1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK || 330 type == PTR_TO_XDP_SOCK; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL || 337 type == PTR_TO_SOCK_COMMON_OR_NULL || 338 type == PTR_TO_TCP_SOCK_OR_NULL; 339 } 340 341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 342 { 343 return reg->type == PTR_TO_MAP_VALUE && 344 map_value_has_spin_lock(reg->map_ptr); 345 } 346 347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 348 { 349 return type == PTR_TO_SOCKET || 350 type == PTR_TO_SOCKET_OR_NULL || 351 type == PTR_TO_TCP_SOCK || 352 type == PTR_TO_TCP_SOCK_OR_NULL; 353 } 354 355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 356 { 357 return type == ARG_PTR_TO_SOCK_COMMON; 358 } 359 360 /* Determine whether the function releases some resources allocated by another 361 * function call. The first reference type argument will be assumed to be 362 * released by release_reference(). 363 */ 364 static bool is_release_function(enum bpf_func_id func_id) 365 { 366 return func_id == BPF_FUNC_sk_release; 367 } 368 369 static bool is_acquire_function(enum bpf_func_id func_id) 370 { 371 return func_id == BPF_FUNC_sk_lookup_tcp || 372 func_id == BPF_FUNC_sk_lookup_udp || 373 func_id == BPF_FUNC_skc_lookup_tcp; 374 } 375 376 static bool is_ptr_cast_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_tcp_sock || 379 func_id == BPF_FUNC_sk_fullsock; 380 } 381 382 /* string representation of 'enum bpf_reg_type' */ 383 static const char * const reg_type_str[] = { 384 [NOT_INIT] = "?", 385 [SCALAR_VALUE] = "inv", 386 [PTR_TO_CTX] = "ctx", 387 [CONST_PTR_TO_MAP] = "map_ptr", 388 [PTR_TO_MAP_VALUE] = "map_value", 389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 390 [PTR_TO_STACK] = "fp", 391 [PTR_TO_PACKET] = "pkt", 392 [PTR_TO_PACKET_META] = "pkt_meta", 393 [PTR_TO_PACKET_END] = "pkt_end", 394 [PTR_TO_FLOW_KEYS] = "flow_keys", 395 [PTR_TO_SOCKET] = "sock", 396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 397 [PTR_TO_SOCK_COMMON] = "sock_common", 398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 399 [PTR_TO_TCP_SOCK] = "tcp_sock", 400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 401 [PTR_TO_TP_BUFFER] = "tp_buffer", 402 [PTR_TO_XDP_SOCK] = "xdp_sock", 403 }; 404 405 static char slot_type_char[] = { 406 [STACK_INVALID] = '?', 407 [STACK_SPILL] = 'r', 408 [STACK_MISC] = 'm', 409 [STACK_ZERO] = '0', 410 }; 411 412 static void print_liveness(struct bpf_verifier_env *env, 413 enum bpf_reg_liveness live) 414 { 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 416 verbose(env, "_"); 417 if (live & REG_LIVE_READ) 418 verbose(env, "r"); 419 if (live & REG_LIVE_WRITTEN) 420 verbose(env, "w"); 421 if (live & REG_LIVE_DONE) 422 verbose(env, "D"); 423 } 424 425 static struct bpf_func_state *func(struct bpf_verifier_env *env, 426 const struct bpf_reg_state *reg) 427 { 428 struct bpf_verifier_state *cur = env->cur_state; 429 430 return cur->frame[reg->frameno]; 431 } 432 433 static void print_verifier_state(struct bpf_verifier_env *env, 434 const struct bpf_func_state *state) 435 { 436 const struct bpf_reg_state *reg; 437 enum bpf_reg_type t; 438 int i; 439 440 if (state->frameno) 441 verbose(env, " frame%d:", state->frameno); 442 for (i = 0; i < MAX_BPF_REG; i++) { 443 reg = &state->regs[i]; 444 t = reg->type; 445 if (t == NOT_INIT) 446 continue; 447 verbose(env, " R%d", i); 448 print_liveness(env, reg->live); 449 verbose(env, "=%s", reg_type_str[t]); 450 if (t == SCALAR_VALUE && reg->precise) 451 verbose(env, "P"); 452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 453 tnum_is_const(reg->var_off)) { 454 /* reg->off should be 0 for SCALAR_VALUE */ 455 verbose(env, "%lld", reg->var_off.value + reg->off); 456 } else { 457 verbose(env, "(id=%d", reg->id); 458 if (reg_type_may_be_refcounted_or_null(t)) 459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 460 if (t != SCALAR_VALUE) 461 verbose(env, ",off=%d", reg->off); 462 if (type_is_pkt_pointer(t)) 463 verbose(env, ",r=%d", reg->range); 464 else if (t == CONST_PTR_TO_MAP || 465 t == PTR_TO_MAP_VALUE || 466 t == PTR_TO_MAP_VALUE_OR_NULL) 467 verbose(env, ",ks=%d,vs=%d", 468 reg->map_ptr->key_size, 469 reg->map_ptr->value_size); 470 if (tnum_is_const(reg->var_off)) { 471 /* Typically an immediate SCALAR_VALUE, but 472 * could be a pointer whose offset is too big 473 * for reg->off 474 */ 475 verbose(env, ",imm=%llx", reg->var_off.value); 476 } else { 477 if (reg->smin_value != reg->umin_value && 478 reg->smin_value != S64_MIN) 479 verbose(env, ",smin_value=%lld", 480 (long long)reg->smin_value); 481 if (reg->smax_value != reg->umax_value && 482 reg->smax_value != S64_MAX) 483 verbose(env, ",smax_value=%lld", 484 (long long)reg->smax_value); 485 if (reg->umin_value != 0) 486 verbose(env, ",umin_value=%llu", 487 (unsigned long long)reg->umin_value); 488 if (reg->umax_value != U64_MAX) 489 verbose(env, ",umax_value=%llu", 490 (unsigned long long)reg->umax_value); 491 if (!tnum_is_unknown(reg->var_off)) { 492 char tn_buf[48]; 493 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 495 verbose(env, ",var_off=%s", tn_buf); 496 } 497 } 498 verbose(env, ")"); 499 } 500 } 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 502 char types_buf[BPF_REG_SIZE + 1]; 503 bool valid = false; 504 int j; 505 506 for (j = 0; j < BPF_REG_SIZE; j++) { 507 if (state->stack[i].slot_type[j] != STACK_INVALID) 508 valid = true; 509 types_buf[j] = slot_type_char[ 510 state->stack[i].slot_type[j]]; 511 } 512 types_buf[BPF_REG_SIZE] = 0; 513 if (!valid) 514 continue; 515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 516 print_liveness(env, state->stack[i].spilled_ptr.live); 517 if (state->stack[i].slot_type[0] == STACK_SPILL) { 518 reg = &state->stack[i].spilled_ptr; 519 t = reg->type; 520 verbose(env, "=%s", reg_type_str[t]); 521 if (t == SCALAR_VALUE && reg->precise) 522 verbose(env, "P"); 523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 524 verbose(env, "%lld", reg->var_off.value + reg->off); 525 } else { 526 verbose(env, "=%s", types_buf); 527 } 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void clear_jmp_history(struct bpf_verifier_state *state) 677 { 678 kfree(state->jmp_history); 679 state->jmp_history = NULL; 680 state->jmp_history_cnt = 0; 681 } 682 683 static void free_verifier_state(struct bpf_verifier_state *state, 684 bool free_self) 685 { 686 int i; 687 688 for (i = 0; i <= state->curframe; i++) { 689 free_func_state(state->frame[i]); 690 state->frame[i] = NULL; 691 } 692 clear_jmp_history(state); 693 if (free_self) 694 kfree(state); 695 } 696 697 /* copy verifier state from src to dst growing dst stack space 698 * when necessary to accommodate larger src stack 699 */ 700 static int copy_func_state(struct bpf_func_state *dst, 701 const struct bpf_func_state *src) 702 { 703 int err; 704 705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 706 false); 707 if (err) 708 return err; 709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 710 err = copy_reference_state(dst, src); 711 if (err) 712 return err; 713 return copy_stack_state(dst, src); 714 } 715 716 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 717 const struct bpf_verifier_state *src) 718 { 719 struct bpf_func_state *dst; 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 721 int i, err; 722 723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 724 kfree(dst_state->jmp_history); 725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 726 if (!dst_state->jmp_history) 727 return -ENOMEM; 728 } 729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 730 dst_state->jmp_history_cnt = src->jmp_history_cnt; 731 732 /* if dst has more stack frames then src frame, free them */ 733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 734 free_func_state(dst_state->frame[i]); 735 dst_state->frame[i] = NULL; 736 } 737 dst_state->speculative = src->speculative; 738 dst_state->curframe = src->curframe; 739 dst_state->active_spin_lock = src->active_spin_lock; 740 dst_state->branches = src->branches; 741 dst_state->parent = src->parent; 742 dst_state->first_insn_idx = src->first_insn_idx; 743 dst_state->last_insn_idx = src->last_insn_idx; 744 for (i = 0; i <= src->curframe; i++) { 745 dst = dst_state->frame[i]; 746 if (!dst) { 747 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 748 if (!dst) 749 return -ENOMEM; 750 dst_state->frame[i] = dst; 751 } 752 err = copy_func_state(dst, src->frame[i]); 753 if (err) 754 return err; 755 } 756 return 0; 757 } 758 759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 760 { 761 while (st) { 762 u32 br = --st->branches; 763 764 /* WARN_ON(br > 1) technically makes sense here, 765 * but see comment in push_stack(), hence: 766 */ 767 WARN_ONCE((int)br < 0, 768 "BUG update_branch_counts:branches_to_explore=%d\n", 769 br); 770 if (br) 771 break; 772 st = st->parent; 773 } 774 } 775 776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 777 int *insn_idx) 778 { 779 struct bpf_verifier_state *cur = env->cur_state; 780 struct bpf_verifier_stack_elem *elem, *head = env->head; 781 int err; 782 783 if (env->head == NULL) 784 return -ENOENT; 785 786 if (cur) { 787 err = copy_verifier_state(cur, &head->st); 788 if (err) 789 return err; 790 } 791 if (insn_idx) 792 *insn_idx = head->insn_idx; 793 if (prev_insn_idx) 794 *prev_insn_idx = head->prev_insn_idx; 795 elem = head->next; 796 free_verifier_state(&head->st, false); 797 kfree(head); 798 env->head = elem; 799 env->stack_size--; 800 return 0; 801 } 802 803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 804 int insn_idx, int prev_insn_idx, 805 bool speculative) 806 { 807 struct bpf_verifier_state *cur = env->cur_state; 808 struct bpf_verifier_stack_elem *elem; 809 int err; 810 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 812 if (!elem) 813 goto err; 814 815 elem->insn_idx = insn_idx; 816 elem->prev_insn_idx = prev_insn_idx; 817 elem->next = env->head; 818 env->head = elem; 819 env->stack_size++; 820 err = copy_verifier_state(&elem->st, cur); 821 if (err) 822 goto err; 823 elem->st.speculative |= speculative; 824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 825 verbose(env, "The sequence of %d jumps is too complex.\n", 826 env->stack_size); 827 goto err; 828 } 829 if (elem->st.parent) { 830 ++elem->st.parent->branches; 831 /* WARN_ON(branches > 2) technically makes sense here, 832 * but 833 * 1. speculative states will bump 'branches' for non-branch 834 * instructions 835 * 2. is_state_visited() heuristics may decide not to create 836 * a new state for a sequence of branches and all such current 837 * and cloned states will be pointing to a single parent state 838 * which might have large 'branches' count. 839 */ 840 } 841 return &elem->st; 842 err: 843 free_verifier_state(env->cur_state, true); 844 env->cur_state = NULL; 845 /* pop all elements and return */ 846 while (!pop_stack(env, NULL, NULL)); 847 return NULL; 848 } 849 850 #define CALLER_SAVED_REGS 6 851 static const int caller_saved[CALLER_SAVED_REGS] = { 852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 853 }; 854 855 static void __mark_reg_not_init(struct bpf_reg_state *reg); 856 857 /* Mark the unknown part of a register (variable offset or scalar value) as 858 * known to have the value @imm. 859 */ 860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 861 { 862 /* Clear id, off, and union(map_ptr, range) */ 863 memset(((u8 *)reg) + sizeof(reg->type), 0, 864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 865 reg->var_off = tnum_const(imm); 866 reg->smin_value = (s64)imm; 867 reg->smax_value = (s64)imm; 868 reg->umin_value = imm; 869 reg->umax_value = imm; 870 } 871 872 /* Mark the 'variable offset' part of a register as zero. This should be 873 * used only on registers holding a pointer type. 874 */ 875 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 876 { 877 __mark_reg_known(reg, 0); 878 } 879 880 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 881 { 882 __mark_reg_known(reg, 0); 883 reg->type = SCALAR_VALUE; 884 } 885 886 static void mark_reg_known_zero(struct bpf_verifier_env *env, 887 struct bpf_reg_state *regs, u32 regno) 888 { 889 if (WARN_ON(regno >= MAX_BPF_REG)) { 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 891 /* Something bad happened, let's kill all regs */ 892 for (regno = 0; regno < MAX_BPF_REG; regno++) 893 __mark_reg_not_init(regs + regno); 894 return; 895 } 896 __mark_reg_known_zero(regs + regno); 897 } 898 899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 900 { 901 return type_is_pkt_pointer(reg->type); 902 } 903 904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 905 { 906 return reg_is_pkt_pointer(reg) || 907 reg->type == PTR_TO_PACKET_END; 908 } 909 910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 912 enum bpf_reg_type which) 913 { 914 /* The register can already have a range from prior markings. 915 * This is fine as long as it hasn't been advanced from its 916 * origin. 917 */ 918 return reg->type == which && 919 reg->id == 0 && 920 reg->off == 0 && 921 tnum_equals_const(reg->var_off, 0); 922 } 923 924 /* Attempts to improve min/max values based on var_off information */ 925 static void __update_reg_bounds(struct bpf_reg_state *reg) 926 { 927 /* min signed is max(sign bit) | min(other bits) */ 928 reg->smin_value = max_t(s64, reg->smin_value, 929 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 930 /* max signed is min(sign bit) | max(other bits) */ 931 reg->smax_value = min_t(s64, reg->smax_value, 932 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 933 reg->umin_value = max(reg->umin_value, reg->var_off.value); 934 reg->umax_value = min(reg->umax_value, 935 reg->var_off.value | reg->var_off.mask); 936 } 937 938 /* Uses signed min/max values to inform unsigned, and vice-versa */ 939 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 940 { 941 /* Learn sign from signed bounds. 942 * If we cannot cross the sign boundary, then signed and unsigned bounds 943 * are the same, so combine. This works even in the negative case, e.g. 944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 945 */ 946 if (reg->smin_value >= 0 || reg->smax_value < 0) { 947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 948 reg->umin_value); 949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 950 reg->umax_value); 951 return; 952 } 953 /* Learn sign from unsigned bounds. Signed bounds cross the sign 954 * boundary, so we must be careful. 955 */ 956 if ((s64)reg->umax_value >= 0) { 957 /* Positive. We can't learn anything from the smin, but smax 958 * is positive, hence safe. 959 */ 960 reg->smin_value = reg->umin_value; 961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 962 reg->umax_value); 963 } else if ((s64)reg->umin_value < 0) { 964 /* Negative. We can't learn anything from the smax, but smin 965 * is negative, hence safe. 966 */ 967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 968 reg->umin_value); 969 reg->smax_value = reg->umax_value; 970 } 971 } 972 973 /* Attempts to improve var_off based on unsigned min/max information */ 974 static void __reg_bound_offset(struct bpf_reg_state *reg) 975 { 976 reg->var_off = tnum_intersect(reg->var_off, 977 tnum_range(reg->umin_value, 978 reg->umax_value)); 979 } 980 981 /* Reset the min/max bounds of a register */ 982 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 983 { 984 reg->smin_value = S64_MIN; 985 reg->smax_value = S64_MAX; 986 reg->umin_value = 0; 987 reg->umax_value = U64_MAX; 988 } 989 990 /* Mark a register as having a completely unknown (scalar) value. */ 991 static void __mark_reg_unknown(struct bpf_reg_state *reg) 992 { 993 /* 994 * Clear type, id, off, and union(map_ptr, range) and 995 * padding between 'type' and union 996 */ 997 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 998 reg->type = SCALAR_VALUE; 999 reg->var_off = tnum_unknown; 1000 reg->frameno = 0; 1001 __mark_reg_unbounded(reg); 1002 } 1003 1004 static void mark_reg_unknown(struct bpf_verifier_env *env, 1005 struct bpf_reg_state *regs, u32 regno) 1006 { 1007 if (WARN_ON(regno >= MAX_BPF_REG)) { 1008 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1009 /* Something bad happened, let's kill all regs except FP */ 1010 for (regno = 0; regno < BPF_REG_FP; regno++) 1011 __mark_reg_not_init(regs + regno); 1012 return; 1013 } 1014 regs += regno; 1015 __mark_reg_unknown(regs); 1016 /* constant backtracking is enabled for root without bpf2bpf calls */ 1017 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1018 true : false; 1019 } 1020 1021 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1022 { 1023 __mark_reg_unknown(reg); 1024 reg->type = NOT_INIT; 1025 } 1026 1027 static void mark_reg_not_init(struct bpf_verifier_env *env, 1028 struct bpf_reg_state *regs, u32 regno) 1029 { 1030 if (WARN_ON(regno >= MAX_BPF_REG)) { 1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1032 /* Something bad happened, let's kill all regs except FP */ 1033 for (regno = 0; regno < BPF_REG_FP; regno++) 1034 __mark_reg_not_init(regs + regno); 1035 return; 1036 } 1037 __mark_reg_not_init(regs + regno); 1038 } 1039 1040 #define DEF_NOT_SUBREG (0) 1041 static void init_reg_state(struct bpf_verifier_env *env, 1042 struct bpf_func_state *state) 1043 { 1044 struct bpf_reg_state *regs = state->regs; 1045 int i; 1046 1047 for (i = 0; i < MAX_BPF_REG; i++) { 1048 mark_reg_not_init(env, regs, i); 1049 regs[i].live = REG_LIVE_NONE; 1050 regs[i].parent = NULL; 1051 regs[i].subreg_def = DEF_NOT_SUBREG; 1052 } 1053 1054 /* frame pointer */ 1055 regs[BPF_REG_FP].type = PTR_TO_STACK; 1056 mark_reg_known_zero(env, regs, BPF_REG_FP); 1057 regs[BPF_REG_FP].frameno = state->frameno; 1058 1059 /* 1st arg to a function */ 1060 regs[BPF_REG_1].type = PTR_TO_CTX; 1061 mark_reg_known_zero(env, regs, BPF_REG_1); 1062 } 1063 1064 #define BPF_MAIN_FUNC (-1) 1065 static void init_func_state(struct bpf_verifier_env *env, 1066 struct bpf_func_state *state, 1067 int callsite, int frameno, int subprogno) 1068 { 1069 state->callsite = callsite; 1070 state->frameno = frameno; 1071 state->subprogno = subprogno; 1072 init_reg_state(env, state); 1073 } 1074 1075 enum reg_arg_type { 1076 SRC_OP, /* register is used as source operand */ 1077 DST_OP, /* register is used as destination operand */ 1078 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1079 }; 1080 1081 static int cmp_subprogs(const void *a, const void *b) 1082 { 1083 return ((struct bpf_subprog_info *)a)->start - 1084 ((struct bpf_subprog_info *)b)->start; 1085 } 1086 1087 static int find_subprog(struct bpf_verifier_env *env, int off) 1088 { 1089 struct bpf_subprog_info *p; 1090 1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1092 sizeof(env->subprog_info[0]), cmp_subprogs); 1093 if (!p) 1094 return -ENOENT; 1095 return p - env->subprog_info; 1096 1097 } 1098 1099 static int add_subprog(struct bpf_verifier_env *env, int off) 1100 { 1101 int insn_cnt = env->prog->len; 1102 int ret; 1103 1104 if (off >= insn_cnt || off < 0) { 1105 verbose(env, "call to invalid destination\n"); 1106 return -EINVAL; 1107 } 1108 ret = find_subprog(env, off); 1109 if (ret >= 0) 1110 return 0; 1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1112 verbose(env, "too many subprograms\n"); 1113 return -E2BIG; 1114 } 1115 env->subprog_info[env->subprog_cnt++].start = off; 1116 sort(env->subprog_info, env->subprog_cnt, 1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1118 return 0; 1119 } 1120 1121 static int check_subprogs(struct bpf_verifier_env *env) 1122 { 1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1124 struct bpf_subprog_info *subprog = env->subprog_info; 1125 struct bpf_insn *insn = env->prog->insnsi; 1126 int insn_cnt = env->prog->len; 1127 1128 /* Add entry function. */ 1129 ret = add_subprog(env, 0); 1130 if (ret < 0) 1131 return ret; 1132 1133 /* determine subprog starts. The end is one before the next starts */ 1134 for (i = 0; i < insn_cnt; i++) { 1135 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1136 continue; 1137 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1138 continue; 1139 if (!env->allow_ptr_leaks) { 1140 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1141 return -EPERM; 1142 } 1143 ret = add_subprog(env, i + insn[i].imm + 1); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 1148 /* Add a fake 'exit' subprog which could simplify subprog iteration 1149 * logic. 'subprog_cnt' should not be increased. 1150 */ 1151 subprog[env->subprog_cnt].start = insn_cnt; 1152 1153 if (env->log.level & BPF_LOG_LEVEL2) 1154 for (i = 0; i < env->subprog_cnt; i++) 1155 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1156 1157 /* now check that all jumps are within the same subprog */ 1158 subprog_start = subprog[cur_subprog].start; 1159 subprog_end = subprog[cur_subprog + 1].start; 1160 for (i = 0; i < insn_cnt; i++) { 1161 u8 code = insn[i].code; 1162 1163 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1164 goto next; 1165 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1166 goto next; 1167 off = i + insn[i].off + 1; 1168 if (off < subprog_start || off >= subprog_end) { 1169 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1170 return -EINVAL; 1171 } 1172 next: 1173 if (i == subprog_end - 1) { 1174 /* to avoid fall-through from one subprog into another 1175 * the last insn of the subprog should be either exit 1176 * or unconditional jump back 1177 */ 1178 if (code != (BPF_JMP | BPF_EXIT) && 1179 code != (BPF_JMP | BPF_JA)) { 1180 verbose(env, "last insn is not an exit or jmp\n"); 1181 return -EINVAL; 1182 } 1183 subprog_start = subprog_end; 1184 cur_subprog++; 1185 if (cur_subprog < env->subprog_cnt) 1186 subprog_end = subprog[cur_subprog + 1].start; 1187 } 1188 } 1189 return 0; 1190 } 1191 1192 /* Parentage chain of this register (or stack slot) should take care of all 1193 * issues like callee-saved registers, stack slot allocation time, etc. 1194 */ 1195 static int mark_reg_read(struct bpf_verifier_env *env, 1196 const struct bpf_reg_state *state, 1197 struct bpf_reg_state *parent, u8 flag) 1198 { 1199 bool writes = parent == state->parent; /* Observe write marks */ 1200 int cnt = 0; 1201 1202 while (parent) { 1203 /* if read wasn't screened by an earlier write ... */ 1204 if (writes && state->live & REG_LIVE_WRITTEN) 1205 break; 1206 if (parent->live & REG_LIVE_DONE) { 1207 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1208 reg_type_str[parent->type], 1209 parent->var_off.value, parent->off); 1210 return -EFAULT; 1211 } 1212 /* The first condition is more likely to be true than the 1213 * second, checked it first. 1214 */ 1215 if ((parent->live & REG_LIVE_READ) == flag || 1216 parent->live & REG_LIVE_READ64) 1217 /* The parentage chain never changes and 1218 * this parent was already marked as LIVE_READ. 1219 * There is no need to keep walking the chain again and 1220 * keep re-marking all parents as LIVE_READ. 1221 * This case happens when the same register is read 1222 * multiple times without writes into it in-between. 1223 * Also, if parent has the stronger REG_LIVE_READ64 set, 1224 * then no need to set the weak REG_LIVE_READ32. 1225 */ 1226 break; 1227 /* ... then we depend on parent's value */ 1228 parent->live |= flag; 1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1230 if (flag == REG_LIVE_READ64) 1231 parent->live &= ~REG_LIVE_READ32; 1232 state = parent; 1233 parent = state->parent; 1234 writes = true; 1235 cnt++; 1236 } 1237 1238 if (env->longest_mark_read_walk < cnt) 1239 env->longest_mark_read_walk = cnt; 1240 return 0; 1241 } 1242 1243 /* This function is supposed to be used by the following 32-bit optimization 1244 * code only. It returns TRUE if the source or destination register operates 1245 * on 64-bit, otherwise return FALSE. 1246 */ 1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1248 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1249 { 1250 u8 code, class, op; 1251 1252 code = insn->code; 1253 class = BPF_CLASS(code); 1254 op = BPF_OP(code); 1255 if (class == BPF_JMP) { 1256 /* BPF_EXIT for "main" will reach here. Return TRUE 1257 * conservatively. 1258 */ 1259 if (op == BPF_EXIT) 1260 return true; 1261 if (op == BPF_CALL) { 1262 /* BPF to BPF call will reach here because of marking 1263 * caller saved clobber with DST_OP_NO_MARK for which we 1264 * don't care the register def because they are anyway 1265 * marked as NOT_INIT already. 1266 */ 1267 if (insn->src_reg == BPF_PSEUDO_CALL) 1268 return false; 1269 /* Helper call will reach here because of arg type 1270 * check, conservatively return TRUE. 1271 */ 1272 if (t == SRC_OP) 1273 return true; 1274 1275 return false; 1276 } 1277 } 1278 1279 if (class == BPF_ALU64 || class == BPF_JMP || 1280 /* BPF_END always use BPF_ALU class. */ 1281 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1282 return true; 1283 1284 if (class == BPF_ALU || class == BPF_JMP32) 1285 return false; 1286 1287 if (class == BPF_LDX) { 1288 if (t != SRC_OP) 1289 return BPF_SIZE(code) == BPF_DW; 1290 /* LDX source must be ptr. */ 1291 return true; 1292 } 1293 1294 if (class == BPF_STX) { 1295 if (reg->type != SCALAR_VALUE) 1296 return true; 1297 return BPF_SIZE(code) == BPF_DW; 1298 } 1299 1300 if (class == BPF_LD) { 1301 u8 mode = BPF_MODE(code); 1302 1303 /* LD_IMM64 */ 1304 if (mode == BPF_IMM) 1305 return true; 1306 1307 /* Both LD_IND and LD_ABS return 32-bit data. */ 1308 if (t != SRC_OP) 1309 return false; 1310 1311 /* Implicit ctx ptr. */ 1312 if (regno == BPF_REG_6) 1313 return true; 1314 1315 /* Explicit source could be any width. */ 1316 return true; 1317 } 1318 1319 if (class == BPF_ST) 1320 /* The only source register for BPF_ST is a ptr. */ 1321 return true; 1322 1323 /* Conservatively return true at default. */ 1324 return true; 1325 } 1326 1327 /* Return TRUE if INSN doesn't have explicit value define. */ 1328 static bool insn_no_def(struct bpf_insn *insn) 1329 { 1330 u8 class = BPF_CLASS(insn->code); 1331 1332 return (class == BPF_JMP || class == BPF_JMP32 || 1333 class == BPF_STX || class == BPF_ST); 1334 } 1335 1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1338 { 1339 if (insn_no_def(insn)) 1340 return false; 1341 1342 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1343 } 1344 1345 static void mark_insn_zext(struct bpf_verifier_env *env, 1346 struct bpf_reg_state *reg) 1347 { 1348 s32 def_idx = reg->subreg_def; 1349 1350 if (def_idx == DEF_NOT_SUBREG) 1351 return; 1352 1353 env->insn_aux_data[def_idx - 1].zext_dst = true; 1354 /* The dst will be zero extended, so won't be sub-register anymore. */ 1355 reg->subreg_def = DEF_NOT_SUBREG; 1356 } 1357 1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1359 enum reg_arg_type t) 1360 { 1361 struct bpf_verifier_state *vstate = env->cur_state; 1362 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1363 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1364 struct bpf_reg_state *reg, *regs = state->regs; 1365 bool rw64; 1366 1367 if (regno >= MAX_BPF_REG) { 1368 verbose(env, "R%d is invalid\n", regno); 1369 return -EINVAL; 1370 } 1371 1372 reg = ®s[regno]; 1373 rw64 = is_reg64(env, insn, regno, reg, t); 1374 if (t == SRC_OP) { 1375 /* check whether register used as source operand can be read */ 1376 if (reg->type == NOT_INIT) { 1377 verbose(env, "R%d !read_ok\n", regno); 1378 return -EACCES; 1379 } 1380 /* We don't need to worry about FP liveness because it's read-only */ 1381 if (regno == BPF_REG_FP) 1382 return 0; 1383 1384 if (rw64) 1385 mark_insn_zext(env, reg); 1386 1387 return mark_reg_read(env, reg, reg->parent, 1388 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1389 } else { 1390 /* check whether register used as dest operand can be written to */ 1391 if (regno == BPF_REG_FP) { 1392 verbose(env, "frame pointer is read only\n"); 1393 return -EACCES; 1394 } 1395 reg->live |= REG_LIVE_WRITTEN; 1396 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1397 if (t == DST_OP) 1398 mark_reg_unknown(env, regs, regno); 1399 } 1400 return 0; 1401 } 1402 1403 /* for any branch, call, exit record the history of jmps in the given state */ 1404 static int push_jmp_history(struct bpf_verifier_env *env, 1405 struct bpf_verifier_state *cur) 1406 { 1407 u32 cnt = cur->jmp_history_cnt; 1408 struct bpf_idx_pair *p; 1409 1410 cnt++; 1411 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1412 if (!p) 1413 return -ENOMEM; 1414 p[cnt - 1].idx = env->insn_idx; 1415 p[cnt - 1].prev_idx = env->prev_insn_idx; 1416 cur->jmp_history = p; 1417 cur->jmp_history_cnt = cnt; 1418 return 0; 1419 } 1420 1421 /* Backtrack one insn at a time. If idx is not at the top of recorded 1422 * history then previous instruction came from straight line execution. 1423 */ 1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1425 u32 *history) 1426 { 1427 u32 cnt = *history; 1428 1429 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1430 i = st->jmp_history[cnt - 1].prev_idx; 1431 (*history)--; 1432 } else { 1433 i--; 1434 } 1435 return i; 1436 } 1437 1438 /* For given verifier state backtrack_insn() is called from the last insn to 1439 * the first insn. Its purpose is to compute a bitmask of registers and 1440 * stack slots that needs precision in the parent verifier state. 1441 */ 1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1443 u32 *reg_mask, u64 *stack_mask) 1444 { 1445 const struct bpf_insn_cbs cbs = { 1446 .cb_print = verbose, 1447 .private_data = env, 1448 }; 1449 struct bpf_insn *insn = env->prog->insnsi + idx; 1450 u8 class = BPF_CLASS(insn->code); 1451 u8 opcode = BPF_OP(insn->code); 1452 u8 mode = BPF_MODE(insn->code); 1453 u32 dreg = 1u << insn->dst_reg; 1454 u32 sreg = 1u << insn->src_reg; 1455 u32 spi; 1456 1457 if (insn->code == 0) 1458 return 0; 1459 if (env->log.level & BPF_LOG_LEVEL) { 1460 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1461 verbose(env, "%d: ", idx); 1462 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1463 } 1464 1465 if (class == BPF_ALU || class == BPF_ALU64) { 1466 if (!(*reg_mask & dreg)) 1467 return 0; 1468 if (opcode == BPF_MOV) { 1469 if (BPF_SRC(insn->code) == BPF_X) { 1470 /* dreg = sreg 1471 * dreg needs precision after this insn 1472 * sreg needs precision before this insn 1473 */ 1474 *reg_mask &= ~dreg; 1475 *reg_mask |= sreg; 1476 } else { 1477 /* dreg = K 1478 * dreg needs precision after this insn. 1479 * Corresponding register is already marked 1480 * as precise=true in this verifier state. 1481 * No further markings in parent are necessary 1482 */ 1483 *reg_mask &= ~dreg; 1484 } 1485 } else { 1486 if (BPF_SRC(insn->code) == BPF_X) { 1487 /* dreg += sreg 1488 * both dreg and sreg need precision 1489 * before this insn 1490 */ 1491 *reg_mask |= sreg; 1492 } /* else dreg += K 1493 * dreg still needs precision before this insn 1494 */ 1495 } 1496 } else if (class == BPF_LDX) { 1497 if (!(*reg_mask & dreg)) 1498 return 0; 1499 *reg_mask &= ~dreg; 1500 1501 /* scalars can only be spilled into stack w/o losing precision. 1502 * Load from any other memory can be zero extended. 1503 * The desire to keep that precision is already indicated 1504 * by 'precise' mark in corresponding register of this state. 1505 * No further tracking necessary. 1506 */ 1507 if (insn->src_reg != BPF_REG_FP) 1508 return 0; 1509 if (BPF_SIZE(insn->code) != BPF_DW) 1510 return 0; 1511 1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1513 * that [fp - off] slot contains scalar that needs to be 1514 * tracked with precision 1515 */ 1516 spi = (-insn->off - 1) / BPF_REG_SIZE; 1517 if (spi >= 64) { 1518 verbose(env, "BUG spi %d\n", spi); 1519 WARN_ONCE(1, "verifier backtracking bug"); 1520 return -EFAULT; 1521 } 1522 *stack_mask |= 1ull << spi; 1523 } else if (class == BPF_STX || class == BPF_ST) { 1524 if (*reg_mask & dreg) 1525 /* stx & st shouldn't be using _scalar_ dst_reg 1526 * to access memory. It means backtracking 1527 * encountered a case of pointer subtraction. 1528 */ 1529 return -ENOTSUPP; 1530 /* scalars can only be spilled into stack */ 1531 if (insn->dst_reg != BPF_REG_FP) 1532 return 0; 1533 if (BPF_SIZE(insn->code) != BPF_DW) 1534 return 0; 1535 spi = (-insn->off - 1) / BPF_REG_SIZE; 1536 if (spi >= 64) { 1537 verbose(env, "BUG spi %d\n", spi); 1538 WARN_ONCE(1, "verifier backtracking bug"); 1539 return -EFAULT; 1540 } 1541 if (!(*stack_mask & (1ull << spi))) 1542 return 0; 1543 *stack_mask &= ~(1ull << spi); 1544 if (class == BPF_STX) 1545 *reg_mask |= sreg; 1546 } else if (class == BPF_JMP || class == BPF_JMP32) { 1547 if (opcode == BPF_CALL) { 1548 if (insn->src_reg == BPF_PSEUDO_CALL) 1549 return -ENOTSUPP; 1550 /* regular helper call sets R0 */ 1551 *reg_mask &= ~1; 1552 if (*reg_mask & 0x3f) { 1553 /* if backtracing was looking for registers R1-R5 1554 * they should have been found already. 1555 */ 1556 verbose(env, "BUG regs %x\n", *reg_mask); 1557 WARN_ONCE(1, "verifier backtracking bug"); 1558 return -EFAULT; 1559 } 1560 } else if (opcode == BPF_EXIT) { 1561 return -ENOTSUPP; 1562 } 1563 } else if (class == BPF_LD) { 1564 if (!(*reg_mask & dreg)) 1565 return 0; 1566 *reg_mask &= ~dreg; 1567 /* It's ld_imm64 or ld_abs or ld_ind. 1568 * For ld_imm64 no further tracking of precision 1569 * into parent is necessary 1570 */ 1571 if (mode == BPF_IND || mode == BPF_ABS) 1572 /* to be analyzed */ 1573 return -ENOTSUPP; 1574 } 1575 return 0; 1576 } 1577 1578 /* the scalar precision tracking algorithm: 1579 * . at the start all registers have precise=false. 1580 * . scalar ranges are tracked as normal through alu and jmp insns. 1581 * . once precise value of the scalar register is used in: 1582 * . ptr + scalar alu 1583 * . if (scalar cond K|scalar) 1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1585 * backtrack through the verifier states and mark all registers and 1586 * stack slots with spilled constants that these scalar regisers 1587 * should be precise. 1588 * . during state pruning two registers (or spilled stack slots) 1589 * are equivalent if both are not precise. 1590 * 1591 * Note the verifier cannot simply walk register parentage chain, 1592 * since many different registers and stack slots could have been 1593 * used to compute single precise scalar. 1594 * 1595 * The approach of starting with precise=true for all registers and then 1596 * backtrack to mark a register as not precise when the verifier detects 1597 * that program doesn't care about specific value (e.g., when helper 1598 * takes register as ARG_ANYTHING parameter) is not safe. 1599 * 1600 * It's ok to walk single parentage chain of the verifier states. 1601 * It's possible that this backtracking will go all the way till 1st insn. 1602 * All other branches will be explored for needing precision later. 1603 * 1604 * The backtracking needs to deal with cases like: 1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1606 * r9 -= r8 1607 * r5 = r9 1608 * if r5 > 0x79f goto pc+7 1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1610 * r5 += 1 1611 * ... 1612 * call bpf_perf_event_output#25 1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1614 * 1615 * and this case: 1616 * r6 = 1 1617 * call foo // uses callee's r6 inside to compute r0 1618 * r0 += r6 1619 * if r0 == 0 goto 1620 * 1621 * to track above reg_mask/stack_mask needs to be independent for each frame. 1622 * 1623 * Also if parent's curframe > frame where backtracking started, 1624 * the verifier need to mark registers in both frames, otherwise callees 1625 * may incorrectly prune callers. This is similar to 1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1627 * 1628 * For now backtracking falls back into conservative marking. 1629 */ 1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1631 struct bpf_verifier_state *st) 1632 { 1633 struct bpf_func_state *func; 1634 struct bpf_reg_state *reg; 1635 int i, j; 1636 1637 /* big hammer: mark all scalars precise in this path. 1638 * pop_stack may still get !precise scalars. 1639 */ 1640 for (; st; st = st->parent) 1641 for (i = 0; i <= st->curframe; i++) { 1642 func = st->frame[i]; 1643 for (j = 0; j < BPF_REG_FP; j++) { 1644 reg = &func->regs[j]; 1645 if (reg->type != SCALAR_VALUE) 1646 continue; 1647 reg->precise = true; 1648 } 1649 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1650 if (func->stack[j].slot_type[0] != STACK_SPILL) 1651 continue; 1652 reg = &func->stack[j].spilled_ptr; 1653 if (reg->type != SCALAR_VALUE) 1654 continue; 1655 reg->precise = true; 1656 } 1657 } 1658 } 1659 1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1661 int spi) 1662 { 1663 struct bpf_verifier_state *st = env->cur_state; 1664 int first_idx = st->first_insn_idx; 1665 int last_idx = env->insn_idx; 1666 struct bpf_func_state *func; 1667 struct bpf_reg_state *reg; 1668 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1669 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1670 bool skip_first = true; 1671 bool new_marks = false; 1672 int i, err; 1673 1674 if (!env->allow_ptr_leaks) 1675 /* backtracking is root only for now */ 1676 return 0; 1677 1678 func = st->frame[st->curframe]; 1679 if (regno >= 0) { 1680 reg = &func->regs[regno]; 1681 if (reg->type != SCALAR_VALUE) { 1682 WARN_ONCE(1, "backtracing misuse"); 1683 return -EFAULT; 1684 } 1685 if (!reg->precise) 1686 new_marks = true; 1687 else 1688 reg_mask = 0; 1689 reg->precise = true; 1690 } 1691 1692 while (spi >= 0) { 1693 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1694 stack_mask = 0; 1695 break; 1696 } 1697 reg = &func->stack[spi].spilled_ptr; 1698 if (reg->type != SCALAR_VALUE) { 1699 stack_mask = 0; 1700 break; 1701 } 1702 if (!reg->precise) 1703 new_marks = true; 1704 else 1705 stack_mask = 0; 1706 reg->precise = true; 1707 break; 1708 } 1709 1710 if (!new_marks) 1711 return 0; 1712 if (!reg_mask && !stack_mask) 1713 return 0; 1714 for (;;) { 1715 DECLARE_BITMAP(mask, 64); 1716 u32 history = st->jmp_history_cnt; 1717 1718 if (env->log.level & BPF_LOG_LEVEL) 1719 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1720 for (i = last_idx;;) { 1721 if (skip_first) { 1722 err = 0; 1723 skip_first = false; 1724 } else { 1725 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1726 } 1727 if (err == -ENOTSUPP) { 1728 mark_all_scalars_precise(env, st); 1729 return 0; 1730 } else if (err) { 1731 return err; 1732 } 1733 if (!reg_mask && !stack_mask) 1734 /* Found assignment(s) into tracked register in this state. 1735 * Since this state is already marked, just return. 1736 * Nothing to be tracked further in the parent state. 1737 */ 1738 return 0; 1739 if (i == first_idx) 1740 break; 1741 i = get_prev_insn_idx(st, i, &history); 1742 if (i >= env->prog->len) { 1743 /* This can happen if backtracking reached insn 0 1744 * and there are still reg_mask or stack_mask 1745 * to backtrack. 1746 * It means the backtracking missed the spot where 1747 * particular register was initialized with a constant. 1748 */ 1749 verbose(env, "BUG backtracking idx %d\n", i); 1750 WARN_ONCE(1, "verifier backtracking bug"); 1751 return -EFAULT; 1752 } 1753 } 1754 st = st->parent; 1755 if (!st) 1756 break; 1757 1758 new_marks = false; 1759 func = st->frame[st->curframe]; 1760 bitmap_from_u64(mask, reg_mask); 1761 for_each_set_bit(i, mask, 32) { 1762 reg = &func->regs[i]; 1763 if (reg->type != SCALAR_VALUE) { 1764 reg_mask &= ~(1u << i); 1765 continue; 1766 } 1767 if (!reg->precise) 1768 new_marks = true; 1769 reg->precise = true; 1770 } 1771 1772 bitmap_from_u64(mask, stack_mask); 1773 for_each_set_bit(i, mask, 64) { 1774 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1775 /* This can happen if backtracking 1776 * is propagating stack precision where 1777 * caller has larger stack frame 1778 * than callee, but backtrack_insn() should 1779 * have returned -ENOTSUPP. 1780 */ 1781 verbose(env, "BUG spi %d stack_size %d\n", 1782 i, func->allocated_stack); 1783 WARN_ONCE(1, "verifier backtracking bug"); 1784 return -EFAULT; 1785 } 1786 1787 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1788 stack_mask &= ~(1ull << i); 1789 continue; 1790 } 1791 reg = &func->stack[i].spilled_ptr; 1792 if (reg->type != SCALAR_VALUE) { 1793 stack_mask &= ~(1ull << i); 1794 continue; 1795 } 1796 if (!reg->precise) 1797 new_marks = true; 1798 reg->precise = true; 1799 } 1800 if (env->log.level & BPF_LOG_LEVEL) { 1801 print_verifier_state(env, func); 1802 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1803 new_marks ? "didn't have" : "already had", 1804 reg_mask, stack_mask); 1805 } 1806 1807 if (!reg_mask && !stack_mask) 1808 break; 1809 if (!new_marks) 1810 break; 1811 1812 last_idx = st->last_insn_idx; 1813 first_idx = st->first_insn_idx; 1814 } 1815 return 0; 1816 } 1817 1818 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1819 { 1820 return __mark_chain_precision(env, regno, -1); 1821 } 1822 1823 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1824 { 1825 return __mark_chain_precision(env, -1, spi); 1826 } 1827 1828 static bool is_spillable_regtype(enum bpf_reg_type type) 1829 { 1830 switch (type) { 1831 case PTR_TO_MAP_VALUE: 1832 case PTR_TO_MAP_VALUE_OR_NULL: 1833 case PTR_TO_STACK: 1834 case PTR_TO_CTX: 1835 case PTR_TO_PACKET: 1836 case PTR_TO_PACKET_META: 1837 case PTR_TO_PACKET_END: 1838 case PTR_TO_FLOW_KEYS: 1839 case CONST_PTR_TO_MAP: 1840 case PTR_TO_SOCKET: 1841 case PTR_TO_SOCKET_OR_NULL: 1842 case PTR_TO_SOCK_COMMON: 1843 case PTR_TO_SOCK_COMMON_OR_NULL: 1844 case PTR_TO_TCP_SOCK: 1845 case PTR_TO_TCP_SOCK_OR_NULL: 1846 case PTR_TO_XDP_SOCK: 1847 return true; 1848 default: 1849 return false; 1850 } 1851 } 1852 1853 /* Does this register contain a constant zero? */ 1854 static bool register_is_null(struct bpf_reg_state *reg) 1855 { 1856 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1857 } 1858 1859 static bool register_is_const(struct bpf_reg_state *reg) 1860 { 1861 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1862 } 1863 1864 static void save_register_state(struct bpf_func_state *state, 1865 int spi, struct bpf_reg_state *reg) 1866 { 1867 int i; 1868 1869 state->stack[spi].spilled_ptr = *reg; 1870 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1871 1872 for (i = 0; i < BPF_REG_SIZE; i++) 1873 state->stack[spi].slot_type[i] = STACK_SPILL; 1874 } 1875 1876 /* check_stack_read/write functions track spill/fill of registers, 1877 * stack boundary and alignment are checked in check_mem_access() 1878 */ 1879 static int check_stack_write(struct bpf_verifier_env *env, 1880 struct bpf_func_state *state, /* func where register points to */ 1881 int off, int size, int value_regno, int insn_idx) 1882 { 1883 struct bpf_func_state *cur; /* state of the current function */ 1884 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1885 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1886 struct bpf_reg_state *reg = NULL; 1887 1888 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1889 state->acquired_refs, true); 1890 if (err) 1891 return err; 1892 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1893 * so it's aligned access and [off, off + size) are within stack limits 1894 */ 1895 if (!env->allow_ptr_leaks && 1896 state->stack[spi].slot_type[0] == STACK_SPILL && 1897 size != BPF_REG_SIZE) { 1898 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1899 return -EACCES; 1900 } 1901 1902 cur = env->cur_state->frame[env->cur_state->curframe]; 1903 if (value_regno >= 0) 1904 reg = &cur->regs[value_regno]; 1905 1906 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1907 !register_is_null(reg) && env->allow_ptr_leaks) { 1908 if (dst_reg != BPF_REG_FP) { 1909 /* The backtracking logic can only recognize explicit 1910 * stack slot address like [fp - 8]. Other spill of 1911 * scalar via different register has to be conervative. 1912 * Backtrack from here and mark all registers as precise 1913 * that contributed into 'reg' being a constant. 1914 */ 1915 err = mark_chain_precision(env, value_regno); 1916 if (err) 1917 return err; 1918 } 1919 save_register_state(state, spi, reg); 1920 } else if (reg && is_spillable_regtype(reg->type)) { 1921 /* register containing pointer is being spilled into stack */ 1922 if (size != BPF_REG_SIZE) { 1923 verbose_linfo(env, insn_idx, "; "); 1924 verbose(env, "invalid size of register spill\n"); 1925 return -EACCES; 1926 } 1927 1928 if (state != cur && reg->type == PTR_TO_STACK) { 1929 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1930 return -EINVAL; 1931 } 1932 1933 if (!env->allow_ptr_leaks) { 1934 bool sanitize = false; 1935 1936 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1937 register_is_const(&state->stack[spi].spilled_ptr)) 1938 sanitize = true; 1939 for (i = 0; i < BPF_REG_SIZE; i++) 1940 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1941 sanitize = true; 1942 break; 1943 } 1944 if (sanitize) { 1945 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1946 int soff = (-spi - 1) * BPF_REG_SIZE; 1947 1948 /* detected reuse of integer stack slot with a pointer 1949 * which means either llvm is reusing stack slot or 1950 * an attacker is trying to exploit CVE-2018-3639 1951 * (speculative store bypass) 1952 * Have to sanitize that slot with preemptive 1953 * store of zero. 1954 */ 1955 if (*poff && *poff != soff) { 1956 /* disallow programs where single insn stores 1957 * into two different stack slots, since verifier 1958 * cannot sanitize them 1959 */ 1960 verbose(env, 1961 "insn %d cannot access two stack slots fp%d and fp%d", 1962 insn_idx, *poff, soff); 1963 return -EINVAL; 1964 } 1965 *poff = soff; 1966 } 1967 } 1968 save_register_state(state, spi, reg); 1969 } else { 1970 u8 type = STACK_MISC; 1971 1972 /* regular write of data into stack destroys any spilled ptr */ 1973 state->stack[spi].spilled_ptr.type = NOT_INIT; 1974 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1975 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1976 for (i = 0; i < BPF_REG_SIZE; i++) 1977 state->stack[spi].slot_type[i] = STACK_MISC; 1978 1979 /* only mark the slot as written if all 8 bytes were written 1980 * otherwise read propagation may incorrectly stop too soon 1981 * when stack slots are partially written. 1982 * This heuristic means that read propagation will be 1983 * conservative, since it will add reg_live_read marks 1984 * to stack slots all the way to first state when programs 1985 * writes+reads less than 8 bytes 1986 */ 1987 if (size == BPF_REG_SIZE) 1988 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1989 1990 /* when we zero initialize stack slots mark them as such */ 1991 if (reg && register_is_null(reg)) { 1992 /* backtracking doesn't work for STACK_ZERO yet. */ 1993 err = mark_chain_precision(env, value_regno); 1994 if (err) 1995 return err; 1996 type = STACK_ZERO; 1997 } 1998 1999 /* Mark slots affected by this stack write. */ 2000 for (i = 0; i < size; i++) 2001 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2002 type; 2003 } 2004 return 0; 2005 } 2006 2007 static int check_stack_read(struct bpf_verifier_env *env, 2008 struct bpf_func_state *reg_state /* func where register points to */, 2009 int off, int size, int value_regno) 2010 { 2011 struct bpf_verifier_state *vstate = env->cur_state; 2012 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2013 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2014 struct bpf_reg_state *reg; 2015 u8 *stype; 2016 2017 if (reg_state->allocated_stack <= slot) { 2018 verbose(env, "invalid read from stack off %d+0 size %d\n", 2019 off, size); 2020 return -EACCES; 2021 } 2022 stype = reg_state->stack[spi].slot_type; 2023 reg = ®_state->stack[spi].spilled_ptr; 2024 2025 if (stype[0] == STACK_SPILL) { 2026 if (size != BPF_REG_SIZE) { 2027 if (reg->type != SCALAR_VALUE) { 2028 verbose_linfo(env, env->insn_idx, "; "); 2029 verbose(env, "invalid size of register fill\n"); 2030 return -EACCES; 2031 } 2032 if (value_regno >= 0) { 2033 mark_reg_unknown(env, state->regs, value_regno); 2034 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2035 } 2036 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2037 return 0; 2038 } 2039 for (i = 1; i < BPF_REG_SIZE; i++) { 2040 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2041 verbose(env, "corrupted spill memory\n"); 2042 return -EACCES; 2043 } 2044 } 2045 2046 if (value_regno >= 0) { 2047 /* restore register state from stack */ 2048 state->regs[value_regno] = *reg; 2049 /* mark reg as written since spilled pointer state likely 2050 * has its liveness marks cleared by is_state_visited() 2051 * which resets stack/reg liveness for state transitions 2052 */ 2053 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2054 } 2055 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2056 } else { 2057 int zeros = 0; 2058 2059 for (i = 0; i < size; i++) { 2060 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2061 continue; 2062 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2063 zeros++; 2064 continue; 2065 } 2066 verbose(env, "invalid read from stack off %d+%d size %d\n", 2067 off, i, size); 2068 return -EACCES; 2069 } 2070 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2071 if (value_regno >= 0) { 2072 if (zeros == size) { 2073 /* any size read into register is zero extended, 2074 * so the whole register == const_zero 2075 */ 2076 __mark_reg_const_zero(&state->regs[value_regno]); 2077 /* backtracking doesn't support STACK_ZERO yet, 2078 * so mark it precise here, so that later 2079 * backtracking can stop here. 2080 * Backtracking may not need this if this register 2081 * doesn't participate in pointer adjustment. 2082 * Forward propagation of precise flag is not 2083 * necessary either. This mark is only to stop 2084 * backtracking. Any register that contributed 2085 * to const 0 was marked precise before spill. 2086 */ 2087 state->regs[value_regno].precise = true; 2088 } else { 2089 /* have read misc data from the stack */ 2090 mark_reg_unknown(env, state->regs, value_regno); 2091 } 2092 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2093 } 2094 } 2095 return 0; 2096 } 2097 2098 static int check_stack_access(struct bpf_verifier_env *env, 2099 const struct bpf_reg_state *reg, 2100 int off, int size) 2101 { 2102 /* Stack accesses must be at a fixed offset, so that we 2103 * can determine what type of data were returned. See 2104 * check_stack_read(). 2105 */ 2106 if (!tnum_is_const(reg->var_off)) { 2107 char tn_buf[48]; 2108 2109 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2110 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2111 tn_buf, off, size); 2112 return -EACCES; 2113 } 2114 2115 if (off >= 0 || off < -MAX_BPF_STACK) { 2116 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2117 return -EACCES; 2118 } 2119 2120 return 0; 2121 } 2122 2123 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2124 int off, int size, enum bpf_access_type type) 2125 { 2126 struct bpf_reg_state *regs = cur_regs(env); 2127 struct bpf_map *map = regs[regno].map_ptr; 2128 u32 cap = bpf_map_flags_to_cap(map); 2129 2130 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2131 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2132 map->value_size, off, size); 2133 return -EACCES; 2134 } 2135 2136 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2137 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2138 map->value_size, off, size); 2139 return -EACCES; 2140 } 2141 2142 return 0; 2143 } 2144 2145 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2146 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2147 int size, bool zero_size_allowed) 2148 { 2149 struct bpf_reg_state *regs = cur_regs(env); 2150 struct bpf_map *map = regs[regno].map_ptr; 2151 2152 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2153 off + size > map->value_size) { 2154 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2155 map->value_size, off, size); 2156 return -EACCES; 2157 } 2158 return 0; 2159 } 2160 2161 /* check read/write into a map element with possible variable offset */ 2162 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2163 int off, int size, bool zero_size_allowed) 2164 { 2165 struct bpf_verifier_state *vstate = env->cur_state; 2166 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2167 struct bpf_reg_state *reg = &state->regs[regno]; 2168 int err; 2169 2170 /* We may have adjusted the register to this map value, so we 2171 * need to try adding each of min_value and max_value to off 2172 * to make sure our theoretical access will be safe. 2173 */ 2174 if (env->log.level & BPF_LOG_LEVEL) 2175 print_verifier_state(env, state); 2176 2177 /* The minimum value is only important with signed 2178 * comparisons where we can't assume the floor of a 2179 * value is 0. If we are using signed variables for our 2180 * index'es we need to make sure that whatever we use 2181 * will have a set floor within our range. 2182 */ 2183 if (reg->smin_value < 0 && 2184 (reg->smin_value == S64_MIN || 2185 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2186 reg->smin_value + off < 0)) { 2187 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2188 regno); 2189 return -EACCES; 2190 } 2191 err = __check_map_access(env, regno, reg->smin_value + off, size, 2192 zero_size_allowed); 2193 if (err) { 2194 verbose(env, "R%d min value is outside of the array range\n", 2195 regno); 2196 return err; 2197 } 2198 2199 /* If we haven't set a max value then we need to bail since we can't be 2200 * sure we won't do bad things. 2201 * If reg->umax_value + off could overflow, treat that as unbounded too. 2202 */ 2203 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2204 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2205 regno); 2206 return -EACCES; 2207 } 2208 err = __check_map_access(env, regno, reg->umax_value + off, size, 2209 zero_size_allowed); 2210 if (err) 2211 verbose(env, "R%d max value is outside of the array range\n", 2212 regno); 2213 2214 if (map_value_has_spin_lock(reg->map_ptr)) { 2215 u32 lock = reg->map_ptr->spin_lock_off; 2216 2217 /* if any part of struct bpf_spin_lock can be touched by 2218 * load/store reject this program. 2219 * To check that [x1, x2) overlaps with [y1, y2) 2220 * it is sufficient to check x1 < y2 && y1 < x2. 2221 */ 2222 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2223 lock < reg->umax_value + off + size) { 2224 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2225 return -EACCES; 2226 } 2227 } 2228 return err; 2229 } 2230 2231 #define MAX_PACKET_OFF 0xffff 2232 2233 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2234 const struct bpf_call_arg_meta *meta, 2235 enum bpf_access_type t) 2236 { 2237 switch (env->prog->type) { 2238 /* Program types only with direct read access go here! */ 2239 case BPF_PROG_TYPE_LWT_IN: 2240 case BPF_PROG_TYPE_LWT_OUT: 2241 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2242 case BPF_PROG_TYPE_SK_REUSEPORT: 2243 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2244 case BPF_PROG_TYPE_CGROUP_SKB: 2245 if (t == BPF_WRITE) 2246 return false; 2247 /* fallthrough */ 2248 2249 /* Program types with direct read + write access go here! */ 2250 case BPF_PROG_TYPE_SCHED_CLS: 2251 case BPF_PROG_TYPE_SCHED_ACT: 2252 case BPF_PROG_TYPE_XDP: 2253 case BPF_PROG_TYPE_LWT_XMIT: 2254 case BPF_PROG_TYPE_SK_SKB: 2255 case BPF_PROG_TYPE_SK_MSG: 2256 if (meta) 2257 return meta->pkt_access; 2258 2259 env->seen_direct_write = true; 2260 return true; 2261 2262 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2263 if (t == BPF_WRITE) 2264 env->seen_direct_write = true; 2265 2266 return true; 2267 2268 default: 2269 return false; 2270 } 2271 } 2272 2273 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2274 int off, int size, bool zero_size_allowed) 2275 { 2276 struct bpf_reg_state *regs = cur_regs(env); 2277 struct bpf_reg_state *reg = ®s[regno]; 2278 2279 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2280 (u64)off + size > reg->range) { 2281 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2282 off, size, regno, reg->id, reg->off, reg->range); 2283 return -EACCES; 2284 } 2285 return 0; 2286 } 2287 2288 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2289 int size, bool zero_size_allowed) 2290 { 2291 struct bpf_reg_state *regs = cur_regs(env); 2292 struct bpf_reg_state *reg = ®s[regno]; 2293 int err; 2294 2295 /* We may have added a variable offset to the packet pointer; but any 2296 * reg->range we have comes after that. We are only checking the fixed 2297 * offset. 2298 */ 2299 2300 /* We don't allow negative numbers, because we aren't tracking enough 2301 * detail to prove they're safe. 2302 */ 2303 if (reg->smin_value < 0) { 2304 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2305 regno); 2306 return -EACCES; 2307 } 2308 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2309 if (err) { 2310 verbose(env, "R%d offset is outside of the packet\n", regno); 2311 return err; 2312 } 2313 2314 /* __check_packet_access has made sure "off + size - 1" is within u16. 2315 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2316 * otherwise find_good_pkt_pointers would have refused to set range info 2317 * that __check_packet_access would have rejected this pkt access. 2318 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2319 */ 2320 env->prog->aux->max_pkt_offset = 2321 max_t(u32, env->prog->aux->max_pkt_offset, 2322 off + reg->umax_value + size - 1); 2323 2324 return err; 2325 } 2326 2327 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2328 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2329 enum bpf_access_type t, enum bpf_reg_type *reg_type) 2330 { 2331 struct bpf_insn_access_aux info = { 2332 .reg_type = *reg_type, 2333 }; 2334 2335 if (env->ops->is_valid_access && 2336 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2337 /* A non zero info.ctx_field_size indicates that this field is a 2338 * candidate for later verifier transformation to load the whole 2339 * field and then apply a mask when accessed with a narrower 2340 * access than actual ctx access size. A zero info.ctx_field_size 2341 * will only allow for whole field access and rejects any other 2342 * type of narrower access. 2343 */ 2344 *reg_type = info.reg_type; 2345 2346 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2347 /* remember the offset of last byte accessed in ctx */ 2348 if (env->prog->aux->max_ctx_offset < off + size) 2349 env->prog->aux->max_ctx_offset = off + size; 2350 return 0; 2351 } 2352 2353 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2354 return -EACCES; 2355 } 2356 2357 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2358 int size) 2359 { 2360 if (size < 0 || off < 0 || 2361 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2362 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2363 off, size); 2364 return -EACCES; 2365 } 2366 return 0; 2367 } 2368 2369 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2370 u32 regno, int off, int size, 2371 enum bpf_access_type t) 2372 { 2373 struct bpf_reg_state *regs = cur_regs(env); 2374 struct bpf_reg_state *reg = ®s[regno]; 2375 struct bpf_insn_access_aux info = {}; 2376 bool valid; 2377 2378 if (reg->smin_value < 0) { 2379 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2380 regno); 2381 return -EACCES; 2382 } 2383 2384 switch (reg->type) { 2385 case PTR_TO_SOCK_COMMON: 2386 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2387 break; 2388 case PTR_TO_SOCKET: 2389 valid = bpf_sock_is_valid_access(off, size, t, &info); 2390 break; 2391 case PTR_TO_TCP_SOCK: 2392 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2393 break; 2394 case PTR_TO_XDP_SOCK: 2395 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2396 break; 2397 default: 2398 valid = false; 2399 } 2400 2401 2402 if (valid) { 2403 env->insn_aux_data[insn_idx].ctx_field_size = 2404 info.ctx_field_size; 2405 return 0; 2406 } 2407 2408 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2409 regno, reg_type_str[reg->type], off, size); 2410 2411 return -EACCES; 2412 } 2413 2414 static bool __is_pointer_value(bool allow_ptr_leaks, 2415 const struct bpf_reg_state *reg) 2416 { 2417 if (allow_ptr_leaks) 2418 return false; 2419 2420 return reg->type != SCALAR_VALUE; 2421 } 2422 2423 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2424 { 2425 return cur_regs(env) + regno; 2426 } 2427 2428 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2429 { 2430 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2431 } 2432 2433 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2434 { 2435 const struct bpf_reg_state *reg = reg_state(env, regno); 2436 2437 return reg->type == PTR_TO_CTX; 2438 } 2439 2440 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2441 { 2442 const struct bpf_reg_state *reg = reg_state(env, regno); 2443 2444 return type_is_sk_pointer(reg->type); 2445 } 2446 2447 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2448 { 2449 const struct bpf_reg_state *reg = reg_state(env, regno); 2450 2451 return type_is_pkt_pointer(reg->type); 2452 } 2453 2454 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2455 { 2456 const struct bpf_reg_state *reg = reg_state(env, regno); 2457 2458 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2459 return reg->type == PTR_TO_FLOW_KEYS; 2460 } 2461 2462 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2463 const struct bpf_reg_state *reg, 2464 int off, int size, bool strict) 2465 { 2466 struct tnum reg_off; 2467 int ip_align; 2468 2469 /* Byte size accesses are always allowed. */ 2470 if (!strict || size == 1) 2471 return 0; 2472 2473 /* For platforms that do not have a Kconfig enabling 2474 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2475 * NET_IP_ALIGN is universally set to '2'. And on platforms 2476 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2477 * to this code only in strict mode where we want to emulate 2478 * the NET_IP_ALIGN==2 checking. Therefore use an 2479 * unconditional IP align value of '2'. 2480 */ 2481 ip_align = 2; 2482 2483 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2484 if (!tnum_is_aligned(reg_off, size)) { 2485 char tn_buf[48]; 2486 2487 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2488 verbose(env, 2489 "misaligned packet access off %d+%s+%d+%d size %d\n", 2490 ip_align, tn_buf, reg->off, off, size); 2491 return -EACCES; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2498 const struct bpf_reg_state *reg, 2499 const char *pointer_desc, 2500 int off, int size, bool strict) 2501 { 2502 struct tnum reg_off; 2503 2504 /* Byte size accesses are always allowed. */ 2505 if (!strict || size == 1) 2506 return 0; 2507 2508 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2509 if (!tnum_is_aligned(reg_off, size)) { 2510 char tn_buf[48]; 2511 2512 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2513 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2514 pointer_desc, tn_buf, reg->off, off, size); 2515 return -EACCES; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static int check_ptr_alignment(struct bpf_verifier_env *env, 2522 const struct bpf_reg_state *reg, int off, 2523 int size, bool strict_alignment_once) 2524 { 2525 bool strict = env->strict_alignment || strict_alignment_once; 2526 const char *pointer_desc = ""; 2527 2528 switch (reg->type) { 2529 case PTR_TO_PACKET: 2530 case PTR_TO_PACKET_META: 2531 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2532 * right in front, treat it the very same way. 2533 */ 2534 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2535 case PTR_TO_FLOW_KEYS: 2536 pointer_desc = "flow keys "; 2537 break; 2538 case PTR_TO_MAP_VALUE: 2539 pointer_desc = "value "; 2540 break; 2541 case PTR_TO_CTX: 2542 pointer_desc = "context "; 2543 break; 2544 case PTR_TO_STACK: 2545 pointer_desc = "stack "; 2546 /* The stack spill tracking logic in check_stack_write() 2547 * and check_stack_read() relies on stack accesses being 2548 * aligned. 2549 */ 2550 strict = true; 2551 break; 2552 case PTR_TO_SOCKET: 2553 pointer_desc = "sock "; 2554 break; 2555 case PTR_TO_SOCK_COMMON: 2556 pointer_desc = "sock_common "; 2557 break; 2558 case PTR_TO_TCP_SOCK: 2559 pointer_desc = "tcp_sock "; 2560 break; 2561 case PTR_TO_XDP_SOCK: 2562 pointer_desc = "xdp_sock "; 2563 break; 2564 default: 2565 break; 2566 } 2567 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2568 strict); 2569 } 2570 2571 static int update_stack_depth(struct bpf_verifier_env *env, 2572 const struct bpf_func_state *func, 2573 int off) 2574 { 2575 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2576 2577 if (stack >= -off) 2578 return 0; 2579 2580 /* update known max for given subprogram */ 2581 env->subprog_info[func->subprogno].stack_depth = -off; 2582 return 0; 2583 } 2584 2585 /* starting from main bpf function walk all instructions of the function 2586 * and recursively walk all callees that given function can call. 2587 * Ignore jump and exit insns. 2588 * Since recursion is prevented by check_cfg() this algorithm 2589 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2590 */ 2591 static int check_max_stack_depth(struct bpf_verifier_env *env) 2592 { 2593 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2594 struct bpf_subprog_info *subprog = env->subprog_info; 2595 struct bpf_insn *insn = env->prog->insnsi; 2596 int ret_insn[MAX_CALL_FRAMES]; 2597 int ret_prog[MAX_CALL_FRAMES]; 2598 2599 process_func: 2600 /* round up to 32-bytes, since this is granularity 2601 * of interpreter stack size 2602 */ 2603 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2604 if (depth > MAX_BPF_STACK) { 2605 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2606 frame + 1, depth); 2607 return -EACCES; 2608 } 2609 continue_func: 2610 subprog_end = subprog[idx + 1].start; 2611 for (; i < subprog_end; i++) { 2612 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2613 continue; 2614 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2615 continue; 2616 /* remember insn and function to return to */ 2617 ret_insn[frame] = i + 1; 2618 ret_prog[frame] = idx; 2619 2620 /* find the callee */ 2621 i = i + insn[i].imm + 1; 2622 idx = find_subprog(env, i); 2623 if (idx < 0) { 2624 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2625 i); 2626 return -EFAULT; 2627 } 2628 frame++; 2629 if (frame >= MAX_CALL_FRAMES) { 2630 verbose(env, "the call stack of %d frames is too deep !\n", 2631 frame); 2632 return -E2BIG; 2633 } 2634 goto process_func; 2635 } 2636 /* end of for() loop means the last insn of the 'subprog' 2637 * was reached. Doesn't matter whether it was JA or EXIT 2638 */ 2639 if (frame == 0) 2640 return 0; 2641 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2642 frame--; 2643 i = ret_insn[frame]; 2644 idx = ret_prog[frame]; 2645 goto continue_func; 2646 } 2647 2648 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2649 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2650 const struct bpf_insn *insn, int idx) 2651 { 2652 int start = idx + insn->imm + 1, subprog; 2653 2654 subprog = find_subprog(env, start); 2655 if (subprog < 0) { 2656 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2657 start); 2658 return -EFAULT; 2659 } 2660 return env->subprog_info[subprog].stack_depth; 2661 } 2662 #endif 2663 2664 static int check_ctx_reg(struct bpf_verifier_env *env, 2665 const struct bpf_reg_state *reg, int regno) 2666 { 2667 /* Access to ctx or passing it to a helper is only allowed in 2668 * its original, unmodified form. 2669 */ 2670 2671 if (reg->off) { 2672 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2673 regno, reg->off); 2674 return -EACCES; 2675 } 2676 2677 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2678 char tn_buf[48]; 2679 2680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2681 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2682 return -EACCES; 2683 } 2684 2685 return 0; 2686 } 2687 2688 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2689 const struct bpf_reg_state *reg, 2690 int regno, int off, int size) 2691 { 2692 if (off < 0) { 2693 verbose(env, 2694 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2695 regno, off, size); 2696 return -EACCES; 2697 } 2698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2699 char tn_buf[48]; 2700 2701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2702 verbose(env, 2703 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2704 regno, off, tn_buf); 2705 return -EACCES; 2706 } 2707 if (off + size > env->prog->aux->max_tp_access) 2708 env->prog->aux->max_tp_access = off + size; 2709 2710 return 0; 2711 } 2712 2713 2714 /* truncate register to smaller size (in bytes) 2715 * must be called with size < BPF_REG_SIZE 2716 */ 2717 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2718 { 2719 u64 mask; 2720 2721 /* clear high bits in bit representation */ 2722 reg->var_off = tnum_cast(reg->var_off, size); 2723 2724 /* fix arithmetic bounds */ 2725 mask = ((u64)1 << (size * 8)) - 1; 2726 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2727 reg->umin_value &= mask; 2728 reg->umax_value &= mask; 2729 } else { 2730 reg->umin_value = 0; 2731 reg->umax_value = mask; 2732 } 2733 reg->smin_value = reg->umin_value; 2734 reg->smax_value = reg->umax_value; 2735 } 2736 2737 /* check whether memory at (regno + off) is accessible for t = (read | write) 2738 * if t==write, value_regno is a register which value is stored into memory 2739 * if t==read, value_regno is a register which will receive the value from memory 2740 * if t==write && value_regno==-1, some unknown value is stored into memory 2741 * if t==read && value_regno==-1, don't care what we read from memory 2742 */ 2743 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2744 int off, int bpf_size, enum bpf_access_type t, 2745 int value_regno, bool strict_alignment_once) 2746 { 2747 struct bpf_reg_state *regs = cur_regs(env); 2748 struct bpf_reg_state *reg = regs + regno; 2749 struct bpf_func_state *state; 2750 int size, err = 0; 2751 2752 size = bpf_size_to_bytes(bpf_size); 2753 if (size < 0) 2754 return size; 2755 2756 /* alignment checks will add in reg->off themselves */ 2757 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2758 if (err) 2759 return err; 2760 2761 /* for access checks, reg->off is just part of off */ 2762 off += reg->off; 2763 2764 if (reg->type == PTR_TO_MAP_VALUE) { 2765 if (t == BPF_WRITE && value_regno >= 0 && 2766 is_pointer_value(env, value_regno)) { 2767 verbose(env, "R%d leaks addr into map\n", value_regno); 2768 return -EACCES; 2769 } 2770 err = check_map_access_type(env, regno, off, size, t); 2771 if (err) 2772 return err; 2773 err = check_map_access(env, regno, off, size, false); 2774 if (!err && t == BPF_READ && value_regno >= 0) 2775 mark_reg_unknown(env, regs, value_regno); 2776 2777 } else if (reg->type == PTR_TO_CTX) { 2778 enum bpf_reg_type reg_type = SCALAR_VALUE; 2779 2780 if (t == BPF_WRITE && value_regno >= 0 && 2781 is_pointer_value(env, value_regno)) { 2782 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2783 return -EACCES; 2784 } 2785 2786 err = check_ctx_reg(env, reg, regno); 2787 if (err < 0) 2788 return err; 2789 2790 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2791 if (!err && t == BPF_READ && value_regno >= 0) { 2792 /* ctx access returns either a scalar, or a 2793 * PTR_TO_PACKET[_META,_END]. In the latter 2794 * case, we know the offset is zero. 2795 */ 2796 if (reg_type == SCALAR_VALUE) { 2797 mark_reg_unknown(env, regs, value_regno); 2798 } else { 2799 mark_reg_known_zero(env, regs, 2800 value_regno); 2801 if (reg_type_may_be_null(reg_type)) 2802 regs[value_regno].id = ++env->id_gen; 2803 /* A load of ctx field could have different 2804 * actual load size with the one encoded in the 2805 * insn. When the dst is PTR, it is for sure not 2806 * a sub-register. 2807 */ 2808 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2809 } 2810 regs[value_regno].type = reg_type; 2811 } 2812 2813 } else if (reg->type == PTR_TO_STACK) { 2814 off += reg->var_off.value; 2815 err = check_stack_access(env, reg, off, size); 2816 if (err) 2817 return err; 2818 2819 state = func(env, reg); 2820 err = update_stack_depth(env, state, off); 2821 if (err) 2822 return err; 2823 2824 if (t == BPF_WRITE) 2825 err = check_stack_write(env, state, off, size, 2826 value_regno, insn_idx); 2827 else 2828 err = check_stack_read(env, state, off, size, 2829 value_regno); 2830 } else if (reg_is_pkt_pointer(reg)) { 2831 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2832 verbose(env, "cannot write into packet\n"); 2833 return -EACCES; 2834 } 2835 if (t == BPF_WRITE && value_regno >= 0 && 2836 is_pointer_value(env, value_regno)) { 2837 verbose(env, "R%d leaks addr into packet\n", 2838 value_regno); 2839 return -EACCES; 2840 } 2841 err = check_packet_access(env, regno, off, size, false); 2842 if (!err && t == BPF_READ && value_regno >= 0) 2843 mark_reg_unknown(env, regs, value_regno); 2844 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2845 if (t == BPF_WRITE && value_regno >= 0 && 2846 is_pointer_value(env, value_regno)) { 2847 verbose(env, "R%d leaks addr into flow keys\n", 2848 value_regno); 2849 return -EACCES; 2850 } 2851 2852 err = check_flow_keys_access(env, off, size); 2853 if (!err && t == BPF_READ && value_regno >= 0) 2854 mark_reg_unknown(env, regs, value_regno); 2855 } else if (type_is_sk_pointer(reg->type)) { 2856 if (t == BPF_WRITE) { 2857 verbose(env, "R%d cannot write into %s\n", 2858 regno, reg_type_str[reg->type]); 2859 return -EACCES; 2860 } 2861 err = check_sock_access(env, insn_idx, regno, off, size, t); 2862 if (!err && value_regno >= 0) 2863 mark_reg_unknown(env, regs, value_regno); 2864 } else if (reg->type == PTR_TO_TP_BUFFER) { 2865 err = check_tp_buffer_access(env, reg, regno, off, size); 2866 if (!err && t == BPF_READ && value_regno >= 0) 2867 mark_reg_unknown(env, regs, value_regno); 2868 } else { 2869 verbose(env, "R%d invalid mem access '%s'\n", regno, 2870 reg_type_str[reg->type]); 2871 return -EACCES; 2872 } 2873 2874 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2875 regs[value_regno].type == SCALAR_VALUE) { 2876 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2877 coerce_reg_to_size(®s[value_regno], size); 2878 } 2879 return err; 2880 } 2881 2882 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2883 { 2884 int err; 2885 2886 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2887 insn->imm != 0) { 2888 verbose(env, "BPF_XADD uses reserved fields\n"); 2889 return -EINVAL; 2890 } 2891 2892 /* check src1 operand */ 2893 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2894 if (err) 2895 return err; 2896 2897 /* check src2 operand */ 2898 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2899 if (err) 2900 return err; 2901 2902 if (is_pointer_value(env, insn->src_reg)) { 2903 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2904 return -EACCES; 2905 } 2906 2907 if (is_ctx_reg(env, insn->dst_reg) || 2908 is_pkt_reg(env, insn->dst_reg) || 2909 is_flow_key_reg(env, insn->dst_reg) || 2910 is_sk_reg(env, insn->dst_reg)) { 2911 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2912 insn->dst_reg, 2913 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2914 return -EACCES; 2915 } 2916 2917 /* check whether atomic_add can read the memory */ 2918 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2919 BPF_SIZE(insn->code), BPF_READ, -1, true); 2920 if (err) 2921 return err; 2922 2923 /* check whether atomic_add can write into the same memory */ 2924 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2925 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2926 } 2927 2928 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2929 int off, int access_size, 2930 bool zero_size_allowed) 2931 { 2932 struct bpf_reg_state *reg = reg_state(env, regno); 2933 2934 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2935 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2936 if (tnum_is_const(reg->var_off)) { 2937 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2938 regno, off, access_size); 2939 } else { 2940 char tn_buf[48]; 2941 2942 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2943 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2944 regno, tn_buf, access_size); 2945 } 2946 return -EACCES; 2947 } 2948 return 0; 2949 } 2950 2951 /* when register 'regno' is passed into function that will read 'access_size' 2952 * bytes from that pointer, make sure that it's within stack boundary 2953 * and all elements of stack are initialized. 2954 * Unlike most pointer bounds-checking functions, this one doesn't take an 2955 * 'off' argument, so it has to add in reg->off itself. 2956 */ 2957 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2958 int access_size, bool zero_size_allowed, 2959 struct bpf_call_arg_meta *meta) 2960 { 2961 struct bpf_reg_state *reg = reg_state(env, regno); 2962 struct bpf_func_state *state = func(env, reg); 2963 int err, min_off, max_off, i, j, slot, spi; 2964 2965 if (reg->type != PTR_TO_STACK) { 2966 /* Allow zero-byte read from NULL, regardless of pointer type */ 2967 if (zero_size_allowed && access_size == 0 && 2968 register_is_null(reg)) 2969 return 0; 2970 2971 verbose(env, "R%d type=%s expected=%s\n", regno, 2972 reg_type_str[reg->type], 2973 reg_type_str[PTR_TO_STACK]); 2974 return -EACCES; 2975 } 2976 2977 if (tnum_is_const(reg->var_off)) { 2978 min_off = max_off = reg->var_off.value + reg->off; 2979 err = __check_stack_boundary(env, regno, min_off, access_size, 2980 zero_size_allowed); 2981 if (err) 2982 return err; 2983 } else { 2984 /* Variable offset is prohibited for unprivileged mode for 2985 * simplicity since it requires corresponding support in 2986 * Spectre masking for stack ALU. 2987 * See also retrieve_ptr_limit(). 2988 */ 2989 if (!env->allow_ptr_leaks) { 2990 char tn_buf[48]; 2991 2992 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2993 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2994 regno, tn_buf); 2995 return -EACCES; 2996 } 2997 /* Only initialized buffer on stack is allowed to be accessed 2998 * with variable offset. With uninitialized buffer it's hard to 2999 * guarantee that whole memory is marked as initialized on 3000 * helper return since specific bounds are unknown what may 3001 * cause uninitialized stack leaking. 3002 */ 3003 if (meta && meta->raw_mode) 3004 meta = NULL; 3005 3006 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3007 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3008 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3009 regno); 3010 return -EACCES; 3011 } 3012 min_off = reg->smin_value + reg->off; 3013 max_off = reg->smax_value + reg->off; 3014 err = __check_stack_boundary(env, regno, min_off, access_size, 3015 zero_size_allowed); 3016 if (err) { 3017 verbose(env, "R%d min value is outside of stack bound\n", 3018 regno); 3019 return err; 3020 } 3021 err = __check_stack_boundary(env, regno, max_off, access_size, 3022 zero_size_allowed); 3023 if (err) { 3024 verbose(env, "R%d max value is outside of stack bound\n", 3025 regno); 3026 return err; 3027 } 3028 } 3029 3030 if (meta && meta->raw_mode) { 3031 meta->access_size = access_size; 3032 meta->regno = regno; 3033 return 0; 3034 } 3035 3036 for (i = min_off; i < max_off + access_size; i++) { 3037 u8 *stype; 3038 3039 slot = -i - 1; 3040 spi = slot / BPF_REG_SIZE; 3041 if (state->allocated_stack <= slot) 3042 goto err; 3043 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3044 if (*stype == STACK_MISC) 3045 goto mark; 3046 if (*stype == STACK_ZERO) { 3047 /* helper can write anything into the stack */ 3048 *stype = STACK_MISC; 3049 goto mark; 3050 } 3051 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3052 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3053 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3054 for (j = 0; j < BPF_REG_SIZE; j++) 3055 state->stack[spi].slot_type[j] = STACK_MISC; 3056 goto mark; 3057 } 3058 3059 err: 3060 if (tnum_is_const(reg->var_off)) { 3061 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3062 min_off, i - min_off, access_size); 3063 } else { 3064 char tn_buf[48]; 3065 3066 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3067 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3068 tn_buf, i - min_off, access_size); 3069 } 3070 return -EACCES; 3071 mark: 3072 /* reading any byte out of 8-byte 'spill_slot' will cause 3073 * the whole slot to be marked as 'read' 3074 */ 3075 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3076 state->stack[spi].spilled_ptr.parent, 3077 REG_LIVE_READ64); 3078 } 3079 return update_stack_depth(env, state, min_off); 3080 } 3081 3082 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3083 int access_size, bool zero_size_allowed, 3084 struct bpf_call_arg_meta *meta) 3085 { 3086 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3087 3088 switch (reg->type) { 3089 case PTR_TO_PACKET: 3090 case PTR_TO_PACKET_META: 3091 return check_packet_access(env, regno, reg->off, access_size, 3092 zero_size_allowed); 3093 case PTR_TO_MAP_VALUE: 3094 if (check_map_access_type(env, regno, reg->off, access_size, 3095 meta && meta->raw_mode ? BPF_WRITE : 3096 BPF_READ)) 3097 return -EACCES; 3098 return check_map_access(env, regno, reg->off, access_size, 3099 zero_size_allowed); 3100 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3101 return check_stack_boundary(env, regno, access_size, 3102 zero_size_allowed, meta); 3103 } 3104 } 3105 3106 /* Implementation details: 3107 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3108 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3109 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3110 * value_or_null->value transition, since the verifier only cares about 3111 * the range of access to valid map value pointer and doesn't care about actual 3112 * address of the map element. 3113 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3114 * reg->id > 0 after value_or_null->value transition. By doing so 3115 * two bpf_map_lookups will be considered two different pointers that 3116 * point to different bpf_spin_locks. 3117 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3118 * dead-locks. 3119 * Since only one bpf_spin_lock is allowed the checks are simpler than 3120 * reg_is_refcounted() logic. The verifier needs to remember only 3121 * one spin_lock instead of array of acquired_refs. 3122 * cur_state->active_spin_lock remembers which map value element got locked 3123 * and clears it after bpf_spin_unlock. 3124 */ 3125 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3126 bool is_lock) 3127 { 3128 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3129 struct bpf_verifier_state *cur = env->cur_state; 3130 bool is_const = tnum_is_const(reg->var_off); 3131 struct bpf_map *map = reg->map_ptr; 3132 u64 val = reg->var_off.value; 3133 3134 if (reg->type != PTR_TO_MAP_VALUE) { 3135 verbose(env, "R%d is not a pointer to map_value\n", regno); 3136 return -EINVAL; 3137 } 3138 if (!is_const) { 3139 verbose(env, 3140 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3141 regno); 3142 return -EINVAL; 3143 } 3144 if (!map->btf) { 3145 verbose(env, 3146 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3147 map->name); 3148 return -EINVAL; 3149 } 3150 if (!map_value_has_spin_lock(map)) { 3151 if (map->spin_lock_off == -E2BIG) 3152 verbose(env, 3153 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3154 map->name); 3155 else if (map->spin_lock_off == -ENOENT) 3156 verbose(env, 3157 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3158 map->name); 3159 else 3160 verbose(env, 3161 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3162 map->name); 3163 return -EINVAL; 3164 } 3165 if (map->spin_lock_off != val + reg->off) { 3166 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3167 val + reg->off); 3168 return -EINVAL; 3169 } 3170 if (is_lock) { 3171 if (cur->active_spin_lock) { 3172 verbose(env, 3173 "Locking two bpf_spin_locks are not allowed\n"); 3174 return -EINVAL; 3175 } 3176 cur->active_spin_lock = reg->id; 3177 } else { 3178 if (!cur->active_spin_lock) { 3179 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3180 return -EINVAL; 3181 } 3182 if (cur->active_spin_lock != reg->id) { 3183 verbose(env, "bpf_spin_unlock of different lock\n"); 3184 return -EINVAL; 3185 } 3186 cur->active_spin_lock = 0; 3187 } 3188 return 0; 3189 } 3190 3191 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3192 { 3193 return type == ARG_PTR_TO_MEM || 3194 type == ARG_PTR_TO_MEM_OR_NULL || 3195 type == ARG_PTR_TO_UNINIT_MEM; 3196 } 3197 3198 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3199 { 3200 return type == ARG_CONST_SIZE || 3201 type == ARG_CONST_SIZE_OR_ZERO; 3202 } 3203 3204 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3205 { 3206 return type == ARG_PTR_TO_INT || 3207 type == ARG_PTR_TO_LONG; 3208 } 3209 3210 static int int_ptr_type_to_size(enum bpf_arg_type type) 3211 { 3212 if (type == ARG_PTR_TO_INT) 3213 return sizeof(u32); 3214 else if (type == ARG_PTR_TO_LONG) 3215 return sizeof(u64); 3216 3217 return -EINVAL; 3218 } 3219 3220 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3221 enum bpf_arg_type arg_type, 3222 struct bpf_call_arg_meta *meta) 3223 { 3224 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3225 enum bpf_reg_type expected_type, type = reg->type; 3226 int err = 0; 3227 3228 if (arg_type == ARG_DONTCARE) 3229 return 0; 3230 3231 err = check_reg_arg(env, regno, SRC_OP); 3232 if (err) 3233 return err; 3234 3235 if (arg_type == ARG_ANYTHING) { 3236 if (is_pointer_value(env, regno)) { 3237 verbose(env, "R%d leaks addr into helper function\n", 3238 regno); 3239 return -EACCES; 3240 } 3241 return 0; 3242 } 3243 3244 if (type_is_pkt_pointer(type) && 3245 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3246 verbose(env, "helper access to the packet is not allowed\n"); 3247 return -EACCES; 3248 } 3249 3250 if (arg_type == ARG_PTR_TO_MAP_KEY || 3251 arg_type == ARG_PTR_TO_MAP_VALUE || 3252 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3253 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3254 expected_type = PTR_TO_STACK; 3255 if (register_is_null(reg) && 3256 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3257 /* final test in check_stack_boundary() */; 3258 else if (!type_is_pkt_pointer(type) && 3259 type != PTR_TO_MAP_VALUE && 3260 type != expected_type) 3261 goto err_type; 3262 } else if (arg_type == ARG_CONST_SIZE || 3263 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3264 expected_type = SCALAR_VALUE; 3265 if (type != expected_type) 3266 goto err_type; 3267 } else if (arg_type == ARG_CONST_MAP_PTR) { 3268 expected_type = CONST_PTR_TO_MAP; 3269 if (type != expected_type) 3270 goto err_type; 3271 } else if (arg_type == ARG_PTR_TO_CTX) { 3272 expected_type = PTR_TO_CTX; 3273 if (type != expected_type) 3274 goto err_type; 3275 err = check_ctx_reg(env, reg, regno); 3276 if (err < 0) 3277 return err; 3278 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3279 expected_type = PTR_TO_SOCK_COMMON; 3280 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3281 if (!type_is_sk_pointer(type)) 3282 goto err_type; 3283 if (reg->ref_obj_id) { 3284 if (meta->ref_obj_id) { 3285 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3286 regno, reg->ref_obj_id, 3287 meta->ref_obj_id); 3288 return -EFAULT; 3289 } 3290 meta->ref_obj_id = reg->ref_obj_id; 3291 } 3292 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3293 expected_type = PTR_TO_SOCKET; 3294 if (type != expected_type) 3295 goto err_type; 3296 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3297 if (meta->func_id == BPF_FUNC_spin_lock) { 3298 if (process_spin_lock(env, regno, true)) 3299 return -EACCES; 3300 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3301 if (process_spin_lock(env, regno, false)) 3302 return -EACCES; 3303 } else { 3304 verbose(env, "verifier internal error\n"); 3305 return -EFAULT; 3306 } 3307 } else if (arg_type_is_mem_ptr(arg_type)) { 3308 expected_type = PTR_TO_STACK; 3309 /* One exception here. In case function allows for NULL to be 3310 * passed in as argument, it's a SCALAR_VALUE type. Final test 3311 * happens during stack boundary checking. 3312 */ 3313 if (register_is_null(reg) && 3314 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3315 /* final test in check_stack_boundary() */; 3316 else if (!type_is_pkt_pointer(type) && 3317 type != PTR_TO_MAP_VALUE && 3318 type != expected_type) 3319 goto err_type; 3320 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3321 } else if (arg_type_is_int_ptr(arg_type)) { 3322 expected_type = PTR_TO_STACK; 3323 if (!type_is_pkt_pointer(type) && 3324 type != PTR_TO_MAP_VALUE && 3325 type != expected_type) 3326 goto err_type; 3327 } else { 3328 verbose(env, "unsupported arg_type %d\n", arg_type); 3329 return -EFAULT; 3330 } 3331 3332 if (arg_type == ARG_CONST_MAP_PTR) { 3333 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3334 meta->map_ptr = reg->map_ptr; 3335 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3336 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3337 * check that [key, key + map->key_size) are within 3338 * stack limits and initialized 3339 */ 3340 if (!meta->map_ptr) { 3341 /* in function declaration map_ptr must come before 3342 * map_key, so that it's verified and known before 3343 * we have to check map_key here. Otherwise it means 3344 * that kernel subsystem misconfigured verifier 3345 */ 3346 verbose(env, "invalid map_ptr to access map->key\n"); 3347 return -EACCES; 3348 } 3349 err = check_helper_mem_access(env, regno, 3350 meta->map_ptr->key_size, false, 3351 NULL); 3352 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3353 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3354 !register_is_null(reg)) || 3355 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3356 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3357 * check [value, value + map->value_size) validity 3358 */ 3359 if (!meta->map_ptr) { 3360 /* kernel subsystem misconfigured verifier */ 3361 verbose(env, "invalid map_ptr to access map->value\n"); 3362 return -EACCES; 3363 } 3364 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3365 err = check_helper_mem_access(env, regno, 3366 meta->map_ptr->value_size, false, 3367 meta); 3368 } else if (arg_type_is_mem_size(arg_type)) { 3369 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3370 3371 /* remember the mem_size which may be used later 3372 * to refine return values. 3373 */ 3374 meta->msize_smax_value = reg->smax_value; 3375 meta->msize_umax_value = reg->umax_value; 3376 3377 /* The register is SCALAR_VALUE; the access check 3378 * happens using its boundaries. 3379 */ 3380 if (!tnum_is_const(reg->var_off)) 3381 /* For unprivileged variable accesses, disable raw 3382 * mode so that the program is required to 3383 * initialize all the memory that the helper could 3384 * just partially fill up. 3385 */ 3386 meta = NULL; 3387 3388 if (reg->smin_value < 0) { 3389 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3390 regno); 3391 return -EACCES; 3392 } 3393 3394 if (reg->umin_value == 0) { 3395 err = check_helper_mem_access(env, regno - 1, 0, 3396 zero_size_allowed, 3397 meta); 3398 if (err) 3399 return err; 3400 } 3401 3402 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3403 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3404 regno); 3405 return -EACCES; 3406 } 3407 err = check_helper_mem_access(env, regno - 1, 3408 reg->umax_value, 3409 zero_size_allowed, meta); 3410 if (!err) 3411 err = mark_chain_precision(env, regno); 3412 } else if (arg_type_is_int_ptr(arg_type)) { 3413 int size = int_ptr_type_to_size(arg_type); 3414 3415 err = check_helper_mem_access(env, regno, size, false, meta); 3416 if (err) 3417 return err; 3418 err = check_ptr_alignment(env, reg, 0, size, true); 3419 } 3420 3421 return err; 3422 err_type: 3423 verbose(env, "R%d type=%s expected=%s\n", regno, 3424 reg_type_str[type], reg_type_str[expected_type]); 3425 return -EACCES; 3426 } 3427 3428 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3429 struct bpf_map *map, int func_id) 3430 { 3431 if (!map) 3432 return 0; 3433 3434 /* We need a two way check, first is from map perspective ... */ 3435 switch (map->map_type) { 3436 case BPF_MAP_TYPE_PROG_ARRAY: 3437 if (func_id != BPF_FUNC_tail_call) 3438 goto error; 3439 break; 3440 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3441 if (func_id != BPF_FUNC_perf_event_read && 3442 func_id != BPF_FUNC_perf_event_output && 3443 func_id != BPF_FUNC_perf_event_read_value) 3444 goto error; 3445 break; 3446 case BPF_MAP_TYPE_STACK_TRACE: 3447 if (func_id != BPF_FUNC_get_stackid) 3448 goto error; 3449 break; 3450 case BPF_MAP_TYPE_CGROUP_ARRAY: 3451 if (func_id != BPF_FUNC_skb_under_cgroup && 3452 func_id != BPF_FUNC_current_task_under_cgroup) 3453 goto error; 3454 break; 3455 case BPF_MAP_TYPE_CGROUP_STORAGE: 3456 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3457 if (func_id != BPF_FUNC_get_local_storage) 3458 goto error; 3459 break; 3460 case BPF_MAP_TYPE_DEVMAP: 3461 case BPF_MAP_TYPE_DEVMAP_HASH: 3462 if (func_id != BPF_FUNC_redirect_map && 3463 func_id != BPF_FUNC_map_lookup_elem) 3464 goto error; 3465 break; 3466 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3467 * appear. 3468 */ 3469 case BPF_MAP_TYPE_CPUMAP: 3470 if (func_id != BPF_FUNC_redirect_map) 3471 goto error; 3472 break; 3473 case BPF_MAP_TYPE_XSKMAP: 3474 if (func_id != BPF_FUNC_redirect_map && 3475 func_id != BPF_FUNC_map_lookup_elem) 3476 goto error; 3477 break; 3478 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3479 case BPF_MAP_TYPE_HASH_OF_MAPS: 3480 if (func_id != BPF_FUNC_map_lookup_elem) 3481 goto error; 3482 break; 3483 case BPF_MAP_TYPE_SOCKMAP: 3484 if (func_id != BPF_FUNC_sk_redirect_map && 3485 func_id != BPF_FUNC_sock_map_update && 3486 func_id != BPF_FUNC_map_delete_elem && 3487 func_id != BPF_FUNC_msg_redirect_map) 3488 goto error; 3489 break; 3490 case BPF_MAP_TYPE_SOCKHASH: 3491 if (func_id != BPF_FUNC_sk_redirect_hash && 3492 func_id != BPF_FUNC_sock_hash_update && 3493 func_id != BPF_FUNC_map_delete_elem && 3494 func_id != BPF_FUNC_msg_redirect_hash) 3495 goto error; 3496 break; 3497 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3498 if (func_id != BPF_FUNC_sk_select_reuseport) 3499 goto error; 3500 break; 3501 case BPF_MAP_TYPE_QUEUE: 3502 case BPF_MAP_TYPE_STACK: 3503 if (func_id != BPF_FUNC_map_peek_elem && 3504 func_id != BPF_FUNC_map_pop_elem && 3505 func_id != BPF_FUNC_map_push_elem) 3506 goto error; 3507 break; 3508 case BPF_MAP_TYPE_SK_STORAGE: 3509 if (func_id != BPF_FUNC_sk_storage_get && 3510 func_id != BPF_FUNC_sk_storage_delete) 3511 goto error; 3512 break; 3513 default: 3514 break; 3515 } 3516 3517 /* ... and second from the function itself. */ 3518 switch (func_id) { 3519 case BPF_FUNC_tail_call: 3520 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3521 goto error; 3522 if (env->subprog_cnt > 1) { 3523 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3524 return -EINVAL; 3525 } 3526 break; 3527 case BPF_FUNC_perf_event_read: 3528 case BPF_FUNC_perf_event_output: 3529 case BPF_FUNC_perf_event_read_value: 3530 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3531 goto error; 3532 break; 3533 case BPF_FUNC_get_stackid: 3534 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3535 goto error; 3536 break; 3537 case BPF_FUNC_current_task_under_cgroup: 3538 case BPF_FUNC_skb_under_cgroup: 3539 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3540 goto error; 3541 break; 3542 case BPF_FUNC_redirect_map: 3543 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3544 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3545 map->map_type != BPF_MAP_TYPE_CPUMAP && 3546 map->map_type != BPF_MAP_TYPE_XSKMAP) 3547 goto error; 3548 break; 3549 case BPF_FUNC_sk_redirect_map: 3550 case BPF_FUNC_msg_redirect_map: 3551 case BPF_FUNC_sock_map_update: 3552 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3553 goto error; 3554 break; 3555 case BPF_FUNC_sk_redirect_hash: 3556 case BPF_FUNC_msg_redirect_hash: 3557 case BPF_FUNC_sock_hash_update: 3558 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3559 goto error; 3560 break; 3561 case BPF_FUNC_get_local_storage: 3562 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3563 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3564 goto error; 3565 break; 3566 case BPF_FUNC_sk_select_reuseport: 3567 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3568 goto error; 3569 break; 3570 case BPF_FUNC_map_peek_elem: 3571 case BPF_FUNC_map_pop_elem: 3572 case BPF_FUNC_map_push_elem: 3573 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3574 map->map_type != BPF_MAP_TYPE_STACK) 3575 goto error; 3576 break; 3577 case BPF_FUNC_sk_storage_get: 3578 case BPF_FUNC_sk_storage_delete: 3579 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3580 goto error; 3581 break; 3582 default: 3583 break; 3584 } 3585 3586 return 0; 3587 error: 3588 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3589 map->map_type, func_id_name(func_id), func_id); 3590 return -EINVAL; 3591 } 3592 3593 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3594 { 3595 int count = 0; 3596 3597 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3598 count++; 3599 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3600 count++; 3601 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3602 count++; 3603 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3604 count++; 3605 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3606 count++; 3607 3608 /* We only support one arg being in raw mode at the moment, 3609 * which is sufficient for the helper functions we have 3610 * right now. 3611 */ 3612 return count <= 1; 3613 } 3614 3615 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3616 enum bpf_arg_type arg_next) 3617 { 3618 return (arg_type_is_mem_ptr(arg_curr) && 3619 !arg_type_is_mem_size(arg_next)) || 3620 (!arg_type_is_mem_ptr(arg_curr) && 3621 arg_type_is_mem_size(arg_next)); 3622 } 3623 3624 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3625 { 3626 /* bpf_xxx(..., buf, len) call will access 'len' 3627 * bytes from memory 'buf'. Both arg types need 3628 * to be paired, so make sure there's no buggy 3629 * helper function specification. 3630 */ 3631 if (arg_type_is_mem_size(fn->arg1_type) || 3632 arg_type_is_mem_ptr(fn->arg5_type) || 3633 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3634 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3635 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3636 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3637 return false; 3638 3639 return true; 3640 } 3641 3642 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3643 { 3644 int count = 0; 3645 3646 if (arg_type_may_be_refcounted(fn->arg1_type)) 3647 count++; 3648 if (arg_type_may_be_refcounted(fn->arg2_type)) 3649 count++; 3650 if (arg_type_may_be_refcounted(fn->arg3_type)) 3651 count++; 3652 if (arg_type_may_be_refcounted(fn->arg4_type)) 3653 count++; 3654 if (arg_type_may_be_refcounted(fn->arg5_type)) 3655 count++; 3656 3657 /* A reference acquiring function cannot acquire 3658 * another refcounted ptr. 3659 */ 3660 if (is_acquire_function(func_id) && count) 3661 return false; 3662 3663 /* We only support one arg being unreferenced at the moment, 3664 * which is sufficient for the helper functions we have right now. 3665 */ 3666 return count <= 1; 3667 } 3668 3669 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3670 { 3671 return check_raw_mode_ok(fn) && 3672 check_arg_pair_ok(fn) && 3673 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3674 } 3675 3676 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3677 * are now invalid, so turn them into unknown SCALAR_VALUE. 3678 */ 3679 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3680 struct bpf_func_state *state) 3681 { 3682 struct bpf_reg_state *regs = state->regs, *reg; 3683 int i; 3684 3685 for (i = 0; i < MAX_BPF_REG; i++) 3686 if (reg_is_pkt_pointer_any(®s[i])) 3687 mark_reg_unknown(env, regs, i); 3688 3689 bpf_for_each_spilled_reg(i, state, reg) { 3690 if (!reg) 3691 continue; 3692 if (reg_is_pkt_pointer_any(reg)) 3693 __mark_reg_unknown(reg); 3694 } 3695 } 3696 3697 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3698 { 3699 struct bpf_verifier_state *vstate = env->cur_state; 3700 int i; 3701 3702 for (i = 0; i <= vstate->curframe; i++) 3703 __clear_all_pkt_pointers(env, vstate->frame[i]); 3704 } 3705 3706 static void release_reg_references(struct bpf_verifier_env *env, 3707 struct bpf_func_state *state, 3708 int ref_obj_id) 3709 { 3710 struct bpf_reg_state *regs = state->regs, *reg; 3711 int i; 3712 3713 for (i = 0; i < MAX_BPF_REG; i++) 3714 if (regs[i].ref_obj_id == ref_obj_id) 3715 mark_reg_unknown(env, regs, i); 3716 3717 bpf_for_each_spilled_reg(i, state, reg) { 3718 if (!reg) 3719 continue; 3720 if (reg->ref_obj_id == ref_obj_id) 3721 __mark_reg_unknown(reg); 3722 } 3723 } 3724 3725 /* The pointer with the specified id has released its reference to kernel 3726 * resources. Identify all copies of the same pointer and clear the reference. 3727 */ 3728 static int release_reference(struct bpf_verifier_env *env, 3729 int ref_obj_id) 3730 { 3731 struct bpf_verifier_state *vstate = env->cur_state; 3732 int err; 3733 int i; 3734 3735 err = release_reference_state(cur_func(env), ref_obj_id); 3736 if (err) 3737 return err; 3738 3739 for (i = 0; i <= vstate->curframe; i++) 3740 release_reg_references(env, vstate->frame[i], ref_obj_id); 3741 3742 return 0; 3743 } 3744 3745 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3746 int *insn_idx) 3747 { 3748 struct bpf_verifier_state *state = env->cur_state; 3749 struct bpf_func_state *caller, *callee; 3750 int i, err, subprog, target_insn; 3751 3752 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3753 verbose(env, "the call stack of %d frames is too deep\n", 3754 state->curframe + 2); 3755 return -E2BIG; 3756 } 3757 3758 target_insn = *insn_idx + insn->imm; 3759 subprog = find_subprog(env, target_insn + 1); 3760 if (subprog < 0) { 3761 verbose(env, "verifier bug. No program starts at insn %d\n", 3762 target_insn + 1); 3763 return -EFAULT; 3764 } 3765 3766 caller = state->frame[state->curframe]; 3767 if (state->frame[state->curframe + 1]) { 3768 verbose(env, "verifier bug. Frame %d already allocated\n", 3769 state->curframe + 1); 3770 return -EFAULT; 3771 } 3772 3773 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3774 if (!callee) 3775 return -ENOMEM; 3776 state->frame[state->curframe + 1] = callee; 3777 3778 /* callee cannot access r0, r6 - r9 for reading and has to write 3779 * into its own stack before reading from it. 3780 * callee can read/write into caller's stack 3781 */ 3782 init_func_state(env, callee, 3783 /* remember the callsite, it will be used by bpf_exit */ 3784 *insn_idx /* callsite */, 3785 state->curframe + 1 /* frameno within this callchain */, 3786 subprog /* subprog number within this prog */); 3787 3788 /* Transfer references to the callee */ 3789 err = transfer_reference_state(callee, caller); 3790 if (err) 3791 return err; 3792 3793 /* copy r1 - r5 args that callee can access. The copy includes parent 3794 * pointers, which connects us up to the liveness chain 3795 */ 3796 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3797 callee->regs[i] = caller->regs[i]; 3798 3799 /* after the call registers r0 - r5 were scratched */ 3800 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3801 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3802 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3803 } 3804 3805 /* only increment it after check_reg_arg() finished */ 3806 state->curframe++; 3807 3808 /* and go analyze first insn of the callee */ 3809 *insn_idx = target_insn; 3810 3811 if (env->log.level & BPF_LOG_LEVEL) { 3812 verbose(env, "caller:\n"); 3813 print_verifier_state(env, caller); 3814 verbose(env, "callee:\n"); 3815 print_verifier_state(env, callee); 3816 } 3817 return 0; 3818 } 3819 3820 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3821 { 3822 struct bpf_verifier_state *state = env->cur_state; 3823 struct bpf_func_state *caller, *callee; 3824 struct bpf_reg_state *r0; 3825 int err; 3826 3827 callee = state->frame[state->curframe]; 3828 r0 = &callee->regs[BPF_REG_0]; 3829 if (r0->type == PTR_TO_STACK) { 3830 /* technically it's ok to return caller's stack pointer 3831 * (or caller's caller's pointer) back to the caller, 3832 * since these pointers are valid. Only current stack 3833 * pointer will be invalid as soon as function exits, 3834 * but let's be conservative 3835 */ 3836 verbose(env, "cannot return stack pointer to the caller\n"); 3837 return -EINVAL; 3838 } 3839 3840 state->curframe--; 3841 caller = state->frame[state->curframe]; 3842 /* return to the caller whatever r0 had in the callee */ 3843 caller->regs[BPF_REG_0] = *r0; 3844 3845 /* Transfer references to the caller */ 3846 err = transfer_reference_state(caller, callee); 3847 if (err) 3848 return err; 3849 3850 *insn_idx = callee->callsite + 1; 3851 if (env->log.level & BPF_LOG_LEVEL) { 3852 verbose(env, "returning from callee:\n"); 3853 print_verifier_state(env, callee); 3854 verbose(env, "to caller at %d:\n", *insn_idx); 3855 print_verifier_state(env, caller); 3856 } 3857 /* clear everything in the callee */ 3858 free_func_state(callee); 3859 state->frame[state->curframe + 1] = NULL; 3860 return 0; 3861 } 3862 3863 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3864 int func_id, 3865 struct bpf_call_arg_meta *meta) 3866 { 3867 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3868 3869 if (ret_type != RET_INTEGER || 3870 (func_id != BPF_FUNC_get_stack && 3871 func_id != BPF_FUNC_probe_read_str)) 3872 return; 3873 3874 ret_reg->smax_value = meta->msize_smax_value; 3875 ret_reg->umax_value = meta->msize_umax_value; 3876 __reg_deduce_bounds(ret_reg); 3877 __reg_bound_offset(ret_reg); 3878 } 3879 3880 static int 3881 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3882 int func_id, int insn_idx) 3883 { 3884 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3885 struct bpf_map *map = meta->map_ptr; 3886 3887 if (func_id != BPF_FUNC_tail_call && 3888 func_id != BPF_FUNC_map_lookup_elem && 3889 func_id != BPF_FUNC_map_update_elem && 3890 func_id != BPF_FUNC_map_delete_elem && 3891 func_id != BPF_FUNC_map_push_elem && 3892 func_id != BPF_FUNC_map_pop_elem && 3893 func_id != BPF_FUNC_map_peek_elem) 3894 return 0; 3895 3896 if (map == NULL) { 3897 verbose(env, "kernel subsystem misconfigured verifier\n"); 3898 return -EINVAL; 3899 } 3900 3901 /* In case of read-only, some additional restrictions 3902 * need to be applied in order to prevent altering the 3903 * state of the map from program side. 3904 */ 3905 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3906 (func_id == BPF_FUNC_map_delete_elem || 3907 func_id == BPF_FUNC_map_update_elem || 3908 func_id == BPF_FUNC_map_push_elem || 3909 func_id == BPF_FUNC_map_pop_elem)) { 3910 verbose(env, "write into map forbidden\n"); 3911 return -EACCES; 3912 } 3913 3914 if (!BPF_MAP_PTR(aux->map_state)) 3915 bpf_map_ptr_store(aux, meta->map_ptr, 3916 meta->map_ptr->unpriv_array); 3917 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3918 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3919 meta->map_ptr->unpriv_array); 3920 return 0; 3921 } 3922 3923 static int check_reference_leak(struct bpf_verifier_env *env) 3924 { 3925 struct bpf_func_state *state = cur_func(env); 3926 int i; 3927 3928 for (i = 0; i < state->acquired_refs; i++) { 3929 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3930 state->refs[i].id, state->refs[i].insn_idx); 3931 } 3932 return state->acquired_refs ? -EINVAL : 0; 3933 } 3934 3935 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3936 { 3937 const struct bpf_func_proto *fn = NULL; 3938 struct bpf_reg_state *regs; 3939 struct bpf_call_arg_meta meta; 3940 bool changes_data; 3941 int i, err; 3942 3943 /* find function prototype */ 3944 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3945 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3946 func_id); 3947 return -EINVAL; 3948 } 3949 3950 if (env->ops->get_func_proto) 3951 fn = env->ops->get_func_proto(func_id, env->prog); 3952 if (!fn) { 3953 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3954 func_id); 3955 return -EINVAL; 3956 } 3957 3958 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3959 if (!env->prog->gpl_compatible && fn->gpl_only) { 3960 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3961 return -EINVAL; 3962 } 3963 3964 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3965 changes_data = bpf_helper_changes_pkt_data(fn->func); 3966 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3967 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3968 func_id_name(func_id), func_id); 3969 return -EINVAL; 3970 } 3971 3972 memset(&meta, 0, sizeof(meta)); 3973 meta.pkt_access = fn->pkt_access; 3974 3975 err = check_func_proto(fn, func_id); 3976 if (err) { 3977 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3978 func_id_name(func_id), func_id); 3979 return err; 3980 } 3981 3982 meta.func_id = func_id; 3983 /* check args */ 3984 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3985 if (err) 3986 return err; 3987 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3988 if (err) 3989 return err; 3990 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3991 if (err) 3992 return err; 3993 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3994 if (err) 3995 return err; 3996 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 3997 if (err) 3998 return err; 3999 4000 err = record_func_map(env, &meta, func_id, insn_idx); 4001 if (err) 4002 return err; 4003 4004 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4005 * is inferred from register state. 4006 */ 4007 for (i = 0; i < meta.access_size; i++) { 4008 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4009 BPF_WRITE, -1, false); 4010 if (err) 4011 return err; 4012 } 4013 4014 if (func_id == BPF_FUNC_tail_call) { 4015 err = check_reference_leak(env); 4016 if (err) { 4017 verbose(env, "tail_call would lead to reference leak\n"); 4018 return err; 4019 } 4020 } else if (is_release_function(func_id)) { 4021 err = release_reference(env, meta.ref_obj_id); 4022 if (err) { 4023 verbose(env, "func %s#%d reference has not been acquired before\n", 4024 func_id_name(func_id), func_id); 4025 return err; 4026 } 4027 } 4028 4029 regs = cur_regs(env); 4030 4031 /* check that flags argument in get_local_storage(map, flags) is 0, 4032 * this is required because get_local_storage() can't return an error. 4033 */ 4034 if (func_id == BPF_FUNC_get_local_storage && 4035 !register_is_null(®s[BPF_REG_2])) { 4036 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4037 return -EINVAL; 4038 } 4039 4040 /* reset caller saved regs */ 4041 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4042 mark_reg_not_init(env, regs, caller_saved[i]); 4043 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4044 } 4045 4046 /* helper call returns 64-bit value. */ 4047 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4048 4049 /* update return register (already marked as written above) */ 4050 if (fn->ret_type == RET_INTEGER) { 4051 /* sets type to SCALAR_VALUE */ 4052 mark_reg_unknown(env, regs, BPF_REG_0); 4053 } else if (fn->ret_type == RET_VOID) { 4054 regs[BPF_REG_0].type = NOT_INIT; 4055 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4056 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4057 /* There is no offset yet applied, variable or fixed */ 4058 mark_reg_known_zero(env, regs, BPF_REG_0); 4059 /* remember map_ptr, so that check_map_access() 4060 * can check 'value_size' boundary of memory access 4061 * to map element returned from bpf_map_lookup_elem() 4062 */ 4063 if (meta.map_ptr == NULL) { 4064 verbose(env, 4065 "kernel subsystem misconfigured verifier\n"); 4066 return -EINVAL; 4067 } 4068 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4069 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4070 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4071 if (map_value_has_spin_lock(meta.map_ptr)) 4072 regs[BPF_REG_0].id = ++env->id_gen; 4073 } else { 4074 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4075 regs[BPF_REG_0].id = ++env->id_gen; 4076 } 4077 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4078 mark_reg_known_zero(env, regs, BPF_REG_0); 4079 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4080 regs[BPF_REG_0].id = ++env->id_gen; 4081 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4082 mark_reg_known_zero(env, regs, BPF_REG_0); 4083 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4084 regs[BPF_REG_0].id = ++env->id_gen; 4085 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4086 mark_reg_known_zero(env, regs, BPF_REG_0); 4087 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4088 regs[BPF_REG_0].id = ++env->id_gen; 4089 } else { 4090 verbose(env, "unknown return type %d of func %s#%d\n", 4091 fn->ret_type, func_id_name(func_id), func_id); 4092 return -EINVAL; 4093 } 4094 4095 if (is_ptr_cast_function(func_id)) { 4096 /* For release_reference() */ 4097 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4098 } else if (is_acquire_function(func_id)) { 4099 int id = acquire_reference_state(env, insn_idx); 4100 4101 if (id < 0) 4102 return id; 4103 /* For mark_ptr_or_null_reg() */ 4104 regs[BPF_REG_0].id = id; 4105 /* For release_reference() */ 4106 regs[BPF_REG_0].ref_obj_id = id; 4107 } 4108 4109 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4110 4111 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4112 if (err) 4113 return err; 4114 4115 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4116 const char *err_str; 4117 4118 #ifdef CONFIG_PERF_EVENTS 4119 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4120 err_str = "cannot get callchain buffer for func %s#%d\n"; 4121 #else 4122 err = -ENOTSUPP; 4123 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4124 #endif 4125 if (err) { 4126 verbose(env, err_str, func_id_name(func_id), func_id); 4127 return err; 4128 } 4129 4130 env->prog->has_callchain_buf = true; 4131 } 4132 4133 if (changes_data) 4134 clear_all_pkt_pointers(env); 4135 return 0; 4136 } 4137 4138 static bool signed_add_overflows(s64 a, s64 b) 4139 { 4140 /* Do the add in u64, where overflow is well-defined */ 4141 s64 res = (s64)((u64)a + (u64)b); 4142 4143 if (b < 0) 4144 return res > a; 4145 return res < a; 4146 } 4147 4148 static bool signed_sub_overflows(s64 a, s64 b) 4149 { 4150 /* Do the sub in u64, where overflow is well-defined */ 4151 s64 res = (s64)((u64)a - (u64)b); 4152 4153 if (b < 0) 4154 return res < a; 4155 return res > a; 4156 } 4157 4158 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4159 const struct bpf_reg_state *reg, 4160 enum bpf_reg_type type) 4161 { 4162 bool known = tnum_is_const(reg->var_off); 4163 s64 val = reg->var_off.value; 4164 s64 smin = reg->smin_value; 4165 4166 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4167 verbose(env, "math between %s pointer and %lld is not allowed\n", 4168 reg_type_str[type], val); 4169 return false; 4170 } 4171 4172 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4173 verbose(env, "%s pointer offset %d is not allowed\n", 4174 reg_type_str[type], reg->off); 4175 return false; 4176 } 4177 4178 if (smin == S64_MIN) { 4179 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4180 reg_type_str[type]); 4181 return false; 4182 } 4183 4184 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4185 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4186 smin, reg_type_str[type]); 4187 return false; 4188 } 4189 4190 return true; 4191 } 4192 4193 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4194 { 4195 return &env->insn_aux_data[env->insn_idx]; 4196 } 4197 4198 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4199 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4200 { 4201 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4202 (opcode == BPF_SUB && !off_is_neg); 4203 u32 off; 4204 4205 switch (ptr_reg->type) { 4206 case PTR_TO_STACK: 4207 /* Indirect variable offset stack access is prohibited in 4208 * unprivileged mode so it's not handled here. 4209 */ 4210 off = ptr_reg->off + ptr_reg->var_off.value; 4211 if (mask_to_left) 4212 *ptr_limit = MAX_BPF_STACK + off; 4213 else 4214 *ptr_limit = -off; 4215 return 0; 4216 case PTR_TO_MAP_VALUE: 4217 if (mask_to_left) { 4218 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4219 } else { 4220 off = ptr_reg->smin_value + ptr_reg->off; 4221 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4222 } 4223 return 0; 4224 default: 4225 return -EINVAL; 4226 } 4227 } 4228 4229 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4230 const struct bpf_insn *insn) 4231 { 4232 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4233 } 4234 4235 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4236 u32 alu_state, u32 alu_limit) 4237 { 4238 /* If we arrived here from different branches with different 4239 * state or limits to sanitize, then this won't work. 4240 */ 4241 if (aux->alu_state && 4242 (aux->alu_state != alu_state || 4243 aux->alu_limit != alu_limit)) 4244 return -EACCES; 4245 4246 /* Corresponding fixup done in fixup_bpf_calls(). */ 4247 aux->alu_state = alu_state; 4248 aux->alu_limit = alu_limit; 4249 return 0; 4250 } 4251 4252 static int sanitize_val_alu(struct bpf_verifier_env *env, 4253 struct bpf_insn *insn) 4254 { 4255 struct bpf_insn_aux_data *aux = cur_aux(env); 4256 4257 if (can_skip_alu_sanitation(env, insn)) 4258 return 0; 4259 4260 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4261 } 4262 4263 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4264 struct bpf_insn *insn, 4265 const struct bpf_reg_state *ptr_reg, 4266 struct bpf_reg_state *dst_reg, 4267 bool off_is_neg) 4268 { 4269 struct bpf_verifier_state *vstate = env->cur_state; 4270 struct bpf_insn_aux_data *aux = cur_aux(env); 4271 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4272 u8 opcode = BPF_OP(insn->code); 4273 u32 alu_state, alu_limit; 4274 struct bpf_reg_state tmp; 4275 bool ret; 4276 4277 if (can_skip_alu_sanitation(env, insn)) 4278 return 0; 4279 4280 /* We already marked aux for masking from non-speculative 4281 * paths, thus we got here in the first place. We only care 4282 * to explore bad access from here. 4283 */ 4284 if (vstate->speculative) 4285 goto do_sim; 4286 4287 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4288 alu_state |= ptr_is_dst_reg ? 4289 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4290 4291 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4292 return 0; 4293 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4294 return -EACCES; 4295 do_sim: 4296 /* Simulate and find potential out-of-bounds access under 4297 * speculative execution from truncation as a result of 4298 * masking when off was not within expected range. If off 4299 * sits in dst, then we temporarily need to move ptr there 4300 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4301 * for cases where we use K-based arithmetic in one direction 4302 * and truncated reg-based in the other in order to explore 4303 * bad access. 4304 */ 4305 if (!ptr_is_dst_reg) { 4306 tmp = *dst_reg; 4307 *dst_reg = *ptr_reg; 4308 } 4309 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4310 if (!ptr_is_dst_reg && ret) 4311 *dst_reg = tmp; 4312 return !ret ? -EFAULT : 0; 4313 } 4314 4315 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4316 * Caller should also handle BPF_MOV case separately. 4317 * If we return -EACCES, caller may want to try again treating pointer as a 4318 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4319 */ 4320 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4321 struct bpf_insn *insn, 4322 const struct bpf_reg_state *ptr_reg, 4323 const struct bpf_reg_state *off_reg) 4324 { 4325 struct bpf_verifier_state *vstate = env->cur_state; 4326 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4327 struct bpf_reg_state *regs = state->regs, *dst_reg; 4328 bool known = tnum_is_const(off_reg->var_off); 4329 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4330 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4331 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4332 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4333 u32 dst = insn->dst_reg, src = insn->src_reg; 4334 u8 opcode = BPF_OP(insn->code); 4335 int ret; 4336 4337 dst_reg = ®s[dst]; 4338 4339 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4340 smin_val > smax_val || umin_val > umax_val) { 4341 /* Taint dst register if offset had invalid bounds derived from 4342 * e.g. dead branches. 4343 */ 4344 __mark_reg_unknown(dst_reg); 4345 return 0; 4346 } 4347 4348 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4349 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4350 verbose(env, 4351 "R%d 32-bit pointer arithmetic prohibited\n", 4352 dst); 4353 return -EACCES; 4354 } 4355 4356 switch (ptr_reg->type) { 4357 case PTR_TO_MAP_VALUE_OR_NULL: 4358 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4359 dst, reg_type_str[ptr_reg->type]); 4360 return -EACCES; 4361 case CONST_PTR_TO_MAP: 4362 case PTR_TO_PACKET_END: 4363 case PTR_TO_SOCKET: 4364 case PTR_TO_SOCKET_OR_NULL: 4365 case PTR_TO_SOCK_COMMON: 4366 case PTR_TO_SOCK_COMMON_OR_NULL: 4367 case PTR_TO_TCP_SOCK: 4368 case PTR_TO_TCP_SOCK_OR_NULL: 4369 case PTR_TO_XDP_SOCK: 4370 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4371 dst, reg_type_str[ptr_reg->type]); 4372 return -EACCES; 4373 case PTR_TO_MAP_VALUE: 4374 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4375 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4376 off_reg == dst_reg ? dst : src); 4377 return -EACCES; 4378 } 4379 /* fall-through */ 4380 default: 4381 break; 4382 } 4383 4384 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4385 * The id may be overwritten later if we create a new variable offset. 4386 */ 4387 dst_reg->type = ptr_reg->type; 4388 dst_reg->id = ptr_reg->id; 4389 4390 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4391 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4392 return -EINVAL; 4393 4394 switch (opcode) { 4395 case BPF_ADD: 4396 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4397 if (ret < 0) { 4398 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4399 return ret; 4400 } 4401 /* We can take a fixed offset as long as it doesn't overflow 4402 * the s32 'off' field 4403 */ 4404 if (known && (ptr_reg->off + smin_val == 4405 (s64)(s32)(ptr_reg->off + smin_val))) { 4406 /* pointer += K. Accumulate it into fixed offset */ 4407 dst_reg->smin_value = smin_ptr; 4408 dst_reg->smax_value = smax_ptr; 4409 dst_reg->umin_value = umin_ptr; 4410 dst_reg->umax_value = umax_ptr; 4411 dst_reg->var_off = ptr_reg->var_off; 4412 dst_reg->off = ptr_reg->off + smin_val; 4413 dst_reg->raw = ptr_reg->raw; 4414 break; 4415 } 4416 /* A new variable offset is created. Note that off_reg->off 4417 * == 0, since it's a scalar. 4418 * dst_reg gets the pointer type and since some positive 4419 * integer value was added to the pointer, give it a new 'id' 4420 * if it's a PTR_TO_PACKET. 4421 * this creates a new 'base' pointer, off_reg (variable) gets 4422 * added into the variable offset, and we copy the fixed offset 4423 * from ptr_reg. 4424 */ 4425 if (signed_add_overflows(smin_ptr, smin_val) || 4426 signed_add_overflows(smax_ptr, smax_val)) { 4427 dst_reg->smin_value = S64_MIN; 4428 dst_reg->smax_value = S64_MAX; 4429 } else { 4430 dst_reg->smin_value = smin_ptr + smin_val; 4431 dst_reg->smax_value = smax_ptr + smax_val; 4432 } 4433 if (umin_ptr + umin_val < umin_ptr || 4434 umax_ptr + umax_val < umax_ptr) { 4435 dst_reg->umin_value = 0; 4436 dst_reg->umax_value = U64_MAX; 4437 } else { 4438 dst_reg->umin_value = umin_ptr + umin_val; 4439 dst_reg->umax_value = umax_ptr + umax_val; 4440 } 4441 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4442 dst_reg->off = ptr_reg->off; 4443 dst_reg->raw = ptr_reg->raw; 4444 if (reg_is_pkt_pointer(ptr_reg)) { 4445 dst_reg->id = ++env->id_gen; 4446 /* something was added to pkt_ptr, set range to zero */ 4447 dst_reg->raw = 0; 4448 } 4449 break; 4450 case BPF_SUB: 4451 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4452 if (ret < 0) { 4453 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4454 return ret; 4455 } 4456 if (dst_reg == off_reg) { 4457 /* scalar -= pointer. Creates an unknown scalar */ 4458 verbose(env, "R%d tried to subtract pointer from scalar\n", 4459 dst); 4460 return -EACCES; 4461 } 4462 /* We don't allow subtraction from FP, because (according to 4463 * test_verifier.c test "invalid fp arithmetic", JITs might not 4464 * be able to deal with it. 4465 */ 4466 if (ptr_reg->type == PTR_TO_STACK) { 4467 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4468 dst); 4469 return -EACCES; 4470 } 4471 if (known && (ptr_reg->off - smin_val == 4472 (s64)(s32)(ptr_reg->off - smin_val))) { 4473 /* pointer -= K. Subtract it from fixed offset */ 4474 dst_reg->smin_value = smin_ptr; 4475 dst_reg->smax_value = smax_ptr; 4476 dst_reg->umin_value = umin_ptr; 4477 dst_reg->umax_value = umax_ptr; 4478 dst_reg->var_off = ptr_reg->var_off; 4479 dst_reg->id = ptr_reg->id; 4480 dst_reg->off = ptr_reg->off - smin_val; 4481 dst_reg->raw = ptr_reg->raw; 4482 break; 4483 } 4484 /* A new variable offset is created. If the subtrahend is known 4485 * nonnegative, then any reg->range we had before is still good. 4486 */ 4487 if (signed_sub_overflows(smin_ptr, smax_val) || 4488 signed_sub_overflows(smax_ptr, smin_val)) { 4489 /* Overflow possible, we know nothing */ 4490 dst_reg->smin_value = S64_MIN; 4491 dst_reg->smax_value = S64_MAX; 4492 } else { 4493 dst_reg->smin_value = smin_ptr - smax_val; 4494 dst_reg->smax_value = smax_ptr - smin_val; 4495 } 4496 if (umin_ptr < umax_val) { 4497 /* Overflow possible, we know nothing */ 4498 dst_reg->umin_value = 0; 4499 dst_reg->umax_value = U64_MAX; 4500 } else { 4501 /* Cannot overflow (as long as bounds are consistent) */ 4502 dst_reg->umin_value = umin_ptr - umax_val; 4503 dst_reg->umax_value = umax_ptr - umin_val; 4504 } 4505 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4506 dst_reg->off = ptr_reg->off; 4507 dst_reg->raw = ptr_reg->raw; 4508 if (reg_is_pkt_pointer(ptr_reg)) { 4509 dst_reg->id = ++env->id_gen; 4510 /* something was added to pkt_ptr, set range to zero */ 4511 if (smin_val < 0) 4512 dst_reg->raw = 0; 4513 } 4514 break; 4515 case BPF_AND: 4516 case BPF_OR: 4517 case BPF_XOR: 4518 /* bitwise ops on pointers are troublesome, prohibit. */ 4519 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4520 dst, bpf_alu_string[opcode >> 4]); 4521 return -EACCES; 4522 default: 4523 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4524 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4525 dst, bpf_alu_string[opcode >> 4]); 4526 return -EACCES; 4527 } 4528 4529 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4530 return -EINVAL; 4531 4532 __update_reg_bounds(dst_reg); 4533 __reg_deduce_bounds(dst_reg); 4534 __reg_bound_offset(dst_reg); 4535 4536 /* For unprivileged we require that resulting offset must be in bounds 4537 * in order to be able to sanitize access later on. 4538 */ 4539 if (!env->allow_ptr_leaks) { 4540 if (dst_reg->type == PTR_TO_MAP_VALUE && 4541 check_map_access(env, dst, dst_reg->off, 1, false)) { 4542 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4543 "prohibited for !root\n", dst); 4544 return -EACCES; 4545 } else if (dst_reg->type == PTR_TO_STACK && 4546 check_stack_access(env, dst_reg, dst_reg->off + 4547 dst_reg->var_off.value, 1)) { 4548 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4549 "prohibited for !root\n", dst); 4550 return -EACCES; 4551 } 4552 } 4553 4554 return 0; 4555 } 4556 4557 /* WARNING: This function does calculations on 64-bit values, but the actual 4558 * execution may occur on 32-bit values. Therefore, things like bitshifts 4559 * need extra checks in the 32-bit case. 4560 */ 4561 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4562 struct bpf_insn *insn, 4563 struct bpf_reg_state *dst_reg, 4564 struct bpf_reg_state src_reg) 4565 { 4566 struct bpf_reg_state *regs = cur_regs(env); 4567 u8 opcode = BPF_OP(insn->code); 4568 bool src_known, dst_known; 4569 s64 smin_val, smax_val; 4570 u64 umin_val, umax_val; 4571 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4572 u32 dst = insn->dst_reg; 4573 int ret; 4574 4575 if (insn_bitness == 32) { 4576 /* Relevant for 32-bit RSH: Information can propagate towards 4577 * LSB, so it isn't sufficient to only truncate the output to 4578 * 32 bits. 4579 */ 4580 coerce_reg_to_size(dst_reg, 4); 4581 coerce_reg_to_size(&src_reg, 4); 4582 } 4583 4584 smin_val = src_reg.smin_value; 4585 smax_val = src_reg.smax_value; 4586 umin_val = src_reg.umin_value; 4587 umax_val = src_reg.umax_value; 4588 src_known = tnum_is_const(src_reg.var_off); 4589 dst_known = tnum_is_const(dst_reg->var_off); 4590 4591 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4592 smin_val > smax_val || umin_val > umax_val) { 4593 /* Taint dst register if offset had invalid bounds derived from 4594 * e.g. dead branches. 4595 */ 4596 __mark_reg_unknown(dst_reg); 4597 return 0; 4598 } 4599 4600 if (!src_known && 4601 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4602 __mark_reg_unknown(dst_reg); 4603 return 0; 4604 } 4605 4606 switch (opcode) { 4607 case BPF_ADD: 4608 ret = sanitize_val_alu(env, insn); 4609 if (ret < 0) { 4610 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4611 return ret; 4612 } 4613 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4614 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4615 dst_reg->smin_value = S64_MIN; 4616 dst_reg->smax_value = S64_MAX; 4617 } else { 4618 dst_reg->smin_value += smin_val; 4619 dst_reg->smax_value += smax_val; 4620 } 4621 if (dst_reg->umin_value + umin_val < umin_val || 4622 dst_reg->umax_value + umax_val < umax_val) { 4623 dst_reg->umin_value = 0; 4624 dst_reg->umax_value = U64_MAX; 4625 } else { 4626 dst_reg->umin_value += umin_val; 4627 dst_reg->umax_value += umax_val; 4628 } 4629 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4630 break; 4631 case BPF_SUB: 4632 ret = sanitize_val_alu(env, insn); 4633 if (ret < 0) { 4634 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4635 return ret; 4636 } 4637 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4638 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4639 /* Overflow possible, we know nothing */ 4640 dst_reg->smin_value = S64_MIN; 4641 dst_reg->smax_value = S64_MAX; 4642 } else { 4643 dst_reg->smin_value -= smax_val; 4644 dst_reg->smax_value -= smin_val; 4645 } 4646 if (dst_reg->umin_value < umax_val) { 4647 /* Overflow possible, we know nothing */ 4648 dst_reg->umin_value = 0; 4649 dst_reg->umax_value = U64_MAX; 4650 } else { 4651 /* Cannot overflow (as long as bounds are consistent) */ 4652 dst_reg->umin_value -= umax_val; 4653 dst_reg->umax_value -= umin_val; 4654 } 4655 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4656 break; 4657 case BPF_MUL: 4658 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4659 if (smin_val < 0 || dst_reg->smin_value < 0) { 4660 /* Ain't nobody got time to multiply that sign */ 4661 __mark_reg_unbounded(dst_reg); 4662 __update_reg_bounds(dst_reg); 4663 break; 4664 } 4665 /* Both values are positive, so we can work with unsigned and 4666 * copy the result to signed (unless it exceeds S64_MAX). 4667 */ 4668 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4669 /* Potential overflow, we know nothing */ 4670 __mark_reg_unbounded(dst_reg); 4671 /* (except what we can learn from the var_off) */ 4672 __update_reg_bounds(dst_reg); 4673 break; 4674 } 4675 dst_reg->umin_value *= umin_val; 4676 dst_reg->umax_value *= umax_val; 4677 if (dst_reg->umax_value > S64_MAX) { 4678 /* Overflow possible, we know nothing */ 4679 dst_reg->smin_value = S64_MIN; 4680 dst_reg->smax_value = S64_MAX; 4681 } else { 4682 dst_reg->smin_value = dst_reg->umin_value; 4683 dst_reg->smax_value = dst_reg->umax_value; 4684 } 4685 break; 4686 case BPF_AND: 4687 if (src_known && dst_known) { 4688 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4689 src_reg.var_off.value); 4690 break; 4691 } 4692 /* We get our minimum from the var_off, since that's inherently 4693 * bitwise. Our maximum is the minimum of the operands' maxima. 4694 */ 4695 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4696 dst_reg->umin_value = dst_reg->var_off.value; 4697 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4698 if (dst_reg->smin_value < 0 || smin_val < 0) { 4699 /* Lose signed bounds when ANDing negative numbers, 4700 * ain't nobody got time for that. 4701 */ 4702 dst_reg->smin_value = S64_MIN; 4703 dst_reg->smax_value = S64_MAX; 4704 } else { 4705 /* ANDing two positives gives a positive, so safe to 4706 * cast result into s64. 4707 */ 4708 dst_reg->smin_value = dst_reg->umin_value; 4709 dst_reg->smax_value = dst_reg->umax_value; 4710 } 4711 /* We may learn something more from the var_off */ 4712 __update_reg_bounds(dst_reg); 4713 break; 4714 case BPF_OR: 4715 if (src_known && dst_known) { 4716 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4717 src_reg.var_off.value); 4718 break; 4719 } 4720 /* We get our maximum from the var_off, and our minimum is the 4721 * maximum of the operands' minima 4722 */ 4723 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4724 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4725 dst_reg->umax_value = dst_reg->var_off.value | 4726 dst_reg->var_off.mask; 4727 if (dst_reg->smin_value < 0 || smin_val < 0) { 4728 /* Lose signed bounds when ORing negative numbers, 4729 * ain't nobody got time for that. 4730 */ 4731 dst_reg->smin_value = S64_MIN; 4732 dst_reg->smax_value = S64_MAX; 4733 } else { 4734 /* ORing two positives gives a positive, so safe to 4735 * cast result into s64. 4736 */ 4737 dst_reg->smin_value = dst_reg->umin_value; 4738 dst_reg->smax_value = dst_reg->umax_value; 4739 } 4740 /* We may learn something more from the var_off */ 4741 __update_reg_bounds(dst_reg); 4742 break; 4743 case BPF_LSH: 4744 if (umax_val >= insn_bitness) { 4745 /* Shifts greater than 31 or 63 are undefined. 4746 * This includes shifts by a negative number. 4747 */ 4748 mark_reg_unknown(env, regs, insn->dst_reg); 4749 break; 4750 } 4751 /* We lose all sign bit information (except what we can pick 4752 * up from var_off) 4753 */ 4754 dst_reg->smin_value = S64_MIN; 4755 dst_reg->smax_value = S64_MAX; 4756 /* If we might shift our top bit out, then we know nothing */ 4757 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4758 dst_reg->umin_value = 0; 4759 dst_reg->umax_value = U64_MAX; 4760 } else { 4761 dst_reg->umin_value <<= umin_val; 4762 dst_reg->umax_value <<= umax_val; 4763 } 4764 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4765 /* We may learn something more from the var_off */ 4766 __update_reg_bounds(dst_reg); 4767 break; 4768 case BPF_RSH: 4769 if (umax_val >= insn_bitness) { 4770 /* Shifts greater than 31 or 63 are undefined. 4771 * This includes shifts by a negative number. 4772 */ 4773 mark_reg_unknown(env, regs, insn->dst_reg); 4774 break; 4775 } 4776 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4777 * be negative, then either: 4778 * 1) src_reg might be zero, so the sign bit of the result is 4779 * unknown, so we lose our signed bounds 4780 * 2) it's known negative, thus the unsigned bounds capture the 4781 * signed bounds 4782 * 3) the signed bounds cross zero, so they tell us nothing 4783 * about the result 4784 * If the value in dst_reg is known nonnegative, then again the 4785 * unsigned bounts capture the signed bounds. 4786 * Thus, in all cases it suffices to blow away our signed bounds 4787 * and rely on inferring new ones from the unsigned bounds and 4788 * var_off of the result. 4789 */ 4790 dst_reg->smin_value = S64_MIN; 4791 dst_reg->smax_value = S64_MAX; 4792 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4793 dst_reg->umin_value >>= umax_val; 4794 dst_reg->umax_value >>= umin_val; 4795 /* We may learn something more from the var_off */ 4796 __update_reg_bounds(dst_reg); 4797 break; 4798 case BPF_ARSH: 4799 if (umax_val >= insn_bitness) { 4800 /* Shifts greater than 31 or 63 are undefined. 4801 * This includes shifts by a negative number. 4802 */ 4803 mark_reg_unknown(env, regs, insn->dst_reg); 4804 break; 4805 } 4806 4807 /* Upon reaching here, src_known is true and 4808 * umax_val is equal to umin_val. 4809 */ 4810 dst_reg->smin_value >>= umin_val; 4811 dst_reg->smax_value >>= umin_val; 4812 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4813 4814 /* blow away the dst_reg umin_value/umax_value and rely on 4815 * dst_reg var_off to refine the result. 4816 */ 4817 dst_reg->umin_value = 0; 4818 dst_reg->umax_value = U64_MAX; 4819 __update_reg_bounds(dst_reg); 4820 break; 4821 default: 4822 mark_reg_unknown(env, regs, insn->dst_reg); 4823 break; 4824 } 4825 4826 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4827 /* 32-bit ALU ops are (32,32)->32 */ 4828 coerce_reg_to_size(dst_reg, 4); 4829 } 4830 4831 __reg_deduce_bounds(dst_reg); 4832 __reg_bound_offset(dst_reg); 4833 return 0; 4834 } 4835 4836 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4837 * and var_off. 4838 */ 4839 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4840 struct bpf_insn *insn) 4841 { 4842 struct bpf_verifier_state *vstate = env->cur_state; 4843 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4844 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4845 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4846 u8 opcode = BPF_OP(insn->code); 4847 int err; 4848 4849 dst_reg = ®s[insn->dst_reg]; 4850 src_reg = NULL; 4851 if (dst_reg->type != SCALAR_VALUE) 4852 ptr_reg = dst_reg; 4853 if (BPF_SRC(insn->code) == BPF_X) { 4854 src_reg = ®s[insn->src_reg]; 4855 if (src_reg->type != SCALAR_VALUE) { 4856 if (dst_reg->type != SCALAR_VALUE) { 4857 /* Combining two pointers by any ALU op yields 4858 * an arbitrary scalar. Disallow all math except 4859 * pointer subtraction 4860 */ 4861 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4862 mark_reg_unknown(env, regs, insn->dst_reg); 4863 return 0; 4864 } 4865 verbose(env, "R%d pointer %s pointer prohibited\n", 4866 insn->dst_reg, 4867 bpf_alu_string[opcode >> 4]); 4868 return -EACCES; 4869 } else { 4870 /* scalar += pointer 4871 * This is legal, but we have to reverse our 4872 * src/dest handling in computing the range 4873 */ 4874 err = mark_chain_precision(env, insn->dst_reg); 4875 if (err) 4876 return err; 4877 return adjust_ptr_min_max_vals(env, insn, 4878 src_reg, dst_reg); 4879 } 4880 } else if (ptr_reg) { 4881 /* pointer += scalar */ 4882 err = mark_chain_precision(env, insn->src_reg); 4883 if (err) 4884 return err; 4885 return adjust_ptr_min_max_vals(env, insn, 4886 dst_reg, src_reg); 4887 } 4888 } else { 4889 /* Pretend the src is a reg with a known value, since we only 4890 * need to be able to read from this state. 4891 */ 4892 off_reg.type = SCALAR_VALUE; 4893 __mark_reg_known(&off_reg, insn->imm); 4894 src_reg = &off_reg; 4895 if (ptr_reg) /* pointer += K */ 4896 return adjust_ptr_min_max_vals(env, insn, 4897 ptr_reg, src_reg); 4898 } 4899 4900 /* Got here implies adding two SCALAR_VALUEs */ 4901 if (WARN_ON_ONCE(ptr_reg)) { 4902 print_verifier_state(env, state); 4903 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4904 return -EINVAL; 4905 } 4906 if (WARN_ON(!src_reg)) { 4907 print_verifier_state(env, state); 4908 verbose(env, "verifier internal error: no src_reg\n"); 4909 return -EINVAL; 4910 } 4911 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4912 } 4913 4914 /* check validity of 32-bit and 64-bit arithmetic operations */ 4915 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4916 { 4917 struct bpf_reg_state *regs = cur_regs(env); 4918 u8 opcode = BPF_OP(insn->code); 4919 int err; 4920 4921 if (opcode == BPF_END || opcode == BPF_NEG) { 4922 if (opcode == BPF_NEG) { 4923 if (BPF_SRC(insn->code) != 0 || 4924 insn->src_reg != BPF_REG_0 || 4925 insn->off != 0 || insn->imm != 0) { 4926 verbose(env, "BPF_NEG uses reserved fields\n"); 4927 return -EINVAL; 4928 } 4929 } else { 4930 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4931 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4932 BPF_CLASS(insn->code) == BPF_ALU64) { 4933 verbose(env, "BPF_END uses reserved fields\n"); 4934 return -EINVAL; 4935 } 4936 } 4937 4938 /* check src operand */ 4939 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4940 if (err) 4941 return err; 4942 4943 if (is_pointer_value(env, insn->dst_reg)) { 4944 verbose(env, "R%d pointer arithmetic prohibited\n", 4945 insn->dst_reg); 4946 return -EACCES; 4947 } 4948 4949 /* check dest operand */ 4950 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4951 if (err) 4952 return err; 4953 4954 } else if (opcode == BPF_MOV) { 4955 4956 if (BPF_SRC(insn->code) == BPF_X) { 4957 if (insn->imm != 0 || insn->off != 0) { 4958 verbose(env, "BPF_MOV uses reserved fields\n"); 4959 return -EINVAL; 4960 } 4961 4962 /* check src operand */ 4963 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4964 if (err) 4965 return err; 4966 } else { 4967 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4968 verbose(env, "BPF_MOV uses reserved fields\n"); 4969 return -EINVAL; 4970 } 4971 } 4972 4973 /* check dest operand, mark as required later */ 4974 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4975 if (err) 4976 return err; 4977 4978 if (BPF_SRC(insn->code) == BPF_X) { 4979 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4980 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4981 4982 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4983 /* case: R1 = R2 4984 * copy register state to dest reg 4985 */ 4986 *dst_reg = *src_reg; 4987 dst_reg->live |= REG_LIVE_WRITTEN; 4988 dst_reg->subreg_def = DEF_NOT_SUBREG; 4989 } else { 4990 /* R1 = (u32) R2 */ 4991 if (is_pointer_value(env, insn->src_reg)) { 4992 verbose(env, 4993 "R%d partial copy of pointer\n", 4994 insn->src_reg); 4995 return -EACCES; 4996 } else if (src_reg->type == SCALAR_VALUE) { 4997 *dst_reg = *src_reg; 4998 dst_reg->live |= REG_LIVE_WRITTEN; 4999 dst_reg->subreg_def = env->insn_idx + 1; 5000 } else { 5001 mark_reg_unknown(env, regs, 5002 insn->dst_reg); 5003 } 5004 coerce_reg_to_size(dst_reg, 4); 5005 } 5006 } else { 5007 /* case: R = imm 5008 * remember the value we stored into this reg 5009 */ 5010 /* clear any state __mark_reg_known doesn't set */ 5011 mark_reg_unknown(env, regs, insn->dst_reg); 5012 regs[insn->dst_reg].type = SCALAR_VALUE; 5013 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5014 __mark_reg_known(regs + insn->dst_reg, 5015 insn->imm); 5016 } else { 5017 __mark_reg_known(regs + insn->dst_reg, 5018 (u32)insn->imm); 5019 } 5020 } 5021 5022 } else if (opcode > BPF_END) { 5023 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5024 return -EINVAL; 5025 5026 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5027 5028 if (BPF_SRC(insn->code) == BPF_X) { 5029 if (insn->imm != 0 || insn->off != 0) { 5030 verbose(env, "BPF_ALU uses reserved fields\n"); 5031 return -EINVAL; 5032 } 5033 /* check src1 operand */ 5034 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5035 if (err) 5036 return err; 5037 } else { 5038 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5039 verbose(env, "BPF_ALU uses reserved fields\n"); 5040 return -EINVAL; 5041 } 5042 } 5043 5044 /* check src2 operand */ 5045 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5046 if (err) 5047 return err; 5048 5049 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5050 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5051 verbose(env, "div by zero\n"); 5052 return -EINVAL; 5053 } 5054 5055 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5056 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5057 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5058 5059 if (insn->imm < 0 || insn->imm >= size) { 5060 verbose(env, "invalid shift %d\n", insn->imm); 5061 return -EINVAL; 5062 } 5063 } 5064 5065 /* check dest operand */ 5066 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5067 if (err) 5068 return err; 5069 5070 return adjust_reg_min_max_vals(env, insn); 5071 } 5072 5073 return 0; 5074 } 5075 5076 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5077 struct bpf_reg_state *dst_reg, 5078 enum bpf_reg_type type, u16 new_range) 5079 { 5080 struct bpf_reg_state *reg; 5081 int i; 5082 5083 for (i = 0; i < MAX_BPF_REG; i++) { 5084 reg = &state->regs[i]; 5085 if (reg->type == type && reg->id == dst_reg->id) 5086 /* keep the maximum range already checked */ 5087 reg->range = max(reg->range, new_range); 5088 } 5089 5090 bpf_for_each_spilled_reg(i, state, reg) { 5091 if (!reg) 5092 continue; 5093 if (reg->type == type && reg->id == dst_reg->id) 5094 reg->range = max(reg->range, new_range); 5095 } 5096 } 5097 5098 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5099 struct bpf_reg_state *dst_reg, 5100 enum bpf_reg_type type, 5101 bool range_right_open) 5102 { 5103 u16 new_range; 5104 int i; 5105 5106 if (dst_reg->off < 0 || 5107 (dst_reg->off == 0 && range_right_open)) 5108 /* This doesn't give us any range */ 5109 return; 5110 5111 if (dst_reg->umax_value > MAX_PACKET_OFF || 5112 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5113 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5114 * than pkt_end, but that's because it's also less than pkt. 5115 */ 5116 return; 5117 5118 new_range = dst_reg->off; 5119 if (range_right_open) 5120 new_range--; 5121 5122 /* Examples for register markings: 5123 * 5124 * pkt_data in dst register: 5125 * 5126 * r2 = r3; 5127 * r2 += 8; 5128 * if (r2 > pkt_end) goto <handle exception> 5129 * <access okay> 5130 * 5131 * r2 = r3; 5132 * r2 += 8; 5133 * if (r2 < pkt_end) goto <access okay> 5134 * <handle exception> 5135 * 5136 * Where: 5137 * r2 == dst_reg, pkt_end == src_reg 5138 * r2=pkt(id=n,off=8,r=0) 5139 * r3=pkt(id=n,off=0,r=0) 5140 * 5141 * pkt_data in src register: 5142 * 5143 * r2 = r3; 5144 * r2 += 8; 5145 * if (pkt_end >= r2) goto <access okay> 5146 * <handle exception> 5147 * 5148 * r2 = r3; 5149 * r2 += 8; 5150 * if (pkt_end <= r2) goto <handle exception> 5151 * <access okay> 5152 * 5153 * Where: 5154 * pkt_end == dst_reg, r2 == src_reg 5155 * r2=pkt(id=n,off=8,r=0) 5156 * r3=pkt(id=n,off=0,r=0) 5157 * 5158 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5159 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5160 * and [r3, r3 + 8-1) respectively is safe to access depending on 5161 * the check. 5162 */ 5163 5164 /* If our ids match, then we must have the same max_value. And we 5165 * don't care about the other reg's fixed offset, since if it's too big 5166 * the range won't allow anything. 5167 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5168 */ 5169 for (i = 0; i <= vstate->curframe; i++) 5170 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5171 new_range); 5172 } 5173 5174 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5175 * and return: 5176 * 1 - branch will be taken and "goto target" will be executed 5177 * 0 - branch will not be taken and fall-through to next insn 5178 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5179 */ 5180 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5181 bool is_jmp32) 5182 { 5183 struct bpf_reg_state reg_lo; 5184 s64 sval; 5185 5186 if (__is_pointer_value(false, reg)) 5187 return -1; 5188 5189 if (is_jmp32) { 5190 reg_lo = *reg; 5191 reg = ®_lo; 5192 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5193 * could truncate high bits and update umin/umax according to 5194 * information of low bits. 5195 */ 5196 coerce_reg_to_size(reg, 4); 5197 /* smin/smax need special handling. For example, after coerce, 5198 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5199 * used as operand to JMP32. It is a negative number from s32's 5200 * point of view, while it is a positive number when seen as 5201 * s64. The smin/smax are kept as s64, therefore, when used with 5202 * JMP32, they need to be transformed into s32, then sign 5203 * extended back to s64. 5204 * 5205 * Also, smin/smax were copied from umin/umax. If umin/umax has 5206 * different sign bit, then min/max relationship doesn't 5207 * maintain after casting into s32, for this case, set smin/smax 5208 * to safest range. 5209 */ 5210 if ((reg->umax_value ^ reg->umin_value) & 5211 (1ULL << 31)) { 5212 reg->smin_value = S32_MIN; 5213 reg->smax_value = S32_MAX; 5214 } 5215 reg->smin_value = (s64)(s32)reg->smin_value; 5216 reg->smax_value = (s64)(s32)reg->smax_value; 5217 5218 val = (u32)val; 5219 sval = (s64)(s32)val; 5220 } else { 5221 sval = (s64)val; 5222 } 5223 5224 switch (opcode) { 5225 case BPF_JEQ: 5226 if (tnum_is_const(reg->var_off)) 5227 return !!tnum_equals_const(reg->var_off, val); 5228 break; 5229 case BPF_JNE: 5230 if (tnum_is_const(reg->var_off)) 5231 return !tnum_equals_const(reg->var_off, val); 5232 break; 5233 case BPF_JSET: 5234 if ((~reg->var_off.mask & reg->var_off.value) & val) 5235 return 1; 5236 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5237 return 0; 5238 break; 5239 case BPF_JGT: 5240 if (reg->umin_value > val) 5241 return 1; 5242 else if (reg->umax_value <= val) 5243 return 0; 5244 break; 5245 case BPF_JSGT: 5246 if (reg->smin_value > sval) 5247 return 1; 5248 else if (reg->smax_value < sval) 5249 return 0; 5250 break; 5251 case BPF_JLT: 5252 if (reg->umax_value < val) 5253 return 1; 5254 else if (reg->umin_value >= val) 5255 return 0; 5256 break; 5257 case BPF_JSLT: 5258 if (reg->smax_value < sval) 5259 return 1; 5260 else if (reg->smin_value >= sval) 5261 return 0; 5262 break; 5263 case BPF_JGE: 5264 if (reg->umin_value >= val) 5265 return 1; 5266 else if (reg->umax_value < val) 5267 return 0; 5268 break; 5269 case BPF_JSGE: 5270 if (reg->smin_value >= sval) 5271 return 1; 5272 else if (reg->smax_value < sval) 5273 return 0; 5274 break; 5275 case BPF_JLE: 5276 if (reg->umax_value <= val) 5277 return 1; 5278 else if (reg->umin_value > val) 5279 return 0; 5280 break; 5281 case BPF_JSLE: 5282 if (reg->smax_value <= sval) 5283 return 1; 5284 else if (reg->smin_value > sval) 5285 return 0; 5286 break; 5287 } 5288 5289 return -1; 5290 } 5291 5292 /* Generate min value of the high 32-bit from TNUM info. */ 5293 static u64 gen_hi_min(struct tnum var) 5294 { 5295 return var.value & ~0xffffffffULL; 5296 } 5297 5298 /* Generate max value of the high 32-bit from TNUM info. */ 5299 static u64 gen_hi_max(struct tnum var) 5300 { 5301 return (var.value | var.mask) & ~0xffffffffULL; 5302 } 5303 5304 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5305 * are with the same signedness. 5306 */ 5307 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5308 { 5309 return ((s32)sval >= 0 && 5310 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5311 ((s32)sval < 0 && 5312 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5313 } 5314 5315 /* Adjusts the register min/max values in the case that the dst_reg is the 5316 * variable register that we are working on, and src_reg is a constant or we're 5317 * simply doing a BPF_K check. 5318 * In JEQ/JNE cases we also adjust the var_off values. 5319 */ 5320 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5321 struct bpf_reg_state *false_reg, u64 val, 5322 u8 opcode, bool is_jmp32) 5323 { 5324 s64 sval; 5325 5326 /* If the dst_reg is a pointer, we can't learn anything about its 5327 * variable offset from the compare (unless src_reg were a pointer into 5328 * the same object, but we don't bother with that. 5329 * Since false_reg and true_reg have the same type by construction, we 5330 * only need to check one of them for pointerness. 5331 */ 5332 if (__is_pointer_value(false, false_reg)) 5333 return; 5334 5335 val = is_jmp32 ? (u32)val : val; 5336 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5337 5338 switch (opcode) { 5339 case BPF_JEQ: 5340 case BPF_JNE: 5341 { 5342 struct bpf_reg_state *reg = 5343 opcode == BPF_JEQ ? true_reg : false_reg; 5344 5345 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5346 * if it is true we know the value for sure. Likewise for 5347 * BPF_JNE. 5348 */ 5349 if (is_jmp32) { 5350 u64 old_v = reg->var_off.value; 5351 u64 hi_mask = ~0xffffffffULL; 5352 5353 reg->var_off.value = (old_v & hi_mask) | val; 5354 reg->var_off.mask &= hi_mask; 5355 } else { 5356 __mark_reg_known(reg, val); 5357 } 5358 break; 5359 } 5360 case BPF_JSET: 5361 false_reg->var_off = tnum_and(false_reg->var_off, 5362 tnum_const(~val)); 5363 if (is_power_of_2(val)) 5364 true_reg->var_off = tnum_or(true_reg->var_off, 5365 tnum_const(val)); 5366 break; 5367 case BPF_JGE: 5368 case BPF_JGT: 5369 { 5370 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5371 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5372 5373 if (is_jmp32) { 5374 false_umax += gen_hi_max(false_reg->var_off); 5375 true_umin += gen_hi_min(true_reg->var_off); 5376 } 5377 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5378 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5379 break; 5380 } 5381 case BPF_JSGE: 5382 case BPF_JSGT: 5383 { 5384 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5385 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5386 5387 /* If the full s64 was not sign-extended from s32 then don't 5388 * deduct further info. 5389 */ 5390 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5391 break; 5392 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5393 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5394 break; 5395 } 5396 case BPF_JLE: 5397 case BPF_JLT: 5398 { 5399 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5400 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5401 5402 if (is_jmp32) { 5403 false_umin += gen_hi_min(false_reg->var_off); 5404 true_umax += gen_hi_max(true_reg->var_off); 5405 } 5406 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5407 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5408 break; 5409 } 5410 case BPF_JSLE: 5411 case BPF_JSLT: 5412 { 5413 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5414 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5415 5416 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5417 break; 5418 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5419 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5420 break; 5421 } 5422 default: 5423 break; 5424 } 5425 5426 __reg_deduce_bounds(false_reg); 5427 __reg_deduce_bounds(true_reg); 5428 /* We might have learned some bits from the bounds. */ 5429 __reg_bound_offset(false_reg); 5430 __reg_bound_offset(true_reg); 5431 /* Intersecting with the old var_off might have improved our bounds 5432 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5433 * then new var_off is (0; 0x7f...fc) which improves our umax. 5434 */ 5435 __update_reg_bounds(false_reg); 5436 __update_reg_bounds(true_reg); 5437 } 5438 5439 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5440 * the variable reg. 5441 */ 5442 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5443 struct bpf_reg_state *false_reg, u64 val, 5444 u8 opcode, bool is_jmp32) 5445 { 5446 s64 sval; 5447 5448 if (__is_pointer_value(false, false_reg)) 5449 return; 5450 5451 val = is_jmp32 ? (u32)val : val; 5452 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5453 5454 switch (opcode) { 5455 case BPF_JEQ: 5456 case BPF_JNE: 5457 { 5458 struct bpf_reg_state *reg = 5459 opcode == BPF_JEQ ? true_reg : false_reg; 5460 5461 if (is_jmp32) { 5462 u64 old_v = reg->var_off.value; 5463 u64 hi_mask = ~0xffffffffULL; 5464 5465 reg->var_off.value = (old_v & hi_mask) | val; 5466 reg->var_off.mask &= hi_mask; 5467 } else { 5468 __mark_reg_known(reg, val); 5469 } 5470 break; 5471 } 5472 case BPF_JSET: 5473 false_reg->var_off = tnum_and(false_reg->var_off, 5474 tnum_const(~val)); 5475 if (is_power_of_2(val)) 5476 true_reg->var_off = tnum_or(true_reg->var_off, 5477 tnum_const(val)); 5478 break; 5479 case BPF_JGE: 5480 case BPF_JGT: 5481 { 5482 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5483 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5484 5485 if (is_jmp32) { 5486 false_umin += gen_hi_min(false_reg->var_off); 5487 true_umax += gen_hi_max(true_reg->var_off); 5488 } 5489 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5490 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5491 break; 5492 } 5493 case BPF_JSGE: 5494 case BPF_JSGT: 5495 { 5496 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5497 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5498 5499 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5500 break; 5501 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5502 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5503 break; 5504 } 5505 case BPF_JLE: 5506 case BPF_JLT: 5507 { 5508 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5509 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5510 5511 if (is_jmp32) { 5512 false_umax += gen_hi_max(false_reg->var_off); 5513 true_umin += gen_hi_min(true_reg->var_off); 5514 } 5515 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5516 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5517 break; 5518 } 5519 case BPF_JSLE: 5520 case BPF_JSLT: 5521 { 5522 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5523 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5524 5525 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5526 break; 5527 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5528 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5529 break; 5530 } 5531 default: 5532 break; 5533 } 5534 5535 __reg_deduce_bounds(false_reg); 5536 __reg_deduce_bounds(true_reg); 5537 /* We might have learned some bits from the bounds. */ 5538 __reg_bound_offset(false_reg); 5539 __reg_bound_offset(true_reg); 5540 /* Intersecting with the old var_off might have improved our bounds 5541 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5542 * then new var_off is (0; 0x7f...fc) which improves our umax. 5543 */ 5544 __update_reg_bounds(false_reg); 5545 __update_reg_bounds(true_reg); 5546 } 5547 5548 /* Regs are known to be equal, so intersect their min/max/var_off */ 5549 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5550 struct bpf_reg_state *dst_reg) 5551 { 5552 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5553 dst_reg->umin_value); 5554 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5555 dst_reg->umax_value); 5556 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5557 dst_reg->smin_value); 5558 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5559 dst_reg->smax_value); 5560 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5561 dst_reg->var_off); 5562 /* We might have learned new bounds from the var_off. */ 5563 __update_reg_bounds(src_reg); 5564 __update_reg_bounds(dst_reg); 5565 /* We might have learned something about the sign bit. */ 5566 __reg_deduce_bounds(src_reg); 5567 __reg_deduce_bounds(dst_reg); 5568 /* We might have learned some bits from the bounds. */ 5569 __reg_bound_offset(src_reg); 5570 __reg_bound_offset(dst_reg); 5571 /* Intersecting with the old var_off might have improved our bounds 5572 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5573 * then new var_off is (0; 0x7f...fc) which improves our umax. 5574 */ 5575 __update_reg_bounds(src_reg); 5576 __update_reg_bounds(dst_reg); 5577 } 5578 5579 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5580 struct bpf_reg_state *true_dst, 5581 struct bpf_reg_state *false_src, 5582 struct bpf_reg_state *false_dst, 5583 u8 opcode) 5584 { 5585 switch (opcode) { 5586 case BPF_JEQ: 5587 __reg_combine_min_max(true_src, true_dst); 5588 break; 5589 case BPF_JNE: 5590 __reg_combine_min_max(false_src, false_dst); 5591 break; 5592 } 5593 } 5594 5595 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5596 struct bpf_reg_state *reg, u32 id, 5597 bool is_null) 5598 { 5599 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5600 /* Old offset (both fixed and variable parts) should 5601 * have been known-zero, because we don't allow pointer 5602 * arithmetic on pointers that might be NULL. 5603 */ 5604 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5605 !tnum_equals_const(reg->var_off, 0) || 5606 reg->off)) { 5607 __mark_reg_known_zero(reg); 5608 reg->off = 0; 5609 } 5610 if (is_null) { 5611 reg->type = SCALAR_VALUE; 5612 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5613 if (reg->map_ptr->inner_map_meta) { 5614 reg->type = CONST_PTR_TO_MAP; 5615 reg->map_ptr = reg->map_ptr->inner_map_meta; 5616 } else if (reg->map_ptr->map_type == 5617 BPF_MAP_TYPE_XSKMAP) { 5618 reg->type = PTR_TO_XDP_SOCK; 5619 } else { 5620 reg->type = PTR_TO_MAP_VALUE; 5621 } 5622 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5623 reg->type = PTR_TO_SOCKET; 5624 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5625 reg->type = PTR_TO_SOCK_COMMON; 5626 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5627 reg->type = PTR_TO_TCP_SOCK; 5628 } 5629 if (is_null) { 5630 /* We don't need id and ref_obj_id from this point 5631 * onwards anymore, thus we should better reset it, 5632 * so that state pruning has chances to take effect. 5633 */ 5634 reg->id = 0; 5635 reg->ref_obj_id = 0; 5636 } else if (!reg_may_point_to_spin_lock(reg)) { 5637 /* For not-NULL ptr, reg->ref_obj_id will be reset 5638 * in release_reg_references(). 5639 * 5640 * reg->id is still used by spin_lock ptr. Other 5641 * than spin_lock ptr type, reg->id can be reset. 5642 */ 5643 reg->id = 0; 5644 } 5645 } 5646 } 5647 5648 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5649 bool is_null) 5650 { 5651 struct bpf_reg_state *reg; 5652 int i; 5653 5654 for (i = 0; i < MAX_BPF_REG; i++) 5655 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5656 5657 bpf_for_each_spilled_reg(i, state, reg) { 5658 if (!reg) 5659 continue; 5660 mark_ptr_or_null_reg(state, reg, id, is_null); 5661 } 5662 } 5663 5664 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5665 * be folded together at some point. 5666 */ 5667 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5668 bool is_null) 5669 { 5670 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5671 struct bpf_reg_state *regs = state->regs; 5672 u32 ref_obj_id = regs[regno].ref_obj_id; 5673 u32 id = regs[regno].id; 5674 int i; 5675 5676 if (ref_obj_id && ref_obj_id == id && is_null) 5677 /* regs[regno] is in the " == NULL" branch. 5678 * No one could have freed the reference state before 5679 * doing the NULL check. 5680 */ 5681 WARN_ON_ONCE(release_reference_state(state, id)); 5682 5683 for (i = 0; i <= vstate->curframe; i++) 5684 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5685 } 5686 5687 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5688 struct bpf_reg_state *dst_reg, 5689 struct bpf_reg_state *src_reg, 5690 struct bpf_verifier_state *this_branch, 5691 struct bpf_verifier_state *other_branch) 5692 { 5693 if (BPF_SRC(insn->code) != BPF_X) 5694 return false; 5695 5696 /* Pointers are always 64-bit. */ 5697 if (BPF_CLASS(insn->code) == BPF_JMP32) 5698 return false; 5699 5700 switch (BPF_OP(insn->code)) { 5701 case BPF_JGT: 5702 if ((dst_reg->type == PTR_TO_PACKET && 5703 src_reg->type == PTR_TO_PACKET_END) || 5704 (dst_reg->type == PTR_TO_PACKET_META && 5705 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5706 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5707 find_good_pkt_pointers(this_branch, dst_reg, 5708 dst_reg->type, false); 5709 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5710 src_reg->type == PTR_TO_PACKET) || 5711 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5712 src_reg->type == PTR_TO_PACKET_META)) { 5713 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5714 find_good_pkt_pointers(other_branch, src_reg, 5715 src_reg->type, true); 5716 } else { 5717 return false; 5718 } 5719 break; 5720 case BPF_JLT: 5721 if ((dst_reg->type == PTR_TO_PACKET && 5722 src_reg->type == PTR_TO_PACKET_END) || 5723 (dst_reg->type == PTR_TO_PACKET_META && 5724 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5725 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5726 find_good_pkt_pointers(other_branch, dst_reg, 5727 dst_reg->type, true); 5728 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5729 src_reg->type == PTR_TO_PACKET) || 5730 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5731 src_reg->type == PTR_TO_PACKET_META)) { 5732 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5733 find_good_pkt_pointers(this_branch, src_reg, 5734 src_reg->type, false); 5735 } else { 5736 return false; 5737 } 5738 break; 5739 case BPF_JGE: 5740 if ((dst_reg->type == PTR_TO_PACKET && 5741 src_reg->type == PTR_TO_PACKET_END) || 5742 (dst_reg->type == PTR_TO_PACKET_META && 5743 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5744 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5745 find_good_pkt_pointers(this_branch, dst_reg, 5746 dst_reg->type, true); 5747 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5748 src_reg->type == PTR_TO_PACKET) || 5749 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5750 src_reg->type == PTR_TO_PACKET_META)) { 5751 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5752 find_good_pkt_pointers(other_branch, src_reg, 5753 src_reg->type, false); 5754 } else { 5755 return false; 5756 } 5757 break; 5758 case BPF_JLE: 5759 if ((dst_reg->type == PTR_TO_PACKET && 5760 src_reg->type == PTR_TO_PACKET_END) || 5761 (dst_reg->type == PTR_TO_PACKET_META && 5762 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5763 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5764 find_good_pkt_pointers(other_branch, dst_reg, 5765 dst_reg->type, false); 5766 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5767 src_reg->type == PTR_TO_PACKET) || 5768 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5769 src_reg->type == PTR_TO_PACKET_META)) { 5770 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5771 find_good_pkt_pointers(this_branch, src_reg, 5772 src_reg->type, true); 5773 } else { 5774 return false; 5775 } 5776 break; 5777 default: 5778 return false; 5779 } 5780 5781 return true; 5782 } 5783 5784 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5785 struct bpf_insn *insn, int *insn_idx) 5786 { 5787 struct bpf_verifier_state *this_branch = env->cur_state; 5788 struct bpf_verifier_state *other_branch; 5789 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5790 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5791 u8 opcode = BPF_OP(insn->code); 5792 bool is_jmp32; 5793 int pred = -1; 5794 int err; 5795 5796 /* Only conditional jumps are expected to reach here. */ 5797 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5798 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5799 return -EINVAL; 5800 } 5801 5802 if (BPF_SRC(insn->code) == BPF_X) { 5803 if (insn->imm != 0) { 5804 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5805 return -EINVAL; 5806 } 5807 5808 /* check src1 operand */ 5809 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5810 if (err) 5811 return err; 5812 5813 if (is_pointer_value(env, insn->src_reg)) { 5814 verbose(env, "R%d pointer comparison prohibited\n", 5815 insn->src_reg); 5816 return -EACCES; 5817 } 5818 src_reg = ®s[insn->src_reg]; 5819 } else { 5820 if (insn->src_reg != BPF_REG_0) { 5821 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5822 return -EINVAL; 5823 } 5824 } 5825 5826 /* check src2 operand */ 5827 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5828 if (err) 5829 return err; 5830 5831 dst_reg = ®s[insn->dst_reg]; 5832 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5833 5834 if (BPF_SRC(insn->code) == BPF_K) 5835 pred = is_branch_taken(dst_reg, insn->imm, 5836 opcode, is_jmp32); 5837 else if (src_reg->type == SCALAR_VALUE && 5838 tnum_is_const(src_reg->var_off)) 5839 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 5840 opcode, is_jmp32); 5841 if (pred >= 0) { 5842 err = mark_chain_precision(env, insn->dst_reg); 5843 if (BPF_SRC(insn->code) == BPF_X && !err) 5844 err = mark_chain_precision(env, insn->src_reg); 5845 if (err) 5846 return err; 5847 } 5848 if (pred == 1) { 5849 /* only follow the goto, ignore fall-through */ 5850 *insn_idx += insn->off; 5851 return 0; 5852 } else if (pred == 0) { 5853 /* only follow fall-through branch, since 5854 * that's where the program will go 5855 */ 5856 return 0; 5857 } 5858 5859 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5860 false); 5861 if (!other_branch) 5862 return -EFAULT; 5863 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5864 5865 /* detect if we are comparing against a constant value so we can adjust 5866 * our min/max values for our dst register. 5867 * this is only legit if both are scalars (or pointers to the same 5868 * object, I suppose, but we don't support that right now), because 5869 * otherwise the different base pointers mean the offsets aren't 5870 * comparable. 5871 */ 5872 if (BPF_SRC(insn->code) == BPF_X) { 5873 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5874 struct bpf_reg_state lo_reg0 = *dst_reg; 5875 struct bpf_reg_state lo_reg1 = *src_reg; 5876 struct bpf_reg_state *src_lo, *dst_lo; 5877 5878 dst_lo = &lo_reg0; 5879 src_lo = &lo_reg1; 5880 coerce_reg_to_size(dst_lo, 4); 5881 coerce_reg_to_size(src_lo, 4); 5882 5883 if (dst_reg->type == SCALAR_VALUE && 5884 src_reg->type == SCALAR_VALUE) { 5885 if (tnum_is_const(src_reg->var_off) || 5886 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5887 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5888 dst_reg, 5889 is_jmp32 5890 ? src_lo->var_off.value 5891 : src_reg->var_off.value, 5892 opcode, is_jmp32); 5893 else if (tnum_is_const(dst_reg->var_off) || 5894 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5895 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5896 src_reg, 5897 is_jmp32 5898 ? dst_lo->var_off.value 5899 : dst_reg->var_off.value, 5900 opcode, is_jmp32); 5901 else if (!is_jmp32 && 5902 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5903 /* Comparing for equality, we can combine knowledge */ 5904 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5905 &other_branch_regs[insn->dst_reg], 5906 src_reg, dst_reg, opcode); 5907 } 5908 } else if (dst_reg->type == SCALAR_VALUE) { 5909 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5910 dst_reg, insn->imm, opcode, is_jmp32); 5911 } 5912 5913 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5914 * NOTE: these optimizations below are related with pointer comparison 5915 * which will never be JMP32. 5916 */ 5917 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5918 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5919 reg_type_may_be_null(dst_reg->type)) { 5920 /* Mark all identical registers in each branch as either 5921 * safe or unknown depending R == 0 or R != 0 conditional. 5922 */ 5923 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5924 opcode == BPF_JNE); 5925 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5926 opcode == BPF_JEQ); 5927 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5928 this_branch, other_branch) && 5929 is_pointer_value(env, insn->dst_reg)) { 5930 verbose(env, "R%d pointer comparison prohibited\n", 5931 insn->dst_reg); 5932 return -EACCES; 5933 } 5934 if (env->log.level & BPF_LOG_LEVEL) 5935 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5936 return 0; 5937 } 5938 5939 /* verify BPF_LD_IMM64 instruction */ 5940 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5941 { 5942 struct bpf_insn_aux_data *aux = cur_aux(env); 5943 struct bpf_reg_state *regs = cur_regs(env); 5944 struct bpf_map *map; 5945 int err; 5946 5947 if (BPF_SIZE(insn->code) != BPF_DW) { 5948 verbose(env, "invalid BPF_LD_IMM insn\n"); 5949 return -EINVAL; 5950 } 5951 if (insn->off != 0) { 5952 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5953 return -EINVAL; 5954 } 5955 5956 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5957 if (err) 5958 return err; 5959 5960 if (insn->src_reg == 0) { 5961 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5962 5963 regs[insn->dst_reg].type = SCALAR_VALUE; 5964 __mark_reg_known(®s[insn->dst_reg], imm); 5965 return 0; 5966 } 5967 5968 map = env->used_maps[aux->map_index]; 5969 mark_reg_known_zero(env, regs, insn->dst_reg); 5970 regs[insn->dst_reg].map_ptr = map; 5971 5972 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5973 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5974 regs[insn->dst_reg].off = aux->map_off; 5975 if (map_value_has_spin_lock(map)) 5976 regs[insn->dst_reg].id = ++env->id_gen; 5977 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5978 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5979 } else { 5980 verbose(env, "bpf verifier is misconfigured\n"); 5981 return -EINVAL; 5982 } 5983 5984 return 0; 5985 } 5986 5987 static bool may_access_skb(enum bpf_prog_type type) 5988 { 5989 switch (type) { 5990 case BPF_PROG_TYPE_SOCKET_FILTER: 5991 case BPF_PROG_TYPE_SCHED_CLS: 5992 case BPF_PROG_TYPE_SCHED_ACT: 5993 return true; 5994 default: 5995 return false; 5996 } 5997 } 5998 5999 /* verify safety of LD_ABS|LD_IND instructions: 6000 * - they can only appear in the programs where ctx == skb 6001 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6002 * preserve R6-R9, and store return value into R0 6003 * 6004 * Implicit input: 6005 * ctx == skb == R6 == CTX 6006 * 6007 * Explicit input: 6008 * SRC == any register 6009 * IMM == 32-bit immediate 6010 * 6011 * Output: 6012 * R0 - 8/16/32-bit skb data converted to cpu endianness 6013 */ 6014 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6015 { 6016 struct bpf_reg_state *regs = cur_regs(env); 6017 u8 mode = BPF_MODE(insn->code); 6018 int i, err; 6019 6020 if (!may_access_skb(env->prog->type)) { 6021 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6022 return -EINVAL; 6023 } 6024 6025 if (!env->ops->gen_ld_abs) { 6026 verbose(env, "bpf verifier is misconfigured\n"); 6027 return -EINVAL; 6028 } 6029 6030 if (env->subprog_cnt > 1) { 6031 /* when program has LD_ABS insn JITs and interpreter assume 6032 * that r1 == ctx == skb which is not the case for callees 6033 * that can have arbitrary arguments. It's problematic 6034 * for main prog as well since JITs would need to analyze 6035 * all functions in order to make proper register save/restore 6036 * decisions in the main prog. Hence disallow LD_ABS with calls 6037 */ 6038 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6039 return -EINVAL; 6040 } 6041 6042 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6043 BPF_SIZE(insn->code) == BPF_DW || 6044 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6045 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6046 return -EINVAL; 6047 } 6048 6049 /* check whether implicit source operand (register R6) is readable */ 6050 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6051 if (err) 6052 return err; 6053 6054 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6055 * gen_ld_abs() may terminate the program at runtime, leading to 6056 * reference leak. 6057 */ 6058 err = check_reference_leak(env); 6059 if (err) { 6060 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6061 return err; 6062 } 6063 6064 if (env->cur_state->active_spin_lock) { 6065 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6066 return -EINVAL; 6067 } 6068 6069 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6070 verbose(env, 6071 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6072 return -EINVAL; 6073 } 6074 6075 if (mode == BPF_IND) { 6076 /* check explicit source operand */ 6077 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6078 if (err) 6079 return err; 6080 } 6081 6082 /* reset caller saved regs to unreadable */ 6083 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6084 mark_reg_not_init(env, regs, caller_saved[i]); 6085 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6086 } 6087 6088 /* mark destination R0 register as readable, since it contains 6089 * the value fetched from the packet. 6090 * Already marked as written above. 6091 */ 6092 mark_reg_unknown(env, regs, BPF_REG_0); 6093 /* ld_abs load up to 32-bit skb data. */ 6094 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6095 return 0; 6096 } 6097 6098 static int check_return_code(struct bpf_verifier_env *env) 6099 { 6100 struct tnum enforce_attach_type_range = tnum_unknown; 6101 struct bpf_reg_state *reg; 6102 struct tnum range = tnum_range(0, 1); 6103 6104 switch (env->prog->type) { 6105 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6106 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6107 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6108 range = tnum_range(1, 1); 6109 break; 6110 case BPF_PROG_TYPE_CGROUP_SKB: 6111 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6112 range = tnum_range(0, 3); 6113 enforce_attach_type_range = tnum_range(2, 3); 6114 } 6115 break; 6116 case BPF_PROG_TYPE_CGROUP_SOCK: 6117 case BPF_PROG_TYPE_SOCK_OPS: 6118 case BPF_PROG_TYPE_CGROUP_DEVICE: 6119 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6120 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6121 break; 6122 default: 6123 return 0; 6124 } 6125 6126 reg = cur_regs(env) + BPF_REG_0; 6127 if (reg->type != SCALAR_VALUE) { 6128 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6129 reg_type_str[reg->type]); 6130 return -EINVAL; 6131 } 6132 6133 if (!tnum_in(range, reg->var_off)) { 6134 char tn_buf[48]; 6135 6136 verbose(env, "At program exit the register R0 "); 6137 if (!tnum_is_unknown(reg->var_off)) { 6138 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6139 verbose(env, "has value %s", tn_buf); 6140 } else { 6141 verbose(env, "has unknown scalar value"); 6142 } 6143 tnum_strn(tn_buf, sizeof(tn_buf), range); 6144 verbose(env, " should have been in %s\n", tn_buf); 6145 return -EINVAL; 6146 } 6147 6148 if (!tnum_is_unknown(enforce_attach_type_range) && 6149 tnum_in(enforce_attach_type_range, reg->var_off)) 6150 env->prog->enforce_expected_attach_type = 1; 6151 return 0; 6152 } 6153 6154 /* non-recursive DFS pseudo code 6155 * 1 procedure DFS-iterative(G,v): 6156 * 2 label v as discovered 6157 * 3 let S be a stack 6158 * 4 S.push(v) 6159 * 5 while S is not empty 6160 * 6 t <- S.pop() 6161 * 7 if t is what we're looking for: 6162 * 8 return t 6163 * 9 for all edges e in G.adjacentEdges(t) do 6164 * 10 if edge e is already labelled 6165 * 11 continue with the next edge 6166 * 12 w <- G.adjacentVertex(t,e) 6167 * 13 if vertex w is not discovered and not explored 6168 * 14 label e as tree-edge 6169 * 15 label w as discovered 6170 * 16 S.push(w) 6171 * 17 continue at 5 6172 * 18 else if vertex w is discovered 6173 * 19 label e as back-edge 6174 * 20 else 6175 * 21 // vertex w is explored 6176 * 22 label e as forward- or cross-edge 6177 * 23 label t as explored 6178 * 24 S.pop() 6179 * 6180 * convention: 6181 * 0x10 - discovered 6182 * 0x11 - discovered and fall-through edge labelled 6183 * 0x12 - discovered and fall-through and branch edges labelled 6184 * 0x20 - explored 6185 */ 6186 6187 enum { 6188 DISCOVERED = 0x10, 6189 EXPLORED = 0x20, 6190 FALLTHROUGH = 1, 6191 BRANCH = 2, 6192 }; 6193 6194 static u32 state_htab_size(struct bpf_verifier_env *env) 6195 { 6196 return env->prog->len; 6197 } 6198 6199 static struct bpf_verifier_state_list **explored_state( 6200 struct bpf_verifier_env *env, 6201 int idx) 6202 { 6203 struct bpf_verifier_state *cur = env->cur_state; 6204 struct bpf_func_state *state = cur->frame[cur->curframe]; 6205 6206 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6207 } 6208 6209 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6210 { 6211 env->insn_aux_data[idx].prune_point = true; 6212 } 6213 6214 /* t, w, e - match pseudo-code above: 6215 * t - index of current instruction 6216 * w - next instruction 6217 * e - edge 6218 */ 6219 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6220 bool loop_ok) 6221 { 6222 int *insn_stack = env->cfg.insn_stack; 6223 int *insn_state = env->cfg.insn_state; 6224 6225 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6226 return 0; 6227 6228 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6229 return 0; 6230 6231 if (w < 0 || w >= env->prog->len) { 6232 verbose_linfo(env, t, "%d: ", t); 6233 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6234 return -EINVAL; 6235 } 6236 6237 if (e == BRANCH) 6238 /* mark branch target for state pruning */ 6239 init_explored_state(env, w); 6240 6241 if (insn_state[w] == 0) { 6242 /* tree-edge */ 6243 insn_state[t] = DISCOVERED | e; 6244 insn_state[w] = DISCOVERED; 6245 if (env->cfg.cur_stack >= env->prog->len) 6246 return -E2BIG; 6247 insn_stack[env->cfg.cur_stack++] = w; 6248 return 1; 6249 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6250 if (loop_ok && env->allow_ptr_leaks) 6251 return 0; 6252 verbose_linfo(env, t, "%d: ", t); 6253 verbose_linfo(env, w, "%d: ", w); 6254 verbose(env, "back-edge from insn %d to %d\n", t, w); 6255 return -EINVAL; 6256 } else if (insn_state[w] == EXPLORED) { 6257 /* forward- or cross-edge */ 6258 insn_state[t] = DISCOVERED | e; 6259 } else { 6260 verbose(env, "insn state internal bug\n"); 6261 return -EFAULT; 6262 } 6263 return 0; 6264 } 6265 6266 /* non-recursive depth-first-search to detect loops in BPF program 6267 * loop == back-edge in directed graph 6268 */ 6269 static int check_cfg(struct bpf_verifier_env *env) 6270 { 6271 struct bpf_insn *insns = env->prog->insnsi; 6272 int insn_cnt = env->prog->len; 6273 int *insn_stack, *insn_state; 6274 int ret = 0; 6275 int i, t; 6276 6277 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6278 if (!insn_state) 6279 return -ENOMEM; 6280 6281 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6282 if (!insn_stack) { 6283 kvfree(insn_state); 6284 return -ENOMEM; 6285 } 6286 6287 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6288 insn_stack[0] = 0; /* 0 is the first instruction */ 6289 env->cfg.cur_stack = 1; 6290 6291 peek_stack: 6292 if (env->cfg.cur_stack == 0) 6293 goto check_state; 6294 t = insn_stack[env->cfg.cur_stack - 1]; 6295 6296 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6297 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6298 u8 opcode = BPF_OP(insns[t].code); 6299 6300 if (opcode == BPF_EXIT) { 6301 goto mark_explored; 6302 } else if (opcode == BPF_CALL) { 6303 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6304 if (ret == 1) 6305 goto peek_stack; 6306 else if (ret < 0) 6307 goto err_free; 6308 if (t + 1 < insn_cnt) 6309 init_explored_state(env, t + 1); 6310 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6311 init_explored_state(env, t); 6312 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6313 env, false); 6314 if (ret == 1) 6315 goto peek_stack; 6316 else if (ret < 0) 6317 goto err_free; 6318 } 6319 } else if (opcode == BPF_JA) { 6320 if (BPF_SRC(insns[t].code) != BPF_K) { 6321 ret = -EINVAL; 6322 goto err_free; 6323 } 6324 /* unconditional jump with single edge */ 6325 ret = push_insn(t, t + insns[t].off + 1, 6326 FALLTHROUGH, env, true); 6327 if (ret == 1) 6328 goto peek_stack; 6329 else if (ret < 0) 6330 goto err_free; 6331 /* unconditional jmp is not a good pruning point, 6332 * but it's marked, since backtracking needs 6333 * to record jmp history in is_state_visited(). 6334 */ 6335 init_explored_state(env, t + insns[t].off + 1); 6336 /* tell verifier to check for equivalent states 6337 * after every call and jump 6338 */ 6339 if (t + 1 < insn_cnt) 6340 init_explored_state(env, t + 1); 6341 } else { 6342 /* conditional jump with two edges */ 6343 init_explored_state(env, t); 6344 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6345 if (ret == 1) 6346 goto peek_stack; 6347 else if (ret < 0) 6348 goto err_free; 6349 6350 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6351 if (ret == 1) 6352 goto peek_stack; 6353 else if (ret < 0) 6354 goto err_free; 6355 } 6356 } else { 6357 /* all other non-branch instructions with single 6358 * fall-through edge 6359 */ 6360 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6361 if (ret == 1) 6362 goto peek_stack; 6363 else if (ret < 0) 6364 goto err_free; 6365 } 6366 6367 mark_explored: 6368 insn_state[t] = EXPLORED; 6369 if (env->cfg.cur_stack-- <= 0) { 6370 verbose(env, "pop stack internal bug\n"); 6371 ret = -EFAULT; 6372 goto err_free; 6373 } 6374 goto peek_stack; 6375 6376 check_state: 6377 for (i = 0; i < insn_cnt; i++) { 6378 if (insn_state[i] != EXPLORED) { 6379 verbose(env, "unreachable insn %d\n", i); 6380 ret = -EINVAL; 6381 goto err_free; 6382 } 6383 } 6384 ret = 0; /* cfg looks good */ 6385 6386 err_free: 6387 kvfree(insn_state); 6388 kvfree(insn_stack); 6389 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6390 return ret; 6391 } 6392 6393 /* The minimum supported BTF func info size */ 6394 #define MIN_BPF_FUNCINFO_SIZE 8 6395 #define MAX_FUNCINFO_REC_SIZE 252 6396 6397 static int check_btf_func(struct bpf_verifier_env *env, 6398 const union bpf_attr *attr, 6399 union bpf_attr __user *uattr) 6400 { 6401 u32 i, nfuncs, urec_size, min_size; 6402 u32 krec_size = sizeof(struct bpf_func_info); 6403 struct bpf_func_info *krecord; 6404 const struct btf_type *type; 6405 struct bpf_prog *prog; 6406 const struct btf *btf; 6407 void __user *urecord; 6408 u32 prev_offset = 0; 6409 int ret = 0; 6410 6411 nfuncs = attr->func_info_cnt; 6412 if (!nfuncs) 6413 return 0; 6414 6415 if (nfuncs != env->subprog_cnt) { 6416 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6417 return -EINVAL; 6418 } 6419 6420 urec_size = attr->func_info_rec_size; 6421 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6422 urec_size > MAX_FUNCINFO_REC_SIZE || 6423 urec_size % sizeof(u32)) { 6424 verbose(env, "invalid func info rec size %u\n", urec_size); 6425 return -EINVAL; 6426 } 6427 6428 prog = env->prog; 6429 btf = prog->aux->btf; 6430 6431 urecord = u64_to_user_ptr(attr->func_info); 6432 min_size = min_t(u32, krec_size, urec_size); 6433 6434 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6435 if (!krecord) 6436 return -ENOMEM; 6437 6438 for (i = 0; i < nfuncs; i++) { 6439 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6440 if (ret) { 6441 if (ret == -E2BIG) { 6442 verbose(env, "nonzero tailing record in func info"); 6443 /* set the size kernel expects so loader can zero 6444 * out the rest of the record. 6445 */ 6446 if (put_user(min_size, &uattr->func_info_rec_size)) 6447 ret = -EFAULT; 6448 } 6449 goto err_free; 6450 } 6451 6452 if (copy_from_user(&krecord[i], urecord, min_size)) { 6453 ret = -EFAULT; 6454 goto err_free; 6455 } 6456 6457 /* check insn_off */ 6458 if (i == 0) { 6459 if (krecord[i].insn_off) { 6460 verbose(env, 6461 "nonzero insn_off %u for the first func info record", 6462 krecord[i].insn_off); 6463 ret = -EINVAL; 6464 goto err_free; 6465 } 6466 } else if (krecord[i].insn_off <= prev_offset) { 6467 verbose(env, 6468 "same or smaller insn offset (%u) than previous func info record (%u)", 6469 krecord[i].insn_off, prev_offset); 6470 ret = -EINVAL; 6471 goto err_free; 6472 } 6473 6474 if (env->subprog_info[i].start != krecord[i].insn_off) { 6475 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6476 ret = -EINVAL; 6477 goto err_free; 6478 } 6479 6480 /* check type_id */ 6481 type = btf_type_by_id(btf, krecord[i].type_id); 6482 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6483 verbose(env, "invalid type id %d in func info", 6484 krecord[i].type_id); 6485 ret = -EINVAL; 6486 goto err_free; 6487 } 6488 6489 prev_offset = krecord[i].insn_off; 6490 urecord += urec_size; 6491 } 6492 6493 prog->aux->func_info = krecord; 6494 prog->aux->func_info_cnt = nfuncs; 6495 return 0; 6496 6497 err_free: 6498 kvfree(krecord); 6499 return ret; 6500 } 6501 6502 static void adjust_btf_func(struct bpf_verifier_env *env) 6503 { 6504 int i; 6505 6506 if (!env->prog->aux->func_info) 6507 return; 6508 6509 for (i = 0; i < env->subprog_cnt; i++) 6510 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6511 } 6512 6513 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6514 sizeof(((struct bpf_line_info *)(0))->line_col)) 6515 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6516 6517 static int check_btf_line(struct bpf_verifier_env *env, 6518 const union bpf_attr *attr, 6519 union bpf_attr __user *uattr) 6520 { 6521 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6522 struct bpf_subprog_info *sub; 6523 struct bpf_line_info *linfo; 6524 struct bpf_prog *prog; 6525 const struct btf *btf; 6526 void __user *ulinfo; 6527 int err; 6528 6529 nr_linfo = attr->line_info_cnt; 6530 if (!nr_linfo) 6531 return 0; 6532 6533 rec_size = attr->line_info_rec_size; 6534 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6535 rec_size > MAX_LINEINFO_REC_SIZE || 6536 rec_size & (sizeof(u32) - 1)) 6537 return -EINVAL; 6538 6539 /* Need to zero it in case the userspace may 6540 * pass in a smaller bpf_line_info object. 6541 */ 6542 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6543 GFP_KERNEL | __GFP_NOWARN); 6544 if (!linfo) 6545 return -ENOMEM; 6546 6547 prog = env->prog; 6548 btf = prog->aux->btf; 6549 6550 s = 0; 6551 sub = env->subprog_info; 6552 ulinfo = u64_to_user_ptr(attr->line_info); 6553 expected_size = sizeof(struct bpf_line_info); 6554 ncopy = min_t(u32, expected_size, rec_size); 6555 for (i = 0; i < nr_linfo; i++) { 6556 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6557 if (err) { 6558 if (err == -E2BIG) { 6559 verbose(env, "nonzero tailing record in line_info"); 6560 if (put_user(expected_size, 6561 &uattr->line_info_rec_size)) 6562 err = -EFAULT; 6563 } 6564 goto err_free; 6565 } 6566 6567 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6568 err = -EFAULT; 6569 goto err_free; 6570 } 6571 6572 /* 6573 * Check insn_off to ensure 6574 * 1) strictly increasing AND 6575 * 2) bounded by prog->len 6576 * 6577 * The linfo[0].insn_off == 0 check logically falls into 6578 * the later "missing bpf_line_info for func..." case 6579 * because the first linfo[0].insn_off must be the 6580 * first sub also and the first sub must have 6581 * subprog_info[0].start == 0. 6582 */ 6583 if ((i && linfo[i].insn_off <= prev_offset) || 6584 linfo[i].insn_off >= prog->len) { 6585 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6586 i, linfo[i].insn_off, prev_offset, 6587 prog->len); 6588 err = -EINVAL; 6589 goto err_free; 6590 } 6591 6592 if (!prog->insnsi[linfo[i].insn_off].code) { 6593 verbose(env, 6594 "Invalid insn code at line_info[%u].insn_off\n", 6595 i); 6596 err = -EINVAL; 6597 goto err_free; 6598 } 6599 6600 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6601 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6602 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6603 err = -EINVAL; 6604 goto err_free; 6605 } 6606 6607 if (s != env->subprog_cnt) { 6608 if (linfo[i].insn_off == sub[s].start) { 6609 sub[s].linfo_idx = i; 6610 s++; 6611 } else if (sub[s].start < linfo[i].insn_off) { 6612 verbose(env, "missing bpf_line_info for func#%u\n", s); 6613 err = -EINVAL; 6614 goto err_free; 6615 } 6616 } 6617 6618 prev_offset = linfo[i].insn_off; 6619 ulinfo += rec_size; 6620 } 6621 6622 if (s != env->subprog_cnt) { 6623 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6624 env->subprog_cnt - s, s); 6625 err = -EINVAL; 6626 goto err_free; 6627 } 6628 6629 prog->aux->linfo = linfo; 6630 prog->aux->nr_linfo = nr_linfo; 6631 6632 return 0; 6633 6634 err_free: 6635 kvfree(linfo); 6636 return err; 6637 } 6638 6639 static int check_btf_info(struct bpf_verifier_env *env, 6640 const union bpf_attr *attr, 6641 union bpf_attr __user *uattr) 6642 { 6643 struct btf *btf; 6644 int err; 6645 6646 if (!attr->func_info_cnt && !attr->line_info_cnt) 6647 return 0; 6648 6649 btf = btf_get_by_fd(attr->prog_btf_fd); 6650 if (IS_ERR(btf)) 6651 return PTR_ERR(btf); 6652 env->prog->aux->btf = btf; 6653 6654 err = check_btf_func(env, attr, uattr); 6655 if (err) 6656 return err; 6657 6658 err = check_btf_line(env, attr, uattr); 6659 if (err) 6660 return err; 6661 6662 return 0; 6663 } 6664 6665 /* check %cur's range satisfies %old's */ 6666 static bool range_within(struct bpf_reg_state *old, 6667 struct bpf_reg_state *cur) 6668 { 6669 return old->umin_value <= cur->umin_value && 6670 old->umax_value >= cur->umax_value && 6671 old->smin_value <= cur->smin_value && 6672 old->smax_value >= cur->smax_value; 6673 } 6674 6675 /* Maximum number of register states that can exist at once */ 6676 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6677 struct idpair { 6678 u32 old; 6679 u32 cur; 6680 }; 6681 6682 /* If in the old state two registers had the same id, then they need to have 6683 * the same id in the new state as well. But that id could be different from 6684 * the old state, so we need to track the mapping from old to new ids. 6685 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6686 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6687 * regs with a different old id could still have new id 9, we don't care about 6688 * that. 6689 * So we look through our idmap to see if this old id has been seen before. If 6690 * so, we require the new id to match; otherwise, we add the id pair to the map. 6691 */ 6692 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6693 { 6694 unsigned int i; 6695 6696 for (i = 0; i < ID_MAP_SIZE; i++) { 6697 if (!idmap[i].old) { 6698 /* Reached an empty slot; haven't seen this id before */ 6699 idmap[i].old = old_id; 6700 idmap[i].cur = cur_id; 6701 return true; 6702 } 6703 if (idmap[i].old == old_id) 6704 return idmap[i].cur == cur_id; 6705 } 6706 /* We ran out of idmap slots, which should be impossible */ 6707 WARN_ON_ONCE(1); 6708 return false; 6709 } 6710 6711 static void clean_func_state(struct bpf_verifier_env *env, 6712 struct bpf_func_state *st) 6713 { 6714 enum bpf_reg_liveness live; 6715 int i, j; 6716 6717 for (i = 0; i < BPF_REG_FP; i++) { 6718 live = st->regs[i].live; 6719 /* liveness must not touch this register anymore */ 6720 st->regs[i].live |= REG_LIVE_DONE; 6721 if (!(live & REG_LIVE_READ)) 6722 /* since the register is unused, clear its state 6723 * to make further comparison simpler 6724 */ 6725 __mark_reg_not_init(&st->regs[i]); 6726 } 6727 6728 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6729 live = st->stack[i].spilled_ptr.live; 6730 /* liveness must not touch this stack slot anymore */ 6731 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6732 if (!(live & REG_LIVE_READ)) { 6733 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6734 for (j = 0; j < BPF_REG_SIZE; j++) 6735 st->stack[i].slot_type[j] = STACK_INVALID; 6736 } 6737 } 6738 } 6739 6740 static void clean_verifier_state(struct bpf_verifier_env *env, 6741 struct bpf_verifier_state *st) 6742 { 6743 int i; 6744 6745 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6746 /* all regs in this state in all frames were already marked */ 6747 return; 6748 6749 for (i = 0; i <= st->curframe; i++) 6750 clean_func_state(env, st->frame[i]); 6751 } 6752 6753 /* the parentage chains form a tree. 6754 * the verifier states are added to state lists at given insn and 6755 * pushed into state stack for future exploration. 6756 * when the verifier reaches bpf_exit insn some of the verifer states 6757 * stored in the state lists have their final liveness state already, 6758 * but a lot of states will get revised from liveness point of view when 6759 * the verifier explores other branches. 6760 * Example: 6761 * 1: r0 = 1 6762 * 2: if r1 == 100 goto pc+1 6763 * 3: r0 = 2 6764 * 4: exit 6765 * when the verifier reaches exit insn the register r0 in the state list of 6766 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6767 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6768 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6769 * 6770 * Since the verifier pushes the branch states as it sees them while exploring 6771 * the program the condition of walking the branch instruction for the second 6772 * time means that all states below this branch were already explored and 6773 * their final liveness markes are already propagated. 6774 * Hence when the verifier completes the search of state list in is_state_visited() 6775 * we can call this clean_live_states() function to mark all liveness states 6776 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6777 * will not be used. 6778 * This function also clears the registers and stack for states that !READ 6779 * to simplify state merging. 6780 * 6781 * Important note here that walking the same branch instruction in the callee 6782 * doesn't meant that the states are DONE. The verifier has to compare 6783 * the callsites 6784 */ 6785 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6786 struct bpf_verifier_state *cur) 6787 { 6788 struct bpf_verifier_state_list *sl; 6789 int i; 6790 6791 sl = *explored_state(env, insn); 6792 while (sl) { 6793 if (sl->state.branches) 6794 goto next; 6795 if (sl->state.insn_idx != insn || 6796 sl->state.curframe != cur->curframe) 6797 goto next; 6798 for (i = 0; i <= cur->curframe; i++) 6799 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6800 goto next; 6801 clean_verifier_state(env, &sl->state); 6802 next: 6803 sl = sl->next; 6804 } 6805 } 6806 6807 /* Returns true if (rold safe implies rcur safe) */ 6808 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6809 struct idpair *idmap) 6810 { 6811 bool equal; 6812 6813 if (!(rold->live & REG_LIVE_READ)) 6814 /* explored state didn't use this */ 6815 return true; 6816 6817 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6818 6819 if (rold->type == PTR_TO_STACK) 6820 /* two stack pointers are equal only if they're pointing to 6821 * the same stack frame, since fp-8 in foo != fp-8 in bar 6822 */ 6823 return equal && rold->frameno == rcur->frameno; 6824 6825 if (equal) 6826 return true; 6827 6828 if (rold->type == NOT_INIT) 6829 /* explored state can't have used this */ 6830 return true; 6831 if (rcur->type == NOT_INIT) 6832 return false; 6833 switch (rold->type) { 6834 case SCALAR_VALUE: 6835 if (rcur->type == SCALAR_VALUE) { 6836 if (!rold->precise && !rcur->precise) 6837 return true; 6838 /* new val must satisfy old val knowledge */ 6839 return range_within(rold, rcur) && 6840 tnum_in(rold->var_off, rcur->var_off); 6841 } else { 6842 /* We're trying to use a pointer in place of a scalar. 6843 * Even if the scalar was unbounded, this could lead to 6844 * pointer leaks because scalars are allowed to leak 6845 * while pointers are not. We could make this safe in 6846 * special cases if root is calling us, but it's 6847 * probably not worth the hassle. 6848 */ 6849 return false; 6850 } 6851 case PTR_TO_MAP_VALUE: 6852 /* If the new min/max/var_off satisfy the old ones and 6853 * everything else matches, we are OK. 6854 * 'id' is not compared, since it's only used for maps with 6855 * bpf_spin_lock inside map element and in such cases if 6856 * the rest of the prog is valid for one map element then 6857 * it's valid for all map elements regardless of the key 6858 * used in bpf_map_lookup() 6859 */ 6860 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6861 range_within(rold, rcur) && 6862 tnum_in(rold->var_off, rcur->var_off); 6863 case PTR_TO_MAP_VALUE_OR_NULL: 6864 /* a PTR_TO_MAP_VALUE could be safe to use as a 6865 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6866 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6867 * checked, doing so could have affected others with the same 6868 * id, and we can't check for that because we lost the id when 6869 * we converted to a PTR_TO_MAP_VALUE. 6870 */ 6871 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6872 return false; 6873 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6874 return false; 6875 /* Check our ids match any regs they're supposed to */ 6876 return check_ids(rold->id, rcur->id, idmap); 6877 case PTR_TO_PACKET_META: 6878 case PTR_TO_PACKET: 6879 if (rcur->type != rold->type) 6880 return false; 6881 /* We must have at least as much range as the old ptr 6882 * did, so that any accesses which were safe before are 6883 * still safe. This is true even if old range < old off, 6884 * since someone could have accessed through (ptr - k), or 6885 * even done ptr -= k in a register, to get a safe access. 6886 */ 6887 if (rold->range > rcur->range) 6888 return false; 6889 /* If the offsets don't match, we can't trust our alignment; 6890 * nor can we be sure that we won't fall out of range. 6891 */ 6892 if (rold->off != rcur->off) 6893 return false; 6894 /* id relations must be preserved */ 6895 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6896 return false; 6897 /* new val must satisfy old val knowledge */ 6898 return range_within(rold, rcur) && 6899 tnum_in(rold->var_off, rcur->var_off); 6900 case PTR_TO_CTX: 6901 case CONST_PTR_TO_MAP: 6902 case PTR_TO_PACKET_END: 6903 case PTR_TO_FLOW_KEYS: 6904 case PTR_TO_SOCKET: 6905 case PTR_TO_SOCKET_OR_NULL: 6906 case PTR_TO_SOCK_COMMON: 6907 case PTR_TO_SOCK_COMMON_OR_NULL: 6908 case PTR_TO_TCP_SOCK: 6909 case PTR_TO_TCP_SOCK_OR_NULL: 6910 case PTR_TO_XDP_SOCK: 6911 /* Only valid matches are exact, which memcmp() above 6912 * would have accepted 6913 */ 6914 default: 6915 /* Don't know what's going on, just say it's not safe */ 6916 return false; 6917 } 6918 6919 /* Shouldn't get here; if we do, say it's not safe */ 6920 WARN_ON_ONCE(1); 6921 return false; 6922 } 6923 6924 static bool stacksafe(struct bpf_func_state *old, 6925 struct bpf_func_state *cur, 6926 struct idpair *idmap) 6927 { 6928 int i, spi; 6929 6930 /* walk slots of the explored stack and ignore any additional 6931 * slots in the current stack, since explored(safe) state 6932 * didn't use them 6933 */ 6934 for (i = 0; i < old->allocated_stack; i++) { 6935 spi = i / BPF_REG_SIZE; 6936 6937 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6938 i += BPF_REG_SIZE - 1; 6939 /* explored state didn't use this */ 6940 continue; 6941 } 6942 6943 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6944 continue; 6945 6946 /* explored stack has more populated slots than current stack 6947 * and these slots were used 6948 */ 6949 if (i >= cur->allocated_stack) 6950 return false; 6951 6952 /* if old state was safe with misc data in the stack 6953 * it will be safe with zero-initialized stack. 6954 * The opposite is not true 6955 */ 6956 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6957 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6958 continue; 6959 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6960 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6961 /* Ex: old explored (safe) state has STACK_SPILL in 6962 * this stack slot, but current has has STACK_MISC -> 6963 * this verifier states are not equivalent, 6964 * return false to continue verification of this path 6965 */ 6966 return false; 6967 if (i % BPF_REG_SIZE) 6968 continue; 6969 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6970 continue; 6971 if (!regsafe(&old->stack[spi].spilled_ptr, 6972 &cur->stack[spi].spilled_ptr, 6973 idmap)) 6974 /* when explored and current stack slot are both storing 6975 * spilled registers, check that stored pointers types 6976 * are the same as well. 6977 * Ex: explored safe path could have stored 6978 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6979 * but current path has stored: 6980 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6981 * such verifier states are not equivalent. 6982 * return false to continue verification of this path 6983 */ 6984 return false; 6985 } 6986 return true; 6987 } 6988 6989 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6990 { 6991 if (old->acquired_refs != cur->acquired_refs) 6992 return false; 6993 return !memcmp(old->refs, cur->refs, 6994 sizeof(*old->refs) * old->acquired_refs); 6995 } 6996 6997 /* compare two verifier states 6998 * 6999 * all states stored in state_list are known to be valid, since 7000 * verifier reached 'bpf_exit' instruction through them 7001 * 7002 * this function is called when verifier exploring different branches of 7003 * execution popped from the state stack. If it sees an old state that has 7004 * more strict register state and more strict stack state then this execution 7005 * branch doesn't need to be explored further, since verifier already 7006 * concluded that more strict state leads to valid finish. 7007 * 7008 * Therefore two states are equivalent if register state is more conservative 7009 * and explored stack state is more conservative than the current one. 7010 * Example: 7011 * explored current 7012 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7013 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7014 * 7015 * In other words if current stack state (one being explored) has more 7016 * valid slots than old one that already passed validation, it means 7017 * the verifier can stop exploring and conclude that current state is valid too 7018 * 7019 * Similarly with registers. If explored state has register type as invalid 7020 * whereas register type in current state is meaningful, it means that 7021 * the current state will reach 'bpf_exit' instruction safely 7022 */ 7023 static bool func_states_equal(struct bpf_func_state *old, 7024 struct bpf_func_state *cur) 7025 { 7026 struct idpair *idmap; 7027 bool ret = false; 7028 int i; 7029 7030 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7031 /* If we failed to allocate the idmap, just say it's not safe */ 7032 if (!idmap) 7033 return false; 7034 7035 for (i = 0; i < MAX_BPF_REG; i++) { 7036 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7037 goto out_free; 7038 } 7039 7040 if (!stacksafe(old, cur, idmap)) 7041 goto out_free; 7042 7043 if (!refsafe(old, cur)) 7044 goto out_free; 7045 ret = true; 7046 out_free: 7047 kfree(idmap); 7048 return ret; 7049 } 7050 7051 static bool states_equal(struct bpf_verifier_env *env, 7052 struct bpf_verifier_state *old, 7053 struct bpf_verifier_state *cur) 7054 { 7055 int i; 7056 7057 if (old->curframe != cur->curframe) 7058 return false; 7059 7060 /* Verification state from speculative execution simulation 7061 * must never prune a non-speculative execution one. 7062 */ 7063 if (old->speculative && !cur->speculative) 7064 return false; 7065 7066 if (old->active_spin_lock != cur->active_spin_lock) 7067 return false; 7068 7069 /* for states to be equal callsites have to be the same 7070 * and all frame states need to be equivalent 7071 */ 7072 for (i = 0; i <= old->curframe; i++) { 7073 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7074 return false; 7075 if (!func_states_equal(old->frame[i], cur->frame[i])) 7076 return false; 7077 } 7078 return true; 7079 } 7080 7081 /* Return 0 if no propagation happened. Return negative error code if error 7082 * happened. Otherwise, return the propagated bit. 7083 */ 7084 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7085 struct bpf_reg_state *reg, 7086 struct bpf_reg_state *parent_reg) 7087 { 7088 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7089 u8 flag = reg->live & REG_LIVE_READ; 7090 int err; 7091 7092 /* When comes here, read flags of PARENT_REG or REG could be any of 7093 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7094 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7095 */ 7096 if (parent_flag == REG_LIVE_READ64 || 7097 /* Or if there is no read flag from REG. */ 7098 !flag || 7099 /* Or if the read flag from REG is the same as PARENT_REG. */ 7100 parent_flag == flag) 7101 return 0; 7102 7103 err = mark_reg_read(env, reg, parent_reg, flag); 7104 if (err) 7105 return err; 7106 7107 return flag; 7108 } 7109 7110 /* A write screens off any subsequent reads; but write marks come from the 7111 * straight-line code between a state and its parent. When we arrive at an 7112 * equivalent state (jump target or such) we didn't arrive by the straight-line 7113 * code, so read marks in the state must propagate to the parent regardless 7114 * of the state's write marks. That's what 'parent == state->parent' comparison 7115 * in mark_reg_read() is for. 7116 */ 7117 static int propagate_liveness(struct bpf_verifier_env *env, 7118 const struct bpf_verifier_state *vstate, 7119 struct bpf_verifier_state *vparent) 7120 { 7121 struct bpf_reg_state *state_reg, *parent_reg; 7122 struct bpf_func_state *state, *parent; 7123 int i, frame, err = 0; 7124 7125 if (vparent->curframe != vstate->curframe) { 7126 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7127 vparent->curframe, vstate->curframe); 7128 return -EFAULT; 7129 } 7130 /* Propagate read liveness of registers... */ 7131 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7132 for (frame = 0; frame <= vstate->curframe; frame++) { 7133 parent = vparent->frame[frame]; 7134 state = vstate->frame[frame]; 7135 parent_reg = parent->regs; 7136 state_reg = state->regs; 7137 /* We don't need to worry about FP liveness, it's read-only */ 7138 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7139 err = propagate_liveness_reg(env, &state_reg[i], 7140 &parent_reg[i]); 7141 if (err < 0) 7142 return err; 7143 if (err == REG_LIVE_READ64) 7144 mark_insn_zext(env, &parent_reg[i]); 7145 } 7146 7147 /* Propagate stack slots. */ 7148 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7149 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7150 parent_reg = &parent->stack[i].spilled_ptr; 7151 state_reg = &state->stack[i].spilled_ptr; 7152 err = propagate_liveness_reg(env, state_reg, 7153 parent_reg); 7154 if (err < 0) 7155 return err; 7156 } 7157 } 7158 return 0; 7159 } 7160 7161 /* find precise scalars in the previous equivalent state and 7162 * propagate them into the current state 7163 */ 7164 static int propagate_precision(struct bpf_verifier_env *env, 7165 const struct bpf_verifier_state *old) 7166 { 7167 struct bpf_reg_state *state_reg; 7168 struct bpf_func_state *state; 7169 int i, err = 0; 7170 7171 state = old->frame[old->curframe]; 7172 state_reg = state->regs; 7173 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7174 if (state_reg->type != SCALAR_VALUE || 7175 !state_reg->precise) 7176 continue; 7177 if (env->log.level & BPF_LOG_LEVEL2) 7178 verbose(env, "propagating r%d\n", i); 7179 err = mark_chain_precision(env, i); 7180 if (err < 0) 7181 return err; 7182 } 7183 7184 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7185 if (state->stack[i].slot_type[0] != STACK_SPILL) 7186 continue; 7187 state_reg = &state->stack[i].spilled_ptr; 7188 if (state_reg->type != SCALAR_VALUE || 7189 !state_reg->precise) 7190 continue; 7191 if (env->log.level & BPF_LOG_LEVEL2) 7192 verbose(env, "propagating fp%d\n", 7193 (-i - 1) * BPF_REG_SIZE); 7194 err = mark_chain_precision_stack(env, i); 7195 if (err < 0) 7196 return err; 7197 } 7198 return 0; 7199 } 7200 7201 static bool states_maybe_looping(struct bpf_verifier_state *old, 7202 struct bpf_verifier_state *cur) 7203 { 7204 struct bpf_func_state *fold, *fcur; 7205 int i, fr = cur->curframe; 7206 7207 if (old->curframe != fr) 7208 return false; 7209 7210 fold = old->frame[fr]; 7211 fcur = cur->frame[fr]; 7212 for (i = 0; i < MAX_BPF_REG; i++) 7213 if (memcmp(&fold->regs[i], &fcur->regs[i], 7214 offsetof(struct bpf_reg_state, parent))) 7215 return false; 7216 return true; 7217 } 7218 7219 7220 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7221 { 7222 struct bpf_verifier_state_list *new_sl; 7223 struct bpf_verifier_state_list *sl, **pprev; 7224 struct bpf_verifier_state *cur = env->cur_state, *new; 7225 int i, j, err, states_cnt = 0; 7226 bool add_new_state = env->test_state_freq ? true : false; 7227 7228 cur->last_insn_idx = env->prev_insn_idx; 7229 if (!env->insn_aux_data[insn_idx].prune_point) 7230 /* this 'insn_idx' instruction wasn't marked, so we will not 7231 * be doing state search here 7232 */ 7233 return 0; 7234 7235 /* bpf progs typically have pruning point every 4 instructions 7236 * http://vger.kernel.org/bpfconf2019.html#session-1 7237 * Do not add new state for future pruning if the verifier hasn't seen 7238 * at least 2 jumps and at least 8 instructions. 7239 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7240 * In tests that amounts to up to 50% reduction into total verifier 7241 * memory consumption and 20% verifier time speedup. 7242 */ 7243 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7244 env->insn_processed - env->prev_insn_processed >= 8) 7245 add_new_state = true; 7246 7247 pprev = explored_state(env, insn_idx); 7248 sl = *pprev; 7249 7250 clean_live_states(env, insn_idx, cur); 7251 7252 while (sl) { 7253 states_cnt++; 7254 if (sl->state.insn_idx != insn_idx) 7255 goto next; 7256 if (sl->state.branches) { 7257 if (states_maybe_looping(&sl->state, cur) && 7258 states_equal(env, &sl->state, cur)) { 7259 verbose_linfo(env, insn_idx, "; "); 7260 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7261 return -EINVAL; 7262 } 7263 /* if the verifier is processing a loop, avoid adding new state 7264 * too often, since different loop iterations have distinct 7265 * states and may not help future pruning. 7266 * This threshold shouldn't be too low to make sure that 7267 * a loop with large bound will be rejected quickly. 7268 * The most abusive loop will be: 7269 * r1 += 1 7270 * if r1 < 1000000 goto pc-2 7271 * 1M insn_procssed limit / 100 == 10k peak states. 7272 * This threshold shouldn't be too high either, since states 7273 * at the end of the loop are likely to be useful in pruning. 7274 */ 7275 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7276 env->insn_processed - env->prev_insn_processed < 100) 7277 add_new_state = false; 7278 goto miss; 7279 } 7280 if (states_equal(env, &sl->state, cur)) { 7281 sl->hit_cnt++; 7282 /* reached equivalent register/stack state, 7283 * prune the search. 7284 * Registers read by the continuation are read by us. 7285 * If we have any write marks in env->cur_state, they 7286 * will prevent corresponding reads in the continuation 7287 * from reaching our parent (an explored_state). Our 7288 * own state will get the read marks recorded, but 7289 * they'll be immediately forgotten as we're pruning 7290 * this state and will pop a new one. 7291 */ 7292 err = propagate_liveness(env, &sl->state, cur); 7293 7294 /* if previous state reached the exit with precision and 7295 * current state is equivalent to it (except precsion marks) 7296 * the precision needs to be propagated back in 7297 * the current state. 7298 */ 7299 err = err ? : push_jmp_history(env, cur); 7300 err = err ? : propagate_precision(env, &sl->state); 7301 if (err) 7302 return err; 7303 return 1; 7304 } 7305 miss: 7306 /* when new state is not going to be added do not increase miss count. 7307 * Otherwise several loop iterations will remove the state 7308 * recorded earlier. The goal of these heuristics is to have 7309 * states from some iterations of the loop (some in the beginning 7310 * and some at the end) to help pruning. 7311 */ 7312 if (add_new_state) 7313 sl->miss_cnt++; 7314 /* heuristic to determine whether this state is beneficial 7315 * to keep checking from state equivalence point of view. 7316 * Higher numbers increase max_states_per_insn and verification time, 7317 * but do not meaningfully decrease insn_processed. 7318 */ 7319 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7320 /* the state is unlikely to be useful. Remove it to 7321 * speed up verification 7322 */ 7323 *pprev = sl->next; 7324 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7325 u32 br = sl->state.branches; 7326 7327 WARN_ONCE(br, 7328 "BUG live_done but branches_to_explore %d\n", 7329 br); 7330 free_verifier_state(&sl->state, false); 7331 kfree(sl); 7332 env->peak_states--; 7333 } else { 7334 /* cannot free this state, since parentage chain may 7335 * walk it later. Add it for free_list instead to 7336 * be freed at the end of verification 7337 */ 7338 sl->next = env->free_list; 7339 env->free_list = sl; 7340 } 7341 sl = *pprev; 7342 continue; 7343 } 7344 next: 7345 pprev = &sl->next; 7346 sl = *pprev; 7347 } 7348 7349 if (env->max_states_per_insn < states_cnt) 7350 env->max_states_per_insn = states_cnt; 7351 7352 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7353 return push_jmp_history(env, cur); 7354 7355 if (!add_new_state) 7356 return push_jmp_history(env, cur); 7357 7358 /* There were no equivalent states, remember the current one. 7359 * Technically the current state is not proven to be safe yet, 7360 * but it will either reach outer most bpf_exit (which means it's safe) 7361 * or it will be rejected. When there are no loops the verifier won't be 7362 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7363 * again on the way to bpf_exit. 7364 * When looping the sl->state.branches will be > 0 and this state 7365 * will not be considered for equivalence until branches == 0. 7366 */ 7367 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7368 if (!new_sl) 7369 return -ENOMEM; 7370 env->total_states++; 7371 env->peak_states++; 7372 env->prev_jmps_processed = env->jmps_processed; 7373 env->prev_insn_processed = env->insn_processed; 7374 7375 /* add new state to the head of linked list */ 7376 new = &new_sl->state; 7377 err = copy_verifier_state(new, cur); 7378 if (err) { 7379 free_verifier_state(new, false); 7380 kfree(new_sl); 7381 return err; 7382 } 7383 new->insn_idx = insn_idx; 7384 WARN_ONCE(new->branches != 1, 7385 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7386 7387 cur->parent = new; 7388 cur->first_insn_idx = insn_idx; 7389 clear_jmp_history(cur); 7390 new_sl->next = *explored_state(env, insn_idx); 7391 *explored_state(env, insn_idx) = new_sl; 7392 /* connect new state to parentage chain. Current frame needs all 7393 * registers connected. Only r6 - r9 of the callers are alive (pushed 7394 * to the stack implicitly by JITs) so in callers' frames connect just 7395 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7396 * the state of the call instruction (with WRITTEN set), and r0 comes 7397 * from callee with its full parentage chain, anyway. 7398 */ 7399 /* clear write marks in current state: the writes we did are not writes 7400 * our child did, so they don't screen off its reads from us. 7401 * (There are no read marks in current state, because reads always mark 7402 * their parent and current state never has children yet. Only 7403 * explored_states can get read marks.) 7404 */ 7405 for (j = 0; j <= cur->curframe; j++) { 7406 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7407 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7408 for (i = 0; i < BPF_REG_FP; i++) 7409 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7410 } 7411 7412 /* all stack frames are accessible from callee, clear them all */ 7413 for (j = 0; j <= cur->curframe; j++) { 7414 struct bpf_func_state *frame = cur->frame[j]; 7415 struct bpf_func_state *newframe = new->frame[j]; 7416 7417 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7418 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7419 frame->stack[i].spilled_ptr.parent = 7420 &newframe->stack[i].spilled_ptr; 7421 } 7422 } 7423 return 0; 7424 } 7425 7426 /* Return true if it's OK to have the same insn return a different type. */ 7427 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7428 { 7429 switch (type) { 7430 case PTR_TO_CTX: 7431 case PTR_TO_SOCKET: 7432 case PTR_TO_SOCKET_OR_NULL: 7433 case PTR_TO_SOCK_COMMON: 7434 case PTR_TO_SOCK_COMMON_OR_NULL: 7435 case PTR_TO_TCP_SOCK: 7436 case PTR_TO_TCP_SOCK_OR_NULL: 7437 case PTR_TO_XDP_SOCK: 7438 return false; 7439 default: 7440 return true; 7441 } 7442 } 7443 7444 /* If an instruction was previously used with particular pointer types, then we 7445 * need to be careful to avoid cases such as the below, where it may be ok 7446 * for one branch accessing the pointer, but not ok for the other branch: 7447 * 7448 * R1 = sock_ptr 7449 * goto X; 7450 * ... 7451 * R1 = some_other_valid_ptr; 7452 * goto X; 7453 * ... 7454 * R2 = *(u32 *)(R1 + 0); 7455 */ 7456 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7457 { 7458 return src != prev && (!reg_type_mismatch_ok(src) || 7459 !reg_type_mismatch_ok(prev)); 7460 } 7461 7462 static int do_check(struct bpf_verifier_env *env) 7463 { 7464 struct bpf_verifier_state *state; 7465 struct bpf_insn *insns = env->prog->insnsi; 7466 struct bpf_reg_state *regs; 7467 int insn_cnt = env->prog->len; 7468 bool do_print_state = false; 7469 int prev_insn_idx = -1; 7470 7471 env->prev_linfo = NULL; 7472 7473 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7474 if (!state) 7475 return -ENOMEM; 7476 state->curframe = 0; 7477 state->speculative = false; 7478 state->branches = 1; 7479 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7480 if (!state->frame[0]) { 7481 kfree(state); 7482 return -ENOMEM; 7483 } 7484 env->cur_state = state; 7485 init_func_state(env, state->frame[0], 7486 BPF_MAIN_FUNC /* callsite */, 7487 0 /* frameno */, 7488 0 /* subprogno, zero == main subprog */); 7489 7490 for (;;) { 7491 struct bpf_insn *insn; 7492 u8 class; 7493 int err; 7494 7495 env->prev_insn_idx = prev_insn_idx; 7496 if (env->insn_idx >= insn_cnt) { 7497 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7498 env->insn_idx, insn_cnt); 7499 return -EFAULT; 7500 } 7501 7502 insn = &insns[env->insn_idx]; 7503 class = BPF_CLASS(insn->code); 7504 7505 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7506 verbose(env, 7507 "BPF program is too large. Processed %d insn\n", 7508 env->insn_processed); 7509 return -E2BIG; 7510 } 7511 7512 err = is_state_visited(env, env->insn_idx); 7513 if (err < 0) 7514 return err; 7515 if (err == 1) { 7516 /* found equivalent state, can prune the search */ 7517 if (env->log.level & BPF_LOG_LEVEL) { 7518 if (do_print_state) 7519 verbose(env, "\nfrom %d to %d%s: safe\n", 7520 env->prev_insn_idx, env->insn_idx, 7521 env->cur_state->speculative ? 7522 " (speculative execution)" : ""); 7523 else 7524 verbose(env, "%d: safe\n", env->insn_idx); 7525 } 7526 goto process_bpf_exit; 7527 } 7528 7529 if (signal_pending(current)) 7530 return -EAGAIN; 7531 7532 if (need_resched()) 7533 cond_resched(); 7534 7535 if (env->log.level & BPF_LOG_LEVEL2 || 7536 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7537 if (env->log.level & BPF_LOG_LEVEL2) 7538 verbose(env, "%d:", env->insn_idx); 7539 else 7540 verbose(env, "\nfrom %d to %d%s:", 7541 env->prev_insn_idx, env->insn_idx, 7542 env->cur_state->speculative ? 7543 " (speculative execution)" : ""); 7544 print_verifier_state(env, state->frame[state->curframe]); 7545 do_print_state = false; 7546 } 7547 7548 if (env->log.level & BPF_LOG_LEVEL) { 7549 const struct bpf_insn_cbs cbs = { 7550 .cb_print = verbose, 7551 .private_data = env, 7552 }; 7553 7554 verbose_linfo(env, env->insn_idx, "; "); 7555 verbose(env, "%d: ", env->insn_idx); 7556 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7557 } 7558 7559 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7560 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7561 env->prev_insn_idx); 7562 if (err) 7563 return err; 7564 } 7565 7566 regs = cur_regs(env); 7567 env->insn_aux_data[env->insn_idx].seen = true; 7568 prev_insn_idx = env->insn_idx; 7569 7570 if (class == BPF_ALU || class == BPF_ALU64) { 7571 err = check_alu_op(env, insn); 7572 if (err) 7573 return err; 7574 7575 } else if (class == BPF_LDX) { 7576 enum bpf_reg_type *prev_src_type, src_reg_type; 7577 7578 /* check for reserved fields is already done */ 7579 7580 /* check src operand */ 7581 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7582 if (err) 7583 return err; 7584 7585 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7586 if (err) 7587 return err; 7588 7589 src_reg_type = regs[insn->src_reg].type; 7590 7591 /* check that memory (src_reg + off) is readable, 7592 * the state of dst_reg will be updated by this func 7593 */ 7594 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7595 insn->off, BPF_SIZE(insn->code), 7596 BPF_READ, insn->dst_reg, false); 7597 if (err) 7598 return err; 7599 7600 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7601 7602 if (*prev_src_type == NOT_INIT) { 7603 /* saw a valid insn 7604 * dst_reg = *(u32 *)(src_reg + off) 7605 * save type to validate intersecting paths 7606 */ 7607 *prev_src_type = src_reg_type; 7608 7609 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7610 /* ABuser program is trying to use the same insn 7611 * dst_reg = *(u32*) (src_reg + off) 7612 * with different pointer types: 7613 * src_reg == ctx in one branch and 7614 * src_reg == stack|map in some other branch. 7615 * Reject it. 7616 */ 7617 verbose(env, "same insn cannot be used with different pointers\n"); 7618 return -EINVAL; 7619 } 7620 7621 } else if (class == BPF_STX) { 7622 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7623 7624 if (BPF_MODE(insn->code) == BPF_XADD) { 7625 err = check_xadd(env, env->insn_idx, insn); 7626 if (err) 7627 return err; 7628 env->insn_idx++; 7629 continue; 7630 } 7631 7632 /* check src1 operand */ 7633 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7634 if (err) 7635 return err; 7636 /* check src2 operand */ 7637 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7638 if (err) 7639 return err; 7640 7641 dst_reg_type = regs[insn->dst_reg].type; 7642 7643 /* check that memory (dst_reg + off) is writeable */ 7644 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7645 insn->off, BPF_SIZE(insn->code), 7646 BPF_WRITE, insn->src_reg, false); 7647 if (err) 7648 return err; 7649 7650 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7651 7652 if (*prev_dst_type == NOT_INIT) { 7653 *prev_dst_type = dst_reg_type; 7654 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7655 verbose(env, "same insn cannot be used with different pointers\n"); 7656 return -EINVAL; 7657 } 7658 7659 } else if (class == BPF_ST) { 7660 if (BPF_MODE(insn->code) != BPF_MEM || 7661 insn->src_reg != BPF_REG_0) { 7662 verbose(env, "BPF_ST uses reserved fields\n"); 7663 return -EINVAL; 7664 } 7665 /* check src operand */ 7666 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7667 if (err) 7668 return err; 7669 7670 if (is_ctx_reg(env, insn->dst_reg)) { 7671 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7672 insn->dst_reg, 7673 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7674 return -EACCES; 7675 } 7676 7677 /* check that memory (dst_reg + off) is writeable */ 7678 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7679 insn->off, BPF_SIZE(insn->code), 7680 BPF_WRITE, -1, false); 7681 if (err) 7682 return err; 7683 7684 } else if (class == BPF_JMP || class == BPF_JMP32) { 7685 u8 opcode = BPF_OP(insn->code); 7686 7687 env->jmps_processed++; 7688 if (opcode == BPF_CALL) { 7689 if (BPF_SRC(insn->code) != BPF_K || 7690 insn->off != 0 || 7691 (insn->src_reg != BPF_REG_0 && 7692 insn->src_reg != BPF_PSEUDO_CALL) || 7693 insn->dst_reg != BPF_REG_0 || 7694 class == BPF_JMP32) { 7695 verbose(env, "BPF_CALL uses reserved fields\n"); 7696 return -EINVAL; 7697 } 7698 7699 if (env->cur_state->active_spin_lock && 7700 (insn->src_reg == BPF_PSEUDO_CALL || 7701 insn->imm != BPF_FUNC_spin_unlock)) { 7702 verbose(env, "function calls are not allowed while holding a lock\n"); 7703 return -EINVAL; 7704 } 7705 if (insn->src_reg == BPF_PSEUDO_CALL) 7706 err = check_func_call(env, insn, &env->insn_idx); 7707 else 7708 err = check_helper_call(env, insn->imm, env->insn_idx); 7709 if (err) 7710 return err; 7711 7712 } else if (opcode == BPF_JA) { 7713 if (BPF_SRC(insn->code) != BPF_K || 7714 insn->imm != 0 || 7715 insn->src_reg != BPF_REG_0 || 7716 insn->dst_reg != BPF_REG_0 || 7717 class == BPF_JMP32) { 7718 verbose(env, "BPF_JA uses reserved fields\n"); 7719 return -EINVAL; 7720 } 7721 7722 env->insn_idx += insn->off + 1; 7723 continue; 7724 7725 } else if (opcode == BPF_EXIT) { 7726 if (BPF_SRC(insn->code) != BPF_K || 7727 insn->imm != 0 || 7728 insn->src_reg != BPF_REG_0 || 7729 insn->dst_reg != BPF_REG_0 || 7730 class == BPF_JMP32) { 7731 verbose(env, "BPF_EXIT uses reserved fields\n"); 7732 return -EINVAL; 7733 } 7734 7735 if (env->cur_state->active_spin_lock) { 7736 verbose(env, "bpf_spin_unlock is missing\n"); 7737 return -EINVAL; 7738 } 7739 7740 if (state->curframe) { 7741 /* exit from nested function */ 7742 err = prepare_func_exit(env, &env->insn_idx); 7743 if (err) 7744 return err; 7745 do_print_state = true; 7746 continue; 7747 } 7748 7749 err = check_reference_leak(env); 7750 if (err) 7751 return err; 7752 7753 /* eBPF calling convetion is such that R0 is used 7754 * to return the value from eBPF program. 7755 * Make sure that it's readable at this time 7756 * of bpf_exit, which means that program wrote 7757 * something into it earlier 7758 */ 7759 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7760 if (err) 7761 return err; 7762 7763 if (is_pointer_value(env, BPF_REG_0)) { 7764 verbose(env, "R0 leaks addr as return value\n"); 7765 return -EACCES; 7766 } 7767 7768 err = check_return_code(env); 7769 if (err) 7770 return err; 7771 process_bpf_exit: 7772 update_branch_counts(env, env->cur_state); 7773 err = pop_stack(env, &prev_insn_idx, 7774 &env->insn_idx); 7775 if (err < 0) { 7776 if (err != -ENOENT) 7777 return err; 7778 break; 7779 } else { 7780 do_print_state = true; 7781 continue; 7782 } 7783 } else { 7784 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7785 if (err) 7786 return err; 7787 } 7788 } else if (class == BPF_LD) { 7789 u8 mode = BPF_MODE(insn->code); 7790 7791 if (mode == BPF_ABS || mode == BPF_IND) { 7792 err = check_ld_abs(env, insn); 7793 if (err) 7794 return err; 7795 7796 } else if (mode == BPF_IMM) { 7797 err = check_ld_imm(env, insn); 7798 if (err) 7799 return err; 7800 7801 env->insn_idx++; 7802 env->insn_aux_data[env->insn_idx].seen = true; 7803 } else { 7804 verbose(env, "invalid BPF_LD mode\n"); 7805 return -EINVAL; 7806 } 7807 } else { 7808 verbose(env, "unknown insn class %d\n", class); 7809 return -EINVAL; 7810 } 7811 7812 env->insn_idx++; 7813 } 7814 7815 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7816 return 0; 7817 } 7818 7819 static int check_map_prealloc(struct bpf_map *map) 7820 { 7821 return (map->map_type != BPF_MAP_TYPE_HASH && 7822 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7823 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7824 !(map->map_flags & BPF_F_NO_PREALLOC); 7825 } 7826 7827 static bool is_tracing_prog_type(enum bpf_prog_type type) 7828 { 7829 switch (type) { 7830 case BPF_PROG_TYPE_KPROBE: 7831 case BPF_PROG_TYPE_TRACEPOINT: 7832 case BPF_PROG_TYPE_PERF_EVENT: 7833 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7834 return true; 7835 default: 7836 return false; 7837 } 7838 } 7839 7840 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7841 struct bpf_map *map, 7842 struct bpf_prog *prog) 7843 7844 { 7845 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7846 * preallocated hash maps, since doing memory allocation 7847 * in overflow_handler can crash depending on where nmi got 7848 * triggered. 7849 */ 7850 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7851 if (!check_map_prealloc(map)) { 7852 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7853 return -EINVAL; 7854 } 7855 if (map->inner_map_meta && 7856 !check_map_prealloc(map->inner_map_meta)) { 7857 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7858 return -EINVAL; 7859 } 7860 } 7861 7862 if ((is_tracing_prog_type(prog->type) || 7863 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7864 map_value_has_spin_lock(map)) { 7865 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7866 return -EINVAL; 7867 } 7868 7869 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7870 !bpf_offload_prog_map_match(prog, map)) { 7871 verbose(env, "offload device mismatch between prog and map\n"); 7872 return -EINVAL; 7873 } 7874 7875 return 0; 7876 } 7877 7878 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7879 { 7880 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7881 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7882 } 7883 7884 /* look for pseudo eBPF instructions that access map FDs and 7885 * replace them with actual map pointers 7886 */ 7887 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7888 { 7889 struct bpf_insn *insn = env->prog->insnsi; 7890 int insn_cnt = env->prog->len; 7891 int i, j, err; 7892 7893 err = bpf_prog_calc_tag(env->prog); 7894 if (err) 7895 return err; 7896 7897 for (i = 0; i < insn_cnt; i++, insn++) { 7898 if (BPF_CLASS(insn->code) == BPF_LDX && 7899 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7900 verbose(env, "BPF_LDX uses reserved fields\n"); 7901 return -EINVAL; 7902 } 7903 7904 if (BPF_CLASS(insn->code) == BPF_STX && 7905 ((BPF_MODE(insn->code) != BPF_MEM && 7906 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7907 verbose(env, "BPF_STX uses reserved fields\n"); 7908 return -EINVAL; 7909 } 7910 7911 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7912 struct bpf_insn_aux_data *aux; 7913 struct bpf_map *map; 7914 struct fd f; 7915 u64 addr; 7916 7917 if (i == insn_cnt - 1 || insn[1].code != 0 || 7918 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7919 insn[1].off != 0) { 7920 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7921 return -EINVAL; 7922 } 7923 7924 if (insn[0].src_reg == 0) 7925 /* valid generic load 64-bit imm */ 7926 goto next_insn; 7927 7928 /* In final convert_pseudo_ld_imm64() step, this is 7929 * converted into regular 64-bit imm load insn. 7930 */ 7931 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7932 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7933 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7934 insn[1].imm != 0)) { 7935 verbose(env, 7936 "unrecognized bpf_ld_imm64 insn\n"); 7937 return -EINVAL; 7938 } 7939 7940 f = fdget(insn[0].imm); 7941 map = __bpf_map_get(f); 7942 if (IS_ERR(map)) { 7943 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7944 insn[0].imm); 7945 return PTR_ERR(map); 7946 } 7947 7948 err = check_map_prog_compatibility(env, map, env->prog); 7949 if (err) { 7950 fdput(f); 7951 return err; 7952 } 7953 7954 aux = &env->insn_aux_data[i]; 7955 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7956 addr = (unsigned long)map; 7957 } else { 7958 u32 off = insn[1].imm; 7959 7960 if (off >= BPF_MAX_VAR_OFF) { 7961 verbose(env, "direct value offset of %u is not allowed\n", off); 7962 fdput(f); 7963 return -EINVAL; 7964 } 7965 7966 if (!map->ops->map_direct_value_addr) { 7967 verbose(env, "no direct value access support for this map type\n"); 7968 fdput(f); 7969 return -EINVAL; 7970 } 7971 7972 err = map->ops->map_direct_value_addr(map, &addr, off); 7973 if (err) { 7974 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7975 map->value_size, off); 7976 fdput(f); 7977 return err; 7978 } 7979 7980 aux->map_off = off; 7981 addr += off; 7982 } 7983 7984 insn[0].imm = (u32)addr; 7985 insn[1].imm = addr >> 32; 7986 7987 /* check whether we recorded this map already */ 7988 for (j = 0; j < env->used_map_cnt; j++) { 7989 if (env->used_maps[j] == map) { 7990 aux->map_index = j; 7991 fdput(f); 7992 goto next_insn; 7993 } 7994 } 7995 7996 if (env->used_map_cnt >= MAX_USED_MAPS) { 7997 fdput(f); 7998 return -E2BIG; 7999 } 8000 8001 /* hold the map. If the program is rejected by verifier, 8002 * the map will be released by release_maps() or it 8003 * will be used by the valid program until it's unloaded 8004 * and all maps are released in free_used_maps() 8005 */ 8006 map = bpf_map_inc(map, false); 8007 if (IS_ERR(map)) { 8008 fdput(f); 8009 return PTR_ERR(map); 8010 } 8011 8012 aux->map_index = env->used_map_cnt; 8013 env->used_maps[env->used_map_cnt++] = map; 8014 8015 if (bpf_map_is_cgroup_storage(map) && 8016 bpf_cgroup_storage_assign(env->prog, map)) { 8017 verbose(env, "only one cgroup storage of each type is allowed\n"); 8018 fdput(f); 8019 return -EBUSY; 8020 } 8021 8022 fdput(f); 8023 next_insn: 8024 insn++; 8025 i++; 8026 continue; 8027 } 8028 8029 /* Basic sanity check before we invest more work here. */ 8030 if (!bpf_opcode_in_insntable(insn->code)) { 8031 verbose(env, "unknown opcode %02x\n", insn->code); 8032 return -EINVAL; 8033 } 8034 } 8035 8036 /* now all pseudo BPF_LD_IMM64 instructions load valid 8037 * 'struct bpf_map *' into a register instead of user map_fd. 8038 * These pointers will be used later by verifier to validate map access. 8039 */ 8040 return 0; 8041 } 8042 8043 /* drop refcnt of maps used by the rejected program */ 8044 static void release_maps(struct bpf_verifier_env *env) 8045 { 8046 enum bpf_cgroup_storage_type stype; 8047 int i; 8048 8049 for_each_cgroup_storage_type(stype) { 8050 if (!env->prog->aux->cgroup_storage[stype]) 8051 continue; 8052 bpf_cgroup_storage_release(env->prog, 8053 env->prog->aux->cgroup_storage[stype]); 8054 } 8055 8056 for (i = 0; i < env->used_map_cnt; i++) 8057 bpf_map_put(env->used_maps[i]); 8058 } 8059 8060 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8061 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8062 { 8063 struct bpf_insn *insn = env->prog->insnsi; 8064 int insn_cnt = env->prog->len; 8065 int i; 8066 8067 for (i = 0; i < insn_cnt; i++, insn++) 8068 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8069 insn->src_reg = 0; 8070 } 8071 8072 /* single env->prog->insni[off] instruction was replaced with the range 8073 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8074 * [0, off) and [off, end) to new locations, so the patched range stays zero 8075 */ 8076 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8077 struct bpf_prog *new_prog, u32 off, u32 cnt) 8078 { 8079 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8080 struct bpf_insn *insn = new_prog->insnsi; 8081 u32 prog_len; 8082 int i; 8083 8084 /* aux info at OFF always needs adjustment, no matter fast path 8085 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8086 * original insn at old prog. 8087 */ 8088 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8089 8090 if (cnt == 1) 8091 return 0; 8092 prog_len = new_prog->len; 8093 new_data = vzalloc(array_size(prog_len, 8094 sizeof(struct bpf_insn_aux_data))); 8095 if (!new_data) 8096 return -ENOMEM; 8097 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8098 memcpy(new_data + off + cnt - 1, old_data + off, 8099 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8100 for (i = off; i < off + cnt - 1; i++) { 8101 new_data[i].seen = true; 8102 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8103 } 8104 env->insn_aux_data = new_data; 8105 vfree(old_data); 8106 return 0; 8107 } 8108 8109 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8110 { 8111 int i; 8112 8113 if (len == 1) 8114 return; 8115 /* NOTE: fake 'exit' subprog should be updated as well. */ 8116 for (i = 0; i <= env->subprog_cnt; i++) { 8117 if (env->subprog_info[i].start <= off) 8118 continue; 8119 env->subprog_info[i].start += len - 1; 8120 } 8121 } 8122 8123 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8124 const struct bpf_insn *patch, u32 len) 8125 { 8126 struct bpf_prog *new_prog; 8127 8128 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8129 if (IS_ERR(new_prog)) { 8130 if (PTR_ERR(new_prog) == -ERANGE) 8131 verbose(env, 8132 "insn %d cannot be patched due to 16-bit range\n", 8133 env->insn_aux_data[off].orig_idx); 8134 return NULL; 8135 } 8136 if (adjust_insn_aux_data(env, new_prog, off, len)) 8137 return NULL; 8138 adjust_subprog_starts(env, off, len); 8139 return new_prog; 8140 } 8141 8142 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8143 u32 off, u32 cnt) 8144 { 8145 int i, j; 8146 8147 /* find first prog starting at or after off (first to remove) */ 8148 for (i = 0; i < env->subprog_cnt; i++) 8149 if (env->subprog_info[i].start >= off) 8150 break; 8151 /* find first prog starting at or after off + cnt (first to stay) */ 8152 for (j = i; j < env->subprog_cnt; j++) 8153 if (env->subprog_info[j].start >= off + cnt) 8154 break; 8155 /* if j doesn't start exactly at off + cnt, we are just removing 8156 * the front of previous prog 8157 */ 8158 if (env->subprog_info[j].start != off + cnt) 8159 j--; 8160 8161 if (j > i) { 8162 struct bpf_prog_aux *aux = env->prog->aux; 8163 int move; 8164 8165 /* move fake 'exit' subprog as well */ 8166 move = env->subprog_cnt + 1 - j; 8167 8168 memmove(env->subprog_info + i, 8169 env->subprog_info + j, 8170 sizeof(*env->subprog_info) * move); 8171 env->subprog_cnt -= j - i; 8172 8173 /* remove func_info */ 8174 if (aux->func_info) { 8175 move = aux->func_info_cnt - j; 8176 8177 memmove(aux->func_info + i, 8178 aux->func_info + j, 8179 sizeof(*aux->func_info) * move); 8180 aux->func_info_cnt -= j - i; 8181 /* func_info->insn_off is set after all code rewrites, 8182 * in adjust_btf_func() - no need to adjust 8183 */ 8184 } 8185 } else { 8186 /* convert i from "first prog to remove" to "first to adjust" */ 8187 if (env->subprog_info[i].start == off) 8188 i++; 8189 } 8190 8191 /* update fake 'exit' subprog as well */ 8192 for (; i <= env->subprog_cnt; i++) 8193 env->subprog_info[i].start -= cnt; 8194 8195 return 0; 8196 } 8197 8198 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8199 u32 cnt) 8200 { 8201 struct bpf_prog *prog = env->prog; 8202 u32 i, l_off, l_cnt, nr_linfo; 8203 struct bpf_line_info *linfo; 8204 8205 nr_linfo = prog->aux->nr_linfo; 8206 if (!nr_linfo) 8207 return 0; 8208 8209 linfo = prog->aux->linfo; 8210 8211 /* find first line info to remove, count lines to be removed */ 8212 for (i = 0; i < nr_linfo; i++) 8213 if (linfo[i].insn_off >= off) 8214 break; 8215 8216 l_off = i; 8217 l_cnt = 0; 8218 for (; i < nr_linfo; i++) 8219 if (linfo[i].insn_off < off + cnt) 8220 l_cnt++; 8221 else 8222 break; 8223 8224 /* First live insn doesn't match first live linfo, it needs to "inherit" 8225 * last removed linfo. prog is already modified, so prog->len == off 8226 * means no live instructions after (tail of the program was removed). 8227 */ 8228 if (prog->len != off && l_cnt && 8229 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8230 l_cnt--; 8231 linfo[--i].insn_off = off + cnt; 8232 } 8233 8234 /* remove the line info which refer to the removed instructions */ 8235 if (l_cnt) { 8236 memmove(linfo + l_off, linfo + i, 8237 sizeof(*linfo) * (nr_linfo - i)); 8238 8239 prog->aux->nr_linfo -= l_cnt; 8240 nr_linfo = prog->aux->nr_linfo; 8241 } 8242 8243 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8244 for (i = l_off; i < nr_linfo; i++) 8245 linfo[i].insn_off -= cnt; 8246 8247 /* fix up all subprogs (incl. 'exit') which start >= off */ 8248 for (i = 0; i <= env->subprog_cnt; i++) 8249 if (env->subprog_info[i].linfo_idx > l_off) { 8250 /* program may have started in the removed region but 8251 * may not be fully removed 8252 */ 8253 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8254 env->subprog_info[i].linfo_idx -= l_cnt; 8255 else 8256 env->subprog_info[i].linfo_idx = l_off; 8257 } 8258 8259 return 0; 8260 } 8261 8262 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8263 { 8264 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8265 unsigned int orig_prog_len = env->prog->len; 8266 int err; 8267 8268 if (bpf_prog_is_dev_bound(env->prog->aux)) 8269 bpf_prog_offload_remove_insns(env, off, cnt); 8270 8271 err = bpf_remove_insns(env->prog, off, cnt); 8272 if (err) 8273 return err; 8274 8275 err = adjust_subprog_starts_after_remove(env, off, cnt); 8276 if (err) 8277 return err; 8278 8279 err = bpf_adj_linfo_after_remove(env, off, cnt); 8280 if (err) 8281 return err; 8282 8283 memmove(aux_data + off, aux_data + off + cnt, 8284 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8285 8286 return 0; 8287 } 8288 8289 /* The verifier does more data flow analysis than llvm and will not 8290 * explore branches that are dead at run time. Malicious programs can 8291 * have dead code too. Therefore replace all dead at-run-time code 8292 * with 'ja -1'. 8293 * 8294 * Just nops are not optimal, e.g. if they would sit at the end of the 8295 * program and through another bug we would manage to jump there, then 8296 * we'd execute beyond program memory otherwise. Returning exception 8297 * code also wouldn't work since we can have subprogs where the dead 8298 * code could be located. 8299 */ 8300 static void sanitize_dead_code(struct bpf_verifier_env *env) 8301 { 8302 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8303 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8304 struct bpf_insn *insn = env->prog->insnsi; 8305 const int insn_cnt = env->prog->len; 8306 int i; 8307 8308 for (i = 0; i < insn_cnt; i++) { 8309 if (aux_data[i].seen) 8310 continue; 8311 memcpy(insn + i, &trap, sizeof(trap)); 8312 } 8313 } 8314 8315 static bool insn_is_cond_jump(u8 code) 8316 { 8317 u8 op; 8318 8319 if (BPF_CLASS(code) == BPF_JMP32) 8320 return true; 8321 8322 if (BPF_CLASS(code) != BPF_JMP) 8323 return false; 8324 8325 op = BPF_OP(code); 8326 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8327 } 8328 8329 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8330 { 8331 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8332 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8333 struct bpf_insn *insn = env->prog->insnsi; 8334 const int insn_cnt = env->prog->len; 8335 int i; 8336 8337 for (i = 0; i < insn_cnt; i++, insn++) { 8338 if (!insn_is_cond_jump(insn->code)) 8339 continue; 8340 8341 if (!aux_data[i + 1].seen) 8342 ja.off = insn->off; 8343 else if (!aux_data[i + 1 + insn->off].seen) 8344 ja.off = 0; 8345 else 8346 continue; 8347 8348 if (bpf_prog_is_dev_bound(env->prog->aux)) 8349 bpf_prog_offload_replace_insn(env, i, &ja); 8350 8351 memcpy(insn, &ja, sizeof(ja)); 8352 } 8353 } 8354 8355 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8356 { 8357 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8358 int insn_cnt = env->prog->len; 8359 int i, err; 8360 8361 for (i = 0; i < insn_cnt; i++) { 8362 int j; 8363 8364 j = 0; 8365 while (i + j < insn_cnt && !aux_data[i + j].seen) 8366 j++; 8367 if (!j) 8368 continue; 8369 8370 err = verifier_remove_insns(env, i, j); 8371 if (err) 8372 return err; 8373 insn_cnt = env->prog->len; 8374 } 8375 8376 return 0; 8377 } 8378 8379 static int opt_remove_nops(struct bpf_verifier_env *env) 8380 { 8381 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8382 struct bpf_insn *insn = env->prog->insnsi; 8383 int insn_cnt = env->prog->len; 8384 int i, err; 8385 8386 for (i = 0; i < insn_cnt; i++) { 8387 if (memcmp(&insn[i], &ja, sizeof(ja))) 8388 continue; 8389 8390 err = verifier_remove_insns(env, i, 1); 8391 if (err) 8392 return err; 8393 insn_cnt--; 8394 i--; 8395 } 8396 8397 return 0; 8398 } 8399 8400 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8401 const union bpf_attr *attr) 8402 { 8403 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8404 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8405 int i, patch_len, delta = 0, len = env->prog->len; 8406 struct bpf_insn *insns = env->prog->insnsi; 8407 struct bpf_prog *new_prog; 8408 bool rnd_hi32; 8409 8410 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8411 zext_patch[1] = BPF_ZEXT_REG(0); 8412 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8413 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8414 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8415 for (i = 0; i < len; i++) { 8416 int adj_idx = i + delta; 8417 struct bpf_insn insn; 8418 8419 insn = insns[adj_idx]; 8420 if (!aux[adj_idx].zext_dst) { 8421 u8 code, class; 8422 u32 imm_rnd; 8423 8424 if (!rnd_hi32) 8425 continue; 8426 8427 code = insn.code; 8428 class = BPF_CLASS(code); 8429 if (insn_no_def(&insn)) 8430 continue; 8431 8432 /* NOTE: arg "reg" (the fourth one) is only used for 8433 * BPF_STX which has been ruled out in above 8434 * check, it is safe to pass NULL here. 8435 */ 8436 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8437 if (class == BPF_LD && 8438 BPF_MODE(code) == BPF_IMM) 8439 i++; 8440 continue; 8441 } 8442 8443 /* ctx load could be transformed into wider load. */ 8444 if (class == BPF_LDX && 8445 aux[adj_idx].ptr_type == PTR_TO_CTX) 8446 continue; 8447 8448 imm_rnd = get_random_int(); 8449 rnd_hi32_patch[0] = insn; 8450 rnd_hi32_patch[1].imm = imm_rnd; 8451 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8452 patch = rnd_hi32_patch; 8453 patch_len = 4; 8454 goto apply_patch_buffer; 8455 } 8456 8457 if (!bpf_jit_needs_zext()) 8458 continue; 8459 8460 zext_patch[0] = insn; 8461 zext_patch[1].dst_reg = insn.dst_reg; 8462 zext_patch[1].src_reg = insn.dst_reg; 8463 patch = zext_patch; 8464 patch_len = 2; 8465 apply_patch_buffer: 8466 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8467 if (!new_prog) 8468 return -ENOMEM; 8469 env->prog = new_prog; 8470 insns = new_prog->insnsi; 8471 aux = env->insn_aux_data; 8472 delta += patch_len - 1; 8473 } 8474 8475 return 0; 8476 } 8477 8478 /* convert load instructions that access fields of a context type into a 8479 * sequence of instructions that access fields of the underlying structure: 8480 * struct __sk_buff -> struct sk_buff 8481 * struct bpf_sock_ops -> struct sock 8482 */ 8483 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8484 { 8485 const struct bpf_verifier_ops *ops = env->ops; 8486 int i, cnt, size, ctx_field_size, delta = 0; 8487 const int insn_cnt = env->prog->len; 8488 struct bpf_insn insn_buf[16], *insn; 8489 u32 target_size, size_default, off; 8490 struct bpf_prog *new_prog; 8491 enum bpf_access_type type; 8492 bool is_narrower_load; 8493 8494 if (ops->gen_prologue || env->seen_direct_write) { 8495 if (!ops->gen_prologue) { 8496 verbose(env, "bpf verifier is misconfigured\n"); 8497 return -EINVAL; 8498 } 8499 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8500 env->prog); 8501 if (cnt >= ARRAY_SIZE(insn_buf)) { 8502 verbose(env, "bpf verifier is misconfigured\n"); 8503 return -EINVAL; 8504 } else if (cnt) { 8505 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8506 if (!new_prog) 8507 return -ENOMEM; 8508 8509 env->prog = new_prog; 8510 delta += cnt - 1; 8511 } 8512 } 8513 8514 if (bpf_prog_is_dev_bound(env->prog->aux)) 8515 return 0; 8516 8517 insn = env->prog->insnsi + delta; 8518 8519 for (i = 0; i < insn_cnt; i++, insn++) { 8520 bpf_convert_ctx_access_t convert_ctx_access; 8521 8522 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8523 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8524 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8525 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8526 type = BPF_READ; 8527 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8528 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8529 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8530 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8531 type = BPF_WRITE; 8532 else 8533 continue; 8534 8535 if (type == BPF_WRITE && 8536 env->insn_aux_data[i + delta].sanitize_stack_off) { 8537 struct bpf_insn patch[] = { 8538 /* Sanitize suspicious stack slot with zero. 8539 * There are no memory dependencies for this store, 8540 * since it's only using frame pointer and immediate 8541 * constant of zero 8542 */ 8543 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8544 env->insn_aux_data[i + delta].sanitize_stack_off, 8545 0), 8546 /* the original STX instruction will immediately 8547 * overwrite the same stack slot with appropriate value 8548 */ 8549 *insn, 8550 }; 8551 8552 cnt = ARRAY_SIZE(patch); 8553 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8554 if (!new_prog) 8555 return -ENOMEM; 8556 8557 delta += cnt - 1; 8558 env->prog = new_prog; 8559 insn = new_prog->insnsi + i + delta; 8560 continue; 8561 } 8562 8563 switch (env->insn_aux_data[i + delta].ptr_type) { 8564 case PTR_TO_CTX: 8565 if (!ops->convert_ctx_access) 8566 continue; 8567 convert_ctx_access = ops->convert_ctx_access; 8568 break; 8569 case PTR_TO_SOCKET: 8570 case PTR_TO_SOCK_COMMON: 8571 convert_ctx_access = bpf_sock_convert_ctx_access; 8572 break; 8573 case PTR_TO_TCP_SOCK: 8574 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8575 break; 8576 case PTR_TO_XDP_SOCK: 8577 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8578 break; 8579 default: 8580 continue; 8581 } 8582 8583 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8584 size = BPF_LDST_BYTES(insn); 8585 8586 /* If the read access is a narrower load of the field, 8587 * convert to a 4/8-byte load, to minimum program type specific 8588 * convert_ctx_access changes. If conversion is successful, 8589 * we will apply proper mask to the result. 8590 */ 8591 is_narrower_load = size < ctx_field_size; 8592 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8593 off = insn->off; 8594 if (is_narrower_load) { 8595 u8 size_code; 8596 8597 if (type == BPF_WRITE) { 8598 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8599 return -EINVAL; 8600 } 8601 8602 size_code = BPF_H; 8603 if (ctx_field_size == 4) 8604 size_code = BPF_W; 8605 else if (ctx_field_size == 8) 8606 size_code = BPF_DW; 8607 8608 insn->off = off & ~(size_default - 1); 8609 insn->code = BPF_LDX | BPF_MEM | size_code; 8610 } 8611 8612 target_size = 0; 8613 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8614 &target_size); 8615 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8616 (ctx_field_size && !target_size)) { 8617 verbose(env, "bpf verifier is misconfigured\n"); 8618 return -EINVAL; 8619 } 8620 8621 if (is_narrower_load && size < target_size) { 8622 u8 shift = bpf_ctx_narrow_load_shift(off, size, 8623 size_default); 8624 if (ctx_field_size <= 4) { 8625 if (shift) 8626 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8627 insn->dst_reg, 8628 shift); 8629 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8630 (1 << size * 8) - 1); 8631 } else { 8632 if (shift) 8633 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8634 insn->dst_reg, 8635 shift); 8636 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8637 (1ULL << size * 8) - 1); 8638 } 8639 } 8640 8641 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8642 if (!new_prog) 8643 return -ENOMEM; 8644 8645 delta += cnt - 1; 8646 8647 /* keep walking new program and skip insns we just inserted */ 8648 env->prog = new_prog; 8649 insn = new_prog->insnsi + i + delta; 8650 } 8651 8652 return 0; 8653 } 8654 8655 static int jit_subprogs(struct bpf_verifier_env *env) 8656 { 8657 struct bpf_prog *prog = env->prog, **func, *tmp; 8658 int i, j, subprog_start, subprog_end = 0, len, subprog; 8659 struct bpf_insn *insn; 8660 void *old_bpf_func; 8661 int err; 8662 8663 if (env->subprog_cnt <= 1) 8664 return 0; 8665 8666 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8667 if (insn->code != (BPF_JMP | BPF_CALL) || 8668 insn->src_reg != BPF_PSEUDO_CALL) 8669 continue; 8670 /* Upon error here we cannot fall back to interpreter but 8671 * need a hard reject of the program. Thus -EFAULT is 8672 * propagated in any case. 8673 */ 8674 subprog = find_subprog(env, i + insn->imm + 1); 8675 if (subprog < 0) { 8676 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8677 i + insn->imm + 1); 8678 return -EFAULT; 8679 } 8680 /* temporarily remember subprog id inside insn instead of 8681 * aux_data, since next loop will split up all insns into funcs 8682 */ 8683 insn->off = subprog; 8684 /* remember original imm in case JIT fails and fallback 8685 * to interpreter will be needed 8686 */ 8687 env->insn_aux_data[i].call_imm = insn->imm; 8688 /* point imm to __bpf_call_base+1 from JITs point of view */ 8689 insn->imm = 1; 8690 } 8691 8692 err = bpf_prog_alloc_jited_linfo(prog); 8693 if (err) 8694 goto out_undo_insn; 8695 8696 err = -ENOMEM; 8697 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8698 if (!func) 8699 goto out_undo_insn; 8700 8701 for (i = 0; i < env->subprog_cnt; i++) { 8702 subprog_start = subprog_end; 8703 subprog_end = env->subprog_info[i + 1].start; 8704 8705 len = subprog_end - subprog_start; 8706 /* BPF_PROG_RUN doesn't call subprogs directly, 8707 * hence main prog stats include the runtime of subprogs. 8708 * subprogs don't have IDs and not reachable via prog_get_next_id 8709 * func[i]->aux->stats will never be accessed and stays NULL 8710 */ 8711 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8712 if (!func[i]) 8713 goto out_free; 8714 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8715 len * sizeof(struct bpf_insn)); 8716 func[i]->type = prog->type; 8717 func[i]->len = len; 8718 if (bpf_prog_calc_tag(func[i])) 8719 goto out_free; 8720 func[i]->is_func = 1; 8721 func[i]->aux->func_idx = i; 8722 /* the btf and func_info will be freed only at prog->aux */ 8723 func[i]->aux->btf = prog->aux->btf; 8724 func[i]->aux->func_info = prog->aux->func_info; 8725 8726 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8727 * Long term would need debug info to populate names 8728 */ 8729 func[i]->aux->name[0] = 'F'; 8730 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8731 func[i]->jit_requested = 1; 8732 func[i]->aux->linfo = prog->aux->linfo; 8733 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8734 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8735 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8736 func[i] = bpf_int_jit_compile(func[i]); 8737 if (!func[i]->jited) { 8738 err = -ENOTSUPP; 8739 goto out_free; 8740 } 8741 cond_resched(); 8742 } 8743 /* at this point all bpf functions were successfully JITed 8744 * now populate all bpf_calls with correct addresses and 8745 * run last pass of JIT 8746 */ 8747 for (i = 0; i < env->subprog_cnt; i++) { 8748 insn = func[i]->insnsi; 8749 for (j = 0; j < func[i]->len; j++, insn++) { 8750 if (insn->code != (BPF_JMP | BPF_CALL) || 8751 insn->src_reg != BPF_PSEUDO_CALL) 8752 continue; 8753 subprog = insn->off; 8754 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8755 __bpf_call_base; 8756 } 8757 8758 /* we use the aux data to keep a list of the start addresses 8759 * of the JITed images for each function in the program 8760 * 8761 * for some architectures, such as powerpc64, the imm field 8762 * might not be large enough to hold the offset of the start 8763 * address of the callee's JITed image from __bpf_call_base 8764 * 8765 * in such cases, we can lookup the start address of a callee 8766 * by using its subprog id, available from the off field of 8767 * the call instruction, as an index for this list 8768 */ 8769 func[i]->aux->func = func; 8770 func[i]->aux->func_cnt = env->subprog_cnt; 8771 } 8772 for (i = 0; i < env->subprog_cnt; i++) { 8773 old_bpf_func = func[i]->bpf_func; 8774 tmp = bpf_int_jit_compile(func[i]); 8775 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8776 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8777 err = -ENOTSUPP; 8778 goto out_free; 8779 } 8780 cond_resched(); 8781 } 8782 8783 /* finally lock prog and jit images for all functions and 8784 * populate kallsysm 8785 */ 8786 for (i = 0; i < env->subprog_cnt; i++) { 8787 bpf_prog_lock_ro(func[i]); 8788 bpf_prog_kallsyms_add(func[i]); 8789 } 8790 8791 /* Last step: make now unused interpreter insns from main 8792 * prog consistent for later dump requests, so they can 8793 * later look the same as if they were interpreted only. 8794 */ 8795 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8796 if (insn->code != (BPF_JMP | BPF_CALL) || 8797 insn->src_reg != BPF_PSEUDO_CALL) 8798 continue; 8799 insn->off = env->insn_aux_data[i].call_imm; 8800 subprog = find_subprog(env, i + insn->off + 1); 8801 insn->imm = subprog; 8802 } 8803 8804 prog->jited = 1; 8805 prog->bpf_func = func[0]->bpf_func; 8806 prog->aux->func = func; 8807 prog->aux->func_cnt = env->subprog_cnt; 8808 bpf_prog_free_unused_jited_linfo(prog); 8809 return 0; 8810 out_free: 8811 for (i = 0; i < env->subprog_cnt; i++) 8812 if (func[i]) 8813 bpf_jit_free(func[i]); 8814 kfree(func); 8815 out_undo_insn: 8816 /* cleanup main prog to be interpreted */ 8817 prog->jit_requested = 0; 8818 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8819 if (insn->code != (BPF_JMP | BPF_CALL) || 8820 insn->src_reg != BPF_PSEUDO_CALL) 8821 continue; 8822 insn->off = 0; 8823 insn->imm = env->insn_aux_data[i].call_imm; 8824 } 8825 bpf_prog_free_jited_linfo(prog); 8826 return err; 8827 } 8828 8829 static int fixup_call_args(struct bpf_verifier_env *env) 8830 { 8831 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8832 struct bpf_prog *prog = env->prog; 8833 struct bpf_insn *insn = prog->insnsi; 8834 int i, depth; 8835 #endif 8836 int err = 0; 8837 8838 if (env->prog->jit_requested && 8839 !bpf_prog_is_dev_bound(env->prog->aux)) { 8840 err = jit_subprogs(env); 8841 if (err == 0) 8842 return 0; 8843 if (err == -EFAULT) 8844 return err; 8845 } 8846 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8847 for (i = 0; i < prog->len; i++, insn++) { 8848 if (insn->code != (BPF_JMP | BPF_CALL) || 8849 insn->src_reg != BPF_PSEUDO_CALL) 8850 continue; 8851 depth = get_callee_stack_depth(env, insn, i); 8852 if (depth < 0) 8853 return depth; 8854 bpf_patch_call_args(insn, depth); 8855 } 8856 err = 0; 8857 #endif 8858 return err; 8859 } 8860 8861 /* fixup insn->imm field of bpf_call instructions 8862 * and inline eligible helpers as explicit sequence of BPF instructions 8863 * 8864 * this function is called after eBPF program passed verification 8865 */ 8866 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8867 { 8868 struct bpf_prog *prog = env->prog; 8869 struct bpf_insn *insn = prog->insnsi; 8870 const struct bpf_func_proto *fn; 8871 const int insn_cnt = prog->len; 8872 const struct bpf_map_ops *ops; 8873 struct bpf_insn_aux_data *aux; 8874 struct bpf_insn insn_buf[16]; 8875 struct bpf_prog *new_prog; 8876 struct bpf_map *map_ptr; 8877 int i, cnt, delta = 0; 8878 8879 for (i = 0; i < insn_cnt; i++, insn++) { 8880 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8881 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8882 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8883 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8884 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8885 struct bpf_insn mask_and_div[] = { 8886 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8887 /* Rx div 0 -> 0 */ 8888 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8889 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8890 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8891 *insn, 8892 }; 8893 struct bpf_insn mask_and_mod[] = { 8894 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8895 /* Rx mod 0 -> Rx */ 8896 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8897 *insn, 8898 }; 8899 struct bpf_insn *patchlet; 8900 8901 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8902 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8903 patchlet = mask_and_div + (is64 ? 1 : 0); 8904 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8905 } else { 8906 patchlet = mask_and_mod + (is64 ? 1 : 0); 8907 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8908 } 8909 8910 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8911 if (!new_prog) 8912 return -ENOMEM; 8913 8914 delta += cnt - 1; 8915 env->prog = prog = new_prog; 8916 insn = new_prog->insnsi + i + delta; 8917 continue; 8918 } 8919 8920 if (BPF_CLASS(insn->code) == BPF_LD && 8921 (BPF_MODE(insn->code) == BPF_ABS || 8922 BPF_MODE(insn->code) == BPF_IND)) { 8923 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8924 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8925 verbose(env, "bpf verifier is misconfigured\n"); 8926 return -EINVAL; 8927 } 8928 8929 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8930 if (!new_prog) 8931 return -ENOMEM; 8932 8933 delta += cnt - 1; 8934 env->prog = prog = new_prog; 8935 insn = new_prog->insnsi + i + delta; 8936 continue; 8937 } 8938 8939 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8940 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8941 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8942 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8943 struct bpf_insn insn_buf[16]; 8944 struct bpf_insn *patch = &insn_buf[0]; 8945 bool issrc, isneg; 8946 u32 off_reg; 8947 8948 aux = &env->insn_aux_data[i + delta]; 8949 if (!aux->alu_state || 8950 aux->alu_state == BPF_ALU_NON_POINTER) 8951 continue; 8952 8953 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8954 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8955 BPF_ALU_SANITIZE_SRC; 8956 8957 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8958 if (isneg) 8959 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8960 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8961 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8962 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8963 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8964 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8965 if (issrc) { 8966 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8967 off_reg); 8968 insn->src_reg = BPF_REG_AX; 8969 } else { 8970 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8971 BPF_REG_AX); 8972 } 8973 if (isneg) 8974 insn->code = insn->code == code_add ? 8975 code_sub : code_add; 8976 *patch++ = *insn; 8977 if (issrc && isneg) 8978 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8979 cnt = patch - insn_buf; 8980 8981 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8982 if (!new_prog) 8983 return -ENOMEM; 8984 8985 delta += cnt - 1; 8986 env->prog = prog = new_prog; 8987 insn = new_prog->insnsi + i + delta; 8988 continue; 8989 } 8990 8991 if (insn->code != (BPF_JMP | BPF_CALL)) 8992 continue; 8993 if (insn->src_reg == BPF_PSEUDO_CALL) 8994 continue; 8995 8996 if (insn->imm == BPF_FUNC_get_route_realm) 8997 prog->dst_needed = 1; 8998 if (insn->imm == BPF_FUNC_get_prandom_u32) 8999 bpf_user_rnd_init_once(); 9000 if (insn->imm == BPF_FUNC_override_return) 9001 prog->kprobe_override = 1; 9002 if (insn->imm == BPF_FUNC_tail_call) { 9003 /* If we tail call into other programs, we 9004 * cannot make any assumptions since they can 9005 * be replaced dynamically during runtime in 9006 * the program array. 9007 */ 9008 prog->cb_access = 1; 9009 env->prog->aux->stack_depth = MAX_BPF_STACK; 9010 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9011 9012 /* mark bpf_tail_call as different opcode to avoid 9013 * conditional branch in the interpeter for every normal 9014 * call and to prevent accidental JITing by JIT compiler 9015 * that doesn't support bpf_tail_call yet 9016 */ 9017 insn->imm = 0; 9018 insn->code = BPF_JMP | BPF_TAIL_CALL; 9019 9020 aux = &env->insn_aux_data[i + delta]; 9021 if (!bpf_map_ptr_unpriv(aux)) 9022 continue; 9023 9024 /* instead of changing every JIT dealing with tail_call 9025 * emit two extra insns: 9026 * if (index >= max_entries) goto out; 9027 * index &= array->index_mask; 9028 * to avoid out-of-bounds cpu speculation 9029 */ 9030 if (bpf_map_ptr_poisoned(aux)) { 9031 verbose(env, "tail_call abusing map_ptr\n"); 9032 return -EINVAL; 9033 } 9034 9035 map_ptr = BPF_MAP_PTR(aux->map_state); 9036 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9037 map_ptr->max_entries, 2); 9038 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9039 container_of(map_ptr, 9040 struct bpf_array, 9041 map)->index_mask); 9042 insn_buf[2] = *insn; 9043 cnt = 3; 9044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9045 if (!new_prog) 9046 return -ENOMEM; 9047 9048 delta += cnt - 1; 9049 env->prog = prog = new_prog; 9050 insn = new_prog->insnsi + i + delta; 9051 continue; 9052 } 9053 9054 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9055 * and other inlining handlers are currently limited to 64 bit 9056 * only. 9057 */ 9058 if (prog->jit_requested && BITS_PER_LONG == 64 && 9059 (insn->imm == BPF_FUNC_map_lookup_elem || 9060 insn->imm == BPF_FUNC_map_update_elem || 9061 insn->imm == BPF_FUNC_map_delete_elem || 9062 insn->imm == BPF_FUNC_map_push_elem || 9063 insn->imm == BPF_FUNC_map_pop_elem || 9064 insn->imm == BPF_FUNC_map_peek_elem)) { 9065 aux = &env->insn_aux_data[i + delta]; 9066 if (bpf_map_ptr_poisoned(aux)) 9067 goto patch_call_imm; 9068 9069 map_ptr = BPF_MAP_PTR(aux->map_state); 9070 ops = map_ptr->ops; 9071 if (insn->imm == BPF_FUNC_map_lookup_elem && 9072 ops->map_gen_lookup) { 9073 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9074 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9075 verbose(env, "bpf verifier is misconfigured\n"); 9076 return -EINVAL; 9077 } 9078 9079 new_prog = bpf_patch_insn_data(env, i + delta, 9080 insn_buf, cnt); 9081 if (!new_prog) 9082 return -ENOMEM; 9083 9084 delta += cnt - 1; 9085 env->prog = prog = new_prog; 9086 insn = new_prog->insnsi + i + delta; 9087 continue; 9088 } 9089 9090 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9091 (void *(*)(struct bpf_map *map, void *key))NULL)); 9092 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9093 (int (*)(struct bpf_map *map, void *key))NULL)); 9094 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9095 (int (*)(struct bpf_map *map, void *key, void *value, 9096 u64 flags))NULL)); 9097 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9098 (int (*)(struct bpf_map *map, void *value, 9099 u64 flags))NULL)); 9100 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9101 (int (*)(struct bpf_map *map, void *value))NULL)); 9102 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9103 (int (*)(struct bpf_map *map, void *value))NULL)); 9104 9105 switch (insn->imm) { 9106 case BPF_FUNC_map_lookup_elem: 9107 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9108 __bpf_call_base; 9109 continue; 9110 case BPF_FUNC_map_update_elem: 9111 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9112 __bpf_call_base; 9113 continue; 9114 case BPF_FUNC_map_delete_elem: 9115 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9116 __bpf_call_base; 9117 continue; 9118 case BPF_FUNC_map_push_elem: 9119 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9120 __bpf_call_base; 9121 continue; 9122 case BPF_FUNC_map_pop_elem: 9123 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9124 __bpf_call_base; 9125 continue; 9126 case BPF_FUNC_map_peek_elem: 9127 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9128 __bpf_call_base; 9129 continue; 9130 } 9131 9132 goto patch_call_imm; 9133 } 9134 9135 patch_call_imm: 9136 fn = env->ops->get_func_proto(insn->imm, env->prog); 9137 /* all functions that have prototype and verifier allowed 9138 * programs to call them, must be real in-kernel functions 9139 */ 9140 if (!fn->func) { 9141 verbose(env, 9142 "kernel subsystem misconfigured func %s#%d\n", 9143 func_id_name(insn->imm), insn->imm); 9144 return -EFAULT; 9145 } 9146 insn->imm = fn->func - __bpf_call_base; 9147 } 9148 9149 return 0; 9150 } 9151 9152 static void free_states(struct bpf_verifier_env *env) 9153 { 9154 struct bpf_verifier_state_list *sl, *sln; 9155 int i; 9156 9157 sl = env->free_list; 9158 while (sl) { 9159 sln = sl->next; 9160 free_verifier_state(&sl->state, false); 9161 kfree(sl); 9162 sl = sln; 9163 } 9164 9165 if (!env->explored_states) 9166 return; 9167 9168 for (i = 0; i < state_htab_size(env); i++) { 9169 sl = env->explored_states[i]; 9170 9171 while (sl) { 9172 sln = sl->next; 9173 free_verifier_state(&sl->state, false); 9174 kfree(sl); 9175 sl = sln; 9176 } 9177 } 9178 9179 kvfree(env->explored_states); 9180 } 9181 9182 static void print_verification_stats(struct bpf_verifier_env *env) 9183 { 9184 int i; 9185 9186 if (env->log.level & BPF_LOG_STATS) { 9187 verbose(env, "verification time %lld usec\n", 9188 div_u64(env->verification_time, 1000)); 9189 verbose(env, "stack depth "); 9190 for (i = 0; i < env->subprog_cnt; i++) { 9191 u32 depth = env->subprog_info[i].stack_depth; 9192 9193 verbose(env, "%d", depth); 9194 if (i + 1 < env->subprog_cnt) 9195 verbose(env, "+"); 9196 } 9197 verbose(env, "\n"); 9198 } 9199 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9200 "total_states %d peak_states %d mark_read %d\n", 9201 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9202 env->max_states_per_insn, env->total_states, 9203 env->peak_states, env->longest_mark_read_walk); 9204 } 9205 9206 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9207 union bpf_attr __user *uattr) 9208 { 9209 u64 start_time = ktime_get_ns(); 9210 struct bpf_verifier_env *env; 9211 struct bpf_verifier_log *log; 9212 int i, len, ret = -EINVAL; 9213 bool is_priv; 9214 9215 /* no program is valid */ 9216 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9217 return -EINVAL; 9218 9219 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9220 * allocate/free it every time bpf_check() is called 9221 */ 9222 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9223 if (!env) 9224 return -ENOMEM; 9225 log = &env->log; 9226 9227 len = (*prog)->len; 9228 env->insn_aux_data = 9229 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9230 ret = -ENOMEM; 9231 if (!env->insn_aux_data) 9232 goto err_free_env; 9233 for (i = 0; i < len; i++) 9234 env->insn_aux_data[i].orig_idx = i; 9235 env->prog = *prog; 9236 env->ops = bpf_verifier_ops[env->prog->type]; 9237 is_priv = capable(CAP_SYS_ADMIN); 9238 9239 /* grab the mutex to protect few globals used by verifier */ 9240 if (!is_priv) 9241 mutex_lock(&bpf_verifier_lock); 9242 9243 if (attr->log_level || attr->log_buf || attr->log_size) { 9244 /* user requested verbose verifier output 9245 * and supplied buffer to store the verification trace 9246 */ 9247 log->level = attr->log_level; 9248 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9249 log->len_total = attr->log_size; 9250 9251 ret = -EINVAL; 9252 /* log attributes have to be sane */ 9253 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9254 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9255 goto err_unlock; 9256 } 9257 9258 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9259 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9260 env->strict_alignment = true; 9261 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9262 env->strict_alignment = false; 9263 9264 env->allow_ptr_leaks = is_priv; 9265 9266 if (is_priv) 9267 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 9268 9269 ret = replace_map_fd_with_map_ptr(env); 9270 if (ret < 0) 9271 goto skip_full_check; 9272 9273 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9274 ret = bpf_prog_offload_verifier_prep(env->prog); 9275 if (ret) 9276 goto skip_full_check; 9277 } 9278 9279 env->explored_states = kvcalloc(state_htab_size(env), 9280 sizeof(struct bpf_verifier_state_list *), 9281 GFP_USER); 9282 ret = -ENOMEM; 9283 if (!env->explored_states) 9284 goto skip_full_check; 9285 9286 ret = check_subprogs(env); 9287 if (ret < 0) 9288 goto skip_full_check; 9289 9290 ret = check_btf_info(env, attr, uattr); 9291 if (ret < 0) 9292 goto skip_full_check; 9293 9294 ret = check_cfg(env); 9295 if (ret < 0) 9296 goto skip_full_check; 9297 9298 ret = do_check(env); 9299 if (env->cur_state) { 9300 free_verifier_state(env->cur_state, true); 9301 env->cur_state = NULL; 9302 } 9303 9304 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9305 ret = bpf_prog_offload_finalize(env); 9306 9307 skip_full_check: 9308 while (!pop_stack(env, NULL, NULL)); 9309 free_states(env); 9310 9311 if (ret == 0) 9312 ret = check_max_stack_depth(env); 9313 9314 /* instruction rewrites happen after this point */ 9315 if (is_priv) { 9316 if (ret == 0) 9317 opt_hard_wire_dead_code_branches(env); 9318 if (ret == 0) 9319 ret = opt_remove_dead_code(env); 9320 if (ret == 0) 9321 ret = opt_remove_nops(env); 9322 } else { 9323 if (ret == 0) 9324 sanitize_dead_code(env); 9325 } 9326 9327 if (ret == 0) 9328 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9329 ret = convert_ctx_accesses(env); 9330 9331 if (ret == 0) 9332 ret = fixup_bpf_calls(env); 9333 9334 /* do 32-bit optimization after insn patching has done so those patched 9335 * insns could be handled correctly. 9336 */ 9337 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9338 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9339 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9340 : false; 9341 } 9342 9343 if (ret == 0) 9344 ret = fixup_call_args(env); 9345 9346 env->verification_time = ktime_get_ns() - start_time; 9347 print_verification_stats(env); 9348 9349 if (log->level && bpf_verifier_log_full(log)) 9350 ret = -ENOSPC; 9351 if (log->level && !log->ubuf) { 9352 ret = -EFAULT; 9353 goto err_release_maps; 9354 } 9355 9356 if (ret == 0 && env->used_map_cnt) { 9357 /* if program passed verifier, update used_maps in bpf_prog_info */ 9358 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9359 sizeof(env->used_maps[0]), 9360 GFP_KERNEL); 9361 9362 if (!env->prog->aux->used_maps) { 9363 ret = -ENOMEM; 9364 goto err_release_maps; 9365 } 9366 9367 memcpy(env->prog->aux->used_maps, env->used_maps, 9368 sizeof(env->used_maps[0]) * env->used_map_cnt); 9369 env->prog->aux->used_map_cnt = env->used_map_cnt; 9370 9371 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9372 * bpf_ld_imm64 instructions 9373 */ 9374 convert_pseudo_ld_imm64(env); 9375 } 9376 9377 if (ret == 0) 9378 adjust_btf_func(env); 9379 9380 err_release_maps: 9381 if (!env->prog->aux->used_maps) 9382 /* if we didn't copy map pointers into bpf_prog_info, release 9383 * them now. Otherwise free_used_maps() will release them. 9384 */ 9385 release_maps(env); 9386 *prog = env->prog; 9387 err_unlock: 9388 if (!is_priv) 9389 mutex_unlock(&bpf_verifier_lock); 9390 vfree(env->insn_aux_data); 9391 err_free_env: 9392 kfree(env); 9393 return ret; 9394 } 9395