xref: /openbmc/linux/kernel/bpf/verifier.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_PTR_UNPRIV	1UL
175 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
176 					  POISON_POINTER_DELTA))
177 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
178 
179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
180 {
181 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
182 }
183 
184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
185 {
186 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
187 }
188 
189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
190 			      const struct bpf_map *map, bool unpriv)
191 {
192 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
193 	unpriv |= bpf_map_ptr_unpriv(aux);
194 	aux->map_state = (unsigned long)map |
195 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
196 }
197 
198 struct bpf_call_arg_meta {
199 	struct bpf_map *map_ptr;
200 	bool raw_mode;
201 	bool pkt_access;
202 	int regno;
203 	int access_size;
204 	s64 msize_smax_value;
205 	u64 msize_umax_value;
206 	int ref_obj_id;
207 	int func_id;
208 };
209 
210 static DEFINE_MUTEX(bpf_verifier_lock);
211 
212 static const struct bpf_line_info *
213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
214 {
215 	const struct bpf_line_info *linfo;
216 	const struct bpf_prog *prog;
217 	u32 i, nr_linfo;
218 
219 	prog = env->prog;
220 	nr_linfo = prog->aux->nr_linfo;
221 
222 	if (!nr_linfo || insn_off >= prog->len)
223 		return NULL;
224 
225 	linfo = prog->aux->linfo;
226 	for (i = 1; i < nr_linfo; i++)
227 		if (insn_off < linfo[i].insn_off)
228 			break;
229 
230 	return &linfo[i - 1];
231 }
232 
233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
234 		       va_list args)
235 {
236 	unsigned int n;
237 
238 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
239 
240 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
241 		  "verifier log line truncated - local buffer too short\n");
242 
243 	n = min(log->len_total - log->len_used - 1, n);
244 	log->kbuf[n] = '\0';
245 
246 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
247 		log->len_used += n;
248 	else
249 		log->ubuf = NULL;
250 }
251 
252 /* log_level controls verbosity level of eBPF verifier.
253  * bpf_verifier_log_write() is used to dump the verification trace to the log,
254  * so the user can figure out what's wrong with the program
255  */
256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
257 					   const char *fmt, ...)
258 {
259 	va_list args;
260 
261 	if (!bpf_verifier_log_needed(&env->log))
262 		return;
263 
264 	va_start(args, fmt);
265 	bpf_verifier_vlog(&env->log, fmt, args);
266 	va_end(args);
267 }
268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
269 
270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
271 {
272 	struct bpf_verifier_env *env = private_data;
273 	va_list args;
274 
275 	if (!bpf_verifier_log_needed(&env->log))
276 		return;
277 
278 	va_start(args, fmt);
279 	bpf_verifier_vlog(&env->log, fmt, args);
280 	va_end(args);
281 }
282 
283 static const char *ltrim(const char *s)
284 {
285 	while (isspace(*s))
286 		s++;
287 
288 	return s;
289 }
290 
291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
292 					 u32 insn_off,
293 					 const char *prefix_fmt, ...)
294 {
295 	const struct bpf_line_info *linfo;
296 
297 	if (!bpf_verifier_log_needed(&env->log))
298 		return;
299 
300 	linfo = find_linfo(env, insn_off);
301 	if (!linfo || linfo == env->prev_linfo)
302 		return;
303 
304 	if (prefix_fmt) {
305 		va_list args;
306 
307 		va_start(args, prefix_fmt);
308 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
309 		va_end(args);
310 	}
311 
312 	verbose(env, "%s\n",
313 		ltrim(btf_name_by_offset(env->prog->aux->btf,
314 					 linfo->line_off)));
315 
316 	env->prev_linfo = linfo;
317 }
318 
319 static bool type_is_pkt_pointer(enum bpf_reg_type type)
320 {
321 	return type == PTR_TO_PACKET ||
322 	       type == PTR_TO_PACKET_META;
323 }
324 
325 static bool type_is_sk_pointer(enum bpf_reg_type type)
326 {
327 	return type == PTR_TO_SOCKET ||
328 		type == PTR_TO_SOCK_COMMON ||
329 		type == PTR_TO_TCP_SOCK ||
330 		type == PTR_TO_XDP_SOCK;
331 }
332 
333 static bool reg_type_may_be_null(enum bpf_reg_type type)
334 {
335 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
336 	       type == PTR_TO_SOCKET_OR_NULL ||
337 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
338 	       type == PTR_TO_TCP_SOCK_OR_NULL;
339 }
340 
341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
342 {
343 	return reg->type == PTR_TO_MAP_VALUE &&
344 		map_value_has_spin_lock(reg->map_ptr);
345 }
346 
347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
348 {
349 	return type == PTR_TO_SOCKET ||
350 		type == PTR_TO_SOCKET_OR_NULL ||
351 		type == PTR_TO_TCP_SOCK ||
352 		type == PTR_TO_TCP_SOCK_OR_NULL;
353 }
354 
355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
356 {
357 	return type == ARG_PTR_TO_SOCK_COMMON;
358 }
359 
360 /* Determine whether the function releases some resources allocated by another
361  * function call. The first reference type argument will be assumed to be
362  * released by release_reference().
363  */
364 static bool is_release_function(enum bpf_func_id func_id)
365 {
366 	return func_id == BPF_FUNC_sk_release;
367 }
368 
369 static bool is_acquire_function(enum bpf_func_id func_id)
370 {
371 	return func_id == BPF_FUNC_sk_lookup_tcp ||
372 		func_id == BPF_FUNC_sk_lookup_udp ||
373 		func_id == BPF_FUNC_skc_lookup_tcp;
374 }
375 
376 static bool is_ptr_cast_function(enum bpf_func_id func_id)
377 {
378 	return func_id == BPF_FUNC_tcp_sock ||
379 		func_id == BPF_FUNC_sk_fullsock;
380 }
381 
382 /* string representation of 'enum bpf_reg_type' */
383 static const char * const reg_type_str[] = {
384 	[NOT_INIT]		= "?",
385 	[SCALAR_VALUE]		= "inv",
386 	[PTR_TO_CTX]		= "ctx",
387 	[CONST_PTR_TO_MAP]	= "map_ptr",
388 	[PTR_TO_MAP_VALUE]	= "map_value",
389 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
390 	[PTR_TO_STACK]		= "fp",
391 	[PTR_TO_PACKET]		= "pkt",
392 	[PTR_TO_PACKET_META]	= "pkt_meta",
393 	[PTR_TO_PACKET_END]	= "pkt_end",
394 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
395 	[PTR_TO_SOCKET]		= "sock",
396 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
397 	[PTR_TO_SOCK_COMMON]	= "sock_common",
398 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
399 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
400 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
401 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
402 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
403 };
404 
405 static char slot_type_char[] = {
406 	[STACK_INVALID]	= '?',
407 	[STACK_SPILL]	= 'r',
408 	[STACK_MISC]	= 'm',
409 	[STACK_ZERO]	= '0',
410 };
411 
412 static void print_liveness(struct bpf_verifier_env *env,
413 			   enum bpf_reg_liveness live)
414 {
415 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
416 	    verbose(env, "_");
417 	if (live & REG_LIVE_READ)
418 		verbose(env, "r");
419 	if (live & REG_LIVE_WRITTEN)
420 		verbose(env, "w");
421 	if (live & REG_LIVE_DONE)
422 		verbose(env, "D");
423 }
424 
425 static struct bpf_func_state *func(struct bpf_verifier_env *env,
426 				   const struct bpf_reg_state *reg)
427 {
428 	struct bpf_verifier_state *cur = env->cur_state;
429 
430 	return cur->frame[reg->frameno];
431 }
432 
433 static void print_verifier_state(struct bpf_verifier_env *env,
434 				 const struct bpf_func_state *state)
435 {
436 	const struct bpf_reg_state *reg;
437 	enum bpf_reg_type t;
438 	int i;
439 
440 	if (state->frameno)
441 		verbose(env, " frame%d:", state->frameno);
442 	for (i = 0; i < MAX_BPF_REG; i++) {
443 		reg = &state->regs[i];
444 		t = reg->type;
445 		if (t == NOT_INIT)
446 			continue;
447 		verbose(env, " R%d", i);
448 		print_liveness(env, reg->live);
449 		verbose(env, "=%s", reg_type_str[t]);
450 		if (t == SCALAR_VALUE && reg->precise)
451 			verbose(env, "P");
452 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
453 		    tnum_is_const(reg->var_off)) {
454 			/* reg->off should be 0 for SCALAR_VALUE */
455 			verbose(env, "%lld", reg->var_off.value + reg->off);
456 		} else {
457 			verbose(env, "(id=%d", reg->id);
458 			if (reg_type_may_be_refcounted_or_null(t))
459 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
460 			if (t != SCALAR_VALUE)
461 				verbose(env, ",off=%d", reg->off);
462 			if (type_is_pkt_pointer(t))
463 				verbose(env, ",r=%d", reg->range);
464 			else if (t == CONST_PTR_TO_MAP ||
465 				 t == PTR_TO_MAP_VALUE ||
466 				 t == PTR_TO_MAP_VALUE_OR_NULL)
467 				verbose(env, ",ks=%d,vs=%d",
468 					reg->map_ptr->key_size,
469 					reg->map_ptr->value_size);
470 			if (tnum_is_const(reg->var_off)) {
471 				/* Typically an immediate SCALAR_VALUE, but
472 				 * could be a pointer whose offset is too big
473 				 * for reg->off
474 				 */
475 				verbose(env, ",imm=%llx", reg->var_off.value);
476 			} else {
477 				if (reg->smin_value != reg->umin_value &&
478 				    reg->smin_value != S64_MIN)
479 					verbose(env, ",smin_value=%lld",
480 						(long long)reg->smin_value);
481 				if (reg->smax_value != reg->umax_value &&
482 				    reg->smax_value != S64_MAX)
483 					verbose(env, ",smax_value=%lld",
484 						(long long)reg->smax_value);
485 				if (reg->umin_value != 0)
486 					verbose(env, ",umin_value=%llu",
487 						(unsigned long long)reg->umin_value);
488 				if (reg->umax_value != U64_MAX)
489 					verbose(env, ",umax_value=%llu",
490 						(unsigned long long)reg->umax_value);
491 				if (!tnum_is_unknown(reg->var_off)) {
492 					char tn_buf[48];
493 
494 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
495 					verbose(env, ",var_off=%s", tn_buf);
496 				}
497 			}
498 			verbose(env, ")");
499 		}
500 	}
501 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
502 		char types_buf[BPF_REG_SIZE + 1];
503 		bool valid = false;
504 		int j;
505 
506 		for (j = 0; j < BPF_REG_SIZE; j++) {
507 			if (state->stack[i].slot_type[j] != STACK_INVALID)
508 				valid = true;
509 			types_buf[j] = slot_type_char[
510 					state->stack[i].slot_type[j]];
511 		}
512 		types_buf[BPF_REG_SIZE] = 0;
513 		if (!valid)
514 			continue;
515 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
516 		print_liveness(env, state->stack[i].spilled_ptr.live);
517 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
518 			reg = &state->stack[i].spilled_ptr;
519 			t = reg->type;
520 			verbose(env, "=%s", reg_type_str[t]);
521 			if (t == SCALAR_VALUE && reg->precise)
522 				verbose(env, "P");
523 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
524 				verbose(env, "%lld", reg->var_off.value + reg->off);
525 		} else {
526 			verbose(env, "=%s", types_buf);
527 		}
528 	}
529 	if (state->acquired_refs && state->refs[0].id) {
530 		verbose(env, " refs=%d", state->refs[0].id);
531 		for (i = 1; i < state->acquired_refs; i++)
532 			if (state->refs[i].id)
533 				verbose(env, ",%d", state->refs[i].id);
534 	}
535 	verbose(env, "\n");
536 }
537 
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
539 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
540 			       const struct bpf_func_state *src)	\
541 {									\
542 	if (!src->FIELD)						\
543 		return 0;						\
544 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
545 		/* internal bug, make state invalid to reject the program */ \
546 		memset(dst, 0, sizeof(*dst));				\
547 		return -EFAULT;						\
548 	}								\
549 	memcpy(dst->FIELD, src->FIELD,					\
550 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
551 	return 0;							\
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558 
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 				  bool copy_old)			\
562 {									\
563 	u32 old_size = state->COUNT;					\
564 	struct bpf_##NAME##_state *new_##FIELD;				\
565 	int slot = size / SIZE;						\
566 									\
567 	if (size <= old_size || !size) {				\
568 		if (copy_old)						\
569 			return 0;					\
570 		state->COUNT = slot * SIZE;				\
571 		if (!size && old_size) {				\
572 			kfree(state->FIELD);				\
573 			state->FIELD = NULL;				\
574 		}							\
575 		return 0;						\
576 	}								\
577 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 				    GFP_KERNEL);			\
579 	if (!new_##FIELD)						\
580 		return -ENOMEM;						\
581 	if (copy_old) {							\
582 		if (state->FIELD)					\
583 			memcpy(new_##FIELD, state->FIELD,		\
584 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 		memset(new_##FIELD + old_size / SIZE, 0,		\
586 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 	}								\
588 	state->COUNT = slot * SIZE;					\
589 	kfree(state->FIELD);						\
590 	state->FIELD = new_##FIELD;					\
591 	return 0;							\
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598 
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600  * make it consume minimal amount of memory. check_stack_write() access from
601  * the program calls into realloc_func_state() to grow the stack size.
602  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603  * which realloc_stack_state() copies over. It points to previous
604  * bpf_verifier_state which is never reallocated.
605  */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 			      int refs_size, bool copy_old)
608 {
609 	int err = realloc_reference_state(state, refs_size, copy_old);
610 	if (err)
611 		return err;
612 	return realloc_stack_state(state, stack_size, copy_old);
613 }
614 
615 /* Acquire a pointer id from the env and update the state->refs to include
616  * this new pointer reference.
617  * On success, returns a valid pointer id to associate with the register
618  * On failure, returns a negative errno.
619  */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 	struct bpf_func_state *state = cur_func(env);
623 	int new_ofs = state->acquired_refs;
624 	int id, err;
625 
626 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 	if (err)
628 		return err;
629 	id = ++env->id_gen;
630 	state->refs[new_ofs].id = id;
631 	state->refs[new_ofs].insn_idx = insn_idx;
632 
633 	return id;
634 }
635 
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 	int i, last_idx;
640 
641 	last_idx = state->acquired_refs - 1;
642 	for (i = 0; i < state->acquired_refs; i++) {
643 		if (state->refs[i].id == ptr_id) {
644 			if (last_idx && i != last_idx)
645 				memcpy(&state->refs[i], &state->refs[last_idx],
646 				       sizeof(*state->refs));
647 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 			state->acquired_refs--;
649 			return 0;
650 		}
651 	}
652 	return -EINVAL;
653 }
654 
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 				    struct bpf_func_state *src)
657 {
658 	int err = realloc_reference_state(dst, src->acquired_refs, false);
659 	if (err)
660 		return err;
661 	err = copy_reference_state(dst, src);
662 	if (err)
663 		return err;
664 	return 0;
665 }
666 
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 	if (!state)
670 		return;
671 	kfree(state->refs);
672 	kfree(state->stack);
673 	kfree(state);
674 }
675 
676 static void clear_jmp_history(struct bpf_verifier_state *state)
677 {
678 	kfree(state->jmp_history);
679 	state->jmp_history = NULL;
680 	state->jmp_history_cnt = 0;
681 }
682 
683 static void free_verifier_state(struct bpf_verifier_state *state,
684 				bool free_self)
685 {
686 	int i;
687 
688 	for (i = 0; i <= state->curframe; i++) {
689 		free_func_state(state->frame[i]);
690 		state->frame[i] = NULL;
691 	}
692 	clear_jmp_history(state);
693 	if (free_self)
694 		kfree(state);
695 }
696 
697 /* copy verifier state from src to dst growing dst stack space
698  * when necessary to accommodate larger src stack
699  */
700 static int copy_func_state(struct bpf_func_state *dst,
701 			   const struct bpf_func_state *src)
702 {
703 	int err;
704 
705 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
706 				 false);
707 	if (err)
708 		return err;
709 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
710 	err = copy_reference_state(dst, src);
711 	if (err)
712 		return err;
713 	return copy_stack_state(dst, src);
714 }
715 
716 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
717 			       const struct bpf_verifier_state *src)
718 {
719 	struct bpf_func_state *dst;
720 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
721 	int i, err;
722 
723 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
724 		kfree(dst_state->jmp_history);
725 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
726 		if (!dst_state->jmp_history)
727 			return -ENOMEM;
728 	}
729 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
730 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
731 
732 	/* if dst has more stack frames then src frame, free them */
733 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
734 		free_func_state(dst_state->frame[i]);
735 		dst_state->frame[i] = NULL;
736 	}
737 	dst_state->speculative = src->speculative;
738 	dst_state->curframe = src->curframe;
739 	dst_state->active_spin_lock = src->active_spin_lock;
740 	dst_state->branches = src->branches;
741 	dst_state->parent = src->parent;
742 	dst_state->first_insn_idx = src->first_insn_idx;
743 	dst_state->last_insn_idx = src->last_insn_idx;
744 	for (i = 0; i <= src->curframe; i++) {
745 		dst = dst_state->frame[i];
746 		if (!dst) {
747 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
748 			if (!dst)
749 				return -ENOMEM;
750 			dst_state->frame[i] = dst;
751 		}
752 		err = copy_func_state(dst, src->frame[i]);
753 		if (err)
754 			return err;
755 	}
756 	return 0;
757 }
758 
759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
760 {
761 	while (st) {
762 		u32 br = --st->branches;
763 
764 		/* WARN_ON(br > 1) technically makes sense here,
765 		 * but see comment in push_stack(), hence:
766 		 */
767 		WARN_ONCE((int)br < 0,
768 			  "BUG update_branch_counts:branches_to_explore=%d\n",
769 			  br);
770 		if (br)
771 			break;
772 		st = st->parent;
773 	}
774 }
775 
776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
777 		     int *insn_idx)
778 {
779 	struct bpf_verifier_state *cur = env->cur_state;
780 	struct bpf_verifier_stack_elem *elem, *head = env->head;
781 	int err;
782 
783 	if (env->head == NULL)
784 		return -ENOENT;
785 
786 	if (cur) {
787 		err = copy_verifier_state(cur, &head->st);
788 		if (err)
789 			return err;
790 	}
791 	if (insn_idx)
792 		*insn_idx = head->insn_idx;
793 	if (prev_insn_idx)
794 		*prev_insn_idx = head->prev_insn_idx;
795 	elem = head->next;
796 	free_verifier_state(&head->st, false);
797 	kfree(head);
798 	env->head = elem;
799 	env->stack_size--;
800 	return 0;
801 }
802 
803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
804 					     int insn_idx, int prev_insn_idx,
805 					     bool speculative)
806 {
807 	struct bpf_verifier_state *cur = env->cur_state;
808 	struct bpf_verifier_stack_elem *elem;
809 	int err;
810 
811 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
812 	if (!elem)
813 		goto err;
814 
815 	elem->insn_idx = insn_idx;
816 	elem->prev_insn_idx = prev_insn_idx;
817 	elem->next = env->head;
818 	env->head = elem;
819 	env->stack_size++;
820 	err = copy_verifier_state(&elem->st, cur);
821 	if (err)
822 		goto err;
823 	elem->st.speculative |= speculative;
824 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
825 		verbose(env, "The sequence of %d jumps is too complex.\n",
826 			env->stack_size);
827 		goto err;
828 	}
829 	if (elem->st.parent) {
830 		++elem->st.parent->branches;
831 		/* WARN_ON(branches > 2) technically makes sense here,
832 		 * but
833 		 * 1. speculative states will bump 'branches' for non-branch
834 		 * instructions
835 		 * 2. is_state_visited() heuristics may decide not to create
836 		 * a new state for a sequence of branches and all such current
837 		 * and cloned states will be pointing to a single parent state
838 		 * which might have large 'branches' count.
839 		 */
840 	}
841 	return &elem->st;
842 err:
843 	free_verifier_state(env->cur_state, true);
844 	env->cur_state = NULL;
845 	/* pop all elements and return */
846 	while (!pop_stack(env, NULL, NULL));
847 	return NULL;
848 }
849 
850 #define CALLER_SAVED_REGS 6
851 static const int caller_saved[CALLER_SAVED_REGS] = {
852 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
853 };
854 
855 static void __mark_reg_not_init(struct bpf_reg_state *reg);
856 
857 /* Mark the unknown part of a register (variable offset or scalar value) as
858  * known to have the value @imm.
859  */
860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
861 {
862 	/* Clear id, off, and union(map_ptr, range) */
863 	memset(((u8 *)reg) + sizeof(reg->type), 0,
864 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
865 	reg->var_off = tnum_const(imm);
866 	reg->smin_value = (s64)imm;
867 	reg->smax_value = (s64)imm;
868 	reg->umin_value = imm;
869 	reg->umax_value = imm;
870 }
871 
872 /* Mark the 'variable offset' part of a register as zero.  This should be
873  * used only on registers holding a pointer type.
874  */
875 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
876 {
877 	__mark_reg_known(reg, 0);
878 }
879 
880 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
881 {
882 	__mark_reg_known(reg, 0);
883 	reg->type = SCALAR_VALUE;
884 }
885 
886 static void mark_reg_known_zero(struct bpf_verifier_env *env,
887 				struct bpf_reg_state *regs, u32 regno)
888 {
889 	if (WARN_ON(regno >= MAX_BPF_REG)) {
890 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
891 		/* Something bad happened, let's kill all regs */
892 		for (regno = 0; regno < MAX_BPF_REG; regno++)
893 			__mark_reg_not_init(regs + regno);
894 		return;
895 	}
896 	__mark_reg_known_zero(regs + regno);
897 }
898 
899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
900 {
901 	return type_is_pkt_pointer(reg->type);
902 }
903 
904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
905 {
906 	return reg_is_pkt_pointer(reg) ||
907 	       reg->type == PTR_TO_PACKET_END;
908 }
909 
910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
912 				    enum bpf_reg_type which)
913 {
914 	/* The register can already have a range from prior markings.
915 	 * This is fine as long as it hasn't been advanced from its
916 	 * origin.
917 	 */
918 	return reg->type == which &&
919 	       reg->id == 0 &&
920 	       reg->off == 0 &&
921 	       tnum_equals_const(reg->var_off, 0);
922 }
923 
924 /* Attempts to improve min/max values based on var_off information */
925 static void __update_reg_bounds(struct bpf_reg_state *reg)
926 {
927 	/* min signed is max(sign bit) | min(other bits) */
928 	reg->smin_value = max_t(s64, reg->smin_value,
929 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
930 	/* max signed is min(sign bit) | max(other bits) */
931 	reg->smax_value = min_t(s64, reg->smax_value,
932 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
933 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
934 	reg->umax_value = min(reg->umax_value,
935 			      reg->var_off.value | reg->var_off.mask);
936 }
937 
938 /* Uses signed min/max values to inform unsigned, and vice-versa */
939 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
940 {
941 	/* Learn sign from signed bounds.
942 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
943 	 * are the same, so combine.  This works even in the negative case, e.g.
944 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
945 	 */
946 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
947 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
948 							  reg->umin_value);
949 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
950 							  reg->umax_value);
951 		return;
952 	}
953 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
954 	 * boundary, so we must be careful.
955 	 */
956 	if ((s64)reg->umax_value >= 0) {
957 		/* Positive.  We can't learn anything from the smin, but smax
958 		 * is positive, hence safe.
959 		 */
960 		reg->smin_value = reg->umin_value;
961 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
962 							  reg->umax_value);
963 	} else if ((s64)reg->umin_value < 0) {
964 		/* Negative.  We can't learn anything from the smax, but smin
965 		 * is negative, hence safe.
966 		 */
967 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
968 							  reg->umin_value);
969 		reg->smax_value = reg->umax_value;
970 	}
971 }
972 
973 /* Attempts to improve var_off based on unsigned min/max information */
974 static void __reg_bound_offset(struct bpf_reg_state *reg)
975 {
976 	reg->var_off = tnum_intersect(reg->var_off,
977 				      tnum_range(reg->umin_value,
978 						 reg->umax_value));
979 }
980 
981 /* Reset the min/max bounds of a register */
982 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
983 {
984 	reg->smin_value = S64_MIN;
985 	reg->smax_value = S64_MAX;
986 	reg->umin_value = 0;
987 	reg->umax_value = U64_MAX;
988 }
989 
990 /* Mark a register as having a completely unknown (scalar) value. */
991 static void __mark_reg_unknown(struct bpf_reg_state *reg)
992 {
993 	/*
994 	 * Clear type, id, off, and union(map_ptr, range) and
995 	 * padding between 'type' and union
996 	 */
997 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
998 	reg->type = SCALAR_VALUE;
999 	reg->var_off = tnum_unknown;
1000 	reg->frameno = 0;
1001 	__mark_reg_unbounded(reg);
1002 }
1003 
1004 static void mark_reg_unknown(struct bpf_verifier_env *env,
1005 			     struct bpf_reg_state *regs, u32 regno)
1006 {
1007 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1008 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1009 		/* Something bad happened, let's kill all regs except FP */
1010 		for (regno = 0; regno < BPF_REG_FP; regno++)
1011 			__mark_reg_not_init(regs + regno);
1012 		return;
1013 	}
1014 	regs += regno;
1015 	__mark_reg_unknown(regs);
1016 	/* constant backtracking is enabled for root without bpf2bpf calls */
1017 	regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1018 			true : false;
1019 }
1020 
1021 static void __mark_reg_not_init(struct bpf_reg_state *reg)
1022 {
1023 	__mark_reg_unknown(reg);
1024 	reg->type = NOT_INIT;
1025 }
1026 
1027 static void mark_reg_not_init(struct bpf_verifier_env *env,
1028 			      struct bpf_reg_state *regs, u32 regno)
1029 {
1030 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1031 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1032 		/* Something bad happened, let's kill all regs except FP */
1033 		for (regno = 0; regno < BPF_REG_FP; regno++)
1034 			__mark_reg_not_init(regs + regno);
1035 		return;
1036 	}
1037 	__mark_reg_not_init(regs + regno);
1038 }
1039 
1040 #define DEF_NOT_SUBREG	(0)
1041 static void init_reg_state(struct bpf_verifier_env *env,
1042 			   struct bpf_func_state *state)
1043 {
1044 	struct bpf_reg_state *regs = state->regs;
1045 	int i;
1046 
1047 	for (i = 0; i < MAX_BPF_REG; i++) {
1048 		mark_reg_not_init(env, regs, i);
1049 		regs[i].live = REG_LIVE_NONE;
1050 		regs[i].parent = NULL;
1051 		regs[i].subreg_def = DEF_NOT_SUBREG;
1052 	}
1053 
1054 	/* frame pointer */
1055 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1056 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1057 	regs[BPF_REG_FP].frameno = state->frameno;
1058 
1059 	/* 1st arg to a function */
1060 	regs[BPF_REG_1].type = PTR_TO_CTX;
1061 	mark_reg_known_zero(env, regs, BPF_REG_1);
1062 }
1063 
1064 #define BPF_MAIN_FUNC (-1)
1065 static void init_func_state(struct bpf_verifier_env *env,
1066 			    struct bpf_func_state *state,
1067 			    int callsite, int frameno, int subprogno)
1068 {
1069 	state->callsite = callsite;
1070 	state->frameno = frameno;
1071 	state->subprogno = subprogno;
1072 	init_reg_state(env, state);
1073 }
1074 
1075 enum reg_arg_type {
1076 	SRC_OP,		/* register is used as source operand */
1077 	DST_OP,		/* register is used as destination operand */
1078 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1079 };
1080 
1081 static int cmp_subprogs(const void *a, const void *b)
1082 {
1083 	return ((struct bpf_subprog_info *)a)->start -
1084 	       ((struct bpf_subprog_info *)b)->start;
1085 }
1086 
1087 static int find_subprog(struct bpf_verifier_env *env, int off)
1088 {
1089 	struct bpf_subprog_info *p;
1090 
1091 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1092 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1093 	if (!p)
1094 		return -ENOENT;
1095 	return p - env->subprog_info;
1096 
1097 }
1098 
1099 static int add_subprog(struct bpf_verifier_env *env, int off)
1100 {
1101 	int insn_cnt = env->prog->len;
1102 	int ret;
1103 
1104 	if (off >= insn_cnt || off < 0) {
1105 		verbose(env, "call to invalid destination\n");
1106 		return -EINVAL;
1107 	}
1108 	ret = find_subprog(env, off);
1109 	if (ret >= 0)
1110 		return 0;
1111 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1112 		verbose(env, "too many subprograms\n");
1113 		return -E2BIG;
1114 	}
1115 	env->subprog_info[env->subprog_cnt++].start = off;
1116 	sort(env->subprog_info, env->subprog_cnt,
1117 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1118 	return 0;
1119 }
1120 
1121 static int check_subprogs(struct bpf_verifier_env *env)
1122 {
1123 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1124 	struct bpf_subprog_info *subprog = env->subprog_info;
1125 	struct bpf_insn *insn = env->prog->insnsi;
1126 	int insn_cnt = env->prog->len;
1127 
1128 	/* Add entry function. */
1129 	ret = add_subprog(env, 0);
1130 	if (ret < 0)
1131 		return ret;
1132 
1133 	/* determine subprog starts. The end is one before the next starts */
1134 	for (i = 0; i < insn_cnt; i++) {
1135 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1136 			continue;
1137 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1138 			continue;
1139 		if (!env->allow_ptr_leaks) {
1140 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1141 			return -EPERM;
1142 		}
1143 		ret = add_subprog(env, i + insn[i].imm + 1);
1144 		if (ret < 0)
1145 			return ret;
1146 	}
1147 
1148 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1149 	 * logic. 'subprog_cnt' should not be increased.
1150 	 */
1151 	subprog[env->subprog_cnt].start = insn_cnt;
1152 
1153 	if (env->log.level & BPF_LOG_LEVEL2)
1154 		for (i = 0; i < env->subprog_cnt; i++)
1155 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1156 
1157 	/* now check that all jumps are within the same subprog */
1158 	subprog_start = subprog[cur_subprog].start;
1159 	subprog_end = subprog[cur_subprog + 1].start;
1160 	for (i = 0; i < insn_cnt; i++) {
1161 		u8 code = insn[i].code;
1162 
1163 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1164 			goto next;
1165 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1166 			goto next;
1167 		off = i + insn[i].off + 1;
1168 		if (off < subprog_start || off >= subprog_end) {
1169 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1170 			return -EINVAL;
1171 		}
1172 next:
1173 		if (i == subprog_end - 1) {
1174 			/* to avoid fall-through from one subprog into another
1175 			 * the last insn of the subprog should be either exit
1176 			 * or unconditional jump back
1177 			 */
1178 			if (code != (BPF_JMP | BPF_EXIT) &&
1179 			    code != (BPF_JMP | BPF_JA)) {
1180 				verbose(env, "last insn is not an exit or jmp\n");
1181 				return -EINVAL;
1182 			}
1183 			subprog_start = subprog_end;
1184 			cur_subprog++;
1185 			if (cur_subprog < env->subprog_cnt)
1186 				subprog_end = subprog[cur_subprog + 1].start;
1187 		}
1188 	}
1189 	return 0;
1190 }
1191 
1192 /* Parentage chain of this register (or stack slot) should take care of all
1193  * issues like callee-saved registers, stack slot allocation time, etc.
1194  */
1195 static int mark_reg_read(struct bpf_verifier_env *env,
1196 			 const struct bpf_reg_state *state,
1197 			 struct bpf_reg_state *parent, u8 flag)
1198 {
1199 	bool writes = parent == state->parent; /* Observe write marks */
1200 	int cnt = 0;
1201 
1202 	while (parent) {
1203 		/* if read wasn't screened by an earlier write ... */
1204 		if (writes && state->live & REG_LIVE_WRITTEN)
1205 			break;
1206 		if (parent->live & REG_LIVE_DONE) {
1207 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1208 				reg_type_str[parent->type],
1209 				parent->var_off.value, parent->off);
1210 			return -EFAULT;
1211 		}
1212 		/* The first condition is more likely to be true than the
1213 		 * second, checked it first.
1214 		 */
1215 		if ((parent->live & REG_LIVE_READ) == flag ||
1216 		    parent->live & REG_LIVE_READ64)
1217 			/* The parentage chain never changes and
1218 			 * this parent was already marked as LIVE_READ.
1219 			 * There is no need to keep walking the chain again and
1220 			 * keep re-marking all parents as LIVE_READ.
1221 			 * This case happens when the same register is read
1222 			 * multiple times without writes into it in-between.
1223 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1224 			 * then no need to set the weak REG_LIVE_READ32.
1225 			 */
1226 			break;
1227 		/* ... then we depend on parent's value */
1228 		parent->live |= flag;
1229 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1230 		if (flag == REG_LIVE_READ64)
1231 			parent->live &= ~REG_LIVE_READ32;
1232 		state = parent;
1233 		parent = state->parent;
1234 		writes = true;
1235 		cnt++;
1236 	}
1237 
1238 	if (env->longest_mark_read_walk < cnt)
1239 		env->longest_mark_read_walk = cnt;
1240 	return 0;
1241 }
1242 
1243 /* This function is supposed to be used by the following 32-bit optimization
1244  * code only. It returns TRUE if the source or destination register operates
1245  * on 64-bit, otherwise return FALSE.
1246  */
1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1248 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1249 {
1250 	u8 code, class, op;
1251 
1252 	code = insn->code;
1253 	class = BPF_CLASS(code);
1254 	op = BPF_OP(code);
1255 	if (class == BPF_JMP) {
1256 		/* BPF_EXIT for "main" will reach here. Return TRUE
1257 		 * conservatively.
1258 		 */
1259 		if (op == BPF_EXIT)
1260 			return true;
1261 		if (op == BPF_CALL) {
1262 			/* BPF to BPF call will reach here because of marking
1263 			 * caller saved clobber with DST_OP_NO_MARK for which we
1264 			 * don't care the register def because they are anyway
1265 			 * marked as NOT_INIT already.
1266 			 */
1267 			if (insn->src_reg == BPF_PSEUDO_CALL)
1268 				return false;
1269 			/* Helper call will reach here because of arg type
1270 			 * check, conservatively return TRUE.
1271 			 */
1272 			if (t == SRC_OP)
1273 				return true;
1274 
1275 			return false;
1276 		}
1277 	}
1278 
1279 	if (class == BPF_ALU64 || class == BPF_JMP ||
1280 	    /* BPF_END always use BPF_ALU class. */
1281 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1282 		return true;
1283 
1284 	if (class == BPF_ALU || class == BPF_JMP32)
1285 		return false;
1286 
1287 	if (class == BPF_LDX) {
1288 		if (t != SRC_OP)
1289 			return BPF_SIZE(code) == BPF_DW;
1290 		/* LDX source must be ptr. */
1291 		return true;
1292 	}
1293 
1294 	if (class == BPF_STX) {
1295 		if (reg->type != SCALAR_VALUE)
1296 			return true;
1297 		return BPF_SIZE(code) == BPF_DW;
1298 	}
1299 
1300 	if (class == BPF_LD) {
1301 		u8 mode = BPF_MODE(code);
1302 
1303 		/* LD_IMM64 */
1304 		if (mode == BPF_IMM)
1305 			return true;
1306 
1307 		/* Both LD_IND and LD_ABS return 32-bit data. */
1308 		if (t != SRC_OP)
1309 			return  false;
1310 
1311 		/* Implicit ctx ptr. */
1312 		if (regno == BPF_REG_6)
1313 			return true;
1314 
1315 		/* Explicit source could be any width. */
1316 		return true;
1317 	}
1318 
1319 	if (class == BPF_ST)
1320 		/* The only source register for BPF_ST is a ptr. */
1321 		return true;
1322 
1323 	/* Conservatively return true at default. */
1324 	return true;
1325 }
1326 
1327 /* Return TRUE if INSN doesn't have explicit value define. */
1328 static bool insn_no_def(struct bpf_insn *insn)
1329 {
1330 	u8 class = BPF_CLASS(insn->code);
1331 
1332 	return (class == BPF_JMP || class == BPF_JMP32 ||
1333 		class == BPF_STX || class == BPF_ST);
1334 }
1335 
1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1338 {
1339 	if (insn_no_def(insn))
1340 		return false;
1341 
1342 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1343 }
1344 
1345 static void mark_insn_zext(struct bpf_verifier_env *env,
1346 			   struct bpf_reg_state *reg)
1347 {
1348 	s32 def_idx = reg->subreg_def;
1349 
1350 	if (def_idx == DEF_NOT_SUBREG)
1351 		return;
1352 
1353 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1354 	/* The dst will be zero extended, so won't be sub-register anymore. */
1355 	reg->subreg_def = DEF_NOT_SUBREG;
1356 }
1357 
1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1359 			 enum reg_arg_type t)
1360 {
1361 	struct bpf_verifier_state *vstate = env->cur_state;
1362 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1363 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1364 	struct bpf_reg_state *reg, *regs = state->regs;
1365 	bool rw64;
1366 
1367 	if (regno >= MAX_BPF_REG) {
1368 		verbose(env, "R%d is invalid\n", regno);
1369 		return -EINVAL;
1370 	}
1371 
1372 	reg = &regs[regno];
1373 	rw64 = is_reg64(env, insn, regno, reg, t);
1374 	if (t == SRC_OP) {
1375 		/* check whether register used as source operand can be read */
1376 		if (reg->type == NOT_INIT) {
1377 			verbose(env, "R%d !read_ok\n", regno);
1378 			return -EACCES;
1379 		}
1380 		/* We don't need to worry about FP liveness because it's read-only */
1381 		if (regno == BPF_REG_FP)
1382 			return 0;
1383 
1384 		if (rw64)
1385 			mark_insn_zext(env, reg);
1386 
1387 		return mark_reg_read(env, reg, reg->parent,
1388 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1389 	} else {
1390 		/* check whether register used as dest operand can be written to */
1391 		if (regno == BPF_REG_FP) {
1392 			verbose(env, "frame pointer is read only\n");
1393 			return -EACCES;
1394 		}
1395 		reg->live |= REG_LIVE_WRITTEN;
1396 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1397 		if (t == DST_OP)
1398 			mark_reg_unknown(env, regs, regno);
1399 	}
1400 	return 0;
1401 }
1402 
1403 /* for any branch, call, exit record the history of jmps in the given state */
1404 static int push_jmp_history(struct bpf_verifier_env *env,
1405 			    struct bpf_verifier_state *cur)
1406 {
1407 	u32 cnt = cur->jmp_history_cnt;
1408 	struct bpf_idx_pair *p;
1409 
1410 	cnt++;
1411 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1412 	if (!p)
1413 		return -ENOMEM;
1414 	p[cnt - 1].idx = env->insn_idx;
1415 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1416 	cur->jmp_history = p;
1417 	cur->jmp_history_cnt = cnt;
1418 	return 0;
1419 }
1420 
1421 /* Backtrack one insn at a time. If idx is not at the top of recorded
1422  * history then previous instruction came from straight line execution.
1423  */
1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1425 			     u32 *history)
1426 {
1427 	u32 cnt = *history;
1428 
1429 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1430 		i = st->jmp_history[cnt - 1].prev_idx;
1431 		(*history)--;
1432 	} else {
1433 		i--;
1434 	}
1435 	return i;
1436 }
1437 
1438 /* For given verifier state backtrack_insn() is called from the last insn to
1439  * the first insn. Its purpose is to compute a bitmask of registers and
1440  * stack slots that needs precision in the parent verifier state.
1441  */
1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1443 			  u32 *reg_mask, u64 *stack_mask)
1444 {
1445 	const struct bpf_insn_cbs cbs = {
1446 		.cb_print	= verbose,
1447 		.private_data	= env,
1448 	};
1449 	struct bpf_insn *insn = env->prog->insnsi + idx;
1450 	u8 class = BPF_CLASS(insn->code);
1451 	u8 opcode = BPF_OP(insn->code);
1452 	u8 mode = BPF_MODE(insn->code);
1453 	u32 dreg = 1u << insn->dst_reg;
1454 	u32 sreg = 1u << insn->src_reg;
1455 	u32 spi;
1456 
1457 	if (insn->code == 0)
1458 		return 0;
1459 	if (env->log.level & BPF_LOG_LEVEL) {
1460 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1461 		verbose(env, "%d: ", idx);
1462 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1463 	}
1464 
1465 	if (class == BPF_ALU || class == BPF_ALU64) {
1466 		if (!(*reg_mask & dreg))
1467 			return 0;
1468 		if (opcode == BPF_MOV) {
1469 			if (BPF_SRC(insn->code) == BPF_X) {
1470 				/* dreg = sreg
1471 				 * dreg needs precision after this insn
1472 				 * sreg needs precision before this insn
1473 				 */
1474 				*reg_mask &= ~dreg;
1475 				*reg_mask |= sreg;
1476 			} else {
1477 				/* dreg = K
1478 				 * dreg needs precision after this insn.
1479 				 * Corresponding register is already marked
1480 				 * as precise=true in this verifier state.
1481 				 * No further markings in parent are necessary
1482 				 */
1483 				*reg_mask &= ~dreg;
1484 			}
1485 		} else {
1486 			if (BPF_SRC(insn->code) == BPF_X) {
1487 				/* dreg += sreg
1488 				 * both dreg and sreg need precision
1489 				 * before this insn
1490 				 */
1491 				*reg_mask |= sreg;
1492 			} /* else dreg += K
1493 			   * dreg still needs precision before this insn
1494 			   */
1495 		}
1496 	} else if (class == BPF_LDX) {
1497 		if (!(*reg_mask & dreg))
1498 			return 0;
1499 		*reg_mask &= ~dreg;
1500 
1501 		/* scalars can only be spilled into stack w/o losing precision.
1502 		 * Load from any other memory can be zero extended.
1503 		 * The desire to keep that precision is already indicated
1504 		 * by 'precise' mark in corresponding register of this state.
1505 		 * No further tracking necessary.
1506 		 */
1507 		if (insn->src_reg != BPF_REG_FP)
1508 			return 0;
1509 		if (BPF_SIZE(insn->code) != BPF_DW)
1510 			return 0;
1511 
1512 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1513 		 * that [fp - off] slot contains scalar that needs to be
1514 		 * tracked with precision
1515 		 */
1516 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1517 		if (spi >= 64) {
1518 			verbose(env, "BUG spi %d\n", spi);
1519 			WARN_ONCE(1, "verifier backtracking bug");
1520 			return -EFAULT;
1521 		}
1522 		*stack_mask |= 1ull << spi;
1523 	} else if (class == BPF_STX || class == BPF_ST) {
1524 		if (*reg_mask & dreg)
1525 			/* stx & st shouldn't be using _scalar_ dst_reg
1526 			 * to access memory. It means backtracking
1527 			 * encountered a case of pointer subtraction.
1528 			 */
1529 			return -ENOTSUPP;
1530 		/* scalars can only be spilled into stack */
1531 		if (insn->dst_reg != BPF_REG_FP)
1532 			return 0;
1533 		if (BPF_SIZE(insn->code) != BPF_DW)
1534 			return 0;
1535 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1536 		if (spi >= 64) {
1537 			verbose(env, "BUG spi %d\n", spi);
1538 			WARN_ONCE(1, "verifier backtracking bug");
1539 			return -EFAULT;
1540 		}
1541 		if (!(*stack_mask & (1ull << spi)))
1542 			return 0;
1543 		*stack_mask &= ~(1ull << spi);
1544 		if (class == BPF_STX)
1545 			*reg_mask |= sreg;
1546 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1547 		if (opcode == BPF_CALL) {
1548 			if (insn->src_reg == BPF_PSEUDO_CALL)
1549 				return -ENOTSUPP;
1550 			/* regular helper call sets R0 */
1551 			*reg_mask &= ~1;
1552 			if (*reg_mask & 0x3f) {
1553 				/* if backtracing was looking for registers R1-R5
1554 				 * they should have been found already.
1555 				 */
1556 				verbose(env, "BUG regs %x\n", *reg_mask);
1557 				WARN_ONCE(1, "verifier backtracking bug");
1558 				return -EFAULT;
1559 			}
1560 		} else if (opcode == BPF_EXIT) {
1561 			return -ENOTSUPP;
1562 		}
1563 	} else if (class == BPF_LD) {
1564 		if (!(*reg_mask & dreg))
1565 			return 0;
1566 		*reg_mask &= ~dreg;
1567 		/* It's ld_imm64 or ld_abs or ld_ind.
1568 		 * For ld_imm64 no further tracking of precision
1569 		 * into parent is necessary
1570 		 */
1571 		if (mode == BPF_IND || mode == BPF_ABS)
1572 			/* to be analyzed */
1573 			return -ENOTSUPP;
1574 	}
1575 	return 0;
1576 }
1577 
1578 /* the scalar precision tracking algorithm:
1579  * . at the start all registers have precise=false.
1580  * . scalar ranges are tracked as normal through alu and jmp insns.
1581  * . once precise value of the scalar register is used in:
1582  *   .  ptr + scalar alu
1583  *   . if (scalar cond K|scalar)
1584  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1585  *   backtrack through the verifier states and mark all registers and
1586  *   stack slots with spilled constants that these scalar regisers
1587  *   should be precise.
1588  * . during state pruning two registers (or spilled stack slots)
1589  *   are equivalent if both are not precise.
1590  *
1591  * Note the verifier cannot simply walk register parentage chain,
1592  * since many different registers and stack slots could have been
1593  * used to compute single precise scalar.
1594  *
1595  * The approach of starting with precise=true for all registers and then
1596  * backtrack to mark a register as not precise when the verifier detects
1597  * that program doesn't care about specific value (e.g., when helper
1598  * takes register as ARG_ANYTHING parameter) is not safe.
1599  *
1600  * It's ok to walk single parentage chain of the verifier states.
1601  * It's possible that this backtracking will go all the way till 1st insn.
1602  * All other branches will be explored for needing precision later.
1603  *
1604  * The backtracking needs to deal with cases like:
1605  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1606  * r9 -= r8
1607  * r5 = r9
1608  * if r5 > 0x79f goto pc+7
1609  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1610  * r5 += 1
1611  * ...
1612  * call bpf_perf_event_output#25
1613  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1614  *
1615  * and this case:
1616  * r6 = 1
1617  * call foo // uses callee's r6 inside to compute r0
1618  * r0 += r6
1619  * if r0 == 0 goto
1620  *
1621  * to track above reg_mask/stack_mask needs to be independent for each frame.
1622  *
1623  * Also if parent's curframe > frame where backtracking started,
1624  * the verifier need to mark registers in both frames, otherwise callees
1625  * may incorrectly prune callers. This is similar to
1626  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1627  *
1628  * For now backtracking falls back into conservative marking.
1629  */
1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1631 				     struct bpf_verifier_state *st)
1632 {
1633 	struct bpf_func_state *func;
1634 	struct bpf_reg_state *reg;
1635 	int i, j;
1636 
1637 	/* big hammer: mark all scalars precise in this path.
1638 	 * pop_stack may still get !precise scalars.
1639 	 */
1640 	for (; st; st = st->parent)
1641 		for (i = 0; i <= st->curframe; i++) {
1642 			func = st->frame[i];
1643 			for (j = 0; j < BPF_REG_FP; j++) {
1644 				reg = &func->regs[j];
1645 				if (reg->type != SCALAR_VALUE)
1646 					continue;
1647 				reg->precise = true;
1648 			}
1649 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1650 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1651 					continue;
1652 				reg = &func->stack[j].spilled_ptr;
1653 				if (reg->type != SCALAR_VALUE)
1654 					continue;
1655 				reg->precise = true;
1656 			}
1657 		}
1658 }
1659 
1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1661 				  int spi)
1662 {
1663 	struct bpf_verifier_state *st = env->cur_state;
1664 	int first_idx = st->first_insn_idx;
1665 	int last_idx = env->insn_idx;
1666 	struct bpf_func_state *func;
1667 	struct bpf_reg_state *reg;
1668 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1669 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1670 	bool skip_first = true;
1671 	bool new_marks = false;
1672 	int i, err;
1673 
1674 	if (!env->allow_ptr_leaks)
1675 		/* backtracking is root only for now */
1676 		return 0;
1677 
1678 	func = st->frame[st->curframe];
1679 	if (regno >= 0) {
1680 		reg = &func->regs[regno];
1681 		if (reg->type != SCALAR_VALUE) {
1682 			WARN_ONCE(1, "backtracing misuse");
1683 			return -EFAULT;
1684 		}
1685 		if (!reg->precise)
1686 			new_marks = true;
1687 		else
1688 			reg_mask = 0;
1689 		reg->precise = true;
1690 	}
1691 
1692 	while (spi >= 0) {
1693 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1694 			stack_mask = 0;
1695 			break;
1696 		}
1697 		reg = &func->stack[spi].spilled_ptr;
1698 		if (reg->type != SCALAR_VALUE) {
1699 			stack_mask = 0;
1700 			break;
1701 		}
1702 		if (!reg->precise)
1703 			new_marks = true;
1704 		else
1705 			stack_mask = 0;
1706 		reg->precise = true;
1707 		break;
1708 	}
1709 
1710 	if (!new_marks)
1711 		return 0;
1712 	if (!reg_mask && !stack_mask)
1713 		return 0;
1714 	for (;;) {
1715 		DECLARE_BITMAP(mask, 64);
1716 		u32 history = st->jmp_history_cnt;
1717 
1718 		if (env->log.level & BPF_LOG_LEVEL)
1719 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1720 		for (i = last_idx;;) {
1721 			if (skip_first) {
1722 				err = 0;
1723 				skip_first = false;
1724 			} else {
1725 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1726 			}
1727 			if (err == -ENOTSUPP) {
1728 				mark_all_scalars_precise(env, st);
1729 				return 0;
1730 			} else if (err) {
1731 				return err;
1732 			}
1733 			if (!reg_mask && !stack_mask)
1734 				/* Found assignment(s) into tracked register in this state.
1735 				 * Since this state is already marked, just return.
1736 				 * Nothing to be tracked further in the parent state.
1737 				 */
1738 				return 0;
1739 			if (i == first_idx)
1740 				break;
1741 			i = get_prev_insn_idx(st, i, &history);
1742 			if (i >= env->prog->len) {
1743 				/* This can happen if backtracking reached insn 0
1744 				 * and there are still reg_mask or stack_mask
1745 				 * to backtrack.
1746 				 * It means the backtracking missed the spot where
1747 				 * particular register was initialized with a constant.
1748 				 */
1749 				verbose(env, "BUG backtracking idx %d\n", i);
1750 				WARN_ONCE(1, "verifier backtracking bug");
1751 				return -EFAULT;
1752 			}
1753 		}
1754 		st = st->parent;
1755 		if (!st)
1756 			break;
1757 
1758 		new_marks = false;
1759 		func = st->frame[st->curframe];
1760 		bitmap_from_u64(mask, reg_mask);
1761 		for_each_set_bit(i, mask, 32) {
1762 			reg = &func->regs[i];
1763 			if (reg->type != SCALAR_VALUE) {
1764 				reg_mask &= ~(1u << i);
1765 				continue;
1766 			}
1767 			if (!reg->precise)
1768 				new_marks = true;
1769 			reg->precise = true;
1770 		}
1771 
1772 		bitmap_from_u64(mask, stack_mask);
1773 		for_each_set_bit(i, mask, 64) {
1774 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1775 				/* This can happen if backtracking
1776 				 * is propagating stack precision where
1777 				 * caller has larger stack frame
1778 				 * than callee, but backtrack_insn() should
1779 				 * have returned -ENOTSUPP.
1780 				 */
1781 				verbose(env, "BUG spi %d stack_size %d\n",
1782 					i, func->allocated_stack);
1783 				WARN_ONCE(1, "verifier backtracking bug");
1784 				return -EFAULT;
1785 			}
1786 
1787 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1788 				stack_mask &= ~(1ull << i);
1789 				continue;
1790 			}
1791 			reg = &func->stack[i].spilled_ptr;
1792 			if (reg->type != SCALAR_VALUE) {
1793 				stack_mask &= ~(1ull << i);
1794 				continue;
1795 			}
1796 			if (!reg->precise)
1797 				new_marks = true;
1798 			reg->precise = true;
1799 		}
1800 		if (env->log.level & BPF_LOG_LEVEL) {
1801 			print_verifier_state(env, func);
1802 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1803 				new_marks ? "didn't have" : "already had",
1804 				reg_mask, stack_mask);
1805 		}
1806 
1807 		if (!reg_mask && !stack_mask)
1808 			break;
1809 		if (!new_marks)
1810 			break;
1811 
1812 		last_idx = st->last_insn_idx;
1813 		first_idx = st->first_insn_idx;
1814 	}
1815 	return 0;
1816 }
1817 
1818 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1819 {
1820 	return __mark_chain_precision(env, regno, -1);
1821 }
1822 
1823 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1824 {
1825 	return __mark_chain_precision(env, -1, spi);
1826 }
1827 
1828 static bool is_spillable_regtype(enum bpf_reg_type type)
1829 {
1830 	switch (type) {
1831 	case PTR_TO_MAP_VALUE:
1832 	case PTR_TO_MAP_VALUE_OR_NULL:
1833 	case PTR_TO_STACK:
1834 	case PTR_TO_CTX:
1835 	case PTR_TO_PACKET:
1836 	case PTR_TO_PACKET_META:
1837 	case PTR_TO_PACKET_END:
1838 	case PTR_TO_FLOW_KEYS:
1839 	case CONST_PTR_TO_MAP:
1840 	case PTR_TO_SOCKET:
1841 	case PTR_TO_SOCKET_OR_NULL:
1842 	case PTR_TO_SOCK_COMMON:
1843 	case PTR_TO_SOCK_COMMON_OR_NULL:
1844 	case PTR_TO_TCP_SOCK:
1845 	case PTR_TO_TCP_SOCK_OR_NULL:
1846 	case PTR_TO_XDP_SOCK:
1847 		return true;
1848 	default:
1849 		return false;
1850 	}
1851 }
1852 
1853 /* Does this register contain a constant zero? */
1854 static bool register_is_null(struct bpf_reg_state *reg)
1855 {
1856 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1857 }
1858 
1859 static bool register_is_const(struct bpf_reg_state *reg)
1860 {
1861 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1862 }
1863 
1864 static void save_register_state(struct bpf_func_state *state,
1865 				int spi, struct bpf_reg_state *reg)
1866 {
1867 	int i;
1868 
1869 	state->stack[spi].spilled_ptr = *reg;
1870 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1871 
1872 	for (i = 0; i < BPF_REG_SIZE; i++)
1873 		state->stack[spi].slot_type[i] = STACK_SPILL;
1874 }
1875 
1876 /* check_stack_read/write functions track spill/fill of registers,
1877  * stack boundary and alignment are checked in check_mem_access()
1878  */
1879 static int check_stack_write(struct bpf_verifier_env *env,
1880 			     struct bpf_func_state *state, /* func where register points to */
1881 			     int off, int size, int value_regno, int insn_idx)
1882 {
1883 	struct bpf_func_state *cur; /* state of the current function */
1884 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1885 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1886 	struct bpf_reg_state *reg = NULL;
1887 
1888 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1889 				 state->acquired_refs, true);
1890 	if (err)
1891 		return err;
1892 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1893 	 * so it's aligned access and [off, off + size) are within stack limits
1894 	 */
1895 	if (!env->allow_ptr_leaks &&
1896 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1897 	    size != BPF_REG_SIZE) {
1898 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1899 		return -EACCES;
1900 	}
1901 
1902 	cur = env->cur_state->frame[env->cur_state->curframe];
1903 	if (value_regno >= 0)
1904 		reg = &cur->regs[value_regno];
1905 
1906 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1907 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1908 		if (dst_reg != BPF_REG_FP) {
1909 			/* The backtracking logic can only recognize explicit
1910 			 * stack slot address like [fp - 8]. Other spill of
1911 			 * scalar via different register has to be conervative.
1912 			 * Backtrack from here and mark all registers as precise
1913 			 * that contributed into 'reg' being a constant.
1914 			 */
1915 			err = mark_chain_precision(env, value_regno);
1916 			if (err)
1917 				return err;
1918 		}
1919 		save_register_state(state, spi, reg);
1920 	} else if (reg && is_spillable_regtype(reg->type)) {
1921 		/* register containing pointer is being spilled into stack */
1922 		if (size != BPF_REG_SIZE) {
1923 			verbose_linfo(env, insn_idx, "; ");
1924 			verbose(env, "invalid size of register spill\n");
1925 			return -EACCES;
1926 		}
1927 
1928 		if (state != cur && reg->type == PTR_TO_STACK) {
1929 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1930 			return -EINVAL;
1931 		}
1932 
1933 		if (!env->allow_ptr_leaks) {
1934 			bool sanitize = false;
1935 
1936 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
1937 			    register_is_const(&state->stack[spi].spilled_ptr))
1938 				sanitize = true;
1939 			for (i = 0; i < BPF_REG_SIZE; i++)
1940 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
1941 					sanitize = true;
1942 					break;
1943 				}
1944 			if (sanitize) {
1945 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1946 				int soff = (-spi - 1) * BPF_REG_SIZE;
1947 
1948 				/* detected reuse of integer stack slot with a pointer
1949 				 * which means either llvm is reusing stack slot or
1950 				 * an attacker is trying to exploit CVE-2018-3639
1951 				 * (speculative store bypass)
1952 				 * Have to sanitize that slot with preemptive
1953 				 * store of zero.
1954 				 */
1955 				if (*poff && *poff != soff) {
1956 					/* disallow programs where single insn stores
1957 					 * into two different stack slots, since verifier
1958 					 * cannot sanitize them
1959 					 */
1960 					verbose(env,
1961 						"insn %d cannot access two stack slots fp%d and fp%d",
1962 						insn_idx, *poff, soff);
1963 					return -EINVAL;
1964 				}
1965 				*poff = soff;
1966 			}
1967 		}
1968 		save_register_state(state, spi, reg);
1969 	} else {
1970 		u8 type = STACK_MISC;
1971 
1972 		/* regular write of data into stack destroys any spilled ptr */
1973 		state->stack[spi].spilled_ptr.type = NOT_INIT;
1974 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1975 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
1976 			for (i = 0; i < BPF_REG_SIZE; i++)
1977 				state->stack[spi].slot_type[i] = STACK_MISC;
1978 
1979 		/* only mark the slot as written if all 8 bytes were written
1980 		 * otherwise read propagation may incorrectly stop too soon
1981 		 * when stack slots are partially written.
1982 		 * This heuristic means that read propagation will be
1983 		 * conservative, since it will add reg_live_read marks
1984 		 * to stack slots all the way to first state when programs
1985 		 * writes+reads less than 8 bytes
1986 		 */
1987 		if (size == BPF_REG_SIZE)
1988 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1989 
1990 		/* when we zero initialize stack slots mark them as such */
1991 		if (reg && register_is_null(reg)) {
1992 			/* backtracking doesn't work for STACK_ZERO yet. */
1993 			err = mark_chain_precision(env, value_regno);
1994 			if (err)
1995 				return err;
1996 			type = STACK_ZERO;
1997 		}
1998 
1999 		/* Mark slots affected by this stack write. */
2000 		for (i = 0; i < size; i++)
2001 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2002 				type;
2003 	}
2004 	return 0;
2005 }
2006 
2007 static int check_stack_read(struct bpf_verifier_env *env,
2008 			    struct bpf_func_state *reg_state /* func where register points to */,
2009 			    int off, int size, int value_regno)
2010 {
2011 	struct bpf_verifier_state *vstate = env->cur_state;
2012 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2013 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2014 	struct bpf_reg_state *reg;
2015 	u8 *stype;
2016 
2017 	if (reg_state->allocated_stack <= slot) {
2018 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2019 			off, size);
2020 		return -EACCES;
2021 	}
2022 	stype = reg_state->stack[spi].slot_type;
2023 	reg = &reg_state->stack[spi].spilled_ptr;
2024 
2025 	if (stype[0] == STACK_SPILL) {
2026 		if (size != BPF_REG_SIZE) {
2027 			if (reg->type != SCALAR_VALUE) {
2028 				verbose_linfo(env, env->insn_idx, "; ");
2029 				verbose(env, "invalid size of register fill\n");
2030 				return -EACCES;
2031 			}
2032 			if (value_regno >= 0) {
2033 				mark_reg_unknown(env, state->regs, value_regno);
2034 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2035 			}
2036 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2037 			return 0;
2038 		}
2039 		for (i = 1; i < BPF_REG_SIZE; i++) {
2040 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2041 				verbose(env, "corrupted spill memory\n");
2042 				return -EACCES;
2043 			}
2044 		}
2045 
2046 		if (value_regno >= 0) {
2047 			/* restore register state from stack */
2048 			state->regs[value_regno] = *reg;
2049 			/* mark reg as written since spilled pointer state likely
2050 			 * has its liveness marks cleared by is_state_visited()
2051 			 * which resets stack/reg liveness for state transitions
2052 			 */
2053 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2054 		}
2055 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2056 	} else {
2057 		int zeros = 0;
2058 
2059 		for (i = 0; i < size; i++) {
2060 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2061 				continue;
2062 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2063 				zeros++;
2064 				continue;
2065 			}
2066 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2067 				off, i, size);
2068 			return -EACCES;
2069 		}
2070 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2071 		if (value_regno >= 0) {
2072 			if (zeros == size) {
2073 				/* any size read into register is zero extended,
2074 				 * so the whole register == const_zero
2075 				 */
2076 				__mark_reg_const_zero(&state->regs[value_regno]);
2077 				/* backtracking doesn't support STACK_ZERO yet,
2078 				 * so mark it precise here, so that later
2079 				 * backtracking can stop here.
2080 				 * Backtracking may not need this if this register
2081 				 * doesn't participate in pointer adjustment.
2082 				 * Forward propagation of precise flag is not
2083 				 * necessary either. This mark is only to stop
2084 				 * backtracking. Any register that contributed
2085 				 * to const 0 was marked precise before spill.
2086 				 */
2087 				state->regs[value_regno].precise = true;
2088 			} else {
2089 				/* have read misc data from the stack */
2090 				mark_reg_unknown(env, state->regs, value_regno);
2091 			}
2092 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2093 		}
2094 	}
2095 	return 0;
2096 }
2097 
2098 static int check_stack_access(struct bpf_verifier_env *env,
2099 			      const struct bpf_reg_state *reg,
2100 			      int off, int size)
2101 {
2102 	/* Stack accesses must be at a fixed offset, so that we
2103 	 * can determine what type of data were returned. See
2104 	 * check_stack_read().
2105 	 */
2106 	if (!tnum_is_const(reg->var_off)) {
2107 		char tn_buf[48];
2108 
2109 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2110 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2111 			tn_buf, off, size);
2112 		return -EACCES;
2113 	}
2114 
2115 	if (off >= 0 || off < -MAX_BPF_STACK) {
2116 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2117 		return -EACCES;
2118 	}
2119 
2120 	return 0;
2121 }
2122 
2123 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2124 				 int off, int size, enum bpf_access_type type)
2125 {
2126 	struct bpf_reg_state *regs = cur_regs(env);
2127 	struct bpf_map *map = regs[regno].map_ptr;
2128 	u32 cap = bpf_map_flags_to_cap(map);
2129 
2130 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2131 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2132 			map->value_size, off, size);
2133 		return -EACCES;
2134 	}
2135 
2136 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2137 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2138 			map->value_size, off, size);
2139 		return -EACCES;
2140 	}
2141 
2142 	return 0;
2143 }
2144 
2145 /* check read/write into map element returned by bpf_map_lookup_elem() */
2146 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2147 			      int size, bool zero_size_allowed)
2148 {
2149 	struct bpf_reg_state *regs = cur_regs(env);
2150 	struct bpf_map *map = regs[regno].map_ptr;
2151 
2152 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2153 	    off + size > map->value_size) {
2154 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2155 			map->value_size, off, size);
2156 		return -EACCES;
2157 	}
2158 	return 0;
2159 }
2160 
2161 /* check read/write into a map element with possible variable offset */
2162 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2163 			    int off, int size, bool zero_size_allowed)
2164 {
2165 	struct bpf_verifier_state *vstate = env->cur_state;
2166 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2167 	struct bpf_reg_state *reg = &state->regs[regno];
2168 	int err;
2169 
2170 	/* We may have adjusted the register to this map value, so we
2171 	 * need to try adding each of min_value and max_value to off
2172 	 * to make sure our theoretical access will be safe.
2173 	 */
2174 	if (env->log.level & BPF_LOG_LEVEL)
2175 		print_verifier_state(env, state);
2176 
2177 	/* The minimum value is only important with signed
2178 	 * comparisons where we can't assume the floor of a
2179 	 * value is 0.  If we are using signed variables for our
2180 	 * index'es we need to make sure that whatever we use
2181 	 * will have a set floor within our range.
2182 	 */
2183 	if (reg->smin_value < 0 &&
2184 	    (reg->smin_value == S64_MIN ||
2185 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2186 	      reg->smin_value + off < 0)) {
2187 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2188 			regno);
2189 		return -EACCES;
2190 	}
2191 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2192 				 zero_size_allowed);
2193 	if (err) {
2194 		verbose(env, "R%d min value is outside of the array range\n",
2195 			regno);
2196 		return err;
2197 	}
2198 
2199 	/* If we haven't set a max value then we need to bail since we can't be
2200 	 * sure we won't do bad things.
2201 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2202 	 */
2203 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2204 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2205 			regno);
2206 		return -EACCES;
2207 	}
2208 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2209 				 zero_size_allowed);
2210 	if (err)
2211 		verbose(env, "R%d max value is outside of the array range\n",
2212 			regno);
2213 
2214 	if (map_value_has_spin_lock(reg->map_ptr)) {
2215 		u32 lock = reg->map_ptr->spin_lock_off;
2216 
2217 		/* if any part of struct bpf_spin_lock can be touched by
2218 		 * load/store reject this program.
2219 		 * To check that [x1, x2) overlaps with [y1, y2)
2220 		 * it is sufficient to check x1 < y2 && y1 < x2.
2221 		 */
2222 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2223 		     lock < reg->umax_value + off + size) {
2224 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2225 			return -EACCES;
2226 		}
2227 	}
2228 	return err;
2229 }
2230 
2231 #define MAX_PACKET_OFF 0xffff
2232 
2233 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2234 				       const struct bpf_call_arg_meta *meta,
2235 				       enum bpf_access_type t)
2236 {
2237 	switch (env->prog->type) {
2238 	/* Program types only with direct read access go here! */
2239 	case BPF_PROG_TYPE_LWT_IN:
2240 	case BPF_PROG_TYPE_LWT_OUT:
2241 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2242 	case BPF_PROG_TYPE_SK_REUSEPORT:
2243 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2244 	case BPF_PROG_TYPE_CGROUP_SKB:
2245 		if (t == BPF_WRITE)
2246 			return false;
2247 		/* fallthrough */
2248 
2249 	/* Program types with direct read + write access go here! */
2250 	case BPF_PROG_TYPE_SCHED_CLS:
2251 	case BPF_PROG_TYPE_SCHED_ACT:
2252 	case BPF_PROG_TYPE_XDP:
2253 	case BPF_PROG_TYPE_LWT_XMIT:
2254 	case BPF_PROG_TYPE_SK_SKB:
2255 	case BPF_PROG_TYPE_SK_MSG:
2256 		if (meta)
2257 			return meta->pkt_access;
2258 
2259 		env->seen_direct_write = true;
2260 		return true;
2261 
2262 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2263 		if (t == BPF_WRITE)
2264 			env->seen_direct_write = true;
2265 
2266 		return true;
2267 
2268 	default:
2269 		return false;
2270 	}
2271 }
2272 
2273 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2274 				 int off, int size, bool zero_size_allowed)
2275 {
2276 	struct bpf_reg_state *regs = cur_regs(env);
2277 	struct bpf_reg_state *reg = &regs[regno];
2278 
2279 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2280 	    (u64)off + size > reg->range) {
2281 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2282 			off, size, regno, reg->id, reg->off, reg->range);
2283 		return -EACCES;
2284 	}
2285 	return 0;
2286 }
2287 
2288 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2289 			       int size, bool zero_size_allowed)
2290 {
2291 	struct bpf_reg_state *regs = cur_regs(env);
2292 	struct bpf_reg_state *reg = &regs[regno];
2293 	int err;
2294 
2295 	/* We may have added a variable offset to the packet pointer; but any
2296 	 * reg->range we have comes after that.  We are only checking the fixed
2297 	 * offset.
2298 	 */
2299 
2300 	/* We don't allow negative numbers, because we aren't tracking enough
2301 	 * detail to prove they're safe.
2302 	 */
2303 	if (reg->smin_value < 0) {
2304 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2305 			regno);
2306 		return -EACCES;
2307 	}
2308 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2309 	if (err) {
2310 		verbose(env, "R%d offset is outside of the packet\n", regno);
2311 		return err;
2312 	}
2313 
2314 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2315 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2316 	 * otherwise find_good_pkt_pointers would have refused to set range info
2317 	 * that __check_packet_access would have rejected this pkt access.
2318 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2319 	 */
2320 	env->prog->aux->max_pkt_offset =
2321 		max_t(u32, env->prog->aux->max_pkt_offset,
2322 		      off + reg->umax_value + size - 1);
2323 
2324 	return err;
2325 }
2326 
2327 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2328 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2329 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
2330 {
2331 	struct bpf_insn_access_aux info = {
2332 		.reg_type = *reg_type,
2333 	};
2334 
2335 	if (env->ops->is_valid_access &&
2336 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2337 		/* A non zero info.ctx_field_size indicates that this field is a
2338 		 * candidate for later verifier transformation to load the whole
2339 		 * field and then apply a mask when accessed with a narrower
2340 		 * access than actual ctx access size. A zero info.ctx_field_size
2341 		 * will only allow for whole field access and rejects any other
2342 		 * type of narrower access.
2343 		 */
2344 		*reg_type = info.reg_type;
2345 
2346 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2347 		/* remember the offset of last byte accessed in ctx */
2348 		if (env->prog->aux->max_ctx_offset < off + size)
2349 			env->prog->aux->max_ctx_offset = off + size;
2350 		return 0;
2351 	}
2352 
2353 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2354 	return -EACCES;
2355 }
2356 
2357 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2358 				  int size)
2359 {
2360 	if (size < 0 || off < 0 ||
2361 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2362 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2363 			off, size);
2364 		return -EACCES;
2365 	}
2366 	return 0;
2367 }
2368 
2369 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2370 			     u32 regno, int off, int size,
2371 			     enum bpf_access_type t)
2372 {
2373 	struct bpf_reg_state *regs = cur_regs(env);
2374 	struct bpf_reg_state *reg = &regs[regno];
2375 	struct bpf_insn_access_aux info = {};
2376 	bool valid;
2377 
2378 	if (reg->smin_value < 0) {
2379 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2380 			regno);
2381 		return -EACCES;
2382 	}
2383 
2384 	switch (reg->type) {
2385 	case PTR_TO_SOCK_COMMON:
2386 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2387 		break;
2388 	case PTR_TO_SOCKET:
2389 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2390 		break;
2391 	case PTR_TO_TCP_SOCK:
2392 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2393 		break;
2394 	case PTR_TO_XDP_SOCK:
2395 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2396 		break;
2397 	default:
2398 		valid = false;
2399 	}
2400 
2401 
2402 	if (valid) {
2403 		env->insn_aux_data[insn_idx].ctx_field_size =
2404 			info.ctx_field_size;
2405 		return 0;
2406 	}
2407 
2408 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2409 		regno, reg_type_str[reg->type], off, size);
2410 
2411 	return -EACCES;
2412 }
2413 
2414 static bool __is_pointer_value(bool allow_ptr_leaks,
2415 			       const struct bpf_reg_state *reg)
2416 {
2417 	if (allow_ptr_leaks)
2418 		return false;
2419 
2420 	return reg->type != SCALAR_VALUE;
2421 }
2422 
2423 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2424 {
2425 	return cur_regs(env) + regno;
2426 }
2427 
2428 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2429 {
2430 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2431 }
2432 
2433 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2434 {
2435 	const struct bpf_reg_state *reg = reg_state(env, regno);
2436 
2437 	return reg->type == PTR_TO_CTX;
2438 }
2439 
2440 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2441 {
2442 	const struct bpf_reg_state *reg = reg_state(env, regno);
2443 
2444 	return type_is_sk_pointer(reg->type);
2445 }
2446 
2447 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2448 {
2449 	const struct bpf_reg_state *reg = reg_state(env, regno);
2450 
2451 	return type_is_pkt_pointer(reg->type);
2452 }
2453 
2454 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2455 {
2456 	const struct bpf_reg_state *reg = reg_state(env, regno);
2457 
2458 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2459 	return reg->type == PTR_TO_FLOW_KEYS;
2460 }
2461 
2462 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2463 				   const struct bpf_reg_state *reg,
2464 				   int off, int size, bool strict)
2465 {
2466 	struct tnum reg_off;
2467 	int ip_align;
2468 
2469 	/* Byte size accesses are always allowed. */
2470 	if (!strict || size == 1)
2471 		return 0;
2472 
2473 	/* For platforms that do not have a Kconfig enabling
2474 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2475 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2476 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2477 	 * to this code only in strict mode where we want to emulate
2478 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2479 	 * unconditional IP align value of '2'.
2480 	 */
2481 	ip_align = 2;
2482 
2483 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2484 	if (!tnum_is_aligned(reg_off, size)) {
2485 		char tn_buf[48];
2486 
2487 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2488 		verbose(env,
2489 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2490 			ip_align, tn_buf, reg->off, off, size);
2491 		return -EACCES;
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2498 				       const struct bpf_reg_state *reg,
2499 				       const char *pointer_desc,
2500 				       int off, int size, bool strict)
2501 {
2502 	struct tnum reg_off;
2503 
2504 	/* Byte size accesses are always allowed. */
2505 	if (!strict || size == 1)
2506 		return 0;
2507 
2508 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2509 	if (!tnum_is_aligned(reg_off, size)) {
2510 		char tn_buf[48];
2511 
2512 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2513 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2514 			pointer_desc, tn_buf, reg->off, off, size);
2515 		return -EACCES;
2516 	}
2517 
2518 	return 0;
2519 }
2520 
2521 static int check_ptr_alignment(struct bpf_verifier_env *env,
2522 			       const struct bpf_reg_state *reg, int off,
2523 			       int size, bool strict_alignment_once)
2524 {
2525 	bool strict = env->strict_alignment || strict_alignment_once;
2526 	const char *pointer_desc = "";
2527 
2528 	switch (reg->type) {
2529 	case PTR_TO_PACKET:
2530 	case PTR_TO_PACKET_META:
2531 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2532 		 * right in front, treat it the very same way.
2533 		 */
2534 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2535 	case PTR_TO_FLOW_KEYS:
2536 		pointer_desc = "flow keys ";
2537 		break;
2538 	case PTR_TO_MAP_VALUE:
2539 		pointer_desc = "value ";
2540 		break;
2541 	case PTR_TO_CTX:
2542 		pointer_desc = "context ";
2543 		break;
2544 	case PTR_TO_STACK:
2545 		pointer_desc = "stack ";
2546 		/* The stack spill tracking logic in check_stack_write()
2547 		 * and check_stack_read() relies on stack accesses being
2548 		 * aligned.
2549 		 */
2550 		strict = true;
2551 		break;
2552 	case PTR_TO_SOCKET:
2553 		pointer_desc = "sock ";
2554 		break;
2555 	case PTR_TO_SOCK_COMMON:
2556 		pointer_desc = "sock_common ";
2557 		break;
2558 	case PTR_TO_TCP_SOCK:
2559 		pointer_desc = "tcp_sock ";
2560 		break;
2561 	case PTR_TO_XDP_SOCK:
2562 		pointer_desc = "xdp_sock ";
2563 		break;
2564 	default:
2565 		break;
2566 	}
2567 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2568 					   strict);
2569 }
2570 
2571 static int update_stack_depth(struct bpf_verifier_env *env,
2572 			      const struct bpf_func_state *func,
2573 			      int off)
2574 {
2575 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2576 
2577 	if (stack >= -off)
2578 		return 0;
2579 
2580 	/* update known max for given subprogram */
2581 	env->subprog_info[func->subprogno].stack_depth = -off;
2582 	return 0;
2583 }
2584 
2585 /* starting from main bpf function walk all instructions of the function
2586  * and recursively walk all callees that given function can call.
2587  * Ignore jump and exit insns.
2588  * Since recursion is prevented by check_cfg() this algorithm
2589  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2590  */
2591 static int check_max_stack_depth(struct bpf_verifier_env *env)
2592 {
2593 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2594 	struct bpf_subprog_info *subprog = env->subprog_info;
2595 	struct bpf_insn *insn = env->prog->insnsi;
2596 	int ret_insn[MAX_CALL_FRAMES];
2597 	int ret_prog[MAX_CALL_FRAMES];
2598 
2599 process_func:
2600 	/* round up to 32-bytes, since this is granularity
2601 	 * of interpreter stack size
2602 	 */
2603 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2604 	if (depth > MAX_BPF_STACK) {
2605 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2606 			frame + 1, depth);
2607 		return -EACCES;
2608 	}
2609 continue_func:
2610 	subprog_end = subprog[idx + 1].start;
2611 	for (; i < subprog_end; i++) {
2612 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2613 			continue;
2614 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2615 			continue;
2616 		/* remember insn and function to return to */
2617 		ret_insn[frame] = i + 1;
2618 		ret_prog[frame] = idx;
2619 
2620 		/* find the callee */
2621 		i = i + insn[i].imm + 1;
2622 		idx = find_subprog(env, i);
2623 		if (idx < 0) {
2624 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2625 				  i);
2626 			return -EFAULT;
2627 		}
2628 		frame++;
2629 		if (frame >= MAX_CALL_FRAMES) {
2630 			verbose(env, "the call stack of %d frames is too deep !\n",
2631 				frame);
2632 			return -E2BIG;
2633 		}
2634 		goto process_func;
2635 	}
2636 	/* end of for() loop means the last insn of the 'subprog'
2637 	 * was reached. Doesn't matter whether it was JA or EXIT
2638 	 */
2639 	if (frame == 0)
2640 		return 0;
2641 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2642 	frame--;
2643 	i = ret_insn[frame];
2644 	idx = ret_prog[frame];
2645 	goto continue_func;
2646 }
2647 
2648 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2649 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2650 				  const struct bpf_insn *insn, int idx)
2651 {
2652 	int start = idx + insn->imm + 1, subprog;
2653 
2654 	subprog = find_subprog(env, start);
2655 	if (subprog < 0) {
2656 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2657 			  start);
2658 		return -EFAULT;
2659 	}
2660 	return env->subprog_info[subprog].stack_depth;
2661 }
2662 #endif
2663 
2664 static int check_ctx_reg(struct bpf_verifier_env *env,
2665 			 const struct bpf_reg_state *reg, int regno)
2666 {
2667 	/* Access to ctx or passing it to a helper is only allowed in
2668 	 * its original, unmodified form.
2669 	 */
2670 
2671 	if (reg->off) {
2672 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2673 			regno, reg->off);
2674 		return -EACCES;
2675 	}
2676 
2677 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2678 		char tn_buf[48];
2679 
2680 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2681 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2682 		return -EACCES;
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2689 				  const struct bpf_reg_state *reg,
2690 				  int regno, int off, int size)
2691 {
2692 	if (off < 0) {
2693 		verbose(env,
2694 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2695 			regno, off, size);
2696 		return -EACCES;
2697 	}
2698 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2699 		char tn_buf[48];
2700 
2701 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2702 		verbose(env,
2703 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2704 			regno, off, tn_buf);
2705 		return -EACCES;
2706 	}
2707 	if (off + size > env->prog->aux->max_tp_access)
2708 		env->prog->aux->max_tp_access = off + size;
2709 
2710 	return 0;
2711 }
2712 
2713 
2714 /* truncate register to smaller size (in bytes)
2715  * must be called with size < BPF_REG_SIZE
2716  */
2717 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2718 {
2719 	u64 mask;
2720 
2721 	/* clear high bits in bit representation */
2722 	reg->var_off = tnum_cast(reg->var_off, size);
2723 
2724 	/* fix arithmetic bounds */
2725 	mask = ((u64)1 << (size * 8)) - 1;
2726 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2727 		reg->umin_value &= mask;
2728 		reg->umax_value &= mask;
2729 	} else {
2730 		reg->umin_value = 0;
2731 		reg->umax_value = mask;
2732 	}
2733 	reg->smin_value = reg->umin_value;
2734 	reg->smax_value = reg->umax_value;
2735 }
2736 
2737 /* check whether memory at (regno + off) is accessible for t = (read | write)
2738  * if t==write, value_regno is a register which value is stored into memory
2739  * if t==read, value_regno is a register which will receive the value from memory
2740  * if t==write && value_regno==-1, some unknown value is stored into memory
2741  * if t==read && value_regno==-1, don't care what we read from memory
2742  */
2743 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2744 			    int off, int bpf_size, enum bpf_access_type t,
2745 			    int value_regno, bool strict_alignment_once)
2746 {
2747 	struct bpf_reg_state *regs = cur_regs(env);
2748 	struct bpf_reg_state *reg = regs + regno;
2749 	struct bpf_func_state *state;
2750 	int size, err = 0;
2751 
2752 	size = bpf_size_to_bytes(bpf_size);
2753 	if (size < 0)
2754 		return size;
2755 
2756 	/* alignment checks will add in reg->off themselves */
2757 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2758 	if (err)
2759 		return err;
2760 
2761 	/* for access checks, reg->off is just part of off */
2762 	off += reg->off;
2763 
2764 	if (reg->type == PTR_TO_MAP_VALUE) {
2765 		if (t == BPF_WRITE && value_regno >= 0 &&
2766 		    is_pointer_value(env, value_regno)) {
2767 			verbose(env, "R%d leaks addr into map\n", value_regno);
2768 			return -EACCES;
2769 		}
2770 		err = check_map_access_type(env, regno, off, size, t);
2771 		if (err)
2772 			return err;
2773 		err = check_map_access(env, regno, off, size, false);
2774 		if (!err && t == BPF_READ && value_regno >= 0)
2775 			mark_reg_unknown(env, regs, value_regno);
2776 
2777 	} else if (reg->type == PTR_TO_CTX) {
2778 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2779 
2780 		if (t == BPF_WRITE && value_regno >= 0 &&
2781 		    is_pointer_value(env, value_regno)) {
2782 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2783 			return -EACCES;
2784 		}
2785 
2786 		err = check_ctx_reg(env, reg, regno);
2787 		if (err < 0)
2788 			return err;
2789 
2790 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2791 		if (!err && t == BPF_READ && value_regno >= 0) {
2792 			/* ctx access returns either a scalar, or a
2793 			 * PTR_TO_PACKET[_META,_END]. In the latter
2794 			 * case, we know the offset is zero.
2795 			 */
2796 			if (reg_type == SCALAR_VALUE) {
2797 				mark_reg_unknown(env, regs, value_regno);
2798 			} else {
2799 				mark_reg_known_zero(env, regs,
2800 						    value_regno);
2801 				if (reg_type_may_be_null(reg_type))
2802 					regs[value_regno].id = ++env->id_gen;
2803 				/* A load of ctx field could have different
2804 				 * actual load size with the one encoded in the
2805 				 * insn. When the dst is PTR, it is for sure not
2806 				 * a sub-register.
2807 				 */
2808 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2809 			}
2810 			regs[value_regno].type = reg_type;
2811 		}
2812 
2813 	} else if (reg->type == PTR_TO_STACK) {
2814 		off += reg->var_off.value;
2815 		err = check_stack_access(env, reg, off, size);
2816 		if (err)
2817 			return err;
2818 
2819 		state = func(env, reg);
2820 		err = update_stack_depth(env, state, off);
2821 		if (err)
2822 			return err;
2823 
2824 		if (t == BPF_WRITE)
2825 			err = check_stack_write(env, state, off, size,
2826 						value_regno, insn_idx);
2827 		else
2828 			err = check_stack_read(env, state, off, size,
2829 					       value_regno);
2830 	} else if (reg_is_pkt_pointer(reg)) {
2831 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2832 			verbose(env, "cannot write into packet\n");
2833 			return -EACCES;
2834 		}
2835 		if (t == BPF_WRITE && value_regno >= 0 &&
2836 		    is_pointer_value(env, value_regno)) {
2837 			verbose(env, "R%d leaks addr into packet\n",
2838 				value_regno);
2839 			return -EACCES;
2840 		}
2841 		err = check_packet_access(env, regno, off, size, false);
2842 		if (!err && t == BPF_READ && value_regno >= 0)
2843 			mark_reg_unknown(env, regs, value_regno);
2844 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
2845 		if (t == BPF_WRITE && value_regno >= 0 &&
2846 		    is_pointer_value(env, value_regno)) {
2847 			verbose(env, "R%d leaks addr into flow keys\n",
2848 				value_regno);
2849 			return -EACCES;
2850 		}
2851 
2852 		err = check_flow_keys_access(env, off, size);
2853 		if (!err && t == BPF_READ && value_regno >= 0)
2854 			mark_reg_unknown(env, regs, value_regno);
2855 	} else if (type_is_sk_pointer(reg->type)) {
2856 		if (t == BPF_WRITE) {
2857 			verbose(env, "R%d cannot write into %s\n",
2858 				regno, reg_type_str[reg->type]);
2859 			return -EACCES;
2860 		}
2861 		err = check_sock_access(env, insn_idx, regno, off, size, t);
2862 		if (!err && value_regno >= 0)
2863 			mark_reg_unknown(env, regs, value_regno);
2864 	} else if (reg->type == PTR_TO_TP_BUFFER) {
2865 		err = check_tp_buffer_access(env, reg, regno, off, size);
2866 		if (!err && t == BPF_READ && value_regno >= 0)
2867 			mark_reg_unknown(env, regs, value_regno);
2868 	} else {
2869 		verbose(env, "R%d invalid mem access '%s'\n", regno,
2870 			reg_type_str[reg->type]);
2871 		return -EACCES;
2872 	}
2873 
2874 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2875 	    regs[value_regno].type == SCALAR_VALUE) {
2876 		/* b/h/w load zero-extends, mark upper bits as known 0 */
2877 		coerce_reg_to_size(&regs[value_regno], size);
2878 	}
2879 	return err;
2880 }
2881 
2882 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2883 {
2884 	int err;
2885 
2886 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2887 	    insn->imm != 0) {
2888 		verbose(env, "BPF_XADD uses reserved fields\n");
2889 		return -EINVAL;
2890 	}
2891 
2892 	/* check src1 operand */
2893 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
2894 	if (err)
2895 		return err;
2896 
2897 	/* check src2 operand */
2898 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2899 	if (err)
2900 		return err;
2901 
2902 	if (is_pointer_value(env, insn->src_reg)) {
2903 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2904 		return -EACCES;
2905 	}
2906 
2907 	if (is_ctx_reg(env, insn->dst_reg) ||
2908 	    is_pkt_reg(env, insn->dst_reg) ||
2909 	    is_flow_key_reg(env, insn->dst_reg) ||
2910 	    is_sk_reg(env, insn->dst_reg)) {
2911 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2912 			insn->dst_reg,
2913 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
2914 		return -EACCES;
2915 	}
2916 
2917 	/* check whether atomic_add can read the memory */
2918 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2919 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
2920 	if (err)
2921 		return err;
2922 
2923 	/* check whether atomic_add can write into the same memory */
2924 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2925 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2926 }
2927 
2928 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2929 				  int off, int access_size,
2930 				  bool zero_size_allowed)
2931 {
2932 	struct bpf_reg_state *reg = reg_state(env, regno);
2933 
2934 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2935 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2936 		if (tnum_is_const(reg->var_off)) {
2937 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2938 				regno, off, access_size);
2939 		} else {
2940 			char tn_buf[48];
2941 
2942 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2943 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2944 				regno, tn_buf, access_size);
2945 		}
2946 		return -EACCES;
2947 	}
2948 	return 0;
2949 }
2950 
2951 /* when register 'regno' is passed into function that will read 'access_size'
2952  * bytes from that pointer, make sure that it's within stack boundary
2953  * and all elements of stack are initialized.
2954  * Unlike most pointer bounds-checking functions, this one doesn't take an
2955  * 'off' argument, so it has to add in reg->off itself.
2956  */
2957 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2958 				int access_size, bool zero_size_allowed,
2959 				struct bpf_call_arg_meta *meta)
2960 {
2961 	struct bpf_reg_state *reg = reg_state(env, regno);
2962 	struct bpf_func_state *state = func(env, reg);
2963 	int err, min_off, max_off, i, j, slot, spi;
2964 
2965 	if (reg->type != PTR_TO_STACK) {
2966 		/* Allow zero-byte read from NULL, regardless of pointer type */
2967 		if (zero_size_allowed && access_size == 0 &&
2968 		    register_is_null(reg))
2969 			return 0;
2970 
2971 		verbose(env, "R%d type=%s expected=%s\n", regno,
2972 			reg_type_str[reg->type],
2973 			reg_type_str[PTR_TO_STACK]);
2974 		return -EACCES;
2975 	}
2976 
2977 	if (tnum_is_const(reg->var_off)) {
2978 		min_off = max_off = reg->var_off.value + reg->off;
2979 		err = __check_stack_boundary(env, regno, min_off, access_size,
2980 					     zero_size_allowed);
2981 		if (err)
2982 			return err;
2983 	} else {
2984 		/* Variable offset is prohibited for unprivileged mode for
2985 		 * simplicity since it requires corresponding support in
2986 		 * Spectre masking for stack ALU.
2987 		 * See also retrieve_ptr_limit().
2988 		 */
2989 		if (!env->allow_ptr_leaks) {
2990 			char tn_buf[48];
2991 
2992 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2993 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2994 				regno, tn_buf);
2995 			return -EACCES;
2996 		}
2997 		/* Only initialized buffer on stack is allowed to be accessed
2998 		 * with variable offset. With uninitialized buffer it's hard to
2999 		 * guarantee that whole memory is marked as initialized on
3000 		 * helper return since specific bounds are unknown what may
3001 		 * cause uninitialized stack leaking.
3002 		 */
3003 		if (meta && meta->raw_mode)
3004 			meta = NULL;
3005 
3006 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3007 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3008 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3009 				regno);
3010 			return -EACCES;
3011 		}
3012 		min_off = reg->smin_value + reg->off;
3013 		max_off = reg->smax_value + reg->off;
3014 		err = __check_stack_boundary(env, regno, min_off, access_size,
3015 					     zero_size_allowed);
3016 		if (err) {
3017 			verbose(env, "R%d min value is outside of stack bound\n",
3018 				regno);
3019 			return err;
3020 		}
3021 		err = __check_stack_boundary(env, regno, max_off, access_size,
3022 					     zero_size_allowed);
3023 		if (err) {
3024 			verbose(env, "R%d max value is outside of stack bound\n",
3025 				regno);
3026 			return err;
3027 		}
3028 	}
3029 
3030 	if (meta && meta->raw_mode) {
3031 		meta->access_size = access_size;
3032 		meta->regno = regno;
3033 		return 0;
3034 	}
3035 
3036 	for (i = min_off; i < max_off + access_size; i++) {
3037 		u8 *stype;
3038 
3039 		slot = -i - 1;
3040 		spi = slot / BPF_REG_SIZE;
3041 		if (state->allocated_stack <= slot)
3042 			goto err;
3043 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3044 		if (*stype == STACK_MISC)
3045 			goto mark;
3046 		if (*stype == STACK_ZERO) {
3047 			/* helper can write anything into the stack */
3048 			*stype = STACK_MISC;
3049 			goto mark;
3050 		}
3051 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3052 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3053 			__mark_reg_unknown(&state->stack[spi].spilled_ptr);
3054 			for (j = 0; j < BPF_REG_SIZE; j++)
3055 				state->stack[spi].slot_type[j] = STACK_MISC;
3056 			goto mark;
3057 		}
3058 
3059 err:
3060 		if (tnum_is_const(reg->var_off)) {
3061 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3062 				min_off, i - min_off, access_size);
3063 		} else {
3064 			char tn_buf[48];
3065 
3066 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3067 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3068 				tn_buf, i - min_off, access_size);
3069 		}
3070 		return -EACCES;
3071 mark:
3072 		/* reading any byte out of 8-byte 'spill_slot' will cause
3073 		 * the whole slot to be marked as 'read'
3074 		 */
3075 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3076 			      state->stack[spi].spilled_ptr.parent,
3077 			      REG_LIVE_READ64);
3078 	}
3079 	return update_stack_depth(env, state, min_off);
3080 }
3081 
3082 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3083 				   int access_size, bool zero_size_allowed,
3084 				   struct bpf_call_arg_meta *meta)
3085 {
3086 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3087 
3088 	switch (reg->type) {
3089 	case PTR_TO_PACKET:
3090 	case PTR_TO_PACKET_META:
3091 		return check_packet_access(env, regno, reg->off, access_size,
3092 					   zero_size_allowed);
3093 	case PTR_TO_MAP_VALUE:
3094 		if (check_map_access_type(env, regno, reg->off, access_size,
3095 					  meta && meta->raw_mode ? BPF_WRITE :
3096 					  BPF_READ))
3097 			return -EACCES;
3098 		return check_map_access(env, regno, reg->off, access_size,
3099 					zero_size_allowed);
3100 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3101 		return check_stack_boundary(env, regno, access_size,
3102 					    zero_size_allowed, meta);
3103 	}
3104 }
3105 
3106 /* Implementation details:
3107  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3108  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3109  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3110  * value_or_null->value transition, since the verifier only cares about
3111  * the range of access to valid map value pointer and doesn't care about actual
3112  * address of the map element.
3113  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3114  * reg->id > 0 after value_or_null->value transition. By doing so
3115  * two bpf_map_lookups will be considered two different pointers that
3116  * point to different bpf_spin_locks.
3117  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3118  * dead-locks.
3119  * Since only one bpf_spin_lock is allowed the checks are simpler than
3120  * reg_is_refcounted() logic. The verifier needs to remember only
3121  * one spin_lock instead of array of acquired_refs.
3122  * cur_state->active_spin_lock remembers which map value element got locked
3123  * and clears it after bpf_spin_unlock.
3124  */
3125 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3126 			     bool is_lock)
3127 {
3128 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3129 	struct bpf_verifier_state *cur = env->cur_state;
3130 	bool is_const = tnum_is_const(reg->var_off);
3131 	struct bpf_map *map = reg->map_ptr;
3132 	u64 val = reg->var_off.value;
3133 
3134 	if (reg->type != PTR_TO_MAP_VALUE) {
3135 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3136 		return -EINVAL;
3137 	}
3138 	if (!is_const) {
3139 		verbose(env,
3140 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3141 			regno);
3142 		return -EINVAL;
3143 	}
3144 	if (!map->btf) {
3145 		verbose(env,
3146 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3147 			map->name);
3148 		return -EINVAL;
3149 	}
3150 	if (!map_value_has_spin_lock(map)) {
3151 		if (map->spin_lock_off == -E2BIG)
3152 			verbose(env,
3153 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3154 				map->name);
3155 		else if (map->spin_lock_off == -ENOENT)
3156 			verbose(env,
3157 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3158 				map->name);
3159 		else
3160 			verbose(env,
3161 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3162 				map->name);
3163 		return -EINVAL;
3164 	}
3165 	if (map->spin_lock_off != val + reg->off) {
3166 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3167 			val + reg->off);
3168 		return -EINVAL;
3169 	}
3170 	if (is_lock) {
3171 		if (cur->active_spin_lock) {
3172 			verbose(env,
3173 				"Locking two bpf_spin_locks are not allowed\n");
3174 			return -EINVAL;
3175 		}
3176 		cur->active_spin_lock = reg->id;
3177 	} else {
3178 		if (!cur->active_spin_lock) {
3179 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3180 			return -EINVAL;
3181 		}
3182 		if (cur->active_spin_lock != reg->id) {
3183 			verbose(env, "bpf_spin_unlock of different lock\n");
3184 			return -EINVAL;
3185 		}
3186 		cur->active_spin_lock = 0;
3187 	}
3188 	return 0;
3189 }
3190 
3191 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3192 {
3193 	return type == ARG_PTR_TO_MEM ||
3194 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3195 	       type == ARG_PTR_TO_UNINIT_MEM;
3196 }
3197 
3198 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3199 {
3200 	return type == ARG_CONST_SIZE ||
3201 	       type == ARG_CONST_SIZE_OR_ZERO;
3202 }
3203 
3204 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3205 {
3206 	return type == ARG_PTR_TO_INT ||
3207 	       type == ARG_PTR_TO_LONG;
3208 }
3209 
3210 static int int_ptr_type_to_size(enum bpf_arg_type type)
3211 {
3212 	if (type == ARG_PTR_TO_INT)
3213 		return sizeof(u32);
3214 	else if (type == ARG_PTR_TO_LONG)
3215 		return sizeof(u64);
3216 
3217 	return -EINVAL;
3218 }
3219 
3220 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3221 			  enum bpf_arg_type arg_type,
3222 			  struct bpf_call_arg_meta *meta)
3223 {
3224 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3225 	enum bpf_reg_type expected_type, type = reg->type;
3226 	int err = 0;
3227 
3228 	if (arg_type == ARG_DONTCARE)
3229 		return 0;
3230 
3231 	err = check_reg_arg(env, regno, SRC_OP);
3232 	if (err)
3233 		return err;
3234 
3235 	if (arg_type == ARG_ANYTHING) {
3236 		if (is_pointer_value(env, regno)) {
3237 			verbose(env, "R%d leaks addr into helper function\n",
3238 				regno);
3239 			return -EACCES;
3240 		}
3241 		return 0;
3242 	}
3243 
3244 	if (type_is_pkt_pointer(type) &&
3245 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3246 		verbose(env, "helper access to the packet is not allowed\n");
3247 		return -EACCES;
3248 	}
3249 
3250 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3251 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3252 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3253 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3254 		expected_type = PTR_TO_STACK;
3255 		if (register_is_null(reg) &&
3256 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3257 			/* final test in check_stack_boundary() */;
3258 		else if (!type_is_pkt_pointer(type) &&
3259 			 type != PTR_TO_MAP_VALUE &&
3260 			 type != expected_type)
3261 			goto err_type;
3262 	} else if (arg_type == ARG_CONST_SIZE ||
3263 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3264 		expected_type = SCALAR_VALUE;
3265 		if (type != expected_type)
3266 			goto err_type;
3267 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3268 		expected_type = CONST_PTR_TO_MAP;
3269 		if (type != expected_type)
3270 			goto err_type;
3271 	} else if (arg_type == ARG_PTR_TO_CTX) {
3272 		expected_type = PTR_TO_CTX;
3273 		if (type != expected_type)
3274 			goto err_type;
3275 		err = check_ctx_reg(env, reg, regno);
3276 		if (err < 0)
3277 			return err;
3278 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3279 		expected_type = PTR_TO_SOCK_COMMON;
3280 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3281 		if (!type_is_sk_pointer(type))
3282 			goto err_type;
3283 		if (reg->ref_obj_id) {
3284 			if (meta->ref_obj_id) {
3285 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3286 					regno, reg->ref_obj_id,
3287 					meta->ref_obj_id);
3288 				return -EFAULT;
3289 			}
3290 			meta->ref_obj_id = reg->ref_obj_id;
3291 		}
3292 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3293 		expected_type = PTR_TO_SOCKET;
3294 		if (type != expected_type)
3295 			goto err_type;
3296 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3297 		if (meta->func_id == BPF_FUNC_spin_lock) {
3298 			if (process_spin_lock(env, regno, true))
3299 				return -EACCES;
3300 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3301 			if (process_spin_lock(env, regno, false))
3302 				return -EACCES;
3303 		} else {
3304 			verbose(env, "verifier internal error\n");
3305 			return -EFAULT;
3306 		}
3307 	} else if (arg_type_is_mem_ptr(arg_type)) {
3308 		expected_type = PTR_TO_STACK;
3309 		/* One exception here. In case function allows for NULL to be
3310 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3311 		 * happens during stack boundary checking.
3312 		 */
3313 		if (register_is_null(reg) &&
3314 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3315 			/* final test in check_stack_boundary() */;
3316 		else if (!type_is_pkt_pointer(type) &&
3317 			 type != PTR_TO_MAP_VALUE &&
3318 			 type != expected_type)
3319 			goto err_type;
3320 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3321 	} else if (arg_type_is_int_ptr(arg_type)) {
3322 		expected_type = PTR_TO_STACK;
3323 		if (!type_is_pkt_pointer(type) &&
3324 		    type != PTR_TO_MAP_VALUE &&
3325 		    type != expected_type)
3326 			goto err_type;
3327 	} else {
3328 		verbose(env, "unsupported arg_type %d\n", arg_type);
3329 		return -EFAULT;
3330 	}
3331 
3332 	if (arg_type == ARG_CONST_MAP_PTR) {
3333 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3334 		meta->map_ptr = reg->map_ptr;
3335 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3336 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3337 		 * check that [key, key + map->key_size) are within
3338 		 * stack limits and initialized
3339 		 */
3340 		if (!meta->map_ptr) {
3341 			/* in function declaration map_ptr must come before
3342 			 * map_key, so that it's verified and known before
3343 			 * we have to check map_key here. Otherwise it means
3344 			 * that kernel subsystem misconfigured verifier
3345 			 */
3346 			verbose(env, "invalid map_ptr to access map->key\n");
3347 			return -EACCES;
3348 		}
3349 		err = check_helper_mem_access(env, regno,
3350 					      meta->map_ptr->key_size, false,
3351 					      NULL);
3352 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3353 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3354 		    !register_is_null(reg)) ||
3355 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3356 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3357 		 * check [value, value + map->value_size) validity
3358 		 */
3359 		if (!meta->map_ptr) {
3360 			/* kernel subsystem misconfigured verifier */
3361 			verbose(env, "invalid map_ptr to access map->value\n");
3362 			return -EACCES;
3363 		}
3364 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3365 		err = check_helper_mem_access(env, regno,
3366 					      meta->map_ptr->value_size, false,
3367 					      meta);
3368 	} else if (arg_type_is_mem_size(arg_type)) {
3369 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3370 
3371 		/* remember the mem_size which may be used later
3372 		 * to refine return values.
3373 		 */
3374 		meta->msize_smax_value = reg->smax_value;
3375 		meta->msize_umax_value = reg->umax_value;
3376 
3377 		/* The register is SCALAR_VALUE; the access check
3378 		 * happens using its boundaries.
3379 		 */
3380 		if (!tnum_is_const(reg->var_off))
3381 			/* For unprivileged variable accesses, disable raw
3382 			 * mode so that the program is required to
3383 			 * initialize all the memory that the helper could
3384 			 * just partially fill up.
3385 			 */
3386 			meta = NULL;
3387 
3388 		if (reg->smin_value < 0) {
3389 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3390 				regno);
3391 			return -EACCES;
3392 		}
3393 
3394 		if (reg->umin_value == 0) {
3395 			err = check_helper_mem_access(env, regno - 1, 0,
3396 						      zero_size_allowed,
3397 						      meta);
3398 			if (err)
3399 				return err;
3400 		}
3401 
3402 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3403 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3404 				regno);
3405 			return -EACCES;
3406 		}
3407 		err = check_helper_mem_access(env, regno - 1,
3408 					      reg->umax_value,
3409 					      zero_size_allowed, meta);
3410 		if (!err)
3411 			err = mark_chain_precision(env, regno);
3412 	} else if (arg_type_is_int_ptr(arg_type)) {
3413 		int size = int_ptr_type_to_size(arg_type);
3414 
3415 		err = check_helper_mem_access(env, regno, size, false, meta);
3416 		if (err)
3417 			return err;
3418 		err = check_ptr_alignment(env, reg, 0, size, true);
3419 	}
3420 
3421 	return err;
3422 err_type:
3423 	verbose(env, "R%d type=%s expected=%s\n", regno,
3424 		reg_type_str[type], reg_type_str[expected_type]);
3425 	return -EACCES;
3426 }
3427 
3428 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3429 					struct bpf_map *map, int func_id)
3430 {
3431 	if (!map)
3432 		return 0;
3433 
3434 	/* We need a two way check, first is from map perspective ... */
3435 	switch (map->map_type) {
3436 	case BPF_MAP_TYPE_PROG_ARRAY:
3437 		if (func_id != BPF_FUNC_tail_call)
3438 			goto error;
3439 		break;
3440 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3441 		if (func_id != BPF_FUNC_perf_event_read &&
3442 		    func_id != BPF_FUNC_perf_event_output &&
3443 		    func_id != BPF_FUNC_perf_event_read_value)
3444 			goto error;
3445 		break;
3446 	case BPF_MAP_TYPE_STACK_TRACE:
3447 		if (func_id != BPF_FUNC_get_stackid)
3448 			goto error;
3449 		break;
3450 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3451 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3452 		    func_id != BPF_FUNC_current_task_under_cgroup)
3453 			goto error;
3454 		break;
3455 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3456 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3457 		if (func_id != BPF_FUNC_get_local_storage)
3458 			goto error;
3459 		break;
3460 	case BPF_MAP_TYPE_DEVMAP:
3461 	case BPF_MAP_TYPE_DEVMAP_HASH:
3462 		if (func_id != BPF_FUNC_redirect_map &&
3463 		    func_id != BPF_FUNC_map_lookup_elem)
3464 			goto error;
3465 		break;
3466 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3467 	 * appear.
3468 	 */
3469 	case BPF_MAP_TYPE_CPUMAP:
3470 		if (func_id != BPF_FUNC_redirect_map)
3471 			goto error;
3472 		break;
3473 	case BPF_MAP_TYPE_XSKMAP:
3474 		if (func_id != BPF_FUNC_redirect_map &&
3475 		    func_id != BPF_FUNC_map_lookup_elem)
3476 			goto error;
3477 		break;
3478 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3479 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3480 		if (func_id != BPF_FUNC_map_lookup_elem)
3481 			goto error;
3482 		break;
3483 	case BPF_MAP_TYPE_SOCKMAP:
3484 		if (func_id != BPF_FUNC_sk_redirect_map &&
3485 		    func_id != BPF_FUNC_sock_map_update &&
3486 		    func_id != BPF_FUNC_map_delete_elem &&
3487 		    func_id != BPF_FUNC_msg_redirect_map)
3488 			goto error;
3489 		break;
3490 	case BPF_MAP_TYPE_SOCKHASH:
3491 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3492 		    func_id != BPF_FUNC_sock_hash_update &&
3493 		    func_id != BPF_FUNC_map_delete_elem &&
3494 		    func_id != BPF_FUNC_msg_redirect_hash)
3495 			goto error;
3496 		break;
3497 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3498 		if (func_id != BPF_FUNC_sk_select_reuseport)
3499 			goto error;
3500 		break;
3501 	case BPF_MAP_TYPE_QUEUE:
3502 	case BPF_MAP_TYPE_STACK:
3503 		if (func_id != BPF_FUNC_map_peek_elem &&
3504 		    func_id != BPF_FUNC_map_pop_elem &&
3505 		    func_id != BPF_FUNC_map_push_elem)
3506 			goto error;
3507 		break;
3508 	case BPF_MAP_TYPE_SK_STORAGE:
3509 		if (func_id != BPF_FUNC_sk_storage_get &&
3510 		    func_id != BPF_FUNC_sk_storage_delete)
3511 			goto error;
3512 		break;
3513 	default:
3514 		break;
3515 	}
3516 
3517 	/* ... and second from the function itself. */
3518 	switch (func_id) {
3519 	case BPF_FUNC_tail_call:
3520 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3521 			goto error;
3522 		if (env->subprog_cnt > 1) {
3523 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3524 			return -EINVAL;
3525 		}
3526 		break;
3527 	case BPF_FUNC_perf_event_read:
3528 	case BPF_FUNC_perf_event_output:
3529 	case BPF_FUNC_perf_event_read_value:
3530 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3531 			goto error;
3532 		break;
3533 	case BPF_FUNC_get_stackid:
3534 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3535 			goto error;
3536 		break;
3537 	case BPF_FUNC_current_task_under_cgroup:
3538 	case BPF_FUNC_skb_under_cgroup:
3539 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3540 			goto error;
3541 		break;
3542 	case BPF_FUNC_redirect_map:
3543 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3544 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3545 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3546 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3547 			goto error;
3548 		break;
3549 	case BPF_FUNC_sk_redirect_map:
3550 	case BPF_FUNC_msg_redirect_map:
3551 	case BPF_FUNC_sock_map_update:
3552 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3553 			goto error;
3554 		break;
3555 	case BPF_FUNC_sk_redirect_hash:
3556 	case BPF_FUNC_msg_redirect_hash:
3557 	case BPF_FUNC_sock_hash_update:
3558 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3559 			goto error;
3560 		break;
3561 	case BPF_FUNC_get_local_storage:
3562 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3563 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3564 			goto error;
3565 		break;
3566 	case BPF_FUNC_sk_select_reuseport:
3567 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3568 			goto error;
3569 		break;
3570 	case BPF_FUNC_map_peek_elem:
3571 	case BPF_FUNC_map_pop_elem:
3572 	case BPF_FUNC_map_push_elem:
3573 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3574 		    map->map_type != BPF_MAP_TYPE_STACK)
3575 			goto error;
3576 		break;
3577 	case BPF_FUNC_sk_storage_get:
3578 	case BPF_FUNC_sk_storage_delete:
3579 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3580 			goto error;
3581 		break;
3582 	default:
3583 		break;
3584 	}
3585 
3586 	return 0;
3587 error:
3588 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3589 		map->map_type, func_id_name(func_id), func_id);
3590 	return -EINVAL;
3591 }
3592 
3593 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3594 {
3595 	int count = 0;
3596 
3597 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3598 		count++;
3599 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3600 		count++;
3601 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3602 		count++;
3603 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3604 		count++;
3605 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3606 		count++;
3607 
3608 	/* We only support one arg being in raw mode at the moment,
3609 	 * which is sufficient for the helper functions we have
3610 	 * right now.
3611 	 */
3612 	return count <= 1;
3613 }
3614 
3615 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3616 				    enum bpf_arg_type arg_next)
3617 {
3618 	return (arg_type_is_mem_ptr(arg_curr) &&
3619 	        !arg_type_is_mem_size(arg_next)) ||
3620 	       (!arg_type_is_mem_ptr(arg_curr) &&
3621 		arg_type_is_mem_size(arg_next));
3622 }
3623 
3624 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3625 {
3626 	/* bpf_xxx(..., buf, len) call will access 'len'
3627 	 * bytes from memory 'buf'. Both arg types need
3628 	 * to be paired, so make sure there's no buggy
3629 	 * helper function specification.
3630 	 */
3631 	if (arg_type_is_mem_size(fn->arg1_type) ||
3632 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3633 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3634 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3635 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3636 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3637 		return false;
3638 
3639 	return true;
3640 }
3641 
3642 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3643 {
3644 	int count = 0;
3645 
3646 	if (arg_type_may_be_refcounted(fn->arg1_type))
3647 		count++;
3648 	if (arg_type_may_be_refcounted(fn->arg2_type))
3649 		count++;
3650 	if (arg_type_may_be_refcounted(fn->arg3_type))
3651 		count++;
3652 	if (arg_type_may_be_refcounted(fn->arg4_type))
3653 		count++;
3654 	if (arg_type_may_be_refcounted(fn->arg5_type))
3655 		count++;
3656 
3657 	/* A reference acquiring function cannot acquire
3658 	 * another refcounted ptr.
3659 	 */
3660 	if (is_acquire_function(func_id) && count)
3661 		return false;
3662 
3663 	/* We only support one arg being unreferenced at the moment,
3664 	 * which is sufficient for the helper functions we have right now.
3665 	 */
3666 	return count <= 1;
3667 }
3668 
3669 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3670 {
3671 	return check_raw_mode_ok(fn) &&
3672 	       check_arg_pair_ok(fn) &&
3673 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3674 }
3675 
3676 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3677  * are now invalid, so turn them into unknown SCALAR_VALUE.
3678  */
3679 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3680 				     struct bpf_func_state *state)
3681 {
3682 	struct bpf_reg_state *regs = state->regs, *reg;
3683 	int i;
3684 
3685 	for (i = 0; i < MAX_BPF_REG; i++)
3686 		if (reg_is_pkt_pointer_any(&regs[i]))
3687 			mark_reg_unknown(env, regs, i);
3688 
3689 	bpf_for_each_spilled_reg(i, state, reg) {
3690 		if (!reg)
3691 			continue;
3692 		if (reg_is_pkt_pointer_any(reg))
3693 			__mark_reg_unknown(reg);
3694 	}
3695 }
3696 
3697 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3698 {
3699 	struct bpf_verifier_state *vstate = env->cur_state;
3700 	int i;
3701 
3702 	for (i = 0; i <= vstate->curframe; i++)
3703 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3704 }
3705 
3706 static void release_reg_references(struct bpf_verifier_env *env,
3707 				   struct bpf_func_state *state,
3708 				   int ref_obj_id)
3709 {
3710 	struct bpf_reg_state *regs = state->regs, *reg;
3711 	int i;
3712 
3713 	for (i = 0; i < MAX_BPF_REG; i++)
3714 		if (regs[i].ref_obj_id == ref_obj_id)
3715 			mark_reg_unknown(env, regs, i);
3716 
3717 	bpf_for_each_spilled_reg(i, state, reg) {
3718 		if (!reg)
3719 			continue;
3720 		if (reg->ref_obj_id == ref_obj_id)
3721 			__mark_reg_unknown(reg);
3722 	}
3723 }
3724 
3725 /* The pointer with the specified id has released its reference to kernel
3726  * resources. Identify all copies of the same pointer and clear the reference.
3727  */
3728 static int release_reference(struct bpf_verifier_env *env,
3729 			     int ref_obj_id)
3730 {
3731 	struct bpf_verifier_state *vstate = env->cur_state;
3732 	int err;
3733 	int i;
3734 
3735 	err = release_reference_state(cur_func(env), ref_obj_id);
3736 	if (err)
3737 		return err;
3738 
3739 	for (i = 0; i <= vstate->curframe; i++)
3740 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3741 
3742 	return 0;
3743 }
3744 
3745 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3746 			   int *insn_idx)
3747 {
3748 	struct bpf_verifier_state *state = env->cur_state;
3749 	struct bpf_func_state *caller, *callee;
3750 	int i, err, subprog, target_insn;
3751 
3752 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3753 		verbose(env, "the call stack of %d frames is too deep\n",
3754 			state->curframe + 2);
3755 		return -E2BIG;
3756 	}
3757 
3758 	target_insn = *insn_idx + insn->imm;
3759 	subprog = find_subprog(env, target_insn + 1);
3760 	if (subprog < 0) {
3761 		verbose(env, "verifier bug. No program starts at insn %d\n",
3762 			target_insn + 1);
3763 		return -EFAULT;
3764 	}
3765 
3766 	caller = state->frame[state->curframe];
3767 	if (state->frame[state->curframe + 1]) {
3768 		verbose(env, "verifier bug. Frame %d already allocated\n",
3769 			state->curframe + 1);
3770 		return -EFAULT;
3771 	}
3772 
3773 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3774 	if (!callee)
3775 		return -ENOMEM;
3776 	state->frame[state->curframe + 1] = callee;
3777 
3778 	/* callee cannot access r0, r6 - r9 for reading and has to write
3779 	 * into its own stack before reading from it.
3780 	 * callee can read/write into caller's stack
3781 	 */
3782 	init_func_state(env, callee,
3783 			/* remember the callsite, it will be used by bpf_exit */
3784 			*insn_idx /* callsite */,
3785 			state->curframe + 1 /* frameno within this callchain */,
3786 			subprog /* subprog number within this prog */);
3787 
3788 	/* Transfer references to the callee */
3789 	err = transfer_reference_state(callee, caller);
3790 	if (err)
3791 		return err;
3792 
3793 	/* copy r1 - r5 args that callee can access.  The copy includes parent
3794 	 * pointers, which connects us up to the liveness chain
3795 	 */
3796 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3797 		callee->regs[i] = caller->regs[i];
3798 
3799 	/* after the call registers r0 - r5 were scratched */
3800 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3801 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
3802 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3803 	}
3804 
3805 	/* only increment it after check_reg_arg() finished */
3806 	state->curframe++;
3807 
3808 	/* and go analyze first insn of the callee */
3809 	*insn_idx = target_insn;
3810 
3811 	if (env->log.level & BPF_LOG_LEVEL) {
3812 		verbose(env, "caller:\n");
3813 		print_verifier_state(env, caller);
3814 		verbose(env, "callee:\n");
3815 		print_verifier_state(env, callee);
3816 	}
3817 	return 0;
3818 }
3819 
3820 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3821 {
3822 	struct bpf_verifier_state *state = env->cur_state;
3823 	struct bpf_func_state *caller, *callee;
3824 	struct bpf_reg_state *r0;
3825 	int err;
3826 
3827 	callee = state->frame[state->curframe];
3828 	r0 = &callee->regs[BPF_REG_0];
3829 	if (r0->type == PTR_TO_STACK) {
3830 		/* technically it's ok to return caller's stack pointer
3831 		 * (or caller's caller's pointer) back to the caller,
3832 		 * since these pointers are valid. Only current stack
3833 		 * pointer will be invalid as soon as function exits,
3834 		 * but let's be conservative
3835 		 */
3836 		verbose(env, "cannot return stack pointer to the caller\n");
3837 		return -EINVAL;
3838 	}
3839 
3840 	state->curframe--;
3841 	caller = state->frame[state->curframe];
3842 	/* return to the caller whatever r0 had in the callee */
3843 	caller->regs[BPF_REG_0] = *r0;
3844 
3845 	/* Transfer references to the caller */
3846 	err = transfer_reference_state(caller, callee);
3847 	if (err)
3848 		return err;
3849 
3850 	*insn_idx = callee->callsite + 1;
3851 	if (env->log.level & BPF_LOG_LEVEL) {
3852 		verbose(env, "returning from callee:\n");
3853 		print_verifier_state(env, callee);
3854 		verbose(env, "to caller at %d:\n", *insn_idx);
3855 		print_verifier_state(env, caller);
3856 	}
3857 	/* clear everything in the callee */
3858 	free_func_state(callee);
3859 	state->frame[state->curframe + 1] = NULL;
3860 	return 0;
3861 }
3862 
3863 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3864 				   int func_id,
3865 				   struct bpf_call_arg_meta *meta)
3866 {
3867 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3868 
3869 	if (ret_type != RET_INTEGER ||
3870 	    (func_id != BPF_FUNC_get_stack &&
3871 	     func_id != BPF_FUNC_probe_read_str))
3872 		return;
3873 
3874 	ret_reg->smax_value = meta->msize_smax_value;
3875 	ret_reg->umax_value = meta->msize_umax_value;
3876 	__reg_deduce_bounds(ret_reg);
3877 	__reg_bound_offset(ret_reg);
3878 }
3879 
3880 static int
3881 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3882 		int func_id, int insn_idx)
3883 {
3884 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3885 	struct bpf_map *map = meta->map_ptr;
3886 
3887 	if (func_id != BPF_FUNC_tail_call &&
3888 	    func_id != BPF_FUNC_map_lookup_elem &&
3889 	    func_id != BPF_FUNC_map_update_elem &&
3890 	    func_id != BPF_FUNC_map_delete_elem &&
3891 	    func_id != BPF_FUNC_map_push_elem &&
3892 	    func_id != BPF_FUNC_map_pop_elem &&
3893 	    func_id != BPF_FUNC_map_peek_elem)
3894 		return 0;
3895 
3896 	if (map == NULL) {
3897 		verbose(env, "kernel subsystem misconfigured verifier\n");
3898 		return -EINVAL;
3899 	}
3900 
3901 	/* In case of read-only, some additional restrictions
3902 	 * need to be applied in order to prevent altering the
3903 	 * state of the map from program side.
3904 	 */
3905 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3906 	    (func_id == BPF_FUNC_map_delete_elem ||
3907 	     func_id == BPF_FUNC_map_update_elem ||
3908 	     func_id == BPF_FUNC_map_push_elem ||
3909 	     func_id == BPF_FUNC_map_pop_elem)) {
3910 		verbose(env, "write into map forbidden\n");
3911 		return -EACCES;
3912 	}
3913 
3914 	if (!BPF_MAP_PTR(aux->map_state))
3915 		bpf_map_ptr_store(aux, meta->map_ptr,
3916 				  meta->map_ptr->unpriv_array);
3917 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3918 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3919 				  meta->map_ptr->unpriv_array);
3920 	return 0;
3921 }
3922 
3923 static int check_reference_leak(struct bpf_verifier_env *env)
3924 {
3925 	struct bpf_func_state *state = cur_func(env);
3926 	int i;
3927 
3928 	for (i = 0; i < state->acquired_refs; i++) {
3929 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3930 			state->refs[i].id, state->refs[i].insn_idx);
3931 	}
3932 	return state->acquired_refs ? -EINVAL : 0;
3933 }
3934 
3935 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3936 {
3937 	const struct bpf_func_proto *fn = NULL;
3938 	struct bpf_reg_state *regs;
3939 	struct bpf_call_arg_meta meta;
3940 	bool changes_data;
3941 	int i, err;
3942 
3943 	/* find function prototype */
3944 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3945 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3946 			func_id);
3947 		return -EINVAL;
3948 	}
3949 
3950 	if (env->ops->get_func_proto)
3951 		fn = env->ops->get_func_proto(func_id, env->prog);
3952 	if (!fn) {
3953 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3954 			func_id);
3955 		return -EINVAL;
3956 	}
3957 
3958 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
3959 	if (!env->prog->gpl_compatible && fn->gpl_only) {
3960 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3961 		return -EINVAL;
3962 	}
3963 
3964 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
3965 	changes_data = bpf_helper_changes_pkt_data(fn->func);
3966 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3967 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3968 			func_id_name(func_id), func_id);
3969 		return -EINVAL;
3970 	}
3971 
3972 	memset(&meta, 0, sizeof(meta));
3973 	meta.pkt_access = fn->pkt_access;
3974 
3975 	err = check_func_proto(fn, func_id);
3976 	if (err) {
3977 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3978 			func_id_name(func_id), func_id);
3979 		return err;
3980 	}
3981 
3982 	meta.func_id = func_id;
3983 	/* check args */
3984 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3985 	if (err)
3986 		return err;
3987 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3988 	if (err)
3989 		return err;
3990 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3991 	if (err)
3992 		return err;
3993 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3994 	if (err)
3995 		return err;
3996 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3997 	if (err)
3998 		return err;
3999 
4000 	err = record_func_map(env, &meta, func_id, insn_idx);
4001 	if (err)
4002 		return err;
4003 
4004 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4005 	 * is inferred from register state.
4006 	 */
4007 	for (i = 0; i < meta.access_size; i++) {
4008 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4009 				       BPF_WRITE, -1, false);
4010 		if (err)
4011 			return err;
4012 	}
4013 
4014 	if (func_id == BPF_FUNC_tail_call) {
4015 		err = check_reference_leak(env);
4016 		if (err) {
4017 			verbose(env, "tail_call would lead to reference leak\n");
4018 			return err;
4019 		}
4020 	} else if (is_release_function(func_id)) {
4021 		err = release_reference(env, meta.ref_obj_id);
4022 		if (err) {
4023 			verbose(env, "func %s#%d reference has not been acquired before\n",
4024 				func_id_name(func_id), func_id);
4025 			return err;
4026 		}
4027 	}
4028 
4029 	regs = cur_regs(env);
4030 
4031 	/* check that flags argument in get_local_storage(map, flags) is 0,
4032 	 * this is required because get_local_storage() can't return an error.
4033 	 */
4034 	if (func_id == BPF_FUNC_get_local_storage &&
4035 	    !register_is_null(&regs[BPF_REG_2])) {
4036 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4037 		return -EINVAL;
4038 	}
4039 
4040 	/* reset caller saved regs */
4041 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4042 		mark_reg_not_init(env, regs, caller_saved[i]);
4043 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4044 	}
4045 
4046 	/* helper call returns 64-bit value. */
4047 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4048 
4049 	/* update return register (already marked as written above) */
4050 	if (fn->ret_type == RET_INTEGER) {
4051 		/* sets type to SCALAR_VALUE */
4052 		mark_reg_unknown(env, regs, BPF_REG_0);
4053 	} else if (fn->ret_type == RET_VOID) {
4054 		regs[BPF_REG_0].type = NOT_INIT;
4055 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4056 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4057 		/* There is no offset yet applied, variable or fixed */
4058 		mark_reg_known_zero(env, regs, BPF_REG_0);
4059 		/* remember map_ptr, so that check_map_access()
4060 		 * can check 'value_size' boundary of memory access
4061 		 * to map element returned from bpf_map_lookup_elem()
4062 		 */
4063 		if (meta.map_ptr == NULL) {
4064 			verbose(env,
4065 				"kernel subsystem misconfigured verifier\n");
4066 			return -EINVAL;
4067 		}
4068 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4069 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4070 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4071 			if (map_value_has_spin_lock(meta.map_ptr))
4072 				regs[BPF_REG_0].id = ++env->id_gen;
4073 		} else {
4074 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4075 			regs[BPF_REG_0].id = ++env->id_gen;
4076 		}
4077 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4078 		mark_reg_known_zero(env, regs, BPF_REG_0);
4079 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4080 		regs[BPF_REG_0].id = ++env->id_gen;
4081 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4082 		mark_reg_known_zero(env, regs, BPF_REG_0);
4083 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4084 		regs[BPF_REG_0].id = ++env->id_gen;
4085 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4086 		mark_reg_known_zero(env, regs, BPF_REG_0);
4087 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4088 		regs[BPF_REG_0].id = ++env->id_gen;
4089 	} else {
4090 		verbose(env, "unknown return type %d of func %s#%d\n",
4091 			fn->ret_type, func_id_name(func_id), func_id);
4092 		return -EINVAL;
4093 	}
4094 
4095 	if (is_ptr_cast_function(func_id)) {
4096 		/* For release_reference() */
4097 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4098 	} else if (is_acquire_function(func_id)) {
4099 		int id = acquire_reference_state(env, insn_idx);
4100 
4101 		if (id < 0)
4102 			return id;
4103 		/* For mark_ptr_or_null_reg() */
4104 		regs[BPF_REG_0].id = id;
4105 		/* For release_reference() */
4106 		regs[BPF_REG_0].ref_obj_id = id;
4107 	}
4108 
4109 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4110 
4111 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4112 	if (err)
4113 		return err;
4114 
4115 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4116 		const char *err_str;
4117 
4118 #ifdef CONFIG_PERF_EVENTS
4119 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4120 		err_str = "cannot get callchain buffer for func %s#%d\n";
4121 #else
4122 		err = -ENOTSUPP;
4123 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4124 #endif
4125 		if (err) {
4126 			verbose(env, err_str, func_id_name(func_id), func_id);
4127 			return err;
4128 		}
4129 
4130 		env->prog->has_callchain_buf = true;
4131 	}
4132 
4133 	if (changes_data)
4134 		clear_all_pkt_pointers(env);
4135 	return 0;
4136 }
4137 
4138 static bool signed_add_overflows(s64 a, s64 b)
4139 {
4140 	/* Do the add in u64, where overflow is well-defined */
4141 	s64 res = (s64)((u64)a + (u64)b);
4142 
4143 	if (b < 0)
4144 		return res > a;
4145 	return res < a;
4146 }
4147 
4148 static bool signed_sub_overflows(s64 a, s64 b)
4149 {
4150 	/* Do the sub in u64, where overflow is well-defined */
4151 	s64 res = (s64)((u64)a - (u64)b);
4152 
4153 	if (b < 0)
4154 		return res < a;
4155 	return res > a;
4156 }
4157 
4158 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4159 				  const struct bpf_reg_state *reg,
4160 				  enum bpf_reg_type type)
4161 {
4162 	bool known = tnum_is_const(reg->var_off);
4163 	s64 val = reg->var_off.value;
4164 	s64 smin = reg->smin_value;
4165 
4166 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4167 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4168 			reg_type_str[type], val);
4169 		return false;
4170 	}
4171 
4172 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4173 		verbose(env, "%s pointer offset %d is not allowed\n",
4174 			reg_type_str[type], reg->off);
4175 		return false;
4176 	}
4177 
4178 	if (smin == S64_MIN) {
4179 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4180 			reg_type_str[type]);
4181 		return false;
4182 	}
4183 
4184 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4185 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4186 			smin, reg_type_str[type]);
4187 		return false;
4188 	}
4189 
4190 	return true;
4191 }
4192 
4193 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4194 {
4195 	return &env->insn_aux_data[env->insn_idx];
4196 }
4197 
4198 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4199 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4200 {
4201 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4202 			    (opcode == BPF_SUB && !off_is_neg);
4203 	u32 off;
4204 
4205 	switch (ptr_reg->type) {
4206 	case PTR_TO_STACK:
4207 		/* Indirect variable offset stack access is prohibited in
4208 		 * unprivileged mode so it's not handled here.
4209 		 */
4210 		off = ptr_reg->off + ptr_reg->var_off.value;
4211 		if (mask_to_left)
4212 			*ptr_limit = MAX_BPF_STACK + off;
4213 		else
4214 			*ptr_limit = -off;
4215 		return 0;
4216 	case PTR_TO_MAP_VALUE:
4217 		if (mask_to_left) {
4218 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4219 		} else {
4220 			off = ptr_reg->smin_value + ptr_reg->off;
4221 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4222 		}
4223 		return 0;
4224 	default:
4225 		return -EINVAL;
4226 	}
4227 }
4228 
4229 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4230 				    const struct bpf_insn *insn)
4231 {
4232 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4233 }
4234 
4235 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4236 				       u32 alu_state, u32 alu_limit)
4237 {
4238 	/* If we arrived here from different branches with different
4239 	 * state or limits to sanitize, then this won't work.
4240 	 */
4241 	if (aux->alu_state &&
4242 	    (aux->alu_state != alu_state ||
4243 	     aux->alu_limit != alu_limit))
4244 		return -EACCES;
4245 
4246 	/* Corresponding fixup done in fixup_bpf_calls(). */
4247 	aux->alu_state = alu_state;
4248 	aux->alu_limit = alu_limit;
4249 	return 0;
4250 }
4251 
4252 static int sanitize_val_alu(struct bpf_verifier_env *env,
4253 			    struct bpf_insn *insn)
4254 {
4255 	struct bpf_insn_aux_data *aux = cur_aux(env);
4256 
4257 	if (can_skip_alu_sanitation(env, insn))
4258 		return 0;
4259 
4260 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4261 }
4262 
4263 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4264 			    struct bpf_insn *insn,
4265 			    const struct bpf_reg_state *ptr_reg,
4266 			    struct bpf_reg_state *dst_reg,
4267 			    bool off_is_neg)
4268 {
4269 	struct bpf_verifier_state *vstate = env->cur_state;
4270 	struct bpf_insn_aux_data *aux = cur_aux(env);
4271 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4272 	u8 opcode = BPF_OP(insn->code);
4273 	u32 alu_state, alu_limit;
4274 	struct bpf_reg_state tmp;
4275 	bool ret;
4276 
4277 	if (can_skip_alu_sanitation(env, insn))
4278 		return 0;
4279 
4280 	/* We already marked aux for masking from non-speculative
4281 	 * paths, thus we got here in the first place. We only care
4282 	 * to explore bad access from here.
4283 	 */
4284 	if (vstate->speculative)
4285 		goto do_sim;
4286 
4287 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4288 	alu_state |= ptr_is_dst_reg ?
4289 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4290 
4291 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4292 		return 0;
4293 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4294 		return -EACCES;
4295 do_sim:
4296 	/* Simulate and find potential out-of-bounds access under
4297 	 * speculative execution from truncation as a result of
4298 	 * masking when off was not within expected range. If off
4299 	 * sits in dst, then we temporarily need to move ptr there
4300 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4301 	 * for cases where we use K-based arithmetic in one direction
4302 	 * and truncated reg-based in the other in order to explore
4303 	 * bad access.
4304 	 */
4305 	if (!ptr_is_dst_reg) {
4306 		tmp = *dst_reg;
4307 		*dst_reg = *ptr_reg;
4308 	}
4309 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4310 	if (!ptr_is_dst_reg && ret)
4311 		*dst_reg = tmp;
4312 	return !ret ? -EFAULT : 0;
4313 }
4314 
4315 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4316  * Caller should also handle BPF_MOV case separately.
4317  * If we return -EACCES, caller may want to try again treating pointer as a
4318  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4319  */
4320 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4321 				   struct bpf_insn *insn,
4322 				   const struct bpf_reg_state *ptr_reg,
4323 				   const struct bpf_reg_state *off_reg)
4324 {
4325 	struct bpf_verifier_state *vstate = env->cur_state;
4326 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4327 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4328 	bool known = tnum_is_const(off_reg->var_off);
4329 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4330 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4331 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4332 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4333 	u32 dst = insn->dst_reg, src = insn->src_reg;
4334 	u8 opcode = BPF_OP(insn->code);
4335 	int ret;
4336 
4337 	dst_reg = &regs[dst];
4338 
4339 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4340 	    smin_val > smax_val || umin_val > umax_val) {
4341 		/* Taint dst register if offset had invalid bounds derived from
4342 		 * e.g. dead branches.
4343 		 */
4344 		__mark_reg_unknown(dst_reg);
4345 		return 0;
4346 	}
4347 
4348 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4349 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4350 		verbose(env,
4351 			"R%d 32-bit pointer arithmetic prohibited\n",
4352 			dst);
4353 		return -EACCES;
4354 	}
4355 
4356 	switch (ptr_reg->type) {
4357 	case PTR_TO_MAP_VALUE_OR_NULL:
4358 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4359 			dst, reg_type_str[ptr_reg->type]);
4360 		return -EACCES;
4361 	case CONST_PTR_TO_MAP:
4362 	case PTR_TO_PACKET_END:
4363 	case PTR_TO_SOCKET:
4364 	case PTR_TO_SOCKET_OR_NULL:
4365 	case PTR_TO_SOCK_COMMON:
4366 	case PTR_TO_SOCK_COMMON_OR_NULL:
4367 	case PTR_TO_TCP_SOCK:
4368 	case PTR_TO_TCP_SOCK_OR_NULL:
4369 	case PTR_TO_XDP_SOCK:
4370 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4371 			dst, reg_type_str[ptr_reg->type]);
4372 		return -EACCES;
4373 	case PTR_TO_MAP_VALUE:
4374 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4375 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4376 				off_reg == dst_reg ? dst : src);
4377 			return -EACCES;
4378 		}
4379 		/* fall-through */
4380 	default:
4381 		break;
4382 	}
4383 
4384 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4385 	 * The id may be overwritten later if we create a new variable offset.
4386 	 */
4387 	dst_reg->type = ptr_reg->type;
4388 	dst_reg->id = ptr_reg->id;
4389 
4390 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4391 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4392 		return -EINVAL;
4393 
4394 	switch (opcode) {
4395 	case BPF_ADD:
4396 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4397 		if (ret < 0) {
4398 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4399 			return ret;
4400 		}
4401 		/* We can take a fixed offset as long as it doesn't overflow
4402 		 * the s32 'off' field
4403 		 */
4404 		if (known && (ptr_reg->off + smin_val ==
4405 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4406 			/* pointer += K.  Accumulate it into fixed offset */
4407 			dst_reg->smin_value = smin_ptr;
4408 			dst_reg->smax_value = smax_ptr;
4409 			dst_reg->umin_value = umin_ptr;
4410 			dst_reg->umax_value = umax_ptr;
4411 			dst_reg->var_off = ptr_reg->var_off;
4412 			dst_reg->off = ptr_reg->off + smin_val;
4413 			dst_reg->raw = ptr_reg->raw;
4414 			break;
4415 		}
4416 		/* A new variable offset is created.  Note that off_reg->off
4417 		 * == 0, since it's a scalar.
4418 		 * dst_reg gets the pointer type and since some positive
4419 		 * integer value was added to the pointer, give it a new 'id'
4420 		 * if it's a PTR_TO_PACKET.
4421 		 * this creates a new 'base' pointer, off_reg (variable) gets
4422 		 * added into the variable offset, and we copy the fixed offset
4423 		 * from ptr_reg.
4424 		 */
4425 		if (signed_add_overflows(smin_ptr, smin_val) ||
4426 		    signed_add_overflows(smax_ptr, smax_val)) {
4427 			dst_reg->smin_value = S64_MIN;
4428 			dst_reg->smax_value = S64_MAX;
4429 		} else {
4430 			dst_reg->smin_value = smin_ptr + smin_val;
4431 			dst_reg->smax_value = smax_ptr + smax_val;
4432 		}
4433 		if (umin_ptr + umin_val < umin_ptr ||
4434 		    umax_ptr + umax_val < umax_ptr) {
4435 			dst_reg->umin_value = 0;
4436 			dst_reg->umax_value = U64_MAX;
4437 		} else {
4438 			dst_reg->umin_value = umin_ptr + umin_val;
4439 			dst_reg->umax_value = umax_ptr + umax_val;
4440 		}
4441 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4442 		dst_reg->off = ptr_reg->off;
4443 		dst_reg->raw = ptr_reg->raw;
4444 		if (reg_is_pkt_pointer(ptr_reg)) {
4445 			dst_reg->id = ++env->id_gen;
4446 			/* something was added to pkt_ptr, set range to zero */
4447 			dst_reg->raw = 0;
4448 		}
4449 		break;
4450 	case BPF_SUB:
4451 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4452 		if (ret < 0) {
4453 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4454 			return ret;
4455 		}
4456 		if (dst_reg == off_reg) {
4457 			/* scalar -= pointer.  Creates an unknown scalar */
4458 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4459 				dst);
4460 			return -EACCES;
4461 		}
4462 		/* We don't allow subtraction from FP, because (according to
4463 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4464 		 * be able to deal with it.
4465 		 */
4466 		if (ptr_reg->type == PTR_TO_STACK) {
4467 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4468 				dst);
4469 			return -EACCES;
4470 		}
4471 		if (known && (ptr_reg->off - smin_val ==
4472 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4473 			/* pointer -= K.  Subtract it from fixed offset */
4474 			dst_reg->smin_value = smin_ptr;
4475 			dst_reg->smax_value = smax_ptr;
4476 			dst_reg->umin_value = umin_ptr;
4477 			dst_reg->umax_value = umax_ptr;
4478 			dst_reg->var_off = ptr_reg->var_off;
4479 			dst_reg->id = ptr_reg->id;
4480 			dst_reg->off = ptr_reg->off - smin_val;
4481 			dst_reg->raw = ptr_reg->raw;
4482 			break;
4483 		}
4484 		/* A new variable offset is created.  If the subtrahend is known
4485 		 * nonnegative, then any reg->range we had before is still good.
4486 		 */
4487 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4488 		    signed_sub_overflows(smax_ptr, smin_val)) {
4489 			/* Overflow possible, we know nothing */
4490 			dst_reg->smin_value = S64_MIN;
4491 			dst_reg->smax_value = S64_MAX;
4492 		} else {
4493 			dst_reg->smin_value = smin_ptr - smax_val;
4494 			dst_reg->smax_value = smax_ptr - smin_val;
4495 		}
4496 		if (umin_ptr < umax_val) {
4497 			/* Overflow possible, we know nothing */
4498 			dst_reg->umin_value = 0;
4499 			dst_reg->umax_value = U64_MAX;
4500 		} else {
4501 			/* Cannot overflow (as long as bounds are consistent) */
4502 			dst_reg->umin_value = umin_ptr - umax_val;
4503 			dst_reg->umax_value = umax_ptr - umin_val;
4504 		}
4505 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4506 		dst_reg->off = ptr_reg->off;
4507 		dst_reg->raw = ptr_reg->raw;
4508 		if (reg_is_pkt_pointer(ptr_reg)) {
4509 			dst_reg->id = ++env->id_gen;
4510 			/* something was added to pkt_ptr, set range to zero */
4511 			if (smin_val < 0)
4512 				dst_reg->raw = 0;
4513 		}
4514 		break;
4515 	case BPF_AND:
4516 	case BPF_OR:
4517 	case BPF_XOR:
4518 		/* bitwise ops on pointers are troublesome, prohibit. */
4519 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4520 			dst, bpf_alu_string[opcode >> 4]);
4521 		return -EACCES;
4522 	default:
4523 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4524 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4525 			dst, bpf_alu_string[opcode >> 4]);
4526 		return -EACCES;
4527 	}
4528 
4529 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4530 		return -EINVAL;
4531 
4532 	__update_reg_bounds(dst_reg);
4533 	__reg_deduce_bounds(dst_reg);
4534 	__reg_bound_offset(dst_reg);
4535 
4536 	/* For unprivileged we require that resulting offset must be in bounds
4537 	 * in order to be able to sanitize access later on.
4538 	 */
4539 	if (!env->allow_ptr_leaks) {
4540 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4541 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4542 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4543 				"prohibited for !root\n", dst);
4544 			return -EACCES;
4545 		} else if (dst_reg->type == PTR_TO_STACK &&
4546 			   check_stack_access(env, dst_reg, dst_reg->off +
4547 					      dst_reg->var_off.value, 1)) {
4548 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4549 				"prohibited for !root\n", dst);
4550 			return -EACCES;
4551 		}
4552 	}
4553 
4554 	return 0;
4555 }
4556 
4557 /* WARNING: This function does calculations on 64-bit values, but the actual
4558  * execution may occur on 32-bit values. Therefore, things like bitshifts
4559  * need extra checks in the 32-bit case.
4560  */
4561 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4562 				      struct bpf_insn *insn,
4563 				      struct bpf_reg_state *dst_reg,
4564 				      struct bpf_reg_state src_reg)
4565 {
4566 	struct bpf_reg_state *regs = cur_regs(env);
4567 	u8 opcode = BPF_OP(insn->code);
4568 	bool src_known, dst_known;
4569 	s64 smin_val, smax_val;
4570 	u64 umin_val, umax_val;
4571 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4572 	u32 dst = insn->dst_reg;
4573 	int ret;
4574 
4575 	if (insn_bitness == 32) {
4576 		/* Relevant for 32-bit RSH: Information can propagate towards
4577 		 * LSB, so it isn't sufficient to only truncate the output to
4578 		 * 32 bits.
4579 		 */
4580 		coerce_reg_to_size(dst_reg, 4);
4581 		coerce_reg_to_size(&src_reg, 4);
4582 	}
4583 
4584 	smin_val = src_reg.smin_value;
4585 	smax_val = src_reg.smax_value;
4586 	umin_val = src_reg.umin_value;
4587 	umax_val = src_reg.umax_value;
4588 	src_known = tnum_is_const(src_reg.var_off);
4589 	dst_known = tnum_is_const(dst_reg->var_off);
4590 
4591 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4592 	    smin_val > smax_val || umin_val > umax_val) {
4593 		/* Taint dst register if offset had invalid bounds derived from
4594 		 * e.g. dead branches.
4595 		 */
4596 		__mark_reg_unknown(dst_reg);
4597 		return 0;
4598 	}
4599 
4600 	if (!src_known &&
4601 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4602 		__mark_reg_unknown(dst_reg);
4603 		return 0;
4604 	}
4605 
4606 	switch (opcode) {
4607 	case BPF_ADD:
4608 		ret = sanitize_val_alu(env, insn);
4609 		if (ret < 0) {
4610 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4611 			return ret;
4612 		}
4613 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4614 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4615 			dst_reg->smin_value = S64_MIN;
4616 			dst_reg->smax_value = S64_MAX;
4617 		} else {
4618 			dst_reg->smin_value += smin_val;
4619 			dst_reg->smax_value += smax_val;
4620 		}
4621 		if (dst_reg->umin_value + umin_val < umin_val ||
4622 		    dst_reg->umax_value + umax_val < umax_val) {
4623 			dst_reg->umin_value = 0;
4624 			dst_reg->umax_value = U64_MAX;
4625 		} else {
4626 			dst_reg->umin_value += umin_val;
4627 			dst_reg->umax_value += umax_val;
4628 		}
4629 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4630 		break;
4631 	case BPF_SUB:
4632 		ret = sanitize_val_alu(env, insn);
4633 		if (ret < 0) {
4634 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4635 			return ret;
4636 		}
4637 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4638 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4639 			/* Overflow possible, we know nothing */
4640 			dst_reg->smin_value = S64_MIN;
4641 			dst_reg->smax_value = S64_MAX;
4642 		} else {
4643 			dst_reg->smin_value -= smax_val;
4644 			dst_reg->smax_value -= smin_val;
4645 		}
4646 		if (dst_reg->umin_value < umax_val) {
4647 			/* Overflow possible, we know nothing */
4648 			dst_reg->umin_value = 0;
4649 			dst_reg->umax_value = U64_MAX;
4650 		} else {
4651 			/* Cannot overflow (as long as bounds are consistent) */
4652 			dst_reg->umin_value -= umax_val;
4653 			dst_reg->umax_value -= umin_val;
4654 		}
4655 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4656 		break;
4657 	case BPF_MUL:
4658 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4659 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4660 			/* Ain't nobody got time to multiply that sign */
4661 			__mark_reg_unbounded(dst_reg);
4662 			__update_reg_bounds(dst_reg);
4663 			break;
4664 		}
4665 		/* Both values are positive, so we can work with unsigned and
4666 		 * copy the result to signed (unless it exceeds S64_MAX).
4667 		 */
4668 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4669 			/* Potential overflow, we know nothing */
4670 			__mark_reg_unbounded(dst_reg);
4671 			/* (except what we can learn from the var_off) */
4672 			__update_reg_bounds(dst_reg);
4673 			break;
4674 		}
4675 		dst_reg->umin_value *= umin_val;
4676 		dst_reg->umax_value *= umax_val;
4677 		if (dst_reg->umax_value > S64_MAX) {
4678 			/* Overflow possible, we know nothing */
4679 			dst_reg->smin_value = S64_MIN;
4680 			dst_reg->smax_value = S64_MAX;
4681 		} else {
4682 			dst_reg->smin_value = dst_reg->umin_value;
4683 			dst_reg->smax_value = dst_reg->umax_value;
4684 		}
4685 		break;
4686 	case BPF_AND:
4687 		if (src_known && dst_known) {
4688 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4689 						  src_reg.var_off.value);
4690 			break;
4691 		}
4692 		/* We get our minimum from the var_off, since that's inherently
4693 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4694 		 */
4695 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4696 		dst_reg->umin_value = dst_reg->var_off.value;
4697 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4698 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4699 			/* Lose signed bounds when ANDing negative numbers,
4700 			 * ain't nobody got time for that.
4701 			 */
4702 			dst_reg->smin_value = S64_MIN;
4703 			dst_reg->smax_value = S64_MAX;
4704 		} else {
4705 			/* ANDing two positives gives a positive, so safe to
4706 			 * cast result into s64.
4707 			 */
4708 			dst_reg->smin_value = dst_reg->umin_value;
4709 			dst_reg->smax_value = dst_reg->umax_value;
4710 		}
4711 		/* We may learn something more from the var_off */
4712 		__update_reg_bounds(dst_reg);
4713 		break;
4714 	case BPF_OR:
4715 		if (src_known && dst_known) {
4716 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4717 						  src_reg.var_off.value);
4718 			break;
4719 		}
4720 		/* We get our maximum from the var_off, and our minimum is the
4721 		 * maximum of the operands' minima
4722 		 */
4723 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4724 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4725 		dst_reg->umax_value = dst_reg->var_off.value |
4726 				      dst_reg->var_off.mask;
4727 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4728 			/* Lose signed bounds when ORing negative numbers,
4729 			 * ain't nobody got time for that.
4730 			 */
4731 			dst_reg->smin_value = S64_MIN;
4732 			dst_reg->smax_value = S64_MAX;
4733 		} else {
4734 			/* ORing two positives gives a positive, so safe to
4735 			 * cast result into s64.
4736 			 */
4737 			dst_reg->smin_value = dst_reg->umin_value;
4738 			dst_reg->smax_value = dst_reg->umax_value;
4739 		}
4740 		/* We may learn something more from the var_off */
4741 		__update_reg_bounds(dst_reg);
4742 		break;
4743 	case BPF_LSH:
4744 		if (umax_val >= insn_bitness) {
4745 			/* Shifts greater than 31 or 63 are undefined.
4746 			 * This includes shifts by a negative number.
4747 			 */
4748 			mark_reg_unknown(env, regs, insn->dst_reg);
4749 			break;
4750 		}
4751 		/* We lose all sign bit information (except what we can pick
4752 		 * up from var_off)
4753 		 */
4754 		dst_reg->smin_value = S64_MIN;
4755 		dst_reg->smax_value = S64_MAX;
4756 		/* If we might shift our top bit out, then we know nothing */
4757 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4758 			dst_reg->umin_value = 0;
4759 			dst_reg->umax_value = U64_MAX;
4760 		} else {
4761 			dst_reg->umin_value <<= umin_val;
4762 			dst_reg->umax_value <<= umax_val;
4763 		}
4764 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4765 		/* We may learn something more from the var_off */
4766 		__update_reg_bounds(dst_reg);
4767 		break;
4768 	case BPF_RSH:
4769 		if (umax_val >= insn_bitness) {
4770 			/* Shifts greater than 31 or 63 are undefined.
4771 			 * This includes shifts by a negative number.
4772 			 */
4773 			mark_reg_unknown(env, regs, insn->dst_reg);
4774 			break;
4775 		}
4776 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
4777 		 * be negative, then either:
4778 		 * 1) src_reg might be zero, so the sign bit of the result is
4779 		 *    unknown, so we lose our signed bounds
4780 		 * 2) it's known negative, thus the unsigned bounds capture the
4781 		 *    signed bounds
4782 		 * 3) the signed bounds cross zero, so they tell us nothing
4783 		 *    about the result
4784 		 * If the value in dst_reg is known nonnegative, then again the
4785 		 * unsigned bounts capture the signed bounds.
4786 		 * Thus, in all cases it suffices to blow away our signed bounds
4787 		 * and rely on inferring new ones from the unsigned bounds and
4788 		 * var_off of the result.
4789 		 */
4790 		dst_reg->smin_value = S64_MIN;
4791 		dst_reg->smax_value = S64_MAX;
4792 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4793 		dst_reg->umin_value >>= umax_val;
4794 		dst_reg->umax_value >>= umin_val;
4795 		/* We may learn something more from the var_off */
4796 		__update_reg_bounds(dst_reg);
4797 		break;
4798 	case BPF_ARSH:
4799 		if (umax_val >= insn_bitness) {
4800 			/* Shifts greater than 31 or 63 are undefined.
4801 			 * This includes shifts by a negative number.
4802 			 */
4803 			mark_reg_unknown(env, regs, insn->dst_reg);
4804 			break;
4805 		}
4806 
4807 		/* Upon reaching here, src_known is true and
4808 		 * umax_val is equal to umin_val.
4809 		 */
4810 		dst_reg->smin_value >>= umin_val;
4811 		dst_reg->smax_value >>= umin_val;
4812 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4813 
4814 		/* blow away the dst_reg umin_value/umax_value and rely on
4815 		 * dst_reg var_off to refine the result.
4816 		 */
4817 		dst_reg->umin_value = 0;
4818 		dst_reg->umax_value = U64_MAX;
4819 		__update_reg_bounds(dst_reg);
4820 		break;
4821 	default:
4822 		mark_reg_unknown(env, regs, insn->dst_reg);
4823 		break;
4824 	}
4825 
4826 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4827 		/* 32-bit ALU ops are (32,32)->32 */
4828 		coerce_reg_to_size(dst_reg, 4);
4829 	}
4830 
4831 	__reg_deduce_bounds(dst_reg);
4832 	__reg_bound_offset(dst_reg);
4833 	return 0;
4834 }
4835 
4836 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4837  * and var_off.
4838  */
4839 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4840 				   struct bpf_insn *insn)
4841 {
4842 	struct bpf_verifier_state *vstate = env->cur_state;
4843 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4844 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4845 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4846 	u8 opcode = BPF_OP(insn->code);
4847 	int err;
4848 
4849 	dst_reg = &regs[insn->dst_reg];
4850 	src_reg = NULL;
4851 	if (dst_reg->type != SCALAR_VALUE)
4852 		ptr_reg = dst_reg;
4853 	if (BPF_SRC(insn->code) == BPF_X) {
4854 		src_reg = &regs[insn->src_reg];
4855 		if (src_reg->type != SCALAR_VALUE) {
4856 			if (dst_reg->type != SCALAR_VALUE) {
4857 				/* Combining two pointers by any ALU op yields
4858 				 * an arbitrary scalar. Disallow all math except
4859 				 * pointer subtraction
4860 				 */
4861 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4862 					mark_reg_unknown(env, regs, insn->dst_reg);
4863 					return 0;
4864 				}
4865 				verbose(env, "R%d pointer %s pointer prohibited\n",
4866 					insn->dst_reg,
4867 					bpf_alu_string[opcode >> 4]);
4868 				return -EACCES;
4869 			} else {
4870 				/* scalar += pointer
4871 				 * This is legal, but we have to reverse our
4872 				 * src/dest handling in computing the range
4873 				 */
4874 				err = mark_chain_precision(env, insn->dst_reg);
4875 				if (err)
4876 					return err;
4877 				return adjust_ptr_min_max_vals(env, insn,
4878 							       src_reg, dst_reg);
4879 			}
4880 		} else if (ptr_reg) {
4881 			/* pointer += scalar */
4882 			err = mark_chain_precision(env, insn->src_reg);
4883 			if (err)
4884 				return err;
4885 			return adjust_ptr_min_max_vals(env, insn,
4886 						       dst_reg, src_reg);
4887 		}
4888 	} else {
4889 		/* Pretend the src is a reg with a known value, since we only
4890 		 * need to be able to read from this state.
4891 		 */
4892 		off_reg.type = SCALAR_VALUE;
4893 		__mark_reg_known(&off_reg, insn->imm);
4894 		src_reg = &off_reg;
4895 		if (ptr_reg) /* pointer += K */
4896 			return adjust_ptr_min_max_vals(env, insn,
4897 						       ptr_reg, src_reg);
4898 	}
4899 
4900 	/* Got here implies adding two SCALAR_VALUEs */
4901 	if (WARN_ON_ONCE(ptr_reg)) {
4902 		print_verifier_state(env, state);
4903 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
4904 		return -EINVAL;
4905 	}
4906 	if (WARN_ON(!src_reg)) {
4907 		print_verifier_state(env, state);
4908 		verbose(env, "verifier internal error: no src_reg\n");
4909 		return -EINVAL;
4910 	}
4911 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4912 }
4913 
4914 /* check validity of 32-bit and 64-bit arithmetic operations */
4915 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4916 {
4917 	struct bpf_reg_state *regs = cur_regs(env);
4918 	u8 opcode = BPF_OP(insn->code);
4919 	int err;
4920 
4921 	if (opcode == BPF_END || opcode == BPF_NEG) {
4922 		if (opcode == BPF_NEG) {
4923 			if (BPF_SRC(insn->code) != 0 ||
4924 			    insn->src_reg != BPF_REG_0 ||
4925 			    insn->off != 0 || insn->imm != 0) {
4926 				verbose(env, "BPF_NEG uses reserved fields\n");
4927 				return -EINVAL;
4928 			}
4929 		} else {
4930 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4931 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4932 			    BPF_CLASS(insn->code) == BPF_ALU64) {
4933 				verbose(env, "BPF_END uses reserved fields\n");
4934 				return -EINVAL;
4935 			}
4936 		}
4937 
4938 		/* check src operand */
4939 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4940 		if (err)
4941 			return err;
4942 
4943 		if (is_pointer_value(env, insn->dst_reg)) {
4944 			verbose(env, "R%d pointer arithmetic prohibited\n",
4945 				insn->dst_reg);
4946 			return -EACCES;
4947 		}
4948 
4949 		/* check dest operand */
4950 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
4951 		if (err)
4952 			return err;
4953 
4954 	} else if (opcode == BPF_MOV) {
4955 
4956 		if (BPF_SRC(insn->code) == BPF_X) {
4957 			if (insn->imm != 0 || insn->off != 0) {
4958 				verbose(env, "BPF_MOV uses reserved fields\n");
4959 				return -EINVAL;
4960 			}
4961 
4962 			/* check src operand */
4963 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4964 			if (err)
4965 				return err;
4966 		} else {
4967 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4968 				verbose(env, "BPF_MOV uses reserved fields\n");
4969 				return -EINVAL;
4970 			}
4971 		}
4972 
4973 		/* check dest operand, mark as required later */
4974 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4975 		if (err)
4976 			return err;
4977 
4978 		if (BPF_SRC(insn->code) == BPF_X) {
4979 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
4980 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4981 
4982 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
4983 				/* case: R1 = R2
4984 				 * copy register state to dest reg
4985 				 */
4986 				*dst_reg = *src_reg;
4987 				dst_reg->live |= REG_LIVE_WRITTEN;
4988 				dst_reg->subreg_def = DEF_NOT_SUBREG;
4989 			} else {
4990 				/* R1 = (u32) R2 */
4991 				if (is_pointer_value(env, insn->src_reg)) {
4992 					verbose(env,
4993 						"R%d partial copy of pointer\n",
4994 						insn->src_reg);
4995 					return -EACCES;
4996 				} else if (src_reg->type == SCALAR_VALUE) {
4997 					*dst_reg = *src_reg;
4998 					dst_reg->live |= REG_LIVE_WRITTEN;
4999 					dst_reg->subreg_def = env->insn_idx + 1;
5000 				} else {
5001 					mark_reg_unknown(env, regs,
5002 							 insn->dst_reg);
5003 				}
5004 				coerce_reg_to_size(dst_reg, 4);
5005 			}
5006 		} else {
5007 			/* case: R = imm
5008 			 * remember the value we stored into this reg
5009 			 */
5010 			/* clear any state __mark_reg_known doesn't set */
5011 			mark_reg_unknown(env, regs, insn->dst_reg);
5012 			regs[insn->dst_reg].type = SCALAR_VALUE;
5013 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5014 				__mark_reg_known(regs + insn->dst_reg,
5015 						 insn->imm);
5016 			} else {
5017 				__mark_reg_known(regs + insn->dst_reg,
5018 						 (u32)insn->imm);
5019 			}
5020 		}
5021 
5022 	} else if (opcode > BPF_END) {
5023 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5024 		return -EINVAL;
5025 
5026 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5027 
5028 		if (BPF_SRC(insn->code) == BPF_X) {
5029 			if (insn->imm != 0 || insn->off != 0) {
5030 				verbose(env, "BPF_ALU uses reserved fields\n");
5031 				return -EINVAL;
5032 			}
5033 			/* check src1 operand */
5034 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5035 			if (err)
5036 				return err;
5037 		} else {
5038 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5039 				verbose(env, "BPF_ALU uses reserved fields\n");
5040 				return -EINVAL;
5041 			}
5042 		}
5043 
5044 		/* check src2 operand */
5045 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5046 		if (err)
5047 			return err;
5048 
5049 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5050 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5051 			verbose(env, "div by zero\n");
5052 			return -EINVAL;
5053 		}
5054 
5055 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5056 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5057 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5058 
5059 			if (insn->imm < 0 || insn->imm >= size) {
5060 				verbose(env, "invalid shift %d\n", insn->imm);
5061 				return -EINVAL;
5062 			}
5063 		}
5064 
5065 		/* check dest operand */
5066 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5067 		if (err)
5068 			return err;
5069 
5070 		return adjust_reg_min_max_vals(env, insn);
5071 	}
5072 
5073 	return 0;
5074 }
5075 
5076 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5077 				     struct bpf_reg_state *dst_reg,
5078 				     enum bpf_reg_type type, u16 new_range)
5079 {
5080 	struct bpf_reg_state *reg;
5081 	int i;
5082 
5083 	for (i = 0; i < MAX_BPF_REG; i++) {
5084 		reg = &state->regs[i];
5085 		if (reg->type == type && reg->id == dst_reg->id)
5086 			/* keep the maximum range already checked */
5087 			reg->range = max(reg->range, new_range);
5088 	}
5089 
5090 	bpf_for_each_spilled_reg(i, state, reg) {
5091 		if (!reg)
5092 			continue;
5093 		if (reg->type == type && reg->id == dst_reg->id)
5094 			reg->range = max(reg->range, new_range);
5095 	}
5096 }
5097 
5098 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5099 				   struct bpf_reg_state *dst_reg,
5100 				   enum bpf_reg_type type,
5101 				   bool range_right_open)
5102 {
5103 	u16 new_range;
5104 	int i;
5105 
5106 	if (dst_reg->off < 0 ||
5107 	    (dst_reg->off == 0 && range_right_open))
5108 		/* This doesn't give us any range */
5109 		return;
5110 
5111 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5112 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5113 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5114 		 * than pkt_end, but that's because it's also less than pkt.
5115 		 */
5116 		return;
5117 
5118 	new_range = dst_reg->off;
5119 	if (range_right_open)
5120 		new_range--;
5121 
5122 	/* Examples for register markings:
5123 	 *
5124 	 * pkt_data in dst register:
5125 	 *
5126 	 *   r2 = r3;
5127 	 *   r2 += 8;
5128 	 *   if (r2 > pkt_end) goto <handle exception>
5129 	 *   <access okay>
5130 	 *
5131 	 *   r2 = r3;
5132 	 *   r2 += 8;
5133 	 *   if (r2 < pkt_end) goto <access okay>
5134 	 *   <handle exception>
5135 	 *
5136 	 *   Where:
5137 	 *     r2 == dst_reg, pkt_end == src_reg
5138 	 *     r2=pkt(id=n,off=8,r=0)
5139 	 *     r3=pkt(id=n,off=0,r=0)
5140 	 *
5141 	 * pkt_data in src register:
5142 	 *
5143 	 *   r2 = r3;
5144 	 *   r2 += 8;
5145 	 *   if (pkt_end >= r2) goto <access okay>
5146 	 *   <handle exception>
5147 	 *
5148 	 *   r2 = r3;
5149 	 *   r2 += 8;
5150 	 *   if (pkt_end <= r2) goto <handle exception>
5151 	 *   <access okay>
5152 	 *
5153 	 *   Where:
5154 	 *     pkt_end == dst_reg, r2 == src_reg
5155 	 *     r2=pkt(id=n,off=8,r=0)
5156 	 *     r3=pkt(id=n,off=0,r=0)
5157 	 *
5158 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5159 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5160 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5161 	 * the check.
5162 	 */
5163 
5164 	/* If our ids match, then we must have the same max_value.  And we
5165 	 * don't care about the other reg's fixed offset, since if it's too big
5166 	 * the range won't allow anything.
5167 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5168 	 */
5169 	for (i = 0; i <= vstate->curframe; i++)
5170 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5171 					 new_range);
5172 }
5173 
5174 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5175  * and return:
5176  *  1 - branch will be taken and "goto target" will be executed
5177  *  0 - branch will not be taken and fall-through to next insn
5178  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5179  */
5180 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5181 			   bool is_jmp32)
5182 {
5183 	struct bpf_reg_state reg_lo;
5184 	s64 sval;
5185 
5186 	if (__is_pointer_value(false, reg))
5187 		return -1;
5188 
5189 	if (is_jmp32) {
5190 		reg_lo = *reg;
5191 		reg = &reg_lo;
5192 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5193 		 * could truncate high bits and update umin/umax according to
5194 		 * information of low bits.
5195 		 */
5196 		coerce_reg_to_size(reg, 4);
5197 		/* smin/smax need special handling. For example, after coerce,
5198 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5199 		 * used as operand to JMP32. It is a negative number from s32's
5200 		 * point of view, while it is a positive number when seen as
5201 		 * s64. The smin/smax are kept as s64, therefore, when used with
5202 		 * JMP32, they need to be transformed into s32, then sign
5203 		 * extended back to s64.
5204 		 *
5205 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5206 		 * different sign bit, then min/max relationship doesn't
5207 		 * maintain after casting into s32, for this case, set smin/smax
5208 		 * to safest range.
5209 		 */
5210 		if ((reg->umax_value ^ reg->umin_value) &
5211 		    (1ULL << 31)) {
5212 			reg->smin_value = S32_MIN;
5213 			reg->smax_value = S32_MAX;
5214 		}
5215 		reg->smin_value = (s64)(s32)reg->smin_value;
5216 		reg->smax_value = (s64)(s32)reg->smax_value;
5217 
5218 		val = (u32)val;
5219 		sval = (s64)(s32)val;
5220 	} else {
5221 		sval = (s64)val;
5222 	}
5223 
5224 	switch (opcode) {
5225 	case BPF_JEQ:
5226 		if (tnum_is_const(reg->var_off))
5227 			return !!tnum_equals_const(reg->var_off, val);
5228 		break;
5229 	case BPF_JNE:
5230 		if (tnum_is_const(reg->var_off))
5231 			return !tnum_equals_const(reg->var_off, val);
5232 		break;
5233 	case BPF_JSET:
5234 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5235 			return 1;
5236 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5237 			return 0;
5238 		break;
5239 	case BPF_JGT:
5240 		if (reg->umin_value > val)
5241 			return 1;
5242 		else if (reg->umax_value <= val)
5243 			return 0;
5244 		break;
5245 	case BPF_JSGT:
5246 		if (reg->smin_value > sval)
5247 			return 1;
5248 		else if (reg->smax_value < sval)
5249 			return 0;
5250 		break;
5251 	case BPF_JLT:
5252 		if (reg->umax_value < val)
5253 			return 1;
5254 		else if (reg->umin_value >= val)
5255 			return 0;
5256 		break;
5257 	case BPF_JSLT:
5258 		if (reg->smax_value < sval)
5259 			return 1;
5260 		else if (reg->smin_value >= sval)
5261 			return 0;
5262 		break;
5263 	case BPF_JGE:
5264 		if (reg->umin_value >= val)
5265 			return 1;
5266 		else if (reg->umax_value < val)
5267 			return 0;
5268 		break;
5269 	case BPF_JSGE:
5270 		if (reg->smin_value >= sval)
5271 			return 1;
5272 		else if (reg->smax_value < sval)
5273 			return 0;
5274 		break;
5275 	case BPF_JLE:
5276 		if (reg->umax_value <= val)
5277 			return 1;
5278 		else if (reg->umin_value > val)
5279 			return 0;
5280 		break;
5281 	case BPF_JSLE:
5282 		if (reg->smax_value <= sval)
5283 			return 1;
5284 		else if (reg->smin_value > sval)
5285 			return 0;
5286 		break;
5287 	}
5288 
5289 	return -1;
5290 }
5291 
5292 /* Generate min value of the high 32-bit from TNUM info. */
5293 static u64 gen_hi_min(struct tnum var)
5294 {
5295 	return var.value & ~0xffffffffULL;
5296 }
5297 
5298 /* Generate max value of the high 32-bit from TNUM info. */
5299 static u64 gen_hi_max(struct tnum var)
5300 {
5301 	return (var.value | var.mask) & ~0xffffffffULL;
5302 }
5303 
5304 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5305  * are with the same signedness.
5306  */
5307 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5308 {
5309 	return ((s32)sval >= 0 &&
5310 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5311 	       ((s32)sval < 0 &&
5312 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5313 }
5314 
5315 /* Adjusts the register min/max values in the case that the dst_reg is the
5316  * variable register that we are working on, and src_reg is a constant or we're
5317  * simply doing a BPF_K check.
5318  * In JEQ/JNE cases we also adjust the var_off values.
5319  */
5320 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5321 			    struct bpf_reg_state *false_reg, u64 val,
5322 			    u8 opcode, bool is_jmp32)
5323 {
5324 	s64 sval;
5325 
5326 	/* If the dst_reg is a pointer, we can't learn anything about its
5327 	 * variable offset from the compare (unless src_reg were a pointer into
5328 	 * the same object, but we don't bother with that.
5329 	 * Since false_reg and true_reg have the same type by construction, we
5330 	 * only need to check one of them for pointerness.
5331 	 */
5332 	if (__is_pointer_value(false, false_reg))
5333 		return;
5334 
5335 	val = is_jmp32 ? (u32)val : val;
5336 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5337 
5338 	switch (opcode) {
5339 	case BPF_JEQ:
5340 	case BPF_JNE:
5341 	{
5342 		struct bpf_reg_state *reg =
5343 			opcode == BPF_JEQ ? true_reg : false_reg;
5344 
5345 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5346 		 * if it is true we know the value for sure. Likewise for
5347 		 * BPF_JNE.
5348 		 */
5349 		if (is_jmp32) {
5350 			u64 old_v = reg->var_off.value;
5351 			u64 hi_mask = ~0xffffffffULL;
5352 
5353 			reg->var_off.value = (old_v & hi_mask) | val;
5354 			reg->var_off.mask &= hi_mask;
5355 		} else {
5356 			__mark_reg_known(reg, val);
5357 		}
5358 		break;
5359 	}
5360 	case BPF_JSET:
5361 		false_reg->var_off = tnum_and(false_reg->var_off,
5362 					      tnum_const(~val));
5363 		if (is_power_of_2(val))
5364 			true_reg->var_off = tnum_or(true_reg->var_off,
5365 						    tnum_const(val));
5366 		break;
5367 	case BPF_JGE:
5368 	case BPF_JGT:
5369 	{
5370 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5371 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5372 
5373 		if (is_jmp32) {
5374 			false_umax += gen_hi_max(false_reg->var_off);
5375 			true_umin += gen_hi_min(true_reg->var_off);
5376 		}
5377 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5378 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5379 		break;
5380 	}
5381 	case BPF_JSGE:
5382 	case BPF_JSGT:
5383 	{
5384 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5385 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5386 
5387 		/* If the full s64 was not sign-extended from s32 then don't
5388 		 * deduct further info.
5389 		 */
5390 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5391 			break;
5392 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5393 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5394 		break;
5395 	}
5396 	case BPF_JLE:
5397 	case BPF_JLT:
5398 	{
5399 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5400 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5401 
5402 		if (is_jmp32) {
5403 			false_umin += gen_hi_min(false_reg->var_off);
5404 			true_umax += gen_hi_max(true_reg->var_off);
5405 		}
5406 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5407 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5408 		break;
5409 	}
5410 	case BPF_JSLE:
5411 	case BPF_JSLT:
5412 	{
5413 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5414 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5415 
5416 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5417 			break;
5418 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5419 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5420 		break;
5421 	}
5422 	default:
5423 		break;
5424 	}
5425 
5426 	__reg_deduce_bounds(false_reg);
5427 	__reg_deduce_bounds(true_reg);
5428 	/* We might have learned some bits from the bounds. */
5429 	__reg_bound_offset(false_reg);
5430 	__reg_bound_offset(true_reg);
5431 	/* Intersecting with the old var_off might have improved our bounds
5432 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5433 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5434 	 */
5435 	__update_reg_bounds(false_reg);
5436 	__update_reg_bounds(true_reg);
5437 }
5438 
5439 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5440  * the variable reg.
5441  */
5442 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5443 				struct bpf_reg_state *false_reg, u64 val,
5444 				u8 opcode, bool is_jmp32)
5445 {
5446 	s64 sval;
5447 
5448 	if (__is_pointer_value(false, false_reg))
5449 		return;
5450 
5451 	val = is_jmp32 ? (u32)val : val;
5452 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5453 
5454 	switch (opcode) {
5455 	case BPF_JEQ:
5456 	case BPF_JNE:
5457 	{
5458 		struct bpf_reg_state *reg =
5459 			opcode == BPF_JEQ ? true_reg : false_reg;
5460 
5461 		if (is_jmp32) {
5462 			u64 old_v = reg->var_off.value;
5463 			u64 hi_mask = ~0xffffffffULL;
5464 
5465 			reg->var_off.value = (old_v & hi_mask) | val;
5466 			reg->var_off.mask &= hi_mask;
5467 		} else {
5468 			__mark_reg_known(reg, val);
5469 		}
5470 		break;
5471 	}
5472 	case BPF_JSET:
5473 		false_reg->var_off = tnum_and(false_reg->var_off,
5474 					      tnum_const(~val));
5475 		if (is_power_of_2(val))
5476 			true_reg->var_off = tnum_or(true_reg->var_off,
5477 						    tnum_const(val));
5478 		break;
5479 	case BPF_JGE:
5480 	case BPF_JGT:
5481 	{
5482 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5483 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5484 
5485 		if (is_jmp32) {
5486 			false_umin += gen_hi_min(false_reg->var_off);
5487 			true_umax += gen_hi_max(true_reg->var_off);
5488 		}
5489 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5490 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5491 		break;
5492 	}
5493 	case BPF_JSGE:
5494 	case BPF_JSGT:
5495 	{
5496 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5497 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5498 
5499 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5500 			break;
5501 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5502 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5503 		break;
5504 	}
5505 	case BPF_JLE:
5506 	case BPF_JLT:
5507 	{
5508 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5509 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5510 
5511 		if (is_jmp32) {
5512 			false_umax += gen_hi_max(false_reg->var_off);
5513 			true_umin += gen_hi_min(true_reg->var_off);
5514 		}
5515 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5516 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5517 		break;
5518 	}
5519 	case BPF_JSLE:
5520 	case BPF_JSLT:
5521 	{
5522 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5523 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5524 
5525 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5526 			break;
5527 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5528 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5529 		break;
5530 	}
5531 	default:
5532 		break;
5533 	}
5534 
5535 	__reg_deduce_bounds(false_reg);
5536 	__reg_deduce_bounds(true_reg);
5537 	/* We might have learned some bits from the bounds. */
5538 	__reg_bound_offset(false_reg);
5539 	__reg_bound_offset(true_reg);
5540 	/* Intersecting with the old var_off might have improved our bounds
5541 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5542 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5543 	 */
5544 	__update_reg_bounds(false_reg);
5545 	__update_reg_bounds(true_reg);
5546 }
5547 
5548 /* Regs are known to be equal, so intersect their min/max/var_off */
5549 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5550 				  struct bpf_reg_state *dst_reg)
5551 {
5552 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5553 							dst_reg->umin_value);
5554 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5555 							dst_reg->umax_value);
5556 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5557 							dst_reg->smin_value);
5558 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5559 							dst_reg->smax_value);
5560 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5561 							     dst_reg->var_off);
5562 	/* We might have learned new bounds from the var_off. */
5563 	__update_reg_bounds(src_reg);
5564 	__update_reg_bounds(dst_reg);
5565 	/* We might have learned something about the sign bit. */
5566 	__reg_deduce_bounds(src_reg);
5567 	__reg_deduce_bounds(dst_reg);
5568 	/* We might have learned some bits from the bounds. */
5569 	__reg_bound_offset(src_reg);
5570 	__reg_bound_offset(dst_reg);
5571 	/* Intersecting with the old var_off might have improved our bounds
5572 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5573 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5574 	 */
5575 	__update_reg_bounds(src_reg);
5576 	__update_reg_bounds(dst_reg);
5577 }
5578 
5579 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5580 				struct bpf_reg_state *true_dst,
5581 				struct bpf_reg_state *false_src,
5582 				struct bpf_reg_state *false_dst,
5583 				u8 opcode)
5584 {
5585 	switch (opcode) {
5586 	case BPF_JEQ:
5587 		__reg_combine_min_max(true_src, true_dst);
5588 		break;
5589 	case BPF_JNE:
5590 		__reg_combine_min_max(false_src, false_dst);
5591 		break;
5592 	}
5593 }
5594 
5595 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5596 				 struct bpf_reg_state *reg, u32 id,
5597 				 bool is_null)
5598 {
5599 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5600 		/* Old offset (both fixed and variable parts) should
5601 		 * have been known-zero, because we don't allow pointer
5602 		 * arithmetic on pointers that might be NULL.
5603 		 */
5604 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5605 				 !tnum_equals_const(reg->var_off, 0) ||
5606 				 reg->off)) {
5607 			__mark_reg_known_zero(reg);
5608 			reg->off = 0;
5609 		}
5610 		if (is_null) {
5611 			reg->type = SCALAR_VALUE;
5612 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5613 			if (reg->map_ptr->inner_map_meta) {
5614 				reg->type = CONST_PTR_TO_MAP;
5615 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5616 			} else if (reg->map_ptr->map_type ==
5617 				   BPF_MAP_TYPE_XSKMAP) {
5618 				reg->type = PTR_TO_XDP_SOCK;
5619 			} else {
5620 				reg->type = PTR_TO_MAP_VALUE;
5621 			}
5622 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5623 			reg->type = PTR_TO_SOCKET;
5624 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5625 			reg->type = PTR_TO_SOCK_COMMON;
5626 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5627 			reg->type = PTR_TO_TCP_SOCK;
5628 		}
5629 		if (is_null) {
5630 			/* We don't need id and ref_obj_id from this point
5631 			 * onwards anymore, thus we should better reset it,
5632 			 * so that state pruning has chances to take effect.
5633 			 */
5634 			reg->id = 0;
5635 			reg->ref_obj_id = 0;
5636 		} else if (!reg_may_point_to_spin_lock(reg)) {
5637 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5638 			 * in release_reg_references().
5639 			 *
5640 			 * reg->id is still used by spin_lock ptr. Other
5641 			 * than spin_lock ptr type, reg->id can be reset.
5642 			 */
5643 			reg->id = 0;
5644 		}
5645 	}
5646 }
5647 
5648 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5649 				    bool is_null)
5650 {
5651 	struct bpf_reg_state *reg;
5652 	int i;
5653 
5654 	for (i = 0; i < MAX_BPF_REG; i++)
5655 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5656 
5657 	bpf_for_each_spilled_reg(i, state, reg) {
5658 		if (!reg)
5659 			continue;
5660 		mark_ptr_or_null_reg(state, reg, id, is_null);
5661 	}
5662 }
5663 
5664 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5665  * be folded together at some point.
5666  */
5667 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5668 				  bool is_null)
5669 {
5670 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5671 	struct bpf_reg_state *regs = state->regs;
5672 	u32 ref_obj_id = regs[regno].ref_obj_id;
5673 	u32 id = regs[regno].id;
5674 	int i;
5675 
5676 	if (ref_obj_id && ref_obj_id == id && is_null)
5677 		/* regs[regno] is in the " == NULL" branch.
5678 		 * No one could have freed the reference state before
5679 		 * doing the NULL check.
5680 		 */
5681 		WARN_ON_ONCE(release_reference_state(state, id));
5682 
5683 	for (i = 0; i <= vstate->curframe; i++)
5684 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5685 }
5686 
5687 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5688 				   struct bpf_reg_state *dst_reg,
5689 				   struct bpf_reg_state *src_reg,
5690 				   struct bpf_verifier_state *this_branch,
5691 				   struct bpf_verifier_state *other_branch)
5692 {
5693 	if (BPF_SRC(insn->code) != BPF_X)
5694 		return false;
5695 
5696 	/* Pointers are always 64-bit. */
5697 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5698 		return false;
5699 
5700 	switch (BPF_OP(insn->code)) {
5701 	case BPF_JGT:
5702 		if ((dst_reg->type == PTR_TO_PACKET &&
5703 		     src_reg->type == PTR_TO_PACKET_END) ||
5704 		    (dst_reg->type == PTR_TO_PACKET_META &&
5705 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5706 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
5707 			find_good_pkt_pointers(this_branch, dst_reg,
5708 					       dst_reg->type, false);
5709 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5710 			    src_reg->type == PTR_TO_PACKET) ||
5711 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5712 			    src_reg->type == PTR_TO_PACKET_META)) {
5713 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
5714 			find_good_pkt_pointers(other_branch, src_reg,
5715 					       src_reg->type, true);
5716 		} else {
5717 			return false;
5718 		}
5719 		break;
5720 	case BPF_JLT:
5721 		if ((dst_reg->type == PTR_TO_PACKET &&
5722 		     src_reg->type == PTR_TO_PACKET_END) ||
5723 		    (dst_reg->type == PTR_TO_PACKET_META &&
5724 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5725 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
5726 			find_good_pkt_pointers(other_branch, dst_reg,
5727 					       dst_reg->type, true);
5728 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5729 			    src_reg->type == PTR_TO_PACKET) ||
5730 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5731 			    src_reg->type == PTR_TO_PACKET_META)) {
5732 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
5733 			find_good_pkt_pointers(this_branch, src_reg,
5734 					       src_reg->type, false);
5735 		} else {
5736 			return false;
5737 		}
5738 		break;
5739 	case BPF_JGE:
5740 		if ((dst_reg->type == PTR_TO_PACKET &&
5741 		     src_reg->type == PTR_TO_PACKET_END) ||
5742 		    (dst_reg->type == PTR_TO_PACKET_META &&
5743 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5744 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5745 			find_good_pkt_pointers(this_branch, dst_reg,
5746 					       dst_reg->type, true);
5747 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5748 			    src_reg->type == PTR_TO_PACKET) ||
5749 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5750 			    src_reg->type == PTR_TO_PACKET_META)) {
5751 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5752 			find_good_pkt_pointers(other_branch, src_reg,
5753 					       src_reg->type, false);
5754 		} else {
5755 			return false;
5756 		}
5757 		break;
5758 	case BPF_JLE:
5759 		if ((dst_reg->type == PTR_TO_PACKET &&
5760 		     src_reg->type == PTR_TO_PACKET_END) ||
5761 		    (dst_reg->type == PTR_TO_PACKET_META &&
5762 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5763 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5764 			find_good_pkt_pointers(other_branch, dst_reg,
5765 					       dst_reg->type, false);
5766 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
5767 			    src_reg->type == PTR_TO_PACKET) ||
5768 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5769 			    src_reg->type == PTR_TO_PACKET_META)) {
5770 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5771 			find_good_pkt_pointers(this_branch, src_reg,
5772 					       src_reg->type, true);
5773 		} else {
5774 			return false;
5775 		}
5776 		break;
5777 	default:
5778 		return false;
5779 	}
5780 
5781 	return true;
5782 }
5783 
5784 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5785 			     struct bpf_insn *insn, int *insn_idx)
5786 {
5787 	struct bpf_verifier_state *this_branch = env->cur_state;
5788 	struct bpf_verifier_state *other_branch;
5789 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5790 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
5791 	u8 opcode = BPF_OP(insn->code);
5792 	bool is_jmp32;
5793 	int pred = -1;
5794 	int err;
5795 
5796 	/* Only conditional jumps are expected to reach here. */
5797 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
5798 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5799 		return -EINVAL;
5800 	}
5801 
5802 	if (BPF_SRC(insn->code) == BPF_X) {
5803 		if (insn->imm != 0) {
5804 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5805 			return -EINVAL;
5806 		}
5807 
5808 		/* check src1 operand */
5809 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
5810 		if (err)
5811 			return err;
5812 
5813 		if (is_pointer_value(env, insn->src_reg)) {
5814 			verbose(env, "R%d pointer comparison prohibited\n",
5815 				insn->src_reg);
5816 			return -EACCES;
5817 		}
5818 		src_reg = &regs[insn->src_reg];
5819 	} else {
5820 		if (insn->src_reg != BPF_REG_0) {
5821 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5822 			return -EINVAL;
5823 		}
5824 	}
5825 
5826 	/* check src2 operand */
5827 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5828 	if (err)
5829 		return err;
5830 
5831 	dst_reg = &regs[insn->dst_reg];
5832 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5833 
5834 	if (BPF_SRC(insn->code) == BPF_K)
5835 		pred = is_branch_taken(dst_reg, insn->imm,
5836 				       opcode, is_jmp32);
5837 	else if (src_reg->type == SCALAR_VALUE &&
5838 		 tnum_is_const(src_reg->var_off))
5839 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
5840 				       opcode, is_jmp32);
5841 	if (pred >= 0) {
5842 		err = mark_chain_precision(env, insn->dst_reg);
5843 		if (BPF_SRC(insn->code) == BPF_X && !err)
5844 			err = mark_chain_precision(env, insn->src_reg);
5845 		if (err)
5846 			return err;
5847 	}
5848 	if (pred == 1) {
5849 		/* only follow the goto, ignore fall-through */
5850 		*insn_idx += insn->off;
5851 		return 0;
5852 	} else if (pred == 0) {
5853 		/* only follow fall-through branch, since
5854 		 * that's where the program will go
5855 		 */
5856 		return 0;
5857 	}
5858 
5859 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5860 				  false);
5861 	if (!other_branch)
5862 		return -EFAULT;
5863 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5864 
5865 	/* detect if we are comparing against a constant value so we can adjust
5866 	 * our min/max values for our dst register.
5867 	 * this is only legit if both are scalars (or pointers to the same
5868 	 * object, I suppose, but we don't support that right now), because
5869 	 * otherwise the different base pointers mean the offsets aren't
5870 	 * comparable.
5871 	 */
5872 	if (BPF_SRC(insn->code) == BPF_X) {
5873 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5874 		struct bpf_reg_state lo_reg0 = *dst_reg;
5875 		struct bpf_reg_state lo_reg1 = *src_reg;
5876 		struct bpf_reg_state *src_lo, *dst_lo;
5877 
5878 		dst_lo = &lo_reg0;
5879 		src_lo = &lo_reg1;
5880 		coerce_reg_to_size(dst_lo, 4);
5881 		coerce_reg_to_size(src_lo, 4);
5882 
5883 		if (dst_reg->type == SCALAR_VALUE &&
5884 		    src_reg->type == SCALAR_VALUE) {
5885 			if (tnum_is_const(src_reg->var_off) ||
5886 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
5887 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
5888 						dst_reg,
5889 						is_jmp32
5890 						? src_lo->var_off.value
5891 						: src_reg->var_off.value,
5892 						opcode, is_jmp32);
5893 			else if (tnum_is_const(dst_reg->var_off) ||
5894 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5895 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5896 						    src_reg,
5897 						    is_jmp32
5898 						    ? dst_lo->var_off.value
5899 						    : dst_reg->var_off.value,
5900 						    opcode, is_jmp32);
5901 			else if (!is_jmp32 &&
5902 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
5903 				/* Comparing for equality, we can combine knowledge */
5904 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
5905 						    &other_branch_regs[insn->dst_reg],
5906 						    src_reg, dst_reg, opcode);
5907 		}
5908 	} else if (dst_reg->type == SCALAR_VALUE) {
5909 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
5910 					dst_reg, insn->imm, opcode, is_jmp32);
5911 	}
5912 
5913 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5914 	 * NOTE: these optimizations below are related with pointer comparison
5915 	 *       which will never be JMP32.
5916 	 */
5917 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5918 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5919 	    reg_type_may_be_null(dst_reg->type)) {
5920 		/* Mark all identical registers in each branch as either
5921 		 * safe or unknown depending R == 0 or R != 0 conditional.
5922 		 */
5923 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5924 				      opcode == BPF_JNE);
5925 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5926 				      opcode == BPF_JEQ);
5927 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5928 					   this_branch, other_branch) &&
5929 		   is_pointer_value(env, insn->dst_reg)) {
5930 		verbose(env, "R%d pointer comparison prohibited\n",
5931 			insn->dst_reg);
5932 		return -EACCES;
5933 	}
5934 	if (env->log.level & BPF_LOG_LEVEL)
5935 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5936 	return 0;
5937 }
5938 
5939 /* verify BPF_LD_IMM64 instruction */
5940 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5941 {
5942 	struct bpf_insn_aux_data *aux = cur_aux(env);
5943 	struct bpf_reg_state *regs = cur_regs(env);
5944 	struct bpf_map *map;
5945 	int err;
5946 
5947 	if (BPF_SIZE(insn->code) != BPF_DW) {
5948 		verbose(env, "invalid BPF_LD_IMM insn\n");
5949 		return -EINVAL;
5950 	}
5951 	if (insn->off != 0) {
5952 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5953 		return -EINVAL;
5954 	}
5955 
5956 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
5957 	if (err)
5958 		return err;
5959 
5960 	if (insn->src_reg == 0) {
5961 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5962 
5963 		regs[insn->dst_reg].type = SCALAR_VALUE;
5964 		__mark_reg_known(&regs[insn->dst_reg], imm);
5965 		return 0;
5966 	}
5967 
5968 	map = env->used_maps[aux->map_index];
5969 	mark_reg_known_zero(env, regs, insn->dst_reg);
5970 	regs[insn->dst_reg].map_ptr = map;
5971 
5972 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5973 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5974 		regs[insn->dst_reg].off = aux->map_off;
5975 		if (map_value_has_spin_lock(map))
5976 			regs[insn->dst_reg].id = ++env->id_gen;
5977 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5978 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5979 	} else {
5980 		verbose(env, "bpf verifier is misconfigured\n");
5981 		return -EINVAL;
5982 	}
5983 
5984 	return 0;
5985 }
5986 
5987 static bool may_access_skb(enum bpf_prog_type type)
5988 {
5989 	switch (type) {
5990 	case BPF_PROG_TYPE_SOCKET_FILTER:
5991 	case BPF_PROG_TYPE_SCHED_CLS:
5992 	case BPF_PROG_TYPE_SCHED_ACT:
5993 		return true;
5994 	default:
5995 		return false;
5996 	}
5997 }
5998 
5999 /* verify safety of LD_ABS|LD_IND instructions:
6000  * - they can only appear in the programs where ctx == skb
6001  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6002  *   preserve R6-R9, and store return value into R0
6003  *
6004  * Implicit input:
6005  *   ctx == skb == R6 == CTX
6006  *
6007  * Explicit input:
6008  *   SRC == any register
6009  *   IMM == 32-bit immediate
6010  *
6011  * Output:
6012  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6013  */
6014 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6015 {
6016 	struct bpf_reg_state *regs = cur_regs(env);
6017 	u8 mode = BPF_MODE(insn->code);
6018 	int i, err;
6019 
6020 	if (!may_access_skb(env->prog->type)) {
6021 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6022 		return -EINVAL;
6023 	}
6024 
6025 	if (!env->ops->gen_ld_abs) {
6026 		verbose(env, "bpf verifier is misconfigured\n");
6027 		return -EINVAL;
6028 	}
6029 
6030 	if (env->subprog_cnt > 1) {
6031 		/* when program has LD_ABS insn JITs and interpreter assume
6032 		 * that r1 == ctx == skb which is not the case for callees
6033 		 * that can have arbitrary arguments. It's problematic
6034 		 * for main prog as well since JITs would need to analyze
6035 		 * all functions in order to make proper register save/restore
6036 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6037 		 */
6038 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6039 		return -EINVAL;
6040 	}
6041 
6042 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6043 	    BPF_SIZE(insn->code) == BPF_DW ||
6044 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6045 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6046 		return -EINVAL;
6047 	}
6048 
6049 	/* check whether implicit source operand (register R6) is readable */
6050 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
6051 	if (err)
6052 		return err;
6053 
6054 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6055 	 * gen_ld_abs() may terminate the program at runtime, leading to
6056 	 * reference leak.
6057 	 */
6058 	err = check_reference_leak(env);
6059 	if (err) {
6060 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6061 		return err;
6062 	}
6063 
6064 	if (env->cur_state->active_spin_lock) {
6065 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6066 		return -EINVAL;
6067 	}
6068 
6069 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
6070 		verbose(env,
6071 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6072 		return -EINVAL;
6073 	}
6074 
6075 	if (mode == BPF_IND) {
6076 		/* check explicit source operand */
6077 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6078 		if (err)
6079 			return err;
6080 	}
6081 
6082 	/* reset caller saved regs to unreadable */
6083 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6084 		mark_reg_not_init(env, regs, caller_saved[i]);
6085 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6086 	}
6087 
6088 	/* mark destination R0 register as readable, since it contains
6089 	 * the value fetched from the packet.
6090 	 * Already marked as written above.
6091 	 */
6092 	mark_reg_unknown(env, regs, BPF_REG_0);
6093 	/* ld_abs load up to 32-bit skb data. */
6094 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6095 	return 0;
6096 }
6097 
6098 static int check_return_code(struct bpf_verifier_env *env)
6099 {
6100 	struct tnum enforce_attach_type_range = tnum_unknown;
6101 	struct bpf_reg_state *reg;
6102 	struct tnum range = tnum_range(0, 1);
6103 
6104 	switch (env->prog->type) {
6105 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6106 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6107 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6108 			range = tnum_range(1, 1);
6109 		break;
6110 	case BPF_PROG_TYPE_CGROUP_SKB:
6111 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6112 			range = tnum_range(0, 3);
6113 			enforce_attach_type_range = tnum_range(2, 3);
6114 		}
6115 		break;
6116 	case BPF_PROG_TYPE_CGROUP_SOCK:
6117 	case BPF_PROG_TYPE_SOCK_OPS:
6118 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6119 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6120 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6121 		break;
6122 	default:
6123 		return 0;
6124 	}
6125 
6126 	reg = cur_regs(env) + BPF_REG_0;
6127 	if (reg->type != SCALAR_VALUE) {
6128 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6129 			reg_type_str[reg->type]);
6130 		return -EINVAL;
6131 	}
6132 
6133 	if (!tnum_in(range, reg->var_off)) {
6134 		char tn_buf[48];
6135 
6136 		verbose(env, "At program exit the register R0 ");
6137 		if (!tnum_is_unknown(reg->var_off)) {
6138 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6139 			verbose(env, "has value %s", tn_buf);
6140 		} else {
6141 			verbose(env, "has unknown scalar value");
6142 		}
6143 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6144 		verbose(env, " should have been in %s\n", tn_buf);
6145 		return -EINVAL;
6146 	}
6147 
6148 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6149 	    tnum_in(enforce_attach_type_range, reg->var_off))
6150 		env->prog->enforce_expected_attach_type = 1;
6151 	return 0;
6152 }
6153 
6154 /* non-recursive DFS pseudo code
6155  * 1  procedure DFS-iterative(G,v):
6156  * 2      label v as discovered
6157  * 3      let S be a stack
6158  * 4      S.push(v)
6159  * 5      while S is not empty
6160  * 6            t <- S.pop()
6161  * 7            if t is what we're looking for:
6162  * 8                return t
6163  * 9            for all edges e in G.adjacentEdges(t) do
6164  * 10               if edge e is already labelled
6165  * 11                   continue with the next edge
6166  * 12               w <- G.adjacentVertex(t,e)
6167  * 13               if vertex w is not discovered and not explored
6168  * 14                   label e as tree-edge
6169  * 15                   label w as discovered
6170  * 16                   S.push(w)
6171  * 17                   continue at 5
6172  * 18               else if vertex w is discovered
6173  * 19                   label e as back-edge
6174  * 20               else
6175  * 21                   // vertex w is explored
6176  * 22                   label e as forward- or cross-edge
6177  * 23           label t as explored
6178  * 24           S.pop()
6179  *
6180  * convention:
6181  * 0x10 - discovered
6182  * 0x11 - discovered and fall-through edge labelled
6183  * 0x12 - discovered and fall-through and branch edges labelled
6184  * 0x20 - explored
6185  */
6186 
6187 enum {
6188 	DISCOVERED = 0x10,
6189 	EXPLORED = 0x20,
6190 	FALLTHROUGH = 1,
6191 	BRANCH = 2,
6192 };
6193 
6194 static u32 state_htab_size(struct bpf_verifier_env *env)
6195 {
6196 	return env->prog->len;
6197 }
6198 
6199 static struct bpf_verifier_state_list **explored_state(
6200 					struct bpf_verifier_env *env,
6201 					int idx)
6202 {
6203 	struct bpf_verifier_state *cur = env->cur_state;
6204 	struct bpf_func_state *state = cur->frame[cur->curframe];
6205 
6206 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6207 }
6208 
6209 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6210 {
6211 	env->insn_aux_data[idx].prune_point = true;
6212 }
6213 
6214 /* t, w, e - match pseudo-code above:
6215  * t - index of current instruction
6216  * w - next instruction
6217  * e - edge
6218  */
6219 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6220 		     bool loop_ok)
6221 {
6222 	int *insn_stack = env->cfg.insn_stack;
6223 	int *insn_state = env->cfg.insn_state;
6224 
6225 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6226 		return 0;
6227 
6228 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6229 		return 0;
6230 
6231 	if (w < 0 || w >= env->prog->len) {
6232 		verbose_linfo(env, t, "%d: ", t);
6233 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6234 		return -EINVAL;
6235 	}
6236 
6237 	if (e == BRANCH)
6238 		/* mark branch target for state pruning */
6239 		init_explored_state(env, w);
6240 
6241 	if (insn_state[w] == 0) {
6242 		/* tree-edge */
6243 		insn_state[t] = DISCOVERED | e;
6244 		insn_state[w] = DISCOVERED;
6245 		if (env->cfg.cur_stack >= env->prog->len)
6246 			return -E2BIG;
6247 		insn_stack[env->cfg.cur_stack++] = w;
6248 		return 1;
6249 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6250 		if (loop_ok && env->allow_ptr_leaks)
6251 			return 0;
6252 		verbose_linfo(env, t, "%d: ", t);
6253 		verbose_linfo(env, w, "%d: ", w);
6254 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6255 		return -EINVAL;
6256 	} else if (insn_state[w] == EXPLORED) {
6257 		/* forward- or cross-edge */
6258 		insn_state[t] = DISCOVERED | e;
6259 	} else {
6260 		verbose(env, "insn state internal bug\n");
6261 		return -EFAULT;
6262 	}
6263 	return 0;
6264 }
6265 
6266 /* non-recursive depth-first-search to detect loops in BPF program
6267  * loop == back-edge in directed graph
6268  */
6269 static int check_cfg(struct bpf_verifier_env *env)
6270 {
6271 	struct bpf_insn *insns = env->prog->insnsi;
6272 	int insn_cnt = env->prog->len;
6273 	int *insn_stack, *insn_state;
6274 	int ret = 0;
6275 	int i, t;
6276 
6277 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6278 	if (!insn_state)
6279 		return -ENOMEM;
6280 
6281 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6282 	if (!insn_stack) {
6283 		kvfree(insn_state);
6284 		return -ENOMEM;
6285 	}
6286 
6287 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6288 	insn_stack[0] = 0; /* 0 is the first instruction */
6289 	env->cfg.cur_stack = 1;
6290 
6291 peek_stack:
6292 	if (env->cfg.cur_stack == 0)
6293 		goto check_state;
6294 	t = insn_stack[env->cfg.cur_stack - 1];
6295 
6296 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6297 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6298 		u8 opcode = BPF_OP(insns[t].code);
6299 
6300 		if (opcode == BPF_EXIT) {
6301 			goto mark_explored;
6302 		} else if (opcode == BPF_CALL) {
6303 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6304 			if (ret == 1)
6305 				goto peek_stack;
6306 			else if (ret < 0)
6307 				goto err_free;
6308 			if (t + 1 < insn_cnt)
6309 				init_explored_state(env, t + 1);
6310 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6311 				init_explored_state(env, t);
6312 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6313 						env, false);
6314 				if (ret == 1)
6315 					goto peek_stack;
6316 				else if (ret < 0)
6317 					goto err_free;
6318 			}
6319 		} else if (opcode == BPF_JA) {
6320 			if (BPF_SRC(insns[t].code) != BPF_K) {
6321 				ret = -EINVAL;
6322 				goto err_free;
6323 			}
6324 			/* unconditional jump with single edge */
6325 			ret = push_insn(t, t + insns[t].off + 1,
6326 					FALLTHROUGH, env, true);
6327 			if (ret == 1)
6328 				goto peek_stack;
6329 			else if (ret < 0)
6330 				goto err_free;
6331 			/* unconditional jmp is not a good pruning point,
6332 			 * but it's marked, since backtracking needs
6333 			 * to record jmp history in is_state_visited().
6334 			 */
6335 			init_explored_state(env, t + insns[t].off + 1);
6336 			/* tell verifier to check for equivalent states
6337 			 * after every call and jump
6338 			 */
6339 			if (t + 1 < insn_cnt)
6340 				init_explored_state(env, t + 1);
6341 		} else {
6342 			/* conditional jump with two edges */
6343 			init_explored_state(env, t);
6344 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6345 			if (ret == 1)
6346 				goto peek_stack;
6347 			else if (ret < 0)
6348 				goto err_free;
6349 
6350 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6351 			if (ret == 1)
6352 				goto peek_stack;
6353 			else if (ret < 0)
6354 				goto err_free;
6355 		}
6356 	} else {
6357 		/* all other non-branch instructions with single
6358 		 * fall-through edge
6359 		 */
6360 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6361 		if (ret == 1)
6362 			goto peek_stack;
6363 		else if (ret < 0)
6364 			goto err_free;
6365 	}
6366 
6367 mark_explored:
6368 	insn_state[t] = EXPLORED;
6369 	if (env->cfg.cur_stack-- <= 0) {
6370 		verbose(env, "pop stack internal bug\n");
6371 		ret = -EFAULT;
6372 		goto err_free;
6373 	}
6374 	goto peek_stack;
6375 
6376 check_state:
6377 	for (i = 0; i < insn_cnt; i++) {
6378 		if (insn_state[i] != EXPLORED) {
6379 			verbose(env, "unreachable insn %d\n", i);
6380 			ret = -EINVAL;
6381 			goto err_free;
6382 		}
6383 	}
6384 	ret = 0; /* cfg looks good */
6385 
6386 err_free:
6387 	kvfree(insn_state);
6388 	kvfree(insn_stack);
6389 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6390 	return ret;
6391 }
6392 
6393 /* The minimum supported BTF func info size */
6394 #define MIN_BPF_FUNCINFO_SIZE	8
6395 #define MAX_FUNCINFO_REC_SIZE	252
6396 
6397 static int check_btf_func(struct bpf_verifier_env *env,
6398 			  const union bpf_attr *attr,
6399 			  union bpf_attr __user *uattr)
6400 {
6401 	u32 i, nfuncs, urec_size, min_size;
6402 	u32 krec_size = sizeof(struct bpf_func_info);
6403 	struct bpf_func_info *krecord;
6404 	const struct btf_type *type;
6405 	struct bpf_prog *prog;
6406 	const struct btf *btf;
6407 	void __user *urecord;
6408 	u32 prev_offset = 0;
6409 	int ret = 0;
6410 
6411 	nfuncs = attr->func_info_cnt;
6412 	if (!nfuncs)
6413 		return 0;
6414 
6415 	if (nfuncs != env->subprog_cnt) {
6416 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6417 		return -EINVAL;
6418 	}
6419 
6420 	urec_size = attr->func_info_rec_size;
6421 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6422 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6423 	    urec_size % sizeof(u32)) {
6424 		verbose(env, "invalid func info rec size %u\n", urec_size);
6425 		return -EINVAL;
6426 	}
6427 
6428 	prog = env->prog;
6429 	btf = prog->aux->btf;
6430 
6431 	urecord = u64_to_user_ptr(attr->func_info);
6432 	min_size = min_t(u32, krec_size, urec_size);
6433 
6434 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6435 	if (!krecord)
6436 		return -ENOMEM;
6437 
6438 	for (i = 0; i < nfuncs; i++) {
6439 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6440 		if (ret) {
6441 			if (ret == -E2BIG) {
6442 				verbose(env, "nonzero tailing record in func info");
6443 				/* set the size kernel expects so loader can zero
6444 				 * out the rest of the record.
6445 				 */
6446 				if (put_user(min_size, &uattr->func_info_rec_size))
6447 					ret = -EFAULT;
6448 			}
6449 			goto err_free;
6450 		}
6451 
6452 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6453 			ret = -EFAULT;
6454 			goto err_free;
6455 		}
6456 
6457 		/* check insn_off */
6458 		if (i == 0) {
6459 			if (krecord[i].insn_off) {
6460 				verbose(env,
6461 					"nonzero insn_off %u for the first func info record",
6462 					krecord[i].insn_off);
6463 				ret = -EINVAL;
6464 				goto err_free;
6465 			}
6466 		} else if (krecord[i].insn_off <= prev_offset) {
6467 			verbose(env,
6468 				"same or smaller insn offset (%u) than previous func info record (%u)",
6469 				krecord[i].insn_off, prev_offset);
6470 			ret = -EINVAL;
6471 			goto err_free;
6472 		}
6473 
6474 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6475 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6476 			ret = -EINVAL;
6477 			goto err_free;
6478 		}
6479 
6480 		/* check type_id */
6481 		type = btf_type_by_id(btf, krecord[i].type_id);
6482 		if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
6483 			verbose(env, "invalid type id %d in func info",
6484 				krecord[i].type_id);
6485 			ret = -EINVAL;
6486 			goto err_free;
6487 		}
6488 
6489 		prev_offset = krecord[i].insn_off;
6490 		urecord += urec_size;
6491 	}
6492 
6493 	prog->aux->func_info = krecord;
6494 	prog->aux->func_info_cnt = nfuncs;
6495 	return 0;
6496 
6497 err_free:
6498 	kvfree(krecord);
6499 	return ret;
6500 }
6501 
6502 static void adjust_btf_func(struct bpf_verifier_env *env)
6503 {
6504 	int i;
6505 
6506 	if (!env->prog->aux->func_info)
6507 		return;
6508 
6509 	for (i = 0; i < env->subprog_cnt; i++)
6510 		env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
6511 }
6512 
6513 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6514 		sizeof(((struct bpf_line_info *)(0))->line_col))
6515 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6516 
6517 static int check_btf_line(struct bpf_verifier_env *env,
6518 			  const union bpf_attr *attr,
6519 			  union bpf_attr __user *uattr)
6520 {
6521 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6522 	struct bpf_subprog_info *sub;
6523 	struct bpf_line_info *linfo;
6524 	struct bpf_prog *prog;
6525 	const struct btf *btf;
6526 	void __user *ulinfo;
6527 	int err;
6528 
6529 	nr_linfo = attr->line_info_cnt;
6530 	if (!nr_linfo)
6531 		return 0;
6532 
6533 	rec_size = attr->line_info_rec_size;
6534 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6535 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6536 	    rec_size & (sizeof(u32) - 1))
6537 		return -EINVAL;
6538 
6539 	/* Need to zero it in case the userspace may
6540 	 * pass in a smaller bpf_line_info object.
6541 	 */
6542 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6543 			 GFP_KERNEL | __GFP_NOWARN);
6544 	if (!linfo)
6545 		return -ENOMEM;
6546 
6547 	prog = env->prog;
6548 	btf = prog->aux->btf;
6549 
6550 	s = 0;
6551 	sub = env->subprog_info;
6552 	ulinfo = u64_to_user_ptr(attr->line_info);
6553 	expected_size = sizeof(struct bpf_line_info);
6554 	ncopy = min_t(u32, expected_size, rec_size);
6555 	for (i = 0; i < nr_linfo; i++) {
6556 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6557 		if (err) {
6558 			if (err == -E2BIG) {
6559 				verbose(env, "nonzero tailing record in line_info");
6560 				if (put_user(expected_size,
6561 					     &uattr->line_info_rec_size))
6562 					err = -EFAULT;
6563 			}
6564 			goto err_free;
6565 		}
6566 
6567 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6568 			err = -EFAULT;
6569 			goto err_free;
6570 		}
6571 
6572 		/*
6573 		 * Check insn_off to ensure
6574 		 * 1) strictly increasing AND
6575 		 * 2) bounded by prog->len
6576 		 *
6577 		 * The linfo[0].insn_off == 0 check logically falls into
6578 		 * the later "missing bpf_line_info for func..." case
6579 		 * because the first linfo[0].insn_off must be the
6580 		 * first sub also and the first sub must have
6581 		 * subprog_info[0].start == 0.
6582 		 */
6583 		if ((i && linfo[i].insn_off <= prev_offset) ||
6584 		    linfo[i].insn_off >= prog->len) {
6585 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6586 				i, linfo[i].insn_off, prev_offset,
6587 				prog->len);
6588 			err = -EINVAL;
6589 			goto err_free;
6590 		}
6591 
6592 		if (!prog->insnsi[linfo[i].insn_off].code) {
6593 			verbose(env,
6594 				"Invalid insn code at line_info[%u].insn_off\n",
6595 				i);
6596 			err = -EINVAL;
6597 			goto err_free;
6598 		}
6599 
6600 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6601 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6602 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6603 			err = -EINVAL;
6604 			goto err_free;
6605 		}
6606 
6607 		if (s != env->subprog_cnt) {
6608 			if (linfo[i].insn_off == sub[s].start) {
6609 				sub[s].linfo_idx = i;
6610 				s++;
6611 			} else if (sub[s].start < linfo[i].insn_off) {
6612 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6613 				err = -EINVAL;
6614 				goto err_free;
6615 			}
6616 		}
6617 
6618 		prev_offset = linfo[i].insn_off;
6619 		ulinfo += rec_size;
6620 	}
6621 
6622 	if (s != env->subprog_cnt) {
6623 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6624 			env->subprog_cnt - s, s);
6625 		err = -EINVAL;
6626 		goto err_free;
6627 	}
6628 
6629 	prog->aux->linfo = linfo;
6630 	prog->aux->nr_linfo = nr_linfo;
6631 
6632 	return 0;
6633 
6634 err_free:
6635 	kvfree(linfo);
6636 	return err;
6637 }
6638 
6639 static int check_btf_info(struct bpf_verifier_env *env,
6640 			  const union bpf_attr *attr,
6641 			  union bpf_attr __user *uattr)
6642 {
6643 	struct btf *btf;
6644 	int err;
6645 
6646 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6647 		return 0;
6648 
6649 	btf = btf_get_by_fd(attr->prog_btf_fd);
6650 	if (IS_ERR(btf))
6651 		return PTR_ERR(btf);
6652 	env->prog->aux->btf = btf;
6653 
6654 	err = check_btf_func(env, attr, uattr);
6655 	if (err)
6656 		return err;
6657 
6658 	err = check_btf_line(env, attr, uattr);
6659 	if (err)
6660 		return err;
6661 
6662 	return 0;
6663 }
6664 
6665 /* check %cur's range satisfies %old's */
6666 static bool range_within(struct bpf_reg_state *old,
6667 			 struct bpf_reg_state *cur)
6668 {
6669 	return old->umin_value <= cur->umin_value &&
6670 	       old->umax_value >= cur->umax_value &&
6671 	       old->smin_value <= cur->smin_value &&
6672 	       old->smax_value >= cur->smax_value;
6673 }
6674 
6675 /* Maximum number of register states that can exist at once */
6676 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
6677 struct idpair {
6678 	u32 old;
6679 	u32 cur;
6680 };
6681 
6682 /* If in the old state two registers had the same id, then they need to have
6683  * the same id in the new state as well.  But that id could be different from
6684  * the old state, so we need to track the mapping from old to new ids.
6685  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
6686  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
6687  * regs with a different old id could still have new id 9, we don't care about
6688  * that.
6689  * So we look through our idmap to see if this old id has been seen before.  If
6690  * so, we require the new id to match; otherwise, we add the id pair to the map.
6691  */
6692 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
6693 {
6694 	unsigned int i;
6695 
6696 	for (i = 0; i < ID_MAP_SIZE; i++) {
6697 		if (!idmap[i].old) {
6698 			/* Reached an empty slot; haven't seen this id before */
6699 			idmap[i].old = old_id;
6700 			idmap[i].cur = cur_id;
6701 			return true;
6702 		}
6703 		if (idmap[i].old == old_id)
6704 			return idmap[i].cur == cur_id;
6705 	}
6706 	/* We ran out of idmap slots, which should be impossible */
6707 	WARN_ON_ONCE(1);
6708 	return false;
6709 }
6710 
6711 static void clean_func_state(struct bpf_verifier_env *env,
6712 			     struct bpf_func_state *st)
6713 {
6714 	enum bpf_reg_liveness live;
6715 	int i, j;
6716 
6717 	for (i = 0; i < BPF_REG_FP; i++) {
6718 		live = st->regs[i].live;
6719 		/* liveness must not touch this register anymore */
6720 		st->regs[i].live |= REG_LIVE_DONE;
6721 		if (!(live & REG_LIVE_READ))
6722 			/* since the register is unused, clear its state
6723 			 * to make further comparison simpler
6724 			 */
6725 			__mark_reg_not_init(&st->regs[i]);
6726 	}
6727 
6728 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
6729 		live = st->stack[i].spilled_ptr.live;
6730 		/* liveness must not touch this stack slot anymore */
6731 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
6732 		if (!(live & REG_LIVE_READ)) {
6733 			__mark_reg_not_init(&st->stack[i].spilled_ptr);
6734 			for (j = 0; j < BPF_REG_SIZE; j++)
6735 				st->stack[i].slot_type[j] = STACK_INVALID;
6736 		}
6737 	}
6738 }
6739 
6740 static void clean_verifier_state(struct bpf_verifier_env *env,
6741 				 struct bpf_verifier_state *st)
6742 {
6743 	int i;
6744 
6745 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
6746 		/* all regs in this state in all frames were already marked */
6747 		return;
6748 
6749 	for (i = 0; i <= st->curframe; i++)
6750 		clean_func_state(env, st->frame[i]);
6751 }
6752 
6753 /* the parentage chains form a tree.
6754  * the verifier states are added to state lists at given insn and
6755  * pushed into state stack for future exploration.
6756  * when the verifier reaches bpf_exit insn some of the verifer states
6757  * stored in the state lists have their final liveness state already,
6758  * but a lot of states will get revised from liveness point of view when
6759  * the verifier explores other branches.
6760  * Example:
6761  * 1: r0 = 1
6762  * 2: if r1 == 100 goto pc+1
6763  * 3: r0 = 2
6764  * 4: exit
6765  * when the verifier reaches exit insn the register r0 in the state list of
6766  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
6767  * of insn 2 and goes exploring further. At the insn 4 it will walk the
6768  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
6769  *
6770  * Since the verifier pushes the branch states as it sees them while exploring
6771  * the program the condition of walking the branch instruction for the second
6772  * time means that all states below this branch were already explored and
6773  * their final liveness markes are already propagated.
6774  * Hence when the verifier completes the search of state list in is_state_visited()
6775  * we can call this clean_live_states() function to mark all liveness states
6776  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
6777  * will not be used.
6778  * This function also clears the registers and stack for states that !READ
6779  * to simplify state merging.
6780  *
6781  * Important note here that walking the same branch instruction in the callee
6782  * doesn't meant that the states are DONE. The verifier has to compare
6783  * the callsites
6784  */
6785 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6786 			      struct bpf_verifier_state *cur)
6787 {
6788 	struct bpf_verifier_state_list *sl;
6789 	int i;
6790 
6791 	sl = *explored_state(env, insn);
6792 	while (sl) {
6793 		if (sl->state.branches)
6794 			goto next;
6795 		if (sl->state.insn_idx != insn ||
6796 		    sl->state.curframe != cur->curframe)
6797 			goto next;
6798 		for (i = 0; i <= cur->curframe; i++)
6799 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6800 				goto next;
6801 		clean_verifier_state(env, &sl->state);
6802 next:
6803 		sl = sl->next;
6804 	}
6805 }
6806 
6807 /* Returns true if (rold safe implies rcur safe) */
6808 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6809 		    struct idpair *idmap)
6810 {
6811 	bool equal;
6812 
6813 	if (!(rold->live & REG_LIVE_READ))
6814 		/* explored state didn't use this */
6815 		return true;
6816 
6817 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6818 
6819 	if (rold->type == PTR_TO_STACK)
6820 		/* two stack pointers are equal only if they're pointing to
6821 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
6822 		 */
6823 		return equal && rold->frameno == rcur->frameno;
6824 
6825 	if (equal)
6826 		return true;
6827 
6828 	if (rold->type == NOT_INIT)
6829 		/* explored state can't have used this */
6830 		return true;
6831 	if (rcur->type == NOT_INIT)
6832 		return false;
6833 	switch (rold->type) {
6834 	case SCALAR_VALUE:
6835 		if (rcur->type == SCALAR_VALUE) {
6836 			if (!rold->precise && !rcur->precise)
6837 				return true;
6838 			/* new val must satisfy old val knowledge */
6839 			return range_within(rold, rcur) &&
6840 			       tnum_in(rold->var_off, rcur->var_off);
6841 		} else {
6842 			/* We're trying to use a pointer in place of a scalar.
6843 			 * Even if the scalar was unbounded, this could lead to
6844 			 * pointer leaks because scalars are allowed to leak
6845 			 * while pointers are not. We could make this safe in
6846 			 * special cases if root is calling us, but it's
6847 			 * probably not worth the hassle.
6848 			 */
6849 			return false;
6850 		}
6851 	case PTR_TO_MAP_VALUE:
6852 		/* If the new min/max/var_off satisfy the old ones and
6853 		 * everything else matches, we are OK.
6854 		 * 'id' is not compared, since it's only used for maps with
6855 		 * bpf_spin_lock inside map element and in such cases if
6856 		 * the rest of the prog is valid for one map element then
6857 		 * it's valid for all map elements regardless of the key
6858 		 * used in bpf_map_lookup()
6859 		 */
6860 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6861 		       range_within(rold, rcur) &&
6862 		       tnum_in(rold->var_off, rcur->var_off);
6863 	case PTR_TO_MAP_VALUE_OR_NULL:
6864 		/* a PTR_TO_MAP_VALUE could be safe to use as a
6865 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6866 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6867 		 * checked, doing so could have affected others with the same
6868 		 * id, and we can't check for that because we lost the id when
6869 		 * we converted to a PTR_TO_MAP_VALUE.
6870 		 */
6871 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6872 			return false;
6873 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6874 			return false;
6875 		/* Check our ids match any regs they're supposed to */
6876 		return check_ids(rold->id, rcur->id, idmap);
6877 	case PTR_TO_PACKET_META:
6878 	case PTR_TO_PACKET:
6879 		if (rcur->type != rold->type)
6880 			return false;
6881 		/* We must have at least as much range as the old ptr
6882 		 * did, so that any accesses which were safe before are
6883 		 * still safe.  This is true even if old range < old off,
6884 		 * since someone could have accessed through (ptr - k), or
6885 		 * even done ptr -= k in a register, to get a safe access.
6886 		 */
6887 		if (rold->range > rcur->range)
6888 			return false;
6889 		/* If the offsets don't match, we can't trust our alignment;
6890 		 * nor can we be sure that we won't fall out of range.
6891 		 */
6892 		if (rold->off != rcur->off)
6893 			return false;
6894 		/* id relations must be preserved */
6895 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6896 			return false;
6897 		/* new val must satisfy old val knowledge */
6898 		return range_within(rold, rcur) &&
6899 		       tnum_in(rold->var_off, rcur->var_off);
6900 	case PTR_TO_CTX:
6901 	case CONST_PTR_TO_MAP:
6902 	case PTR_TO_PACKET_END:
6903 	case PTR_TO_FLOW_KEYS:
6904 	case PTR_TO_SOCKET:
6905 	case PTR_TO_SOCKET_OR_NULL:
6906 	case PTR_TO_SOCK_COMMON:
6907 	case PTR_TO_SOCK_COMMON_OR_NULL:
6908 	case PTR_TO_TCP_SOCK:
6909 	case PTR_TO_TCP_SOCK_OR_NULL:
6910 	case PTR_TO_XDP_SOCK:
6911 		/* Only valid matches are exact, which memcmp() above
6912 		 * would have accepted
6913 		 */
6914 	default:
6915 		/* Don't know what's going on, just say it's not safe */
6916 		return false;
6917 	}
6918 
6919 	/* Shouldn't get here; if we do, say it's not safe */
6920 	WARN_ON_ONCE(1);
6921 	return false;
6922 }
6923 
6924 static bool stacksafe(struct bpf_func_state *old,
6925 		      struct bpf_func_state *cur,
6926 		      struct idpair *idmap)
6927 {
6928 	int i, spi;
6929 
6930 	/* walk slots of the explored stack and ignore any additional
6931 	 * slots in the current stack, since explored(safe) state
6932 	 * didn't use them
6933 	 */
6934 	for (i = 0; i < old->allocated_stack; i++) {
6935 		spi = i / BPF_REG_SIZE;
6936 
6937 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6938 			i += BPF_REG_SIZE - 1;
6939 			/* explored state didn't use this */
6940 			continue;
6941 		}
6942 
6943 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6944 			continue;
6945 
6946 		/* explored stack has more populated slots than current stack
6947 		 * and these slots were used
6948 		 */
6949 		if (i >= cur->allocated_stack)
6950 			return false;
6951 
6952 		/* if old state was safe with misc data in the stack
6953 		 * it will be safe with zero-initialized stack.
6954 		 * The opposite is not true
6955 		 */
6956 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6957 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6958 			continue;
6959 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6960 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6961 			/* Ex: old explored (safe) state has STACK_SPILL in
6962 			 * this stack slot, but current has has STACK_MISC ->
6963 			 * this verifier states are not equivalent,
6964 			 * return false to continue verification of this path
6965 			 */
6966 			return false;
6967 		if (i % BPF_REG_SIZE)
6968 			continue;
6969 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
6970 			continue;
6971 		if (!regsafe(&old->stack[spi].spilled_ptr,
6972 			     &cur->stack[spi].spilled_ptr,
6973 			     idmap))
6974 			/* when explored and current stack slot are both storing
6975 			 * spilled registers, check that stored pointers types
6976 			 * are the same as well.
6977 			 * Ex: explored safe path could have stored
6978 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6979 			 * but current path has stored:
6980 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6981 			 * such verifier states are not equivalent.
6982 			 * return false to continue verification of this path
6983 			 */
6984 			return false;
6985 	}
6986 	return true;
6987 }
6988 
6989 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6990 {
6991 	if (old->acquired_refs != cur->acquired_refs)
6992 		return false;
6993 	return !memcmp(old->refs, cur->refs,
6994 		       sizeof(*old->refs) * old->acquired_refs);
6995 }
6996 
6997 /* compare two verifier states
6998  *
6999  * all states stored in state_list are known to be valid, since
7000  * verifier reached 'bpf_exit' instruction through them
7001  *
7002  * this function is called when verifier exploring different branches of
7003  * execution popped from the state stack. If it sees an old state that has
7004  * more strict register state and more strict stack state then this execution
7005  * branch doesn't need to be explored further, since verifier already
7006  * concluded that more strict state leads to valid finish.
7007  *
7008  * Therefore two states are equivalent if register state is more conservative
7009  * and explored stack state is more conservative than the current one.
7010  * Example:
7011  *       explored                   current
7012  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7013  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7014  *
7015  * In other words if current stack state (one being explored) has more
7016  * valid slots than old one that already passed validation, it means
7017  * the verifier can stop exploring and conclude that current state is valid too
7018  *
7019  * Similarly with registers. If explored state has register type as invalid
7020  * whereas register type in current state is meaningful, it means that
7021  * the current state will reach 'bpf_exit' instruction safely
7022  */
7023 static bool func_states_equal(struct bpf_func_state *old,
7024 			      struct bpf_func_state *cur)
7025 {
7026 	struct idpair *idmap;
7027 	bool ret = false;
7028 	int i;
7029 
7030 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7031 	/* If we failed to allocate the idmap, just say it's not safe */
7032 	if (!idmap)
7033 		return false;
7034 
7035 	for (i = 0; i < MAX_BPF_REG; i++) {
7036 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7037 			goto out_free;
7038 	}
7039 
7040 	if (!stacksafe(old, cur, idmap))
7041 		goto out_free;
7042 
7043 	if (!refsafe(old, cur))
7044 		goto out_free;
7045 	ret = true;
7046 out_free:
7047 	kfree(idmap);
7048 	return ret;
7049 }
7050 
7051 static bool states_equal(struct bpf_verifier_env *env,
7052 			 struct bpf_verifier_state *old,
7053 			 struct bpf_verifier_state *cur)
7054 {
7055 	int i;
7056 
7057 	if (old->curframe != cur->curframe)
7058 		return false;
7059 
7060 	/* Verification state from speculative execution simulation
7061 	 * must never prune a non-speculative execution one.
7062 	 */
7063 	if (old->speculative && !cur->speculative)
7064 		return false;
7065 
7066 	if (old->active_spin_lock != cur->active_spin_lock)
7067 		return false;
7068 
7069 	/* for states to be equal callsites have to be the same
7070 	 * and all frame states need to be equivalent
7071 	 */
7072 	for (i = 0; i <= old->curframe; i++) {
7073 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7074 			return false;
7075 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7076 			return false;
7077 	}
7078 	return true;
7079 }
7080 
7081 /* Return 0 if no propagation happened. Return negative error code if error
7082  * happened. Otherwise, return the propagated bit.
7083  */
7084 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7085 				  struct bpf_reg_state *reg,
7086 				  struct bpf_reg_state *parent_reg)
7087 {
7088 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7089 	u8 flag = reg->live & REG_LIVE_READ;
7090 	int err;
7091 
7092 	/* When comes here, read flags of PARENT_REG or REG could be any of
7093 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7094 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7095 	 */
7096 	if (parent_flag == REG_LIVE_READ64 ||
7097 	    /* Or if there is no read flag from REG. */
7098 	    !flag ||
7099 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7100 	    parent_flag == flag)
7101 		return 0;
7102 
7103 	err = mark_reg_read(env, reg, parent_reg, flag);
7104 	if (err)
7105 		return err;
7106 
7107 	return flag;
7108 }
7109 
7110 /* A write screens off any subsequent reads; but write marks come from the
7111  * straight-line code between a state and its parent.  When we arrive at an
7112  * equivalent state (jump target or such) we didn't arrive by the straight-line
7113  * code, so read marks in the state must propagate to the parent regardless
7114  * of the state's write marks. That's what 'parent == state->parent' comparison
7115  * in mark_reg_read() is for.
7116  */
7117 static int propagate_liveness(struct bpf_verifier_env *env,
7118 			      const struct bpf_verifier_state *vstate,
7119 			      struct bpf_verifier_state *vparent)
7120 {
7121 	struct bpf_reg_state *state_reg, *parent_reg;
7122 	struct bpf_func_state *state, *parent;
7123 	int i, frame, err = 0;
7124 
7125 	if (vparent->curframe != vstate->curframe) {
7126 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7127 		     vparent->curframe, vstate->curframe);
7128 		return -EFAULT;
7129 	}
7130 	/* Propagate read liveness of registers... */
7131 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7132 	for (frame = 0; frame <= vstate->curframe; frame++) {
7133 		parent = vparent->frame[frame];
7134 		state = vstate->frame[frame];
7135 		parent_reg = parent->regs;
7136 		state_reg = state->regs;
7137 		/* We don't need to worry about FP liveness, it's read-only */
7138 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7139 			err = propagate_liveness_reg(env, &state_reg[i],
7140 						     &parent_reg[i]);
7141 			if (err < 0)
7142 				return err;
7143 			if (err == REG_LIVE_READ64)
7144 				mark_insn_zext(env, &parent_reg[i]);
7145 		}
7146 
7147 		/* Propagate stack slots. */
7148 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7149 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7150 			parent_reg = &parent->stack[i].spilled_ptr;
7151 			state_reg = &state->stack[i].spilled_ptr;
7152 			err = propagate_liveness_reg(env, state_reg,
7153 						     parent_reg);
7154 			if (err < 0)
7155 				return err;
7156 		}
7157 	}
7158 	return 0;
7159 }
7160 
7161 /* find precise scalars in the previous equivalent state and
7162  * propagate them into the current state
7163  */
7164 static int propagate_precision(struct bpf_verifier_env *env,
7165 			       const struct bpf_verifier_state *old)
7166 {
7167 	struct bpf_reg_state *state_reg;
7168 	struct bpf_func_state *state;
7169 	int i, err = 0;
7170 
7171 	state = old->frame[old->curframe];
7172 	state_reg = state->regs;
7173 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7174 		if (state_reg->type != SCALAR_VALUE ||
7175 		    !state_reg->precise)
7176 			continue;
7177 		if (env->log.level & BPF_LOG_LEVEL2)
7178 			verbose(env, "propagating r%d\n", i);
7179 		err = mark_chain_precision(env, i);
7180 		if (err < 0)
7181 			return err;
7182 	}
7183 
7184 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7185 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7186 			continue;
7187 		state_reg = &state->stack[i].spilled_ptr;
7188 		if (state_reg->type != SCALAR_VALUE ||
7189 		    !state_reg->precise)
7190 			continue;
7191 		if (env->log.level & BPF_LOG_LEVEL2)
7192 			verbose(env, "propagating fp%d\n",
7193 				(-i - 1) * BPF_REG_SIZE);
7194 		err = mark_chain_precision_stack(env, i);
7195 		if (err < 0)
7196 			return err;
7197 	}
7198 	return 0;
7199 }
7200 
7201 static bool states_maybe_looping(struct bpf_verifier_state *old,
7202 				 struct bpf_verifier_state *cur)
7203 {
7204 	struct bpf_func_state *fold, *fcur;
7205 	int i, fr = cur->curframe;
7206 
7207 	if (old->curframe != fr)
7208 		return false;
7209 
7210 	fold = old->frame[fr];
7211 	fcur = cur->frame[fr];
7212 	for (i = 0; i < MAX_BPF_REG; i++)
7213 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7214 			   offsetof(struct bpf_reg_state, parent)))
7215 			return false;
7216 	return true;
7217 }
7218 
7219 
7220 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7221 {
7222 	struct bpf_verifier_state_list *new_sl;
7223 	struct bpf_verifier_state_list *sl, **pprev;
7224 	struct bpf_verifier_state *cur = env->cur_state, *new;
7225 	int i, j, err, states_cnt = 0;
7226 	bool add_new_state = env->test_state_freq ? true : false;
7227 
7228 	cur->last_insn_idx = env->prev_insn_idx;
7229 	if (!env->insn_aux_data[insn_idx].prune_point)
7230 		/* this 'insn_idx' instruction wasn't marked, so we will not
7231 		 * be doing state search here
7232 		 */
7233 		return 0;
7234 
7235 	/* bpf progs typically have pruning point every 4 instructions
7236 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7237 	 * Do not add new state for future pruning if the verifier hasn't seen
7238 	 * at least 2 jumps and at least 8 instructions.
7239 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7240 	 * In tests that amounts to up to 50% reduction into total verifier
7241 	 * memory consumption and 20% verifier time speedup.
7242 	 */
7243 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7244 	    env->insn_processed - env->prev_insn_processed >= 8)
7245 		add_new_state = true;
7246 
7247 	pprev = explored_state(env, insn_idx);
7248 	sl = *pprev;
7249 
7250 	clean_live_states(env, insn_idx, cur);
7251 
7252 	while (sl) {
7253 		states_cnt++;
7254 		if (sl->state.insn_idx != insn_idx)
7255 			goto next;
7256 		if (sl->state.branches) {
7257 			if (states_maybe_looping(&sl->state, cur) &&
7258 			    states_equal(env, &sl->state, cur)) {
7259 				verbose_linfo(env, insn_idx, "; ");
7260 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7261 				return -EINVAL;
7262 			}
7263 			/* if the verifier is processing a loop, avoid adding new state
7264 			 * too often, since different loop iterations have distinct
7265 			 * states and may not help future pruning.
7266 			 * This threshold shouldn't be too low to make sure that
7267 			 * a loop with large bound will be rejected quickly.
7268 			 * The most abusive loop will be:
7269 			 * r1 += 1
7270 			 * if r1 < 1000000 goto pc-2
7271 			 * 1M insn_procssed limit / 100 == 10k peak states.
7272 			 * This threshold shouldn't be too high either, since states
7273 			 * at the end of the loop are likely to be useful in pruning.
7274 			 */
7275 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7276 			    env->insn_processed - env->prev_insn_processed < 100)
7277 				add_new_state = false;
7278 			goto miss;
7279 		}
7280 		if (states_equal(env, &sl->state, cur)) {
7281 			sl->hit_cnt++;
7282 			/* reached equivalent register/stack state,
7283 			 * prune the search.
7284 			 * Registers read by the continuation are read by us.
7285 			 * If we have any write marks in env->cur_state, they
7286 			 * will prevent corresponding reads in the continuation
7287 			 * from reaching our parent (an explored_state).  Our
7288 			 * own state will get the read marks recorded, but
7289 			 * they'll be immediately forgotten as we're pruning
7290 			 * this state and will pop a new one.
7291 			 */
7292 			err = propagate_liveness(env, &sl->state, cur);
7293 
7294 			/* if previous state reached the exit with precision and
7295 			 * current state is equivalent to it (except precsion marks)
7296 			 * the precision needs to be propagated back in
7297 			 * the current state.
7298 			 */
7299 			err = err ? : push_jmp_history(env, cur);
7300 			err = err ? : propagate_precision(env, &sl->state);
7301 			if (err)
7302 				return err;
7303 			return 1;
7304 		}
7305 miss:
7306 		/* when new state is not going to be added do not increase miss count.
7307 		 * Otherwise several loop iterations will remove the state
7308 		 * recorded earlier. The goal of these heuristics is to have
7309 		 * states from some iterations of the loop (some in the beginning
7310 		 * and some at the end) to help pruning.
7311 		 */
7312 		if (add_new_state)
7313 			sl->miss_cnt++;
7314 		/* heuristic to determine whether this state is beneficial
7315 		 * to keep checking from state equivalence point of view.
7316 		 * Higher numbers increase max_states_per_insn and verification time,
7317 		 * but do not meaningfully decrease insn_processed.
7318 		 */
7319 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7320 			/* the state is unlikely to be useful. Remove it to
7321 			 * speed up verification
7322 			 */
7323 			*pprev = sl->next;
7324 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7325 				u32 br = sl->state.branches;
7326 
7327 				WARN_ONCE(br,
7328 					  "BUG live_done but branches_to_explore %d\n",
7329 					  br);
7330 				free_verifier_state(&sl->state, false);
7331 				kfree(sl);
7332 				env->peak_states--;
7333 			} else {
7334 				/* cannot free this state, since parentage chain may
7335 				 * walk it later. Add it for free_list instead to
7336 				 * be freed at the end of verification
7337 				 */
7338 				sl->next = env->free_list;
7339 				env->free_list = sl;
7340 			}
7341 			sl = *pprev;
7342 			continue;
7343 		}
7344 next:
7345 		pprev = &sl->next;
7346 		sl = *pprev;
7347 	}
7348 
7349 	if (env->max_states_per_insn < states_cnt)
7350 		env->max_states_per_insn = states_cnt;
7351 
7352 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7353 		return push_jmp_history(env, cur);
7354 
7355 	if (!add_new_state)
7356 		return push_jmp_history(env, cur);
7357 
7358 	/* There were no equivalent states, remember the current one.
7359 	 * Technically the current state is not proven to be safe yet,
7360 	 * but it will either reach outer most bpf_exit (which means it's safe)
7361 	 * or it will be rejected. When there are no loops the verifier won't be
7362 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7363 	 * again on the way to bpf_exit.
7364 	 * When looping the sl->state.branches will be > 0 and this state
7365 	 * will not be considered for equivalence until branches == 0.
7366 	 */
7367 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7368 	if (!new_sl)
7369 		return -ENOMEM;
7370 	env->total_states++;
7371 	env->peak_states++;
7372 	env->prev_jmps_processed = env->jmps_processed;
7373 	env->prev_insn_processed = env->insn_processed;
7374 
7375 	/* add new state to the head of linked list */
7376 	new = &new_sl->state;
7377 	err = copy_verifier_state(new, cur);
7378 	if (err) {
7379 		free_verifier_state(new, false);
7380 		kfree(new_sl);
7381 		return err;
7382 	}
7383 	new->insn_idx = insn_idx;
7384 	WARN_ONCE(new->branches != 1,
7385 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7386 
7387 	cur->parent = new;
7388 	cur->first_insn_idx = insn_idx;
7389 	clear_jmp_history(cur);
7390 	new_sl->next = *explored_state(env, insn_idx);
7391 	*explored_state(env, insn_idx) = new_sl;
7392 	/* connect new state to parentage chain. Current frame needs all
7393 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7394 	 * to the stack implicitly by JITs) so in callers' frames connect just
7395 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7396 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7397 	 * from callee with its full parentage chain, anyway.
7398 	 */
7399 	/* clear write marks in current state: the writes we did are not writes
7400 	 * our child did, so they don't screen off its reads from us.
7401 	 * (There are no read marks in current state, because reads always mark
7402 	 * their parent and current state never has children yet.  Only
7403 	 * explored_states can get read marks.)
7404 	 */
7405 	for (j = 0; j <= cur->curframe; j++) {
7406 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7407 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7408 		for (i = 0; i < BPF_REG_FP; i++)
7409 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7410 	}
7411 
7412 	/* all stack frames are accessible from callee, clear them all */
7413 	for (j = 0; j <= cur->curframe; j++) {
7414 		struct bpf_func_state *frame = cur->frame[j];
7415 		struct bpf_func_state *newframe = new->frame[j];
7416 
7417 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7418 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7419 			frame->stack[i].spilled_ptr.parent =
7420 						&newframe->stack[i].spilled_ptr;
7421 		}
7422 	}
7423 	return 0;
7424 }
7425 
7426 /* Return true if it's OK to have the same insn return a different type. */
7427 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7428 {
7429 	switch (type) {
7430 	case PTR_TO_CTX:
7431 	case PTR_TO_SOCKET:
7432 	case PTR_TO_SOCKET_OR_NULL:
7433 	case PTR_TO_SOCK_COMMON:
7434 	case PTR_TO_SOCK_COMMON_OR_NULL:
7435 	case PTR_TO_TCP_SOCK:
7436 	case PTR_TO_TCP_SOCK_OR_NULL:
7437 	case PTR_TO_XDP_SOCK:
7438 		return false;
7439 	default:
7440 		return true;
7441 	}
7442 }
7443 
7444 /* If an instruction was previously used with particular pointer types, then we
7445  * need to be careful to avoid cases such as the below, where it may be ok
7446  * for one branch accessing the pointer, but not ok for the other branch:
7447  *
7448  * R1 = sock_ptr
7449  * goto X;
7450  * ...
7451  * R1 = some_other_valid_ptr;
7452  * goto X;
7453  * ...
7454  * R2 = *(u32 *)(R1 + 0);
7455  */
7456 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7457 {
7458 	return src != prev && (!reg_type_mismatch_ok(src) ||
7459 			       !reg_type_mismatch_ok(prev));
7460 }
7461 
7462 static int do_check(struct bpf_verifier_env *env)
7463 {
7464 	struct bpf_verifier_state *state;
7465 	struct bpf_insn *insns = env->prog->insnsi;
7466 	struct bpf_reg_state *regs;
7467 	int insn_cnt = env->prog->len;
7468 	bool do_print_state = false;
7469 	int prev_insn_idx = -1;
7470 
7471 	env->prev_linfo = NULL;
7472 
7473 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
7474 	if (!state)
7475 		return -ENOMEM;
7476 	state->curframe = 0;
7477 	state->speculative = false;
7478 	state->branches = 1;
7479 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
7480 	if (!state->frame[0]) {
7481 		kfree(state);
7482 		return -ENOMEM;
7483 	}
7484 	env->cur_state = state;
7485 	init_func_state(env, state->frame[0],
7486 			BPF_MAIN_FUNC /* callsite */,
7487 			0 /* frameno */,
7488 			0 /* subprogno, zero == main subprog */);
7489 
7490 	for (;;) {
7491 		struct bpf_insn *insn;
7492 		u8 class;
7493 		int err;
7494 
7495 		env->prev_insn_idx = prev_insn_idx;
7496 		if (env->insn_idx >= insn_cnt) {
7497 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7498 				env->insn_idx, insn_cnt);
7499 			return -EFAULT;
7500 		}
7501 
7502 		insn = &insns[env->insn_idx];
7503 		class = BPF_CLASS(insn->code);
7504 
7505 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7506 			verbose(env,
7507 				"BPF program is too large. Processed %d insn\n",
7508 				env->insn_processed);
7509 			return -E2BIG;
7510 		}
7511 
7512 		err = is_state_visited(env, env->insn_idx);
7513 		if (err < 0)
7514 			return err;
7515 		if (err == 1) {
7516 			/* found equivalent state, can prune the search */
7517 			if (env->log.level & BPF_LOG_LEVEL) {
7518 				if (do_print_state)
7519 					verbose(env, "\nfrom %d to %d%s: safe\n",
7520 						env->prev_insn_idx, env->insn_idx,
7521 						env->cur_state->speculative ?
7522 						" (speculative execution)" : "");
7523 				else
7524 					verbose(env, "%d: safe\n", env->insn_idx);
7525 			}
7526 			goto process_bpf_exit;
7527 		}
7528 
7529 		if (signal_pending(current))
7530 			return -EAGAIN;
7531 
7532 		if (need_resched())
7533 			cond_resched();
7534 
7535 		if (env->log.level & BPF_LOG_LEVEL2 ||
7536 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7537 			if (env->log.level & BPF_LOG_LEVEL2)
7538 				verbose(env, "%d:", env->insn_idx);
7539 			else
7540 				verbose(env, "\nfrom %d to %d%s:",
7541 					env->prev_insn_idx, env->insn_idx,
7542 					env->cur_state->speculative ?
7543 					" (speculative execution)" : "");
7544 			print_verifier_state(env, state->frame[state->curframe]);
7545 			do_print_state = false;
7546 		}
7547 
7548 		if (env->log.level & BPF_LOG_LEVEL) {
7549 			const struct bpf_insn_cbs cbs = {
7550 				.cb_print	= verbose,
7551 				.private_data	= env,
7552 			};
7553 
7554 			verbose_linfo(env, env->insn_idx, "; ");
7555 			verbose(env, "%d: ", env->insn_idx);
7556 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7557 		}
7558 
7559 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7560 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7561 							   env->prev_insn_idx);
7562 			if (err)
7563 				return err;
7564 		}
7565 
7566 		regs = cur_regs(env);
7567 		env->insn_aux_data[env->insn_idx].seen = true;
7568 		prev_insn_idx = env->insn_idx;
7569 
7570 		if (class == BPF_ALU || class == BPF_ALU64) {
7571 			err = check_alu_op(env, insn);
7572 			if (err)
7573 				return err;
7574 
7575 		} else if (class == BPF_LDX) {
7576 			enum bpf_reg_type *prev_src_type, src_reg_type;
7577 
7578 			/* check for reserved fields is already done */
7579 
7580 			/* check src operand */
7581 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7582 			if (err)
7583 				return err;
7584 
7585 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7586 			if (err)
7587 				return err;
7588 
7589 			src_reg_type = regs[insn->src_reg].type;
7590 
7591 			/* check that memory (src_reg + off) is readable,
7592 			 * the state of dst_reg will be updated by this func
7593 			 */
7594 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7595 					       insn->off, BPF_SIZE(insn->code),
7596 					       BPF_READ, insn->dst_reg, false);
7597 			if (err)
7598 				return err;
7599 
7600 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7601 
7602 			if (*prev_src_type == NOT_INIT) {
7603 				/* saw a valid insn
7604 				 * dst_reg = *(u32 *)(src_reg + off)
7605 				 * save type to validate intersecting paths
7606 				 */
7607 				*prev_src_type = src_reg_type;
7608 
7609 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7610 				/* ABuser program is trying to use the same insn
7611 				 * dst_reg = *(u32*) (src_reg + off)
7612 				 * with different pointer types:
7613 				 * src_reg == ctx in one branch and
7614 				 * src_reg == stack|map in some other branch.
7615 				 * Reject it.
7616 				 */
7617 				verbose(env, "same insn cannot be used with different pointers\n");
7618 				return -EINVAL;
7619 			}
7620 
7621 		} else if (class == BPF_STX) {
7622 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7623 
7624 			if (BPF_MODE(insn->code) == BPF_XADD) {
7625 				err = check_xadd(env, env->insn_idx, insn);
7626 				if (err)
7627 					return err;
7628 				env->insn_idx++;
7629 				continue;
7630 			}
7631 
7632 			/* check src1 operand */
7633 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7634 			if (err)
7635 				return err;
7636 			/* check src2 operand */
7637 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7638 			if (err)
7639 				return err;
7640 
7641 			dst_reg_type = regs[insn->dst_reg].type;
7642 
7643 			/* check that memory (dst_reg + off) is writeable */
7644 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7645 					       insn->off, BPF_SIZE(insn->code),
7646 					       BPF_WRITE, insn->src_reg, false);
7647 			if (err)
7648 				return err;
7649 
7650 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7651 
7652 			if (*prev_dst_type == NOT_INIT) {
7653 				*prev_dst_type = dst_reg_type;
7654 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7655 				verbose(env, "same insn cannot be used with different pointers\n");
7656 				return -EINVAL;
7657 			}
7658 
7659 		} else if (class == BPF_ST) {
7660 			if (BPF_MODE(insn->code) != BPF_MEM ||
7661 			    insn->src_reg != BPF_REG_0) {
7662 				verbose(env, "BPF_ST uses reserved fields\n");
7663 				return -EINVAL;
7664 			}
7665 			/* check src operand */
7666 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7667 			if (err)
7668 				return err;
7669 
7670 			if (is_ctx_reg(env, insn->dst_reg)) {
7671 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7672 					insn->dst_reg,
7673 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7674 				return -EACCES;
7675 			}
7676 
7677 			/* check that memory (dst_reg + off) is writeable */
7678 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7679 					       insn->off, BPF_SIZE(insn->code),
7680 					       BPF_WRITE, -1, false);
7681 			if (err)
7682 				return err;
7683 
7684 		} else if (class == BPF_JMP || class == BPF_JMP32) {
7685 			u8 opcode = BPF_OP(insn->code);
7686 
7687 			env->jmps_processed++;
7688 			if (opcode == BPF_CALL) {
7689 				if (BPF_SRC(insn->code) != BPF_K ||
7690 				    insn->off != 0 ||
7691 				    (insn->src_reg != BPF_REG_0 &&
7692 				     insn->src_reg != BPF_PSEUDO_CALL) ||
7693 				    insn->dst_reg != BPF_REG_0 ||
7694 				    class == BPF_JMP32) {
7695 					verbose(env, "BPF_CALL uses reserved fields\n");
7696 					return -EINVAL;
7697 				}
7698 
7699 				if (env->cur_state->active_spin_lock &&
7700 				    (insn->src_reg == BPF_PSEUDO_CALL ||
7701 				     insn->imm != BPF_FUNC_spin_unlock)) {
7702 					verbose(env, "function calls are not allowed while holding a lock\n");
7703 					return -EINVAL;
7704 				}
7705 				if (insn->src_reg == BPF_PSEUDO_CALL)
7706 					err = check_func_call(env, insn, &env->insn_idx);
7707 				else
7708 					err = check_helper_call(env, insn->imm, env->insn_idx);
7709 				if (err)
7710 					return err;
7711 
7712 			} else if (opcode == BPF_JA) {
7713 				if (BPF_SRC(insn->code) != BPF_K ||
7714 				    insn->imm != 0 ||
7715 				    insn->src_reg != BPF_REG_0 ||
7716 				    insn->dst_reg != BPF_REG_0 ||
7717 				    class == BPF_JMP32) {
7718 					verbose(env, "BPF_JA uses reserved fields\n");
7719 					return -EINVAL;
7720 				}
7721 
7722 				env->insn_idx += insn->off + 1;
7723 				continue;
7724 
7725 			} else if (opcode == BPF_EXIT) {
7726 				if (BPF_SRC(insn->code) != BPF_K ||
7727 				    insn->imm != 0 ||
7728 				    insn->src_reg != BPF_REG_0 ||
7729 				    insn->dst_reg != BPF_REG_0 ||
7730 				    class == BPF_JMP32) {
7731 					verbose(env, "BPF_EXIT uses reserved fields\n");
7732 					return -EINVAL;
7733 				}
7734 
7735 				if (env->cur_state->active_spin_lock) {
7736 					verbose(env, "bpf_spin_unlock is missing\n");
7737 					return -EINVAL;
7738 				}
7739 
7740 				if (state->curframe) {
7741 					/* exit from nested function */
7742 					err = prepare_func_exit(env, &env->insn_idx);
7743 					if (err)
7744 						return err;
7745 					do_print_state = true;
7746 					continue;
7747 				}
7748 
7749 				err = check_reference_leak(env);
7750 				if (err)
7751 					return err;
7752 
7753 				/* eBPF calling convetion is such that R0 is used
7754 				 * to return the value from eBPF program.
7755 				 * Make sure that it's readable at this time
7756 				 * of bpf_exit, which means that program wrote
7757 				 * something into it earlier
7758 				 */
7759 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7760 				if (err)
7761 					return err;
7762 
7763 				if (is_pointer_value(env, BPF_REG_0)) {
7764 					verbose(env, "R0 leaks addr as return value\n");
7765 					return -EACCES;
7766 				}
7767 
7768 				err = check_return_code(env);
7769 				if (err)
7770 					return err;
7771 process_bpf_exit:
7772 				update_branch_counts(env, env->cur_state);
7773 				err = pop_stack(env, &prev_insn_idx,
7774 						&env->insn_idx);
7775 				if (err < 0) {
7776 					if (err != -ENOENT)
7777 						return err;
7778 					break;
7779 				} else {
7780 					do_print_state = true;
7781 					continue;
7782 				}
7783 			} else {
7784 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
7785 				if (err)
7786 					return err;
7787 			}
7788 		} else if (class == BPF_LD) {
7789 			u8 mode = BPF_MODE(insn->code);
7790 
7791 			if (mode == BPF_ABS || mode == BPF_IND) {
7792 				err = check_ld_abs(env, insn);
7793 				if (err)
7794 					return err;
7795 
7796 			} else if (mode == BPF_IMM) {
7797 				err = check_ld_imm(env, insn);
7798 				if (err)
7799 					return err;
7800 
7801 				env->insn_idx++;
7802 				env->insn_aux_data[env->insn_idx].seen = true;
7803 			} else {
7804 				verbose(env, "invalid BPF_LD mode\n");
7805 				return -EINVAL;
7806 			}
7807 		} else {
7808 			verbose(env, "unknown insn class %d\n", class);
7809 			return -EINVAL;
7810 		}
7811 
7812 		env->insn_idx++;
7813 	}
7814 
7815 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
7816 	return 0;
7817 }
7818 
7819 static int check_map_prealloc(struct bpf_map *map)
7820 {
7821 	return (map->map_type != BPF_MAP_TYPE_HASH &&
7822 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
7823 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
7824 		!(map->map_flags & BPF_F_NO_PREALLOC);
7825 }
7826 
7827 static bool is_tracing_prog_type(enum bpf_prog_type type)
7828 {
7829 	switch (type) {
7830 	case BPF_PROG_TYPE_KPROBE:
7831 	case BPF_PROG_TYPE_TRACEPOINT:
7832 	case BPF_PROG_TYPE_PERF_EVENT:
7833 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7834 		return true;
7835 	default:
7836 		return false;
7837 	}
7838 }
7839 
7840 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
7841 					struct bpf_map *map,
7842 					struct bpf_prog *prog)
7843 
7844 {
7845 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
7846 	 * preallocated hash maps, since doing memory allocation
7847 	 * in overflow_handler can crash depending on where nmi got
7848 	 * triggered.
7849 	 */
7850 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
7851 		if (!check_map_prealloc(map)) {
7852 			verbose(env, "perf_event programs can only use preallocated hash map\n");
7853 			return -EINVAL;
7854 		}
7855 		if (map->inner_map_meta &&
7856 		    !check_map_prealloc(map->inner_map_meta)) {
7857 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
7858 			return -EINVAL;
7859 		}
7860 	}
7861 
7862 	if ((is_tracing_prog_type(prog->type) ||
7863 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
7864 	    map_value_has_spin_lock(map)) {
7865 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
7866 		return -EINVAL;
7867 	}
7868 
7869 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
7870 	    !bpf_offload_prog_map_match(prog, map)) {
7871 		verbose(env, "offload device mismatch between prog and map\n");
7872 		return -EINVAL;
7873 	}
7874 
7875 	return 0;
7876 }
7877 
7878 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
7879 {
7880 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
7881 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
7882 }
7883 
7884 /* look for pseudo eBPF instructions that access map FDs and
7885  * replace them with actual map pointers
7886  */
7887 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
7888 {
7889 	struct bpf_insn *insn = env->prog->insnsi;
7890 	int insn_cnt = env->prog->len;
7891 	int i, j, err;
7892 
7893 	err = bpf_prog_calc_tag(env->prog);
7894 	if (err)
7895 		return err;
7896 
7897 	for (i = 0; i < insn_cnt; i++, insn++) {
7898 		if (BPF_CLASS(insn->code) == BPF_LDX &&
7899 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
7900 			verbose(env, "BPF_LDX uses reserved fields\n");
7901 			return -EINVAL;
7902 		}
7903 
7904 		if (BPF_CLASS(insn->code) == BPF_STX &&
7905 		    ((BPF_MODE(insn->code) != BPF_MEM &&
7906 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
7907 			verbose(env, "BPF_STX uses reserved fields\n");
7908 			return -EINVAL;
7909 		}
7910 
7911 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
7912 			struct bpf_insn_aux_data *aux;
7913 			struct bpf_map *map;
7914 			struct fd f;
7915 			u64 addr;
7916 
7917 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
7918 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
7919 			    insn[1].off != 0) {
7920 				verbose(env, "invalid bpf_ld_imm64 insn\n");
7921 				return -EINVAL;
7922 			}
7923 
7924 			if (insn[0].src_reg == 0)
7925 				/* valid generic load 64-bit imm */
7926 				goto next_insn;
7927 
7928 			/* In final convert_pseudo_ld_imm64() step, this is
7929 			 * converted into regular 64-bit imm load insn.
7930 			 */
7931 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
7932 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
7933 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
7934 			     insn[1].imm != 0)) {
7935 				verbose(env,
7936 					"unrecognized bpf_ld_imm64 insn\n");
7937 				return -EINVAL;
7938 			}
7939 
7940 			f = fdget(insn[0].imm);
7941 			map = __bpf_map_get(f);
7942 			if (IS_ERR(map)) {
7943 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
7944 					insn[0].imm);
7945 				return PTR_ERR(map);
7946 			}
7947 
7948 			err = check_map_prog_compatibility(env, map, env->prog);
7949 			if (err) {
7950 				fdput(f);
7951 				return err;
7952 			}
7953 
7954 			aux = &env->insn_aux_data[i];
7955 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7956 				addr = (unsigned long)map;
7957 			} else {
7958 				u32 off = insn[1].imm;
7959 
7960 				if (off >= BPF_MAX_VAR_OFF) {
7961 					verbose(env, "direct value offset of %u is not allowed\n", off);
7962 					fdput(f);
7963 					return -EINVAL;
7964 				}
7965 
7966 				if (!map->ops->map_direct_value_addr) {
7967 					verbose(env, "no direct value access support for this map type\n");
7968 					fdput(f);
7969 					return -EINVAL;
7970 				}
7971 
7972 				err = map->ops->map_direct_value_addr(map, &addr, off);
7973 				if (err) {
7974 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7975 						map->value_size, off);
7976 					fdput(f);
7977 					return err;
7978 				}
7979 
7980 				aux->map_off = off;
7981 				addr += off;
7982 			}
7983 
7984 			insn[0].imm = (u32)addr;
7985 			insn[1].imm = addr >> 32;
7986 
7987 			/* check whether we recorded this map already */
7988 			for (j = 0; j < env->used_map_cnt; j++) {
7989 				if (env->used_maps[j] == map) {
7990 					aux->map_index = j;
7991 					fdput(f);
7992 					goto next_insn;
7993 				}
7994 			}
7995 
7996 			if (env->used_map_cnt >= MAX_USED_MAPS) {
7997 				fdput(f);
7998 				return -E2BIG;
7999 			}
8000 
8001 			/* hold the map. If the program is rejected by verifier,
8002 			 * the map will be released by release_maps() or it
8003 			 * will be used by the valid program until it's unloaded
8004 			 * and all maps are released in free_used_maps()
8005 			 */
8006 			map = bpf_map_inc(map, false);
8007 			if (IS_ERR(map)) {
8008 				fdput(f);
8009 				return PTR_ERR(map);
8010 			}
8011 
8012 			aux->map_index = env->used_map_cnt;
8013 			env->used_maps[env->used_map_cnt++] = map;
8014 
8015 			if (bpf_map_is_cgroup_storage(map) &&
8016 			    bpf_cgroup_storage_assign(env->prog, map)) {
8017 				verbose(env, "only one cgroup storage of each type is allowed\n");
8018 				fdput(f);
8019 				return -EBUSY;
8020 			}
8021 
8022 			fdput(f);
8023 next_insn:
8024 			insn++;
8025 			i++;
8026 			continue;
8027 		}
8028 
8029 		/* Basic sanity check before we invest more work here. */
8030 		if (!bpf_opcode_in_insntable(insn->code)) {
8031 			verbose(env, "unknown opcode %02x\n", insn->code);
8032 			return -EINVAL;
8033 		}
8034 	}
8035 
8036 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8037 	 * 'struct bpf_map *' into a register instead of user map_fd.
8038 	 * These pointers will be used later by verifier to validate map access.
8039 	 */
8040 	return 0;
8041 }
8042 
8043 /* drop refcnt of maps used by the rejected program */
8044 static void release_maps(struct bpf_verifier_env *env)
8045 {
8046 	enum bpf_cgroup_storage_type stype;
8047 	int i;
8048 
8049 	for_each_cgroup_storage_type(stype) {
8050 		if (!env->prog->aux->cgroup_storage[stype])
8051 			continue;
8052 		bpf_cgroup_storage_release(env->prog,
8053 			env->prog->aux->cgroup_storage[stype]);
8054 	}
8055 
8056 	for (i = 0; i < env->used_map_cnt; i++)
8057 		bpf_map_put(env->used_maps[i]);
8058 }
8059 
8060 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8061 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8062 {
8063 	struct bpf_insn *insn = env->prog->insnsi;
8064 	int insn_cnt = env->prog->len;
8065 	int i;
8066 
8067 	for (i = 0; i < insn_cnt; i++, insn++)
8068 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8069 			insn->src_reg = 0;
8070 }
8071 
8072 /* single env->prog->insni[off] instruction was replaced with the range
8073  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8074  * [0, off) and [off, end) to new locations, so the patched range stays zero
8075  */
8076 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8077 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8078 {
8079 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8080 	struct bpf_insn *insn = new_prog->insnsi;
8081 	u32 prog_len;
8082 	int i;
8083 
8084 	/* aux info at OFF always needs adjustment, no matter fast path
8085 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8086 	 * original insn at old prog.
8087 	 */
8088 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8089 
8090 	if (cnt == 1)
8091 		return 0;
8092 	prog_len = new_prog->len;
8093 	new_data = vzalloc(array_size(prog_len,
8094 				      sizeof(struct bpf_insn_aux_data)));
8095 	if (!new_data)
8096 		return -ENOMEM;
8097 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8098 	memcpy(new_data + off + cnt - 1, old_data + off,
8099 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8100 	for (i = off; i < off + cnt - 1; i++) {
8101 		new_data[i].seen = true;
8102 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8103 	}
8104 	env->insn_aux_data = new_data;
8105 	vfree(old_data);
8106 	return 0;
8107 }
8108 
8109 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8110 {
8111 	int i;
8112 
8113 	if (len == 1)
8114 		return;
8115 	/* NOTE: fake 'exit' subprog should be updated as well. */
8116 	for (i = 0; i <= env->subprog_cnt; i++) {
8117 		if (env->subprog_info[i].start <= off)
8118 			continue;
8119 		env->subprog_info[i].start += len - 1;
8120 	}
8121 }
8122 
8123 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8124 					    const struct bpf_insn *patch, u32 len)
8125 {
8126 	struct bpf_prog *new_prog;
8127 
8128 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8129 	if (IS_ERR(new_prog)) {
8130 		if (PTR_ERR(new_prog) == -ERANGE)
8131 			verbose(env,
8132 				"insn %d cannot be patched due to 16-bit range\n",
8133 				env->insn_aux_data[off].orig_idx);
8134 		return NULL;
8135 	}
8136 	if (adjust_insn_aux_data(env, new_prog, off, len))
8137 		return NULL;
8138 	adjust_subprog_starts(env, off, len);
8139 	return new_prog;
8140 }
8141 
8142 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8143 					      u32 off, u32 cnt)
8144 {
8145 	int i, j;
8146 
8147 	/* find first prog starting at or after off (first to remove) */
8148 	for (i = 0; i < env->subprog_cnt; i++)
8149 		if (env->subprog_info[i].start >= off)
8150 			break;
8151 	/* find first prog starting at or after off + cnt (first to stay) */
8152 	for (j = i; j < env->subprog_cnt; j++)
8153 		if (env->subprog_info[j].start >= off + cnt)
8154 			break;
8155 	/* if j doesn't start exactly at off + cnt, we are just removing
8156 	 * the front of previous prog
8157 	 */
8158 	if (env->subprog_info[j].start != off + cnt)
8159 		j--;
8160 
8161 	if (j > i) {
8162 		struct bpf_prog_aux *aux = env->prog->aux;
8163 		int move;
8164 
8165 		/* move fake 'exit' subprog as well */
8166 		move = env->subprog_cnt + 1 - j;
8167 
8168 		memmove(env->subprog_info + i,
8169 			env->subprog_info + j,
8170 			sizeof(*env->subprog_info) * move);
8171 		env->subprog_cnt -= j - i;
8172 
8173 		/* remove func_info */
8174 		if (aux->func_info) {
8175 			move = aux->func_info_cnt - j;
8176 
8177 			memmove(aux->func_info + i,
8178 				aux->func_info + j,
8179 				sizeof(*aux->func_info) * move);
8180 			aux->func_info_cnt -= j - i;
8181 			/* func_info->insn_off is set after all code rewrites,
8182 			 * in adjust_btf_func() - no need to adjust
8183 			 */
8184 		}
8185 	} else {
8186 		/* convert i from "first prog to remove" to "first to adjust" */
8187 		if (env->subprog_info[i].start == off)
8188 			i++;
8189 	}
8190 
8191 	/* update fake 'exit' subprog as well */
8192 	for (; i <= env->subprog_cnt; i++)
8193 		env->subprog_info[i].start -= cnt;
8194 
8195 	return 0;
8196 }
8197 
8198 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8199 				      u32 cnt)
8200 {
8201 	struct bpf_prog *prog = env->prog;
8202 	u32 i, l_off, l_cnt, nr_linfo;
8203 	struct bpf_line_info *linfo;
8204 
8205 	nr_linfo = prog->aux->nr_linfo;
8206 	if (!nr_linfo)
8207 		return 0;
8208 
8209 	linfo = prog->aux->linfo;
8210 
8211 	/* find first line info to remove, count lines to be removed */
8212 	for (i = 0; i < nr_linfo; i++)
8213 		if (linfo[i].insn_off >= off)
8214 			break;
8215 
8216 	l_off = i;
8217 	l_cnt = 0;
8218 	for (; i < nr_linfo; i++)
8219 		if (linfo[i].insn_off < off + cnt)
8220 			l_cnt++;
8221 		else
8222 			break;
8223 
8224 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8225 	 * last removed linfo.  prog is already modified, so prog->len == off
8226 	 * means no live instructions after (tail of the program was removed).
8227 	 */
8228 	if (prog->len != off && l_cnt &&
8229 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8230 		l_cnt--;
8231 		linfo[--i].insn_off = off + cnt;
8232 	}
8233 
8234 	/* remove the line info which refer to the removed instructions */
8235 	if (l_cnt) {
8236 		memmove(linfo + l_off, linfo + i,
8237 			sizeof(*linfo) * (nr_linfo - i));
8238 
8239 		prog->aux->nr_linfo -= l_cnt;
8240 		nr_linfo = prog->aux->nr_linfo;
8241 	}
8242 
8243 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8244 	for (i = l_off; i < nr_linfo; i++)
8245 		linfo[i].insn_off -= cnt;
8246 
8247 	/* fix up all subprogs (incl. 'exit') which start >= off */
8248 	for (i = 0; i <= env->subprog_cnt; i++)
8249 		if (env->subprog_info[i].linfo_idx > l_off) {
8250 			/* program may have started in the removed region but
8251 			 * may not be fully removed
8252 			 */
8253 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8254 				env->subprog_info[i].linfo_idx -= l_cnt;
8255 			else
8256 				env->subprog_info[i].linfo_idx = l_off;
8257 		}
8258 
8259 	return 0;
8260 }
8261 
8262 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8263 {
8264 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8265 	unsigned int orig_prog_len = env->prog->len;
8266 	int err;
8267 
8268 	if (bpf_prog_is_dev_bound(env->prog->aux))
8269 		bpf_prog_offload_remove_insns(env, off, cnt);
8270 
8271 	err = bpf_remove_insns(env->prog, off, cnt);
8272 	if (err)
8273 		return err;
8274 
8275 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8276 	if (err)
8277 		return err;
8278 
8279 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8280 	if (err)
8281 		return err;
8282 
8283 	memmove(aux_data + off,	aux_data + off + cnt,
8284 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8285 
8286 	return 0;
8287 }
8288 
8289 /* The verifier does more data flow analysis than llvm and will not
8290  * explore branches that are dead at run time. Malicious programs can
8291  * have dead code too. Therefore replace all dead at-run-time code
8292  * with 'ja -1'.
8293  *
8294  * Just nops are not optimal, e.g. if they would sit at the end of the
8295  * program and through another bug we would manage to jump there, then
8296  * we'd execute beyond program memory otherwise. Returning exception
8297  * code also wouldn't work since we can have subprogs where the dead
8298  * code could be located.
8299  */
8300 static void sanitize_dead_code(struct bpf_verifier_env *env)
8301 {
8302 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8303 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8304 	struct bpf_insn *insn = env->prog->insnsi;
8305 	const int insn_cnt = env->prog->len;
8306 	int i;
8307 
8308 	for (i = 0; i < insn_cnt; i++) {
8309 		if (aux_data[i].seen)
8310 			continue;
8311 		memcpy(insn + i, &trap, sizeof(trap));
8312 	}
8313 }
8314 
8315 static bool insn_is_cond_jump(u8 code)
8316 {
8317 	u8 op;
8318 
8319 	if (BPF_CLASS(code) == BPF_JMP32)
8320 		return true;
8321 
8322 	if (BPF_CLASS(code) != BPF_JMP)
8323 		return false;
8324 
8325 	op = BPF_OP(code);
8326 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8327 }
8328 
8329 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8330 {
8331 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8332 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8333 	struct bpf_insn *insn = env->prog->insnsi;
8334 	const int insn_cnt = env->prog->len;
8335 	int i;
8336 
8337 	for (i = 0; i < insn_cnt; i++, insn++) {
8338 		if (!insn_is_cond_jump(insn->code))
8339 			continue;
8340 
8341 		if (!aux_data[i + 1].seen)
8342 			ja.off = insn->off;
8343 		else if (!aux_data[i + 1 + insn->off].seen)
8344 			ja.off = 0;
8345 		else
8346 			continue;
8347 
8348 		if (bpf_prog_is_dev_bound(env->prog->aux))
8349 			bpf_prog_offload_replace_insn(env, i, &ja);
8350 
8351 		memcpy(insn, &ja, sizeof(ja));
8352 	}
8353 }
8354 
8355 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8356 {
8357 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8358 	int insn_cnt = env->prog->len;
8359 	int i, err;
8360 
8361 	for (i = 0; i < insn_cnt; i++) {
8362 		int j;
8363 
8364 		j = 0;
8365 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8366 			j++;
8367 		if (!j)
8368 			continue;
8369 
8370 		err = verifier_remove_insns(env, i, j);
8371 		if (err)
8372 			return err;
8373 		insn_cnt = env->prog->len;
8374 	}
8375 
8376 	return 0;
8377 }
8378 
8379 static int opt_remove_nops(struct bpf_verifier_env *env)
8380 {
8381 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8382 	struct bpf_insn *insn = env->prog->insnsi;
8383 	int insn_cnt = env->prog->len;
8384 	int i, err;
8385 
8386 	for (i = 0; i < insn_cnt; i++) {
8387 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8388 			continue;
8389 
8390 		err = verifier_remove_insns(env, i, 1);
8391 		if (err)
8392 			return err;
8393 		insn_cnt--;
8394 		i--;
8395 	}
8396 
8397 	return 0;
8398 }
8399 
8400 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8401 					 const union bpf_attr *attr)
8402 {
8403 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8404 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8405 	int i, patch_len, delta = 0, len = env->prog->len;
8406 	struct bpf_insn *insns = env->prog->insnsi;
8407 	struct bpf_prog *new_prog;
8408 	bool rnd_hi32;
8409 
8410 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8411 	zext_patch[1] = BPF_ZEXT_REG(0);
8412 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8413 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8414 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8415 	for (i = 0; i < len; i++) {
8416 		int adj_idx = i + delta;
8417 		struct bpf_insn insn;
8418 
8419 		insn = insns[adj_idx];
8420 		if (!aux[adj_idx].zext_dst) {
8421 			u8 code, class;
8422 			u32 imm_rnd;
8423 
8424 			if (!rnd_hi32)
8425 				continue;
8426 
8427 			code = insn.code;
8428 			class = BPF_CLASS(code);
8429 			if (insn_no_def(&insn))
8430 				continue;
8431 
8432 			/* NOTE: arg "reg" (the fourth one) is only used for
8433 			 *       BPF_STX which has been ruled out in above
8434 			 *       check, it is safe to pass NULL here.
8435 			 */
8436 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8437 				if (class == BPF_LD &&
8438 				    BPF_MODE(code) == BPF_IMM)
8439 					i++;
8440 				continue;
8441 			}
8442 
8443 			/* ctx load could be transformed into wider load. */
8444 			if (class == BPF_LDX &&
8445 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8446 				continue;
8447 
8448 			imm_rnd = get_random_int();
8449 			rnd_hi32_patch[0] = insn;
8450 			rnd_hi32_patch[1].imm = imm_rnd;
8451 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8452 			patch = rnd_hi32_patch;
8453 			patch_len = 4;
8454 			goto apply_patch_buffer;
8455 		}
8456 
8457 		if (!bpf_jit_needs_zext())
8458 			continue;
8459 
8460 		zext_patch[0] = insn;
8461 		zext_patch[1].dst_reg = insn.dst_reg;
8462 		zext_patch[1].src_reg = insn.dst_reg;
8463 		patch = zext_patch;
8464 		patch_len = 2;
8465 apply_patch_buffer:
8466 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8467 		if (!new_prog)
8468 			return -ENOMEM;
8469 		env->prog = new_prog;
8470 		insns = new_prog->insnsi;
8471 		aux = env->insn_aux_data;
8472 		delta += patch_len - 1;
8473 	}
8474 
8475 	return 0;
8476 }
8477 
8478 /* convert load instructions that access fields of a context type into a
8479  * sequence of instructions that access fields of the underlying structure:
8480  *     struct __sk_buff    -> struct sk_buff
8481  *     struct bpf_sock_ops -> struct sock
8482  */
8483 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8484 {
8485 	const struct bpf_verifier_ops *ops = env->ops;
8486 	int i, cnt, size, ctx_field_size, delta = 0;
8487 	const int insn_cnt = env->prog->len;
8488 	struct bpf_insn insn_buf[16], *insn;
8489 	u32 target_size, size_default, off;
8490 	struct bpf_prog *new_prog;
8491 	enum bpf_access_type type;
8492 	bool is_narrower_load;
8493 
8494 	if (ops->gen_prologue || env->seen_direct_write) {
8495 		if (!ops->gen_prologue) {
8496 			verbose(env, "bpf verifier is misconfigured\n");
8497 			return -EINVAL;
8498 		}
8499 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8500 					env->prog);
8501 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8502 			verbose(env, "bpf verifier is misconfigured\n");
8503 			return -EINVAL;
8504 		} else if (cnt) {
8505 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8506 			if (!new_prog)
8507 				return -ENOMEM;
8508 
8509 			env->prog = new_prog;
8510 			delta += cnt - 1;
8511 		}
8512 	}
8513 
8514 	if (bpf_prog_is_dev_bound(env->prog->aux))
8515 		return 0;
8516 
8517 	insn = env->prog->insnsi + delta;
8518 
8519 	for (i = 0; i < insn_cnt; i++, insn++) {
8520 		bpf_convert_ctx_access_t convert_ctx_access;
8521 
8522 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8523 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8524 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8525 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8526 			type = BPF_READ;
8527 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8528 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8529 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8530 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8531 			type = BPF_WRITE;
8532 		else
8533 			continue;
8534 
8535 		if (type == BPF_WRITE &&
8536 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8537 			struct bpf_insn patch[] = {
8538 				/* Sanitize suspicious stack slot with zero.
8539 				 * There are no memory dependencies for this store,
8540 				 * since it's only using frame pointer and immediate
8541 				 * constant of zero
8542 				 */
8543 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8544 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8545 					   0),
8546 				/* the original STX instruction will immediately
8547 				 * overwrite the same stack slot with appropriate value
8548 				 */
8549 				*insn,
8550 			};
8551 
8552 			cnt = ARRAY_SIZE(patch);
8553 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8554 			if (!new_prog)
8555 				return -ENOMEM;
8556 
8557 			delta    += cnt - 1;
8558 			env->prog = new_prog;
8559 			insn      = new_prog->insnsi + i + delta;
8560 			continue;
8561 		}
8562 
8563 		switch (env->insn_aux_data[i + delta].ptr_type) {
8564 		case PTR_TO_CTX:
8565 			if (!ops->convert_ctx_access)
8566 				continue;
8567 			convert_ctx_access = ops->convert_ctx_access;
8568 			break;
8569 		case PTR_TO_SOCKET:
8570 		case PTR_TO_SOCK_COMMON:
8571 			convert_ctx_access = bpf_sock_convert_ctx_access;
8572 			break;
8573 		case PTR_TO_TCP_SOCK:
8574 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8575 			break;
8576 		case PTR_TO_XDP_SOCK:
8577 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8578 			break;
8579 		default:
8580 			continue;
8581 		}
8582 
8583 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8584 		size = BPF_LDST_BYTES(insn);
8585 
8586 		/* If the read access is a narrower load of the field,
8587 		 * convert to a 4/8-byte load, to minimum program type specific
8588 		 * convert_ctx_access changes. If conversion is successful,
8589 		 * we will apply proper mask to the result.
8590 		 */
8591 		is_narrower_load = size < ctx_field_size;
8592 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8593 		off = insn->off;
8594 		if (is_narrower_load) {
8595 			u8 size_code;
8596 
8597 			if (type == BPF_WRITE) {
8598 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8599 				return -EINVAL;
8600 			}
8601 
8602 			size_code = BPF_H;
8603 			if (ctx_field_size == 4)
8604 				size_code = BPF_W;
8605 			else if (ctx_field_size == 8)
8606 				size_code = BPF_DW;
8607 
8608 			insn->off = off & ~(size_default - 1);
8609 			insn->code = BPF_LDX | BPF_MEM | size_code;
8610 		}
8611 
8612 		target_size = 0;
8613 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8614 					 &target_size);
8615 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8616 		    (ctx_field_size && !target_size)) {
8617 			verbose(env, "bpf verifier is misconfigured\n");
8618 			return -EINVAL;
8619 		}
8620 
8621 		if (is_narrower_load && size < target_size) {
8622 			u8 shift = bpf_ctx_narrow_load_shift(off, size,
8623 							     size_default);
8624 			if (ctx_field_size <= 4) {
8625 				if (shift)
8626 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8627 									insn->dst_reg,
8628 									shift);
8629 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8630 								(1 << size * 8) - 1);
8631 			} else {
8632 				if (shift)
8633 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8634 									insn->dst_reg,
8635 									shift);
8636 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8637 								(1ULL << size * 8) - 1);
8638 			}
8639 		}
8640 
8641 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8642 		if (!new_prog)
8643 			return -ENOMEM;
8644 
8645 		delta += cnt - 1;
8646 
8647 		/* keep walking new program and skip insns we just inserted */
8648 		env->prog = new_prog;
8649 		insn      = new_prog->insnsi + i + delta;
8650 	}
8651 
8652 	return 0;
8653 }
8654 
8655 static int jit_subprogs(struct bpf_verifier_env *env)
8656 {
8657 	struct bpf_prog *prog = env->prog, **func, *tmp;
8658 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8659 	struct bpf_insn *insn;
8660 	void *old_bpf_func;
8661 	int err;
8662 
8663 	if (env->subprog_cnt <= 1)
8664 		return 0;
8665 
8666 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8667 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8668 		    insn->src_reg != BPF_PSEUDO_CALL)
8669 			continue;
8670 		/* Upon error here we cannot fall back to interpreter but
8671 		 * need a hard reject of the program. Thus -EFAULT is
8672 		 * propagated in any case.
8673 		 */
8674 		subprog = find_subprog(env, i + insn->imm + 1);
8675 		if (subprog < 0) {
8676 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8677 				  i + insn->imm + 1);
8678 			return -EFAULT;
8679 		}
8680 		/* temporarily remember subprog id inside insn instead of
8681 		 * aux_data, since next loop will split up all insns into funcs
8682 		 */
8683 		insn->off = subprog;
8684 		/* remember original imm in case JIT fails and fallback
8685 		 * to interpreter will be needed
8686 		 */
8687 		env->insn_aux_data[i].call_imm = insn->imm;
8688 		/* point imm to __bpf_call_base+1 from JITs point of view */
8689 		insn->imm = 1;
8690 	}
8691 
8692 	err = bpf_prog_alloc_jited_linfo(prog);
8693 	if (err)
8694 		goto out_undo_insn;
8695 
8696 	err = -ENOMEM;
8697 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
8698 	if (!func)
8699 		goto out_undo_insn;
8700 
8701 	for (i = 0; i < env->subprog_cnt; i++) {
8702 		subprog_start = subprog_end;
8703 		subprog_end = env->subprog_info[i + 1].start;
8704 
8705 		len = subprog_end - subprog_start;
8706 		/* BPF_PROG_RUN doesn't call subprogs directly,
8707 		 * hence main prog stats include the runtime of subprogs.
8708 		 * subprogs don't have IDs and not reachable via prog_get_next_id
8709 		 * func[i]->aux->stats will never be accessed and stays NULL
8710 		 */
8711 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
8712 		if (!func[i])
8713 			goto out_free;
8714 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
8715 		       len * sizeof(struct bpf_insn));
8716 		func[i]->type = prog->type;
8717 		func[i]->len = len;
8718 		if (bpf_prog_calc_tag(func[i]))
8719 			goto out_free;
8720 		func[i]->is_func = 1;
8721 		func[i]->aux->func_idx = i;
8722 		/* the btf and func_info will be freed only at prog->aux */
8723 		func[i]->aux->btf = prog->aux->btf;
8724 		func[i]->aux->func_info = prog->aux->func_info;
8725 
8726 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
8727 		 * Long term would need debug info to populate names
8728 		 */
8729 		func[i]->aux->name[0] = 'F';
8730 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
8731 		func[i]->jit_requested = 1;
8732 		func[i]->aux->linfo = prog->aux->linfo;
8733 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
8734 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
8735 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
8736 		func[i] = bpf_int_jit_compile(func[i]);
8737 		if (!func[i]->jited) {
8738 			err = -ENOTSUPP;
8739 			goto out_free;
8740 		}
8741 		cond_resched();
8742 	}
8743 	/* at this point all bpf functions were successfully JITed
8744 	 * now populate all bpf_calls with correct addresses and
8745 	 * run last pass of JIT
8746 	 */
8747 	for (i = 0; i < env->subprog_cnt; i++) {
8748 		insn = func[i]->insnsi;
8749 		for (j = 0; j < func[i]->len; j++, insn++) {
8750 			if (insn->code != (BPF_JMP | BPF_CALL) ||
8751 			    insn->src_reg != BPF_PSEUDO_CALL)
8752 				continue;
8753 			subprog = insn->off;
8754 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
8755 				    __bpf_call_base;
8756 		}
8757 
8758 		/* we use the aux data to keep a list of the start addresses
8759 		 * of the JITed images for each function in the program
8760 		 *
8761 		 * for some architectures, such as powerpc64, the imm field
8762 		 * might not be large enough to hold the offset of the start
8763 		 * address of the callee's JITed image from __bpf_call_base
8764 		 *
8765 		 * in such cases, we can lookup the start address of a callee
8766 		 * by using its subprog id, available from the off field of
8767 		 * the call instruction, as an index for this list
8768 		 */
8769 		func[i]->aux->func = func;
8770 		func[i]->aux->func_cnt = env->subprog_cnt;
8771 	}
8772 	for (i = 0; i < env->subprog_cnt; i++) {
8773 		old_bpf_func = func[i]->bpf_func;
8774 		tmp = bpf_int_jit_compile(func[i]);
8775 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
8776 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
8777 			err = -ENOTSUPP;
8778 			goto out_free;
8779 		}
8780 		cond_resched();
8781 	}
8782 
8783 	/* finally lock prog and jit images for all functions and
8784 	 * populate kallsysm
8785 	 */
8786 	for (i = 0; i < env->subprog_cnt; i++) {
8787 		bpf_prog_lock_ro(func[i]);
8788 		bpf_prog_kallsyms_add(func[i]);
8789 	}
8790 
8791 	/* Last step: make now unused interpreter insns from main
8792 	 * prog consistent for later dump requests, so they can
8793 	 * later look the same as if they were interpreted only.
8794 	 */
8795 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8796 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8797 		    insn->src_reg != BPF_PSEUDO_CALL)
8798 			continue;
8799 		insn->off = env->insn_aux_data[i].call_imm;
8800 		subprog = find_subprog(env, i + insn->off + 1);
8801 		insn->imm = subprog;
8802 	}
8803 
8804 	prog->jited = 1;
8805 	prog->bpf_func = func[0]->bpf_func;
8806 	prog->aux->func = func;
8807 	prog->aux->func_cnt = env->subprog_cnt;
8808 	bpf_prog_free_unused_jited_linfo(prog);
8809 	return 0;
8810 out_free:
8811 	for (i = 0; i < env->subprog_cnt; i++)
8812 		if (func[i])
8813 			bpf_jit_free(func[i]);
8814 	kfree(func);
8815 out_undo_insn:
8816 	/* cleanup main prog to be interpreted */
8817 	prog->jit_requested = 0;
8818 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8819 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8820 		    insn->src_reg != BPF_PSEUDO_CALL)
8821 			continue;
8822 		insn->off = 0;
8823 		insn->imm = env->insn_aux_data[i].call_imm;
8824 	}
8825 	bpf_prog_free_jited_linfo(prog);
8826 	return err;
8827 }
8828 
8829 static int fixup_call_args(struct bpf_verifier_env *env)
8830 {
8831 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8832 	struct bpf_prog *prog = env->prog;
8833 	struct bpf_insn *insn = prog->insnsi;
8834 	int i, depth;
8835 #endif
8836 	int err = 0;
8837 
8838 	if (env->prog->jit_requested &&
8839 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
8840 		err = jit_subprogs(env);
8841 		if (err == 0)
8842 			return 0;
8843 		if (err == -EFAULT)
8844 			return err;
8845 	}
8846 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
8847 	for (i = 0; i < prog->len; i++, insn++) {
8848 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8849 		    insn->src_reg != BPF_PSEUDO_CALL)
8850 			continue;
8851 		depth = get_callee_stack_depth(env, insn, i);
8852 		if (depth < 0)
8853 			return depth;
8854 		bpf_patch_call_args(insn, depth);
8855 	}
8856 	err = 0;
8857 #endif
8858 	return err;
8859 }
8860 
8861 /* fixup insn->imm field of bpf_call instructions
8862  * and inline eligible helpers as explicit sequence of BPF instructions
8863  *
8864  * this function is called after eBPF program passed verification
8865  */
8866 static int fixup_bpf_calls(struct bpf_verifier_env *env)
8867 {
8868 	struct bpf_prog *prog = env->prog;
8869 	struct bpf_insn *insn = prog->insnsi;
8870 	const struct bpf_func_proto *fn;
8871 	const int insn_cnt = prog->len;
8872 	const struct bpf_map_ops *ops;
8873 	struct bpf_insn_aux_data *aux;
8874 	struct bpf_insn insn_buf[16];
8875 	struct bpf_prog *new_prog;
8876 	struct bpf_map *map_ptr;
8877 	int i, cnt, delta = 0;
8878 
8879 	for (i = 0; i < insn_cnt; i++, insn++) {
8880 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
8881 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8882 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
8883 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8884 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
8885 			struct bpf_insn mask_and_div[] = {
8886 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8887 				/* Rx div 0 -> 0 */
8888 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
8889 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
8890 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
8891 				*insn,
8892 			};
8893 			struct bpf_insn mask_and_mod[] = {
8894 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
8895 				/* Rx mod 0 -> Rx */
8896 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
8897 				*insn,
8898 			};
8899 			struct bpf_insn *patchlet;
8900 
8901 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
8902 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
8903 				patchlet = mask_and_div + (is64 ? 1 : 0);
8904 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
8905 			} else {
8906 				patchlet = mask_and_mod + (is64 ? 1 : 0);
8907 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
8908 			}
8909 
8910 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
8911 			if (!new_prog)
8912 				return -ENOMEM;
8913 
8914 			delta    += cnt - 1;
8915 			env->prog = prog = new_prog;
8916 			insn      = new_prog->insnsi + i + delta;
8917 			continue;
8918 		}
8919 
8920 		if (BPF_CLASS(insn->code) == BPF_LD &&
8921 		    (BPF_MODE(insn->code) == BPF_ABS ||
8922 		     BPF_MODE(insn->code) == BPF_IND)) {
8923 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
8924 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8925 				verbose(env, "bpf verifier is misconfigured\n");
8926 				return -EINVAL;
8927 			}
8928 
8929 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8930 			if (!new_prog)
8931 				return -ENOMEM;
8932 
8933 			delta    += cnt - 1;
8934 			env->prog = prog = new_prog;
8935 			insn      = new_prog->insnsi + i + delta;
8936 			continue;
8937 		}
8938 
8939 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
8940 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
8941 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
8942 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
8943 			struct bpf_insn insn_buf[16];
8944 			struct bpf_insn *patch = &insn_buf[0];
8945 			bool issrc, isneg;
8946 			u32 off_reg;
8947 
8948 			aux = &env->insn_aux_data[i + delta];
8949 			if (!aux->alu_state ||
8950 			    aux->alu_state == BPF_ALU_NON_POINTER)
8951 				continue;
8952 
8953 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
8954 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
8955 				BPF_ALU_SANITIZE_SRC;
8956 
8957 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
8958 			if (isneg)
8959 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8960 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
8961 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
8962 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
8963 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
8964 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
8965 			if (issrc) {
8966 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
8967 							 off_reg);
8968 				insn->src_reg = BPF_REG_AX;
8969 			} else {
8970 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
8971 							 BPF_REG_AX);
8972 			}
8973 			if (isneg)
8974 				insn->code = insn->code == code_add ?
8975 					     code_sub : code_add;
8976 			*patch++ = *insn;
8977 			if (issrc && isneg)
8978 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
8979 			cnt = patch - insn_buf;
8980 
8981 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8982 			if (!new_prog)
8983 				return -ENOMEM;
8984 
8985 			delta    += cnt - 1;
8986 			env->prog = prog = new_prog;
8987 			insn      = new_prog->insnsi + i + delta;
8988 			continue;
8989 		}
8990 
8991 		if (insn->code != (BPF_JMP | BPF_CALL))
8992 			continue;
8993 		if (insn->src_reg == BPF_PSEUDO_CALL)
8994 			continue;
8995 
8996 		if (insn->imm == BPF_FUNC_get_route_realm)
8997 			prog->dst_needed = 1;
8998 		if (insn->imm == BPF_FUNC_get_prandom_u32)
8999 			bpf_user_rnd_init_once();
9000 		if (insn->imm == BPF_FUNC_override_return)
9001 			prog->kprobe_override = 1;
9002 		if (insn->imm == BPF_FUNC_tail_call) {
9003 			/* If we tail call into other programs, we
9004 			 * cannot make any assumptions since they can
9005 			 * be replaced dynamically during runtime in
9006 			 * the program array.
9007 			 */
9008 			prog->cb_access = 1;
9009 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9010 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9011 
9012 			/* mark bpf_tail_call as different opcode to avoid
9013 			 * conditional branch in the interpeter for every normal
9014 			 * call and to prevent accidental JITing by JIT compiler
9015 			 * that doesn't support bpf_tail_call yet
9016 			 */
9017 			insn->imm = 0;
9018 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9019 
9020 			aux = &env->insn_aux_data[i + delta];
9021 			if (!bpf_map_ptr_unpriv(aux))
9022 				continue;
9023 
9024 			/* instead of changing every JIT dealing with tail_call
9025 			 * emit two extra insns:
9026 			 * if (index >= max_entries) goto out;
9027 			 * index &= array->index_mask;
9028 			 * to avoid out-of-bounds cpu speculation
9029 			 */
9030 			if (bpf_map_ptr_poisoned(aux)) {
9031 				verbose(env, "tail_call abusing map_ptr\n");
9032 				return -EINVAL;
9033 			}
9034 
9035 			map_ptr = BPF_MAP_PTR(aux->map_state);
9036 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9037 						  map_ptr->max_entries, 2);
9038 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9039 						    container_of(map_ptr,
9040 								 struct bpf_array,
9041 								 map)->index_mask);
9042 			insn_buf[2] = *insn;
9043 			cnt = 3;
9044 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9045 			if (!new_prog)
9046 				return -ENOMEM;
9047 
9048 			delta    += cnt - 1;
9049 			env->prog = prog = new_prog;
9050 			insn      = new_prog->insnsi + i + delta;
9051 			continue;
9052 		}
9053 
9054 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9055 		 * and other inlining handlers are currently limited to 64 bit
9056 		 * only.
9057 		 */
9058 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9059 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9060 		     insn->imm == BPF_FUNC_map_update_elem ||
9061 		     insn->imm == BPF_FUNC_map_delete_elem ||
9062 		     insn->imm == BPF_FUNC_map_push_elem   ||
9063 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9064 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9065 			aux = &env->insn_aux_data[i + delta];
9066 			if (bpf_map_ptr_poisoned(aux))
9067 				goto patch_call_imm;
9068 
9069 			map_ptr = BPF_MAP_PTR(aux->map_state);
9070 			ops = map_ptr->ops;
9071 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9072 			    ops->map_gen_lookup) {
9073 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9074 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9075 					verbose(env, "bpf verifier is misconfigured\n");
9076 					return -EINVAL;
9077 				}
9078 
9079 				new_prog = bpf_patch_insn_data(env, i + delta,
9080 							       insn_buf, cnt);
9081 				if (!new_prog)
9082 					return -ENOMEM;
9083 
9084 				delta    += cnt - 1;
9085 				env->prog = prog = new_prog;
9086 				insn      = new_prog->insnsi + i + delta;
9087 				continue;
9088 			}
9089 
9090 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9091 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9092 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9093 				     (int (*)(struct bpf_map *map, void *key))NULL));
9094 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9095 				     (int (*)(struct bpf_map *map, void *key, void *value,
9096 					      u64 flags))NULL));
9097 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9098 				     (int (*)(struct bpf_map *map, void *value,
9099 					      u64 flags))NULL));
9100 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9101 				     (int (*)(struct bpf_map *map, void *value))NULL));
9102 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9103 				     (int (*)(struct bpf_map *map, void *value))NULL));
9104 
9105 			switch (insn->imm) {
9106 			case BPF_FUNC_map_lookup_elem:
9107 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9108 					    __bpf_call_base;
9109 				continue;
9110 			case BPF_FUNC_map_update_elem:
9111 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9112 					    __bpf_call_base;
9113 				continue;
9114 			case BPF_FUNC_map_delete_elem:
9115 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9116 					    __bpf_call_base;
9117 				continue;
9118 			case BPF_FUNC_map_push_elem:
9119 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9120 					    __bpf_call_base;
9121 				continue;
9122 			case BPF_FUNC_map_pop_elem:
9123 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9124 					    __bpf_call_base;
9125 				continue;
9126 			case BPF_FUNC_map_peek_elem:
9127 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9128 					    __bpf_call_base;
9129 				continue;
9130 			}
9131 
9132 			goto patch_call_imm;
9133 		}
9134 
9135 patch_call_imm:
9136 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9137 		/* all functions that have prototype and verifier allowed
9138 		 * programs to call them, must be real in-kernel functions
9139 		 */
9140 		if (!fn->func) {
9141 			verbose(env,
9142 				"kernel subsystem misconfigured func %s#%d\n",
9143 				func_id_name(insn->imm), insn->imm);
9144 			return -EFAULT;
9145 		}
9146 		insn->imm = fn->func - __bpf_call_base;
9147 	}
9148 
9149 	return 0;
9150 }
9151 
9152 static void free_states(struct bpf_verifier_env *env)
9153 {
9154 	struct bpf_verifier_state_list *sl, *sln;
9155 	int i;
9156 
9157 	sl = env->free_list;
9158 	while (sl) {
9159 		sln = sl->next;
9160 		free_verifier_state(&sl->state, false);
9161 		kfree(sl);
9162 		sl = sln;
9163 	}
9164 
9165 	if (!env->explored_states)
9166 		return;
9167 
9168 	for (i = 0; i < state_htab_size(env); i++) {
9169 		sl = env->explored_states[i];
9170 
9171 		while (sl) {
9172 			sln = sl->next;
9173 			free_verifier_state(&sl->state, false);
9174 			kfree(sl);
9175 			sl = sln;
9176 		}
9177 	}
9178 
9179 	kvfree(env->explored_states);
9180 }
9181 
9182 static void print_verification_stats(struct bpf_verifier_env *env)
9183 {
9184 	int i;
9185 
9186 	if (env->log.level & BPF_LOG_STATS) {
9187 		verbose(env, "verification time %lld usec\n",
9188 			div_u64(env->verification_time, 1000));
9189 		verbose(env, "stack depth ");
9190 		for (i = 0; i < env->subprog_cnt; i++) {
9191 			u32 depth = env->subprog_info[i].stack_depth;
9192 
9193 			verbose(env, "%d", depth);
9194 			if (i + 1 < env->subprog_cnt)
9195 				verbose(env, "+");
9196 		}
9197 		verbose(env, "\n");
9198 	}
9199 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9200 		"total_states %d peak_states %d mark_read %d\n",
9201 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9202 		env->max_states_per_insn, env->total_states,
9203 		env->peak_states, env->longest_mark_read_walk);
9204 }
9205 
9206 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9207 	      union bpf_attr __user *uattr)
9208 {
9209 	u64 start_time = ktime_get_ns();
9210 	struct bpf_verifier_env *env;
9211 	struct bpf_verifier_log *log;
9212 	int i, len, ret = -EINVAL;
9213 	bool is_priv;
9214 
9215 	/* no program is valid */
9216 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9217 		return -EINVAL;
9218 
9219 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9220 	 * allocate/free it every time bpf_check() is called
9221 	 */
9222 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
9223 	if (!env)
9224 		return -ENOMEM;
9225 	log = &env->log;
9226 
9227 	len = (*prog)->len;
9228 	env->insn_aux_data =
9229 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
9230 	ret = -ENOMEM;
9231 	if (!env->insn_aux_data)
9232 		goto err_free_env;
9233 	for (i = 0; i < len; i++)
9234 		env->insn_aux_data[i].orig_idx = i;
9235 	env->prog = *prog;
9236 	env->ops = bpf_verifier_ops[env->prog->type];
9237 	is_priv = capable(CAP_SYS_ADMIN);
9238 
9239 	/* grab the mutex to protect few globals used by verifier */
9240 	if (!is_priv)
9241 		mutex_lock(&bpf_verifier_lock);
9242 
9243 	if (attr->log_level || attr->log_buf || attr->log_size) {
9244 		/* user requested verbose verifier output
9245 		 * and supplied buffer to store the verification trace
9246 		 */
9247 		log->level = attr->log_level;
9248 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
9249 		log->len_total = attr->log_size;
9250 
9251 		ret = -EINVAL;
9252 		/* log attributes have to be sane */
9253 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
9254 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
9255 			goto err_unlock;
9256 	}
9257 
9258 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
9259 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
9260 		env->strict_alignment = true;
9261 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
9262 		env->strict_alignment = false;
9263 
9264 	env->allow_ptr_leaks = is_priv;
9265 
9266 	if (is_priv)
9267 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
9268 
9269 	ret = replace_map_fd_with_map_ptr(env);
9270 	if (ret < 0)
9271 		goto skip_full_check;
9272 
9273 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
9274 		ret = bpf_prog_offload_verifier_prep(env->prog);
9275 		if (ret)
9276 			goto skip_full_check;
9277 	}
9278 
9279 	env->explored_states = kvcalloc(state_htab_size(env),
9280 				       sizeof(struct bpf_verifier_state_list *),
9281 				       GFP_USER);
9282 	ret = -ENOMEM;
9283 	if (!env->explored_states)
9284 		goto skip_full_check;
9285 
9286 	ret = check_subprogs(env);
9287 	if (ret < 0)
9288 		goto skip_full_check;
9289 
9290 	ret = check_btf_info(env, attr, uattr);
9291 	if (ret < 0)
9292 		goto skip_full_check;
9293 
9294 	ret = check_cfg(env);
9295 	if (ret < 0)
9296 		goto skip_full_check;
9297 
9298 	ret = do_check(env);
9299 	if (env->cur_state) {
9300 		free_verifier_state(env->cur_state, true);
9301 		env->cur_state = NULL;
9302 	}
9303 
9304 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
9305 		ret = bpf_prog_offload_finalize(env);
9306 
9307 skip_full_check:
9308 	while (!pop_stack(env, NULL, NULL));
9309 	free_states(env);
9310 
9311 	if (ret == 0)
9312 		ret = check_max_stack_depth(env);
9313 
9314 	/* instruction rewrites happen after this point */
9315 	if (is_priv) {
9316 		if (ret == 0)
9317 			opt_hard_wire_dead_code_branches(env);
9318 		if (ret == 0)
9319 			ret = opt_remove_dead_code(env);
9320 		if (ret == 0)
9321 			ret = opt_remove_nops(env);
9322 	} else {
9323 		if (ret == 0)
9324 			sanitize_dead_code(env);
9325 	}
9326 
9327 	if (ret == 0)
9328 		/* program is valid, convert *(u32*)(ctx + off) accesses */
9329 		ret = convert_ctx_accesses(env);
9330 
9331 	if (ret == 0)
9332 		ret = fixup_bpf_calls(env);
9333 
9334 	/* do 32-bit optimization after insn patching has done so those patched
9335 	 * insns could be handled correctly.
9336 	 */
9337 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
9338 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
9339 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
9340 								     : false;
9341 	}
9342 
9343 	if (ret == 0)
9344 		ret = fixup_call_args(env);
9345 
9346 	env->verification_time = ktime_get_ns() - start_time;
9347 	print_verification_stats(env);
9348 
9349 	if (log->level && bpf_verifier_log_full(log))
9350 		ret = -ENOSPC;
9351 	if (log->level && !log->ubuf) {
9352 		ret = -EFAULT;
9353 		goto err_release_maps;
9354 	}
9355 
9356 	if (ret == 0 && env->used_map_cnt) {
9357 		/* if program passed verifier, update used_maps in bpf_prog_info */
9358 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
9359 							  sizeof(env->used_maps[0]),
9360 							  GFP_KERNEL);
9361 
9362 		if (!env->prog->aux->used_maps) {
9363 			ret = -ENOMEM;
9364 			goto err_release_maps;
9365 		}
9366 
9367 		memcpy(env->prog->aux->used_maps, env->used_maps,
9368 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
9369 		env->prog->aux->used_map_cnt = env->used_map_cnt;
9370 
9371 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
9372 		 * bpf_ld_imm64 instructions
9373 		 */
9374 		convert_pseudo_ld_imm64(env);
9375 	}
9376 
9377 	if (ret == 0)
9378 		adjust_btf_func(env);
9379 
9380 err_release_maps:
9381 	if (!env->prog->aux->used_maps)
9382 		/* if we didn't copy map pointers into bpf_prog_info, release
9383 		 * them now. Otherwise free_used_maps() will release them.
9384 		 */
9385 		release_maps(env);
9386 	*prog = env->prog;
9387 err_unlock:
9388 	if (!is_priv)
9389 		mutex_unlock(&bpf_verifier_lock);
9390 	vfree(env->insn_aux_data);
9391 err_free_env:
9392 	kfree(env);
9393 	return ret;
9394 }
9395