2356 /* backtracking doesn't work for STACK_ZERO yet. */ 2357 err = mark_chain_precision(env, value_regno); 2358 if (err) 2359 return err; 2360 type = STACK_ZERO; 2361 } 2362 2363 /* Mark slots affected by this stack write. */ 2364 for (i = 0; i < size; i++) 2365 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2366 type; 2367 } 2368 return 0; 2369 } 2370 2371 static int check_stack_read(struct bpf_verifier_env *env, 2372 struct bpf_func_state *reg_state /* func where register points to */, 2373 int off, int size, int value_regno) 2374 { 2375 struct bpf_verifier_state *vstate = env->cur_state; 2376 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2377 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2378 struct bpf_reg_state *reg; 2379 u8 *stype; 2380 2381 if (reg_state->allocated_stack <= slot) { 2382 verbose(env, "invalid read from stack off %d+0 size %d\n", 2383 off, size); 2384 return -EACCES; 2385 } 2386 stype = reg_state->stack[spi].slot_type; 2387 reg = ®_state->stack[spi].spilled_ptr; 2388 2389 if (stype[0] == STACK_SPILL) { 2390 if (size != BPF_REG_SIZE) { 2391 if (reg->type != SCALAR_VALUE) { 2392 verbose_linfo(env, env->insn_idx, "; "); 2393 verbose(env, "invalid size of register fill\n"); 2394 return -EACCES; 2395 } 2396 if (value_regno >= 0) { 2397 mark_reg_unknown(env, state->regs, value_regno); 2398 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2399 } 2400 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2401 return 0; 2402 } 2403 for (i = 1; i < BPF_REG_SIZE; i++) { 2404 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2405 verbose(env, "corrupted spill memory\n"); 2406 return -EACCES; 2407 } 2408 } 2409 2410 if (value_regno >= 0) { 2411 /* restore register state from stack */ 2412 state->regs[value_regno] = *reg; 2413 /* mark reg as written since spilled pointer state likely 2414 * has its liveness marks cleared by is_state_visited() 2415 * which resets stack/reg liveness for state transitions 2416 */ 2417 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2418 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2419 /* If value_regno==-1, the caller is asking us whether 2420 * it is acceptable to use this value as a SCALAR_VALUE 2421 * (e.g. for XADD). 2422 * We must not allow unprivileged callers to do that 2423 * with spilled pointers. 2424 */ 2425 verbose(env, "leaking pointer from stack off %d\n", 2426 off); 2427 return -EACCES; 2428 } 2429 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2430 } else { 2431 int zeros = 0; 2432 2433 for (i = 0; i < size; i++) { 2434 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2435 continue; 2436 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2437 zeros++; 2438 continue; 2439 } 2440 verbose(env, "invalid read from stack off %d+%d size %d\n", 2441 off, i, size); 2442 return -EACCES; 2443 } 2444 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2445 if (value_regno >= 0) { 2446 if (zeros == size) { 2447 /* any size read into register is zero extended, 2448 * so the whole register == const_zero 2449 */ 2450 __mark_reg_const_zero(&state->regs[value_regno]); 2451 /* backtracking doesn't support STACK_ZERO yet, 2452 * so mark it precise here, so that later 2453 * backtracking can stop here. 2454 * Backtracking may not need this if this register 2455 * doesn't participate in pointer adjustment. 2456 * Forward propagation of precise flag is not 2457 * necessary either. This mark is only to stop 2458 * backtracking. Any register that contributed 2459 * to const 0 was marked precise before spill. 2460 */ 2461 state->regs[value_regno].precise = true; 2462 } else { 2463 /* have read misc data from the stack */ 2464 mark_reg_unknown(env, state->regs, value_regno); 2465 } 2466 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2467 } 2468 } 2469 return 0; 2470 } 2471 2472 static int check_stack_access(struct bpf_verifier_env *env, 2473 const struct bpf_reg_state *reg, 2474 int off, int size) 2475 { 2476 /* Stack accesses must be at a fixed offset, so that we 2477 * can determine what type of data were returned. See 2478 * check_stack_read(). 2479 */ 2480 if (!tnum_is_const(reg->var_off)) { 2481 char tn_buf[48]; 2482 2483 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2484 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2485 tn_buf, off, size); 2486 return -EACCES; 2487 } 2488 2489 if (off >= 0 || off < -MAX_BPF_STACK) { 2490 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2491 return -EACCES; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2498 int off, int size, enum bpf_access_type type) 2499 { 2500 struct bpf_reg_state *regs = cur_regs(env); 2501 struct bpf_map *map = regs[regno].map_ptr; 2502 u32 cap = bpf_map_flags_to_cap(map); 2503 2504 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2505 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2506 map->value_size, off, size); 2507 return -EACCES; 2508 } 2509 2510 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2511 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2512 map->value_size, off, size); 2513 return -EACCES; 2514 } 2515 2516 return 0; 2517 } 2518 2519 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2520 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2521 int off, int size, u32 mem_size, 2522 bool zero_size_allowed) 2523 { 2524 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2525 struct bpf_reg_state *reg; 2526 2527 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2528 return 0; 2529 2530 reg = &cur_regs(env)[regno]; 2531 switch (reg->type) { 2532 case PTR_TO_MAP_VALUE: 2533 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2534 mem_size, off, size); 2535 break; 2536 case PTR_TO_PACKET: 2537 case PTR_TO_PACKET_META: 2538 case PTR_TO_PACKET_END: 2539 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2540 off, size, regno, reg->id, off, mem_size); 2541 break; 2542 case PTR_TO_MEM: 2543 default: 2544 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2545 mem_size, off, size); 2546 } 2547 2548 return -EACCES; 2549 } 2550 2551 /* check read/write into a memory region with possible variable offset */ 2552 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2553 int off, int size, u32 mem_size, 2554 bool zero_size_allowed) 2555 { 2556 struct bpf_verifier_state *vstate = env->cur_state; 2557 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2558 struct bpf_reg_state *reg = &state->regs[regno]; 2559 int err; 2560 2561 /* We may have adjusted the register pointing to memory region, so we 2562 * need to try adding each of min_value and max_value to off 2563 * to make sure our theoretical access will be safe. 2564 */ 2565 if (env->log.level & BPF_LOG_LEVEL) 2566 print_verifier_state(env, state); 2567 2568 /* The minimum value is only important with signed 2569 * comparisons where we can't assume the floor of a 2570 * value is 0. If we are using signed variables for our 2571 * index'es we need to make sure that whatever we use 2572 * will have a set floor within our range. 2573 */ 2574 if (reg->smin_value < 0 && 2575 (reg->smin_value == S64_MIN || 2576 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2577 reg->smin_value + off < 0)) { 2578 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2579 regno); 2580 return -EACCES; 2581 } 2582 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2583 mem_size, zero_size_allowed); 2584 if (err) { 2585 verbose(env, "R%d min value is outside of the allowed memory range\n", 2586 regno); 2587 return err; 2588 } 2589 2590 /* If we haven't set a max value then we need to bail since we can't be 2591 * sure we won't do bad things. 2592 * If reg->umax_value + off could overflow, treat that as unbounded too. 2593 */ 2594 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2595 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2596 regno); 2597 return -EACCES; 2598 } 2599 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2600 mem_size, zero_size_allowed); 2601 if (err) { 2602 verbose(env, "R%d max value is outside of the allowed memory range\n", 2603 regno); 2604 return err; 2605 } 2606 2607 return 0; 2608 } 2609 2610 /* check read/write into a map element with possible variable offset */ 2611 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2612 int off, int size, bool zero_size_allowed) 2613 { 2614 struct bpf_verifier_state *vstate = env->cur_state; 2615 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2616 struct bpf_reg_state *reg = &state->regs[regno]; 2617 struct bpf_map *map = reg->map_ptr; 2618 int err; 2619 2620 err = check_mem_region_access(env, regno, off, size, map->value_size, 2621 zero_size_allowed); 2622 if (err) 2623 return err; 2624 2625 if (map_value_has_spin_lock(map)) { 2626 u32 lock = map->spin_lock_off; 2627 2628 /* if any part of struct bpf_spin_lock can be touched by 2629 * load/store reject this program. 2630 * To check that [x1, x2) overlaps with [y1, y2) 2631 * it is sufficient to check x1 < y2 && y1 < x2. 2632 */ 2633 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2634 lock < reg->umax_value + off + size) { 2635 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2636 return -EACCES; 2637 } 2638 } 2639 return err; 2640 } 2641 2642 #define MAX_PACKET_OFF 0xffff 2643 2644 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2645 { 2646 return prog->aux->linked_prog ? prog->aux->linked_prog->type 2647 : prog->type; 2648 } 2649 2650 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2651 const struct bpf_call_arg_meta *meta, 2652 enum bpf_access_type t) 2653 { 2654 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2655 2656 switch (prog_type) { 2657 /* Program types only with direct read access go here! */ 2658 case BPF_PROG_TYPE_LWT_IN: 2659 case BPF_PROG_TYPE_LWT_OUT: 2660 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2661 case BPF_PROG_TYPE_SK_REUSEPORT: 2662 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2663 case BPF_PROG_TYPE_CGROUP_SKB: 2664 if (t == BPF_WRITE) 2665 return false; 2666 /* fallthrough */ 2667 2668 /* Program types with direct read + write access go here! */ 2669 case BPF_PROG_TYPE_SCHED_CLS: 2670 case BPF_PROG_TYPE_SCHED_ACT: 2671 case BPF_PROG_TYPE_XDP: 2672 case BPF_PROG_TYPE_LWT_XMIT: 2673 case BPF_PROG_TYPE_SK_SKB: 2674 case BPF_PROG_TYPE_SK_MSG: 2675 if (meta) 2676 return meta->pkt_access; 2677 2678 env->seen_direct_write = true; 2679 return true; 2680 2681 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2682 if (t == BPF_WRITE) 2683 env->seen_direct_write = true; 2684 2685 return true; 2686 2687 default: 2688 return false; 2689 } 2690 } 2691 2692 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2693 int size, bool zero_size_allowed) 2694 { 2695 struct bpf_reg_state *regs = cur_regs(env); 2696 struct bpf_reg_state *reg = ®s[regno]; 2697 int err; 2698 2699 /* We may have added a variable offset to the packet pointer; but any 2700 * reg->range we have comes after that. We are only checking the fixed 2701 * offset. 2702 */ 2703 2704 /* We don't allow negative numbers, because we aren't tracking enough 2705 * detail to prove they're safe. 2706 */ 2707 if (reg->smin_value < 0) { 2708 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2709 regno); 2710 return -EACCES; 2711 } 2712 err = __check_mem_access(env, regno, off, size, reg->range, 2713 zero_size_allowed); 2714 if (err) { 2715 verbose(env, "R%d offset is outside of the packet\n", regno); 2716 return err; 2717 } 2718 2719 /* __check_mem_access has made sure "off + size - 1" is within u16. 2720 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2721 * otherwise find_good_pkt_pointers would have refused to set range info 2722 * that __check_mem_access would have rejected this pkt access. 2723 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2724 */ 2725 env->prog->aux->max_pkt_offset = 2726 max_t(u32, env->prog->aux->max_pkt_offset, 2727 off + reg->umax_value + size - 1); 2728 2729 return err; 2730 } 2731 2732 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2733 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2734 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2735 u32 *btf_id) 2736 { 2737 struct bpf_insn_access_aux info = { 2738 .reg_type = *reg_type, 2739 .log = &env->log, 2740 }; 2741 2742 if (env->ops->is_valid_access && 2743 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2744 /* A non zero info.ctx_field_size indicates that this field is a 2745 * candidate for later verifier transformation to load the whole 2746 * field and then apply a mask when accessed with a narrower 2747 * access than actual ctx access size. A zero info.ctx_field_size 2748 * will only allow for whole field access and rejects any other 2749 * type of narrower access. 2750 */ 2751 *reg_type = info.reg_type; 2752 2753 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) 2754 *btf_id = info.btf_id; 2755 else 2756 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2757 /* remember the offset of last byte accessed in ctx */ 2758 if (env->prog->aux->max_ctx_offset < off + size) 2759 env->prog->aux->max_ctx_offset = off + size; 2760 return 0; 2761 } 2762 2763 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2764 return -EACCES; 2765 } 2766 2767 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2768 int size) 2769 { 2770 if (size < 0 || off < 0 || 2771 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2772 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2773 off, size); 2774 return -EACCES; 2775 } 2776 return 0; 2777 } 2778 2779 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2780 u32 regno, int off, int size, 2781 enum bpf_access_type t) 2782 { 2783 struct bpf_reg_state *regs = cur_regs(env); 2784 struct bpf_reg_state *reg = ®s[regno]; 2785 struct bpf_insn_access_aux info = {}; 2786 bool valid; 2787 2788 if (reg->smin_value < 0) { 2789 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2790 regno); 2791 return -EACCES; 2792 } 2793 2794 switch (reg->type) { 2795 case PTR_TO_SOCK_COMMON: 2796 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2797 break; 2798 case PTR_TO_SOCKET: 2799 valid = bpf_sock_is_valid_access(off, size, t, &info); 2800 break; 2801 case PTR_TO_TCP_SOCK: 2802 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2803 break; 2804 case PTR_TO_XDP_SOCK: 2805 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2806 break; 2807 default: 2808 valid = false; 2809 } 2810 2811 2812 if (valid) { 2813 env->insn_aux_data[insn_idx].ctx_field_size = 2814 info.ctx_field_size; 2815 return 0; 2816 } 2817 2818 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2819 regno, reg_type_str[reg->type], off, size); 2820 2821 return -EACCES; 2822 } 2823 2824 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2825 { 2826 return cur_regs(env) + regno; 2827 } 2828 2829 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2830 { 2831 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2832 } 2833 2834 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2835 { 2836 const struct bpf_reg_state *reg = reg_state(env, regno); 2837 2838 return reg->type == PTR_TO_CTX; 2839 } 2840 2841 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2842 { 2843 const struct bpf_reg_state *reg = reg_state(env, regno); 2844 2845 return type_is_sk_pointer(reg->type); 2846 } 2847 2848 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2849 { 2850 const struct bpf_reg_state *reg = reg_state(env, regno); 2851 2852 return type_is_pkt_pointer(reg->type); 2853 } 2854 2855 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2856 { 2857 const struct bpf_reg_state *reg = reg_state(env, regno); 2858 2859 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2860 return reg->type == PTR_TO_FLOW_KEYS; 2861 } 2862 2863 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2864 const struct bpf_reg_state *reg, 2865 int off, int size, bool strict) 2866 { 2867 struct tnum reg_off; 2868 int ip_align; 2869 2870 /* Byte size accesses are always allowed. */ 2871 if (!strict || size == 1) 2872 return 0; 2873 2874 /* For platforms that do not have a Kconfig enabling 2875 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2876 * NET_IP_ALIGN is universally set to '2'. And on platforms 2877 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2878 * to this code only in strict mode where we want to emulate 2879 * the NET_IP_ALIGN==2 checking. Therefore use an 2880 * unconditional IP align value of '2'. 2881 */ 2882 ip_align = 2; 2883 2884 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2885 if (!tnum_is_aligned(reg_off, size)) { 2886 char tn_buf[48]; 2887 2888 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2889 verbose(env, 2890 "misaligned packet access off %d+%s+%d+%d size %d\n", 2891 ip_align, tn_buf, reg->off, off, size); 2892 return -EACCES; 2893 } 2894 2895 return 0; 2896 } 2897 2898 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2899 const struct bpf_reg_state *reg, 2900 const char *pointer_desc, 2901 int off, int size, bool strict) 2902 { 2903 struct tnum reg_off; 2904 2905 /* Byte size accesses are always allowed. */ 2906 if (!strict || size == 1) 2907 return 0; 2908 2909 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2910 if (!tnum_is_aligned(reg_off, size)) { 2911 char tn_buf[48]; 2912 2913 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2914 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2915 pointer_desc, tn_buf, reg->off, off, size); 2916 return -EACCES; 2917 } 2918 2919 return 0; 2920 } 2921 2922 static int check_ptr_alignment(struct bpf_verifier_env *env, 2923 const struct bpf_reg_state *reg, int off, 2924 int size, bool strict_alignment_once) 2925 { 2926 bool strict = env->strict_alignment || strict_alignment_once; 2927 const char *pointer_desc = ""; 2928 2929 switch (reg->type) { 2930 case PTR_TO_PACKET: 2931 case PTR_TO_PACKET_META: 2932 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2933 * right in front, treat it the very same way. 2934 */ 2935 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2936 case PTR_TO_FLOW_KEYS: 2937 pointer_desc = "flow keys "; 2938 break; 2939 case PTR_TO_MAP_VALUE: 2940 pointer_desc = "value "; 2941 break; 2942 case PTR_TO_CTX: 2943 pointer_desc = "context "; 2944 break; 2945 case PTR_TO_STACK: 2946 pointer_desc = "stack "; 2947 /* The stack spill tracking logic in check_stack_write() 2948 * and check_stack_read() relies on stack accesses being 2949 * aligned. 2950 */ 2951 strict = true; 2952 break; 2953 case PTR_TO_SOCKET: 2954 pointer_desc = "sock "; 2955 break; 2956 case PTR_TO_SOCK_COMMON: 2957 pointer_desc = "sock_common "; 2958 break; 2959 case PTR_TO_TCP_SOCK: 2960 pointer_desc = "tcp_sock "; 2961 break; 2962 case PTR_TO_XDP_SOCK: 2963 pointer_desc = "xdp_sock "; 2964 break; 2965 default: 2966 break; 2967 } 2968 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2969 strict); 2970 } 2971 2972 static int update_stack_depth(struct bpf_verifier_env *env, 2973 const struct bpf_func_state *func, 2974 int off) 2975 { 2976 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2977 2978 if (stack >= -off) 2979 return 0; 2980 2981 /* update known max for given subprogram */ 2982 env->subprog_info[func->subprogno].stack_depth = -off; 2983 return 0; 2984 } 2985 2986 /* starting from main bpf function walk all instructions of the function 2987 * and recursively walk all callees that given function can call. 2988 * Ignore jump and exit insns. 2989 * Since recursion is prevented by check_cfg() this algorithm 2990 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2991 */ 2992 static int check_max_stack_depth(struct bpf_verifier_env *env) 2993 { 2994 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2995 struct bpf_subprog_info *subprog = env->subprog_info; 2996 struct bpf_insn *insn = env->prog->insnsi; 2997 bool tail_call_reachable = false; 2998 int ret_insn[MAX_CALL_FRAMES]; 2999 int ret_prog[MAX_CALL_FRAMES]; 3000 int j; 3001 3002 process_func: 3003 /* protect against potential stack overflow that might happen when 3004 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3005 * depth for such case down to 256 so that the worst case scenario 3006 * would result in 8k stack size (32 which is tailcall limit * 256 = 3007 * 8k). 3008 * 3009 * To get the idea what might happen, see an example: 3010 * func1 -> sub rsp, 128 3011 * subfunc1 -> sub rsp, 256 3012 * tailcall1 -> add rsp, 256 3013 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3014 * subfunc2 -> sub rsp, 64 3015 * subfunc22 -> sub rsp, 128 3016 * tailcall2 -> add rsp, 128 3017 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3018 * 3019 * tailcall will unwind the current stack frame but it will not get rid 3020 * of caller's stack as shown on the example above. 3021 */ 3022 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3023 verbose(env, 3024 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3025 depth); 3026 return -EACCES; 3027 } 3028 /* round up to 32-bytes, since this is granularity 3029 * of interpreter stack size 3030 */ 3031 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3032 if (depth > MAX_BPF_STACK) { 3033 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3034 frame + 1, depth); 3035 return -EACCES; 3036 } 3037 continue_func: 3038 subprog_end = subprog[idx + 1].start; 3039 for (; i < subprog_end; i++) { 3040 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3041 continue; 3042 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3043 continue; 3044 /* remember insn and function to return to */ 3045 ret_insn[frame] = i + 1; 3046 ret_prog[frame] = idx; 3047 3048 /* find the callee */ 3049 i = i + insn[i].imm + 1; 3050 idx = find_subprog(env, i); 3051 if (idx < 0) { 3052 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3053 i); 3054 return -EFAULT; 3055 } 3056 3057 if (subprog[idx].has_tail_call) 3058 tail_call_reachable = true; 3059 3060 frame++; 3061 if (frame >= MAX_CALL_FRAMES) { 3062 verbose(env, "the call stack of %d frames is too deep !\n", 3063 frame); 3064 return -E2BIG; 3065 } 3066 goto process_func; 3067 } 3068 /* if tail call got detected across bpf2bpf calls then mark each of the 3069 * currently present subprog frames as tail call reachable subprogs; 3070 * this info will be utilized by JIT so that we will be preserving the 3071 * tail call counter throughout bpf2bpf calls combined with tailcalls 3072 */ 3073 if (tail_call_reachable) 3074 for (j = 0; j < frame; j++) 3075 subprog[ret_prog[j]].tail_call_reachable = true; 3076 3077 /* end of for() loop means the last insn of the 'subprog' 3078 * was reached. Doesn't matter whether it was JA or EXIT 3079 */ 3080 if (frame == 0) 3081 return 0; 3082 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3083 frame--; 3084 i = ret_insn[frame]; 3085 idx = ret_prog[frame]; 3086 goto continue_func; 3087 } 3088 3089 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3090 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3091 const struct bpf_insn *insn, int idx) 3092 { 3093 int start = idx + insn->imm + 1, subprog; 3094 3095 subprog = find_subprog(env, start); 3096 if (subprog < 0) { 3097 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3098 start); 3099 return -EFAULT; 3100 } 3101 return env->subprog_info[subprog].stack_depth; 3102 } 3103 #endif 3104 3105 int check_ctx_reg(struct bpf_verifier_env *env, 3106 const struct bpf_reg_state *reg, int regno) 3107 { 3108 /* Access to ctx or passing it to a helper is only allowed in 3109 * its original, unmodified form. 3110 */ 3111 3112 if (reg->off) { 3113 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3114 regno, reg->off); 3115 return -EACCES; 3116 } 3117 3118 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3119 char tn_buf[48]; 3120 3121 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3122 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3123 return -EACCES; 3124 } 3125 3126 return 0; 3127 } 3128 3129 static int __check_buffer_access(struct bpf_verifier_env *env, 3130 const char *buf_info, 3131 const struct bpf_reg_state *reg, 3132 int regno, int off, int size) 3133 { 3134 if (off < 0) { 3135 verbose(env, 3136 "R%d invalid %s buffer access: off=%d, size=%d\n", 3137 regno, buf_info, off, size); 3138 return -EACCES; 3139 } 3140 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3141 char tn_buf[48]; 3142 3143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3144 verbose(env, 3145 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3146 regno, off, tn_buf); 3147 return -EACCES; 3148 } 3149 3150 return 0; 3151 } 3152 3153 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3154 const struct bpf_reg_state *reg, 3155 int regno, int off, int size) 3156 { 3157 int err; 3158 3159 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3160 if (err) 3161 return err; 3162 3163 if (off + size > env->prog->aux->max_tp_access) 3164 env->prog->aux->max_tp_access = off + size; 3165 3166 return 0; 3167 } 3168 3169 static int check_buffer_access(struct bpf_verifier_env *env, 3170 const struct bpf_reg_state *reg, 3171 int regno, int off, int size, 3172 bool zero_size_allowed, 3173 const char *buf_info, 3174 u32 *max_access) 3175 { 3176 int err; 3177 3178 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3179 if (err) 3180 return err; 3181 3182 if (off + size > *max_access) 3183 *max_access = off + size; 3184 3185 return 0; 3186 } 3187 3188 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3189 static void zext_32_to_64(struct bpf_reg_state *reg) 3190 { 3191 reg->var_off = tnum_subreg(reg->var_off); 3192 __reg_assign_32_into_64(reg); 3193 } 3194 3195 /* truncate register to smaller size (in bytes) 3196 * must be called with size < BPF_REG_SIZE 3197 */ 3198 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3199 { 3200 u64 mask; 3201 3202 /* clear high bits in bit representation */ 3203 reg->var_off = tnum_cast(reg->var_off, size); 3204 3205 /* fix arithmetic bounds */ 3206 mask = ((u64)1 << (size * 8)) - 1; 3207 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3208 reg->umin_value &= mask; 3209 reg->umax_value &= mask; 3210 } else { 3211 reg->umin_value = 0; 3212 reg->umax_value = mask; 3213 } 3214 reg->smin_value = reg->umin_value; 3215 reg->smax_value = reg->umax_value; 3216 3217 /* If size is smaller than 32bit register the 32bit register 3218 * values are also truncated so we push 64-bit bounds into 3219 * 32-bit bounds. Above were truncated < 32-bits already. 3220 */ 3221 if (size >= 4) 3222 return; 3223 __reg_combine_64_into_32(reg); 3224 } 3225 3226 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3227 { 3228 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3229 } 3230 3231 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3232 { 3233 void *ptr; 3234 u64 addr; 3235 int err; 3236 3237 err = map->ops->map_direct_value_addr(map, &addr, off); 3238 if (err) 3239 return err; 3240 ptr = (void *)(long)addr + off; 3241 3242 switch (size) { 3243 case sizeof(u8): 3244 *val = (u64)*(u8 *)ptr; 3245 break; 3246 case sizeof(u16): 3247 *val = (u64)*(u16 *)ptr; 3248 break; 3249 case sizeof(u32): 3250 *val = (u64)*(u32 *)ptr; 3251 break; 3252 case sizeof(u64): 3253 *val = *(u64 *)ptr; 3254 break; 3255 default: 3256 return -EINVAL; 3257 } 3258 return 0; 3259 } 3260 3261 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3262 struct bpf_reg_state *regs, 3263 int regno, int off, int size, 3264 enum bpf_access_type atype, 3265 int value_regno) 3266 { 3267 struct bpf_reg_state *reg = regs + regno; 3268 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id); 3269 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3270 u32 btf_id; 3271 int ret; 3272 3273 if (off < 0) { 3274 verbose(env, 3275 "R%d is ptr_%s invalid negative access: off=%d\n", 3276 regno, tname, off); 3277 return -EACCES; 3278 } 3279 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3280 char tn_buf[48]; 3281 3282 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3283 verbose(env, 3284 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3285 regno, tname, off, tn_buf); 3286 return -EACCES; 3287 } 3288 3289 if (env->ops->btf_struct_access) { 3290 ret = env->ops->btf_struct_access(&env->log, t, off, size, 3291 atype, &btf_id); 3292 } else { 3293 if (atype != BPF_READ) { 3294 verbose(env, "only read is supported\n"); 3295 return -EACCES; 3296 } 3297 3298 ret = btf_struct_access(&env->log, t, off, size, atype, 3299 &btf_id); 3300 } 3301 3302 if (ret < 0) 3303 return ret; 3304 3305 if (atype == BPF_READ && value_regno >= 0) 3306 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3307 3308 return 0; 3309 } 3310 3311 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3312 struct bpf_reg_state *regs, 3313 int regno, int off, int size, 3314 enum bpf_access_type atype, 3315 int value_regno) 3316 { 3317 struct bpf_reg_state *reg = regs + regno; 3318 struct bpf_map *map = reg->map_ptr; 3319 const struct btf_type *t; 3320 const char *tname; 3321 u32 btf_id; 3322 int ret; 3323 3324 if (!btf_vmlinux) { 3325 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3326 return -ENOTSUPP; 3327 } 3328 3329 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3330 verbose(env, "map_ptr access not supported for map type %d\n", 3331 map->map_type); 3332 return -ENOTSUPP; 3333 } 3334 3335 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3336 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3337 3338 if (!env->allow_ptr_to_map_access) { 3339 verbose(env, 3340 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3341 tname); 3342 return -EPERM; 3343 } 3344 3345 if (off < 0) { 3346 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3347 regno, tname, off); 3348 return -EACCES; 3349 } 3350 3351 if (atype != BPF_READ) { 3352 verbose(env, "only read from %s is supported\n", tname); 3353 return -EACCES; 3354 } 3355 3356 ret = btf_struct_access(&env->log, t, off, size, atype, &btf_id); 3357 if (ret < 0) 3358 return ret; 3359 3360 if (value_regno >= 0) 3361 mark_btf_ld_reg(env, regs, value_regno, ret, btf_id); 3362 3363 return 0; 3364 } 3365 3366 3367 /* check whether memory at (regno + off) is accessible for t = (read | write) 3368 * if t==write, value_regno is a register which value is stored into memory 3369 * if t==read, value_regno is a register which will receive the value from memory 3370 * if t==write && value_regno==-1, some unknown value is stored into memory 3371 * if t==read && value_regno==-1, don't care what we read from memory 3372 */ 3373 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3374 int off, int bpf_size, enum bpf_access_type t, 3375 int value_regno, bool strict_alignment_once) 3376 { 3377 struct bpf_reg_state *regs = cur_regs(env); 3378 struct bpf_reg_state *reg = regs + regno; 3379 struct bpf_func_state *state; 3380 int size, err = 0; 3381 3382 size = bpf_size_to_bytes(bpf_size); 3383 if (size < 0) 3384 return size; 3385 3386 /* alignment checks will add in reg->off themselves */ 3387 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3388 if (err) 3389 return err; 3390 3391 /* for access checks, reg->off is just part of off */ 3392 off += reg->off; 3393 3394 if (reg->type == PTR_TO_MAP_VALUE) { 3395 if (t == BPF_WRITE && value_regno >= 0 && 3396 is_pointer_value(env, value_regno)) { 3397 verbose(env, "R%d leaks addr into map\n", value_regno); 3398 return -EACCES; 3399 } 3400 err = check_map_access_type(env, regno, off, size, t); 3401 if (err) 3402 return err; 3403 err = check_map_access(env, regno, off, size, false); 3404 if (!err && t == BPF_READ && value_regno >= 0) { 3405 struct bpf_map *map = reg->map_ptr; 3406 3407 /* if map is read-only, track its contents as scalars */ 3408 if (tnum_is_const(reg->var_off) && 3409 bpf_map_is_rdonly(map) && 3410 map->ops->map_direct_value_addr) { 3411 int map_off = off + reg->var_off.value; 3412 u64 val = 0; 3413 3414 err = bpf_map_direct_read(map, map_off, size, 3415 &val); 3416 if (err) 3417 return err; 3418 3419 regs[value_regno].type = SCALAR_VALUE; 3420 __mark_reg_known(®s[value_regno], val); 3421 } else { 3422 mark_reg_unknown(env, regs, value_regno); 3423 } 3424 } 3425 } else if (reg->type == PTR_TO_MEM) { 3426 if (t == BPF_WRITE && value_regno >= 0 && 3427 is_pointer_value(env, value_regno)) { 3428 verbose(env, "R%d leaks addr into mem\n", value_regno); 3429 return -EACCES; 3430 } 3431 err = check_mem_region_access(env, regno, off, size, 3432 reg->mem_size, false); 3433 if (!err && t == BPF_READ && value_regno >= 0) 3434 mark_reg_unknown(env, regs, value_regno); 3435 } else if (reg->type == PTR_TO_CTX) { 3436 enum bpf_reg_type reg_type = SCALAR_VALUE; 3437 u32 btf_id = 0; 3438 3439 if (t == BPF_WRITE && value_regno >= 0 && 3440 is_pointer_value(env, value_regno)) { 3441 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3442 return -EACCES; 3443 } 3444 3445 err = check_ctx_reg(env, reg, regno); 3446 if (err < 0) 3447 return err; 3448 3449 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf_id); 3450 if (err) 3451 verbose_linfo(env, insn_idx, "; "); 3452 if (!err && t == BPF_READ && value_regno >= 0) { 3453 /* ctx access returns either a scalar, or a 3454 * PTR_TO_PACKET[_META,_END]. In the latter 3455 * case, we know the offset is zero. 3456 */ 3457 if (reg_type == SCALAR_VALUE) { 3458 mark_reg_unknown(env, regs, value_regno); 3459 } else { 3460 mark_reg_known_zero(env, regs, 3461 value_regno); 3462 if (reg_type_may_be_null(reg_type)) 3463 regs[value_regno].id = ++env->id_gen; 3464 /* A load of ctx field could have different 3465 * actual load size with the one encoded in the 3466 * insn. When the dst is PTR, it is for sure not 3467 * a sub-register. 3468 */ 3469 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3470 if (reg_type == PTR_TO_BTF_ID || 3471 reg_type == PTR_TO_BTF_ID_OR_NULL) 3472 regs[value_regno].btf_id = btf_id; 3473 } 3474 regs[value_regno].type = reg_type; 3475 } 3476 3477 } else if (reg->type == PTR_TO_STACK) { 3478 off += reg->var_off.value; 3479 err = check_stack_access(env, reg, off, size); 3480 if (err) 3481 return err; 3482 3483 state = func(env, reg); 3484 err = update_stack_depth(env, state, off); 3485 if (err) 3486 return err; 3487 3488 if (t == BPF_WRITE) 3489 err = check_stack_write(env, state, off, size, 3490 value_regno, insn_idx); 3491 else 3492 err = check_stack_read(env, state, off, size, 3493 value_regno); 3494 } else if (reg_is_pkt_pointer(reg)) { 3495 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3496 verbose(env, "cannot write into packet\n"); 3497 return -EACCES; 3498 } 3499 if (t == BPF_WRITE && value_regno >= 0 && 3500 is_pointer_value(env, value_regno)) { 3501 verbose(env, "R%d leaks addr into packet\n", 3502 value_regno); 3503 return -EACCES; 3504 } 3505 err = check_packet_access(env, regno, off, size, false); 3506 if (!err && t == BPF_READ && value_regno >= 0) 3507 mark_reg_unknown(env, regs, value_regno); 3508 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3509 if (t == BPF_WRITE && value_regno >= 0 && 3510 is_pointer_value(env, value_regno)) { 3511 verbose(env, "R%d leaks addr into flow keys\n", 3512 value_regno); 3513 return -EACCES; 3514 } 3515 3516 err = check_flow_keys_access(env, off, size); 3517 if (!err && t == BPF_READ && value_regno >= 0) 3518 mark_reg_unknown(env, regs, value_regno); 3519 } else if (type_is_sk_pointer(reg->type)) { 3520 if (t == BPF_WRITE) { 3521 verbose(env, "R%d cannot write into %s\n", 3522 regno, reg_type_str[reg->type]); 3523 return -EACCES; 3524 } 3525 err = check_sock_access(env, insn_idx, regno, off, size, t); 3526 if (!err && value_regno >= 0) 3527 mark_reg_unknown(env, regs, value_regno); 3528 } else if (reg->type == PTR_TO_TP_BUFFER) { 3529 err = check_tp_buffer_access(env, reg, regno, off, size); 3530 if (!err && t == BPF_READ && value_regno >= 0) 3531 mark_reg_unknown(env, regs, value_regno); 3532 } else if (reg->type == PTR_TO_BTF_ID) { 3533 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3534 value_regno); 3535 } else if (reg->type == CONST_PTR_TO_MAP) { 3536 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3537 value_regno); 3538 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3539 if (t == BPF_WRITE) { 3540 verbose(env, "R%d cannot write into %s\n", 3541 regno, reg_type_str[reg->type]); 3542 return -EACCES; 3543 } 3544 err = check_buffer_access(env, reg, regno, off, size, false, 3545 "rdonly", 3546 &env->prog->aux->max_rdonly_access); 3547 if (!err && value_regno >= 0) 3548 mark_reg_unknown(env, regs, value_regno); 3549 } else if (reg->type == PTR_TO_RDWR_BUF) { 3550 err = check_buffer_access(env, reg, regno, off, size, false, 3551 "rdwr", 3552 &env->prog->aux->max_rdwr_access); 3553 if (!err && t == BPF_READ && value_regno >= 0) 3554 mark_reg_unknown(env, regs, value_regno); 3555 } else { 3556 verbose(env, "R%d invalid mem access '%s'\n", regno, 3557 reg_type_str[reg->type]); 3558 return -EACCES; 3559 } 3560 3561 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3562 regs[value_regno].type == SCALAR_VALUE) { 3563 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3564 coerce_reg_to_size(®s[value_regno], size); 3565 } 3566 return err; 3567 } 3568 3569 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3570 { 3571 int err; 3572 3573 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3574 insn->imm != 0) { 3575 verbose(env, "BPF_XADD uses reserved fields\n"); 3576 return -EINVAL; 3577 } 3578 3579 /* check src1 operand */ 3580 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3581 if (err) 3582 return err; 3583 3584 /* check src2 operand */ 3585 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3586 if (err) 3587 return err; 3588 3589 if (is_pointer_value(env, insn->src_reg)) { 3590 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3591 return -EACCES; 3592 } 3593 3594 if (is_ctx_reg(env, insn->dst_reg) || 3595 is_pkt_reg(env, insn->dst_reg) || 3596 is_flow_key_reg(env, insn->dst_reg) || 3597 is_sk_reg(env, insn->dst_reg)) { 3598 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3599 insn->dst_reg, 3600 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3601 return -EACCES; 3602 } 3603 3604 /* check whether atomic_add can read the memory */ 3605 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3606 BPF_SIZE(insn->code), BPF_READ, -1, true); 3607 if (err) 3608 return err; 3609 3610 /* check whether atomic_add can write into the same memory */ 3611 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3612 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3613 } 3614 3615 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3616 int off, int access_size, 3617 bool zero_size_allowed) 3618 { 3619 struct bpf_reg_state *reg = reg_state(env, regno); 3620 3621 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3622 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3623 if (tnum_is_const(reg->var_off)) { 3624 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3625 regno, off, access_size); 3626 } else { 3627 char tn_buf[48]; 3628 3629 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3630 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3631 regno, tn_buf, access_size); 3632 } 3633 return -EACCES; 3634 } 3635 return 0; 3636 } 3637 3638 /* when register 'regno' is passed into function that will read 'access_size' 3639 * bytes from that pointer, make sure that it's within stack boundary 3640 * and all elements of stack are initialized. 3641 * Unlike most pointer bounds-checking functions, this one doesn't take an 3642 * 'off' argument, so it has to add in reg->off itself. 3643 */ 3644 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3645 int access_size, bool zero_size_allowed, 3646 struct bpf_call_arg_meta *meta) 3647 { 3648 struct bpf_reg_state *reg = reg_state(env, regno); 3649 struct bpf_func_state *state = func(env, reg); 3650 int err, min_off, max_off, i, j, slot, spi; 3651 3652 if (tnum_is_const(reg->var_off)) { 3653 min_off = max_off = reg->var_off.value + reg->off; 3654 err = __check_stack_boundary(env, regno, min_off, access_size, 3655 zero_size_allowed); 3656 if (err) 3657 return err; 3658 } else { 3659 /* Variable offset is prohibited for unprivileged mode for 3660 * simplicity since it requires corresponding support in 3661 * Spectre masking for stack ALU. 3662 * See also retrieve_ptr_limit(). 3663 */ 3664 if (!env->bypass_spec_v1) { 3665 char tn_buf[48]; 3666 3667 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3668 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3669 regno, tn_buf); 3670 return -EACCES; 3671 } 3672 /* Only initialized buffer on stack is allowed to be accessed 3673 * with variable offset. With uninitialized buffer it's hard to 3674 * guarantee that whole memory is marked as initialized on 3675 * helper return since specific bounds are unknown what may 3676 * cause uninitialized stack leaking. 3677 */ 3678 if (meta && meta->raw_mode) 3679 meta = NULL; 3680 3681 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3682 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3683 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3684 regno); 3685 return -EACCES; 3686 } 3687 min_off = reg->smin_value + reg->off; 3688 max_off = reg->smax_value + reg->off; 3689 err = __check_stack_boundary(env, regno, min_off, access_size, 3690 zero_size_allowed); 3691 if (err) { 3692 verbose(env, "R%d min value is outside of stack bound\n", 3693 regno); 3694 return err; 3695 } 3696 err = __check_stack_boundary(env, regno, max_off, access_size, 3697 zero_size_allowed); 3698 if (err) { 3699 verbose(env, "R%d max value is outside of stack bound\n", 3700 regno); 3701 return err; 3702 } 3703 } 3704 3705 if (meta && meta->raw_mode) { 3706 meta->access_size = access_size; 3707 meta->regno = regno; 3708 return 0; 3709 } 3710 3711 for (i = min_off; i < max_off + access_size; i++) { 3712 u8 *stype; 3713 3714 slot = -i - 1; 3715 spi = slot / BPF_REG_SIZE; 3716 if (state->allocated_stack <= slot) 3717 goto err; 3718 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3719 if (*stype == STACK_MISC) 3720 goto mark; 3721 if (*stype == STACK_ZERO) { 3722 /* helper can write anything into the stack */ 3723 *stype = STACK_MISC; 3724 goto mark; 3725 } 3726 3727 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3728 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3729 goto mark; 3730 3731 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3732 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3733 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3734 for (j = 0; j < BPF_REG_SIZE; j++) 3735 state->stack[spi].slot_type[j] = STACK_MISC; 3736 goto mark; 3737 } 3738 3739 err: 3740 if (tnum_is_const(reg->var_off)) { 3741 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3742 min_off, i - min_off, access_size); 3743 } else { 3744 char tn_buf[48]; 3745 3746 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3747 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3748 tn_buf, i - min_off, access_size); 3749 } 3750 return -EACCES; 3751 mark: 3752 /* reading any byte out of 8-byte 'spill_slot' will cause 3753 * the whole slot to be marked as 'read' 3754 */ 3755 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3756 state->stack[spi].spilled_ptr.parent, 3757 REG_LIVE_READ64); 3758 } 3759 return update_stack_depth(env, state, min_off); 3760 } 3761 3762 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3763 int access_size, bool zero_size_allowed, 3764 struct bpf_call_arg_meta *meta) 3765 { 3766 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3767 3768 switch (reg->type) { 3769 case PTR_TO_PACKET: 3770 case PTR_TO_PACKET_META: 3771 return check_packet_access(env, regno, reg->off, access_size, 3772 zero_size_allowed); 3773 case PTR_TO_MAP_VALUE: 3774 if (check_map_access_type(env, regno, reg->off, access_size, 3775 meta && meta->raw_mode ? BPF_WRITE : 3776 BPF_READ)) 3777 return -EACCES; 3778 return check_map_access(env, regno, reg->off, access_size, 3779 zero_size_allowed); 3780 case PTR_TO_MEM: 3781 return check_mem_region_access(env, regno, reg->off, 3782 access_size, reg->mem_size, 3783 zero_size_allowed); 3784 case PTR_TO_RDONLY_BUF: 3785 if (meta && meta->raw_mode) 3786 return -EACCES; 3787 return check_buffer_access(env, reg, regno, reg->off, 3788 access_size, zero_size_allowed, 3789 "rdonly", 3790 &env->prog->aux->max_rdonly_access); 3791 case PTR_TO_RDWR_BUF: 3792 return check_buffer_access(env, reg, regno, reg->off, 3793 access_size, zero_size_allowed, 3794 "rdwr", 3795 &env->prog->aux->max_rdwr_access); 3796 case PTR_TO_STACK: 3797 return check_stack_boundary(env, regno, access_size, 3798 zero_size_allowed, meta); 3799 default: /* scalar_value or invalid ptr */ 3800 /* Allow zero-byte read from NULL, regardless of pointer type */ 3801 if (zero_size_allowed && access_size == 0 && 3802 register_is_null(reg)) 3803 return 0; 3804 3805 verbose(env, "R%d type=%s expected=%s\n", regno, 3806 reg_type_str[reg->type], 3807 reg_type_str[PTR_TO_STACK]); 3808 return -EACCES; 3809 } 3810 } 3811 3812 /* Implementation details: 3813 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3814 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3815 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3816 * value_or_null->value transition, since the verifier only cares about 3817 * the range of access to valid map value pointer and doesn't care about actual 3818 * address of the map element. 3819 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3820 * reg->id > 0 after value_or_null->value transition. By doing so 3821 * two bpf_map_lookups will be considered two different pointers that 3822 * point to different bpf_spin_locks. 3823 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3824 * dead-locks. 3825 * Since only one bpf_spin_lock is allowed the checks are simpler than 3826 * reg_is_refcounted() logic. The verifier needs to remember only 3827 * one spin_lock instead of array of acquired_refs. 3828 * cur_state->active_spin_lock remembers which map value element got locked 3829 * and clears it after bpf_spin_unlock. 3830 */ 3831 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3832 bool is_lock) 3833 { 3834 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3835 struct bpf_verifier_state *cur = env->cur_state; 3836 bool is_const = tnum_is_const(reg->var_off); 3837 struct bpf_map *map = reg->map_ptr; 3838 u64 val = reg->var_off.value; 3839 3840 if (!is_const) { 3841 verbose(env, 3842 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3843 regno); 3844 return -EINVAL; 3845 } 3846 if (!map->btf) { 3847 verbose(env, 3848 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3849 map->name); 3850 return -EINVAL; 3851 } 3852 if (!map_value_has_spin_lock(map)) { 3853 if (map->spin_lock_off == -E2BIG) 3854 verbose(env, 3855 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3856 map->name); 3857 else if (map->spin_lock_off == -ENOENT) 3858 verbose(env, 3859 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3860 map->name); 3861 else 3862 verbose(env, 3863 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3864 map->name); 3865 return -EINVAL; 3866 } 3867 if (map->spin_lock_off != val + reg->off) { 3868 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3869 val + reg->off); 3870 return -EINVAL; 3871 } 3872 if (is_lock) { 3873 if (cur->active_spin_lock) { 3874 verbose(env, 3875 "Locking two bpf_spin_locks are not allowed\n"); 3876 return -EINVAL; 3877 } 3878 cur->active_spin_lock = reg->id; 3879 } else { 3880 if (!cur->active_spin_lock) { 3881 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3882 return -EINVAL; 3883 } 3884 if (cur->active_spin_lock != reg->id) { 3885 verbose(env, "bpf_spin_unlock of different lock\n"); 3886 return -EINVAL; 3887 } 3888 cur->active_spin_lock = 0; 3889 } 3890 return 0; 3891 } 3892 3893 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3894 { 3895 return type == ARG_PTR_TO_MEM || 3896 type == ARG_PTR_TO_MEM_OR_NULL || 3897 type == ARG_PTR_TO_UNINIT_MEM; 3898 } 3899 3900 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3901 { 3902 return type == ARG_CONST_SIZE || 3903 type == ARG_CONST_SIZE_OR_ZERO; 3904 } 3905 3906 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3907 { 3908 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3909 } 3910 3911 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3912 { 3913 return type == ARG_PTR_TO_INT || 3914 type == ARG_PTR_TO_LONG; 3915 } 3916 3917 static int int_ptr_type_to_size(enum bpf_arg_type type) 3918 { 3919 if (type == ARG_PTR_TO_INT) 3920 return sizeof(u32); 3921 else if (type == ARG_PTR_TO_LONG) 3922 return sizeof(u64); 3923 3924 return -EINVAL; 3925 } 3926 3927 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3928 const struct bpf_call_arg_meta *meta, 3929 enum bpf_arg_type *arg_type) 3930 { 3931 if (!meta->map_ptr) { 3932 /* kernel subsystem misconfigured verifier */ 3933 verbose(env, "invalid map_ptr to access map->type\n"); 3934 return -EACCES; 3935 } 3936 3937 switch (meta->map_ptr->map_type) { 3938 case BPF_MAP_TYPE_SOCKMAP: 3939 case BPF_MAP_TYPE_SOCKHASH: 3940 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3941 *arg_type = ARG_PTR_TO_SOCKET; 3942 } else { 3943 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3944 return -EINVAL; 3945 } 3946 break; 3947 3948 default: 3949 break; 3950 } 3951 return 0; 3952 } 3953 3954 struct bpf_reg_types { 3955 const enum bpf_reg_type types[10]; 3956 }; 3957 3958 static const struct bpf_reg_types map_key_value_types = { 3959 .types = { 3960 PTR_TO_STACK, 3961 PTR_TO_PACKET, 3962 PTR_TO_PACKET_META, 3963 PTR_TO_MAP_VALUE, 3964 }, 3965 }; 3966 3967 static const struct bpf_reg_types sock_types = { 3968 .types = { 3969 PTR_TO_SOCK_COMMON, 3970 PTR_TO_SOCKET, 3971 PTR_TO_TCP_SOCK, 3972 PTR_TO_XDP_SOCK, 3973 }, 3974 }; 3975 3976 static const struct bpf_reg_types mem_types = { 3977 .types = { 3978 PTR_TO_STACK, 3979 PTR_TO_PACKET, 3980 PTR_TO_PACKET_META, 3981 PTR_TO_MAP_VALUE, 3982 PTR_TO_MEM, 3983 PTR_TO_RDONLY_BUF, 3984 PTR_TO_RDWR_BUF, 3985 }, 3986 }; 3987 3988 static const struct bpf_reg_types int_ptr_types = { 3989 .types = { 3990 PTR_TO_STACK, 3991 PTR_TO_PACKET, 3992 PTR_TO_PACKET_META, 3993 PTR_TO_MAP_VALUE, 3994 }, 3995 }; 3996 3997 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 3998 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 3999 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4000 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4001 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4002 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4003 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4004 4005 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4006 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4007 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4008 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4009 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4010 [ARG_CONST_SIZE] = &scalar_types, 4011 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4012 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4013 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4014 [ARG_PTR_TO_CTX] = &context_types, 4015 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4016 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4017 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4018 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4019 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4020 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4021 [ARG_PTR_TO_MEM] = &mem_types, 4022 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4023 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4024 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4025 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4026 [ARG_PTR_TO_INT] = &int_ptr_types, 4027 [ARG_PTR_TO_LONG] = &int_ptr_types, 4028 }; 4029 4030 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4031 const struct bpf_reg_types *compatible) 4032 { 4033 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4034 enum bpf_reg_type expected, type = reg->type; 4035 int i, j; 4036 4037 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4038 expected = compatible->types[i]; 4039 if (expected == NOT_INIT) 4040 break; 4041 4042 if (type == expected) 4043 return 0; 4044 } 4045 4046 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4047 for (j = 0; j + 1 < i; j++) 4048 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4049 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4050 return -EACCES; 4051 } 4052 4053 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4054 struct bpf_call_arg_meta *meta, 4055 const struct bpf_func_proto *fn) 4056 { 4057 u32 regno = BPF_REG_1 + arg; 4058 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4059 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4060 const struct bpf_reg_types *compatible; 4061 enum bpf_reg_type type = reg->type; 4062 int err = 0; 4063 4064 if (arg_type == ARG_DONTCARE) 4065 return 0; 4066 4067 err = check_reg_arg(env, regno, SRC_OP); 4068 if (err) 4069 return err; 4070 4071 if (arg_type == ARG_ANYTHING) { 4072 if (is_pointer_value(env, regno)) { 4073 verbose(env, "R%d leaks addr into helper function\n", 4074 regno); 4075 return -EACCES; 4076 } 4077 return 0; 4078 } 4079 4080 if (type_is_pkt_pointer(type) && 4081 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4082 verbose(env, "helper access to the packet is not allowed\n"); 4083 return -EACCES; 4084 } 4085 4086 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4087 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4088 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4089 err = resolve_map_arg_type(env, meta, &arg_type); 4090 if (err) 4091 return err; 4092 } 4093 4094 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4095 /* A NULL register has a SCALAR_VALUE type, so skip 4096 * type checking. 4097 */ 4098 goto skip_type_check; 4099 4100 compatible = compatible_reg_types[arg_type]; 4101 if (!compatible) { 4102 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4103 return -EFAULT; 4104 } 4105 4106 err = check_reg_type(env, regno, compatible); 4107 if (err) 4108 return err; 4109 4110 if (type == PTR_TO_BTF_ID) { 4111 const u32 *btf_id = fn->arg_btf_id[arg]; 4112 4113 if (!btf_id) { 4114 verbose(env, "verifier internal error: missing BTF ID\n"); 4115 return -EFAULT; 4116 } 4117 4118 if (!btf_struct_ids_match(&env->log, reg->off, reg->btf_id, *btf_id)) { 4119 verbose(env, "R%d is of type %s but %s is expected\n", 4120 regno, kernel_type_name(reg->btf_id), kernel_type_name(*btf_id)); 4121 return -EACCES; 4122 } 4123 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4124 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4125 regno); 4126 return -EACCES; 4127 } 4128 } else if (type == PTR_TO_CTX) { 4129 err = check_ctx_reg(env, reg, regno); 4130 if (err < 0) 4131 return err; 4132 } 4133 4134 skip_type_check: 4135 if (reg->ref_obj_id) { 4136 if (meta->ref_obj_id) { 4137 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4138 regno, reg->ref_obj_id, 4139 meta->ref_obj_id); 4140 return -EFAULT; 4141 } 4142 meta->ref_obj_id = reg->ref_obj_id; 4143 } 4144 4145 if (arg_type == ARG_CONST_MAP_PTR) { 4146 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4147 meta->map_ptr = reg->map_ptr; 4148 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4149 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4150 * check that [key, key + map->key_size) are within 4151 * stack limits and initialized 4152 */ 4153 if (!meta->map_ptr) { 4154 /* in function declaration map_ptr must come before 4155 * map_key, so that it's verified and known before 4156 * we have to check map_key here. Otherwise it means 4157 * that kernel subsystem misconfigured verifier 4158 */ 4159 verbose(env, "invalid map_ptr to access map->key\n"); 4160 return -EACCES; 4161 } 4162 err = check_helper_mem_access(env, regno, 4163 meta->map_ptr->key_size, false, 4164 NULL); 4165 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4166 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4167 !register_is_null(reg)) || 4168 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4169 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4170 * check [value, value + map->value_size) validity 4171 */ 4172 if (!meta->map_ptr) { 4173 /* kernel subsystem misconfigured verifier */ 4174 verbose(env, "invalid map_ptr to access map->value\n"); 4175 return -EACCES; 4176 } 4177 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4178 err = check_helper_mem_access(env, regno, 4179 meta->map_ptr->value_size, false, 4180 meta); 4181 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4182 if (meta->func_id == BPF_FUNC_spin_lock) { 4183 if (process_spin_lock(env, regno, true)) 4184 return -EACCES; 4185 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4186 if (process_spin_lock(env, regno, false)) 4187 return -EACCES; 4188 } else { 4189 verbose(env, "verifier internal error\n"); 4190 return -EFAULT; 4191 } 4192 } else if (arg_type_is_mem_ptr(arg_type)) { 4193 /* The access to this pointer is only checked when we hit the 4194 * next is_mem_size argument below. 4195 */ 4196 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4197 } else if (arg_type_is_mem_size(arg_type)) { 4198 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4199 4200 /* This is used to refine r0 return value bounds for helpers 4201 * that enforce this value as an upper bound on return values. 4202 * See do_refine_retval_range() for helpers that can refine 4203 * the return value. C type of helper is u32 so we pull register 4204 * bound from umax_value however, if negative verifier errors 4205 * out. Only upper bounds can be learned because retval is an 4206 * int type and negative retvals are allowed. 4207 */ 4208 meta->msize_max_value = reg->umax_value; 4209 4210 /* The register is SCALAR_VALUE; the access check 4211 * happens using its boundaries. 4212 */ 4213 if (!tnum_is_const(reg->var_off)) 4214 /* For unprivileged variable accesses, disable raw 4215 * mode so that the program is required to 4216 * initialize all the memory that the helper could 4217 * just partially fill up. 4218 */ 4219 meta = NULL; 4220 4221 if (reg->smin_value < 0) { 4222 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4223 regno); 4224 return -EACCES; 4225 } 4226 4227 if (reg->umin_value == 0) { 4228 err = check_helper_mem_access(env, regno - 1, 0, 4229 zero_size_allowed, 4230 meta); 4231 if (err) 4232 return err; 4233 } 4234 4235 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4236 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4237 regno); 4238 return -EACCES; 4239 } 4240 err = check_helper_mem_access(env, regno - 1, 4241 reg->umax_value, 4242 zero_size_allowed, meta); 4243 if (!err) 4244 err = mark_chain_precision(env, regno); 4245 } else if (arg_type_is_alloc_size(arg_type)) { 4246 if (!tnum_is_const(reg->var_off)) { 4247 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4248 regno); 4249 return -EACCES; 4250 } 4251 meta->mem_size = reg->var_off.value; 4252 } else if (arg_type_is_int_ptr(arg_type)) { 4253 int size = int_ptr_type_to_size(arg_type); 4254 4255 err = check_helper_mem_access(env, regno, size, false, meta); 4256 if (err) 4257 return err; 4258 err = check_ptr_alignment(env, reg, 0, size, true); 4259 } 4260 4261 return err; 4262 } 4263 4264 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4265 { 4266 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4267 enum bpf_prog_type type = resolve_prog_type(env->prog); 4268 4269 if (func_id != BPF_FUNC_map_update_elem) 4270 return false; 4271 4272 /* It's not possible to get access to a locked struct sock in these 4273 * contexts, so updating is safe. 4274 */ 4275 switch (type) { 4276 case BPF_PROG_TYPE_TRACING: 4277 if (eatype == BPF_TRACE_ITER) 4278 return true; 4279 break; 4280 case BPF_PROG_TYPE_SOCKET_FILTER: 4281 case BPF_PROG_TYPE_SCHED_CLS: 4282 case BPF_PROG_TYPE_SCHED_ACT: 4283 case BPF_PROG_TYPE_XDP: 4284 case BPF_PROG_TYPE_SK_REUSEPORT: 4285 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4286 case BPF_PROG_TYPE_SK_LOOKUP: 4287 return true; 4288 default: 4289 break; 4290 } 4291 4292 verbose(env, "cannot update sockmap in this context\n"); 4293 return false; 4294 } 4295 4296 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4297 { 4298 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4299 } 4300 4301 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4302 struct bpf_map *map, int func_id) 4303 { 4304 if (!map) 4305 return 0; 4306 4307 /* We need a two way check, first is from map perspective ... */ 4308 switch (map->map_type) { 4309 case BPF_MAP_TYPE_PROG_ARRAY: 4310 if (func_id != BPF_FUNC_tail_call) 4311 goto error; 4312 break; 4313 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4314 if (func_id != BPF_FUNC_perf_event_read && 4315 func_id != BPF_FUNC_perf_event_output && 4316 func_id != BPF_FUNC_skb_output && 4317 func_id != BPF_FUNC_perf_event_read_value && 4318 func_id != BPF_FUNC_xdp_output) 4319 goto error; 4320 break; 4321 case BPF_MAP_TYPE_RINGBUF: 4322 if (func_id != BPF_FUNC_ringbuf_output && 4323 func_id != BPF_FUNC_ringbuf_reserve && 4324 func_id != BPF_FUNC_ringbuf_submit && 4325 func_id != BPF_FUNC_ringbuf_discard && 4326 func_id != BPF_FUNC_ringbuf_query) 4327 goto error; 4328 break; 4329 case BPF_MAP_TYPE_STACK_TRACE: 4330 if (func_id != BPF_FUNC_get_stackid) 4331 goto error; 4332 break; 4333 case BPF_MAP_TYPE_CGROUP_ARRAY: 4334 if (func_id != BPF_FUNC_skb_under_cgroup && 4335 func_id != BPF_FUNC_current_task_under_cgroup) 4336 goto error; 4337 break; 4338 case BPF_MAP_TYPE_CGROUP_STORAGE: 4339 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4340 if (func_id != BPF_FUNC_get_local_storage) 4341 goto error; 4342 break; 4343 case BPF_MAP_TYPE_DEVMAP: 4344 case BPF_MAP_TYPE_DEVMAP_HASH: 4345 if (func_id != BPF_FUNC_redirect_map && 4346 func_id != BPF_FUNC_map_lookup_elem) 4347 goto error; 4348 break; 4349 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4350 * appear. 4351 */ 4352 case BPF_MAP_TYPE_CPUMAP: 4353 if (func_id != BPF_FUNC_redirect_map) 4354 goto error; 4355 break; 4356 case BPF_MAP_TYPE_XSKMAP: 4357 if (func_id != BPF_FUNC_redirect_map && 4358 func_id != BPF_FUNC_map_lookup_elem) 4359 goto error; 4360 break; 4361 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4362 case BPF_MAP_TYPE_HASH_OF_MAPS: 4363 if (func_id != BPF_FUNC_map_lookup_elem) 4364 goto error; 4365 break; 4366 case BPF_MAP_TYPE_SOCKMAP: 4367 if (func_id != BPF_FUNC_sk_redirect_map && 4368 func_id != BPF_FUNC_sock_map_update && 4369 func_id != BPF_FUNC_map_delete_elem && 4370 func_id != BPF_FUNC_msg_redirect_map && 4371 func_id != BPF_FUNC_sk_select_reuseport && 4372 func_id != BPF_FUNC_map_lookup_elem && 4373 !may_update_sockmap(env, func_id)) 4374 goto error; 4375 break; 4376 case BPF_MAP_TYPE_SOCKHASH: 4377 if (func_id != BPF_FUNC_sk_redirect_hash && 4378 func_id != BPF_FUNC_sock_hash_update && 4379 func_id != BPF_FUNC_map_delete_elem && 4380 func_id != BPF_FUNC_msg_redirect_hash && 4381 func_id != BPF_FUNC_sk_select_reuseport && 4382 func_id != BPF_FUNC_map_lookup_elem && 4383 !may_update_sockmap(env, func_id)) 4384 goto error; 4385 break; 4386 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4387 if (func_id != BPF_FUNC_sk_select_reuseport) 4388 goto error; 4389 break; 4390 case BPF_MAP_TYPE_QUEUE: 4391 case BPF_MAP_TYPE_STACK: 4392 if (func_id != BPF_FUNC_map_peek_elem && 4393 func_id != BPF_FUNC_map_pop_elem && 4394 func_id != BPF_FUNC_map_push_elem) 4395 goto error; 4396 break; 4397 case BPF_MAP_TYPE_SK_STORAGE: 4398 if (func_id != BPF_FUNC_sk_storage_get && 4399 func_id != BPF_FUNC_sk_storage_delete) 4400 goto error; 4401 break; 4402 case BPF_MAP_TYPE_INODE_STORAGE: 4403 if (func_id != BPF_FUNC_inode_storage_get && 4404 func_id != BPF_FUNC_inode_storage_delete) 4405 goto error; 4406 break; 4407 default: 4408 break; 4409 } 4410 4411 /* ... and second from the function itself. */ 4412 switch (func_id) { 4413 case BPF_FUNC_tail_call: 4414 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4415 goto error; 4416 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4417 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4418 return -EINVAL; 4419 } 4420 break; 4421 case BPF_FUNC_perf_event_read: 4422 case BPF_FUNC_perf_event_output: 4423 case BPF_FUNC_perf_event_read_value: 4424 case BPF_FUNC_skb_output: 4425 case BPF_FUNC_xdp_output: 4426 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4427 goto error; 4428 break; 4429 case BPF_FUNC_get_stackid: 4430 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4431 goto error; 4432 break; 4433 case BPF_FUNC_current_task_under_cgroup: 4434 case BPF_FUNC_skb_under_cgroup: 4435 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4436 goto error; 4437 break; 4438 case BPF_FUNC_redirect_map: 4439 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4440 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4441 map->map_type != BPF_MAP_TYPE_CPUMAP && 4442 map->map_type != BPF_MAP_TYPE_XSKMAP) 4443 goto error; 4444 break; 4445 case BPF_FUNC_sk_redirect_map: 4446 case BPF_FUNC_msg_redirect_map: 4447 case BPF_FUNC_sock_map_update: 4448 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4449 goto error; 4450 break; 4451 case BPF_FUNC_sk_redirect_hash: 4452 case BPF_FUNC_msg_redirect_hash: 4453 case BPF_FUNC_sock_hash_update: 4454 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4455 goto error; 4456 break; 4457 case BPF_FUNC_get_local_storage: 4458 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4459 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4460 goto error; 4461 break; 4462 case BPF_FUNC_sk_select_reuseport: 4463 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4464 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4465 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4466 goto error; 4467 break; 4468 case BPF_FUNC_map_peek_elem: 4469 case BPF_FUNC_map_pop_elem: 4470 case BPF_FUNC_map_push_elem: 4471 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4472 map->map_type != BPF_MAP_TYPE_STACK) 4473 goto error; 4474 break; 4475 case BPF_FUNC_sk_storage_get: 4476 case BPF_FUNC_sk_storage_delete: 4477 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4478 goto error; 4479 break; 4480 case BPF_FUNC_inode_storage_get: 4481 case BPF_FUNC_inode_storage_delete: 4482 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4483 goto error; 4484 break; 4485 default: 4486 break; 4487 } 4488 4489 return 0; 4490 error: 4491 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4492 map->map_type, func_id_name(func_id), func_id); 4493 return -EINVAL; 4494 } 4495 4496 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4497 { 4498 int count = 0; 4499 4500 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4501 count++; 4502 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4503 count++; 4504 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4505 count++; 4506 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4507 count++; 4508 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4509 count++; 4510 4511 /* We only support one arg being in raw mode at the moment, 4512 * which is sufficient for the helper functions we have 4513 * right now. 4514 */ 4515 return count <= 1; 4516 } 4517 4518 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4519 enum bpf_arg_type arg_next) 4520 { 4521 return (arg_type_is_mem_ptr(arg_curr) && 4522 !arg_type_is_mem_size(arg_next)) || 4523 (!arg_type_is_mem_ptr(arg_curr) && 4524 arg_type_is_mem_size(arg_next)); 4525 } 4526 4527 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4528 { 4529 /* bpf_xxx(..., buf, len) call will access 'len' 4530 * bytes from memory 'buf'. Both arg types need 4531 * to be paired, so make sure there's no buggy 4532 * helper function specification. 4533 */ 4534 if (arg_type_is_mem_size(fn->arg1_type) || 4535 arg_type_is_mem_ptr(fn->arg5_type) || 4536 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4537 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4538 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4539 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4540 return false; 4541 4542 return true; 4543 } 4544 4545 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4546 { 4547 int count = 0; 4548 4549 if (arg_type_may_be_refcounted(fn->arg1_type)) 4550 count++; 4551 if (arg_type_may_be_refcounted(fn->arg2_type)) 4552 count++; 4553 if (arg_type_may_be_refcounted(fn->arg3_type)) 4554 count++; 4555 if (arg_type_may_be_refcounted(fn->arg4_type)) 4556 count++; 4557 if (arg_type_may_be_refcounted(fn->arg5_type)) 4558 count++; 4559 4560 /* A reference acquiring function cannot acquire 4561 * another refcounted ptr. 4562 */ 4563 if (may_be_acquire_function(func_id) && count) 4564 return false; 4565 4566 /* We only support one arg being unreferenced at the moment, 4567 * which is sufficient for the helper functions we have right now. 4568 */ 4569 return count <= 1; 4570 } 4571 4572 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4573 { 4574 int i; 4575 4576 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) 4577 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4578 return false; 4579 4580 return true; 4581 } 4582 4583 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4584 { 4585 return check_raw_mode_ok(fn) && 4586 check_arg_pair_ok(fn) && 4587 check_btf_id_ok(fn) && 4588 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4589 } 4590 4591 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4592 * are now invalid, so turn them into unknown SCALAR_VALUE. 4593 */ 4594 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4595 struct bpf_func_state *state) 4596 { 4597 struct bpf_reg_state *regs = state->regs, *reg; 4598 int i; 4599 4600 for (i = 0; i < MAX_BPF_REG; i++) 4601 if (reg_is_pkt_pointer_any(®s[i])) 4602 mark_reg_unknown(env, regs, i); 4603 4604 bpf_for_each_spilled_reg(i, state, reg) { 4605 if (!reg) 4606 continue; 4607 if (reg_is_pkt_pointer_any(reg)) 4608 __mark_reg_unknown(env, reg); 4609 } 4610 } 4611 4612 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4613 { 4614 struct bpf_verifier_state *vstate = env->cur_state; 4615 int i; 4616 4617 for (i = 0; i <= vstate->curframe; i++) 4618 __clear_all_pkt_pointers(env, vstate->frame[i]); 4619 } 4620 4621 static void release_reg_references(struct bpf_verifier_env *env, 4622 struct bpf_func_state *state, 4623 int ref_obj_id) 4624 { 4625 struct bpf_reg_state *regs = state->regs, *reg; 4626 int i; 4627 4628 for (i = 0; i < MAX_BPF_REG; i++) 4629 if (regs[i].ref_obj_id == ref_obj_id) 4630 mark_reg_unknown(env, regs, i); 4631 4632 bpf_for_each_spilled_reg(i, state, reg) { 4633 if (!reg) 4634 continue; 4635 if (reg->ref_obj_id == ref_obj_id) 4636 __mark_reg_unknown(env, reg); 4637 } 4638 } 4639 4640 /* The pointer with the specified id has released its reference to kernel 4641 * resources. Identify all copies of the same pointer and clear the reference. 4642 */ 4643 static int release_reference(struct bpf_verifier_env *env, 4644 int ref_obj_id) 4645 { 4646 struct bpf_verifier_state *vstate = env->cur_state; 4647 int err; 4648 int i; 4649 4650 err = release_reference_state(cur_func(env), ref_obj_id); 4651 if (err) 4652 return err; 4653 4654 for (i = 0; i <= vstate->curframe; i++) 4655 release_reg_references(env, vstate->frame[i], ref_obj_id); 4656 4657 return 0; 4658 } 4659 4660 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4661 struct bpf_reg_state *regs) 4662 { 4663 int i; 4664 4665 /* after the call registers r0 - r5 were scratched */ 4666 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4667 mark_reg_not_init(env, regs, caller_saved[i]); 4668 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4669 } 4670 } 4671 4672 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4673 int *insn_idx) 4674 { 4675 struct bpf_verifier_state *state = env->cur_state; 4676 struct bpf_func_info_aux *func_info_aux; 4677 struct bpf_func_state *caller, *callee; 4678 int i, err, subprog, target_insn; 4679 bool is_global = false; 4680 4681 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4682 verbose(env, "the call stack of %d frames is too deep\n", 4683 state->curframe + 2); 4684 return -E2BIG; 4685 } 4686 4687 target_insn = *insn_idx + insn->imm; 4688 subprog = find_subprog(env, target_insn + 1); 4689 if (subprog < 0) { 4690 verbose(env, "verifier bug. No program starts at insn %d\n", 4691 target_insn + 1); 4692 return -EFAULT; 4693 } 4694 4695 caller = state->frame[state->curframe]; 4696 if (state->frame[state->curframe + 1]) { 4697 verbose(env, "verifier bug. Frame %d already allocated\n", 4698 state->curframe + 1); 4699 return -EFAULT; 4700 } 4701 4702 func_info_aux = env->prog->aux->func_info_aux; 4703 if (func_info_aux) 4704 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4705 err = btf_check_func_arg_match(env, subprog, caller->regs); 4706 if (err == -EFAULT) 4707 return err; 4708 if (is_global) { 4709 if (err) { 4710 verbose(env, "Caller passes invalid args into func#%d\n", 4711 subprog); 4712 return err; 4713 } else { 4714 if (env->log.level & BPF_LOG_LEVEL) 4715 verbose(env, 4716 "Func#%d is global and valid. Skipping.\n", 4717 subprog); 4718 clear_caller_saved_regs(env, caller->regs); 4719 4720 /* All global functions return SCALAR_VALUE */ 4721 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4722 4723 /* continue with next insn after call */ 4724 return 0; 4725 } 4726 } 4727 4728 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4729 if (!callee) 4730 return -ENOMEM; 4731 state->frame[state->curframe + 1] = callee; 4732 4733 /* callee cannot access r0, r6 - r9 for reading and has to write 4734 * into its own stack before reading from it. 4735 * callee can read/write into caller's stack 4736 */ 4737 init_func_state(env, callee, 4738 /* remember the callsite, it will be used by bpf_exit */ 4739 *insn_idx /* callsite */, 4740 state->curframe + 1 /* frameno within this callchain */, 4741 subprog /* subprog number within this prog */); 4742 4743 /* Transfer references to the callee */ 4744 err = transfer_reference_state(callee, caller); 4745 if (err) 4746 return err; 4747 4748 /* copy r1 - r5 args that callee can access. The copy includes parent 4749 * pointers, which connects us up to the liveness chain 4750 */ 4751 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4752 callee->regs[i] = caller->regs[i]; 4753 4754 clear_caller_saved_regs(env, caller->regs); 4755 4756 /* only increment it after check_reg_arg() finished */ 4757 state->curframe++; 4758 4759 /* and go analyze first insn of the callee */ 4760 *insn_idx = target_insn; 4761 4762 if (env->log.level & BPF_LOG_LEVEL) { 4763 verbose(env, "caller:\n"); 4764 print_verifier_state(env, caller); 4765 verbose(env, "callee:\n"); 4766 print_verifier_state(env, callee); 4767 } 4768 return 0; 4769 } 4770 4771 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4772 { 4773 struct bpf_verifier_state *state = env->cur_state; 4774 struct bpf_func_state *caller, *callee; 4775 struct bpf_reg_state *r0; 4776 int err; 4777 4778 callee = state->frame[state->curframe]; 4779 r0 = &callee->regs[BPF_REG_0]; 4780 if (r0->type == PTR_TO_STACK) { 4781 /* technically it's ok to return caller's stack pointer 4782 * (or caller's caller's pointer) back to the caller, 4783 * since these pointers are valid. Only current stack 4784 * pointer will be invalid as soon as function exits, 4785 * but let's be conservative 4786 */ 4787 verbose(env, "cannot return stack pointer to the caller\n"); 4788 return -EINVAL; 4789 } 4790 4791 state->curframe--; 4792 caller = state->frame[state->curframe]; 4793 /* return to the caller whatever r0 had in the callee */ 4794 caller->regs[BPF_REG_0] = *r0; 4795 4796 /* Transfer references to the caller */ 4797 err = transfer_reference_state(caller, callee); 4798 if (err) 4799 return err; 4800 4801 *insn_idx = callee->callsite + 1; 4802 if (env->log.level & BPF_LOG_LEVEL) { 4803 verbose(env, "returning from callee:\n"); 4804 print_verifier_state(env, callee); 4805 verbose(env, "to caller at %d:\n", *insn_idx); 4806 print_verifier_state(env, caller); 4807 } 4808 /* clear everything in the callee */ 4809 free_func_state(callee); 4810 state->frame[state->curframe + 1] = NULL; 4811 return 0; 4812 } 4813 4814 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4815 int func_id, 4816 struct bpf_call_arg_meta *meta) 4817 { 4818 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4819 4820 if (ret_type != RET_INTEGER || 4821 (func_id != BPF_FUNC_get_stack && 4822 func_id != BPF_FUNC_probe_read_str && 4823 func_id != BPF_FUNC_probe_read_kernel_str && 4824 func_id != BPF_FUNC_probe_read_user_str)) 4825 return; 4826 4827 ret_reg->smax_value = meta->msize_max_value; 4828 ret_reg->s32_max_value = meta->msize_max_value; 4829 __reg_deduce_bounds(ret_reg); 4830 __reg_bound_offset(ret_reg); 4831 __update_reg_bounds(ret_reg); 4832 } 4833 4834 static int 4835 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4836 int func_id, int insn_idx) 4837 { 4838 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4839 struct bpf_map *map = meta->map_ptr; 4840 4841 if (func_id != BPF_FUNC_tail_call && 4842 func_id != BPF_FUNC_map_lookup_elem && 4843 func_id != BPF_FUNC_map_update_elem && 4844 func_id != BPF_FUNC_map_delete_elem && 4845 func_id != BPF_FUNC_map_push_elem && 4846 func_id != BPF_FUNC_map_pop_elem && 4847 func_id != BPF_FUNC_map_peek_elem) 4848 return 0; 4849 4850 if (map == NULL) { 4851 verbose(env, "kernel subsystem misconfigured verifier\n"); 4852 return -EINVAL; 4853 } 4854 4855 /* In case of read-only, some additional restrictions 4856 * need to be applied in order to prevent altering the 4857 * state of the map from program side. 4858 */ 4859 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4860 (func_id == BPF_FUNC_map_delete_elem || 4861 func_id == BPF_FUNC_map_update_elem || 4862 func_id == BPF_FUNC_map_push_elem || 4863 func_id == BPF_FUNC_map_pop_elem)) { 4864 verbose(env, "write into map forbidden\n"); 4865 return -EACCES; 4866 } 4867 4868 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4869 bpf_map_ptr_store(aux, meta->map_ptr, 4870 !meta->map_ptr->bypass_spec_v1); 4871 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4872 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4873 !meta->map_ptr->bypass_spec_v1); 4874 return 0; 4875 } 4876 4877 static int 4878 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4879 int func_id, int insn_idx) 4880 { 4881 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4882 struct bpf_reg_state *regs = cur_regs(env), *reg; 4883 struct bpf_map *map = meta->map_ptr; 4884 struct tnum range; 4885 u64 val; 4886 int err; 4887 4888 if (func_id != BPF_FUNC_tail_call) 4889 return 0; 4890 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 4891 verbose(env, "kernel subsystem misconfigured verifier\n"); 4892 return -EINVAL; 4893 } 4894 4895 range = tnum_range(0, map->max_entries - 1); 4896 reg = ®s[BPF_REG_3]; 4897 4898 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 4899 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4900 return 0; 4901 } 4902 4903 err = mark_chain_precision(env, BPF_REG_3); 4904 if (err) 4905 return err; 4906 4907 val = reg->var_off.value; 4908 if (bpf_map_key_unseen(aux)) 4909 bpf_map_key_store(aux, val); 4910 else if (!bpf_map_key_poisoned(aux) && 4911 bpf_map_key_immediate(aux) != val) 4912 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 4913 return 0; 4914 } 4915 4916 static int check_reference_leak(struct bpf_verifier_env *env) 4917 { 4918 struct bpf_func_state *state = cur_func(env); 4919 int i; 4920 4921 for (i = 0; i < state->acquired_refs; i++) { 4922 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 4923 state->refs[i].id, state->refs[i].insn_idx); 4924 } 4925 return state->acquired_refs ? -EINVAL : 0; 4926 } 4927 4928 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 4929 { 4930 const struct bpf_func_proto *fn = NULL; 4931 struct bpf_reg_state *regs; 4932 struct bpf_call_arg_meta meta; 4933 bool changes_data; 4934 int i, err; 4935 4936 /* find function prototype */ 4937 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 4938 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 4939 func_id); 4940 return -EINVAL; 4941 } 4942 4943 if (env->ops->get_func_proto) 4944 fn = env->ops->get_func_proto(func_id, env->prog); 4945 if (!fn) { 4946 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 4947 func_id); 4948 return -EINVAL; 4949 } 4950 4951 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 4952 if (!env->prog->gpl_compatible && fn->gpl_only) { 4953 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 4954 return -EINVAL; 4955 } 4956 4957 if (fn->allowed && !fn->allowed(env->prog)) { 4958 verbose(env, "helper call is not allowed in probe\n"); 4959 return -EINVAL; 4960 } 4961 4962 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 4963 changes_data = bpf_helper_changes_pkt_data(fn->func); 4964 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 4965 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 4966 func_id_name(func_id), func_id); 4967 return -EINVAL; 4968 } 4969 4970 memset(&meta, 0, sizeof(meta)); 4971 meta.pkt_access = fn->pkt_access; 4972 4973 err = check_func_proto(fn, func_id); 4974 if (err) { 4975 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 4976 func_id_name(func_id), func_id); 4977 return err; 4978 } 4979 4980 meta.func_id = func_id; 4981 /* check args */ 4982 for (i = 0; i < 5; i++) { 4983 err = check_func_arg(env, i, &meta, fn); 4984 if (err) 4985 return err; 4986 } 4987 4988 err = record_func_map(env, &meta, func_id, insn_idx); 4989 if (err) 4990 return err; 4991 4992 err = record_func_key(env, &meta, func_id, insn_idx); 4993 if (err) 4994 return err; 4995 4996 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4997 * is inferred from register state. 4998 */ 4999 for (i = 0; i < meta.access_size; i++) { 5000 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5001 BPF_WRITE, -1, false); 5002 if (err) 5003 return err; 5004 } 5005 5006 if (func_id == BPF_FUNC_tail_call) { 5007 err = check_reference_leak(env); 5008 if (err) { 5009 verbose(env, "tail_call would lead to reference leak\n"); 5010 return err; 5011 } 5012 } else if (is_release_function(func_id)) { 5013 err = release_reference(env, meta.ref_obj_id); 5014 if (err) { 5015 verbose(env, "func %s#%d reference has not been acquired before\n", 5016 func_id_name(func_id), func_id); 5017 return err; 5018 } 5019 } 5020 5021 regs = cur_regs(env); 5022 5023 /* check that flags argument in get_local_storage(map, flags) is 0, 5024 * this is required because get_local_storage() can't return an error. 5025 */ 5026 if (func_id == BPF_FUNC_get_local_storage && 5027 !register_is_null(®s[BPF_REG_2])) { 5028 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5029 return -EINVAL; 5030 } 5031 5032 /* reset caller saved regs */ 5033 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5034 mark_reg_not_init(env, regs, caller_saved[i]); 5035 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5036 } 5037 5038 /* helper call returns 64-bit value. */ 5039 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5040 5041 /* update return register (already marked as written above) */ 5042 if (fn->ret_type == RET_INTEGER) { 5043 /* sets type to SCALAR_VALUE */ 5044 mark_reg_unknown(env, regs, BPF_REG_0); 5045 } else if (fn->ret_type == RET_VOID) { 5046 regs[BPF_REG_0].type = NOT_INIT; 5047 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5048 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5049 /* There is no offset yet applied, variable or fixed */ 5050 mark_reg_known_zero(env, regs, BPF_REG_0); 5051 /* remember map_ptr, so that check_map_access() 5052 * can check 'value_size' boundary of memory access 5053 * to map element returned from bpf_map_lookup_elem() 5054 */ 5055 if (meta.map_ptr == NULL) { 5056 verbose(env, 5057 "kernel subsystem misconfigured verifier\n"); 5058 return -EINVAL; 5059 } 5060 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5061 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5062 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5063 if (map_value_has_spin_lock(meta.map_ptr)) 5064 regs[BPF_REG_0].id = ++env->id_gen; 5065 } else { 5066 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5067 regs[BPF_REG_0].id = ++env->id_gen; 5068 } 5069 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5070 mark_reg_known_zero(env, regs, BPF_REG_0); 5071 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5072 regs[BPF_REG_0].id = ++env->id_gen; 5073 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5074 mark_reg_known_zero(env, regs, BPF_REG_0); 5075 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5076 regs[BPF_REG_0].id = ++env->id_gen; 5077 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5078 mark_reg_known_zero(env, regs, BPF_REG_0); 5079 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5080 regs[BPF_REG_0].id = ++env->id_gen; 5081 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5082 mark_reg_known_zero(env, regs, BPF_REG_0); 5083 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5084 regs[BPF_REG_0].id = ++env->id_gen; 5085 regs[BPF_REG_0].mem_size = meta.mem_size; 5086 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL) { 5087 int ret_btf_id; 5088 5089 mark_reg_known_zero(env, regs, BPF_REG_0); 5090 regs[BPF_REG_0].type = PTR_TO_BTF_ID_OR_NULL; 5091 ret_btf_id = *fn->ret_btf_id; 5092 if (ret_btf_id == 0) { 5093 verbose(env, "invalid return type %d of func %s#%d\n", 5094 fn->ret_type, func_id_name(func_id), func_id); 5095 return -EINVAL; 5096 } 5097 regs[BPF_REG_0].btf_id = ret_btf_id; 5098 } else { 5099 verbose(env, "unknown return type %d of func %s#%d\n", 5100 fn->ret_type, func_id_name(func_id), func_id); 5101 return -EINVAL; 5102 } 5103 5104 if (is_ptr_cast_function(func_id)) { 5105 /* For release_reference() */ 5106 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5107 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5108 int id = acquire_reference_state(env, insn_idx); 5109 5110 if (id < 0) 5111 return id; 5112 /* For mark_ptr_or_null_reg() */ 5113 regs[BPF_REG_0].id = id; 5114 /* For release_reference() */ 5115 regs[BPF_REG_0].ref_obj_id = id; 5116 } 5117 5118 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5119 5120 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5121 if (err) 5122 return err; 5123 5124 if ((func_id == BPF_FUNC_get_stack || 5125 func_id == BPF_FUNC_get_task_stack) && 5126 !env->prog->has_callchain_buf) { 5127 const char *err_str; 5128 5129 #ifdef CONFIG_PERF_EVENTS 5130 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5131 err_str = "cannot get callchain buffer for func %s#%d\n"; 5132 #else 5133 err = -ENOTSUPP; 5134 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5135 #endif 5136 if (err) { 5137 verbose(env, err_str, func_id_name(func_id), func_id); 5138 return err; 5139 } 5140 5141 env->prog->has_callchain_buf = true; 5142 } 5143 5144 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5145 env->prog->call_get_stack = true; 5146 5147 if (changes_data) 5148 clear_all_pkt_pointers(env); 5149 return 0; 5150 } 5151 5152 static bool signed_add_overflows(s64 a, s64 b) 5153 { 5154 /* Do the add in u64, where overflow is well-defined */ 5155 s64 res = (s64)((u64)a + (u64)b); 5156 5157 if (b < 0) 5158 return res > a; 5159 return res < a; 5160 } 5161 5162 static bool signed_add32_overflows(s64 a, s64 b) 5163 { 5164 /* Do the add in u32, where overflow is well-defined */ 5165 s32 res = (s32)((u32)a + (u32)b); 5166 5167 if (b < 0) 5168 return res > a; 5169 return res < a; 5170 } 5171 5172 static bool signed_sub_overflows(s32 a, s32 b) 5173 { 5174 /* Do the sub in u64, where overflow is well-defined */ 5175 s64 res = (s64)((u64)a - (u64)b); 5176 5177 if (b < 0) 5178 return res < a; 5179 return res > a; 5180 } 5181 5182 static bool signed_sub32_overflows(s32 a, s32 b) 5183 { 5184 /* Do the sub in u64, where overflow is well-defined */ 5185 s32 res = (s32)((u32)a - (u32)b); 5186 5187 if (b < 0) 5188 return res < a; 5189 return res > a; 5190 } 5191 5192 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5193 const struct bpf_reg_state *reg, 5194 enum bpf_reg_type type) 5195 { 5196 bool known = tnum_is_const(reg->var_off); 5197 s64 val = reg->var_off.value; 5198 s64 smin = reg->smin_value; 5199 5200 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5201 verbose(env, "math between %s pointer and %lld is not allowed\n", 5202 reg_type_str[type], val); 5203 return false; 5204 } 5205 5206 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5207 verbose(env, "%s pointer offset %d is not allowed\n", 5208 reg_type_str[type], reg->off); 5209 return false; 5210 } 5211 5212 if (smin == S64_MIN) { 5213 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5214 reg_type_str[type]); 5215 return false; 5216 } 5217 5218 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5219 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5220 smin, reg_type_str[type]); 5221 return false; 5222 } 5223 5224 return true; 5225 } 5226 5227 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5228 { 5229 return &env->insn_aux_data[env->insn_idx]; 5230 } 5231 5232 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5233 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5234 { 5235 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5236 (opcode == BPF_SUB && !off_is_neg); 5237 u32 off; 5238 5239 switch (ptr_reg->type) { 5240 case PTR_TO_STACK: 5241 /* Indirect variable offset stack access is prohibited in 5242 * unprivileged mode so it's not handled here. 5243 */ 5244 off = ptr_reg->off + ptr_reg->var_off.value; 5245 if (mask_to_left) 5246 *ptr_limit = MAX_BPF_STACK + off; 5247 else 5248 *ptr_limit = -off; 5249 return 0; 5250 case PTR_TO_MAP_VALUE: 5251 if (mask_to_left) { 5252 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5253 } else { 5254 off = ptr_reg->smin_value + ptr_reg->off; 5255 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5256 } 5257 return 0; 5258 default: 5259 return -EINVAL; 5260 } 5261 } 5262 5263 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5264 const struct bpf_insn *insn) 5265 { 5266 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5267 } 5268 5269 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5270 u32 alu_state, u32 alu_limit) 5271 { 5272 /* If we arrived here from different branches with different 5273 * state or limits to sanitize, then this won't work. 5274 */ 5275 if (aux->alu_state && 5276 (aux->alu_state != alu_state || 5277 aux->alu_limit != alu_limit)) 5278 return -EACCES; 5279 5280 /* Corresponding fixup done in fixup_bpf_calls(). */ 5281 aux->alu_state = alu_state; 5282 aux->alu_limit = alu_limit; 5283 return 0; 5284 } 5285 5286 static int sanitize_val_alu(struct bpf_verifier_env *env, 5287 struct bpf_insn *insn) 5288 { 5289 struct bpf_insn_aux_data *aux = cur_aux(env); 5290 5291 if (can_skip_alu_sanitation(env, insn)) 5292 return 0; 5293 5294 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5295 } 5296 5297 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5298 struct bpf_insn *insn, 5299 const struct bpf_reg_state *ptr_reg, 5300 struct bpf_reg_state *dst_reg, 5301 bool off_is_neg) 5302 { 5303 struct bpf_verifier_state *vstate = env->cur_state; 5304 struct bpf_insn_aux_data *aux = cur_aux(env); 5305 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5306 u8 opcode = BPF_OP(insn->code); 5307 u32 alu_state, alu_limit; 5308 struct bpf_reg_state tmp; 5309 bool ret; 5310 5311 if (can_skip_alu_sanitation(env, insn)) 5312 return 0; 5313 5314 /* We already marked aux for masking from non-speculative 5315 * paths, thus we got here in the first place. We only care 5316 * to explore bad access from here. 5317 */ 5318 if (vstate->speculative) 5319 goto do_sim; 5320 5321 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5322 alu_state |= ptr_is_dst_reg ? 5323 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5324 5325 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5326 return 0; 5327 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5328 return -EACCES; 5329 do_sim: 5330 /* Simulate and find potential out-of-bounds access under 5331 * speculative execution from truncation as a result of 5332 * masking when off was not within expected range. If off 5333 * sits in dst, then we temporarily need to move ptr there 5334 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5335 * for cases where we use K-based arithmetic in one direction 5336 * and truncated reg-based in the other in order to explore 5337 * bad access. 5338 */ 5339 if (!ptr_is_dst_reg) { 5340 tmp = *dst_reg; 5341 *dst_reg = *ptr_reg; 5342 } 5343 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5344 if (!ptr_is_dst_reg && ret) 5345 *dst_reg = tmp; 5346 return !ret ? -EFAULT : 0; 5347 } 5348 5349 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5350 * Caller should also handle BPF_MOV case separately. 5351 * If we return -EACCES, caller may want to try again treating pointer as a 5352 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5353 */ 5354 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5355 struct bpf_insn *insn, 5356 const struct bpf_reg_state *ptr_reg, 5357 const struct bpf_reg_state *off_reg) 5358 { 5359 struct bpf_verifier_state *vstate = env->cur_state; 5360 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5361 struct bpf_reg_state *regs = state->regs, *dst_reg; 5362 bool known = tnum_is_const(off_reg->var_off); 5363 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5364 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5365 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5366 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5367 u32 dst = insn->dst_reg, src = insn->src_reg; 5368 u8 opcode = BPF_OP(insn->code); 5369 int ret; 5370 5371 dst_reg = ®s[dst]; 5372 5373 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5374 smin_val > smax_val || umin_val > umax_val) { 5375 /* Taint dst register if offset had invalid bounds derived from 5376 * e.g. dead branches. 5377 */ 5378 __mark_reg_unknown(env, dst_reg); 5379 return 0; 5380 } 5381 5382 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5383 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5384 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5385 __mark_reg_unknown(env, dst_reg); 5386 return 0; 5387 } 5388 5389 verbose(env, 5390 "R%d 32-bit pointer arithmetic prohibited\n", 5391 dst); 5392 return -EACCES; 5393 } 5394 5395 switch (ptr_reg->type) { 5396 case PTR_TO_MAP_VALUE_OR_NULL: 5397 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5398 dst, reg_type_str[ptr_reg->type]); 5399 return -EACCES; 5400 case CONST_PTR_TO_MAP: 5401 /* smin_val represents the known value */ 5402 if (known && smin_val == 0 && opcode == BPF_ADD) 5403 break; 5404 /* fall-through */ 5405 case PTR_TO_PACKET_END: 5406 case PTR_TO_SOCKET: 5407 case PTR_TO_SOCKET_OR_NULL: 5408 case PTR_TO_SOCK_COMMON: 5409 case PTR_TO_SOCK_COMMON_OR_NULL: 5410 case PTR_TO_TCP_SOCK: 5411 case PTR_TO_TCP_SOCK_OR_NULL: 5412 case PTR_TO_XDP_SOCK: 5413 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5414 dst, reg_type_str[ptr_reg->type]); 5415 return -EACCES; 5416 case PTR_TO_MAP_VALUE: 5417 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5418 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5419 off_reg == dst_reg ? dst : src); 5420 return -EACCES; 5421 } 5422 fallthrough; 5423 default: 5424 break; 5425 } 5426 5427 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5428 * The id may be overwritten later if we create a new variable offset. 5429 */ 5430 dst_reg->type = ptr_reg->type; 5431 dst_reg->id = ptr_reg->id; 5432 5433 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5434 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5435 return -EINVAL; 5436 5437 /* pointer types do not carry 32-bit bounds at the moment. */ 5438 __mark_reg32_unbounded(dst_reg); 5439 5440 switch (opcode) { 5441 case BPF_ADD: 5442 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5443 if (ret < 0) { 5444 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5445 return ret; 5446 } 5447 /* We can take a fixed offset as long as it doesn't overflow 5448 * the s32 'off' field 5449 */ 5450 if (known && (ptr_reg->off + smin_val == 5451 (s64)(s32)(ptr_reg->off + smin_val))) { 5452 /* pointer += K. Accumulate it into fixed offset */ 5453 dst_reg->smin_value = smin_ptr; 5454 dst_reg->smax_value = smax_ptr; 5455 dst_reg->umin_value = umin_ptr; 5456 dst_reg->umax_value = umax_ptr; 5457 dst_reg->var_off = ptr_reg->var_off; 5458 dst_reg->off = ptr_reg->off + smin_val; 5459 dst_reg->raw = ptr_reg->raw; 5460 break; 5461 } 5462 /* A new variable offset is created. Note that off_reg->off 5463 * == 0, since it's a scalar. 5464 * dst_reg gets the pointer type and since some positive 5465 * integer value was added to the pointer, give it a new 'id' 5466 * if it's a PTR_TO_PACKET. 5467 * this creates a new 'base' pointer, off_reg (variable) gets 5468 * added into the variable offset, and we copy the fixed offset 5469 * from ptr_reg. 5470 */ 5471 if (signed_add_overflows(smin_ptr, smin_val) || 5472 signed_add_overflows(smax_ptr, smax_val)) { 5473 dst_reg->smin_value = S64_MIN; 5474 dst_reg->smax_value = S64_MAX; 5475 } else { 5476 dst_reg->smin_value = smin_ptr + smin_val; 5477 dst_reg->smax_value = smax_ptr + smax_val; 5478 } 5479 if (umin_ptr + umin_val < umin_ptr || 5480 umax_ptr + umax_val < umax_ptr) { 5481 dst_reg->umin_value = 0; 5482 dst_reg->umax_value = U64_MAX; 5483 } else { 5484 dst_reg->umin_value = umin_ptr + umin_val; 5485 dst_reg->umax_value = umax_ptr + umax_val; 5486 } 5487 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5488 dst_reg->off = ptr_reg->off; 5489 dst_reg->raw = ptr_reg->raw; 5490 if (reg_is_pkt_pointer(ptr_reg)) { 5491 dst_reg->id = ++env->id_gen; 5492 /* something was added to pkt_ptr, set range to zero */ 5493 dst_reg->raw = 0; 5494 } 5495 break; 5496 case BPF_SUB: 5497 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5498 if (ret < 0) { 5499 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5500 return ret; 5501 } 5502 if (dst_reg == off_reg) { 5503 /* scalar -= pointer. Creates an unknown scalar */ 5504 verbose(env, "R%d tried to subtract pointer from scalar\n", 5505 dst); 5506 return -EACCES; 5507 } 5508 /* We don't allow subtraction from FP, because (according to 5509 * test_verifier.c test "invalid fp arithmetic", JITs might not 5510 * be able to deal with it. 5511 */ 5512 if (ptr_reg->type == PTR_TO_STACK) { 5513 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5514 dst); 5515 return -EACCES; 5516 } 5517 if (known && (ptr_reg->off - smin_val == 5518 (s64)(s32)(ptr_reg->off - smin_val))) { 5519 /* pointer -= K. Subtract it from fixed offset */ 5520 dst_reg->smin_value = smin_ptr; 5521 dst_reg->smax_value = smax_ptr; 5522 dst_reg->umin_value = umin_ptr; 5523 dst_reg->umax_value = umax_ptr; 5524 dst_reg->var_off = ptr_reg->var_off; 5525 dst_reg->id = ptr_reg->id; 5526 dst_reg->off = ptr_reg->off - smin_val; 5527 dst_reg->raw = ptr_reg->raw; 5528 break; 5529 } 5530 /* A new variable offset is created. If the subtrahend is known 5531 * nonnegative, then any reg->range we had before is still good. 5532 */ 5533 if (signed_sub_overflows(smin_ptr, smax_val) || 5534 signed_sub_overflows(smax_ptr, smin_val)) { 5535 /* Overflow possible, we know nothing */ 5536 dst_reg->smin_value = S64_MIN; 5537 dst_reg->smax_value = S64_MAX; 5538 } else { 5539 dst_reg->smin_value = smin_ptr - smax_val; 5540 dst_reg->smax_value = smax_ptr - smin_val; 5541 } 5542 if (umin_ptr < umax_val) { 5543 /* Overflow possible, we know nothing */ 5544 dst_reg->umin_value = 0; 5545 dst_reg->umax_value = U64_MAX; 5546 } else { 5547 /* Cannot overflow (as long as bounds are consistent) */ 5548 dst_reg->umin_value = umin_ptr - umax_val; 5549 dst_reg->umax_value = umax_ptr - umin_val; 5550 } 5551 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5552 dst_reg->off = ptr_reg->off; 5553 dst_reg->raw = ptr_reg->raw; 5554 if (reg_is_pkt_pointer(ptr_reg)) { 5555 dst_reg->id = ++env->id_gen; 5556 /* something was added to pkt_ptr, set range to zero */ 5557 if (smin_val < 0) 5558 dst_reg->raw = 0; 5559 } 5560 break; 5561 case BPF_AND: 5562 case BPF_OR: 5563 case BPF_XOR: 5564 /* bitwise ops on pointers are troublesome, prohibit. */ 5565 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5566 dst, bpf_alu_string[opcode >> 4]); 5567 return -EACCES; 5568 default: 5569 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5570 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5571 dst, bpf_alu_string[opcode >> 4]); 5572 return -EACCES; 5573 } 5574 5575 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5576 return -EINVAL; 5577 5578 __update_reg_bounds(dst_reg); 5579 __reg_deduce_bounds(dst_reg); 5580 __reg_bound_offset(dst_reg); 5581 5582 /* For unprivileged we require that resulting offset must be in bounds 5583 * in order to be able to sanitize access later on. 5584 */ 5585 if (!env->bypass_spec_v1) { 5586 if (dst_reg->type == PTR_TO_MAP_VALUE && 5587 check_map_access(env, dst, dst_reg->off, 1, false)) { 5588 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5589 "prohibited for !root\n", dst); 5590 return -EACCES; 5591 } else if (dst_reg->type == PTR_TO_STACK && 5592 check_stack_access(env, dst_reg, dst_reg->off + 5593 dst_reg->var_off.value, 1)) { 5594 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5595 "prohibited for !root\n", dst); 5596 return -EACCES; 5597 } 5598 } 5599 5600 return 0; 5601 } 5602 5603 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5604 struct bpf_reg_state *src_reg) 5605 { 5606 s32 smin_val = src_reg->s32_min_value; 5607 s32 smax_val = src_reg->s32_max_value; 5608 u32 umin_val = src_reg->u32_min_value; 5609 u32 umax_val = src_reg->u32_max_value; 5610 5611 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5612 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5613 dst_reg->s32_min_value = S32_MIN; 5614 dst_reg->s32_max_value = S32_MAX; 5615 } else { 5616 dst_reg->s32_min_value += smin_val; 5617 dst_reg->s32_max_value += smax_val; 5618 } 5619 if (dst_reg->u32_min_value + umin_val < umin_val || 5620 dst_reg->u32_max_value + umax_val < umax_val) { 5621 dst_reg->u32_min_value = 0; 5622 dst_reg->u32_max_value = U32_MAX; 5623 } else { 5624 dst_reg->u32_min_value += umin_val; 5625 dst_reg->u32_max_value += umax_val; 5626 } 5627 } 5628 5629 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5630 struct bpf_reg_state *src_reg) 5631 { 5632 s64 smin_val = src_reg->smin_value; 5633 s64 smax_val = src_reg->smax_value; 5634 u64 umin_val = src_reg->umin_value; 5635 u64 umax_val = src_reg->umax_value; 5636 5637 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5638 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5639 dst_reg->smin_value = S64_MIN; 5640 dst_reg->smax_value = S64_MAX; 5641 } else { 5642 dst_reg->smin_value += smin_val; 5643 dst_reg->smax_value += smax_val; 5644 } 5645 if (dst_reg->umin_value + umin_val < umin_val || 5646 dst_reg->umax_value + umax_val < umax_val) { 5647 dst_reg->umin_value = 0; 5648 dst_reg->umax_value = U64_MAX; 5649 } else { 5650 dst_reg->umin_value += umin_val; 5651 dst_reg->umax_value += umax_val; 5652 } 5653 } 5654 5655 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5656 struct bpf_reg_state *src_reg) 5657 { 5658 s32 smin_val = src_reg->s32_min_value; 5659 s32 smax_val = src_reg->s32_max_value; 5660 u32 umin_val = src_reg->u32_min_value; 5661 u32 umax_val = src_reg->u32_max_value; 5662 5663 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5664 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5665 /* Overflow possible, we know nothing */ 5666 dst_reg->s32_min_value = S32_MIN; 5667 dst_reg->s32_max_value = S32_MAX; 5668 } else { 5669 dst_reg->s32_min_value -= smax_val; 5670 dst_reg->s32_max_value -= smin_val; 5671 } 5672 if (dst_reg->u32_min_value < umax_val) { 5673 /* Overflow possible, we know nothing */ 5674 dst_reg->u32_min_value = 0; 5675 dst_reg->u32_max_value = U32_MAX; 5676 } else { 5677 /* Cannot overflow (as long as bounds are consistent) */ 5678 dst_reg->u32_min_value -= umax_val; 5679 dst_reg->u32_max_value -= umin_val; 5680 } 5681 } 5682 5683 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5684 struct bpf_reg_state *src_reg) 5685 { 5686 s64 smin_val = src_reg->smin_value; 5687 s64 smax_val = src_reg->smax_value; 5688 u64 umin_val = src_reg->umin_value; 5689 u64 umax_val = src_reg->umax_value; 5690 5691 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5692 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5693 /* Overflow possible, we know nothing */ 5694 dst_reg->smin_value = S64_MIN; 5695 dst_reg->smax_value = S64_MAX; 5696 } else { 5697 dst_reg->smin_value -= smax_val; 5698 dst_reg->smax_value -= smin_val; 5699 } 5700 if (dst_reg->umin_value < umax_val) { 5701 /* Overflow possible, we know nothing */ 5702 dst_reg->umin_value = 0; 5703 dst_reg->umax_value = U64_MAX; 5704 } else { 5705 /* Cannot overflow (as long as bounds are consistent) */ 5706 dst_reg->umin_value -= umax_val; 5707 dst_reg->umax_value -= umin_val; 5708 } 5709 } 5710 5711 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5712 struct bpf_reg_state *src_reg) 5713 { 5714 s32 smin_val = src_reg->s32_min_value; 5715 u32 umin_val = src_reg->u32_min_value; 5716 u32 umax_val = src_reg->u32_max_value; 5717 5718 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5719 /* Ain't nobody got time to multiply that sign */ 5720 __mark_reg32_unbounded(dst_reg); 5721 return; 5722 } 5723 /* Both values are positive, so we can work with unsigned and 5724 * copy the result to signed (unless it exceeds S32_MAX). 5725 */ 5726 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5727 /* Potential overflow, we know nothing */ 5728 __mark_reg32_unbounded(dst_reg); 5729 return; 5730 } 5731 dst_reg->u32_min_value *= umin_val; 5732 dst_reg->u32_max_value *= umax_val; 5733 if (dst_reg->u32_max_value > S32_MAX) { 5734 /* Overflow possible, we know nothing */ 5735 dst_reg->s32_min_value = S32_MIN; 5736 dst_reg->s32_max_value = S32_MAX; 5737 } else { 5738 dst_reg->s32_min_value = dst_reg->u32_min_value; 5739 dst_reg->s32_max_value = dst_reg->u32_max_value; 5740 } 5741 } 5742 5743 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5744 struct bpf_reg_state *src_reg) 5745 { 5746 s64 smin_val = src_reg->smin_value; 5747 u64 umin_val = src_reg->umin_value; 5748 u64 umax_val = src_reg->umax_value; 5749 5750 if (smin_val < 0 || dst_reg->smin_value < 0) { 5751 /* Ain't nobody got time to multiply that sign */ 5752 __mark_reg64_unbounded(dst_reg); 5753 return; 5754 } 5755 /* Both values are positive, so we can work with unsigned and 5756 * copy the result to signed (unless it exceeds S64_MAX). 5757 */ 5758 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5759 /* Potential overflow, we know nothing */ 5760 __mark_reg64_unbounded(dst_reg); 5761 return; 5762 } 5763 dst_reg->umin_value *= umin_val; 5764 dst_reg->umax_value *= umax_val; 5765 if (dst_reg->umax_value > S64_MAX) { 5766 /* Overflow possible, we know nothing */ 5767 dst_reg->smin_value = S64_MIN; 5768 dst_reg->smax_value = S64_MAX; 5769 } else { 5770 dst_reg->smin_value = dst_reg->umin_value; 5771 dst_reg->smax_value = dst_reg->umax_value; 5772 } 5773 } 5774 5775 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5776 struct bpf_reg_state *src_reg) 5777 { 5778 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5779 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5780 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5781 s32 smin_val = src_reg->s32_min_value; 5782 u32 umax_val = src_reg->u32_max_value; 5783 5784 /* Assuming scalar64_min_max_and will be called so its safe 5785 * to skip updating register for known 32-bit case. 5786 */ 5787 if (src_known && dst_known) 5788 return; 5789 5790 /* We get our minimum from the var_off, since that's inherently 5791 * bitwise. Our maximum is the minimum of the operands' maxima. 5792 */ 5793 dst_reg->u32_min_value = var32_off.value; 5794 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5795 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5796 /* Lose signed bounds when ANDing negative numbers, 5797 * ain't nobody got time for that. 5798 */ 5799 dst_reg->s32_min_value = S32_MIN; 5800 dst_reg->s32_max_value = S32_MAX; 5801 } else { 5802 /* ANDing two positives gives a positive, so safe to 5803 * cast result into s64. 5804 */ 5805 dst_reg->s32_min_value = dst_reg->u32_min_value; 5806 dst_reg->s32_max_value = dst_reg->u32_max_value; 5807 } 5808 5809 } 5810 5811 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5812 struct bpf_reg_state *src_reg) 5813 { 5814 bool src_known = tnum_is_const(src_reg->var_off); 5815 bool dst_known = tnum_is_const(dst_reg->var_off); 5816 s64 smin_val = src_reg->smin_value; 5817 u64 umax_val = src_reg->umax_value; 5818 5819 if (src_known && dst_known) { 5820 __mark_reg_known(dst_reg, dst_reg->var_off.value & 5821 src_reg->var_off.value); 5822 return; 5823 } 5824 5825 /* We get our minimum from the var_off, since that's inherently 5826 * bitwise. Our maximum is the minimum of the operands' maxima. 5827 */ 5828 dst_reg->umin_value = dst_reg->var_off.value; 5829 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5830 if (dst_reg->smin_value < 0 || smin_val < 0) { 5831 /* Lose signed bounds when ANDing negative numbers, 5832 * ain't nobody got time for that. 5833 */ 5834 dst_reg->smin_value = S64_MIN; 5835 dst_reg->smax_value = S64_MAX; 5836 } else { 5837 /* ANDing two positives gives a positive, so safe to 5838 * cast result into s64. 5839 */ 5840 dst_reg->smin_value = dst_reg->umin_value; 5841 dst_reg->smax_value = dst_reg->umax_value; 5842 } 5843 /* We may learn something more from the var_off */ 5844 __update_reg_bounds(dst_reg); 5845 } 5846 5847 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5848 struct bpf_reg_state *src_reg) 5849 { 5850 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5851 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5852 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5853 s32 smin_val = src_reg->smin_value; 5854 u32 umin_val = src_reg->umin_value; 5855 5856 /* Assuming scalar64_min_max_or will be called so it is safe 5857 * to skip updating register for known case. 5858 */ 5859 if (src_known && dst_known) 5860 return; 5861 5862 /* We get our maximum from the var_off, and our minimum is the 5863 * maximum of the operands' minima 5864 */ 5865 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 5866 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5867 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5868 /* Lose signed bounds when ORing negative numbers, 5869 * ain't nobody got time for that. 5870 */ 5871 dst_reg->s32_min_value = S32_MIN; 5872 dst_reg->s32_max_value = S32_MAX; 5873 } else { 5874 /* ORing two positives gives a positive, so safe to 5875 * cast result into s64. 5876 */ 5877 dst_reg->s32_min_value = dst_reg->umin_value; 5878 dst_reg->s32_max_value = dst_reg->umax_value; 5879 } 5880 } 5881 5882 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 5883 struct bpf_reg_state *src_reg) 5884 { 5885 bool src_known = tnum_is_const(src_reg->var_off); 5886 bool dst_known = tnum_is_const(dst_reg->var_off); 5887 s64 smin_val = src_reg->smin_value; 5888 u64 umin_val = src_reg->umin_value; 5889 5890 if (src_known && dst_known) { 5891 __mark_reg_known(dst_reg, dst_reg->var_off.value | 5892 src_reg->var_off.value); 5893 return; 5894 } 5895 5896 /* We get our maximum from the var_off, and our minimum is the 5897 * maximum of the operands' minima 5898 */ 5899 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 5900 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5901 if (dst_reg->smin_value < 0 || smin_val < 0) { 5902 /* Lose signed bounds when ORing negative numbers, 5903 * ain't nobody got time for that. 5904 */ 5905 dst_reg->smin_value = S64_MIN; 5906 dst_reg->smax_value = S64_MAX; 5907 } else { 5908 /* ORing two positives gives a positive, so safe to 5909 * cast result into s64. 5910 */ 5911 dst_reg->smin_value = dst_reg->umin_value; 5912 dst_reg->smax_value = dst_reg->umax_value; 5913 } 5914 /* We may learn something more from the var_off */ 5915 __update_reg_bounds(dst_reg); 5916 } 5917 5918 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 5919 struct bpf_reg_state *src_reg) 5920 { 5921 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5922 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5923 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5924 s32 smin_val = src_reg->s32_min_value; 5925 5926 /* Assuming scalar64_min_max_xor will be called so it is safe 5927 * to skip updating register for known case. 5928 */ 5929 if (src_known && dst_known) 5930 return; 5931 5932 /* We get both minimum and maximum from the var32_off. */ 5933 dst_reg->u32_min_value = var32_off.value; 5934 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 5935 5936 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 5937 /* XORing two positive sign numbers gives a positive, 5938 * so safe to cast u32 result into s32. 5939 */ 5940 dst_reg->s32_min_value = dst_reg->u32_min_value; 5941 dst_reg->s32_max_value = dst_reg->u32_max_value; 5942 } else { 5943 dst_reg->s32_min_value = S32_MIN; 5944 dst_reg->s32_max_value = S32_MAX; 5945 } 5946 } 5947 5948 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 5949 struct bpf_reg_state *src_reg) 5950 { 5951 bool src_known = tnum_is_const(src_reg->var_off); 5952 bool dst_known = tnum_is_const(dst_reg->var_off); 5953 s64 smin_val = src_reg->smin_value; 5954 5955 if (src_known && dst_known) { 5956 /* dst_reg->var_off.value has been updated earlier */ 5957 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5958 return; 5959 } 5960 5961 /* We get both minimum and maximum from the var_off. */ 5962 dst_reg->umin_value = dst_reg->var_off.value; 5963 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 5964 5965 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 5966 /* XORing two positive sign numbers gives a positive, 5967 * so safe to cast u64 result into s64. 5968 */ 5969 dst_reg->smin_value = dst_reg->umin_value; 5970 dst_reg->smax_value = dst_reg->umax_value; 5971 } else { 5972 dst_reg->smin_value = S64_MIN; 5973 dst_reg->smax_value = S64_MAX; 5974 } 5975 5976 __update_reg_bounds(dst_reg); 5977 } 5978 5979 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5980 u64 umin_val, u64 umax_val) 5981 { 5982 /* We lose all sign bit information (except what we can pick 5983 * up from var_off) 5984 */ 5985 dst_reg->s32_min_value = S32_MIN; 5986 dst_reg->s32_max_value = S32_MAX; 5987 /* If we might shift our top bit out, then we know nothing */ 5988 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 5989 dst_reg->u32_min_value = 0; 5990 dst_reg->u32_max_value = U32_MAX; 5991 } else { 5992 dst_reg->u32_min_value <<= umin_val; 5993 dst_reg->u32_max_value <<= umax_val; 5994 } 5995 } 5996 5997 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 5998 struct bpf_reg_state *src_reg) 5999 { 6000 u32 umax_val = src_reg->u32_max_value; 6001 u32 umin_val = src_reg->u32_min_value; 6002 /* u32 alu operation will zext upper bits */ 6003 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6004 6005 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6006 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6007 /* Not required but being careful mark reg64 bounds as unknown so 6008 * that we are forced to pick them up from tnum and zext later and 6009 * if some path skips this step we are still safe. 6010 */ 6011 __mark_reg64_unbounded(dst_reg); 6012 __update_reg32_bounds(dst_reg); 6013 } 6014 6015 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6016 u64 umin_val, u64 umax_val) 6017 { 6018 /* Special case <<32 because it is a common compiler pattern to sign 6019 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6020 * positive we know this shift will also be positive so we can track 6021 * bounds correctly. Otherwise we lose all sign bit information except 6022 * what we can pick up from var_off. Perhaps we can generalize this 6023 * later to shifts of any length. 6024 */ 6025 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6026 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6027 else 6028 dst_reg->smax_value = S64_MAX; 6029 6030 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6031 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6032 else 6033 dst_reg->smin_value = S64_MIN; 6034 6035 /* If we might shift our top bit out, then we know nothing */ 6036 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6037 dst_reg->umin_value = 0; 6038 dst_reg->umax_value = U64_MAX; 6039 } else { 6040 dst_reg->umin_value <<= umin_val; 6041 dst_reg->umax_value <<= umax_val; 6042 } 6043 } 6044 6045 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6046 struct bpf_reg_state *src_reg) 6047 { 6048 u64 umax_val = src_reg->umax_value; 6049 u64 umin_val = src_reg->umin_value; 6050 6051 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6052 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6053 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6054 6055 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6056 /* We may learn something more from the var_off */ 6057 __update_reg_bounds(dst_reg); 6058 } 6059 6060 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6061 struct bpf_reg_state *src_reg) 6062 { 6063 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6064 u32 umax_val = src_reg->u32_max_value; 6065 u32 umin_val = src_reg->u32_min_value; 6066 6067 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6068 * be negative, then either: 6069 * 1) src_reg might be zero, so the sign bit of the result is 6070 * unknown, so we lose our signed bounds 6071 * 2) it's known negative, thus the unsigned bounds capture the 6072 * signed bounds 6073 * 3) the signed bounds cross zero, so they tell us nothing 6074 * about the result 6075 * If the value in dst_reg is known nonnegative, then again the 6076 * unsigned bounts capture the signed bounds. 6077 * Thus, in all cases it suffices to blow away our signed bounds 6078 * and rely on inferring new ones from the unsigned bounds and 6079 * var_off of the result. 6080 */ 6081 dst_reg->s32_min_value = S32_MIN; 6082 dst_reg->s32_max_value = S32_MAX; 6083 6084 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6085 dst_reg->u32_min_value >>= umax_val; 6086 dst_reg->u32_max_value >>= umin_val; 6087 6088 __mark_reg64_unbounded(dst_reg); 6089 __update_reg32_bounds(dst_reg); 6090 } 6091 6092 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6093 struct bpf_reg_state *src_reg) 6094 { 6095 u64 umax_val = src_reg->umax_value; 6096 u64 umin_val = src_reg->umin_value; 6097 6098 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6099 * be negative, then either: 6100 * 1) src_reg might be zero, so the sign bit of the result is 6101 * unknown, so we lose our signed bounds 6102 * 2) it's known negative, thus the unsigned bounds capture the 6103 * signed bounds 6104 * 3) the signed bounds cross zero, so they tell us nothing 6105 * about the result 6106 * If the value in dst_reg is known nonnegative, then again the 6107 * unsigned bounts capture the signed bounds. 6108 * Thus, in all cases it suffices to blow away our signed bounds 6109 * and rely on inferring new ones from the unsigned bounds and 6110 * var_off of the result. 6111 */ 6112 dst_reg->smin_value = S64_MIN; 6113 dst_reg->smax_value = S64_MAX; 6114 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6115 dst_reg->umin_value >>= umax_val; 6116 dst_reg->umax_value >>= umin_val; 6117 6118 /* Its not easy to operate on alu32 bounds here because it depends 6119 * on bits being shifted in. Take easy way out and mark unbounded 6120 * so we can recalculate later from tnum. 6121 */ 6122 __mark_reg32_unbounded(dst_reg); 6123 __update_reg_bounds(dst_reg); 6124 } 6125 6126 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6127 struct bpf_reg_state *src_reg) 6128 { 6129 u64 umin_val = src_reg->u32_min_value; 6130 6131 /* Upon reaching here, src_known is true and 6132 * umax_val is equal to umin_val. 6133 */ 6134 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6135 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6136 6137 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6138 6139 /* blow away the dst_reg umin_value/umax_value and rely on 6140 * dst_reg var_off to refine the result. 6141 */ 6142 dst_reg->u32_min_value = 0; 6143 dst_reg->u32_max_value = U32_MAX; 6144 6145 __mark_reg64_unbounded(dst_reg); 6146 __update_reg32_bounds(dst_reg); 6147 } 6148 6149 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6150 struct bpf_reg_state *src_reg) 6151 { 6152 u64 umin_val = src_reg->umin_value; 6153 6154 /* Upon reaching here, src_known is true and umax_val is equal 6155 * to umin_val. 6156 */ 6157 dst_reg->smin_value >>= umin_val; 6158 dst_reg->smax_value >>= umin_val; 6159 6160 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6161 6162 /* blow away the dst_reg umin_value/umax_value and rely on 6163 * dst_reg var_off to refine the result. 6164 */ 6165 dst_reg->umin_value = 0; 6166 dst_reg->umax_value = U64_MAX; 6167 6168 /* Its not easy to operate on alu32 bounds here because it depends 6169 * on bits being shifted in from upper 32-bits. Take easy way out 6170 * and mark unbounded so we can recalculate later from tnum. 6171 */ 6172 __mark_reg32_unbounded(dst_reg); 6173 __update_reg_bounds(dst_reg); 6174 } 6175 6176 /* WARNING: This function does calculations on 64-bit values, but the actual 6177 * execution may occur on 32-bit values. Therefore, things like bitshifts 6178 * need extra checks in the 32-bit case. 6179 */ 6180 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6181 struct bpf_insn *insn, 6182 struct bpf_reg_state *dst_reg, 6183 struct bpf_reg_state src_reg) 6184 { 6185 struct bpf_reg_state *regs = cur_regs(env); 6186 u8 opcode = BPF_OP(insn->code); 6187 bool src_known; 6188 s64 smin_val, smax_val; 6189 u64 umin_val, umax_val; 6190 s32 s32_min_val, s32_max_val; 6191 u32 u32_min_val, u32_max_val; 6192 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6193 u32 dst = insn->dst_reg; 6194 int ret; 6195 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6196 6197 smin_val = src_reg.smin_value; 6198 smax_val = src_reg.smax_value; 6199 umin_val = src_reg.umin_value; 6200 umax_val = src_reg.umax_value; 6201 6202 s32_min_val = src_reg.s32_min_value; 6203 s32_max_val = src_reg.s32_max_value; 6204 u32_min_val = src_reg.u32_min_value; 6205 u32_max_val = src_reg.u32_max_value; 6206 6207 if (alu32) { 6208 src_known = tnum_subreg_is_const(src_reg.var_off); 6209 if ((src_known && 6210 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6211 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6212 /* Taint dst register if offset had invalid bounds 6213 * derived from e.g. dead branches. 6214 */ 6215 __mark_reg_unknown(env, dst_reg); 6216 return 0; 6217 } 6218 } else { 6219 src_known = tnum_is_const(src_reg.var_off); 6220 if ((src_known && 6221 (smin_val != smax_val || umin_val != umax_val)) || 6222 smin_val > smax_val || umin_val > umax_val) { 6223 /* Taint dst register if offset had invalid bounds 6224 * derived from e.g. dead branches. 6225 */ 6226 __mark_reg_unknown(env, dst_reg); 6227 return 0; 6228 } 6229 } 6230 6231 if (!src_known && 6232 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6233 __mark_reg_unknown(env, dst_reg); 6234 return 0; 6235 } 6236 6237 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6238 * There are two classes of instructions: The first class we track both 6239 * alu32 and alu64 sign/unsigned bounds independently this provides the 6240 * greatest amount of precision when alu operations are mixed with jmp32 6241 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6242 * and BPF_OR. This is possible because these ops have fairly easy to 6243 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6244 * See alu32 verifier tests for examples. The second class of 6245 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6246 * with regards to tracking sign/unsigned bounds because the bits may 6247 * cross subreg boundaries in the alu64 case. When this happens we mark 6248 * the reg unbounded in the subreg bound space and use the resulting 6249 * tnum to calculate an approximation of the sign/unsigned bounds. 6250 */ 6251 switch (opcode) { 6252 case BPF_ADD: 6253 ret = sanitize_val_alu(env, insn); 6254 if (ret < 0) { 6255 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6256 return ret; 6257 } 6258 scalar32_min_max_add(dst_reg, &src_reg); 6259 scalar_min_max_add(dst_reg, &src_reg); 6260 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6261 break; 6262 case BPF_SUB: 6263 ret = sanitize_val_alu(env, insn); 6264 if (ret < 0) { 6265 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6266 return ret; 6267 } 6268 scalar32_min_max_sub(dst_reg, &src_reg); 6269 scalar_min_max_sub(dst_reg, &src_reg); 6270 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6271 break; 6272 case BPF_MUL: 6273 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6274 scalar32_min_max_mul(dst_reg, &src_reg); 6275 scalar_min_max_mul(dst_reg, &src_reg); 6276 break; 6277 case BPF_AND: 6278 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6279 scalar32_min_max_and(dst_reg, &src_reg); 6280 scalar_min_max_and(dst_reg, &src_reg); 6281 break; 6282 case BPF_OR: 6283 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6284 scalar32_min_max_or(dst_reg, &src_reg); 6285 scalar_min_max_or(dst_reg, &src_reg); 6286 break; 6287 case BPF_XOR: 6288 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6289 scalar32_min_max_xor(dst_reg, &src_reg); 6290 scalar_min_max_xor(dst_reg, &src_reg); 6291 break; 6292 case BPF_LSH: 6293 if (umax_val >= insn_bitness) { 6294 /* Shifts greater than 31 or 63 are undefined. 6295 * This includes shifts by a negative number. 6296 */ 6297 mark_reg_unknown(env, regs, insn->dst_reg); 6298 break; 6299 } 6300 if (alu32) 6301 scalar32_min_max_lsh(dst_reg, &src_reg); 6302 else 6303 scalar_min_max_lsh(dst_reg, &src_reg); 6304 break; 6305 case BPF_RSH: 6306 if (umax_val >= insn_bitness) { 6307 /* Shifts greater than 31 or 63 are undefined. 6308 * This includes shifts by a negative number. 6309 */ 6310 mark_reg_unknown(env, regs, insn->dst_reg); 6311 break; 6312 } 6313 if (alu32) 6314 scalar32_min_max_rsh(dst_reg, &src_reg); 6315 else 6316 scalar_min_max_rsh(dst_reg, &src_reg); 6317 break; 6318 case BPF_ARSH: 6319 if (umax_val >= insn_bitness) { 6320 /* Shifts greater than 31 or 63 are undefined. 6321 * This includes shifts by a negative number. 6322 */ 6323 mark_reg_unknown(env, regs, insn->dst_reg); 6324 break; 6325 } 6326 if (alu32) 6327 scalar32_min_max_arsh(dst_reg, &src_reg); 6328 else 6329 scalar_min_max_arsh(dst_reg, &src_reg); 6330 break; 6331 default: 6332 mark_reg_unknown(env, regs, insn->dst_reg); 6333 break; 6334 } 6335 6336 /* ALU32 ops are zero extended into 64bit register */ 6337 if (alu32) 6338 zext_32_to_64(dst_reg); 6339 6340 __update_reg_bounds(dst_reg); 6341 __reg_deduce_bounds(dst_reg); 6342 __reg_bound_offset(dst_reg); 6343 return 0; 6344 } 6345 6346 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6347 * and var_off. 6348 */ 6349 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6350 struct bpf_insn *insn) 6351 { 6352 struct bpf_verifier_state *vstate = env->cur_state; 6353 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6354 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6355 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6356 u8 opcode = BPF_OP(insn->code); 6357 int err; 6358 6359 dst_reg = ®s[insn->dst_reg]; 6360 src_reg = NULL; 6361 if (dst_reg->type != SCALAR_VALUE) 6362 ptr_reg = dst_reg; 6363 if (BPF_SRC(insn->code) == BPF_X) { 6364 src_reg = ®s[insn->src_reg]; 6365 if (src_reg->type != SCALAR_VALUE) { 6366 if (dst_reg->type != SCALAR_VALUE) { 6367 /* Combining two pointers by any ALU op yields 6368 * an arbitrary scalar. Disallow all math except 6369 * pointer subtraction 6370 */ 6371 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6372 mark_reg_unknown(env, regs, insn->dst_reg); 6373 return 0; 6374 } 6375 verbose(env, "R%d pointer %s pointer prohibited\n", 6376 insn->dst_reg, 6377 bpf_alu_string[opcode >> 4]); 6378 return -EACCES; 6379 } else { 6380 /* scalar += pointer 6381 * This is legal, but we have to reverse our 6382 * src/dest handling in computing the range 6383 */ 6384 err = mark_chain_precision(env, insn->dst_reg); 6385 if (err) 6386 return err; 6387 return adjust_ptr_min_max_vals(env, insn, 6388 src_reg, dst_reg); 6389 } 6390 } else if (ptr_reg) { 6391 /* pointer += scalar */ 6392 err = mark_chain_precision(env, insn->src_reg); 6393 if (err) 6394 return err; 6395 return adjust_ptr_min_max_vals(env, insn, 6396 dst_reg, src_reg); 6397 } 6398 } else { 6399 /* Pretend the src is a reg with a known value, since we only 6400 * need to be able to read from this state. 6401 */ 6402 off_reg.type = SCALAR_VALUE; 6403 __mark_reg_known(&off_reg, insn->imm); 6404 src_reg = &off_reg; 6405 if (ptr_reg) /* pointer += K */ 6406 return adjust_ptr_min_max_vals(env, insn, 6407 ptr_reg, src_reg); 6408 } 6409 6410 /* Got here implies adding two SCALAR_VALUEs */ 6411 if (WARN_ON_ONCE(ptr_reg)) { 6412 print_verifier_state(env, state); 6413 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6414 return -EINVAL; 6415 } 6416 if (WARN_ON(!src_reg)) { 6417 print_verifier_state(env, state); 6418 verbose(env, "verifier internal error: no src_reg\n"); 6419 return -EINVAL; 6420 } 6421 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6422 } 6423 6424 /* check validity of 32-bit and 64-bit arithmetic operations */ 6425 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6426 { 6427 struct bpf_reg_state *regs = cur_regs(env); 6428 u8 opcode = BPF_OP(insn->code); 6429 int err; 6430 6431 if (opcode == BPF_END || opcode == BPF_NEG) { 6432 if (opcode == BPF_NEG) { 6433 if (BPF_SRC(insn->code) != 0 || 6434 insn->src_reg != BPF_REG_0 || 6435 insn->off != 0 || insn->imm != 0) { 6436 verbose(env, "BPF_NEG uses reserved fields\n"); 6437 return -EINVAL; 6438 } 6439 } else { 6440 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6441 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6442 BPF_CLASS(insn->code) == BPF_ALU64) { 6443 verbose(env, "BPF_END uses reserved fields\n"); 6444 return -EINVAL; 6445 } 6446 } 6447 6448 /* check src operand */ 6449 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6450 if (err) 6451 return err; 6452 6453 if (is_pointer_value(env, insn->dst_reg)) { 6454 verbose(env, "R%d pointer arithmetic prohibited\n", 6455 insn->dst_reg); 6456 return -EACCES; 6457 } 6458 6459 /* check dest operand */ 6460 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6461 if (err) 6462 return err; 6463 6464 } else if (opcode == BPF_MOV) { 6465 6466 if (BPF_SRC(insn->code) == BPF_X) { 6467 if (insn->imm != 0 || insn->off != 0) { 6468 verbose(env, "BPF_MOV uses reserved fields\n"); 6469 return -EINVAL; 6470 } 6471 6472 /* check src operand */ 6473 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6474 if (err) 6475 return err; 6476 } else { 6477 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6478 verbose(env, "BPF_MOV uses reserved fields\n"); 6479 return -EINVAL; 6480 } 6481 } 6482 6483 /* check dest operand, mark as required later */ 6484 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6485 if (err) 6486 return err; 6487 6488 if (BPF_SRC(insn->code) == BPF_X) { 6489 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6490 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6491 6492 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6493 /* case: R1 = R2 6494 * copy register state to dest reg 6495 */ 6496 *dst_reg = *src_reg; 6497 dst_reg->live |= REG_LIVE_WRITTEN; 6498 dst_reg->subreg_def = DEF_NOT_SUBREG; 6499 } else { 6500 /* R1 = (u32) R2 */ 6501 if (is_pointer_value(env, insn->src_reg)) { 6502 verbose(env, 6503 "R%d partial copy of pointer\n", 6504 insn->src_reg); 6505 return -EACCES; 6506 } else if (src_reg->type == SCALAR_VALUE) { 6507 *dst_reg = *src_reg; 6508 dst_reg->live |= REG_LIVE_WRITTEN; 6509 dst_reg->subreg_def = env->insn_idx + 1; 6510 } else { 6511 mark_reg_unknown(env, regs, 6512 insn->dst_reg); 6513 } 6514 zext_32_to_64(dst_reg); 6515 } 6516 } else { 6517 /* case: R = imm 6518 * remember the value we stored into this reg 6519 */ 6520 /* clear any state __mark_reg_known doesn't set */ 6521 mark_reg_unknown(env, regs, insn->dst_reg); 6522 regs[insn->dst_reg].type = SCALAR_VALUE; 6523 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6524 __mark_reg_known(regs + insn->dst_reg, 6525 insn->imm); 6526 } else { 6527 __mark_reg_known(regs + insn->dst_reg, 6528 (u32)insn->imm); 6529 } 6530 } 6531 6532 } else if (opcode > BPF_END) { 6533 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6534 return -EINVAL; 6535 6536 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6537 6538 if (BPF_SRC(insn->code) == BPF_X) { 6539 if (insn->imm != 0 || insn->off != 0) { 6540 verbose(env, "BPF_ALU uses reserved fields\n"); 6541 return -EINVAL; 6542 } 6543 /* check src1 operand */ 6544 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6545 if (err) 6546 return err; 6547 } else { 6548 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6549 verbose(env, "BPF_ALU uses reserved fields\n"); 6550 return -EINVAL; 6551 } 6552 } 6553 6554 /* check src2 operand */ 6555 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6556 if (err) 6557 return err; 6558 6559 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6560 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6561 verbose(env, "div by zero\n"); 6562 return -EINVAL; 6563 } 6564 6565 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6566 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6567 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6568 6569 if (insn->imm < 0 || insn->imm >= size) { 6570 verbose(env, "invalid shift %d\n", insn->imm); 6571 return -EINVAL; 6572 } 6573 } 6574 6575 /* check dest operand */ 6576 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6577 if (err) 6578 return err; 6579 6580 return adjust_reg_min_max_vals(env, insn); 6581 } 6582 6583 return 0; 6584 } 6585 6586 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6587 struct bpf_reg_state *dst_reg, 6588 enum bpf_reg_type type, u16 new_range) 6589 { 6590 struct bpf_reg_state *reg; 6591 int i; 6592 6593 for (i = 0; i < MAX_BPF_REG; i++) { 6594 reg = &state->regs[i]; 6595 if (reg->type == type && reg->id == dst_reg->id) 6596 /* keep the maximum range already checked */ 6597 reg->range = max(reg->range, new_range); 6598 } 6599 6600 bpf_for_each_spilled_reg(i, state, reg) { 6601 if (!reg) 6602 continue; 6603 if (reg->type == type && reg->id == dst_reg->id) 6604 reg->range = max(reg->range, new_range); 6605 } 6606 } 6607 6608 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6609 struct bpf_reg_state *dst_reg, 6610 enum bpf_reg_type type, 6611 bool range_right_open) 6612 { 6613 u16 new_range; 6614 int i; 6615 6616 if (dst_reg->off < 0 || 6617 (dst_reg->off == 0 && range_right_open)) 6618 /* This doesn't give us any range */ 6619 return; 6620 6621 if (dst_reg->umax_value > MAX_PACKET_OFF || 6622 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6623 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6624 * than pkt_end, but that's because it's also less than pkt. 6625 */ 6626 return; 6627 6628 new_range = dst_reg->off; 6629 if (range_right_open) 6630 new_range--; 6631 6632 /* Examples for register markings: 6633 * 6634 * pkt_data in dst register: 6635 * 6636 * r2 = r3; 6637 * r2 += 8; 6638 * if (r2 > pkt_end) goto <handle exception> 6639 * <access okay> 6640 * 6641 * r2 = r3; 6642 * r2 += 8; 6643 * if (r2 < pkt_end) goto <access okay> 6644 * <handle exception> 6645 * 6646 * Where: 6647 * r2 == dst_reg, pkt_end == src_reg 6648 * r2=pkt(id=n,off=8,r=0) 6649 * r3=pkt(id=n,off=0,r=0) 6650 * 6651 * pkt_data in src register: 6652 * 6653 * r2 = r3; 6654 * r2 += 8; 6655 * if (pkt_end >= r2) goto <access okay> 6656 * <handle exception> 6657 * 6658 * r2 = r3; 6659 * r2 += 8; 6660 * if (pkt_end <= r2) goto <handle exception> 6661 * <access okay> 6662 * 6663 * Where: 6664 * pkt_end == dst_reg, r2 == src_reg 6665 * r2=pkt(id=n,off=8,r=0) 6666 * r3=pkt(id=n,off=0,r=0) 6667 * 6668 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6669 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6670 * and [r3, r3 + 8-1) respectively is safe to access depending on 6671 * the check. 6672 */ 6673 6674 /* If our ids match, then we must have the same max_value. And we 6675 * don't care about the other reg's fixed offset, since if it's too big 6676 * the range won't allow anything. 6677 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6678 */ 6679 for (i = 0; i <= vstate->curframe; i++) 6680 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6681 new_range); 6682 } 6683 6684 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6685 { 6686 struct tnum subreg = tnum_subreg(reg->var_off); 6687 s32 sval = (s32)val; 6688 6689 switch (opcode) { 6690 case BPF_JEQ: 6691 if (tnum_is_const(subreg)) 6692 return !!tnum_equals_const(subreg, val); 6693 break; 6694 case BPF_JNE: 6695 if (tnum_is_const(subreg)) 6696 return !tnum_equals_const(subreg, val); 6697 break; 6698 case BPF_JSET: 6699 if ((~subreg.mask & subreg.value) & val) 6700 return 1; 6701 if (!((subreg.mask | subreg.value) & val)) 6702 return 0; 6703 break; 6704 case BPF_JGT: 6705 if (reg->u32_min_value > val) 6706 return 1; 6707 else if (reg->u32_max_value <= val) 6708 return 0; 6709 break; 6710 case BPF_JSGT: 6711 if (reg->s32_min_value > sval) 6712 return 1; 6713 else if (reg->s32_max_value < sval) 6714 return 0; 6715 break; 6716 case BPF_JLT: 6717 if (reg->u32_max_value < val) 6718 return 1; 6719 else if (reg->u32_min_value >= val) 6720 return 0; 6721 break; 6722 case BPF_JSLT: 6723 if (reg->s32_max_value < sval) 6724 return 1; 6725 else if (reg->s32_min_value >= sval) 6726 return 0; 6727 break; 6728 case BPF_JGE: 6729 if (reg->u32_min_value >= val) 6730 return 1; 6731 else if (reg->u32_max_value < val) 6732 return 0; 6733 break; 6734 case BPF_JSGE: 6735 if (reg->s32_min_value >= sval) 6736 return 1; 6737 else if (reg->s32_max_value < sval) 6738 return 0; 6739 break; 6740 case BPF_JLE: 6741 if (reg->u32_max_value <= val) 6742 return 1; 6743 else if (reg->u32_min_value > val) 6744 return 0; 6745 break; 6746 case BPF_JSLE: 6747 if (reg->s32_max_value <= sval) 6748 return 1; 6749 else if (reg->s32_min_value > sval) 6750 return 0; 6751 break; 6752 } 6753 6754 return -1; 6755 } 6756 6757 6758 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6759 { 6760 s64 sval = (s64)val; 6761 6762 switch (opcode) { 6763 case BPF_JEQ: 6764 if (tnum_is_const(reg->var_off)) 6765 return !!tnum_equals_const(reg->var_off, val); 6766 break; 6767 case BPF_JNE: 6768 if (tnum_is_const(reg->var_off)) 6769 return !tnum_equals_const(reg->var_off, val); 6770 break; 6771 case BPF_JSET: 6772 if ((~reg->var_off.mask & reg->var_off.value) & val) 6773 return 1; 6774 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6775 return 0; 6776 break; 6777 case BPF_JGT: 6778 if (reg->umin_value > val) 6779 return 1; 6780 else if (reg->umax_value <= val) 6781 return 0; 6782 break; 6783 case BPF_JSGT: 6784 if (reg->smin_value > sval) 6785 return 1; 6786 else if (reg->smax_value < sval) 6787 return 0; 6788 break; 6789 case BPF_JLT: 6790 if (reg->umax_value < val) 6791 return 1; 6792 else if (reg->umin_value >= val) 6793 return 0; 6794 break; 6795 case BPF_JSLT: 6796 if (reg->smax_value < sval) 6797 return 1; 6798 else if (reg->smin_value >= sval) 6799 return 0; 6800 break; 6801 case BPF_JGE: 6802 if (reg->umin_value >= val) 6803 return 1; 6804 else if (reg->umax_value < val) 6805 return 0; 6806 break; 6807 case BPF_JSGE: 6808 if (reg->smin_value >= sval) 6809 return 1; 6810 else if (reg->smax_value < sval) 6811 return 0; 6812 break; 6813 case BPF_JLE: 6814 if (reg->umax_value <= val) 6815 return 1; 6816 else if (reg->umin_value > val) 6817 return 0; 6818 break; 6819 case BPF_JSLE: 6820 if (reg->smax_value <= sval) 6821 return 1; 6822 else if (reg->smin_value > sval) 6823 return 0; 6824 break; 6825 } 6826 6827 return -1; 6828 } 6829 6830 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6831 * and return: 6832 * 1 - branch will be taken and "goto target" will be executed 6833 * 0 - branch will not be taken and fall-through to next insn 6834 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 6835 * range [0,10] 6836 */ 6837 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 6838 bool is_jmp32) 6839 { 6840 if (__is_pointer_value(false, reg)) { 6841 if (!reg_type_not_null(reg->type)) 6842 return -1; 6843 6844 /* If pointer is valid tests against zero will fail so we can 6845 * use this to direct branch taken. 6846 */ 6847 if (val != 0) 6848 return -1; 6849 6850 switch (opcode) { 6851 case BPF_JEQ: 6852 return 0; 6853 case BPF_JNE: 6854 return 1; 6855 default: 6856 return -1; 6857 } 6858 } 6859 6860 if (is_jmp32) 6861 return is_branch32_taken(reg, val, opcode); 6862 return is_branch64_taken(reg, val, opcode); 6863 } 6864 6865 /* Adjusts the register min/max values in the case that the dst_reg is the 6866 * variable register that we are working on, and src_reg is a constant or we're 6867 * simply doing a BPF_K check. 6868 * In JEQ/JNE cases we also adjust the var_off values. 6869 */ 6870 static void reg_set_min_max(struct bpf_reg_state *true_reg, 6871 struct bpf_reg_state *false_reg, 6872 u64 val, u32 val32, 6873 u8 opcode, bool is_jmp32) 6874 { 6875 struct tnum false_32off = tnum_subreg(false_reg->var_off); 6876 struct tnum false_64off = false_reg->var_off; 6877 struct tnum true_32off = tnum_subreg(true_reg->var_off); 6878 struct tnum true_64off = true_reg->var_off; 6879 s64 sval = (s64)val; 6880 s32 sval32 = (s32)val32; 6881 6882 /* If the dst_reg is a pointer, we can't learn anything about its 6883 * variable offset from the compare (unless src_reg were a pointer into 6884 * the same object, but we don't bother with that. 6885 * Since false_reg and true_reg have the same type by construction, we 6886 * only need to check one of them for pointerness. 6887 */ 6888 if (__is_pointer_value(false, false_reg)) 6889 return; 6890 6891 switch (opcode) { 6892 case BPF_JEQ: 6893 case BPF_JNE: 6894 { 6895 struct bpf_reg_state *reg = 6896 opcode == BPF_JEQ ? true_reg : false_reg; 6897 6898 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 6899 * if it is true we know the value for sure. Likewise for 6900 * BPF_JNE. 6901 */ 6902 if (is_jmp32) 6903 __mark_reg32_known(reg, val32); 6904 else 6905 __mark_reg_known(reg, val); 6906 break; 6907 } 6908 case BPF_JSET: 6909 if (is_jmp32) { 6910 false_32off = tnum_and(false_32off, tnum_const(~val32)); 6911 if (is_power_of_2(val32)) 6912 true_32off = tnum_or(true_32off, 6913 tnum_const(val32)); 6914 } else { 6915 false_64off = tnum_and(false_64off, tnum_const(~val)); 6916 if (is_power_of_2(val)) 6917 true_64off = tnum_or(true_64off, 6918 tnum_const(val)); 6919 } 6920 break; 6921 case BPF_JGE: 6922 case BPF_JGT: 6923 { 6924 if (is_jmp32) { 6925 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 6926 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 6927 6928 false_reg->u32_max_value = min(false_reg->u32_max_value, 6929 false_umax); 6930 true_reg->u32_min_value = max(true_reg->u32_min_value, 6931 true_umin); 6932 } else { 6933 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 6934 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 6935 6936 false_reg->umax_value = min(false_reg->umax_value, false_umax); 6937 true_reg->umin_value = max(true_reg->umin_value, true_umin); 6938 } 6939 break; 6940 } 6941 case BPF_JSGE: 6942 case BPF_JSGT: 6943 { 6944 if (is_jmp32) { 6945 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 6946 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 6947 6948 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 6949 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 6950 } else { 6951 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 6952 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 6953 6954 false_reg->smax_value = min(false_reg->smax_value, false_smax); 6955 true_reg->smin_value = max(true_reg->smin_value, true_smin); 6956 } 6957 break; 6958 } 6959 case BPF_JLE: 6960 case BPF_JLT: 6961 { 6962 if (is_jmp32) { 6963 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 6964 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 6965 6966 false_reg->u32_min_value = max(false_reg->u32_min_value, 6967 false_umin); 6968 true_reg->u32_max_value = min(true_reg->u32_max_value, 6969 true_umax); 6970 } else { 6971 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 6972 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 6973 6974 false_reg->umin_value = max(false_reg->umin_value, false_umin); 6975 true_reg->umax_value = min(true_reg->umax_value, true_umax); 6976 } 6977 break; 6978 } 6979 case BPF_JSLE: 6980 case BPF_JSLT: 6981 { 6982 if (is_jmp32) { 6983 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 6984 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 6985 6986 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 6987 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 6988 } else { 6989 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 6990 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 6991 6992 false_reg->smin_value = max(false_reg->smin_value, false_smin); 6993 true_reg->smax_value = min(true_reg->smax_value, true_smax); 6994 } 6995 break; 6996 } 6997 default: 6998 return; 6999 } 7000 7001 if (is_jmp32) { 7002 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7003 tnum_subreg(false_32off)); 7004 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7005 tnum_subreg(true_32off)); 7006 __reg_combine_32_into_64(false_reg); 7007 __reg_combine_32_into_64(true_reg); 7008 } else { 7009 false_reg->var_off = false_64off; 7010 true_reg->var_off = true_64off; 7011 __reg_combine_64_into_32(false_reg); 7012 __reg_combine_64_into_32(true_reg); 7013 } 7014 } 7015 7016 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7017 * the variable reg. 7018 */ 7019 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7020 struct bpf_reg_state *false_reg, 7021 u64 val, u32 val32, 7022 u8 opcode, bool is_jmp32) 7023 { 7024 /* How can we transform "a <op> b" into "b <op> a"? */ 7025 static const u8 opcode_flip[16] = { 7026 /* these stay the same */ 7027 [BPF_JEQ >> 4] = BPF_JEQ, 7028 [BPF_JNE >> 4] = BPF_JNE, 7029 [BPF_JSET >> 4] = BPF_JSET, 7030 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7031 [BPF_JGE >> 4] = BPF_JLE, 7032 [BPF_JGT >> 4] = BPF_JLT, 7033 [BPF_JLE >> 4] = BPF_JGE, 7034 [BPF_JLT >> 4] = BPF_JGT, 7035 [BPF_JSGE >> 4] = BPF_JSLE, 7036 [BPF_JSGT >> 4] = BPF_JSLT, 7037 [BPF_JSLE >> 4] = BPF_JSGE, 7038 [BPF_JSLT >> 4] = BPF_JSGT 7039 }; 7040 opcode = opcode_flip[opcode >> 4]; 7041 /* This uses zero as "not present in table"; luckily the zero opcode, 7042 * BPF_JA, can't get here. 7043 */ 7044 if (opcode) 7045 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7046 } 7047 7048 /* Regs are known to be equal, so intersect their min/max/var_off */ 7049 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7050 struct bpf_reg_state *dst_reg) 7051 { 7052 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7053 dst_reg->umin_value); 7054 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7055 dst_reg->umax_value); 7056 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7057 dst_reg->smin_value); 7058 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7059 dst_reg->smax_value); 7060 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7061 dst_reg->var_off); 7062 /* We might have learned new bounds from the var_off. */ 7063 __update_reg_bounds(src_reg); 7064 __update_reg_bounds(dst_reg); 7065 /* We might have learned something about the sign bit. */ 7066 __reg_deduce_bounds(src_reg); 7067 __reg_deduce_bounds(dst_reg); 7068 /* We might have learned some bits from the bounds. */ 7069 __reg_bound_offset(src_reg); 7070 __reg_bound_offset(dst_reg); 7071 /* Intersecting with the old var_off might have improved our bounds 7072 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7073 * then new var_off is (0; 0x7f...fc) which improves our umax. 7074 */ 7075 __update_reg_bounds(src_reg); 7076 __update_reg_bounds(dst_reg); 7077 } 7078 7079 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7080 struct bpf_reg_state *true_dst, 7081 struct bpf_reg_state *false_src, 7082 struct bpf_reg_state *false_dst, 7083 u8 opcode) 7084 { 7085 switch (opcode) { 7086 case BPF_JEQ: 7087 __reg_combine_min_max(true_src, true_dst); 7088 break; 7089 case BPF_JNE: 7090 __reg_combine_min_max(false_src, false_dst); 7091 break; 7092 } 7093 } 7094 7095 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7096 struct bpf_reg_state *reg, u32 id, 7097 bool is_null) 7098 { 7099 if (reg_type_may_be_null(reg->type) && reg->id == id) { 7100 /* Old offset (both fixed and variable parts) should 7101 * have been known-zero, because we don't allow pointer 7102 * arithmetic on pointers that might be NULL. 7103 */ 7104 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7105 !tnum_equals_const(reg->var_off, 0) || 7106 reg->off)) { 7107 __mark_reg_known_zero(reg); 7108 reg->off = 0; 7109 } 7110 if (is_null) { 7111 reg->type = SCALAR_VALUE; 7112 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7113 const struct bpf_map *map = reg->map_ptr; 7114 7115 if (map->inner_map_meta) { 7116 reg->type = CONST_PTR_TO_MAP; 7117 reg->map_ptr = map->inner_map_meta; 7118 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7119 reg->type = PTR_TO_XDP_SOCK; 7120 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7121 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7122 reg->type = PTR_TO_SOCKET; 7123 } else { 7124 reg->type = PTR_TO_MAP_VALUE; 7125 } 7126 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7127 reg->type = PTR_TO_SOCKET; 7128 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7129 reg->type = PTR_TO_SOCK_COMMON; 7130 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7131 reg->type = PTR_TO_TCP_SOCK; 7132 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7133 reg->type = PTR_TO_BTF_ID; 7134 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7135 reg->type = PTR_TO_MEM; 7136 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7137 reg->type = PTR_TO_RDONLY_BUF; 7138 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7139 reg->type = PTR_TO_RDWR_BUF; 7140 } 7141 if (is_null) { 7142 /* We don't need id and ref_obj_id from this point 7143 * onwards anymore, thus we should better reset it, 7144 * so that state pruning has chances to take effect. 7145 */ 7146 reg->id = 0; 7147 reg->ref_obj_id = 0; 7148 } else if (!reg_may_point_to_spin_lock(reg)) { 7149 /* For not-NULL ptr, reg->ref_obj_id will be reset 7150 * in release_reg_references(). 7151 * 7152 * reg->id is still used by spin_lock ptr. Other 7153 * than spin_lock ptr type, reg->id can be reset. 7154 */ 7155 reg->id = 0; 7156 } 7157 } 7158 } 7159 7160 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7161 bool is_null) 7162 { 7163 struct bpf_reg_state *reg; 7164 int i; 7165 7166 for (i = 0; i < MAX_BPF_REG; i++) 7167 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7168 7169 bpf_for_each_spilled_reg(i, state, reg) { 7170 if (!reg) 7171 continue; 7172 mark_ptr_or_null_reg(state, reg, id, is_null); 7173 } 7174 } 7175 7176 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7177 * be folded together at some point. 7178 */ 7179 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7180 bool is_null) 7181 { 7182 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7183 struct bpf_reg_state *regs = state->regs; 7184 u32 ref_obj_id = regs[regno].ref_obj_id; 7185 u32 id = regs[regno].id; 7186 int i; 7187 7188 if (ref_obj_id && ref_obj_id == id && is_null) 7189 /* regs[regno] is in the " == NULL" branch. 7190 * No one could have freed the reference state before 7191 * doing the NULL check. 7192 */ 7193 WARN_ON_ONCE(release_reference_state(state, id)); 7194 7195 for (i = 0; i <= vstate->curframe; i++) 7196 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7197 } 7198 7199 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7200 struct bpf_reg_state *dst_reg, 7201 struct bpf_reg_state *src_reg, 7202 struct bpf_verifier_state *this_branch, 7203 struct bpf_verifier_state *other_branch) 7204 { 7205 if (BPF_SRC(insn->code) != BPF_X) 7206 return false; 7207 7208 /* Pointers are always 64-bit. */ 7209 if (BPF_CLASS(insn->code) == BPF_JMP32) 7210 return false; 7211 7212 switch (BPF_OP(insn->code)) { 7213 case BPF_JGT: 7214 if ((dst_reg->type == PTR_TO_PACKET && 7215 src_reg->type == PTR_TO_PACKET_END) || 7216 (dst_reg->type == PTR_TO_PACKET_META && 7217 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7218 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7219 find_good_pkt_pointers(this_branch, dst_reg, 7220 dst_reg->type, false); 7221 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7222 src_reg->type == PTR_TO_PACKET) || 7223 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7224 src_reg->type == PTR_TO_PACKET_META)) { 7225 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7226 find_good_pkt_pointers(other_branch, src_reg, 7227 src_reg->type, true); 7228 } else { 7229 return false; 7230 } 7231 break; 7232 case BPF_JLT: 7233 if ((dst_reg->type == PTR_TO_PACKET && 7234 src_reg->type == PTR_TO_PACKET_END) || 7235 (dst_reg->type == PTR_TO_PACKET_META && 7236 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7237 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7238 find_good_pkt_pointers(other_branch, dst_reg, 7239 dst_reg->type, true); 7240 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7241 src_reg->type == PTR_TO_PACKET) || 7242 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7243 src_reg->type == PTR_TO_PACKET_META)) { 7244 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7245 find_good_pkt_pointers(this_branch, src_reg, 7246 src_reg->type, false); 7247 } else { 7248 return false; 7249 } 7250 break; 7251 case BPF_JGE: 7252 if ((dst_reg->type == PTR_TO_PACKET && 7253 src_reg->type == PTR_TO_PACKET_END) || 7254 (dst_reg->type == PTR_TO_PACKET_META && 7255 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7256 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7257 find_good_pkt_pointers(this_branch, dst_reg, 7258 dst_reg->type, true); 7259 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7260 src_reg->type == PTR_TO_PACKET) || 7261 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7262 src_reg->type == PTR_TO_PACKET_META)) { 7263 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7264 find_good_pkt_pointers(other_branch, src_reg, 7265 src_reg->type, false); 7266 } else { 7267 return false; 7268 } 7269 break; 7270 case BPF_JLE: 7271 if ((dst_reg->type == PTR_TO_PACKET && 7272 src_reg->type == PTR_TO_PACKET_END) || 7273 (dst_reg->type == PTR_TO_PACKET_META && 7274 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7275 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7276 find_good_pkt_pointers(other_branch, dst_reg, 7277 dst_reg->type, false); 7278 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7279 src_reg->type == PTR_TO_PACKET) || 7280 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7281 src_reg->type == PTR_TO_PACKET_META)) { 7282 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7283 find_good_pkt_pointers(this_branch, src_reg, 7284 src_reg->type, true); 7285 } else { 7286 return false; 7287 } 7288 break; 7289 default: 7290 return false; 7291 } 7292 7293 return true; 7294 } 7295 7296 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7297 struct bpf_insn *insn, int *insn_idx) 7298 { 7299 struct bpf_verifier_state *this_branch = env->cur_state; 7300 struct bpf_verifier_state *other_branch; 7301 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7302 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7303 u8 opcode = BPF_OP(insn->code); 7304 bool is_jmp32; 7305 int pred = -1; 7306 int err; 7307 7308 /* Only conditional jumps are expected to reach here. */ 7309 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7310 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7311 return -EINVAL; 7312 } 7313 7314 if (BPF_SRC(insn->code) == BPF_X) { 7315 if (insn->imm != 0) { 7316 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7317 return -EINVAL; 7318 } 7319 7320 /* check src1 operand */ 7321 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7322 if (err) 7323 return err; 7324 7325 if (is_pointer_value(env, insn->src_reg)) { 7326 verbose(env, "R%d pointer comparison prohibited\n", 7327 insn->src_reg); 7328 return -EACCES; 7329 } 7330 src_reg = ®s[insn->src_reg]; 7331 } else { 7332 if (insn->src_reg != BPF_REG_0) { 7333 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7334 return -EINVAL; 7335 } 7336 } 7337 7338 /* check src2 operand */ 7339 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7340 if (err) 7341 return err; 7342 7343 dst_reg = ®s[insn->dst_reg]; 7344 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7345 7346 if (BPF_SRC(insn->code) == BPF_K) { 7347 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7348 } else if (src_reg->type == SCALAR_VALUE && 7349 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7350 pred = is_branch_taken(dst_reg, 7351 tnum_subreg(src_reg->var_off).value, 7352 opcode, 7353 is_jmp32); 7354 } else if (src_reg->type == SCALAR_VALUE && 7355 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7356 pred = is_branch_taken(dst_reg, 7357 src_reg->var_off.value, 7358 opcode, 7359 is_jmp32); 7360 } 7361 7362 if (pred >= 0) { 7363 /* If we get here with a dst_reg pointer type it is because 7364 * above is_branch_taken() special cased the 0 comparison. 7365 */ 7366 if (!__is_pointer_value(false, dst_reg)) 7367 err = mark_chain_precision(env, insn->dst_reg); 7368 if (BPF_SRC(insn->code) == BPF_X && !err) 7369 err = mark_chain_precision(env, insn->src_reg); 7370 if (err) 7371 return err; 7372 } 7373 if (pred == 1) { 7374 /* only follow the goto, ignore fall-through */ 7375 *insn_idx += insn->off; 7376 return 0; 7377 } else if (pred == 0) { 7378 /* only follow fall-through branch, since 7379 * that's where the program will go 7380 */ 7381 return 0; 7382 } 7383 7384 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7385 false); 7386 if (!other_branch) 7387 return -EFAULT; 7388 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7389 7390 /* detect if we are comparing against a constant value so we can adjust 7391 * our min/max values for our dst register. 7392 * this is only legit if both are scalars (or pointers to the same 7393 * object, I suppose, but we don't support that right now), because 7394 * otherwise the different base pointers mean the offsets aren't 7395 * comparable. 7396 */ 7397 if (BPF_SRC(insn->code) == BPF_X) { 7398 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7399 7400 if (dst_reg->type == SCALAR_VALUE && 7401 src_reg->type == SCALAR_VALUE) { 7402 if (tnum_is_const(src_reg->var_off) || 7403 (is_jmp32 && 7404 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7405 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7406 dst_reg, 7407 src_reg->var_off.value, 7408 tnum_subreg(src_reg->var_off).value, 7409 opcode, is_jmp32); 7410 else if (tnum_is_const(dst_reg->var_off) || 7411 (is_jmp32 && 7412 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7413 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7414 src_reg, 7415 dst_reg->var_off.value, 7416 tnum_subreg(dst_reg->var_off).value, 7417 opcode, is_jmp32); 7418 else if (!is_jmp32 && 7419 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7420 /* Comparing for equality, we can combine knowledge */ 7421 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7422 &other_branch_regs[insn->dst_reg], 7423 src_reg, dst_reg, opcode); 7424 } 7425 } else if (dst_reg->type == SCALAR_VALUE) { 7426 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7427 dst_reg, insn->imm, (u32)insn->imm, 7428 opcode, is_jmp32); 7429 } 7430 7431 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7432 * NOTE: these optimizations below are related with pointer comparison 7433 * which will never be JMP32. 7434 */ 7435 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7436 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7437 reg_type_may_be_null(dst_reg->type)) { 7438 /* Mark all identical registers in each branch as either 7439 * safe or unknown depending R == 0 or R != 0 conditional. 7440 */ 7441 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7442 opcode == BPF_JNE); 7443 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7444 opcode == BPF_JEQ); 7445 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7446 this_branch, other_branch) && 7447 is_pointer_value(env, insn->dst_reg)) { 7448 verbose(env, "R%d pointer comparison prohibited\n", 7449 insn->dst_reg); 7450 return -EACCES; 7451 } 7452 if (env->log.level & BPF_LOG_LEVEL) 7453 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7454 return 0; 7455 } 7456 7457 /* verify BPF_LD_IMM64 instruction */ 7458 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7459 { 7460 struct bpf_insn_aux_data *aux = cur_aux(env); 7461 struct bpf_reg_state *regs = cur_regs(env); 7462 struct bpf_map *map; 7463 int err; 7464 7465 if (BPF_SIZE(insn->code) != BPF_DW) { 7466 verbose(env, "invalid BPF_LD_IMM insn\n"); 7467 return -EINVAL; 7468 } 7469 if (insn->off != 0) { 7470 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7471 return -EINVAL; 7472 } 7473 7474 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7475 if (err) 7476 return err; 7477 7478 if (insn->src_reg == 0) { 7479 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7480 7481 regs[insn->dst_reg].type = SCALAR_VALUE; 7482 __mark_reg_known(®s[insn->dst_reg], imm); 7483 return 0; 7484 } 7485 7486 map = env->used_maps[aux->map_index]; 7487 mark_reg_known_zero(env, regs, insn->dst_reg); 7488 regs[insn->dst_reg].map_ptr = map; 7489 7490 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7491 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 7492 regs[insn->dst_reg].off = aux->map_off; 7493 if (map_value_has_spin_lock(map)) 7494 regs[insn->dst_reg].id = ++env->id_gen; 7495 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7496 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 7497 } else { 7498 verbose(env, "bpf verifier is misconfigured\n"); 7499 return -EINVAL; 7500 } 7501 7502 return 0; 7503 } 7504 7505 static bool may_access_skb(enum bpf_prog_type type) 7506 { 7507 switch (type) { 7508 case BPF_PROG_TYPE_SOCKET_FILTER: 7509 case BPF_PROG_TYPE_SCHED_CLS: 7510 case BPF_PROG_TYPE_SCHED_ACT: 7511 return true; 7512 default: 7513 return false; 7514 } 7515 } 7516 7517 /* verify safety of LD_ABS|LD_IND instructions: 7518 * - they can only appear in the programs where ctx == skb 7519 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7520 * preserve R6-R9, and store return value into R0 7521 * 7522 * Implicit input: 7523 * ctx == skb == R6 == CTX 7524 * 7525 * Explicit input: 7526 * SRC == any register 7527 * IMM == 32-bit immediate 7528 * 7529 * Output: 7530 * R0 - 8/16/32-bit skb data converted to cpu endianness 7531 */ 7532 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7533 { 7534 struct bpf_reg_state *regs = cur_regs(env); 7535 static const int ctx_reg = BPF_REG_6; 7536 u8 mode = BPF_MODE(insn->code); 7537 int i, err; 7538 7539 if (!may_access_skb(resolve_prog_type(env->prog))) { 7540 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7541 return -EINVAL; 7542 } 7543 7544 if (!env->ops->gen_ld_abs) { 7545 verbose(env, "bpf verifier is misconfigured\n"); 7546 return -EINVAL; 7547 } 7548 7549 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7550 BPF_SIZE(insn->code) == BPF_DW || 7551 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7552 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7553 return -EINVAL; 7554 } 7555 7556 /* check whether implicit source operand (register R6) is readable */ 7557 err = check_reg_arg(env, ctx_reg, SRC_OP); 7558 if (err) 7559 return err; 7560 7561 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7562 * gen_ld_abs() may terminate the program at runtime, leading to 7563 * reference leak. 7564 */ 7565 err = check_reference_leak(env); 7566 if (err) { 7567 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7568 return err; 7569 } 7570 7571 if (env->cur_state->active_spin_lock) { 7572 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7573 return -EINVAL; 7574 } 7575 7576 if (regs[ctx_reg].type != PTR_TO_CTX) { 7577 verbose(env, 7578 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7579 return -EINVAL; 7580 } 7581 7582 if (mode == BPF_IND) { 7583 /* check explicit source operand */ 7584 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7585 if (err) 7586 return err; 7587 } 7588 7589 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7590 if (err < 0) 7591 return err; 7592 7593 /* reset caller saved regs to unreadable */ 7594 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7595 mark_reg_not_init(env, regs, caller_saved[i]); 7596 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7597 } 7598 7599 /* mark destination R0 register as readable, since it contains 7600 * the value fetched from the packet. 7601 * Already marked as written above. 7602 */ 7603 mark_reg_unknown(env, regs, BPF_REG_0); 7604 /* ld_abs load up to 32-bit skb data. */ 7605 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7606 return 0; 7607 } 7608 7609 static int check_return_code(struct bpf_verifier_env *env) 7610 { 7611 struct tnum enforce_attach_type_range = tnum_unknown; 7612 const struct bpf_prog *prog = env->prog; 7613 struct bpf_reg_state *reg; 7614 struct tnum range = tnum_range(0, 1); 7615 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7616 int err; 7617 7618 /* LSM and struct_ops func-ptr's return type could be "void" */ 7619 if ((prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7620 prog_type == BPF_PROG_TYPE_LSM) && 7621 !prog->aux->attach_func_proto->type) 7622 return 0; 7623 7624 /* eBPF calling convetion is such that R0 is used 7625 * to return the value from eBPF program. 7626 * Make sure that it's readable at this time 7627 * of bpf_exit, which means that program wrote 7628 * something into it earlier 7629 */ 7630 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7631 if (err) 7632 return err; 7633 7634 if (is_pointer_value(env, BPF_REG_0)) { 7635 verbose(env, "R0 leaks addr as return value\n"); 7636 return -EACCES; 7637 } 7638 7639 switch (prog_type) { 7640 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7641 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7642 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7643 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7644 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7645 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7646 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7647 range = tnum_range(1, 1); 7648 break; 7649 case BPF_PROG_TYPE_CGROUP_SKB: 7650 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7651 range = tnum_range(0, 3); 7652 enforce_attach_type_range = tnum_range(2, 3); 7653 } 7654 break; 7655 case BPF_PROG_TYPE_CGROUP_SOCK: 7656 case BPF_PROG_TYPE_SOCK_OPS: 7657 case BPF_PROG_TYPE_CGROUP_DEVICE: 7658 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7659 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7660 break; 7661 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7662 if (!env->prog->aux->attach_btf_id) 7663 return 0; 7664 range = tnum_const(0); 7665 break; 7666 case BPF_PROG_TYPE_TRACING: 7667 switch (env->prog->expected_attach_type) { 7668 case BPF_TRACE_FENTRY: 7669 case BPF_TRACE_FEXIT: 7670 range = tnum_const(0); 7671 break; 7672 case BPF_TRACE_RAW_TP: 7673 case BPF_MODIFY_RETURN: 7674 return 0; 7675 case BPF_TRACE_ITER: 7676 break; 7677 default: 7678 return -ENOTSUPP; 7679 } 7680 break; 7681 case BPF_PROG_TYPE_SK_LOOKUP: 7682 range = tnum_range(SK_DROP, SK_PASS); 7683 break; 7684 case BPF_PROG_TYPE_EXT: 7685 /* freplace program can return anything as its return value 7686 * depends on the to-be-replaced kernel func or bpf program. 7687 */ 7688 default: 7689 return 0; 7690 } 7691 7692 reg = cur_regs(env) + BPF_REG_0; 7693 if (reg->type != SCALAR_VALUE) { 7694 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7695 reg_type_str[reg->type]); 7696 return -EINVAL; 7697 } 7698 7699 if (!tnum_in(range, reg->var_off)) { 7700 char tn_buf[48]; 7701 7702 verbose(env, "At program exit the register R0 "); 7703 if (!tnum_is_unknown(reg->var_off)) { 7704 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7705 verbose(env, "has value %s", tn_buf); 7706 } else { 7707 verbose(env, "has unknown scalar value"); 7708 } 7709 tnum_strn(tn_buf, sizeof(tn_buf), range); 7710 verbose(env, " should have been in %s\n", tn_buf); 7711 return -EINVAL; 7712 } 7713 7714 if (!tnum_is_unknown(enforce_attach_type_range) && 7715 tnum_in(enforce_attach_type_range, reg->var_off)) 7716 env->prog->enforce_expected_attach_type = 1; 7717 return 0; 7718 } 7719 7720 /* non-recursive DFS pseudo code 7721 * 1 procedure DFS-iterative(G,v): 7722 * 2 label v as discovered 7723 * 3 let S be a stack 7724 * 4 S.push(v) 7725 * 5 while S is not empty 7726 * 6 t <- S.pop() 7727 * 7 if t is what we're looking for: 7728 * 8 return t 7729 * 9 for all edges e in G.adjacentEdges(t) do 7730 * 10 if edge e is already labelled 7731 * 11 continue with the next edge 7732 * 12 w <- G.adjacentVertex(t,e) 7733 * 13 if vertex w is not discovered and not explored 7734 * 14 label e as tree-edge 7735 * 15 label w as discovered 7736 * 16 S.push(w) 7737 * 17 continue at 5 7738 * 18 else if vertex w is discovered 7739 * 19 label e as back-edge 7740 * 20 else 7741 * 21 // vertex w is explored 7742 * 22 label e as forward- or cross-edge 7743 * 23 label t as explored 7744 * 24 S.pop() 7745 * 7746 * convention: 7747 * 0x10 - discovered 7748 * 0x11 - discovered and fall-through edge labelled 7749 * 0x12 - discovered and fall-through and branch edges labelled 7750 * 0x20 - explored 7751 */ 7752 7753 enum { 7754 DISCOVERED = 0x10, 7755 EXPLORED = 0x20, 7756 FALLTHROUGH = 1, 7757 BRANCH = 2, 7758 }; 7759 7760 static u32 state_htab_size(struct bpf_verifier_env *env) 7761 { 7762 return env->prog->len; 7763 } 7764 7765 static struct bpf_verifier_state_list **explored_state( 7766 struct bpf_verifier_env *env, 7767 int idx) 7768 { 7769 struct bpf_verifier_state *cur = env->cur_state; 7770 struct bpf_func_state *state = cur->frame[cur->curframe]; 7771 7772 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 7773 } 7774 7775 static void init_explored_state(struct bpf_verifier_env *env, int idx) 7776 { 7777 env->insn_aux_data[idx].prune_point = true; 7778 } 7779 7780 /* t, w, e - match pseudo-code above: 7781 * t - index of current instruction 7782 * w - next instruction 7783 * e - edge 7784 */ 7785 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 7786 bool loop_ok) 7787 { 7788 int *insn_stack = env->cfg.insn_stack; 7789 int *insn_state = env->cfg.insn_state; 7790 7791 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 7792 return 0; 7793 7794 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 7795 return 0; 7796 7797 if (w < 0 || w >= env->prog->len) { 7798 verbose_linfo(env, t, "%d: ", t); 7799 verbose(env, "jump out of range from insn %d to %d\n", t, w); 7800 return -EINVAL; 7801 } 7802 7803 if (e == BRANCH) 7804 /* mark branch target for state pruning */ 7805 init_explored_state(env, w); 7806 7807 if (insn_state[w] == 0) { 7808 /* tree-edge */ 7809 insn_state[t] = DISCOVERED | e; 7810 insn_state[w] = DISCOVERED; 7811 if (env->cfg.cur_stack >= env->prog->len) 7812 return -E2BIG; 7813 insn_stack[env->cfg.cur_stack++] = w; 7814 return 1; 7815 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 7816 if (loop_ok && env->bpf_capable) 7817 return 0; 7818 verbose_linfo(env, t, "%d: ", t); 7819 verbose_linfo(env, w, "%d: ", w); 7820 verbose(env, "back-edge from insn %d to %d\n", t, w); 7821 return -EINVAL; 7822 } else if (insn_state[w] == EXPLORED) { 7823 /* forward- or cross-edge */ 7824 insn_state[t] = DISCOVERED | e; 7825 } else { 7826 verbose(env, "insn state internal bug\n"); 7827 return -EFAULT; 7828 } 7829 return 0; 7830 } 7831 7832 /* non-recursive depth-first-search to detect loops in BPF program 7833 * loop == back-edge in directed graph 7834 */ 7835 static int check_cfg(struct bpf_verifier_env *env) 7836 { 7837 struct bpf_insn *insns = env->prog->insnsi; 7838 int insn_cnt = env->prog->len; 7839 int *insn_stack, *insn_state; 7840 int ret = 0; 7841 int i, t; 7842 7843 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7844 if (!insn_state) 7845 return -ENOMEM; 7846 7847 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 7848 if (!insn_stack) { 7849 kvfree(insn_state); 7850 return -ENOMEM; 7851 } 7852 7853 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 7854 insn_stack[0] = 0; /* 0 is the first instruction */ 7855 env->cfg.cur_stack = 1; 7856 7857 peek_stack: 7858 if (env->cfg.cur_stack == 0) 7859 goto check_state; 7860 t = insn_stack[env->cfg.cur_stack - 1]; 7861 7862 if (BPF_CLASS(insns[t].code) == BPF_JMP || 7863 BPF_CLASS(insns[t].code) == BPF_JMP32) { 7864 u8 opcode = BPF_OP(insns[t].code); 7865 7866 if (opcode == BPF_EXIT) { 7867 goto mark_explored; 7868 } else if (opcode == BPF_CALL) { 7869 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7870 if (ret == 1) 7871 goto peek_stack; 7872 else if (ret < 0) 7873 goto err_free; 7874 if (t + 1 < insn_cnt) 7875 init_explored_state(env, t + 1); 7876 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 7877 init_explored_state(env, t); 7878 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 7879 env, false); 7880 if (ret == 1) 7881 goto peek_stack; 7882 else if (ret < 0) 7883 goto err_free; 7884 } 7885 } else if (opcode == BPF_JA) { 7886 if (BPF_SRC(insns[t].code) != BPF_K) { 7887 ret = -EINVAL; 7888 goto err_free; 7889 } 7890 /* unconditional jump with single edge */ 7891 ret = push_insn(t, t + insns[t].off + 1, 7892 FALLTHROUGH, env, true); 7893 if (ret == 1) 7894 goto peek_stack; 7895 else if (ret < 0) 7896 goto err_free; 7897 /* unconditional jmp is not a good pruning point, 7898 * but it's marked, since backtracking needs 7899 * to record jmp history in is_state_visited(). 7900 */ 7901 init_explored_state(env, t + insns[t].off + 1); 7902 /* tell verifier to check for equivalent states 7903 * after every call and jump 7904 */ 7905 if (t + 1 < insn_cnt) 7906 init_explored_state(env, t + 1); 7907 } else { 7908 /* conditional jump with two edges */ 7909 init_explored_state(env, t); 7910 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 7911 if (ret == 1) 7912 goto peek_stack; 7913 else if (ret < 0) 7914 goto err_free; 7915 7916 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 7917 if (ret == 1) 7918 goto peek_stack; 7919 else if (ret < 0) 7920 goto err_free; 7921 } 7922 } else { 7923 /* all other non-branch instructions with single 7924 * fall-through edge 7925 */ 7926 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 7927 if (ret == 1) 7928 goto peek_stack; 7929 else if (ret < 0) 7930 goto err_free; 7931 } 7932 7933 mark_explored: 7934 insn_state[t] = EXPLORED; 7935 if (env->cfg.cur_stack-- <= 0) { 7936 verbose(env, "pop stack internal bug\n"); 7937 ret = -EFAULT; 7938 goto err_free; 7939 } 7940 goto peek_stack; 7941 7942 check_state: 7943 for (i = 0; i < insn_cnt; i++) { 7944 if (insn_state[i] != EXPLORED) { 7945 verbose(env, "unreachable insn %d\n", i); 7946 ret = -EINVAL; 7947 goto err_free; 7948 } 7949 } 7950 ret = 0; /* cfg looks good */ 7951 7952 err_free: 7953 kvfree(insn_state); 7954 kvfree(insn_stack); 7955 env->cfg.insn_state = env->cfg.insn_stack = NULL; 7956 return ret; 7957 } 7958 7959 static int check_abnormal_return(struct bpf_verifier_env *env) 7960 { 7961 int i; 7962 7963 for (i = 1; i < env->subprog_cnt; i++) { 7964 if (env->subprog_info[i].has_ld_abs) { 7965 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 7966 return -EINVAL; 7967 } 7968 if (env->subprog_info[i].has_tail_call) { 7969 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 7970 return -EINVAL; 7971 } 7972 } 7973 return 0; 7974 } 7975 7976 /* The minimum supported BTF func info size */ 7977 #define MIN_BPF_FUNCINFO_SIZE 8 7978 #define MAX_FUNCINFO_REC_SIZE 252 7979 7980 static int check_btf_func(struct bpf_verifier_env *env, 7981 const union bpf_attr *attr, 7982 union bpf_attr __user *uattr) 7983 { 7984 const struct btf_type *type, *func_proto, *ret_type; 7985 u32 i, nfuncs, urec_size, min_size; 7986 u32 krec_size = sizeof(struct bpf_func_info); 7987 struct bpf_func_info *krecord; 7988 struct bpf_func_info_aux *info_aux = NULL; 7989 struct bpf_prog *prog; 7990 const struct btf *btf; 7991 void __user *urecord; 7992 u32 prev_offset = 0; 7993 bool scalar_return; 7994 int ret = -ENOMEM; 7995 7996 nfuncs = attr->func_info_cnt; 7997 if (!nfuncs) { 7998 if (check_abnormal_return(env)) 7999 return -EINVAL; 8000 return 0; 8001 } 8002 8003 if (nfuncs != env->subprog_cnt) { 8004 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8005 return -EINVAL; 8006 } 8007 8008 urec_size = attr->func_info_rec_size; 8009 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8010 urec_size > MAX_FUNCINFO_REC_SIZE || 8011 urec_size % sizeof(u32)) { 8012 verbose(env, "invalid func info rec size %u\n", urec_size); 8013 return -EINVAL; 8014 } 8015 8016 prog = env->prog; 8017 btf = prog->aux->btf; 8018 8019 urecord = u64_to_user_ptr(attr->func_info); 8020 min_size = min_t(u32, krec_size, urec_size); 8021 8022 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8023 if (!krecord) 8024 return -ENOMEM; 8025 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8026 if (!info_aux) 8027 goto err_free; 8028 8029 for (i = 0; i < nfuncs; i++) { 8030 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8031 if (ret) { 8032 if (ret == -E2BIG) { 8033 verbose(env, "nonzero tailing record in func info"); 8034 /* set the size kernel expects so loader can zero 8035 * out the rest of the record. 8036 */ 8037 if (put_user(min_size, &uattr->func_info_rec_size)) 8038 ret = -EFAULT; 8039 } 8040 goto err_free; 8041 } 8042 8043 if (copy_from_user(&krecord[i], urecord, min_size)) { 8044 ret = -EFAULT; 8045 goto err_free; 8046 } 8047 8048 /* check insn_off */ 8049 ret = -EINVAL; 8050 if (i == 0) { 8051 if (krecord[i].insn_off) { 8052 verbose(env, 8053 "nonzero insn_off %u for the first func info record", 8054 krecord[i].insn_off); 8055 goto err_free; 8056 } 8057 } else if (krecord[i].insn_off <= prev_offset) { 8058 verbose(env, 8059 "same or smaller insn offset (%u) than previous func info record (%u)", 8060 krecord[i].insn_off, prev_offset); 8061 goto err_free; 8062 } 8063 8064 if (env->subprog_info[i].start != krecord[i].insn_off) { 8065 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8066 goto err_free; 8067 } 8068 8069 /* check type_id */ 8070 type = btf_type_by_id(btf, krecord[i].type_id); 8071 if (!type || !btf_type_is_func(type)) { 8072 verbose(env, "invalid type id %d in func info", 8073 krecord[i].type_id); 8074 goto err_free; 8075 } 8076 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8077 8078 func_proto = btf_type_by_id(btf, type->type); 8079 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8080 /* btf_func_check() already verified it during BTF load */ 8081 goto err_free; 8082 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8083 scalar_return = 8084 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8085 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8086 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8087 goto err_free; 8088 } 8089 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8090 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8091 goto err_free; 8092 } 8093 8094 prev_offset = krecord[i].insn_off; 8095 urecord += urec_size; 8096 } 8097 8098 prog->aux->func_info = krecord; 8099 prog->aux->func_info_cnt = nfuncs; 8100 prog->aux->func_info_aux = info_aux; 8101 return 0; 8102 8103 err_free: 8104 kvfree(krecord); 8105 kfree(info_aux); 8106 return ret; 8107 } 8108 8109 static void adjust_btf_func(struct bpf_verifier_env *env) 8110 { 8111 struct bpf_prog_aux *aux = env->prog->aux; 8112 int i; 8113 8114 if (!aux->func_info) 8115 return; 8116 8117 for (i = 0; i < env->subprog_cnt; i++) 8118 aux->func_info[i].insn_off = env->subprog_info[i].start; 8119 } 8120 8121 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8122 sizeof(((struct bpf_line_info *)(0))->line_col)) 8123 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8124 8125 static int check_btf_line(struct bpf_verifier_env *env, 8126 const union bpf_attr *attr, 8127 union bpf_attr __user *uattr) 8128 { 8129 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8130 struct bpf_subprog_info *sub; 8131 struct bpf_line_info *linfo; 8132 struct bpf_prog *prog; 8133 const struct btf *btf; 8134 void __user *ulinfo; 8135 int err; 8136 8137 nr_linfo = attr->line_info_cnt; 8138 if (!nr_linfo) 8139 return 0; 8140 8141 rec_size = attr->line_info_rec_size; 8142 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8143 rec_size > MAX_LINEINFO_REC_SIZE || 8144 rec_size & (sizeof(u32) - 1)) 8145 return -EINVAL; 8146 8147 /* Need to zero it in case the userspace may 8148 * pass in a smaller bpf_line_info object. 8149 */ 8150 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8151 GFP_KERNEL | __GFP_NOWARN); 8152 if (!linfo) 8153 return -ENOMEM; 8154 8155 prog = env->prog; 8156 btf = prog->aux->btf; 8157 8158 s = 0; 8159 sub = env->subprog_info; 8160 ulinfo = u64_to_user_ptr(attr->line_info); 8161 expected_size = sizeof(struct bpf_line_info); 8162 ncopy = min_t(u32, expected_size, rec_size); 8163 for (i = 0; i < nr_linfo; i++) { 8164 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8165 if (err) { 8166 if (err == -E2BIG) { 8167 verbose(env, "nonzero tailing record in line_info"); 8168 if (put_user(expected_size, 8169 &uattr->line_info_rec_size)) 8170 err = -EFAULT; 8171 } 8172 goto err_free; 8173 } 8174 8175 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8176 err = -EFAULT; 8177 goto err_free; 8178 } 8179 8180 /* 8181 * Check insn_off to ensure 8182 * 1) strictly increasing AND 8183 * 2) bounded by prog->len 8184 * 8185 * The linfo[0].insn_off == 0 check logically falls into 8186 * the later "missing bpf_line_info for func..." case 8187 * because the first linfo[0].insn_off must be the 8188 * first sub also and the first sub must have 8189 * subprog_info[0].start == 0. 8190 */ 8191 if ((i && linfo[i].insn_off <= prev_offset) || 8192 linfo[i].insn_off >= prog->len) { 8193 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8194 i, linfo[i].insn_off, prev_offset, 8195 prog->len); 8196 err = -EINVAL; 8197 goto err_free; 8198 } 8199 8200 if (!prog->insnsi[linfo[i].insn_off].code) { 8201 verbose(env, 8202 "Invalid insn code at line_info[%u].insn_off\n", 8203 i); 8204 err = -EINVAL; 8205 goto err_free; 8206 } 8207 8208 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8209 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8210 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8211 err = -EINVAL; 8212 goto err_free; 8213 } 8214 8215 if (s != env->subprog_cnt) { 8216 if (linfo[i].insn_off == sub[s].start) { 8217 sub[s].linfo_idx = i; 8218 s++; 8219 } else if (sub[s].start < linfo[i].insn_off) { 8220 verbose(env, "missing bpf_line_info for func#%u\n", s); 8221 err = -EINVAL; 8222 goto err_free; 8223 } 8224 } 8225 8226 prev_offset = linfo[i].insn_off; 8227 ulinfo += rec_size; 8228 } 8229 8230 if (s != env->subprog_cnt) { 8231 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8232 env->subprog_cnt - s, s); 8233 err = -EINVAL; 8234 goto err_free; 8235 } 8236 8237 prog->aux->linfo = linfo; 8238 prog->aux->nr_linfo = nr_linfo; 8239 8240 return 0; 8241 8242 err_free: 8243 kvfree(linfo); 8244 return err; 8245 } 8246 8247 static int check_btf_info(struct bpf_verifier_env *env, 8248 const union bpf_attr *attr, 8249 union bpf_attr __user *uattr) 8250 { 8251 struct btf *btf; 8252 int err; 8253 8254 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8255 if (check_abnormal_return(env)) 8256 return -EINVAL; 8257 return 0; 8258 } 8259 8260 btf = btf_get_by_fd(attr->prog_btf_fd); 8261 if (IS_ERR(btf)) 8262 return PTR_ERR(btf); 8263 env->prog->aux->btf = btf; 8264 8265 err = check_btf_func(env, attr, uattr); 8266 if (err) 8267 return err; 8268 8269 err = check_btf_line(env, attr, uattr); 8270 if (err) 8271 return err; 8272 8273 return 0; 8274 } 8275 8276 /* check %cur's range satisfies %old's */ 8277 static bool range_within(struct bpf_reg_state *old, 8278 struct bpf_reg_state *cur) 8279 { 8280 return old->umin_value <= cur->umin_value && 8281 old->umax_value >= cur->umax_value && 8282 old->smin_value <= cur->smin_value && 8283 old->smax_value >= cur->smax_value; 8284 } 8285 8286 /* Maximum number of register states that can exist at once */ 8287 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8288 struct idpair { 8289 u32 old; 8290 u32 cur; 8291 }; 8292 8293 /* If in the old state two registers had the same id, then they need to have 8294 * the same id in the new state as well. But that id could be different from 8295 * the old state, so we need to track the mapping from old to new ids. 8296 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8297 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8298 * regs with a different old id could still have new id 9, we don't care about 8299 * that. 8300 * So we look through our idmap to see if this old id has been seen before. If 8301 * so, we require the new id to match; otherwise, we add the id pair to the map. 8302 */ 8303 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8304 { 8305 unsigned int i; 8306 8307 for (i = 0; i < ID_MAP_SIZE; i++) { 8308 if (!idmap[i].old) { 8309 /* Reached an empty slot; haven't seen this id before */ 8310 idmap[i].old = old_id; 8311 idmap[i].cur = cur_id; 8312 return true; 8313 } 8314 if (idmap[i].old == old_id) 8315 return idmap[i].cur == cur_id; 8316 } 8317 /* We ran out of idmap slots, which should be impossible */ 8318 WARN_ON_ONCE(1); 8319 return false; 8320 } 8321 8322 static void clean_func_state(struct bpf_verifier_env *env, 8323 struct bpf_func_state *st) 8324 { 8325 enum bpf_reg_liveness live; 8326 int i, j; 8327 8328 for (i = 0; i < BPF_REG_FP; i++) { 8329 live = st->regs[i].live; 8330 /* liveness must not touch this register anymore */ 8331 st->regs[i].live |= REG_LIVE_DONE; 8332 if (!(live & REG_LIVE_READ)) 8333 /* since the register is unused, clear its state 8334 * to make further comparison simpler 8335 */ 8336 __mark_reg_not_init(env, &st->regs[i]); 8337 } 8338 8339 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8340 live = st->stack[i].spilled_ptr.live; 8341 /* liveness must not touch this stack slot anymore */ 8342 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8343 if (!(live & REG_LIVE_READ)) { 8344 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8345 for (j = 0; j < BPF_REG_SIZE; j++) 8346 st->stack[i].slot_type[j] = STACK_INVALID; 8347 } 8348 } 8349 } 8350 8351 static void clean_verifier_state(struct bpf_verifier_env *env, 8352 struct bpf_verifier_state *st) 8353 { 8354 int i; 8355 8356 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8357 /* all regs in this state in all frames were already marked */ 8358 return; 8359 8360 for (i = 0; i <= st->curframe; i++) 8361 clean_func_state(env, st->frame[i]); 8362 } 8363 8364 /* the parentage chains form a tree. 8365 * the verifier states are added to state lists at given insn and 8366 * pushed into state stack for future exploration. 8367 * when the verifier reaches bpf_exit insn some of the verifer states 8368 * stored in the state lists have their final liveness state already, 8369 * but a lot of states will get revised from liveness point of view when 8370 * the verifier explores other branches. 8371 * Example: 8372 * 1: r0 = 1 8373 * 2: if r1 == 100 goto pc+1 8374 * 3: r0 = 2 8375 * 4: exit 8376 * when the verifier reaches exit insn the register r0 in the state list of 8377 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8378 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8379 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8380 * 8381 * Since the verifier pushes the branch states as it sees them while exploring 8382 * the program the condition of walking the branch instruction for the second 8383 * time means that all states below this branch were already explored and 8384 * their final liveness markes are already propagated. 8385 * Hence when the verifier completes the search of state list in is_state_visited() 8386 * we can call this clean_live_states() function to mark all liveness states 8387 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8388 * will not be used. 8389 * This function also clears the registers and stack for states that !READ 8390 * to simplify state merging. 8391 * 8392 * Important note here that walking the same branch instruction in the callee 8393 * doesn't meant that the states are DONE. The verifier has to compare 8394 * the callsites 8395 */ 8396 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8397 struct bpf_verifier_state *cur) 8398 { 8399 struct bpf_verifier_state_list *sl; 8400 int i; 8401 8402 sl = *explored_state(env, insn); 8403 while (sl) { 8404 if (sl->state.branches) 8405 goto next; 8406 if (sl->state.insn_idx != insn || 8407 sl->state.curframe != cur->curframe) 8408 goto next; 8409 for (i = 0; i <= cur->curframe; i++) 8410 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8411 goto next; 8412 clean_verifier_state(env, &sl->state); 8413 next: 8414 sl = sl->next; 8415 } 8416 } 8417 8418 /* Returns true if (rold safe implies rcur safe) */ 8419 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8420 struct idpair *idmap) 8421 { 8422 bool equal; 8423 8424 if (!(rold->live & REG_LIVE_READ)) 8425 /* explored state didn't use this */ 8426 return true; 8427 8428 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8429 8430 if (rold->type == PTR_TO_STACK) 8431 /* two stack pointers are equal only if they're pointing to 8432 * the same stack frame, since fp-8 in foo != fp-8 in bar 8433 */ 8434 return equal && rold->frameno == rcur->frameno; 8435 8436 if (equal) 8437 return true; 8438 8439 if (rold->type == NOT_INIT) 8440 /* explored state can't have used this */ 8441 return true; 8442 if (rcur->type == NOT_INIT) 8443 return false; 8444 switch (rold->type) { 8445 case SCALAR_VALUE: 8446 if (rcur->type == SCALAR_VALUE) { 8447 if (!rold->precise && !rcur->precise) 8448 return true; 8449 /* new val must satisfy old val knowledge */ 8450 return range_within(rold, rcur) && 8451 tnum_in(rold->var_off, rcur->var_off); 8452 } else { 8453 /* We're trying to use a pointer in place of a scalar. 8454 * Even if the scalar was unbounded, this could lead to 8455 * pointer leaks because scalars are allowed to leak 8456 * while pointers are not. We could make this safe in 8457 * special cases if root is calling us, but it's 8458 * probably not worth the hassle. 8459 */ 8460 return false; 8461 } 8462 case PTR_TO_MAP_VALUE: 8463 /* If the new min/max/var_off satisfy the old ones and 8464 * everything else matches, we are OK. 8465 * 'id' is not compared, since it's only used for maps with 8466 * bpf_spin_lock inside map element and in such cases if 8467 * the rest of the prog is valid for one map element then 8468 * it's valid for all map elements regardless of the key 8469 * used in bpf_map_lookup() 8470 */ 8471 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8472 range_within(rold, rcur) && 8473 tnum_in(rold->var_off, rcur->var_off); 8474 case PTR_TO_MAP_VALUE_OR_NULL: 8475 /* a PTR_TO_MAP_VALUE could be safe to use as a 8476 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8477 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8478 * checked, doing so could have affected others with the same 8479 * id, and we can't check for that because we lost the id when 8480 * we converted to a PTR_TO_MAP_VALUE. 8481 */ 8482 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8483 return false; 8484 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8485 return false; 8486 /* Check our ids match any regs they're supposed to */ 8487 return check_ids(rold->id, rcur->id, idmap); 8488 case PTR_TO_PACKET_META: 8489 case PTR_TO_PACKET: 8490 if (rcur->type != rold->type) 8491 return false; 8492 /* We must have at least as much range as the old ptr 8493 * did, so that any accesses which were safe before are 8494 * still safe. This is true even if old range < old off, 8495 * since someone could have accessed through (ptr - k), or 8496 * even done ptr -= k in a register, to get a safe access. 8497 */ 8498 if (rold->range > rcur->range) 8499 return false; 8500 /* If the offsets don't match, we can't trust our alignment; 8501 * nor can we be sure that we won't fall out of range. 8502 */ 8503 if (rold->off != rcur->off) 8504 return false; 8505 /* id relations must be preserved */ 8506 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8507 return false; 8508 /* new val must satisfy old val knowledge */ 8509 return range_within(rold, rcur) && 8510 tnum_in(rold->var_off, rcur->var_off); 8511 case PTR_TO_CTX: 8512 case CONST_PTR_TO_MAP: 8513 case PTR_TO_PACKET_END: 8514 case PTR_TO_FLOW_KEYS: 8515 case PTR_TO_SOCKET: 8516 case PTR_TO_SOCKET_OR_NULL: 8517 case PTR_TO_SOCK_COMMON: 8518 case PTR_TO_SOCK_COMMON_OR_NULL: 8519 case PTR_TO_TCP_SOCK: 8520 case PTR_TO_TCP_SOCK_OR_NULL: 8521 case PTR_TO_XDP_SOCK: 8522 /* Only valid matches are exact, which memcmp() above 8523 * would have accepted 8524 */ 8525 default: 8526 /* Don't know what's going on, just say it's not safe */ 8527 return false; 8528 } 8529 8530 /* Shouldn't get here; if we do, say it's not safe */ 8531 WARN_ON_ONCE(1); 8532 return false; 8533 } 8534 8535 static bool stacksafe(struct bpf_func_state *old, 8536 struct bpf_func_state *cur, 8537 struct idpair *idmap) 8538 { 8539 int i, spi; 8540 8541 /* walk slots of the explored stack and ignore any additional 8542 * slots in the current stack, since explored(safe) state 8543 * didn't use them 8544 */ 8545 for (i = 0; i < old->allocated_stack; i++) { 8546 spi = i / BPF_REG_SIZE; 8547 8548 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8549 i += BPF_REG_SIZE - 1; 8550 /* explored state didn't use this */ 8551 continue; 8552 } 8553 8554 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8555 continue; 8556 8557 /* explored stack has more populated slots than current stack 8558 * and these slots were used 8559 */ 8560 if (i >= cur->allocated_stack) 8561 return false; 8562 8563 /* if old state was safe with misc data in the stack 8564 * it will be safe with zero-initialized stack. 8565 * The opposite is not true 8566 */ 8567 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8568 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8569 continue; 8570 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8571 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8572 /* Ex: old explored (safe) state has STACK_SPILL in 8573 * this stack slot, but current has STACK_MISC -> 8574 * this verifier states are not equivalent, 8575 * return false to continue verification of this path 8576 */ 8577 return false; 8578 if (i % BPF_REG_SIZE) 8579 continue; 8580 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8581 continue; 8582 if (!regsafe(&old->stack[spi].spilled_ptr, 8583 &cur->stack[spi].spilled_ptr, 8584 idmap)) 8585 /* when explored and current stack slot are both storing 8586 * spilled registers, check that stored pointers types 8587 * are the same as well. 8588 * Ex: explored safe path could have stored 8589 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8590 * but current path has stored: 8591 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8592 * such verifier states are not equivalent. 8593 * return false to continue verification of this path 8594 */ 8595 return false; 8596 } 8597 return true; 8598 } 8599 8600 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8601 { 8602 if (old->acquired_refs != cur->acquired_refs) 8603 return false; 8604 return !memcmp(old->refs, cur->refs, 8605 sizeof(*old->refs) * old->acquired_refs); 8606 } 8607 8608 /* compare two verifier states 8609 * 8610 * all states stored in state_list are known to be valid, since 8611 * verifier reached 'bpf_exit' instruction through them 8612 * 8613 * this function is called when verifier exploring different branches of 8614 * execution popped from the state stack. If it sees an old state that has 8615 * more strict register state and more strict stack state then this execution 8616 * branch doesn't need to be explored further, since verifier already 8617 * concluded that more strict state leads to valid finish. 8618 * 8619 * Therefore two states are equivalent if register state is more conservative 8620 * and explored stack state is more conservative than the current one. 8621 * Example: 8622 * explored current 8623 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8624 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8625 * 8626 * In other words if current stack state (one being explored) has more 8627 * valid slots than old one that already passed validation, it means 8628 * the verifier can stop exploring and conclude that current state is valid too 8629 * 8630 * Similarly with registers. If explored state has register type as invalid 8631 * whereas register type in current state is meaningful, it means that 8632 * the current state will reach 'bpf_exit' instruction safely 8633 */ 8634 static bool func_states_equal(struct bpf_func_state *old, 8635 struct bpf_func_state *cur) 8636 { 8637 struct idpair *idmap; 8638 bool ret = false; 8639 int i; 8640 8641 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8642 /* If we failed to allocate the idmap, just say it's not safe */ 8643 if (!idmap) 8644 return false; 8645 8646 for (i = 0; i < MAX_BPF_REG; i++) { 8647 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8648 goto out_free; 8649 } 8650 8651 if (!stacksafe(old, cur, idmap)) 8652 goto out_free; 8653 8654 if (!refsafe(old, cur)) 8655 goto out_free; 8656 ret = true; 8657 out_free: 8658 kfree(idmap); 8659 return ret; 8660 } 8661 8662 static bool states_equal(struct bpf_verifier_env *env, 8663 struct bpf_verifier_state *old, 8664 struct bpf_verifier_state *cur) 8665 { 8666 int i; 8667 8668 if (old->curframe != cur->curframe) 8669 return false; 8670 8671 /* Verification state from speculative execution simulation 8672 * must never prune a non-speculative execution one. 8673 */ 8674 if (old->speculative && !cur->speculative) 8675 return false; 8676 8677 if (old->active_spin_lock != cur->active_spin_lock) 8678 return false; 8679 8680 /* for states to be equal callsites have to be the same 8681 * and all frame states need to be equivalent 8682 */ 8683 for (i = 0; i <= old->curframe; i++) { 8684 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8685 return false; 8686 if (!func_states_equal(old->frame[i], cur->frame[i])) 8687 return false; 8688 } 8689 return true; 8690 } 8691 8692 /* Return 0 if no propagation happened. Return negative error code if error 8693 * happened. Otherwise, return the propagated bit. 8694 */ 8695 static int propagate_liveness_reg(struct bpf_verifier_env *env, 8696 struct bpf_reg_state *reg, 8697 struct bpf_reg_state *parent_reg) 8698 { 8699 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 8700 u8 flag = reg->live & REG_LIVE_READ; 8701 int err; 8702 8703 /* When comes here, read flags of PARENT_REG or REG could be any of 8704 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 8705 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 8706 */ 8707 if (parent_flag == REG_LIVE_READ64 || 8708 /* Or if there is no read flag from REG. */ 8709 !flag || 8710 /* Or if the read flag from REG is the same as PARENT_REG. */ 8711 parent_flag == flag) 8712 return 0; 8713 8714 err = mark_reg_read(env, reg, parent_reg, flag); 8715 if (err) 8716 return err; 8717 8718 return flag; 8719 } 8720 8721 /* A write screens off any subsequent reads; but write marks come from the 8722 * straight-line code between a state and its parent. When we arrive at an 8723 * equivalent state (jump target or such) we didn't arrive by the straight-line 8724 * code, so read marks in the state must propagate to the parent regardless 8725 * of the state's write marks. That's what 'parent == state->parent' comparison 8726 * in mark_reg_read() is for. 8727 */ 8728 static int propagate_liveness(struct bpf_verifier_env *env, 8729 const struct bpf_verifier_state *vstate, 8730 struct bpf_verifier_state *vparent) 8731 { 8732 struct bpf_reg_state *state_reg, *parent_reg; 8733 struct bpf_func_state *state, *parent; 8734 int i, frame, err = 0; 8735 8736 if (vparent->curframe != vstate->curframe) { 8737 WARN(1, "propagate_live: parent frame %d current frame %d\n", 8738 vparent->curframe, vstate->curframe); 8739 return -EFAULT; 8740 } 8741 /* Propagate read liveness of registers... */ 8742 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 8743 for (frame = 0; frame <= vstate->curframe; frame++) { 8744 parent = vparent->frame[frame]; 8745 state = vstate->frame[frame]; 8746 parent_reg = parent->regs; 8747 state_reg = state->regs; 8748 /* We don't need to worry about FP liveness, it's read-only */ 8749 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 8750 err = propagate_liveness_reg(env, &state_reg[i], 8751 &parent_reg[i]); 8752 if (err < 0) 8753 return err; 8754 if (err == REG_LIVE_READ64) 8755 mark_insn_zext(env, &parent_reg[i]); 8756 } 8757 8758 /* Propagate stack slots. */ 8759 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 8760 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 8761 parent_reg = &parent->stack[i].spilled_ptr; 8762 state_reg = &state->stack[i].spilled_ptr; 8763 err = propagate_liveness_reg(env, state_reg, 8764 parent_reg); 8765 if (err < 0) 8766 return err; 8767 } 8768 } 8769 return 0; 8770 } 8771 8772 /* find precise scalars in the previous equivalent state and 8773 * propagate them into the current state 8774 */ 8775 static int propagate_precision(struct bpf_verifier_env *env, 8776 const struct bpf_verifier_state *old) 8777 { 8778 struct bpf_reg_state *state_reg; 8779 struct bpf_func_state *state; 8780 int i, err = 0; 8781 8782 state = old->frame[old->curframe]; 8783 state_reg = state->regs; 8784 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 8785 if (state_reg->type != SCALAR_VALUE || 8786 !state_reg->precise) 8787 continue; 8788 if (env->log.level & BPF_LOG_LEVEL2) 8789 verbose(env, "propagating r%d\n", i); 8790 err = mark_chain_precision(env, i); 8791 if (err < 0) 8792 return err; 8793 } 8794 8795 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 8796 if (state->stack[i].slot_type[0] != STACK_SPILL) 8797 continue; 8798 state_reg = &state->stack[i].spilled_ptr; 8799 if (state_reg->type != SCALAR_VALUE || 8800 !state_reg->precise) 8801 continue; 8802 if (env->log.level & BPF_LOG_LEVEL2) 8803 verbose(env, "propagating fp%d\n", 8804 (-i - 1) * BPF_REG_SIZE); 8805 err = mark_chain_precision_stack(env, i); 8806 if (err < 0) 8807 return err; 8808 } 8809 return 0; 8810 } 8811 8812 static bool states_maybe_looping(struct bpf_verifier_state *old, 8813 struct bpf_verifier_state *cur) 8814 { 8815 struct bpf_func_state *fold, *fcur; 8816 int i, fr = cur->curframe; 8817 8818 if (old->curframe != fr) 8819 return false; 8820 8821 fold = old->frame[fr]; 8822 fcur = cur->frame[fr]; 8823 for (i = 0; i < MAX_BPF_REG; i++) 8824 if (memcmp(&fold->regs[i], &fcur->regs[i], 8825 offsetof(struct bpf_reg_state, parent))) 8826 return false; 8827 return true; 8828 } 8829 8830 8831 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 8832 { 8833 struct bpf_verifier_state_list *new_sl; 8834 struct bpf_verifier_state_list *sl, **pprev; 8835 struct bpf_verifier_state *cur = env->cur_state, *new; 8836 int i, j, err, states_cnt = 0; 8837 bool add_new_state = env->test_state_freq ? true : false; 8838 8839 cur->last_insn_idx = env->prev_insn_idx; 8840 if (!env->insn_aux_data[insn_idx].prune_point) 8841 /* this 'insn_idx' instruction wasn't marked, so we will not 8842 * be doing state search here 8843 */ 8844 return 0; 8845 8846 /* bpf progs typically have pruning point every 4 instructions 8847 * http://vger.kernel.org/bpfconf2019.html#session-1 8848 * Do not add new state for future pruning if the verifier hasn't seen 8849 * at least 2 jumps and at least 8 instructions. 8850 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 8851 * In tests that amounts to up to 50% reduction into total verifier 8852 * memory consumption and 20% verifier time speedup. 8853 */ 8854 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 8855 env->insn_processed - env->prev_insn_processed >= 8) 8856 add_new_state = true; 8857 8858 pprev = explored_state(env, insn_idx); 8859 sl = *pprev; 8860 8861 clean_live_states(env, insn_idx, cur); 8862 8863 while (sl) { 8864 states_cnt++; 8865 if (sl->state.insn_idx != insn_idx) 8866 goto next; 8867 if (sl->state.branches) { 8868 if (states_maybe_looping(&sl->state, cur) && 8869 states_equal(env, &sl->state, cur)) { 8870 verbose_linfo(env, insn_idx, "; "); 8871 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 8872 return -EINVAL; 8873 } 8874 /* if the verifier is processing a loop, avoid adding new state 8875 * too often, since different loop iterations have distinct 8876 * states and may not help future pruning. 8877 * This threshold shouldn't be too low to make sure that 8878 * a loop with large bound will be rejected quickly. 8879 * The most abusive loop will be: 8880 * r1 += 1 8881 * if r1 < 1000000 goto pc-2 8882 * 1M insn_procssed limit / 100 == 10k peak states. 8883 * This threshold shouldn't be too high either, since states 8884 * at the end of the loop are likely to be useful in pruning. 8885 */ 8886 if (env->jmps_processed - env->prev_jmps_processed < 20 && 8887 env->insn_processed - env->prev_insn_processed < 100) 8888 add_new_state = false; 8889 goto miss; 8890 } 8891 if (states_equal(env, &sl->state, cur)) { 8892 sl->hit_cnt++; 8893 /* reached equivalent register/stack state, 8894 * prune the search. 8895 * Registers read by the continuation are read by us. 8896 * If we have any write marks in env->cur_state, they 8897 * will prevent corresponding reads in the continuation 8898 * from reaching our parent (an explored_state). Our 8899 * own state will get the read marks recorded, but 8900 * they'll be immediately forgotten as we're pruning 8901 * this state and will pop a new one. 8902 */ 8903 err = propagate_liveness(env, &sl->state, cur); 8904 8905 /* if previous state reached the exit with precision and 8906 * current state is equivalent to it (except precsion marks) 8907 * the precision needs to be propagated back in 8908 * the current state. 8909 */ 8910 err = err ? : push_jmp_history(env, cur); 8911 err = err ? : propagate_precision(env, &sl->state); 8912 if (err) 8913 return err; 8914 return 1; 8915 } 8916 miss: 8917 /* when new state is not going to be added do not increase miss count. 8918 * Otherwise several loop iterations will remove the state 8919 * recorded earlier. The goal of these heuristics is to have 8920 * states from some iterations of the loop (some in the beginning 8921 * and some at the end) to help pruning. 8922 */ 8923 if (add_new_state) 8924 sl->miss_cnt++; 8925 /* heuristic to determine whether this state is beneficial 8926 * to keep checking from state equivalence point of view. 8927 * Higher numbers increase max_states_per_insn and verification time, 8928 * but do not meaningfully decrease insn_processed. 8929 */ 8930 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 8931 /* the state is unlikely to be useful. Remove it to 8932 * speed up verification 8933 */ 8934 *pprev = sl->next; 8935 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 8936 u32 br = sl->state.branches; 8937 8938 WARN_ONCE(br, 8939 "BUG live_done but branches_to_explore %d\n", 8940 br); 8941 free_verifier_state(&sl->state, false); 8942 kfree(sl); 8943 env->peak_states--; 8944 } else { 8945 /* cannot free this state, since parentage chain may 8946 * walk it later. Add it for free_list instead to 8947 * be freed at the end of verification 8948 */ 8949 sl->next = env->free_list; 8950 env->free_list = sl; 8951 } 8952 sl = *pprev; 8953 continue; 8954 } 8955 next: 8956 pprev = &sl->next; 8957 sl = *pprev; 8958 } 8959 8960 if (env->max_states_per_insn < states_cnt) 8961 env->max_states_per_insn = states_cnt; 8962 8963 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 8964 return push_jmp_history(env, cur); 8965 8966 if (!add_new_state) 8967 return push_jmp_history(env, cur); 8968 8969 /* There were no equivalent states, remember the current one. 8970 * Technically the current state is not proven to be safe yet, 8971 * but it will either reach outer most bpf_exit (which means it's safe) 8972 * or it will be rejected. When there are no loops the verifier won't be 8973 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 8974 * again on the way to bpf_exit. 8975 * When looping the sl->state.branches will be > 0 and this state 8976 * will not be considered for equivalence until branches == 0. 8977 */ 8978 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 8979 if (!new_sl) 8980 return -ENOMEM; 8981 env->total_states++; 8982 env->peak_states++; 8983 env->prev_jmps_processed = env->jmps_processed; 8984 env->prev_insn_processed = env->insn_processed; 8985 8986 /* add new state to the head of linked list */ 8987 new = &new_sl->state; 8988 err = copy_verifier_state(new, cur); 8989 if (err) { 8990 free_verifier_state(new, false); 8991 kfree(new_sl); 8992 return err; 8993 } 8994 new->insn_idx = insn_idx; 8995 WARN_ONCE(new->branches != 1, 8996 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 8997 8998 cur->parent = new; 8999 cur->first_insn_idx = insn_idx; 9000 clear_jmp_history(cur); 9001 new_sl->next = *explored_state(env, insn_idx); 9002 *explored_state(env, insn_idx) = new_sl; 9003 /* connect new state to parentage chain. Current frame needs all 9004 * registers connected. Only r6 - r9 of the callers are alive (pushed 9005 * to the stack implicitly by JITs) so in callers' frames connect just 9006 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9007 * the state of the call instruction (with WRITTEN set), and r0 comes 9008 * from callee with its full parentage chain, anyway. 9009 */ 9010 /* clear write marks in current state: the writes we did are not writes 9011 * our child did, so they don't screen off its reads from us. 9012 * (There are no read marks in current state, because reads always mark 9013 * their parent and current state never has children yet. Only 9014 * explored_states can get read marks.) 9015 */ 9016 for (j = 0; j <= cur->curframe; j++) { 9017 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9018 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9019 for (i = 0; i < BPF_REG_FP; i++) 9020 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9021 } 9022 9023 /* all stack frames are accessible from callee, clear them all */ 9024 for (j = 0; j <= cur->curframe; j++) { 9025 struct bpf_func_state *frame = cur->frame[j]; 9026 struct bpf_func_state *newframe = new->frame[j]; 9027 9028 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9029 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9030 frame->stack[i].spilled_ptr.parent = 9031 &newframe->stack[i].spilled_ptr; 9032 } 9033 } 9034 return 0; 9035 } 9036 9037 /* Return true if it's OK to have the same insn return a different type. */ 9038 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9039 { 9040 switch (type) { 9041 case PTR_TO_CTX: 9042 case PTR_TO_SOCKET: 9043 case PTR_TO_SOCKET_OR_NULL: 9044 case PTR_TO_SOCK_COMMON: 9045 case PTR_TO_SOCK_COMMON_OR_NULL: 9046 case PTR_TO_TCP_SOCK: 9047 case PTR_TO_TCP_SOCK_OR_NULL: 9048 case PTR_TO_XDP_SOCK: 9049 case PTR_TO_BTF_ID: 9050 case PTR_TO_BTF_ID_OR_NULL: 9051 return false; 9052 default: 9053 return true; 9054 } 9055 } 9056 9057 /* If an instruction was previously used with particular pointer types, then we 9058 * need to be careful to avoid cases such as the below, where it may be ok 9059 * for one branch accessing the pointer, but not ok for the other branch: 9060 * 9061 * R1 = sock_ptr 9062 * goto X; 9063 * ... 9064 * R1 = some_other_valid_ptr; 9065 * goto X; 9066 * ... 9067 * R2 = *(u32 *)(R1 + 0); 9068 */ 9069 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9070 { 9071 return src != prev && (!reg_type_mismatch_ok(src) || 9072 !reg_type_mismatch_ok(prev)); 9073 } 9074 9075 static int do_check(struct bpf_verifier_env *env) 9076 { 9077 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9078 struct bpf_verifier_state *state = env->cur_state; 9079 struct bpf_insn *insns = env->prog->insnsi; 9080 struct bpf_reg_state *regs; 9081 int insn_cnt = env->prog->len; 9082 bool do_print_state = false; 9083 int prev_insn_idx = -1; 9084 9085 for (;;) { 9086 struct bpf_insn *insn; 9087 u8 class; 9088 int err; 9089 9090 env->prev_insn_idx = prev_insn_idx; 9091 if (env->insn_idx >= insn_cnt) { 9092 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9093 env->insn_idx, insn_cnt); 9094 return -EFAULT; 9095 } 9096 9097 insn = &insns[env->insn_idx]; 9098 class = BPF_CLASS(insn->code); 9099 9100 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9101 verbose(env, 9102 "BPF program is too large. Processed %d insn\n", 9103 env->insn_processed); 9104 return -E2BIG; 9105 } 9106 9107 err = is_state_visited(env, env->insn_idx); 9108 if (err < 0) 9109 return err; 9110 if (err == 1) { 9111 /* found equivalent state, can prune the search */ 9112 if (env->log.level & BPF_LOG_LEVEL) { 9113 if (do_print_state) 9114 verbose(env, "\nfrom %d to %d%s: safe\n", 9115 env->prev_insn_idx, env->insn_idx, 9116 env->cur_state->speculative ? 9117 " (speculative execution)" : ""); 9118 else 9119 verbose(env, "%d: safe\n", env->insn_idx); 9120 } 9121 goto process_bpf_exit; 9122 } 9123 9124 if (signal_pending(current)) 9125 return -EAGAIN; 9126 9127 if (need_resched()) 9128 cond_resched(); 9129 9130 if (env->log.level & BPF_LOG_LEVEL2 || 9131 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9132 if (env->log.level & BPF_LOG_LEVEL2) 9133 verbose(env, "%d:", env->insn_idx); 9134 else 9135 verbose(env, "\nfrom %d to %d%s:", 9136 env->prev_insn_idx, env->insn_idx, 9137 env->cur_state->speculative ? 9138 " (speculative execution)" : ""); 9139 print_verifier_state(env, state->frame[state->curframe]); 9140 do_print_state = false; 9141 } 9142 9143 if (env->log.level & BPF_LOG_LEVEL) { 9144 const struct bpf_insn_cbs cbs = { 9145 .cb_print = verbose, 9146 .private_data = env, 9147 }; 9148 9149 verbose_linfo(env, env->insn_idx, "; "); 9150 verbose(env, "%d: ", env->insn_idx); 9151 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9152 } 9153 9154 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9155 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9156 env->prev_insn_idx); 9157 if (err) 9158 return err; 9159 } 9160 9161 regs = cur_regs(env); 9162 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9163 prev_insn_idx = env->insn_idx; 9164 9165 if (class == BPF_ALU || class == BPF_ALU64) { 9166 err = check_alu_op(env, insn); 9167 if (err) 9168 return err; 9169 9170 } else if (class == BPF_LDX) { 9171 enum bpf_reg_type *prev_src_type, src_reg_type; 9172 9173 /* check for reserved fields is already done */ 9174 9175 /* check src operand */ 9176 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9177 if (err) 9178 return err; 9179 9180 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9181 if (err) 9182 return err; 9183 9184 src_reg_type = regs[insn->src_reg].type; 9185 9186 /* check that memory (src_reg + off) is readable, 9187 * the state of dst_reg will be updated by this func 9188 */ 9189 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9190 insn->off, BPF_SIZE(insn->code), 9191 BPF_READ, insn->dst_reg, false); 9192 if (err) 9193 return err; 9194 9195 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9196 9197 if (*prev_src_type == NOT_INIT) { 9198 /* saw a valid insn 9199 * dst_reg = *(u32 *)(src_reg + off) 9200 * save type to validate intersecting paths 9201 */ 9202 *prev_src_type = src_reg_type; 9203 9204 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9205 /* ABuser program is trying to use the same insn 9206 * dst_reg = *(u32*) (src_reg + off) 9207 * with different pointer types: 9208 * src_reg == ctx in one branch and 9209 * src_reg == stack|map in some other branch. 9210 * Reject it. 9211 */ 9212 verbose(env, "same insn cannot be used with different pointers\n"); 9213 return -EINVAL; 9214 } 9215 9216 } else if (class == BPF_STX) { 9217 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9218 9219 if (BPF_MODE(insn->code) == BPF_XADD) { 9220 err = check_xadd(env, env->insn_idx, insn); 9221 if (err) 9222 return err; 9223 env->insn_idx++; 9224 continue; 9225 } 9226 9227 /* check src1 operand */ 9228 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9229 if (err) 9230 return err; 9231 /* check src2 operand */ 9232 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9233 if (err) 9234 return err; 9235 9236 dst_reg_type = regs[insn->dst_reg].type; 9237 9238 /* check that memory (dst_reg + off) is writeable */ 9239 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9240 insn->off, BPF_SIZE(insn->code), 9241 BPF_WRITE, insn->src_reg, false); 9242 if (err) 9243 return err; 9244 9245 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9246 9247 if (*prev_dst_type == NOT_INIT) { 9248 *prev_dst_type = dst_reg_type; 9249 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9250 verbose(env, "same insn cannot be used with different pointers\n"); 9251 return -EINVAL; 9252 } 9253 9254 } else if (class == BPF_ST) { 9255 if (BPF_MODE(insn->code) != BPF_MEM || 9256 insn->src_reg != BPF_REG_0) { 9257 verbose(env, "BPF_ST uses reserved fields\n"); 9258 return -EINVAL; 9259 } 9260 /* check src operand */ 9261 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9262 if (err) 9263 return err; 9264 9265 if (is_ctx_reg(env, insn->dst_reg)) { 9266 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9267 insn->dst_reg, 9268 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9269 return -EACCES; 9270 } 9271 9272 /* check that memory (dst_reg + off) is writeable */ 9273 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9274 insn->off, BPF_SIZE(insn->code), 9275 BPF_WRITE, -1, false); 9276 if (err) 9277 return err; 9278 9279 } else if (class == BPF_JMP || class == BPF_JMP32) { 9280 u8 opcode = BPF_OP(insn->code); 9281 9282 env->jmps_processed++; 9283 if (opcode == BPF_CALL) { 9284 if (BPF_SRC(insn->code) != BPF_K || 9285 insn->off != 0 || 9286 (insn->src_reg != BPF_REG_0 && 9287 insn->src_reg != BPF_PSEUDO_CALL) || 9288 insn->dst_reg != BPF_REG_0 || 9289 class == BPF_JMP32) { 9290 verbose(env, "BPF_CALL uses reserved fields\n"); 9291 return -EINVAL; 9292 } 9293 9294 if (env->cur_state->active_spin_lock && 9295 (insn->src_reg == BPF_PSEUDO_CALL || 9296 insn->imm != BPF_FUNC_spin_unlock)) { 9297 verbose(env, "function calls are not allowed while holding a lock\n"); 9298 return -EINVAL; 9299 } 9300 if (insn->src_reg == BPF_PSEUDO_CALL) 9301 err = check_func_call(env, insn, &env->insn_idx); 9302 else 9303 err = check_helper_call(env, insn->imm, env->insn_idx); 9304 if (err) 9305 return err; 9306 9307 } else if (opcode == BPF_JA) { 9308 if (BPF_SRC(insn->code) != BPF_K || 9309 insn->imm != 0 || 9310 insn->src_reg != BPF_REG_0 || 9311 insn->dst_reg != BPF_REG_0 || 9312 class == BPF_JMP32) { 9313 verbose(env, "BPF_JA uses reserved fields\n"); 9314 return -EINVAL; 9315 } 9316 9317 env->insn_idx += insn->off + 1; 9318 continue; 9319 9320 } else if (opcode == BPF_EXIT) { 9321 if (BPF_SRC(insn->code) != BPF_K || 9322 insn->imm != 0 || 9323 insn->src_reg != BPF_REG_0 || 9324 insn->dst_reg != BPF_REG_0 || 9325 class == BPF_JMP32) { 9326 verbose(env, "BPF_EXIT uses reserved fields\n"); 9327 return -EINVAL; 9328 } 9329 9330 if (env->cur_state->active_spin_lock) { 9331 verbose(env, "bpf_spin_unlock is missing\n"); 9332 return -EINVAL; 9333 } 9334 9335 if (state->curframe) { 9336 /* exit from nested function */ 9337 err = prepare_func_exit(env, &env->insn_idx); 9338 if (err) 9339 return err; 9340 do_print_state = true; 9341 continue; 9342 } 9343 9344 err = check_reference_leak(env); 9345 if (err) 9346 return err; 9347 9348 err = check_return_code(env); 9349 if (err) 9350 return err; 9351 process_bpf_exit: 9352 update_branch_counts(env, env->cur_state); 9353 err = pop_stack(env, &prev_insn_idx, 9354 &env->insn_idx, pop_log); 9355 if (err < 0) { 9356 if (err != -ENOENT) 9357 return err; 9358 break; 9359 } else { 9360 do_print_state = true; 9361 continue; 9362 } 9363 } else { 9364 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9365 if (err) 9366 return err; 9367 } 9368 } else if (class == BPF_LD) { 9369 u8 mode = BPF_MODE(insn->code); 9370 9371 if (mode == BPF_ABS || mode == BPF_IND) { 9372 err = check_ld_abs(env, insn); 9373 if (err) 9374 return err; 9375 9376 } else if (mode == BPF_IMM) { 9377 err = check_ld_imm(env, insn); 9378 if (err) 9379 return err; 9380 9381 env->insn_idx++; 9382 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9383 } else { 9384 verbose(env, "invalid BPF_LD mode\n"); 9385 return -EINVAL; 9386 } 9387 } else { 9388 verbose(env, "unknown insn class %d\n", class); 9389 return -EINVAL; 9390 } 9391 9392 env->insn_idx++; 9393 } 9394 9395 return 0; 9396 } 9397 9398 static int check_map_prealloc(struct bpf_map *map) 9399 { 9400 return (map->map_type != BPF_MAP_TYPE_HASH && 9401 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9402 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9403 !(map->map_flags & BPF_F_NO_PREALLOC); 9404 } 9405 9406 static bool is_tracing_prog_type(enum bpf_prog_type type) 9407 { 9408 switch (type) { 9409 case BPF_PROG_TYPE_KPROBE: 9410 case BPF_PROG_TYPE_TRACEPOINT: 9411 case BPF_PROG_TYPE_PERF_EVENT: 9412 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9413 return true; 9414 default: 9415 return false; 9416 } 9417 } 9418 9419 static bool is_preallocated_map(struct bpf_map *map) 9420 { 9421 if (!check_map_prealloc(map)) 9422 return false; 9423 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9424 return false; 9425 return true; 9426 } 9427 9428 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9429 struct bpf_map *map, 9430 struct bpf_prog *prog) 9431 9432 { 9433 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9434 /* 9435 * Validate that trace type programs use preallocated hash maps. 9436 * 9437 * For programs attached to PERF events this is mandatory as the 9438 * perf NMI can hit any arbitrary code sequence. 9439 * 9440 * All other trace types using preallocated hash maps are unsafe as 9441 * well because tracepoint or kprobes can be inside locked regions 9442 * of the memory allocator or at a place where a recursion into the 9443 * memory allocator would see inconsistent state. 9444 * 9445 * On RT enabled kernels run-time allocation of all trace type 9446 * programs is strictly prohibited due to lock type constraints. On 9447 * !RT kernels it is allowed for backwards compatibility reasons for 9448 * now, but warnings are emitted so developers are made aware of 9449 * the unsafety and can fix their programs before this is enforced. 9450 */ 9451 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9452 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9453 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9454 return -EINVAL; 9455 } 9456 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9457 verbose(env, "trace type programs can only use preallocated hash map\n"); 9458 return -EINVAL; 9459 } 9460 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9461 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9462 } 9463 9464 if ((is_tracing_prog_type(prog_type) || 9465 prog_type == BPF_PROG_TYPE_SOCKET_FILTER) && 9466 map_value_has_spin_lock(map)) { 9467 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9468 return -EINVAL; 9469 } 9470 9471 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9472 !bpf_offload_prog_map_match(prog, map)) { 9473 verbose(env, "offload device mismatch between prog and map\n"); 9474 return -EINVAL; 9475 } 9476 9477 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9478 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9479 return -EINVAL; 9480 } 9481 9482 if (prog->aux->sleepable) 9483 switch (map->map_type) { 9484 case BPF_MAP_TYPE_HASH: 9485 case BPF_MAP_TYPE_LRU_HASH: 9486 case BPF_MAP_TYPE_ARRAY: 9487 if (!is_preallocated_map(map)) { 9488 verbose(env, 9489 "Sleepable programs can only use preallocated hash maps\n"); 9490 return -EINVAL; 9491 } 9492 break; 9493 default: 9494 verbose(env, 9495 "Sleepable programs can only use array and hash maps\n"); 9496 return -EINVAL; 9497 } 9498 9499 return 0; 9500 } 9501 9502 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9503 { 9504 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9505 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9506 } 9507 9508 /* look for pseudo eBPF instructions that access map FDs and 9509 * replace them with actual map pointers 9510 */ 9511 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 9512 { 9513 struct bpf_insn *insn = env->prog->insnsi; 9514 int insn_cnt = env->prog->len; 9515 int i, j, err; 9516 9517 err = bpf_prog_calc_tag(env->prog); 9518 if (err) 9519 return err; 9520 9521 for (i = 0; i < insn_cnt; i++, insn++) { 9522 if (BPF_CLASS(insn->code) == BPF_LDX && 9523 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9524 verbose(env, "BPF_LDX uses reserved fields\n"); 9525 return -EINVAL; 9526 } 9527 9528 if (BPF_CLASS(insn->code) == BPF_STX && 9529 ((BPF_MODE(insn->code) != BPF_MEM && 9530 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9531 verbose(env, "BPF_STX uses reserved fields\n"); 9532 return -EINVAL; 9533 } 9534 9535 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9536 struct bpf_insn_aux_data *aux; 9537 struct bpf_map *map; 9538 struct fd f; 9539 u64 addr; 9540 9541 if (i == insn_cnt - 1 || insn[1].code != 0 || 9542 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9543 insn[1].off != 0) { 9544 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9545 return -EINVAL; 9546 } 9547 9548 if (insn[0].src_reg == 0) 9549 /* valid generic load 64-bit imm */ 9550 goto next_insn; 9551 9552 /* In final convert_pseudo_ld_imm64() step, this is 9553 * converted into regular 64-bit imm load insn. 9554 */ 9555 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9556 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9557 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9558 insn[1].imm != 0)) { 9559 verbose(env, 9560 "unrecognized bpf_ld_imm64 insn\n"); 9561 return -EINVAL; 9562 } 9563 9564 f = fdget(insn[0].imm); 9565 map = __bpf_map_get(f); 9566 if (IS_ERR(map)) { 9567 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9568 insn[0].imm); 9569 return PTR_ERR(map); 9570 } 9571 9572 err = check_map_prog_compatibility(env, map, env->prog); 9573 if (err) { 9574 fdput(f); 9575 return err; 9576 } 9577 9578 aux = &env->insn_aux_data[i]; 9579 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9580 addr = (unsigned long)map; 9581 } else { 9582 u32 off = insn[1].imm; 9583 9584 if (off >= BPF_MAX_VAR_OFF) { 9585 verbose(env, "direct value offset of %u is not allowed\n", off); 9586 fdput(f); 9587 return -EINVAL; 9588 } 9589 9590 if (!map->ops->map_direct_value_addr) { 9591 verbose(env, "no direct value access support for this map type\n"); 9592 fdput(f); 9593 return -EINVAL; 9594 } 9595 9596 err = map->ops->map_direct_value_addr(map, &addr, off); 9597 if (err) { 9598 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 9599 map->value_size, off); 9600 fdput(f); 9601 return err; 9602 } 9603 9604 aux->map_off = off; 9605 addr += off; 9606 } 9607 9608 insn[0].imm = (u32)addr; 9609 insn[1].imm = addr >> 32; 9610 9611 /* check whether we recorded this map already */ 9612 for (j = 0; j < env->used_map_cnt; j++) { 9613 if (env->used_maps[j] == map) { 9614 aux->map_index = j; 9615 fdput(f); 9616 goto next_insn; 9617 } 9618 } 9619 9620 if (env->used_map_cnt >= MAX_USED_MAPS) { 9621 fdput(f); 9622 return -E2BIG; 9623 } 9624 9625 /* hold the map. If the program is rejected by verifier, 9626 * the map will be released by release_maps() or it 9627 * will be used by the valid program until it's unloaded 9628 * and all maps are released in free_used_maps() 9629 */ 9630 bpf_map_inc(map); 9631 9632 aux->map_index = env->used_map_cnt; 9633 env->used_maps[env->used_map_cnt++] = map; 9634 9635 if (bpf_map_is_cgroup_storage(map) && 9636 bpf_cgroup_storage_assign(env->prog->aux, map)) { 9637 verbose(env, "only one cgroup storage of each type is allowed\n"); 9638 fdput(f); 9639 return -EBUSY; 9640 } 9641 9642 fdput(f); 9643 next_insn: 9644 insn++; 9645 i++; 9646 continue; 9647 } 9648 9649 /* Basic sanity check before we invest more work here. */ 9650 if (!bpf_opcode_in_insntable(insn->code)) { 9651 verbose(env, "unknown opcode %02x\n", insn->code); 9652 return -EINVAL; 9653 } 9654 } 9655 9656 /* now all pseudo BPF_LD_IMM64 instructions load valid 9657 * 'struct bpf_map *' into a register instead of user map_fd. 9658 * These pointers will be used later by verifier to validate map access. 9659 */ 9660 return 0; 9661 } 9662 9663 /* drop refcnt of maps used by the rejected program */ 9664 static void release_maps(struct bpf_verifier_env *env) 9665 { 9666 __bpf_free_used_maps(env->prog->aux, env->used_maps, 9667 env->used_map_cnt); 9668 } 9669 9670 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 9671 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 9672 { 9673 struct bpf_insn *insn = env->prog->insnsi; 9674 int insn_cnt = env->prog->len; 9675 int i; 9676 9677 for (i = 0; i < insn_cnt; i++, insn++) 9678 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 9679 insn->src_reg = 0; 9680 } 9681 9682 /* single env->prog->insni[off] instruction was replaced with the range 9683 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 9684 * [0, off) and [off, end) to new locations, so the patched range stays zero 9685 */ 9686 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 9687 struct bpf_prog *new_prog, u32 off, u32 cnt) 9688 { 9689 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 9690 struct bpf_insn *insn = new_prog->insnsi; 9691 u32 prog_len; 9692 int i; 9693 9694 /* aux info at OFF always needs adjustment, no matter fast path 9695 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 9696 * original insn at old prog. 9697 */ 9698 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 9699 9700 if (cnt == 1) 9701 return 0; 9702 prog_len = new_prog->len; 9703 new_data = vzalloc(array_size(prog_len, 9704 sizeof(struct bpf_insn_aux_data))); 9705 if (!new_data) 9706 return -ENOMEM; 9707 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 9708 memcpy(new_data + off + cnt - 1, old_data + off, 9709 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 9710 for (i = off; i < off + cnt - 1; i++) { 9711 new_data[i].seen = env->pass_cnt; 9712 new_data[i].zext_dst = insn_has_def32(env, insn + i); 9713 } 9714 env->insn_aux_data = new_data; 9715 vfree(old_data); 9716 return 0; 9717 } 9718 9719 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 9720 { 9721 int i; 9722 9723 if (len == 1) 9724 return; 9725 /* NOTE: fake 'exit' subprog should be updated as well. */ 9726 for (i = 0; i <= env->subprog_cnt; i++) { 9727 if (env->subprog_info[i].start <= off) 9728 continue; 9729 env->subprog_info[i].start += len - 1; 9730 } 9731 } 9732 9733 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 9734 { 9735 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 9736 int i, sz = prog->aux->size_poke_tab; 9737 struct bpf_jit_poke_descriptor *desc; 9738 9739 for (i = 0; i < sz; i++) { 9740 desc = &tab[i]; 9741 desc->insn_idx += len - 1; 9742 } 9743 } 9744 9745 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 9746 const struct bpf_insn *patch, u32 len) 9747 { 9748 struct bpf_prog *new_prog; 9749 9750 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 9751 if (IS_ERR(new_prog)) { 9752 if (PTR_ERR(new_prog) == -ERANGE) 9753 verbose(env, 9754 "insn %d cannot be patched due to 16-bit range\n", 9755 env->insn_aux_data[off].orig_idx); 9756 return NULL; 9757 } 9758 if (adjust_insn_aux_data(env, new_prog, off, len)) 9759 return NULL; 9760 adjust_subprog_starts(env, off, len); 9761 adjust_poke_descs(new_prog, len); 9762 return new_prog; 9763 } 9764 9765 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 9766 u32 off, u32 cnt) 9767 { 9768 int i, j; 9769 9770 /* find first prog starting at or after off (first to remove) */ 9771 for (i = 0; i < env->subprog_cnt; i++) 9772 if (env->subprog_info[i].start >= off) 9773 break; 9774 /* find first prog starting at or after off + cnt (first to stay) */ 9775 for (j = i; j < env->subprog_cnt; j++) 9776 if (env->subprog_info[j].start >= off + cnt) 9777 break; 9778 /* if j doesn't start exactly at off + cnt, we are just removing 9779 * the front of previous prog 9780 */ 9781 if (env->subprog_info[j].start != off + cnt) 9782 j--; 9783 9784 if (j > i) { 9785 struct bpf_prog_aux *aux = env->prog->aux; 9786 int move; 9787 9788 /* move fake 'exit' subprog as well */ 9789 move = env->subprog_cnt + 1 - j; 9790 9791 memmove(env->subprog_info + i, 9792 env->subprog_info + j, 9793 sizeof(*env->subprog_info) * move); 9794 env->subprog_cnt -= j - i; 9795 9796 /* remove func_info */ 9797 if (aux->func_info) { 9798 move = aux->func_info_cnt - j; 9799 9800 memmove(aux->func_info + i, 9801 aux->func_info + j, 9802 sizeof(*aux->func_info) * move); 9803 aux->func_info_cnt -= j - i; 9804 /* func_info->insn_off is set after all code rewrites, 9805 * in adjust_btf_func() - no need to adjust 9806 */ 9807 } 9808 } else { 9809 /* convert i from "first prog to remove" to "first to adjust" */ 9810 if (env->subprog_info[i].start == off) 9811 i++; 9812 } 9813 9814 /* update fake 'exit' subprog as well */ 9815 for (; i <= env->subprog_cnt; i++) 9816 env->subprog_info[i].start -= cnt; 9817 9818 return 0; 9819 } 9820 9821 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 9822 u32 cnt) 9823 { 9824 struct bpf_prog *prog = env->prog; 9825 u32 i, l_off, l_cnt, nr_linfo; 9826 struct bpf_line_info *linfo; 9827 9828 nr_linfo = prog->aux->nr_linfo; 9829 if (!nr_linfo) 9830 return 0; 9831 9832 linfo = prog->aux->linfo; 9833 9834 /* find first line info to remove, count lines to be removed */ 9835 for (i = 0; i < nr_linfo; i++) 9836 if (linfo[i].insn_off >= off) 9837 break; 9838 9839 l_off = i; 9840 l_cnt = 0; 9841 for (; i < nr_linfo; i++) 9842 if (linfo[i].insn_off < off + cnt) 9843 l_cnt++; 9844 else 9845 break; 9846 9847 /* First live insn doesn't match first live linfo, it needs to "inherit" 9848 * last removed linfo. prog is already modified, so prog->len == off 9849 * means no live instructions after (tail of the program was removed). 9850 */ 9851 if (prog->len != off && l_cnt && 9852 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 9853 l_cnt--; 9854 linfo[--i].insn_off = off + cnt; 9855 } 9856 9857 /* remove the line info which refer to the removed instructions */ 9858 if (l_cnt) { 9859 memmove(linfo + l_off, linfo + i, 9860 sizeof(*linfo) * (nr_linfo - i)); 9861 9862 prog->aux->nr_linfo -= l_cnt; 9863 nr_linfo = prog->aux->nr_linfo; 9864 } 9865 9866 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 9867 for (i = l_off; i < nr_linfo; i++) 9868 linfo[i].insn_off -= cnt; 9869 9870 /* fix up all subprogs (incl. 'exit') which start >= off */ 9871 for (i = 0; i <= env->subprog_cnt; i++) 9872 if (env->subprog_info[i].linfo_idx > l_off) { 9873 /* program may have started in the removed region but 9874 * may not be fully removed 9875 */ 9876 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 9877 env->subprog_info[i].linfo_idx -= l_cnt; 9878 else 9879 env->subprog_info[i].linfo_idx = l_off; 9880 } 9881 9882 return 0; 9883 } 9884 9885 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 9886 { 9887 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9888 unsigned int orig_prog_len = env->prog->len; 9889 int err; 9890 9891 if (bpf_prog_is_dev_bound(env->prog->aux)) 9892 bpf_prog_offload_remove_insns(env, off, cnt); 9893 9894 err = bpf_remove_insns(env->prog, off, cnt); 9895 if (err) 9896 return err; 9897 9898 err = adjust_subprog_starts_after_remove(env, off, cnt); 9899 if (err) 9900 return err; 9901 9902 err = bpf_adj_linfo_after_remove(env, off, cnt); 9903 if (err) 9904 return err; 9905 9906 memmove(aux_data + off, aux_data + off + cnt, 9907 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 9908 9909 return 0; 9910 } 9911 9912 /* The verifier does more data flow analysis than llvm and will not 9913 * explore branches that are dead at run time. Malicious programs can 9914 * have dead code too. Therefore replace all dead at-run-time code 9915 * with 'ja -1'. 9916 * 9917 * Just nops are not optimal, e.g. if they would sit at the end of the 9918 * program and through another bug we would manage to jump there, then 9919 * we'd execute beyond program memory otherwise. Returning exception 9920 * code also wouldn't work since we can have subprogs where the dead 9921 * code could be located. 9922 */ 9923 static void sanitize_dead_code(struct bpf_verifier_env *env) 9924 { 9925 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9926 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 9927 struct bpf_insn *insn = env->prog->insnsi; 9928 const int insn_cnt = env->prog->len; 9929 int i; 9930 9931 for (i = 0; i < insn_cnt; i++) { 9932 if (aux_data[i].seen) 9933 continue; 9934 memcpy(insn + i, &trap, sizeof(trap)); 9935 } 9936 } 9937 9938 static bool insn_is_cond_jump(u8 code) 9939 { 9940 u8 op; 9941 9942 if (BPF_CLASS(code) == BPF_JMP32) 9943 return true; 9944 9945 if (BPF_CLASS(code) != BPF_JMP) 9946 return false; 9947 9948 op = BPF_OP(code); 9949 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 9950 } 9951 9952 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 9953 { 9954 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9955 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 9956 struct bpf_insn *insn = env->prog->insnsi; 9957 const int insn_cnt = env->prog->len; 9958 int i; 9959 9960 for (i = 0; i < insn_cnt; i++, insn++) { 9961 if (!insn_is_cond_jump(insn->code)) 9962 continue; 9963 9964 if (!aux_data[i + 1].seen) 9965 ja.off = insn->off; 9966 else if (!aux_data[i + 1 + insn->off].seen) 9967 ja.off = 0; 9968 else 9969 continue; 9970 9971 if (bpf_prog_is_dev_bound(env->prog->aux)) 9972 bpf_prog_offload_replace_insn(env, i, &ja); 9973 9974 memcpy(insn, &ja, sizeof(ja)); 9975 } 9976 } 9977 9978 static int opt_remove_dead_code(struct bpf_verifier_env *env) 9979 { 9980 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 9981 int insn_cnt = env->prog->len; 9982 int i, err; 9983 9984 for (i = 0; i < insn_cnt; i++) { 9985 int j; 9986 9987 j = 0; 9988 while (i + j < insn_cnt && !aux_data[i + j].seen) 9989 j++; 9990 if (!j) 9991 continue; 9992 9993 err = verifier_remove_insns(env, i, j); 9994 if (err) 9995 return err; 9996 insn_cnt = env->prog->len; 9997 } 9998 9999 return 0; 10000 } 10001 10002 static int opt_remove_nops(struct bpf_verifier_env *env) 10003 { 10004 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10005 struct bpf_insn *insn = env->prog->insnsi; 10006 int insn_cnt = env->prog->len; 10007 int i, err; 10008 10009 for (i = 0; i < insn_cnt; i++) { 10010 if (memcmp(&insn[i], &ja, sizeof(ja))) 10011 continue; 10012 10013 err = verifier_remove_insns(env, i, 1); 10014 if (err) 10015 return err; 10016 insn_cnt--; 10017 i--; 10018 } 10019 10020 return 0; 10021 } 10022 10023 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10024 const union bpf_attr *attr) 10025 { 10026 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10027 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10028 int i, patch_len, delta = 0, len = env->prog->len; 10029 struct bpf_insn *insns = env->prog->insnsi; 10030 struct bpf_prog *new_prog; 10031 bool rnd_hi32; 10032 10033 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10034 zext_patch[1] = BPF_ZEXT_REG(0); 10035 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10036 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10037 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10038 for (i = 0; i < len; i++) { 10039 int adj_idx = i + delta; 10040 struct bpf_insn insn; 10041 10042 insn = insns[adj_idx]; 10043 if (!aux[adj_idx].zext_dst) { 10044 u8 code, class; 10045 u32 imm_rnd; 10046 10047 if (!rnd_hi32) 10048 continue; 10049 10050 code = insn.code; 10051 class = BPF_CLASS(code); 10052 if (insn_no_def(&insn)) 10053 continue; 10054 10055 /* NOTE: arg "reg" (the fourth one) is only used for 10056 * BPF_STX which has been ruled out in above 10057 * check, it is safe to pass NULL here. 10058 */ 10059 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10060 if (class == BPF_LD && 10061 BPF_MODE(code) == BPF_IMM) 10062 i++; 10063 continue; 10064 } 10065 10066 /* ctx load could be transformed into wider load. */ 10067 if (class == BPF_LDX && 10068 aux[adj_idx].ptr_type == PTR_TO_CTX) 10069 continue; 10070 10071 imm_rnd = get_random_int(); 10072 rnd_hi32_patch[0] = insn; 10073 rnd_hi32_patch[1].imm = imm_rnd; 10074 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10075 patch = rnd_hi32_patch; 10076 patch_len = 4; 10077 goto apply_patch_buffer; 10078 } 10079 10080 if (!bpf_jit_needs_zext()) 10081 continue; 10082 10083 zext_patch[0] = insn; 10084 zext_patch[1].dst_reg = insn.dst_reg; 10085 zext_patch[1].src_reg = insn.dst_reg; 10086 patch = zext_patch; 10087 patch_len = 2; 10088 apply_patch_buffer: 10089 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10090 if (!new_prog) 10091 return -ENOMEM; 10092 env->prog = new_prog; 10093 insns = new_prog->insnsi; 10094 aux = env->insn_aux_data; 10095 delta += patch_len - 1; 10096 } 10097 10098 return 0; 10099 } 10100 10101 /* convert load instructions that access fields of a context type into a 10102 * sequence of instructions that access fields of the underlying structure: 10103 * struct __sk_buff -> struct sk_buff 10104 * struct bpf_sock_ops -> struct sock 10105 */ 10106 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10107 { 10108 const struct bpf_verifier_ops *ops = env->ops; 10109 int i, cnt, size, ctx_field_size, delta = 0; 10110 const int insn_cnt = env->prog->len; 10111 struct bpf_insn insn_buf[16], *insn; 10112 u32 target_size, size_default, off; 10113 struct bpf_prog *new_prog; 10114 enum bpf_access_type type; 10115 bool is_narrower_load; 10116 10117 if (ops->gen_prologue || env->seen_direct_write) { 10118 if (!ops->gen_prologue) { 10119 verbose(env, "bpf verifier is misconfigured\n"); 10120 return -EINVAL; 10121 } 10122 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10123 env->prog); 10124 if (cnt >= ARRAY_SIZE(insn_buf)) { 10125 verbose(env, "bpf verifier is misconfigured\n"); 10126 return -EINVAL; 10127 } else if (cnt) { 10128 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10129 if (!new_prog) 10130 return -ENOMEM; 10131 10132 env->prog = new_prog; 10133 delta += cnt - 1; 10134 } 10135 } 10136 10137 if (bpf_prog_is_dev_bound(env->prog->aux)) 10138 return 0; 10139 10140 insn = env->prog->insnsi + delta; 10141 10142 for (i = 0; i < insn_cnt; i++, insn++) { 10143 bpf_convert_ctx_access_t convert_ctx_access; 10144 10145 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10146 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10147 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10148 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10149 type = BPF_READ; 10150 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10151 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10152 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10153 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10154 type = BPF_WRITE; 10155 else 10156 continue; 10157 10158 if (type == BPF_WRITE && 10159 env->insn_aux_data[i + delta].sanitize_stack_off) { 10160 struct bpf_insn patch[] = { 10161 /* Sanitize suspicious stack slot with zero. 10162 * There are no memory dependencies for this store, 10163 * since it's only using frame pointer and immediate 10164 * constant of zero 10165 */ 10166 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10167 env->insn_aux_data[i + delta].sanitize_stack_off, 10168 0), 10169 /* the original STX instruction will immediately 10170 * overwrite the same stack slot with appropriate value 10171 */ 10172 *insn, 10173 }; 10174 10175 cnt = ARRAY_SIZE(patch); 10176 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10177 if (!new_prog) 10178 return -ENOMEM; 10179 10180 delta += cnt - 1; 10181 env->prog = new_prog; 10182 insn = new_prog->insnsi + i + delta; 10183 continue; 10184 } 10185 10186 switch (env->insn_aux_data[i + delta].ptr_type) { 10187 case PTR_TO_CTX: 10188 if (!ops->convert_ctx_access) 10189 continue; 10190 convert_ctx_access = ops->convert_ctx_access; 10191 break; 10192 case PTR_TO_SOCKET: 10193 case PTR_TO_SOCK_COMMON: 10194 convert_ctx_access = bpf_sock_convert_ctx_access; 10195 break; 10196 case PTR_TO_TCP_SOCK: 10197 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10198 break; 10199 case PTR_TO_XDP_SOCK: 10200 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10201 break; 10202 case PTR_TO_BTF_ID: 10203 if (type == BPF_READ) { 10204 insn->code = BPF_LDX | BPF_PROBE_MEM | 10205 BPF_SIZE((insn)->code); 10206 env->prog->aux->num_exentries++; 10207 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10208 verbose(env, "Writes through BTF pointers are not allowed\n"); 10209 return -EINVAL; 10210 } 10211 continue; 10212 default: 10213 continue; 10214 } 10215 10216 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10217 size = BPF_LDST_BYTES(insn); 10218 10219 /* If the read access is a narrower load of the field, 10220 * convert to a 4/8-byte load, to minimum program type specific 10221 * convert_ctx_access changes. If conversion is successful, 10222 * we will apply proper mask to the result. 10223 */ 10224 is_narrower_load = size < ctx_field_size; 10225 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10226 off = insn->off; 10227 if (is_narrower_load) { 10228 u8 size_code; 10229 10230 if (type == BPF_WRITE) { 10231 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10232 return -EINVAL; 10233 } 10234 10235 size_code = BPF_H; 10236 if (ctx_field_size == 4) 10237 size_code = BPF_W; 10238 else if (ctx_field_size == 8) 10239 size_code = BPF_DW; 10240 10241 insn->off = off & ~(size_default - 1); 10242 insn->code = BPF_LDX | BPF_MEM | size_code; 10243 } 10244 10245 target_size = 0; 10246 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10247 &target_size); 10248 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10249 (ctx_field_size && !target_size)) { 10250 verbose(env, "bpf verifier is misconfigured\n"); 10251 return -EINVAL; 10252 } 10253 10254 if (is_narrower_load && size < target_size) { 10255 u8 shift = bpf_ctx_narrow_access_offset( 10256 off, size, size_default) * 8; 10257 if (ctx_field_size <= 4) { 10258 if (shift) 10259 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10260 insn->dst_reg, 10261 shift); 10262 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10263 (1 << size * 8) - 1); 10264 } else { 10265 if (shift) 10266 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10267 insn->dst_reg, 10268 shift); 10269 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10270 (1ULL << size * 8) - 1); 10271 } 10272 } 10273 10274 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10275 if (!new_prog) 10276 return -ENOMEM; 10277 10278 delta += cnt - 1; 10279 10280 /* keep walking new program and skip insns we just inserted */ 10281 env->prog = new_prog; 10282 insn = new_prog->insnsi + i + delta; 10283 } 10284 10285 return 0; 10286 } 10287 10288 static int jit_subprogs(struct bpf_verifier_env *env) 10289 { 10290 struct bpf_prog *prog = env->prog, **func, *tmp; 10291 int i, j, subprog_start, subprog_end = 0, len, subprog; 10292 struct bpf_map *map_ptr; 10293 struct bpf_insn *insn; 10294 void *old_bpf_func; 10295 int err, num_exentries; 10296 10297 if (env->subprog_cnt <= 1) 10298 return 0; 10299 10300 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10301 if (insn->code != (BPF_JMP | BPF_CALL) || 10302 insn->src_reg != BPF_PSEUDO_CALL) 10303 continue; 10304 /* Upon error here we cannot fall back to interpreter but 10305 * need a hard reject of the program. Thus -EFAULT is 10306 * propagated in any case. 10307 */ 10308 subprog = find_subprog(env, i + insn->imm + 1); 10309 if (subprog < 0) { 10310 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10311 i + insn->imm + 1); 10312 return -EFAULT; 10313 } 10314 /* temporarily remember subprog id inside insn instead of 10315 * aux_data, since next loop will split up all insns into funcs 10316 */ 10317 insn->off = subprog; 10318 /* remember original imm in case JIT fails and fallback 10319 * to interpreter will be needed 10320 */ 10321 env->insn_aux_data[i].call_imm = insn->imm; 10322 /* point imm to __bpf_call_base+1 from JITs point of view */ 10323 insn->imm = 1; 10324 } 10325 10326 err = bpf_prog_alloc_jited_linfo(prog); 10327 if (err) 10328 goto out_undo_insn; 10329 10330 err = -ENOMEM; 10331 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10332 if (!func) 10333 goto out_undo_insn; 10334 10335 for (i = 0; i < env->subprog_cnt; i++) { 10336 subprog_start = subprog_end; 10337 subprog_end = env->subprog_info[i + 1].start; 10338 10339 len = subprog_end - subprog_start; 10340 /* BPF_PROG_RUN doesn't call subprogs directly, 10341 * hence main prog stats include the runtime of subprogs. 10342 * subprogs don't have IDs and not reachable via prog_get_next_id 10343 * func[i]->aux->stats will never be accessed and stays NULL 10344 */ 10345 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10346 if (!func[i]) 10347 goto out_free; 10348 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10349 len * sizeof(struct bpf_insn)); 10350 func[i]->type = prog->type; 10351 func[i]->len = len; 10352 if (bpf_prog_calc_tag(func[i])) 10353 goto out_free; 10354 func[i]->is_func = 1; 10355 func[i]->aux->func_idx = i; 10356 /* the btf and func_info will be freed only at prog->aux */ 10357 func[i]->aux->btf = prog->aux->btf; 10358 func[i]->aux->func_info = prog->aux->func_info; 10359 10360 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10361 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10362 int ret; 10363 10364 if (!(insn_idx >= subprog_start && 10365 insn_idx <= subprog_end)) 10366 continue; 10367 10368 ret = bpf_jit_add_poke_descriptor(func[i], 10369 &prog->aux->poke_tab[j]); 10370 if (ret < 0) { 10371 verbose(env, "adding tail call poke descriptor failed\n"); 10372 goto out_free; 10373 } 10374 10375 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10376 10377 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10378 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10379 if (ret < 0) { 10380 verbose(env, "tracking tail call prog failed\n"); 10381 goto out_free; 10382 } 10383 } 10384 10385 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10386 * Long term would need debug info to populate names 10387 */ 10388 func[i]->aux->name[0] = 'F'; 10389 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10390 func[i]->jit_requested = 1; 10391 func[i]->aux->linfo = prog->aux->linfo; 10392 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10393 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10394 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10395 num_exentries = 0; 10396 insn = func[i]->insnsi; 10397 for (j = 0; j < func[i]->len; j++, insn++) { 10398 if (BPF_CLASS(insn->code) == BPF_LDX && 10399 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10400 num_exentries++; 10401 } 10402 func[i]->aux->num_exentries = num_exentries; 10403 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10404 func[i] = bpf_int_jit_compile(func[i]); 10405 if (!func[i]->jited) { 10406 err = -ENOTSUPP; 10407 goto out_free; 10408 } 10409 cond_resched(); 10410 } 10411 10412 /* Untrack main program's aux structs so that during map_poke_run() 10413 * we will not stumble upon the unfilled poke descriptors; each 10414 * of the main program's poke descs got distributed across subprogs 10415 * and got tracked onto map, so we are sure that none of them will 10416 * be missed after the operation below 10417 */ 10418 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10419 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10420 10421 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10422 } 10423 10424 /* at this point all bpf functions were successfully JITed 10425 * now populate all bpf_calls with correct addresses and 10426 * run last pass of JIT 10427 */ 10428 for (i = 0; i < env->subprog_cnt; i++) { 10429 insn = func[i]->insnsi; 10430 for (j = 0; j < func[i]->len; j++, insn++) { 10431 if (insn->code != (BPF_JMP | BPF_CALL) || 10432 insn->src_reg != BPF_PSEUDO_CALL) 10433 continue; 10434 subprog = insn->off; 10435 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10436 __bpf_call_base; 10437 } 10438 10439 /* we use the aux data to keep a list of the start addresses 10440 * of the JITed images for each function in the program 10441 * 10442 * for some architectures, such as powerpc64, the imm field 10443 * might not be large enough to hold the offset of the start 10444 * address of the callee's JITed image from __bpf_call_base 10445 * 10446 * in such cases, we can lookup the start address of a callee 10447 * by using its subprog id, available from the off field of 10448 * the call instruction, as an index for this list 10449 */ 10450 func[i]->aux->func = func; 10451 func[i]->aux->func_cnt = env->subprog_cnt; 10452 } 10453 for (i = 0; i < env->subprog_cnt; i++) { 10454 old_bpf_func = func[i]->bpf_func; 10455 tmp = bpf_int_jit_compile(func[i]); 10456 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10457 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10458 err = -ENOTSUPP; 10459 goto out_free; 10460 } 10461 cond_resched(); 10462 } 10463 10464 /* finally lock prog and jit images for all functions and 10465 * populate kallsysm 10466 */ 10467 for (i = 0; i < env->subprog_cnt; i++) { 10468 bpf_prog_lock_ro(func[i]); 10469 bpf_prog_kallsyms_add(func[i]); 10470 } 10471 10472 /* Last step: make now unused interpreter insns from main 10473 * prog consistent for later dump requests, so they can 10474 * later look the same as if they were interpreted only. 10475 */ 10476 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10477 if (insn->code != (BPF_JMP | BPF_CALL) || 10478 insn->src_reg != BPF_PSEUDO_CALL) 10479 continue; 10480 insn->off = env->insn_aux_data[i].call_imm; 10481 subprog = find_subprog(env, i + insn->off + 1); 10482 insn->imm = subprog; 10483 } 10484 10485 prog->jited = 1; 10486 prog->bpf_func = func[0]->bpf_func; 10487 prog->aux->func = func; 10488 prog->aux->func_cnt = env->subprog_cnt; 10489 bpf_prog_free_unused_jited_linfo(prog); 10490 return 0; 10491 out_free: 10492 for (i = 0; i < env->subprog_cnt; i++) { 10493 if (!func[i]) 10494 continue; 10495 10496 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10497 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10498 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10499 } 10500 bpf_jit_free(func[i]); 10501 } 10502 kfree(func); 10503 out_undo_insn: 10504 /* cleanup main prog to be interpreted */ 10505 prog->jit_requested = 0; 10506 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10507 if (insn->code != (BPF_JMP | BPF_CALL) || 10508 insn->src_reg != BPF_PSEUDO_CALL) 10509 continue; 10510 insn->off = 0; 10511 insn->imm = env->insn_aux_data[i].call_imm; 10512 } 10513 bpf_prog_free_jited_linfo(prog); 10514 return err; 10515 } 10516 10517 static int fixup_call_args(struct bpf_verifier_env *env) 10518 { 10519 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10520 struct bpf_prog *prog = env->prog; 10521 struct bpf_insn *insn = prog->insnsi; 10522 int i, depth; 10523 #endif 10524 int err = 0; 10525 10526 if (env->prog->jit_requested && 10527 !bpf_prog_is_dev_bound(env->prog->aux)) { 10528 err = jit_subprogs(env); 10529 if (err == 0) 10530 return 0; 10531 if (err == -EFAULT) 10532 return err; 10533 } 10534 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10535 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10536 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10537 * have to be rejected, since interpreter doesn't support them yet. 10538 */ 10539 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10540 return -EINVAL; 10541 } 10542 for (i = 0; i < prog->len; i++, insn++) { 10543 if (insn->code != (BPF_JMP | BPF_CALL) || 10544 insn->src_reg != BPF_PSEUDO_CALL) 10545 continue; 10546 depth = get_callee_stack_depth(env, insn, i); 10547 if (depth < 0) 10548 return depth; 10549 bpf_patch_call_args(insn, depth); 10550 } 10551 err = 0; 10552 #endif 10553 return err; 10554 } 10555 10556 /* fixup insn->imm field of bpf_call instructions 10557 * and inline eligible helpers as explicit sequence of BPF instructions 10558 * 10559 * this function is called after eBPF program passed verification 10560 */ 10561 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10562 { 10563 struct bpf_prog *prog = env->prog; 10564 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10565 struct bpf_insn *insn = prog->insnsi; 10566 const struct bpf_func_proto *fn; 10567 const int insn_cnt = prog->len; 10568 const struct bpf_map_ops *ops; 10569 struct bpf_insn_aux_data *aux; 10570 struct bpf_insn insn_buf[16]; 10571 struct bpf_prog *new_prog; 10572 struct bpf_map *map_ptr; 10573 int i, ret, cnt, delta = 0; 10574 10575 for (i = 0; i < insn_cnt; i++, insn++) { 10576 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10577 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10578 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10579 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10580 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 10581 struct bpf_insn mask_and_div[] = { 10582 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10583 /* Rx div 0 -> 0 */ 10584 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 10585 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 10586 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 10587 *insn, 10588 }; 10589 struct bpf_insn mask_and_mod[] = { 10590 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 10591 /* Rx mod 0 -> Rx */ 10592 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 10593 *insn, 10594 }; 10595 struct bpf_insn *patchlet; 10596 10597 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10598 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10599 patchlet = mask_and_div + (is64 ? 1 : 0); 10600 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 10601 } else { 10602 patchlet = mask_and_mod + (is64 ? 1 : 0); 10603 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 10604 } 10605 10606 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 10607 if (!new_prog) 10608 return -ENOMEM; 10609 10610 delta += cnt - 1; 10611 env->prog = prog = new_prog; 10612 insn = new_prog->insnsi + i + delta; 10613 continue; 10614 } 10615 10616 if (BPF_CLASS(insn->code) == BPF_LD && 10617 (BPF_MODE(insn->code) == BPF_ABS || 10618 BPF_MODE(insn->code) == BPF_IND)) { 10619 cnt = env->ops->gen_ld_abs(insn, insn_buf); 10620 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10621 verbose(env, "bpf verifier is misconfigured\n"); 10622 return -EINVAL; 10623 } 10624 10625 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10626 if (!new_prog) 10627 return -ENOMEM; 10628 10629 delta += cnt - 1; 10630 env->prog = prog = new_prog; 10631 insn = new_prog->insnsi + i + delta; 10632 continue; 10633 } 10634 10635 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 10636 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 10637 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 10638 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 10639 struct bpf_insn insn_buf[16]; 10640 struct bpf_insn *patch = &insn_buf[0]; 10641 bool issrc, isneg; 10642 u32 off_reg; 10643 10644 aux = &env->insn_aux_data[i + delta]; 10645 if (!aux->alu_state || 10646 aux->alu_state == BPF_ALU_NON_POINTER) 10647 continue; 10648 10649 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 10650 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 10651 BPF_ALU_SANITIZE_SRC; 10652 10653 off_reg = issrc ? insn->src_reg : insn->dst_reg; 10654 if (isneg) 10655 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10656 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 10657 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 10658 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 10659 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 10660 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 10661 if (issrc) { 10662 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 10663 off_reg); 10664 insn->src_reg = BPF_REG_AX; 10665 } else { 10666 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 10667 BPF_REG_AX); 10668 } 10669 if (isneg) 10670 insn->code = insn->code == code_add ? 10671 code_sub : code_add; 10672 *patch++ = *insn; 10673 if (issrc && isneg) 10674 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 10675 cnt = patch - insn_buf; 10676 10677 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10678 if (!new_prog) 10679 return -ENOMEM; 10680 10681 delta += cnt - 1; 10682 env->prog = prog = new_prog; 10683 insn = new_prog->insnsi + i + delta; 10684 continue; 10685 } 10686 10687 if (insn->code != (BPF_JMP | BPF_CALL)) 10688 continue; 10689 if (insn->src_reg == BPF_PSEUDO_CALL) 10690 continue; 10691 10692 if (insn->imm == BPF_FUNC_get_route_realm) 10693 prog->dst_needed = 1; 10694 if (insn->imm == BPF_FUNC_get_prandom_u32) 10695 bpf_user_rnd_init_once(); 10696 if (insn->imm == BPF_FUNC_override_return) 10697 prog->kprobe_override = 1; 10698 if (insn->imm == BPF_FUNC_tail_call) { 10699 /* If we tail call into other programs, we 10700 * cannot make any assumptions since they can 10701 * be replaced dynamically during runtime in 10702 * the program array. 10703 */ 10704 prog->cb_access = 1; 10705 if (!allow_tail_call_in_subprogs(env)) 10706 prog->aux->stack_depth = MAX_BPF_STACK; 10707 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 10708 10709 /* mark bpf_tail_call as different opcode to avoid 10710 * conditional branch in the interpeter for every normal 10711 * call and to prevent accidental JITing by JIT compiler 10712 * that doesn't support bpf_tail_call yet 10713 */ 10714 insn->imm = 0; 10715 insn->code = BPF_JMP | BPF_TAIL_CALL; 10716 10717 aux = &env->insn_aux_data[i + delta]; 10718 if (env->bpf_capable && !expect_blinding && 10719 prog->jit_requested && 10720 !bpf_map_key_poisoned(aux) && 10721 !bpf_map_ptr_poisoned(aux) && 10722 !bpf_map_ptr_unpriv(aux)) { 10723 struct bpf_jit_poke_descriptor desc = { 10724 .reason = BPF_POKE_REASON_TAIL_CALL, 10725 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 10726 .tail_call.key = bpf_map_key_immediate(aux), 10727 .insn_idx = i + delta, 10728 }; 10729 10730 ret = bpf_jit_add_poke_descriptor(prog, &desc); 10731 if (ret < 0) { 10732 verbose(env, "adding tail call poke descriptor failed\n"); 10733 return ret; 10734 } 10735 10736 insn->imm = ret + 1; 10737 continue; 10738 } 10739 10740 if (!bpf_map_ptr_unpriv(aux)) 10741 continue; 10742 10743 /* instead of changing every JIT dealing with tail_call 10744 * emit two extra insns: 10745 * if (index >= max_entries) goto out; 10746 * index &= array->index_mask; 10747 * to avoid out-of-bounds cpu speculation 10748 */ 10749 if (bpf_map_ptr_poisoned(aux)) { 10750 verbose(env, "tail_call abusing map_ptr\n"); 10751 return -EINVAL; 10752 } 10753 10754 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10755 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 10756 map_ptr->max_entries, 2); 10757 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 10758 container_of(map_ptr, 10759 struct bpf_array, 10760 map)->index_mask); 10761 insn_buf[2] = *insn; 10762 cnt = 3; 10763 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10764 if (!new_prog) 10765 return -ENOMEM; 10766 10767 delta += cnt - 1; 10768 env->prog = prog = new_prog; 10769 insn = new_prog->insnsi + i + delta; 10770 continue; 10771 } 10772 10773 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 10774 * and other inlining handlers are currently limited to 64 bit 10775 * only. 10776 */ 10777 if (prog->jit_requested && BITS_PER_LONG == 64 && 10778 (insn->imm == BPF_FUNC_map_lookup_elem || 10779 insn->imm == BPF_FUNC_map_update_elem || 10780 insn->imm == BPF_FUNC_map_delete_elem || 10781 insn->imm == BPF_FUNC_map_push_elem || 10782 insn->imm == BPF_FUNC_map_pop_elem || 10783 insn->imm == BPF_FUNC_map_peek_elem)) { 10784 aux = &env->insn_aux_data[i + delta]; 10785 if (bpf_map_ptr_poisoned(aux)) 10786 goto patch_call_imm; 10787 10788 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 10789 ops = map_ptr->ops; 10790 if (insn->imm == BPF_FUNC_map_lookup_elem && 10791 ops->map_gen_lookup) { 10792 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 10793 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 10794 verbose(env, "bpf verifier is misconfigured\n"); 10795 return -EINVAL; 10796 } 10797 10798 new_prog = bpf_patch_insn_data(env, i + delta, 10799 insn_buf, cnt); 10800 if (!new_prog) 10801 return -ENOMEM; 10802 10803 delta += cnt - 1; 10804 env->prog = prog = new_prog; 10805 insn = new_prog->insnsi + i + delta; 10806 continue; 10807 } 10808 10809 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 10810 (void *(*)(struct bpf_map *map, void *key))NULL)); 10811 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 10812 (int (*)(struct bpf_map *map, void *key))NULL)); 10813 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 10814 (int (*)(struct bpf_map *map, void *key, void *value, 10815 u64 flags))NULL)); 10816 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 10817 (int (*)(struct bpf_map *map, void *value, 10818 u64 flags))NULL)); 10819 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 10820 (int (*)(struct bpf_map *map, void *value))NULL)); 10821 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 10822 (int (*)(struct bpf_map *map, void *value))NULL)); 10823 10824 switch (insn->imm) { 10825 case BPF_FUNC_map_lookup_elem: 10826 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 10827 __bpf_call_base; 10828 continue; 10829 case BPF_FUNC_map_update_elem: 10830 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 10831 __bpf_call_base; 10832 continue; 10833 case BPF_FUNC_map_delete_elem: 10834 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 10835 __bpf_call_base; 10836 continue; 10837 case BPF_FUNC_map_push_elem: 10838 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 10839 __bpf_call_base; 10840 continue; 10841 case BPF_FUNC_map_pop_elem: 10842 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 10843 __bpf_call_base; 10844 continue; 10845 case BPF_FUNC_map_peek_elem: 10846 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 10847 __bpf_call_base; 10848 continue; 10849 } 10850 10851 goto patch_call_imm; 10852 } 10853 10854 if (prog->jit_requested && BITS_PER_LONG == 64 && 10855 insn->imm == BPF_FUNC_jiffies64) { 10856 struct bpf_insn ld_jiffies_addr[2] = { 10857 BPF_LD_IMM64(BPF_REG_0, 10858 (unsigned long)&jiffies), 10859 }; 10860 10861 insn_buf[0] = ld_jiffies_addr[0]; 10862 insn_buf[1] = ld_jiffies_addr[1]; 10863 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 10864 BPF_REG_0, 0); 10865 cnt = 3; 10866 10867 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 10868 cnt); 10869 if (!new_prog) 10870 return -ENOMEM; 10871 10872 delta += cnt - 1; 10873 env->prog = prog = new_prog; 10874 insn = new_prog->insnsi + i + delta; 10875 continue; 10876 } 10877 10878 patch_call_imm: 10879 fn = env->ops->get_func_proto(insn->imm, env->prog); 10880 /* all functions that have prototype and verifier allowed 10881 * programs to call them, must be real in-kernel functions 10882 */ 10883 if (!fn->func) { 10884 verbose(env, 10885 "kernel subsystem misconfigured func %s#%d\n", 10886 func_id_name(insn->imm), insn->imm); 10887 return -EFAULT; 10888 } 10889 insn->imm = fn->func - __bpf_call_base; 10890 } 10891 10892 /* Since poke tab is now finalized, publish aux to tracker. */ 10893 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10894 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10895 if (!map_ptr->ops->map_poke_track || 10896 !map_ptr->ops->map_poke_untrack || 10897 !map_ptr->ops->map_poke_run) { 10898 verbose(env, "bpf verifier is misconfigured\n"); 10899 return -EINVAL; 10900 } 10901 10902 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 10903 if (ret < 0) { 10904 verbose(env, "tracking tail call prog failed\n"); 10905 return ret; 10906 } 10907 } 10908 10909 return 0; 10910 } 10911 10912 static void free_states(struct bpf_verifier_env *env) 10913 { 10914 struct bpf_verifier_state_list *sl, *sln; 10915 int i; 10916 10917 sl = env->free_list; 10918 while (sl) { 10919 sln = sl->next; 10920 free_verifier_state(&sl->state, false); 10921 kfree(sl); 10922 sl = sln; 10923 } 10924 env->free_list = NULL; 10925 10926 if (!env->explored_states) 10927 return; 10928 10929 for (i = 0; i < state_htab_size(env); i++) { 10930 sl = env->explored_states[i]; 10931 10932 while (sl) { 10933 sln = sl->next; 10934 free_verifier_state(&sl->state, false); 10935 kfree(sl); 10936 sl = sln; 10937 } 10938 env->explored_states[i] = NULL; 10939 } 10940 } 10941 10942 /* The verifier is using insn_aux_data[] to store temporary data during 10943 * verification and to store information for passes that run after the 10944 * verification like dead code sanitization. do_check_common() for subprogram N 10945 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 10946 * temporary data after do_check_common() finds that subprogram N cannot be 10947 * verified independently. pass_cnt counts the number of times 10948 * do_check_common() was run and insn->aux->seen tells the pass number 10949 * insn_aux_data was touched. These variables are compared to clear temporary 10950 * data from failed pass. For testing and experiments do_check_common() can be 10951 * run multiple times even when prior attempt to verify is unsuccessful. 10952 */ 10953 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 10954 { 10955 struct bpf_insn *insn = env->prog->insnsi; 10956 struct bpf_insn_aux_data *aux; 10957 int i, class; 10958 10959 for (i = 0; i < env->prog->len; i++) { 10960 class = BPF_CLASS(insn[i].code); 10961 if (class != BPF_LDX && class != BPF_STX) 10962 continue; 10963 aux = &env->insn_aux_data[i]; 10964 if (aux->seen != env->pass_cnt) 10965 continue; 10966 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 10967 } 10968 } 10969 10970 static int do_check_common(struct bpf_verifier_env *env, int subprog) 10971 { 10972 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 10973 struct bpf_verifier_state *state; 10974 struct bpf_reg_state *regs; 10975 int ret, i; 10976 10977 env->prev_linfo = NULL; 10978 env->pass_cnt++; 10979 10980 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 10981 if (!state) 10982 return -ENOMEM; 10983 state->curframe = 0; 10984 state->speculative = false; 10985 state->branches = 1; 10986 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 10987 if (!state->frame[0]) { 10988 kfree(state); 10989 return -ENOMEM; 10990 } 10991 env->cur_state = state; 10992 init_func_state(env, state->frame[0], 10993 BPF_MAIN_FUNC /* callsite */, 10994 0 /* frameno */, 10995 subprog); 10996 10997 regs = state->frame[state->curframe]->regs; 10998 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 10999 ret = btf_prepare_func_args(env, subprog, regs); 11000 if (ret) 11001 goto out; 11002 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11003 if (regs[i].type == PTR_TO_CTX) 11004 mark_reg_known_zero(env, regs, i); 11005 else if (regs[i].type == SCALAR_VALUE) 11006 mark_reg_unknown(env, regs, i); 11007 } 11008 } else { 11009 /* 1st arg to a function */ 11010 regs[BPF_REG_1].type = PTR_TO_CTX; 11011 mark_reg_known_zero(env, regs, BPF_REG_1); 11012 ret = btf_check_func_arg_match(env, subprog, regs); 11013 if (ret == -EFAULT) 11014 /* unlikely verifier bug. abort. 11015 * ret == 0 and ret < 0 are sadly acceptable for 11016 * main() function due to backward compatibility. 11017 * Like socket filter program may be written as: 11018 * int bpf_prog(struct pt_regs *ctx) 11019 * and never dereference that ctx in the program. 11020 * 'struct pt_regs' is a type mismatch for socket 11021 * filter that should be using 'struct __sk_buff'. 11022 */ 11023 goto out; 11024 } 11025 11026 ret = do_check(env); 11027 out: 11028 /* check for NULL is necessary, since cur_state can be freed inside 11029 * do_check() under memory pressure. 11030 */ 11031 if (env->cur_state) { 11032 free_verifier_state(env->cur_state, true); 11033 env->cur_state = NULL; 11034 } 11035 while (!pop_stack(env, NULL, NULL, false)); 11036 if (!ret && pop_log) 11037 bpf_vlog_reset(&env->log, 0); 11038 free_states(env); 11039 if (ret) 11040 /* clean aux data in case subprog was rejected */ 11041 sanitize_insn_aux_data(env); 11042 return ret; 11043 } 11044 11045 /* Verify all global functions in a BPF program one by one based on their BTF. 11046 * All global functions must pass verification. Otherwise the whole program is rejected. 11047 * Consider: 11048 * int bar(int); 11049 * int foo(int f) 11050 * { 11051 * return bar(f); 11052 * } 11053 * int bar(int b) 11054 * { 11055 * ... 11056 * } 11057 * foo() will be verified first for R1=any_scalar_value. During verification it 11058 * will be assumed that bar() already verified successfully and call to bar() 11059 * from foo() will be checked for type match only. Later bar() will be verified 11060 * independently to check that it's safe for R1=any_scalar_value. 11061 */ 11062 static int do_check_subprogs(struct bpf_verifier_env *env) 11063 { 11064 struct bpf_prog_aux *aux = env->prog->aux; 11065 int i, ret; 11066 11067 if (!aux->func_info) 11068 return 0; 11069 11070 for (i = 1; i < env->subprog_cnt; i++) { 11071 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11072 continue; 11073 env->insn_idx = env->subprog_info[i].start; 11074 WARN_ON_ONCE(env->insn_idx == 0); 11075 ret = do_check_common(env, i); 11076 if (ret) { 11077 return ret; 11078 } else if (env->log.level & BPF_LOG_LEVEL) { 11079 verbose(env, 11080 "Func#%d is safe for any args that match its prototype\n", 11081 i); 11082 } 11083 } 11084 return 0; 11085 } 11086 11087 static int do_check_main(struct bpf_verifier_env *env) 11088 { 11089 int ret; 11090 11091 env->insn_idx = 0; 11092 ret = do_check_common(env, 0); 11093 if (!ret) 11094 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11095 return ret; 11096 } 11097 11098 11099 static void print_verification_stats(struct bpf_verifier_env *env) 11100 { 11101 int i; 11102 11103 if (env->log.level & BPF_LOG_STATS) { 11104 verbose(env, "verification time %lld usec\n", 11105 div_u64(env->verification_time, 1000)); 11106 verbose(env, "stack depth "); 11107 for (i = 0; i < env->subprog_cnt; i++) { 11108 u32 depth = env->subprog_info[i].stack_depth; 11109 11110 verbose(env, "%d", depth); 11111 if (i + 1 < env->subprog_cnt) 11112 verbose(env, "+"); 11113 } 11114 verbose(env, "\n"); 11115 } 11116 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11117 "total_states %d peak_states %d mark_read %d\n", 11118 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11119 env->max_states_per_insn, env->total_states, 11120 env->peak_states, env->longest_mark_read_walk); 11121 } 11122 11123 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11124 { 11125 const struct btf_type *t, *func_proto; 11126 const struct bpf_struct_ops *st_ops; 11127 const struct btf_member *member; 11128 struct bpf_prog *prog = env->prog; 11129 u32 btf_id, member_idx; 11130 const char *mname; 11131 11132 btf_id = prog->aux->attach_btf_id; 11133 st_ops = bpf_struct_ops_find(btf_id); 11134 if (!st_ops) { 11135 verbose(env, "attach_btf_id %u is not a supported struct\n", 11136 btf_id); 11137 return -ENOTSUPP; 11138 } 11139 11140 t = st_ops->type; 11141 member_idx = prog->expected_attach_type; 11142 if (member_idx >= btf_type_vlen(t)) { 11143 verbose(env, "attach to invalid member idx %u of struct %s\n", 11144 member_idx, st_ops->name); 11145 return -EINVAL; 11146 } 11147 11148 member = &btf_type_member(t)[member_idx]; 11149 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11150 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11151 NULL); 11152 if (!func_proto) { 11153 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11154 mname, member_idx, st_ops->name); 11155 return -EINVAL; 11156 } 11157 11158 if (st_ops->check_member) { 11159 int err = st_ops->check_member(t, member); 11160 11161 if (err) { 11162 verbose(env, "attach to unsupported member %s of struct %s\n", 11163 mname, st_ops->name); 11164 return err; 11165 } 11166 } 11167 11168 prog->aux->attach_func_proto = func_proto; 11169 prog->aux->attach_func_name = mname; 11170 env->ops = st_ops->verifier_ops; 11171 11172 return 0; 11173 } 11174 #define SECURITY_PREFIX "security_" 11175 11176 static int check_attach_modify_return(struct bpf_prog *prog, unsigned long addr) 11177 { 11178 if (within_error_injection_list(addr) || 11179 !strncmp(SECURITY_PREFIX, prog->aux->attach_func_name, 11180 sizeof(SECURITY_PREFIX) - 1)) 11181 return 0; 11182 11183 return -EINVAL; 11184 } 11185 11186 /* non exhaustive list of sleepable bpf_lsm_*() functions */ 11187 BTF_SET_START(btf_sleepable_lsm_hooks) 11188 #ifdef CONFIG_BPF_LSM 11189 BTF_ID(func, bpf_lsm_bprm_committed_creds) 11190 #else 11191 BTF_ID_UNUSED 11192 #endif 11193 BTF_SET_END(btf_sleepable_lsm_hooks) 11194 11195 static int check_sleepable_lsm_hook(u32 btf_id) 11196 { 11197 return btf_id_set_contains(&btf_sleepable_lsm_hooks, btf_id); 11198 } 11199 11200 /* list of non-sleepable functions that are otherwise on 11201 * ALLOW_ERROR_INJECTION list 11202 */ 11203 BTF_SET_START(btf_non_sleepable_error_inject) 11204 /* Three functions below can be called from sleepable and non-sleepable context. 11205 * Assume non-sleepable from bpf safety point of view. 11206 */ 11207 BTF_ID(func, __add_to_page_cache_locked) 11208 BTF_ID(func, should_fail_alloc_page) 11209 BTF_ID(func, should_failslab) 11210 BTF_SET_END(btf_non_sleepable_error_inject) 11211 11212 static int check_non_sleepable_error_inject(u32 btf_id) 11213 { 11214 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11215 } 11216 11217 static int check_attach_btf_id(struct bpf_verifier_env *env) 11218 { 11219 struct bpf_prog *prog = env->prog; 11220 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11221 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 11222 u32 btf_id = prog->aux->attach_btf_id; 11223 const char prefix[] = "btf_trace_"; 11224 struct btf_func_model fmodel; 11225 int ret = 0, subprog = -1, i; 11226 struct bpf_trampoline *tr; 11227 const struct btf_type *t; 11228 bool conservative = true; 11229 const char *tname; 11230 struct btf *btf; 11231 long addr; 11232 u64 key; 11233 11234 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11235 prog->type != BPF_PROG_TYPE_LSM) { 11236 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11237 return -EINVAL; 11238 } 11239 11240 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11241 return check_struct_ops_btf_id(env); 11242 11243 if (prog->type != BPF_PROG_TYPE_TRACING && 11244 prog->type != BPF_PROG_TYPE_LSM && 11245 !prog_extension) 11246 return 0; 11247 11248 if (!btf_id) { 11249 verbose(env, "Tracing programs must provide btf_id\n"); 11250 return -EINVAL; 11251 } 11252 btf = bpf_prog_get_target_btf(prog); 11253 if (!btf) { 11254 verbose(env, 11255 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11256 return -EINVAL; 11257 } 11258 t = btf_type_by_id(btf, btf_id); 11259 if (!t) { 11260 verbose(env, "attach_btf_id %u is invalid\n", btf_id); 11261 return -EINVAL; 11262 } 11263 tname = btf_name_by_offset(btf, t->name_off); 11264 if (!tname) { 11265 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id); 11266 return -EINVAL; 11267 } 11268 if (tgt_prog) { 11269 struct bpf_prog_aux *aux = tgt_prog->aux; 11270 11271 for (i = 0; i < aux->func_info_cnt; i++) 11272 if (aux->func_info[i].type_id == btf_id) { 11273 subprog = i; 11274 break; 11275 } 11276 if (subprog == -1) { 11277 verbose(env, "Subprog %s doesn't exist\n", tname); 11278 return -EINVAL; 11279 } 11280 conservative = aux->func_info_aux[subprog].unreliable; 11281 if (prog_extension) { 11282 if (conservative) { 11283 verbose(env, 11284 "Cannot replace static functions\n"); 11285 return -EINVAL; 11286 } 11287 if (!prog->jit_requested) { 11288 verbose(env, 11289 "Extension programs should be JITed\n"); 11290 return -EINVAL; 11291 } 11292 env->ops = bpf_verifier_ops[tgt_prog->type]; 11293 prog->expected_attach_type = tgt_prog->expected_attach_type; 11294 } 11295 if (!tgt_prog->jited) { 11296 verbose(env, "Can attach to only JITed progs\n"); 11297 return -EINVAL; 11298 } 11299 if (tgt_prog->type == prog->type) { 11300 /* Cannot fentry/fexit another fentry/fexit program. 11301 * Cannot attach program extension to another extension. 11302 * It's ok to attach fentry/fexit to extension program. 11303 */ 11304 verbose(env, "Cannot recursively attach\n"); 11305 return -EINVAL; 11306 } 11307 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11308 prog_extension && 11309 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11310 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11311 /* Program extensions can extend all program types 11312 * except fentry/fexit. The reason is the following. 11313 * The fentry/fexit programs are used for performance 11314 * analysis, stats and can be attached to any program 11315 * type except themselves. When extension program is 11316 * replacing XDP function it is necessary to allow 11317 * performance analysis of all functions. Both original 11318 * XDP program and its program extension. Hence 11319 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11320 * allowed. If extending of fentry/fexit was allowed it 11321 * would be possible to create long call chain 11322 * fentry->extension->fentry->extension beyond 11323 * reasonable stack size. Hence extending fentry is not 11324 * allowed. 11325 */ 11326 verbose(env, "Cannot extend fentry/fexit\n"); 11327 return -EINVAL; 11328 } 11329 key = ((u64)aux->id) << 32 | btf_id; 11330 } else { 11331 if (prog_extension) { 11332 verbose(env, "Cannot replace kernel functions\n"); 11333 return -EINVAL; 11334 } 11335 key = btf_id; 11336 } 11337 11338 switch (prog->expected_attach_type) { 11339 case BPF_TRACE_RAW_TP: 11340 if (tgt_prog) { 11341 verbose(env, 11342 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11343 return -EINVAL; 11344 } 11345 if (!btf_type_is_typedef(t)) { 11346 verbose(env, "attach_btf_id %u is not a typedef\n", 11347 btf_id); 11348 return -EINVAL; 11349 } 11350 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11351 verbose(env, "attach_btf_id %u points to wrong type name %s\n", 11352 btf_id, tname); 11353 return -EINVAL; 11354 } 11355 tname += sizeof(prefix) - 1; 11356 t = btf_type_by_id(btf, t->type); 11357 if (!btf_type_is_ptr(t)) 11358 /* should never happen in valid vmlinux build */ 11359 return -EINVAL; 11360 t = btf_type_by_id(btf, t->type); 11361 if (!btf_type_is_func_proto(t)) 11362 /* should never happen in valid vmlinux build */ 11363 return -EINVAL; 11364 11365 /* remember two read only pointers that are valid for 11366 * the life time of the kernel 11367 */ 11368 prog->aux->attach_func_name = tname; 11369 prog->aux->attach_func_proto = t; 11370 prog->aux->attach_btf_trace = true; 11371 return 0; 11372 case BPF_TRACE_ITER: 11373 if (!btf_type_is_func(t)) { 11374 verbose(env, "attach_btf_id %u is not a function\n", 11375 btf_id); 11376 return -EINVAL; 11377 } 11378 t = btf_type_by_id(btf, t->type); 11379 if (!btf_type_is_func_proto(t)) 11380 return -EINVAL; 11381 prog->aux->attach_func_name = tname; 11382 prog->aux->attach_func_proto = t; 11383 if (!bpf_iter_prog_supported(prog)) 11384 return -EINVAL; 11385 ret = btf_distill_func_proto(&env->log, btf, t, 11386 tname, &fmodel); 11387 return ret; 11388 default: 11389 if (!prog_extension) 11390 return -EINVAL; 11391 fallthrough; 11392 case BPF_MODIFY_RETURN: 11393 case BPF_LSM_MAC: 11394 case BPF_TRACE_FENTRY: 11395 case BPF_TRACE_FEXIT: 11396 prog->aux->attach_func_name = tname; 11397 if (prog->type == BPF_PROG_TYPE_LSM) { 11398 ret = bpf_lsm_verify_prog(&env->log, prog); 11399 if (ret < 0) 11400 return ret; 11401 } 11402 11403 if (!btf_type_is_func(t)) { 11404 verbose(env, "attach_btf_id %u is not a function\n", 11405 btf_id); 11406 return -EINVAL; 11407 } 11408 if (prog_extension && 11409 btf_check_type_match(env, prog, btf, t)) 11410 return -EINVAL; 11411 t = btf_type_by_id(btf, t->type); 11412 if (!btf_type_is_func_proto(t)) 11413 return -EINVAL; 11414 tr = bpf_trampoline_lookup(key); 11415 if (!tr) 11416 return -ENOMEM; 11417 /* t is either vmlinux type or another program's type */ 11418 prog->aux->attach_func_proto = t; 11419 mutex_lock(&tr->mutex); 11420 if (tr->func.addr) { 11421 prog->aux->trampoline = tr; 11422 goto out; 11423 } 11424 if (tgt_prog && conservative) { 11425 prog->aux->attach_func_proto = NULL; 11426 t = NULL; 11427 } 11428 ret = btf_distill_func_proto(&env->log, btf, t, 11429 tname, &tr->func.model); 11430 if (ret < 0) 11431 goto out; 11432 if (tgt_prog) { 11433 if (subprog == 0) 11434 addr = (long) tgt_prog->bpf_func; 11435 else 11436 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11437 } else { 11438 addr = kallsyms_lookup_name(tname); 11439 if (!addr) { 11440 verbose(env, 11441 "The address of function %s cannot be found\n", 11442 tname); 11443 ret = -ENOENT; 11444 goto out; 11445 } 11446 } 11447 11448 if (prog->aux->sleepable) { 11449 ret = -EINVAL; 11450 switch (prog->type) { 11451 case BPF_PROG_TYPE_TRACING: 11452 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11453 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11454 */ 11455 if (!check_non_sleepable_error_inject(btf_id) && 11456 within_error_injection_list(addr)) 11457 ret = 0; 11458 break; 11459 case BPF_PROG_TYPE_LSM: 11460 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11461 * Only some of them are sleepable. 11462 */ 11463 if (check_sleepable_lsm_hook(btf_id)) 11464 ret = 0; 11465 break; 11466 default: 11467 break; 11468 } 11469 if (ret) 11470 verbose(env, "%s is not sleepable\n", 11471 prog->aux->attach_func_name); 11472 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11473 ret = check_attach_modify_return(prog, addr); 11474 if (ret) 11475 verbose(env, "%s() is not modifiable\n", 11476 prog->aux->attach_func_name); 11477 } 11478 if (ret) 11479 goto out; 11480 tr->func.addr = (void *)addr; 11481 prog->aux->trampoline = tr; 11482 out: 11483 mutex_unlock(&tr->mutex); 11484 if (ret) 11485 bpf_trampoline_put(tr); 11486 return ret; 11487 } 11488 } 11489 11490 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11491 union bpf_attr __user *uattr) 11492 { 11493 u64 start_time = ktime_get_ns(); 11494 struct bpf_verifier_env *env; 11495 struct bpf_verifier_log *log; 11496 int i, len, ret = -EINVAL; 11497 bool is_priv; 11498 11499 /* no program is valid */ 11500 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11501 return -EINVAL; 11502 11503 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11504 * allocate/free it every time bpf_check() is called 11505 */ 11506 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11507 if (!env) 11508 return -ENOMEM; 11509 log = &env->log; 11510 11511 len = (*prog)->len; 11512 env->insn_aux_data = 11513 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11514 ret = -ENOMEM; 11515 if (!env->insn_aux_data) 11516 goto err_free_env; 11517 for (i = 0; i < len; i++) 11518 env->insn_aux_data[i].orig_idx = i; 11519 env->prog = *prog; 11520 env->ops = bpf_verifier_ops[env->prog->type]; 11521 is_priv = bpf_capable(); 11522 11523 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11524 mutex_lock(&bpf_verifier_lock); 11525 if (!btf_vmlinux) 11526 btf_vmlinux = btf_parse_vmlinux(); 11527 mutex_unlock(&bpf_verifier_lock); 11528 } 11529 11530 /* grab the mutex to protect few globals used by verifier */ 11531 if (!is_priv) 11532 mutex_lock(&bpf_verifier_lock); 11533 11534 if (attr->log_level || attr->log_buf || attr->log_size) { 11535 /* user requested verbose verifier output 11536 * and supplied buffer to store the verification trace 11537 */ 11538 log->level = attr->log_level; 11539 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11540 log->len_total = attr->log_size; 11541 11542 ret = -EINVAL; 11543 /* log attributes have to be sane */ 11544 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11545 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11546 goto err_unlock; 11547 } 11548 11549 if (IS_ERR(btf_vmlinux)) { 11550 /* Either gcc or pahole or kernel are broken. */ 11551 verbose(env, "in-kernel BTF is malformed\n"); 11552 ret = PTR_ERR(btf_vmlinux); 11553 goto skip_full_check; 11554 } 11555 11556 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 11557 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 11558 env->strict_alignment = true; 11559 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 11560 env->strict_alignment = false; 11561 11562 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 11563 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 11564 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 11565 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 11566 env->bpf_capable = bpf_capable(); 11567 11568 if (is_priv) 11569 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 11570 11571 ret = replace_map_fd_with_map_ptr(env); 11572 if (ret < 0) 11573 goto skip_full_check; 11574 11575 if (bpf_prog_is_dev_bound(env->prog->aux)) { 11576 ret = bpf_prog_offload_verifier_prep(env->prog); 11577 if (ret) 11578 goto skip_full_check; 11579 } 11580 11581 env->explored_states = kvcalloc(state_htab_size(env), 11582 sizeof(struct bpf_verifier_state_list *), 11583 GFP_USER); 11584 ret = -ENOMEM; 11585 if (!env->explored_states) 11586 goto skip_full_check; 11587 11588 ret = check_subprogs(env); 11589 if (ret < 0) 11590 goto skip_full_check; 11591 11592 ret = check_btf_info(env, attr, uattr); 11593 if (ret < 0) 11594 goto skip_full_check; 11595 11596 ret = check_attach_btf_id(env); 11597 if (ret) 11598 goto skip_full_check; 11599 11600 ret = check_cfg(env); 11601 if (ret < 0) 11602 goto skip_full_check; 11603 11604 ret = do_check_subprogs(env); 11605 ret = ret ?: do_check_main(env); 11606 11607 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 11608 ret = bpf_prog_offload_finalize(env); 11609 11610 skip_full_check: 11611 kvfree(env->explored_states); 11612 11613 if (ret == 0) 11614 ret = check_max_stack_depth(env); 11615 11616 /* instruction rewrites happen after this point */ 11617 if (is_priv) { 11618 if (ret == 0) 11619 opt_hard_wire_dead_code_branches(env); 11620 if (ret == 0) 11621 ret = opt_remove_dead_code(env); 11622 if (ret == 0) 11623 ret = opt_remove_nops(env); 11624 } else { 11625 if (ret == 0) 11626 sanitize_dead_code(env); 11627 } 11628 11629 if (ret == 0) 11630 /* program is valid, convert *(u32*)(ctx + off) accesses */ 11631 ret = convert_ctx_accesses(env); 11632 11633 if (ret == 0) 11634 ret = fixup_bpf_calls(env); 11635 11636 /* do 32-bit optimization after insn patching has done so those patched 11637 * insns could be handled correctly. 11638 */ 11639 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 11640 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 11641 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 11642 : false; 11643 } 11644 11645 if (ret == 0) 11646 ret = fixup_call_args(env); 11647 11648 env->verification_time = ktime_get_ns() - start_time; 11649 print_verification_stats(env); 11650 11651 if (log->level && bpf_verifier_log_full(log)) 11652 ret = -ENOSPC; 11653 if (log->level && !log->ubuf) { 11654 ret = -EFAULT; 11655 goto err_release_maps; 11656 } 11657 11658 if (ret == 0 && env->used_map_cnt) { 11659 /* if program passed verifier, update used_maps in bpf_prog_info */ 11660 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 11661 sizeof(env->used_maps[0]), 11662 GFP_KERNEL); 11663 11664 if (!env->prog->aux->used_maps) { 11665 ret = -ENOMEM; 11666 goto err_release_maps; 11667 } 11668 11669 memcpy(env->prog->aux->used_maps, env->used_maps, 11670 sizeof(env->used_maps[0]) * env->used_map_cnt); 11671 env->prog->aux->used_map_cnt = env->used_map_cnt; 11672 11673 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 11674 * bpf_ld_imm64 instructions 11675 */ 11676 convert_pseudo_ld_imm64(env); 11677 } 11678 11679 if (ret == 0) 11680 adjust_btf_func(env); 11681 11682 err_release_maps: 11683 if (!env->prog->aux->used_maps) 11684 /* if we didn't copy map pointers into bpf_prog_info, release 11685 * them now. Otherwise free_used_maps() will release them. 11686 */ 11687 release_maps(env); 11688 11689 /* extension progs temporarily inherit the attach_type of their targets 11690 for verification purposes, so set it back to zero before returning 11691 */ 11692 if (env->prog->type == BPF_PROG_TYPE_EXT) 11693 env->prog->expected_attach_type = 0; 11694 11695 *prog = env->prog; 11696 err_unlock: 11697 if (!is_priv) 11698 mutex_unlock(&bpf_verifier_lock); 11699 vfree(env->insn_aux_data); 11700 err_free_env: 11701 kfree(env); 11702 return ret; 11703 } 11704