1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/bpf-cgroup.h> 8 #include <linux/kernel.h> 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/bpf.h> 12 #include <linux/btf.h> 13 #include <linux/bpf_verifier.h> 14 #include <linux/filter.h> 15 #include <net/netlink.h> 16 #include <linux/file.h> 17 #include <linux/vmalloc.h> 18 #include <linux/stringify.h> 19 #include <linux/bsearch.h> 20 #include <linux/sort.h> 21 #include <linux/perf_event.h> 22 #include <linux/ctype.h> 23 #include <linux/error-injection.h> 24 #include <linux/bpf_lsm.h> 25 #include <linux/btf_ids.h> 26 #include <linux/poison.h> 27 #include <linux/module.h> 28 #include <linux/cpumask.h> 29 #include <net/xdp.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #define BPF_LINK_TYPE(_id, _name) 38 #include <linux/bpf_types.h> 39 #undef BPF_PROG_TYPE 40 #undef BPF_MAP_TYPE 41 #undef BPF_LINK_TYPE 42 }; 43 44 /* bpf_check() is a static code analyzer that walks eBPF program 45 * instruction by instruction and updates register/stack state. 46 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 47 * 48 * The first pass is depth-first-search to check that the program is a DAG. 49 * It rejects the following programs: 50 * - larger than BPF_MAXINSNS insns 51 * - if loop is present (detected via back-edge) 52 * - unreachable insns exist (shouldn't be a forest. program = one function) 53 * - out of bounds or malformed jumps 54 * The second pass is all possible path descent from the 1st insn. 55 * Since it's analyzing all paths through the program, the length of the 56 * analysis is limited to 64k insn, which may be hit even if total number of 57 * insn is less then 4K, but there are too many branches that change stack/regs. 58 * Number of 'branches to be analyzed' is limited to 1k 59 * 60 * On entry to each instruction, each register has a type, and the instruction 61 * changes the types of the registers depending on instruction semantics. 62 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 63 * copied to R1. 64 * 65 * All registers are 64-bit. 66 * R0 - return register 67 * R1-R5 argument passing registers 68 * R6-R9 callee saved registers 69 * R10 - frame pointer read-only 70 * 71 * At the start of BPF program the register R1 contains a pointer to bpf_context 72 * and has type PTR_TO_CTX. 73 * 74 * Verifier tracks arithmetic operations on pointers in case: 75 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 76 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 77 * 1st insn copies R10 (which has FRAME_PTR) type into R1 78 * and 2nd arithmetic instruction is pattern matched to recognize 79 * that it wants to construct a pointer to some element within stack. 80 * So after 2nd insn, the register R1 has type PTR_TO_STACK 81 * (and -20 constant is saved for further stack bounds checking). 82 * Meaning that this reg is a pointer to stack plus known immediate constant. 83 * 84 * Most of the time the registers have SCALAR_VALUE type, which 85 * means the register has some value, but it's not a valid pointer. 86 * (like pointer plus pointer becomes SCALAR_VALUE type) 87 * 88 * When verifier sees load or store instructions the type of base register 89 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 90 * four pointer types recognized by check_mem_access() function. 91 * 92 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 93 * and the range of [ptr, ptr + map's value_size) is accessible. 94 * 95 * registers used to pass values to function calls are checked against 96 * function argument constraints. 97 * 98 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 99 * It means that the register type passed to this function must be 100 * PTR_TO_STACK and it will be used inside the function as 101 * 'pointer to map element key' 102 * 103 * For example the argument constraints for bpf_map_lookup_elem(): 104 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 105 * .arg1_type = ARG_CONST_MAP_PTR, 106 * .arg2_type = ARG_PTR_TO_MAP_KEY, 107 * 108 * ret_type says that this function returns 'pointer to map elem value or null' 109 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 110 * 2nd argument should be a pointer to stack, which will be used inside 111 * the helper function as a pointer to map element key. 112 * 113 * On the kernel side the helper function looks like: 114 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 115 * { 116 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 117 * void *key = (void *) (unsigned long) r2; 118 * void *value; 119 * 120 * here kernel can access 'key' and 'map' pointers safely, knowing that 121 * [key, key + map->key_size) bytes are valid and were initialized on 122 * the stack of eBPF program. 123 * } 124 * 125 * Corresponding eBPF program may look like: 126 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 127 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 128 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 129 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 130 * here verifier looks at prototype of map_lookup_elem() and sees: 131 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 132 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 133 * 134 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 135 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 136 * and were initialized prior to this call. 137 * If it's ok, then verifier allows this BPF_CALL insn and looks at 138 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 139 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 140 * returns either pointer to map value or NULL. 141 * 142 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 143 * insn, the register holding that pointer in the true branch changes state to 144 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 145 * branch. See check_cond_jmp_op(). 146 * 147 * After the call R0 is set to return type of the function and registers R1-R5 148 * are set to NOT_INIT to indicate that they are no longer readable. 149 * 150 * The following reference types represent a potential reference to a kernel 151 * resource which, after first being allocated, must be checked and freed by 152 * the BPF program: 153 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 154 * 155 * When the verifier sees a helper call return a reference type, it allocates a 156 * pointer id for the reference and stores it in the current function state. 157 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 158 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 159 * passes through a NULL-check conditional. For the branch wherein the state is 160 * changed to CONST_IMM, the verifier releases the reference. 161 * 162 * For each helper function that allocates a reference, such as 163 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 164 * bpf_sk_release(). When a reference type passes into the release function, 165 * the verifier also releases the reference. If any unchecked or unreleased 166 * reference remains at the end of the program, the verifier rejects it. 167 */ 168 169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 170 struct bpf_verifier_stack_elem { 171 /* verifer state is 'st' 172 * before processing instruction 'insn_idx' 173 * and after processing instruction 'prev_insn_idx' 174 */ 175 struct bpf_verifier_state st; 176 int insn_idx; 177 int prev_insn_idx; 178 struct bpf_verifier_stack_elem *next; 179 /* length of verifier log at the time this state was pushed on stack */ 180 u32 log_pos; 181 }; 182 183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 184 #define BPF_COMPLEXITY_LIMIT_STATES 64 185 186 #define BPF_MAP_KEY_POISON (1ULL << 63) 187 #define BPF_MAP_KEY_SEEN (1ULL << 62) 188 189 #define BPF_MAP_PTR_UNPRIV 1UL 190 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 191 POISON_POINTER_DELTA)) 192 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 193 194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx); 195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id); 196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env); 197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env); 198 static int ref_set_non_owning(struct bpf_verifier_env *env, 199 struct bpf_reg_state *reg); 200 static void specialize_kfunc(struct bpf_verifier_env *env, 201 u32 func_id, u16 offset, unsigned long *addr); 202 static bool is_trusted_reg(const struct bpf_reg_state *reg); 203 204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 205 { 206 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 207 } 208 209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 210 { 211 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 212 } 213 214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 215 const struct bpf_map *map, bool unpriv) 216 { 217 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 218 unpriv |= bpf_map_ptr_unpriv(aux); 219 aux->map_ptr_state = (unsigned long)map | 220 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 221 } 222 223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 224 { 225 return aux->map_key_state & BPF_MAP_KEY_POISON; 226 } 227 228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 229 { 230 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 231 } 232 233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 234 { 235 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 236 } 237 238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 239 { 240 bool poisoned = bpf_map_key_poisoned(aux); 241 242 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 243 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 244 } 245 246 static bool bpf_helper_call(const struct bpf_insn *insn) 247 { 248 return insn->code == (BPF_JMP | BPF_CALL) && 249 insn->src_reg == 0; 250 } 251 252 static bool bpf_pseudo_call(const struct bpf_insn *insn) 253 { 254 return insn->code == (BPF_JMP | BPF_CALL) && 255 insn->src_reg == BPF_PSEUDO_CALL; 256 } 257 258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn) 259 { 260 return insn->code == (BPF_JMP | BPF_CALL) && 261 insn->src_reg == BPF_PSEUDO_KFUNC_CALL; 262 } 263 264 struct bpf_call_arg_meta { 265 struct bpf_map *map_ptr; 266 bool raw_mode; 267 bool pkt_access; 268 u8 release_regno; 269 int regno; 270 int access_size; 271 int mem_size; 272 u64 msize_max_value; 273 int ref_obj_id; 274 int dynptr_id; 275 int map_uid; 276 int func_id; 277 struct btf *btf; 278 u32 btf_id; 279 struct btf *ret_btf; 280 u32 ret_btf_id; 281 u32 subprogno; 282 struct btf_field *kptr_field; 283 }; 284 285 struct bpf_kfunc_call_arg_meta { 286 /* In parameters */ 287 struct btf *btf; 288 u32 func_id; 289 u32 kfunc_flags; 290 const struct btf_type *func_proto; 291 const char *func_name; 292 /* Out parameters */ 293 u32 ref_obj_id; 294 u8 release_regno; 295 bool r0_rdonly; 296 u32 ret_btf_id; 297 u64 r0_size; 298 u32 subprogno; 299 struct { 300 u64 value; 301 bool found; 302 } arg_constant; 303 304 /* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling, 305 * generally to pass info about user-defined local kptr types to later 306 * verification logic 307 * bpf_obj_drop 308 * Record the local kptr type to be drop'd 309 * bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type) 310 * Record the local kptr type to be refcount_incr'd and use 311 * arg_owning_ref to determine whether refcount_acquire should be 312 * fallible 313 */ 314 struct btf *arg_btf; 315 u32 arg_btf_id; 316 bool arg_owning_ref; 317 318 struct { 319 struct btf_field *field; 320 } arg_list_head; 321 struct { 322 struct btf_field *field; 323 } arg_rbtree_root; 324 struct { 325 enum bpf_dynptr_type type; 326 u32 id; 327 u32 ref_obj_id; 328 } initialized_dynptr; 329 struct { 330 u8 spi; 331 u8 frameno; 332 } iter; 333 u64 mem_size; 334 }; 335 336 struct btf *btf_vmlinux; 337 338 static DEFINE_MUTEX(bpf_verifier_lock); 339 340 static const struct bpf_line_info * 341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 342 { 343 const struct bpf_line_info *linfo; 344 const struct bpf_prog *prog; 345 u32 i, nr_linfo; 346 347 prog = env->prog; 348 nr_linfo = prog->aux->nr_linfo; 349 350 if (!nr_linfo || insn_off >= prog->len) 351 return NULL; 352 353 linfo = prog->aux->linfo; 354 for (i = 1; i < nr_linfo; i++) 355 if (insn_off < linfo[i].insn_off) 356 break; 357 358 return &linfo[i - 1]; 359 } 360 361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 362 { 363 struct bpf_verifier_env *env = private_data; 364 va_list args; 365 366 if (!bpf_verifier_log_needed(&env->log)) 367 return; 368 369 va_start(args, fmt); 370 bpf_verifier_vlog(&env->log, fmt, args); 371 va_end(args); 372 } 373 374 static const char *ltrim(const char *s) 375 { 376 while (isspace(*s)) 377 s++; 378 379 return s; 380 } 381 382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 383 u32 insn_off, 384 const char *prefix_fmt, ...) 385 { 386 const struct bpf_line_info *linfo; 387 388 if (!bpf_verifier_log_needed(&env->log)) 389 return; 390 391 linfo = find_linfo(env, insn_off); 392 if (!linfo || linfo == env->prev_linfo) 393 return; 394 395 if (prefix_fmt) { 396 va_list args; 397 398 va_start(args, prefix_fmt); 399 bpf_verifier_vlog(&env->log, prefix_fmt, args); 400 va_end(args); 401 } 402 403 verbose(env, "%s\n", 404 ltrim(btf_name_by_offset(env->prog->aux->btf, 405 linfo->line_off))); 406 407 env->prev_linfo = linfo; 408 } 409 410 static void verbose_invalid_scalar(struct bpf_verifier_env *env, 411 struct bpf_reg_state *reg, 412 struct tnum *range, const char *ctx, 413 const char *reg_name) 414 { 415 char tn_buf[48]; 416 417 verbose(env, "At %s the register %s ", ctx, reg_name); 418 if (!tnum_is_unknown(reg->var_off)) { 419 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 420 verbose(env, "has value %s", tn_buf); 421 } else { 422 verbose(env, "has unknown scalar value"); 423 } 424 tnum_strn(tn_buf, sizeof(tn_buf), *range); 425 verbose(env, " should have been in %s\n", tn_buf); 426 } 427 428 static bool type_is_pkt_pointer(enum bpf_reg_type type) 429 { 430 type = base_type(type); 431 return type == PTR_TO_PACKET || 432 type == PTR_TO_PACKET_META; 433 } 434 435 static bool type_is_sk_pointer(enum bpf_reg_type type) 436 { 437 return type == PTR_TO_SOCKET || 438 type == PTR_TO_SOCK_COMMON || 439 type == PTR_TO_TCP_SOCK || 440 type == PTR_TO_XDP_SOCK; 441 } 442 443 static bool type_may_be_null(u32 type) 444 { 445 return type & PTR_MAYBE_NULL; 446 } 447 448 static bool reg_not_null(const struct bpf_reg_state *reg) 449 { 450 enum bpf_reg_type type; 451 452 type = reg->type; 453 if (type_may_be_null(type)) 454 return false; 455 456 type = base_type(type); 457 return type == PTR_TO_SOCKET || 458 type == PTR_TO_TCP_SOCK || 459 type == PTR_TO_MAP_VALUE || 460 type == PTR_TO_MAP_KEY || 461 type == PTR_TO_SOCK_COMMON || 462 (type == PTR_TO_BTF_ID && is_trusted_reg(reg)) || 463 type == PTR_TO_MEM; 464 } 465 466 static bool type_is_ptr_alloc_obj(u32 type) 467 { 468 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC; 469 } 470 471 static bool type_is_non_owning_ref(u32 type) 472 { 473 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF; 474 } 475 476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg) 477 { 478 struct btf_record *rec = NULL; 479 struct btf_struct_meta *meta; 480 481 if (reg->type == PTR_TO_MAP_VALUE) { 482 rec = reg->map_ptr->record; 483 } else if (type_is_ptr_alloc_obj(reg->type)) { 484 meta = btf_find_struct_meta(reg->btf, reg->btf_id); 485 if (meta) 486 rec = meta->record; 487 } 488 return rec; 489 } 490 491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog) 492 { 493 struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux; 494 495 return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL; 496 } 497 498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 499 { 500 return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK); 501 } 502 503 static bool type_is_rdonly_mem(u32 type) 504 { 505 return type & MEM_RDONLY; 506 } 507 508 static bool is_acquire_function(enum bpf_func_id func_id, 509 const struct bpf_map *map) 510 { 511 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 512 513 if (func_id == BPF_FUNC_sk_lookup_tcp || 514 func_id == BPF_FUNC_sk_lookup_udp || 515 func_id == BPF_FUNC_skc_lookup_tcp || 516 func_id == BPF_FUNC_ringbuf_reserve || 517 func_id == BPF_FUNC_kptr_xchg) 518 return true; 519 520 if (func_id == BPF_FUNC_map_lookup_elem && 521 (map_type == BPF_MAP_TYPE_SOCKMAP || 522 map_type == BPF_MAP_TYPE_SOCKHASH)) 523 return true; 524 525 return false; 526 } 527 528 static bool is_ptr_cast_function(enum bpf_func_id func_id) 529 { 530 return func_id == BPF_FUNC_tcp_sock || 531 func_id == BPF_FUNC_sk_fullsock || 532 func_id == BPF_FUNC_skc_to_tcp_sock || 533 func_id == BPF_FUNC_skc_to_tcp6_sock || 534 func_id == BPF_FUNC_skc_to_udp6_sock || 535 func_id == BPF_FUNC_skc_to_mptcp_sock || 536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 537 func_id == BPF_FUNC_skc_to_tcp_request_sock; 538 } 539 540 static bool is_dynptr_ref_function(enum bpf_func_id func_id) 541 { 542 return func_id == BPF_FUNC_dynptr_data; 543 } 544 545 static bool is_sync_callback_calling_kfunc(u32 btf_id); 546 547 static bool is_sync_callback_calling_function(enum bpf_func_id func_id) 548 { 549 return func_id == BPF_FUNC_for_each_map_elem || 550 func_id == BPF_FUNC_find_vma || 551 func_id == BPF_FUNC_loop || 552 func_id == BPF_FUNC_user_ringbuf_drain; 553 } 554 555 static bool is_async_callback_calling_function(enum bpf_func_id func_id) 556 { 557 return func_id == BPF_FUNC_timer_set_callback; 558 } 559 560 static bool is_callback_calling_function(enum bpf_func_id func_id) 561 { 562 return is_sync_callback_calling_function(func_id) || 563 is_async_callback_calling_function(func_id); 564 } 565 566 static bool is_sync_callback_calling_insn(struct bpf_insn *insn) 567 { 568 return (bpf_helper_call(insn) && is_sync_callback_calling_function(insn->imm)) || 569 (bpf_pseudo_kfunc_call(insn) && is_sync_callback_calling_kfunc(insn->imm)); 570 } 571 572 static bool is_storage_get_function(enum bpf_func_id func_id) 573 { 574 return func_id == BPF_FUNC_sk_storage_get || 575 func_id == BPF_FUNC_inode_storage_get || 576 func_id == BPF_FUNC_task_storage_get || 577 func_id == BPF_FUNC_cgrp_storage_get; 578 } 579 580 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id, 581 const struct bpf_map *map) 582 { 583 int ref_obj_uses = 0; 584 585 if (is_ptr_cast_function(func_id)) 586 ref_obj_uses++; 587 if (is_acquire_function(func_id, map)) 588 ref_obj_uses++; 589 if (is_dynptr_ref_function(func_id)) 590 ref_obj_uses++; 591 592 return ref_obj_uses > 1; 593 } 594 595 static bool is_cmpxchg_insn(const struct bpf_insn *insn) 596 { 597 return BPF_CLASS(insn->code) == BPF_STX && 598 BPF_MODE(insn->code) == BPF_ATOMIC && 599 insn->imm == BPF_CMPXCHG; 600 } 601 602 /* string representation of 'enum bpf_reg_type' 603 * 604 * Note that reg_type_str() can not appear more than once in a single verbose() 605 * statement. 606 */ 607 static const char *reg_type_str(struct bpf_verifier_env *env, 608 enum bpf_reg_type type) 609 { 610 char postfix[16] = {0}, prefix[64] = {0}; 611 static const char * const str[] = { 612 [NOT_INIT] = "?", 613 [SCALAR_VALUE] = "scalar", 614 [PTR_TO_CTX] = "ctx", 615 [CONST_PTR_TO_MAP] = "map_ptr", 616 [PTR_TO_MAP_VALUE] = "map_value", 617 [PTR_TO_STACK] = "fp", 618 [PTR_TO_PACKET] = "pkt", 619 [PTR_TO_PACKET_META] = "pkt_meta", 620 [PTR_TO_PACKET_END] = "pkt_end", 621 [PTR_TO_FLOW_KEYS] = "flow_keys", 622 [PTR_TO_SOCKET] = "sock", 623 [PTR_TO_SOCK_COMMON] = "sock_common", 624 [PTR_TO_TCP_SOCK] = "tcp_sock", 625 [PTR_TO_TP_BUFFER] = "tp_buffer", 626 [PTR_TO_XDP_SOCK] = "xdp_sock", 627 [PTR_TO_BTF_ID] = "ptr_", 628 [PTR_TO_MEM] = "mem", 629 [PTR_TO_BUF] = "buf", 630 [PTR_TO_FUNC] = "func", 631 [PTR_TO_MAP_KEY] = "map_key", 632 [CONST_PTR_TO_DYNPTR] = "dynptr_ptr", 633 }; 634 635 if (type & PTR_MAYBE_NULL) { 636 if (base_type(type) == PTR_TO_BTF_ID) 637 strncpy(postfix, "or_null_", 16); 638 else 639 strncpy(postfix, "_or_null", 16); 640 } 641 642 snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s", 643 type & MEM_RDONLY ? "rdonly_" : "", 644 type & MEM_RINGBUF ? "ringbuf_" : "", 645 type & MEM_USER ? "user_" : "", 646 type & MEM_PERCPU ? "percpu_" : "", 647 type & MEM_RCU ? "rcu_" : "", 648 type & PTR_UNTRUSTED ? "untrusted_" : "", 649 type & PTR_TRUSTED ? "trusted_" : "" 650 ); 651 652 snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s", 653 prefix, str[base_type(type)], postfix); 654 return env->tmp_str_buf; 655 } 656 657 static char slot_type_char[] = { 658 [STACK_INVALID] = '?', 659 [STACK_SPILL] = 'r', 660 [STACK_MISC] = 'm', 661 [STACK_ZERO] = '0', 662 [STACK_DYNPTR] = 'd', 663 [STACK_ITER] = 'i', 664 }; 665 666 static void print_liveness(struct bpf_verifier_env *env, 667 enum bpf_reg_liveness live) 668 { 669 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 670 verbose(env, "_"); 671 if (live & REG_LIVE_READ) 672 verbose(env, "r"); 673 if (live & REG_LIVE_WRITTEN) 674 verbose(env, "w"); 675 if (live & REG_LIVE_DONE) 676 verbose(env, "D"); 677 } 678 679 static int __get_spi(s32 off) 680 { 681 return (-off - 1) / BPF_REG_SIZE; 682 } 683 684 static struct bpf_func_state *func(struct bpf_verifier_env *env, 685 const struct bpf_reg_state *reg) 686 { 687 struct bpf_verifier_state *cur = env->cur_state; 688 689 return cur->frame[reg->frameno]; 690 } 691 692 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots) 693 { 694 int allocated_slots = state->allocated_stack / BPF_REG_SIZE; 695 696 /* We need to check that slots between [spi - nr_slots + 1, spi] are 697 * within [0, allocated_stack). 698 * 699 * Please note that the spi grows downwards. For example, a dynptr 700 * takes the size of two stack slots; the first slot will be at 701 * spi and the second slot will be at spi - 1. 702 */ 703 return spi - nr_slots + 1 >= 0 && spi < allocated_slots; 704 } 705 706 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 707 const char *obj_kind, int nr_slots) 708 { 709 int off, spi; 710 711 if (!tnum_is_const(reg->var_off)) { 712 verbose(env, "%s has to be at a constant offset\n", obj_kind); 713 return -EINVAL; 714 } 715 716 off = reg->off + reg->var_off.value; 717 if (off % BPF_REG_SIZE) { 718 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 719 return -EINVAL; 720 } 721 722 spi = __get_spi(off); 723 if (spi + 1 < nr_slots) { 724 verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off); 725 return -EINVAL; 726 } 727 728 if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots)) 729 return -ERANGE; 730 return spi; 731 } 732 733 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 734 { 735 return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS); 736 } 737 738 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots) 739 { 740 return stack_slot_obj_get_spi(env, reg, "iter", nr_slots); 741 } 742 743 static const char *btf_type_name(const struct btf *btf, u32 id) 744 { 745 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 746 } 747 748 static const char *dynptr_type_str(enum bpf_dynptr_type type) 749 { 750 switch (type) { 751 case BPF_DYNPTR_TYPE_LOCAL: 752 return "local"; 753 case BPF_DYNPTR_TYPE_RINGBUF: 754 return "ringbuf"; 755 case BPF_DYNPTR_TYPE_SKB: 756 return "skb"; 757 case BPF_DYNPTR_TYPE_XDP: 758 return "xdp"; 759 case BPF_DYNPTR_TYPE_INVALID: 760 return "<invalid>"; 761 default: 762 WARN_ONCE(1, "unknown dynptr type %d\n", type); 763 return "<unknown>"; 764 } 765 } 766 767 static const char *iter_type_str(const struct btf *btf, u32 btf_id) 768 { 769 if (!btf || btf_id == 0) 770 return "<invalid>"; 771 772 /* we already validated that type is valid and has conforming name */ 773 return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1; 774 } 775 776 static const char *iter_state_str(enum bpf_iter_state state) 777 { 778 switch (state) { 779 case BPF_ITER_STATE_ACTIVE: 780 return "active"; 781 case BPF_ITER_STATE_DRAINED: 782 return "drained"; 783 case BPF_ITER_STATE_INVALID: 784 return "<invalid>"; 785 default: 786 WARN_ONCE(1, "unknown iter state %d\n", state); 787 return "<unknown>"; 788 } 789 } 790 791 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno) 792 { 793 env->scratched_regs |= 1U << regno; 794 } 795 796 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi) 797 { 798 env->scratched_stack_slots |= 1ULL << spi; 799 } 800 801 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno) 802 { 803 return (env->scratched_regs >> regno) & 1; 804 } 805 806 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno) 807 { 808 return (env->scratched_stack_slots >> regno) & 1; 809 } 810 811 static bool verifier_state_scratched(const struct bpf_verifier_env *env) 812 { 813 return env->scratched_regs || env->scratched_stack_slots; 814 } 815 816 static void mark_verifier_state_clean(struct bpf_verifier_env *env) 817 { 818 env->scratched_regs = 0U; 819 env->scratched_stack_slots = 0ULL; 820 } 821 822 /* Used for printing the entire verifier state. */ 823 static void mark_verifier_state_scratched(struct bpf_verifier_env *env) 824 { 825 env->scratched_regs = ~0U; 826 env->scratched_stack_slots = ~0ULL; 827 } 828 829 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type) 830 { 831 switch (arg_type & DYNPTR_TYPE_FLAG_MASK) { 832 case DYNPTR_TYPE_LOCAL: 833 return BPF_DYNPTR_TYPE_LOCAL; 834 case DYNPTR_TYPE_RINGBUF: 835 return BPF_DYNPTR_TYPE_RINGBUF; 836 case DYNPTR_TYPE_SKB: 837 return BPF_DYNPTR_TYPE_SKB; 838 case DYNPTR_TYPE_XDP: 839 return BPF_DYNPTR_TYPE_XDP; 840 default: 841 return BPF_DYNPTR_TYPE_INVALID; 842 } 843 } 844 845 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type) 846 { 847 switch (type) { 848 case BPF_DYNPTR_TYPE_LOCAL: 849 return DYNPTR_TYPE_LOCAL; 850 case BPF_DYNPTR_TYPE_RINGBUF: 851 return DYNPTR_TYPE_RINGBUF; 852 case BPF_DYNPTR_TYPE_SKB: 853 return DYNPTR_TYPE_SKB; 854 case BPF_DYNPTR_TYPE_XDP: 855 return DYNPTR_TYPE_XDP; 856 default: 857 return 0; 858 } 859 } 860 861 static bool dynptr_type_refcounted(enum bpf_dynptr_type type) 862 { 863 return type == BPF_DYNPTR_TYPE_RINGBUF; 864 } 865 866 static void __mark_dynptr_reg(struct bpf_reg_state *reg, 867 enum bpf_dynptr_type type, 868 bool first_slot, int dynptr_id); 869 870 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 871 struct bpf_reg_state *reg); 872 873 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env, 874 struct bpf_reg_state *sreg1, 875 struct bpf_reg_state *sreg2, 876 enum bpf_dynptr_type type) 877 { 878 int id = ++env->id_gen; 879 880 __mark_dynptr_reg(sreg1, type, true, id); 881 __mark_dynptr_reg(sreg2, type, false, id); 882 } 883 884 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env, 885 struct bpf_reg_state *reg, 886 enum bpf_dynptr_type type) 887 { 888 __mark_dynptr_reg(reg, type, true, ++env->id_gen); 889 } 890 891 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 892 struct bpf_func_state *state, int spi); 893 894 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 895 enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id) 896 { 897 struct bpf_func_state *state = func(env, reg); 898 enum bpf_dynptr_type type; 899 int spi, i, err; 900 901 spi = dynptr_get_spi(env, reg); 902 if (spi < 0) 903 return spi; 904 905 /* We cannot assume both spi and spi - 1 belong to the same dynptr, 906 * hence we need to call destroy_if_dynptr_stack_slot twice for both, 907 * to ensure that for the following example: 908 * [d1][d1][d2][d2] 909 * spi 3 2 1 0 910 * So marking spi = 2 should lead to destruction of both d1 and d2. In 911 * case they do belong to same dynptr, second call won't see slot_type 912 * as STACK_DYNPTR and will simply skip destruction. 913 */ 914 err = destroy_if_dynptr_stack_slot(env, state, spi); 915 if (err) 916 return err; 917 err = destroy_if_dynptr_stack_slot(env, state, spi - 1); 918 if (err) 919 return err; 920 921 for (i = 0; i < BPF_REG_SIZE; i++) { 922 state->stack[spi].slot_type[i] = STACK_DYNPTR; 923 state->stack[spi - 1].slot_type[i] = STACK_DYNPTR; 924 } 925 926 type = arg_to_dynptr_type(arg_type); 927 if (type == BPF_DYNPTR_TYPE_INVALID) 928 return -EINVAL; 929 930 mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr, 931 &state->stack[spi - 1].spilled_ptr, type); 932 933 if (dynptr_type_refcounted(type)) { 934 /* The id is used to track proper releasing */ 935 int id; 936 937 if (clone_ref_obj_id) 938 id = clone_ref_obj_id; 939 else 940 id = acquire_reference_state(env, insn_idx); 941 942 if (id < 0) 943 return id; 944 945 state->stack[spi].spilled_ptr.ref_obj_id = id; 946 state->stack[spi - 1].spilled_ptr.ref_obj_id = id; 947 } 948 949 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 950 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 951 952 return 0; 953 } 954 955 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi) 956 { 957 int i; 958 959 for (i = 0; i < BPF_REG_SIZE; i++) { 960 state->stack[spi].slot_type[i] = STACK_INVALID; 961 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 962 } 963 964 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 965 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 966 967 /* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot? 968 * 969 * While we don't allow reading STACK_INVALID, it is still possible to 970 * do <8 byte writes marking some but not all slots as STACK_MISC. Then, 971 * helpers or insns can do partial read of that part without failing, 972 * but check_stack_range_initialized, check_stack_read_var_off, and 973 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of 974 * the slot conservatively. Hence we need to prevent those liveness 975 * marking walks. 976 * 977 * This was not a problem before because STACK_INVALID is only set by 978 * default (where the default reg state has its reg->parent as NULL), or 979 * in clean_live_states after REG_LIVE_DONE (at which point 980 * mark_reg_read won't walk reg->parent chain), but not randomly during 981 * verifier state exploration (like we did above). Hence, for our case 982 * parentage chain will still be live (i.e. reg->parent may be 983 * non-NULL), while earlier reg->parent was NULL, so we need 984 * REG_LIVE_WRITTEN to screen off read marker propagation when it is 985 * done later on reads or by mark_dynptr_read as well to unnecessary 986 * mark registers in verifier state. 987 */ 988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 989 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 990 } 991 992 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 993 { 994 struct bpf_func_state *state = func(env, reg); 995 int spi, ref_obj_id, i; 996 997 spi = dynptr_get_spi(env, reg); 998 if (spi < 0) 999 return spi; 1000 1001 if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1002 invalidate_dynptr(env, state, spi); 1003 return 0; 1004 } 1005 1006 ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id; 1007 1008 /* If the dynptr has a ref_obj_id, then we need to invalidate 1009 * two things: 1010 * 1011 * 1) Any dynptrs with a matching ref_obj_id (clones) 1012 * 2) Any slices derived from this dynptr. 1013 */ 1014 1015 /* Invalidate any slices associated with this dynptr */ 1016 WARN_ON_ONCE(release_reference(env, ref_obj_id)); 1017 1018 /* Invalidate any dynptr clones */ 1019 for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1020 if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id) 1021 continue; 1022 1023 /* it should always be the case that if the ref obj id 1024 * matches then the stack slot also belongs to a 1025 * dynptr 1026 */ 1027 if (state->stack[i].slot_type[0] != STACK_DYNPTR) { 1028 verbose(env, "verifier internal error: misconfigured ref_obj_id\n"); 1029 return -EFAULT; 1030 } 1031 if (state->stack[i].spilled_ptr.dynptr.first_slot) 1032 invalidate_dynptr(env, state, i); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1039 struct bpf_reg_state *reg); 1040 1041 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1042 { 1043 if (!env->allow_ptr_leaks) 1044 __mark_reg_not_init(env, reg); 1045 else 1046 __mark_reg_unknown(env, reg); 1047 } 1048 1049 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env, 1050 struct bpf_func_state *state, int spi) 1051 { 1052 struct bpf_func_state *fstate; 1053 struct bpf_reg_state *dreg; 1054 int i, dynptr_id; 1055 1056 /* We always ensure that STACK_DYNPTR is never set partially, 1057 * hence just checking for slot_type[0] is enough. This is 1058 * different for STACK_SPILL, where it may be only set for 1059 * 1 byte, so code has to use is_spilled_reg. 1060 */ 1061 if (state->stack[spi].slot_type[0] != STACK_DYNPTR) 1062 return 0; 1063 1064 /* Reposition spi to first slot */ 1065 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1066 spi = spi + 1; 1067 1068 if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) { 1069 verbose(env, "cannot overwrite referenced dynptr\n"); 1070 return -EINVAL; 1071 } 1072 1073 mark_stack_slot_scratched(env, spi); 1074 mark_stack_slot_scratched(env, spi - 1); 1075 1076 /* Writing partially to one dynptr stack slot destroys both. */ 1077 for (i = 0; i < BPF_REG_SIZE; i++) { 1078 state->stack[spi].slot_type[i] = STACK_INVALID; 1079 state->stack[spi - 1].slot_type[i] = STACK_INVALID; 1080 } 1081 1082 dynptr_id = state->stack[spi].spilled_ptr.id; 1083 /* Invalidate any slices associated with this dynptr */ 1084 bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({ 1085 /* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */ 1086 if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM) 1087 continue; 1088 if (dreg->dynptr_id == dynptr_id) 1089 mark_reg_invalid(env, dreg); 1090 })); 1091 1092 /* Do not release reference state, we are destroying dynptr on stack, 1093 * not using some helper to release it. Just reset register. 1094 */ 1095 __mark_reg_not_init(env, &state->stack[spi].spilled_ptr); 1096 __mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr); 1097 1098 /* Same reason as unmark_stack_slots_dynptr above */ 1099 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1100 state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN; 1101 1102 return 0; 1103 } 1104 1105 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1106 { 1107 int spi; 1108 1109 if (reg->type == CONST_PTR_TO_DYNPTR) 1110 return false; 1111 1112 spi = dynptr_get_spi(env, reg); 1113 1114 /* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an 1115 * error because this just means the stack state hasn't been updated yet. 1116 * We will do check_mem_access to check and update stack bounds later. 1117 */ 1118 if (spi < 0 && spi != -ERANGE) 1119 return false; 1120 1121 /* We don't need to check if the stack slots are marked by previous 1122 * dynptr initializations because we allow overwriting existing unreferenced 1123 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls 1124 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are 1125 * touching are completely destructed before we reinitialize them for a new 1126 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early 1127 * instead of delaying it until the end where the user will get "Unreleased 1128 * reference" error. 1129 */ 1130 return true; 1131 } 1132 1133 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 1134 { 1135 struct bpf_func_state *state = func(env, reg); 1136 int i, spi; 1137 1138 /* This already represents first slot of initialized bpf_dynptr. 1139 * 1140 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to 1141 * check_func_arg_reg_off's logic, so we don't need to check its 1142 * offset and alignment. 1143 */ 1144 if (reg->type == CONST_PTR_TO_DYNPTR) 1145 return true; 1146 1147 spi = dynptr_get_spi(env, reg); 1148 if (spi < 0) 1149 return false; 1150 if (!state->stack[spi].spilled_ptr.dynptr.first_slot) 1151 return false; 1152 1153 for (i = 0; i < BPF_REG_SIZE; i++) { 1154 if (state->stack[spi].slot_type[i] != STACK_DYNPTR || 1155 state->stack[spi - 1].slot_type[i] != STACK_DYNPTR) 1156 return false; 1157 } 1158 1159 return true; 1160 } 1161 1162 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1163 enum bpf_arg_type arg_type) 1164 { 1165 struct bpf_func_state *state = func(env, reg); 1166 enum bpf_dynptr_type dynptr_type; 1167 int spi; 1168 1169 /* ARG_PTR_TO_DYNPTR takes any type of dynptr */ 1170 if (arg_type == ARG_PTR_TO_DYNPTR) 1171 return true; 1172 1173 dynptr_type = arg_to_dynptr_type(arg_type); 1174 if (reg->type == CONST_PTR_TO_DYNPTR) { 1175 return reg->dynptr.type == dynptr_type; 1176 } else { 1177 spi = dynptr_get_spi(env, reg); 1178 if (spi < 0) 1179 return false; 1180 return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type; 1181 } 1182 } 1183 1184 static void __mark_reg_known_zero(struct bpf_reg_state *reg); 1185 1186 static int mark_stack_slots_iter(struct bpf_verifier_env *env, 1187 struct bpf_reg_state *reg, int insn_idx, 1188 struct btf *btf, u32 btf_id, int nr_slots) 1189 { 1190 struct bpf_func_state *state = func(env, reg); 1191 int spi, i, j, id; 1192 1193 spi = iter_get_spi(env, reg, nr_slots); 1194 if (spi < 0) 1195 return spi; 1196 1197 id = acquire_reference_state(env, insn_idx); 1198 if (id < 0) 1199 return id; 1200 1201 for (i = 0; i < nr_slots; i++) { 1202 struct bpf_stack_state *slot = &state->stack[spi - i]; 1203 struct bpf_reg_state *st = &slot->spilled_ptr; 1204 1205 __mark_reg_known_zero(st); 1206 st->type = PTR_TO_STACK; /* we don't have dedicated reg type */ 1207 st->live |= REG_LIVE_WRITTEN; 1208 st->ref_obj_id = i == 0 ? id : 0; 1209 st->iter.btf = btf; 1210 st->iter.btf_id = btf_id; 1211 st->iter.state = BPF_ITER_STATE_ACTIVE; 1212 st->iter.depth = 0; 1213 1214 for (j = 0; j < BPF_REG_SIZE; j++) 1215 slot->slot_type[j] = STACK_ITER; 1216 1217 mark_stack_slot_scratched(env, spi - i); 1218 } 1219 1220 return 0; 1221 } 1222 1223 static int unmark_stack_slots_iter(struct bpf_verifier_env *env, 1224 struct bpf_reg_state *reg, int nr_slots) 1225 { 1226 struct bpf_func_state *state = func(env, reg); 1227 int spi, i, j; 1228 1229 spi = iter_get_spi(env, reg, nr_slots); 1230 if (spi < 0) 1231 return spi; 1232 1233 for (i = 0; i < nr_slots; i++) { 1234 struct bpf_stack_state *slot = &state->stack[spi - i]; 1235 struct bpf_reg_state *st = &slot->spilled_ptr; 1236 1237 if (i == 0) 1238 WARN_ON_ONCE(release_reference(env, st->ref_obj_id)); 1239 1240 __mark_reg_not_init(env, st); 1241 1242 /* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */ 1243 st->live |= REG_LIVE_WRITTEN; 1244 1245 for (j = 0; j < BPF_REG_SIZE; j++) 1246 slot->slot_type[j] = STACK_INVALID; 1247 1248 mark_stack_slot_scratched(env, spi - i); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env, 1255 struct bpf_reg_state *reg, int nr_slots) 1256 { 1257 struct bpf_func_state *state = func(env, reg); 1258 int spi, i, j; 1259 1260 /* For -ERANGE (i.e. spi not falling into allocated stack slots), we 1261 * will do check_mem_access to check and update stack bounds later, so 1262 * return true for that case. 1263 */ 1264 spi = iter_get_spi(env, reg, nr_slots); 1265 if (spi == -ERANGE) 1266 return true; 1267 if (spi < 0) 1268 return false; 1269 1270 for (i = 0; i < nr_slots; i++) { 1271 struct bpf_stack_state *slot = &state->stack[spi - i]; 1272 1273 for (j = 0; j < BPF_REG_SIZE; j++) 1274 if (slot->slot_type[j] == STACK_ITER) 1275 return false; 1276 } 1277 1278 return true; 1279 } 1280 1281 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 1282 struct btf *btf, u32 btf_id, int nr_slots) 1283 { 1284 struct bpf_func_state *state = func(env, reg); 1285 int spi, i, j; 1286 1287 spi = iter_get_spi(env, reg, nr_slots); 1288 if (spi < 0) 1289 return false; 1290 1291 for (i = 0; i < nr_slots; i++) { 1292 struct bpf_stack_state *slot = &state->stack[spi - i]; 1293 struct bpf_reg_state *st = &slot->spilled_ptr; 1294 1295 /* only main (first) slot has ref_obj_id set */ 1296 if (i == 0 && !st->ref_obj_id) 1297 return false; 1298 if (i != 0 && st->ref_obj_id) 1299 return false; 1300 if (st->iter.btf != btf || st->iter.btf_id != btf_id) 1301 return false; 1302 1303 for (j = 0; j < BPF_REG_SIZE; j++) 1304 if (slot->slot_type[j] != STACK_ITER) 1305 return false; 1306 } 1307 1308 return true; 1309 } 1310 1311 /* Check if given stack slot is "special": 1312 * - spilled register state (STACK_SPILL); 1313 * - dynptr state (STACK_DYNPTR); 1314 * - iter state (STACK_ITER). 1315 */ 1316 static bool is_stack_slot_special(const struct bpf_stack_state *stack) 1317 { 1318 enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1]; 1319 1320 switch (type) { 1321 case STACK_SPILL: 1322 case STACK_DYNPTR: 1323 case STACK_ITER: 1324 return true; 1325 case STACK_INVALID: 1326 case STACK_MISC: 1327 case STACK_ZERO: 1328 return false; 1329 default: 1330 WARN_ONCE(1, "unknown stack slot type %d\n", type); 1331 return true; 1332 } 1333 } 1334 1335 /* The reg state of a pointer or a bounded scalar was saved when 1336 * it was spilled to the stack. 1337 */ 1338 static bool is_spilled_reg(const struct bpf_stack_state *stack) 1339 { 1340 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL; 1341 } 1342 1343 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack) 1344 { 1345 return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL && 1346 stack->spilled_ptr.type == SCALAR_VALUE; 1347 } 1348 1349 static void scrub_spilled_slot(u8 *stype) 1350 { 1351 if (*stype != STACK_INVALID) 1352 *stype = STACK_MISC; 1353 } 1354 1355 static void print_verifier_state(struct bpf_verifier_env *env, 1356 const struct bpf_func_state *state, 1357 bool print_all) 1358 { 1359 const struct bpf_reg_state *reg; 1360 enum bpf_reg_type t; 1361 int i; 1362 1363 if (state->frameno) 1364 verbose(env, " frame%d:", state->frameno); 1365 for (i = 0; i < MAX_BPF_REG; i++) { 1366 reg = &state->regs[i]; 1367 t = reg->type; 1368 if (t == NOT_INIT) 1369 continue; 1370 if (!print_all && !reg_scratched(env, i)) 1371 continue; 1372 verbose(env, " R%d", i); 1373 print_liveness(env, reg->live); 1374 verbose(env, "="); 1375 if (t == SCALAR_VALUE && reg->precise) 1376 verbose(env, "P"); 1377 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 1378 tnum_is_const(reg->var_off)) { 1379 /* reg->off should be 0 for SCALAR_VALUE */ 1380 verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1381 verbose(env, "%lld", reg->var_off.value + reg->off); 1382 } else { 1383 const char *sep = ""; 1384 1385 verbose(env, "%s", reg_type_str(env, t)); 1386 if (base_type(t) == PTR_TO_BTF_ID) 1387 verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id)); 1388 verbose(env, "("); 1389 /* 1390 * _a stands for append, was shortened to avoid multiline statements below. 1391 * This macro is used to output a comma separated list of attributes. 1392 */ 1393 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; }) 1394 1395 if (reg->id) 1396 verbose_a("id=%d", reg->id); 1397 if (reg->ref_obj_id) 1398 verbose_a("ref_obj_id=%d", reg->ref_obj_id); 1399 if (type_is_non_owning_ref(reg->type)) 1400 verbose_a("%s", "non_own_ref"); 1401 if (t != SCALAR_VALUE) 1402 verbose_a("off=%d", reg->off); 1403 if (type_is_pkt_pointer(t)) 1404 verbose_a("r=%d", reg->range); 1405 else if (base_type(t) == CONST_PTR_TO_MAP || 1406 base_type(t) == PTR_TO_MAP_KEY || 1407 base_type(t) == PTR_TO_MAP_VALUE) 1408 verbose_a("ks=%d,vs=%d", 1409 reg->map_ptr->key_size, 1410 reg->map_ptr->value_size); 1411 if (tnum_is_const(reg->var_off)) { 1412 /* Typically an immediate SCALAR_VALUE, but 1413 * could be a pointer whose offset is too big 1414 * for reg->off 1415 */ 1416 verbose_a("imm=%llx", reg->var_off.value); 1417 } else { 1418 if (reg->smin_value != reg->umin_value && 1419 reg->smin_value != S64_MIN) 1420 verbose_a("smin=%lld", (long long)reg->smin_value); 1421 if (reg->smax_value != reg->umax_value && 1422 reg->smax_value != S64_MAX) 1423 verbose_a("smax=%lld", (long long)reg->smax_value); 1424 if (reg->umin_value != 0) 1425 verbose_a("umin=%llu", (unsigned long long)reg->umin_value); 1426 if (reg->umax_value != U64_MAX) 1427 verbose_a("umax=%llu", (unsigned long long)reg->umax_value); 1428 if (!tnum_is_unknown(reg->var_off)) { 1429 char tn_buf[48]; 1430 1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1432 verbose_a("var_off=%s", tn_buf); 1433 } 1434 if (reg->s32_min_value != reg->smin_value && 1435 reg->s32_min_value != S32_MIN) 1436 verbose_a("s32_min=%d", (int)(reg->s32_min_value)); 1437 if (reg->s32_max_value != reg->smax_value && 1438 reg->s32_max_value != S32_MAX) 1439 verbose_a("s32_max=%d", (int)(reg->s32_max_value)); 1440 if (reg->u32_min_value != reg->umin_value && 1441 reg->u32_min_value != U32_MIN) 1442 verbose_a("u32_min=%d", (int)(reg->u32_min_value)); 1443 if (reg->u32_max_value != reg->umax_value && 1444 reg->u32_max_value != U32_MAX) 1445 verbose_a("u32_max=%d", (int)(reg->u32_max_value)); 1446 } 1447 #undef verbose_a 1448 1449 verbose(env, ")"); 1450 } 1451 } 1452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 1453 char types_buf[BPF_REG_SIZE + 1]; 1454 bool valid = false; 1455 int j; 1456 1457 for (j = 0; j < BPF_REG_SIZE; j++) { 1458 if (state->stack[i].slot_type[j] != STACK_INVALID) 1459 valid = true; 1460 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1461 } 1462 types_buf[BPF_REG_SIZE] = 0; 1463 if (!valid) 1464 continue; 1465 if (!print_all && !stack_slot_scratched(env, i)) 1466 continue; 1467 switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) { 1468 case STACK_SPILL: 1469 reg = &state->stack[i].spilled_ptr; 1470 t = reg->type; 1471 1472 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1473 print_liveness(env, reg->live); 1474 verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t)); 1475 if (t == SCALAR_VALUE && reg->precise) 1476 verbose(env, "P"); 1477 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 1478 verbose(env, "%lld", reg->var_off.value + reg->off); 1479 break; 1480 case STACK_DYNPTR: 1481 i += BPF_DYNPTR_NR_SLOTS - 1; 1482 reg = &state->stack[i].spilled_ptr; 1483 1484 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1485 print_liveness(env, reg->live); 1486 verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type)); 1487 if (reg->ref_obj_id) 1488 verbose(env, "(ref_id=%d)", reg->ref_obj_id); 1489 break; 1490 case STACK_ITER: 1491 /* only main slot has ref_obj_id set; skip others */ 1492 reg = &state->stack[i].spilled_ptr; 1493 if (!reg->ref_obj_id) 1494 continue; 1495 1496 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1497 print_liveness(env, reg->live); 1498 verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)", 1499 iter_type_str(reg->iter.btf, reg->iter.btf_id), 1500 reg->ref_obj_id, iter_state_str(reg->iter.state), 1501 reg->iter.depth); 1502 break; 1503 case STACK_MISC: 1504 case STACK_ZERO: 1505 default: 1506 reg = &state->stack[i].spilled_ptr; 1507 1508 for (j = 0; j < BPF_REG_SIZE; j++) 1509 types_buf[j] = slot_type_char[state->stack[i].slot_type[j]]; 1510 types_buf[BPF_REG_SIZE] = 0; 1511 1512 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 1513 print_liveness(env, reg->live); 1514 verbose(env, "=%s", types_buf); 1515 break; 1516 } 1517 } 1518 if (state->acquired_refs && state->refs[0].id) { 1519 verbose(env, " refs=%d", state->refs[0].id); 1520 for (i = 1; i < state->acquired_refs; i++) 1521 if (state->refs[i].id) 1522 verbose(env, ",%d", state->refs[i].id); 1523 } 1524 if (state->in_callback_fn) 1525 verbose(env, " cb"); 1526 if (state->in_async_callback_fn) 1527 verbose(env, " async_cb"); 1528 verbose(env, "\n"); 1529 if (!print_all) 1530 mark_verifier_state_clean(env); 1531 } 1532 1533 static inline u32 vlog_alignment(u32 pos) 1534 { 1535 return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT), 1536 BPF_LOG_MIN_ALIGNMENT) - pos - 1; 1537 } 1538 1539 static void print_insn_state(struct bpf_verifier_env *env, 1540 const struct bpf_func_state *state) 1541 { 1542 if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) { 1543 /* remove new line character */ 1544 bpf_vlog_reset(&env->log, env->prev_log_pos - 1); 1545 verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' '); 1546 } else { 1547 verbose(env, "%d:", env->insn_idx); 1548 } 1549 print_verifier_state(env, state, false); 1550 } 1551 1552 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too 1553 * small to hold src. This is different from krealloc since we don't want to preserve 1554 * the contents of dst. 1555 * 1556 * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could 1557 * not be allocated. 1558 */ 1559 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags) 1560 { 1561 size_t alloc_bytes; 1562 void *orig = dst; 1563 size_t bytes; 1564 1565 if (ZERO_OR_NULL_PTR(src)) 1566 goto out; 1567 1568 if (unlikely(check_mul_overflow(n, size, &bytes))) 1569 return NULL; 1570 1571 alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes)); 1572 dst = krealloc(orig, alloc_bytes, flags); 1573 if (!dst) { 1574 kfree(orig); 1575 return NULL; 1576 } 1577 1578 memcpy(dst, src, bytes); 1579 out: 1580 return dst ? dst : ZERO_SIZE_PTR; 1581 } 1582 1583 /* resize an array from old_n items to new_n items. the array is reallocated if it's too 1584 * small to hold new_n items. new items are zeroed out if the array grows. 1585 * 1586 * Contrary to krealloc_array, does not free arr if new_n is zero. 1587 */ 1588 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size) 1589 { 1590 size_t alloc_size; 1591 void *new_arr; 1592 1593 if (!new_n || old_n == new_n) 1594 goto out; 1595 1596 alloc_size = kmalloc_size_roundup(size_mul(new_n, size)); 1597 new_arr = krealloc(arr, alloc_size, GFP_KERNEL); 1598 if (!new_arr) { 1599 kfree(arr); 1600 return NULL; 1601 } 1602 arr = new_arr; 1603 1604 if (new_n > old_n) 1605 memset(arr + old_n * size, 0, (new_n - old_n) * size); 1606 1607 out: 1608 return arr ? arr : ZERO_SIZE_PTR; 1609 } 1610 1611 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1612 { 1613 dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs, 1614 sizeof(struct bpf_reference_state), GFP_KERNEL); 1615 if (!dst->refs) 1616 return -ENOMEM; 1617 1618 dst->acquired_refs = src->acquired_refs; 1619 return 0; 1620 } 1621 1622 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src) 1623 { 1624 size_t n = src->allocated_stack / BPF_REG_SIZE; 1625 1626 dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state), 1627 GFP_KERNEL); 1628 if (!dst->stack) 1629 return -ENOMEM; 1630 1631 dst->allocated_stack = src->allocated_stack; 1632 return 0; 1633 } 1634 1635 static int resize_reference_state(struct bpf_func_state *state, size_t n) 1636 { 1637 state->refs = realloc_array(state->refs, state->acquired_refs, n, 1638 sizeof(struct bpf_reference_state)); 1639 if (!state->refs) 1640 return -ENOMEM; 1641 1642 state->acquired_refs = n; 1643 return 0; 1644 } 1645 1646 /* Possibly update state->allocated_stack to be at least size bytes. Also 1647 * possibly update the function's high-water mark in its bpf_subprog_info. 1648 */ 1649 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size) 1650 { 1651 size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE; 1652 1653 if (old_n >= n) 1654 return 0; 1655 1656 state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state)); 1657 if (!state->stack) 1658 return -ENOMEM; 1659 1660 state->allocated_stack = size; 1661 1662 /* update known max for given subprogram */ 1663 if (env->subprog_info[state->subprogno].stack_depth < size) 1664 env->subprog_info[state->subprogno].stack_depth = size; 1665 1666 return 0; 1667 } 1668 1669 /* Acquire a pointer id from the env and update the state->refs to include 1670 * this new pointer reference. 1671 * On success, returns a valid pointer id to associate with the register 1672 * On failure, returns a negative errno. 1673 */ 1674 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 1675 { 1676 struct bpf_func_state *state = cur_func(env); 1677 int new_ofs = state->acquired_refs; 1678 int id, err; 1679 1680 err = resize_reference_state(state, state->acquired_refs + 1); 1681 if (err) 1682 return err; 1683 id = ++env->id_gen; 1684 state->refs[new_ofs].id = id; 1685 state->refs[new_ofs].insn_idx = insn_idx; 1686 state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0; 1687 1688 return id; 1689 } 1690 1691 /* release function corresponding to acquire_reference_state(). Idempotent. */ 1692 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 1693 { 1694 int i, last_idx; 1695 1696 last_idx = state->acquired_refs - 1; 1697 for (i = 0; i < state->acquired_refs; i++) { 1698 if (state->refs[i].id == ptr_id) { 1699 /* Cannot release caller references in callbacks */ 1700 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 1701 return -EINVAL; 1702 if (last_idx && i != last_idx) 1703 memcpy(&state->refs[i], &state->refs[last_idx], 1704 sizeof(*state->refs)); 1705 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 1706 state->acquired_refs--; 1707 return 0; 1708 } 1709 } 1710 return -EINVAL; 1711 } 1712 1713 static void free_func_state(struct bpf_func_state *state) 1714 { 1715 if (!state) 1716 return; 1717 kfree(state->refs); 1718 kfree(state->stack); 1719 kfree(state); 1720 } 1721 1722 static void clear_jmp_history(struct bpf_verifier_state *state) 1723 { 1724 kfree(state->jmp_history); 1725 state->jmp_history = NULL; 1726 state->jmp_history_cnt = 0; 1727 } 1728 1729 static void free_verifier_state(struct bpf_verifier_state *state, 1730 bool free_self) 1731 { 1732 int i; 1733 1734 for (i = 0; i <= state->curframe; i++) { 1735 free_func_state(state->frame[i]); 1736 state->frame[i] = NULL; 1737 } 1738 clear_jmp_history(state); 1739 if (free_self) 1740 kfree(state); 1741 } 1742 1743 /* copy verifier state from src to dst growing dst stack space 1744 * when necessary to accommodate larger src stack 1745 */ 1746 static int copy_func_state(struct bpf_func_state *dst, 1747 const struct bpf_func_state *src) 1748 { 1749 int err; 1750 1751 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 1752 err = copy_reference_state(dst, src); 1753 if (err) 1754 return err; 1755 return copy_stack_state(dst, src); 1756 } 1757 1758 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 1759 const struct bpf_verifier_state *src) 1760 { 1761 struct bpf_func_state *dst; 1762 int i, err; 1763 1764 dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history, 1765 src->jmp_history_cnt, sizeof(struct bpf_idx_pair), 1766 GFP_USER); 1767 if (!dst_state->jmp_history) 1768 return -ENOMEM; 1769 dst_state->jmp_history_cnt = src->jmp_history_cnt; 1770 1771 /* if dst has more stack frames then src frame, free them */ 1772 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 1773 free_func_state(dst_state->frame[i]); 1774 dst_state->frame[i] = NULL; 1775 } 1776 dst_state->speculative = src->speculative; 1777 dst_state->active_rcu_lock = src->active_rcu_lock; 1778 dst_state->curframe = src->curframe; 1779 dst_state->active_lock.ptr = src->active_lock.ptr; 1780 dst_state->active_lock.id = src->active_lock.id; 1781 dst_state->branches = src->branches; 1782 dst_state->parent = src->parent; 1783 dst_state->first_insn_idx = src->first_insn_idx; 1784 dst_state->last_insn_idx = src->last_insn_idx; 1785 dst_state->dfs_depth = src->dfs_depth; 1786 dst_state->callback_unroll_depth = src->callback_unroll_depth; 1787 dst_state->used_as_loop_entry = src->used_as_loop_entry; 1788 for (i = 0; i <= src->curframe; i++) { 1789 dst = dst_state->frame[i]; 1790 if (!dst) { 1791 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 1792 if (!dst) 1793 return -ENOMEM; 1794 dst_state->frame[i] = dst; 1795 } 1796 err = copy_func_state(dst, src->frame[i]); 1797 if (err) 1798 return err; 1799 } 1800 return 0; 1801 } 1802 1803 static u32 state_htab_size(struct bpf_verifier_env *env) 1804 { 1805 return env->prog->len; 1806 } 1807 1808 static struct bpf_verifier_state_list **explored_state(struct bpf_verifier_env *env, int idx) 1809 { 1810 struct bpf_verifier_state *cur = env->cur_state; 1811 struct bpf_func_state *state = cur->frame[cur->curframe]; 1812 1813 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 1814 } 1815 1816 static bool same_callsites(struct bpf_verifier_state *a, struct bpf_verifier_state *b) 1817 { 1818 int fr; 1819 1820 if (a->curframe != b->curframe) 1821 return false; 1822 1823 for (fr = a->curframe; fr >= 0; fr--) 1824 if (a->frame[fr]->callsite != b->frame[fr]->callsite) 1825 return false; 1826 1827 return true; 1828 } 1829 1830 /* Open coded iterators allow back-edges in the state graph in order to 1831 * check unbounded loops that iterators. 1832 * 1833 * In is_state_visited() it is necessary to know if explored states are 1834 * part of some loops in order to decide whether non-exact states 1835 * comparison could be used: 1836 * - non-exact states comparison establishes sub-state relation and uses 1837 * read and precision marks to do so, these marks are propagated from 1838 * children states and thus are not guaranteed to be final in a loop; 1839 * - exact states comparison just checks if current and explored states 1840 * are identical (and thus form a back-edge). 1841 * 1842 * Paper "A New Algorithm for Identifying Loops in Decompilation" 1843 * by Tao Wei, Jian Mao, Wei Zou and Yu Chen [1] presents a convenient 1844 * algorithm for loop structure detection and gives an overview of 1845 * relevant terminology. It also has helpful illustrations. 1846 * 1847 * [1] https://api.semanticscholar.org/CorpusID:15784067 1848 * 1849 * We use a similar algorithm but because loop nested structure is 1850 * irrelevant for verifier ours is significantly simpler and resembles 1851 * strongly connected components algorithm from Sedgewick's textbook. 1852 * 1853 * Define topmost loop entry as a first node of the loop traversed in a 1854 * depth first search starting from initial state. The goal of the loop 1855 * tracking algorithm is to associate topmost loop entries with states 1856 * derived from these entries. 1857 * 1858 * For each step in the DFS states traversal algorithm needs to identify 1859 * the following situations: 1860 * 1861 * initial initial initial 1862 * | | | 1863 * V V V 1864 * ... ... .---------> hdr 1865 * | | | | 1866 * V V | V 1867 * cur .-> succ | .------... 1868 * | | | | | | 1869 * V | V | V V 1870 * succ '-- cur | ... ... 1871 * | | | 1872 * | V V 1873 * | succ <- cur 1874 * | | 1875 * | V 1876 * | ... 1877 * | | 1878 * '----' 1879 * 1880 * (A) successor state of cur (B) successor state of cur or it's entry 1881 * not yet traversed are in current DFS path, thus cur and succ 1882 * are members of the same outermost loop 1883 * 1884 * initial initial 1885 * | | 1886 * V V 1887 * ... ... 1888 * | | 1889 * V V 1890 * .------... .------... 1891 * | | | | 1892 * V V V V 1893 * .-> hdr ... ... ... 1894 * | | | | | 1895 * | V V V V 1896 * | succ <- cur succ <- cur 1897 * | | | 1898 * | V V 1899 * | ... ... 1900 * | | | 1901 * '----' exit 1902 * 1903 * (C) successor state of cur is a part of some loop but this loop 1904 * does not include cur or successor state is not in a loop at all. 1905 * 1906 * Algorithm could be described as the following python code: 1907 * 1908 * traversed = set() # Set of traversed nodes 1909 * entries = {} # Mapping from node to loop entry 1910 * depths = {} # Depth level assigned to graph node 1911 * path = set() # Current DFS path 1912 * 1913 * # Find outermost loop entry known for n 1914 * def get_loop_entry(n): 1915 * h = entries.get(n, None) 1916 * while h in entries and entries[h] != h: 1917 * h = entries[h] 1918 * return h 1919 * 1920 * # Update n's loop entry if h's outermost entry comes 1921 * # before n's outermost entry in current DFS path. 1922 * def update_loop_entry(n, h): 1923 * n1 = get_loop_entry(n) or n 1924 * h1 = get_loop_entry(h) or h 1925 * if h1 in path and depths[h1] <= depths[n1]: 1926 * entries[n] = h1 1927 * 1928 * def dfs(n, depth): 1929 * traversed.add(n) 1930 * path.add(n) 1931 * depths[n] = depth 1932 * for succ in G.successors(n): 1933 * if succ not in traversed: 1934 * # Case A: explore succ and update cur's loop entry 1935 * # only if succ's entry is in current DFS path. 1936 * dfs(succ, depth + 1) 1937 * h = get_loop_entry(succ) 1938 * update_loop_entry(n, h) 1939 * else: 1940 * # Case B or C depending on `h1 in path` check in update_loop_entry(). 1941 * update_loop_entry(n, succ) 1942 * path.remove(n) 1943 * 1944 * To adapt this algorithm for use with verifier: 1945 * - use st->branch == 0 as a signal that DFS of succ had been finished 1946 * and cur's loop entry has to be updated (case A), handle this in 1947 * update_branch_counts(); 1948 * - use st->branch > 0 as a signal that st is in the current DFS path; 1949 * - handle cases B and C in is_state_visited(); 1950 * - update topmost loop entry for intermediate states in get_loop_entry(). 1951 */ 1952 static struct bpf_verifier_state *get_loop_entry(struct bpf_verifier_state *st) 1953 { 1954 struct bpf_verifier_state *topmost = st->loop_entry, *old; 1955 1956 while (topmost && topmost->loop_entry && topmost != topmost->loop_entry) 1957 topmost = topmost->loop_entry; 1958 /* Update loop entries for intermediate states to avoid this 1959 * traversal in future get_loop_entry() calls. 1960 */ 1961 while (st && st->loop_entry != topmost) { 1962 old = st->loop_entry; 1963 st->loop_entry = topmost; 1964 st = old; 1965 } 1966 return topmost; 1967 } 1968 1969 static void update_loop_entry(struct bpf_verifier_state *cur, struct bpf_verifier_state *hdr) 1970 { 1971 struct bpf_verifier_state *cur1, *hdr1; 1972 1973 cur1 = get_loop_entry(cur) ?: cur; 1974 hdr1 = get_loop_entry(hdr) ?: hdr; 1975 /* The head1->branches check decides between cases B and C in 1976 * comment for get_loop_entry(). If hdr1->branches == 0 then 1977 * head's topmost loop entry is not in current DFS path, 1978 * hence 'cur' and 'hdr' are not in the same loop and there is 1979 * no need to update cur->loop_entry. 1980 */ 1981 if (hdr1->branches && hdr1->dfs_depth <= cur1->dfs_depth) { 1982 cur->loop_entry = hdr; 1983 hdr->used_as_loop_entry = true; 1984 } 1985 } 1986 1987 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 1988 { 1989 while (st) { 1990 u32 br = --st->branches; 1991 1992 /* br == 0 signals that DFS exploration for 'st' is finished, 1993 * thus it is necessary to update parent's loop entry if it 1994 * turned out that st is a part of some loop. 1995 * This is a part of 'case A' in get_loop_entry() comment. 1996 */ 1997 if (br == 0 && st->parent && st->loop_entry) 1998 update_loop_entry(st->parent, st->loop_entry); 1999 2000 /* WARN_ON(br > 1) technically makes sense here, 2001 * but see comment in push_stack(), hence: 2002 */ 2003 WARN_ONCE((int)br < 0, 2004 "BUG update_branch_counts:branches_to_explore=%d\n", 2005 br); 2006 if (br) 2007 break; 2008 st = st->parent; 2009 } 2010 } 2011 2012 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 2013 int *insn_idx, bool pop_log) 2014 { 2015 struct bpf_verifier_state *cur = env->cur_state; 2016 struct bpf_verifier_stack_elem *elem, *head = env->head; 2017 int err; 2018 2019 if (env->head == NULL) 2020 return -ENOENT; 2021 2022 if (cur) { 2023 err = copy_verifier_state(cur, &head->st); 2024 if (err) 2025 return err; 2026 } 2027 if (pop_log) 2028 bpf_vlog_reset(&env->log, head->log_pos); 2029 if (insn_idx) 2030 *insn_idx = head->insn_idx; 2031 if (prev_insn_idx) 2032 *prev_insn_idx = head->prev_insn_idx; 2033 elem = head->next; 2034 free_verifier_state(&head->st, false); 2035 kfree(head); 2036 env->head = elem; 2037 env->stack_size--; 2038 return 0; 2039 } 2040 2041 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 2042 int insn_idx, int prev_insn_idx, 2043 bool speculative) 2044 { 2045 struct bpf_verifier_state *cur = env->cur_state; 2046 struct bpf_verifier_stack_elem *elem; 2047 int err; 2048 2049 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2050 if (!elem) 2051 goto err; 2052 2053 elem->insn_idx = insn_idx; 2054 elem->prev_insn_idx = prev_insn_idx; 2055 elem->next = env->head; 2056 elem->log_pos = env->log.end_pos; 2057 env->head = elem; 2058 env->stack_size++; 2059 err = copy_verifier_state(&elem->st, cur); 2060 if (err) 2061 goto err; 2062 elem->st.speculative |= speculative; 2063 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2064 verbose(env, "The sequence of %d jumps is too complex.\n", 2065 env->stack_size); 2066 goto err; 2067 } 2068 if (elem->st.parent) { 2069 ++elem->st.parent->branches; 2070 /* WARN_ON(branches > 2) technically makes sense here, 2071 * but 2072 * 1. speculative states will bump 'branches' for non-branch 2073 * instructions 2074 * 2. is_state_visited() heuristics may decide not to create 2075 * a new state for a sequence of branches and all such current 2076 * and cloned states will be pointing to a single parent state 2077 * which might have large 'branches' count. 2078 */ 2079 } 2080 return &elem->st; 2081 err: 2082 free_verifier_state(env->cur_state, true); 2083 env->cur_state = NULL; 2084 /* pop all elements and return */ 2085 while (!pop_stack(env, NULL, NULL, false)); 2086 return NULL; 2087 } 2088 2089 #define CALLER_SAVED_REGS 6 2090 static const int caller_saved[CALLER_SAVED_REGS] = { 2091 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 2092 }; 2093 2094 /* This helper doesn't clear reg->id */ 2095 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2096 { 2097 reg->var_off = tnum_const(imm); 2098 reg->smin_value = (s64)imm; 2099 reg->smax_value = (s64)imm; 2100 reg->umin_value = imm; 2101 reg->umax_value = imm; 2102 2103 reg->s32_min_value = (s32)imm; 2104 reg->s32_max_value = (s32)imm; 2105 reg->u32_min_value = (u32)imm; 2106 reg->u32_max_value = (u32)imm; 2107 } 2108 2109 /* Mark the unknown part of a register (variable offset or scalar value) as 2110 * known to have the value @imm. 2111 */ 2112 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 2113 { 2114 /* Clear off and union(map_ptr, range) */ 2115 memset(((u8 *)reg) + sizeof(reg->type), 0, 2116 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 2117 reg->id = 0; 2118 reg->ref_obj_id = 0; 2119 ___mark_reg_known(reg, imm); 2120 } 2121 2122 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 2123 { 2124 reg->var_off = tnum_const_subreg(reg->var_off, imm); 2125 reg->s32_min_value = (s32)imm; 2126 reg->s32_max_value = (s32)imm; 2127 reg->u32_min_value = (u32)imm; 2128 reg->u32_max_value = (u32)imm; 2129 } 2130 2131 /* Mark the 'variable offset' part of a register as zero. This should be 2132 * used only on registers holding a pointer type. 2133 */ 2134 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 2135 { 2136 __mark_reg_known(reg, 0); 2137 } 2138 2139 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 2140 { 2141 __mark_reg_known(reg, 0); 2142 reg->type = SCALAR_VALUE; 2143 } 2144 2145 static void mark_reg_known_zero(struct bpf_verifier_env *env, 2146 struct bpf_reg_state *regs, u32 regno) 2147 { 2148 if (WARN_ON(regno >= MAX_BPF_REG)) { 2149 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 2150 /* Something bad happened, let's kill all regs */ 2151 for (regno = 0; regno < MAX_BPF_REG; regno++) 2152 __mark_reg_not_init(env, regs + regno); 2153 return; 2154 } 2155 __mark_reg_known_zero(regs + regno); 2156 } 2157 2158 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type, 2159 bool first_slot, int dynptr_id) 2160 { 2161 /* reg->type has no meaning for STACK_DYNPTR, but when we set reg for 2162 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply 2163 * set it unconditionally as it is ignored for STACK_DYNPTR anyway. 2164 */ 2165 __mark_reg_known_zero(reg); 2166 reg->type = CONST_PTR_TO_DYNPTR; 2167 /* Give each dynptr a unique id to uniquely associate slices to it. */ 2168 reg->id = dynptr_id; 2169 reg->dynptr.type = type; 2170 reg->dynptr.first_slot = first_slot; 2171 } 2172 2173 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg) 2174 { 2175 if (base_type(reg->type) == PTR_TO_MAP_VALUE) { 2176 const struct bpf_map *map = reg->map_ptr; 2177 2178 if (map->inner_map_meta) { 2179 reg->type = CONST_PTR_TO_MAP; 2180 reg->map_ptr = map->inner_map_meta; 2181 /* transfer reg's id which is unique for every map_lookup_elem 2182 * as UID of the inner map. 2183 */ 2184 if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER)) 2185 reg->map_uid = reg->id; 2186 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 2187 reg->type = PTR_TO_XDP_SOCK; 2188 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 2189 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 2190 reg->type = PTR_TO_SOCKET; 2191 } else { 2192 reg->type = PTR_TO_MAP_VALUE; 2193 } 2194 return; 2195 } 2196 2197 reg->type &= ~PTR_MAYBE_NULL; 2198 } 2199 2200 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno, 2201 struct btf_field_graph_root *ds_head) 2202 { 2203 __mark_reg_known_zero(®s[regno]); 2204 regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC; 2205 regs[regno].btf = ds_head->btf; 2206 regs[regno].btf_id = ds_head->value_btf_id; 2207 regs[regno].off = ds_head->node_offset; 2208 } 2209 2210 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 2211 { 2212 return type_is_pkt_pointer(reg->type); 2213 } 2214 2215 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 2216 { 2217 return reg_is_pkt_pointer(reg) || 2218 reg->type == PTR_TO_PACKET_END; 2219 } 2220 2221 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg) 2222 { 2223 return base_type(reg->type) == PTR_TO_MEM && 2224 (reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP); 2225 } 2226 2227 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 2228 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 2229 enum bpf_reg_type which) 2230 { 2231 /* The register can already have a range from prior markings. 2232 * This is fine as long as it hasn't been advanced from its 2233 * origin. 2234 */ 2235 return reg->type == which && 2236 reg->id == 0 && 2237 reg->off == 0 && 2238 tnum_equals_const(reg->var_off, 0); 2239 } 2240 2241 /* Reset the min/max bounds of a register */ 2242 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 2243 { 2244 reg->smin_value = S64_MIN; 2245 reg->smax_value = S64_MAX; 2246 reg->umin_value = 0; 2247 reg->umax_value = U64_MAX; 2248 2249 reg->s32_min_value = S32_MIN; 2250 reg->s32_max_value = S32_MAX; 2251 reg->u32_min_value = 0; 2252 reg->u32_max_value = U32_MAX; 2253 } 2254 2255 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 2256 { 2257 reg->smin_value = S64_MIN; 2258 reg->smax_value = S64_MAX; 2259 reg->umin_value = 0; 2260 reg->umax_value = U64_MAX; 2261 } 2262 2263 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 2264 { 2265 reg->s32_min_value = S32_MIN; 2266 reg->s32_max_value = S32_MAX; 2267 reg->u32_min_value = 0; 2268 reg->u32_max_value = U32_MAX; 2269 } 2270 2271 static void __update_reg32_bounds(struct bpf_reg_state *reg) 2272 { 2273 struct tnum var32_off = tnum_subreg(reg->var_off); 2274 2275 /* min signed is max(sign bit) | min(other bits) */ 2276 reg->s32_min_value = max_t(s32, reg->s32_min_value, 2277 var32_off.value | (var32_off.mask & S32_MIN)); 2278 /* max signed is min(sign bit) | max(other bits) */ 2279 reg->s32_max_value = min_t(s32, reg->s32_max_value, 2280 var32_off.value | (var32_off.mask & S32_MAX)); 2281 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 2282 reg->u32_max_value = min(reg->u32_max_value, 2283 (u32)(var32_off.value | var32_off.mask)); 2284 } 2285 2286 static void __update_reg64_bounds(struct bpf_reg_state *reg) 2287 { 2288 /* min signed is max(sign bit) | min(other bits) */ 2289 reg->smin_value = max_t(s64, reg->smin_value, 2290 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 2291 /* max signed is min(sign bit) | max(other bits) */ 2292 reg->smax_value = min_t(s64, reg->smax_value, 2293 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 2294 reg->umin_value = max(reg->umin_value, reg->var_off.value); 2295 reg->umax_value = min(reg->umax_value, 2296 reg->var_off.value | reg->var_off.mask); 2297 } 2298 2299 static void __update_reg_bounds(struct bpf_reg_state *reg) 2300 { 2301 __update_reg32_bounds(reg); 2302 __update_reg64_bounds(reg); 2303 } 2304 2305 /* Uses signed min/max values to inform unsigned, and vice-versa */ 2306 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 2307 { 2308 /* Learn sign from signed bounds. 2309 * If we cannot cross the sign boundary, then signed and unsigned bounds 2310 * are the same, so combine. This works even in the negative case, e.g. 2311 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2312 */ 2313 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 2314 reg->s32_min_value = reg->u32_min_value = 2315 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2316 reg->s32_max_value = reg->u32_max_value = 2317 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2318 return; 2319 } 2320 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2321 * boundary, so we must be careful. 2322 */ 2323 if ((s32)reg->u32_max_value >= 0) { 2324 /* Positive. We can't learn anything from the smin, but smax 2325 * is positive, hence safe. 2326 */ 2327 reg->s32_min_value = reg->u32_min_value; 2328 reg->s32_max_value = reg->u32_max_value = 2329 min_t(u32, reg->s32_max_value, reg->u32_max_value); 2330 } else if ((s32)reg->u32_min_value < 0) { 2331 /* Negative. We can't learn anything from the smax, but smin 2332 * is negative, hence safe. 2333 */ 2334 reg->s32_min_value = reg->u32_min_value = 2335 max_t(u32, reg->s32_min_value, reg->u32_min_value); 2336 reg->s32_max_value = reg->u32_max_value; 2337 } 2338 } 2339 2340 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 2341 { 2342 /* Learn sign from signed bounds. 2343 * If we cannot cross the sign boundary, then signed and unsigned bounds 2344 * are the same, so combine. This works even in the negative case, e.g. 2345 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 2346 */ 2347 if (reg->smin_value >= 0 || reg->smax_value < 0) { 2348 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2349 reg->umin_value); 2350 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2351 reg->umax_value); 2352 return; 2353 } 2354 /* Learn sign from unsigned bounds. Signed bounds cross the sign 2355 * boundary, so we must be careful. 2356 */ 2357 if ((s64)reg->umax_value >= 0) { 2358 /* Positive. We can't learn anything from the smin, but smax 2359 * is positive, hence safe. 2360 */ 2361 reg->smin_value = reg->umin_value; 2362 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 2363 reg->umax_value); 2364 } else if ((s64)reg->umin_value < 0) { 2365 /* Negative. We can't learn anything from the smax, but smin 2366 * is negative, hence safe. 2367 */ 2368 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 2369 reg->umin_value); 2370 reg->smax_value = reg->umax_value; 2371 } 2372 } 2373 2374 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 2375 { 2376 __reg32_deduce_bounds(reg); 2377 __reg64_deduce_bounds(reg); 2378 } 2379 2380 /* Attempts to improve var_off based on unsigned min/max information */ 2381 static void __reg_bound_offset(struct bpf_reg_state *reg) 2382 { 2383 struct tnum var64_off = tnum_intersect(reg->var_off, 2384 tnum_range(reg->umin_value, 2385 reg->umax_value)); 2386 struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off), 2387 tnum_range(reg->u32_min_value, 2388 reg->u32_max_value)); 2389 2390 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 2391 } 2392 2393 static void reg_bounds_sync(struct bpf_reg_state *reg) 2394 { 2395 /* We might have learned new bounds from the var_off. */ 2396 __update_reg_bounds(reg); 2397 /* We might have learned something about the sign bit. */ 2398 __reg_deduce_bounds(reg); 2399 /* We might have learned some bits from the bounds. */ 2400 __reg_bound_offset(reg); 2401 /* Intersecting with the old var_off might have improved our bounds 2402 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 2403 * then new var_off is (0; 0x7f...fc) which improves our umax. 2404 */ 2405 __update_reg_bounds(reg); 2406 } 2407 2408 static bool __reg32_bound_s64(s32 a) 2409 { 2410 return a >= 0 && a <= S32_MAX; 2411 } 2412 2413 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 2414 { 2415 reg->umin_value = reg->u32_min_value; 2416 reg->umax_value = reg->u32_max_value; 2417 2418 /* Attempt to pull 32-bit signed bounds into 64-bit bounds but must 2419 * be positive otherwise set to worse case bounds and refine later 2420 * from tnum. 2421 */ 2422 if (__reg32_bound_s64(reg->s32_min_value) && 2423 __reg32_bound_s64(reg->s32_max_value)) { 2424 reg->smin_value = reg->s32_min_value; 2425 reg->smax_value = reg->s32_max_value; 2426 } else { 2427 reg->smin_value = 0; 2428 reg->smax_value = U32_MAX; 2429 } 2430 } 2431 2432 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 2433 { 2434 /* special case when 64-bit register has upper 32-bit register 2435 * zeroed. Typically happens after zext or <<32, >>32 sequence 2436 * allowing us to use 32-bit bounds directly, 2437 */ 2438 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 2439 __reg_assign_32_into_64(reg); 2440 } else { 2441 /* Otherwise the best we can do is push lower 32bit known and 2442 * unknown bits into register (var_off set from jmp logic) 2443 * then learn as much as possible from the 64-bit tnum 2444 * known and unknown bits. The previous smin/smax bounds are 2445 * invalid here because of jmp32 compare so mark them unknown 2446 * so they do not impact tnum bounds calculation. 2447 */ 2448 __mark_reg64_unbounded(reg); 2449 } 2450 reg_bounds_sync(reg); 2451 } 2452 2453 static bool __reg64_bound_s32(s64 a) 2454 { 2455 return a >= S32_MIN && a <= S32_MAX; 2456 } 2457 2458 static bool __reg64_bound_u32(u64 a) 2459 { 2460 return a >= U32_MIN && a <= U32_MAX; 2461 } 2462 2463 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 2464 { 2465 __mark_reg32_unbounded(reg); 2466 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 2467 reg->s32_min_value = (s32)reg->smin_value; 2468 reg->s32_max_value = (s32)reg->smax_value; 2469 } 2470 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) { 2471 reg->u32_min_value = (u32)reg->umin_value; 2472 reg->u32_max_value = (u32)reg->umax_value; 2473 } 2474 reg_bounds_sync(reg); 2475 } 2476 2477 /* Mark a register as having a completely unknown (scalar) value. */ 2478 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 2479 struct bpf_reg_state *reg) 2480 { 2481 /* 2482 * Clear type, off, and union(map_ptr, range) and 2483 * padding between 'type' and union 2484 */ 2485 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 2486 reg->type = SCALAR_VALUE; 2487 reg->id = 0; 2488 reg->ref_obj_id = 0; 2489 reg->var_off = tnum_unknown; 2490 reg->frameno = 0; 2491 reg->precise = !env->bpf_capable; 2492 __mark_reg_unbounded(reg); 2493 } 2494 2495 static void mark_reg_unknown(struct bpf_verifier_env *env, 2496 struct bpf_reg_state *regs, u32 regno) 2497 { 2498 if (WARN_ON(regno >= MAX_BPF_REG)) { 2499 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 2500 /* Something bad happened, let's kill all regs except FP */ 2501 for (regno = 0; regno < BPF_REG_FP; regno++) 2502 __mark_reg_not_init(env, regs + regno); 2503 return; 2504 } 2505 __mark_reg_unknown(env, regs + regno); 2506 } 2507 2508 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 2509 struct bpf_reg_state *reg) 2510 { 2511 __mark_reg_unknown(env, reg); 2512 reg->type = NOT_INIT; 2513 } 2514 2515 static void mark_reg_not_init(struct bpf_verifier_env *env, 2516 struct bpf_reg_state *regs, u32 regno) 2517 { 2518 if (WARN_ON(regno >= MAX_BPF_REG)) { 2519 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 2520 /* Something bad happened, let's kill all regs except FP */ 2521 for (regno = 0; regno < BPF_REG_FP; regno++) 2522 __mark_reg_not_init(env, regs + regno); 2523 return; 2524 } 2525 __mark_reg_not_init(env, regs + regno); 2526 } 2527 2528 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 2529 struct bpf_reg_state *regs, u32 regno, 2530 enum bpf_reg_type reg_type, 2531 struct btf *btf, u32 btf_id, 2532 enum bpf_type_flag flag) 2533 { 2534 if (reg_type == SCALAR_VALUE) { 2535 mark_reg_unknown(env, regs, regno); 2536 return; 2537 } 2538 mark_reg_known_zero(env, regs, regno); 2539 regs[regno].type = PTR_TO_BTF_ID | flag; 2540 regs[regno].btf = btf; 2541 regs[regno].btf_id = btf_id; 2542 } 2543 2544 #define DEF_NOT_SUBREG (0) 2545 static void init_reg_state(struct bpf_verifier_env *env, 2546 struct bpf_func_state *state) 2547 { 2548 struct bpf_reg_state *regs = state->regs; 2549 int i; 2550 2551 for (i = 0; i < MAX_BPF_REG; i++) { 2552 mark_reg_not_init(env, regs, i); 2553 regs[i].live = REG_LIVE_NONE; 2554 regs[i].parent = NULL; 2555 regs[i].subreg_def = DEF_NOT_SUBREG; 2556 } 2557 2558 /* frame pointer */ 2559 regs[BPF_REG_FP].type = PTR_TO_STACK; 2560 mark_reg_known_zero(env, regs, BPF_REG_FP); 2561 regs[BPF_REG_FP].frameno = state->frameno; 2562 } 2563 2564 #define BPF_MAIN_FUNC (-1) 2565 static void init_func_state(struct bpf_verifier_env *env, 2566 struct bpf_func_state *state, 2567 int callsite, int frameno, int subprogno) 2568 { 2569 state->callsite = callsite; 2570 state->frameno = frameno; 2571 state->subprogno = subprogno; 2572 state->callback_ret_range = tnum_range(0, 0); 2573 init_reg_state(env, state); 2574 mark_verifier_state_scratched(env); 2575 } 2576 2577 /* Similar to push_stack(), but for async callbacks */ 2578 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env, 2579 int insn_idx, int prev_insn_idx, 2580 int subprog) 2581 { 2582 struct bpf_verifier_stack_elem *elem; 2583 struct bpf_func_state *frame; 2584 2585 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 2586 if (!elem) 2587 goto err; 2588 2589 elem->insn_idx = insn_idx; 2590 elem->prev_insn_idx = prev_insn_idx; 2591 elem->next = env->head; 2592 elem->log_pos = env->log.end_pos; 2593 env->head = elem; 2594 env->stack_size++; 2595 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 2596 verbose(env, 2597 "The sequence of %d jumps is too complex for async cb.\n", 2598 env->stack_size); 2599 goto err; 2600 } 2601 /* Unlike push_stack() do not copy_verifier_state(). 2602 * The caller state doesn't matter. 2603 * This is async callback. It starts in a fresh stack. 2604 * Initialize it similar to do_check_common(). 2605 */ 2606 elem->st.branches = 1; 2607 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 2608 if (!frame) 2609 goto err; 2610 init_func_state(env, frame, 2611 BPF_MAIN_FUNC /* callsite */, 2612 0 /* frameno within this callchain */, 2613 subprog /* subprog number within this prog */); 2614 elem->st.frame[0] = frame; 2615 return &elem->st; 2616 err: 2617 free_verifier_state(env->cur_state, true); 2618 env->cur_state = NULL; 2619 /* pop all elements and return */ 2620 while (!pop_stack(env, NULL, NULL, false)); 2621 return NULL; 2622 } 2623 2624 2625 enum reg_arg_type { 2626 SRC_OP, /* register is used as source operand */ 2627 DST_OP, /* register is used as destination operand */ 2628 DST_OP_NO_MARK /* same as above, check only, don't mark */ 2629 }; 2630 2631 static int cmp_subprogs(const void *a, const void *b) 2632 { 2633 return ((struct bpf_subprog_info *)a)->start - 2634 ((struct bpf_subprog_info *)b)->start; 2635 } 2636 2637 static int find_subprog(struct bpf_verifier_env *env, int off) 2638 { 2639 struct bpf_subprog_info *p; 2640 2641 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 2642 sizeof(env->subprog_info[0]), cmp_subprogs); 2643 if (!p) 2644 return -ENOENT; 2645 return p - env->subprog_info; 2646 2647 } 2648 2649 static int add_subprog(struct bpf_verifier_env *env, int off) 2650 { 2651 int insn_cnt = env->prog->len; 2652 int ret; 2653 2654 if (off >= insn_cnt || off < 0) { 2655 verbose(env, "call to invalid destination\n"); 2656 return -EINVAL; 2657 } 2658 ret = find_subprog(env, off); 2659 if (ret >= 0) 2660 return ret; 2661 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 2662 verbose(env, "too many subprograms\n"); 2663 return -E2BIG; 2664 } 2665 /* determine subprog starts. The end is one before the next starts */ 2666 env->subprog_info[env->subprog_cnt++].start = off; 2667 sort(env->subprog_info, env->subprog_cnt, 2668 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 2669 return env->subprog_cnt - 1; 2670 } 2671 2672 #define MAX_KFUNC_DESCS 256 2673 #define MAX_KFUNC_BTFS 256 2674 2675 struct bpf_kfunc_desc { 2676 struct btf_func_model func_model; 2677 u32 func_id; 2678 s32 imm; 2679 u16 offset; 2680 unsigned long addr; 2681 }; 2682 2683 struct bpf_kfunc_btf { 2684 struct btf *btf; 2685 struct module *module; 2686 u16 offset; 2687 }; 2688 2689 struct bpf_kfunc_desc_tab { 2690 /* Sorted by func_id (BTF ID) and offset (fd_array offset) during 2691 * verification. JITs do lookups by bpf_insn, where func_id may not be 2692 * available, therefore at the end of verification do_misc_fixups() 2693 * sorts this by imm and offset. 2694 */ 2695 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS]; 2696 u32 nr_descs; 2697 }; 2698 2699 struct bpf_kfunc_btf_tab { 2700 struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS]; 2701 u32 nr_descs; 2702 }; 2703 2704 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b) 2705 { 2706 const struct bpf_kfunc_desc *d0 = a; 2707 const struct bpf_kfunc_desc *d1 = b; 2708 2709 /* func_id is not greater than BTF_MAX_TYPE */ 2710 return d0->func_id - d1->func_id ?: d0->offset - d1->offset; 2711 } 2712 2713 static int kfunc_btf_cmp_by_off(const void *a, const void *b) 2714 { 2715 const struct bpf_kfunc_btf *d0 = a; 2716 const struct bpf_kfunc_btf *d1 = b; 2717 2718 return d0->offset - d1->offset; 2719 } 2720 2721 static const struct bpf_kfunc_desc * 2722 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset) 2723 { 2724 struct bpf_kfunc_desc desc = { 2725 .func_id = func_id, 2726 .offset = offset, 2727 }; 2728 struct bpf_kfunc_desc_tab *tab; 2729 2730 tab = prog->aux->kfunc_tab; 2731 return bsearch(&desc, tab->descs, tab->nr_descs, 2732 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off); 2733 } 2734 2735 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id, 2736 u16 btf_fd_idx, u8 **func_addr) 2737 { 2738 const struct bpf_kfunc_desc *desc; 2739 2740 desc = find_kfunc_desc(prog, func_id, btf_fd_idx); 2741 if (!desc) 2742 return -EFAULT; 2743 2744 *func_addr = (u8 *)desc->addr; 2745 return 0; 2746 } 2747 2748 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env, 2749 s16 offset) 2750 { 2751 struct bpf_kfunc_btf kf_btf = { .offset = offset }; 2752 struct bpf_kfunc_btf_tab *tab; 2753 struct bpf_kfunc_btf *b; 2754 struct module *mod; 2755 struct btf *btf; 2756 int btf_fd; 2757 2758 tab = env->prog->aux->kfunc_btf_tab; 2759 b = bsearch(&kf_btf, tab->descs, tab->nr_descs, 2760 sizeof(tab->descs[0]), kfunc_btf_cmp_by_off); 2761 if (!b) { 2762 if (tab->nr_descs == MAX_KFUNC_BTFS) { 2763 verbose(env, "too many different module BTFs\n"); 2764 return ERR_PTR(-E2BIG); 2765 } 2766 2767 if (bpfptr_is_null(env->fd_array)) { 2768 verbose(env, "kfunc offset > 0 without fd_array is invalid\n"); 2769 return ERR_PTR(-EPROTO); 2770 } 2771 2772 if (copy_from_bpfptr_offset(&btf_fd, env->fd_array, 2773 offset * sizeof(btf_fd), 2774 sizeof(btf_fd))) 2775 return ERR_PTR(-EFAULT); 2776 2777 btf = btf_get_by_fd(btf_fd); 2778 if (IS_ERR(btf)) { 2779 verbose(env, "invalid module BTF fd specified\n"); 2780 return btf; 2781 } 2782 2783 if (!btf_is_module(btf)) { 2784 verbose(env, "BTF fd for kfunc is not a module BTF\n"); 2785 btf_put(btf); 2786 return ERR_PTR(-EINVAL); 2787 } 2788 2789 mod = btf_try_get_module(btf); 2790 if (!mod) { 2791 btf_put(btf); 2792 return ERR_PTR(-ENXIO); 2793 } 2794 2795 b = &tab->descs[tab->nr_descs++]; 2796 b->btf = btf; 2797 b->module = mod; 2798 b->offset = offset; 2799 2800 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2801 kfunc_btf_cmp_by_off, NULL); 2802 } 2803 return b->btf; 2804 } 2805 2806 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab) 2807 { 2808 if (!tab) 2809 return; 2810 2811 while (tab->nr_descs--) { 2812 module_put(tab->descs[tab->nr_descs].module); 2813 btf_put(tab->descs[tab->nr_descs].btf); 2814 } 2815 kfree(tab); 2816 } 2817 2818 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset) 2819 { 2820 if (offset) { 2821 if (offset < 0) { 2822 /* In the future, this can be allowed to increase limit 2823 * of fd index into fd_array, interpreted as u16. 2824 */ 2825 verbose(env, "negative offset disallowed for kernel module function call\n"); 2826 return ERR_PTR(-EINVAL); 2827 } 2828 2829 return __find_kfunc_desc_btf(env, offset); 2830 } 2831 return btf_vmlinux ?: ERR_PTR(-ENOENT); 2832 } 2833 2834 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset) 2835 { 2836 const struct btf_type *func, *func_proto; 2837 struct bpf_kfunc_btf_tab *btf_tab; 2838 struct bpf_kfunc_desc_tab *tab; 2839 struct bpf_prog_aux *prog_aux; 2840 struct bpf_kfunc_desc *desc; 2841 const char *func_name; 2842 struct btf *desc_btf; 2843 unsigned long call_imm; 2844 unsigned long addr; 2845 int err; 2846 2847 prog_aux = env->prog->aux; 2848 tab = prog_aux->kfunc_tab; 2849 btf_tab = prog_aux->kfunc_btf_tab; 2850 if (!tab) { 2851 if (!btf_vmlinux) { 2852 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n"); 2853 return -ENOTSUPP; 2854 } 2855 2856 if (!env->prog->jit_requested) { 2857 verbose(env, "JIT is required for calling kernel function\n"); 2858 return -ENOTSUPP; 2859 } 2860 2861 if (!bpf_jit_supports_kfunc_call()) { 2862 verbose(env, "JIT does not support calling kernel function\n"); 2863 return -ENOTSUPP; 2864 } 2865 2866 if (!env->prog->gpl_compatible) { 2867 verbose(env, "cannot call kernel function from non-GPL compatible program\n"); 2868 return -EINVAL; 2869 } 2870 2871 tab = kzalloc(sizeof(*tab), GFP_KERNEL); 2872 if (!tab) 2873 return -ENOMEM; 2874 prog_aux->kfunc_tab = tab; 2875 } 2876 2877 /* func_id == 0 is always invalid, but instead of returning an error, be 2878 * conservative and wait until the code elimination pass before returning 2879 * error, so that invalid calls that get pruned out can be in BPF programs 2880 * loaded from userspace. It is also required that offset be untouched 2881 * for such calls. 2882 */ 2883 if (!func_id && !offset) 2884 return 0; 2885 2886 if (!btf_tab && offset) { 2887 btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL); 2888 if (!btf_tab) 2889 return -ENOMEM; 2890 prog_aux->kfunc_btf_tab = btf_tab; 2891 } 2892 2893 desc_btf = find_kfunc_desc_btf(env, offset); 2894 if (IS_ERR(desc_btf)) { 2895 verbose(env, "failed to find BTF for kernel function\n"); 2896 return PTR_ERR(desc_btf); 2897 } 2898 2899 if (find_kfunc_desc(env->prog, func_id, offset)) 2900 return 0; 2901 2902 if (tab->nr_descs == MAX_KFUNC_DESCS) { 2903 verbose(env, "too many different kernel function calls\n"); 2904 return -E2BIG; 2905 } 2906 2907 func = btf_type_by_id(desc_btf, func_id); 2908 if (!func || !btf_type_is_func(func)) { 2909 verbose(env, "kernel btf_id %u is not a function\n", 2910 func_id); 2911 return -EINVAL; 2912 } 2913 func_proto = btf_type_by_id(desc_btf, func->type); 2914 if (!func_proto || !btf_type_is_func_proto(func_proto)) { 2915 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n", 2916 func_id); 2917 return -EINVAL; 2918 } 2919 2920 func_name = btf_name_by_offset(desc_btf, func->name_off); 2921 addr = kallsyms_lookup_name(func_name); 2922 if (!addr) { 2923 verbose(env, "cannot find address for kernel function %s\n", 2924 func_name); 2925 return -EINVAL; 2926 } 2927 specialize_kfunc(env, func_id, offset, &addr); 2928 2929 if (bpf_jit_supports_far_kfunc_call()) { 2930 call_imm = func_id; 2931 } else { 2932 call_imm = BPF_CALL_IMM(addr); 2933 /* Check whether the relative offset overflows desc->imm */ 2934 if ((unsigned long)(s32)call_imm != call_imm) { 2935 verbose(env, "address of kernel function %s is out of range\n", 2936 func_name); 2937 return -EINVAL; 2938 } 2939 } 2940 2941 if (bpf_dev_bound_kfunc_id(func_id)) { 2942 err = bpf_dev_bound_kfunc_check(&env->log, prog_aux); 2943 if (err) 2944 return err; 2945 } 2946 2947 desc = &tab->descs[tab->nr_descs++]; 2948 desc->func_id = func_id; 2949 desc->imm = call_imm; 2950 desc->offset = offset; 2951 desc->addr = addr; 2952 err = btf_distill_func_proto(&env->log, desc_btf, 2953 func_proto, func_name, 2954 &desc->func_model); 2955 if (!err) 2956 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2957 kfunc_desc_cmp_by_id_off, NULL); 2958 return err; 2959 } 2960 2961 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b) 2962 { 2963 const struct bpf_kfunc_desc *d0 = a; 2964 const struct bpf_kfunc_desc *d1 = b; 2965 2966 if (d0->imm != d1->imm) 2967 return d0->imm < d1->imm ? -1 : 1; 2968 if (d0->offset != d1->offset) 2969 return d0->offset < d1->offset ? -1 : 1; 2970 return 0; 2971 } 2972 2973 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog) 2974 { 2975 struct bpf_kfunc_desc_tab *tab; 2976 2977 tab = prog->aux->kfunc_tab; 2978 if (!tab) 2979 return; 2980 2981 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]), 2982 kfunc_desc_cmp_by_imm_off, NULL); 2983 } 2984 2985 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog) 2986 { 2987 return !!prog->aux->kfunc_tab; 2988 } 2989 2990 const struct btf_func_model * 2991 bpf_jit_find_kfunc_model(const struct bpf_prog *prog, 2992 const struct bpf_insn *insn) 2993 { 2994 const struct bpf_kfunc_desc desc = { 2995 .imm = insn->imm, 2996 .offset = insn->off, 2997 }; 2998 const struct bpf_kfunc_desc *res; 2999 struct bpf_kfunc_desc_tab *tab; 3000 3001 tab = prog->aux->kfunc_tab; 3002 res = bsearch(&desc, tab->descs, tab->nr_descs, 3003 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off); 3004 3005 return res ? &res->func_model : NULL; 3006 } 3007 3008 static int add_subprog_and_kfunc(struct bpf_verifier_env *env) 3009 { 3010 struct bpf_subprog_info *subprog = env->subprog_info; 3011 struct bpf_insn *insn = env->prog->insnsi; 3012 int i, ret, insn_cnt = env->prog->len; 3013 3014 /* Add entry function. */ 3015 ret = add_subprog(env, 0); 3016 if (ret) 3017 return ret; 3018 3019 for (i = 0; i < insn_cnt; i++, insn++) { 3020 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) && 3021 !bpf_pseudo_kfunc_call(insn)) 3022 continue; 3023 3024 if (!env->bpf_capable) { 3025 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 3026 return -EPERM; 3027 } 3028 3029 if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn)) 3030 ret = add_subprog(env, i + insn->imm + 1); 3031 else 3032 ret = add_kfunc_call(env, insn->imm, insn->off); 3033 3034 if (ret < 0) 3035 return ret; 3036 } 3037 3038 /* Add a fake 'exit' subprog which could simplify subprog iteration 3039 * logic. 'subprog_cnt' should not be increased. 3040 */ 3041 subprog[env->subprog_cnt].start = insn_cnt; 3042 3043 if (env->log.level & BPF_LOG_LEVEL2) 3044 for (i = 0; i < env->subprog_cnt; i++) 3045 verbose(env, "func#%d @%d\n", i, subprog[i].start); 3046 3047 return 0; 3048 } 3049 3050 static int check_subprogs(struct bpf_verifier_env *env) 3051 { 3052 int i, subprog_start, subprog_end, off, cur_subprog = 0; 3053 struct bpf_subprog_info *subprog = env->subprog_info; 3054 struct bpf_insn *insn = env->prog->insnsi; 3055 int insn_cnt = env->prog->len; 3056 3057 /* now check that all jumps are within the same subprog */ 3058 subprog_start = subprog[cur_subprog].start; 3059 subprog_end = subprog[cur_subprog + 1].start; 3060 for (i = 0; i < insn_cnt; i++) { 3061 u8 code = insn[i].code; 3062 3063 if (code == (BPF_JMP | BPF_CALL) && 3064 insn[i].src_reg == 0 && 3065 insn[i].imm == BPF_FUNC_tail_call) 3066 subprog[cur_subprog].has_tail_call = true; 3067 if (BPF_CLASS(code) == BPF_LD && 3068 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 3069 subprog[cur_subprog].has_ld_abs = true; 3070 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 3071 goto next; 3072 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 3073 goto next; 3074 if (code == (BPF_JMP32 | BPF_JA)) 3075 off = i + insn[i].imm + 1; 3076 else 3077 off = i + insn[i].off + 1; 3078 if (off < subprog_start || off >= subprog_end) { 3079 verbose(env, "jump out of range from insn %d to %d\n", i, off); 3080 return -EINVAL; 3081 } 3082 next: 3083 if (i == subprog_end - 1) { 3084 /* to avoid fall-through from one subprog into another 3085 * the last insn of the subprog should be either exit 3086 * or unconditional jump back 3087 */ 3088 if (code != (BPF_JMP | BPF_EXIT) && 3089 code != (BPF_JMP32 | BPF_JA) && 3090 code != (BPF_JMP | BPF_JA)) { 3091 verbose(env, "last insn is not an exit or jmp\n"); 3092 return -EINVAL; 3093 } 3094 subprog_start = subprog_end; 3095 cur_subprog++; 3096 if (cur_subprog < env->subprog_cnt) 3097 subprog_end = subprog[cur_subprog + 1].start; 3098 } 3099 } 3100 return 0; 3101 } 3102 3103 /* Parentage chain of this register (or stack slot) should take care of all 3104 * issues like callee-saved registers, stack slot allocation time, etc. 3105 */ 3106 static int mark_reg_read(struct bpf_verifier_env *env, 3107 const struct bpf_reg_state *state, 3108 struct bpf_reg_state *parent, u8 flag) 3109 { 3110 bool writes = parent == state->parent; /* Observe write marks */ 3111 int cnt = 0; 3112 3113 while (parent) { 3114 /* if read wasn't screened by an earlier write ... */ 3115 if (writes && state->live & REG_LIVE_WRITTEN) 3116 break; 3117 if (parent->live & REG_LIVE_DONE) { 3118 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 3119 reg_type_str(env, parent->type), 3120 parent->var_off.value, parent->off); 3121 return -EFAULT; 3122 } 3123 /* The first condition is more likely to be true than the 3124 * second, checked it first. 3125 */ 3126 if ((parent->live & REG_LIVE_READ) == flag || 3127 parent->live & REG_LIVE_READ64) 3128 /* The parentage chain never changes and 3129 * this parent was already marked as LIVE_READ. 3130 * There is no need to keep walking the chain again and 3131 * keep re-marking all parents as LIVE_READ. 3132 * This case happens when the same register is read 3133 * multiple times without writes into it in-between. 3134 * Also, if parent has the stronger REG_LIVE_READ64 set, 3135 * then no need to set the weak REG_LIVE_READ32. 3136 */ 3137 break; 3138 /* ... then we depend on parent's value */ 3139 parent->live |= flag; 3140 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 3141 if (flag == REG_LIVE_READ64) 3142 parent->live &= ~REG_LIVE_READ32; 3143 state = parent; 3144 parent = state->parent; 3145 writes = true; 3146 cnt++; 3147 } 3148 3149 if (env->longest_mark_read_walk < cnt) 3150 env->longest_mark_read_walk = cnt; 3151 return 0; 3152 } 3153 3154 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 3155 { 3156 struct bpf_func_state *state = func(env, reg); 3157 int spi, ret; 3158 3159 /* For CONST_PTR_TO_DYNPTR, it must have already been done by 3160 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in 3161 * check_kfunc_call. 3162 */ 3163 if (reg->type == CONST_PTR_TO_DYNPTR) 3164 return 0; 3165 spi = dynptr_get_spi(env, reg); 3166 if (spi < 0) 3167 return spi; 3168 /* Caller ensures dynptr is valid and initialized, which means spi is in 3169 * bounds and spi is the first dynptr slot. Simply mark stack slot as 3170 * read. 3171 */ 3172 ret = mark_reg_read(env, &state->stack[spi].spilled_ptr, 3173 state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64); 3174 if (ret) 3175 return ret; 3176 return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr, 3177 state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64); 3178 } 3179 3180 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 3181 int spi, int nr_slots) 3182 { 3183 struct bpf_func_state *state = func(env, reg); 3184 int err, i; 3185 3186 for (i = 0; i < nr_slots; i++) { 3187 struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr; 3188 3189 err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64); 3190 if (err) 3191 return err; 3192 3193 mark_stack_slot_scratched(env, spi - i); 3194 } 3195 3196 return 0; 3197 } 3198 3199 /* This function is supposed to be used by the following 32-bit optimization 3200 * code only. It returns TRUE if the source or destination register operates 3201 * on 64-bit, otherwise return FALSE. 3202 */ 3203 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 3204 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 3205 { 3206 u8 code, class, op; 3207 3208 code = insn->code; 3209 class = BPF_CLASS(code); 3210 op = BPF_OP(code); 3211 if (class == BPF_JMP) { 3212 /* BPF_EXIT for "main" will reach here. Return TRUE 3213 * conservatively. 3214 */ 3215 if (op == BPF_EXIT) 3216 return true; 3217 if (op == BPF_CALL) { 3218 /* BPF to BPF call will reach here because of marking 3219 * caller saved clobber with DST_OP_NO_MARK for which we 3220 * don't care the register def because they are anyway 3221 * marked as NOT_INIT already. 3222 */ 3223 if (insn->src_reg == BPF_PSEUDO_CALL) 3224 return false; 3225 /* Helper call will reach here because of arg type 3226 * check, conservatively return TRUE. 3227 */ 3228 if (t == SRC_OP) 3229 return true; 3230 3231 return false; 3232 } 3233 } 3234 3235 if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32)) 3236 return false; 3237 3238 if (class == BPF_ALU64 || class == BPF_JMP || 3239 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 3240 return true; 3241 3242 if (class == BPF_ALU || class == BPF_JMP32) 3243 return false; 3244 3245 if (class == BPF_LDX) { 3246 if (t != SRC_OP) 3247 return BPF_SIZE(code) == BPF_DW; 3248 /* LDX source must be ptr. */ 3249 return true; 3250 } 3251 3252 if (class == BPF_STX) { 3253 /* BPF_STX (including atomic variants) has multiple source 3254 * operands, one of which is a ptr. Check whether the caller is 3255 * asking about it. 3256 */ 3257 if (t == SRC_OP && reg->type != SCALAR_VALUE) 3258 return true; 3259 return BPF_SIZE(code) == BPF_DW; 3260 } 3261 3262 if (class == BPF_LD) { 3263 u8 mode = BPF_MODE(code); 3264 3265 /* LD_IMM64 */ 3266 if (mode == BPF_IMM) 3267 return true; 3268 3269 /* Both LD_IND and LD_ABS return 32-bit data. */ 3270 if (t != SRC_OP) 3271 return false; 3272 3273 /* Implicit ctx ptr. */ 3274 if (regno == BPF_REG_6) 3275 return true; 3276 3277 /* Explicit source could be any width. */ 3278 return true; 3279 } 3280 3281 if (class == BPF_ST) 3282 /* The only source register for BPF_ST is a ptr. */ 3283 return true; 3284 3285 /* Conservatively return true at default. */ 3286 return true; 3287 } 3288 3289 /* Return the regno defined by the insn, or -1. */ 3290 static int insn_def_regno(const struct bpf_insn *insn) 3291 { 3292 switch (BPF_CLASS(insn->code)) { 3293 case BPF_JMP: 3294 case BPF_JMP32: 3295 case BPF_ST: 3296 return -1; 3297 case BPF_STX: 3298 if (BPF_MODE(insn->code) == BPF_ATOMIC && 3299 (insn->imm & BPF_FETCH)) { 3300 if (insn->imm == BPF_CMPXCHG) 3301 return BPF_REG_0; 3302 else 3303 return insn->src_reg; 3304 } else { 3305 return -1; 3306 } 3307 default: 3308 return insn->dst_reg; 3309 } 3310 } 3311 3312 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 3313 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 3314 { 3315 int dst_reg = insn_def_regno(insn); 3316 3317 if (dst_reg == -1) 3318 return false; 3319 3320 return !is_reg64(env, insn, dst_reg, NULL, DST_OP); 3321 } 3322 3323 static void mark_insn_zext(struct bpf_verifier_env *env, 3324 struct bpf_reg_state *reg) 3325 { 3326 s32 def_idx = reg->subreg_def; 3327 3328 if (def_idx == DEF_NOT_SUBREG) 3329 return; 3330 3331 env->insn_aux_data[def_idx - 1].zext_dst = true; 3332 /* The dst will be zero extended, so won't be sub-register anymore. */ 3333 reg->subreg_def = DEF_NOT_SUBREG; 3334 } 3335 3336 static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno, 3337 enum reg_arg_type t) 3338 { 3339 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 3340 struct bpf_reg_state *reg; 3341 bool rw64; 3342 3343 if (regno >= MAX_BPF_REG) { 3344 verbose(env, "R%d is invalid\n", regno); 3345 return -EINVAL; 3346 } 3347 3348 mark_reg_scratched(env, regno); 3349 3350 reg = ®s[regno]; 3351 rw64 = is_reg64(env, insn, regno, reg, t); 3352 if (t == SRC_OP) { 3353 /* check whether register used as source operand can be read */ 3354 if (reg->type == NOT_INIT) { 3355 verbose(env, "R%d !read_ok\n", regno); 3356 return -EACCES; 3357 } 3358 /* We don't need to worry about FP liveness because it's read-only */ 3359 if (regno == BPF_REG_FP) 3360 return 0; 3361 3362 if (rw64) 3363 mark_insn_zext(env, reg); 3364 3365 return mark_reg_read(env, reg, reg->parent, 3366 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 3367 } else { 3368 /* check whether register used as dest operand can be written to */ 3369 if (regno == BPF_REG_FP) { 3370 verbose(env, "frame pointer is read only\n"); 3371 return -EACCES; 3372 } 3373 reg->live |= REG_LIVE_WRITTEN; 3374 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 3375 if (t == DST_OP) 3376 mark_reg_unknown(env, regs, regno); 3377 } 3378 return 0; 3379 } 3380 3381 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 3382 enum reg_arg_type t) 3383 { 3384 struct bpf_verifier_state *vstate = env->cur_state; 3385 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3386 3387 return __check_reg_arg(env, state->regs, regno, t); 3388 } 3389 3390 static void mark_jmp_point(struct bpf_verifier_env *env, int idx) 3391 { 3392 env->insn_aux_data[idx].jmp_point = true; 3393 } 3394 3395 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx) 3396 { 3397 return env->insn_aux_data[insn_idx].jmp_point; 3398 } 3399 3400 /* for any branch, call, exit record the history of jmps in the given state */ 3401 static int push_jmp_history(struct bpf_verifier_env *env, 3402 struct bpf_verifier_state *cur) 3403 { 3404 u32 cnt = cur->jmp_history_cnt; 3405 struct bpf_idx_pair *p; 3406 size_t alloc_size; 3407 3408 if (!is_jmp_point(env, env->insn_idx)) 3409 return 0; 3410 3411 cnt++; 3412 alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p))); 3413 p = krealloc(cur->jmp_history, alloc_size, GFP_USER); 3414 if (!p) 3415 return -ENOMEM; 3416 p[cnt - 1].idx = env->insn_idx; 3417 p[cnt - 1].prev_idx = env->prev_insn_idx; 3418 cur->jmp_history = p; 3419 cur->jmp_history_cnt = cnt; 3420 return 0; 3421 } 3422 3423 /* Backtrack one insn at a time. If idx is not at the top of recorded 3424 * history then previous instruction came from straight line execution. 3425 * Return -ENOENT if we exhausted all instructions within given state. 3426 * 3427 * It's legal to have a bit of a looping with the same starting and ending 3428 * insn index within the same state, e.g.: 3->4->5->3, so just because current 3429 * instruction index is the same as state's first_idx doesn't mean we are 3430 * done. If there is still some jump history left, we should keep going. We 3431 * need to take into account that we might have a jump history between given 3432 * state's parent and itself, due to checkpointing. In this case, we'll have 3433 * history entry recording a jump from last instruction of parent state and 3434 * first instruction of given state. 3435 */ 3436 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 3437 u32 *history) 3438 { 3439 u32 cnt = *history; 3440 3441 if (i == st->first_insn_idx) { 3442 if (cnt == 0) 3443 return -ENOENT; 3444 if (cnt == 1 && st->jmp_history[0].idx == i) 3445 return -ENOENT; 3446 } 3447 3448 if (cnt && st->jmp_history[cnt - 1].idx == i) { 3449 i = st->jmp_history[cnt - 1].prev_idx; 3450 (*history)--; 3451 } else { 3452 i--; 3453 } 3454 return i; 3455 } 3456 3457 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn) 3458 { 3459 const struct btf_type *func; 3460 struct btf *desc_btf; 3461 3462 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL) 3463 return NULL; 3464 3465 desc_btf = find_kfunc_desc_btf(data, insn->off); 3466 if (IS_ERR(desc_btf)) 3467 return "<error>"; 3468 3469 func = btf_type_by_id(desc_btf, insn->imm); 3470 return btf_name_by_offset(desc_btf, func->name_off); 3471 } 3472 3473 static inline void bt_init(struct backtrack_state *bt, u32 frame) 3474 { 3475 bt->frame = frame; 3476 } 3477 3478 static inline void bt_reset(struct backtrack_state *bt) 3479 { 3480 struct bpf_verifier_env *env = bt->env; 3481 3482 memset(bt, 0, sizeof(*bt)); 3483 bt->env = env; 3484 } 3485 3486 static inline u32 bt_empty(struct backtrack_state *bt) 3487 { 3488 u64 mask = 0; 3489 int i; 3490 3491 for (i = 0; i <= bt->frame; i++) 3492 mask |= bt->reg_masks[i] | bt->stack_masks[i]; 3493 3494 return mask == 0; 3495 } 3496 3497 static inline int bt_subprog_enter(struct backtrack_state *bt) 3498 { 3499 if (bt->frame == MAX_CALL_FRAMES - 1) { 3500 verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame); 3501 WARN_ONCE(1, "verifier backtracking bug"); 3502 return -EFAULT; 3503 } 3504 bt->frame++; 3505 return 0; 3506 } 3507 3508 static inline int bt_subprog_exit(struct backtrack_state *bt) 3509 { 3510 if (bt->frame == 0) { 3511 verbose(bt->env, "BUG subprog exit from frame 0\n"); 3512 WARN_ONCE(1, "verifier backtracking bug"); 3513 return -EFAULT; 3514 } 3515 bt->frame--; 3516 return 0; 3517 } 3518 3519 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3520 { 3521 bt->reg_masks[frame] |= 1 << reg; 3522 } 3523 3524 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg) 3525 { 3526 bt->reg_masks[frame] &= ~(1 << reg); 3527 } 3528 3529 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg) 3530 { 3531 bt_set_frame_reg(bt, bt->frame, reg); 3532 } 3533 3534 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg) 3535 { 3536 bt_clear_frame_reg(bt, bt->frame, reg); 3537 } 3538 3539 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3540 { 3541 bt->stack_masks[frame] |= 1ull << slot; 3542 } 3543 3544 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot) 3545 { 3546 bt->stack_masks[frame] &= ~(1ull << slot); 3547 } 3548 3549 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot) 3550 { 3551 bt_set_frame_slot(bt, bt->frame, slot); 3552 } 3553 3554 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot) 3555 { 3556 bt_clear_frame_slot(bt, bt->frame, slot); 3557 } 3558 3559 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame) 3560 { 3561 return bt->reg_masks[frame]; 3562 } 3563 3564 static inline u32 bt_reg_mask(struct backtrack_state *bt) 3565 { 3566 return bt->reg_masks[bt->frame]; 3567 } 3568 3569 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame) 3570 { 3571 return bt->stack_masks[frame]; 3572 } 3573 3574 static inline u64 bt_stack_mask(struct backtrack_state *bt) 3575 { 3576 return bt->stack_masks[bt->frame]; 3577 } 3578 3579 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg) 3580 { 3581 return bt->reg_masks[bt->frame] & (1 << reg); 3582 } 3583 3584 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot) 3585 { 3586 return bt->stack_masks[bt->frame] & (1ull << slot); 3587 } 3588 3589 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */ 3590 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask) 3591 { 3592 DECLARE_BITMAP(mask, 64); 3593 bool first = true; 3594 int i, n; 3595 3596 buf[0] = '\0'; 3597 3598 bitmap_from_u64(mask, reg_mask); 3599 for_each_set_bit(i, mask, 32) { 3600 n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i); 3601 first = false; 3602 buf += n; 3603 buf_sz -= n; 3604 if (buf_sz < 0) 3605 break; 3606 } 3607 } 3608 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */ 3609 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask) 3610 { 3611 DECLARE_BITMAP(mask, 64); 3612 bool first = true; 3613 int i, n; 3614 3615 buf[0] = '\0'; 3616 3617 bitmap_from_u64(mask, stack_mask); 3618 for_each_set_bit(i, mask, 64) { 3619 n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8); 3620 first = false; 3621 buf += n; 3622 buf_sz -= n; 3623 if (buf_sz < 0) 3624 break; 3625 } 3626 } 3627 3628 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx); 3629 3630 /* For given verifier state backtrack_insn() is called from the last insn to 3631 * the first insn. Its purpose is to compute a bitmask of registers and 3632 * stack slots that needs precision in the parent verifier state. 3633 * 3634 * @idx is an index of the instruction we are currently processing; 3635 * @subseq_idx is an index of the subsequent instruction that: 3636 * - *would be* executed next, if jump history is viewed in forward order; 3637 * - *was* processed previously during backtracking. 3638 */ 3639 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx, 3640 struct backtrack_state *bt) 3641 { 3642 const struct bpf_insn_cbs cbs = { 3643 .cb_call = disasm_kfunc_name, 3644 .cb_print = verbose, 3645 .private_data = env, 3646 }; 3647 struct bpf_insn *insn = env->prog->insnsi + idx; 3648 u8 class = BPF_CLASS(insn->code); 3649 u8 opcode = BPF_OP(insn->code); 3650 u8 mode = BPF_MODE(insn->code); 3651 u32 dreg = insn->dst_reg; 3652 u32 sreg = insn->src_reg; 3653 u32 spi, i; 3654 3655 if (insn->code == 0) 3656 return 0; 3657 if (env->log.level & BPF_LOG_LEVEL2) { 3658 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt)); 3659 verbose(env, "mark_precise: frame%d: regs=%s ", 3660 bt->frame, env->tmp_str_buf); 3661 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt)); 3662 verbose(env, "stack=%s before ", env->tmp_str_buf); 3663 verbose(env, "%d: ", idx); 3664 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 3665 } 3666 3667 if (class == BPF_ALU || class == BPF_ALU64) { 3668 if (!bt_is_reg_set(bt, dreg)) 3669 return 0; 3670 if (opcode == BPF_END || opcode == BPF_NEG) { 3671 /* sreg is reserved and unused 3672 * dreg still need precision before this insn 3673 */ 3674 return 0; 3675 } else if (opcode == BPF_MOV) { 3676 if (BPF_SRC(insn->code) == BPF_X) { 3677 /* dreg = sreg or dreg = (s8, s16, s32)sreg 3678 * dreg needs precision after this insn 3679 * sreg needs precision before this insn 3680 */ 3681 bt_clear_reg(bt, dreg); 3682 if (sreg != BPF_REG_FP) 3683 bt_set_reg(bt, sreg); 3684 } else { 3685 /* dreg = K 3686 * dreg needs precision after this insn. 3687 * Corresponding register is already marked 3688 * as precise=true in this verifier state. 3689 * No further markings in parent are necessary 3690 */ 3691 bt_clear_reg(bt, dreg); 3692 } 3693 } else { 3694 if (BPF_SRC(insn->code) == BPF_X) { 3695 /* dreg += sreg 3696 * both dreg and sreg need precision 3697 * before this insn 3698 */ 3699 if (sreg != BPF_REG_FP) 3700 bt_set_reg(bt, sreg); 3701 } /* else dreg += K 3702 * dreg still needs precision before this insn 3703 */ 3704 } 3705 } else if (class == BPF_LDX) { 3706 if (!bt_is_reg_set(bt, dreg)) 3707 return 0; 3708 bt_clear_reg(bt, dreg); 3709 3710 /* scalars can only be spilled into stack w/o losing precision. 3711 * Load from any other memory can be zero extended. 3712 * The desire to keep that precision is already indicated 3713 * by 'precise' mark in corresponding register of this state. 3714 * No further tracking necessary. 3715 */ 3716 if (insn->src_reg != BPF_REG_FP) 3717 return 0; 3718 3719 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 3720 * that [fp - off] slot contains scalar that needs to be 3721 * tracked with precision 3722 */ 3723 spi = (-insn->off - 1) / BPF_REG_SIZE; 3724 if (spi >= 64) { 3725 verbose(env, "BUG spi %d\n", spi); 3726 WARN_ONCE(1, "verifier backtracking bug"); 3727 return -EFAULT; 3728 } 3729 bt_set_slot(bt, spi); 3730 } else if (class == BPF_STX || class == BPF_ST) { 3731 if (bt_is_reg_set(bt, dreg)) 3732 /* stx & st shouldn't be using _scalar_ dst_reg 3733 * to access memory. It means backtracking 3734 * encountered a case of pointer subtraction. 3735 */ 3736 return -ENOTSUPP; 3737 /* scalars can only be spilled into stack */ 3738 if (insn->dst_reg != BPF_REG_FP) 3739 return 0; 3740 spi = (-insn->off - 1) / BPF_REG_SIZE; 3741 if (spi >= 64) { 3742 verbose(env, "BUG spi %d\n", spi); 3743 WARN_ONCE(1, "verifier backtracking bug"); 3744 return -EFAULT; 3745 } 3746 if (!bt_is_slot_set(bt, spi)) 3747 return 0; 3748 bt_clear_slot(bt, spi); 3749 if (class == BPF_STX) 3750 bt_set_reg(bt, sreg); 3751 } else if (class == BPF_JMP || class == BPF_JMP32) { 3752 if (bpf_pseudo_call(insn)) { 3753 int subprog_insn_idx, subprog; 3754 3755 subprog_insn_idx = idx + insn->imm + 1; 3756 subprog = find_subprog(env, subprog_insn_idx); 3757 if (subprog < 0) 3758 return -EFAULT; 3759 3760 if (subprog_is_global(env, subprog)) { 3761 /* check that jump history doesn't have any 3762 * extra instructions from subprog; the next 3763 * instruction after call to global subprog 3764 * should be literally next instruction in 3765 * caller program 3766 */ 3767 WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug"); 3768 /* r1-r5 are invalidated after subprog call, 3769 * so for global func call it shouldn't be set 3770 * anymore 3771 */ 3772 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3773 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3774 WARN_ONCE(1, "verifier backtracking bug"); 3775 return -EFAULT; 3776 } 3777 /* global subprog always sets R0 */ 3778 bt_clear_reg(bt, BPF_REG_0); 3779 return 0; 3780 } else { 3781 /* static subprog call instruction, which 3782 * means that we are exiting current subprog, 3783 * so only r1-r5 could be still requested as 3784 * precise, r0 and r6-r10 or any stack slot in 3785 * the current frame should be zero by now 3786 */ 3787 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3788 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3789 WARN_ONCE(1, "verifier backtracking bug"); 3790 return -EFAULT; 3791 } 3792 /* we don't track register spills perfectly, 3793 * so fallback to force-precise instead of failing */ 3794 if (bt_stack_mask(bt) != 0) 3795 return -ENOTSUPP; 3796 /* propagate r1-r5 to the caller */ 3797 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 3798 if (bt_is_reg_set(bt, i)) { 3799 bt_clear_reg(bt, i); 3800 bt_set_frame_reg(bt, bt->frame - 1, i); 3801 } 3802 } 3803 if (bt_subprog_exit(bt)) 3804 return -EFAULT; 3805 return 0; 3806 } 3807 } else if (is_sync_callback_calling_insn(insn) && idx != subseq_idx - 1) { 3808 /* exit from callback subprog to callback-calling helper or 3809 * kfunc call. Use idx/subseq_idx check to discern it from 3810 * straight line code backtracking. 3811 * Unlike the subprog call handling above, we shouldn't 3812 * propagate precision of r1-r5 (if any requested), as they are 3813 * not actually arguments passed directly to callback subprogs 3814 */ 3815 if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) { 3816 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3817 WARN_ONCE(1, "verifier backtracking bug"); 3818 return -EFAULT; 3819 } 3820 if (bt_stack_mask(bt) != 0) 3821 return -ENOTSUPP; 3822 /* clear r1-r5 in callback subprog's mask */ 3823 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3824 bt_clear_reg(bt, i); 3825 if (bt_subprog_exit(bt)) 3826 return -EFAULT; 3827 return 0; 3828 } else if (opcode == BPF_CALL) { 3829 /* kfunc with imm==0 is invalid and fixup_kfunc_call will 3830 * catch this error later. Make backtracking conservative 3831 * with ENOTSUPP. 3832 */ 3833 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0) 3834 return -ENOTSUPP; 3835 /* regular helper call sets R0 */ 3836 bt_clear_reg(bt, BPF_REG_0); 3837 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3838 /* if backtracing was looking for registers R1-R5 3839 * they should have been found already. 3840 */ 3841 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3842 WARN_ONCE(1, "verifier backtracking bug"); 3843 return -EFAULT; 3844 } 3845 } else if (opcode == BPF_EXIT) { 3846 bool r0_precise; 3847 3848 /* Backtracking to a nested function call, 'idx' is a part of 3849 * the inner frame 'subseq_idx' is a part of the outer frame. 3850 * In case of a regular function call, instructions giving 3851 * precision to registers R1-R5 should have been found already. 3852 * In case of a callback, it is ok to have R1-R5 marked for 3853 * backtracking, as these registers are set by the function 3854 * invoking callback. 3855 */ 3856 if (subseq_idx >= 0 && calls_callback(env, subseq_idx)) 3857 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3858 bt_clear_reg(bt, i); 3859 if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) { 3860 verbose(env, "BUG regs %x\n", bt_reg_mask(bt)); 3861 WARN_ONCE(1, "verifier backtracking bug"); 3862 return -EFAULT; 3863 } 3864 3865 /* BPF_EXIT in subprog or callback always returns 3866 * right after the call instruction, so by checking 3867 * whether the instruction at subseq_idx-1 is subprog 3868 * call or not we can distinguish actual exit from 3869 * *subprog* from exit from *callback*. In the former 3870 * case, we need to propagate r0 precision, if 3871 * necessary. In the former we never do that. 3872 */ 3873 r0_precise = subseq_idx - 1 >= 0 && 3874 bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) && 3875 bt_is_reg_set(bt, BPF_REG_0); 3876 3877 bt_clear_reg(bt, BPF_REG_0); 3878 if (bt_subprog_enter(bt)) 3879 return -EFAULT; 3880 3881 if (r0_precise) 3882 bt_set_reg(bt, BPF_REG_0); 3883 /* r6-r9 and stack slots will stay set in caller frame 3884 * bitmasks until we return back from callee(s) 3885 */ 3886 return 0; 3887 } else if (BPF_SRC(insn->code) == BPF_X) { 3888 if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg)) 3889 return 0; 3890 /* dreg <cond> sreg 3891 * Both dreg and sreg need precision before 3892 * this insn. If only sreg was marked precise 3893 * before it would be equally necessary to 3894 * propagate it to dreg. 3895 */ 3896 bt_set_reg(bt, dreg); 3897 bt_set_reg(bt, sreg); 3898 /* else dreg <cond> K 3899 * Only dreg still needs precision before 3900 * this insn, so for the K-based conditional 3901 * there is nothing new to be marked. 3902 */ 3903 } 3904 } else if (class == BPF_LD) { 3905 if (!bt_is_reg_set(bt, dreg)) 3906 return 0; 3907 bt_clear_reg(bt, dreg); 3908 /* It's ld_imm64 or ld_abs or ld_ind. 3909 * For ld_imm64 no further tracking of precision 3910 * into parent is necessary 3911 */ 3912 if (mode == BPF_IND || mode == BPF_ABS) 3913 /* to be analyzed */ 3914 return -ENOTSUPP; 3915 } 3916 return 0; 3917 } 3918 3919 /* the scalar precision tracking algorithm: 3920 * . at the start all registers have precise=false. 3921 * . scalar ranges are tracked as normal through alu and jmp insns. 3922 * . once precise value of the scalar register is used in: 3923 * . ptr + scalar alu 3924 * . if (scalar cond K|scalar) 3925 * . helper_call(.., scalar, ...) where ARG_CONST is expected 3926 * backtrack through the verifier states and mark all registers and 3927 * stack slots with spilled constants that these scalar regisers 3928 * should be precise. 3929 * . during state pruning two registers (or spilled stack slots) 3930 * are equivalent if both are not precise. 3931 * 3932 * Note the verifier cannot simply walk register parentage chain, 3933 * since many different registers and stack slots could have been 3934 * used to compute single precise scalar. 3935 * 3936 * The approach of starting with precise=true for all registers and then 3937 * backtrack to mark a register as not precise when the verifier detects 3938 * that program doesn't care about specific value (e.g., when helper 3939 * takes register as ARG_ANYTHING parameter) is not safe. 3940 * 3941 * It's ok to walk single parentage chain of the verifier states. 3942 * It's possible that this backtracking will go all the way till 1st insn. 3943 * All other branches will be explored for needing precision later. 3944 * 3945 * The backtracking needs to deal with cases like: 3946 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 3947 * r9 -= r8 3948 * r5 = r9 3949 * if r5 > 0x79f goto pc+7 3950 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 3951 * r5 += 1 3952 * ... 3953 * call bpf_perf_event_output#25 3954 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 3955 * 3956 * and this case: 3957 * r6 = 1 3958 * call foo // uses callee's r6 inside to compute r0 3959 * r0 += r6 3960 * if r0 == 0 goto 3961 * 3962 * to track above reg_mask/stack_mask needs to be independent for each frame. 3963 * 3964 * Also if parent's curframe > frame where backtracking started, 3965 * the verifier need to mark registers in both frames, otherwise callees 3966 * may incorrectly prune callers. This is similar to 3967 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 3968 * 3969 * For now backtracking falls back into conservative marking. 3970 */ 3971 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 3972 struct bpf_verifier_state *st) 3973 { 3974 struct bpf_func_state *func; 3975 struct bpf_reg_state *reg; 3976 int i, j; 3977 3978 if (env->log.level & BPF_LOG_LEVEL2) { 3979 verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n", 3980 st->curframe); 3981 } 3982 3983 /* big hammer: mark all scalars precise in this path. 3984 * pop_stack may still get !precise scalars. 3985 * We also skip current state and go straight to first parent state, 3986 * because precision markings in current non-checkpointed state are 3987 * not needed. See why in the comment in __mark_chain_precision below. 3988 */ 3989 for (st = st->parent; st; st = st->parent) { 3990 for (i = 0; i <= st->curframe; i++) { 3991 func = st->frame[i]; 3992 for (j = 0; j < BPF_REG_FP; j++) { 3993 reg = &func->regs[j]; 3994 if (reg->type != SCALAR_VALUE || reg->precise) 3995 continue; 3996 reg->precise = true; 3997 if (env->log.level & BPF_LOG_LEVEL2) { 3998 verbose(env, "force_precise: frame%d: forcing r%d to be precise\n", 3999 i, j); 4000 } 4001 } 4002 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4003 if (!is_spilled_reg(&func->stack[j])) 4004 continue; 4005 reg = &func->stack[j].spilled_ptr; 4006 if (reg->type != SCALAR_VALUE || reg->precise) 4007 continue; 4008 reg->precise = true; 4009 if (env->log.level & BPF_LOG_LEVEL2) { 4010 verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n", 4011 i, -(j + 1) * 8); 4012 } 4013 } 4014 } 4015 } 4016 } 4017 4018 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4019 { 4020 struct bpf_func_state *func; 4021 struct bpf_reg_state *reg; 4022 int i, j; 4023 4024 for (i = 0; i <= st->curframe; i++) { 4025 func = st->frame[i]; 4026 for (j = 0; j < BPF_REG_FP; j++) { 4027 reg = &func->regs[j]; 4028 if (reg->type != SCALAR_VALUE) 4029 continue; 4030 reg->precise = false; 4031 } 4032 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 4033 if (!is_spilled_reg(&func->stack[j])) 4034 continue; 4035 reg = &func->stack[j].spilled_ptr; 4036 if (reg->type != SCALAR_VALUE) 4037 continue; 4038 reg->precise = false; 4039 } 4040 } 4041 } 4042 4043 static bool idset_contains(struct bpf_idset *s, u32 id) 4044 { 4045 u32 i; 4046 4047 for (i = 0; i < s->count; ++i) 4048 if (s->ids[i] == id) 4049 return true; 4050 4051 return false; 4052 } 4053 4054 static int idset_push(struct bpf_idset *s, u32 id) 4055 { 4056 if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids))) 4057 return -EFAULT; 4058 s->ids[s->count++] = id; 4059 return 0; 4060 } 4061 4062 static void idset_reset(struct bpf_idset *s) 4063 { 4064 s->count = 0; 4065 } 4066 4067 /* Collect a set of IDs for all registers currently marked as precise in env->bt. 4068 * Mark all registers with these IDs as precise. 4069 */ 4070 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 4071 { 4072 struct bpf_idset *precise_ids = &env->idset_scratch; 4073 struct backtrack_state *bt = &env->bt; 4074 struct bpf_func_state *func; 4075 struct bpf_reg_state *reg; 4076 DECLARE_BITMAP(mask, 64); 4077 int i, fr; 4078 4079 idset_reset(precise_ids); 4080 4081 for (fr = bt->frame; fr >= 0; fr--) { 4082 func = st->frame[fr]; 4083 4084 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4085 for_each_set_bit(i, mask, 32) { 4086 reg = &func->regs[i]; 4087 if (!reg->id || reg->type != SCALAR_VALUE) 4088 continue; 4089 if (idset_push(precise_ids, reg->id)) 4090 return -EFAULT; 4091 } 4092 4093 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4094 for_each_set_bit(i, mask, 64) { 4095 if (i >= func->allocated_stack / BPF_REG_SIZE) 4096 break; 4097 if (!is_spilled_scalar_reg(&func->stack[i])) 4098 continue; 4099 reg = &func->stack[i].spilled_ptr; 4100 if (!reg->id) 4101 continue; 4102 if (idset_push(precise_ids, reg->id)) 4103 return -EFAULT; 4104 } 4105 } 4106 4107 for (fr = 0; fr <= st->curframe; ++fr) { 4108 func = st->frame[fr]; 4109 4110 for (i = BPF_REG_0; i < BPF_REG_10; ++i) { 4111 reg = &func->regs[i]; 4112 if (!reg->id) 4113 continue; 4114 if (!idset_contains(precise_ids, reg->id)) 4115 continue; 4116 bt_set_frame_reg(bt, fr, i); 4117 } 4118 for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) { 4119 if (!is_spilled_scalar_reg(&func->stack[i])) 4120 continue; 4121 reg = &func->stack[i].spilled_ptr; 4122 if (!reg->id) 4123 continue; 4124 if (!idset_contains(precise_ids, reg->id)) 4125 continue; 4126 bt_set_frame_slot(bt, fr, i); 4127 } 4128 } 4129 4130 return 0; 4131 } 4132 4133 /* 4134 * __mark_chain_precision() backtracks BPF program instruction sequence and 4135 * chain of verifier states making sure that register *regno* (if regno >= 0) 4136 * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked 4137 * SCALARS, as well as any other registers and slots that contribute to 4138 * a tracked state of given registers/stack slots, depending on specific BPF 4139 * assembly instructions (see backtrack_insns() for exact instruction handling 4140 * logic). This backtracking relies on recorded jmp_history and is able to 4141 * traverse entire chain of parent states. This process ends only when all the 4142 * necessary registers/slots and their transitive dependencies are marked as 4143 * precise. 4144 * 4145 * One important and subtle aspect is that precise marks *do not matter* in 4146 * the currently verified state (current state). It is important to understand 4147 * why this is the case. 4148 * 4149 * First, note that current state is the state that is not yet "checkpointed", 4150 * i.e., it is not yet put into env->explored_states, and it has no children 4151 * states as well. It's ephemeral, and can end up either a) being discarded if 4152 * compatible explored state is found at some point or BPF_EXIT instruction is 4153 * reached or b) checkpointed and put into env->explored_states, branching out 4154 * into one or more children states. 4155 * 4156 * In the former case, precise markings in current state are completely 4157 * ignored by state comparison code (see regsafe() for details). Only 4158 * checkpointed ("old") state precise markings are important, and if old 4159 * state's register/slot is precise, regsafe() assumes current state's 4160 * register/slot as precise and checks value ranges exactly and precisely. If 4161 * states turn out to be compatible, current state's necessary precise 4162 * markings and any required parent states' precise markings are enforced 4163 * after the fact with propagate_precision() logic, after the fact. But it's 4164 * important to realize that in this case, even after marking current state 4165 * registers/slots as precise, we immediately discard current state. So what 4166 * actually matters is any of the precise markings propagated into current 4167 * state's parent states, which are always checkpointed (due to b) case above). 4168 * As such, for scenario a) it doesn't matter if current state has precise 4169 * markings set or not. 4170 * 4171 * Now, for the scenario b), checkpointing and forking into child(ren) 4172 * state(s). Note that before current state gets to checkpointing step, any 4173 * processed instruction always assumes precise SCALAR register/slot 4174 * knowledge: if precise value or range is useful to prune jump branch, BPF 4175 * verifier takes this opportunity enthusiastically. Similarly, when 4176 * register's value is used to calculate offset or memory address, exact 4177 * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to 4178 * what we mentioned above about state comparison ignoring precise markings 4179 * during state comparison, BPF verifier ignores and also assumes precise 4180 * markings *at will* during instruction verification process. But as verifier 4181 * assumes precision, it also propagates any precision dependencies across 4182 * parent states, which are not yet finalized, so can be further restricted 4183 * based on new knowledge gained from restrictions enforced by their children 4184 * states. This is so that once those parent states are finalized, i.e., when 4185 * they have no more active children state, state comparison logic in 4186 * is_state_visited() would enforce strict and precise SCALAR ranges, if 4187 * required for correctness. 4188 * 4189 * To build a bit more intuition, note also that once a state is checkpointed, 4190 * the path we took to get to that state is not important. This is crucial 4191 * property for state pruning. When state is checkpointed and finalized at 4192 * some instruction index, it can be correctly and safely used to "short 4193 * circuit" any *compatible* state that reaches exactly the same instruction 4194 * index. I.e., if we jumped to that instruction from a completely different 4195 * code path than original finalized state was derived from, it doesn't 4196 * matter, current state can be discarded because from that instruction 4197 * forward having a compatible state will ensure we will safely reach the 4198 * exit. States describe preconditions for further exploration, but completely 4199 * forget the history of how we got here. 4200 * 4201 * This also means that even if we needed precise SCALAR range to get to 4202 * finalized state, but from that point forward *that same* SCALAR register is 4203 * never used in a precise context (i.e., it's precise value is not needed for 4204 * correctness), it's correct and safe to mark such register as "imprecise" 4205 * (i.e., precise marking set to false). This is what we rely on when we do 4206 * not set precise marking in current state. If no child state requires 4207 * precision for any given SCALAR register, it's safe to dictate that it can 4208 * be imprecise. If any child state does require this register to be precise, 4209 * we'll mark it precise later retroactively during precise markings 4210 * propagation from child state to parent states. 4211 * 4212 * Skipping precise marking setting in current state is a mild version of 4213 * relying on the above observation. But we can utilize this property even 4214 * more aggressively by proactively forgetting any precise marking in the 4215 * current state (which we inherited from the parent state), right before we 4216 * checkpoint it and branch off into new child state. This is done by 4217 * mark_all_scalars_imprecise() to hopefully get more permissive and generic 4218 * finalized states which help in short circuiting more future states. 4219 */ 4220 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno) 4221 { 4222 struct backtrack_state *bt = &env->bt; 4223 struct bpf_verifier_state *st = env->cur_state; 4224 int first_idx = st->first_insn_idx; 4225 int last_idx = env->insn_idx; 4226 int subseq_idx = -1; 4227 struct bpf_func_state *func; 4228 struct bpf_reg_state *reg; 4229 bool skip_first = true; 4230 int i, fr, err; 4231 4232 if (!env->bpf_capable) 4233 return 0; 4234 4235 /* set frame number from which we are starting to backtrack */ 4236 bt_init(bt, env->cur_state->curframe); 4237 4238 /* Do sanity checks against current state of register and/or stack 4239 * slot, but don't set precise flag in current state, as precision 4240 * tracking in the current state is unnecessary. 4241 */ 4242 func = st->frame[bt->frame]; 4243 if (regno >= 0) { 4244 reg = &func->regs[regno]; 4245 if (reg->type != SCALAR_VALUE) { 4246 WARN_ONCE(1, "backtracing misuse"); 4247 return -EFAULT; 4248 } 4249 bt_set_reg(bt, regno); 4250 } 4251 4252 if (bt_empty(bt)) 4253 return 0; 4254 4255 for (;;) { 4256 DECLARE_BITMAP(mask, 64); 4257 u32 history = st->jmp_history_cnt; 4258 4259 if (env->log.level & BPF_LOG_LEVEL2) { 4260 verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n", 4261 bt->frame, last_idx, first_idx, subseq_idx); 4262 } 4263 4264 /* If some register with scalar ID is marked as precise, 4265 * make sure that all registers sharing this ID are also precise. 4266 * This is needed to estimate effect of find_equal_scalars(). 4267 * Do this at the last instruction of each state, 4268 * bpf_reg_state::id fields are valid for these instructions. 4269 * 4270 * Allows to track precision in situation like below: 4271 * 4272 * r2 = unknown value 4273 * ... 4274 * --- state #0 --- 4275 * ... 4276 * r1 = r2 // r1 and r2 now share the same ID 4277 * ... 4278 * --- state #1 {r1.id = A, r2.id = A} --- 4279 * ... 4280 * if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1 4281 * ... 4282 * --- state #2 {r1.id = A, r2.id = A} --- 4283 * r3 = r10 4284 * r3 += r1 // need to mark both r1 and r2 4285 */ 4286 if (mark_precise_scalar_ids(env, st)) 4287 return -EFAULT; 4288 4289 if (last_idx < 0) { 4290 /* we are at the entry into subprog, which 4291 * is expected for global funcs, but only if 4292 * requested precise registers are R1-R5 4293 * (which are global func's input arguments) 4294 */ 4295 if (st->curframe == 0 && 4296 st->frame[0]->subprogno > 0 && 4297 st->frame[0]->callsite == BPF_MAIN_FUNC && 4298 bt_stack_mask(bt) == 0 && 4299 (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) { 4300 bitmap_from_u64(mask, bt_reg_mask(bt)); 4301 for_each_set_bit(i, mask, 32) { 4302 reg = &st->frame[0]->regs[i]; 4303 bt_clear_reg(bt, i); 4304 if (reg->type == SCALAR_VALUE) 4305 reg->precise = true; 4306 } 4307 return 0; 4308 } 4309 4310 verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n", 4311 st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt)); 4312 WARN_ONCE(1, "verifier backtracking bug"); 4313 return -EFAULT; 4314 } 4315 4316 for (i = last_idx;;) { 4317 if (skip_first) { 4318 err = 0; 4319 skip_first = false; 4320 } else { 4321 err = backtrack_insn(env, i, subseq_idx, bt); 4322 } 4323 if (err == -ENOTSUPP) { 4324 mark_all_scalars_precise(env, env->cur_state); 4325 bt_reset(bt); 4326 return 0; 4327 } else if (err) { 4328 return err; 4329 } 4330 if (bt_empty(bt)) 4331 /* Found assignment(s) into tracked register in this state. 4332 * Since this state is already marked, just return. 4333 * Nothing to be tracked further in the parent state. 4334 */ 4335 return 0; 4336 subseq_idx = i; 4337 i = get_prev_insn_idx(st, i, &history); 4338 if (i == -ENOENT) 4339 break; 4340 if (i >= env->prog->len) { 4341 /* This can happen if backtracking reached insn 0 4342 * and there are still reg_mask or stack_mask 4343 * to backtrack. 4344 * It means the backtracking missed the spot where 4345 * particular register was initialized with a constant. 4346 */ 4347 verbose(env, "BUG backtracking idx %d\n", i); 4348 WARN_ONCE(1, "verifier backtracking bug"); 4349 return -EFAULT; 4350 } 4351 } 4352 st = st->parent; 4353 if (!st) 4354 break; 4355 4356 for (fr = bt->frame; fr >= 0; fr--) { 4357 func = st->frame[fr]; 4358 bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr)); 4359 for_each_set_bit(i, mask, 32) { 4360 reg = &func->regs[i]; 4361 if (reg->type != SCALAR_VALUE) { 4362 bt_clear_frame_reg(bt, fr, i); 4363 continue; 4364 } 4365 if (reg->precise) 4366 bt_clear_frame_reg(bt, fr, i); 4367 else 4368 reg->precise = true; 4369 } 4370 4371 bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr)); 4372 for_each_set_bit(i, mask, 64) { 4373 if (i >= func->allocated_stack / BPF_REG_SIZE) { 4374 /* the sequence of instructions: 4375 * 2: (bf) r3 = r10 4376 * 3: (7b) *(u64 *)(r3 -8) = r0 4377 * 4: (79) r4 = *(u64 *)(r10 -8) 4378 * doesn't contain jmps. It's backtracked 4379 * as a single block. 4380 * During backtracking insn 3 is not recognized as 4381 * stack access, so at the end of backtracking 4382 * stack slot fp-8 is still marked in stack_mask. 4383 * However the parent state may not have accessed 4384 * fp-8 and it's "unallocated" stack space. 4385 * In such case fallback to conservative. 4386 */ 4387 mark_all_scalars_precise(env, env->cur_state); 4388 bt_reset(bt); 4389 return 0; 4390 } 4391 4392 if (!is_spilled_scalar_reg(&func->stack[i])) { 4393 bt_clear_frame_slot(bt, fr, i); 4394 continue; 4395 } 4396 reg = &func->stack[i].spilled_ptr; 4397 if (reg->precise) 4398 bt_clear_frame_slot(bt, fr, i); 4399 else 4400 reg->precise = true; 4401 } 4402 if (env->log.level & BPF_LOG_LEVEL2) { 4403 fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4404 bt_frame_reg_mask(bt, fr)); 4405 verbose(env, "mark_precise: frame%d: parent state regs=%s ", 4406 fr, env->tmp_str_buf); 4407 fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, 4408 bt_frame_stack_mask(bt, fr)); 4409 verbose(env, "stack=%s: ", env->tmp_str_buf); 4410 print_verifier_state(env, func, true); 4411 } 4412 } 4413 4414 if (bt_empty(bt)) 4415 return 0; 4416 4417 subseq_idx = first_idx; 4418 last_idx = st->last_insn_idx; 4419 first_idx = st->first_insn_idx; 4420 } 4421 4422 /* if we still have requested precise regs or slots, we missed 4423 * something (e.g., stack access through non-r10 register), so 4424 * fallback to marking all precise 4425 */ 4426 if (!bt_empty(bt)) { 4427 mark_all_scalars_precise(env, env->cur_state); 4428 bt_reset(bt); 4429 } 4430 4431 return 0; 4432 } 4433 4434 int mark_chain_precision(struct bpf_verifier_env *env, int regno) 4435 { 4436 return __mark_chain_precision(env, regno); 4437 } 4438 4439 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to 4440 * desired reg and stack masks across all relevant frames 4441 */ 4442 static int mark_chain_precision_batch(struct bpf_verifier_env *env) 4443 { 4444 return __mark_chain_precision(env, -1); 4445 } 4446 4447 static bool is_spillable_regtype(enum bpf_reg_type type) 4448 { 4449 switch (base_type(type)) { 4450 case PTR_TO_MAP_VALUE: 4451 case PTR_TO_STACK: 4452 case PTR_TO_CTX: 4453 case PTR_TO_PACKET: 4454 case PTR_TO_PACKET_META: 4455 case PTR_TO_PACKET_END: 4456 case PTR_TO_FLOW_KEYS: 4457 case CONST_PTR_TO_MAP: 4458 case PTR_TO_SOCKET: 4459 case PTR_TO_SOCK_COMMON: 4460 case PTR_TO_TCP_SOCK: 4461 case PTR_TO_XDP_SOCK: 4462 case PTR_TO_BTF_ID: 4463 case PTR_TO_BUF: 4464 case PTR_TO_MEM: 4465 case PTR_TO_FUNC: 4466 case PTR_TO_MAP_KEY: 4467 return true; 4468 default: 4469 return false; 4470 } 4471 } 4472 4473 /* Does this register contain a constant zero? */ 4474 static bool register_is_null(struct bpf_reg_state *reg) 4475 { 4476 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 4477 } 4478 4479 static bool register_is_const(struct bpf_reg_state *reg) 4480 { 4481 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 4482 } 4483 4484 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 4485 { 4486 return tnum_is_unknown(reg->var_off) && 4487 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 4488 reg->umin_value == 0 && reg->umax_value == U64_MAX && 4489 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 4490 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 4491 } 4492 4493 static bool register_is_bounded(struct bpf_reg_state *reg) 4494 { 4495 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 4496 } 4497 4498 static bool __is_pointer_value(bool allow_ptr_leaks, 4499 const struct bpf_reg_state *reg) 4500 { 4501 if (allow_ptr_leaks) 4502 return false; 4503 4504 return reg->type != SCALAR_VALUE; 4505 } 4506 4507 /* Copy src state preserving dst->parent and dst->live fields */ 4508 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src) 4509 { 4510 struct bpf_reg_state *parent = dst->parent; 4511 enum bpf_reg_liveness live = dst->live; 4512 4513 *dst = *src; 4514 dst->parent = parent; 4515 dst->live = live; 4516 } 4517 4518 static void save_register_state(struct bpf_func_state *state, 4519 int spi, struct bpf_reg_state *reg, 4520 int size) 4521 { 4522 int i; 4523 4524 copy_register_state(&state->stack[spi].spilled_ptr, reg); 4525 if (size == BPF_REG_SIZE) 4526 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4527 4528 for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--) 4529 state->stack[spi].slot_type[i - 1] = STACK_SPILL; 4530 4531 /* size < 8 bytes spill */ 4532 for (; i; i--) 4533 scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]); 4534 } 4535 4536 static bool is_bpf_st_mem(struct bpf_insn *insn) 4537 { 4538 return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM; 4539 } 4540 4541 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers, 4542 * stack boundary and alignment are checked in check_mem_access() 4543 */ 4544 static int check_stack_write_fixed_off(struct bpf_verifier_env *env, 4545 /* stack frame we're writing to */ 4546 struct bpf_func_state *state, 4547 int off, int size, int value_regno, 4548 int insn_idx) 4549 { 4550 struct bpf_func_state *cur; /* state of the current function */ 4551 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 4552 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4553 struct bpf_reg_state *reg = NULL; 4554 u32 dst_reg = insn->dst_reg; 4555 4556 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 4557 * so it's aligned access and [off, off + size) are within stack limits 4558 */ 4559 if (!env->allow_ptr_leaks && 4560 is_spilled_reg(&state->stack[spi]) && 4561 size != BPF_REG_SIZE) { 4562 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 4563 return -EACCES; 4564 } 4565 4566 cur = env->cur_state->frame[env->cur_state->curframe]; 4567 if (value_regno >= 0) 4568 reg = &cur->regs[value_regno]; 4569 if (!env->bypass_spec_v4) { 4570 bool sanitize = reg && is_spillable_regtype(reg->type); 4571 4572 for (i = 0; i < size; i++) { 4573 u8 type = state->stack[spi].slot_type[i]; 4574 4575 if (type != STACK_MISC && type != STACK_ZERO) { 4576 sanitize = true; 4577 break; 4578 } 4579 } 4580 4581 if (sanitize) 4582 env->insn_aux_data[insn_idx].sanitize_stack_spill = true; 4583 } 4584 4585 err = destroy_if_dynptr_stack_slot(env, state, spi); 4586 if (err) 4587 return err; 4588 4589 mark_stack_slot_scratched(env, spi); 4590 if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) && 4591 !register_is_null(reg) && env->bpf_capable) { 4592 if (dst_reg != BPF_REG_FP) { 4593 /* The backtracking logic can only recognize explicit 4594 * stack slot address like [fp - 8]. Other spill of 4595 * scalar via different register has to be conservative. 4596 * Backtrack from here and mark all registers as precise 4597 * that contributed into 'reg' being a constant. 4598 */ 4599 err = mark_chain_precision(env, value_regno); 4600 if (err) 4601 return err; 4602 } 4603 save_register_state(state, spi, reg, size); 4604 /* Break the relation on a narrowing spill. */ 4605 if (fls64(reg->umax_value) > BITS_PER_BYTE * size) 4606 state->stack[spi].spilled_ptr.id = 0; 4607 } else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) && 4608 insn->imm != 0 && env->bpf_capable) { 4609 struct bpf_reg_state fake_reg = {}; 4610 4611 __mark_reg_known(&fake_reg, insn->imm); 4612 fake_reg.type = SCALAR_VALUE; 4613 save_register_state(state, spi, &fake_reg, size); 4614 } else if (reg && is_spillable_regtype(reg->type)) { 4615 /* register containing pointer is being spilled into stack */ 4616 if (size != BPF_REG_SIZE) { 4617 verbose_linfo(env, insn_idx, "; "); 4618 verbose(env, "invalid size of register spill\n"); 4619 return -EACCES; 4620 } 4621 if (state != cur && reg->type == PTR_TO_STACK) { 4622 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 4623 return -EINVAL; 4624 } 4625 save_register_state(state, spi, reg, size); 4626 } else { 4627 u8 type = STACK_MISC; 4628 4629 /* regular write of data into stack destroys any spilled ptr */ 4630 state->stack[spi].spilled_ptr.type = NOT_INIT; 4631 /* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */ 4632 if (is_stack_slot_special(&state->stack[spi])) 4633 for (i = 0; i < BPF_REG_SIZE; i++) 4634 scrub_spilled_slot(&state->stack[spi].slot_type[i]); 4635 4636 /* only mark the slot as written if all 8 bytes were written 4637 * otherwise read propagation may incorrectly stop too soon 4638 * when stack slots are partially written. 4639 * This heuristic means that read propagation will be 4640 * conservative, since it will add reg_live_read marks 4641 * to stack slots all the way to first state when programs 4642 * writes+reads less than 8 bytes 4643 */ 4644 if (size == BPF_REG_SIZE) 4645 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 4646 4647 /* when we zero initialize stack slots mark them as such */ 4648 if ((reg && register_is_null(reg)) || 4649 (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) { 4650 /* backtracking doesn't work for STACK_ZERO yet. */ 4651 err = mark_chain_precision(env, value_regno); 4652 if (err) 4653 return err; 4654 type = STACK_ZERO; 4655 } 4656 4657 /* Mark slots affected by this stack write. */ 4658 for (i = 0; i < size; i++) 4659 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 4660 type; 4661 } 4662 return 0; 4663 } 4664 4665 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is 4666 * known to contain a variable offset. 4667 * This function checks whether the write is permitted and conservatively 4668 * tracks the effects of the write, considering that each stack slot in the 4669 * dynamic range is potentially written to. 4670 * 4671 * 'off' includes 'regno->off'. 4672 * 'value_regno' can be -1, meaning that an unknown value is being written to 4673 * the stack. 4674 * 4675 * Spilled pointers in range are not marked as written because we don't know 4676 * what's going to be actually written. This means that read propagation for 4677 * future reads cannot be terminated by this write. 4678 * 4679 * For privileged programs, uninitialized stack slots are considered 4680 * initialized by this write (even though we don't know exactly what offsets 4681 * are going to be written to). The idea is that we don't want the verifier to 4682 * reject future reads that access slots written to through variable offsets. 4683 */ 4684 static int check_stack_write_var_off(struct bpf_verifier_env *env, 4685 /* func where register points to */ 4686 struct bpf_func_state *state, 4687 int ptr_regno, int off, int size, 4688 int value_regno, int insn_idx) 4689 { 4690 struct bpf_func_state *cur; /* state of the current function */ 4691 int min_off, max_off; 4692 int i, err; 4693 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL; 4694 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 4695 bool writing_zero = false; 4696 /* set if the fact that we're writing a zero is used to let any 4697 * stack slots remain STACK_ZERO 4698 */ 4699 bool zero_used = false; 4700 4701 cur = env->cur_state->frame[env->cur_state->curframe]; 4702 ptr_reg = &cur->regs[ptr_regno]; 4703 min_off = ptr_reg->smin_value + off; 4704 max_off = ptr_reg->smax_value + off + size; 4705 if (value_regno >= 0) 4706 value_reg = &cur->regs[value_regno]; 4707 if ((value_reg && register_is_null(value_reg)) || 4708 (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0)) 4709 writing_zero = true; 4710 4711 for (i = min_off; i < max_off; i++) { 4712 int spi; 4713 4714 spi = __get_spi(i); 4715 err = destroy_if_dynptr_stack_slot(env, state, spi); 4716 if (err) 4717 return err; 4718 } 4719 4720 /* Variable offset writes destroy any spilled pointers in range. */ 4721 for (i = min_off; i < max_off; i++) { 4722 u8 new_type, *stype; 4723 int slot, spi; 4724 4725 slot = -i - 1; 4726 spi = slot / BPF_REG_SIZE; 4727 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 4728 mark_stack_slot_scratched(env, spi); 4729 4730 if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) { 4731 /* Reject the write if range we may write to has not 4732 * been initialized beforehand. If we didn't reject 4733 * here, the ptr status would be erased below (even 4734 * though not all slots are actually overwritten), 4735 * possibly opening the door to leaks. 4736 * 4737 * We do however catch STACK_INVALID case below, and 4738 * only allow reading possibly uninitialized memory 4739 * later for CAP_PERFMON, as the write may not happen to 4740 * that slot. 4741 */ 4742 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d", 4743 insn_idx, i); 4744 return -EINVAL; 4745 } 4746 4747 /* Erase all spilled pointers. */ 4748 state->stack[spi].spilled_ptr.type = NOT_INIT; 4749 4750 /* Update the slot type. */ 4751 new_type = STACK_MISC; 4752 if (writing_zero && *stype == STACK_ZERO) { 4753 new_type = STACK_ZERO; 4754 zero_used = true; 4755 } 4756 /* If the slot is STACK_INVALID, we check whether it's OK to 4757 * pretend that it will be initialized by this write. The slot 4758 * might not actually be written to, and so if we mark it as 4759 * initialized future reads might leak uninitialized memory. 4760 * For privileged programs, we will accept such reads to slots 4761 * that may or may not be written because, if we're reject 4762 * them, the error would be too confusing. 4763 */ 4764 if (*stype == STACK_INVALID && !env->allow_uninit_stack) { 4765 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d", 4766 insn_idx, i); 4767 return -EINVAL; 4768 } 4769 *stype = new_type; 4770 } 4771 if (zero_used) { 4772 /* backtracking doesn't work for STACK_ZERO yet. */ 4773 err = mark_chain_precision(env, value_regno); 4774 if (err) 4775 return err; 4776 } 4777 return 0; 4778 } 4779 4780 /* When register 'dst_regno' is assigned some values from stack[min_off, 4781 * max_off), we set the register's type according to the types of the 4782 * respective stack slots. If all the stack values are known to be zeros, then 4783 * so is the destination reg. Otherwise, the register is considered to be 4784 * SCALAR. This function does not deal with register filling; the caller must 4785 * ensure that all spilled registers in the stack range have been marked as 4786 * read. 4787 */ 4788 static void mark_reg_stack_read(struct bpf_verifier_env *env, 4789 /* func where src register points to */ 4790 struct bpf_func_state *ptr_state, 4791 int min_off, int max_off, int dst_regno) 4792 { 4793 struct bpf_verifier_state *vstate = env->cur_state; 4794 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4795 int i, slot, spi; 4796 u8 *stype; 4797 int zeros = 0; 4798 4799 for (i = min_off; i < max_off; i++) { 4800 slot = -i - 1; 4801 spi = slot / BPF_REG_SIZE; 4802 mark_stack_slot_scratched(env, spi); 4803 stype = ptr_state->stack[spi].slot_type; 4804 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO) 4805 break; 4806 zeros++; 4807 } 4808 if (zeros == max_off - min_off) { 4809 /* any access_size read into register is zero extended, 4810 * so the whole register == const_zero 4811 */ 4812 __mark_reg_const_zero(&state->regs[dst_regno]); 4813 /* backtracking doesn't support STACK_ZERO yet, 4814 * so mark it precise here, so that later 4815 * backtracking can stop here. 4816 * Backtracking may not need this if this register 4817 * doesn't participate in pointer adjustment. 4818 * Forward propagation of precise flag is not 4819 * necessary either. This mark is only to stop 4820 * backtracking. Any register that contributed 4821 * to const 0 was marked precise before spill. 4822 */ 4823 state->regs[dst_regno].precise = true; 4824 } else { 4825 /* have read misc data from the stack */ 4826 mark_reg_unknown(env, state->regs, dst_regno); 4827 } 4828 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4829 } 4830 4831 /* Read the stack at 'off' and put the results into the register indicated by 4832 * 'dst_regno'. It handles reg filling if the addressed stack slot is a 4833 * spilled reg. 4834 * 4835 * 'dst_regno' can be -1, meaning that the read value is not going to a 4836 * register. 4837 * 4838 * The access is assumed to be within the current stack bounds. 4839 */ 4840 static int check_stack_read_fixed_off(struct bpf_verifier_env *env, 4841 /* func where src register points to */ 4842 struct bpf_func_state *reg_state, 4843 int off, int size, int dst_regno) 4844 { 4845 struct bpf_verifier_state *vstate = env->cur_state; 4846 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4847 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 4848 struct bpf_reg_state *reg; 4849 u8 *stype, type; 4850 4851 stype = reg_state->stack[spi].slot_type; 4852 reg = ®_state->stack[spi].spilled_ptr; 4853 4854 mark_stack_slot_scratched(env, spi); 4855 4856 if (is_spilled_reg(®_state->stack[spi])) { 4857 u8 spill_size = 1; 4858 4859 for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--) 4860 spill_size++; 4861 4862 if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) { 4863 if (reg->type != SCALAR_VALUE) { 4864 verbose_linfo(env, env->insn_idx, "; "); 4865 verbose(env, "invalid size of register fill\n"); 4866 return -EACCES; 4867 } 4868 4869 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4870 if (dst_regno < 0) 4871 return 0; 4872 4873 if (!(off % BPF_REG_SIZE) && size == spill_size) { 4874 /* The earlier check_reg_arg() has decided the 4875 * subreg_def for this insn. Save it first. 4876 */ 4877 s32 subreg_def = state->regs[dst_regno].subreg_def; 4878 4879 copy_register_state(&state->regs[dst_regno], reg); 4880 state->regs[dst_regno].subreg_def = subreg_def; 4881 } else { 4882 for (i = 0; i < size; i++) { 4883 type = stype[(slot - i) % BPF_REG_SIZE]; 4884 if (type == STACK_SPILL) 4885 continue; 4886 if (type == STACK_MISC) 4887 continue; 4888 if (type == STACK_INVALID && env->allow_uninit_stack) 4889 continue; 4890 verbose(env, "invalid read from stack off %d+%d size %d\n", 4891 off, i, size); 4892 return -EACCES; 4893 } 4894 mark_reg_unknown(env, state->regs, dst_regno); 4895 } 4896 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4897 return 0; 4898 } 4899 4900 if (dst_regno >= 0) { 4901 /* restore register state from stack */ 4902 copy_register_state(&state->regs[dst_regno], reg); 4903 /* mark reg as written since spilled pointer state likely 4904 * has its liveness marks cleared by is_state_visited() 4905 * which resets stack/reg liveness for state transitions 4906 */ 4907 state->regs[dst_regno].live |= REG_LIVE_WRITTEN; 4908 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 4909 /* If dst_regno==-1, the caller is asking us whether 4910 * it is acceptable to use this value as a SCALAR_VALUE 4911 * (e.g. for XADD). 4912 * We must not allow unprivileged callers to do that 4913 * with spilled pointers. 4914 */ 4915 verbose(env, "leaking pointer from stack off %d\n", 4916 off); 4917 return -EACCES; 4918 } 4919 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4920 } else { 4921 for (i = 0; i < size; i++) { 4922 type = stype[(slot - i) % BPF_REG_SIZE]; 4923 if (type == STACK_MISC) 4924 continue; 4925 if (type == STACK_ZERO) 4926 continue; 4927 if (type == STACK_INVALID && env->allow_uninit_stack) 4928 continue; 4929 verbose(env, "invalid read from stack off %d+%d size %d\n", 4930 off, i, size); 4931 return -EACCES; 4932 } 4933 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 4934 if (dst_regno >= 0) 4935 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno); 4936 } 4937 return 0; 4938 } 4939 4940 enum bpf_access_src { 4941 ACCESS_DIRECT = 1, /* the access is performed by an instruction */ 4942 ACCESS_HELPER = 2, /* the access is performed by a helper */ 4943 }; 4944 4945 static int check_stack_range_initialized(struct bpf_verifier_env *env, 4946 int regno, int off, int access_size, 4947 bool zero_size_allowed, 4948 enum bpf_access_src type, 4949 struct bpf_call_arg_meta *meta); 4950 4951 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 4952 { 4953 return cur_regs(env) + regno; 4954 } 4955 4956 /* Read the stack at 'ptr_regno + off' and put the result into the register 4957 * 'dst_regno'. 4958 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'), 4959 * but not its variable offset. 4960 * 'size' is assumed to be <= reg size and the access is assumed to be aligned. 4961 * 4962 * As opposed to check_stack_read_fixed_off, this function doesn't deal with 4963 * filling registers (i.e. reads of spilled register cannot be detected when 4964 * the offset is not fixed). We conservatively mark 'dst_regno' as containing 4965 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable 4966 * offset; for a fixed offset check_stack_read_fixed_off should be used 4967 * instead. 4968 */ 4969 static int check_stack_read_var_off(struct bpf_verifier_env *env, 4970 int ptr_regno, int off, int size, int dst_regno) 4971 { 4972 /* The state of the source register. */ 4973 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 4974 struct bpf_func_state *ptr_state = func(env, reg); 4975 int err; 4976 int min_off, max_off; 4977 4978 /* Note that we pass a NULL meta, so raw access will not be permitted. 4979 */ 4980 err = check_stack_range_initialized(env, ptr_regno, off, size, 4981 false, ACCESS_DIRECT, NULL); 4982 if (err) 4983 return err; 4984 4985 min_off = reg->smin_value + off; 4986 max_off = reg->smax_value + off; 4987 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno); 4988 return 0; 4989 } 4990 4991 /* check_stack_read dispatches to check_stack_read_fixed_off or 4992 * check_stack_read_var_off. 4993 * 4994 * The caller must ensure that the offset falls within the allocated stack 4995 * bounds. 4996 * 4997 * 'dst_regno' is a register which will receive the value from the stack. It 4998 * can be -1, meaning that the read value is not going to a register. 4999 */ 5000 static int check_stack_read(struct bpf_verifier_env *env, 5001 int ptr_regno, int off, int size, 5002 int dst_regno) 5003 { 5004 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5005 struct bpf_func_state *state = func(env, reg); 5006 int err; 5007 /* Some accesses are only permitted with a static offset. */ 5008 bool var_off = !tnum_is_const(reg->var_off); 5009 5010 /* The offset is required to be static when reads don't go to a 5011 * register, in order to not leak pointers (see 5012 * check_stack_read_fixed_off). 5013 */ 5014 if (dst_regno < 0 && var_off) { 5015 char tn_buf[48]; 5016 5017 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5018 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n", 5019 tn_buf, off, size); 5020 return -EACCES; 5021 } 5022 /* Variable offset is prohibited for unprivileged mode for simplicity 5023 * since it requires corresponding support in Spectre masking for stack 5024 * ALU. See also retrieve_ptr_limit(). The check in 5025 * check_stack_access_for_ptr_arithmetic() called by 5026 * adjust_ptr_min_max_vals() prevents users from creating stack pointers 5027 * with variable offsets, therefore no check is required here. Further, 5028 * just checking it here would be insufficient as speculative stack 5029 * writes could still lead to unsafe speculative behaviour. 5030 */ 5031 if (!var_off) { 5032 off += reg->var_off.value; 5033 err = check_stack_read_fixed_off(env, state, off, size, 5034 dst_regno); 5035 } else { 5036 /* Variable offset stack reads need more conservative handling 5037 * than fixed offset ones. Note that dst_regno >= 0 on this 5038 * branch. 5039 */ 5040 err = check_stack_read_var_off(env, ptr_regno, off, size, 5041 dst_regno); 5042 } 5043 return err; 5044 } 5045 5046 5047 /* check_stack_write dispatches to check_stack_write_fixed_off or 5048 * check_stack_write_var_off. 5049 * 5050 * 'ptr_regno' is the register used as a pointer into the stack. 5051 * 'off' includes 'ptr_regno->off', but not its variable offset (if any). 5052 * 'value_regno' is the register whose value we're writing to the stack. It can 5053 * be -1, meaning that we're not writing from a register. 5054 * 5055 * The caller must ensure that the offset falls within the maximum stack size. 5056 */ 5057 static int check_stack_write(struct bpf_verifier_env *env, 5058 int ptr_regno, int off, int size, 5059 int value_regno, int insn_idx) 5060 { 5061 struct bpf_reg_state *reg = reg_state(env, ptr_regno); 5062 struct bpf_func_state *state = func(env, reg); 5063 int err; 5064 5065 if (tnum_is_const(reg->var_off)) { 5066 off += reg->var_off.value; 5067 err = check_stack_write_fixed_off(env, state, off, size, 5068 value_regno, insn_idx); 5069 } else { 5070 /* Variable offset stack reads need more conservative handling 5071 * than fixed offset ones. 5072 */ 5073 err = check_stack_write_var_off(env, state, 5074 ptr_regno, off, size, 5075 value_regno, insn_idx); 5076 } 5077 return err; 5078 } 5079 5080 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 5081 int off, int size, enum bpf_access_type type) 5082 { 5083 struct bpf_reg_state *regs = cur_regs(env); 5084 struct bpf_map *map = regs[regno].map_ptr; 5085 u32 cap = bpf_map_flags_to_cap(map); 5086 5087 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 5088 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 5089 map->value_size, off, size); 5090 return -EACCES; 5091 } 5092 5093 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 5094 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 5095 map->value_size, off, size); 5096 return -EACCES; 5097 } 5098 5099 return 0; 5100 } 5101 5102 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 5103 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 5104 int off, int size, u32 mem_size, 5105 bool zero_size_allowed) 5106 { 5107 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 5108 struct bpf_reg_state *reg; 5109 5110 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 5111 return 0; 5112 5113 reg = &cur_regs(env)[regno]; 5114 switch (reg->type) { 5115 case PTR_TO_MAP_KEY: 5116 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n", 5117 mem_size, off, size); 5118 break; 5119 case PTR_TO_MAP_VALUE: 5120 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 5121 mem_size, off, size); 5122 break; 5123 case PTR_TO_PACKET: 5124 case PTR_TO_PACKET_META: 5125 case PTR_TO_PACKET_END: 5126 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 5127 off, size, regno, reg->id, off, mem_size); 5128 break; 5129 case PTR_TO_MEM: 5130 default: 5131 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 5132 mem_size, off, size); 5133 } 5134 5135 return -EACCES; 5136 } 5137 5138 /* check read/write into a memory region with possible variable offset */ 5139 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 5140 int off, int size, u32 mem_size, 5141 bool zero_size_allowed) 5142 { 5143 struct bpf_verifier_state *vstate = env->cur_state; 5144 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5145 struct bpf_reg_state *reg = &state->regs[regno]; 5146 int err; 5147 5148 /* We may have adjusted the register pointing to memory region, so we 5149 * need to try adding each of min_value and max_value to off 5150 * to make sure our theoretical access will be safe. 5151 * 5152 * The minimum value is only important with signed 5153 * comparisons where we can't assume the floor of a 5154 * value is 0. If we are using signed variables for our 5155 * index'es we need to make sure that whatever we use 5156 * will have a set floor within our range. 5157 */ 5158 if (reg->smin_value < 0 && 5159 (reg->smin_value == S64_MIN || 5160 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 5161 reg->smin_value + off < 0)) { 5162 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5163 regno); 5164 return -EACCES; 5165 } 5166 err = __check_mem_access(env, regno, reg->smin_value + off, size, 5167 mem_size, zero_size_allowed); 5168 if (err) { 5169 verbose(env, "R%d min value is outside of the allowed memory range\n", 5170 regno); 5171 return err; 5172 } 5173 5174 /* If we haven't set a max value then we need to bail since we can't be 5175 * sure we won't do bad things. 5176 * If reg->umax_value + off could overflow, treat that as unbounded too. 5177 */ 5178 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 5179 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 5180 regno); 5181 return -EACCES; 5182 } 5183 err = __check_mem_access(env, regno, reg->umax_value + off, size, 5184 mem_size, zero_size_allowed); 5185 if (err) { 5186 verbose(env, "R%d max value is outside of the allowed memory range\n", 5187 regno); 5188 return err; 5189 } 5190 5191 return 0; 5192 } 5193 5194 static int __check_ptr_off_reg(struct bpf_verifier_env *env, 5195 const struct bpf_reg_state *reg, int regno, 5196 bool fixed_off_ok) 5197 { 5198 /* Access to this pointer-typed register or passing it to a helper 5199 * is only allowed in its original, unmodified form. 5200 */ 5201 5202 if (reg->off < 0) { 5203 verbose(env, "negative offset %s ptr R%d off=%d disallowed\n", 5204 reg_type_str(env, reg->type), regno, reg->off); 5205 return -EACCES; 5206 } 5207 5208 if (!fixed_off_ok && reg->off) { 5209 verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n", 5210 reg_type_str(env, reg->type), regno, reg->off); 5211 return -EACCES; 5212 } 5213 5214 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5215 char tn_buf[48]; 5216 5217 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5218 verbose(env, "variable %s access var_off=%s disallowed\n", 5219 reg_type_str(env, reg->type), tn_buf); 5220 return -EACCES; 5221 } 5222 5223 return 0; 5224 } 5225 5226 int check_ptr_off_reg(struct bpf_verifier_env *env, 5227 const struct bpf_reg_state *reg, int regno) 5228 { 5229 return __check_ptr_off_reg(env, reg, regno, false); 5230 } 5231 5232 static int map_kptr_match_type(struct bpf_verifier_env *env, 5233 struct btf_field *kptr_field, 5234 struct bpf_reg_state *reg, u32 regno) 5235 { 5236 const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id); 5237 int perm_flags; 5238 const char *reg_name = ""; 5239 5240 if (btf_is_kernel(reg->btf)) { 5241 perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU; 5242 5243 /* Only unreferenced case accepts untrusted pointers */ 5244 if (kptr_field->type == BPF_KPTR_UNREF) 5245 perm_flags |= PTR_UNTRUSTED; 5246 } else { 5247 perm_flags = PTR_MAYBE_NULL | MEM_ALLOC; 5248 } 5249 5250 if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags)) 5251 goto bad_type; 5252 5253 /* We need to verify reg->type and reg->btf, before accessing reg->btf */ 5254 reg_name = btf_type_name(reg->btf, reg->btf_id); 5255 5256 /* For ref_ptr case, release function check should ensure we get one 5257 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the 5258 * normal store of unreferenced kptr, we must ensure var_off is zero. 5259 * Since ref_ptr cannot be accessed directly by BPF insns, checks for 5260 * reg->off and reg->ref_obj_id are not needed here. 5261 */ 5262 if (__check_ptr_off_reg(env, reg, regno, true)) 5263 return -EACCES; 5264 5265 /* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and 5266 * we also need to take into account the reg->off. 5267 * 5268 * We want to support cases like: 5269 * 5270 * struct foo { 5271 * struct bar br; 5272 * struct baz bz; 5273 * }; 5274 * 5275 * struct foo *v; 5276 * v = func(); // PTR_TO_BTF_ID 5277 * val->foo = v; // reg->off is zero, btf and btf_id match type 5278 * val->bar = &v->br; // reg->off is still zero, but we need to retry with 5279 * // first member type of struct after comparison fails 5280 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked 5281 * // to match type 5282 * 5283 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off 5284 * is zero. We must also ensure that btf_struct_ids_match does not walk 5285 * the struct to match type against first member of struct, i.e. reject 5286 * second case from above. Hence, when type is BPF_KPTR_REF, we set 5287 * strict mode to true for type match. 5288 */ 5289 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 5290 kptr_field->kptr.btf, kptr_field->kptr.btf_id, 5291 kptr_field->type == BPF_KPTR_REF)) 5292 goto bad_type; 5293 return 0; 5294 bad_type: 5295 verbose(env, "invalid kptr access, R%d type=%s%s ", regno, 5296 reg_type_str(env, reg->type), reg_name); 5297 verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name); 5298 if (kptr_field->type == BPF_KPTR_UNREF) 5299 verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED), 5300 targ_name); 5301 else 5302 verbose(env, "\n"); 5303 return -EINVAL; 5304 } 5305 5306 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock() 5307 * can dereference RCU protected pointers and result is PTR_TRUSTED. 5308 */ 5309 static bool in_rcu_cs(struct bpf_verifier_env *env) 5310 { 5311 return env->cur_state->active_rcu_lock || 5312 env->cur_state->active_lock.ptr || 5313 !env->prog->aux->sleepable; 5314 } 5315 5316 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */ 5317 BTF_SET_START(rcu_protected_types) 5318 BTF_ID(struct, prog_test_ref_kfunc) 5319 BTF_ID(struct, cgroup) 5320 BTF_ID(struct, bpf_cpumask) 5321 BTF_ID(struct, task_struct) 5322 BTF_SET_END(rcu_protected_types) 5323 5324 static bool rcu_protected_object(const struct btf *btf, u32 btf_id) 5325 { 5326 if (!btf_is_kernel(btf)) 5327 return false; 5328 return btf_id_set_contains(&rcu_protected_types, btf_id); 5329 } 5330 5331 static bool rcu_safe_kptr(const struct btf_field *field) 5332 { 5333 const struct btf_field_kptr *kptr = &field->kptr; 5334 5335 return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id); 5336 } 5337 5338 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno, 5339 int value_regno, int insn_idx, 5340 struct btf_field *kptr_field) 5341 { 5342 struct bpf_insn *insn = &env->prog->insnsi[insn_idx]; 5343 int class = BPF_CLASS(insn->code); 5344 struct bpf_reg_state *val_reg; 5345 5346 /* Things we already checked for in check_map_access and caller: 5347 * - Reject cases where variable offset may touch kptr 5348 * - size of access (must be BPF_DW) 5349 * - tnum_is_const(reg->var_off) 5350 * - kptr_field->offset == off + reg->var_off.value 5351 */ 5352 /* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */ 5353 if (BPF_MODE(insn->code) != BPF_MEM) { 5354 verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n"); 5355 return -EACCES; 5356 } 5357 5358 /* We only allow loading referenced kptr, since it will be marked as 5359 * untrusted, similar to unreferenced kptr. 5360 */ 5361 if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) { 5362 verbose(env, "store to referenced kptr disallowed\n"); 5363 return -EACCES; 5364 } 5365 5366 if (class == BPF_LDX) { 5367 val_reg = reg_state(env, value_regno); 5368 /* We can simply mark the value_regno receiving the pointer 5369 * value from map as PTR_TO_BTF_ID, with the correct type. 5370 */ 5371 mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf, 5372 kptr_field->kptr.btf_id, 5373 rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ? 5374 PTR_MAYBE_NULL | MEM_RCU : 5375 PTR_MAYBE_NULL | PTR_UNTRUSTED); 5376 /* For mark_ptr_or_null_reg */ 5377 val_reg->id = ++env->id_gen; 5378 } else if (class == BPF_STX) { 5379 val_reg = reg_state(env, value_regno); 5380 if (!register_is_null(val_reg) && 5381 map_kptr_match_type(env, kptr_field, val_reg, value_regno)) 5382 return -EACCES; 5383 } else if (class == BPF_ST) { 5384 if (insn->imm) { 5385 verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n", 5386 kptr_field->offset); 5387 return -EACCES; 5388 } 5389 } else { 5390 verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n"); 5391 return -EACCES; 5392 } 5393 return 0; 5394 } 5395 5396 /* check read/write into a map element with possible variable offset */ 5397 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 5398 int off, int size, bool zero_size_allowed, 5399 enum bpf_access_src src) 5400 { 5401 struct bpf_verifier_state *vstate = env->cur_state; 5402 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5403 struct bpf_reg_state *reg = &state->regs[regno]; 5404 struct bpf_map *map = reg->map_ptr; 5405 struct btf_record *rec; 5406 int err, i; 5407 5408 err = check_mem_region_access(env, regno, off, size, map->value_size, 5409 zero_size_allowed); 5410 if (err) 5411 return err; 5412 5413 if (IS_ERR_OR_NULL(map->record)) 5414 return 0; 5415 rec = map->record; 5416 for (i = 0; i < rec->cnt; i++) { 5417 struct btf_field *field = &rec->fields[i]; 5418 u32 p = field->offset; 5419 5420 /* If any part of a field can be touched by load/store, reject 5421 * this program. To check that [x1, x2) overlaps with [y1, y2), 5422 * it is sufficient to check x1 < y2 && y1 < x2. 5423 */ 5424 if (reg->smin_value + off < p + btf_field_type_size(field->type) && 5425 p < reg->umax_value + off + size) { 5426 switch (field->type) { 5427 case BPF_KPTR_UNREF: 5428 case BPF_KPTR_REF: 5429 if (src != ACCESS_DIRECT) { 5430 verbose(env, "kptr cannot be accessed indirectly by helper\n"); 5431 return -EACCES; 5432 } 5433 if (!tnum_is_const(reg->var_off)) { 5434 verbose(env, "kptr access cannot have variable offset\n"); 5435 return -EACCES; 5436 } 5437 if (p != off + reg->var_off.value) { 5438 verbose(env, "kptr access misaligned expected=%u off=%llu\n", 5439 p, off + reg->var_off.value); 5440 return -EACCES; 5441 } 5442 if (size != bpf_size_to_bytes(BPF_DW)) { 5443 verbose(env, "kptr access size must be BPF_DW\n"); 5444 return -EACCES; 5445 } 5446 break; 5447 default: 5448 verbose(env, "%s cannot be accessed directly by load/store\n", 5449 btf_field_type_name(field->type)); 5450 return -EACCES; 5451 } 5452 } 5453 } 5454 return 0; 5455 } 5456 5457 #define MAX_PACKET_OFF 0xffff 5458 5459 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 5460 const struct bpf_call_arg_meta *meta, 5461 enum bpf_access_type t) 5462 { 5463 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 5464 5465 switch (prog_type) { 5466 /* Program types only with direct read access go here! */ 5467 case BPF_PROG_TYPE_LWT_IN: 5468 case BPF_PROG_TYPE_LWT_OUT: 5469 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 5470 case BPF_PROG_TYPE_SK_REUSEPORT: 5471 case BPF_PROG_TYPE_FLOW_DISSECTOR: 5472 case BPF_PROG_TYPE_CGROUP_SKB: 5473 if (t == BPF_WRITE) 5474 return false; 5475 fallthrough; 5476 5477 /* Program types with direct read + write access go here! */ 5478 case BPF_PROG_TYPE_SCHED_CLS: 5479 case BPF_PROG_TYPE_SCHED_ACT: 5480 case BPF_PROG_TYPE_XDP: 5481 case BPF_PROG_TYPE_LWT_XMIT: 5482 case BPF_PROG_TYPE_SK_SKB: 5483 case BPF_PROG_TYPE_SK_MSG: 5484 if (meta) 5485 return meta->pkt_access; 5486 5487 env->seen_direct_write = true; 5488 return true; 5489 5490 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 5491 if (t == BPF_WRITE) 5492 env->seen_direct_write = true; 5493 5494 return true; 5495 5496 default: 5497 return false; 5498 } 5499 } 5500 5501 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 5502 int size, bool zero_size_allowed) 5503 { 5504 struct bpf_reg_state *regs = cur_regs(env); 5505 struct bpf_reg_state *reg = ®s[regno]; 5506 int err; 5507 5508 /* We may have added a variable offset to the packet pointer; but any 5509 * reg->range we have comes after that. We are only checking the fixed 5510 * offset. 5511 */ 5512 5513 /* We don't allow negative numbers, because we aren't tracking enough 5514 * detail to prove they're safe. 5515 */ 5516 if (reg->smin_value < 0) { 5517 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5518 regno); 5519 return -EACCES; 5520 } 5521 5522 err = reg->range < 0 ? -EINVAL : 5523 __check_mem_access(env, regno, off, size, reg->range, 5524 zero_size_allowed); 5525 if (err) { 5526 verbose(env, "R%d offset is outside of the packet\n", regno); 5527 return err; 5528 } 5529 5530 /* __check_mem_access has made sure "off + size - 1" is within u16. 5531 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 5532 * otherwise find_good_pkt_pointers would have refused to set range info 5533 * that __check_mem_access would have rejected this pkt access. 5534 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 5535 */ 5536 env->prog->aux->max_pkt_offset = 5537 max_t(u32, env->prog->aux->max_pkt_offset, 5538 off + reg->umax_value + size - 1); 5539 5540 return err; 5541 } 5542 5543 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 5544 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 5545 enum bpf_access_type t, enum bpf_reg_type *reg_type, 5546 struct btf **btf, u32 *btf_id) 5547 { 5548 struct bpf_insn_access_aux info = { 5549 .reg_type = *reg_type, 5550 .log = &env->log, 5551 }; 5552 5553 if (env->ops->is_valid_access && 5554 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 5555 /* A non zero info.ctx_field_size indicates that this field is a 5556 * candidate for later verifier transformation to load the whole 5557 * field and then apply a mask when accessed with a narrower 5558 * access than actual ctx access size. A zero info.ctx_field_size 5559 * will only allow for whole field access and rejects any other 5560 * type of narrower access. 5561 */ 5562 *reg_type = info.reg_type; 5563 5564 if (base_type(*reg_type) == PTR_TO_BTF_ID) { 5565 *btf = info.btf; 5566 *btf_id = info.btf_id; 5567 } else { 5568 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 5569 } 5570 /* remember the offset of last byte accessed in ctx */ 5571 if (env->prog->aux->max_ctx_offset < off + size) 5572 env->prog->aux->max_ctx_offset = off + size; 5573 return 0; 5574 } 5575 5576 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 5577 return -EACCES; 5578 } 5579 5580 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 5581 int size) 5582 { 5583 if (size < 0 || off < 0 || 5584 (u64)off + size > sizeof(struct bpf_flow_keys)) { 5585 verbose(env, "invalid access to flow keys off=%d size=%d\n", 5586 off, size); 5587 return -EACCES; 5588 } 5589 return 0; 5590 } 5591 5592 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 5593 u32 regno, int off, int size, 5594 enum bpf_access_type t) 5595 { 5596 struct bpf_reg_state *regs = cur_regs(env); 5597 struct bpf_reg_state *reg = ®s[regno]; 5598 struct bpf_insn_access_aux info = {}; 5599 bool valid; 5600 5601 if (reg->smin_value < 0) { 5602 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 5603 regno); 5604 return -EACCES; 5605 } 5606 5607 switch (reg->type) { 5608 case PTR_TO_SOCK_COMMON: 5609 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 5610 break; 5611 case PTR_TO_SOCKET: 5612 valid = bpf_sock_is_valid_access(off, size, t, &info); 5613 break; 5614 case PTR_TO_TCP_SOCK: 5615 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 5616 break; 5617 case PTR_TO_XDP_SOCK: 5618 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 5619 break; 5620 default: 5621 valid = false; 5622 } 5623 5624 5625 if (valid) { 5626 env->insn_aux_data[insn_idx].ctx_field_size = 5627 info.ctx_field_size; 5628 return 0; 5629 } 5630 5631 verbose(env, "R%d invalid %s access off=%d size=%d\n", 5632 regno, reg_type_str(env, reg->type), off, size); 5633 5634 return -EACCES; 5635 } 5636 5637 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 5638 { 5639 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 5640 } 5641 5642 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 5643 { 5644 const struct bpf_reg_state *reg = reg_state(env, regno); 5645 5646 return reg->type == PTR_TO_CTX; 5647 } 5648 5649 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 5650 { 5651 const struct bpf_reg_state *reg = reg_state(env, regno); 5652 5653 return type_is_sk_pointer(reg->type); 5654 } 5655 5656 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 5657 { 5658 const struct bpf_reg_state *reg = reg_state(env, regno); 5659 5660 return type_is_pkt_pointer(reg->type); 5661 } 5662 5663 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 5664 { 5665 const struct bpf_reg_state *reg = reg_state(env, regno); 5666 5667 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 5668 return reg->type == PTR_TO_FLOW_KEYS; 5669 } 5670 5671 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5672 #ifdef CONFIG_NET 5673 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5674 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5675 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5676 #endif 5677 [CONST_PTR_TO_MAP] = btf_bpf_map_id, 5678 }; 5679 5680 static bool is_trusted_reg(const struct bpf_reg_state *reg) 5681 { 5682 /* A referenced register is always trusted. */ 5683 if (reg->ref_obj_id) 5684 return true; 5685 5686 /* Types listed in the reg2btf_ids are always trusted */ 5687 if (reg2btf_ids[base_type(reg->type)]) 5688 return true; 5689 5690 /* If a register is not referenced, it is trusted if it has the 5691 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the 5692 * other type modifiers may be safe, but we elect to take an opt-in 5693 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are 5694 * not. 5695 * 5696 * Eventually, we should make PTR_TRUSTED the single source of truth 5697 * for whether a register is trusted. 5698 */ 5699 return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS && 5700 !bpf_type_has_unsafe_modifiers(reg->type); 5701 } 5702 5703 static bool is_rcu_reg(const struct bpf_reg_state *reg) 5704 { 5705 return reg->type & MEM_RCU; 5706 } 5707 5708 static void clear_trusted_flags(enum bpf_type_flag *flag) 5709 { 5710 *flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU); 5711 } 5712 5713 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 5714 const struct bpf_reg_state *reg, 5715 int off, int size, bool strict) 5716 { 5717 struct tnum reg_off; 5718 int ip_align; 5719 5720 /* Byte size accesses are always allowed. */ 5721 if (!strict || size == 1) 5722 return 0; 5723 5724 /* For platforms that do not have a Kconfig enabling 5725 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 5726 * NET_IP_ALIGN is universally set to '2'. And on platforms 5727 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 5728 * to this code only in strict mode where we want to emulate 5729 * the NET_IP_ALIGN==2 checking. Therefore use an 5730 * unconditional IP align value of '2'. 5731 */ 5732 ip_align = 2; 5733 5734 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 5735 if (!tnum_is_aligned(reg_off, size)) { 5736 char tn_buf[48]; 5737 5738 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5739 verbose(env, 5740 "misaligned packet access off %d+%s+%d+%d size %d\n", 5741 ip_align, tn_buf, reg->off, off, size); 5742 return -EACCES; 5743 } 5744 5745 return 0; 5746 } 5747 5748 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 5749 const struct bpf_reg_state *reg, 5750 const char *pointer_desc, 5751 int off, int size, bool strict) 5752 { 5753 struct tnum reg_off; 5754 5755 /* Byte size accesses are always allowed. */ 5756 if (!strict || size == 1) 5757 return 0; 5758 5759 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 5760 if (!tnum_is_aligned(reg_off, size)) { 5761 char tn_buf[48]; 5762 5763 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5764 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 5765 pointer_desc, tn_buf, reg->off, off, size); 5766 return -EACCES; 5767 } 5768 5769 return 0; 5770 } 5771 5772 static int check_ptr_alignment(struct bpf_verifier_env *env, 5773 const struct bpf_reg_state *reg, int off, 5774 int size, bool strict_alignment_once) 5775 { 5776 bool strict = env->strict_alignment || strict_alignment_once; 5777 const char *pointer_desc = ""; 5778 5779 switch (reg->type) { 5780 case PTR_TO_PACKET: 5781 case PTR_TO_PACKET_META: 5782 /* Special case, because of NET_IP_ALIGN. Given metadata sits 5783 * right in front, treat it the very same way. 5784 */ 5785 return check_pkt_ptr_alignment(env, reg, off, size, strict); 5786 case PTR_TO_FLOW_KEYS: 5787 pointer_desc = "flow keys "; 5788 break; 5789 case PTR_TO_MAP_KEY: 5790 pointer_desc = "key "; 5791 break; 5792 case PTR_TO_MAP_VALUE: 5793 pointer_desc = "value "; 5794 break; 5795 case PTR_TO_CTX: 5796 pointer_desc = "context "; 5797 break; 5798 case PTR_TO_STACK: 5799 pointer_desc = "stack "; 5800 /* The stack spill tracking logic in check_stack_write_fixed_off() 5801 * and check_stack_read_fixed_off() relies on stack accesses being 5802 * aligned. 5803 */ 5804 strict = true; 5805 break; 5806 case PTR_TO_SOCKET: 5807 pointer_desc = "sock "; 5808 break; 5809 case PTR_TO_SOCK_COMMON: 5810 pointer_desc = "sock_common "; 5811 break; 5812 case PTR_TO_TCP_SOCK: 5813 pointer_desc = "tcp_sock "; 5814 break; 5815 case PTR_TO_XDP_SOCK: 5816 pointer_desc = "xdp_sock "; 5817 break; 5818 default: 5819 break; 5820 } 5821 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 5822 strict); 5823 } 5824 5825 /* starting from main bpf function walk all instructions of the function 5826 * and recursively walk all callees that given function can call. 5827 * Ignore jump and exit insns. 5828 * Since recursion is prevented by check_cfg() this algorithm 5829 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 5830 */ 5831 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx) 5832 { 5833 struct bpf_subprog_info *subprog = env->subprog_info; 5834 struct bpf_insn *insn = env->prog->insnsi; 5835 int depth = 0, frame = 0, i, subprog_end; 5836 bool tail_call_reachable = false; 5837 int ret_insn[MAX_CALL_FRAMES]; 5838 int ret_prog[MAX_CALL_FRAMES]; 5839 int j; 5840 5841 i = subprog[idx].start; 5842 process_func: 5843 /* protect against potential stack overflow that might happen when 5844 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 5845 * depth for such case down to 256 so that the worst case scenario 5846 * would result in 8k stack size (32 which is tailcall limit * 256 = 5847 * 8k). 5848 * 5849 * To get the idea what might happen, see an example: 5850 * func1 -> sub rsp, 128 5851 * subfunc1 -> sub rsp, 256 5852 * tailcall1 -> add rsp, 256 5853 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 5854 * subfunc2 -> sub rsp, 64 5855 * subfunc22 -> sub rsp, 128 5856 * tailcall2 -> add rsp, 128 5857 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 5858 * 5859 * tailcall will unwind the current stack frame but it will not get rid 5860 * of caller's stack as shown on the example above. 5861 */ 5862 if (idx && subprog[idx].has_tail_call && depth >= 256) { 5863 verbose(env, 5864 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 5865 depth); 5866 return -EACCES; 5867 } 5868 /* round up to 32-bytes, since this is granularity 5869 * of interpreter stack size 5870 */ 5871 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5872 if (depth > MAX_BPF_STACK) { 5873 verbose(env, "combined stack size of %d calls is %d. Too large\n", 5874 frame + 1, depth); 5875 return -EACCES; 5876 } 5877 continue_func: 5878 subprog_end = subprog[idx + 1].start; 5879 for (; i < subprog_end; i++) { 5880 int next_insn, sidx; 5881 5882 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i)) 5883 continue; 5884 /* remember insn and function to return to */ 5885 ret_insn[frame] = i + 1; 5886 ret_prog[frame] = idx; 5887 5888 /* find the callee */ 5889 next_insn = i + insn[i].imm + 1; 5890 sidx = find_subprog(env, next_insn); 5891 if (sidx < 0) { 5892 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5893 next_insn); 5894 return -EFAULT; 5895 } 5896 if (subprog[sidx].is_async_cb) { 5897 if (subprog[sidx].has_tail_call) { 5898 verbose(env, "verifier bug. subprog has tail_call and async cb\n"); 5899 return -EFAULT; 5900 } 5901 /* async callbacks don't increase bpf prog stack size unless called directly */ 5902 if (!bpf_pseudo_call(insn + i)) 5903 continue; 5904 } 5905 i = next_insn; 5906 idx = sidx; 5907 5908 if (subprog[idx].has_tail_call) 5909 tail_call_reachable = true; 5910 5911 frame++; 5912 if (frame >= MAX_CALL_FRAMES) { 5913 verbose(env, "the call stack of %d frames is too deep !\n", 5914 frame); 5915 return -E2BIG; 5916 } 5917 goto process_func; 5918 } 5919 /* if tail call got detected across bpf2bpf calls then mark each of the 5920 * currently present subprog frames as tail call reachable subprogs; 5921 * this info will be utilized by JIT so that we will be preserving the 5922 * tail call counter throughout bpf2bpf calls combined with tailcalls 5923 */ 5924 if (tail_call_reachable) 5925 for (j = 0; j < frame; j++) 5926 subprog[ret_prog[j]].tail_call_reachable = true; 5927 if (subprog[0].tail_call_reachable) 5928 env->prog->aux->tail_call_reachable = true; 5929 5930 /* end of for() loop means the last insn of the 'subprog' 5931 * was reached. Doesn't matter whether it was JA or EXIT 5932 */ 5933 if (frame == 0) 5934 return 0; 5935 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 5936 frame--; 5937 i = ret_insn[frame]; 5938 idx = ret_prog[frame]; 5939 goto continue_func; 5940 } 5941 5942 static int check_max_stack_depth(struct bpf_verifier_env *env) 5943 { 5944 struct bpf_subprog_info *si = env->subprog_info; 5945 int ret; 5946 5947 for (int i = 0; i < env->subprog_cnt; i++) { 5948 if (!i || si[i].is_async_cb) { 5949 ret = check_max_stack_depth_subprog(env, i); 5950 if (ret < 0) 5951 return ret; 5952 } 5953 continue; 5954 } 5955 return 0; 5956 } 5957 5958 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 5959 static int get_callee_stack_depth(struct bpf_verifier_env *env, 5960 const struct bpf_insn *insn, int idx) 5961 { 5962 int start = idx + insn->imm + 1, subprog; 5963 5964 subprog = find_subprog(env, start); 5965 if (subprog < 0) { 5966 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 5967 start); 5968 return -EFAULT; 5969 } 5970 return env->subprog_info[subprog].stack_depth; 5971 } 5972 #endif 5973 5974 static int __check_buffer_access(struct bpf_verifier_env *env, 5975 const char *buf_info, 5976 const struct bpf_reg_state *reg, 5977 int regno, int off, int size) 5978 { 5979 if (off < 0) { 5980 verbose(env, 5981 "R%d invalid %s buffer access: off=%d, size=%d\n", 5982 regno, buf_info, off, size); 5983 return -EACCES; 5984 } 5985 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 5986 char tn_buf[48]; 5987 5988 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 5989 verbose(env, 5990 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 5991 regno, off, tn_buf); 5992 return -EACCES; 5993 } 5994 5995 return 0; 5996 } 5997 5998 static int check_tp_buffer_access(struct bpf_verifier_env *env, 5999 const struct bpf_reg_state *reg, 6000 int regno, int off, int size) 6001 { 6002 int err; 6003 6004 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 6005 if (err) 6006 return err; 6007 6008 if (off + size > env->prog->aux->max_tp_access) 6009 env->prog->aux->max_tp_access = off + size; 6010 6011 return 0; 6012 } 6013 6014 static int check_buffer_access(struct bpf_verifier_env *env, 6015 const struct bpf_reg_state *reg, 6016 int regno, int off, int size, 6017 bool zero_size_allowed, 6018 u32 *max_access) 6019 { 6020 const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr"; 6021 int err; 6022 6023 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 6024 if (err) 6025 return err; 6026 6027 if (off + size > *max_access) 6028 *max_access = off + size; 6029 6030 return 0; 6031 } 6032 6033 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 6034 static void zext_32_to_64(struct bpf_reg_state *reg) 6035 { 6036 reg->var_off = tnum_subreg(reg->var_off); 6037 __reg_assign_32_into_64(reg); 6038 } 6039 6040 /* truncate register to smaller size (in bytes) 6041 * must be called with size < BPF_REG_SIZE 6042 */ 6043 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 6044 { 6045 u64 mask; 6046 6047 /* clear high bits in bit representation */ 6048 reg->var_off = tnum_cast(reg->var_off, size); 6049 6050 /* fix arithmetic bounds */ 6051 mask = ((u64)1 << (size * 8)) - 1; 6052 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 6053 reg->umin_value &= mask; 6054 reg->umax_value &= mask; 6055 } else { 6056 reg->umin_value = 0; 6057 reg->umax_value = mask; 6058 } 6059 reg->smin_value = reg->umin_value; 6060 reg->smax_value = reg->umax_value; 6061 6062 /* If size is smaller than 32bit register the 32bit register 6063 * values are also truncated so we push 64-bit bounds into 6064 * 32-bit bounds. Above were truncated < 32-bits already. 6065 */ 6066 if (size >= 4) 6067 return; 6068 __reg_combine_64_into_32(reg); 6069 } 6070 6071 static void set_sext64_default_val(struct bpf_reg_state *reg, int size) 6072 { 6073 if (size == 1) { 6074 reg->smin_value = reg->s32_min_value = S8_MIN; 6075 reg->smax_value = reg->s32_max_value = S8_MAX; 6076 } else if (size == 2) { 6077 reg->smin_value = reg->s32_min_value = S16_MIN; 6078 reg->smax_value = reg->s32_max_value = S16_MAX; 6079 } else { 6080 /* size == 4 */ 6081 reg->smin_value = reg->s32_min_value = S32_MIN; 6082 reg->smax_value = reg->s32_max_value = S32_MAX; 6083 } 6084 reg->umin_value = reg->u32_min_value = 0; 6085 reg->umax_value = U64_MAX; 6086 reg->u32_max_value = U32_MAX; 6087 reg->var_off = tnum_unknown; 6088 } 6089 6090 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size) 6091 { 6092 s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval; 6093 u64 top_smax_value, top_smin_value; 6094 u64 num_bits = size * 8; 6095 6096 if (tnum_is_const(reg->var_off)) { 6097 u64_cval = reg->var_off.value; 6098 if (size == 1) 6099 reg->var_off = tnum_const((s8)u64_cval); 6100 else if (size == 2) 6101 reg->var_off = tnum_const((s16)u64_cval); 6102 else 6103 /* size == 4 */ 6104 reg->var_off = tnum_const((s32)u64_cval); 6105 6106 u64_cval = reg->var_off.value; 6107 reg->smax_value = reg->smin_value = u64_cval; 6108 reg->umax_value = reg->umin_value = u64_cval; 6109 reg->s32_max_value = reg->s32_min_value = u64_cval; 6110 reg->u32_max_value = reg->u32_min_value = u64_cval; 6111 return; 6112 } 6113 6114 top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits; 6115 top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits; 6116 6117 if (top_smax_value != top_smin_value) 6118 goto out; 6119 6120 /* find the s64_min and s64_min after sign extension */ 6121 if (size == 1) { 6122 init_s64_max = (s8)reg->smax_value; 6123 init_s64_min = (s8)reg->smin_value; 6124 } else if (size == 2) { 6125 init_s64_max = (s16)reg->smax_value; 6126 init_s64_min = (s16)reg->smin_value; 6127 } else { 6128 init_s64_max = (s32)reg->smax_value; 6129 init_s64_min = (s32)reg->smin_value; 6130 } 6131 6132 s64_max = max(init_s64_max, init_s64_min); 6133 s64_min = min(init_s64_max, init_s64_min); 6134 6135 /* both of s64_max/s64_min positive or negative */ 6136 if ((s64_max >= 0) == (s64_min >= 0)) { 6137 reg->smin_value = reg->s32_min_value = s64_min; 6138 reg->smax_value = reg->s32_max_value = s64_max; 6139 reg->umin_value = reg->u32_min_value = s64_min; 6140 reg->umax_value = reg->u32_max_value = s64_max; 6141 reg->var_off = tnum_range(s64_min, s64_max); 6142 return; 6143 } 6144 6145 out: 6146 set_sext64_default_val(reg, size); 6147 } 6148 6149 static void set_sext32_default_val(struct bpf_reg_state *reg, int size) 6150 { 6151 if (size == 1) { 6152 reg->s32_min_value = S8_MIN; 6153 reg->s32_max_value = S8_MAX; 6154 } else { 6155 /* size == 2 */ 6156 reg->s32_min_value = S16_MIN; 6157 reg->s32_max_value = S16_MAX; 6158 } 6159 reg->u32_min_value = 0; 6160 reg->u32_max_value = U32_MAX; 6161 } 6162 6163 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size) 6164 { 6165 s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val; 6166 u32 top_smax_value, top_smin_value; 6167 u32 num_bits = size * 8; 6168 6169 if (tnum_is_const(reg->var_off)) { 6170 u32_val = reg->var_off.value; 6171 if (size == 1) 6172 reg->var_off = tnum_const((s8)u32_val); 6173 else 6174 reg->var_off = tnum_const((s16)u32_val); 6175 6176 u32_val = reg->var_off.value; 6177 reg->s32_min_value = reg->s32_max_value = u32_val; 6178 reg->u32_min_value = reg->u32_max_value = u32_val; 6179 return; 6180 } 6181 6182 top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits; 6183 top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits; 6184 6185 if (top_smax_value != top_smin_value) 6186 goto out; 6187 6188 /* find the s32_min and s32_min after sign extension */ 6189 if (size == 1) { 6190 init_s32_max = (s8)reg->s32_max_value; 6191 init_s32_min = (s8)reg->s32_min_value; 6192 } else { 6193 /* size == 2 */ 6194 init_s32_max = (s16)reg->s32_max_value; 6195 init_s32_min = (s16)reg->s32_min_value; 6196 } 6197 s32_max = max(init_s32_max, init_s32_min); 6198 s32_min = min(init_s32_max, init_s32_min); 6199 6200 if ((s32_min >= 0) == (s32_max >= 0)) { 6201 reg->s32_min_value = s32_min; 6202 reg->s32_max_value = s32_max; 6203 reg->u32_min_value = (u32)s32_min; 6204 reg->u32_max_value = (u32)s32_max; 6205 return; 6206 } 6207 6208 out: 6209 set_sext32_default_val(reg, size); 6210 } 6211 6212 static bool bpf_map_is_rdonly(const struct bpf_map *map) 6213 { 6214 /* A map is considered read-only if the following condition are true: 6215 * 6216 * 1) BPF program side cannot change any of the map content. The 6217 * BPF_F_RDONLY_PROG flag is throughout the lifetime of a map 6218 * and was set at map creation time. 6219 * 2) The map value(s) have been initialized from user space by a 6220 * loader and then "frozen", such that no new map update/delete 6221 * operations from syscall side are possible for the rest of 6222 * the map's lifetime from that point onwards. 6223 * 3) Any parallel/pending map update/delete operations from syscall 6224 * side have been completed. Only after that point, it's safe to 6225 * assume that map value(s) are immutable. 6226 */ 6227 return (map->map_flags & BPF_F_RDONLY_PROG) && 6228 READ_ONCE(map->frozen) && 6229 !bpf_map_write_active(map); 6230 } 6231 6232 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val, 6233 bool is_ldsx) 6234 { 6235 void *ptr; 6236 u64 addr; 6237 int err; 6238 6239 err = map->ops->map_direct_value_addr(map, &addr, off); 6240 if (err) 6241 return err; 6242 ptr = (void *)(long)addr + off; 6243 6244 switch (size) { 6245 case sizeof(u8): 6246 *val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr; 6247 break; 6248 case sizeof(u16): 6249 *val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr; 6250 break; 6251 case sizeof(u32): 6252 *val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr; 6253 break; 6254 case sizeof(u64): 6255 *val = *(u64 *)ptr; 6256 break; 6257 default: 6258 return -EINVAL; 6259 } 6260 return 0; 6261 } 6262 6263 #define BTF_TYPE_SAFE_RCU(__type) __PASTE(__type, __safe_rcu) 6264 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type) __PASTE(__type, __safe_rcu_or_null) 6265 #define BTF_TYPE_SAFE_TRUSTED(__type) __PASTE(__type, __safe_trusted) 6266 6267 /* 6268 * Allow list few fields as RCU trusted or full trusted. 6269 * This logic doesn't allow mix tagging and will be removed once GCC supports 6270 * btf_type_tag. 6271 */ 6272 6273 /* RCU trusted: these fields are trusted in RCU CS and never NULL */ 6274 BTF_TYPE_SAFE_RCU(struct task_struct) { 6275 const cpumask_t *cpus_ptr; 6276 struct css_set __rcu *cgroups; 6277 struct task_struct __rcu *real_parent; 6278 struct task_struct *group_leader; 6279 }; 6280 6281 BTF_TYPE_SAFE_RCU(struct cgroup) { 6282 /* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */ 6283 struct kernfs_node *kn; 6284 }; 6285 6286 BTF_TYPE_SAFE_RCU(struct css_set) { 6287 struct cgroup *dfl_cgrp; 6288 }; 6289 6290 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */ 6291 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) { 6292 struct file __rcu *exe_file; 6293 }; 6294 6295 /* skb->sk, req->sk are not RCU protected, but we mark them as such 6296 * because bpf prog accessible sockets are SOCK_RCU_FREE. 6297 */ 6298 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) { 6299 struct sock *sk; 6300 }; 6301 6302 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) { 6303 struct sock *sk; 6304 }; 6305 6306 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */ 6307 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) { 6308 struct seq_file *seq; 6309 }; 6310 6311 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) { 6312 struct bpf_iter_meta *meta; 6313 struct task_struct *task; 6314 }; 6315 6316 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) { 6317 struct file *file; 6318 }; 6319 6320 BTF_TYPE_SAFE_TRUSTED(struct file) { 6321 struct inode *f_inode; 6322 }; 6323 6324 BTF_TYPE_SAFE_TRUSTED(struct dentry) { 6325 /* no negative dentry-s in places where bpf can see it */ 6326 struct inode *d_inode; 6327 }; 6328 6329 BTF_TYPE_SAFE_TRUSTED(struct socket) { 6330 struct sock *sk; 6331 }; 6332 6333 static bool type_is_rcu(struct bpf_verifier_env *env, 6334 struct bpf_reg_state *reg, 6335 const char *field_name, u32 btf_id) 6336 { 6337 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct)); 6338 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup)); 6339 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set)); 6340 6341 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu"); 6342 } 6343 6344 static bool type_is_rcu_or_null(struct bpf_verifier_env *env, 6345 struct bpf_reg_state *reg, 6346 const char *field_name, u32 btf_id) 6347 { 6348 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct)); 6349 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff)); 6350 BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock)); 6351 6352 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null"); 6353 } 6354 6355 static bool type_is_trusted(struct bpf_verifier_env *env, 6356 struct bpf_reg_state *reg, 6357 const char *field_name, u32 btf_id) 6358 { 6359 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta)); 6360 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task)); 6361 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm)); 6362 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file)); 6363 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry)); 6364 BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket)); 6365 6366 return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted"); 6367 } 6368 6369 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 6370 struct bpf_reg_state *regs, 6371 int regno, int off, int size, 6372 enum bpf_access_type atype, 6373 int value_regno) 6374 { 6375 struct bpf_reg_state *reg = regs + regno; 6376 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 6377 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 6378 const char *field_name = NULL; 6379 enum bpf_type_flag flag = 0; 6380 u32 btf_id = 0; 6381 int ret; 6382 6383 if (!env->allow_ptr_leaks) { 6384 verbose(env, 6385 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6386 tname); 6387 return -EPERM; 6388 } 6389 if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) { 6390 verbose(env, 6391 "Cannot access kernel 'struct %s' from non-GPL compatible program\n", 6392 tname); 6393 return -EINVAL; 6394 } 6395 if (off < 0) { 6396 verbose(env, 6397 "R%d is ptr_%s invalid negative access: off=%d\n", 6398 regno, tname, off); 6399 return -EACCES; 6400 } 6401 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 6402 char tn_buf[48]; 6403 6404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6405 verbose(env, 6406 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 6407 regno, tname, off, tn_buf); 6408 return -EACCES; 6409 } 6410 6411 if (reg->type & MEM_USER) { 6412 verbose(env, 6413 "R%d is ptr_%s access user memory: off=%d\n", 6414 regno, tname, off); 6415 return -EACCES; 6416 } 6417 6418 if (reg->type & MEM_PERCPU) { 6419 verbose(env, 6420 "R%d is ptr_%s access percpu memory: off=%d\n", 6421 regno, tname, off); 6422 return -EACCES; 6423 } 6424 6425 if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) { 6426 if (!btf_is_kernel(reg->btf)) { 6427 verbose(env, "verifier internal error: reg->btf must be kernel btf\n"); 6428 return -EFAULT; 6429 } 6430 ret = env->ops->btf_struct_access(&env->log, reg, off, size); 6431 } else { 6432 /* Writes are permitted with default btf_struct_access for 6433 * program allocated objects (which always have ref_obj_id > 0), 6434 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC. 6435 */ 6436 if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) { 6437 verbose(env, "only read is supported\n"); 6438 return -EACCES; 6439 } 6440 6441 if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) && 6442 !reg->ref_obj_id) { 6443 verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n"); 6444 return -EFAULT; 6445 } 6446 6447 ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name); 6448 } 6449 6450 if (ret < 0) 6451 return ret; 6452 6453 if (ret != PTR_TO_BTF_ID) { 6454 /* just mark; */ 6455 6456 } else if (type_flag(reg->type) & PTR_UNTRUSTED) { 6457 /* If this is an untrusted pointer, all pointers formed by walking it 6458 * also inherit the untrusted flag. 6459 */ 6460 flag = PTR_UNTRUSTED; 6461 6462 } else if (is_trusted_reg(reg) || is_rcu_reg(reg)) { 6463 /* By default any pointer obtained from walking a trusted pointer is no 6464 * longer trusted, unless the field being accessed has explicitly been 6465 * marked as inheriting its parent's state of trust (either full or RCU). 6466 * For example: 6467 * 'cgroups' pointer is untrusted if task->cgroups dereference 6468 * happened in a sleepable program outside of bpf_rcu_read_lock() 6469 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU). 6470 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED. 6471 * 6472 * A regular RCU-protected pointer with __rcu tag can also be deemed 6473 * trusted if we are in an RCU CS. Such pointer can be NULL. 6474 */ 6475 if (type_is_trusted(env, reg, field_name, btf_id)) { 6476 flag |= PTR_TRUSTED; 6477 } else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) { 6478 if (type_is_rcu(env, reg, field_name, btf_id)) { 6479 /* ignore __rcu tag and mark it MEM_RCU */ 6480 flag |= MEM_RCU; 6481 } else if (flag & MEM_RCU || 6482 type_is_rcu_or_null(env, reg, field_name, btf_id)) { 6483 /* __rcu tagged pointers can be NULL */ 6484 flag |= MEM_RCU | PTR_MAYBE_NULL; 6485 6486 /* We always trust them */ 6487 if (type_is_rcu_or_null(env, reg, field_name, btf_id) && 6488 flag & PTR_UNTRUSTED) 6489 flag &= ~PTR_UNTRUSTED; 6490 } else if (flag & (MEM_PERCPU | MEM_USER)) { 6491 /* keep as-is */ 6492 } else { 6493 /* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */ 6494 clear_trusted_flags(&flag); 6495 } 6496 } else { 6497 /* 6498 * If not in RCU CS or MEM_RCU pointer can be NULL then 6499 * aggressively mark as untrusted otherwise such 6500 * pointers will be plain PTR_TO_BTF_ID without flags 6501 * and will be allowed to be passed into helpers for 6502 * compat reasons. 6503 */ 6504 flag = PTR_UNTRUSTED; 6505 } 6506 } else { 6507 /* Old compat. Deprecated */ 6508 clear_trusted_flags(&flag); 6509 } 6510 6511 if (atype == BPF_READ && value_regno >= 0) 6512 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag); 6513 6514 return 0; 6515 } 6516 6517 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 6518 struct bpf_reg_state *regs, 6519 int regno, int off, int size, 6520 enum bpf_access_type atype, 6521 int value_regno) 6522 { 6523 struct bpf_reg_state *reg = regs + regno; 6524 struct bpf_map *map = reg->map_ptr; 6525 struct bpf_reg_state map_reg; 6526 enum bpf_type_flag flag = 0; 6527 const struct btf_type *t; 6528 const char *tname; 6529 u32 btf_id; 6530 int ret; 6531 6532 if (!btf_vmlinux) { 6533 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 6534 return -ENOTSUPP; 6535 } 6536 6537 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 6538 verbose(env, "map_ptr access not supported for map type %d\n", 6539 map->map_type); 6540 return -ENOTSUPP; 6541 } 6542 6543 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 6544 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 6545 6546 if (!env->allow_ptr_leaks) { 6547 verbose(env, 6548 "'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 6549 tname); 6550 return -EPERM; 6551 } 6552 6553 if (off < 0) { 6554 verbose(env, "R%d is %s invalid negative access: off=%d\n", 6555 regno, tname, off); 6556 return -EACCES; 6557 } 6558 6559 if (atype != BPF_READ) { 6560 verbose(env, "only read from %s is supported\n", tname); 6561 return -EACCES; 6562 } 6563 6564 /* Simulate access to a PTR_TO_BTF_ID */ 6565 memset(&map_reg, 0, sizeof(map_reg)); 6566 mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0); 6567 ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL); 6568 if (ret < 0) 6569 return ret; 6570 6571 if (value_regno >= 0) 6572 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag); 6573 6574 return 0; 6575 } 6576 6577 /* Check that the stack access at the given offset is within bounds. The 6578 * maximum valid offset is -1. 6579 * 6580 * The minimum valid offset is -MAX_BPF_STACK for writes, and 6581 * -state->allocated_stack for reads. 6582 */ 6583 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env, 6584 s64 off, 6585 struct bpf_func_state *state, 6586 enum bpf_access_type t) 6587 { 6588 int min_valid_off; 6589 6590 if (t == BPF_WRITE || env->allow_uninit_stack) 6591 min_valid_off = -MAX_BPF_STACK; 6592 else 6593 min_valid_off = -state->allocated_stack; 6594 6595 if (off < min_valid_off || off > -1) 6596 return -EACCES; 6597 return 0; 6598 } 6599 6600 /* Check that the stack access at 'regno + off' falls within the maximum stack 6601 * bounds. 6602 * 6603 * 'off' includes `regno->offset`, but not its dynamic part (if any). 6604 */ 6605 static int check_stack_access_within_bounds( 6606 struct bpf_verifier_env *env, 6607 int regno, int off, int access_size, 6608 enum bpf_access_src src, enum bpf_access_type type) 6609 { 6610 struct bpf_reg_state *regs = cur_regs(env); 6611 struct bpf_reg_state *reg = regs + regno; 6612 struct bpf_func_state *state = func(env, reg); 6613 s64 min_off, max_off; 6614 int err; 6615 char *err_extra; 6616 6617 if (src == ACCESS_HELPER) 6618 /* We don't know if helpers are reading or writing (or both). */ 6619 err_extra = " indirect access to"; 6620 else if (type == BPF_READ) 6621 err_extra = " read from"; 6622 else 6623 err_extra = " write to"; 6624 6625 if (tnum_is_const(reg->var_off)) { 6626 min_off = (s64)reg->var_off.value + off; 6627 max_off = min_off + access_size; 6628 } else { 6629 if (reg->smax_value >= BPF_MAX_VAR_OFF || 6630 reg->smin_value <= -BPF_MAX_VAR_OFF) { 6631 verbose(env, "invalid unbounded variable-offset%s stack R%d\n", 6632 err_extra, regno); 6633 return -EACCES; 6634 } 6635 min_off = reg->smin_value + off; 6636 max_off = reg->smax_value + off + access_size; 6637 } 6638 6639 err = check_stack_slot_within_bounds(env, min_off, state, type); 6640 if (!err && max_off > 0) 6641 err = -EINVAL; /* out of stack access into non-negative offsets */ 6642 if (!err && access_size < 0) 6643 /* access_size should not be negative (or overflow an int); others checks 6644 * along the way should have prevented such an access. 6645 */ 6646 err = -EFAULT; /* invalid negative access size; integer overflow? */ 6647 6648 if (err) { 6649 if (tnum_is_const(reg->var_off)) { 6650 verbose(env, "invalid%s stack R%d off=%d size=%d\n", 6651 err_extra, regno, off, access_size); 6652 } else { 6653 char tn_buf[48]; 6654 6655 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6656 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n", 6657 err_extra, regno, tn_buf, access_size); 6658 } 6659 return err; 6660 } 6661 6662 return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE)); 6663 } 6664 6665 /* check whether memory at (regno + off) is accessible for t = (read | write) 6666 * if t==write, value_regno is a register which value is stored into memory 6667 * if t==read, value_regno is a register which will receive the value from memory 6668 * if t==write && value_regno==-1, some unknown value is stored into memory 6669 * if t==read && value_regno==-1, don't care what we read from memory 6670 */ 6671 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 6672 int off, int bpf_size, enum bpf_access_type t, 6673 int value_regno, bool strict_alignment_once, bool is_ldsx) 6674 { 6675 struct bpf_reg_state *regs = cur_regs(env); 6676 struct bpf_reg_state *reg = regs + regno; 6677 int size, err = 0; 6678 6679 size = bpf_size_to_bytes(bpf_size); 6680 if (size < 0) 6681 return size; 6682 6683 /* alignment checks will add in reg->off themselves */ 6684 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 6685 if (err) 6686 return err; 6687 6688 /* for access checks, reg->off is just part of off */ 6689 off += reg->off; 6690 6691 if (reg->type == PTR_TO_MAP_KEY) { 6692 if (t == BPF_WRITE) { 6693 verbose(env, "write to change key R%d not allowed\n", regno); 6694 return -EACCES; 6695 } 6696 6697 err = check_mem_region_access(env, regno, off, size, 6698 reg->map_ptr->key_size, false); 6699 if (err) 6700 return err; 6701 if (value_regno >= 0) 6702 mark_reg_unknown(env, regs, value_regno); 6703 } else if (reg->type == PTR_TO_MAP_VALUE) { 6704 struct btf_field *kptr_field = NULL; 6705 6706 if (t == BPF_WRITE && value_regno >= 0 && 6707 is_pointer_value(env, value_regno)) { 6708 verbose(env, "R%d leaks addr into map\n", value_regno); 6709 return -EACCES; 6710 } 6711 err = check_map_access_type(env, regno, off, size, t); 6712 if (err) 6713 return err; 6714 err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT); 6715 if (err) 6716 return err; 6717 if (tnum_is_const(reg->var_off)) 6718 kptr_field = btf_record_find(reg->map_ptr->record, 6719 off + reg->var_off.value, BPF_KPTR); 6720 if (kptr_field) { 6721 err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field); 6722 } else if (t == BPF_READ && value_regno >= 0) { 6723 struct bpf_map *map = reg->map_ptr; 6724 6725 /* if map is read-only, track its contents as scalars */ 6726 if (tnum_is_const(reg->var_off) && 6727 bpf_map_is_rdonly(map) && 6728 map->ops->map_direct_value_addr) { 6729 int map_off = off + reg->var_off.value; 6730 u64 val = 0; 6731 6732 err = bpf_map_direct_read(map, map_off, size, 6733 &val, is_ldsx); 6734 if (err) 6735 return err; 6736 6737 regs[value_regno].type = SCALAR_VALUE; 6738 __mark_reg_known(®s[value_regno], val); 6739 } else { 6740 mark_reg_unknown(env, regs, value_regno); 6741 } 6742 } 6743 } else if (base_type(reg->type) == PTR_TO_MEM) { 6744 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6745 6746 if (type_may_be_null(reg->type)) { 6747 verbose(env, "R%d invalid mem access '%s'\n", regno, 6748 reg_type_str(env, reg->type)); 6749 return -EACCES; 6750 } 6751 6752 if (t == BPF_WRITE && rdonly_mem) { 6753 verbose(env, "R%d cannot write into %s\n", 6754 regno, reg_type_str(env, reg->type)); 6755 return -EACCES; 6756 } 6757 6758 if (t == BPF_WRITE && value_regno >= 0 && 6759 is_pointer_value(env, value_regno)) { 6760 verbose(env, "R%d leaks addr into mem\n", value_regno); 6761 return -EACCES; 6762 } 6763 6764 err = check_mem_region_access(env, regno, off, size, 6765 reg->mem_size, false); 6766 if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem)) 6767 mark_reg_unknown(env, regs, value_regno); 6768 } else if (reg->type == PTR_TO_CTX) { 6769 enum bpf_reg_type reg_type = SCALAR_VALUE; 6770 struct btf *btf = NULL; 6771 u32 btf_id = 0; 6772 6773 if (t == BPF_WRITE && value_regno >= 0 && 6774 is_pointer_value(env, value_regno)) { 6775 verbose(env, "R%d leaks addr into ctx\n", value_regno); 6776 return -EACCES; 6777 } 6778 6779 err = check_ptr_off_reg(env, reg, regno); 6780 if (err < 0) 6781 return err; 6782 6783 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, 6784 &btf_id); 6785 if (err) 6786 verbose_linfo(env, insn_idx, "; "); 6787 if (!err && t == BPF_READ && value_regno >= 0) { 6788 /* ctx access returns either a scalar, or a 6789 * PTR_TO_PACKET[_META,_END]. In the latter 6790 * case, we know the offset is zero. 6791 */ 6792 if (reg_type == SCALAR_VALUE) { 6793 mark_reg_unknown(env, regs, value_regno); 6794 } else { 6795 mark_reg_known_zero(env, regs, 6796 value_regno); 6797 if (type_may_be_null(reg_type)) 6798 regs[value_regno].id = ++env->id_gen; 6799 /* A load of ctx field could have different 6800 * actual load size with the one encoded in the 6801 * insn. When the dst is PTR, it is for sure not 6802 * a sub-register. 6803 */ 6804 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 6805 if (base_type(reg_type) == PTR_TO_BTF_ID) { 6806 regs[value_regno].btf = btf; 6807 regs[value_regno].btf_id = btf_id; 6808 } 6809 } 6810 regs[value_regno].type = reg_type; 6811 } 6812 6813 } else if (reg->type == PTR_TO_STACK) { 6814 /* Basic bounds checks. */ 6815 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t); 6816 if (err) 6817 return err; 6818 6819 if (t == BPF_READ) 6820 err = check_stack_read(env, regno, off, size, 6821 value_regno); 6822 else 6823 err = check_stack_write(env, regno, off, size, 6824 value_regno, insn_idx); 6825 } else if (reg_is_pkt_pointer(reg)) { 6826 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 6827 verbose(env, "cannot write into packet\n"); 6828 return -EACCES; 6829 } 6830 if (t == BPF_WRITE && value_regno >= 0 && 6831 is_pointer_value(env, value_regno)) { 6832 verbose(env, "R%d leaks addr into packet\n", 6833 value_regno); 6834 return -EACCES; 6835 } 6836 err = check_packet_access(env, regno, off, size, false); 6837 if (!err && t == BPF_READ && value_regno >= 0) 6838 mark_reg_unknown(env, regs, value_regno); 6839 } else if (reg->type == PTR_TO_FLOW_KEYS) { 6840 if (t == BPF_WRITE && value_regno >= 0 && 6841 is_pointer_value(env, value_regno)) { 6842 verbose(env, "R%d leaks addr into flow keys\n", 6843 value_regno); 6844 return -EACCES; 6845 } 6846 6847 err = check_flow_keys_access(env, off, size); 6848 if (!err && t == BPF_READ && value_regno >= 0) 6849 mark_reg_unknown(env, regs, value_regno); 6850 } else if (type_is_sk_pointer(reg->type)) { 6851 if (t == BPF_WRITE) { 6852 verbose(env, "R%d cannot write into %s\n", 6853 regno, reg_type_str(env, reg->type)); 6854 return -EACCES; 6855 } 6856 err = check_sock_access(env, insn_idx, regno, off, size, t); 6857 if (!err && value_regno >= 0) 6858 mark_reg_unknown(env, regs, value_regno); 6859 } else if (reg->type == PTR_TO_TP_BUFFER) { 6860 err = check_tp_buffer_access(env, reg, regno, off, size); 6861 if (!err && t == BPF_READ && value_regno >= 0) 6862 mark_reg_unknown(env, regs, value_regno); 6863 } else if (base_type(reg->type) == PTR_TO_BTF_ID && 6864 !type_may_be_null(reg->type)) { 6865 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 6866 value_regno); 6867 } else if (reg->type == CONST_PTR_TO_MAP) { 6868 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 6869 value_regno); 6870 } else if (base_type(reg->type) == PTR_TO_BUF) { 6871 bool rdonly_mem = type_is_rdonly_mem(reg->type); 6872 u32 *max_access; 6873 6874 if (rdonly_mem) { 6875 if (t == BPF_WRITE) { 6876 verbose(env, "R%d cannot write into %s\n", 6877 regno, reg_type_str(env, reg->type)); 6878 return -EACCES; 6879 } 6880 max_access = &env->prog->aux->max_rdonly_access; 6881 } else { 6882 max_access = &env->prog->aux->max_rdwr_access; 6883 } 6884 6885 err = check_buffer_access(env, reg, regno, off, size, false, 6886 max_access); 6887 6888 if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ)) 6889 mark_reg_unknown(env, regs, value_regno); 6890 } else { 6891 verbose(env, "R%d invalid mem access '%s'\n", regno, 6892 reg_type_str(env, reg->type)); 6893 return -EACCES; 6894 } 6895 6896 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 6897 regs[value_regno].type == SCALAR_VALUE) { 6898 if (!is_ldsx) 6899 /* b/h/w load zero-extends, mark upper bits as known 0 */ 6900 coerce_reg_to_size(®s[value_regno], size); 6901 else 6902 coerce_reg_to_size_sx(®s[value_regno], size); 6903 } 6904 return err; 6905 } 6906 6907 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 6908 { 6909 int load_reg; 6910 int err; 6911 6912 switch (insn->imm) { 6913 case BPF_ADD: 6914 case BPF_ADD | BPF_FETCH: 6915 case BPF_AND: 6916 case BPF_AND | BPF_FETCH: 6917 case BPF_OR: 6918 case BPF_OR | BPF_FETCH: 6919 case BPF_XOR: 6920 case BPF_XOR | BPF_FETCH: 6921 case BPF_XCHG: 6922 case BPF_CMPXCHG: 6923 break; 6924 default: 6925 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm); 6926 return -EINVAL; 6927 } 6928 6929 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) { 6930 verbose(env, "invalid atomic operand size\n"); 6931 return -EINVAL; 6932 } 6933 6934 /* check src1 operand */ 6935 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6936 if (err) 6937 return err; 6938 6939 /* check src2 operand */ 6940 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6941 if (err) 6942 return err; 6943 6944 if (insn->imm == BPF_CMPXCHG) { 6945 /* Check comparison of R0 with memory location */ 6946 const u32 aux_reg = BPF_REG_0; 6947 6948 err = check_reg_arg(env, aux_reg, SRC_OP); 6949 if (err) 6950 return err; 6951 6952 if (is_pointer_value(env, aux_reg)) { 6953 verbose(env, "R%d leaks addr into mem\n", aux_reg); 6954 return -EACCES; 6955 } 6956 } 6957 6958 if (is_pointer_value(env, insn->src_reg)) { 6959 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 6960 return -EACCES; 6961 } 6962 6963 if (is_ctx_reg(env, insn->dst_reg) || 6964 is_pkt_reg(env, insn->dst_reg) || 6965 is_flow_key_reg(env, insn->dst_reg) || 6966 is_sk_reg(env, insn->dst_reg)) { 6967 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n", 6968 insn->dst_reg, 6969 reg_type_str(env, reg_state(env, insn->dst_reg)->type)); 6970 return -EACCES; 6971 } 6972 6973 if (insn->imm & BPF_FETCH) { 6974 if (insn->imm == BPF_CMPXCHG) 6975 load_reg = BPF_REG_0; 6976 else 6977 load_reg = insn->src_reg; 6978 6979 /* check and record load of old value */ 6980 err = check_reg_arg(env, load_reg, DST_OP); 6981 if (err) 6982 return err; 6983 } else { 6984 /* This instruction accesses a memory location but doesn't 6985 * actually load it into a register. 6986 */ 6987 load_reg = -1; 6988 } 6989 6990 /* Check whether we can read the memory, with second call for fetch 6991 * case to simulate the register fill. 6992 */ 6993 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6994 BPF_SIZE(insn->code), BPF_READ, -1, true, false); 6995 if (!err && load_reg >= 0) 6996 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 6997 BPF_SIZE(insn->code), BPF_READ, load_reg, 6998 true, false); 6999 if (err) 7000 return err; 7001 7002 /* Check whether we can write into the same memory. */ 7003 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 7004 BPF_SIZE(insn->code), BPF_WRITE, -1, true, false); 7005 if (err) 7006 return err; 7007 7008 return 0; 7009 } 7010 7011 /* When register 'regno' is used to read the stack (either directly or through 7012 * a helper function) make sure that it's within stack boundary and, depending 7013 * on the access type and privileges, that all elements of the stack are 7014 * initialized. 7015 * 7016 * 'off' includes 'regno->off', but not its dynamic part (if any). 7017 * 7018 * All registers that have been spilled on the stack in the slots within the 7019 * read offsets are marked as read. 7020 */ 7021 static int check_stack_range_initialized( 7022 struct bpf_verifier_env *env, int regno, int off, 7023 int access_size, bool zero_size_allowed, 7024 enum bpf_access_src type, struct bpf_call_arg_meta *meta) 7025 { 7026 struct bpf_reg_state *reg = reg_state(env, regno); 7027 struct bpf_func_state *state = func(env, reg); 7028 int err, min_off, max_off, i, j, slot, spi; 7029 char *err_extra = type == ACCESS_HELPER ? " indirect" : ""; 7030 enum bpf_access_type bounds_check_type; 7031 /* Some accesses can write anything into the stack, others are 7032 * read-only. 7033 */ 7034 bool clobber = false; 7035 7036 if (access_size == 0 && !zero_size_allowed) { 7037 verbose(env, "invalid zero-sized read\n"); 7038 return -EACCES; 7039 } 7040 7041 if (type == ACCESS_HELPER) { 7042 /* The bounds checks for writes are more permissive than for 7043 * reads. However, if raw_mode is not set, we'll do extra 7044 * checks below. 7045 */ 7046 bounds_check_type = BPF_WRITE; 7047 clobber = true; 7048 } else { 7049 bounds_check_type = BPF_READ; 7050 } 7051 err = check_stack_access_within_bounds(env, regno, off, access_size, 7052 type, bounds_check_type); 7053 if (err) 7054 return err; 7055 7056 7057 if (tnum_is_const(reg->var_off)) { 7058 min_off = max_off = reg->var_off.value + off; 7059 } else { 7060 /* Variable offset is prohibited for unprivileged mode for 7061 * simplicity since it requires corresponding support in 7062 * Spectre masking for stack ALU. 7063 * See also retrieve_ptr_limit(). 7064 */ 7065 if (!env->bypass_spec_v1) { 7066 char tn_buf[48]; 7067 7068 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7069 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n", 7070 regno, err_extra, tn_buf); 7071 return -EACCES; 7072 } 7073 /* Only initialized buffer on stack is allowed to be accessed 7074 * with variable offset. With uninitialized buffer it's hard to 7075 * guarantee that whole memory is marked as initialized on 7076 * helper return since specific bounds are unknown what may 7077 * cause uninitialized stack leaking. 7078 */ 7079 if (meta && meta->raw_mode) 7080 meta = NULL; 7081 7082 min_off = reg->smin_value + off; 7083 max_off = reg->smax_value + off; 7084 } 7085 7086 if (meta && meta->raw_mode) { 7087 /* Ensure we won't be overwriting dynptrs when simulating byte 7088 * by byte access in check_helper_call using meta.access_size. 7089 * This would be a problem if we have a helper in the future 7090 * which takes: 7091 * 7092 * helper(uninit_mem, len, dynptr) 7093 * 7094 * Now, uninint_mem may overlap with dynptr pointer. Hence, it 7095 * may end up writing to dynptr itself when touching memory from 7096 * arg 1. This can be relaxed on a case by case basis for known 7097 * safe cases, but reject due to the possibilitiy of aliasing by 7098 * default. 7099 */ 7100 for (i = min_off; i < max_off + access_size; i++) { 7101 int stack_off = -i - 1; 7102 7103 spi = __get_spi(i); 7104 /* raw_mode may write past allocated_stack */ 7105 if (state->allocated_stack <= stack_off) 7106 continue; 7107 if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) { 7108 verbose(env, "potential write to dynptr at off=%d disallowed\n", i); 7109 return -EACCES; 7110 } 7111 } 7112 meta->access_size = access_size; 7113 meta->regno = regno; 7114 return 0; 7115 } 7116 7117 for (i = min_off; i < max_off + access_size; i++) { 7118 u8 *stype; 7119 7120 slot = -i - 1; 7121 spi = slot / BPF_REG_SIZE; 7122 if (state->allocated_stack <= slot) { 7123 verbose(env, "verifier bug: allocated_stack too small"); 7124 return -EFAULT; 7125 } 7126 7127 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 7128 if (*stype == STACK_MISC) 7129 goto mark; 7130 if ((*stype == STACK_ZERO) || 7131 (*stype == STACK_INVALID && env->allow_uninit_stack)) { 7132 if (clobber) { 7133 /* helper can write anything into the stack */ 7134 *stype = STACK_MISC; 7135 } 7136 goto mark; 7137 } 7138 7139 if (is_spilled_reg(&state->stack[spi]) && 7140 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 7141 env->allow_ptr_leaks)) { 7142 if (clobber) { 7143 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 7144 for (j = 0; j < BPF_REG_SIZE; j++) 7145 scrub_spilled_slot(&state->stack[spi].slot_type[j]); 7146 } 7147 goto mark; 7148 } 7149 7150 if (tnum_is_const(reg->var_off)) { 7151 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n", 7152 err_extra, regno, min_off, i - min_off, access_size); 7153 } else { 7154 char tn_buf[48]; 7155 7156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 7157 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n", 7158 err_extra, regno, tn_buf, i - min_off, access_size); 7159 } 7160 return -EACCES; 7161 mark: 7162 /* reading any byte out of 8-byte 'spill_slot' will cause 7163 * the whole slot to be marked as 'read' 7164 */ 7165 mark_reg_read(env, &state->stack[spi].spilled_ptr, 7166 state->stack[spi].spilled_ptr.parent, 7167 REG_LIVE_READ64); 7168 /* We do not set REG_LIVE_WRITTEN for stack slot, as we can not 7169 * be sure that whether stack slot is written to or not. Hence, 7170 * we must still conservatively propagate reads upwards even if 7171 * helper may write to the entire memory range. 7172 */ 7173 } 7174 return 0; 7175 } 7176 7177 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 7178 int access_size, bool zero_size_allowed, 7179 struct bpf_call_arg_meta *meta) 7180 { 7181 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7182 u32 *max_access; 7183 7184 switch (base_type(reg->type)) { 7185 case PTR_TO_PACKET: 7186 case PTR_TO_PACKET_META: 7187 return check_packet_access(env, regno, reg->off, access_size, 7188 zero_size_allowed); 7189 case PTR_TO_MAP_KEY: 7190 if (meta && meta->raw_mode) { 7191 verbose(env, "R%d cannot write into %s\n", regno, 7192 reg_type_str(env, reg->type)); 7193 return -EACCES; 7194 } 7195 return check_mem_region_access(env, regno, reg->off, access_size, 7196 reg->map_ptr->key_size, false); 7197 case PTR_TO_MAP_VALUE: 7198 if (check_map_access_type(env, regno, reg->off, access_size, 7199 meta && meta->raw_mode ? BPF_WRITE : 7200 BPF_READ)) 7201 return -EACCES; 7202 return check_map_access(env, regno, reg->off, access_size, 7203 zero_size_allowed, ACCESS_HELPER); 7204 case PTR_TO_MEM: 7205 if (type_is_rdonly_mem(reg->type)) { 7206 if (meta && meta->raw_mode) { 7207 verbose(env, "R%d cannot write into %s\n", regno, 7208 reg_type_str(env, reg->type)); 7209 return -EACCES; 7210 } 7211 } 7212 return check_mem_region_access(env, regno, reg->off, 7213 access_size, reg->mem_size, 7214 zero_size_allowed); 7215 case PTR_TO_BUF: 7216 if (type_is_rdonly_mem(reg->type)) { 7217 if (meta && meta->raw_mode) { 7218 verbose(env, "R%d cannot write into %s\n", regno, 7219 reg_type_str(env, reg->type)); 7220 return -EACCES; 7221 } 7222 7223 max_access = &env->prog->aux->max_rdonly_access; 7224 } else { 7225 max_access = &env->prog->aux->max_rdwr_access; 7226 } 7227 return check_buffer_access(env, reg, regno, reg->off, 7228 access_size, zero_size_allowed, 7229 max_access); 7230 case PTR_TO_STACK: 7231 return check_stack_range_initialized( 7232 env, 7233 regno, reg->off, access_size, 7234 zero_size_allowed, ACCESS_HELPER, meta); 7235 case PTR_TO_BTF_ID: 7236 return check_ptr_to_btf_access(env, regs, regno, reg->off, 7237 access_size, BPF_READ, -1); 7238 case PTR_TO_CTX: 7239 /* in case the function doesn't know how to access the context, 7240 * (because we are in a program of type SYSCALL for example), we 7241 * can not statically check its size. 7242 * Dynamically check it now. 7243 */ 7244 if (!env->ops->convert_ctx_access) { 7245 enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ; 7246 int offset = access_size - 1; 7247 7248 /* Allow zero-byte read from PTR_TO_CTX */ 7249 if (access_size == 0) 7250 return zero_size_allowed ? 0 : -EACCES; 7251 7252 return check_mem_access(env, env->insn_idx, regno, offset, BPF_B, 7253 atype, -1, false, false); 7254 } 7255 7256 fallthrough; 7257 default: /* scalar_value or invalid ptr */ 7258 /* Allow zero-byte read from NULL, regardless of pointer type */ 7259 if (zero_size_allowed && access_size == 0 && 7260 register_is_null(reg)) 7261 return 0; 7262 7263 verbose(env, "R%d type=%s ", regno, 7264 reg_type_str(env, reg->type)); 7265 verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK)); 7266 return -EACCES; 7267 } 7268 } 7269 7270 static int check_mem_size_reg(struct bpf_verifier_env *env, 7271 struct bpf_reg_state *reg, u32 regno, 7272 bool zero_size_allowed, 7273 struct bpf_call_arg_meta *meta) 7274 { 7275 int err; 7276 7277 /* This is used to refine r0 return value bounds for helpers 7278 * that enforce this value as an upper bound on return values. 7279 * See do_refine_retval_range() for helpers that can refine 7280 * the return value. C type of helper is u32 so we pull register 7281 * bound from umax_value however, if negative verifier errors 7282 * out. Only upper bounds can be learned because retval is an 7283 * int type and negative retvals are allowed. 7284 */ 7285 meta->msize_max_value = reg->umax_value; 7286 7287 /* The register is SCALAR_VALUE; the access check 7288 * happens using its boundaries. 7289 */ 7290 if (!tnum_is_const(reg->var_off)) 7291 /* For unprivileged variable accesses, disable raw 7292 * mode so that the program is required to 7293 * initialize all the memory that the helper could 7294 * just partially fill up. 7295 */ 7296 meta = NULL; 7297 7298 if (reg->smin_value < 0) { 7299 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 7300 regno); 7301 return -EACCES; 7302 } 7303 7304 if (reg->umin_value == 0) { 7305 err = check_helper_mem_access(env, regno - 1, 0, 7306 zero_size_allowed, 7307 meta); 7308 if (err) 7309 return err; 7310 } 7311 7312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 7313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 7314 regno); 7315 return -EACCES; 7316 } 7317 err = check_helper_mem_access(env, regno - 1, 7318 reg->umax_value, 7319 zero_size_allowed, meta); 7320 if (!err) 7321 err = mark_chain_precision(env, regno); 7322 return err; 7323 } 7324 7325 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7326 u32 regno, u32 mem_size) 7327 { 7328 bool may_be_null = type_may_be_null(reg->type); 7329 struct bpf_reg_state saved_reg; 7330 struct bpf_call_arg_meta meta; 7331 int err; 7332 7333 if (register_is_null(reg)) 7334 return 0; 7335 7336 memset(&meta, 0, sizeof(meta)); 7337 /* Assuming that the register contains a value check if the memory 7338 * access is safe. Temporarily save and restore the register's state as 7339 * the conversion shouldn't be visible to a caller. 7340 */ 7341 if (may_be_null) { 7342 saved_reg = *reg; 7343 mark_ptr_not_null_reg(reg); 7344 } 7345 7346 err = check_helper_mem_access(env, regno, mem_size, true, &meta); 7347 /* Check access for BPF_WRITE */ 7348 meta.raw_mode = true; 7349 err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta); 7350 7351 if (may_be_null) 7352 *reg = saved_reg; 7353 7354 return err; 7355 } 7356 7357 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 7358 u32 regno) 7359 { 7360 struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1]; 7361 bool may_be_null = type_may_be_null(mem_reg->type); 7362 struct bpf_reg_state saved_reg; 7363 struct bpf_call_arg_meta meta; 7364 int err; 7365 7366 WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5); 7367 7368 memset(&meta, 0, sizeof(meta)); 7369 7370 if (may_be_null) { 7371 saved_reg = *mem_reg; 7372 mark_ptr_not_null_reg(mem_reg); 7373 } 7374 7375 err = check_mem_size_reg(env, reg, regno, true, &meta); 7376 /* Check access for BPF_WRITE */ 7377 meta.raw_mode = true; 7378 err = err ?: check_mem_size_reg(env, reg, regno, true, &meta); 7379 7380 if (may_be_null) 7381 *mem_reg = saved_reg; 7382 return err; 7383 } 7384 7385 /* Implementation details: 7386 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL. 7387 * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL. 7388 * Two bpf_map_lookups (even with the same key) will have different reg->id. 7389 * Two separate bpf_obj_new will also have different reg->id. 7390 * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier 7391 * clears reg->id after value_or_null->value transition, since the verifier only 7392 * cares about the range of access to valid map value pointer and doesn't care 7393 * about actual address of the map element. 7394 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 7395 * reg->id > 0 after value_or_null->value transition. By doing so 7396 * two bpf_map_lookups will be considered two different pointers that 7397 * point to different bpf_spin_locks. Likewise for pointers to allocated objects 7398 * returned from bpf_obj_new. 7399 * The verifier allows taking only one bpf_spin_lock at a time to avoid 7400 * dead-locks. 7401 * Since only one bpf_spin_lock is allowed the checks are simpler than 7402 * reg_is_refcounted() logic. The verifier needs to remember only 7403 * one spin_lock instead of array of acquired_refs. 7404 * cur_state->active_lock remembers which map value element or allocated 7405 * object got locked and clears it after bpf_spin_unlock. 7406 */ 7407 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 7408 bool is_lock) 7409 { 7410 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7411 struct bpf_verifier_state *cur = env->cur_state; 7412 bool is_const = tnum_is_const(reg->var_off); 7413 u64 val = reg->var_off.value; 7414 struct bpf_map *map = NULL; 7415 struct btf *btf = NULL; 7416 struct btf_record *rec; 7417 7418 if (!is_const) { 7419 verbose(env, 7420 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 7421 regno); 7422 return -EINVAL; 7423 } 7424 if (reg->type == PTR_TO_MAP_VALUE) { 7425 map = reg->map_ptr; 7426 if (!map->btf) { 7427 verbose(env, 7428 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 7429 map->name); 7430 return -EINVAL; 7431 } 7432 } else { 7433 btf = reg->btf; 7434 } 7435 7436 rec = reg_btf_record(reg); 7437 if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) { 7438 verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local", 7439 map ? map->name : "kptr"); 7440 return -EINVAL; 7441 } 7442 if (rec->spin_lock_off != val + reg->off) { 7443 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n", 7444 val + reg->off, rec->spin_lock_off); 7445 return -EINVAL; 7446 } 7447 if (is_lock) { 7448 if (cur->active_lock.ptr) { 7449 verbose(env, 7450 "Locking two bpf_spin_locks are not allowed\n"); 7451 return -EINVAL; 7452 } 7453 if (map) 7454 cur->active_lock.ptr = map; 7455 else 7456 cur->active_lock.ptr = btf; 7457 cur->active_lock.id = reg->id; 7458 } else { 7459 void *ptr; 7460 7461 if (map) 7462 ptr = map; 7463 else 7464 ptr = btf; 7465 7466 if (!cur->active_lock.ptr) { 7467 verbose(env, "bpf_spin_unlock without taking a lock\n"); 7468 return -EINVAL; 7469 } 7470 if (cur->active_lock.ptr != ptr || 7471 cur->active_lock.id != reg->id) { 7472 verbose(env, "bpf_spin_unlock of different lock\n"); 7473 return -EINVAL; 7474 } 7475 7476 invalidate_non_owning_refs(env); 7477 7478 cur->active_lock.ptr = NULL; 7479 cur->active_lock.id = 0; 7480 } 7481 return 0; 7482 } 7483 7484 static int process_timer_func(struct bpf_verifier_env *env, int regno, 7485 struct bpf_call_arg_meta *meta) 7486 { 7487 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7488 bool is_const = tnum_is_const(reg->var_off); 7489 struct bpf_map *map = reg->map_ptr; 7490 u64 val = reg->var_off.value; 7491 7492 if (!is_const) { 7493 verbose(env, 7494 "R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n", 7495 regno); 7496 return -EINVAL; 7497 } 7498 if (!map->btf) { 7499 verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n", 7500 map->name); 7501 return -EINVAL; 7502 } 7503 if (!btf_record_has_field(map->record, BPF_TIMER)) { 7504 verbose(env, "map '%s' has no valid bpf_timer\n", map->name); 7505 return -EINVAL; 7506 } 7507 if (map->record->timer_off != val + reg->off) { 7508 verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n", 7509 val + reg->off, map->record->timer_off); 7510 return -EINVAL; 7511 } 7512 if (meta->map_ptr) { 7513 verbose(env, "verifier bug. Two map pointers in a timer helper\n"); 7514 return -EFAULT; 7515 } 7516 meta->map_uid = reg->map_uid; 7517 meta->map_ptr = map; 7518 return 0; 7519 } 7520 7521 static int process_kptr_func(struct bpf_verifier_env *env, int regno, 7522 struct bpf_call_arg_meta *meta) 7523 { 7524 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7525 struct bpf_map *map_ptr = reg->map_ptr; 7526 struct btf_field *kptr_field; 7527 u32 kptr_off; 7528 7529 if (!tnum_is_const(reg->var_off)) { 7530 verbose(env, 7531 "R%d doesn't have constant offset. kptr has to be at the constant offset\n", 7532 regno); 7533 return -EINVAL; 7534 } 7535 if (!map_ptr->btf) { 7536 verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n", 7537 map_ptr->name); 7538 return -EINVAL; 7539 } 7540 if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) { 7541 verbose(env, "map '%s' has no valid kptr\n", map_ptr->name); 7542 return -EINVAL; 7543 } 7544 7545 meta->map_ptr = map_ptr; 7546 kptr_off = reg->off + reg->var_off.value; 7547 kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR); 7548 if (!kptr_field) { 7549 verbose(env, "off=%d doesn't point to kptr\n", kptr_off); 7550 return -EACCES; 7551 } 7552 if (kptr_field->type != BPF_KPTR_REF) { 7553 verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off); 7554 return -EACCES; 7555 } 7556 meta->kptr_field = kptr_field; 7557 return 0; 7558 } 7559 7560 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK 7561 * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR. 7562 * 7563 * In both cases we deal with the first 8 bytes, but need to mark the next 8 7564 * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of 7565 * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object. 7566 * 7567 * Mutability of bpf_dynptr is at two levels, one is at the level of struct 7568 * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct 7569 * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can 7570 * mutate the view of the dynptr and also possibly destroy it. In the latter 7571 * case, it cannot mutate the bpf_dynptr itself but it can still mutate the 7572 * memory that dynptr points to. 7573 * 7574 * The verifier will keep track both levels of mutation (bpf_dynptr's in 7575 * reg->type and the memory's in reg->dynptr.type), but there is no support for 7576 * readonly dynptr view yet, hence only the first case is tracked and checked. 7577 * 7578 * This is consistent with how C applies the const modifier to a struct object, 7579 * where the pointer itself inside bpf_dynptr becomes const but not what it 7580 * points to. 7581 * 7582 * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument 7583 * type, and declare it as 'const struct bpf_dynptr *' in their prototype. 7584 */ 7585 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx, 7586 enum bpf_arg_type arg_type, int clone_ref_obj_id) 7587 { 7588 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7589 int err; 7590 7591 /* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an 7592 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*): 7593 */ 7594 if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) { 7595 verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n"); 7596 return -EFAULT; 7597 } 7598 7599 /* MEM_UNINIT - Points to memory that is an appropriate candidate for 7600 * constructing a mutable bpf_dynptr object. 7601 * 7602 * Currently, this is only possible with PTR_TO_STACK 7603 * pointing to a region of at least 16 bytes which doesn't 7604 * contain an existing bpf_dynptr. 7605 * 7606 * MEM_RDONLY - Points to a initialized bpf_dynptr that will not be 7607 * mutated or destroyed. However, the memory it points to 7608 * may be mutated. 7609 * 7610 * None - Points to a initialized dynptr that can be mutated and 7611 * destroyed, including mutation of the memory it points 7612 * to. 7613 */ 7614 if (arg_type & MEM_UNINIT) { 7615 int i; 7616 7617 if (!is_dynptr_reg_valid_uninit(env, reg)) { 7618 verbose(env, "Dynptr has to be an uninitialized dynptr\n"); 7619 return -EINVAL; 7620 } 7621 7622 /* we write BPF_DW bits (8 bytes) at a time */ 7623 for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) { 7624 err = check_mem_access(env, insn_idx, regno, 7625 i, BPF_DW, BPF_WRITE, -1, false, false); 7626 if (err) 7627 return err; 7628 } 7629 7630 err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id); 7631 } else /* MEM_RDONLY and None case from above */ { 7632 /* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */ 7633 if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) { 7634 verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n"); 7635 return -EINVAL; 7636 } 7637 7638 if (!is_dynptr_reg_valid_init(env, reg)) { 7639 verbose(env, 7640 "Expected an initialized dynptr as arg #%d\n", 7641 regno); 7642 return -EINVAL; 7643 } 7644 7645 /* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */ 7646 if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) { 7647 verbose(env, 7648 "Expected a dynptr of type %s as arg #%d\n", 7649 dynptr_type_str(arg_to_dynptr_type(arg_type)), regno); 7650 return -EINVAL; 7651 } 7652 7653 err = mark_dynptr_read(env, reg); 7654 } 7655 return err; 7656 } 7657 7658 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi) 7659 { 7660 struct bpf_func_state *state = func(env, reg); 7661 7662 return state->stack[spi].spilled_ptr.ref_obj_id; 7663 } 7664 7665 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7666 { 7667 return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7668 } 7669 7670 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7671 { 7672 return meta->kfunc_flags & KF_ITER_NEW; 7673 } 7674 7675 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7676 { 7677 return meta->kfunc_flags & KF_ITER_NEXT; 7678 } 7679 7680 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta) 7681 { 7682 return meta->kfunc_flags & KF_ITER_DESTROY; 7683 } 7684 7685 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg) 7686 { 7687 /* btf_check_iter_kfuncs() guarantees that first argument of any iter 7688 * kfunc is iter state pointer 7689 */ 7690 return arg == 0 && is_iter_kfunc(meta); 7691 } 7692 7693 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx, 7694 struct bpf_kfunc_call_arg_meta *meta) 7695 { 7696 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 7697 const struct btf_type *t; 7698 const struct btf_param *arg; 7699 int spi, err, i, nr_slots; 7700 u32 btf_id; 7701 7702 /* btf_check_iter_kfuncs() ensures we don't need to validate anything here */ 7703 arg = &btf_params(meta->func_proto)[0]; 7704 t = btf_type_skip_modifiers(meta->btf, arg->type, NULL); /* PTR */ 7705 t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id); /* STRUCT */ 7706 nr_slots = t->size / BPF_REG_SIZE; 7707 7708 if (is_iter_new_kfunc(meta)) { 7709 /* bpf_iter_<type>_new() expects pointer to uninit iter state */ 7710 if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) { 7711 verbose(env, "expected uninitialized iter_%s as arg #%d\n", 7712 iter_type_str(meta->btf, btf_id), regno); 7713 return -EINVAL; 7714 } 7715 7716 for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) { 7717 err = check_mem_access(env, insn_idx, regno, 7718 i, BPF_DW, BPF_WRITE, -1, false, false); 7719 if (err) 7720 return err; 7721 } 7722 7723 err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots); 7724 if (err) 7725 return err; 7726 } else { 7727 /* iter_next() or iter_destroy() expect initialized iter state*/ 7728 if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) { 7729 verbose(env, "expected an initialized iter_%s as arg #%d\n", 7730 iter_type_str(meta->btf, btf_id), regno); 7731 return -EINVAL; 7732 } 7733 7734 spi = iter_get_spi(env, reg, nr_slots); 7735 if (spi < 0) 7736 return spi; 7737 7738 err = mark_iter_read(env, reg, spi, nr_slots); 7739 if (err) 7740 return err; 7741 7742 /* remember meta->iter info for process_iter_next_call() */ 7743 meta->iter.spi = spi; 7744 meta->iter.frameno = reg->frameno; 7745 meta->ref_obj_id = iter_ref_obj_id(env, reg, spi); 7746 7747 if (is_iter_destroy_kfunc(meta)) { 7748 err = unmark_stack_slots_iter(env, reg, nr_slots); 7749 if (err) 7750 return err; 7751 } 7752 } 7753 7754 return 0; 7755 } 7756 7757 /* Look for a previous loop entry at insn_idx: nearest parent state 7758 * stopped at insn_idx with callsites matching those in cur->frame. 7759 */ 7760 static struct bpf_verifier_state *find_prev_entry(struct bpf_verifier_env *env, 7761 struct bpf_verifier_state *cur, 7762 int insn_idx) 7763 { 7764 struct bpf_verifier_state_list *sl; 7765 struct bpf_verifier_state *st; 7766 7767 /* Explored states are pushed in stack order, most recent states come first */ 7768 sl = *explored_state(env, insn_idx); 7769 for (; sl; sl = sl->next) { 7770 /* If st->branches != 0 state is a part of current DFS verification path, 7771 * hence cur & st for a loop. 7772 */ 7773 st = &sl->state; 7774 if (st->insn_idx == insn_idx && st->branches && same_callsites(st, cur) && 7775 st->dfs_depth < cur->dfs_depth) 7776 return st; 7777 } 7778 7779 return NULL; 7780 } 7781 7782 static void reset_idmap_scratch(struct bpf_verifier_env *env); 7783 static bool regs_exact(const struct bpf_reg_state *rold, 7784 const struct bpf_reg_state *rcur, 7785 struct bpf_idmap *idmap); 7786 7787 static void maybe_widen_reg(struct bpf_verifier_env *env, 7788 struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 7789 struct bpf_idmap *idmap) 7790 { 7791 if (rold->type != SCALAR_VALUE) 7792 return; 7793 if (rold->type != rcur->type) 7794 return; 7795 if (rold->precise || rcur->precise || regs_exact(rold, rcur, idmap)) 7796 return; 7797 __mark_reg_unknown(env, rcur); 7798 } 7799 7800 static int widen_imprecise_scalars(struct bpf_verifier_env *env, 7801 struct bpf_verifier_state *old, 7802 struct bpf_verifier_state *cur) 7803 { 7804 struct bpf_func_state *fold, *fcur; 7805 int i, fr; 7806 7807 reset_idmap_scratch(env); 7808 for (fr = old->curframe; fr >= 0; fr--) { 7809 fold = old->frame[fr]; 7810 fcur = cur->frame[fr]; 7811 7812 for (i = 0; i < MAX_BPF_REG; i++) 7813 maybe_widen_reg(env, 7814 &fold->regs[i], 7815 &fcur->regs[i], 7816 &env->idmap_scratch); 7817 7818 for (i = 0; i < fold->allocated_stack / BPF_REG_SIZE; i++) { 7819 if (!is_spilled_reg(&fold->stack[i]) || 7820 !is_spilled_reg(&fcur->stack[i])) 7821 continue; 7822 7823 maybe_widen_reg(env, 7824 &fold->stack[i].spilled_ptr, 7825 &fcur->stack[i].spilled_ptr, 7826 &env->idmap_scratch); 7827 } 7828 } 7829 return 0; 7830 } 7831 7832 /* process_iter_next_call() is called when verifier gets to iterator's next 7833 * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer 7834 * to it as just "iter_next()" in comments below. 7835 * 7836 * BPF verifier relies on a crucial contract for any iter_next() 7837 * implementation: it should *eventually* return NULL, and once that happens 7838 * it should keep returning NULL. That is, once iterator exhausts elements to 7839 * iterate, it should never reset or spuriously return new elements. 7840 * 7841 * With the assumption of such contract, process_iter_next_call() simulates 7842 * a fork in the verifier state to validate loop logic correctness and safety 7843 * without having to simulate infinite amount of iterations. 7844 * 7845 * In current state, we first assume that iter_next() returned NULL and 7846 * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such 7847 * conditions we should not form an infinite loop and should eventually reach 7848 * exit. 7849 * 7850 * Besides that, we also fork current state and enqueue it for later 7851 * verification. In a forked state we keep iterator state as ACTIVE 7852 * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We 7853 * also bump iteration depth to prevent erroneous infinite loop detection 7854 * later on (see iter_active_depths_differ() comment for details). In this 7855 * state we assume that we'll eventually loop back to another iter_next() 7856 * calls (it could be in exactly same location or in some other instruction, 7857 * it doesn't matter, we don't make any unnecessary assumptions about this, 7858 * everything revolves around iterator state in a stack slot, not which 7859 * instruction is calling iter_next()). When that happens, we either will come 7860 * to iter_next() with equivalent state and can conclude that next iteration 7861 * will proceed in exactly the same way as we just verified, so it's safe to 7862 * assume that loop converges. If not, we'll go on another iteration 7863 * simulation with a different input state, until all possible starting states 7864 * are validated or we reach maximum number of instructions limit. 7865 * 7866 * This way, we will either exhaustively discover all possible input states 7867 * that iterator loop can start with and eventually will converge, or we'll 7868 * effectively regress into bounded loop simulation logic and either reach 7869 * maximum number of instructions if loop is not provably convergent, or there 7870 * is some statically known limit on number of iterations (e.g., if there is 7871 * an explicit `if n > 100 then break;` statement somewhere in the loop). 7872 * 7873 * Iteration convergence logic in is_state_visited() relies on exact 7874 * states comparison, which ignores read and precision marks. 7875 * This is necessary because read and precision marks are not finalized 7876 * while in the loop. Exact comparison might preclude convergence for 7877 * simple programs like below: 7878 * 7879 * i = 0; 7880 * while(iter_next(&it)) 7881 * i++; 7882 * 7883 * At each iteration step i++ would produce a new distinct state and 7884 * eventually instruction processing limit would be reached. 7885 * 7886 * To avoid such behavior speculatively forget (widen) range for 7887 * imprecise scalar registers, if those registers were not precise at the 7888 * end of the previous iteration and do not match exactly. 7889 * 7890 * This is a conservative heuristic that allows to verify wide range of programs, 7891 * however it precludes verification of programs that conjure an 7892 * imprecise value on the first loop iteration and use it as precise on a second. 7893 * For example, the following safe program would fail to verify: 7894 * 7895 * struct bpf_num_iter it; 7896 * int arr[10]; 7897 * int i = 0, a = 0; 7898 * bpf_iter_num_new(&it, 0, 10); 7899 * while (bpf_iter_num_next(&it)) { 7900 * if (a == 0) { 7901 * a = 1; 7902 * i = 7; // Because i changed verifier would forget 7903 * // it's range on second loop entry. 7904 * } else { 7905 * arr[i] = 42; // This would fail to verify. 7906 * } 7907 * } 7908 * bpf_iter_num_destroy(&it); 7909 */ 7910 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx, 7911 struct bpf_kfunc_call_arg_meta *meta) 7912 { 7913 struct bpf_verifier_state *cur_st = env->cur_state, *queued_st, *prev_st; 7914 struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr; 7915 struct bpf_reg_state *cur_iter, *queued_iter; 7916 int iter_frameno = meta->iter.frameno; 7917 int iter_spi = meta->iter.spi; 7918 7919 BTF_TYPE_EMIT(struct bpf_iter); 7920 7921 cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7922 7923 if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE && 7924 cur_iter->iter.state != BPF_ITER_STATE_DRAINED) { 7925 verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n", 7926 cur_iter->iter.state, iter_state_str(cur_iter->iter.state)); 7927 return -EFAULT; 7928 } 7929 7930 if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) { 7931 /* Because iter_next() call is a checkpoint is_state_visitied() 7932 * should guarantee parent state with same call sites and insn_idx. 7933 */ 7934 if (!cur_st->parent || cur_st->parent->insn_idx != insn_idx || 7935 !same_callsites(cur_st->parent, cur_st)) { 7936 verbose(env, "bug: bad parent state for iter next call"); 7937 return -EFAULT; 7938 } 7939 /* Note cur_st->parent in the call below, it is necessary to skip 7940 * checkpoint created for cur_st by is_state_visited() 7941 * right at this instruction. 7942 */ 7943 prev_st = find_prev_entry(env, cur_st->parent, insn_idx); 7944 /* branch out active iter state */ 7945 queued_st = push_stack(env, insn_idx + 1, insn_idx, false); 7946 if (!queued_st) 7947 return -ENOMEM; 7948 7949 queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr; 7950 queued_iter->iter.state = BPF_ITER_STATE_ACTIVE; 7951 queued_iter->iter.depth++; 7952 if (prev_st) 7953 widen_imprecise_scalars(env, prev_st, queued_st); 7954 7955 queued_fr = queued_st->frame[queued_st->curframe]; 7956 mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]); 7957 } 7958 7959 /* switch to DRAINED state, but keep the depth unchanged */ 7960 /* mark current iter state as drained and assume returned NULL */ 7961 cur_iter->iter.state = BPF_ITER_STATE_DRAINED; 7962 __mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]); 7963 7964 return 0; 7965 } 7966 7967 static bool arg_type_is_mem_size(enum bpf_arg_type type) 7968 { 7969 return type == ARG_CONST_SIZE || 7970 type == ARG_CONST_SIZE_OR_ZERO; 7971 } 7972 7973 static bool arg_type_is_release(enum bpf_arg_type type) 7974 { 7975 return type & OBJ_RELEASE; 7976 } 7977 7978 static bool arg_type_is_dynptr(enum bpf_arg_type type) 7979 { 7980 return base_type(type) == ARG_PTR_TO_DYNPTR; 7981 } 7982 7983 static int int_ptr_type_to_size(enum bpf_arg_type type) 7984 { 7985 if (type == ARG_PTR_TO_INT) 7986 return sizeof(u32); 7987 else if (type == ARG_PTR_TO_LONG) 7988 return sizeof(u64); 7989 7990 return -EINVAL; 7991 } 7992 7993 static int resolve_map_arg_type(struct bpf_verifier_env *env, 7994 const struct bpf_call_arg_meta *meta, 7995 enum bpf_arg_type *arg_type) 7996 { 7997 if (!meta->map_ptr) { 7998 /* kernel subsystem misconfigured verifier */ 7999 verbose(env, "invalid map_ptr to access map->type\n"); 8000 return -EACCES; 8001 } 8002 8003 switch (meta->map_ptr->map_type) { 8004 case BPF_MAP_TYPE_SOCKMAP: 8005 case BPF_MAP_TYPE_SOCKHASH: 8006 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 8007 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 8008 } else { 8009 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 8010 return -EINVAL; 8011 } 8012 break; 8013 case BPF_MAP_TYPE_BLOOM_FILTER: 8014 if (meta->func_id == BPF_FUNC_map_peek_elem) 8015 *arg_type = ARG_PTR_TO_MAP_VALUE; 8016 break; 8017 default: 8018 break; 8019 } 8020 return 0; 8021 } 8022 8023 struct bpf_reg_types { 8024 const enum bpf_reg_type types[10]; 8025 u32 *btf_id; 8026 }; 8027 8028 static const struct bpf_reg_types sock_types = { 8029 .types = { 8030 PTR_TO_SOCK_COMMON, 8031 PTR_TO_SOCKET, 8032 PTR_TO_TCP_SOCK, 8033 PTR_TO_XDP_SOCK, 8034 }, 8035 }; 8036 8037 #ifdef CONFIG_NET 8038 static const struct bpf_reg_types btf_id_sock_common_types = { 8039 .types = { 8040 PTR_TO_SOCK_COMMON, 8041 PTR_TO_SOCKET, 8042 PTR_TO_TCP_SOCK, 8043 PTR_TO_XDP_SOCK, 8044 PTR_TO_BTF_ID, 8045 PTR_TO_BTF_ID | PTR_TRUSTED, 8046 }, 8047 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 8048 }; 8049 #endif 8050 8051 static const struct bpf_reg_types mem_types = { 8052 .types = { 8053 PTR_TO_STACK, 8054 PTR_TO_PACKET, 8055 PTR_TO_PACKET_META, 8056 PTR_TO_MAP_KEY, 8057 PTR_TO_MAP_VALUE, 8058 PTR_TO_MEM, 8059 PTR_TO_MEM | MEM_RINGBUF, 8060 PTR_TO_BUF, 8061 PTR_TO_BTF_ID | PTR_TRUSTED, 8062 }, 8063 }; 8064 8065 static const struct bpf_reg_types int_ptr_types = { 8066 .types = { 8067 PTR_TO_STACK, 8068 PTR_TO_PACKET, 8069 PTR_TO_PACKET_META, 8070 PTR_TO_MAP_KEY, 8071 PTR_TO_MAP_VALUE, 8072 }, 8073 }; 8074 8075 static const struct bpf_reg_types spin_lock_types = { 8076 .types = { 8077 PTR_TO_MAP_VALUE, 8078 PTR_TO_BTF_ID | MEM_ALLOC, 8079 } 8080 }; 8081 8082 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 8083 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 8084 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 8085 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } }; 8086 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 8087 static const struct bpf_reg_types btf_ptr_types = { 8088 .types = { 8089 PTR_TO_BTF_ID, 8090 PTR_TO_BTF_ID | PTR_TRUSTED, 8091 PTR_TO_BTF_ID | MEM_RCU, 8092 }, 8093 }; 8094 static const struct bpf_reg_types percpu_btf_ptr_types = { 8095 .types = { 8096 PTR_TO_BTF_ID | MEM_PERCPU, 8097 PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED, 8098 } 8099 }; 8100 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } }; 8101 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } }; 8102 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8103 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } }; 8104 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } }; 8105 static const struct bpf_reg_types dynptr_types = { 8106 .types = { 8107 PTR_TO_STACK, 8108 CONST_PTR_TO_DYNPTR, 8109 } 8110 }; 8111 8112 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 8113 [ARG_PTR_TO_MAP_KEY] = &mem_types, 8114 [ARG_PTR_TO_MAP_VALUE] = &mem_types, 8115 [ARG_CONST_SIZE] = &scalar_types, 8116 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 8117 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 8118 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 8119 [ARG_PTR_TO_CTX] = &context_types, 8120 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 8121 #ifdef CONFIG_NET 8122 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 8123 #endif 8124 [ARG_PTR_TO_SOCKET] = &fullsock_types, 8125 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 8126 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 8127 [ARG_PTR_TO_MEM] = &mem_types, 8128 [ARG_PTR_TO_RINGBUF_MEM] = &ringbuf_mem_types, 8129 [ARG_PTR_TO_INT] = &int_ptr_types, 8130 [ARG_PTR_TO_LONG] = &int_ptr_types, 8131 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 8132 [ARG_PTR_TO_FUNC] = &func_ptr_types, 8133 [ARG_PTR_TO_STACK] = &stack_ptr_types, 8134 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types, 8135 [ARG_PTR_TO_TIMER] = &timer_types, 8136 [ARG_PTR_TO_KPTR] = &kptr_types, 8137 [ARG_PTR_TO_DYNPTR] = &dynptr_types, 8138 }; 8139 8140 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 8141 enum bpf_arg_type arg_type, 8142 const u32 *arg_btf_id, 8143 struct bpf_call_arg_meta *meta) 8144 { 8145 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8146 enum bpf_reg_type expected, type = reg->type; 8147 const struct bpf_reg_types *compatible; 8148 int i, j; 8149 8150 compatible = compatible_reg_types[base_type(arg_type)]; 8151 if (!compatible) { 8152 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 8153 return -EFAULT; 8154 } 8155 8156 /* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY, 8157 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY 8158 * 8159 * Same for MAYBE_NULL: 8160 * 8161 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL, 8162 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL 8163 * 8164 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type. 8165 * 8166 * Therefore we fold these flags depending on the arg_type before comparison. 8167 */ 8168 if (arg_type & MEM_RDONLY) 8169 type &= ~MEM_RDONLY; 8170 if (arg_type & PTR_MAYBE_NULL) 8171 type &= ~PTR_MAYBE_NULL; 8172 if (base_type(arg_type) == ARG_PTR_TO_MEM) 8173 type &= ~DYNPTR_TYPE_FLAG_MASK; 8174 8175 if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type)) 8176 type &= ~MEM_ALLOC; 8177 8178 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 8179 expected = compatible->types[i]; 8180 if (expected == NOT_INIT) 8181 break; 8182 8183 if (type == expected) 8184 goto found; 8185 } 8186 8187 verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type)); 8188 for (j = 0; j + 1 < i; j++) 8189 verbose(env, "%s, ", reg_type_str(env, compatible->types[j])); 8190 verbose(env, "%s\n", reg_type_str(env, compatible->types[j])); 8191 return -EACCES; 8192 8193 found: 8194 if (base_type(reg->type) != PTR_TO_BTF_ID) 8195 return 0; 8196 8197 if (compatible == &mem_types) { 8198 if (!(arg_type & MEM_RDONLY)) { 8199 verbose(env, 8200 "%s() may write into memory pointed by R%d type=%s\n", 8201 func_id_name(meta->func_id), 8202 regno, reg_type_str(env, reg->type)); 8203 return -EACCES; 8204 } 8205 return 0; 8206 } 8207 8208 switch ((int)reg->type) { 8209 case PTR_TO_BTF_ID: 8210 case PTR_TO_BTF_ID | PTR_TRUSTED: 8211 case PTR_TO_BTF_ID | MEM_RCU: 8212 case PTR_TO_BTF_ID | PTR_MAYBE_NULL: 8213 case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU: 8214 { 8215 /* For bpf_sk_release, it needs to match against first member 8216 * 'struct sock_common', hence make an exception for it. This 8217 * allows bpf_sk_release to work for multiple socket types. 8218 */ 8219 bool strict_type_match = arg_type_is_release(arg_type) && 8220 meta->func_id != BPF_FUNC_sk_release; 8221 8222 if (type_may_be_null(reg->type) && 8223 (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) { 8224 verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno); 8225 return -EACCES; 8226 } 8227 8228 if (!arg_btf_id) { 8229 if (!compatible->btf_id) { 8230 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 8231 return -EFAULT; 8232 } 8233 arg_btf_id = compatible->btf_id; 8234 } 8235 8236 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8237 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8238 return -EACCES; 8239 } else { 8240 if (arg_btf_id == BPF_PTR_POISON) { 8241 verbose(env, "verifier internal error:"); 8242 verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n", 8243 regno); 8244 return -EACCES; 8245 } 8246 8247 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 8248 btf_vmlinux, *arg_btf_id, 8249 strict_type_match)) { 8250 verbose(env, "R%d is of type %s but %s is expected\n", 8251 regno, btf_type_name(reg->btf, reg->btf_id), 8252 btf_type_name(btf_vmlinux, *arg_btf_id)); 8253 return -EACCES; 8254 } 8255 } 8256 break; 8257 } 8258 case PTR_TO_BTF_ID | MEM_ALLOC: 8259 if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock && 8260 meta->func_id != BPF_FUNC_kptr_xchg) { 8261 verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n"); 8262 return -EFAULT; 8263 } 8264 if (meta->func_id == BPF_FUNC_kptr_xchg) { 8265 if (map_kptr_match_type(env, meta->kptr_field, reg, regno)) 8266 return -EACCES; 8267 } 8268 break; 8269 case PTR_TO_BTF_ID | MEM_PERCPU: 8270 case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED: 8271 /* Handled by helper specific checks */ 8272 break; 8273 default: 8274 verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n"); 8275 return -EFAULT; 8276 } 8277 return 0; 8278 } 8279 8280 static struct btf_field * 8281 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields) 8282 { 8283 struct btf_field *field; 8284 struct btf_record *rec; 8285 8286 rec = reg_btf_record(reg); 8287 if (!rec) 8288 return NULL; 8289 8290 field = btf_record_find(rec, off, fields); 8291 if (!field) 8292 return NULL; 8293 8294 return field; 8295 } 8296 8297 int check_func_arg_reg_off(struct bpf_verifier_env *env, 8298 const struct bpf_reg_state *reg, int regno, 8299 enum bpf_arg_type arg_type) 8300 { 8301 u32 type = reg->type; 8302 8303 /* When referenced register is passed to release function, its fixed 8304 * offset must be 0. 8305 * 8306 * We will check arg_type_is_release reg has ref_obj_id when storing 8307 * meta->release_regno. 8308 */ 8309 if (arg_type_is_release(arg_type)) { 8310 /* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it 8311 * may not directly point to the object being released, but to 8312 * dynptr pointing to such object, which might be at some offset 8313 * on the stack. In that case, we simply to fallback to the 8314 * default handling. 8315 */ 8316 if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK) 8317 return 0; 8318 8319 /* Doing check_ptr_off_reg check for the offset will catch this 8320 * because fixed_off_ok is false, but checking here allows us 8321 * to give the user a better error message. 8322 */ 8323 if (reg->off) { 8324 verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n", 8325 regno); 8326 return -EINVAL; 8327 } 8328 return __check_ptr_off_reg(env, reg, regno, false); 8329 } 8330 8331 switch (type) { 8332 /* Pointer types where both fixed and variable offset is explicitly allowed: */ 8333 case PTR_TO_STACK: 8334 case PTR_TO_PACKET: 8335 case PTR_TO_PACKET_META: 8336 case PTR_TO_MAP_KEY: 8337 case PTR_TO_MAP_VALUE: 8338 case PTR_TO_MEM: 8339 case PTR_TO_MEM | MEM_RDONLY: 8340 case PTR_TO_MEM | MEM_RINGBUF: 8341 case PTR_TO_BUF: 8342 case PTR_TO_BUF | MEM_RDONLY: 8343 case SCALAR_VALUE: 8344 return 0; 8345 /* All the rest must be rejected, except PTR_TO_BTF_ID which allows 8346 * fixed offset. 8347 */ 8348 case PTR_TO_BTF_ID: 8349 case PTR_TO_BTF_ID | MEM_ALLOC: 8350 case PTR_TO_BTF_ID | PTR_TRUSTED: 8351 case PTR_TO_BTF_ID | MEM_RCU: 8352 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF: 8353 case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU: 8354 /* When referenced PTR_TO_BTF_ID is passed to release function, 8355 * its fixed offset must be 0. In the other cases, fixed offset 8356 * can be non-zero. This was already checked above. So pass 8357 * fixed_off_ok as true to allow fixed offset for all other 8358 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we 8359 * still need to do checks instead of returning. 8360 */ 8361 return __check_ptr_off_reg(env, reg, regno, true); 8362 default: 8363 return __check_ptr_off_reg(env, reg, regno, false); 8364 } 8365 } 8366 8367 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env, 8368 const struct bpf_func_proto *fn, 8369 struct bpf_reg_state *regs) 8370 { 8371 struct bpf_reg_state *state = NULL; 8372 int i; 8373 8374 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 8375 if (arg_type_is_dynptr(fn->arg_type[i])) { 8376 if (state) { 8377 verbose(env, "verifier internal error: multiple dynptr args\n"); 8378 return NULL; 8379 } 8380 state = ®s[BPF_REG_1 + i]; 8381 } 8382 8383 if (!state) 8384 verbose(env, "verifier internal error: no dynptr arg found\n"); 8385 8386 return state; 8387 } 8388 8389 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8390 { 8391 struct bpf_func_state *state = func(env, reg); 8392 int spi; 8393 8394 if (reg->type == CONST_PTR_TO_DYNPTR) 8395 return reg->id; 8396 spi = dynptr_get_spi(env, reg); 8397 if (spi < 0) 8398 return spi; 8399 return state->stack[spi].spilled_ptr.id; 8400 } 8401 8402 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 8403 { 8404 struct bpf_func_state *state = func(env, reg); 8405 int spi; 8406 8407 if (reg->type == CONST_PTR_TO_DYNPTR) 8408 return reg->ref_obj_id; 8409 spi = dynptr_get_spi(env, reg); 8410 if (spi < 0) 8411 return spi; 8412 return state->stack[spi].spilled_ptr.ref_obj_id; 8413 } 8414 8415 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env, 8416 struct bpf_reg_state *reg) 8417 { 8418 struct bpf_func_state *state = func(env, reg); 8419 int spi; 8420 8421 if (reg->type == CONST_PTR_TO_DYNPTR) 8422 return reg->dynptr.type; 8423 8424 spi = __get_spi(reg->off); 8425 if (spi < 0) { 8426 verbose(env, "verifier internal error: invalid spi when querying dynptr type\n"); 8427 return BPF_DYNPTR_TYPE_INVALID; 8428 } 8429 8430 return state->stack[spi].spilled_ptr.dynptr.type; 8431 } 8432 8433 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 8434 struct bpf_call_arg_meta *meta, 8435 const struct bpf_func_proto *fn, 8436 int insn_idx) 8437 { 8438 u32 regno = BPF_REG_1 + arg; 8439 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 8440 enum bpf_arg_type arg_type = fn->arg_type[arg]; 8441 enum bpf_reg_type type = reg->type; 8442 u32 *arg_btf_id = NULL; 8443 int err = 0; 8444 8445 if (arg_type == ARG_DONTCARE) 8446 return 0; 8447 8448 err = check_reg_arg(env, regno, SRC_OP); 8449 if (err) 8450 return err; 8451 8452 if (arg_type == ARG_ANYTHING) { 8453 if (is_pointer_value(env, regno)) { 8454 verbose(env, "R%d leaks addr into helper function\n", 8455 regno); 8456 return -EACCES; 8457 } 8458 return 0; 8459 } 8460 8461 if (type_is_pkt_pointer(type) && 8462 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 8463 verbose(env, "helper access to the packet is not allowed\n"); 8464 return -EACCES; 8465 } 8466 8467 if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) { 8468 err = resolve_map_arg_type(env, meta, &arg_type); 8469 if (err) 8470 return err; 8471 } 8472 8473 if (register_is_null(reg) && type_may_be_null(arg_type)) 8474 /* A NULL register has a SCALAR_VALUE type, so skip 8475 * type checking. 8476 */ 8477 goto skip_type_check; 8478 8479 /* arg_btf_id and arg_size are in a union. */ 8480 if (base_type(arg_type) == ARG_PTR_TO_BTF_ID || 8481 base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK) 8482 arg_btf_id = fn->arg_btf_id[arg]; 8483 8484 err = check_reg_type(env, regno, arg_type, arg_btf_id, meta); 8485 if (err) 8486 return err; 8487 8488 err = check_func_arg_reg_off(env, reg, regno, arg_type); 8489 if (err) 8490 return err; 8491 8492 skip_type_check: 8493 if (arg_type_is_release(arg_type)) { 8494 if (arg_type_is_dynptr(arg_type)) { 8495 struct bpf_func_state *state = func(env, reg); 8496 int spi; 8497 8498 /* Only dynptr created on stack can be released, thus 8499 * the get_spi and stack state checks for spilled_ptr 8500 * should only be done before process_dynptr_func for 8501 * PTR_TO_STACK. 8502 */ 8503 if (reg->type == PTR_TO_STACK) { 8504 spi = dynptr_get_spi(env, reg); 8505 if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) { 8506 verbose(env, "arg %d is an unacquired reference\n", regno); 8507 return -EINVAL; 8508 } 8509 } else { 8510 verbose(env, "cannot release unowned const bpf_dynptr\n"); 8511 return -EINVAL; 8512 } 8513 } else if (!reg->ref_obj_id && !register_is_null(reg)) { 8514 verbose(env, "R%d must be referenced when passed to release function\n", 8515 regno); 8516 return -EINVAL; 8517 } 8518 if (meta->release_regno) { 8519 verbose(env, "verifier internal error: more than one release argument\n"); 8520 return -EFAULT; 8521 } 8522 meta->release_regno = regno; 8523 } 8524 8525 if (reg->ref_obj_id) { 8526 if (meta->ref_obj_id) { 8527 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 8528 regno, reg->ref_obj_id, 8529 meta->ref_obj_id); 8530 return -EFAULT; 8531 } 8532 meta->ref_obj_id = reg->ref_obj_id; 8533 } 8534 8535 switch (base_type(arg_type)) { 8536 case ARG_CONST_MAP_PTR: 8537 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 8538 if (meta->map_ptr) { 8539 /* Use map_uid (which is unique id of inner map) to reject: 8540 * inner_map1 = bpf_map_lookup_elem(outer_map, key1) 8541 * inner_map2 = bpf_map_lookup_elem(outer_map, key2) 8542 * if (inner_map1 && inner_map2) { 8543 * timer = bpf_map_lookup_elem(inner_map1); 8544 * if (timer) 8545 * // mismatch would have been allowed 8546 * bpf_timer_init(timer, inner_map2); 8547 * } 8548 * 8549 * Comparing map_ptr is enough to distinguish normal and outer maps. 8550 */ 8551 if (meta->map_ptr != reg->map_ptr || 8552 meta->map_uid != reg->map_uid) { 8553 verbose(env, 8554 "timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n", 8555 meta->map_uid, reg->map_uid); 8556 return -EINVAL; 8557 } 8558 } 8559 meta->map_ptr = reg->map_ptr; 8560 meta->map_uid = reg->map_uid; 8561 break; 8562 case ARG_PTR_TO_MAP_KEY: 8563 /* bpf_map_xxx(..., map_ptr, ..., key) call: 8564 * check that [key, key + map->key_size) are within 8565 * stack limits and initialized 8566 */ 8567 if (!meta->map_ptr) { 8568 /* in function declaration map_ptr must come before 8569 * map_key, so that it's verified and known before 8570 * we have to check map_key here. Otherwise it means 8571 * that kernel subsystem misconfigured verifier 8572 */ 8573 verbose(env, "invalid map_ptr to access map->key\n"); 8574 return -EACCES; 8575 } 8576 err = check_helper_mem_access(env, regno, 8577 meta->map_ptr->key_size, false, 8578 NULL); 8579 break; 8580 case ARG_PTR_TO_MAP_VALUE: 8581 if (type_may_be_null(arg_type) && register_is_null(reg)) 8582 return 0; 8583 8584 /* bpf_map_xxx(..., map_ptr, ..., value) call: 8585 * check [value, value + map->value_size) validity 8586 */ 8587 if (!meta->map_ptr) { 8588 /* kernel subsystem misconfigured verifier */ 8589 verbose(env, "invalid map_ptr to access map->value\n"); 8590 return -EACCES; 8591 } 8592 meta->raw_mode = arg_type & MEM_UNINIT; 8593 err = check_helper_mem_access(env, regno, 8594 meta->map_ptr->value_size, false, 8595 meta); 8596 break; 8597 case ARG_PTR_TO_PERCPU_BTF_ID: 8598 if (!reg->btf_id) { 8599 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 8600 return -EACCES; 8601 } 8602 meta->ret_btf = reg->btf; 8603 meta->ret_btf_id = reg->btf_id; 8604 break; 8605 case ARG_PTR_TO_SPIN_LOCK: 8606 if (in_rbtree_lock_required_cb(env)) { 8607 verbose(env, "can't spin_{lock,unlock} in rbtree cb\n"); 8608 return -EACCES; 8609 } 8610 if (meta->func_id == BPF_FUNC_spin_lock) { 8611 err = process_spin_lock(env, regno, true); 8612 if (err) 8613 return err; 8614 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 8615 err = process_spin_lock(env, regno, false); 8616 if (err) 8617 return err; 8618 } else { 8619 verbose(env, "verifier internal error\n"); 8620 return -EFAULT; 8621 } 8622 break; 8623 case ARG_PTR_TO_TIMER: 8624 err = process_timer_func(env, regno, meta); 8625 if (err) 8626 return err; 8627 break; 8628 case ARG_PTR_TO_FUNC: 8629 meta->subprogno = reg->subprogno; 8630 break; 8631 case ARG_PTR_TO_MEM: 8632 /* The access to this pointer is only checked when we hit the 8633 * next is_mem_size argument below. 8634 */ 8635 meta->raw_mode = arg_type & MEM_UNINIT; 8636 if (arg_type & MEM_FIXED_SIZE) { 8637 err = check_helper_mem_access(env, regno, 8638 fn->arg_size[arg], false, 8639 meta); 8640 } 8641 break; 8642 case ARG_CONST_SIZE: 8643 err = check_mem_size_reg(env, reg, regno, false, meta); 8644 break; 8645 case ARG_CONST_SIZE_OR_ZERO: 8646 err = check_mem_size_reg(env, reg, regno, true, meta); 8647 break; 8648 case ARG_PTR_TO_DYNPTR: 8649 err = process_dynptr_func(env, regno, insn_idx, arg_type, 0); 8650 if (err) 8651 return err; 8652 break; 8653 case ARG_CONST_ALLOC_SIZE_OR_ZERO: 8654 if (!tnum_is_const(reg->var_off)) { 8655 verbose(env, "R%d is not a known constant'\n", 8656 regno); 8657 return -EACCES; 8658 } 8659 meta->mem_size = reg->var_off.value; 8660 err = mark_chain_precision(env, regno); 8661 if (err) 8662 return err; 8663 break; 8664 case ARG_PTR_TO_INT: 8665 case ARG_PTR_TO_LONG: 8666 { 8667 int size = int_ptr_type_to_size(arg_type); 8668 8669 err = check_helper_mem_access(env, regno, size, false, meta); 8670 if (err) 8671 return err; 8672 err = check_ptr_alignment(env, reg, 0, size, true); 8673 break; 8674 } 8675 case ARG_PTR_TO_CONST_STR: 8676 { 8677 struct bpf_map *map = reg->map_ptr; 8678 int map_off; 8679 u64 map_addr; 8680 char *str_ptr; 8681 8682 if (!bpf_map_is_rdonly(map)) { 8683 verbose(env, "R%d does not point to a readonly map'\n", regno); 8684 return -EACCES; 8685 } 8686 8687 if (!tnum_is_const(reg->var_off)) { 8688 verbose(env, "R%d is not a constant address'\n", regno); 8689 return -EACCES; 8690 } 8691 8692 if (!map->ops->map_direct_value_addr) { 8693 verbose(env, "no direct value access support for this map type\n"); 8694 return -EACCES; 8695 } 8696 8697 err = check_map_access(env, regno, reg->off, 8698 map->value_size - reg->off, false, 8699 ACCESS_HELPER); 8700 if (err) 8701 return err; 8702 8703 map_off = reg->off + reg->var_off.value; 8704 err = map->ops->map_direct_value_addr(map, &map_addr, map_off); 8705 if (err) { 8706 verbose(env, "direct value access on string failed\n"); 8707 return err; 8708 } 8709 8710 str_ptr = (char *)(long)(map_addr); 8711 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) { 8712 verbose(env, "string is not zero-terminated\n"); 8713 return -EINVAL; 8714 } 8715 break; 8716 } 8717 case ARG_PTR_TO_KPTR: 8718 err = process_kptr_func(env, regno, meta); 8719 if (err) 8720 return err; 8721 break; 8722 } 8723 8724 return err; 8725 } 8726 8727 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 8728 { 8729 enum bpf_attach_type eatype = env->prog->expected_attach_type; 8730 enum bpf_prog_type type = resolve_prog_type(env->prog); 8731 8732 if (func_id != BPF_FUNC_map_update_elem) 8733 return false; 8734 8735 /* It's not possible to get access to a locked struct sock in these 8736 * contexts, so updating is safe. 8737 */ 8738 switch (type) { 8739 case BPF_PROG_TYPE_TRACING: 8740 if (eatype == BPF_TRACE_ITER) 8741 return true; 8742 break; 8743 case BPF_PROG_TYPE_SOCKET_FILTER: 8744 case BPF_PROG_TYPE_SCHED_CLS: 8745 case BPF_PROG_TYPE_SCHED_ACT: 8746 case BPF_PROG_TYPE_XDP: 8747 case BPF_PROG_TYPE_SK_REUSEPORT: 8748 case BPF_PROG_TYPE_FLOW_DISSECTOR: 8749 case BPF_PROG_TYPE_SK_LOOKUP: 8750 return true; 8751 default: 8752 break; 8753 } 8754 8755 verbose(env, "cannot update sockmap in this context\n"); 8756 return false; 8757 } 8758 8759 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 8760 { 8761 return env->prog->jit_requested && 8762 bpf_jit_supports_subprog_tailcalls(); 8763 } 8764 8765 static int check_map_func_compatibility(struct bpf_verifier_env *env, 8766 struct bpf_map *map, int func_id) 8767 { 8768 if (!map) 8769 return 0; 8770 8771 /* We need a two way check, first is from map perspective ... */ 8772 switch (map->map_type) { 8773 case BPF_MAP_TYPE_PROG_ARRAY: 8774 if (func_id != BPF_FUNC_tail_call) 8775 goto error; 8776 break; 8777 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 8778 if (func_id != BPF_FUNC_perf_event_read && 8779 func_id != BPF_FUNC_perf_event_output && 8780 func_id != BPF_FUNC_skb_output && 8781 func_id != BPF_FUNC_perf_event_read_value && 8782 func_id != BPF_FUNC_xdp_output) 8783 goto error; 8784 break; 8785 case BPF_MAP_TYPE_RINGBUF: 8786 if (func_id != BPF_FUNC_ringbuf_output && 8787 func_id != BPF_FUNC_ringbuf_reserve && 8788 func_id != BPF_FUNC_ringbuf_query && 8789 func_id != BPF_FUNC_ringbuf_reserve_dynptr && 8790 func_id != BPF_FUNC_ringbuf_submit_dynptr && 8791 func_id != BPF_FUNC_ringbuf_discard_dynptr) 8792 goto error; 8793 break; 8794 case BPF_MAP_TYPE_USER_RINGBUF: 8795 if (func_id != BPF_FUNC_user_ringbuf_drain) 8796 goto error; 8797 break; 8798 case BPF_MAP_TYPE_STACK_TRACE: 8799 if (func_id != BPF_FUNC_get_stackid) 8800 goto error; 8801 break; 8802 case BPF_MAP_TYPE_CGROUP_ARRAY: 8803 if (func_id != BPF_FUNC_skb_under_cgroup && 8804 func_id != BPF_FUNC_current_task_under_cgroup) 8805 goto error; 8806 break; 8807 case BPF_MAP_TYPE_CGROUP_STORAGE: 8808 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 8809 if (func_id != BPF_FUNC_get_local_storage) 8810 goto error; 8811 break; 8812 case BPF_MAP_TYPE_DEVMAP: 8813 case BPF_MAP_TYPE_DEVMAP_HASH: 8814 if (func_id != BPF_FUNC_redirect_map && 8815 func_id != BPF_FUNC_map_lookup_elem) 8816 goto error; 8817 break; 8818 /* Restrict bpf side of cpumap and xskmap, open when use-cases 8819 * appear. 8820 */ 8821 case BPF_MAP_TYPE_CPUMAP: 8822 if (func_id != BPF_FUNC_redirect_map) 8823 goto error; 8824 break; 8825 case BPF_MAP_TYPE_XSKMAP: 8826 if (func_id != BPF_FUNC_redirect_map && 8827 func_id != BPF_FUNC_map_lookup_elem) 8828 goto error; 8829 break; 8830 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 8831 case BPF_MAP_TYPE_HASH_OF_MAPS: 8832 if (func_id != BPF_FUNC_map_lookup_elem) 8833 goto error; 8834 break; 8835 case BPF_MAP_TYPE_SOCKMAP: 8836 if (func_id != BPF_FUNC_sk_redirect_map && 8837 func_id != BPF_FUNC_sock_map_update && 8838 func_id != BPF_FUNC_map_delete_elem && 8839 func_id != BPF_FUNC_msg_redirect_map && 8840 func_id != BPF_FUNC_sk_select_reuseport && 8841 func_id != BPF_FUNC_map_lookup_elem && 8842 !may_update_sockmap(env, func_id)) 8843 goto error; 8844 break; 8845 case BPF_MAP_TYPE_SOCKHASH: 8846 if (func_id != BPF_FUNC_sk_redirect_hash && 8847 func_id != BPF_FUNC_sock_hash_update && 8848 func_id != BPF_FUNC_map_delete_elem && 8849 func_id != BPF_FUNC_msg_redirect_hash && 8850 func_id != BPF_FUNC_sk_select_reuseport && 8851 func_id != BPF_FUNC_map_lookup_elem && 8852 !may_update_sockmap(env, func_id)) 8853 goto error; 8854 break; 8855 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 8856 if (func_id != BPF_FUNC_sk_select_reuseport) 8857 goto error; 8858 break; 8859 case BPF_MAP_TYPE_QUEUE: 8860 case BPF_MAP_TYPE_STACK: 8861 if (func_id != BPF_FUNC_map_peek_elem && 8862 func_id != BPF_FUNC_map_pop_elem && 8863 func_id != BPF_FUNC_map_push_elem) 8864 goto error; 8865 break; 8866 case BPF_MAP_TYPE_SK_STORAGE: 8867 if (func_id != BPF_FUNC_sk_storage_get && 8868 func_id != BPF_FUNC_sk_storage_delete && 8869 func_id != BPF_FUNC_kptr_xchg) 8870 goto error; 8871 break; 8872 case BPF_MAP_TYPE_INODE_STORAGE: 8873 if (func_id != BPF_FUNC_inode_storage_get && 8874 func_id != BPF_FUNC_inode_storage_delete && 8875 func_id != BPF_FUNC_kptr_xchg) 8876 goto error; 8877 break; 8878 case BPF_MAP_TYPE_TASK_STORAGE: 8879 if (func_id != BPF_FUNC_task_storage_get && 8880 func_id != BPF_FUNC_task_storage_delete && 8881 func_id != BPF_FUNC_kptr_xchg) 8882 goto error; 8883 break; 8884 case BPF_MAP_TYPE_CGRP_STORAGE: 8885 if (func_id != BPF_FUNC_cgrp_storage_get && 8886 func_id != BPF_FUNC_cgrp_storage_delete && 8887 func_id != BPF_FUNC_kptr_xchg) 8888 goto error; 8889 break; 8890 case BPF_MAP_TYPE_BLOOM_FILTER: 8891 if (func_id != BPF_FUNC_map_peek_elem && 8892 func_id != BPF_FUNC_map_push_elem) 8893 goto error; 8894 break; 8895 default: 8896 break; 8897 } 8898 8899 /* ... and second from the function itself. */ 8900 switch (func_id) { 8901 case BPF_FUNC_tail_call: 8902 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 8903 goto error; 8904 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 8905 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 8906 return -EINVAL; 8907 } 8908 break; 8909 case BPF_FUNC_perf_event_read: 8910 case BPF_FUNC_perf_event_output: 8911 case BPF_FUNC_perf_event_read_value: 8912 case BPF_FUNC_skb_output: 8913 case BPF_FUNC_xdp_output: 8914 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 8915 goto error; 8916 break; 8917 case BPF_FUNC_ringbuf_output: 8918 case BPF_FUNC_ringbuf_reserve: 8919 case BPF_FUNC_ringbuf_query: 8920 case BPF_FUNC_ringbuf_reserve_dynptr: 8921 case BPF_FUNC_ringbuf_submit_dynptr: 8922 case BPF_FUNC_ringbuf_discard_dynptr: 8923 if (map->map_type != BPF_MAP_TYPE_RINGBUF) 8924 goto error; 8925 break; 8926 case BPF_FUNC_user_ringbuf_drain: 8927 if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF) 8928 goto error; 8929 break; 8930 case BPF_FUNC_get_stackid: 8931 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 8932 goto error; 8933 break; 8934 case BPF_FUNC_current_task_under_cgroup: 8935 case BPF_FUNC_skb_under_cgroup: 8936 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 8937 goto error; 8938 break; 8939 case BPF_FUNC_redirect_map: 8940 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 8941 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 8942 map->map_type != BPF_MAP_TYPE_CPUMAP && 8943 map->map_type != BPF_MAP_TYPE_XSKMAP) 8944 goto error; 8945 break; 8946 case BPF_FUNC_sk_redirect_map: 8947 case BPF_FUNC_msg_redirect_map: 8948 case BPF_FUNC_sock_map_update: 8949 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 8950 goto error; 8951 break; 8952 case BPF_FUNC_sk_redirect_hash: 8953 case BPF_FUNC_msg_redirect_hash: 8954 case BPF_FUNC_sock_hash_update: 8955 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 8956 goto error; 8957 break; 8958 case BPF_FUNC_get_local_storage: 8959 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 8960 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 8961 goto error; 8962 break; 8963 case BPF_FUNC_sk_select_reuseport: 8964 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 8965 map->map_type != BPF_MAP_TYPE_SOCKMAP && 8966 map->map_type != BPF_MAP_TYPE_SOCKHASH) 8967 goto error; 8968 break; 8969 case BPF_FUNC_map_pop_elem: 8970 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8971 map->map_type != BPF_MAP_TYPE_STACK) 8972 goto error; 8973 break; 8974 case BPF_FUNC_map_peek_elem: 8975 case BPF_FUNC_map_push_elem: 8976 if (map->map_type != BPF_MAP_TYPE_QUEUE && 8977 map->map_type != BPF_MAP_TYPE_STACK && 8978 map->map_type != BPF_MAP_TYPE_BLOOM_FILTER) 8979 goto error; 8980 break; 8981 case BPF_FUNC_map_lookup_percpu_elem: 8982 if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY && 8983 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 8984 map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH) 8985 goto error; 8986 break; 8987 case BPF_FUNC_sk_storage_get: 8988 case BPF_FUNC_sk_storage_delete: 8989 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 8990 goto error; 8991 break; 8992 case BPF_FUNC_inode_storage_get: 8993 case BPF_FUNC_inode_storage_delete: 8994 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 8995 goto error; 8996 break; 8997 case BPF_FUNC_task_storage_get: 8998 case BPF_FUNC_task_storage_delete: 8999 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 9000 goto error; 9001 break; 9002 case BPF_FUNC_cgrp_storage_get: 9003 case BPF_FUNC_cgrp_storage_delete: 9004 if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE) 9005 goto error; 9006 break; 9007 default: 9008 break; 9009 } 9010 9011 return 0; 9012 error: 9013 verbose(env, "cannot pass map_type %d into func %s#%d\n", 9014 map->map_type, func_id_name(func_id), func_id); 9015 return -EINVAL; 9016 } 9017 9018 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 9019 { 9020 int count = 0; 9021 9022 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 9023 count++; 9024 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 9025 count++; 9026 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 9027 count++; 9028 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 9029 count++; 9030 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 9031 count++; 9032 9033 /* We only support one arg being in raw mode at the moment, 9034 * which is sufficient for the helper functions we have 9035 * right now. 9036 */ 9037 return count <= 1; 9038 } 9039 9040 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg) 9041 { 9042 bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE; 9043 bool has_size = fn->arg_size[arg] != 0; 9044 bool is_next_size = false; 9045 9046 if (arg + 1 < ARRAY_SIZE(fn->arg_type)) 9047 is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]); 9048 9049 if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM) 9050 return is_next_size; 9051 9052 return has_size == is_next_size || is_next_size == is_fixed; 9053 } 9054 9055 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 9056 { 9057 /* bpf_xxx(..., buf, len) call will access 'len' 9058 * bytes from memory 'buf'. Both arg types need 9059 * to be paired, so make sure there's no buggy 9060 * helper function specification. 9061 */ 9062 if (arg_type_is_mem_size(fn->arg1_type) || 9063 check_args_pair_invalid(fn, 0) || 9064 check_args_pair_invalid(fn, 1) || 9065 check_args_pair_invalid(fn, 2) || 9066 check_args_pair_invalid(fn, 3) || 9067 check_args_pair_invalid(fn, 4)) 9068 return false; 9069 9070 return true; 9071 } 9072 9073 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 9074 { 9075 int i; 9076 9077 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 9078 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID) 9079 return !!fn->arg_btf_id[i]; 9080 if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK) 9081 return fn->arg_btf_id[i] == BPF_PTR_POISON; 9082 if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] && 9083 /* arg_btf_id and arg_size are in a union. */ 9084 (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM || 9085 !(fn->arg_type[i] & MEM_FIXED_SIZE))) 9086 return false; 9087 } 9088 9089 return true; 9090 } 9091 9092 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 9093 { 9094 return check_raw_mode_ok(fn) && 9095 check_arg_pair_ok(fn) && 9096 check_btf_id_ok(fn) ? 0 : -EINVAL; 9097 } 9098 9099 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 9100 * are now invalid, so turn them into unknown SCALAR_VALUE. 9101 * 9102 * This also applies to dynptr slices belonging to skb and xdp dynptrs, 9103 * since these slices point to packet data. 9104 */ 9105 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 9106 { 9107 struct bpf_func_state *state; 9108 struct bpf_reg_state *reg; 9109 9110 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9111 if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg)) 9112 mark_reg_invalid(env, reg); 9113 })); 9114 } 9115 9116 enum { 9117 AT_PKT_END = -1, 9118 BEYOND_PKT_END = -2, 9119 }; 9120 9121 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 9122 { 9123 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 9124 struct bpf_reg_state *reg = &state->regs[regn]; 9125 9126 if (reg->type != PTR_TO_PACKET) 9127 /* PTR_TO_PACKET_META is not supported yet */ 9128 return; 9129 9130 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 9131 * How far beyond pkt_end it goes is unknown. 9132 * if (!range_open) it's the case of pkt >= pkt_end 9133 * if (range_open) it's the case of pkt > pkt_end 9134 * hence this pointer is at least 1 byte bigger than pkt_end 9135 */ 9136 if (range_open) 9137 reg->range = BEYOND_PKT_END; 9138 else 9139 reg->range = AT_PKT_END; 9140 } 9141 9142 /* The pointer with the specified id has released its reference to kernel 9143 * resources. Identify all copies of the same pointer and clear the reference. 9144 */ 9145 static int release_reference(struct bpf_verifier_env *env, 9146 int ref_obj_id) 9147 { 9148 struct bpf_func_state *state; 9149 struct bpf_reg_state *reg; 9150 int err; 9151 9152 err = release_reference_state(cur_func(env), ref_obj_id); 9153 if (err) 9154 return err; 9155 9156 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 9157 if (reg->ref_obj_id == ref_obj_id) 9158 mark_reg_invalid(env, reg); 9159 })); 9160 9161 return 0; 9162 } 9163 9164 static void invalidate_non_owning_refs(struct bpf_verifier_env *env) 9165 { 9166 struct bpf_func_state *unused; 9167 struct bpf_reg_state *reg; 9168 9169 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 9170 if (type_is_non_owning_ref(reg->type)) 9171 mark_reg_invalid(env, reg); 9172 })); 9173 } 9174 9175 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 9176 struct bpf_reg_state *regs) 9177 { 9178 int i; 9179 9180 /* after the call registers r0 - r5 were scratched */ 9181 for (i = 0; i < CALLER_SAVED_REGS; i++) { 9182 mark_reg_not_init(env, regs, caller_saved[i]); 9183 __check_reg_arg(env, regs, caller_saved[i], DST_OP_NO_MARK); 9184 } 9185 } 9186 9187 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env, 9188 struct bpf_func_state *caller, 9189 struct bpf_func_state *callee, 9190 int insn_idx); 9191 9192 static int set_callee_state(struct bpf_verifier_env *env, 9193 struct bpf_func_state *caller, 9194 struct bpf_func_state *callee, int insn_idx); 9195 9196 static int setup_func_entry(struct bpf_verifier_env *env, int subprog, int callsite, 9197 set_callee_state_fn set_callee_state_cb, 9198 struct bpf_verifier_state *state) 9199 { 9200 struct bpf_func_state *caller, *callee; 9201 int err; 9202 9203 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 9204 verbose(env, "the call stack of %d frames is too deep\n", 9205 state->curframe + 2); 9206 return -E2BIG; 9207 } 9208 9209 if (state->frame[state->curframe + 1]) { 9210 verbose(env, "verifier bug. Frame %d already allocated\n", 9211 state->curframe + 1); 9212 return -EFAULT; 9213 } 9214 9215 caller = state->frame[state->curframe]; 9216 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 9217 if (!callee) 9218 return -ENOMEM; 9219 state->frame[state->curframe + 1] = callee; 9220 9221 /* callee cannot access r0, r6 - r9 for reading and has to write 9222 * into its own stack before reading from it. 9223 * callee can read/write into caller's stack 9224 */ 9225 init_func_state(env, callee, 9226 /* remember the callsite, it will be used by bpf_exit */ 9227 callsite, 9228 state->curframe + 1 /* frameno within this callchain */, 9229 subprog /* subprog number within this prog */); 9230 /* Transfer references to the callee */ 9231 err = copy_reference_state(callee, caller); 9232 err = err ?: set_callee_state_cb(env, caller, callee, callsite); 9233 if (err) 9234 goto err_out; 9235 9236 /* only increment it after check_reg_arg() finished */ 9237 state->curframe++; 9238 9239 return 0; 9240 9241 err_out: 9242 free_func_state(callee); 9243 state->frame[state->curframe + 1] = NULL; 9244 return err; 9245 } 9246 9247 static int push_callback_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9248 int insn_idx, int subprog, 9249 set_callee_state_fn set_callee_state_cb) 9250 { 9251 struct bpf_verifier_state *state = env->cur_state, *callback_state; 9252 struct bpf_func_state *caller, *callee; 9253 int err; 9254 9255 caller = state->frame[state->curframe]; 9256 err = btf_check_subprog_call(env, subprog, caller->regs); 9257 if (err == -EFAULT) 9258 return err; 9259 9260 /* set_callee_state is used for direct subprog calls, but we are 9261 * interested in validating only BPF helpers that can call subprogs as 9262 * callbacks 9263 */ 9264 if (bpf_pseudo_kfunc_call(insn) && 9265 !is_sync_callback_calling_kfunc(insn->imm)) { 9266 verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n", 9267 func_id_name(insn->imm), insn->imm); 9268 return -EFAULT; 9269 } else if (!bpf_pseudo_kfunc_call(insn) && 9270 !is_callback_calling_function(insn->imm)) { /* helper */ 9271 verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n", 9272 func_id_name(insn->imm), insn->imm); 9273 return -EFAULT; 9274 } 9275 9276 if (insn->code == (BPF_JMP | BPF_CALL) && 9277 insn->src_reg == 0 && 9278 insn->imm == BPF_FUNC_timer_set_callback) { 9279 struct bpf_verifier_state *async_cb; 9280 9281 /* there is no real recursion here. timer callbacks are async */ 9282 env->subprog_info[subprog].is_async_cb = true; 9283 async_cb = push_async_cb(env, env->subprog_info[subprog].start, 9284 insn_idx, subprog); 9285 if (!async_cb) 9286 return -EFAULT; 9287 callee = async_cb->frame[0]; 9288 callee->async_entry_cnt = caller->async_entry_cnt + 1; 9289 9290 /* Convert bpf_timer_set_callback() args into timer callback args */ 9291 err = set_callee_state_cb(env, caller, callee, insn_idx); 9292 if (err) 9293 return err; 9294 9295 return 0; 9296 } 9297 9298 /* for callback functions enqueue entry to callback and 9299 * proceed with next instruction within current frame. 9300 */ 9301 callback_state = push_stack(env, env->subprog_info[subprog].start, insn_idx, false); 9302 if (!callback_state) 9303 return -ENOMEM; 9304 9305 err = setup_func_entry(env, subprog, insn_idx, set_callee_state_cb, 9306 callback_state); 9307 if (err) 9308 return err; 9309 9310 callback_state->callback_unroll_depth++; 9311 callback_state->frame[callback_state->curframe - 1]->callback_depth++; 9312 caller->callback_depth = 0; 9313 return 0; 9314 } 9315 9316 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9317 int *insn_idx) 9318 { 9319 struct bpf_verifier_state *state = env->cur_state; 9320 struct bpf_func_state *caller; 9321 int err, subprog, target_insn; 9322 9323 target_insn = *insn_idx + insn->imm + 1; 9324 subprog = find_subprog(env, target_insn); 9325 if (subprog < 0) { 9326 verbose(env, "verifier bug. No program starts at insn %d\n", target_insn); 9327 return -EFAULT; 9328 } 9329 9330 caller = state->frame[state->curframe]; 9331 err = btf_check_subprog_call(env, subprog, caller->regs); 9332 if (err == -EFAULT) 9333 return err; 9334 if (subprog_is_global(env, subprog)) { 9335 if (err) { 9336 verbose(env, "Caller passes invalid args into func#%d\n", subprog); 9337 return err; 9338 } 9339 9340 if (env->log.level & BPF_LOG_LEVEL) 9341 verbose(env, "Func#%d is global and valid. Skipping.\n", subprog); 9342 clear_caller_saved_regs(env, caller->regs); 9343 9344 /* All global functions return a 64-bit SCALAR_VALUE */ 9345 mark_reg_unknown(env, caller->regs, BPF_REG_0); 9346 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 9347 9348 /* continue with next insn after call */ 9349 return 0; 9350 } 9351 9352 /* for regular function entry setup new frame and continue 9353 * from that frame. 9354 */ 9355 err = setup_func_entry(env, subprog, *insn_idx, set_callee_state, state); 9356 if (err) 9357 return err; 9358 9359 clear_caller_saved_regs(env, caller->regs); 9360 9361 /* and go analyze first insn of the callee */ 9362 *insn_idx = env->subprog_info[subprog].start - 1; 9363 9364 if (env->log.level & BPF_LOG_LEVEL) { 9365 verbose(env, "caller:\n"); 9366 print_verifier_state(env, caller, true); 9367 verbose(env, "callee:\n"); 9368 print_verifier_state(env, state->frame[state->curframe], true); 9369 } 9370 9371 return 0; 9372 } 9373 9374 int map_set_for_each_callback_args(struct bpf_verifier_env *env, 9375 struct bpf_func_state *caller, 9376 struct bpf_func_state *callee) 9377 { 9378 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, 9379 * void *callback_ctx, u64 flags); 9380 * callback_fn(struct bpf_map *map, void *key, void *value, 9381 * void *callback_ctx); 9382 */ 9383 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9384 9385 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9386 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9387 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9388 9389 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9390 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9391 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr; 9392 9393 /* pointer to stack or null */ 9394 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3]; 9395 9396 /* unused */ 9397 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9398 return 0; 9399 } 9400 9401 static int set_callee_state(struct bpf_verifier_env *env, 9402 struct bpf_func_state *caller, 9403 struct bpf_func_state *callee, int insn_idx) 9404 { 9405 int i; 9406 9407 /* copy r1 - r5 args that callee can access. The copy includes parent 9408 * pointers, which connects us up to the liveness chain 9409 */ 9410 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 9411 callee->regs[i] = caller->regs[i]; 9412 return 0; 9413 } 9414 9415 static int set_map_elem_callback_state(struct bpf_verifier_env *env, 9416 struct bpf_func_state *caller, 9417 struct bpf_func_state *callee, 9418 int insn_idx) 9419 { 9420 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx]; 9421 struct bpf_map *map; 9422 int err; 9423 9424 if (bpf_map_ptr_poisoned(insn_aux)) { 9425 verbose(env, "tail_call abusing map_ptr\n"); 9426 return -EINVAL; 9427 } 9428 9429 map = BPF_MAP_PTR(insn_aux->map_ptr_state); 9430 if (!map->ops->map_set_for_each_callback_args || 9431 !map->ops->map_for_each_callback) { 9432 verbose(env, "callback function not allowed for map\n"); 9433 return -ENOTSUPP; 9434 } 9435 9436 err = map->ops->map_set_for_each_callback_args(env, caller, callee); 9437 if (err) 9438 return err; 9439 9440 callee->in_callback_fn = true; 9441 callee->callback_ret_range = tnum_range(0, 1); 9442 return 0; 9443 } 9444 9445 static int set_loop_callback_state(struct bpf_verifier_env *env, 9446 struct bpf_func_state *caller, 9447 struct bpf_func_state *callee, 9448 int insn_idx) 9449 { 9450 /* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, 9451 * u64 flags); 9452 * callback_fn(u32 index, void *callback_ctx); 9453 */ 9454 callee->regs[BPF_REG_1].type = SCALAR_VALUE; 9455 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9456 9457 /* unused */ 9458 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9459 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9460 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9461 9462 callee->in_callback_fn = true; 9463 callee->callback_ret_range = tnum_range(0, 1); 9464 return 0; 9465 } 9466 9467 static int set_timer_callback_state(struct bpf_verifier_env *env, 9468 struct bpf_func_state *caller, 9469 struct bpf_func_state *callee, 9470 int insn_idx) 9471 { 9472 struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr; 9473 9474 /* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn); 9475 * callback_fn(struct bpf_map *map, void *key, void *value); 9476 */ 9477 callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP; 9478 __mark_reg_known_zero(&callee->regs[BPF_REG_1]); 9479 callee->regs[BPF_REG_1].map_ptr = map_ptr; 9480 9481 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY; 9482 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9483 callee->regs[BPF_REG_2].map_ptr = map_ptr; 9484 9485 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE; 9486 __mark_reg_known_zero(&callee->regs[BPF_REG_3]); 9487 callee->regs[BPF_REG_3].map_ptr = map_ptr; 9488 9489 /* unused */ 9490 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9491 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9492 callee->in_async_callback_fn = true; 9493 callee->callback_ret_range = tnum_range(0, 1); 9494 return 0; 9495 } 9496 9497 static int set_find_vma_callback_state(struct bpf_verifier_env *env, 9498 struct bpf_func_state *caller, 9499 struct bpf_func_state *callee, 9500 int insn_idx) 9501 { 9502 /* bpf_find_vma(struct task_struct *task, u64 addr, 9503 * void *callback_fn, void *callback_ctx, u64 flags) 9504 * (callback_fn)(struct task_struct *task, 9505 * struct vm_area_struct *vma, void *callback_ctx); 9506 */ 9507 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1]; 9508 9509 callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID; 9510 __mark_reg_known_zero(&callee->regs[BPF_REG_2]); 9511 callee->regs[BPF_REG_2].btf = btf_vmlinux; 9512 callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA], 9513 9514 /* pointer to stack or null */ 9515 callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4]; 9516 9517 /* unused */ 9518 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9519 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9520 callee->in_callback_fn = true; 9521 callee->callback_ret_range = tnum_range(0, 1); 9522 return 0; 9523 } 9524 9525 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env, 9526 struct bpf_func_state *caller, 9527 struct bpf_func_state *callee, 9528 int insn_idx) 9529 { 9530 /* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void 9531 * callback_ctx, u64 flags); 9532 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx); 9533 */ 9534 __mark_reg_not_init(env, &callee->regs[BPF_REG_0]); 9535 mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL); 9536 callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3]; 9537 9538 /* unused */ 9539 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9540 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9541 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9542 9543 callee->in_callback_fn = true; 9544 callee->callback_ret_range = tnum_range(0, 1); 9545 return 0; 9546 } 9547 9548 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env, 9549 struct bpf_func_state *caller, 9550 struct bpf_func_state *callee, 9551 int insn_idx) 9552 { 9553 /* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node, 9554 * bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b)); 9555 * 9556 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset 9557 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd 9558 * by this point, so look at 'root' 9559 */ 9560 struct btf_field *field; 9561 9562 field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off, 9563 BPF_RB_ROOT); 9564 if (!field || !field->graph_root.value_btf_id) 9565 return -EFAULT; 9566 9567 mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root); 9568 ref_set_non_owning(env, &callee->regs[BPF_REG_1]); 9569 mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root); 9570 ref_set_non_owning(env, &callee->regs[BPF_REG_2]); 9571 9572 __mark_reg_not_init(env, &callee->regs[BPF_REG_3]); 9573 __mark_reg_not_init(env, &callee->regs[BPF_REG_4]); 9574 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]); 9575 callee->in_callback_fn = true; 9576 callee->callback_ret_range = tnum_range(0, 1); 9577 return 0; 9578 } 9579 9580 static bool is_rbtree_lock_required_kfunc(u32 btf_id); 9581 9582 /* Are we currently verifying the callback for a rbtree helper that must 9583 * be called with lock held? If so, no need to complain about unreleased 9584 * lock 9585 */ 9586 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env) 9587 { 9588 struct bpf_verifier_state *state = env->cur_state; 9589 struct bpf_insn *insn = env->prog->insnsi; 9590 struct bpf_func_state *callee; 9591 int kfunc_btf_id; 9592 9593 if (!state->curframe) 9594 return false; 9595 9596 callee = state->frame[state->curframe]; 9597 9598 if (!callee->in_callback_fn) 9599 return false; 9600 9601 kfunc_btf_id = insn[callee->callsite].imm; 9602 return is_rbtree_lock_required_kfunc(kfunc_btf_id); 9603 } 9604 9605 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 9606 { 9607 struct bpf_verifier_state *state = env->cur_state, *prev_st; 9608 struct bpf_func_state *caller, *callee; 9609 struct bpf_reg_state *r0; 9610 bool in_callback_fn; 9611 int err; 9612 9613 callee = state->frame[state->curframe]; 9614 r0 = &callee->regs[BPF_REG_0]; 9615 if (r0->type == PTR_TO_STACK) { 9616 /* technically it's ok to return caller's stack pointer 9617 * (or caller's caller's pointer) back to the caller, 9618 * since these pointers are valid. Only current stack 9619 * pointer will be invalid as soon as function exits, 9620 * but let's be conservative 9621 */ 9622 verbose(env, "cannot return stack pointer to the caller\n"); 9623 return -EINVAL; 9624 } 9625 9626 caller = state->frame[state->curframe - 1]; 9627 if (callee->in_callback_fn) { 9628 /* enforce R0 return value range [0, 1]. */ 9629 struct tnum range = callee->callback_ret_range; 9630 9631 if (r0->type != SCALAR_VALUE) { 9632 verbose(env, "R0 not a scalar value\n"); 9633 return -EACCES; 9634 } 9635 9636 /* we are going to rely on register's precise value */ 9637 err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64); 9638 err = err ?: mark_chain_precision(env, BPF_REG_0); 9639 if (err) 9640 return err; 9641 9642 if (!tnum_in(range, r0->var_off)) { 9643 verbose_invalid_scalar(env, r0, &range, "callback return", "R0"); 9644 return -EINVAL; 9645 } 9646 if (!calls_callback(env, callee->callsite)) { 9647 verbose(env, "BUG: in callback at %d, callsite %d !calls_callback\n", 9648 *insn_idx, callee->callsite); 9649 return -EFAULT; 9650 } 9651 } else { 9652 /* return to the caller whatever r0 had in the callee */ 9653 caller->regs[BPF_REG_0] = *r0; 9654 } 9655 9656 /* callback_fn frame should have released its own additions to parent's 9657 * reference state at this point, or check_reference_leak would 9658 * complain, hence it must be the same as the caller. There is no need 9659 * to copy it back. 9660 */ 9661 if (!callee->in_callback_fn) { 9662 /* Transfer references to the caller */ 9663 err = copy_reference_state(caller, callee); 9664 if (err) 9665 return err; 9666 } 9667 9668 /* for callbacks like bpf_loop or bpf_for_each_map_elem go back to callsite, 9669 * there function call logic would reschedule callback visit. If iteration 9670 * converges is_state_visited() would prune that visit eventually. 9671 */ 9672 in_callback_fn = callee->in_callback_fn; 9673 if (in_callback_fn) 9674 *insn_idx = callee->callsite; 9675 else 9676 *insn_idx = callee->callsite + 1; 9677 9678 if (env->log.level & BPF_LOG_LEVEL) { 9679 verbose(env, "returning from callee:\n"); 9680 print_verifier_state(env, callee, true); 9681 verbose(env, "to caller at %d:\n", *insn_idx); 9682 print_verifier_state(env, caller, true); 9683 } 9684 /* clear everything in the callee */ 9685 free_func_state(callee); 9686 state->frame[state->curframe--] = NULL; 9687 9688 /* for callbacks widen imprecise scalars to make programs like below verify: 9689 * 9690 * struct ctx { int i; } 9691 * void cb(int idx, struct ctx *ctx) { ctx->i++; ... } 9692 * ... 9693 * struct ctx = { .i = 0; } 9694 * bpf_loop(100, cb, &ctx, 0); 9695 * 9696 * This is similar to what is done in process_iter_next_call() for open 9697 * coded iterators. 9698 */ 9699 prev_st = in_callback_fn ? find_prev_entry(env, state, *insn_idx) : NULL; 9700 if (prev_st) { 9701 err = widen_imprecise_scalars(env, prev_st, state); 9702 if (err) 9703 return err; 9704 } 9705 return 0; 9706 } 9707 9708 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 9709 int func_id, 9710 struct bpf_call_arg_meta *meta) 9711 { 9712 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 9713 9714 if (ret_type != RET_INTEGER) 9715 return; 9716 9717 switch (func_id) { 9718 case BPF_FUNC_get_stack: 9719 case BPF_FUNC_get_task_stack: 9720 case BPF_FUNC_probe_read_str: 9721 case BPF_FUNC_probe_read_kernel_str: 9722 case BPF_FUNC_probe_read_user_str: 9723 ret_reg->smax_value = meta->msize_max_value; 9724 ret_reg->s32_max_value = meta->msize_max_value; 9725 ret_reg->smin_value = -MAX_ERRNO; 9726 ret_reg->s32_min_value = -MAX_ERRNO; 9727 reg_bounds_sync(ret_reg); 9728 break; 9729 case BPF_FUNC_get_smp_processor_id: 9730 ret_reg->umax_value = nr_cpu_ids - 1; 9731 ret_reg->u32_max_value = nr_cpu_ids - 1; 9732 ret_reg->smax_value = nr_cpu_ids - 1; 9733 ret_reg->s32_max_value = nr_cpu_ids - 1; 9734 ret_reg->umin_value = 0; 9735 ret_reg->u32_min_value = 0; 9736 ret_reg->smin_value = 0; 9737 ret_reg->s32_min_value = 0; 9738 reg_bounds_sync(ret_reg); 9739 break; 9740 } 9741 } 9742 9743 static int 9744 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9745 int func_id, int insn_idx) 9746 { 9747 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9748 struct bpf_map *map = meta->map_ptr; 9749 9750 if (func_id != BPF_FUNC_tail_call && 9751 func_id != BPF_FUNC_map_lookup_elem && 9752 func_id != BPF_FUNC_map_update_elem && 9753 func_id != BPF_FUNC_map_delete_elem && 9754 func_id != BPF_FUNC_map_push_elem && 9755 func_id != BPF_FUNC_map_pop_elem && 9756 func_id != BPF_FUNC_map_peek_elem && 9757 func_id != BPF_FUNC_for_each_map_elem && 9758 func_id != BPF_FUNC_redirect_map && 9759 func_id != BPF_FUNC_map_lookup_percpu_elem) 9760 return 0; 9761 9762 if (map == NULL) { 9763 verbose(env, "kernel subsystem misconfigured verifier\n"); 9764 return -EINVAL; 9765 } 9766 9767 /* In case of read-only, some additional restrictions 9768 * need to be applied in order to prevent altering the 9769 * state of the map from program side. 9770 */ 9771 if ((map->map_flags & BPF_F_RDONLY_PROG) && 9772 (func_id == BPF_FUNC_map_delete_elem || 9773 func_id == BPF_FUNC_map_update_elem || 9774 func_id == BPF_FUNC_map_push_elem || 9775 func_id == BPF_FUNC_map_pop_elem)) { 9776 verbose(env, "write into map forbidden\n"); 9777 return -EACCES; 9778 } 9779 9780 if (!BPF_MAP_PTR(aux->map_ptr_state)) 9781 bpf_map_ptr_store(aux, meta->map_ptr, 9782 !meta->map_ptr->bypass_spec_v1); 9783 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 9784 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 9785 !meta->map_ptr->bypass_spec_v1); 9786 return 0; 9787 } 9788 9789 static int 9790 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 9791 int func_id, int insn_idx) 9792 { 9793 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 9794 struct bpf_reg_state *regs = cur_regs(env), *reg; 9795 struct bpf_map *map = meta->map_ptr; 9796 u64 val, max; 9797 int err; 9798 9799 if (func_id != BPF_FUNC_tail_call) 9800 return 0; 9801 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 9802 verbose(env, "kernel subsystem misconfigured verifier\n"); 9803 return -EINVAL; 9804 } 9805 9806 reg = ®s[BPF_REG_3]; 9807 val = reg->var_off.value; 9808 max = map->max_entries; 9809 9810 if (!(register_is_const(reg) && val < max)) { 9811 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9812 return 0; 9813 } 9814 9815 err = mark_chain_precision(env, BPF_REG_3); 9816 if (err) 9817 return err; 9818 if (bpf_map_key_unseen(aux)) 9819 bpf_map_key_store(aux, val); 9820 else if (!bpf_map_key_poisoned(aux) && 9821 bpf_map_key_immediate(aux) != val) 9822 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 9823 return 0; 9824 } 9825 9826 static int check_reference_leak(struct bpf_verifier_env *env) 9827 { 9828 struct bpf_func_state *state = cur_func(env); 9829 bool refs_lingering = false; 9830 int i; 9831 9832 if (state->frameno && !state->in_callback_fn) 9833 return 0; 9834 9835 for (i = 0; i < state->acquired_refs; i++) { 9836 if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno) 9837 continue; 9838 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 9839 state->refs[i].id, state->refs[i].insn_idx); 9840 refs_lingering = true; 9841 } 9842 return refs_lingering ? -EINVAL : 0; 9843 } 9844 9845 static int check_bpf_snprintf_call(struct bpf_verifier_env *env, 9846 struct bpf_reg_state *regs) 9847 { 9848 struct bpf_reg_state *fmt_reg = ®s[BPF_REG_3]; 9849 struct bpf_reg_state *data_len_reg = ®s[BPF_REG_5]; 9850 struct bpf_map *fmt_map = fmt_reg->map_ptr; 9851 struct bpf_bprintf_data data = {}; 9852 int err, fmt_map_off, num_args; 9853 u64 fmt_addr; 9854 char *fmt; 9855 9856 /* data must be an array of u64 */ 9857 if (data_len_reg->var_off.value % 8) 9858 return -EINVAL; 9859 num_args = data_len_reg->var_off.value / 8; 9860 9861 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const 9862 * and map_direct_value_addr is set. 9863 */ 9864 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value; 9865 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr, 9866 fmt_map_off); 9867 if (err) { 9868 verbose(env, "verifier bug\n"); 9869 return -EFAULT; 9870 } 9871 fmt = (char *)(long)fmt_addr + fmt_map_off; 9872 9873 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we 9874 * can focus on validating the format specifiers. 9875 */ 9876 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data); 9877 if (err < 0) 9878 verbose(env, "Invalid format string\n"); 9879 9880 return err; 9881 } 9882 9883 static int check_get_func_ip(struct bpf_verifier_env *env) 9884 { 9885 enum bpf_prog_type type = resolve_prog_type(env->prog); 9886 int func_id = BPF_FUNC_get_func_ip; 9887 9888 if (type == BPF_PROG_TYPE_TRACING) { 9889 if (!bpf_prog_has_trampoline(env->prog)) { 9890 verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n", 9891 func_id_name(func_id), func_id); 9892 return -ENOTSUPP; 9893 } 9894 return 0; 9895 } else if (type == BPF_PROG_TYPE_KPROBE) { 9896 return 0; 9897 } 9898 9899 verbose(env, "func %s#%d not supported for program type %d\n", 9900 func_id_name(func_id), func_id, type); 9901 return -ENOTSUPP; 9902 } 9903 9904 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 9905 { 9906 return &env->insn_aux_data[env->insn_idx]; 9907 } 9908 9909 static bool loop_flag_is_zero(struct bpf_verifier_env *env) 9910 { 9911 struct bpf_reg_state *regs = cur_regs(env); 9912 struct bpf_reg_state *reg = ®s[BPF_REG_4]; 9913 bool reg_is_null = register_is_null(reg); 9914 9915 if (reg_is_null) 9916 mark_chain_precision(env, BPF_REG_4); 9917 9918 return reg_is_null; 9919 } 9920 9921 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno) 9922 { 9923 struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state; 9924 9925 if (!state->initialized) { 9926 state->initialized = 1; 9927 state->fit_for_inline = loop_flag_is_zero(env); 9928 state->callback_subprogno = subprogno; 9929 return; 9930 } 9931 9932 if (!state->fit_for_inline) 9933 return; 9934 9935 state->fit_for_inline = (loop_flag_is_zero(env) && 9936 state->callback_subprogno == subprogno); 9937 } 9938 9939 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 9940 int *insn_idx_p) 9941 { 9942 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 9943 const struct bpf_func_proto *fn = NULL; 9944 enum bpf_return_type ret_type; 9945 enum bpf_type_flag ret_flag; 9946 struct bpf_reg_state *regs; 9947 struct bpf_call_arg_meta meta; 9948 int insn_idx = *insn_idx_p; 9949 bool changes_data; 9950 int i, err, func_id; 9951 9952 /* find function prototype */ 9953 func_id = insn->imm; 9954 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 9955 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 9956 func_id); 9957 return -EINVAL; 9958 } 9959 9960 if (env->ops->get_func_proto) 9961 fn = env->ops->get_func_proto(func_id, env->prog); 9962 if (!fn) { 9963 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 9964 func_id); 9965 return -EINVAL; 9966 } 9967 9968 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 9969 if (!env->prog->gpl_compatible && fn->gpl_only) { 9970 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 9971 return -EINVAL; 9972 } 9973 9974 if (fn->allowed && !fn->allowed(env->prog)) { 9975 verbose(env, "helper call is not allowed in probe\n"); 9976 return -EINVAL; 9977 } 9978 9979 if (!env->prog->aux->sleepable && fn->might_sleep) { 9980 verbose(env, "helper call might sleep in a non-sleepable prog\n"); 9981 return -EINVAL; 9982 } 9983 9984 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 9985 changes_data = bpf_helper_changes_pkt_data(fn->func); 9986 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 9987 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 9988 func_id_name(func_id), func_id); 9989 return -EINVAL; 9990 } 9991 9992 memset(&meta, 0, sizeof(meta)); 9993 meta.pkt_access = fn->pkt_access; 9994 9995 err = check_func_proto(fn, func_id); 9996 if (err) { 9997 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 9998 func_id_name(func_id), func_id); 9999 return err; 10000 } 10001 10002 if (env->cur_state->active_rcu_lock) { 10003 if (fn->might_sleep) { 10004 verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n", 10005 func_id_name(func_id), func_id); 10006 return -EINVAL; 10007 } 10008 10009 if (env->prog->aux->sleepable && is_storage_get_function(func_id)) 10010 env->insn_aux_data[insn_idx].storage_get_func_atomic = true; 10011 } 10012 10013 meta.func_id = func_id; 10014 /* check args */ 10015 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 10016 err = check_func_arg(env, i, &meta, fn, insn_idx); 10017 if (err) 10018 return err; 10019 } 10020 10021 err = record_func_map(env, &meta, func_id, insn_idx); 10022 if (err) 10023 return err; 10024 10025 err = record_func_key(env, &meta, func_id, insn_idx); 10026 if (err) 10027 return err; 10028 10029 /* Mark slots with STACK_MISC in case of raw mode, stack offset 10030 * is inferred from register state. 10031 */ 10032 for (i = 0; i < meta.access_size; i++) { 10033 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 10034 BPF_WRITE, -1, false, false); 10035 if (err) 10036 return err; 10037 } 10038 10039 regs = cur_regs(env); 10040 10041 if (meta.release_regno) { 10042 err = -EINVAL; 10043 /* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot 10044 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr 10045 * is safe to do directly. 10046 */ 10047 if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) { 10048 if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) { 10049 verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n"); 10050 return -EFAULT; 10051 } 10052 err = unmark_stack_slots_dynptr(env, ®s[meta.release_regno]); 10053 } else if (meta.ref_obj_id) { 10054 err = release_reference(env, meta.ref_obj_id); 10055 } else if (register_is_null(®s[meta.release_regno])) { 10056 /* meta.ref_obj_id can only be 0 if register that is meant to be 10057 * released is NULL, which must be > R0. 10058 */ 10059 err = 0; 10060 } 10061 if (err) { 10062 verbose(env, "func %s#%d reference has not been acquired before\n", 10063 func_id_name(func_id), func_id); 10064 return err; 10065 } 10066 } 10067 10068 switch (func_id) { 10069 case BPF_FUNC_tail_call: 10070 err = check_reference_leak(env); 10071 if (err) { 10072 verbose(env, "tail_call would lead to reference leak\n"); 10073 return err; 10074 } 10075 break; 10076 case BPF_FUNC_get_local_storage: 10077 /* check that flags argument in get_local_storage(map, flags) is 0, 10078 * this is required because get_local_storage() can't return an error. 10079 */ 10080 if (!register_is_null(®s[BPF_REG_2])) { 10081 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 10082 return -EINVAL; 10083 } 10084 break; 10085 case BPF_FUNC_for_each_map_elem: 10086 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10087 set_map_elem_callback_state); 10088 break; 10089 case BPF_FUNC_timer_set_callback: 10090 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10091 set_timer_callback_state); 10092 break; 10093 case BPF_FUNC_find_vma: 10094 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10095 set_find_vma_callback_state); 10096 break; 10097 case BPF_FUNC_snprintf: 10098 err = check_bpf_snprintf_call(env, regs); 10099 break; 10100 case BPF_FUNC_loop: 10101 update_loop_inline_state(env, meta.subprogno); 10102 /* Verifier relies on R1 value to determine if bpf_loop() iteration 10103 * is finished, thus mark it precise. 10104 */ 10105 err = mark_chain_precision(env, BPF_REG_1); 10106 if (err) 10107 return err; 10108 if (cur_func(env)->callback_depth < regs[BPF_REG_1].umax_value) { 10109 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10110 set_loop_callback_state); 10111 } else { 10112 cur_func(env)->callback_depth = 0; 10113 if (env->log.level & BPF_LOG_LEVEL2) 10114 verbose(env, "frame%d bpf_loop iteration limit reached\n", 10115 env->cur_state->curframe); 10116 } 10117 break; 10118 case BPF_FUNC_dynptr_from_mem: 10119 if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) { 10120 verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n", 10121 reg_type_str(env, regs[BPF_REG_1].type)); 10122 return -EACCES; 10123 } 10124 break; 10125 case BPF_FUNC_set_retval: 10126 if (prog_type == BPF_PROG_TYPE_LSM && 10127 env->prog->expected_attach_type == BPF_LSM_CGROUP) { 10128 if (!env->prog->aux->attach_func_proto->type) { 10129 /* Make sure programs that attach to void 10130 * hooks don't try to modify return value. 10131 */ 10132 verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 10133 return -EINVAL; 10134 } 10135 } 10136 break; 10137 case BPF_FUNC_dynptr_data: 10138 { 10139 struct bpf_reg_state *reg; 10140 int id, ref_obj_id; 10141 10142 reg = get_dynptr_arg_reg(env, fn, regs); 10143 if (!reg) 10144 return -EFAULT; 10145 10146 10147 if (meta.dynptr_id) { 10148 verbose(env, "verifier internal error: meta.dynptr_id already set\n"); 10149 return -EFAULT; 10150 } 10151 if (meta.ref_obj_id) { 10152 verbose(env, "verifier internal error: meta.ref_obj_id already set\n"); 10153 return -EFAULT; 10154 } 10155 10156 id = dynptr_id(env, reg); 10157 if (id < 0) { 10158 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 10159 return id; 10160 } 10161 10162 ref_obj_id = dynptr_ref_obj_id(env, reg); 10163 if (ref_obj_id < 0) { 10164 verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n"); 10165 return ref_obj_id; 10166 } 10167 10168 meta.dynptr_id = id; 10169 meta.ref_obj_id = ref_obj_id; 10170 10171 break; 10172 } 10173 case BPF_FUNC_dynptr_write: 10174 { 10175 enum bpf_dynptr_type dynptr_type; 10176 struct bpf_reg_state *reg; 10177 10178 reg = get_dynptr_arg_reg(env, fn, regs); 10179 if (!reg) 10180 return -EFAULT; 10181 10182 dynptr_type = dynptr_get_type(env, reg); 10183 if (dynptr_type == BPF_DYNPTR_TYPE_INVALID) 10184 return -EFAULT; 10185 10186 if (dynptr_type == BPF_DYNPTR_TYPE_SKB) 10187 /* this will trigger clear_all_pkt_pointers(), which will 10188 * invalidate all dynptr slices associated with the skb 10189 */ 10190 changes_data = true; 10191 10192 break; 10193 } 10194 case BPF_FUNC_user_ringbuf_drain: 10195 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 10196 set_user_ringbuf_callback_state); 10197 break; 10198 } 10199 10200 if (err) 10201 return err; 10202 10203 /* reset caller saved regs */ 10204 for (i = 0; i < CALLER_SAVED_REGS; i++) { 10205 mark_reg_not_init(env, regs, caller_saved[i]); 10206 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 10207 } 10208 10209 /* helper call returns 64-bit value. */ 10210 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 10211 10212 /* update return register (already marked as written above) */ 10213 ret_type = fn->ret_type; 10214 ret_flag = type_flag(ret_type); 10215 10216 switch (base_type(ret_type)) { 10217 case RET_INTEGER: 10218 /* sets type to SCALAR_VALUE */ 10219 mark_reg_unknown(env, regs, BPF_REG_0); 10220 break; 10221 case RET_VOID: 10222 regs[BPF_REG_0].type = NOT_INIT; 10223 break; 10224 case RET_PTR_TO_MAP_VALUE: 10225 /* There is no offset yet applied, variable or fixed */ 10226 mark_reg_known_zero(env, regs, BPF_REG_0); 10227 /* remember map_ptr, so that check_map_access() 10228 * can check 'value_size' boundary of memory access 10229 * to map element returned from bpf_map_lookup_elem() 10230 */ 10231 if (meta.map_ptr == NULL) { 10232 verbose(env, 10233 "kernel subsystem misconfigured verifier\n"); 10234 return -EINVAL; 10235 } 10236 regs[BPF_REG_0].map_ptr = meta.map_ptr; 10237 regs[BPF_REG_0].map_uid = meta.map_uid; 10238 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag; 10239 if (!type_may_be_null(ret_type) && 10240 btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) { 10241 regs[BPF_REG_0].id = ++env->id_gen; 10242 } 10243 break; 10244 case RET_PTR_TO_SOCKET: 10245 mark_reg_known_zero(env, regs, BPF_REG_0); 10246 regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag; 10247 break; 10248 case RET_PTR_TO_SOCK_COMMON: 10249 mark_reg_known_zero(env, regs, BPF_REG_0); 10250 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag; 10251 break; 10252 case RET_PTR_TO_TCP_SOCK: 10253 mark_reg_known_zero(env, regs, BPF_REG_0); 10254 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag; 10255 break; 10256 case RET_PTR_TO_MEM: 10257 mark_reg_known_zero(env, regs, BPF_REG_0); 10258 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10259 regs[BPF_REG_0].mem_size = meta.mem_size; 10260 break; 10261 case RET_PTR_TO_MEM_OR_BTF_ID: 10262 { 10263 const struct btf_type *t; 10264 10265 mark_reg_known_zero(env, regs, BPF_REG_0); 10266 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 10267 if (!btf_type_is_struct(t)) { 10268 u32 tsize; 10269 const struct btf_type *ret; 10270 const char *tname; 10271 10272 /* resolve the type size of ksym. */ 10273 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 10274 if (IS_ERR(ret)) { 10275 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 10276 verbose(env, "unable to resolve the size of type '%s': %ld\n", 10277 tname, PTR_ERR(ret)); 10278 return -EINVAL; 10279 } 10280 regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag; 10281 regs[BPF_REG_0].mem_size = tsize; 10282 } else { 10283 /* MEM_RDONLY may be carried from ret_flag, but it 10284 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise 10285 * it will confuse the check of PTR_TO_BTF_ID in 10286 * check_mem_access(). 10287 */ 10288 ret_flag &= ~MEM_RDONLY; 10289 10290 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10291 regs[BPF_REG_0].btf = meta.ret_btf; 10292 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 10293 } 10294 break; 10295 } 10296 case RET_PTR_TO_BTF_ID: 10297 { 10298 struct btf *ret_btf; 10299 int ret_btf_id; 10300 10301 mark_reg_known_zero(env, regs, BPF_REG_0); 10302 regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag; 10303 if (func_id == BPF_FUNC_kptr_xchg) { 10304 ret_btf = meta.kptr_field->kptr.btf; 10305 ret_btf_id = meta.kptr_field->kptr.btf_id; 10306 if (!btf_is_kernel(ret_btf)) 10307 regs[BPF_REG_0].type |= MEM_ALLOC; 10308 } else { 10309 if (fn->ret_btf_id == BPF_PTR_POISON) { 10310 verbose(env, "verifier internal error:"); 10311 verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n", 10312 func_id_name(func_id)); 10313 return -EINVAL; 10314 } 10315 ret_btf = btf_vmlinux; 10316 ret_btf_id = *fn->ret_btf_id; 10317 } 10318 if (ret_btf_id == 0) { 10319 verbose(env, "invalid return type %u of func %s#%d\n", 10320 base_type(ret_type), func_id_name(func_id), 10321 func_id); 10322 return -EINVAL; 10323 } 10324 regs[BPF_REG_0].btf = ret_btf; 10325 regs[BPF_REG_0].btf_id = ret_btf_id; 10326 break; 10327 } 10328 default: 10329 verbose(env, "unknown return type %u of func %s#%d\n", 10330 base_type(ret_type), func_id_name(func_id), func_id); 10331 return -EINVAL; 10332 } 10333 10334 if (type_may_be_null(regs[BPF_REG_0].type)) 10335 regs[BPF_REG_0].id = ++env->id_gen; 10336 10337 if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) { 10338 verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n", 10339 func_id_name(func_id), func_id); 10340 return -EFAULT; 10341 } 10342 10343 if (is_dynptr_ref_function(func_id)) 10344 regs[BPF_REG_0].dynptr_id = meta.dynptr_id; 10345 10346 if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) { 10347 /* For release_reference() */ 10348 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 10349 } else if (is_acquire_function(func_id, meta.map_ptr)) { 10350 int id = acquire_reference_state(env, insn_idx); 10351 10352 if (id < 0) 10353 return id; 10354 /* For mark_ptr_or_null_reg() */ 10355 regs[BPF_REG_0].id = id; 10356 /* For release_reference() */ 10357 regs[BPF_REG_0].ref_obj_id = id; 10358 } 10359 10360 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 10361 10362 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 10363 if (err) 10364 return err; 10365 10366 if ((func_id == BPF_FUNC_get_stack || 10367 func_id == BPF_FUNC_get_task_stack) && 10368 !env->prog->has_callchain_buf) { 10369 const char *err_str; 10370 10371 #ifdef CONFIG_PERF_EVENTS 10372 err = get_callchain_buffers(sysctl_perf_event_max_stack); 10373 err_str = "cannot get callchain buffer for func %s#%d\n"; 10374 #else 10375 err = -ENOTSUPP; 10376 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 10377 #endif 10378 if (err) { 10379 verbose(env, err_str, func_id_name(func_id), func_id); 10380 return err; 10381 } 10382 10383 env->prog->has_callchain_buf = true; 10384 } 10385 10386 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 10387 env->prog->call_get_stack = true; 10388 10389 if (func_id == BPF_FUNC_get_func_ip) { 10390 if (check_get_func_ip(env)) 10391 return -ENOTSUPP; 10392 env->prog->call_get_func_ip = true; 10393 } 10394 10395 if (changes_data) 10396 clear_all_pkt_pointers(env); 10397 return 0; 10398 } 10399 10400 /* mark_btf_func_reg_size() is used when the reg size is determined by 10401 * the BTF func_proto's return value size and argument. 10402 */ 10403 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno, 10404 size_t reg_size) 10405 { 10406 struct bpf_reg_state *reg = &cur_regs(env)[regno]; 10407 10408 if (regno == BPF_REG_0) { 10409 /* Function return value */ 10410 reg->live |= REG_LIVE_WRITTEN; 10411 reg->subreg_def = reg_size == sizeof(u64) ? 10412 DEF_NOT_SUBREG : env->insn_idx + 1; 10413 } else { 10414 /* Function argument */ 10415 if (reg_size == sizeof(u64)) { 10416 mark_insn_zext(env, reg); 10417 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 10418 } else { 10419 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32); 10420 } 10421 } 10422 } 10423 10424 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta) 10425 { 10426 return meta->kfunc_flags & KF_ACQUIRE; 10427 } 10428 10429 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta) 10430 { 10431 return meta->kfunc_flags & KF_RELEASE; 10432 } 10433 10434 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta) 10435 { 10436 return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta); 10437 } 10438 10439 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta) 10440 { 10441 return meta->kfunc_flags & KF_SLEEPABLE; 10442 } 10443 10444 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta) 10445 { 10446 return meta->kfunc_flags & KF_DESTRUCTIVE; 10447 } 10448 10449 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta) 10450 { 10451 return meta->kfunc_flags & KF_RCU; 10452 } 10453 10454 static bool __kfunc_param_match_suffix(const struct btf *btf, 10455 const struct btf_param *arg, 10456 const char *suffix) 10457 { 10458 int suffix_len = strlen(suffix), len; 10459 const char *param_name; 10460 10461 /* In the future, this can be ported to use BTF tagging */ 10462 param_name = btf_name_by_offset(btf, arg->name_off); 10463 if (str_is_empty(param_name)) 10464 return false; 10465 len = strlen(param_name); 10466 if (len < suffix_len) 10467 return false; 10468 param_name += len - suffix_len; 10469 return !strncmp(param_name, suffix, suffix_len); 10470 } 10471 10472 static bool is_kfunc_arg_mem_size(const struct btf *btf, 10473 const struct btf_param *arg, 10474 const struct bpf_reg_state *reg) 10475 { 10476 const struct btf_type *t; 10477 10478 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10479 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10480 return false; 10481 10482 return __kfunc_param_match_suffix(btf, arg, "__sz"); 10483 } 10484 10485 static bool is_kfunc_arg_const_mem_size(const struct btf *btf, 10486 const struct btf_param *arg, 10487 const struct bpf_reg_state *reg) 10488 { 10489 const struct btf_type *t; 10490 10491 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10492 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 10493 return false; 10494 10495 return __kfunc_param_match_suffix(btf, arg, "__szk"); 10496 } 10497 10498 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg) 10499 { 10500 return __kfunc_param_match_suffix(btf, arg, "__opt"); 10501 } 10502 10503 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg) 10504 { 10505 return __kfunc_param_match_suffix(btf, arg, "__k"); 10506 } 10507 10508 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg) 10509 { 10510 return __kfunc_param_match_suffix(btf, arg, "__ign"); 10511 } 10512 10513 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg) 10514 { 10515 return __kfunc_param_match_suffix(btf, arg, "__alloc"); 10516 } 10517 10518 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg) 10519 { 10520 return __kfunc_param_match_suffix(btf, arg, "__uninit"); 10521 } 10522 10523 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg) 10524 { 10525 return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr"); 10526 } 10527 10528 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf, 10529 const struct btf_param *arg, 10530 const char *name) 10531 { 10532 int len, target_len = strlen(name); 10533 const char *param_name; 10534 10535 param_name = btf_name_by_offset(btf, arg->name_off); 10536 if (str_is_empty(param_name)) 10537 return false; 10538 len = strlen(param_name); 10539 if (len != target_len) 10540 return false; 10541 if (strcmp(param_name, name)) 10542 return false; 10543 10544 return true; 10545 } 10546 10547 enum { 10548 KF_ARG_DYNPTR_ID, 10549 KF_ARG_LIST_HEAD_ID, 10550 KF_ARG_LIST_NODE_ID, 10551 KF_ARG_RB_ROOT_ID, 10552 KF_ARG_RB_NODE_ID, 10553 }; 10554 10555 BTF_ID_LIST(kf_arg_btf_ids) 10556 BTF_ID(struct, bpf_dynptr_kern) 10557 BTF_ID(struct, bpf_list_head) 10558 BTF_ID(struct, bpf_list_node) 10559 BTF_ID(struct, bpf_rb_root) 10560 BTF_ID(struct, bpf_rb_node) 10561 10562 static bool __is_kfunc_ptr_arg_type(const struct btf *btf, 10563 const struct btf_param *arg, int type) 10564 { 10565 const struct btf_type *t; 10566 u32 res_id; 10567 10568 t = btf_type_skip_modifiers(btf, arg->type, NULL); 10569 if (!t) 10570 return false; 10571 if (!btf_type_is_ptr(t)) 10572 return false; 10573 t = btf_type_skip_modifiers(btf, t->type, &res_id); 10574 if (!t) 10575 return false; 10576 return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]); 10577 } 10578 10579 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg) 10580 { 10581 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID); 10582 } 10583 10584 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg) 10585 { 10586 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID); 10587 } 10588 10589 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg) 10590 { 10591 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID); 10592 } 10593 10594 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg) 10595 { 10596 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID); 10597 } 10598 10599 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg) 10600 { 10601 return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID); 10602 } 10603 10604 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf, 10605 const struct btf_param *arg) 10606 { 10607 const struct btf_type *t; 10608 10609 t = btf_type_resolve_func_ptr(btf, arg->type, NULL); 10610 if (!t) 10611 return false; 10612 10613 return true; 10614 } 10615 10616 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 10617 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env, 10618 const struct btf *btf, 10619 const struct btf_type *t, int rec) 10620 { 10621 const struct btf_type *member_type; 10622 const struct btf_member *member; 10623 u32 i; 10624 10625 if (!btf_type_is_struct(t)) 10626 return false; 10627 10628 for_each_member(i, t, member) { 10629 const struct btf_array *array; 10630 10631 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 10632 if (btf_type_is_struct(member_type)) { 10633 if (rec >= 3) { 10634 verbose(env, "max struct nesting depth exceeded\n"); 10635 return false; 10636 } 10637 if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1)) 10638 return false; 10639 continue; 10640 } 10641 if (btf_type_is_array(member_type)) { 10642 array = btf_array(member_type); 10643 if (!array->nelems) 10644 return false; 10645 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 10646 if (!btf_type_is_scalar(member_type)) 10647 return false; 10648 continue; 10649 } 10650 if (!btf_type_is_scalar(member_type)) 10651 return false; 10652 } 10653 return true; 10654 } 10655 10656 enum kfunc_ptr_arg_type { 10657 KF_ARG_PTR_TO_CTX, 10658 KF_ARG_PTR_TO_ALLOC_BTF_ID, /* Allocated object */ 10659 KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */ 10660 KF_ARG_PTR_TO_DYNPTR, 10661 KF_ARG_PTR_TO_ITER, 10662 KF_ARG_PTR_TO_LIST_HEAD, 10663 KF_ARG_PTR_TO_LIST_NODE, 10664 KF_ARG_PTR_TO_BTF_ID, /* Also covers reg2btf_ids conversions */ 10665 KF_ARG_PTR_TO_MEM, 10666 KF_ARG_PTR_TO_MEM_SIZE, /* Size derived from next argument, skip it */ 10667 KF_ARG_PTR_TO_CALLBACK, 10668 KF_ARG_PTR_TO_RB_ROOT, 10669 KF_ARG_PTR_TO_RB_NODE, 10670 }; 10671 10672 enum special_kfunc_type { 10673 KF_bpf_obj_new_impl, 10674 KF_bpf_obj_drop_impl, 10675 KF_bpf_refcount_acquire_impl, 10676 KF_bpf_list_push_front_impl, 10677 KF_bpf_list_push_back_impl, 10678 KF_bpf_list_pop_front, 10679 KF_bpf_list_pop_back, 10680 KF_bpf_cast_to_kern_ctx, 10681 KF_bpf_rdonly_cast, 10682 KF_bpf_rcu_read_lock, 10683 KF_bpf_rcu_read_unlock, 10684 KF_bpf_rbtree_remove, 10685 KF_bpf_rbtree_add_impl, 10686 KF_bpf_rbtree_first, 10687 KF_bpf_dynptr_from_skb, 10688 KF_bpf_dynptr_from_xdp, 10689 KF_bpf_dynptr_slice, 10690 KF_bpf_dynptr_slice_rdwr, 10691 KF_bpf_dynptr_clone, 10692 }; 10693 10694 BTF_SET_START(special_kfunc_set) 10695 BTF_ID(func, bpf_obj_new_impl) 10696 BTF_ID(func, bpf_obj_drop_impl) 10697 BTF_ID(func, bpf_refcount_acquire_impl) 10698 BTF_ID(func, bpf_list_push_front_impl) 10699 BTF_ID(func, bpf_list_push_back_impl) 10700 BTF_ID(func, bpf_list_pop_front) 10701 BTF_ID(func, bpf_list_pop_back) 10702 BTF_ID(func, bpf_cast_to_kern_ctx) 10703 BTF_ID(func, bpf_rdonly_cast) 10704 BTF_ID(func, bpf_rbtree_remove) 10705 BTF_ID(func, bpf_rbtree_add_impl) 10706 BTF_ID(func, bpf_rbtree_first) 10707 BTF_ID(func, bpf_dynptr_from_skb) 10708 BTF_ID(func, bpf_dynptr_from_xdp) 10709 BTF_ID(func, bpf_dynptr_slice) 10710 BTF_ID(func, bpf_dynptr_slice_rdwr) 10711 BTF_ID(func, bpf_dynptr_clone) 10712 BTF_SET_END(special_kfunc_set) 10713 10714 BTF_ID_LIST(special_kfunc_list) 10715 BTF_ID(func, bpf_obj_new_impl) 10716 BTF_ID(func, bpf_obj_drop_impl) 10717 BTF_ID(func, bpf_refcount_acquire_impl) 10718 BTF_ID(func, bpf_list_push_front_impl) 10719 BTF_ID(func, bpf_list_push_back_impl) 10720 BTF_ID(func, bpf_list_pop_front) 10721 BTF_ID(func, bpf_list_pop_back) 10722 BTF_ID(func, bpf_cast_to_kern_ctx) 10723 BTF_ID(func, bpf_rdonly_cast) 10724 BTF_ID(func, bpf_rcu_read_lock) 10725 BTF_ID(func, bpf_rcu_read_unlock) 10726 BTF_ID(func, bpf_rbtree_remove) 10727 BTF_ID(func, bpf_rbtree_add_impl) 10728 BTF_ID(func, bpf_rbtree_first) 10729 BTF_ID(func, bpf_dynptr_from_skb) 10730 BTF_ID(func, bpf_dynptr_from_xdp) 10731 BTF_ID(func, bpf_dynptr_slice) 10732 BTF_ID(func, bpf_dynptr_slice_rdwr) 10733 BTF_ID(func, bpf_dynptr_clone) 10734 10735 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta) 10736 { 10737 if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 10738 meta->arg_owning_ref) { 10739 return false; 10740 } 10741 10742 return meta->kfunc_flags & KF_RET_NULL; 10743 } 10744 10745 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta) 10746 { 10747 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock]; 10748 } 10749 10750 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta) 10751 { 10752 return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock]; 10753 } 10754 10755 static enum kfunc_ptr_arg_type 10756 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env, 10757 struct bpf_kfunc_call_arg_meta *meta, 10758 const struct btf_type *t, const struct btf_type *ref_t, 10759 const char *ref_tname, const struct btf_param *args, 10760 int argno, int nargs) 10761 { 10762 u32 regno = argno + 1; 10763 struct bpf_reg_state *regs = cur_regs(env); 10764 struct bpf_reg_state *reg = ®s[regno]; 10765 bool arg_mem_size = false; 10766 10767 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) 10768 return KF_ARG_PTR_TO_CTX; 10769 10770 /* In this function, we verify the kfunc's BTF as per the argument type, 10771 * leaving the rest of the verification with respect to the register 10772 * type to our caller. When a set of conditions hold in the BTF type of 10773 * arguments, we resolve it to a known kfunc_ptr_arg_type. 10774 */ 10775 if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno)) 10776 return KF_ARG_PTR_TO_CTX; 10777 10778 if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno])) 10779 return KF_ARG_PTR_TO_ALLOC_BTF_ID; 10780 10781 if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno])) 10782 return KF_ARG_PTR_TO_REFCOUNTED_KPTR; 10783 10784 if (is_kfunc_arg_dynptr(meta->btf, &args[argno])) 10785 return KF_ARG_PTR_TO_DYNPTR; 10786 10787 if (is_kfunc_arg_iter(meta, argno)) 10788 return KF_ARG_PTR_TO_ITER; 10789 10790 if (is_kfunc_arg_list_head(meta->btf, &args[argno])) 10791 return KF_ARG_PTR_TO_LIST_HEAD; 10792 10793 if (is_kfunc_arg_list_node(meta->btf, &args[argno])) 10794 return KF_ARG_PTR_TO_LIST_NODE; 10795 10796 if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno])) 10797 return KF_ARG_PTR_TO_RB_ROOT; 10798 10799 if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno])) 10800 return KF_ARG_PTR_TO_RB_NODE; 10801 10802 if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) { 10803 if (!btf_type_is_struct(ref_t)) { 10804 verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n", 10805 meta->func_name, argno, btf_type_str(ref_t), ref_tname); 10806 return -EINVAL; 10807 } 10808 return KF_ARG_PTR_TO_BTF_ID; 10809 } 10810 10811 if (is_kfunc_arg_callback(env, meta->btf, &args[argno])) 10812 return KF_ARG_PTR_TO_CALLBACK; 10813 10814 10815 if (argno + 1 < nargs && 10816 (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]) || 10817 is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], ®s[regno + 1]))) 10818 arg_mem_size = true; 10819 10820 /* This is the catch all argument type of register types supported by 10821 * check_helper_mem_access. However, we only allow when argument type is 10822 * pointer to scalar, or struct composed (recursively) of scalars. When 10823 * arg_mem_size is true, the pointer can be void *. 10824 */ 10825 if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) && 10826 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 10827 verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 10828 argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 10829 return -EINVAL; 10830 } 10831 return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM; 10832 } 10833 10834 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env, 10835 struct bpf_reg_state *reg, 10836 const struct btf_type *ref_t, 10837 const char *ref_tname, u32 ref_id, 10838 struct bpf_kfunc_call_arg_meta *meta, 10839 int argno) 10840 { 10841 const struct btf_type *reg_ref_t; 10842 bool strict_type_match = false; 10843 const struct btf *reg_btf; 10844 const char *reg_ref_tname; 10845 u32 reg_ref_id; 10846 10847 if (base_type(reg->type) == PTR_TO_BTF_ID) { 10848 reg_btf = reg->btf; 10849 reg_ref_id = reg->btf_id; 10850 } else { 10851 reg_btf = btf_vmlinux; 10852 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 10853 } 10854 10855 /* Enforce strict type matching for calls to kfuncs that are acquiring 10856 * or releasing a reference, or are no-cast aliases. We do _not_ 10857 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default, 10858 * as we want to enable BPF programs to pass types that are bitwise 10859 * equivalent without forcing them to explicitly cast with something 10860 * like bpf_cast_to_kern_ctx(). 10861 * 10862 * For example, say we had a type like the following: 10863 * 10864 * struct bpf_cpumask { 10865 * cpumask_t cpumask; 10866 * refcount_t usage; 10867 * }; 10868 * 10869 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed 10870 * to a struct cpumask, so it would be safe to pass a struct 10871 * bpf_cpumask * to a kfunc expecting a struct cpumask *. 10872 * 10873 * The philosophy here is similar to how we allow scalars of different 10874 * types to be passed to kfuncs as long as the size is the same. The 10875 * only difference here is that we're simply allowing 10876 * btf_struct_ids_match() to walk the struct at the 0th offset, and 10877 * resolve types. 10878 */ 10879 if (is_kfunc_acquire(meta) || 10880 (is_kfunc_release(meta) && reg->ref_obj_id) || 10881 btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id)) 10882 strict_type_match = true; 10883 10884 WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off); 10885 10886 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, ®_ref_id); 10887 reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off); 10888 if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) { 10889 verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 10890 meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1, 10891 btf_type_str(reg_ref_t), reg_ref_tname); 10892 return -EINVAL; 10893 } 10894 return 0; 10895 } 10896 10897 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10898 { 10899 struct bpf_verifier_state *state = env->cur_state; 10900 struct btf_record *rec = reg_btf_record(reg); 10901 10902 if (!state->active_lock.ptr) { 10903 verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n"); 10904 return -EFAULT; 10905 } 10906 10907 if (type_flag(reg->type) & NON_OWN_REF) { 10908 verbose(env, "verifier internal error: NON_OWN_REF already set\n"); 10909 return -EFAULT; 10910 } 10911 10912 reg->type |= NON_OWN_REF; 10913 if (rec->refcount_off >= 0) 10914 reg->type |= MEM_RCU; 10915 10916 return 0; 10917 } 10918 10919 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id) 10920 { 10921 struct bpf_func_state *state, *unused; 10922 struct bpf_reg_state *reg; 10923 int i; 10924 10925 state = cur_func(env); 10926 10927 if (!ref_obj_id) { 10928 verbose(env, "verifier internal error: ref_obj_id is zero for " 10929 "owning -> non-owning conversion\n"); 10930 return -EFAULT; 10931 } 10932 10933 for (i = 0; i < state->acquired_refs; i++) { 10934 if (state->refs[i].id != ref_obj_id) 10935 continue; 10936 10937 /* Clear ref_obj_id here so release_reference doesn't clobber 10938 * the whole reg 10939 */ 10940 bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({ 10941 if (reg->ref_obj_id == ref_obj_id) { 10942 reg->ref_obj_id = 0; 10943 ref_set_non_owning(env, reg); 10944 } 10945 })); 10946 return 0; 10947 } 10948 10949 verbose(env, "verifier internal error: ref state missing for ref_obj_id\n"); 10950 return -EFAULT; 10951 } 10952 10953 /* Implementation details: 10954 * 10955 * Each register points to some region of memory, which we define as an 10956 * allocation. Each allocation may embed a bpf_spin_lock which protects any 10957 * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same 10958 * allocation. The lock and the data it protects are colocated in the same 10959 * memory region. 10960 * 10961 * Hence, everytime a register holds a pointer value pointing to such 10962 * allocation, the verifier preserves a unique reg->id for it. 10963 * 10964 * The verifier remembers the lock 'ptr' and the lock 'id' whenever 10965 * bpf_spin_lock is called. 10966 * 10967 * To enable this, lock state in the verifier captures two values: 10968 * active_lock.ptr = Register's type specific pointer 10969 * active_lock.id = A unique ID for each register pointer value 10970 * 10971 * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two 10972 * supported register types. 10973 * 10974 * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of 10975 * allocated objects is the reg->btf pointer. 10976 * 10977 * The active_lock.id is non-unique for maps supporting direct_value_addr, as we 10978 * can establish the provenance of the map value statically for each distinct 10979 * lookup into such maps. They always contain a single map value hence unique 10980 * IDs for each pseudo load pessimizes the algorithm and rejects valid programs. 10981 * 10982 * So, in case of global variables, they use array maps with max_entries = 1, 10983 * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point 10984 * into the same map value as max_entries is 1, as described above). 10985 * 10986 * In case of inner map lookups, the inner map pointer has same map_ptr as the 10987 * outer map pointer (in verifier context), but each lookup into an inner map 10988 * assigns a fresh reg->id to the lookup, so while lookups into distinct inner 10989 * maps from the same outer map share the same map_ptr as active_lock.ptr, they 10990 * will get different reg->id assigned to each lookup, hence different 10991 * active_lock.id. 10992 * 10993 * In case of allocated objects, active_lock.ptr is the reg->btf, and the 10994 * reg->id is a unique ID preserved after the NULL pointer check on the pointer 10995 * returned from bpf_obj_new. Each allocation receives a new reg->id. 10996 */ 10997 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg) 10998 { 10999 void *ptr; 11000 u32 id; 11001 11002 switch ((int)reg->type) { 11003 case PTR_TO_MAP_VALUE: 11004 ptr = reg->map_ptr; 11005 break; 11006 case PTR_TO_BTF_ID | MEM_ALLOC: 11007 ptr = reg->btf; 11008 break; 11009 default: 11010 verbose(env, "verifier internal error: unknown reg type for lock check\n"); 11011 return -EFAULT; 11012 } 11013 id = reg->id; 11014 11015 if (!env->cur_state->active_lock.ptr) 11016 return -EINVAL; 11017 if (env->cur_state->active_lock.ptr != ptr || 11018 env->cur_state->active_lock.id != id) { 11019 verbose(env, "held lock and object are not in the same allocation\n"); 11020 return -EINVAL; 11021 } 11022 return 0; 11023 } 11024 11025 static bool is_bpf_list_api_kfunc(u32 btf_id) 11026 { 11027 return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11028 btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11029 btf_id == special_kfunc_list[KF_bpf_list_pop_front] || 11030 btf_id == special_kfunc_list[KF_bpf_list_pop_back]; 11031 } 11032 11033 static bool is_bpf_rbtree_api_kfunc(u32 btf_id) 11034 { 11035 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] || 11036 btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11037 btf_id == special_kfunc_list[KF_bpf_rbtree_first]; 11038 } 11039 11040 static bool is_bpf_graph_api_kfunc(u32 btf_id) 11041 { 11042 return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) || 11043 btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]; 11044 } 11045 11046 static bool is_sync_callback_calling_kfunc(u32 btf_id) 11047 { 11048 return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]; 11049 } 11050 11051 static bool is_rbtree_lock_required_kfunc(u32 btf_id) 11052 { 11053 return is_bpf_rbtree_api_kfunc(btf_id); 11054 } 11055 11056 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env, 11057 enum btf_field_type head_field_type, 11058 u32 kfunc_btf_id) 11059 { 11060 bool ret; 11061 11062 switch (head_field_type) { 11063 case BPF_LIST_HEAD: 11064 ret = is_bpf_list_api_kfunc(kfunc_btf_id); 11065 break; 11066 case BPF_RB_ROOT: 11067 ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id); 11068 break; 11069 default: 11070 verbose(env, "verifier internal error: unexpected graph root argument type %s\n", 11071 btf_field_type_name(head_field_type)); 11072 return false; 11073 } 11074 11075 if (!ret) 11076 verbose(env, "verifier internal error: %s head arg for unknown kfunc\n", 11077 btf_field_type_name(head_field_type)); 11078 return ret; 11079 } 11080 11081 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env, 11082 enum btf_field_type node_field_type, 11083 u32 kfunc_btf_id) 11084 { 11085 bool ret; 11086 11087 switch (node_field_type) { 11088 case BPF_LIST_NODE: 11089 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11090 kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]); 11091 break; 11092 case BPF_RB_NODE: 11093 ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11094 kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]); 11095 break; 11096 default: 11097 verbose(env, "verifier internal error: unexpected graph node argument type %s\n", 11098 btf_field_type_name(node_field_type)); 11099 return false; 11100 } 11101 11102 if (!ret) 11103 verbose(env, "verifier internal error: %s node arg for unknown kfunc\n", 11104 btf_field_type_name(node_field_type)); 11105 return ret; 11106 } 11107 11108 static int 11109 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env, 11110 struct bpf_reg_state *reg, u32 regno, 11111 struct bpf_kfunc_call_arg_meta *meta, 11112 enum btf_field_type head_field_type, 11113 struct btf_field **head_field) 11114 { 11115 const char *head_type_name; 11116 struct btf_field *field; 11117 struct btf_record *rec; 11118 u32 head_off; 11119 11120 if (meta->btf != btf_vmlinux) { 11121 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11122 return -EFAULT; 11123 } 11124 11125 if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id)) 11126 return -EFAULT; 11127 11128 head_type_name = btf_field_type_name(head_field_type); 11129 if (!tnum_is_const(reg->var_off)) { 11130 verbose(env, 11131 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11132 regno, head_type_name); 11133 return -EINVAL; 11134 } 11135 11136 rec = reg_btf_record(reg); 11137 head_off = reg->off + reg->var_off.value; 11138 field = btf_record_find(rec, head_off, head_field_type); 11139 if (!field) { 11140 verbose(env, "%s not found at offset=%u\n", head_type_name, head_off); 11141 return -EINVAL; 11142 } 11143 11144 /* All functions require bpf_list_head to be protected using a bpf_spin_lock */ 11145 if (check_reg_allocation_locked(env, reg)) { 11146 verbose(env, "bpf_spin_lock at off=%d must be held for %s\n", 11147 rec->spin_lock_off, head_type_name); 11148 return -EINVAL; 11149 } 11150 11151 if (*head_field) { 11152 verbose(env, "verifier internal error: repeating %s arg\n", head_type_name); 11153 return -EFAULT; 11154 } 11155 *head_field = field; 11156 return 0; 11157 } 11158 11159 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env, 11160 struct bpf_reg_state *reg, u32 regno, 11161 struct bpf_kfunc_call_arg_meta *meta) 11162 { 11163 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD, 11164 &meta->arg_list_head.field); 11165 } 11166 11167 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env, 11168 struct bpf_reg_state *reg, u32 regno, 11169 struct bpf_kfunc_call_arg_meta *meta) 11170 { 11171 return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT, 11172 &meta->arg_rbtree_root.field); 11173 } 11174 11175 static int 11176 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env, 11177 struct bpf_reg_state *reg, u32 regno, 11178 struct bpf_kfunc_call_arg_meta *meta, 11179 enum btf_field_type head_field_type, 11180 enum btf_field_type node_field_type, 11181 struct btf_field **node_field) 11182 { 11183 const char *node_type_name; 11184 const struct btf_type *et, *t; 11185 struct btf_field *field; 11186 u32 node_off; 11187 11188 if (meta->btf != btf_vmlinux) { 11189 verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n"); 11190 return -EFAULT; 11191 } 11192 11193 if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id)) 11194 return -EFAULT; 11195 11196 node_type_name = btf_field_type_name(node_field_type); 11197 if (!tnum_is_const(reg->var_off)) { 11198 verbose(env, 11199 "R%d doesn't have constant offset. %s has to be at the constant offset\n", 11200 regno, node_type_name); 11201 return -EINVAL; 11202 } 11203 11204 node_off = reg->off + reg->var_off.value; 11205 field = reg_find_field_offset(reg, node_off, node_field_type); 11206 if (!field || field->offset != node_off) { 11207 verbose(env, "%s not found at offset=%u\n", node_type_name, node_off); 11208 return -EINVAL; 11209 } 11210 11211 field = *node_field; 11212 11213 et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id); 11214 t = btf_type_by_id(reg->btf, reg->btf_id); 11215 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf, 11216 field->graph_root.value_btf_id, true)) { 11217 verbose(env, "operation on %s expects arg#1 %s at offset=%d " 11218 "in struct %s, but arg is at offset=%d in struct %s\n", 11219 btf_field_type_name(head_field_type), 11220 btf_field_type_name(node_field_type), 11221 field->graph_root.node_offset, 11222 btf_name_by_offset(field->graph_root.btf, et->name_off), 11223 node_off, btf_name_by_offset(reg->btf, t->name_off)); 11224 return -EINVAL; 11225 } 11226 meta->arg_btf = reg->btf; 11227 meta->arg_btf_id = reg->btf_id; 11228 11229 if (node_off != field->graph_root.node_offset) { 11230 verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n", 11231 node_off, btf_field_type_name(node_field_type), 11232 field->graph_root.node_offset, 11233 btf_name_by_offset(field->graph_root.btf, et->name_off)); 11234 return -EINVAL; 11235 } 11236 11237 return 0; 11238 } 11239 11240 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env, 11241 struct bpf_reg_state *reg, u32 regno, 11242 struct bpf_kfunc_call_arg_meta *meta) 11243 { 11244 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11245 BPF_LIST_HEAD, BPF_LIST_NODE, 11246 &meta->arg_list_head.field); 11247 } 11248 11249 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env, 11250 struct bpf_reg_state *reg, u32 regno, 11251 struct bpf_kfunc_call_arg_meta *meta) 11252 { 11253 return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta, 11254 BPF_RB_ROOT, BPF_RB_NODE, 11255 &meta->arg_rbtree_root.field); 11256 } 11257 11258 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta, 11259 int insn_idx) 11260 { 11261 const char *func_name = meta->func_name, *ref_tname; 11262 const struct btf *btf = meta->btf; 11263 const struct btf_param *args; 11264 struct btf_record *rec; 11265 u32 i, nargs; 11266 int ret; 11267 11268 args = (const struct btf_param *)(meta->func_proto + 1); 11269 nargs = btf_type_vlen(meta->func_proto); 11270 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 11271 verbose(env, "Function %s has %d > %d args\n", func_name, nargs, 11272 MAX_BPF_FUNC_REG_ARGS); 11273 return -EINVAL; 11274 } 11275 11276 /* Check that BTF function arguments match actual types that the 11277 * verifier sees. 11278 */ 11279 for (i = 0; i < nargs; i++) { 11280 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[i + 1]; 11281 const struct btf_type *t, *ref_t, *resolve_ret; 11282 enum bpf_arg_type arg_type = ARG_DONTCARE; 11283 u32 regno = i + 1, ref_id, type_size; 11284 bool is_ret_buf_sz = false; 11285 int kf_arg_type; 11286 11287 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 11288 11289 if (is_kfunc_arg_ignore(btf, &args[i])) 11290 continue; 11291 11292 if (btf_type_is_scalar(t)) { 11293 if (reg->type != SCALAR_VALUE) { 11294 verbose(env, "R%d is not a scalar\n", regno); 11295 return -EINVAL; 11296 } 11297 11298 if (is_kfunc_arg_constant(meta->btf, &args[i])) { 11299 if (meta->arg_constant.found) { 11300 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11301 return -EFAULT; 11302 } 11303 if (!tnum_is_const(reg->var_off)) { 11304 verbose(env, "R%d must be a known constant\n", regno); 11305 return -EINVAL; 11306 } 11307 ret = mark_chain_precision(env, regno); 11308 if (ret < 0) 11309 return ret; 11310 meta->arg_constant.found = true; 11311 meta->arg_constant.value = reg->var_off.value; 11312 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) { 11313 meta->r0_rdonly = true; 11314 is_ret_buf_sz = true; 11315 } else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) { 11316 is_ret_buf_sz = true; 11317 } 11318 11319 if (is_ret_buf_sz) { 11320 if (meta->r0_size) { 11321 verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc"); 11322 return -EINVAL; 11323 } 11324 11325 if (!tnum_is_const(reg->var_off)) { 11326 verbose(env, "R%d is not a const\n", regno); 11327 return -EINVAL; 11328 } 11329 11330 meta->r0_size = reg->var_off.value; 11331 ret = mark_chain_precision(env, regno); 11332 if (ret) 11333 return ret; 11334 } 11335 continue; 11336 } 11337 11338 if (!btf_type_is_ptr(t)) { 11339 verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t)); 11340 return -EINVAL; 11341 } 11342 11343 if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) && 11344 (register_is_null(reg) || type_may_be_null(reg->type))) { 11345 verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i); 11346 return -EACCES; 11347 } 11348 11349 if (reg->ref_obj_id) { 11350 if (is_kfunc_release(meta) && meta->ref_obj_id) { 11351 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 11352 regno, reg->ref_obj_id, 11353 meta->ref_obj_id); 11354 return -EFAULT; 11355 } 11356 meta->ref_obj_id = reg->ref_obj_id; 11357 if (is_kfunc_release(meta)) 11358 meta->release_regno = regno; 11359 } 11360 11361 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 11362 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 11363 11364 kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs); 11365 if (kf_arg_type < 0) 11366 return kf_arg_type; 11367 11368 switch (kf_arg_type) { 11369 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11370 case KF_ARG_PTR_TO_BTF_ID: 11371 if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta)) 11372 break; 11373 11374 if (!is_trusted_reg(reg)) { 11375 if (!is_kfunc_rcu(meta)) { 11376 verbose(env, "R%d must be referenced or trusted\n", regno); 11377 return -EINVAL; 11378 } 11379 if (!is_rcu_reg(reg)) { 11380 verbose(env, "R%d must be a rcu pointer\n", regno); 11381 return -EINVAL; 11382 } 11383 } 11384 11385 fallthrough; 11386 case KF_ARG_PTR_TO_CTX: 11387 /* Trusted arguments have the same offset checks as release arguments */ 11388 arg_type |= OBJ_RELEASE; 11389 break; 11390 case KF_ARG_PTR_TO_DYNPTR: 11391 case KF_ARG_PTR_TO_ITER: 11392 case KF_ARG_PTR_TO_LIST_HEAD: 11393 case KF_ARG_PTR_TO_LIST_NODE: 11394 case KF_ARG_PTR_TO_RB_ROOT: 11395 case KF_ARG_PTR_TO_RB_NODE: 11396 case KF_ARG_PTR_TO_MEM: 11397 case KF_ARG_PTR_TO_MEM_SIZE: 11398 case KF_ARG_PTR_TO_CALLBACK: 11399 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11400 /* Trusted by default */ 11401 break; 11402 default: 11403 WARN_ON_ONCE(1); 11404 return -EFAULT; 11405 } 11406 11407 if (is_kfunc_release(meta) && reg->ref_obj_id) 11408 arg_type |= OBJ_RELEASE; 11409 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 11410 if (ret < 0) 11411 return ret; 11412 11413 switch (kf_arg_type) { 11414 case KF_ARG_PTR_TO_CTX: 11415 if (reg->type != PTR_TO_CTX) { 11416 verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t)); 11417 return -EINVAL; 11418 } 11419 11420 if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11421 ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog)); 11422 if (ret < 0) 11423 return -EINVAL; 11424 meta->ret_btf_id = ret; 11425 } 11426 break; 11427 case KF_ARG_PTR_TO_ALLOC_BTF_ID: 11428 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11429 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11430 return -EINVAL; 11431 } 11432 if (!reg->ref_obj_id) { 11433 verbose(env, "allocated object must be referenced\n"); 11434 return -EINVAL; 11435 } 11436 if (meta->btf == btf_vmlinux && 11437 meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 11438 meta->arg_btf = reg->btf; 11439 meta->arg_btf_id = reg->btf_id; 11440 } 11441 break; 11442 case KF_ARG_PTR_TO_DYNPTR: 11443 { 11444 enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR; 11445 int clone_ref_obj_id = 0; 11446 11447 if (reg->type != PTR_TO_STACK && 11448 reg->type != CONST_PTR_TO_DYNPTR) { 11449 verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i); 11450 return -EINVAL; 11451 } 11452 11453 if (reg->type == CONST_PTR_TO_DYNPTR) 11454 dynptr_arg_type |= MEM_RDONLY; 11455 11456 if (is_kfunc_arg_uninit(btf, &args[i])) 11457 dynptr_arg_type |= MEM_UNINIT; 11458 11459 if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 11460 dynptr_arg_type |= DYNPTR_TYPE_SKB; 11461 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) { 11462 dynptr_arg_type |= DYNPTR_TYPE_XDP; 11463 } else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] && 11464 (dynptr_arg_type & MEM_UNINIT)) { 11465 enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type; 11466 11467 if (parent_type == BPF_DYNPTR_TYPE_INVALID) { 11468 verbose(env, "verifier internal error: no dynptr type for parent of clone\n"); 11469 return -EFAULT; 11470 } 11471 11472 dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type); 11473 clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id; 11474 if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) { 11475 verbose(env, "verifier internal error: missing ref obj id for parent of clone\n"); 11476 return -EFAULT; 11477 } 11478 } 11479 11480 ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id); 11481 if (ret < 0) 11482 return ret; 11483 11484 if (!(dynptr_arg_type & MEM_UNINIT)) { 11485 int id = dynptr_id(env, reg); 11486 11487 if (id < 0) { 11488 verbose(env, "verifier internal error: failed to obtain dynptr id\n"); 11489 return id; 11490 } 11491 meta->initialized_dynptr.id = id; 11492 meta->initialized_dynptr.type = dynptr_get_type(env, reg); 11493 meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg); 11494 } 11495 11496 break; 11497 } 11498 case KF_ARG_PTR_TO_ITER: 11499 ret = process_iter_arg(env, regno, insn_idx, meta); 11500 if (ret < 0) 11501 return ret; 11502 break; 11503 case KF_ARG_PTR_TO_LIST_HEAD: 11504 if (reg->type != PTR_TO_MAP_VALUE && 11505 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11506 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11507 return -EINVAL; 11508 } 11509 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11510 verbose(env, "allocated object must be referenced\n"); 11511 return -EINVAL; 11512 } 11513 ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta); 11514 if (ret < 0) 11515 return ret; 11516 break; 11517 case KF_ARG_PTR_TO_RB_ROOT: 11518 if (reg->type != PTR_TO_MAP_VALUE && 11519 reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11520 verbose(env, "arg#%d expected pointer to map value or allocated object\n", i); 11521 return -EINVAL; 11522 } 11523 if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) { 11524 verbose(env, "allocated object must be referenced\n"); 11525 return -EINVAL; 11526 } 11527 ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta); 11528 if (ret < 0) 11529 return ret; 11530 break; 11531 case KF_ARG_PTR_TO_LIST_NODE: 11532 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11533 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11534 return -EINVAL; 11535 } 11536 if (!reg->ref_obj_id) { 11537 verbose(env, "allocated object must be referenced\n"); 11538 return -EINVAL; 11539 } 11540 ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta); 11541 if (ret < 0) 11542 return ret; 11543 break; 11544 case KF_ARG_PTR_TO_RB_NODE: 11545 if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) { 11546 if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) { 11547 verbose(env, "rbtree_remove node input must be non-owning ref\n"); 11548 return -EINVAL; 11549 } 11550 if (in_rbtree_lock_required_cb(env)) { 11551 verbose(env, "rbtree_remove not allowed in rbtree cb\n"); 11552 return -EINVAL; 11553 } 11554 } else { 11555 if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) { 11556 verbose(env, "arg#%d expected pointer to allocated object\n", i); 11557 return -EINVAL; 11558 } 11559 if (!reg->ref_obj_id) { 11560 verbose(env, "allocated object must be referenced\n"); 11561 return -EINVAL; 11562 } 11563 } 11564 11565 ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta); 11566 if (ret < 0) 11567 return ret; 11568 break; 11569 case KF_ARG_PTR_TO_BTF_ID: 11570 /* Only base_type is checked, further checks are done here */ 11571 if ((base_type(reg->type) != PTR_TO_BTF_ID || 11572 (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) && 11573 !reg2btf_ids[base_type(reg->type)]) { 11574 verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type)); 11575 verbose(env, "expected %s or socket\n", 11576 reg_type_str(env, base_type(reg->type) | 11577 (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS))); 11578 return -EINVAL; 11579 } 11580 ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i); 11581 if (ret < 0) 11582 return ret; 11583 break; 11584 case KF_ARG_PTR_TO_MEM: 11585 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 11586 if (IS_ERR(resolve_ret)) { 11587 verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 11588 i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret)); 11589 return -EINVAL; 11590 } 11591 ret = check_mem_reg(env, reg, regno, type_size); 11592 if (ret < 0) 11593 return ret; 11594 break; 11595 case KF_ARG_PTR_TO_MEM_SIZE: 11596 { 11597 struct bpf_reg_state *buff_reg = ®s[regno]; 11598 const struct btf_param *buff_arg = &args[i]; 11599 struct bpf_reg_state *size_reg = ®s[regno + 1]; 11600 const struct btf_param *size_arg = &args[i + 1]; 11601 11602 if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) { 11603 ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1); 11604 if (ret < 0) { 11605 verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1); 11606 return ret; 11607 } 11608 } 11609 11610 if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) { 11611 if (meta->arg_constant.found) { 11612 verbose(env, "verifier internal error: only one constant argument permitted\n"); 11613 return -EFAULT; 11614 } 11615 if (!tnum_is_const(size_reg->var_off)) { 11616 verbose(env, "R%d must be a known constant\n", regno + 1); 11617 return -EINVAL; 11618 } 11619 meta->arg_constant.found = true; 11620 meta->arg_constant.value = size_reg->var_off.value; 11621 } 11622 11623 /* Skip next '__sz' or '__szk' argument */ 11624 i++; 11625 break; 11626 } 11627 case KF_ARG_PTR_TO_CALLBACK: 11628 if (reg->type != PTR_TO_FUNC) { 11629 verbose(env, "arg%d expected pointer to func\n", i); 11630 return -EINVAL; 11631 } 11632 meta->subprogno = reg->subprogno; 11633 break; 11634 case KF_ARG_PTR_TO_REFCOUNTED_KPTR: 11635 if (!type_is_ptr_alloc_obj(reg->type)) { 11636 verbose(env, "arg#%d is neither owning or non-owning ref\n", i); 11637 return -EINVAL; 11638 } 11639 if (!type_is_non_owning_ref(reg->type)) 11640 meta->arg_owning_ref = true; 11641 11642 rec = reg_btf_record(reg); 11643 if (!rec) { 11644 verbose(env, "verifier internal error: Couldn't find btf_record\n"); 11645 return -EFAULT; 11646 } 11647 11648 if (rec->refcount_off < 0) { 11649 verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i); 11650 return -EINVAL; 11651 } 11652 11653 meta->arg_btf = reg->btf; 11654 meta->arg_btf_id = reg->btf_id; 11655 break; 11656 } 11657 } 11658 11659 if (is_kfunc_release(meta) && !meta->release_regno) { 11660 verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 11661 func_name); 11662 return -EINVAL; 11663 } 11664 11665 return 0; 11666 } 11667 11668 static int fetch_kfunc_meta(struct bpf_verifier_env *env, 11669 struct bpf_insn *insn, 11670 struct bpf_kfunc_call_arg_meta *meta, 11671 const char **kfunc_name) 11672 { 11673 const struct btf_type *func, *func_proto; 11674 u32 func_id, *kfunc_flags; 11675 const char *func_name; 11676 struct btf *desc_btf; 11677 11678 if (kfunc_name) 11679 *kfunc_name = NULL; 11680 11681 if (!insn->imm) 11682 return -EINVAL; 11683 11684 desc_btf = find_kfunc_desc_btf(env, insn->off); 11685 if (IS_ERR(desc_btf)) 11686 return PTR_ERR(desc_btf); 11687 11688 func_id = insn->imm; 11689 func = btf_type_by_id(desc_btf, func_id); 11690 func_name = btf_name_by_offset(desc_btf, func->name_off); 11691 if (kfunc_name) 11692 *kfunc_name = func_name; 11693 func_proto = btf_type_by_id(desc_btf, func->type); 11694 11695 kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog); 11696 if (!kfunc_flags) { 11697 return -EACCES; 11698 } 11699 11700 memset(meta, 0, sizeof(*meta)); 11701 meta->btf = desc_btf; 11702 meta->func_id = func_id; 11703 meta->kfunc_flags = *kfunc_flags; 11704 meta->func_proto = func_proto; 11705 meta->func_name = func_name; 11706 11707 return 0; 11708 } 11709 11710 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 11711 int *insn_idx_p) 11712 { 11713 const struct btf_type *t, *ptr_type; 11714 u32 i, nargs, ptr_type_id, release_ref_obj_id; 11715 struct bpf_reg_state *regs = cur_regs(env); 11716 const char *func_name, *ptr_type_name; 11717 bool sleepable, rcu_lock, rcu_unlock; 11718 struct bpf_kfunc_call_arg_meta meta; 11719 struct bpf_insn_aux_data *insn_aux; 11720 int err, insn_idx = *insn_idx_p; 11721 const struct btf_param *args; 11722 const struct btf_type *ret_t; 11723 struct btf *desc_btf; 11724 11725 /* skip for now, but return error when we find this in fixup_kfunc_call */ 11726 if (!insn->imm) 11727 return 0; 11728 11729 err = fetch_kfunc_meta(env, insn, &meta, &func_name); 11730 if (err == -EACCES && func_name) 11731 verbose(env, "calling kernel function %s is not allowed\n", func_name); 11732 if (err) 11733 return err; 11734 desc_btf = meta.btf; 11735 insn_aux = &env->insn_aux_data[insn_idx]; 11736 11737 insn_aux->is_iter_next = is_iter_next_kfunc(&meta); 11738 11739 if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) { 11740 verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n"); 11741 return -EACCES; 11742 } 11743 11744 sleepable = is_kfunc_sleepable(&meta); 11745 if (sleepable && !env->prog->aux->sleepable) { 11746 verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name); 11747 return -EACCES; 11748 } 11749 11750 /* Check the arguments */ 11751 err = check_kfunc_args(env, &meta, insn_idx); 11752 if (err < 0) 11753 return err; 11754 11755 if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11756 err = push_callback_call(env, insn, insn_idx, meta.subprogno, 11757 set_rbtree_add_callback_state); 11758 if (err) { 11759 verbose(env, "kfunc %s#%d failed callback verification\n", 11760 func_name, meta.func_id); 11761 return err; 11762 } 11763 } 11764 11765 rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta); 11766 rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta); 11767 11768 if (env->cur_state->active_rcu_lock) { 11769 struct bpf_func_state *state; 11770 struct bpf_reg_state *reg; 11771 11772 if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) { 11773 verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n"); 11774 return -EACCES; 11775 } 11776 11777 if (rcu_lock) { 11778 verbose(env, "nested rcu read lock (kernel function %s)\n", func_name); 11779 return -EINVAL; 11780 } else if (rcu_unlock) { 11781 bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({ 11782 if (reg->type & MEM_RCU) { 11783 reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL); 11784 reg->type |= PTR_UNTRUSTED; 11785 } 11786 })); 11787 env->cur_state->active_rcu_lock = false; 11788 } else if (sleepable) { 11789 verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name); 11790 return -EACCES; 11791 } 11792 } else if (rcu_lock) { 11793 env->cur_state->active_rcu_lock = true; 11794 } else if (rcu_unlock) { 11795 verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name); 11796 return -EINVAL; 11797 } 11798 11799 /* In case of release function, we get register number of refcounted 11800 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now. 11801 */ 11802 if (meta.release_regno) { 11803 err = release_reference(env, regs[meta.release_regno].ref_obj_id); 11804 if (err) { 11805 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11806 func_name, meta.func_id); 11807 return err; 11808 } 11809 } 11810 11811 if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 11812 meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 11813 meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 11814 release_ref_obj_id = regs[BPF_REG_2].ref_obj_id; 11815 insn_aux->insert_off = regs[BPF_REG_2].off; 11816 insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id); 11817 err = ref_convert_owning_non_owning(env, release_ref_obj_id); 11818 if (err) { 11819 verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n", 11820 func_name, meta.func_id); 11821 return err; 11822 } 11823 11824 err = release_reference(env, release_ref_obj_id); 11825 if (err) { 11826 verbose(env, "kfunc %s#%d reference has not been acquired before\n", 11827 func_name, meta.func_id); 11828 return err; 11829 } 11830 } 11831 11832 for (i = 0; i < CALLER_SAVED_REGS; i++) 11833 mark_reg_not_init(env, regs, caller_saved[i]); 11834 11835 /* Check return type */ 11836 t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL); 11837 11838 if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) { 11839 /* Only exception is bpf_obj_new_impl */ 11840 if (meta.btf != btf_vmlinux || 11841 (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] && 11842 meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) { 11843 verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n"); 11844 return -EINVAL; 11845 } 11846 } 11847 11848 if (btf_type_is_scalar(t)) { 11849 mark_reg_unknown(env, regs, BPF_REG_0); 11850 mark_btf_func_reg_size(env, BPF_REG_0, t->size); 11851 } else if (btf_type_is_ptr(t)) { 11852 ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id); 11853 11854 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 11855 if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 11856 struct btf *ret_btf; 11857 u32 ret_btf_id; 11858 11859 if (unlikely(!bpf_global_ma_set)) 11860 return -ENOMEM; 11861 11862 if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) { 11863 verbose(env, "local type ID argument must be in range [0, U32_MAX]\n"); 11864 return -EINVAL; 11865 } 11866 11867 ret_btf = env->prog->aux->btf; 11868 ret_btf_id = meta.arg_constant.value; 11869 11870 /* This may be NULL due to user not supplying a BTF */ 11871 if (!ret_btf) { 11872 verbose(env, "bpf_obj_new requires prog BTF\n"); 11873 return -EINVAL; 11874 } 11875 11876 ret_t = btf_type_by_id(ret_btf, ret_btf_id); 11877 if (!ret_t || !__btf_type_is_struct(ret_t)) { 11878 verbose(env, "bpf_obj_new type ID argument must be of a struct\n"); 11879 return -EINVAL; 11880 } 11881 11882 mark_reg_known_zero(env, regs, BPF_REG_0); 11883 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11884 regs[BPF_REG_0].btf = ret_btf; 11885 regs[BPF_REG_0].btf_id = ret_btf_id; 11886 11887 insn_aux->obj_new_size = ret_t->size; 11888 insn_aux->kptr_struct_meta = 11889 btf_find_struct_meta(ret_btf, ret_btf_id); 11890 } else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 11891 mark_reg_known_zero(env, regs, BPF_REG_0); 11892 regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC; 11893 regs[BPF_REG_0].btf = meta.arg_btf; 11894 regs[BPF_REG_0].btf_id = meta.arg_btf_id; 11895 11896 insn_aux->kptr_struct_meta = 11897 btf_find_struct_meta(meta.arg_btf, 11898 meta.arg_btf_id); 11899 } else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] || 11900 meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) { 11901 struct btf_field *field = meta.arg_list_head.field; 11902 11903 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11904 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] || 11905 meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 11906 struct btf_field *field = meta.arg_rbtree_root.field; 11907 11908 mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root); 11909 } else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) { 11910 mark_reg_known_zero(env, regs, BPF_REG_0); 11911 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED; 11912 regs[BPF_REG_0].btf = desc_btf; 11913 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 11914 } else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 11915 ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value); 11916 if (!ret_t || !btf_type_is_struct(ret_t)) { 11917 verbose(env, 11918 "kfunc bpf_rdonly_cast type ID argument must be of a struct\n"); 11919 return -EINVAL; 11920 } 11921 11922 mark_reg_known_zero(env, regs, BPF_REG_0); 11923 regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 11924 regs[BPF_REG_0].btf = desc_btf; 11925 regs[BPF_REG_0].btf_id = meta.arg_constant.value; 11926 } else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] || 11927 meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) { 11928 enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type); 11929 11930 mark_reg_known_zero(env, regs, BPF_REG_0); 11931 11932 if (!meta.arg_constant.found) { 11933 verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n"); 11934 return -EFAULT; 11935 } 11936 11937 regs[BPF_REG_0].mem_size = meta.arg_constant.value; 11938 11939 /* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */ 11940 regs[BPF_REG_0].type = PTR_TO_MEM | type_flag; 11941 11942 if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) { 11943 regs[BPF_REG_0].type |= MEM_RDONLY; 11944 } else { 11945 /* this will set env->seen_direct_write to true */ 11946 if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) { 11947 verbose(env, "the prog does not allow writes to packet data\n"); 11948 return -EINVAL; 11949 } 11950 } 11951 11952 if (!meta.initialized_dynptr.id) { 11953 verbose(env, "verifier internal error: no dynptr id\n"); 11954 return -EFAULT; 11955 } 11956 regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id; 11957 11958 /* we don't need to set BPF_REG_0's ref obj id 11959 * because packet slices are not refcounted (see 11960 * dynptr_type_refcounted) 11961 */ 11962 } else { 11963 verbose(env, "kernel function %s unhandled dynamic return type\n", 11964 meta.func_name); 11965 return -EFAULT; 11966 } 11967 } else if (!__btf_type_is_struct(ptr_type)) { 11968 if (!meta.r0_size) { 11969 __u32 sz; 11970 11971 if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) { 11972 meta.r0_size = sz; 11973 meta.r0_rdonly = true; 11974 } 11975 } 11976 if (!meta.r0_size) { 11977 ptr_type_name = btf_name_by_offset(desc_btf, 11978 ptr_type->name_off); 11979 verbose(env, 11980 "kernel function %s returns pointer type %s %s is not supported\n", 11981 func_name, 11982 btf_type_str(ptr_type), 11983 ptr_type_name); 11984 return -EINVAL; 11985 } 11986 11987 mark_reg_known_zero(env, regs, BPF_REG_0); 11988 regs[BPF_REG_0].type = PTR_TO_MEM; 11989 regs[BPF_REG_0].mem_size = meta.r0_size; 11990 11991 if (meta.r0_rdonly) 11992 regs[BPF_REG_0].type |= MEM_RDONLY; 11993 11994 /* Ensures we don't access the memory after a release_reference() */ 11995 if (meta.ref_obj_id) 11996 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 11997 } else { 11998 mark_reg_known_zero(env, regs, BPF_REG_0); 11999 regs[BPF_REG_0].btf = desc_btf; 12000 regs[BPF_REG_0].type = PTR_TO_BTF_ID; 12001 regs[BPF_REG_0].btf_id = ptr_type_id; 12002 } 12003 12004 if (is_kfunc_ret_null(&meta)) { 12005 regs[BPF_REG_0].type |= PTR_MAYBE_NULL; 12006 /* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */ 12007 regs[BPF_REG_0].id = ++env->id_gen; 12008 } 12009 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *)); 12010 if (is_kfunc_acquire(&meta)) { 12011 int id = acquire_reference_state(env, insn_idx); 12012 12013 if (id < 0) 12014 return id; 12015 if (is_kfunc_ret_null(&meta)) 12016 regs[BPF_REG_0].id = id; 12017 regs[BPF_REG_0].ref_obj_id = id; 12018 } else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) { 12019 ref_set_non_owning(env, ®s[BPF_REG_0]); 12020 } 12021 12022 if (reg_may_point_to_spin_lock(®s[BPF_REG_0]) && !regs[BPF_REG_0].id) 12023 regs[BPF_REG_0].id = ++env->id_gen; 12024 } else if (btf_type_is_void(t)) { 12025 if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) { 12026 if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) { 12027 insn_aux->kptr_struct_meta = 12028 btf_find_struct_meta(meta.arg_btf, 12029 meta.arg_btf_id); 12030 } 12031 } 12032 } 12033 12034 nargs = btf_type_vlen(meta.func_proto); 12035 args = (const struct btf_param *)(meta.func_proto + 1); 12036 for (i = 0; i < nargs; i++) { 12037 u32 regno = i + 1; 12038 12039 t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL); 12040 if (btf_type_is_ptr(t)) 12041 mark_btf_func_reg_size(env, regno, sizeof(void *)); 12042 else 12043 /* scalar. ensured by btf_check_kfunc_arg_match() */ 12044 mark_btf_func_reg_size(env, regno, t->size); 12045 } 12046 12047 if (is_iter_next_kfunc(&meta)) { 12048 err = process_iter_next_call(env, insn_idx, &meta); 12049 if (err) 12050 return err; 12051 } 12052 12053 return 0; 12054 } 12055 12056 static bool signed_add_overflows(s64 a, s64 b) 12057 { 12058 /* Do the add in u64, where overflow is well-defined */ 12059 s64 res = (s64)((u64)a + (u64)b); 12060 12061 if (b < 0) 12062 return res > a; 12063 return res < a; 12064 } 12065 12066 static bool signed_add32_overflows(s32 a, s32 b) 12067 { 12068 /* Do the add in u32, where overflow is well-defined */ 12069 s32 res = (s32)((u32)a + (u32)b); 12070 12071 if (b < 0) 12072 return res > a; 12073 return res < a; 12074 } 12075 12076 static bool signed_sub_overflows(s64 a, s64 b) 12077 { 12078 /* Do the sub in u64, where overflow is well-defined */ 12079 s64 res = (s64)((u64)a - (u64)b); 12080 12081 if (b < 0) 12082 return res < a; 12083 return res > a; 12084 } 12085 12086 static bool signed_sub32_overflows(s32 a, s32 b) 12087 { 12088 /* Do the sub in u32, where overflow is well-defined */ 12089 s32 res = (s32)((u32)a - (u32)b); 12090 12091 if (b < 0) 12092 return res < a; 12093 return res > a; 12094 } 12095 12096 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 12097 const struct bpf_reg_state *reg, 12098 enum bpf_reg_type type) 12099 { 12100 bool known = tnum_is_const(reg->var_off); 12101 s64 val = reg->var_off.value; 12102 s64 smin = reg->smin_value; 12103 12104 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 12105 verbose(env, "math between %s pointer and %lld is not allowed\n", 12106 reg_type_str(env, type), val); 12107 return false; 12108 } 12109 12110 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 12111 verbose(env, "%s pointer offset %d is not allowed\n", 12112 reg_type_str(env, type), reg->off); 12113 return false; 12114 } 12115 12116 if (smin == S64_MIN) { 12117 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 12118 reg_type_str(env, type)); 12119 return false; 12120 } 12121 12122 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 12123 verbose(env, "value %lld makes %s pointer be out of bounds\n", 12124 smin, reg_type_str(env, type)); 12125 return false; 12126 } 12127 12128 return true; 12129 } 12130 12131 enum { 12132 REASON_BOUNDS = -1, 12133 REASON_TYPE = -2, 12134 REASON_PATHS = -3, 12135 REASON_LIMIT = -4, 12136 REASON_STACK = -5, 12137 }; 12138 12139 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 12140 u32 *alu_limit, bool mask_to_left) 12141 { 12142 u32 max = 0, ptr_limit = 0; 12143 12144 switch (ptr_reg->type) { 12145 case PTR_TO_STACK: 12146 /* Offset 0 is out-of-bounds, but acceptable start for the 12147 * left direction, see BPF_REG_FP. Also, unknown scalar 12148 * offset where we would need to deal with min/max bounds is 12149 * currently prohibited for unprivileged. 12150 */ 12151 max = MAX_BPF_STACK + mask_to_left; 12152 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); 12153 break; 12154 case PTR_TO_MAP_VALUE: 12155 max = ptr_reg->map_ptr->value_size; 12156 ptr_limit = (mask_to_left ? 12157 ptr_reg->smin_value : 12158 ptr_reg->umax_value) + ptr_reg->off; 12159 break; 12160 default: 12161 return REASON_TYPE; 12162 } 12163 12164 if (ptr_limit >= max) 12165 return REASON_LIMIT; 12166 *alu_limit = ptr_limit; 12167 return 0; 12168 } 12169 12170 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 12171 const struct bpf_insn *insn) 12172 { 12173 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 12174 } 12175 12176 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 12177 u32 alu_state, u32 alu_limit) 12178 { 12179 /* If we arrived here from different branches with different 12180 * state or limits to sanitize, then this won't work. 12181 */ 12182 if (aux->alu_state && 12183 (aux->alu_state != alu_state || 12184 aux->alu_limit != alu_limit)) 12185 return REASON_PATHS; 12186 12187 /* Corresponding fixup done in do_misc_fixups(). */ 12188 aux->alu_state = alu_state; 12189 aux->alu_limit = alu_limit; 12190 return 0; 12191 } 12192 12193 static int sanitize_val_alu(struct bpf_verifier_env *env, 12194 struct bpf_insn *insn) 12195 { 12196 struct bpf_insn_aux_data *aux = cur_aux(env); 12197 12198 if (can_skip_alu_sanitation(env, insn)) 12199 return 0; 12200 12201 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 12202 } 12203 12204 static bool sanitize_needed(u8 opcode) 12205 { 12206 return opcode == BPF_ADD || opcode == BPF_SUB; 12207 } 12208 12209 struct bpf_sanitize_info { 12210 struct bpf_insn_aux_data aux; 12211 bool mask_to_left; 12212 }; 12213 12214 static struct bpf_verifier_state * 12215 sanitize_speculative_path(struct bpf_verifier_env *env, 12216 const struct bpf_insn *insn, 12217 u32 next_idx, u32 curr_idx) 12218 { 12219 struct bpf_verifier_state *branch; 12220 struct bpf_reg_state *regs; 12221 12222 branch = push_stack(env, next_idx, curr_idx, true); 12223 if (branch && insn) { 12224 regs = branch->frame[branch->curframe]->regs; 12225 if (BPF_SRC(insn->code) == BPF_K) { 12226 mark_reg_unknown(env, regs, insn->dst_reg); 12227 } else if (BPF_SRC(insn->code) == BPF_X) { 12228 mark_reg_unknown(env, regs, insn->dst_reg); 12229 mark_reg_unknown(env, regs, insn->src_reg); 12230 } 12231 } 12232 return branch; 12233 } 12234 12235 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 12236 struct bpf_insn *insn, 12237 const struct bpf_reg_state *ptr_reg, 12238 const struct bpf_reg_state *off_reg, 12239 struct bpf_reg_state *dst_reg, 12240 struct bpf_sanitize_info *info, 12241 const bool commit_window) 12242 { 12243 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; 12244 struct bpf_verifier_state *vstate = env->cur_state; 12245 bool off_is_imm = tnum_is_const(off_reg->var_off); 12246 bool off_is_neg = off_reg->smin_value < 0; 12247 bool ptr_is_dst_reg = ptr_reg == dst_reg; 12248 u8 opcode = BPF_OP(insn->code); 12249 u32 alu_state, alu_limit; 12250 struct bpf_reg_state tmp; 12251 bool ret; 12252 int err; 12253 12254 if (can_skip_alu_sanitation(env, insn)) 12255 return 0; 12256 12257 /* We already marked aux for masking from non-speculative 12258 * paths, thus we got here in the first place. We only care 12259 * to explore bad access from here. 12260 */ 12261 if (vstate->speculative) 12262 goto do_sim; 12263 12264 if (!commit_window) { 12265 if (!tnum_is_const(off_reg->var_off) && 12266 (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) 12267 return REASON_BOUNDS; 12268 12269 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || 12270 (opcode == BPF_SUB && !off_is_neg); 12271 } 12272 12273 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); 12274 if (err < 0) 12275 return err; 12276 12277 if (commit_window) { 12278 /* In commit phase we narrow the masking window based on 12279 * the observed pointer move after the simulated operation. 12280 */ 12281 alu_state = info->aux.alu_state; 12282 alu_limit = abs(info->aux.alu_limit - alu_limit); 12283 } else { 12284 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 12285 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; 12286 alu_state |= ptr_is_dst_reg ? 12287 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 12288 12289 /* Limit pruning on unknown scalars to enable deep search for 12290 * potential masking differences from other program paths. 12291 */ 12292 if (!off_is_imm) 12293 env->explore_alu_limits = true; 12294 } 12295 12296 err = update_alu_sanitation_state(aux, alu_state, alu_limit); 12297 if (err < 0) 12298 return err; 12299 do_sim: 12300 /* If we're in commit phase, we're done here given we already 12301 * pushed the truncated dst_reg into the speculative verification 12302 * stack. 12303 * 12304 * Also, when register is a known constant, we rewrite register-based 12305 * operation to immediate-based, and thus do not need masking (and as 12306 * a consequence, do not need to simulate the zero-truncation either). 12307 */ 12308 if (commit_window || off_is_imm) 12309 return 0; 12310 12311 /* Simulate and find potential out-of-bounds access under 12312 * speculative execution from truncation as a result of 12313 * masking when off was not within expected range. If off 12314 * sits in dst, then we temporarily need to move ptr there 12315 * to simulate dst (== 0) +/-= ptr. Needed, for example, 12316 * for cases where we use K-based arithmetic in one direction 12317 * and truncated reg-based in the other in order to explore 12318 * bad access. 12319 */ 12320 if (!ptr_is_dst_reg) { 12321 tmp = *dst_reg; 12322 copy_register_state(dst_reg, ptr_reg); 12323 } 12324 ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1, 12325 env->insn_idx); 12326 if (!ptr_is_dst_reg && ret) 12327 *dst_reg = tmp; 12328 return !ret ? REASON_STACK : 0; 12329 } 12330 12331 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env) 12332 { 12333 struct bpf_verifier_state *vstate = env->cur_state; 12334 12335 /* If we simulate paths under speculation, we don't update the 12336 * insn as 'seen' such that when we verify unreachable paths in 12337 * the non-speculative domain, sanitize_dead_code() can still 12338 * rewrite/sanitize them. 12339 */ 12340 if (!vstate->speculative) 12341 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 12342 } 12343 12344 static int sanitize_err(struct bpf_verifier_env *env, 12345 const struct bpf_insn *insn, int reason, 12346 const struct bpf_reg_state *off_reg, 12347 const struct bpf_reg_state *dst_reg) 12348 { 12349 static const char *err = "pointer arithmetic with it prohibited for !root"; 12350 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; 12351 u32 dst = insn->dst_reg, src = insn->src_reg; 12352 12353 switch (reason) { 12354 case REASON_BOUNDS: 12355 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n", 12356 off_reg == dst_reg ? dst : src, err); 12357 break; 12358 case REASON_TYPE: 12359 verbose(env, "R%d has pointer with unsupported alu operation, %s\n", 12360 off_reg == dst_reg ? src : dst, err); 12361 break; 12362 case REASON_PATHS: 12363 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n", 12364 dst, op, err); 12365 break; 12366 case REASON_LIMIT: 12367 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n", 12368 dst, op, err); 12369 break; 12370 case REASON_STACK: 12371 verbose(env, "R%d could not be pushed for speculative verification, %s\n", 12372 dst, err); 12373 break; 12374 default: 12375 verbose(env, "verifier internal error: unknown reason (%d)\n", 12376 reason); 12377 break; 12378 } 12379 12380 return -EACCES; 12381 } 12382 12383 /* check that stack access falls within stack limits and that 'reg' doesn't 12384 * have a variable offset. 12385 * 12386 * Variable offset is prohibited for unprivileged mode for simplicity since it 12387 * requires corresponding support in Spectre masking for stack ALU. See also 12388 * retrieve_ptr_limit(). 12389 * 12390 * 12391 * 'off' includes 'reg->off'. 12392 */ 12393 static int check_stack_access_for_ptr_arithmetic( 12394 struct bpf_verifier_env *env, 12395 int regno, 12396 const struct bpf_reg_state *reg, 12397 int off) 12398 { 12399 if (!tnum_is_const(reg->var_off)) { 12400 char tn_buf[48]; 12401 12402 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 12403 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n", 12404 regno, tn_buf, off); 12405 return -EACCES; 12406 } 12407 12408 if (off >= 0 || off < -MAX_BPF_STACK) { 12409 verbose(env, "R%d stack pointer arithmetic goes out of range, " 12410 "prohibited for !root; off=%d\n", regno, off); 12411 return -EACCES; 12412 } 12413 12414 return 0; 12415 } 12416 12417 static int sanitize_check_bounds(struct bpf_verifier_env *env, 12418 const struct bpf_insn *insn, 12419 const struct bpf_reg_state *dst_reg) 12420 { 12421 u32 dst = insn->dst_reg; 12422 12423 /* For unprivileged we require that resulting offset must be in bounds 12424 * in order to be able to sanitize access later on. 12425 */ 12426 if (env->bypass_spec_v1) 12427 return 0; 12428 12429 switch (dst_reg->type) { 12430 case PTR_TO_STACK: 12431 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg, 12432 dst_reg->off + dst_reg->var_off.value)) 12433 return -EACCES; 12434 break; 12435 case PTR_TO_MAP_VALUE: 12436 if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) { 12437 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 12438 "prohibited for !root\n", dst); 12439 return -EACCES; 12440 } 12441 break; 12442 default: 12443 break; 12444 } 12445 12446 return 0; 12447 } 12448 12449 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 12450 * Caller should also handle BPF_MOV case separately. 12451 * If we return -EACCES, caller may want to try again treating pointer as a 12452 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 12453 */ 12454 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 12455 struct bpf_insn *insn, 12456 const struct bpf_reg_state *ptr_reg, 12457 const struct bpf_reg_state *off_reg) 12458 { 12459 struct bpf_verifier_state *vstate = env->cur_state; 12460 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 12461 struct bpf_reg_state *regs = state->regs, *dst_reg; 12462 bool known = tnum_is_const(off_reg->var_off); 12463 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 12464 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 12465 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 12466 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 12467 struct bpf_sanitize_info info = {}; 12468 u8 opcode = BPF_OP(insn->code); 12469 u32 dst = insn->dst_reg; 12470 int ret; 12471 12472 dst_reg = ®s[dst]; 12473 12474 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 12475 smin_val > smax_val || umin_val > umax_val) { 12476 /* Taint dst register if offset had invalid bounds derived from 12477 * e.g. dead branches. 12478 */ 12479 __mark_reg_unknown(env, dst_reg); 12480 return 0; 12481 } 12482 12483 if (BPF_CLASS(insn->code) != BPF_ALU64) { 12484 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 12485 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 12486 __mark_reg_unknown(env, dst_reg); 12487 return 0; 12488 } 12489 12490 verbose(env, 12491 "R%d 32-bit pointer arithmetic prohibited\n", 12492 dst); 12493 return -EACCES; 12494 } 12495 12496 if (ptr_reg->type & PTR_MAYBE_NULL) { 12497 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 12498 dst, reg_type_str(env, ptr_reg->type)); 12499 return -EACCES; 12500 } 12501 12502 switch (base_type(ptr_reg->type)) { 12503 case PTR_TO_FLOW_KEYS: 12504 if (known) 12505 break; 12506 fallthrough; 12507 case CONST_PTR_TO_MAP: 12508 /* smin_val represents the known value */ 12509 if (known && smin_val == 0 && opcode == BPF_ADD) 12510 break; 12511 fallthrough; 12512 case PTR_TO_PACKET_END: 12513 case PTR_TO_SOCKET: 12514 case PTR_TO_SOCK_COMMON: 12515 case PTR_TO_TCP_SOCK: 12516 case PTR_TO_XDP_SOCK: 12517 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 12518 dst, reg_type_str(env, ptr_reg->type)); 12519 return -EACCES; 12520 default: 12521 break; 12522 } 12523 12524 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 12525 * The id may be overwritten later if we create a new variable offset. 12526 */ 12527 dst_reg->type = ptr_reg->type; 12528 dst_reg->id = ptr_reg->id; 12529 12530 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 12531 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 12532 return -EINVAL; 12533 12534 /* pointer types do not carry 32-bit bounds at the moment. */ 12535 __mark_reg32_unbounded(dst_reg); 12536 12537 if (sanitize_needed(opcode)) { 12538 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, 12539 &info, false); 12540 if (ret < 0) 12541 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12542 } 12543 12544 switch (opcode) { 12545 case BPF_ADD: 12546 /* We can take a fixed offset as long as it doesn't overflow 12547 * the s32 'off' field 12548 */ 12549 if (known && (ptr_reg->off + smin_val == 12550 (s64)(s32)(ptr_reg->off + smin_val))) { 12551 /* pointer += K. Accumulate it into fixed offset */ 12552 dst_reg->smin_value = smin_ptr; 12553 dst_reg->smax_value = smax_ptr; 12554 dst_reg->umin_value = umin_ptr; 12555 dst_reg->umax_value = umax_ptr; 12556 dst_reg->var_off = ptr_reg->var_off; 12557 dst_reg->off = ptr_reg->off + smin_val; 12558 dst_reg->raw = ptr_reg->raw; 12559 break; 12560 } 12561 /* A new variable offset is created. Note that off_reg->off 12562 * == 0, since it's a scalar. 12563 * dst_reg gets the pointer type and since some positive 12564 * integer value was added to the pointer, give it a new 'id' 12565 * if it's a PTR_TO_PACKET. 12566 * this creates a new 'base' pointer, off_reg (variable) gets 12567 * added into the variable offset, and we copy the fixed offset 12568 * from ptr_reg. 12569 */ 12570 if (signed_add_overflows(smin_ptr, smin_val) || 12571 signed_add_overflows(smax_ptr, smax_val)) { 12572 dst_reg->smin_value = S64_MIN; 12573 dst_reg->smax_value = S64_MAX; 12574 } else { 12575 dst_reg->smin_value = smin_ptr + smin_val; 12576 dst_reg->smax_value = smax_ptr + smax_val; 12577 } 12578 if (umin_ptr + umin_val < umin_ptr || 12579 umax_ptr + umax_val < umax_ptr) { 12580 dst_reg->umin_value = 0; 12581 dst_reg->umax_value = U64_MAX; 12582 } else { 12583 dst_reg->umin_value = umin_ptr + umin_val; 12584 dst_reg->umax_value = umax_ptr + umax_val; 12585 } 12586 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 12587 dst_reg->off = ptr_reg->off; 12588 dst_reg->raw = ptr_reg->raw; 12589 if (reg_is_pkt_pointer(ptr_reg)) { 12590 dst_reg->id = ++env->id_gen; 12591 /* something was added to pkt_ptr, set range to zero */ 12592 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12593 } 12594 break; 12595 case BPF_SUB: 12596 if (dst_reg == off_reg) { 12597 /* scalar -= pointer. Creates an unknown scalar */ 12598 verbose(env, "R%d tried to subtract pointer from scalar\n", 12599 dst); 12600 return -EACCES; 12601 } 12602 /* We don't allow subtraction from FP, because (according to 12603 * test_verifier.c test "invalid fp arithmetic", JITs might not 12604 * be able to deal with it. 12605 */ 12606 if (ptr_reg->type == PTR_TO_STACK) { 12607 verbose(env, "R%d subtraction from stack pointer prohibited\n", 12608 dst); 12609 return -EACCES; 12610 } 12611 if (known && (ptr_reg->off - smin_val == 12612 (s64)(s32)(ptr_reg->off - smin_val))) { 12613 /* pointer -= K. Subtract it from fixed offset */ 12614 dst_reg->smin_value = smin_ptr; 12615 dst_reg->smax_value = smax_ptr; 12616 dst_reg->umin_value = umin_ptr; 12617 dst_reg->umax_value = umax_ptr; 12618 dst_reg->var_off = ptr_reg->var_off; 12619 dst_reg->id = ptr_reg->id; 12620 dst_reg->off = ptr_reg->off - smin_val; 12621 dst_reg->raw = ptr_reg->raw; 12622 break; 12623 } 12624 /* A new variable offset is created. If the subtrahend is known 12625 * nonnegative, then any reg->range we had before is still good. 12626 */ 12627 if (signed_sub_overflows(smin_ptr, smax_val) || 12628 signed_sub_overflows(smax_ptr, smin_val)) { 12629 /* Overflow possible, we know nothing */ 12630 dst_reg->smin_value = S64_MIN; 12631 dst_reg->smax_value = S64_MAX; 12632 } else { 12633 dst_reg->smin_value = smin_ptr - smax_val; 12634 dst_reg->smax_value = smax_ptr - smin_val; 12635 } 12636 if (umin_ptr < umax_val) { 12637 /* Overflow possible, we know nothing */ 12638 dst_reg->umin_value = 0; 12639 dst_reg->umax_value = U64_MAX; 12640 } else { 12641 /* Cannot overflow (as long as bounds are consistent) */ 12642 dst_reg->umin_value = umin_ptr - umax_val; 12643 dst_reg->umax_value = umax_ptr - umin_val; 12644 } 12645 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 12646 dst_reg->off = ptr_reg->off; 12647 dst_reg->raw = ptr_reg->raw; 12648 if (reg_is_pkt_pointer(ptr_reg)) { 12649 dst_reg->id = ++env->id_gen; 12650 /* something was added to pkt_ptr, set range to zero */ 12651 if (smin_val < 0) 12652 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 12653 } 12654 break; 12655 case BPF_AND: 12656 case BPF_OR: 12657 case BPF_XOR: 12658 /* bitwise ops on pointers are troublesome, prohibit. */ 12659 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 12660 dst, bpf_alu_string[opcode >> 4]); 12661 return -EACCES; 12662 default: 12663 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 12664 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 12665 dst, bpf_alu_string[opcode >> 4]); 12666 return -EACCES; 12667 } 12668 12669 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 12670 return -EINVAL; 12671 reg_bounds_sync(dst_reg); 12672 if (sanitize_check_bounds(env, insn, dst_reg) < 0) 12673 return -EACCES; 12674 if (sanitize_needed(opcode)) { 12675 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, 12676 &info, true); 12677 if (ret < 0) 12678 return sanitize_err(env, insn, ret, off_reg, dst_reg); 12679 } 12680 12681 return 0; 12682 } 12683 12684 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 12685 struct bpf_reg_state *src_reg) 12686 { 12687 s32 smin_val = src_reg->s32_min_value; 12688 s32 smax_val = src_reg->s32_max_value; 12689 u32 umin_val = src_reg->u32_min_value; 12690 u32 umax_val = src_reg->u32_max_value; 12691 12692 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 12693 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 12694 dst_reg->s32_min_value = S32_MIN; 12695 dst_reg->s32_max_value = S32_MAX; 12696 } else { 12697 dst_reg->s32_min_value += smin_val; 12698 dst_reg->s32_max_value += smax_val; 12699 } 12700 if (dst_reg->u32_min_value + umin_val < umin_val || 12701 dst_reg->u32_max_value + umax_val < umax_val) { 12702 dst_reg->u32_min_value = 0; 12703 dst_reg->u32_max_value = U32_MAX; 12704 } else { 12705 dst_reg->u32_min_value += umin_val; 12706 dst_reg->u32_max_value += umax_val; 12707 } 12708 } 12709 12710 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 12711 struct bpf_reg_state *src_reg) 12712 { 12713 s64 smin_val = src_reg->smin_value; 12714 s64 smax_val = src_reg->smax_value; 12715 u64 umin_val = src_reg->umin_value; 12716 u64 umax_val = src_reg->umax_value; 12717 12718 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 12719 signed_add_overflows(dst_reg->smax_value, smax_val)) { 12720 dst_reg->smin_value = S64_MIN; 12721 dst_reg->smax_value = S64_MAX; 12722 } else { 12723 dst_reg->smin_value += smin_val; 12724 dst_reg->smax_value += smax_val; 12725 } 12726 if (dst_reg->umin_value + umin_val < umin_val || 12727 dst_reg->umax_value + umax_val < umax_val) { 12728 dst_reg->umin_value = 0; 12729 dst_reg->umax_value = U64_MAX; 12730 } else { 12731 dst_reg->umin_value += umin_val; 12732 dst_reg->umax_value += umax_val; 12733 } 12734 } 12735 12736 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 12737 struct bpf_reg_state *src_reg) 12738 { 12739 s32 smin_val = src_reg->s32_min_value; 12740 s32 smax_val = src_reg->s32_max_value; 12741 u32 umin_val = src_reg->u32_min_value; 12742 u32 umax_val = src_reg->u32_max_value; 12743 12744 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 12745 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 12746 /* Overflow possible, we know nothing */ 12747 dst_reg->s32_min_value = S32_MIN; 12748 dst_reg->s32_max_value = S32_MAX; 12749 } else { 12750 dst_reg->s32_min_value -= smax_val; 12751 dst_reg->s32_max_value -= smin_val; 12752 } 12753 if (dst_reg->u32_min_value < umax_val) { 12754 /* Overflow possible, we know nothing */ 12755 dst_reg->u32_min_value = 0; 12756 dst_reg->u32_max_value = U32_MAX; 12757 } else { 12758 /* Cannot overflow (as long as bounds are consistent) */ 12759 dst_reg->u32_min_value -= umax_val; 12760 dst_reg->u32_max_value -= umin_val; 12761 } 12762 } 12763 12764 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 12765 struct bpf_reg_state *src_reg) 12766 { 12767 s64 smin_val = src_reg->smin_value; 12768 s64 smax_val = src_reg->smax_value; 12769 u64 umin_val = src_reg->umin_value; 12770 u64 umax_val = src_reg->umax_value; 12771 12772 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 12773 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 12774 /* Overflow possible, we know nothing */ 12775 dst_reg->smin_value = S64_MIN; 12776 dst_reg->smax_value = S64_MAX; 12777 } else { 12778 dst_reg->smin_value -= smax_val; 12779 dst_reg->smax_value -= smin_val; 12780 } 12781 if (dst_reg->umin_value < umax_val) { 12782 /* Overflow possible, we know nothing */ 12783 dst_reg->umin_value = 0; 12784 dst_reg->umax_value = U64_MAX; 12785 } else { 12786 /* Cannot overflow (as long as bounds are consistent) */ 12787 dst_reg->umin_value -= umax_val; 12788 dst_reg->umax_value -= umin_val; 12789 } 12790 } 12791 12792 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 12793 struct bpf_reg_state *src_reg) 12794 { 12795 s32 smin_val = src_reg->s32_min_value; 12796 u32 umin_val = src_reg->u32_min_value; 12797 u32 umax_val = src_reg->u32_max_value; 12798 12799 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 12800 /* Ain't nobody got time to multiply that sign */ 12801 __mark_reg32_unbounded(dst_reg); 12802 return; 12803 } 12804 /* Both values are positive, so we can work with unsigned and 12805 * copy the result to signed (unless it exceeds S32_MAX). 12806 */ 12807 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 12808 /* Potential overflow, we know nothing */ 12809 __mark_reg32_unbounded(dst_reg); 12810 return; 12811 } 12812 dst_reg->u32_min_value *= umin_val; 12813 dst_reg->u32_max_value *= umax_val; 12814 if (dst_reg->u32_max_value > S32_MAX) { 12815 /* Overflow possible, we know nothing */ 12816 dst_reg->s32_min_value = S32_MIN; 12817 dst_reg->s32_max_value = S32_MAX; 12818 } else { 12819 dst_reg->s32_min_value = dst_reg->u32_min_value; 12820 dst_reg->s32_max_value = dst_reg->u32_max_value; 12821 } 12822 } 12823 12824 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 12825 struct bpf_reg_state *src_reg) 12826 { 12827 s64 smin_val = src_reg->smin_value; 12828 u64 umin_val = src_reg->umin_value; 12829 u64 umax_val = src_reg->umax_value; 12830 12831 if (smin_val < 0 || dst_reg->smin_value < 0) { 12832 /* Ain't nobody got time to multiply that sign */ 12833 __mark_reg64_unbounded(dst_reg); 12834 return; 12835 } 12836 /* Both values are positive, so we can work with unsigned and 12837 * copy the result to signed (unless it exceeds S64_MAX). 12838 */ 12839 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 12840 /* Potential overflow, we know nothing */ 12841 __mark_reg64_unbounded(dst_reg); 12842 return; 12843 } 12844 dst_reg->umin_value *= umin_val; 12845 dst_reg->umax_value *= umax_val; 12846 if (dst_reg->umax_value > S64_MAX) { 12847 /* Overflow possible, we know nothing */ 12848 dst_reg->smin_value = S64_MIN; 12849 dst_reg->smax_value = S64_MAX; 12850 } else { 12851 dst_reg->smin_value = dst_reg->umin_value; 12852 dst_reg->smax_value = dst_reg->umax_value; 12853 } 12854 } 12855 12856 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 12857 struct bpf_reg_state *src_reg) 12858 { 12859 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12860 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12861 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12862 s32 smin_val = src_reg->s32_min_value; 12863 u32 umax_val = src_reg->u32_max_value; 12864 12865 if (src_known && dst_known) { 12866 __mark_reg32_known(dst_reg, var32_off.value); 12867 return; 12868 } 12869 12870 /* We get our minimum from the var_off, since that's inherently 12871 * bitwise. Our maximum is the minimum of the operands' maxima. 12872 */ 12873 dst_reg->u32_min_value = var32_off.value; 12874 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 12875 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12876 /* Lose signed bounds when ANDing negative numbers, 12877 * ain't nobody got time for that. 12878 */ 12879 dst_reg->s32_min_value = S32_MIN; 12880 dst_reg->s32_max_value = S32_MAX; 12881 } else { 12882 /* ANDing two positives gives a positive, so safe to 12883 * cast result into s64. 12884 */ 12885 dst_reg->s32_min_value = dst_reg->u32_min_value; 12886 dst_reg->s32_max_value = dst_reg->u32_max_value; 12887 } 12888 } 12889 12890 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 12891 struct bpf_reg_state *src_reg) 12892 { 12893 bool src_known = tnum_is_const(src_reg->var_off); 12894 bool dst_known = tnum_is_const(dst_reg->var_off); 12895 s64 smin_val = src_reg->smin_value; 12896 u64 umax_val = src_reg->umax_value; 12897 12898 if (src_known && dst_known) { 12899 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12900 return; 12901 } 12902 12903 /* We get our minimum from the var_off, since that's inherently 12904 * bitwise. Our maximum is the minimum of the operands' maxima. 12905 */ 12906 dst_reg->umin_value = dst_reg->var_off.value; 12907 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 12908 if (dst_reg->smin_value < 0 || smin_val < 0) { 12909 /* Lose signed bounds when ANDing negative numbers, 12910 * ain't nobody got time for that. 12911 */ 12912 dst_reg->smin_value = S64_MIN; 12913 dst_reg->smax_value = S64_MAX; 12914 } else { 12915 /* ANDing two positives gives a positive, so safe to 12916 * cast result into s64. 12917 */ 12918 dst_reg->smin_value = dst_reg->umin_value; 12919 dst_reg->smax_value = dst_reg->umax_value; 12920 } 12921 /* We may learn something more from the var_off */ 12922 __update_reg_bounds(dst_reg); 12923 } 12924 12925 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 12926 struct bpf_reg_state *src_reg) 12927 { 12928 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12929 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12930 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 12931 s32 smin_val = src_reg->s32_min_value; 12932 u32 umin_val = src_reg->u32_min_value; 12933 12934 if (src_known && dst_known) { 12935 __mark_reg32_known(dst_reg, var32_off.value); 12936 return; 12937 } 12938 12939 /* We get our maximum from the var_off, and our minimum is the 12940 * maximum of the operands' minima 12941 */ 12942 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 12943 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 12944 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 12945 /* Lose signed bounds when ORing negative numbers, 12946 * ain't nobody got time for that. 12947 */ 12948 dst_reg->s32_min_value = S32_MIN; 12949 dst_reg->s32_max_value = S32_MAX; 12950 } else { 12951 /* ORing two positives gives a positive, so safe to 12952 * cast result into s64. 12953 */ 12954 dst_reg->s32_min_value = dst_reg->u32_min_value; 12955 dst_reg->s32_max_value = dst_reg->u32_max_value; 12956 } 12957 } 12958 12959 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 12960 struct bpf_reg_state *src_reg) 12961 { 12962 bool src_known = tnum_is_const(src_reg->var_off); 12963 bool dst_known = tnum_is_const(dst_reg->var_off); 12964 s64 smin_val = src_reg->smin_value; 12965 u64 umin_val = src_reg->umin_value; 12966 12967 if (src_known && dst_known) { 12968 __mark_reg_known(dst_reg, dst_reg->var_off.value); 12969 return; 12970 } 12971 12972 /* We get our maximum from the var_off, and our minimum is the 12973 * maximum of the operands' minima 12974 */ 12975 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 12976 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 12977 if (dst_reg->smin_value < 0 || smin_val < 0) { 12978 /* Lose signed bounds when ORing negative numbers, 12979 * ain't nobody got time for that. 12980 */ 12981 dst_reg->smin_value = S64_MIN; 12982 dst_reg->smax_value = S64_MAX; 12983 } else { 12984 /* ORing two positives gives a positive, so safe to 12985 * cast result into s64. 12986 */ 12987 dst_reg->smin_value = dst_reg->umin_value; 12988 dst_reg->smax_value = dst_reg->umax_value; 12989 } 12990 /* We may learn something more from the var_off */ 12991 __update_reg_bounds(dst_reg); 12992 } 12993 12994 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 12995 struct bpf_reg_state *src_reg) 12996 { 12997 bool src_known = tnum_subreg_is_const(src_reg->var_off); 12998 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 12999 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 13000 s32 smin_val = src_reg->s32_min_value; 13001 13002 if (src_known && dst_known) { 13003 __mark_reg32_known(dst_reg, var32_off.value); 13004 return; 13005 } 13006 13007 /* We get both minimum and maximum from the var32_off. */ 13008 dst_reg->u32_min_value = var32_off.value; 13009 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 13010 13011 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 13012 /* XORing two positive sign numbers gives a positive, 13013 * so safe to cast u32 result into s32. 13014 */ 13015 dst_reg->s32_min_value = dst_reg->u32_min_value; 13016 dst_reg->s32_max_value = dst_reg->u32_max_value; 13017 } else { 13018 dst_reg->s32_min_value = S32_MIN; 13019 dst_reg->s32_max_value = S32_MAX; 13020 } 13021 } 13022 13023 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 13024 struct bpf_reg_state *src_reg) 13025 { 13026 bool src_known = tnum_is_const(src_reg->var_off); 13027 bool dst_known = tnum_is_const(dst_reg->var_off); 13028 s64 smin_val = src_reg->smin_value; 13029 13030 if (src_known && dst_known) { 13031 /* dst_reg->var_off.value has been updated earlier */ 13032 __mark_reg_known(dst_reg, dst_reg->var_off.value); 13033 return; 13034 } 13035 13036 /* We get both minimum and maximum from the var_off. */ 13037 dst_reg->umin_value = dst_reg->var_off.value; 13038 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 13039 13040 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 13041 /* XORing two positive sign numbers gives a positive, 13042 * so safe to cast u64 result into s64. 13043 */ 13044 dst_reg->smin_value = dst_reg->umin_value; 13045 dst_reg->smax_value = dst_reg->umax_value; 13046 } else { 13047 dst_reg->smin_value = S64_MIN; 13048 dst_reg->smax_value = S64_MAX; 13049 } 13050 13051 __update_reg_bounds(dst_reg); 13052 } 13053 13054 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13055 u64 umin_val, u64 umax_val) 13056 { 13057 /* We lose all sign bit information (except what we can pick 13058 * up from var_off) 13059 */ 13060 dst_reg->s32_min_value = S32_MIN; 13061 dst_reg->s32_max_value = S32_MAX; 13062 /* If we might shift our top bit out, then we know nothing */ 13063 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 13064 dst_reg->u32_min_value = 0; 13065 dst_reg->u32_max_value = U32_MAX; 13066 } else { 13067 dst_reg->u32_min_value <<= umin_val; 13068 dst_reg->u32_max_value <<= umax_val; 13069 } 13070 } 13071 13072 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 13073 struct bpf_reg_state *src_reg) 13074 { 13075 u32 umax_val = src_reg->u32_max_value; 13076 u32 umin_val = src_reg->u32_min_value; 13077 /* u32 alu operation will zext upper bits */ 13078 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13079 13080 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13081 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 13082 /* Not required but being careful mark reg64 bounds as unknown so 13083 * that we are forced to pick them up from tnum and zext later and 13084 * if some path skips this step we are still safe. 13085 */ 13086 __mark_reg64_unbounded(dst_reg); 13087 __update_reg32_bounds(dst_reg); 13088 } 13089 13090 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 13091 u64 umin_val, u64 umax_val) 13092 { 13093 /* Special case <<32 because it is a common compiler pattern to sign 13094 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 13095 * positive we know this shift will also be positive so we can track 13096 * bounds correctly. Otherwise we lose all sign bit information except 13097 * what we can pick up from var_off. Perhaps we can generalize this 13098 * later to shifts of any length. 13099 */ 13100 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 13101 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 13102 else 13103 dst_reg->smax_value = S64_MAX; 13104 13105 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 13106 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 13107 else 13108 dst_reg->smin_value = S64_MIN; 13109 13110 /* If we might shift our top bit out, then we know nothing */ 13111 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 13112 dst_reg->umin_value = 0; 13113 dst_reg->umax_value = U64_MAX; 13114 } else { 13115 dst_reg->umin_value <<= umin_val; 13116 dst_reg->umax_value <<= umax_val; 13117 } 13118 } 13119 13120 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 13121 struct bpf_reg_state *src_reg) 13122 { 13123 u64 umax_val = src_reg->umax_value; 13124 u64 umin_val = src_reg->umin_value; 13125 13126 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 13127 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 13128 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 13129 13130 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 13131 /* We may learn something more from the var_off */ 13132 __update_reg_bounds(dst_reg); 13133 } 13134 13135 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 13136 struct bpf_reg_state *src_reg) 13137 { 13138 struct tnum subreg = tnum_subreg(dst_reg->var_off); 13139 u32 umax_val = src_reg->u32_max_value; 13140 u32 umin_val = src_reg->u32_min_value; 13141 13142 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13143 * be negative, then either: 13144 * 1) src_reg might be zero, so the sign bit of the result is 13145 * unknown, so we lose our signed bounds 13146 * 2) it's known negative, thus the unsigned bounds capture the 13147 * signed bounds 13148 * 3) the signed bounds cross zero, so they tell us nothing 13149 * about the result 13150 * If the value in dst_reg is known nonnegative, then again the 13151 * unsigned bounds capture the signed bounds. 13152 * Thus, in all cases it suffices to blow away our signed bounds 13153 * and rely on inferring new ones from the unsigned bounds and 13154 * var_off of the result. 13155 */ 13156 dst_reg->s32_min_value = S32_MIN; 13157 dst_reg->s32_max_value = S32_MAX; 13158 13159 dst_reg->var_off = tnum_rshift(subreg, umin_val); 13160 dst_reg->u32_min_value >>= umax_val; 13161 dst_reg->u32_max_value >>= umin_val; 13162 13163 __mark_reg64_unbounded(dst_reg); 13164 __update_reg32_bounds(dst_reg); 13165 } 13166 13167 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 13168 struct bpf_reg_state *src_reg) 13169 { 13170 u64 umax_val = src_reg->umax_value; 13171 u64 umin_val = src_reg->umin_value; 13172 13173 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 13174 * be negative, then either: 13175 * 1) src_reg might be zero, so the sign bit of the result is 13176 * unknown, so we lose our signed bounds 13177 * 2) it's known negative, thus the unsigned bounds capture the 13178 * signed bounds 13179 * 3) the signed bounds cross zero, so they tell us nothing 13180 * about the result 13181 * If the value in dst_reg is known nonnegative, then again the 13182 * unsigned bounds capture the signed bounds. 13183 * Thus, in all cases it suffices to blow away our signed bounds 13184 * and rely on inferring new ones from the unsigned bounds and 13185 * var_off of the result. 13186 */ 13187 dst_reg->smin_value = S64_MIN; 13188 dst_reg->smax_value = S64_MAX; 13189 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 13190 dst_reg->umin_value >>= umax_val; 13191 dst_reg->umax_value >>= umin_val; 13192 13193 /* Its not easy to operate on alu32 bounds here because it depends 13194 * on bits being shifted in. Take easy way out and mark unbounded 13195 * so we can recalculate later from tnum. 13196 */ 13197 __mark_reg32_unbounded(dst_reg); 13198 __update_reg_bounds(dst_reg); 13199 } 13200 13201 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 13202 struct bpf_reg_state *src_reg) 13203 { 13204 u64 umin_val = src_reg->u32_min_value; 13205 13206 /* Upon reaching here, src_known is true and 13207 * umax_val is equal to umin_val. 13208 */ 13209 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 13210 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 13211 13212 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 13213 13214 /* blow away the dst_reg umin_value/umax_value and rely on 13215 * dst_reg var_off to refine the result. 13216 */ 13217 dst_reg->u32_min_value = 0; 13218 dst_reg->u32_max_value = U32_MAX; 13219 13220 __mark_reg64_unbounded(dst_reg); 13221 __update_reg32_bounds(dst_reg); 13222 } 13223 13224 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 13225 struct bpf_reg_state *src_reg) 13226 { 13227 u64 umin_val = src_reg->umin_value; 13228 13229 /* Upon reaching here, src_known is true and umax_val is equal 13230 * to umin_val. 13231 */ 13232 dst_reg->smin_value >>= umin_val; 13233 dst_reg->smax_value >>= umin_val; 13234 13235 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 13236 13237 /* blow away the dst_reg umin_value/umax_value and rely on 13238 * dst_reg var_off to refine the result. 13239 */ 13240 dst_reg->umin_value = 0; 13241 dst_reg->umax_value = U64_MAX; 13242 13243 /* Its not easy to operate on alu32 bounds here because it depends 13244 * on bits being shifted in from upper 32-bits. Take easy way out 13245 * and mark unbounded so we can recalculate later from tnum. 13246 */ 13247 __mark_reg32_unbounded(dst_reg); 13248 __update_reg_bounds(dst_reg); 13249 } 13250 13251 /* WARNING: This function does calculations on 64-bit values, but the actual 13252 * execution may occur on 32-bit values. Therefore, things like bitshifts 13253 * need extra checks in the 32-bit case. 13254 */ 13255 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 13256 struct bpf_insn *insn, 13257 struct bpf_reg_state *dst_reg, 13258 struct bpf_reg_state src_reg) 13259 { 13260 struct bpf_reg_state *regs = cur_regs(env); 13261 u8 opcode = BPF_OP(insn->code); 13262 bool src_known; 13263 s64 smin_val, smax_val; 13264 u64 umin_val, umax_val; 13265 s32 s32_min_val, s32_max_val; 13266 u32 u32_min_val, u32_max_val; 13267 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 13268 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 13269 int ret; 13270 13271 smin_val = src_reg.smin_value; 13272 smax_val = src_reg.smax_value; 13273 umin_val = src_reg.umin_value; 13274 umax_val = src_reg.umax_value; 13275 13276 s32_min_val = src_reg.s32_min_value; 13277 s32_max_val = src_reg.s32_max_value; 13278 u32_min_val = src_reg.u32_min_value; 13279 u32_max_val = src_reg.u32_max_value; 13280 13281 if (alu32) { 13282 src_known = tnum_subreg_is_const(src_reg.var_off); 13283 if ((src_known && 13284 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 13285 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 13286 /* Taint dst register if offset had invalid bounds 13287 * derived from e.g. dead branches. 13288 */ 13289 __mark_reg_unknown(env, dst_reg); 13290 return 0; 13291 } 13292 } else { 13293 src_known = tnum_is_const(src_reg.var_off); 13294 if ((src_known && 13295 (smin_val != smax_val || umin_val != umax_val)) || 13296 smin_val > smax_val || umin_val > umax_val) { 13297 /* Taint dst register if offset had invalid bounds 13298 * derived from e.g. dead branches. 13299 */ 13300 __mark_reg_unknown(env, dst_reg); 13301 return 0; 13302 } 13303 } 13304 13305 if (!src_known && 13306 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 13307 __mark_reg_unknown(env, dst_reg); 13308 return 0; 13309 } 13310 13311 if (sanitize_needed(opcode)) { 13312 ret = sanitize_val_alu(env, insn); 13313 if (ret < 0) 13314 return sanitize_err(env, insn, ret, NULL, NULL); 13315 } 13316 13317 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 13318 * There are two classes of instructions: The first class we track both 13319 * alu32 and alu64 sign/unsigned bounds independently this provides the 13320 * greatest amount of precision when alu operations are mixed with jmp32 13321 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 13322 * and BPF_OR. This is possible because these ops have fairly easy to 13323 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 13324 * See alu32 verifier tests for examples. The second class of 13325 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 13326 * with regards to tracking sign/unsigned bounds because the bits may 13327 * cross subreg boundaries in the alu64 case. When this happens we mark 13328 * the reg unbounded in the subreg bound space and use the resulting 13329 * tnum to calculate an approximation of the sign/unsigned bounds. 13330 */ 13331 switch (opcode) { 13332 case BPF_ADD: 13333 scalar32_min_max_add(dst_reg, &src_reg); 13334 scalar_min_max_add(dst_reg, &src_reg); 13335 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 13336 break; 13337 case BPF_SUB: 13338 scalar32_min_max_sub(dst_reg, &src_reg); 13339 scalar_min_max_sub(dst_reg, &src_reg); 13340 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 13341 break; 13342 case BPF_MUL: 13343 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 13344 scalar32_min_max_mul(dst_reg, &src_reg); 13345 scalar_min_max_mul(dst_reg, &src_reg); 13346 break; 13347 case BPF_AND: 13348 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 13349 scalar32_min_max_and(dst_reg, &src_reg); 13350 scalar_min_max_and(dst_reg, &src_reg); 13351 break; 13352 case BPF_OR: 13353 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 13354 scalar32_min_max_or(dst_reg, &src_reg); 13355 scalar_min_max_or(dst_reg, &src_reg); 13356 break; 13357 case BPF_XOR: 13358 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 13359 scalar32_min_max_xor(dst_reg, &src_reg); 13360 scalar_min_max_xor(dst_reg, &src_reg); 13361 break; 13362 case BPF_LSH: 13363 if (umax_val >= insn_bitness) { 13364 /* Shifts greater than 31 or 63 are undefined. 13365 * This includes shifts by a negative number. 13366 */ 13367 mark_reg_unknown(env, regs, insn->dst_reg); 13368 break; 13369 } 13370 if (alu32) 13371 scalar32_min_max_lsh(dst_reg, &src_reg); 13372 else 13373 scalar_min_max_lsh(dst_reg, &src_reg); 13374 break; 13375 case BPF_RSH: 13376 if (umax_val >= insn_bitness) { 13377 /* Shifts greater than 31 or 63 are undefined. 13378 * This includes shifts by a negative number. 13379 */ 13380 mark_reg_unknown(env, regs, insn->dst_reg); 13381 break; 13382 } 13383 if (alu32) 13384 scalar32_min_max_rsh(dst_reg, &src_reg); 13385 else 13386 scalar_min_max_rsh(dst_reg, &src_reg); 13387 break; 13388 case BPF_ARSH: 13389 if (umax_val >= insn_bitness) { 13390 /* Shifts greater than 31 or 63 are undefined. 13391 * This includes shifts by a negative number. 13392 */ 13393 mark_reg_unknown(env, regs, insn->dst_reg); 13394 break; 13395 } 13396 if (alu32) 13397 scalar32_min_max_arsh(dst_reg, &src_reg); 13398 else 13399 scalar_min_max_arsh(dst_reg, &src_reg); 13400 break; 13401 default: 13402 mark_reg_unknown(env, regs, insn->dst_reg); 13403 break; 13404 } 13405 13406 /* ALU32 ops are zero extended into 64bit register */ 13407 if (alu32) 13408 zext_32_to_64(dst_reg); 13409 reg_bounds_sync(dst_reg); 13410 return 0; 13411 } 13412 13413 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 13414 * and var_off. 13415 */ 13416 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 13417 struct bpf_insn *insn) 13418 { 13419 struct bpf_verifier_state *vstate = env->cur_state; 13420 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 13421 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 13422 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 13423 u8 opcode = BPF_OP(insn->code); 13424 int err; 13425 13426 dst_reg = ®s[insn->dst_reg]; 13427 src_reg = NULL; 13428 if (dst_reg->type != SCALAR_VALUE) 13429 ptr_reg = dst_reg; 13430 else 13431 /* Make sure ID is cleared otherwise dst_reg min/max could be 13432 * incorrectly propagated into other registers by find_equal_scalars() 13433 */ 13434 dst_reg->id = 0; 13435 if (BPF_SRC(insn->code) == BPF_X) { 13436 src_reg = ®s[insn->src_reg]; 13437 if (src_reg->type != SCALAR_VALUE) { 13438 if (dst_reg->type != SCALAR_VALUE) { 13439 /* Combining two pointers by any ALU op yields 13440 * an arbitrary scalar. Disallow all math except 13441 * pointer subtraction 13442 */ 13443 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 13444 mark_reg_unknown(env, regs, insn->dst_reg); 13445 return 0; 13446 } 13447 verbose(env, "R%d pointer %s pointer prohibited\n", 13448 insn->dst_reg, 13449 bpf_alu_string[opcode >> 4]); 13450 return -EACCES; 13451 } else { 13452 /* scalar += pointer 13453 * This is legal, but we have to reverse our 13454 * src/dest handling in computing the range 13455 */ 13456 err = mark_chain_precision(env, insn->dst_reg); 13457 if (err) 13458 return err; 13459 return adjust_ptr_min_max_vals(env, insn, 13460 src_reg, dst_reg); 13461 } 13462 } else if (ptr_reg) { 13463 /* pointer += scalar */ 13464 err = mark_chain_precision(env, insn->src_reg); 13465 if (err) 13466 return err; 13467 return adjust_ptr_min_max_vals(env, insn, 13468 dst_reg, src_reg); 13469 } else if (dst_reg->precise) { 13470 /* if dst_reg is precise, src_reg should be precise as well */ 13471 err = mark_chain_precision(env, insn->src_reg); 13472 if (err) 13473 return err; 13474 } 13475 } else { 13476 /* Pretend the src is a reg with a known value, since we only 13477 * need to be able to read from this state. 13478 */ 13479 off_reg.type = SCALAR_VALUE; 13480 __mark_reg_known(&off_reg, insn->imm); 13481 src_reg = &off_reg; 13482 if (ptr_reg) /* pointer += K */ 13483 return adjust_ptr_min_max_vals(env, insn, 13484 ptr_reg, src_reg); 13485 } 13486 13487 /* Got here implies adding two SCALAR_VALUEs */ 13488 if (WARN_ON_ONCE(ptr_reg)) { 13489 print_verifier_state(env, state, true); 13490 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 13491 return -EINVAL; 13492 } 13493 if (WARN_ON(!src_reg)) { 13494 print_verifier_state(env, state, true); 13495 verbose(env, "verifier internal error: no src_reg\n"); 13496 return -EINVAL; 13497 } 13498 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 13499 } 13500 13501 /* check validity of 32-bit and 64-bit arithmetic operations */ 13502 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 13503 { 13504 struct bpf_reg_state *regs = cur_regs(env); 13505 u8 opcode = BPF_OP(insn->code); 13506 int err; 13507 13508 if (opcode == BPF_END || opcode == BPF_NEG) { 13509 if (opcode == BPF_NEG) { 13510 if (BPF_SRC(insn->code) != BPF_K || 13511 insn->src_reg != BPF_REG_0 || 13512 insn->off != 0 || insn->imm != 0) { 13513 verbose(env, "BPF_NEG uses reserved fields\n"); 13514 return -EINVAL; 13515 } 13516 } else { 13517 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 13518 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 13519 (BPF_CLASS(insn->code) == BPF_ALU64 && 13520 BPF_SRC(insn->code) != BPF_TO_LE)) { 13521 verbose(env, "BPF_END uses reserved fields\n"); 13522 return -EINVAL; 13523 } 13524 } 13525 13526 /* check src operand */ 13527 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13528 if (err) 13529 return err; 13530 13531 if (is_pointer_value(env, insn->dst_reg)) { 13532 verbose(env, "R%d pointer arithmetic prohibited\n", 13533 insn->dst_reg); 13534 return -EACCES; 13535 } 13536 13537 /* check dest operand */ 13538 err = check_reg_arg(env, insn->dst_reg, DST_OP); 13539 if (err) 13540 return err; 13541 13542 } else if (opcode == BPF_MOV) { 13543 13544 if (BPF_SRC(insn->code) == BPF_X) { 13545 if (insn->imm != 0) { 13546 verbose(env, "BPF_MOV uses reserved fields\n"); 13547 return -EINVAL; 13548 } 13549 13550 if (BPF_CLASS(insn->code) == BPF_ALU) { 13551 if (insn->off != 0 && insn->off != 8 && insn->off != 16) { 13552 verbose(env, "BPF_MOV uses reserved fields\n"); 13553 return -EINVAL; 13554 } 13555 } else { 13556 if (insn->off != 0 && insn->off != 8 && insn->off != 16 && 13557 insn->off != 32) { 13558 verbose(env, "BPF_MOV uses reserved fields\n"); 13559 return -EINVAL; 13560 } 13561 } 13562 13563 /* check src operand */ 13564 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13565 if (err) 13566 return err; 13567 } else { 13568 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 13569 verbose(env, "BPF_MOV uses reserved fields\n"); 13570 return -EINVAL; 13571 } 13572 } 13573 13574 /* check dest operand, mark as required later */ 13575 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13576 if (err) 13577 return err; 13578 13579 if (BPF_SRC(insn->code) == BPF_X) { 13580 struct bpf_reg_state *src_reg = regs + insn->src_reg; 13581 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 13582 bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id && 13583 !tnum_is_const(src_reg->var_off); 13584 13585 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13586 if (insn->off == 0) { 13587 /* case: R1 = R2 13588 * copy register state to dest reg 13589 */ 13590 if (need_id) 13591 /* Assign src and dst registers the same ID 13592 * that will be used by find_equal_scalars() 13593 * to propagate min/max range. 13594 */ 13595 src_reg->id = ++env->id_gen; 13596 copy_register_state(dst_reg, src_reg); 13597 dst_reg->live |= REG_LIVE_WRITTEN; 13598 dst_reg->subreg_def = DEF_NOT_SUBREG; 13599 } else { 13600 /* case: R1 = (s8, s16 s32)R2 */ 13601 if (is_pointer_value(env, insn->src_reg)) { 13602 verbose(env, 13603 "R%d sign-extension part of pointer\n", 13604 insn->src_reg); 13605 return -EACCES; 13606 } else if (src_reg->type == SCALAR_VALUE) { 13607 bool no_sext; 13608 13609 no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13610 if (no_sext && need_id) 13611 src_reg->id = ++env->id_gen; 13612 copy_register_state(dst_reg, src_reg); 13613 if (!no_sext) 13614 dst_reg->id = 0; 13615 coerce_reg_to_size_sx(dst_reg, insn->off >> 3); 13616 dst_reg->live |= REG_LIVE_WRITTEN; 13617 dst_reg->subreg_def = DEF_NOT_SUBREG; 13618 } else { 13619 mark_reg_unknown(env, regs, insn->dst_reg); 13620 } 13621 } 13622 } else { 13623 /* R1 = (u32) R2 */ 13624 if (is_pointer_value(env, insn->src_reg)) { 13625 verbose(env, 13626 "R%d partial copy of pointer\n", 13627 insn->src_reg); 13628 return -EACCES; 13629 } else if (src_reg->type == SCALAR_VALUE) { 13630 if (insn->off == 0) { 13631 bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX; 13632 13633 if (is_src_reg_u32 && need_id) 13634 src_reg->id = ++env->id_gen; 13635 copy_register_state(dst_reg, src_reg); 13636 /* Make sure ID is cleared if src_reg is not in u32 13637 * range otherwise dst_reg min/max could be incorrectly 13638 * propagated into src_reg by find_equal_scalars() 13639 */ 13640 if (!is_src_reg_u32) 13641 dst_reg->id = 0; 13642 dst_reg->live |= REG_LIVE_WRITTEN; 13643 dst_reg->subreg_def = env->insn_idx + 1; 13644 } else { 13645 /* case: W1 = (s8, s16)W2 */ 13646 bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1)); 13647 13648 if (no_sext && need_id) 13649 src_reg->id = ++env->id_gen; 13650 copy_register_state(dst_reg, src_reg); 13651 if (!no_sext) 13652 dst_reg->id = 0; 13653 dst_reg->live |= REG_LIVE_WRITTEN; 13654 dst_reg->subreg_def = env->insn_idx + 1; 13655 coerce_subreg_to_size_sx(dst_reg, insn->off >> 3); 13656 } 13657 } else { 13658 mark_reg_unknown(env, regs, 13659 insn->dst_reg); 13660 } 13661 zext_32_to_64(dst_reg); 13662 reg_bounds_sync(dst_reg); 13663 } 13664 } else { 13665 /* case: R = imm 13666 * remember the value we stored into this reg 13667 */ 13668 /* clear any state __mark_reg_known doesn't set */ 13669 mark_reg_unknown(env, regs, insn->dst_reg); 13670 regs[insn->dst_reg].type = SCALAR_VALUE; 13671 if (BPF_CLASS(insn->code) == BPF_ALU64) { 13672 __mark_reg_known(regs + insn->dst_reg, 13673 insn->imm); 13674 } else { 13675 __mark_reg_known(regs + insn->dst_reg, 13676 (u32)insn->imm); 13677 } 13678 } 13679 13680 } else if (opcode > BPF_END) { 13681 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 13682 return -EINVAL; 13683 13684 } else { /* all other ALU ops: and, sub, xor, add, ... */ 13685 13686 if (BPF_SRC(insn->code) == BPF_X) { 13687 if (insn->imm != 0 || insn->off > 1 || 13688 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13689 verbose(env, "BPF_ALU uses reserved fields\n"); 13690 return -EINVAL; 13691 } 13692 /* check src1 operand */ 13693 err = check_reg_arg(env, insn->src_reg, SRC_OP); 13694 if (err) 13695 return err; 13696 } else { 13697 if (insn->src_reg != BPF_REG_0 || insn->off > 1 || 13698 (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) { 13699 verbose(env, "BPF_ALU uses reserved fields\n"); 13700 return -EINVAL; 13701 } 13702 } 13703 13704 /* check src2 operand */ 13705 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 13706 if (err) 13707 return err; 13708 13709 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 13710 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 13711 verbose(env, "div by zero\n"); 13712 return -EINVAL; 13713 } 13714 13715 if ((opcode == BPF_LSH || opcode == BPF_RSH || 13716 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 13717 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 13718 13719 if (insn->imm < 0 || insn->imm >= size) { 13720 verbose(env, "invalid shift %d\n", insn->imm); 13721 return -EINVAL; 13722 } 13723 } 13724 13725 /* check dest operand */ 13726 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 13727 if (err) 13728 return err; 13729 13730 return adjust_reg_min_max_vals(env, insn); 13731 } 13732 13733 return 0; 13734 } 13735 13736 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 13737 struct bpf_reg_state *dst_reg, 13738 enum bpf_reg_type type, 13739 bool range_right_open) 13740 { 13741 struct bpf_func_state *state; 13742 struct bpf_reg_state *reg; 13743 int new_range; 13744 13745 if (dst_reg->off < 0 || 13746 (dst_reg->off == 0 && range_right_open)) 13747 /* This doesn't give us any range */ 13748 return; 13749 13750 if (dst_reg->umax_value > MAX_PACKET_OFF || 13751 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 13752 /* Risk of overflow. For instance, ptr + (1<<63) may be less 13753 * than pkt_end, but that's because it's also less than pkt. 13754 */ 13755 return; 13756 13757 new_range = dst_reg->off; 13758 if (range_right_open) 13759 new_range++; 13760 13761 /* Examples for register markings: 13762 * 13763 * pkt_data in dst register: 13764 * 13765 * r2 = r3; 13766 * r2 += 8; 13767 * if (r2 > pkt_end) goto <handle exception> 13768 * <access okay> 13769 * 13770 * r2 = r3; 13771 * r2 += 8; 13772 * if (r2 < pkt_end) goto <access okay> 13773 * <handle exception> 13774 * 13775 * Where: 13776 * r2 == dst_reg, pkt_end == src_reg 13777 * r2=pkt(id=n,off=8,r=0) 13778 * r3=pkt(id=n,off=0,r=0) 13779 * 13780 * pkt_data in src register: 13781 * 13782 * r2 = r3; 13783 * r2 += 8; 13784 * if (pkt_end >= r2) goto <access okay> 13785 * <handle exception> 13786 * 13787 * r2 = r3; 13788 * r2 += 8; 13789 * if (pkt_end <= r2) goto <handle exception> 13790 * <access okay> 13791 * 13792 * Where: 13793 * pkt_end == dst_reg, r2 == src_reg 13794 * r2=pkt(id=n,off=8,r=0) 13795 * r3=pkt(id=n,off=0,r=0) 13796 * 13797 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 13798 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 13799 * and [r3, r3 + 8-1) respectively is safe to access depending on 13800 * the check. 13801 */ 13802 13803 /* If our ids match, then we must have the same max_value. And we 13804 * don't care about the other reg's fixed offset, since if it's too big 13805 * the range won't allow anything. 13806 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 13807 */ 13808 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 13809 if (reg->type == type && reg->id == dst_reg->id) 13810 /* keep the maximum range already checked */ 13811 reg->range = max(reg->range, new_range); 13812 })); 13813 } 13814 13815 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 13816 { 13817 struct tnum subreg = tnum_subreg(reg->var_off); 13818 s32 sval = (s32)val; 13819 13820 switch (opcode) { 13821 case BPF_JEQ: 13822 if (tnum_is_const(subreg)) 13823 return !!tnum_equals_const(subreg, val); 13824 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13825 return 0; 13826 break; 13827 case BPF_JNE: 13828 if (tnum_is_const(subreg)) 13829 return !tnum_equals_const(subreg, val); 13830 else if (val < reg->u32_min_value || val > reg->u32_max_value) 13831 return 1; 13832 break; 13833 case BPF_JSET: 13834 if ((~subreg.mask & subreg.value) & val) 13835 return 1; 13836 if (!((subreg.mask | subreg.value) & val)) 13837 return 0; 13838 break; 13839 case BPF_JGT: 13840 if (reg->u32_min_value > val) 13841 return 1; 13842 else if (reg->u32_max_value <= val) 13843 return 0; 13844 break; 13845 case BPF_JSGT: 13846 if (reg->s32_min_value > sval) 13847 return 1; 13848 else if (reg->s32_max_value <= sval) 13849 return 0; 13850 break; 13851 case BPF_JLT: 13852 if (reg->u32_max_value < val) 13853 return 1; 13854 else if (reg->u32_min_value >= val) 13855 return 0; 13856 break; 13857 case BPF_JSLT: 13858 if (reg->s32_max_value < sval) 13859 return 1; 13860 else if (reg->s32_min_value >= sval) 13861 return 0; 13862 break; 13863 case BPF_JGE: 13864 if (reg->u32_min_value >= val) 13865 return 1; 13866 else if (reg->u32_max_value < val) 13867 return 0; 13868 break; 13869 case BPF_JSGE: 13870 if (reg->s32_min_value >= sval) 13871 return 1; 13872 else if (reg->s32_max_value < sval) 13873 return 0; 13874 break; 13875 case BPF_JLE: 13876 if (reg->u32_max_value <= val) 13877 return 1; 13878 else if (reg->u32_min_value > val) 13879 return 0; 13880 break; 13881 case BPF_JSLE: 13882 if (reg->s32_max_value <= sval) 13883 return 1; 13884 else if (reg->s32_min_value > sval) 13885 return 0; 13886 break; 13887 } 13888 13889 return -1; 13890 } 13891 13892 13893 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 13894 { 13895 s64 sval = (s64)val; 13896 13897 switch (opcode) { 13898 case BPF_JEQ: 13899 if (tnum_is_const(reg->var_off)) 13900 return !!tnum_equals_const(reg->var_off, val); 13901 else if (val < reg->umin_value || val > reg->umax_value) 13902 return 0; 13903 break; 13904 case BPF_JNE: 13905 if (tnum_is_const(reg->var_off)) 13906 return !tnum_equals_const(reg->var_off, val); 13907 else if (val < reg->umin_value || val > reg->umax_value) 13908 return 1; 13909 break; 13910 case BPF_JSET: 13911 if ((~reg->var_off.mask & reg->var_off.value) & val) 13912 return 1; 13913 if (!((reg->var_off.mask | reg->var_off.value) & val)) 13914 return 0; 13915 break; 13916 case BPF_JGT: 13917 if (reg->umin_value > val) 13918 return 1; 13919 else if (reg->umax_value <= val) 13920 return 0; 13921 break; 13922 case BPF_JSGT: 13923 if (reg->smin_value > sval) 13924 return 1; 13925 else if (reg->smax_value <= sval) 13926 return 0; 13927 break; 13928 case BPF_JLT: 13929 if (reg->umax_value < val) 13930 return 1; 13931 else if (reg->umin_value >= val) 13932 return 0; 13933 break; 13934 case BPF_JSLT: 13935 if (reg->smax_value < sval) 13936 return 1; 13937 else if (reg->smin_value >= sval) 13938 return 0; 13939 break; 13940 case BPF_JGE: 13941 if (reg->umin_value >= val) 13942 return 1; 13943 else if (reg->umax_value < val) 13944 return 0; 13945 break; 13946 case BPF_JSGE: 13947 if (reg->smin_value >= sval) 13948 return 1; 13949 else if (reg->smax_value < sval) 13950 return 0; 13951 break; 13952 case BPF_JLE: 13953 if (reg->umax_value <= val) 13954 return 1; 13955 else if (reg->umin_value > val) 13956 return 0; 13957 break; 13958 case BPF_JSLE: 13959 if (reg->smax_value <= sval) 13960 return 1; 13961 else if (reg->smin_value > sval) 13962 return 0; 13963 break; 13964 } 13965 13966 return -1; 13967 } 13968 13969 /* compute branch direction of the expression "if (reg opcode val) goto target;" 13970 * and return: 13971 * 1 - branch will be taken and "goto target" will be executed 13972 * 0 - branch will not be taken and fall-through to next insn 13973 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 13974 * range [0,10] 13975 */ 13976 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 13977 bool is_jmp32) 13978 { 13979 if (__is_pointer_value(false, reg)) { 13980 if (!reg_not_null(reg)) 13981 return -1; 13982 13983 /* If pointer is valid tests against zero will fail so we can 13984 * use this to direct branch taken. 13985 */ 13986 if (val != 0) 13987 return -1; 13988 13989 switch (opcode) { 13990 case BPF_JEQ: 13991 return 0; 13992 case BPF_JNE: 13993 return 1; 13994 default: 13995 return -1; 13996 } 13997 } 13998 13999 if (is_jmp32) 14000 return is_branch32_taken(reg, val, opcode); 14001 return is_branch64_taken(reg, val, opcode); 14002 } 14003 14004 static int flip_opcode(u32 opcode) 14005 { 14006 /* How can we transform "a <op> b" into "b <op> a"? */ 14007 static const u8 opcode_flip[16] = { 14008 /* these stay the same */ 14009 [BPF_JEQ >> 4] = BPF_JEQ, 14010 [BPF_JNE >> 4] = BPF_JNE, 14011 [BPF_JSET >> 4] = BPF_JSET, 14012 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 14013 [BPF_JGE >> 4] = BPF_JLE, 14014 [BPF_JGT >> 4] = BPF_JLT, 14015 [BPF_JLE >> 4] = BPF_JGE, 14016 [BPF_JLT >> 4] = BPF_JGT, 14017 [BPF_JSGE >> 4] = BPF_JSLE, 14018 [BPF_JSGT >> 4] = BPF_JSLT, 14019 [BPF_JSLE >> 4] = BPF_JSGE, 14020 [BPF_JSLT >> 4] = BPF_JSGT 14021 }; 14022 return opcode_flip[opcode >> 4]; 14023 } 14024 14025 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 14026 struct bpf_reg_state *src_reg, 14027 u8 opcode) 14028 { 14029 struct bpf_reg_state *pkt; 14030 14031 if (src_reg->type == PTR_TO_PACKET_END) { 14032 pkt = dst_reg; 14033 } else if (dst_reg->type == PTR_TO_PACKET_END) { 14034 pkt = src_reg; 14035 opcode = flip_opcode(opcode); 14036 } else { 14037 return -1; 14038 } 14039 14040 if (pkt->range >= 0) 14041 return -1; 14042 14043 switch (opcode) { 14044 case BPF_JLE: 14045 /* pkt <= pkt_end */ 14046 fallthrough; 14047 case BPF_JGT: 14048 /* pkt > pkt_end */ 14049 if (pkt->range == BEYOND_PKT_END) 14050 /* pkt has at last one extra byte beyond pkt_end */ 14051 return opcode == BPF_JGT; 14052 break; 14053 case BPF_JLT: 14054 /* pkt < pkt_end */ 14055 fallthrough; 14056 case BPF_JGE: 14057 /* pkt >= pkt_end */ 14058 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 14059 return opcode == BPF_JGE; 14060 break; 14061 } 14062 return -1; 14063 } 14064 14065 /* Adjusts the register min/max values in the case that the dst_reg is the 14066 * variable register that we are working on, and src_reg is a constant or we're 14067 * simply doing a BPF_K check. 14068 * In JEQ/JNE cases we also adjust the var_off values. 14069 */ 14070 static void reg_set_min_max(struct bpf_reg_state *true_reg, 14071 struct bpf_reg_state *false_reg, 14072 u64 val, u32 val32, 14073 u8 opcode, bool is_jmp32) 14074 { 14075 struct tnum false_32off = tnum_subreg(false_reg->var_off); 14076 struct tnum false_64off = false_reg->var_off; 14077 struct tnum true_32off = tnum_subreg(true_reg->var_off); 14078 struct tnum true_64off = true_reg->var_off; 14079 s64 sval = (s64)val; 14080 s32 sval32 = (s32)val32; 14081 14082 /* If the dst_reg is a pointer, we can't learn anything about its 14083 * variable offset from the compare (unless src_reg were a pointer into 14084 * the same object, but we don't bother with that. 14085 * Since false_reg and true_reg have the same type by construction, we 14086 * only need to check one of them for pointerness. 14087 */ 14088 if (__is_pointer_value(false, false_reg)) 14089 return; 14090 14091 switch (opcode) { 14092 /* JEQ/JNE comparison doesn't change the register equivalence. 14093 * 14094 * r1 = r2; 14095 * if (r1 == 42) goto label; 14096 * ... 14097 * label: // here both r1 and r2 are known to be 42. 14098 * 14099 * Hence when marking register as known preserve it's ID. 14100 */ 14101 case BPF_JEQ: 14102 if (is_jmp32) { 14103 __mark_reg32_known(true_reg, val32); 14104 true_32off = tnum_subreg(true_reg->var_off); 14105 } else { 14106 ___mark_reg_known(true_reg, val); 14107 true_64off = true_reg->var_off; 14108 } 14109 break; 14110 case BPF_JNE: 14111 if (is_jmp32) { 14112 __mark_reg32_known(false_reg, val32); 14113 false_32off = tnum_subreg(false_reg->var_off); 14114 } else { 14115 ___mark_reg_known(false_reg, val); 14116 false_64off = false_reg->var_off; 14117 } 14118 break; 14119 case BPF_JSET: 14120 if (is_jmp32) { 14121 false_32off = tnum_and(false_32off, tnum_const(~val32)); 14122 if (is_power_of_2(val32)) 14123 true_32off = tnum_or(true_32off, 14124 tnum_const(val32)); 14125 } else { 14126 false_64off = tnum_and(false_64off, tnum_const(~val)); 14127 if (is_power_of_2(val)) 14128 true_64off = tnum_or(true_64off, 14129 tnum_const(val)); 14130 } 14131 break; 14132 case BPF_JGE: 14133 case BPF_JGT: 14134 { 14135 if (is_jmp32) { 14136 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 14137 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 14138 14139 false_reg->u32_max_value = min(false_reg->u32_max_value, 14140 false_umax); 14141 true_reg->u32_min_value = max(true_reg->u32_min_value, 14142 true_umin); 14143 } else { 14144 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 14145 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 14146 14147 false_reg->umax_value = min(false_reg->umax_value, false_umax); 14148 true_reg->umin_value = max(true_reg->umin_value, true_umin); 14149 } 14150 break; 14151 } 14152 case BPF_JSGE: 14153 case BPF_JSGT: 14154 { 14155 if (is_jmp32) { 14156 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 14157 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 14158 14159 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 14160 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 14161 } else { 14162 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 14163 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 14164 14165 false_reg->smax_value = min(false_reg->smax_value, false_smax); 14166 true_reg->smin_value = max(true_reg->smin_value, true_smin); 14167 } 14168 break; 14169 } 14170 case BPF_JLE: 14171 case BPF_JLT: 14172 { 14173 if (is_jmp32) { 14174 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 14175 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 14176 14177 false_reg->u32_min_value = max(false_reg->u32_min_value, 14178 false_umin); 14179 true_reg->u32_max_value = min(true_reg->u32_max_value, 14180 true_umax); 14181 } else { 14182 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 14183 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 14184 14185 false_reg->umin_value = max(false_reg->umin_value, false_umin); 14186 true_reg->umax_value = min(true_reg->umax_value, true_umax); 14187 } 14188 break; 14189 } 14190 case BPF_JSLE: 14191 case BPF_JSLT: 14192 { 14193 if (is_jmp32) { 14194 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 14195 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 14196 14197 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 14198 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 14199 } else { 14200 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 14201 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 14202 14203 false_reg->smin_value = max(false_reg->smin_value, false_smin); 14204 true_reg->smax_value = min(true_reg->smax_value, true_smax); 14205 } 14206 break; 14207 } 14208 default: 14209 return; 14210 } 14211 14212 if (is_jmp32) { 14213 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 14214 tnum_subreg(false_32off)); 14215 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 14216 tnum_subreg(true_32off)); 14217 __reg_combine_32_into_64(false_reg); 14218 __reg_combine_32_into_64(true_reg); 14219 } else { 14220 false_reg->var_off = false_64off; 14221 true_reg->var_off = true_64off; 14222 __reg_combine_64_into_32(false_reg); 14223 __reg_combine_64_into_32(true_reg); 14224 } 14225 } 14226 14227 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 14228 * the variable reg. 14229 */ 14230 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 14231 struct bpf_reg_state *false_reg, 14232 u64 val, u32 val32, 14233 u8 opcode, bool is_jmp32) 14234 { 14235 opcode = flip_opcode(opcode); 14236 /* This uses zero as "not present in table"; luckily the zero opcode, 14237 * BPF_JA, can't get here. 14238 */ 14239 if (opcode) 14240 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 14241 } 14242 14243 /* Regs are known to be equal, so intersect their min/max/var_off */ 14244 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 14245 struct bpf_reg_state *dst_reg) 14246 { 14247 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 14248 dst_reg->umin_value); 14249 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 14250 dst_reg->umax_value); 14251 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 14252 dst_reg->smin_value); 14253 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 14254 dst_reg->smax_value); 14255 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 14256 dst_reg->var_off); 14257 reg_bounds_sync(src_reg); 14258 reg_bounds_sync(dst_reg); 14259 } 14260 14261 static void reg_combine_min_max(struct bpf_reg_state *true_src, 14262 struct bpf_reg_state *true_dst, 14263 struct bpf_reg_state *false_src, 14264 struct bpf_reg_state *false_dst, 14265 u8 opcode) 14266 { 14267 switch (opcode) { 14268 case BPF_JEQ: 14269 __reg_combine_min_max(true_src, true_dst); 14270 break; 14271 case BPF_JNE: 14272 __reg_combine_min_max(false_src, false_dst); 14273 break; 14274 } 14275 } 14276 14277 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 14278 struct bpf_reg_state *reg, u32 id, 14279 bool is_null) 14280 { 14281 if (type_may_be_null(reg->type) && reg->id == id && 14282 (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) { 14283 /* Old offset (both fixed and variable parts) should have been 14284 * known-zero, because we don't allow pointer arithmetic on 14285 * pointers that might be NULL. If we see this happening, don't 14286 * convert the register. 14287 * 14288 * But in some cases, some helpers that return local kptrs 14289 * advance offset for the returned pointer. In those cases, it 14290 * is fine to expect to see reg->off. 14291 */ 14292 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0))) 14293 return; 14294 if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) && 14295 WARN_ON_ONCE(reg->off)) 14296 return; 14297 14298 if (is_null) { 14299 reg->type = SCALAR_VALUE; 14300 /* We don't need id and ref_obj_id from this point 14301 * onwards anymore, thus we should better reset it, 14302 * so that state pruning has chances to take effect. 14303 */ 14304 reg->id = 0; 14305 reg->ref_obj_id = 0; 14306 14307 return; 14308 } 14309 14310 mark_ptr_not_null_reg(reg); 14311 14312 if (!reg_may_point_to_spin_lock(reg)) { 14313 /* For not-NULL ptr, reg->ref_obj_id will be reset 14314 * in release_reference(). 14315 * 14316 * reg->id is still used by spin_lock ptr. Other 14317 * than spin_lock ptr type, reg->id can be reset. 14318 */ 14319 reg->id = 0; 14320 } 14321 } 14322 } 14323 14324 /* The logic is similar to find_good_pkt_pointers(), both could eventually 14325 * be folded together at some point. 14326 */ 14327 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 14328 bool is_null) 14329 { 14330 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 14331 struct bpf_reg_state *regs = state->regs, *reg; 14332 u32 ref_obj_id = regs[regno].ref_obj_id; 14333 u32 id = regs[regno].id; 14334 14335 if (ref_obj_id && ref_obj_id == id && is_null) 14336 /* regs[regno] is in the " == NULL" branch. 14337 * No one could have freed the reference state before 14338 * doing the NULL check. 14339 */ 14340 WARN_ON_ONCE(release_reference_state(state, id)); 14341 14342 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14343 mark_ptr_or_null_reg(state, reg, id, is_null); 14344 })); 14345 } 14346 14347 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 14348 struct bpf_reg_state *dst_reg, 14349 struct bpf_reg_state *src_reg, 14350 struct bpf_verifier_state *this_branch, 14351 struct bpf_verifier_state *other_branch) 14352 { 14353 if (BPF_SRC(insn->code) != BPF_X) 14354 return false; 14355 14356 /* Pointers are always 64-bit. */ 14357 if (BPF_CLASS(insn->code) == BPF_JMP32) 14358 return false; 14359 14360 switch (BPF_OP(insn->code)) { 14361 case BPF_JGT: 14362 if ((dst_reg->type == PTR_TO_PACKET && 14363 src_reg->type == PTR_TO_PACKET_END) || 14364 (dst_reg->type == PTR_TO_PACKET_META && 14365 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14366 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 14367 find_good_pkt_pointers(this_branch, dst_reg, 14368 dst_reg->type, false); 14369 mark_pkt_end(other_branch, insn->dst_reg, true); 14370 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14371 src_reg->type == PTR_TO_PACKET) || 14372 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14373 src_reg->type == PTR_TO_PACKET_META)) { 14374 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 14375 find_good_pkt_pointers(other_branch, src_reg, 14376 src_reg->type, true); 14377 mark_pkt_end(this_branch, insn->src_reg, false); 14378 } else { 14379 return false; 14380 } 14381 break; 14382 case BPF_JLT: 14383 if ((dst_reg->type == PTR_TO_PACKET && 14384 src_reg->type == PTR_TO_PACKET_END) || 14385 (dst_reg->type == PTR_TO_PACKET_META && 14386 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14387 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 14388 find_good_pkt_pointers(other_branch, dst_reg, 14389 dst_reg->type, true); 14390 mark_pkt_end(this_branch, insn->dst_reg, false); 14391 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14392 src_reg->type == PTR_TO_PACKET) || 14393 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14394 src_reg->type == PTR_TO_PACKET_META)) { 14395 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 14396 find_good_pkt_pointers(this_branch, src_reg, 14397 src_reg->type, false); 14398 mark_pkt_end(other_branch, insn->src_reg, true); 14399 } else { 14400 return false; 14401 } 14402 break; 14403 case BPF_JGE: 14404 if ((dst_reg->type == PTR_TO_PACKET && 14405 src_reg->type == PTR_TO_PACKET_END) || 14406 (dst_reg->type == PTR_TO_PACKET_META && 14407 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14408 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 14409 find_good_pkt_pointers(this_branch, dst_reg, 14410 dst_reg->type, true); 14411 mark_pkt_end(other_branch, insn->dst_reg, false); 14412 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14413 src_reg->type == PTR_TO_PACKET) || 14414 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14415 src_reg->type == PTR_TO_PACKET_META)) { 14416 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 14417 find_good_pkt_pointers(other_branch, src_reg, 14418 src_reg->type, false); 14419 mark_pkt_end(this_branch, insn->src_reg, true); 14420 } else { 14421 return false; 14422 } 14423 break; 14424 case BPF_JLE: 14425 if ((dst_reg->type == PTR_TO_PACKET && 14426 src_reg->type == PTR_TO_PACKET_END) || 14427 (dst_reg->type == PTR_TO_PACKET_META && 14428 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 14429 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 14430 find_good_pkt_pointers(other_branch, dst_reg, 14431 dst_reg->type, false); 14432 mark_pkt_end(this_branch, insn->dst_reg, true); 14433 } else if ((dst_reg->type == PTR_TO_PACKET_END && 14434 src_reg->type == PTR_TO_PACKET) || 14435 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 14436 src_reg->type == PTR_TO_PACKET_META)) { 14437 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 14438 find_good_pkt_pointers(this_branch, src_reg, 14439 src_reg->type, true); 14440 mark_pkt_end(other_branch, insn->src_reg, false); 14441 } else { 14442 return false; 14443 } 14444 break; 14445 default: 14446 return false; 14447 } 14448 14449 return true; 14450 } 14451 14452 static void find_equal_scalars(struct bpf_verifier_state *vstate, 14453 struct bpf_reg_state *known_reg) 14454 { 14455 struct bpf_func_state *state; 14456 struct bpf_reg_state *reg; 14457 14458 bpf_for_each_reg_in_vstate(vstate, state, reg, ({ 14459 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 14460 copy_register_state(reg, known_reg); 14461 })); 14462 } 14463 14464 static int check_cond_jmp_op(struct bpf_verifier_env *env, 14465 struct bpf_insn *insn, int *insn_idx) 14466 { 14467 struct bpf_verifier_state *this_branch = env->cur_state; 14468 struct bpf_verifier_state *other_branch; 14469 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 14470 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 14471 struct bpf_reg_state *eq_branch_regs; 14472 u8 opcode = BPF_OP(insn->code); 14473 bool is_jmp32; 14474 int pred = -1; 14475 int err; 14476 14477 /* Only conditional jumps are expected to reach here. */ 14478 if (opcode == BPF_JA || opcode > BPF_JSLE) { 14479 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 14480 return -EINVAL; 14481 } 14482 14483 /* check src2 operand */ 14484 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 14485 if (err) 14486 return err; 14487 14488 dst_reg = ®s[insn->dst_reg]; 14489 if (BPF_SRC(insn->code) == BPF_X) { 14490 if (insn->imm != 0) { 14491 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14492 return -EINVAL; 14493 } 14494 14495 /* check src1 operand */ 14496 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14497 if (err) 14498 return err; 14499 14500 src_reg = ®s[insn->src_reg]; 14501 if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) && 14502 is_pointer_value(env, insn->src_reg)) { 14503 verbose(env, "R%d pointer comparison prohibited\n", 14504 insn->src_reg); 14505 return -EACCES; 14506 } 14507 } else { 14508 if (insn->src_reg != BPF_REG_0) { 14509 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 14510 return -EINVAL; 14511 } 14512 } 14513 14514 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 14515 14516 if (BPF_SRC(insn->code) == BPF_K) { 14517 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 14518 } else if (src_reg->type == SCALAR_VALUE && 14519 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 14520 pred = is_branch_taken(dst_reg, 14521 tnum_subreg(src_reg->var_off).value, 14522 opcode, 14523 is_jmp32); 14524 } else if (src_reg->type == SCALAR_VALUE && 14525 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 14526 pred = is_branch_taken(dst_reg, 14527 src_reg->var_off.value, 14528 opcode, 14529 is_jmp32); 14530 } else if (dst_reg->type == SCALAR_VALUE && 14531 is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) { 14532 pred = is_branch_taken(src_reg, 14533 tnum_subreg(dst_reg->var_off).value, 14534 flip_opcode(opcode), 14535 is_jmp32); 14536 } else if (dst_reg->type == SCALAR_VALUE && 14537 !is_jmp32 && tnum_is_const(dst_reg->var_off)) { 14538 pred = is_branch_taken(src_reg, 14539 dst_reg->var_off.value, 14540 flip_opcode(opcode), 14541 is_jmp32); 14542 } else if (reg_is_pkt_pointer_any(dst_reg) && 14543 reg_is_pkt_pointer_any(src_reg) && 14544 !is_jmp32) { 14545 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 14546 } 14547 14548 if (pred >= 0) { 14549 /* If we get here with a dst_reg pointer type it is because 14550 * above is_branch_taken() special cased the 0 comparison. 14551 */ 14552 if (!__is_pointer_value(false, dst_reg)) 14553 err = mark_chain_precision(env, insn->dst_reg); 14554 if (BPF_SRC(insn->code) == BPF_X && !err && 14555 !__is_pointer_value(false, src_reg)) 14556 err = mark_chain_precision(env, insn->src_reg); 14557 if (err) 14558 return err; 14559 } 14560 14561 if (pred == 1) { 14562 /* Only follow the goto, ignore fall-through. If needed, push 14563 * the fall-through branch for simulation under speculative 14564 * execution. 14565 */ 14566 if (!env->bypass_spec_v1 && 14567 !sanitize_speculative_path(env, insn, *insn_idx + 1, 14568 *insn_idx)) 14569 return -EFAULT; 14570 if (env->log.level & BPF_LOG_LEVEL) 14571 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14572 *insn_idx += insn->off; 14573 return 0; 14574 } else if (pred == 0) { 14575 /* Only follow the fall-through branch, since that's where the 14576 * program will go. If needed, push the goto branch for 14577 * simulation under speculative execution. 14578 */ 14579 if (!env->bypass_spec_v1 && 14580 !sanitize_speculative_path(env, insn, 14581 *insn_idx + insn->off + 1, 14582 *insn_idx)) 14583 return -EFAULT; 14584 if (env->log.level & BPF_LOG_LEVEL) 14585 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14586 return 0; 14587 } 14588 14589 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 14590 false); 14591 if (!other_branch) 14592 return -EFAULT; 14593 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 14594 14595 /* detect if we are comparing against a constant value so we can adjust 14596 * our min/max values for our dst register. 14597 * this is only legit if both are scalars (or pointers to the same 14598 * object, I suppose, see the PTR_MAYBE_NULL related if block below), 14599 * because otherwise the different base pointers mean the offsets aren't 14600 * comparable. 14601 */ 14602 if (BPF_SRC(insn->code) == BPF_X) { 14603 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 14604 14605 if (dst_reg->type == SCALAR_VALUE && 14606 src_reg->type == SCALAR_VALUE) { 14607 if (tnum_is_const(src_reg->var_off) || 14608 (is_jmp32 && 14609 tnum_is_const(tnum_subreg(src_reg->var_off)))) 14610 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14611 dst_reg, 14612 src_reg->var_off.value, 14613 tnum_subreg(src_reg->var_off).value, 14614 opcode, is_jmp32); 14615 else if (tnum_is_const(dst_reg->var_off) || 14616 (is_jmp32 && 14617 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 14618 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 14619 src_reg, 14620 dst_reg->var_off.value, 14621 tnum_subreg(dst_reg->var_off).value, 14622 opcode, is_jmp32); 14623 else if (!is_jmp32 && 14624 (opcode == BPF_JEQ || opcode == BPF_JNE)) 14625 /* Comparing for equality, we can combine knowledge */ 14626 reg_combine_min_max(&other_branch_regs[insn->src_reg], 14627 &other_branch_regs[insn->dst_reg], 14628 src_reg, dst_reg, opcode); 14629 if (src_reg->id && 14630 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 14631 find_equal_scalars(this_branch, src_reg); 14632 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 14633 } 14634 14635 } 14636 } else if (dst_reg->type == SCALAR_VALUE) { 14637 reg_set_min_max(&other_branch_regs[insn->dst_reg], 14638 dst_reg, insn->imm, (u32)insn->imm, 14639 opcode, is_jmp32); 14640 } 14641 14642 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 14643 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 14644 find_equal_scalars(this_branch, dst_reg); 14645 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 14646 } 14647 14648 /* if one pointer register is compared to another pointer 14649 * register check if PTR_MAYBE_NULL could be lifted. 14650 * E.g. register A - maybe null 14651 * register B - not null 14652 * for JNE A, B, ... - A is not null in the false branch; 14653 * for JEQ A, B, ... - A is not null in the true branch. 14654 * 14655 * Since PTR_TO_BTF_ID points to a kernel struct that does 14656 * not need to be null checked by the BPF program, i.e., 14657 * could be null even without PTR_MAYBE_NULL marking, so 14658 * only propagate nullness when neither reg is that type. 14659 */ 14660 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X && 14661 __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) && 14662 type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) && 14663 base_type(src_reg->type) != PTR_TO_BTF_ID && 14664 base_type(dst_reg->type) != PTR_TO_BTF_ID) { 14665 eq_branch_regs = NULL; 14666 switch (opcode) { 14667 case BPF_JEQ: 14668 eq_branch_regs = other_branch_regs; 14669 break; 14670 case BPF_JNE: 14671 eq_branch_regs = regs; 14672 break; 14673 default: 14674 /* do nothing */ 14675 break; 14676 } 14677 if (eq_branch_regs) { 14678 if (type_may_be_null(src_reg->type)) 14679 mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]); 14680 else 14681 mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]); 14682 } 14683 } 14684 14685 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 14686 * NOTE: these optimizations below are related with pointer comparison 14687 * which will never be JMP32. 14688 */ 14689 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 14690 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 14691 type_may_be_null(dst_reg->type)) { 14692 /* Mark all identical registers in each branch as either 14693 * safe or unknown depending R == 0 or R != 0 conditional. 14694 */ 14695 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 14696 opcode == BPF_JNE); 14697 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 14698 opcode == BPF_JEQ); 14699 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 14700 this_branch, other_branch) && 14701 is_pointer_value(env, insn->dst_reg)) { 14702 verbose(env, "R%d pointer comparison prohibited\n", 14703 insn->dst_reg); 14704 return -EACCES; 14705 } 14706 if (env->log.level & BPF_LOG_LEVEL) 14707 print_insn_state(env, this_branch->frame[this_branch->curframe]); 14708 return 0; 14709 } 14710 14711 /* verify BPF_LD_IMM64 instruction */ 14712 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 14713 { 14714 struct bpf_insn_aux_data *aux = cur_aux(env); 14715 struct bpf_reg_state *regs = cur_regs(env); 14716 struct bpf_reg_state *dst_reg; 14717 struct bpf_map *map; 14718 int err; 14719 14720 if (BPF_SIZE(insn->code) != BPF_DW) { 14721 verbose(env, "invalid BPF_LD_IMM insn\n"); 14722 return -EINVAL; 14723 } 14724 if (insn->off != 0) { 14725 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 14726 return -EINVAL; 14727 } 14728 14729 err = check_reg_arg(env, insn->dst_reg, DST_OP); 14730 if (err) 14731 return err; 14732 14733 dst_reg = ®s[insn->dst_reg]; 14734 if (insn->src_reg == 0) { 14735 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 14736 14737 dst_reg->type = SCALAR_VALUE; 14738 __mark_reg_known(®s[insn->dst_reg], imm); 14739 return 0; 14740 } 14741 14742 /* All special src_reg cases are listed below. From this point onwards 14743 * we either succeed and assign a corresponding dst_reg->type after 14744 * zeroing the offset, or fail and reject the program. 14745 */ 14746 mark_reg_known_zero(env, regs, insn->dst_reg); 14747 14748 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 14749 dst_reg->type = aux->btf_var.reg_type; 14750 switch (base_type(dst_reg->type)) { 14751 case PTR_TO_MEM: 14752 dst_reg->mem_size = aux->btf_var.mem_size; 14753 break; 14754 case PTR_TO_BTF_ID: 14755 dst_reg->btf = aux->btf_var.btf; 14756 dst_reg->btf_id = aux->btf_var.btf_id; 14757 break; 14758 default: 14759 verbose(env, "bpf verifier is misconfigured\n"); 14760 return -EFAULT; 14761 } 14762 return 0; 14763 } 14764 14765 if (insn->src_reg == BPF_PSEUDO_FUNC) { 14766 struct bpf_prog_aux *aux = env->prog->aux; 14767 u32 subprogno = find_subprog(env, 14768 env->insn_idx + insn->imm + 1); 14769 14770 if (!aux->func_info) { 14771 verbose(env, "missing btf func_info\n"); 14772 return -EINVAL; 14773 } 14774 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) { 14775 verbose(env, "callback function not static\n"); 14776 return -EINVAL; 14777 } 14778 14779 dst_reg->type = PTR_TO_FUNC; 14780 dst_reg->subprogno = subprogno; 14781 return 0; 14782 } 14783 14784 map = env->used_maps[aux->map_index]; 14785 dst_reg->map_ptr = map; 14786 14787 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE || 14788 insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) { 14789 dst_reg->type = PTR_TO_MAP_VALUE; 14790 dst_reg->off = aux->map_off; 14791 WARN_ON_ONCE(map->max_entries != 1); 14792 /* We want reg->id to be same (0) as map_value is not distinct */ 14793 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD || 14794 insn->src_reg == BPF_PSEUDO_MAP_IDX) { 14795 dst_reg->type = CONST_PTR_TO_MAP; 14796 } else { 14797 verbose(env, "bpf verifier is misconfigured\n"); 14798 return -EINVAL; 14799 } 14800 14801 return 0; 14802 } 14803 14804 static bool may_access_skb(enum bpf_prog_type type) 14805 { 14806 switch (type) { 14807 case BPF_PROG_TYPE_SOCKET_FILTER: 14808 case BPF_PROG_TYPE_SCHED_CLS: 14809 case BPF_PROG_TYPE_SCHED_ACT: 14810 return true; 14811 default: 14812 return false; 14813 } 14814 } 14815 14816 /* verify safety of LD_ABS|LD_IND instructions: 14817 * - they can only appear in the programs where ctx == skb 14818 * - since they are wrappers of function calls, they scratch R1-R5 registers, 14819 * preserve R6-R9, and store return value into R0 14820 * 14821 * Implicit input: 14822 * ctx == skb == R6 == CTX 14823 * 14824 * Explicit input: 14825 * SRC == any register 14826 * IMM == 32-bit immediate 14827 * 14828 * Output: 14829 * R0 - 8/16/32-bit skb data converted to cpu endianness 14830 */ 14831 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 14832 { 14833 struct bpf_reg_state *regs = cur_regs(env); 14834 static const int ctx_reg = BPF_REG_6; 14835 u8 mode = BPF_MODE(insn->code); 14836 int i, err; 14837 14838 if (!may_access_skb(resolve_prog_type(env->prog))) { 14839 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 14840 return -EINVAL; 14841 } 14842 14843 if (!env->ops->gen_ld_abs) { 14844 verbose(env, "bpf verifier is misconfigured\n"); 14845 return -EINVAL; 14846 } 14847 14848 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 14849 BPF_SIZE(insn->code) == BPF_DW || 14850 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 14851 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 14852 return -EINVAL; 14853 } 14854 14855 /* check whether implicit source operand (register R6) is readable */ 14856 err = check_reg_arg(env, ctx_reg, SRC_OP); 14857 if (err) 14858 return err; 14859 14860 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 14861 * gen_ld_abs() may terminate the program at runtime, leading to 14862 * reference leak. 14863 */ 14864 err = check_reference_leak(env); 14865 if (err) { 14866 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 14867 return err; 14868 } 14869 14870 if (env->cur_state->active_lock.ptr) { 14871 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 14872 return -EINVAL; 14873 } 14874 14875 if (env->cur_state->active_rcu_lock) { 14876 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n"); 14877 return -EINVAL; 14878 } 14879 14880 if (regs[ctx_reg].type != PTR_TO_CTX) { 14881 verbose(env, 14882 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 14883 return -EINVAL; 14884 } 14885 14886 if (mode == BPF_IND) { 14887 /* check explicit source operand */ 14888 err = check_reg_arg(env, insn->src_reg, SRC_OP); 14889 if (err) 14890 return err; 14891 } 14892 14893 err = check_ptr_off_reg(env, ®s[ctx_reg], ctx_reg); 14894 if (err < 0) 14895 return err; 14896 14897 /* reset caller saved regs to unreadable */ 14898 for (i = 0; i < CALLER_SAVED_REGS; i++) { 14899 mark_reg_not_init(env, regs, caller_saved[i]); 14900 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 14901 } 14902 14903 /* mark destination R0 register as readable, since it contains 14904 * the value fetched from the packet. 14905 * Already marked as written above. 14906 */ 14907 mark_reg_unknown(env, regs, BPF_REG_0); 14908 /* ld_abs load up to 32-bit skb data. */ 14909 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 14910 return 0; 14911 } 14912 14913 static int check_return_code(struct bpf_verifier_env *env) 14914 { 14915 struct tnum enforce_attach_type_range = tnum_unknown; 14916 const struct bpf_prog *prog = env->prog; 14917 struct bpf_reg_state *reg; 14918 struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0); 14919 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 14920 int err; 14921 struct bpf_func_state *frame = env->cur_state->frame[0]; 14922 const bool is_subprog = frame->subprogno; 14923 14924 /* LSM and struct_ops func-ptr's return type could be "void" */ 14925 if (!is_subprog) { 14926 switch (prog_type) { 14927 case BPF_PROG_TYPE_LSM: 14928 if (prog->expected_attach_type == BPF_LSM_CGROUP) 14929 /* See below, can be 0 or 0-1 depending on hook. */ 14930 break; 14931 fallthrough; 14932 case BPF_PROG_TYPE_STRUCT_OPS: 14933 if (!prog->aux->attach_func_proto->type) 14934 return 0; 14935 break; 14936 default: 14937 break; 14938 } 14939 } 14940 14941 /* eBPF calling convention is such that R0 is used 14942 * to return the value from eBPF program. 14943 * Make sure that it's readable at this time 14944 * of bpf_exit, which means that program wrote 14945 * something into it earlier 14946 */ 14947 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 14948 if (err) 14949 return err; 14950 14951 if (is_pointer_value(env, BPF_REG_0)) { 14952 verbose(env, "R0 leaks addr as return value\n"); 14953 return -EACCES; 14954 } 14955 14956 reg = cur_regs(env) + BPF_REG_0; 14957 14958 if (frame->in_async_callback_fn) { 14959 /* enforce return zero from async callbacks like timer */ 14960 if (reg->type != SCALAR_VALUE) { 14961 verbose(env, "In async callback the register R0 is not a known value (%s)\n", 14962 reg_type_str(env, reg->type)); 14963 return -EINVAL; 14964 } 14965 14966 if (!tnum_in(const_0, reg->var_off)) { 14967 verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0"); 14968 return -EINVAL; 14969 } 14970 return 0; 14971 } 14972 14973 if (is_subprog) { 14974 if (reg->type != SCALAR_VALUE) { 14975 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 14976 reg_type_str(env, reg->type)); 14977 return -EINVAL; 14978 } 14979 return 0; 14980 } 14981 14982 switch (prog_type) { 14983 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 14984 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 14985 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 14986 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 14987 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 14988 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 14989 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 14990 range = tnum_range(1, 1); 14991 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND || 14992 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND) 14993 range = tnum_range(0, 3); 14994 break; 14995 case BPF_PROG_TYPE_CGROUP_SKB: 14996 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 14997 range = tnum_range(0, 3); 14998 enforce_attach_type_range = tnum_range(2, 3); 14999 } 15000 break; 15001 case BPF_PROG_TYPE_CGROUP_SOCK: 15002 case BPF_PROG_TYPE_SOCK_OPS: 15003 case BPF_PROG_TYPE_CGROUP_DEVICE: 15004 case BPF_PROG_TYPE_CGROUP_SYSCTL: 15005 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 15006 break; 15007 case BPF_PROG_TYPE_RAW_TRACEPOINT: 15008 if (!env->prog->aux->attach_btf_id) 15009 return 0; 15010 range = tnum_const(0); 15011 break; 15012 case BPF_PROG_TYPE_TRACING: 15013 switch (env->prog->expected_attach_type) { 15014 case BPF_TRACE_FENTRY: 15015 case BPF_TRACE_FEXIT: 15016 range = tnum_const(0); 15017 break; 15018 case BPF_TRACE_RAW_TP: 15019 case BPF_MODIFY_RETURN: 15020 return 0; 15021 case BPF_TRACE_ITER: 15022 break; 15023 default: 15024 return -ENOTSUPP; 15025 } 15026 break; 15027 case BPF_PROG_TYPE_SK_LOOKUP: 15028 range = tnum_range(SK_DROP, SK_PASS); 15029 break; 15030 15031 case BPF_PROG_TYPE_LSM: 15032 if (env->prog->expected_attach_type != BPF_LSM_CGROUP) { 15033 /* Regular BPF_PROG_TYPE_LSM programs can return 15034 * any value. 15035 */ 15036 return 0; 15037 } 15038 if (!env->prog->aux->attach_func_proto->type) { 15039 /* Make sure programs that attach to void 15040 * hooks don't try to modify return value. 15041 */ 15042 range = tnum_range(1, 1); 15043 } 15044 break; 15045 15046 case BPF_PROG_TYPE_NETFILTER: 15047 range = tnum_range(NF_DROP, NF_ACCEPT); 15048 break; 15049 case BPF_PROG_TYPE_EXT: 15050 /* freplace program can return anything as its return value 15051 * depends on the to-be-replaced kernel func or bpf program. 15052 */ 15053 default: 15054 return 0; 15055 } 15056 15057 if (reg->type != SCALAR_VALUE) { 15058 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 15059 reg_type_str(env, reg->type)); 15060 return -EINVAL; 15061 } 15062 15063 if (!tnum_in(range, reg->var_off)) { 15064 verbose_invalid_scalar(env, reg, &range, "program exit", "R0"); 15065 if (prog->expected_attach_type == BPF_LSM_CGROUP && 15066 prog_type == BPF_PROG_TYPE_LSM && 15067 !prog->aux->attach_func_proto->type) 15068 verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n"); 15069 return -EINVAL; 15070 } 15071 15072 if (!tnum_is_unknown(enforce_attach_type_range) && 15073 tnum_in(enforce_attach_type_range, reg->var_off)) 15074 env->prog->enforce_expected_attach_type = 1; 15075 return 0; 15076 } 15077 15078 /* non-recursive DFS pseudo code 15079 * 1 procedure DFS-iterative(G,v): 15080 * 2 label v as discovered 15081 * 3 let S be a stack 15082 * 4 S.push(v) 15083 * 5 while S is not empty 15084 * 6 t <- S.peek() 15085 * 7 if t is what we're looking for: 15086 * 8 return t 15087 * 9 for all edges e in G.adjacentEdges(t) do 15088 * 10 if edge e is already labelled 15089 * 11 continue with the next edge 15090 * 12 w <- G.adjacentVertex(t,e) 15091 * 13 if vertex w is not discovered and not explored 15092 * 14 label e as tree-edge 15093 * 15 label w as discovered 15094 * 16 S.push(w) 15095 * 17 continue at 5 15096 * 18 else if vertex w is discovered 15097 * 19 label e as back-edge 15098 * 20 else 15099 * 21 // vertex w is explored 15100 * 22 label e as forward- or cross-edge 15101 * 23 label t as explored 15102 * 24 S.pop() 15103 * 15104 * convention: 15105 * 0x10 - discovered 15106 * 0x11 - discovered and fall-through edge labelled 15107 * 0x12 - discovered and fall-through and branch edges labelled 15108 * 0x20 - explored 15109 */ 15110 15111 enum { 15112 DISCOVERED = 0x10, 15113 EXPLORED = 0x20, 15114 FALLTHROUGH = 1, 15115 BRANCH = 2, 15116 }; 15117 15118 static void mark_prune_point(struct bpf_verifier_env *env, int idx) 15119 { 15120 env->insn_aux_data[idx].prune_point = true; 15121 } 15122 15123 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx) 15124 { 15125 return env->insn_aux_data[insn_idx].prune_point; 15126 } 15127 15128 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx) 15129 { 15130 env->insn_aux_data[idx].force_checkpoint = true; 15131 } 15132 15133 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx) 15134 { 15135 return env->insn_aux_data[insn_idx].force_checkpoint; 15136 } 15137 15138 static void mark_calls_callback(struct bpf_verifier_env *env, int idx) 15139 { 15140 env->insn_aux_data[idx].calls_callback = true; 15141 } 15142 15143 static bool calls_callback(struct bpf_verifier_env *env, int insn_idx) 15144 { 15145 return env->insn_aux_data[insn_idx].calls_callback; 15146 } 15147 15148 enum { 15149 DONE_EXPLORING = 0, 15150 KEEP_EXPLORING = 1, 15151 }; 15152 15153 /* t, w, e - match pseudo-code above: 15154 * t - index of current instruction 15155 * w - next instruction 15156 * e - edge 15157 */ 15158 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 15159 { 15160 int *insn_stack = env->cfg.insn_stack; 15161 int *insn_state = env->cfg.insn_state; 15162 15163 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 15164 return DONE_EXPLORING; 15165 15166 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 15167 return DONE_EXPLORING; 15168 15169 if (w < 0 || w >= env->prog->len) { 15170 verbose_linfo(env, t, "%d: ", t); 15171 verbose(env, "jump out of range from insn %d to %d\n", t, w); 15172 return -EINVAL; 15173 } 15174 15175 if (e == BRANCH) { 15176 /* mark branch target for state pruning */ 15177 mark_prune_point(env, w); 15178 mark_jmp_point(env, w); 15179 } 15180 15181 if (insn_state[w] == 0) { 15182 /* tree-edge */ 15183 insn_state[t] = DISCOVERED | e; 15184 insn_state[w] = DISCOVERED; 15185 if (env->cfg.cur_stack >= env->prog->len) 15186 return -E2BIG; 15187 insn_stack[env->cfg.cur_stack++] = w; 15188 return KEEP_EXPLORING; 15189 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 15190 if (env->bpf_capable) 15191 return DONE_EXPLORING; 15192 verbose_linfo(env, t, "%d: ", t); 15193 verbose_linfo(env, w, "%d: ", w); 15194 verbose(env, "back-edge from insn %d to %d\n", t, w); 15195 return -EINVAL; 15196 } else if (insn_state[w] == EXPLORED) { 15197 /* forward- or cross-edge */ 15198 insn_state[t] = DISCOVERED | e; 15199 } else { 15200 verbose(env, "insn state internal bug\n"); 15201 return -EFAULT; 15202 } 15203 return DONE_EXPLORING; 15204 } 15205 15206 static int visit_func_call_insn(int t, struct bpf_insn *insns, 15207 struct bpf_verifier_env *env, 15208 bool visit_callee) 15209 { 15210 int ret, insn_sz; 15211 15212 insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1; 15213 ret = push_insn(t, t + insn_sz, FALLTHROUGH, env); 15214 if (ret) 15215 return ret; 15216 15217 mark_prune_point(env, t + insn_sz); 15218 /* when we exit from subprog, we need to record non-linear history */ 15219 mark_jmp_point(env, t + insn_sz); 15220 15221 if (visit_callee) { 15222 mark_prune_point(env, t); 15223 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 15224 } 15225 return ret; 15226 } 15227 15228 /* Visits the instruction at index t and returns one of the following: 15229 * < 0 - an error occurred 15230 * DONE_EXPLORING - the instruction was fully explored 15231 * KEEP_EXPLORING - there is still work to be done before it is fully explored 15232 */ 15233 static int visit_insn(int t, struct bpf_verifier_env *env) 15234 { 15235 struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t]; 15236 int ret, off, insn_sz; 15237 15238 if (bpf_pseudo_func(insn)) 15239 return visit_func_call_insn(t, insns, env, true); 15240 15241 /* All non-branch instructions have a single fall-through edge. */ 15242 if (BPF_CLASS(insn->code) != BPF_JMP && 15243 BPF_CLASS(insn->code) != BPF_JMP32) { 15244 insn_sz = bpf_is_ldimm64(insn) ? 2 : 1; 15245 return push_insn(t, t + insn_sz, FALLTHROUGH, env); 15246 } 15247 15248 switch (BPF_OP(insn->code)) { 15249 case BPF_EXIT: 15250 return DONE_EXPLORING; 15251 15252 case BPF_CALL: 15253 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback) 15254 /* Mark this call insn as a prune point to trigger 15255 * is_state_visited() check before call itself is 15256 * processed by __check_func_call(). Otherwise new 15257 * async state will be pushed for further exploration. 15258 */ 15259 mark_prune_point(env, t); 15260 /* For functions that invoke callbacks it is not known how many times 15261 * callback would be called. Verifier models callback calling functions 15262 * by repeatedly visiting callback bodies and returning to origin call 15263 * instruction. 15264 * In order to stop such iteration verifier needs to identify when a 15265 * state identical some state from a previous iteration is reached. 15266 * Check below forces creation of checkpoint before callback calling 15267 * instruction to allow search for such identical states. 15268 */ 15269 if (is_sync_callback_calling_insn(insn)) { 15270 mark_calls_callback(env, t); 15271 mark_force_checkpoint(env, t); 15272 mark_prune_point(env, t); 15273 mark_jmp_point(env, t); 15274 } 15275 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 15276 struct bpf_kfunc_call_arg_meta meta; 15277 15278 ret = fetch_kfunc_meta(env, insn, &meta, NULL); 15279 if (ret == 0 && is_iter_next_kfunc(&meta)) { 15280 mark_prune_point(env, t); 15281 /* Checking and saving state checkpoints at iter_next() call 15282 * is crucial for fast convergence of open-coded iterator loop 15283 * logic, so we need to force it. If we don't do that, 15284 * is_state_visited() might skip saving a checkpoint, causing 15285 * unnecessarily long sequence of not checkpointed 15286 * instructions and jumps, leading to exhaustion of jump 15287 * history buffer, and potentially other undesired outcomes. 15288 * It is expected that with correct open-coded iterators 15289 * convergence will happen quickly, so we don't run a risk of 15290 * exhausting memory. 15291 */ 15292 mark_force_checkpoint(env, t); 15293 } 15294 } 15295 return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL); 15296 15297 case BPF_JA: 15298 if (BPF_SRC(insn->code) != BPF_K) 15299 return -EINVAL; 15300 15301 if (BPF_CLASS(insn->code) == BPF_JMP) 15302 off = insn->off; 15303 else 15304 off = insn->imm; 15305 15306 /* unconditional jump with single edge */ 15307 ret = push_insn(t, t + off + 1, FALLTHROUGH, env); 15308 if (ret) 15309 return ret; 15310 15311 mark_prune_point(env, t + off + 1); 15312 mark_jmp_point(env, t + off + 1); 15313 15314 return ret; 15315 15316 default: 15317 /* conditional jump with two edges */ 15318 mark_prune_point(env, t); 15319 15320 ret = push_insn(t, t + 1, FALLTHROUGH, env); 15321 if (ret) 15322 return ret; 15323 15324 return push_insn(t, t + insn->off + 1, BRANCH, env); 15325 } 15326 } 15327 15328 /* non-recursive depth-first-search to detect loops in BPF program 15329 * loop == back-edge in directed graph 15330 */ 15331 static int check_cfg(struct bpf_verifier_env *env) 15332 { 15333 int insn_cnt = env->prog->len; 15334 int *insn_stack, *insn_state; 15335 int ret = 0; 15336 int i; 15337 15338 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15339 if (!insn_state) 15340 return -ENOMEM; 15341 15342 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 15343 if (!insn_stack) { 15344 kvfree(insn_state); 15345 return -ENOMEM; 15346 } 15347 15348 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 15349 insn_stack[0] = 0; /* 0 is the first instruction */ 15350 env->cfg.cur_stack = 1; 15351 15352 while (env->cfg.cur_stack > 0) { 15353 int t = insn_stack[env->cfg.cur_stack - 1]; 15354 15355 ret = visit_insn(t, env); 15356 switch (ret) { 15357 case DONE_EXPLORING: 15358 insn_state[t] = EXPLORED; 15359 env->cfg.cur_stack--; 15360 break; 15361 case KEEP_EXPLORING: 15362 break; 15363 default: 15364 if (ret > 0) { 15365 verbose(env, "visit_insn internal bug\n"); 15366 ret = -EFAULT; 15367 } 15368 goto err_free; 15369 } 15370 } 15371 15372 if (env->cfg.cur_stack < 0) { 15373 verbose(env, "pop stack internal bug\n"); 15374 ret = -EFAULT; 15375 goto err_free; 15376 } 15377 15378 for (i = 0; i < insn_cnt; i++) { 15379 struct bpf_insn *insn = &env->prog->insnsi[i]; 15380 15381 if (insn_state[i] != EXPLORED) { 15382 verbose(env, "unreachable insn %d\n", i); 15383 ret = -EINVAL; 15384 goto err_free; 15385 } 15386 if (bpf_is_ldimm64(insn)) { 15387 if (insn_state[i + 1] != 0) { 15388 verbose(env, "jump into the middle of ldimm64 insn %d\n", i); 15389 ret = -EINVAL; 15390 goto err_free; 15391 } 15392 i++; /* skip second half of ldimm64 */ 15393 } 15394 } 15395 ret = 0; /* cfg looks good */ 15396 15397 err_free: 15398 kvfree(insn_state); 15399 kvfree(insn_stack); 15400 env->cfg.insn_state = env->cfg.insn_stack = NULL; 15401 return ret; 15402 } 15403 15404 static int check_abnormal_return(struct bpf_verifier_env *env) 15405 { 15406 int i; 15407 15408 for (i = 1; i < env->subprog_cnt; i++) { 15409 if (env->subprog_info[i].has_ld_abs) { 15410 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 15411 return -EINVAL; 15412 } 15413 if (env->subprog_info[i].has_tail_call) { 15414 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 15415 return -EINVAL; 15416 } 15417 } 15418 return 0; 15419 } 15420 15421 /* The minimum supported BTF func info size */ 15422 #define MIN_BPF_FUNCINFO_SIZE 8 15423 #define MAX_FUNCINFO_REC_SIZE 252 15424 15425 static int check_btf_func(struct bpf_verifier_env *env, 15426 const union bpf_attr *attr, 15427 bpfptr_t uattr) 15428 { 15429 const struct btf_type *type, *func_proto, *ret_type; 15430 u32 i, nfuncs, urec_size, min_size; 15431 u32 krec_size = sizeof(struct bpf_func_info); 15432 struct bpf_func_info *krecord; 15433 struct bpf_func_info_aux *info_aux = NULL; 15434 struct bpf_prog *prog; 15435 const struct btf *btf; 15436 bpfptr_t urecord; 15437 u32 prev_offset = 0; 15438 bool scalar_return; 15439 int ret = -ENOMEM; 15440 15441 nfuncs = attr->func_info_cnt; 15442 if (!nfuncs) { 15443 if (check_abnormal_return(env)) 15444 return -EINVAL; 15445 return 0; 15446 } 15447 15448 if (nfuncs != env->subprog_cnt) { 15449 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 15450 return -EINVAL; 15451 } 15452 15453 urec_size = attr->func_info_rec_size; 15454 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 15455 urec_size > MAX_FUNCINFO_REC_SIZE || 15456 urec_size % sizeof(u32)) { 15457 verbose(env, "invalid func info rec size %u\n", urec_size); 15458 return -EINVAL; 15459 } 15460 15461 prog = env->prog; 15462 btf = prog->aux->btf; 15463 15464 urecord = make_bpfptr(attr->func_info, uattr.is_kernel); 15465 min_size = min_t(u32, krec_size, urec_size); 15466 15467 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 15468 if (!krecord) 15469 return -ENOMEM; 15470 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 15471 if (!info_aux) 15472 goto err_free; 15473 15474 for (i = 0; i < nfuncs; i++) { 15475 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 15476 if (ret) { 15477 if (ret == -E2BIG) { 15478 verbose(env, "nonzero tailing record in func info"); 15479 /* set the size kernel expects so loader can zero 15480 * out the rest of the record. 15481 */ 15482 if (copy_to_bpfptr_offset(uattr, 15483 offsetof(union bpf_attr, func_info_rec_size), 15484 &min_size, sizeof(min_size))) 15485 ret = -EFAULT; 15486 } 15487 goto err_free; 15488 } 15489 15490 if (copy_from_bpfptr(&krecord[i], urecord, min_size)) { 15491 ret = -EFAULT; 15492 goto err_free; 15493 } 15494 15495 /* check insn_off */ 15496 ret = -EINVAL; 15497 if (i == 0) { 15498 if (krecord[i].insn_off) { 15499 verbose(env, 15500 "nonzero insn_off %u for the first func info record", 15501 krecord[i].insn_off); 15502 goto err_free; 15503 } 15504 } else if (krecord[i].insn_off <= prev_offset) { 15505 verbose(env, 15506 "same or smaller insn offset (%u) than previous func info record (%u)", 15507 krecord[i].insn_off, prev_offset); 15508 goto err_free; 15509 } 15510 15511 if (env->subprog_info[i].start != krecord[i].insn_off) { 15512 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 15513 goto err_free; 15514 } 15515 15516 /* check type_id */ 15517 type = btf_type_by_id(btf, krecord[i].type_id); 15518 if (!type || !btf_type_is_func(type)) { 15519 verbose(env, "invalid type id %d in func info", 15520 krecord[i].type_id); 15521 goto err_free; 15522 } 15523 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 15524 15525 func_proto = btf_type_by_id(btf, type->type); 15526 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 15527 /* btf_func_check() already verified it during BTF load */ 15528 goto err_free; 15529 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 15530 scalar_return = 15531 btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type); 15532 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 15533 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 15534 goto err_free; 15535 } 15536 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 15537 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 15538 goto err_free; 15539 } 15540 15541 prev_offset = krecord[i].insn_off; 15542 bpfptr_add(&urecord, urec_size); 15543 } 15544 15545 prog->aux->func_info = krecord; 15546 prog->aux->func_info_cnt = nfuncs; 15547 prog->aux->func_info_aux = info_aux; 15548 return 0; 15549 15550 err_free: 15551 kvfree(krecord); 15552 kfree(info_aux); 15553 return ret; 15554 } 15555 15556 static void adjust_btf_func(struct bpf_verifier_env *env) 15557 { 15558 struct bpf_prog_aux *aux = env->prog->aux; 15559 int i; 15560 15561 if (!aux->func_info) 15562 return; 15563 15564 for (i = 0; i < env->subprog_cnt; i++) 15565 aux->func_info[i].insn_off = env->subprog_info[i].start; 15566 } 15567 15568 #define MIN_BPF_LINEINFO_SIZE offsetofend(struct bpf_line_info, line_col) 15569 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 15570 15571 static int check_btf_line(struct bpf_verifier_env *env, 15572 const union bpf_attr *attr, 15573 bpfptr_t uattr) 15574 { 15575 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 15576 struct bpf_subprog_info *sub; 15577 struct bpf_line_info *linfo; 15578 struct bpf_prog *prog; 15579 const struct btf *btf; 15580 bpfptr_t ulinfo; 15581 int err; 15582 15583 nr_linfo = attr->line_info_cnt; 15584 if (!nr_linfo) 15585 return 0; 15586 if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info)) 15587 return -EINVAL; 15588 15589 rec_size = attr->line_info_rec_size; 15590 if (rec_size < MIN_BPF_LINEINFO_SIZE || 15591 rec_size > MAX_LINEINFO_REC_SIZE || 15592 rec_size & (sizeof(u32) - 1)) 15593 return -EINVAL; 15594 15595 /* Need to zero it in case the userspace may 15596 * pass in a smaller bpf_line_info object. 15597 */ 15598 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 15599 GFP_KERNEL | __GFP_NOWARN); 15600 if (!linfo) 15601 return -ENOMEM; 15602 15603 prog = env->prog; 15604 btf = prog->aux->btf; 15605 15606 s = 0; 15607 sub = env->subprog_info; 15608 ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel); 15609 expected_size = sizeof(struct bpf_line_info); 15610 ncopy = min_t(u32, expected_size, rec_size); 15611 for (i = 0; i < nr_linfo; i++) { 15612 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 15613 if (err) { 15614 if (err == -E2BIG) { 15615 verbose(env, "nonzero tailing record in line_info"); 15616 if (copy_to_bpfptr_offset(uattr, 15617 offsetof(union bpf_attr, line_info_rec_size), 15618 &expected_size, sizeof(expected_size))) 15619 err = -EFAULT; 15620 } 15621 goto err_free; 15622 } 15623 15624 if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) { 15625 err = -EFAULT; 15626 goto err_free; 15627 } 15628 15629 /* 15630 * Check insn_off to ensure 15631 * 1) strictly increasing AND 15632 * 2) bounded by prog->len 15633 * 15634 * The linfo[0].insn_off == 0 check logically falls into 15635 * the later "missing bpf_line_info for func..." case 15636 * because the first linfo[0].insn_off must be the 15637 * first sub also and the first sub must have 15638 * subprog_info[0].start == 0. 15639 */ 15640 if ((i && linfo[i].insn_off <= prev_offset) || 15641 linfo[i].insn_off >= prog->len) { 15642 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 15643 i, linfo[i].insn_off, prev_offset, 15644 prog->len); 15645 err = -EINVAL; 15646 goto err_free; 15647 } 15648 15649 if (!prog->insnsi[linfo[i].insn_off].code) { 15650 verbose(env, 15651 "Invalid insn code at line_info[%u].insn_off\n", 15652 i); 15653 err = -EINVAL; 15654 goto err_free; 15655 } 15656 15657 if (!btf_name_by_offset(btf, linfo[i].line_off) || 15658 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 15659 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 15660 err = -EINVAL; 15661 goto err_free; 15662 } 15663 15664 if (s != env->subprog_cnt) { 15665 if (linfo[i].insn_off == sub[s].start) { 15666 sub[s].linfo_idx = i; 15667 s++; 15668 } else if (sub[s].start < linfo[i].insn_off) { 15669 verbose(env, "missing bpf_line_info for func#%u\n", s); 15670 err = -EINVAL; 15671 goto err_free; 15672 } 15673 } 15674 15675 prev_offset = linfo[i].insn_off; 15676 bpfptr_add(&ulinfo, rec_size); 15677 } 15678 15679 if (s != env->subprog_cnt) { 15680 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 15681 env->subprog_cnt - s, s); 15682 err = -EINVAL; 15683 goto err_free; 15684 } 15685 15686 prog->aux->linfo = linfo; 15687 prog->aux->nr_linfo = nr_linfo; 15688 15689 return 0; 15690 15691 err_free: 15692 kvfree(linfo); 15693 return err; 15694 } 15695 15696 #define MIN_CORE_RELO_SIZE sizeof(struct bpf_core_relo) 15697 #define MAX_CORE_RELO_SIZE MAX_FUNCINFO_REC_SIZE 15698 15699 static int check_core_relo(struct bpf_verifier_env *env, 15700 const union bpf_attr *attr, 15701 bpfptr_t uattr) 15702 { 15703 u32 i, nr_core_relo, ncopy, expected_size, rec_size; 15704 struct bpf_core_relo core_relo = {}; 15705 struct bpf_prog *prog = env->prog; 15706 const struct btf *btf = prog->aux->btf; 15707 struct bpf_core_ctx ctx = { 15708 .log = &env->log, 15709 .btf = btf, 15710 }; 15711 bpfptr_t u_core_relo; 15712 int err; 15713 15714 nr_core_relo = attr->core_relo_cnt; 15715 if (!nr_core_relo) 15716 return 0; 15717 if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo)) 15718 return -EINVAL; 15719 15720 rec_size = attr->core_relo_rec_size; 15721 if (rec_size < MIN_CORE_RELO_SIZE || 15722 rec_size > MAX_CORE_RELO_SIZE || 15723 rec_size % sizeof(u32)) 15724 return -EINVAL; 15725 15726 u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel); 15727 expected_size = sizeof(struct bpf_core_relo); 15728 ncopy = min_t(u32, expected_size, rec_size); 15729 15730 /* Unlike func_info and line_info, copy and apply each CO-RE 15731 * relocation record one at a time. 15732 */ 15733 for (i = 0; i < nr_core_relo; i++) { 15734 /* future proofing when sizeof(bpf_core_relo) changes */ 15735 err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size); 15736 if (err) { 15737 if (err == -E2BIG) { 15738 verbose(env, "nonzero tailing record in core_relo"); 15739 if (copy_to_bpfptr_offset(uattr, 15740 offsetof(union bpf_attr, core_relo_rec_size), 15741 &expected_size, sizeof(expected_size))) 15742 err = -EFAULT; 15743 } 15744 break; 15745 } 15746 15747 if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) { 15748 err = -EFAULT; 15749 break; 15750 } 15751 15752 if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) { 15753 verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n", 15754 i, core_relo.insn_off, prog->len); 15755 err = -EINVAL; 15756 break; 15757 } 15758 15759 err = bpf_core_apply(&ctx, &core_relo, i, 15760 &prog->insnsi[core_relo.insn_off / 8]); 15761 if (err) 15762 break; 15763 bpfptr_add(&u_core_relo, rec_size); 15764 } 15765 return err; 15766 } 15767 15768 static int check_btf_info(struct bpf_verifier_env *env, 15769 const union bpf_attr *attr, 15770 bpfptr_t uattr) 15771 { 15772 struct btf *btf; 15773 int err; 15774 15775 if (!attr->func_info_cnt && !attr->line_info_cnt) { 15776 if (check_abnormal_return(env)) 15777 return -EINVAL; 15778 return 0; 15779 } 15780 15781 btf = btf_get_by_fd(attr->prog_btf_fd); 15782 if (IS_ERR(btf)) 15783 return PTR_ERR(btf); 15784 if (btf_is_kernel(btf)) { 15785 btf_put(btf); 15786 return -EACCES; 15787 } 15788 env->prog->aux->btf = btf; 15789 15790 err = check_btf_func(env, attr, uattr); 15791 if (err) 15792 return err; 15793 15794 err = check_btf_line(env, attr, uattr); 15795 if (err) 15796 return err; 15797 15798 err = check_core_relo(env, attr, uattr); 15799 if (err) 15800 return err; 15801 15802 return 0; 15803 } 15804 15805 /* check %cur's range satisfies %old's */ 15806 static bool range_within(struct bpf_reg_state *old, 15807 struct bpf_reg_state *cur) 15808 { 15809 return old->umin_value <= cur->umin_value && 15810 old->umax_value >= cur->umax_value && 15811 old->smin_value <= cur->smin_value && 15812 old->smax_value >= cur->smax_value && 15813 old->u32_min_value <= cur->u32_min_value && 15814 old->u32_max_value >= cur->u32_max_value && 15815 old->s32_min_value <= cur->s32_min_value && 15816 old->s32_max_value >= cur->s32_max_value; 15817 } 15818 15819 /* If in the old state two registers had the same id, then they need to have 15820 * the same id in the new state as well. But that id could be different from 15821 * the old state, so we need to track the mapping from old to new ids. 15822 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 15823 * regs with old id 5 must also have new id 9 for the new state to be safe. But 15824 * regs with a different old id could still have new id 9, we don't care about 15825 * that. 15826 * So we look through our idmap to see if this old id has been seen before. If 15827 * so, we require the new id to match; otherwise, we add the id pair to the map. 15828 */ 15829 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15830 { 15831 struct bpf_id_pair *map = idmap->map; 15832 unsigned int i; 15833 15834 /* either both IDs should be set or both should be zero */ 15835 if (!!old_id != !!cur_id) 15836 return false; 15837 15838 if (old_id == 0) /* cur_id == 0 as well */ 15839 return true; 15840 15841 for (i = 0; i < BPF_ID_MAP_SIZE; i++) { 15842 if (!map[i].old) { 15843 /* Reached an empty slot; haven't seen this id before */ 15844 map[i].old = old_id; 15845 map[i].cur = cur_id; 15846 return true; 15847 } 15848 if (map[i].old == old_id) 15849 return map[i].cur == cur_id; 15850 if (map[i].cur == cur_id) 15851 return false; 15852 } 15853 /* We ran out of idmap slots, which should be impossible */ 15854 WARN_ON_ONCE(1); 15855 return false; 15856 } 15857 15858 /* Similar to check_ids(), but allocate a unique temporary ID 15859 * for 'old_id' or 'cur_id' of zero. 15860 * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid. 15861 */ 15862 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap) 15863 { 15864 old_id = old_id ? old_id : ++idmap->tmp_id_gen; 15865 cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen; 15866 15867 return check_ids(old_id, cur_id, idmap); 15868 } 15869 15870 static void clean_func_state(struct bpf_verifier_env *env, 15871 struct bpf_func_state *st) 15872 { 15873 enum bpf_reg_liveness live; 15874 int i, j; 15875 15876 for (i = 0; i < BPF_REG_FP; i++) { 15877 live = st->regs[i].live; 15878 /* liveness must not touch this register anymore */ 15879 st->regs[i].live |= REG_LIVE_DONE; 15880 if (!(live & REG_LIVE_READ)) 15881 /* since the register is unused, clear its state 15882 * to make further comparison simpler 15883 */ 15884 __mark_reg_not_init(env, &st->regs[i]); 15885 } 15886 15887 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 15888 live = st->stack[i].spilled_ptr.live; 15889 /* liveness must not touch this stack slot anymore */ 15890 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 15891 if (!(live & REG_LIVE_READ)) { 15892 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 15893 for (j = 0; j < BPF_REG_SIZE; j++) 15894 st->stack[i].slot_type[j] = STACK_INVALID; 15895 } 15896 } 15897 } 15898 15899 static void clean_verifier_state(struct bpf_verifier_env *env, 15900 struct bpf_verifier_state *st) 15901 { 15902 int i; 15903 15904 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 15905 /* all regs in this state in all frames were already marked */ 15906 return; 15907 15908 for (i = 0; i <= st->curframe; i++) 15909 clean_func_state(env, st->frame[i]); 15910 } 15911 15912 /* the parentage chains form a tree. 15913 * the verifier states are added to state lists at given insn and 15914 * pushed into state stack for future exploration. 15915 * when the verifier reaches bpf_exit insn some of the verifer states 15916 * stored in the state lists have their final liveness state already, 15917 * but a lot of states will get revised from liveness point of view when 15918 * the verifier explores other branches. 15919 * Example: 15920 * 1: r0 = 1 15921 * 2: if r1 == 100 goto pc+1 15922 * 3: r0 = 2 15923 * 4: exit 15924 * when the verifier reaches exit insn the register r0 in the state list of 15925 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 15926 * of insn 2 and goes exploring further. At the insn 4 it will walk the 15927 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 15928 * 15929 * Since the verifier pushes the branch states as it sees them while exploring 15930 * the program the condition of walking the branch instruction for the second 15931 * time means that all states below this branch were already explored and 15932 * their final liveness marks are already propagated. 15933 * Hence when the verifier completes the search of state list in is_state_visited() 15934 * we can call this clean_live_states() function to mark all liveness states 15935 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 15936 * will not be used. 15937 * This function also clears the registers and stack for states that !READ 15938 * to simplify state merging. 15939 * 15940 * Important note here that walking the same branch instruction in the callee 15941 * doesn't meant that the states are DONE. The verifier has to compare 15942 * the callsites 15943 */ 15944 static void clean_live_states(struct bpf_verifier_env *env, int insn, 15945 struct bpf_verifier_state *cur) 15946 { 15947 struct bpf_verifier_state_list *sl; 15948 15949 sl = *explored_state(env, insn); 15950 while (sl) { 15951 if (sl->state.branches) 15952 goto next; 15953 if (sl->state.insn_idx != insn || 15954 !same_callsites(&sl->state, cur)) 15955 goto next; 15956 clean_verifier_state(env, &sl->state); 15957 next: 15958 sl = sl->next; 15959 } 15960 } 15961 15962 static bool regs_exact(const struct bpf_reg_state *rold, 15963 const struct bpf_reg_state *rcur, 15964 struct bpf_idmap *idmap) 15965 { 15966 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 15967 check_ids(rold->id, rcur->id, idmap) && 15968 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 15969 } 15970 15971 /* Returns true if (rold safe implies rcur safe) */ 15972 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold, 15973 struct bpf_reg_state *rcur, struct bpf_idmap *idmap, bool exact) 15974 { 15975 if (exact) 15976 return regs_exact(rold, rcur, idmap); 15977 15978 if (!(rold->live & REG_LIVE_READ)) 15979 /* explored state didn't use this */ 15980 return true; 15981 if (rold->type == NOT_INIT) 15982 /* explored state can't have used this */ 15983 return true; 15984 if (rcur->type == NOT_INIT) 15985 return false; 15986 15987 /* Enforce that register types have to match exactly, including their 15988 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general 15989 * rule. 15990 * 15991 * One can make a point that using a pointer register as unbounded 15992 * SCALAR would be technically acceptable, but this could lead to 15993 * pointer leaks because scalars are allowed to leak while pointers 15994 * are not. We could make this safe in special cases if root is 15995 * calling us, but it's probably not worth the hassle. 15996 * 15997 * Also, register types that are *not* MAYBE_NULL could technically be 15998 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE 15999 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point 16000 * to the same map). 16001 * However, if the old MAYBE_NULL register then got NULL checked, 16002 * doing so could have affected others with the same id, and we can't 16003 * check for that because we lost the id when we converted to 16004 * a non-MAYBE_NULL variant. 16005 * So, as a general rule we don't allow mixing MAYBE_NULL and 16006 * non-MAYBE_NULL registers as well. 16007 */ 16008 if (rold->type != rcur->type) 16009 return false; 16010 16011 switch (base_type(rold->type)) { 16012 case SCALAR_VALUE: 16013 if (env->explore_alu_limits) { 16014 /* explore_alu_limits disables tnum_in() and range_within() 16015 * logic and requires everything to be strict 16016 */ 16017 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 16018 check_scalar_ids(rold->id, rcur->id, idmap); 16019 } 16020 if (!rold->precise) 16021 return true; 16022 /* Why check_ids() for scalar registers? 16023 * 16024 * Consider the following BPF code: 16025 * 1: r6 = ... unbound scalar, ID=a ... 16026 * 2: r7 = ... unbound scalar, ID=b ... 16027 * 3: if (r6 > r7) goto +1 16028 * 4: r6 = r7 16029 * 5: if (r6 > X) goto ... 16030 * 6: ... memory operation using r7 ... 16031 * 16032 * First verification path is [1-6]: 16033 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7; 16034 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark 16035 * r7 <= X, because r6 and r7 share same id. 16036 * Next verification path is [1-4, 6]. 16037 * 16038 * Instruction (6) would be reached in two states: 16039 * I. r6{.id=b}, r7{.id=b} via path 1-6; 16040 * II. r6{.id=a}, r7{.id=b} via path 1-4, 6. 16041 * 16042 * Use check_ids() to distinguish these states. 16043 * --- 16044 * Also verify that new value satisfies old value range knowledge. 16045 */ 16046 return range_within(rold, rcur) && 16047 tnum_in(rold->var_off, rcur->var_off) && 16048 check_scalar_ids(rold->id, rcur->id, idmap); 16049 case PTR_TO_MAP_KEY: 16050 case PTR_TO_MAP_VALUE: 16051 case PTR_TO_MEM: 16052 case PTR_TO_BUF: 16053 case PTR_TO_TP_BUFFER: 16054 /* If the new min/max/var_off satisfy the old ones and 16055 * everything else matches, we are OK. 16056 */ 16057 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 && 16058 range_within(rold, rcur) && 16059 tnum_in(rold->var_off, rcur->var_off) && 16060 check_ids(rold->id, rcur->id, idmap) && 16061 check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap); 16062 case PTR_TO_PACKET_META: 16063 case PTR_TO_PACKET: 16064 /* We must have at least as much range as the old ptr 16065 * did, so that any accesses which were safe before are 16066 * still safe. This is true even if old range < old off, 16067 * since someone could have accessed through (ptr - k), or 16068 * even done ptr -= k in a register, to get a safe access. 16069 */ 16070 if (rold->range > rcur->range) 16071 return false; 16072 /* If the offsets don't match, we can't trust our alignment; 16073 * nor can we be sure that we won't fall out of range. 16074 */ 16075 if (rold->off != rcur->off) 16076 return false; 16077 /* id relations must be preserved */ 16078 if (!check_ids(rold->id, rcur->id, idmap)) 16079 return false; 16080 /* new val must satisfy old val knowledge */ 16081 return range_within(rold, rcur) && 16082 tnum_in(rold->var_off, rcur->var_off); 16083 case PTR_TO_STACK: 16084 /* two stack pointers are equal only if they're pointing to 16085 * the same stack frame, since fp-8 in foo != fp-8 in bar 16086 */ 16087 return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno; 16088 default: 16089 return regs_exact(rold, rcur, idmap); 16090 } 16091 } 16092 16093 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old, 16094 struct bpf_func_state *cur, struct bpf_idmap *idmap, bool exact) 16095 { 16096 int i, spi; 16097 16098 /* walk slots of the explored stack and ignore any additional 16099 * slots in the current stack, since explored(safe) state 16100 * didn't use them 16101 */ 16102 for (i = 0; i < old->allocated_stack; i++) { 16103 struct bpf_reg_state *old_reg, *cur_reg; 16104 16105 spi = i / BPF_REG_SIZE; 16106 16107 if (exact && 16108 old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16109 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16110 return false; 16111 16112 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ) && !exact) { 16113 i += BPF_REG_SIZE - 1; 16114 /* explored state didn't use this */ 16115 continue; 16116 } 16117 16118 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 16119 continue; 16120 16121 if (env->allow_uninit_stack && 16122 old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC) 16123 continue; 16124 16125 /* explored stack has more populated slots than current stack 16126 * and these slots were used 16127 */ 16128 if (i >= cur->allocated_stack) 16129 return false; 16130 16131 /* if old state was safe with misc data in the stack 16132 * it will be safe with zero-initialized stack. 16133 * The opposite is not true 16134 */ 16135 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 16136 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 16137 continue; 16138 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 16139 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 16140 /* Ex: old explored (safe) state has STACK_SPILL in 16141 * this stack slot, but current has STACK_MISC -> 16142 * this verifier states are not equivalent, 16143 * return false to continue verification of this path 16144 */ 16145 return false; 16146 if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1) 16147 continue; 16148 /* Both old and cur are having same slot_type */ 16149 switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) { 16150 case STACK_SPILL: 16151 /* when explored and current stack slot are both storing 16152 * spilled registers, check that stored pointers types 16153 * are the same as well. 16154 * Ex: explored safe path could have stored 16155 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 16156 * but current path has stored: 16157 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 16158 * such verifier states are not equivalent. 16159 * return false to continue verification of this path 16160 */ 16161 if (!regsafe(env, &old->stack[spi].spilled_ptr, 16162 &cur->stack[spi].spilled_ptr, idmap, exact)) 16163 return false; 16164 break; 16165 case STACK_DYNPTR: 16166 old_reg = &old->stack[spi].spilled_ptr; 16167 cur_reg = &cur->stack[spi].spilled_ptr; 16168 if (old_reg->dynptr.type != cur_reg->dynptr.type || 16169 old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot || 16170 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16171 return false; 16172 break; 16173 case STACK_ITER: 16174 old_reg = &old->stack[spi].spilled_ptr; 16175 cur_reg = &cur->stack[spi].spilled_ptr; 16176 /* iter.depth is not compared between states as it 16177 * doesn't matter for correctness and would otherwise 16178 * prevent convergence; we maintain it only to prevent 16179 * infinite loop check triggering, see 16180 * iter_active_depths_differ() 16181 */ 16182 if (old_reg->iter.btf != cur_reg->iter.btf || 16183 old_reg->iter.btf_id != cur_reg->iter.btf_id || 16184 old_reg->iter.state != cur_reg->iter.state || 16185 /* ignore {old_reg,cur_reg}->iter.depth, see above */ 16186 !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap)) 16187 return false; 16188 break; 16189 case STACK_MISC: 16190 case STACK_ZERO: 16191 case STACK_INVALID: 16192 continue; 16193 /* Ensure that new unhandled slot types return false by default */ 16194 default: 16195 return false; 16196 } 16197 } 16198 return true; 16199 } 16200 16201 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur, 16202 struct bpf_idmap *idmap) 16203 { 16204 int i; 16205 16206 if (old->acquired_refs != cur->acquired_refs) 16207 return false; 16208 16209 for (i = 0; i < old->acquired_refs; i++) { 16210 if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap)) 16211 return false; 16212 } 16213 16214 return true; 16215 } 16216 16217 /* compare two verifier states 16218 * 16219 * all states stored in state_list are known to be valid, since 16220 * verifier reached 'bpf_exit' instruction through them 16221 * 16222 * this function is called when verifier exploring different branches of 16223 * execution popped from the state stack. If it sees an old state that has 16224 * more strict register state and more strict stack state then this execution 16225 * branch doesn't need to be explored further, since verifier already 16226 * concluded that more strict state leads to valid finish. 16227 * 16228 * Therefore two states are equivalent if register state is more conservative 16229 * and explored stack state is more conservative than the current one. 16230 * Example: 16231 * explored current 16232 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 16233 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 16234 * 16235 * In other words if current stack state (one being explored) has more 16236 * valid slots than old one that already passed validation, it means 16237 * the verifier can stop exploring and conclude that current state is valid too 16238 * 16239 * Similarly with registers. If explored state has register type as invalid 16240 * whereas register type in current state is meaningful, it means that 16241 * the current state will reach 'bpf_exit' instruction safely 16242 */ 16243 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old, 16244 struct bpf_func_state *cur, bool exact) 16245 { 16246 int i; 16247 16248 if (old->callback_depth > cur->callback_depth) 16249 return false; 16250 16251 for (i = 0; i < MAX_BPF_REG; i++) 16252 if (!regsafe(env, &old->regs[i], &cur->regs[i], 16253 &env->idmap_scratch, exact)) 16254 return false; 16255 16256 if (!stacksafe(env, old, cur, &env->idmap_scratch, exact)) 16257 return false; 16258 16259 if (!refsafe(old, cur, &env->idmap_scratch)) 16260 return false; 16261 16262 return true; 16263 } 16264 16265 static void reset_idmap_scratch(struct bpf_verifier_env *env) 16266 { 16267 env->idmap_scratch.tmp_id_gen = env->id_gen; 16268 memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map)); 16269 } 16270 16271 static bool states_equal(struct bpf_verifier_env *env, 16272 struct bpf_verifier_state *old, 16273 struct bpf_verifier_state *cur, 16274 bool exact) 16275 { 16276 int i; 16277 16278 if (old->curframe != cur->curframe) 16279 return false; 16280 16281 reset_idmap_scratch(env); 16282 16283 /* Verification state from speculative execution simulation 16284 * must never prune a non-speculative execution one. 16285 */ 16286 if (old->speculative && !cur->speculative) 16287 return false; 16288 16289 if (old->active_lock.ptr != cur->active_lock.ptr) 16290 return false; 16291 16292 /* Old and cur active_lock's have to be either both present 16293 * or both absent. 16294 */ 16295 if (!!old->active_lock.id != !!cur->active_lock.id) 16296 return false; 16297 16298 if (old->active_lock.id && 16299 !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch)) 16300 return false; 16301 16302 if (old->active_rcu_lock != cur->active_rcu_lock) 16303 return false; 16304 16305 /* for states to be equal callsites have to be the same 16306 * and all frame states need to be equivalent 16307 */ 16308 for (i = 0; i <= old->curframe; i++) { 16309 if (old->frame[i]->callsite != cur->frame[i]->callsite) 16310 return false; 16311 if (!func_states_equal(env, old->frame[i], cur->frame[i], exact)) 16312 return false; 16313 } 16314 return true; 16315 } 16316 16317 /* Return 0 if no propagation happened. Return negative error code if error 16318 * happened. Otherwise, return the propagated bit. 16319 */ 16320 static int propagate_liveness_reg(struct bpf_verifier_env *env, 16321 struct bpf_reg_state *reg, 16322 struct bpf_reg_state *parent_reg) 16323 { 16324 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 16325 u8 flag = reg->live & REG_LIVE_READ; 16326 int err; 16327 16328 /* When comes here, read flags of PARENT_REG or REG could be any of 16329 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 16330 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 16331 */ 16332 if (parent_flag == REG_LIVE_READ64 || 16333 /* Or if there is no read flag from REG. */ 16334 !flag || 16335 /* Or if the read flag from REG is the same as PARENT_REG. */ 16336 parent_flag == flag) 16337 return 0; 16338 16339 err = mark_reg_read(env, reg, parent_reg, flag); 16340 if (err) 16341 return err; 16342 16343 return flag; 16344 } 16345 16346 /* A write screens off any subsequent reads; but write marks come from the 16347 * straight-line code between a state and its parent. When we arrive at an 16348 * equivalent state (jump target or such) we didn't arrive by the straight-line 16349 * code, so read marks in the state must propagate to the parent regardless 16350 * of the state's write marks. That's what 'parent == state->parent' comparison 16351 * in mark_reg_read() is for. 16352 */ 16353 static int propagate_liveness(struct bpf_verifier_env *env, 16354 const struct bpf_verifier_state *vstate, 16355 struct bpf_verifier_state *vparent) 16356 { 16357 struct bpf_reg_state *state_reg, *parent_reg; 16358 struct bpf_func_state *state, *parent; 16359 int i, frame, err = 0; 16360 16361 if (vparent->curframe != vstate->curframe) { 16362 WARN(1, "propagate_live: parent frame %d current frame %d\n", 16363 vparent->curframe, vstate->curframe); 16364 return -EFAULT; 16365 } 16366 /* Propagate read liveness of registers... */ 16367 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 16368 for (frame = 0; frame <= vstate->curframe; frame++) { 16369 parent = vparent->frame[frame]; 16370 state = vstate->frame[frame]; 16371 parent_reg = parent->regs; 16372 state_reg = state->regs; 16373 /* We don't need to worry about FP liveness, it's read-only */ 16374 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 16375 err = propagate_liveness_reg(env, &state_reg[i], 16376 &parent_reg[i]); 16377 if (err < 0) 16378 return err; 16379 if (err == REG_LIVE_READ64) 16380 mark_insn_zext(env, &parent_reg[i]); 16381 } 16382 16383 /* Propagate stack slots. */ 16384 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 16385 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 16386 parent_reg = &parent->stack[i].spilled_ptr; 16387 state_reg = &state->stack[i].spilled_ptr; 16388 err = propagate_liveness_reg(env, state_reg, 16389 parent_reg); 16390 if (err < 0) 16391 return err; 16392 } 16393 } 16394 return 0; 16395 } 16396 16397 /* find precise scalars in the previous equivalent state and 16398 * propagate them into the current state 16399 */ 16400 static int propagate_precision(struct bpf_verifier_env *env, 16401 const struct bpf_verifier_state *old) 16402 { 16403 struct bpf_reg_state *state_reg; 16404 struct bpf_func_state *state; 16405 int i, err = 0, fr; 16406 bool first; 16407 16408 for (fr = old->curframe; fr >= 0; fr--) { 16409 state = old->frame[fr]; 16410 state_reg = state->regs; 16411 first = true; 16412 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 16413 if (state_reg->type != SCALAR_VALUE || 16414 !state_reg->precise || 16415 !(state_reg->live & REG_LIVE_READ)) 16416 continue; 16417 if (env->log.level & BPF_LOG_LEVEL2) { 16418 if (first) 16419 verbose(env, "frame %d: propagating r%d", fr, i); 16420 else 16421 verbose(env, ",r%d", i); 16422 } 16423 bt_set_frame_reg(&env->bt, fr, i); 16424 first = false; 16425 } 16426 16427 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16428 if (!is_spilled_reg(&state->stack[i])) 16429 continue; 16430 state_reg = &state->stack[i].spilled_ptr; 16431 if (state_reg->type != SCALAR_VALUE || 16432 !state_reg->precise || 16433 !(state_reg->live & REG_LIVE_READ)) 16434 continue; 16435 if (env->log.level & BPF_LOG_LEVEL2) { 16436 if (first) 16437 verbose(env, "frame %d: propagating fp%d", 16438 fr, (-i - 1) * BPF_REG_SIZE); 16439 else 16440 verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE); 16441 } 16442 bt_set_frame_slot(&env->bt, fr, i); 16443 first = false; 16444 } 16445 if (!first) 16446 verbose(env, "\n"); 16447 } 16448 16449 err = mark_chain_precision_batch(env); 16450 if (err < 0) 16451 return err; 16452 16453 return 0; 16454 } 16455 16456 static bool states_maybe_looping(struct bpf_verifier_state *old, 16457 struct bpf_verifier_state *cur) 16458 { 16459 struct bpf_func_state *fold, *fcur; 16460 int i, fr = cur->curframe; 16461 16462 if (old->curframe != fr) 16463 return false; 16464 16465 fold = old->frame[fr]; 16466 fcur = cur->frame[fr]; 16467 for (i = 0; i < MAX_BPF_REG; i++) 16468 if (memcmp(&fold->regs[i], &fcur->regs[i], 16469 offsetof(struct bpf_reg_state, parent))) 16470 return false; 16471 return true; 16472 } 16473 16474 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx) 16475 { 16476 return env->insn_aux_data[insn_idx].is_iter_next; 16477 } 16478 16479 /* is_state_visited() handles iter_next() (see process_iter_next_call() for 16480 * terminology) calls specially: as opposed to bounded BPF loops, it *expects* 16481 * states to match, which otherwise would look like an infinite loop. So while 16482 * iter_next() calls are taken care of, we still need to be careful and 16483 * prevent erroneous and too eager declaration of "ininite loop", when 16484 * iterators are involved. 16485 * 16486 * Here's a situation in pseudo-BPF assembly form: 16487 * 16488 * 0: again: ; set up iter_next() call args 16489 * 1: r1 = &it ; <CHECKPOINT HERE> 16490 * 2: call bpf_iter_num_next ; this is iter_next() call 16491 * 3: if r0 == 0 goto done 16492 * 4: ... something useful here ... 16493 * 5: goto again ; another iteration 16494 * 6: done: 16495 * 7: r1 = &it 16496 * 8: call bpf_iter_num_destroy ; clean up iter state 16497 * 9: exit 16498 * 16499 * This is a typical loop. Let's assume that we have a prune point at 1:, 16500 * before we get to `call bpf_iter_num_next` (e.g., because of that `goto 16501 * again`, assuming other heuristics don't get in a way). 16502 * 16503 * When we first time come to 1:, let's say we have some state X. We proceed 16504 * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit. 16505 * Now we come back to validate that forked ACTIVE state. We proceed through 16506 * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we 16507 * are converging. But the problem is that we don't know that yet, as this 16508 * convergence has to happen at iter_next() call site only. So if nothing is 16509 * done, at 1: verifier will use bounded loop logic and declare infinite 16510 * looping (and would be *technically* correct, if not for iterator's 16511 * "eventual sticky NULL" contract, see process_iter_next_call()). But we 16512 * don't want that. So what we do in process_iter_next_call() when we go on 16513 * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's 16514 * a different iteration. So when we suspect an infinite loop, we additionally 16515 * check if any of the *ACTIVE* iterator states depths differ. If yes, we 16516 * pretend we are not looping and wait for next iter_next() call. 16517 * 16518 * This only applies to ACTIVE state. In DRAINED state we don't expect to 16519 * loop, because that would actually mean infinite loop, as DRAINED state is 16520 * "sticky", and so we'll keep returning into the same instruction with the 16521 * same state (at least in one of possible code paths). 16522 * 16523 * This approach allows to keep infinite loop heuristic even in the face of 16524 * active iterator. E.g., C snippet below is and will be detected as 16525 * inifintely looping: 16526 * 16527 * struct bpf_iter_num it; 16528 * int *p, x; 16529 * 16530 * bpf_iter_num_new(&it, 0, 10); 16531 * while ((p = bpf_iter_num_next(&t))) { 16532 * x = p; 16533 * while (x--) {} // <<-- infinite loop here 16534 * } 16535 * 16536 */ 16537 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur) 16538 { 16539 struct bpf_reg_state *slot, *cur_slot; 16540 struct bpf_func_state *state; 16541 int i, fr; 16542 16543 for (fr = old->curframe; fr >= 0; fr--) { 16544 state = old->frame[fr]; 16545 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 16546 if (state->stack[i].slot_type[0] != STACK_ITER) 16547 continue; 16548 16549 slot = &state->stack[i].spilled_ptr; 16550 if (slot->iter.state != BPF_ITER_STATE_ACTIVE) 16551 continue; 16552 16553 cur_slot = &cur->frame[fr]->stack[i].spilled_ptr; 16554 if (cur_slot->iter.depth != slot->iter.depth) 16555 return true; 16556 } 16557 } 16558 return false; 16559 } 16560 16561 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 16562 { 16563 struct bpf_verifier_state_list *new_sl; 16564 struct bpf_verifier_state_list *sl, **pprev; 16565 struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry; 16566 int i, j, n, err, states_cnt = 0; 16567 bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx); 16568 bool add_new_state = force_new_state; 16569 bool force_exact; 16570 16571 /* bpf progs typically have pruning point every 4 instructions 16572 * http://vger.kernel.org/bpfconf2019.html#session-1 16573 * Do not add new state for future pruning if the verifier hasn't seen 16574 * at least 2 jumps and at least 8 instructions. 16575 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 16576 * In tests that amounts to up to 50% reduction into total verifier 16577 * memory consumption and 20% verifier time speedup. 16578 */ 16579 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 16580 env->insn_processed - env->prev_insn_processed >= 8) 16581 add_new_state = true; 16582 16583 pprev = explored_state(env, insn_idx); 16584 sl = *pprev; 16585 16586 clean_live_states(env, insn_idx, cur); 16587 16588 while (sl) { 16589 states_cnt++; 16590 if (sl->state.insn_idx != insn_idx) 16591 goto next; 16592 16593 if (sl->state.branches) { 16594 struct bpf_func_state *frame = sl->state.frame[sl->state.curframe]; 16595 16596 if (frame->in_async_callback_fn && 16597 frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) { 16598 /* Different async_entry_cnt means that the verifier is 16599 * processing another entry into async callback. 16600 * Seeing the same state is not an indication of infinite 16601 * loop or infinite recursion. 16602 * But finding the same state doesn't mean that it's safe 16603 * to stop processing the current state. The previous state 16604 * hasn't yet reached bpf_exit, since state.branches > 0. 16605 * Checking in_async_callback_fn alone is not enough either. 16606 * Since the verifier still needs to catch infinite loops 16607 * inside async callbacks. 16608 */ 16609 goto skip_inf_loop_check; 16610 } 16611 /* BPF open-coded iterators loop detection is special. 16612 * states_maybe_looping() logic is too simplistic in detecting 16613 * states that *might* be equivalent, because it doesn't know 16614 * about ID remapping, so don't even perform it. 16615 * See process_iter_next_call() and iter_active_depths_differ() 16616 * for overview of the logic. When current and one of parent 16617 * states are detected as equivalent, it's a good thing: we prove 16618 * convergence and can stop simulating further iterations. 16619 * It's safe to assume that iterator loop will finish, taking into 16620 * account iter_next() contract of eventually returning 16621 * sticky NULL result. 16622 * 16623 * Note, that states have to be compared exactly in this case because 16624 * read and precision marks might not be finalized inside the loop. 16625 * E.g. as in the program below: 16626 * 16627 * 1. r7 = -16 16628 * 2. r6 = bpf_get_prandom_u32() 16629 * 3. while (bpf_iter_num_next(&fp[-8])) { 16630 * 4. if (r6 != 42) { 16631 * 5. r7 = -32 16632 * 6. r6 = bpf_get_prandom_u32() 16633 * 7. continue 16634 * 8. } 16635 * 9. r0 = r10 16636 * 10. r0 += r7 16637 * 11. r8 = *(u64 *)(r0 + 0) 16638 * 12. r6 = bpf_get_prandom_u32() 16639 * 13. } 16640 * 16641 * Here verifier would first visit path 1-3, create a checkpoint at 3 16642 * with r7=-16, continue to 4-7,3. Existing checkpoint at 3 does 16643 * not have read or precision mark for r7 yet, thus inexact states 16644 * comparison would discard current state with r7=-32 16645 * => unsafe memory access at 11 would not be caught. 16646 */ 16647 if (is_iter_next_insn(env, insn_idx)) { 16648 if (states_equal(env, &sl->state, cur, true)) { 16649 struct bpf_func_state *cur_frame; 16650 struct bpf_reg_state *iter_state, *iter_reg; 16651 int spi; 16652 16653 cur_frame = cur->frame[cur->curframe]; 16654 /* btf_check_iter_kfuncs() enforces that 16655 * iter state pointer is always the first arg 16656 */ 16657 iter_reg = &cur_frame->regs[BPF_REG_1]; 16658 /* current state is valid due to states_equal(), 16659 * so we can assume valid iter and reg state, 16660 * no need for extra (re-)validations 16661 */ 16662 spi = __get_spi(iter_reg->off + iter_reg->var_off.value); 16663 iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr; 16664 if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE) { 16665 update_loop_entry(cur, &sl->state); 16666 goto hit; 16667 } 16668 } 16669 goto skip_inf_loop_check; 16670 } 16671 if (calls_callback(env, insn_idx)) { 16672 if (states_equal(env, &sl->state, cur, true)) 16673 goto hit; 16674 goto skip_inf_loop_check; 16675 } 16676 /* attempt to detect infinite loop to avoid unnecessary doomed work */ 16677 if (states_maybe_looping(&sl->state, cur) && 16678 states_equal(env, &sl->state, cur, false) && 16679 !iter_active_depths_differ(&sl->state, cur) && 16680 sl->state.callback_unroll_depth == cur->callback_unroll_depth) { 16681 verbose_linfo(env, insn_idx, "; "); 16682 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 16683 verbose(env, "cur state:"); 16684 print_verifier_state(env, cur->frame[cur->curframe], true); 16685 verbose(env, "old state:"); 16686 print_verifier_state(env, sl->state.frame[cur->curframe], true); 16687 return -EINVAL; 16688 } 16689 /* if the verifier is processing a loop, avoid adding new state 16690 * too often, since different loop iterations have distinct 16691 * states and may not help future pruning. 16692 * This threshold shouldn't be too low to make sure that 16693 * a loop with large bound will be rejected quickly. 16694 * The most abusive loop will be: 16695 * r1 += 1 16696 * if r1 < 1000000 goto pc-2 16697 * 1M insn_procssed limit / 100 == 10k peak states. 16698 * This threshold shouldn't be too high either, since states 16699 * at the end of the loop are likely to be useful in pruning. 16700 */ 16701 skip_inf_loop_check: 16702 if (!force_new_state && 16703 env->jmps_processed - env->prev_jmps_processed < 20 && 16704 env->insn_processed - env->prev_insn_processed < 100) 16705 add_new_state = false; 16706 goto miss; 16707 } 16708 /* If sl->state is a part of a loop and this loop's entry is a part of 16709 * current verification path then states have to be compared exactly. 16710 * 'force_exact' is needed to catch the following case: 16711 * 16712 * initial Here state 'succ' was processed first, 16713 * | it was eventually tracked to produce a 16714 * V state identical to 'hdr'. 16715 * .---------> hdr All branches from 'succ' had been explored 16716 * | | and thus 'succ' has its .branches == 0. 16717 * | V 16718 * | .------... Suppose states 'cur' and 'succ' correspond 16719 * | | | to the same instruction + callsites. 16720 * | V V In such case it is necessary to check 16721 * | ... ... if 'succ' and 'cur' are states_equal(). 16722 * | | | If 'succ' and 'cur' are a part of the 16723 * | V V same loop exact flag has to be set. 16724 * | succ <- cur To check if that is the case, verify 16725 * | | if loop entry of 'succ' is in current 16726 * | V DFS path. 16727 * | ... 16728 * | | 16729 * '----' 16730 * 16731 * Additional details are in the comment before get_loop_entry(). 16732 */ 16733 loop_entry = get_loop_entry(&sl->state); 16734 force_exact = loop_entry && loop_entry->branches > 0; 16735 if (states_equal(env, &sl->state, cur, force_exact)) { 16736 if (force_exact) 16737 update_loop_entry(cur, loop_entry); 16738 hit: 16739 sl->hit_cnt++; 16740 /* reached equivalent register/stack state, 16741 * prune the search. 16742 * Registers read by the continuation are read by us. 16743 * If we have any write marks in env->cur_state, they 16744 * will prevent corresponding reads in the continuation 16745 * from reaching our parent (an explored_state). Our 16746 * own state will get the read marks recorded, but 16747 * they'll be immediately forgotten as we're pruning 16748 * this state and will pop a new one. 16749 */ 16750 err = propagate_liveness(env, &sl->state, cur); 16751 16752 /* if previous state reached the exit with precision and 16753 * current state is equivalent to it (except precsion marks) 16754 * the precision needs to be propagated back in 16755 * the current state. 16756 */ 16757 err = err ? : push_jmp_history(env, cur); 16758 err = err ? : propagate_precision(env, &sl->state); 16759 if (err) 16760 return err; 16761 return 1; 16762 } 16763 miss: 16764 /* when new state is not going to be added do not increase miss count. 16765 * Otherwise several loop iterations will remove the state 16766 * recorded earlier. The goal of these heuristics is to have 16767 * states from some iterations of the loop (some in the beginning 16768 * and some at the end) to help pruning. 16769 */ 16770 if (add_new_state) 16771 sl->miss_cnt++; 16772 /* heuristic to determine whether this state is beneficial 16773 * to keep checking from state equivalence point of view. 16774 * Higher numbers increase max_states_per_insn and verification time, 16775 * but do not meaningfully decrease insn_processed. 16776 * 'n' controls how many times state could miss before eviction. 16777 * Use bigger 'n' for checkpoints because evicting checkpoint states 16778 * too early would hinder iterator convergence. 16779 */ 16780 n = is_force_checkpoint(env, insn_idx) && sl->state.branches > 0 ? 64 : 3; 16781 if (sl->miss_cnt > sl->hit_cnt * n + n) { 16782 /* the state is unlikely to be useful. Remove it to 16783 * speed up verification 16784 */ 16785 *pprev = sl->next; 16786 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE && 16787 !sl->state.used_as_loop_entry) { 16788 u32 br = sl->state.branches; 16789 16790 WARN_ONCE(br, 16791 "BUG live_done but branches_to_explore %d\n", 16792 br); 16793 free_verifier_state(&sl->state, false); 16794 kfree(sl); 16795 env->peak_states--; 16796 } else { 16797 /* cannot free this state, since parentage chain may 16798 * walk it later. Add it for free_list instead to 16799 * be freed at the end of verification 16800 */ 16801 sl->next = env->free_list; 16802 env->free_list = sl; 16803 } 16804 sl = *pprev; 16805 continue; 16806 } 16807 next: 16808 pprev = &sl->next; 16809 sl = *pprev; 16810 } 16811 16812 if (env->max_states_per_insn < states_cnt) 16813 env->max_states_per_insn = states_cnt; 16814 16815 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 16816 return 0; 16817 16818 if (!add_new_state) 16819 return 0; 16820 16821 /* There were no equivalent states, remember the current one. 16822 * Technically the current state is not proven to be safe yet, 16823 * but it will either reach outer most bpf_exit (which means it's safe) 16824 * or it will be rejected. When there are no loops the verifier won't be 16825 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 16826 * again on the way to bpf_exit. 16827 * When looping the sl->state.branches will be > 0 and this state 16828 * will not be considered for equivalence until branches == 0. 16829 */ 16830 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 16831 if (!new_sl) 16832 return -ENOMEM; 16833 env->total_states++; 16834 env->peak_states++; 16835 env->prev_jmps_processed = env->jmps_processed; 16836 env->prev_insn_processed = env->insn_processed; 16837 16838 /* forget precise markings we inherited, see __mark_chain_precision */ 16839 if (env->bpf_capable) 16840 mark_all_scalars_imprecise(env, cur); 16841 16842 /* add new state to the head of linked list */ 16843 new = &new_sl->state; 16844 err = copy_verifier_state(new, cur); 16845 if (err) { 16846 free_verifier_state(new, false); 16847 kfree(new_sl); 16848 return err; 16849 } 16850 new->insn_idx = insn_idx; 16851 WARN_ONCE(new->branches != 1, 16852 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 16853 16854 cur->parent = new; 16855 cur->first_insn_idx = insn_idx; 16856 cur->dfs_depth = new->dfs_depth + 1; 16857 clear_jmp_history(cur); 16858 new_sl->next = *explored_state(env, insn_idx); 16859 *explored_state(env, insn_idx) = new_sl; 16860 /* connect new state to parentage chain. Current frame needs all 16861 * registers connected. Only r6 - r9 of the callers are alive (pushed 16862 * to the stack implicitly by JITs) so in callers' frames connect just 16863 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 16864 * the state of the call instruction (with WRITTEN set), and r0 comes 16865 * from callee with its full parentage chain, anyway. 16866 */ 16867 /* clear write marks in current state: the writes we did are not writes 16868 * our child did, so they don't screen off its reads from us. 16869 * (There are no read marks in current state, because reads always mark 16870 * their parent and current state never has children yet. Only 16871 * explored_states can get read marks.) 16872 */ 16873 for (j = 0; j <= cur->curframe; j++) { 16874 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 16875 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 16876 for (i = 0; i < BPF_REG_FP; i++) 16877 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 16878 } 16879 16880 /* all stack frames are accessible from callee, clear them all */ 16881 for (j = 0; j <= cur->curframe; j++) { 16882 struct bpf_func_state *frame = cur->frame[j]; 16883 struct bpf_func_state *newframe = new->frame[j]; 16884 16885 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 16886 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 16887 frame->stack[i].spilled_ptr.parent = 16888 &newframe->stack[i].spilled_ptr; 16889 } 16890 } 16891 return 0; 16892 } 16893 16894 /* Return true if it's OK to have the same insn return a different type. */ 16895 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 16896 { 16897 switch (base_type(type)) { 16898 case PTR_TO_CTX: 16899 case PTR_TO_SOCKET: 16900 case PTR_TO_SOCK_COMMON: 16901 case PTR_TO_TCP_SOCK: 16902 case PTR_TO_XDP_SOCK: 16903 case PTR_TO_BTF_ID: 16904 return false; 16905 default: 16906 return true; 16907 } 16908 } 16909 16910 /* If an instruction was previously used with particular pointer types, then we 16911 * need to be careful to avoid cases such as the below, where it may be ok 16912 * for one branch accessing the pointer, but not ok for the other branch: 16913 * 16914 * R1 = sock_ptr 16915 * goto X; 16916 * ... 16917 * R1 = some_other_valid_ptr; 16918 * goto X; 16919 * ... 16920 * R2 = *(u32 *)(R1 + 0); 16921 */ 16922 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 16923 { 16924 return src != prev && (!reg_type_mismatch_ok(src) || 16925 !reg_type_mismatch_ok(prev)); 16926 } 16927 16928 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type, 16929 bool allow_trust_missmatch) 16930 { 16931 enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type; 16932 16933 if (*prev_type == NOT_INIT) { 16934 /* Saw a valid insn 16935 * dst_reg = *(u32 *)(src_reg + off) 16936 * save type to validate intersecting paths 16937 */ 16938 *prev_type = type; 16939 } else if (reg_type_mismatch(type, *prev_type)) { 16940 /* Abuser program is trying to use the same insn 16941 * dst_reg = *(u32*) (src_reg + off) 16942 * with different pointer types: 16943 * src_reg == ctx in one branch and 16944 * src_reg == stack|map in some other branch. 16945 * Reject it. 16946 */ 16947 if (allow_trust_missmatch && 16948 base_type(type) == PTR_TO_BTF_ID && 16949 base_type(*prev_type) == PTR_TO_BTF_ID) { 16950 /* 16951 * Have to support a use case when one path through 16952 * the program yields TRUSTED pointer while another 16953 * is UNTRUSTED. Fallback to UNTRUSTED to generate 16954 * BPF_PROBE_MEM/BPF_PROBE_MEMSX. 16955 */ 16956 *prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED; 16957 } else { 16958 verbose(env, "same insn cannot be used with different pointers\n"); 16959 return -EINVAL; 16960 } 16961 } 16962 16963 return 0; 16964 } 16965 16966 static int do_check(struct bpf_verifier_env *env) 16967 { 16968 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 16969 struct bpf_verifier_state *state = env->cur_state; 16970 struct bpf_insn *insns = env->prog->insnsi; 16971 struct bpf_reg_state *regs; 16972 int insn_cnt = env->prog->len; 16973 bool do_print_state = false; 16974 int prev_insn_idx = -1; 16975 16976 for (;;) { 16977 struct bpf_insn *insn; 16978 u8 class; 16979 int err; 16980 16981 env->prev_insn_idx = prev_insn_idx; 16982 if (env->insn_idx >= insn_cnt) { 16983 verbose(env, "invalid insn idx %d insn_cnt %d\n", 16984 env->insn_idx, insn_cnt); 16985 return -EFAULT; 16986 } 16987 16988 insn = &insns[env->insn_idx]; 16989 class = BPF_CLASS(insn->code); 16990 16991 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 16992 verbose(env, 16993 "BPF program is too large. Processed %d insn\n", 16994 env->insn_processed); 16995 return -E2BIG; 16996 } 16997 16998 state->last_insn_idx = env->prev_insn_idx; 16999 17000 if (is_prune_point(env, env->insn_idx)) { 17001 err = is_state_visited(env, env->insn_idx); 17002 if (err < 0) 17003 return err; 17004 if (err == 1) { 17005 /* found equivalent state, can prune the search */ 17006 if (env->log.level & BPF_LOG_LEVEL) { 17007 if (do_print_state) 17008 verbose(env, "\nfrom %d to %d%s: safe\n", 17009 env->prev_insn_idx, env->insn_idx, 17010 env->cur_state->speculative ? 17011 " (speculative execution)" : ""); 17012 else 17013 verbose(env, "%d: safe\n", env->insn_idx); 17014 } 17015 goto process_bpf_exit; 17016 } 17017 } 17018 17019 if (is_jmp_point(env, env->insn_idx)) { 17020 err = push_jmp_history(env, state); 17021 if (err) 17022 return err; 17023 } 17024 17025 if (signal_pending(current)) 17026 return -EAGAIN; 17027 17028 if (need_resched()) 17029 cond_resched(); 17030 17031 if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) { 17032 verbose(env, "\nfrom %d to %d%s:", 17033 env->prev_insn_idx, env->insn_idx, 17034 env->cur_state->speculative ? 17035 " (speculative execution)" : ""); 17036 print_verifier_state(env, state->frame[state->curframe], true); 17037 do_print_state = false; 17038 } 17039 17040 if (env->log.level & BPF_LOG_LEVEL) { 17041 const struct bpf_insn_cbs cbs = { 17042 .cb_call = disasm_kfunc_name, 17043 .cb_print = verbose, 17044 .private_data = env, 17045 }; 17046 17047 if (verifier_state_scratched(env)) 17048 print_insn_state(env, state->frame[state->curframe]); 17049 17050 verbose_linfo(env, env->insn_idx, "; "); 17051 env->prev_log_pos = env->log.end_pos; 17052 verbose(env, "%d: ", env->insn_idx); 17053 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 17054 env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos; 17055 env->prev_log_pos = env->log.end_pos; 17056 } 17057 17058 if (bpf_prog_is_offloaded(env->prog->aux)) { 17059 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 17060 env->prev_insn_idx); 17061 if (err) 17062 return err; 17063 } 17064 17065 regs = cur_regs(env); 17066 sanitize_mark_insn_seen(env); 17067 prev_insn_idx = env->insn_idx; 17068 17069 if (class == BPF_ALU || class == BPF_ALU64) { 17070 err = check_alu_op(env, insn); 17071 if (err) 17072 return err; 17073 17074 } else if (class == BPF_LDX) { 17075 enum bpf_reg_type src_reg_type; 17076 17077 /* check for reserved fields is already done */ 17078 17079 /* check src operand */ 17080 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17081 if (err) 17082 return err; 17083 17084 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 17085 if (err) 17086 return err; 17087 17088 src_reg_type = regs[insn->src_reg].type; 17089 17090 /* check that memory (src_reg + off) is readable, 17091 * the state of dst_reg will be updated by this func 17092 */ 17093 err = check_mem_access(env, env->insn_idx, insn->src_reg, 17094 insn->off, BPF_SIZE(insn->code), 17095 BPF_READ, insn->dst_reg, false, 17096 BPF_MODE(insn->code) == BPF_MEMSX); 17097 if (err) 17098 return err; 17099 17100 err = save_aux_ptr_type(env, src_reg_type, true); 17101 if (err) 17102 return err; 17103 } else if (class == BPF_STX) { 17104 enum bpf_reg_type dst_reg_type; 17105 17106 if (BPF_MODE(insn->code) == BPF_ATOMIC) { 17107 err = check_atomic(env, env->insn_idx, insn); 17108 if (err) 17109 return err; 17110 env->insn_idx++; 17111 continue; 17112 } 17113 17114 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) { 17115 verbose(env, "BPF_STX uses reserved fields\n"); 17116 return -EINVAL; 17117 } 17118 17119 /* check src1 operand */ 17120 err = check_reg_arg(env, insn->src_reg, SRC_OP); 17121 if (err) 17122 return err; 17123 /* check src2 operand */ 17124 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17125 if (err) 17126 return err; 17127 17128 dst_reg_type = regs[insn->dst_reg].type; 17129 17130 /* check that memory (dst_reg + off) is writeable */ 17131 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17132 insn->off, BPF_SIZE(insn->code), 17133 BPF_WRITE, insn->src_reg, false, false); 17134 if (err) 17135 return err; 17136 17137 err = save_aux_ptr_type(env, dst_reg_type, false); 17138 if (err) 17139 return err; 17140 } else if (class == BPF_ST) { 17141 enum bpf_reg_type dst_reg_type; 17142 17143 if (BPF_MODE(insn->code) != BPF_MEM || 17144 insn->src_reg != BPF_REG_0) { 17145 verbose(env, "BPF_ST uses reserved fields\n"); 17146 return -EINVAL; 17147 } 17148 /* check src operand */ 17149 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 17150 if (err) 17151 return err; 17152 17153 dst_reg_type = regs[insn->dst_reg].type; 17154 17155 /* check that memory (dst_reg + off) is writeable */ 17156 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 17157 insn->off, BPF_SIZE(insn->code), 17158 BPF_WRITE, -1, false, false); 17159 if (err) 17160 return err; 17161 17162 err = save_aux_ptr_type(env, dst_reg_type, false); 17163 if (err) 17164 return err; 17165 } else if (class == BPF_JMP || class == BPF_JMP32) { 17166 u8 opcode = BPF_OP(insn->code); 17167 17168 env->jmps_processed++; 17169 if (opcode == BPF_CALL) { 17170 if (BPF_SRC(insn->code) != BPF_K || 17171 (insn->src_reg != BPF_PSEUDO_KFUNC_CALL 17172 && insn->off != 0) || 17173 (insn->src_reg != BPF_REG_0 && 17174 insn->src_reg != BPF_PSEUDO_CALL && 17175 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) || 17176 insn->dst_reg != BPF_REG_0 || 17177 class == BPF_JMP32) { 17178 verbose(env, "BPF_CALL uses reserved fields\n"); 17179 return -EINVAL; 17180 } 17181 17182 if (env->cur_state->active_lock.ptr) { 17183 if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) || 17184 (insn->src_reg == BPF_PSEUDO_CALL) || 17185 (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && 17186 (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) { 17187 verbose(env, "function calls are not allowed while holding a lock\n"); 17188 return -EINVAL; 17189 } 17190 } 17191 if (insn->src_reg == BPF_PSEUDO_CALL) 17192 err = check_func_call(env, insn, &env->insn_idx); 17193 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) 17194 err = check_kfunc_call(env, insn, &env->insn_idx); 17195 else 17196 err = check_helper_call(env, insn, &env->insn_idx); 17197 if (err) 17198 return err; 17199 17200 mark_reg_scratched(env, BPF_REG_0); 17201 } else if (opcode == BPF_JA) { 17202 if (BPF_SRC(insn->code) != BPF_K || 17203 insn->src_reg != BPF_REG_0 || 17204 insn->dst_reg != BPF_REG_0 || 17205 (class == BPF_JMP && insn->imm != 0) || 17206 (class == BPF_JMP32 && insn->off != 0)) { 17207 verbose(env, "BPF_JA uses reserved fields\n"); 17208 return -EINVAL; 17209 } 17210 17211 if (class == BPF_JMP) 17212 env->insn_idx += insn->off + 1; 17213 else 17214 env->insn_idx += insn->imm + 1; 17215 continue; 17216 17217 } else if (opcode == BPF_EXIT) { 17218 if (BPF_SRC(insn->code) != BPF_K || 17219 insn->imm != 0 || 17220 insn->src_reg != BPF_REG_0 || 17221 insn->dst_reg != BPF_REG_0 || 17222 class == BPF_JMP32) { 17223 verbose(env, "BPF_EXIT uses reserved fields\n"); 17224 return -EINVAL; 17225 } 17226 17227 if (env->cur_state->active_lock.ptr && 17228 !in_rbtree_lock_required_cb(env)) { 17229 verbose(env, "bpf_spin_unlock is missing\n"); 17230 return -EINVAL; 17231 } 17232 17233 if (env->cur_state->active_rcu_lock && 17234 !in_rbtree_lock_required_cb(env)) { 17235 verbose(env, "bpf_rcu_read_unlock is missing\n"); 17236 return -EINVAL; 17237 } 17238 17239 /* We must do check_reference_leak here before 17240 * prepare_func_exit to handle the case when 17241 * state->curframe > 0, it may be a callback 17242 * function, for which reference_state must 17243 * match caller reference state when it exits. 17244 */ 17245 err = check_reference_leak(env); 17246 if (err) 17247 return err; 17248 17249 if (state->curframe) { 17250 /* exit from nested function */ 17251 err = prepare_func_exit(env, &env->insn_idx); 17252 if (err) 17253 return err; 17254 do_print_state = true; 17255 continue; 17256 } 17257 17258 err = check_return_code(env); 17259 if (err) 17260 return err; 17261 process_bpf_exit: 17262 mark_verifier_state_scratched(env); 17263 update_branch_counts(env, env->cur_state); 17264 err = pop_stack(env, &prev_insn_idx, 17265 &env->insn_idx, pop_log); 17266 if (err < 0) { 17267 if (err != -ENOENT) 17268 return err; 17269 break; 17270 } else { 17271 do_print_state = true; 17272 continue; 17273 } 17274 } else { 17275 err = check_cond_jmp_op(env, insn, &env->insn_idx); 17276 if (err) 17277 return err; 17278 } 17279 } else if (class == BPF_LD) { 17280 u8 mode = BPF_MODE(insn->code); 17281 17282 if (mode == BPF_ABS || mode == BPF_IND) { 17283 err = check_ld_abs(env, insn); 17284 if (err) 17285 return err; 17286 17287 } else if (mode == BPF_IMM) { 17288 err = check_ld_imm(env, insn); 17289 if (err) 17290 return err; 17291 17292 env->insn_idx++; 17293 sanitize_mark_insn_seen(env); 17294 } else { 17295 verbose(env, "invalid BPF_LD mode\n"); 17296 return -EINVAL; 17297 } 17298 } else { 17299 verbose(env, "unknown insn class %d\n", class); 17300 return -EINVAL; 17301 } 17302 17303 env->insn_idx++; 17304 } 17305 17306 return 0; 17307 } 17308 17309 static int find_btf_percpu_datasec(struct btf *btf) 17310 { 17311 const struct btf_type *t; 17312 const char *tname; 17313 int i, n; 17314 17315 /* 17316 * Both vmlinux and module each have their own ".data..percpu" 17317 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF 17318 * types to look at only module's own BTF types. 17319 */ 17320 n = btf_nr_types(btf); 17321 if (btf_is_module(btf)) 17322 i = btf_nr_types(btf_vmlinux); 17323 else 17324 i = 1; 17325 17326 for(; i < n; i++) { 17327 t = btf_type_by_id(btf, i); 17328 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC) 17329 continue; 17330 17331 tname = btf_name_by_offset(btf, t->name_off); 17332 if (!strcmp(tname, ".data..percpu")) 17333 return i; 17334 } 17335 17336 return -ENOENT; 17337 } 17338 17339 /* replace pseudo btf_id with kernel symbol address */ 17340 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 17341 struct bpf_insn *insn, 17342 struct bpf_insn_aux_data *aux) 17343 { 17344 const struct btf_var_secinfo *vsi; 17345 const struct btf_type *datasec; 17346 struct btf_mod_pair *btf_mod; 17347 const struct btf_type *t; 17348 const char *sym_name; 17349 bool percpu = false; 17350 u32 type, id = insn->imm; 17351 struct btf *btf; 17352 s32 datasec_id; 17353 u64 addr; 17354 int i, btf_fd, err; 17355 17356 btf_fd = insn[1].imm; 17357 if (btf_fd) { 17358 btf = btf_get_by_fd(btf_fd); 17359 if (IS_ERR(btf)) { 17360 verbose(env, "invalid module BTF object FD specified.\n"); 17361 return -EINVAL; 17362 } 17363 } else { 17364 if (!btf_vmlinux) { 17365 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 17366 return -EINVAL; 17367 } 17368 btf = btf_vmlinux; 17369 btf_get(btf); 17370 } 17371 17372 t = btf_type_by_id(btf, id); 17373 if (!t) { 17374 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 17375 err = -ENOENT; 17376 goto err_put; 17377 } 17378 17379 if (!btf_type_is_var(t) && !btf_type_is_func(t)) { 17380 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id); 17381 err = -EINVAL; 17382 goto err_put; 17383 } 17384 17385 sym_name = btf_name_by_offset(btf, t->name_off); 17386 addr = kallsyms_lookup_name(sym_name); 17387 if (!addr) { 17388 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 17389 sym_name); 17390 err = -ENOENT; 17391 goto err_put; 17392 } 17393 insn[0].imm = (u32)addr; 17394 insn[1].imm = addr >> 32; 17395 17396 if (btf_type_is_func(t)) { 17397 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17398 aux->btf_var.mem_size = 0; 17399 goto check_btf; 17400 } 17401 17402 datasec_id = find_btf_percpu_datasec(btf); 17403 if (datasec_id > 0) { 17404 datasec = btf_type_by_id(btf, datasec_id); 17405 for_each_vsi(i, datasec, vsi) { 17406 if (vsi->type == id) { 17407 percpu = true; 17408 break; 17409 } 17410 } 17411 } 17412 17413 type = t->type; 17414 t = btf_type_skip_modifiers(btf, type, NULL); 17415 if (percpu) { 17416 aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU; 17417 aux->btf_var.btf = btf; 17418 aux->btf_var.btf_id = type; 17419 } else if (!btf_type_is_struct(t)) { 17420 const struct btf_type *ret; 17421 const char *tname; 17422 u32 tsize; 17423 17424 /* resolve the type size of ksym. */ 17425 ret = btf_resolve_size(btf, t, &tsize); 17426 if (IS_ERR(ret)) { 17427 tname = btf_name_by_offset(btf, t->name_off); 17428 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 17429 tname, PTR_ERR(ret)); 17430 err = -EINVAL; 17431 goto err_put; 17432 } 17433 aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY; 17434 aux->btf_var.mem_size = tsize; 17435 } else { 17436 aux->btf_var.reg_type = PTR_TO_BTF_ID; 17437 aux->btf_var.btf = btf; 17438 aux->btf_var.btf_id = type; 17439 } 17440 check_btf: 17441 /* check whether we recorded this BTF (and maybe module) already */ 17442 for (i = 0; i < env->used_btf_cnt; i++) { 17443 if (env->used_btfs[i].btf == btf) { 17444 btf_put(btf); 17445 return 0; 17446 } 17447 } 17448 17449 if (env->used_btf_cnt >= MAX_USED_BTFS) { 17450 err = -E2BIG; 17451 goto err_put; 17452 } 17453 17454 btf_mod = &env->used_btfs[env->used_btf_cnt]; 17455 btf_mod->btf = btf; 17456 btf_mod->module = NULL; 17457 17458 /* if we reference variables from kernel module, bump its refcount */ 17459 if (btf_is_module(btf)) { 17460 btf_mod->module = btf_try_get_module(btf); 17461 if (!btf_mod->module) { 17462 err = -ENXIO; 17463 goto err_put; 17464 } 17465 } 17466 17467 env->used_btf_cnt++; 17468 17469 return 0; 17470 err_put: 17471 btf_put(btf); 17472 return err; 17473 } 17474 17475 static bool is_tracing_prog_type(enum bpf_prog_type type) 17476 { 17477 switch (type) { 17478 case BPF_PROG_TYPE_KPROBE: 17479 case BPF_PROG_TYPE_TRACEPOINT: 17480 case BPF_PROG_TYPE_PERF_EVENT: 17481 case BPF_PROG_TYPE_RAW_TRACEPOINT: 17482 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 17483 return true; 17484 default: 17485 return false; 17486 } 17487 } 17488 17489 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 17490 struct bpf_map *map, 17491 struct bpf_prog *prog) 17492 17493 { 17494 enum bpf_prog_type prog_type = resolve_prog_type(prog); 17495 17496 if (btf_record_has_field(map->record, BPF_LIST_HEAD) || 17497 btf_record_has_field(map->record, BPF_RB_ROOT)) { 17498 if (is_tracing_prog_type(prog_type)) { 17499 verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n"); 17500 return -EINVAL; 17501 } 17502 } 17503 17504 if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) { 17505 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 17506 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 17507 return -EINVAL; 17508 } 17509 17510 if (is_tracing_prog_type(prog_type)) { 17511 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 17512 return -EINVAL; 17513 } 17514 } 17515 17516 if (btf_record_has_field(map->record, BPF_TIMER)) { 17517 if (is_tracing_prog_type(prog_type)) { 17518 verbose(env, "tracing progs cannot use bpf_timer yet\n"); 17519 return -EINVAL; 17520 } 17521 } 17522 17523 if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) && 17524 !bpf_offload_prog_map_match(prog, map)) { 17525 verbose(env, "offload device mismatch between prog and map\n"); 17526 return -EINVAL; 17527 } 17528 17529 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 17530 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 17531 return -EINVAL; 17532 } 17533 17534 if (prog->aux->sleepable) 17535 switch (map->map_type) { 17536 case BPF_MAP_TYPE_HASH: 17537 case BPF_MAP_TYPE_LRU_HASH: 17538 case BPF_MAP_TYPE_ARRAY: 17539 case BPF_MAP_TYPE_PERCPU_HASH: 17540 case BPF_MAP_TYPE_PERCPU_ARRAY: 17541 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 17542 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 17543 case BPF_MAP_TYPE_HASH_OF_MAPS: 17544 case BPF_MAP_TYPE_RINGBUF: 17545 case BPF_MAP_TYPE_USER_RINGBUF: 17546 case BPF_MAP_TYPE_INODE_STORAGE: 17547 case BPF_MAP_TYPE_SK_STORAGE: 17548 case BPF_MAP_TYPE_TASK_STORAGE: 17549 case BPF_MAP_TYPE_CGRP_STORAGE: 17550 break; 17551 default: 17552 verbose(env, 17553 "Sleepable programs can only use array, hash, ringbuf and local storage maps\n"); 17554 return -EINVAL; 17555 } 17556 17557 return 0; 17558 } 17559 17560 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 17561 { 17562 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 17563 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 17564 } 17565 17566 /* find and rewrite pseudo imm in ld_imm64 instructions: 17567 * 17568 * 1. if it accesses map FD, replace it with actual map pointer. 17569 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 17570 * 17571 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 17572 */ 17573 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 17574 { 17575 struct bpf_insn *insn = env->prog->insnsi; 17576 int insn_cnt = env->prog->len; 17577 int i, j, err; 17578 17579 err = bpf_prog_calc_tag(env->prog); 17580 if (err) 17581 return err; 17582 17583 for (i = 0; i < insn_cnt; i++, insn++) { 17584 if (BPF_CLASS(insn->code) == BPF_LDX && 17585 ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) || 17586 insn->imm != 0)) { 17587 verbose(env, "BPF_LDX uses reserved fields\n"); 17588 return -EINVAL; 17589 } 17590 17591 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 17592 struct bpf_insn_aux_data *aux; 17593 struct bpf_map *map; 17594 struct fd f; 17595 u64 addr; 17596 u32 fd; 17597 17598 if (i == insn_cnt - 1 || insn[1].code != 0 || 17599 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 17600 insn[1].off != 0) { 17601 verbose(env, "invalid bpf_ld_imm64 insn\n"); 17602 return -EINVAL; 17603 } 17604 17605 if (insn[0].src_reg == 0) 17606 /* valid generic load 64-bit imm */ 17607 goto next_insn; 17608 17609 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 17610 aux = &env->insn_aux_data[i]; 17611 err = check_pseudo_btf_id(env, insn, aux); 17612 if (err) 17613 return err; 17614 goto next_insn; 17615 } 17616 17617 if (insn[0].src_reg == BPF_PSEUDO_FUNC) { 17618 aux = &env->insn_aux_data[i]; 17619 aux->ptr_type = PTR_TO_FUNC; 17620 goto next_insn; 17621 } 17622 17623 /* In final convert_pseudo_ld_imm64() step, this is 17624 * converted into regular 64-bit imm load insn. 17625 */ 17626 switch (insn[0].src_reg) { 17627 case BPF_PSEUDO_MAP_VALUE: 17628 case BPF_PSEUDO_MAP_IDX_VALUE: 17629 break; 17630 case BPF_PSEUDO_MAP_FD: 17631 case BPF_PSEUDO_MAP_IDX: 17632 if (insn[1].imm == 0) 17633 break; 17634 fallthrough; 17635 default: 17636 verbose(env, "unrecognized bpf_ld_imm64 insn\n"); 17637 return -EINVAL; 17638 } 17639 17640 switch (insn[0].src_reg) { 17641 case BPF_PSEUDO_MAP_IDX_VALUE: 17642 case BPF_PSEUDO_MAP_IDX: 17643 if (bpfptr_is_null(env->fd_array)) { 17644 verbose(env, "fd_idx without fd_array is invalid\n"); 17645 return -EPROTO; 17646 } 17647 if (copy_from_bpfptr_offset(&fd, env->fd_array, 17648 insn[0].imm * sizeof(fd), 17649 sizeof(fd))) 17650 return -EFAULT; 17651 break; 17652 default: 17653 fd = insn[0].imm; 17654 break; 17655 } 17656 17657 f = fdget(fd); 17658 map = __bpf_map_get(f); 17659 if (IS_ERR(map)) { 17660 verbose(env, "fd %d is not pointing to valid bpf_map\n", fd); 17661 return PTR_ERR(map); 17662 } 17663 17664 err = check_map_prog_compatibility(env, map, env->prog); 17665 if (err) { 17666 fdput(f); 17667 return err; 17668 } 17669 17670 aux = &env->insn_aux_data[i]; 17671 if (insn[0].src_reg == BPF_PSEUDO_MAP_FD || 17672 insn[0].src_reg == BPF_PSEUDO_MAP_IDX) { 17673 addr = (unsigned long)map; 17674 } else { 17675 u32 off = insn[1].imm; 17676 17677 if (off >= BPF_MAX_VAR_OFF) { 17678 verbose(env, "direct value offset of %u is not allowed\n", off); 17679 fdput(f); 17680 return -EINVAL; 17681 } 17682 17683 if (!map->ops->map_direct_value_addr) { 17684 verbose(env, "no direct value access support for this map type\n"); 17685 fdput(f); 17686 return -EINVAL; 17687 } 17688 17689 err = map->ops->map_direct_value_addr(map, &addr, off); 17690 if (err) { 17691 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 17692 map->value_size, off); 17693 fdput(f); 17694 return err; 17695 } 17696 17697 aux->map_off = off; 17698 addr += off; 17699 } 17700 17701 insn[0].imm = (u32)addr; 17702 insn[1].imm = addr >> 32; 17703 17704 /* check whether we recorded this map already */ 17705 for (j = 0; j < env->used_map_cnt; j++) { 17706 if (env->used_maps[j] == map) { 17707 aux->map_index = j; 17708 fdput(f); 17709 goto next_insn; 17710 } 17711 } 17712 17713 if (env->used_map_cnt >= MAX_USED_MAPS) { 17714 fdput(f); 17715 return -E2BIG; 17716 } 17717 17718 /* hold the map. If the program is rejected by verifier, 17719 * the map will be released by release_maps() or it 17720 * will be used by the valid program until it's unloaded 17721 * and all maps are released in free_used_maps() 17722 */ 17723 bpf_map_inc(map); 17724 17725 aux->map_index = env->used_map_cnt; 17726 env->used_maps[env->used_map_cnt++] = map; 17727 17728 if (bpf_map_is_cgroup_storage(map) && 17729 bpf_cgroup_storage_assign(env->prog->aux, map)) { 17730 verbose(env, "only one cgroup storage of each type is allowed\n"); 17731 fdput(f); 17732 return -EBUSY; 17733 } 17734 17735 fdput(f); 17736 next_insn: 17737 insn++; 17738 i++; 17739 continue; 17740 } 17741 17742 /* Basic sanity check before we invest more work here. */ 17743 if (!bpf_opcode_in_insntable(insn->code)) { 17744 verbose(env, "unknown opcode %02x\n", insn->code); 17745 return -EINVAL; 17746 } 17747 } 17748 17749 /* now all pseudo BPF_LD_IMM64 instructions load valid 17750 * 'struct bpf_map *' into a register instead of user map_fd. 17751 * These pointers will be used later by verifier to validate map access. 17752 */ 17753 return 0; 17754 } 17755 17756 /* drop refcnt of maps used by the rejected program */ 17757 static void release_maps(struct bpf_verifier_env *env) 17758 { 17759 __bpf_free_used_maps(env->prog->aux, env->used_maps, 17760 env->used_map_cnt); 17761 } 17762 17763 /* drop refcnt of maps used by the rejected program */ 17764 static void release_btfs(struct bpf_verifier_env *env) 17765 { 17766 __bpf_free_used_btfs(env->prog->aux, env->used_btfs, 17767 env->used_btf_cnt); 17768 } 17769 17770 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 17771 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 17772 { 17773 struct bpf_insn *insn = env->prog->insnsi; 17774 int insn_cnt = env->prog->len; 17775 int i; 17776 17777 for (i = 0; i < insn_cnt; i++, insn++) { 17778 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) 17779 continue; 17780 if (insn->src_reg == BPF_PSEUDO_FUNC) 17781 continue; 17782 insn->src_reg = 0; 17783 } 17784 } 17785 17786 /* single env->prog->insni[off] instruction was replaced with the range 17787 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 17788 * [0, off) and [off, end) to new locations, so the patched range stays zero 17789 */ 17790 static void adjust_insn_aux_data(struct bpf_verifier_env *env, 17791 struct bpf_insn_aux_data *new_data, 17792 struct bpf_prog *new_prog, u32 off, u32 cnt) 17793 { 17794 struct bpf_insn_aux_data *old_data = env->insn_aux_data; 17795 struct bpf_insn *insn = new_prog->insnsi; 17796 u32 old_seen = old_data[off].seen; 17797 u32 prog_len; 17798 int i; 17799 17800 /* aux info at OFF always needs adjustment, no matter fast path 17801 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 17802 * original insn at old prog. 17803 */ 17804 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 17805 17806 if (cnt == 1) 17807 return; 17808 prog_len = new_prog->len; 17809 17810 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 17811 memcpy(new_data + off + cnt - 1, old_data + off, 17812 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 17813 for (i = off; i < off + cnt - 1; i++) { 17814 /* Expand insni[off]'s seen count to the patched range. */ 17815 new_data[i].seen = old_seen; 17816 new_data[i].zext_dst = insn_has_def32(env, insn + i); 17817 } 17818 env->insn_aux_data = new_data; 17819 vfree(old_data); 17820 } 17821 17822 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 17823 { 17824 int i; 17825 17826 if (len == 1) 17827 return; 17828 /* NOTE: fake 'exit' subprog should be updated as well. */ 17829 for (i = 0; i <= env->subprog_cnt; i++) { 17830 if (env->subprog_info[i].start <= off) 17831 continue; 17832 env->subprog_info[i].start += len - 1; 17833 } 17834 } 17835 17836 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len) 17837 { 17838 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 17839 int i, sz = prog->aux->size_poke_tab; 17840 struct bpf_jit_poke_descriptor *desc; 17841 17842 for (i = 0; i < sz; i++) { 17843 desc = &tab[i]; 17844 if (desc->insn_idx <= off) 17845 continue; 17846 desc->insn_idx += len - 1; 17847 } 17848 } 17849 17850 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 17851 const struct bpf_insn *patch, u32 len) 17852 { 17853 struct bpf_prog *new_prog; 17854 struct bpf_insn_aux_data *new_data = NULL; 17855 17856 if (len > 1) { 17857 new_data = vzalloc(array_size(env->prog->len + len - 1, 17858 sizeof(struct bpf_insn_aux_data))); 17859 if (!new_data) 17860 return NULL; 17861 } 17862 17863 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 17864 if (IS_ERR(new_prog)) { 17865 if (PTR_ERR(new_prog) == -ERANGE) 17866 verbose(env, 17867 "insn %d cannot be patched due to 16-bit range\n", 17868 env->insn_aux_data[off].orig_idx); 17869 vfree(new_data); 17870 return NULL; 17871 } 17872 adjust_insn_aux_data(env, new_data, new_prog, off, len); 17873 adjust_subprog_starts(env, off, len); 17874 adjust_poke_descs(new_prog, off, len); 17875 return new_prog; 17876 } 17877 17878 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 17879 u32 off, u32 cnt) 17880 { 17881 int i, j; 17882 17883 /* find first prog starting at or after off (first to remove) */ 17884 for (i = 0; i < env->subprog_cnt; i++) 17885 if (env->subprog_info[i].start >= off) 17886 break; 17887 /* find first prog starting at or after off + cnt (first to stay) */ 17888 for (j = i; j < env->subprog_cnt; j++) 17889 if (env->subprog_info[j].start >= off + cnt) 17890 break; 17891 /* if j doesn't start exactly at off + cnt, we are just removing 17892 * the front of previous prog 17893 */ 17894 if (env->subprog_info[j].start != off + cnt) 17895 j--; 17896 17897 if (j > i) { 17898 struct bpf_prog_aux *aux = env->prog->aux; 17899 int move; 17900 17901 /* move fake 'exit' subprog as well */ 17902 move = env->subprog_cnt + 1 - j; 17903 17904 memmove(env->subprog_info + i, 17905 env->subprog_info + j, 17906 sizeof(*env->subprog_info) * move); 17907 env->subprog_cnt -= j - i; 17908 17909 /* remove func_info */ 17910 if (aux->func_info) { 17911 move = aux->func_info_cnt - j; 17912 17913 memmove(aux->func_info + i, 17914 aux->func_info + j, 17915 sizeof(*aux->func_info) * move); 17916 aux->func_info_cnt -= j - i; 17917 /* func_info->insn_off is set after all code rewrites, 17918 * in adjust_btf_func() - no need to adjust 17919 */ 17920 } 17921 } else { 17922 /* convert i from "first prog to remove" to "first to adjust" */ 17923 if (env->subprog_info[i].start == off) 17924 i++; 17925 } 17926 17927 /* update fake 'exit' subprog as well */ 17928 for (; i <= env->subprog_cnt; i++) 17929 env->subprog_info[i].start -= cnt; 17930 17931 return 0; 17932 } 17933 17934 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 17935 u32 cnt) 17936 { 17937 struct bpf_prog *prog = env->prog; 17938 u32 i, l_off, l_cnt, nr_linfo; 17939 struct bpf_line_info *linfo; 17940 17941 nr_linfo = prog->aux->nr_linfo; 17942 if (!nr_linfo) 17943 return 0; 17944 17945 linfo = prog->aux->linfo; 17946 17947 /* find first line info to remove, count lines to be removed */ 17948 for (i = 0; i < nr_linfo; i++) 17949 if (linfo[i].insn_off >= off) 17950 break; 17951 17952 l_off = i; 17953 l_cnt = 0; 17954 for (; i < nr_linfo; i++) 17955 if (linfo[i].insn_off < off + cnt) 17956 l_cnt++; 17957 else 17958 break; 17959 17960 /* First live insn doesn't match first live linfo, it needs to "inherit" 17961 * last removed linfo. prog is already modified, so prog->len == off 17962 * means no live instructions after (tail of the program was removed). 17963 */ 17964 if (prog->len != off && l_cnt && 17965 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 17966 l_cnt--; 17967 linfo[--i].insn_off = off + cnt; 17968 } 17969 17970 /* remove the line info which refer to the removed instructions */ 17971 if (l_cnt) { 17972 memmove(linfo + l_off, linfo + i, 17973 sizeof(*linfo) * (nr_linfo - i)); 17974 17975 prog->aux->nr_linfo -= l_cnt; 17976 nr_linfo = prog->aux->nr_linfo; 17977 } 17978 17979 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 17980 for (i = l_off; i < nr_linfo; i++) 17981 linfo[i].insn_off -= cnt; 17982 17983 /* fix up all subprogs (incl. 'exit') which start >= off */ 17984 for (i = 0; i <= env->subprog_cnt; i++) 17985 if (env->subprog_info[i].linfo_idx > l_off) { 17986 /* program may have started in the removed region but 17987 * may not be fully removed 17988 */ 17989 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 17990 env->subprog_info[i].linfo_idx -= l_cnt; 17991 else 17992 env->subprog_info[i].linfo_idx = l_off; 17993 } 17994 17995 return 0; 17996 } 17997 17998 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 17999 { 18000 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18001 unsigned int orig_prog_len = env->prog->len; 18002 int err; 18003 18004 if (bpf_prog_is_offloaded(env->prog->aux)) 18005 bpf_prog_offload_remove_insns(env, off, cnt); 18006 18007 err = bpf_remove_insns(env->prog, off, cnt); 18008 if (err) 18009 return err; 18010 18011 err = adjust_subprog_starts_after_remove(env, off, cnt); 18012 if (err) 18013 return err; 18014 18015 err = bpf_adj_linfo_after_remove(env, off, cnt); 18016 if (err) 18017 return err; 18018 18019 memmove(aux_data + off, aux_data + off + cnt, 18020 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 18021 18022 return 0; 18023 } 18024 18025 /* The verifier does more data flow analysis than llvm and will not 18026 * explore branches that are dead at run time. Malicious programs can 18027 * have dead code too. Therefore replace all dead at-run-time code 18028 * with 'ja -1'. 18029 * 18030 * Just nops are not optimal, e.g. if they would sit at the end of the 18031 * program and through another bug we would manage to jump there, then 18032 * we'd execute beyond program memory otherwise. Returning exception 18033 * code also wouldn't work since we can have subprogs where the dead 18034 * code could be located. 18035 */ 18036 static void sanitize_dead_code(struct bpf_verifier_env *env) 18037 { 18038 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18039 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 18040 struct bpf_insn *insn = env->prog->insnsi; 18041 const int insn_cnt = env->prog->len; 18042 int i; 18043 18044 for (i = 0; i < insn_cnt; i++) { 18045 if (aux_data[i].seen) 18046 continue; 18047 memcpy(insn + i, &trap, sizeof(trap)); 18048 aux_data[i].zext_dst = false; 18049 } 18050 } 18051 18052 static bool insn_is_cond_jump(u8 code) 18053 { 18054 u8 op; 18055 18056 op = BPF_OP(code); 18057 if (BPF_CLASS(code) == BPF_JMP32) 18058 return op != BPF_JA; 18059 18060 if (BPF_CLASS(code) != BPF_JMP) 18061 return false; 18062 18063 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 18064 } 18065 18066 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 18067 { 18068 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18069 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18070 struct bpf_insn *insn = env->prog->insnsi; 18071 const int insn_cnt = env->prog->len; 18072 int i; 18073 18074 for (i = 0; i < insn_cnt; i++, insn++) { 18075 if (!insn_is_cond_jump(insn->code)) 18076 continue; 18077 18078 if (!aux_data[i + 1].seen) 18079 ja.off = insn->off; 18080 else if (!aux_data[i + 1 + insn->off].seen) 18081 ja.off = 0; 18082 else 18083 continue; 18084 18085 if (bpf_prog_is_offloaded(env->prog->aux)) 18086 bpf_prog_offload_replace_insn(env, i, &ja); 18087 18088 memcpy(insn, &ja, sizeof(ja)); 18089 } 18090 } 18091 18092 static int opt_remove_dead_code(struct bpf_verifier_env *env) 18093 { 18094 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 18095 int insn_cnt = env->prog->len; 18096 int i, err; 18097 18098 for (i = 0; i < insn_cnt; i++) { 18099 int j; 18100 18101 j = 0; 18102 while (i + j < insn_cnt && !aux_data[i + j].seen) 18103 j++; 18104 if (!j) 18105 continue; 18106 18107 err = verifier_remove_insns(env, i, j); 18108 if (err) 18109 return err; 18110 insn_cnt = env->prog->len; 18111 } 18112 18113 return 0; 18114 } 18115 18116 static int opt_remove_nops(struct bpf_verifier_env *env) 18117 { 18118 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 18119 struct bpf_insn *insn = env->prog->insnsi; 18120 int insn_cnt = env->prog->len; 18121 int i, err; 18122 18123 for (i = 0; i < insn_cnt; i++) { 18124 if (memcmp(&insn[i], &ja, sizeof(ja))) 18125 continue; 18126 18127 err = verifier_remove_insns(env, i, 1); 18128 if (err) 18129 return err; 18130 insn_cnt--; 18131 i--; 18132 } 18133 18134 return 0; 18135 } 18136 18137 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 18138 const union bpf_attr *attr) 18139 { 18140 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 18141 struct bpf_insn_aux_data *aux = env->insn_aux_data; 18142 int i, patch_len, delta = 0, len = env->prog->len; 18143 struct bpf_insn *insns = env->prog->insnsi; 18144 struct bpf_prog *new_prog; 18145 bool rnd_hi32; 18146 18147 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 18148 zext_patch[1] = BPF_ZEXT_REG(0); 18149 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 18150 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 18151 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 18152 for (i = 0; i < len; i++) { 18153 int adj_idx = i + delta; 18154 struct bpf_insn insn; 18155 int load_reg; 18156 18157 insn = insns[adj_idx]; 18158 load_reg = insn_def_regno(&insn); 18159 if (!aux[adj_idx].zext_dst) { 18160 u8 code, class; 18161 u32 imm_rnd; 18162 18163 if (!rnd_hi32) 18164 continue; 18165 18166 code = insn.code; 18167 class = BPF_CLASS(code); 18168 if (load_reg == -1) 18169 continue; 18170 18171 /* NOTE: arg "reg" (the fourth one) is only used for 18172 * BPF_STX + SRC_OP, so it is safe to pass NULL 18173 * here. 18174 */ 18175 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) { 18176 if (class == BPF_LD && 18177 BPF_MODE(code) == BPF_IMM) 18178 i++; 18179 continue; 18180 } 18181 18182 /* ctx load could be transformed into wider load. */ 18183 if (class == BPF_LDX && 18184 aux[adj_idx].ptr_type == PTR_TO_CTX) 18185 continue; 18186 18187 imm_rnd = get_random_u32(); 18188 rnd_hi32_patch[0] = insn; 18189 rnd_hi32_patch[1].imm = imm_rnd; 18190 rnd_hi32_patch[3].dst_reg = load_reg; 18191 patch = rnd_hi32_patch; 18192 patch_len = 4; 18193 goto apply_patch_buffer; 18194 } 18195 18196 /* Add in an zero-extend instruction if a) the JIT has requested 18197 * it or b) it's a CMPXCHG. 18198 * 18199 * The latter is because: BPF_CMPXCHG always loads a value into 18200 * R0, therefore always zero-extends. However some archs' 18201 * equivalent instruction only does this load when the 18202 * comparison is successful. This detail of CMPXCHG is 18203 * orthogonal to the general zero-extension behaviour of the 18204 * CPU, so it's treated independently of bpf_jit_needs_zext. 18205 */ 18206 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn)) 18207 continue; 18208 18209 /* Zero-extension is done by the caller. */ 18210 if (bpf_pseudo_kfunc_call(&insn)) 18211 continue; 18212 18213 if (WARN_ON(load_reg == -1)) { 18214 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n"); 18215 return -EFAULT; 18216 } 18217 18218 zext_patch[0] = insn; 18219 zext_patch[1].dst_reg = load_reg; 18220 zext_patch[1].src_reg = load_reg; 18221 patch = zext_patch; 18222 patch_len = 2; 18223 apply_patch_buffer: 18224 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 18225 if (!new_prog) 18226 return -ENOMEM; 18227 env->prog = new_prog; 18228 insns = new_prog->insnsi; 18229 aux = env->insn_aux_data; 18230 delta += patch_len - 1; 18231 } 18232 18233 return 0; 18234 } 18235 18236 /* convert load instructions that access fields of a context type into a 18237 * sequence of instructions that access fields of the underlying structure: 18238 * struct __sk_buff -> struct sk_buff 18239 * struct bpf_sock_ops -> struct sock 18240 */ 18241 static int convert_ctx_accesses(struct bpf_verifier_env *env) 18242 { 18243 const struct bpf_verifier_ops *ops = env->ops; 18244 int i, cnt, size, ctx_field_size, delta = 0; 18245 const int insn_cnt = env->prog->len; 18246 struct bpf_insn insn_buf[16], *insn; 18247 u32 target_size, size_default, off; 18248 struct bpf_prog *new_prog; 18249 enum bpf_access_type type; 18250 bool is_narrower_load; 18251 18252 if (ops->gen_prologue || env->seen_direct_write) { 18253 if (!ops->gen_prologue) { 18254 verbose(env, "bpf verifier is misconfigured\n"); 18255 return -EINVAL; 18256 } 18257 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 18258 env->prog); 18259 if (cnt >= ARRAY_SIZE(insn_buf)) { 18260 verbose(env, "bpf verifier is misconfigured\n"); 18261 return -EINVAL; 18262 } else if (cnt) { 18263 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 18264 if (!new_prog) 18265 return -ENOMEM; 18266 18267 env->prog = new_prog; 18268 delta += cnt - 1; 18269 } 18270 } 18271 18272 if (bpf_prog_is_offloaded(env->prog->aux)) 18273 return 0; 18274 18275 insn = env->prog->insnsi + delta; 18276 18277 for (i = 0; i < insn_cnt; i++, insn++) { 18278 bpf_convert_ctx_access_t convert_ctx_access; 18279 u8 mode; 18280 18281 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 18282 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 18283 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 18284 insn->code == (BPF_LDX | BPF_MEM | BPF_DW) || 18285 insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) || 18286 insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) || 18287 insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) { 18288 type = BPF_READ; 18289 } else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 18290 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 18291 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 18292 insn->code == (BPF_STX | BPF_MEM | BPF_DW) || 18293 insn->code == (BPF_ST | BPF_MEM | BPF_B) || 18294 insn->code == (BPF_ST | BPF_MEM | BPF_H) || 18295 insn->code == (BPF_ST | BPF_MEM | BPF_W) || 18296 insn->code == (BPF_ST | BPF_MEM | BPF_DW)) { 18297 type = BPF_WRITE; 18298 } else { 18299 continue; 18300 } 18301 18302 if (type == BPF_WRITE && 18303 env->insn_aux_data[i + delta].sanitize_stack_spill) { 18304 struct bpf_insn patch[] = { 18305 *insn, 18306 BPF_ST_NOSPEC(), 18307 }; 18308 18309 cnt = ARRAY_SIZE(patch); 18310 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 18311 if (!new_prog) 18312 return -ENOMEM; 18313 18314 delta += cnt - 1; 18315 env->prog = new_prog; 18316 insn = new_prog->insnsi + i + delta; 18317 continue; 18318 } 18319 18320 switch ((int)env->insn_aux_data[i + delta].ptr_type) { 18321 case PTR_TO_CTX: 18322 if (!ops->convert_ctx_access) 18323 continue; 18324 convert_ctx_access = ops->convert_ctx_access; 18325 break; 18326 case PTR_TO_SOCKET: 18327 case PTR_TO_SOCK_COMMON: 18328 convert_ctx_access = bpf_sock_convert_ctx_access; 18329 break; 18330 case PTR_TO_TCP_SOCK: 18331 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 18332 break; 18333 case PTR_TO_XDP_SOCK: 18334 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 18335 break; 18336 case PTR_TO_BTF_ID: 18337 case PTR_TO_BTF_ID | PTR_UNTRUSTED: 18338 /* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike 18339 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot 18340 * be said once it is marked PTR_UNTRUSTED, hence we must handle 18341 * any faults for loads into such types. BPF_WRITE is disallowed 18342 * for this case. 18343 */ 18344 case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED: 18345 if (type == BPF_READ) { 18346 if (BPF_MODE(insn->code) == BPF_MEM) 18347 insn->code = BPF_LDX | BPF_PROBE_MEM | 18348 BPF_SIZE((insn)->code); 18349 else 18350 insn->code = BPF_LDX | BPF_PROBE_MEMSX | 18351 BPF_SIZE((insn)->code); 18352 env->prog->aux->num_exentries++; 18353 } 18354 continue; 18355 default: 18356 continue; 18357 } 18358 18359 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 18360 size = BPF_LDST_BYTES(insn); 18361 mode = BPF_MODE(insn->code); 18362 18363 /* If the read access is a narrower load of the field, 18364 * convert to a 4/8-byte load, to minimum program type specific 18365 * convert_ctx_access changes. If conversion is successful, 18366 * we will apply proper mask to the result. 18367 */ 18368 is_narrower_load = size < ctx_field_size; 18369 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 18370 off = insn->off; 18371 if (is_narrower_load) { 18372 u8 size_code; 18373 18374 if (type == BPF_WRITE) { 18375 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 18376 return -EINVAL; 18377 } 18378 18379 size_code = BPF_H; 18380 if (ctx_field_size == 4) 18381 size_code = BPF_W; 18382 else if (ctx_field_size == 8) 18383 size_code = BPF_DW; 18384 18385 insn->off = off & ~(size_default - 1); 18386 insn->code = BPF_LDX | BPF_MEM | size_code; 18387 } 18388 18389 target_size = 0; 18390 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 18391 &target_size); 18392 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 18393 (ctx_field_size && !target_size)) { 18394 verbose(env, "bpf verifier is misconfigured\n"); 18395 return -EINVAL; 18396 } 18397 18398 if (is_narrower_load && size < target_size) { 18399 u8 shift = bpf_ctx_narrow_access_offset( 18400 off, size, size_default) * 8; 18401 if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) { 18402 verbose(env, "bpf verifier narrow ctx load misconfigured\n"); 18403 return -EINVAL; 18404 } 18405 if (ctx_field_size <= 4) { 18406 if (shift) 18407 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 18408 insn->dst_reg, 18409 shift); 18410 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18411 (1 << size * 8) - 1); 18412 } else { 18413 if (shift) 18414 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 18415 insn->dst_reg, 18416 shift); 18417 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 18418 (1ULL << size * 8) - 1); 18419 } 18420 } 18421 if (mode == BPF_MEMSX) 18422 insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X, 18423 insn->dst_reg, insn->dst_reg, 18424 size * 8, 0); 18425 18426 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18427 if (!new_prog) 18428 return -ENOMEM; 18429 18430 delta += cnt - 1; 18431 18432 /* keep walking new program and skip insns we just inserted */ 18433 env->prog = new_prog; 18434 insn = new_prog->insnsi + i + delta; 18435 } 18436 18437 return 0; 18438 } 18439 18440 static int jit_subprogs(struct bpf_verifier_env *env) 18441 { 18442 struct bpf_prog *prog = env->prog, **func, *tmp; 18443 int i, j, subprog_start, subprog_end = 0, len, subprog; 18444 struct bpf_map *map_ptr; 18445 struct bpf_insn *insn; 18446 void *old_bpf_func; 18447 int err, num_exentries; 18448 18449 if (env->subprog_cnt <= 1) 18450 return 0; 18451 18452 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18453 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn)) 18454 continue; 18455 18456 /* Upon error here we cannot fall back to interpreter but 18457 * need a hard reject of the program. Thus -EFAULT is 18458 * propagated in any case. 18459 */ 18460 subprog = find_subprog(env, i + insn->imm + 1); 18461 if (subprog < 0) { 18462 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 18463 i + insn->imm + 1); 18464 return -EFAULT; 18465 } 18466 /* temporarily remember subprog id inside insn instead of 18467 * aux_data, since next loop will split up all insns into funcs 18468 */ 18469 insn->off = subprog; 18470 /* remember original imm in case JIT fails and fallback 18471 * to interpreter will be needed 18472 */ 18473 env->insn_aux_data[i].call_imm = insn->imm; 18474 /* point imm to __bpf_call_base+1 from JITs point of view */ 18475 insn->imm = 1; 18476 if (bpf_pseudo_func(insn)) 18477 /* jit (e.g. x86_64) may emit fewer instructions 18478 * if it learns a u32 imm is the same as a u64 imm. 18479 * Force a non zero here. 18480 */ 18481 insn[1].imm = 1; 18482 } 18483 18484 err = bpf_prog_alloc_jited_linfo(prog); 18485 if (err) 18486 goto out_undo_insn; 18487 18488 err = -ENOMEM; 18489 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 18490 if (!func) 18491 goto out_undo_insn; 18492 18493 for (i = 0; i < env->subprog_cnt; i++) { 18494 subprog_start = subprog_end; 18495 subprog_end = env->subprog_info[i + 1].start; 18496 18497 len = subprog_end - subprog_start; 18498 /* bpf_prog_run() doesn't call subprogs directly, 18499 * hence main prog stats include the runtime of subprogs. 18500 * subprogs don't have IDs and not reachable via prog_get_next_id 18501 * func[i]->stats will never be accessed and stays NULL 18502 */ 18503 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 18504 if (!func[i]) 18505 goto out_free; 18506 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 18507 len * sizeof(struct bpf_insn)); 18508 func[i]->type = prog->type; 18509 func[i]->len = len; 18510 if (bpf_prog_calc_tag(func[i])) 18511 goto out_free; 18512 func[i]->is_func = 1; 18513 func[i]->aux->func_idx = i; 18514 /* Below members will be freed only at prog->aux */ 18515 func[i]->aux->btf = prog->aux->btf; 18516 func[i]->aux->func_info = prog->aux->func_info; 18517 func[i]->aux->func_info_cnt = prog->aux->func_info_cnt; 18518 func[i]->aux->poke_tab = prog->aux->poke_tab; 18519 func[i]->aux->size_poke_tab = prog->aux->size_poke_tab; 18520 18521 for (j = 0; j < prog->aux->size_poke_tab; j++) { 18522 struct bpf_jit_poke_descriptor *poke; 18523 18524 poke = &prog->aux->poke_tab[j]; 18525 if (poke->insn_idx < subprog_end && 18526 poke->insn_idx >= subprog_start) 18527 poke->aux = func[i]->aux; 18528 } 18529 18530 func[i]->aux->name[0] = 'F'; 18531 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 18532 func[i]->jit_requested = 1; 18533 func[i]->blinding_requested = prog->blinding_requested; 18534 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab; 18535 func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab; 18536 func[i]->aux->linfo = prog->aux->linfo; 18537 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 18538 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 18539 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 18540 num_exentries = 0; 18541 insn = func[i]->insnsi; 18542 for (j = 0; j < func[i]->len; j++, insn++) { 18543 if (BPF_CLASS(insn->code) == BPF_LDX && 18544 (BPF_MODE(insn->code) == BPF_PROBE_MEM || 18545 BPF_MODE(insn->code) == BPF_PROBE_MEMSX)) 18546 num_exentries++; 18547 } 18548 func[i]->aux->num_exentries = num_exentries; 18549 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 18550 func[i] = bpf_int_jit_compile(func[i]); 18551 if (!func[i]->jited) { 18552 err = -ENOTSUPP; 18553 goto out_free; 18554 } 18555 cond_resched(); 18556 } 18557 18558 /* at this point all bpf functions were successfully JITed 18559 * now populate all bpf_calls with correct addresses and 18560 * run last pass of JIT 18561 */ 18562 for (i = 0; i < env->subprog_cnt; i++) { 18563 insn = func[i]->insnsi; 18564 for (j = 0; j < func[i]->len; j++, insn++) { 18565 if (bpf_pseudo_func(insn)) { 18566 subprog = insn->off; 18567 insn[0].imm = (u32)(long)func[subprog]->bpf_func; 18568 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32; 18569 continue; 18570 } 18571 if (!bpf_pseudo_call(insn)) 18572 continue; 18573 subprog = insn->off; 18574 insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func); 18575 } 18576 18577 /* we use the aux data to keep a list of the start addresses 18578 * of the JITed images for each function in the program 18579 * 18580 * for some architectures, such as powerpc64, the imm field 18581 * might not be large enough to hold the offset of the start 18582 * address of the callee's JITed image from __bpf_call_base 18583 * 18584 * in such cases, we can lookup the start address of a callee 18585 * by using its subprog id, available from the off field of 18586 * the call instruction, as an index for this list 18587 */ 18588 func[i]->aux->func = func; 18589 func[i]->aux->func_cnt = env->subprog_cnt; 18590 } 18591 for (i = 0; i < env->subprog_cnt; i++) { 18592 old_bpf_func = func[i]->bpf_func; 18593 tmp = bpf_int_jit_compile(func[i]); 18594 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 18595 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 18596 err = -ENOTSUPP; 18597 goto out_free; 18598 } 18599 cond_resched(); 18600 } 18601 18602 /* finally lock prog and jit images for all functions and 18603 * populate kallsysm. Begin at the first subprogram, since 18604 * bpf_prog_load will add the kallsyms for the main program. 18605 */ 18606 for (i = 1; i < env->subprog_cnt; i++) { 18607 bpf_prog_lock_ro(func[i]); 18608 bpf_prog_kallsyms_add(func[i]); 18609 } 18610 18611 /* Last step: make now unused interpreter insns from main 18612 * prog consistent for later dump requests, so they can 18613 * later look the same as if they were interpreted only. 18614 */ 18615 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18616 if (bpf_pseudo_func(insn)) { 18617 insn[0].imm = env->insn_aux_data[i].call_imm; 18618 insn[1].imm = insn->off; 18619 insn->off = 0; 18620 continue; 18621 } 18622 if (!bpf_pseudo_call(insn)) 18623 continue; 18624 insn->off = env->insn_aux_data[i].call_imm; 18625 subprog = find_subprog(env, i + insn->off + 1); 18626 insn->imm = subprog; 18627 } 18628 18629 prog->jited = 1; 18630 prog->bpf_func = func[0]->bpf_func; 18631 prog->jited_len = func[0]->jited_len; 18632 prog->aux->extable = func[0]->aux->extable; 18633 prog->aux->num_exentries = func[0]->aux->num_exentries; 18634 prog->aux->func = func; 18635 prog->aux->func_cnt = env->subprog_cnt; 18636 bpf_prog_jit_attempt_done(prog); 18637 return 0; 18638 out_free: 18639 /* We failed JIT'ing, so at this point we need to unregister poke 18640 * descriptors from subprogs, so that kernel is not attempting to 18641 * patch it anymore as we're freeing the subprog JIT memory. 18642 */ 18643 for (i = 0; i < prog->aux->size_poke_tab; i++) { 18644 map_ptr = prog->aux->poke_tab[i].tail_call.map; 18645 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 18646 } 18647 /* At this point we're guaranteed that poke descriptors are not 18648 * live anymore. We can just unlink its descriptor table as it's 18649 * released with the main prog. 18650 */ 18651 for (i = 0; i < env->subprog_cnt; i++) { 18652 if (!func[i]) 18653 continue; 18654 func[i]->aux->poke_tab = NULL; 18655 bpf_jit_free(func[i]); 18656 } 18657 kfree(func); 18658 out_undo_insn: 18659 /* cleanup main prog to be interpreted */ 18660 prog->jit_requested = 0; 18661 prog->blinding_requested = 0; 18662 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 18663 if (!bpf_pseudo_call(insn)) 18664 continue; 18665 insn->off = 0; 18666 insn->imm = env->insn_aux_data[i].call_imm; 18667 } 18668 bpf_prog_jit_attempt_done(prog); 18669 return err; 18670 } 18671 18672 static int fixup_call_args(struct bpf_verifier_env *env) 18673 { 18674 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18675 struct bpf_prog *prog = env->prog; 18676 struct bpf_insn *insn = prog->insnsi; 18677 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog); 18678 int i, depth; 18679 #endif 18680 int err = 0; 18681 18682 if (env->prog->jit_requested && 18683 !bpf_prog_is_offloaded(env->prog->aux)) { 18684 err = jit_subprogs(env); 18685 if (err == 0) 18686 return 0; 18687 if (err == -EFAULT) 18688 return err; 18689 } 18690 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 18691 if (has_kfunc_call) { 18692 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n"); 18693 return -EINVAL; 18694 } 18695 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 18696 /* When JIT fails the progs with bpf2bpf calls and tail_calls 18697 * have to be rejected, since interpreter doesn't support them yet. 18698 */ 18699 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 18700 return -EINVAL; 18701 } 18702 for (i = 0; i < prog->len; i++, insn++) { 18703 if (bpf_pseudo_func(insn)) { 18704 /* When JIT fails the progs with callback calls 18705 * have to be rejected, since interpreter doesn't support them yet. 18706 */ 18707 verbose(env, "callbacks are not allowed in non-JITed programs\n"); 18708 return -EINVAL; 18709 } 18710 18711 if (!bpf_pseudo_call(insn)) 18712 continue; 18713 depth = get_callee_stack_depth(env, insn, i); 18714 if (depth < 0) 18715 return depth; 18716 bpf_patch_call_args(insn, depth); 18717 } 18718 err = 0; 18719 #endif 18720 return err; 18721 } 18722 18723 /* replace a generic kfunc with a specialized version if necessary */ 18724 static void specialize_kfunc(struct bpf_verifier_env *env, 18725 u32 func_id, u16 offset, unsigned long *addr) 18726 { 18727 struct bpf_prog *prog = env->prog; 18728 bool seen_direct_write; 18729 void *xdp_kfunc; 18730 bool is_rdonly; 18731 18732 if (bpf_dev_bound_kfunc_id(func_id)) { 18733 xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id); 18734 if (xdp_kfunc) { 18735 *addr = (unsigned long)xdp_kfunc; 18736 return; 18737 } 18738 /* fallback to default kfunc when not supported by netdev */ 18739 } 18740 18741 if (offset) 18742 return; 18743 18744 if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) { 18745 seen_direct_write = env->seen_direct_write; 18746 is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE); 18747 18748 if (is_rdonly) 18749 *addr = (unsigned long)bpf_dynptr_from_skb_rdonly; 18750 18751 /* restore env->seen_direct_write to its original value, since 18752 * may_access_direct_pkt_data mutates it 18753 */ 18754 env->seen_direct_write = seen_direct_write; 18755 } 18756 } 18757 18758 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux, 18759 u16 struct_meta_reg, 18760 u16 node_offset_reg, 18761 struct bpf_insn *insn, 18762 struct bpf_insn *insn_buf, 18763 int *cnt) 18764 { 18765 struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta; 18766 struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) }; 18767 18768 insn_buf[0] = addr[0]; 18769 insn_buf[1] = addr[1]; 18770 insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off); 18771 insn_buf[3] = *insn; 18772 *cnt = 4; 18773 } 18774 18775 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 18776 struct bpf_insn *insn_buf, int insn_idx, int *cnt) 18777 { 18778 const struct bpf_kfunc_desc *desc; 18779 18780 if (!insn->imm) { 18781 verbose(env, "invalid kernel function call not eliminated in verifier pass\n"); 18782 return -EINVAL; 18783 } 18784 18785 *cnt = 0; 18786 18787 /* insn->imm has the btf func_id. Replace it with an offset relative to 18788 * __bpf_call_base, unless the JIT needs to call functions that are 18789 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()). 18790 */ 18791 desc = find_kfunc_desc(env->prog, insn->imm, insn->off); 18792 if (!desc) { 18793 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n", 18794 insn->imm); 18795 return -EFAULT; 18796 } 18797 18798 if (!bpf_jit_supports_far_kfunc_call()) 18799 insn->imm = BPF_CALL_IMM(desc->addr); 18800 if (insn->off) 18801 return 0; 18802 if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) { 18803 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18804 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18805 u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size; 18806 18807 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size); 18808 insn_buf[1] = addr[0]; 18809 insn_buf[2] = addr[1]; 18810 insn_buf[3] = *insn; 18811 *cnt = 4; 18812 } else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] || 18813 desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) { 18814 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18815 struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) }; 18816 18817 if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] && 18818 !kptr_struct_meta) { 18819 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18820 insn_idx); 18821 return -EFAULT; 18822 } 18823 18824 insn_buf[0] = addr[0]; 18825 insn_buf[1] = addr[1]; 18826 insn_buf[2] = *insn; 18827 *cnt = 3; 18828 } else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] || 18829 desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] || 18830 desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18831 struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta; 18832 int struct_meta_reg = BPF_REG_3; 18833 int node_offset_reg = BPF_REG_4; 18834 18835 /* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */ 18836 if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) { 18837 struct_meta_reg = BPF_REG_4; 18838 node_offset_reg = BPF_REG_5; 18839 } 18840 18841 if (!kptr_struct_meta) { 18842 verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n", 18843 insn_idx); 18844 return -EFAULT; 18845 } 18846 18847 __fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg, 18848 node_offset_reg, insn, insn_buf, cnt); 18849 } else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] || 18850 desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) { 18851 insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1); 18852 *cnt = 1; 18853 } 18854 return 0; 18855 } 18856 18857 /* Do various post-verification rewrites in a single program pass. 18858 * These rewrites simplify JIT and interpreter implementations. 18859 */ 18860 static int do_misc_fixups(struct bpf_verifier_env *env) 18861 { 18862 struct bpf_prog *prog = env->prog; 18863 enum bpf_attach_type eatype = prog->expected_attach_type; 18864 enum bpf_prog_type prog_type = resolve_prog_type(prog); 18865 struct bpf_insn *insn = prog->insnsi; 18866 const struct bpf_func_proto *fn; 18867 const int insn_cnt = prog->len; 18868 const struct bpf_map_ops *ops; 18869 struct bpf_insn_aux_data *aux; 18870 struct bpf_insn insn_buf[16]; 18871 struct bpf_prog *new_prog; 18872 struct bpf_map *map_ptr; 18873 int i, ret, cnt, delta = 0; 18874 18875 for (i = 0; i < insn_cnt; i++, insn++) { 18876 /* Make divide-by-zero exceptions impossible. */ 18877 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 18878 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 18879 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 18880 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 18881 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 18882 bool isdiv = BPF_OP(insn->code) == BPF_DIV; 18883 struct bpf_insn *patchlet; 18884 struct bpf_insn chk_and_div[] = { 18885 /* [R,W]x div 0 -> 0 */ 18886 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18887 BPF_JNE | BPF_K, insn->src_reg, 18888 0, 2, 0), 18889 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 18890 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18891 *insn, 18892 }; 18893 struct bpf_insn chk_and_mod[] = { 18894 /* [R,W]x mod 0 -> [R,W]x */ 18895 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) | 18896 BPF_JEQ | BPF_K, insn->src_reg, 18897 0, 1 + (is64 ? 0 : 1), 0), 18898 *insn, 18899 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 18900 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), 18901 }; 18902 18903 patchlet = isdiv ? chk_and_div : chk_and_mod; 18904 cnt = isdiv ? ARRAY_SIZE(chk_and_div) : 18905 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0); 18906 18907 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 18908 if (!new_prog) 18909 return -ENOMEM; 18910 18911 delta += cnt - 1; 18912 env->prog = prog = new_prog; 18913 insn = new_prog->insnsi + i + delta; 18914 continue; 18915 } 18916 18917 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */ 18918 if (BPF_CLASS(insn->code) == BPF_LD && 18919 (BPF_MODE(insn->code) == BPF_ABS || 18920 BPF_MODE(insn->code) == BPF_IND)) { 18921 cnt = env->ops->gen_ld_abs(insn, insn_buf); 18922 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 18923 verbose(env, "bpf verifier is misconfigured\n"); 18924 return -EINVAL; 18925 } 18926 18927 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18928 if (!new_prog) 18929 return -ENOMEM; 18930 18931 delta += cnt - 1; 18932 env->prog = prog = new_prog; 18933 insn = new_prog->insnsi + i + delta; 18934 continue; 18935 } 18936 18937 /* Rewrite pointer arithmetic to mitigate speculation attacks. */ 18938 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 18939 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 18940 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 18941 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 18942 struct bpf_insn *patch = &insn_buf[0]; 18943 bool issrc, isneg, isimm; 18944 u32 off_reg; 18945 18946 aux = &env->insn_aux_data[i + delta]; 18947 if (!aux->alu_state || 18948 aux->alu_state == BPF_ALU_NON_POINTER) 18949 continue; 18950 18951 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 18952 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 18953 BPF_ALU_SANITIZE_SRC; 18954 isimm = aux->alu_state & BPF_ALU_IMMEDIATE; 18955 18956 off_reg = issrc ? insn->src_reg : insn->dst_reg; 18957 if (isimm) { 18958 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18959 } else { 18960 if (isneg) 18961 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18962 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); 18963 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 18964 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 18965 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 18966 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 18967 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); 18968 } 18969 if (!issrc) 18970 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); 18971 insn->src_reg = BPF_REG_AX; 18972 if (isneg) 18973 insn->code = insn->code == code_add ? 18974 code_sub : code_add; 18975 *patch++ = *insn; 18976 if (issrc && isneg && !isimm) 18977 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 18978 cnt = patch - insn_buf; 18979 18980 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 18981 if (!new_prog) 18982 return -ENOMEM; 18983 18984 delta += cnt - 1; 18985 env->prog = prog = new_prog; 18986 insn = new_prog->insnsi + i + delta; 18987 continue; 18988 } 18989 18990 if (insn->code != (BPF_JMP | BPF_CALL)) 18991 continue; 18992 if (insn->src_reg == BPF_PSEUDO_CALL) 18993 continue; 18994 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) { 18995 ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt); 18996 if (ret) 18997 return ret; 18998 if (cnt == 0) 18999 continue; 19000 19001 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19002 if (!new_prog) 19003 return -ENOMEM; 19004 19005 delta += cnt - 1; 19006 env->prog = prog = new_prog; 19007 insn = new_prog->insnsi + i + delta; 19008 continue; 19009 } 19010 19011 if (insn->imm == BPF_FUNC_get_route_realm) 19012 prog->dst_needed = 1; 19013 if (insn->imm == BPF_FUNC_get_prandom_u32) 19014 bpf_user_rnd_init_once(); 19015 if (insn->imm == BPF_FUNC_override_return) 19016 prog->kprobe_override = 1; 19017 if (insn->imm == BPF_FUNC_tail_call) { 19018 /* If we tail call into other programs, we 19019 * cannot make any assumptions since they can 19020 * be replaced dynamically during runtime in 19021 * the program array. 19022 */ 19023 prog->cb_access = 1; 19024 if (!allow_tail_call_in_subprogs(env)) 19025 prog->aux->stack_depth = MAX_BPF_STACK; 19026 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 19027 19028 /* mark bpf_tail_call as different opcode to avoid 19029 * conditional branch in the interpreter for every normal 19030 * call and to prevent accidental JITing by JIT compiler 19031 * that doesn't support bpf_tail_call yet 19032 */ 19033 insn->imm = 0; 19034 insn->code = BPF_JMP | BPF_TAIL_CALL; 19035 19036 aux = &env->insn_aux_data[i + delta]; 19037 if (env->bpf_capable && !prog->blinding_requested && 19038 prog->jit_requested && 19039 !bpf_map_key_poisoned(aux) && 19040 !bpf_map_ptr_poisoned(aux) && 19041 !bpf_map_ptr_unpriv(aux)) { 19042 struct bpf_jit_poke_descriptor desc = { 19043 .reason = BPF_POKE_REASON_TAIL_CALL, 19044 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 19045 .tail_call.key = bpf_map_key_immediate(aux), 19046 .insn_idx = i + delta, 19047 }; 19048 19049 ret = bpf_jit_add_poke_descriptor(prog, &desc); 19050 if (ret < 0) { 19051 verbose(env, "adding tail call poke descriptor failed\n"); 19052 return ret; 19053 } 19054 19055 insn->imm = ret + 1; 19056 continue; 19057 } 19058 19059 if (!bpf_map_ptr_unpriv(aux)) 19060 continue; 19061 19062 /* instead of changing every JIT dealing with tail_call 19063 * emit two extra insns: 19064 * if (index >= max_entries) goto out; 19065 * index &= array->index_mask; 19066 * to avoid out-of-bounds cpu speculation 19067 */ 19068 if (bpf_map_ptr_poisoned(aux)) { 19069 verbose(env, "tail_call abusing map_ptr\n"); 19070 return -EINVAL; 19071 } 19072 19073 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19074 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 19075 map_ptr->max_entries, 2); 19076 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 19077 container_of(map_ptr, 19078 struct bpf_array, 19079 map)->index_mask); 19080 insn_buf[2] = *insn; 19081 cnt = 3; 19082 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19083 if (!new_prog) 19084 return -ENOMEM; 19085 19086 delta += cnt - 1; 19087 env->prog = prog = new_prog; 19088 insn = new_prog->insnsi + i + delta; 19089 continue; 19090 } 19091 19092 if (insn->imm == BPF_FUNC_timer_set_callback) { 19093 /* The verifier will process callback_fn as many times as necessary 19094 * with different maps and the register states prepared by 19095 * set_timer_callback_state will be accurate. 19096 * 19097 * The following use case is valid: 19098 * map1 is shared by prog1, prog2, prog3. 19099 * prog1 calls bpf_timer_init for some map1 elements 19100 * prog2 calls bpf_timer_set_callback for some map1 elements. 19101 * Those that were not bpf_timer_init-ed will return -EINVAL. 19102 * prog3 calls bpf_timer_start for some map1 elements. 19103 * Those that were not both bpf_timer_init-ed and 19104 * bpf_timer_set_callback-ed will return -EINVAL. 19105 */ 19106 struct bpf_insn ld_addrs[2] = { 19107 BPF_LD_IMM64(BPF_REG_3, (long)prog->aux), 19108 }; 19109 19110 insn_buf[0] = ld_addrs[0]; 19111 insn_buf[1] = ld_addrs[1]; 19112 insn_buf[2] = *insn; 19113 cnt = 3; 19114 19115 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19116 if (!new_prog) 19117 return -ENOMEM; 19118 19119 delta += cnt - 1; 19120 env->prog = prog = new_prog; 19121 insn = new_prog->insnsi + i + delta; 19122 goto patch_call_imm; 19123 } 19124 19125 if (is_storage_get_function(insn->imm)) { 19126 if (!env->prog->aux->sleepable || 19127 env->insn_aux_data[i + delta].storage_get_func_atomic) 19128 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC); 19129 else 19130 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL); 19131 insn_buf[1] = *insn; 19132 cnt = 2; 19133 19134 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19135 if (!new_prog) 19136 return -ENOMEM; 19137 19138 delta += cnt - 1; 19139 env->prog = prog = new_prog; 19140 insn = new_prog->insnsi + i + delta; 19141 goto patch_call_imm; 19142 } 19143 19144 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 19145 * and other inlining handlers are currently limited to 64 bit 19146 * only. 19147 */ 19148 if (prog->jit_requested && BITS_PER_LONG == 64 && 19149 (insn->imm == BPF_FUNC_map_lookup_elem || 19150 insn->imm == BPF_FUNC_map_update_elem || 19151 insn->imm == BPF_FUNC_map_delete_elem || 19152 insn->imm == BPF_FUNC_map_push_elem || 19153 insn->imm == BPF_FUNC_map_pop_elem || 19154 insn->imm == BPF_FUNC_map_peek_elem || 19155 insn->imm == BPF_FUNC_redirect_map || 19156 insn->imm == BPF_FUNC_for_each_map_elem || 19157 insn->imm == BPF_FUNC_map_lookup_percpu_elem)) { 19158 aux = &env->insn_aux_data[i + delta]; 19159 if (bpf_map_ptr_poisoned(aux)) 19160 goto patch_call_imm; 19161 19162 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 19163 ops = map_ptr->ops; 19164 if (insn->imm == BPF_FUNC_map_lookup_elem && 19165 ops->map_gen_lookup) { 19166 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 19167 if (cnt == -EOPNOTSUPP) 19168 goto patch_map_ops_generic; 19169 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 19170 verbose(env, "bpf verifier is misconfigured\n"); 19171 return -EINVAL; 19172 } 19173 19174 new_prog = bpf_patch_insn_data(env, i + delta, 19175 insn_buf, cnt); 19176 if (!new_prog) 19177 return -ENOMEM; 19178 19179 delta += cnt - 1; 19180 env->prog = prog = new_prog; 19181 insn = new_prog->insnsi + i + delta; 19182 continue; 19183 } 19184 19185 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 19186 (void *(*)(struct bpf_map *map, void *key))NULL)); 19187 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 19188 (long (*)(struct bpf_map *map, void *key))NULL)); 19189 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 19190 (long (*)(struct bpf_map *map, void *key, void *value, 19191 u64 flags))NULL)); 19192 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 19193 (long (*)(struct bpf_map *map, void *value, 19194 u64 flags))NULL)); 19195 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 19196 (long (*)(struct bpf_map *map, void *value))NULL)); 19197 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 19198 (long (*)(struct bpf_map *map, void *value))NULL)); 19199 BUILD_BUG_ON(!__same_type(ops->map_redirect, 19200 (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL)); 19201 BUILD_BUG_ON(!__same_type(ops->map_for_each_callback, 19202 (long (*)(struct bpf_map *map, 19203 bpf_callback_t callback_fn, 19204 void *callback_ctx, 19205 u64 flags))NULL)); 19206 BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem, 19207 (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL)); 19208 19209 patch_map_ops_generic: 19210 switch (insn->imm) { 19211 case BPF_FUNC_map_lookup_elem: 19212 insn->imm = BPF_CALL_IMM(ops->map_lookup_elem); 19213 continue; 19214 case BPF_FUNC_map_update_elem: 19215 insn->imm = BPF_CALL_IMM(ops->map_update_elem); 19216 continue; 19217 case BPF_FUNC_map_delete_elem: 19218 insn->imm = BPF_CALL_IMM(ops->map_delete_elem); 19219 continue; 19220 case BPF_FUNC_map_push_elem: 19221 insn->imm = BPF_CALL_IMM(ops->map_push_elem); 19222 continue; 19223 case BPF_FUNC_map_pop_elem: 19224 insn->imm = BPF_CALL_IMM(ops->map_pop_elem); 19225 continue; 19226 case BPF_FUNC_map_peek_elem: 19227 insn->imm = BPF_CALL_IMM(ops->map_peek_elem); 19228 continue; 19229 case BPF_FUNC_redirect_map: 19230 insn->imm = BPF_CALL_IMM(ops->map_redirect); 19231 continue; 19232 case BPF_FUNC_for_each_map_elem: 19233 insn->imm = BPF_CALL_IMM(ops->map_for_each_callback); 19234 continue; 19235 case BPF_FUNC_map_lookup_percpu_elem: 19236 insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem); 19237 continue; 19238 } 19239 19240 goto patch_call_imm; 19241 } 19242 19243 /* Implement bpf_jiffies64 inline. */ 19244 if (prog->jit_requested && BITS_PER_LONG == 64 && 19245 insn->imm == BPF_FUNC_jiffies64) { 19246 struct bpf_insn ld_jiffies_addr[2] = { 19247 BPF_LD_IMM64(BPF_REG_0, 19248 (unsigned long)&jiffies), 19249 }; 19250 19251 insn_buf[0] = ld_jiffies_addr[0]; 19252 insn_buf[1] = ld_jiffies_addr[1]; 19253 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 19254 BPF_REG_0, 0); 19255 cnt = 3; 19256 19257 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 19258 cnt); 19259 if (!new_prog) 19260 return -ENOMEM; 19261 19262 delta += cnt - 1; 19263 env->prog = prog = new_prog; 19264 insn = new_prog->insnsi + i + delta; 19265 continue; 19266 } 19267 19268 /* Implement bpf_get_func_arg inline. */ 19269 if (prog_type == BPF_PROG_TYPE_TRACING && 19270 insn->imm == BPF_FUNC_get_func_arg) { 19271 /* Load nr_args from ctx - 8 */ 19272 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19273 insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6); 19274 insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3); 19275 insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1); 19276 insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0); 19277 insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19278 insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0); 19279 insn_buf[7] = BPF_JMP_A(1); 19280 insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL); 19281 cnt = 9; 19282 19283 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19284 if (!new_prog) 19285 return -ENOMEM; 19286 19287 delta += cnt - 1; 19288 env->prog = prog = new_prog; 19289 insn = new_prog->insnsi + i + delta; 19290 continue; 19291 } 19292 19293 /* Implement bpf_get_func_ret inline. */ 19294 if (prog_type == BPF_PROG_TYPE_TRACING && 19295 insn->imm == BPF_FUNC_get_func_ret) { 19296 if (eatype == BPF_TRACE_FEXIT || 19297 eatype == BPF_MODIFY_RETURN) { 19298 /* Load nr_args from ctx - 8 */ 19299 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19300 insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3); 19301 insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1); 19302 insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0); 19303 insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0); 19304 insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0); 19305 cnt = 6; 19306 } else { 19307 insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP); 19308 cnt = 1; 19309 } 19310 19311 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 19312 if (!new_prog) 19313 return -ENOMEM; 19314 19315 delta += cnt - 1; 19316 env->prog = prog = new_prog; 19317 insn = new_prog->insnsi + i + delta; 19318 continue; 19319 } 19320 19321 /* Implement get_func_arg_cnt inline. */ 19322 if (prog_type == BPF_PROG_TYPE_TRACING && 19323 insn->imm == BPF_FUNC_get_func_arg_cnt) { 19324 /* Load nr_args from ctx - 8 */ 19325 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8); 19326 19327 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19328 if (!new_prog) 19329 return -ENOMEM; 19330 19331 env->prog = prog = new_prog; 19332 insn = new_prog->insnsi + i + delta; 19333 continue; 19334 } 19335 19336 /* Implement bpf_get_func_ip inline. */ 19337 if (prog_type == BPF_PROG_TYPE_TRACING && 19338 insn->imm == BPF_FUNC_get_func_ip) { 19339 /* Load IP address from ctx - 16 */ 19340 insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16); 19341 19342 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1); 19343 if (!new_prog) 19344 return -ENOMEM; 19345 19346 env->prog = prog = new_prog; 19347 insn = new_prog->insnsi + i + delta; 19348 continue; 19349 } 19350 19351 patch_call_imm: 19352 fn = env->ops->get_func_proto(insn->imm, env->prog); 19353 /* all functions that have prototype and verifier allowed 19354 * programs to call them, must be real in-kernel functions 19355 */ 19356 if (!fn->func) { 19357 verbose(env, 19358 "kernel subsystem misconfigured func %s#%d\n", 19359 func_id_name(insn->imm), insn->imm); 19360 return -EFAULT; 19361 } 19362 insn->imm = fn->func - __bpf_call_base; 19363 } 19364 19365 /* Since poke tab is now finalized, publish aux to tracker. */ 19366 for (i = 0; i < prog->aux->size_poke_tab; i++) { 19367 map_ptr = prog->aux->poke_tab[i].tail_call.map; 19368 if (!map_ptr->ops->map_poke_track || 19369 !map_ptr->ops->map_poke_untrack || 19370 !map_ptr->ops->map_poke_run) { 19371 verbose(env, "bpf verifier is misconfigured\n"); 19372 return -EINVAL; 19373 } 19374 19375 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 19376 if (ret < 0) { 19377 verbose(env, "tracking tail call prog failed\n"); 19378 return ret; 19379 } 19380 } 19381 19382 sort_kfunc_descs_by_imm_off(env->prog); 19383 19384 return 0; 19385 } 19386 19387 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env, 19388 int position, 19389 s32 stack_base, 19390 u32 callback_subprogno, 19391 u32 *cnt) 19392 { 19393 s32 r6_offset = stack_base + 0 * BPF_REG_SIZE; 19394 s32 r7_offset = stack_base + 1 * BPF_REG_SIZE; 19395 s32 r8_offset = stack_base + 2 * BPF_REG_SIZE; 19396 int reg_loop_max = BPF_REG_6; 19397 int reg_loop_cnt = BPF_REG_7; 19398 int reg_loop_ctx = BPF_REG_8; 19399 19400 struct bpf_prog *new_prog; 19401 u32 callback_start; 19402 u32 call_insn_offset; 19403 s32 callback_offset; 19404 19405 /* This represents an inlined version of bpf_iter.c:bpf_loop, 19406 * be careful to modify this code in sync. 19407 */ 19408 struct bpf_insn insn_buf[] = { 19409 /* Return error and jump to the end of the patch if 19410 * expected number of iterations is too big. 19411 */ 19412 BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2), 19413 BPF_MOV32_IMM(BPF_REG_0, -E2BIG), 19414 BPF_JMP_IMM(BPF_JA, 0, 0, 16), 19415 /* spill R6, R7, R8 to use these as loop vars */ 19416 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset), 19417 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset), 19418 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset), 19419 /* initialize loop vars */ 19420 BPF_MOV64_REG(reg_loop_max, BPF_REG_1), 19421 BPF_MOV32_IMM(reg_loop_cnt, 0), 19422 BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3), 19423 /* loop header, 19424 * if reg_loop_cnt >= reg_loop_max skip the loop body 19425 */ 19426 BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5), 19427 /* callback call, 19428 * correct callback offset would be set after patching 19429 */ 19430 BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt), 19431 BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx), 19432 BPF_CALL_REL(0), 19433 /* increment loop counter */ 19434 BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1), 19435 /* jump to loop header if callback returned 0 */ 19436 BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6), 19437 /* return value of bpf_loop, 19438 * set R0 to the number of iterations 19439 */ 19440 BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt), 19441 /* restore original values of R6, R7, R8 */ 19442 BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset), 19443 BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset), 19444 BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset), 19445 }; 19446 19447 *cnt = ARRAY_SIZE(insn_buf); 19448 new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt); 19449 if (!new_prog) 19450 return new_prog; 19451 19452 /* callback start is known only after patching */ 19453 callback_start = env->subprog_info[callback_subprogno].start; 19454 /* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */ 19455 call_insn_offset = position + 12; 19456 callback_offset = callback_start - call_insn_offset - 1; 19457 new_prog->insnsi[call_insn_offset].imm = callback_offset; 19458 19459 return new_prog; 19460 } 19461 19462 static bool is_bpf_loop_call(struct bpf_insn *insn) 19463 { 19464 return insn->code == (BPF_JMP | BPF_CALL) && 19465 insn->src_reg == 0 && 19466 insn->imm == BPF_FUNC_loop; 19467 } 19468 19469 /* For all sub-programs in the program (including main) check 19470 * insn_aux_data to see if there are bpf_loop calls that require 19471 * inlining. If such calls are found the calls are replaced with a 19472 * sequence of instructions produced by `inline_bpf_loop` function and 19473 * subprog stack_depth is increased by the size of 3 registers. 19474 * This stack space is used to spill values of the R6, R7, R8. These 19475 * registers are used to store the loop bound, counter and context 19476 * variables. 19477 */ 19478 static int optimize_bpf_loop(struct bpf_verifier_env *env) 19479 { 19480 struct bpf_subprog_info *subprogs = env->subprog_info; 19481 int i, cur_subprog = 0, cnt, delta = 0; 19482 struct bpf_insn *insn = env->prog->insnsi; 19483 int insn_cnt = env->prog->len; 19484 u16 stack_depth = subprogs[cur_subprog].stack_depth; 19485 u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19486 u16 stack_depth_extra = 0; 19487 19488 for (i = 0; i < insn_cnt; i++, insn++) { 19489 struct bpf_loop_inline_state *inline_state = 19490 &env->insn_aux_data[i + delta].loop_inline_state; 19491 19492 if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) { 19493 struct bpf_prog *new_prog; 19494 19495 stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup; 19496 new_prog = inline_bpf_loop(env, 19497 i + delta, 19498 -(stack_depth + stack_depth_extra), 19499 inline_state->callback_subprogno, 19500 &cnt); 19501 if (!new_prog) 19502 return -ENOMEM; 19503 19504 delta += cnt - 1; 19505 env->prog = new_prog; 19506 insn = new_prog->insnsi + i + delta; 19507 } 19508 19509 if (subprogs[cur_subprog + 1].start == i + delta + 1) { 19510 subprogs[cur_subprog].stack_depth += stack_depth_extra; 19511 cur_subprog++; 19512 stack_depth = subprogs[cur_subprog].stack_depth; 19513 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth; 19514 stack_depth_extra = 0; 19515 } 19516 } 19517 19518 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19519 19520 return 0; 19521 } 19522 19523 static void free_states(struct bpf_verifier_env *env) 19524 { 19525 struct bpf_verifier_state_list *sl, *sln; 19526 int i; 19527 19528 sl = env->free_list; 19529 while (sl) { 19530 sln = sl->next; 19531 free_verifier_state(&sl->state, false); 19532 kfree(sl); 19533 sl = sln; 19534 } 19535 env->free_list = NULL; 19536 19537 if (!env->explored_states) 19538 return; 19539 19540 for (i = 0; i < state_htab_size(env); i++) { 19541 sl = env->explored_states[i]; 19542 19543 while (sl) { 19544 sln = sl->next; 19545 free_verifier_state(&sl->state, false); 19546 kfree(sl); 19547 sl = sln; 19548 } 19549 env->explored_states[i] = NULL; 19550 } 19551 } 19552 19553 static int do_check_common(struct bpf_verifier_env *env, int subprog) 19554 { 19555 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 19556 struct bpf_verifier_state *state; 19557 struct bpf_reg_state *regs; 19558 int ret, i; 19559 19560 env->prev_linfo = NULL; 19561 env->pass_cnt++; 19562 19563 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 19564 if (!state) 19565 return -ENOMEM; 19566 state->curframe = 0; 19567 state->speculative = false; 19568 state->branches = 1; 19569 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 19570 if (!state->frame[0]) { 19571 kfree(state); 19572 return -ENOMEM; 19573 } 19574 env->cur_state = state; 19575 init_func_state(env, state->frame[0], 19576 BPF_MAIN_FUNC /* callsite */, 19577 0 /* frameno */, 19578 subprog); 19579 state->first_insn_idx = env->subprog_info[subprog].start; 19580 state->last_insn_idx = -1; 19581 19582 regs = state->frame[state->curframe]->regs; 19583 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 19584 ret = btf_prepare_func_args(env, subprog, regs); 19585 if (ret) 19586 goto out; 19587 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 19588 if (regs[i].type == PTR_TO_CTX) 19589 mark_reg_known_zero(env, regs, i); 19590 else if (regs[i].type == SCALAR_VALUE) 19591 mark_reg_unknown(env, regs, i); 19592 else if (base_type(regs[i].type) == PTR_TO_MEM) { 19593 const u32 mem_size = regs[i].mem_size; 19594 19595 mark_reg_known_zero(env, regs, i); 19596 regs[i].mem_size = mem_size; 19597 regs[i].id = ++env->id_gen; 19598 } 19599 } 19600 } else { 19601 /* 1st arg to a function */ 19602 regs[BPF_REG_1].type = PTR_TO_CTX; 19603 mark_reg_known_zero(env, regs, BPF_REG_1); 19604 ret = btf_check_subprog_arg_match(env, subprog, regs); 19605 if (ret == -EFAULT) 19606 /* unlikely verifier bug. abort. 19607 * ret == 0 and ret < 0 are sadly acceptable for 19608 * main() function due to backward compatibility. 19609 * Like socket filter program may be written as: 19610 * int bpf_prog(struct pt_regs *ctx) 19611 * and never dereference that ctx in the program. 19612 * 'struct pt_regs' is a type mismatch for socket 19613 * filter that should be using 'struct __sk_buff'. 19614 */ 19615 goto out; 19616 } 19617 19618 ret = do_check(env); 19619 out: 19620 /* check for NULL is necessary, since cur_state can be freed inside 19621 * do_check() under memory pressure. 19622 */ 19623 if (env->cur_state) { 19624 free_verifier_state(env->cur_state, true); 19625 env->cur_state = NULL; 19626 } 19627 while (!pop_stack(env, NULL, NULL, false)); 19628 if (!ret && pop_log) 19629 bpf_vlog_reset(&env->log, 0); 19630 free_states(env); 19631 return ret; 19632 } 19633 19634 /* Verify all global functions in a BPF program one by one based on their BTF. 19635 * All global functions must pass verification. Otherwise the whole program is rejected. 19636 * Consider: 19637 * int bar(int); 19638 * int foo(int f) 19639 * { 19640 * return bar(f); 19641 * } 19642 * int bar(int b) 19643 * { 19644 * ... 19645 * } 19646 * foo() will be verified first for R1=any_scalar_value. During verification it 19647 * will be assumed that bar() already verified successfully and call to bar() 19648 * from foo() will be checked for type match only. Later bar() will be verified 19649 * independently to check that it's safe for R1=any_scalar_value. 19650 */ 19651 static int do_check_subprogs(struct bpf_verifier_env *env) 19652 { 19653 struct bpf_prog_aux *aux = env->prog->aux; 19654 int i, ret; 19655 19656 if (!aux->func_info) 19657 return 0; 19658 19659 for (i = 1; i < env->subprog_cnt; i++) { 19660 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 19661 continue; 19662 env->insn_idx = env->subprog_info[i].start; 19663 WARN_ON_ONCE(env->insn_idx == 0); 19664 ret = do_check_common(env, i); 19665 if (ret) { 19666 return ret; 19667 } else if (env->log.level & BPF_LOG_LEVEL) { 19668 verbose(env, 19669 "Func#%d is safe for any args that match its prototype\n", 19670 i); 19671 } 19672 } 19673 return 0; 19674 } 19675 19676 static int do_check_main(struct bpf_verifier_env *env) 19677 { 19678 int ret; 19679 19680 env->insn_idx = 0; 19681 ret = do_check_common(env, 0); 19682 if (!ret) 19683 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 19684 return ret; 19685 } 19686 19687 19688 static void print_verification_stats(struct bpf_verifier_env *env) 19689 { 19690 int i; 19691 19692 if (env->log.level & BPF_LOG_STATS) { 19693 verbose(env, "verification time %lld usec\n", 19694 div_u64(env->verification_time, 1000)); 19695 verbose(env, "stack depth "); 19696 for (i = 0; i < env->subprog_cnt; i++) { 19697 u32 depth = env->subprog_info[i].stack_depth; 19698 19699 verbose(env, "%d", depth); 19700 if (i + 1 < env->subprog_cnt) 19701 verbose(env, "+"); 19702 } 19703 verbose(env, "\n"); 19704 } 19705 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 19706 "total_states %d peak_states %d mark_read %d\n", 19707 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 19708 env->max_states_per_insn, env->total_states, 19709 env->peak_states, env->longest_mark_read_walk); 19710 } 19711 19712 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 19713 { 19714 const struct btf_type *t, *func_proto; 19715 const struct bpf_struct_ops *st_ops; 19716 const struct btf_member *member; 19717 struct bpf_prog *prog = env->prog; 19718 u32 btf_id, member_idx; 19719 const char *mname; 19720 19721 if (!prog->gpl_compatible) { 19722 verbose(env, "struct ops programs must have a GPL compatible license\n"); 19723 return -EINVAL; 19724 } 19725 19726 btf_id = prog->aux->attach_btf_id; 19727 st_ops = bpf_struct_ops_find(btf_id); 19728 if (!st_ops) { 19729 verbose(env, "attach_btf_id %u is not a supported struct\n", 19730 btf_id); 19731 return -ENOTSUPP; 19732 } 19733 19734 t = st_ops->type; 19735 member_idx = prog->expected_attach_type; 19736 if (member_idx >= btf_type_vlen(t)) { 19737 verbose(env, "attach to invalid member idx %u of struct %s\n", 19738 member_idx, st_ops->name); 19739 return -EINVAL; 19740 } 19741 19742 member = &btf_type_member(t)[member_idx]; 19743 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 19744 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 19745 NULL); 19746 if (!func_proto) { 19747 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 19748 mname, member_idx, st_ops->name); 19749 return -EINVAL; 19750 } 19751 19752 if (st_ops->check_member) { 19753 int err = st_ops->check_member(t, member, prog); 19754 19755 if (err) { 19756 verbose(env, "attach to unsupported member %s of struct %s\n", 19757 mname, st_ops->name); 19758 return err; 19759 } 19760 } 19761 19762 prog->aux->attach_func_proto = func_proto; 19763 prog->aux->attach_func_name = mname; 19764 env->ops = st_ops->verifier_ops; 19765 19766 return 0; 19767 } 19768 #define SECURITY_PREFIX "security_" 19769 19770 static int check_attach_modify_return(unsigned long addr, const char *func_name) 19771 { 19772 if (within_error_injection_list(addr) || 19773 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 19774 return 0; 19775 19776 return -EINVAL; 19777 } 19778 19779 /* list of non-sleepable functions that are otherwise on 19780 * ALLOW_ERROR_INJECTION list 19781 */ 19782 BTF_SET_START(btf_non_sleepable_error_inject) 19783 /* Three functions below can be called from sleepable and non-sleepable context. 19784 * Assume non-sleepable from bpf safety point of view. 19785 */ 19786 BTF_ID(func, __filemap_add_folio) 19787 BTF_ID(func, should_fail_alloc_page) 19788 BTF_ID(func, should_failslab) 19789 BTF_SET_END(btf_non_sleepable_error_inject) 19790 19791 static int check_non_sleepable_error_inject(u32 btf_id) 19792 { 19793 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 19794 } 19795 19796 int bpf_check_attach_target(struct bpf_verifier_log *log, 19797 const struct bpf_prog *prog, 19798 const struct bpf_prog *tgt_prog, 19799 u32 btf_id, 19800 struct bpf_attach_target_info *tgt_info) 19801 { 19802 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 19803 const char prefix[] = "btf_trace_"; 19804 int ret = 0, subprog = -1, i; 19805 const struct btf_type *t; 19806 bool conservative = true; 19807 const char *tname; 19808 struct btf *btf; 19809 long addr = 0; 19810 struct module *mod = NULL; 19811 19812 if (!btf_id) { 19813 bpf_log(log, "Tracing programs must provide btf_id\n"); 19814 return -EINVAL; 19815 } 19816 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 19817 if (!btf) { 19818 bpf_log(log, 19819 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 19820 return -EINVAL; 19821 } 19822 t = btf_type_by_id(btf, btf_id); 19823 if (!t) { 19824 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 19825 return -EINVAL; 19826 } 19827 tname = btf_name_by_offset(btf, t->name_off); 19828 if (!tname) { 19829 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 19830 return -EINVAL; 19831 } 19832 if (tgt_prog) { 19833 struct bpf_prog_aux *aux = tgt_prog->aux; 19834 19835 if (bpf_prog_is_dev_bound(prog->aux) && 19836 !bpf_prog_dev_bound_match(prog, tgt_prog)) { 19837 bpf_log(log, "Target program bound device mismatch"); 19838 return -EINVAL; 19839 } 19840 19841 for (i = 0; i < aux->func_info_cnt; i++) 19842 if (aux->func_info[i].type_id == btf_id) { 19843 subprog = i; 19844 break; 19845 } 19846 if (subprog == -1) { 19847 bpf_log(log, "Subprog %s doesn't exist\n", tname); 19848 return -EINVAL; 19849 } 19850 conservative = aux->func_info_aux[subprog].unreliable; 19851 if (prog_extension) { 19852 if (conservative) { 19853 bpf_log(log, 19854 "Cannot replace static functions\n"); 19855 return -EINVAL; 19856 } 19857 if (!prog->jit_requested) { 19858 bpf_log(log, 19859 "Extension programs should be JITed\n"); 19860 return -EINVAL; 19861 } 19862 } 19863 if (!tgt_prog->jited) { 19864 bpf_log(log, "Can attach to only JITed progs\n"); 19865 return -EINVAL; 19866 } 19867 if (tgt_prog->type == prog->type) { 19868 /* Cannot fentry/fexit another fentry/fexit program. 19869 * Cannot attach program extension to another extension. 19870 * It's ok to attach fentry/fexit to extension program. 19871 */ 19872 bpf_log(log, "Cannot recursively attach\n"); 19873 return -EINVAL; 19874 } 19875 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 19876 prog_extension && 19877 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 19878 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 19879 /* Program extensions can extend all program types 19880 * except fentry/fexit. The reason is the following. 19881 * The fentry/fexit programs are used for performance 19882 * analysis, stats and can be attached to any program 19883 * type except themselves. When extension program is 19884 * replacing XDP function it is necessary to allow 19885 * performance analysis of all functions. Both original 19886 * XDP program and its program extension. Hence 19887 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 19888 * allowed. If extending of fentry/fexit was allowed it 19889 * would be possible to create long call chain 19890 * fentry->extension->fentry->extension beyond 19891 * reasonable stack size. Hence extending fentry is not 19892 * allowed. 19893 */ 19894 bpf_log(log, "Cannot extend fentry/fexit\n"); 19895 return -EINVAL; 19896 } 19897 } else { 19898 if (prog_extension) { 19899 bpf_log(log, "Cannot replace kernel functions\n"); 19900 return -EINVAL; 19901 } 19902 } 19903 19904 switch (prog->expected_attach_type) { 19905 case BPF_TRACE_RAW_TP: 19906 if (tgt_prog) { 19907 bpf_log(log, 19908 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 19909 return -EINVAL; 19910 } 19911 if (!btf_type_is_typedef(t)) { 19912 bpf_log(log, "attach_btf_id %u is not a typedef\n", 19913 btf_id); 19914 return -EINVAL; 19915 } 19916 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 19917 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 19918 btf_id, tname); 19919 return -EINVAL; 19920 } 19921 tname += sizeof(prefix) - 1; 19922 t = btf_type_by_id(btf, t->type); 19923 if (!btf_type_is_ptr(t)) 19924 /* should never happen in valid vmlinux build */ 19925 return -EINVAL; 19926 t = btf_type_by_id(btf, t->type); 19927 if (!btf_type_is_func_proto(t)) 19928 /* should never happen in valid vmlinux build */ 19929 return -EINVAL; 19930 19931 break; 19932 case BPF_TRACE_ITER: 19933 if (!btf_type_is_func(t)) { 19934 bpf_log(log, "attach_btf_id %u is not a function\n", 19935 btf_id); 19936 return -EINVAL; 19937 } 19938 t = btf_type_by_id(btf, t->type); 19939 if (!btf_type_is_func_proto(t)) 19940 return -EINVAL; 19941 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19942 if (ret) 19943 return ret; 19944 break; 19945 default: 19946 if (!prog_extension) 19947 return -EINVAL; 19948 fallthrough; 19949 case BPF_MODIFY_RETURN: 19950 case BPF_LSM_MAC: 19951 case BPF_LSM_CGROUP: 19952 case BPF_TRACE_FENTRY: 19953 case BPF_TRACE_FEXIT: 19954 if (!btf_type_is_func(t)) { 19955 bpf_log(log, "attach_btf_id %u is not a function\n", 19956 btf_id); 19957 return -EINVAL; 19958 } 19959 if (prog_extension && 19960 btf_check_type_match(log, prog, btf, t)) 19961 return -EINVAL; 19962 t = btf_type_by_id(btf, t->type); 19963 if (!btf_type_is_func_proto(t)) 19964 return -EINVAL; 19965 19966 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 19967 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 19968 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 19969 return -EINVAL; 19970 19971 if (tgt_prog && conservative) 19972 t = NULL; 19973 19974 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 19975 if (ret < 0) 19976 return ret; 19977 19978 if (tgt_prog) { 19979 if (subprog == 0) 19980 addr = (long) tgt_prog->bpf_func; 19981 else 19982 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 19983 } else { 19984 if (btf_is_module(btf)) { 19985 mod = btf_try_get_module(btf); 19986 if (mod) 19987 addr = find_kallsyms_symbol_value(mod, tname); 19988 else 19989 addr = 0; 19990 } else { 19991 addr = kallsyms_lookup_name(tname); 19992 } 19993 if (!addr) { 19994 module_put(mod); 19995 bpf_log(log, 19996 "The address of function %s cannot be found\n", 19997 tname); 19998 return -ENOENT; 19999 } 20000 } 20001 20002 if (prog->aux->sleepable) { 20003 ret = -EINVAL; 20004 switch (prog->type) { 20005 case BPF_PROG_TYPE_TRACING: 20006 20007 /* fentry/fexit/fmod_ret progs can be sleepable if they are 20008 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 20009 */ 20010 if (!check_non_sleepable_error_inject(btf_id) && 20011 within_error_injection_list(addr)) 20012 ret = 0; 20013 /* fentry/fexit/fmod_ret progs can also be sleepable if they are 20014 * in the fmodret id set with the KF_SLEEPABLE flag. 20015 */ 20016 else { 20017 u32 *flags = btf_kfunc_is_modify_return(btf, btf_id, 20018 prog); 20019 20020 if (flags && (*flags & KF_SLEEPABLE)) 20021 ret = 0; 20022 } 20023 break; 20024 case BPF_PROG_TYPE_LSM: 20025 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 20026 * Only some of them are sleepable. 20027 */ 20028 if (bpf_lsm_is_sleepable_hook(btf_id)) 20029 ret = 0; 20030 break; 20031 default: 20032 break; 20033 } 20034 if (ret) { 20035 module_put(mod); 20036 bpf_log(log, "%s is not sleepable\n", tname); 20037 return ret; 20038 } 20039 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 20040 if (tgt_prog) { 20041 module_put(mod); 20042 bpf_log(log, "can't modify return codes of BPF programs\n"); 20043 return -EINVAL; 20044 } 20045 ret = -EINVAL; 20046 if (btf_kfunc_is_modify_return(btf, btf_id, prog) || 20047 !check_attach_modify_return(addr, tname)) 20048 ret = 0; 20049 if (ret) { 20050 module_put(mod); 20051 bpf_log(log, "%s() is not modifiable\n", tname); 20052 return ret; 20053 } 20054 } 20055 20056 break; 20057 } 20058 tgt_info->tgt_addr = addr; 20059 tgt_info->tgt_name = tname; 20060 tgt_info->tgt_type = t; 20061 tgt_info->tgt_mod = mod; 20062 return 0; 20063 } 20064 20065 BTF_SET_START(btf_id_deny) 20066 BTF_ID_UNUSED 20067 #ifdef CONFIG_SMP 20068 BTF_ID(func, migrate_disable) 20069 BTF_ID(func, migrate_enable) 20070 #endif 20071 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU 20072 BTF_ID(func, rcu_read_unlock_strict) 20073 #endif 20074 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE) 20075 BTF_ID(func, preempt_count_add) 20076 BTF_ID(func, preempt_count_sub) 20077 #endif 20078 #ifdef CONFIG_PREEMPT_RCU 20079 BTF_ID(func, __rcu_read_lock) 20080 BTF_ID(func, __rcu_read_unlock) 20081 #endif 20082 BTF_SET_END(btf_id_deny) 20083 20084 static bool can_be_sleepable(struct bpf_prog *prog) 20085 { 20086 if (prog->type == BPF_PROG_TYPE_TRACING) { 20087 switch (prog->expected_attach_type) { 20088 case BPF_TRACE_FENTRY: 20089 case BPF_TRACE_FEXIT: 20090 case BPF_MODIFY_RETURN: 20091 case BPF_TRACE_ITER: 20092 return true; 20093 default: 20094 return false; 20095 } 20096 } 20097 return prog->type == BPF_PROG_TYPE_LSM || 20098 prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ || 20099 prog->type == BPF_PROG_TYPE_STRUCT_OPS; 20100 } 20101 20102 static int check_attach_btf_id(struct bpf_verifier_env *env) 20103 { 20104 struct bpf_prog *prog = env->prog; 20105 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 20106 struct bpf_attach_target_info tgt_info = {}; 20107 u32 btf_id = prog->aux->attach_btf_id; 20108 struct bpf_trampoline *tr; 20109 int ret; 20110 u64 key; 20111 20112 if (prog->type == BPF_PROG_TYPE_SYSCALL) { 20113 if (prog->aux->sleepable) 20114 /* attach_btf_id checked to be zero already */ 20115 return 0; 20116 verbose(env, "Syscall programs can only be sleepable\n"); 20117 return -EINVAL; 20118 } 20119 20120 if (prog->aux->sleepable && !can_be_sleepable(prog)) { 20121 verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n"); 20122 return -EINVAL; 20123 } 20124 20125 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 20126 return check_struct_ops_btf_id(env); 20127 20128 if (prog->type != BPF_PROG_TYPE_TRACING && 20129 prog->type != BPF_PROG_TYPE_LSM && 20130 prog->type != BPF_PROG_TYPE_EXT) 20131 return 0; 20132 20133 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 20134 if (ret) 20135 return ret; 20136 20137 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 20138 /* to make freplace equivalent to their targets, they need to 20139 * inherit env->ops and expected_attach_type for the rest of the 20140 * verification 20141 */ 20142 env->ops = bpf_verifier_ops[tgt_prog->type]; 20143 prog->expected_attach_type = tgt_prog->expected_attach_type; 20144 } 20145 20146 /* store info about the attachment target that will be used later */ 20147 prog->aux->attach_func_proto = tgt_info.tgt_type; 20148 prog->aux->attach_func_name = tgt_info.tgt_name; 20149 prog->aux->mod = tgt_info.tgt_mod; 20150 20151 if (tgt_prog) { 20152 prog->aux->saved_dst_prog_type = tgt_prog->type; 20153 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 20154 } 20155 20156 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 20157 prog->aux->attach_btf_trace = true; 20158 return 0; 20159 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 20160 if (!bpf_iter_prog_supported(prog)) 20161 return -EINVAL; 20162 return 0; 20163 } 20164 20165 if (prog->type == BPF_PROG_TYPE_LSM) { 20166 ret = bpf_lsm_verify_prog(&env->log, prog); 20167 if (ret < 0) 20168 return ret; 20169 } else if (prog->type == BPF_PROG_TYPE_TRACING && 20170 btf_id_set_contains(&btf_id_deny, btf_id)) { 20171 return -EINVAL; 20172 } 20173 20174 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 20175 tr = bpf_trampoline_get(key, &tgt_info); 20176 if (!tr) 20177 return -ENOMEM; 20178 20179 if (tgt_prog && tgt_prog->aux->tail_call_reachable) 20180 tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX; 20181 20182 prog->aux->dst_trampoline = tr; 20183 return 0; 20184 } 20185 20186 struct btf *bpf_get_btf_vmlinux(void) 20187 { 20188 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 20189 mutex_lock(&bpf_verifier_lock); 20190 if (!btf_vmlinux) 20191 btf_vmlinux = btf_parse_vmlinux(); 20192 mutex_unlock(&bpf_verifier_lock); 20193 } 20194 return btf_vmlinux; 20195 } 20196 20197 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size) 20198 { 20199 u64 start_time = ktime_get_ns(); 20200 struct bpf_verifier_env *env; 20201 int i, len, ret = -EINVAL, err; 20202 u32 log_true_size; 20203 bool is_priv; 20204 20205 /* no program is valid */ 20206 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 20207 return -EINVAL; 20208 20209 /* 'struct bpf_verifier_env' can be global, but since it's not small, 20210 * allocate/free it every time bpf_check() is called 20211 */ 20212 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 20213 if (!env) 20214 return -ENOMEM; 20215 20216 env->bt.env = env; 20217 20218 len = (*prog)->len; 20219 env->insn_aux_data = 20220 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 20221 ret = -ENOMEM; 20222 if (!env->insn_aux_data) 20223 goto err_free_env; 20224 for (i = 0; i < len; i++) 20225 env->insn_aux_data[i].orig_idx = i; 20226 env->prog = *prog; 20227 env->ops = bpf_verifier_ops[env->prog->type]; 20228 env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel); 20229 is_priv = bpf_capable(); 20230 20231 bpf_get_btf_vmlinux(); 20232 20233 /* grab the mutex to protect few globals used by verifier */ 20234 if (!is_priv) 20235 mutex_lock(&bpf_verifier_lock); 20236 20237 /* user could have requested verbose verifier output 20238 * and supplied buffer to store the verification trace 20239 */ 20240 ret = bpf_vlog_init(&env->log, attr->log_level, 20241 (char __user *) (unsigned long) attr->log_buf, 20242 attr->log_size); 20243 if (ret) 20244 goto err_unlock; 20245 20246 mark_verifier_state_clean(env); 20247 20248 if (IS_ERR(btf_vmlinux)) { 20249 /* Either gcc or pahole or kernel are broken. */ 20250 verbose(env, "in-kernel BTF is malformed\n"); 20251 ret = PTR_ERR(btf_vmlinux); 20252 goto skip_full_check; 20253 } 20254 20255 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 20256 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 20257 env->strict_alignment = true; 20258 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 20259 env->strict_alignment = false; 20260 20261 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 20262 env->allow_uninit_stack = bpf_allow_uninit_stack(); 20263 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 20264 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 20265 env->bpf_capable = bpf_capable(); 20266 20267 if (is_priv) 20268 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 20269 20270 env->explored_states = kvcalloc(state_htab_size(env), 20271 sizeof(struct bpf_verifier_state_list *), 20272 GFP_USER); 20273 ret = -ENOMEM; 20274 if (!env->explored_states) 20275 goto skip_full_check; 20276 20277 ret = add_subprog_and_kfunc(env); 20278 if (ret < 0) 20279 goto skip_full_check; 20280 20281 ret = check_subprogs(env); 20282 if (ret < 0) 20283 goto skip_full_check; 20284 20285 ret = check_btf_info(env, attr, uattr); 20286 if (ret < 0) 20287 goto skip_full_check; 20288 20289 ret = check_attach_btf_id(env); 20290 if (ret) 20291 goto skip_full_check; 20292 20293 ret = resolve_pseudo_ldimm64(env); 20294 if (ret < 0) 20295 goto skip_full_check; 20296 20297 if (bpf_prog_is_offloaded(env->prog->aux)) { 20298 ret = bpf_prog_offload_verifier_prep(env->prog); 20299 if (ret) 20300 goto skip_full_check; 20301 } 20302 20303 ret = check_cfg(env); 20304 if (ret < 0) 20305 goto skip_full_check; 20306 20307 ret = do_check_subprogs(env); 20308 ret = ret ?: do_check_main(env); 20309 20310 if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux)) 20311 ret = bpf_prog_offload_finalize(env); 20312 20313 skip_full_check: 20314 kvfree(env->explored_states); 20315 20316 if (ret == 0) 20317 ret = check_max_stack_depth(env); 20318 20319 /* instruction rewrites happen after this point */ 20320 if (ret == 0) 20321 ret = optimize_bpf_loop(env); 20322 20323 if (is_priv) { 20324 if (ret == 0) 20325 opt_hard_wire_dead_code_branches(env); 20326 if (ret == 0) 20327 ret = opt_remove_dead_code(env); 20328 if (ret == 0) 20329 ret = opt_remove_nops(env); 20330 } else { 20331 if (ret == 0) 20332 sanitize_dead_code(env); 20333 } 20334 20335 if (ret == 0) 20336 /* program is valid, convert *(u32*)(ctx + off) accesses */ 20337 ret = convert_ctx_accesses(env); 20338 20339 if (ret == 0) 20340 ret = do_misc_fixups(env); 20341 20342 /* do 32-bit optimization after insn patching has done so those patched 20343 * insns could be handled correctly. 20344 */ 20345 if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) { 20346 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 20347 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 20348 : false; 20349 } 20350 20351 if (ret == 0) 20352 ret = fixup_call_args(env); 20353 20354 env->verification_time = ktime_get_ns() - start_time; 20355 print_verification_stats(env); 20356 env->prog->aux->verified_insns = env->insn_processed; 20357 20358 /* preserve original error even if log finalization is successful */ 20359 err = bpf_vlog_finalize(&env->log, &log_true_size); 20360 if (err) 20361 ret = err; 20362 20363 if (uattr_size >= offsetofend(union bpf_attr, log_true_size) && 20364 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size), 20365 &log_true_size, sizeof(log_true_size))) { 20366 ret = -EFAULT; 20367 goto err_release_maps; 20368 } 20369 20370 if (ret) 20371 goto err_release_maps; 20372 20373 if (env->used_map_cnt) { 20374 /* if program passed verifier, update used_maps in bpf_prog_info */ 20375 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 20376 sizeof(env->used_maps[0]), 20377 GFP_KERNEL); 20378 20379 if (!env->prog->aux->used_maps) { 20380 ret = -ENOMEM; 20381 goto err_release_maps; 20382 } 20383 20384 memcpy(env->prog->aux->used_maps, env->used_maps, 20385 sizeof(env->used_maps[0]) * env->used_map_cnt); 20386 env->prog->aux->used_map_cnt = env->used_map_cnt; 20387 } 20388 if (env->used_btf_cnt) { 20389 /* if program passed verifier, update used_btfs in bpf_prog_aux */ 20390 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt, 20391 sizeof(env->used_btfs[0]), 20392 GFP_KERNEL); 20393 if (!env->prog->aux->used_btfs) { 20394 ret = -ENOMEM; 20395 goto err_release_maps; 20396 } 20397 20398 memcpy(env->prog->aux->used_btfs, env->used_btfs, 20399 sizeof(env->used_btfs[0]) * env->used_btf_cnt); 20400 env->prog->aux->used_btf_cnt = env->used_btf_cnt; 20401 } 20402 if (env->used_map_cnt || env->used_btf_cnt) { 20403 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 20404 * bpf_ld_imm64 instructions 20405 */ 20406 convert_pseudo_ld_imm64(env); 20407 } 20408 20409 adjust_btf_func(env); 20410 20411 err_release_maps: 20412 if (!env->prog->aux->used_maps) 20413 /* if we didn't copy map pointers into bpf_prog_info, release 20414 * them now. Otherwise free_used_maps() will release them. 20415 */ 20416 release_maps(env); 20417 if (!env->prog->aux->used_btfs) 20418 release_btfs(env); 20419 20420 /* extension progs temporarily inherit the attach_type of their targets 20421 for verification purposes, so set it back to zero before returning 20422 */ 20423 if (env->prog->type == BPF_PROG_TYPE_EXT) 20424 env->prog->expected_attach_type = 0; 20425 20426 *prog = env->prog; 20427 err_unlock: 20428 if (!is_priv) 20429 mutex_unlock(&bpf_verifier_lock); 20430 vfree(env->insn_aux_data); 20431 err_free_env: 20432 kfree(env); 20433 return ret; 20434 } 20435