xref: /openbmc/linux/kernel/bpf/verifier.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 	return insn->code == (BPF_JMP | BPF_CALL) &&
234 	       insn->src_reg == BPF_PSEUDO_CALL;
235 }
236 
237 static bool bpf_pseudo_func(const struct bpf_insn *insn)
238 {
239 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
240 	       insn->src_reg == BPF_PSEUDO_FUNC;
241 }
242 
243 struct bpf_call_arg_meta {
244 	struct bpf_map *map_ptr;
245 	bool raw_mode;
246 	bool pkt_access;
247 	int regno;
248 	int access_size;
249 	int mem_size;
250 	u64 msize_max_value;
251 	int ref_obj_id;
252 	int func_id;
253 	struct btf *btf;
254 	u32 btf_id;
255 	struct btf *ret_btf;
256 	u32 ret_btf_id;
257 	u32 subprogno;
258 };
259 
260 struct btf *btf_vmlinux;
261 
262 static DEFINE_MUTEX(bpf_verifier_lock);
263 
264 static const struct bpf_line_info *
265 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
266 {
267 	const struct bpf_line_info *linfo;
268 	const struct bpf_prog *prog;
269 	u32 i, nr_linfo;
270 
271 	prog = env->prog;
272 	nr_linfo = prog->aux->nr_linfo;
273 
274 	if (!nr_linfo || insn_off >= prog->len)
275 		return NULL;
276 
277 	linfo = prog->aux->linfo;
278 	for (i = 1; i < nr_linfo; i++)
279 		if (insn_off < linfo[i].insn_off)
280 			break;
281 
282 	return &linfo[i - 1];
283 }
284 
285 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
286 		       va_list args)
287 {
288 	unsigned int n;
289 
290 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
291 
292 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
293 		  "verifier log line truncated - local buffer too short\n");
294 
295 	n = min(log->len_total - log->len_used - 1, n);
296 	log->kbuf[n] = '\0';
297 
298 	if (log->level == BPF_LOG_KERNEL) {
299 		pr_err("BPF:%s\n", log->kbuf);
300 		return;
301 	}
302 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
303 		log->len_used += n;
304 	else
305 		log->ubuf = NULL;
306 }
307 
308 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
309 {
310 	char zero = 0;
311 
312 	if (!bpf_verifier_log_needed(log))
313 		return;
314 
315 	log->len_used = new_pos;
316 	if (put_user(zero, log->ubuf + new_pos))
317 		log->ubuf = NULL;
318 }
319 
320 /* log_level controls verbosity level of eBPF verifier.
321  * bpf_verifier_log_write() is used to dump the verification trace to the log,
322  * so the user can figure out what's wrong with the program
323  */
324 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
325 					   const char *fmt, ...)
326 {
327 	va_list args;
328 
329 	if (!bpf_verifier_log_needed(&env->log))
330 		return;
331 
332 	va_start(args, fmt);
333 	bpf_verifier_vlog(&env->log, fmt, args);
334 	va_end(args);
335 }
336 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
337 
338 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
339 {
340 	struct bpf_verifier_env *env = private_data;
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(&env->log, fmt, args);
348 	va_end(args);
349 }
350 
351 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
352 			    const char *fmt, ...)
353 {
354 	va_list args;
355 
356 	if (!bpf_verifier_log_needed(log))
357 		return;
358 
359 	va_start(args, fmt);
360 	bpf_verifier_vlog(log, fmt, args);
361 	va_end(args);
362 }
363 
364 static const char *ltrim(const char *s)
365 {
366 	while (isspace(*s))
367 		s++;
368 
369 	return s;
370 }
371 
372 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
373 					 u32 insn_off,
374 					 const char *prefix_fmt, ...)
375 {
376 	const struct bpf_line_info *linfo;
377 
378 	if (!bpf_verifier_log_needed(&env->log))
379 		return;
380 
381 	linfo = find_linfo(env, insn_off);
382 	if (!linfo || linfo == env->prev_linfo)
383 		return;
384 
385 	if (prefix_fmt) {
386 		va_list args;
387 
388 		va_start(args, prefix_fmt);
389 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
390 		va_end(args);
391 	}
392 
393 	verbose(env, "%s\n",
394 		ltrim(btf_name_by_offset(env->prog->aux->btf,
395 					 linfo->line_off)));
396 
397 	env->prev_linfo = linfo;
398 }
399 
400 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
401 				   struct bpf_reg_state *reg,
402 				   struct tnum *range, const char *ctx,
403 				   const char *reg_name)
404 {
405 	char tn_buf[48];
406 
407 	verbose(env, "At %s the register %s ", ctx, reg_name);
408 	if (!tnum_is_unknown(reg->var_off)) {
409 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
410 		verbose(env, "has value %s", tn_buf);
411 	} else {
412 		verbose(env, "has unknown scalar value");
413 	}
414 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
415 	verbose(env, " should have been in %s\n", tn_buf);
416 }
417 
418 static bool type_is_pkt_pointer(enum bpf_reg_type type)
419 {
420 	return type == PTR_TO_PACKET ||
421 	       type == PTR_TO_PACKET_META;
422 }
423 
424 static bool type_is_sk_pointer(enum bpf_reg_type type)
425 {
426 	return type == PTR_TO_SOCKET ||
427 		type == PTR_TO_SOCK_COMMON ||
428 		type == PTR_TO_TCP_SOCK ||
429 		type == PTR_TO_XDP_SOCK;
430 }
431 
432 static bool reg_type_not_null(enum bpf_reg_type type)
433 {
434 	return type == PTR_TO_SOCKET ||
435 		type == PTR_TO_TCP_SOCK ||
436 		type == PTR_TO_MAP_VALUE ||
437 		type == PTR_TO_MAP_KEY ||
438 		type == PTR_TO_SOCK_COMMON;
439 }
440 
441 static bool reg_type_may_be_null(enum bpf_reg_type type)
442 {
443 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
444 	       type == PTR_TO_SOCKET_OR_NULL ||
445 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
446 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
447 	       type == PTR_TO_BTF_ID_OR_NULL ||
448 	       type == PTR_TO_MEM_OR_NULL ||
449 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
450 	       type == PTR_TO_RDWR_BUF_OR_NULL;
451 }
452 
453 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
454 {
455 	return reg->type == PTR_TO_MAP_VALUE &&
456 		map_value_has_spin_lock(reg->map_ptr);
457 }
458 
459 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
460 {
461 	return type == PTR_TO_SOCKET ||
462 		type == PTR_TO_SOCKET_OR_NULL ||
463 		type == PTR_TO_TCP_SOCK ||
464 		type == PTR_TO_TCP_SOCK_OR_NULL ||
465 		type == PTR_TO_MEM ||
466 		type == PTR_TO_MEM_OR_NULL;
467 }
468 
469 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
470 {
471 	return type == ARG_PTR_TO_SOCK_COMMON;
472 }
473 
474 static bool arg_type_may_be_null(enum bpf_arg_type type)
475 {
476 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
477 	       type == ARG_PTR_TO_MEM_OR_NULL ||
478 	       type == ARG_PTR_TO_CTX_OR_NULL ||
479 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
480 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
481 	       type == ARG_PTR_TO_STACK_OR_NULL;
482 }
483 
484 /* Determine whether the function releases some resources allocated by another
485  * function call. The first reference type argument will be assumed to be
486  * released by release_reference().
487  */
488 static bool is_release_function(enum bpf_func_id func_id)
489 {
490 	return func_id == BPF_FUNC_sk_release ||
491 	       func_id == BPF_FUNC_ringbuf_submit ||
492 	       func_id == BPF_FUNC_ringbuf_discard;
493 }
494 
495 static bool may_be_acquire_function(enum bpf_func_id func_id)
496 {
497 	return func_id == BPF_FUNC_sk_lookup_tcp ||
498 		func_id == BPF_FUNC_sk_lookup_udp ||
499 		func_id == BPF_FUNC_skc_lookup_tcp ||
500 		func_id == BPF_FUNC_map_lookup_elem ||
501 	        func_id == BPF_FUNC_ringbuf_reserve;
502 }
503 
504 static bool is_acquire_function(enum bpf_func_id func_id,
505 				const struct bpf_map *map)
506 {
507 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
508 
509 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
510 	    func_id == BPF_FUNC_sk_lookup_udp ||
511 	    func_id == BPF_FUNC_skc_lookup_tcp ||
512 	    func_id == BPF_FUNC_ringbuf_reserve)
513 		return true;
514 
515 	if (func_id == BPF_FUNC_map_lookup_elem &&
516 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
517 	     map_type == BPF_MAP_TYPE_SOCKHASH))
518 		return true;
519 
520 	return false;
521 }
522 
523 static bool is_ptr_cast_function(enum bpf_func_id func_id)
524 {
525 	return func_id == BPF_FUNC_tcp_sock ||
526 		func_id == BPF_FUNC_sk_fullsock ||
527 		func_id == BPF_FUNC_skc_to_tcp_sock ||
528 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
529 		func_id == BPF_FUNC_skc_to_udp6_sock ||
530 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
531 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
532 }
533 
534 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
535 {
536 	return BPF_CLASS(insn->code) == BPF_STX &&
537 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
538 	       insn->imm == BPF_CMPXCHG;
539 }
540 
541 /* string representation of 'enum bpf_reg_type' */
542 static const char * const reg_type_str[] = {
543 	[NOT_INIT]		= "?",
544 	[SCALAR_VALUE]		= "inv",
545 	[PTR_TO_CTX]		= "ctx",
546 	[CONST_PTR_TO_MAP]	= "map_ptr",
547 	[PTR_TO_MAP_VALUE]	= "map_value",
548 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
549 	[PTR_TO_STACK]		= "fp",
550 	[PTR_TO_PACKET]		= "pkt",
551 	[PTR_TO_PACKET_META]	= "pkt_meta",
552 	[PTR_TO_PACKET_END]	= "pkt_end",
553 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
554 	[PTR_TO_SOCKET]		= "sock",
555 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
556 	[PTR_TO_SOCK_COMMON]	= "sock_common",
557 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
558 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
559 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
560 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
561 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
562 	[PTR_TO_BTF_ID]		= "ptr_",
563 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
564 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
565 	[PTR_TO_MEM]		= "mem",
566 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
567 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
568 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
569 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
570 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
571 	[PTR_TO_FUNC]		= "func",
572 	[PTR_TO_MAP_KEY]	= "map_key",
573 };
574 
575 static char slot_type_char[] = {
576 	[STACK_INVALID]	= '?',
577 	[STACK_SPILL]	= 'r',
578 	[STACK_MISC]	= 'm',
579 	[STACK_ZERO]	= '0',
580 };
581 
582 static void print_liveness(struct bpf_verifier_env *env,
583 			   enum bpf_reg_liveness live)
584 {
585 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
586 	    verbose(env, "_");
587 	if (live & REG_LIVE_READ)
588 		verbose(env, "r");
589 	if (live & REG_LIVE_WRITTEN)
590 		verbose(env, "w");
591 	if (live & REG_LIVE_DONE)
592 		verbose(env, "D");
593 }
594 
595 static struct bpf_func_state *func(struct bpf_verifier_env *env,
596 				   const struct bpf_reg_state *reg)
597 {
598 	struct bpf_verifier_state *cur = env->cur_state;
599 
600 	return cur->frame[reg->frameno];
601 }
602 
603 static const char *kernel_type_name(const struct btf* btf, u32 id)
604 {
605 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
606 }
607 
608 static void print_verifier_state(struct bpf_verifier_env *env,
609 				 const struct bpf_func_state *state)
610 {
611 	const struct bpf_reg_state *reg;
612 	enum bpf_reg_type t;
613 	int i;
614 
615 	if (state->frameno)
616 		verbose(env, " frame%d:", state->frameno);
617 	for (i = 0; i < MAX_BPF_REG; i++) {
618 		reg = &state->regs[i];
619 		t = reg->type;
620 		if (t == NOT_INIT)
621 			continue;
622 		verbose(env, " R%d", i);
623 		print_liveness(env, reg->live);
624 		verbose(env, "=%s", reg_type_str[t]);
625 		if (t == SCALAR_VALUE && reg->precise)
626 			verbose(env, "P");
627 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
628 		    tnum_is_const(reg->var_off)) {
629 			/* reg->off should be 0 for SCALAR_VALUE */
630 			verbose(env, "%lld", reg->var_off.value + reg->off);
631 		} else {
632 			if (t == PTR_TO_BTF_ID ||
633 			    t == PTR_TO_BTF_ID_OR_NULL ||
634 			    t == PTR_TO_PERCPU_BTF_ID)
635 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
636 			verbose(env, "(id=%d", reg->id);
637 			if (reg_type_may_be_refcounted_or_null(t))
638 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
639 			if (t != SCALAR_VALUE)
640 				verbose(env, ",off=%d", reg->off);
641 			if (type_is_pkt_pointer(t))
642 				verbose(env, ",r=%d", reg->range);
643 			else if (t == CONST_PTR_TO_MAP ||
644 				 t == PTR_TO_MAP_KEY ||
645 				 t == PTR_TO_MAP_VALUE ||
646 				 t == PTR_TO_MAP_VALUE_OR_NULL)
647 				verbose(env, ",ks=%d,vs=%d",
648 					reg->map_ptr->key_size,
649 					reg->map_ptr->value_size);
650 			if (tnum_is_const(reg->var_off)) {
651 				/* Typically an immediate SCALAR_VALUE, but
652 				 * could be a pointer whose offset is too big
653 				 * for reg->off
654 				 */
655 				verbose(env, ",imm=%llx", reg->var_off.value);
656 			} else {
657 				if (reg->smin_value != reg->umin_value &&
658 				    reg->smin_value != S64_MIN)
659 					verbose(env, ",smin_value=%lld",
660 						(long long)reg->smin_value);
661 				if (reg->smax_value != reg->umax_value &&
662 				    reg->smax_value != S64_MAX)
663 					verbose(env, ",smax_value=%lld",
664 						(long long)reg->smax_value);
665 				if (reg->umin_value != 0)
666 					verbose(env, ",umin_value=%llu",
667 						(unsigned long long)reg->umin_value);
668 				if (reg->umax_value != U64_MAX)
669 					verbose(env, ",umax_value=%llu",
670 						(unsigned long long)reg->umax_value);
671 				if (!tnum_is_unknown(reg->var_off)) {
672 					char tn_buf[48];
673 
674 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
675 					verbose(env, ",var_off=%s", tn_buf);
676 				}
677 				if (reg->s32_min_value != reg->smin_value &&
678 				    reg->s32_min_value != S32_MIN)
679 					verbose(env, ",s32_min_value=%d",
680 						(int)(reg->s32_min_value));
681 				if (reg->s32_max_value != reg->smax_value &&
682 				    reg->s32_max_value != S32_MAX)
683 					verbose(env, ",s32_max_value=%d",
684 						(int)(reg->s32_max_value));
685 				if (reg->u32_min_value != reg->umin_value &&
686 				    reg->u32_min_value != U32_MIN)
687 					verbose(env, ",u32_min_value=%d",
688 						(int)(reg->u32_min_value));
689 				if (reg->u32_max_value != reg->umax_value &&
690 				    reg->u32_max_value != U32_MAX)
691 					verbose(env, ",u32_max_value=%d",
692 						(int)(reg->u32_max_value));
693 			}
694 			verbose(env, ")");
695 		}
696 	}
697 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
698 		char types_buf[BPF_REG_SIZE + 1];
699 		bool valid = false;
700 		int j;
701 
702 		for (j = 0; j < BPF_REG_SIZE; j++) {
703 			if (state->stack[i].slot_type[j] != STACK_INVALID)
704 				valid = true;
705 			types_buf[j] = slot_type_char[
706 					state->stack[i].slot_type[j]];
707 		}
708 		types_buf[BPF_REG_SIZE] = 0;
709 		if (!valid)
710 			continue;
711 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
712 		print_liveness(env, state->stack[i].spilled_ptr.live);
713 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
714 			reg = &state->stack[i].spilled_ptr;
715 			t = reg->type;
716 			verbose(env, "=%s", reg_type_str[t]);
717 			if (t == SCALAR_VALUE && reg->precise)
718 				verbose(env, "P");
719 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
720 				verbose(env, "%lld", reg->var_off.value + reg->off);
721 		} else {
722 			verbose(env, "=%s", types_buf);
723 		}
724 	}
725 	if (state->acquired_refs && state->refs[0].id) {
726 		verbose(env, " refs=%d", state->refs[0].id);
727 		for (i = 1; i < state->acquired_refs; i++)
728 			if (state->refs[i].id)
729 				verbose(env, ",%d", state->refs[i].id);
730 	}
731 	verbose(env, "\n");
732 }
733 
734 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
735 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
736 			       const struct bpf_func_state *src)	\
737 {									\
738 	if (!src->FIELD)						\
739 		return 0;						\
740 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
741 		/* internal bug, make state invalid to reject the program */ \
742 		memset(dst, 0, sizeof(*dst));				\
743 		return -EFAULT;						\
744 	}								\
745 	memcpy(dst->FIELD, src->FIELD,					\
746 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
747 	return 0;							\
748 }
749 /* copy_reference_state() */
750 COPY_STATE_FN(reference, acquired_refs, refs, 1)
751 /* copy_stack_state() */
752 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
753 #undef COPY_STATE_FN
754 
755 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
756 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
757 				  bool copy_old)			\
758 {									\
759 	u32 old_size = state->COUNT;					\
760 	struct bpf_##NAME##_state *new_##FIELD;				\
761 	int slot = size / SIZE;						\
762 									\
763 	if (size <= old_size || !size) {				\
764 		if (copy_old)						\
765 			return 0;					\
766 		state->COUNT = slot * SIZE;				\
767 		if (!size && old_size) {				\
768 			kfree(state->FIELD);				\
769 			state->FIELD = NULL;				\
770 		}							\
771 		return 0;						\
772 	}								\
773 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
774 				    GFP_KERNEL);			\
775 	if (!new_##FIELD)						\
776 		return -ENOMEM;						\
777 	if (copy_old) {							\
778 		if (state->FIELD)					\
779 			memcpy(new_##FIELD, state->FIELD,		\
780 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
781 		memset(new_##FIELD + old_size / SIZE, 0,		\
782 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
783 	}								\
784 	state->COUNT = slot * SIZE;					\
785 	kfree(state->FIELD);						\
786 	state->FIELD = new_##FIELD;					\
787 	return 0;							\
788 }
789 /* realloc_reference_state() */
790 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
791 /* realloc_stack_state() */
792 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
793 #undef REALLOC_STATE_FN
794 
795 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
796  * make it consume minimal amount of memory. check_stack_write() access from
797  * the program calls into realloc_func_state() to grow the stack size.
798  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
799  * which realloc_stack_state() copies over. It points to previous
800  * bpf_verifier_state which is never reallocated.
801  */
802 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
803 			      int refs_size, bool copy_old)
804 {
805 	int err = realloc_reference_state(state, refs_size, copy_old);
806 	if (err)
807 		return err;
808 	return realloc_stack_state(state, stack_size, copy_old);
809 }
810 
811 /* Acquire a pointer id from the env and update the state->refs to include
812  * this new pointer reference.
813  * On success, returns a valid pointer id to associate with the register
814  * On failure, returns a negative errno.
815  */
816 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
817 {
818 	struct bpf_func_state *state = cur_func(env);
819 	int new_ofs = state->acquired_refs;
820 	int id, err;
821 
822 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
823 	if (err)
824 		return err;
825 	id = ++env->id_gen;
826 	state->refs[new_ofs].id = id;
827 	state->refs[new_ofs].insn_idx = insn_idx;
828 
829 	return id;
830 }
831 
832 /* release function corresponding to acquire_reference_state(). Idempotent. */
833 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
834 {
835 	int i, last_idx;
836 
837 	last_idx = state->acquired_refs - 1;
838 	for (i = 0; i < state->acquired_refs; i++) {
839 		if (state->refs[i].id == ptr_id) {
840 			if (last_idx && i != last_idx)
841 				memcpy(&state->refs[i], &state->refs[last_idx],
842 				       sizeof(*state->refs));
843 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
844 			state->acquired_refs--;
845 			return 0;
846 		}
847 	}
848 	return -EINVAL;
849 }
850 
851 static int transfer_reference_state(struct bpf_func_state *dst,
852 				    struct bpf_func_state *src)
853 {
854 	int err = realloc_reference_state(dst, src->acquired_refs, false);
855 	if (err)
856 		return err;
857 	err = copy_reference_state(dst, src);
858 	if (err)
859 		return err;
860 	return 0;
861 }
862 
863 static void free_func_state(struct bpf_func_state *state)
864 {
865 	if (!state)
866 		return;
867 	kfree(state->refs);
868 	kfree(state->stack);
869 	kfree(state);
870 }
871 
872 static void clear_jmp_history(struct bpf_verifier_state *state)
873 {
874 	kfree(state->jmp_history);
875 	state->jmp_history = NULL;
876 	state->jmp_history_cnt = 0;
877 }
878 
879 static void free_verifier_state(struct bpf_verifier_state *state,
880 				bool free_self)
881 {
882 	int i;
883 
884 	for (i = 0; i <= state->curframe; i++) {
885 		free_func_state(state->frame[i]);
886 		state->frame[i] = NULL;
887 	}
888 	clear_jmp_history(state);
889 	if (free_self)
890 		kfree(state);
891 }
892 
893 /* copy verifier state from src to dst growing dst stack space
894  * when necessary to accommodate larger src stack
895  */
896 static int copy_func_state(struct bpf_func_state *dst,
897 			   const struct bpf_func_state *src)
898 {
899 	int err;
900 
901 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
902 				 false);
903 	if (err)
904 		return err;
905 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
906 	err = copy_reference_state(dst, src);
907 	if (err)
908 		return err;
909 	return copy_stack_state(dst, src);
910 }
911 
912 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
913 			       const struct bpf_verifier_state *src)
914 {
915 	struct bpf_func_state *dst;
916 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
917 	int i, err;
918 
919 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
920 		kfree(dst_state->jmp_history);
921 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
922 		if (!dst_state->jmp_history)
923 			return -ENOMEM;
924 	}
925 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
926 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
927 
928 	/* if dst has more stack frames then src frame, free them */
929 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
930 		free_func_state(dst_state->frame[i]);
931 		dst_state->frame[i] = NULL;
932 	}
933 	dst_state->speculative = src->speculative;
934 	dst_state->curframe = src->curframe;
935 	dst_state->active_spin_lock = src->active_spin_lock;
936 	dst_state->branches = src->branches;
937 	dst_state->parent = src->parent;
938 	dst_state->first_insn_idx = src->first_insn_idx;
939 	dst_state->last_insn_idx = src->last_insn_idx;
940 	for (i = 0; i <= src->curframe; i++) {
941 		dst = dst_state->frame[i];
942 		if (!dst) {
943 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
944 			if (!dst)
945 				return -ENOMEM;
946 			dst_state->frame[i] = dst;
947 		}
948 		err = copy_func_state(dst, src->frame[i]);
949 		if (err)
950 			return err;
951 	}
952 	return 0;
953 }
954 
955 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
956 {
957 	while (st) {
958 		u32 br = --st->branches;
959 
960 		/* WARN_ON(br > 1) technically makes sense here,
961 		 * but see comment in push_stack(), hence:
962 		 */
963 		WARN_ONCE((int)br < 0,
964 			  "BUG update_branch_counts:branches_to_explore=%d\n",
965 			  br);
966 		if (br)
967 			break;
968 		st = st->parent;
969 	}
970 }
971 
972 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
973 		     int *insn_idx, bool pop_log)
974 {
975 	struct bpf_verifier_state *cur = env->cur_state;
976 	struct bpf_verifier_stack_elem *elem, *head = env->head;
977 	int err;
978 
979 	if (env->head == NULL)
980 		return -ENOENT;
981 
982 	if (cur) {
983 		err = copy_verifier_state(cur, &head->st);
984 		if (err)
985 			return err;
986 	}
987 	if (pop_log)
988 		bpf_vlog_reset(&env->log, head->log_pos);
989 	if (insn_idx)
990 		*insn_idx = head->insn_idx;
991 	if (prev_insn_idx)
992 		*prev_insn_idx = head->prev_insn_idx;
993 	elem = head->next;
994 	free_verifier_state(&head->st, false);
995 	kfree(head);
996 	env->head = elem;
997 	env->stack_size--;
998 	return 0;
999 }
1000 
1001 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1002 					     int insn_idx, int prev_insn_idx,
1003 					     bool speculative)
1004 {
1005 	struct bpf_verifier_state *cur = env->cur_state;
1006 	struct bpf_verifier_stack_elem *elem;
1007 	int err;
1008 
1009 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1010 	if (!elem)
1011 		goto err;
1012 
1013 	elem->insn_idx = insn_idx;
1014 	elem->prev_insn_idx = prev_insn_idx;
1015 	elem->next = env->head;
1016 	elem->log_pos = env->log.len_used;
1017 	env->head = elem;
1018 	env->stack_size++;
1019 	err = copy_verifier_state(&elem->st, cur);
1020 	if (err)
1021 		goto err;
1022 	elem->st.speculative |= speculative;
1023 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1024 		verbose(env, "The sequence of %d jumps is too complex.\n",
1025 			env->stack_size);
1026 		goto err;
1027 	}
1028 	if (elem->st.parent) {
1029 		++elem->st.parent->branches;
1030 		/* WARN_ON(branches > 2) technically makes sense here,
1031 		 * but
1032 		 * 1. speculative states will bump 'branches' for non-branch
1033 		 * instructions
1034 		 * 2. is_state_visited() heuristics may decide not to create
1035 		 * a new state for a sequence of branches and all such current
1036 		 * and cloned states will be pointing to a single parent state
1037 		 * which might have large 'branches' count.
1038 		 */
1039 	}
1040 	return &elem->st;
1041 err:
1042 	free_verifier_state(env->cur_state, true);
1043 	env->cur_state = NULL;
1044 	/* pop all elements and return */
1045 	while (!pop_stack(env, NULL, NULL, false));
1046 	return NULL;
1047 }
1048 
1049 #define CALLER_SAVED_REGS 6
1050 static const int caller_saved[CALLER_SAVED_REGS] = {
1051 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1052 };
1053 
1054 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1055 				struct bpf_reg_state *reg);
1056 
1057 /* This helper doesn't clear reg->id */
1058 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1059 {
1060 	reg->var_off = tnum_const(imm);
1061 	reg->smin_value = (s64)imm;
1062 	reg->smax_value = (s64)imm;
1063 	reg->umin_value = imm;
1064 	reg->umax_value = imm;
1065 
1066 	reg->s32_min_value = (s32)imm;
1067 	reg->s32_max_value = (s32)imm;
1068 	reg->u32_min_value = (u32)imm;
1069 	reg->u32_max_value = (u32)imm;
1070 }
1071 
1072 /* Mark the unknown part of a register (variable offset or scalar value) as
1073  * known to have the value @imm.
1074  */
1075 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1076 {
1077 	/* Clear id, off, and union(map_ptr, range) */
1078 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1079 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1080 	___mark_reg_known(reg, imm);
1081 }
1082 
1083 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1084 {
1085 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1086 	reg->s32_min_value = (s32)imm;
1087 	reg->s32_max_value = (s32)imm;
1088 	reg->u32_min_value = (u32)imm;
1089 	reg->u32_max_value = (u32)imm;
1090 }
1091 
1092 /* Mark the 'variable offset' part of a register as zero.  This should be
1093  * used only on registers holding a pointer type.
1094  */
1095 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1096 {
1097 	__mark_reg_known(reg, 0);
1098 }
1099 
1100 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1101 {
1102 	__mark_reg_known(reg, 0);
1103 	reg->type = SCALAR_VALUE;
1104 }
1105 
1106 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1107 				struct bpf_reg_state *regs, u32 regno)
1108 {
1109 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1110 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1111 		/* Something bad happened, let's kill all regs */
1112 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1113 			__mark_reg_not_init(env, regs + regno);
1114 		return;
1115 	}
1116 	__mark_reg_known_zero(regs + regno);
1117 }
1118 
1119 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1120 {
1121 	switch (reg->type) {
1122 	case PTR_TO_MAP_VALUE_OR_NULL: {
1123 		const struct bpf_map *map = reg->map_ptr;
1124 
1125 		if (map->inner_map_meta) {
1126 			reg->type = CONST_PTR_TO_MAP;
1127 			reg->map_ptr = map->inner_map_meta;
1128 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1129 			reg->type = PTR_TO_XDP_SOCK;
1130 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1131 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1132 			reg->type = PTR_TO_SOCKET;
1133 		} else {
1134 			reg->type = PTR_TO_MAP_VALUE;
1135 		}
1136 		break;
1137 	}
1138 	case PTR_TO_SOCKET_OR_NULL:
1139 		reg->type = PTR_TO_SOCKET;
1140 		break;
1141 	case PTR_TO_SOCK_COMMON_OR_NULL:
1142 		reg->type = PTR_TO_SOCK_COMMON;
1143 		break;
1144 	case PTR_TO_TCP_SOCK_OR_NULL:
1145 		reg->type = PTR_TO_TCP_SOCK;
1146 		break;
1147 	case PTR_TO_BTF_ID_OR_NULL:
1148 		reg->type = PTR_TO_BTF_ID;
1149 		break;
1150 	case PTR_TO_MEM_OR_NULL:
1151 		reg->type = PTR_TO_MEM;
1152 		break;
1153 	case PTR_TO_RDONLY_BUF_OR_NULL:
1154 		reg->type = PTR_TO_RDONLY_BUF;
1155 		break;
1156 	case PTR_TO_RDWR_BUF_OR_NULL:
1157 		reg->type = PTR_TO_RDWR_BUF;
1158 		break;
1159 	default:
1160 		WARN_ONCE(1, "unknown nullable register type");
1161 	}
1162 }
1163 
1164 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1165 {
1166 	return type_is_pkt_pointer(reg->type);
1167 }
1168 
1169 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1170 {
1171 	return reg_is_pkt_pointer(reg) ||
1172 	       reg->type == PTR_TO_PACKET_END;
1173 }
1174 
1175 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1176 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1177 				    enum bpf_reg_type which)
1178 {
1179 	/* The register can already have a range from prior markings.
1180 	 * This is fine as long as it hasn't been advanced from its
1181 	 * origin.
1182 	 */
1183 	return reg->type == which &&
1184 	       reg->id == 0 &&
1185 	       reg->off == 0 &&
1186 	       tnum_equals_const(reg->var_off, 0);
1187 }
1188 
1189 /* Reset the min/max bounds of a register */
1190 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1191 {
1192 	reg->smin_value = S64_MIN;
1193 	reg->smax_value = S64_MAX;
1194 	reg->umin_value = 0;
1195 	reg->umax_value = U64_MAX;
1196 
1197 	reg->s32_min_value = S32_MIN;
1198 	reg->s32_max_value = S32_MAX;
1199 	reg->u32_min_value = 0;
1200 	reg->u32_max_value = U32_MAX;
1201 }
1202 
1203 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1204 {
1205 	reg->smin_value = S64_MIN;
1206 	reg->smax_value = S64_MAX;
1207 	reg->umin_value = 0;
1208 	reg->umax_value = U64_MAX;
1209 }
1210 
1211 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1212 {
1213 	reg->s32_min_value = S32_MIN;
1214 	reg->s32_max_value = S32_MAX;
1215 	reg->u32_min_value = 0;
1216 	reg->u32_max_value = U32_MAX;
1217 }
1218 
1219 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1220 {
1221 	struct tnum var32_off = tnum_subreg(reg->var_off);
1222 
1223 	/* min signed is max(sign bit) | min(other bits) */
1224 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1225 			var32_off.value | (var32_off.mask & S32_MIN));
1226 	/* max signed is min(sign bit) | max(other bits) */
1227 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1228 			var32_off.value | (var32_off.mask & S32_MAX));
1229 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1230 	reg->u32_max_value = min(reg->u32_max_value,
1231 				 (u32)(var32_off.value | var32_off.mask));
1232 }
1233 
1234 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1235 {
1236 	/* min signed is max(sign bit) | min(other bits) */
1237 	reg->smin_value = max_t(s64, reg->smin_value,
1238 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1239 	/* max signed is min(sign bit) | max(other bits) */
1240 	reg->smax_value = min_t(s64, reg->smax_value,
1241 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1242 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1243 	reg->umax_value = min(reg->umax_value,
1244 			      reg->var_off.value | reg->var_off.mask);
1245 }
1246 
1247 static void __update_reg_bounds(struct bpf_reg_state *reg)
1248 {
1249 	__update_reg32_bounds(reg);
1250 	__update_reg64_bounds(reg);
1251 }
1252 
1253 /* Uses signed min/max values to inform unsigned, and vice-versa */
1254 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1255 {
1256 	/* Learn sign from signed bounds.
1257 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1258 	 * are the same, so combine.  This works even in the negative case, e.g.
1259 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1260 	 */
1261 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1262 		reg->s32_min_value = reg->u32_min_value =
1263 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1264 		reg->s32_max_value = reg->u32_max_value =
1265 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1266 		return;
1267 	}
1268 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1269 	 * boundary, so we must be careful.
1270 	 */
1271 	if ((s32)reg->u32_max_value >= 0) {
1272 		/* Positive.  We can't learn anything from the smin, but smax
1273 		 * is positive, hence safe.
1274 		 */
1275 		reg->s32_min_value = reg->u32_min_value;
1276 		reg->s32_max_value = reg->u32_max_value =
1277 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1278 	} else if ((s32)reg->u32_min_value < 0) {
1279 		/* Negative.  We can't learn anything from the smax, but smin
1280 		 * is negative, hence safe.
1281 		 */
1282 		reg->s32_min_value = reg->u32_min_value =
1283 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1284 		reg->s32_max_value = reg->u32_max_value;
1285 	}
1286 }
1287 
1288 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1289 {
1290 	/* Learn sign from signed bounds.
1291 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1292 	 * are the same, so combine.  This works even in the negative case, e.g.
1293 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1294 	 */
1295 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1296 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1297 							  reg->umin_value);
1298 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1299 							  reg->umax_value);
1300 		return;
1301 	}
1302 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1303 	 * boundary, so we must be careful.
1304 	 */
1305 	if ((s64)reg->umax_value >= 0) {
1306 		/* Positive.  We can't learn anything from the smin, but smax
1307 		 * is positive, hence safe.
1308 		 */
1309 		reg->smin_value = reg->umin_value;
1310 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1311 							  reg->umax_value);
1312 	} else if ((s64)reg->umin_value < 0) {
1313 		/* Negative.  We can't learn anything from the smax, but smin
1314 		 * is negative, hence safe.
1315 		 */
1316 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1317 							  reg->umin_value);
1318 		reg->smax_value = reg->umax_value;
1319 	}
1320 }
1321 
1322 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1323 {
1324 	__reg32_deduce_bounds(reg);
1325 	__reg64_deduce_bounds(reg);
1326 }
1327 
1328 /* Attempts to improve var_off based on unsigned min/max information */
1329 static void __reg_bound_offset(struct bpf_reg_state *reg)
1330 {
1331 	struct tnum var64_off = tnum_intersect(reg->var_off,
1332 					       tnum_range(reg->umin_value,
1333 							  reg->umax_value));
1334 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1335 						tnum_range(reg->u32_min_value,
1336 							   reg->u32_max_value));
1337 
1338 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1339 }
1340 
1341 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1342 {
1343 	reg->umin_value = reg->u32_min_value;
1344 	reg->umax_value = reg->u32_max_value;
1345 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1346 	 * but must be positive otherwise set to worse case bounds
1347 	 * and refine later from tnum.
1348 	 */
1349 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1350 		reg->smax_value = reg->s32_max_value;
1351 	else
1352 		reg->smax_value = U32_MAX;
1353 	if (reg->s32_min_value >= 0)
1354 		reg->smin_value = reg->s32_min_value;
1355 	else
1356 		reg->smin_value = 0;
1357 }
1358 
1359 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1360 {
1361 	/* special case when 64-bit register has upper 32-bit register
1362 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1363 	 * allowing us to use 32-bit bounds directly,
1364 	 */
1365 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1366 		__reg_assign_32_into_64(reg);
1367 	} else {
1368 		/* Otherwise the best we can do is push lower 32bit known and
1369 		 * unknown bits into register (var_off set from jmp logic)
1370 		 * then learn as much as possible from the 64-bit tnum
1371 		 * known and unknown bits. The previous smin/smax bounds are
1372 		 * invalid here because of jmp32 compare so mark them unknown
1373 		 * so they do not impact tnum bounds calculation.
1374 		 */
1375 		__mark_reg64_unbounded(reg);
1376 		__update_reg_bounds(reg);
1377 	}
1378 
1379 	/* Intersecting with the old var_off might have improved our bounds
1380 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1381 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1382 	 */
1383 	__reg_deduce_bounds(reg);
1384 	__reg_bound_offset(reg);
1385 	__update_reg_bounds(reg);
1386 }
1387 
1388 static bool __reg64_bound_s32(s64 a)
1389 {
1390 	return a > S32_MIN && a < S32_MAX;
1391 }
1392 
1393 static bool __reg64_bound_u32(u64 a)
1394 {
1395 	if (a > U32_MIN && a < U32_MAX)
1396 		return true;
1397 	return false;
1398 }
1399 
1400 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1401 {
1402 	__mark_reg32_unbounded(reg);
1403 
1404 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1405 		reg->s32_min_value = (s32)reg->smin_value;
1406 		reg->s32_max_value = (s32)reg->smax_value;
1407 	}
1408 	if (__reg64_bound_u32(reg->umin_value))
1409 		reg->u32_min_value = (u32)reg->umin_value;
1410 	if (__reg64_bound_u32(reg->umax_value))
1411 		reg->u32_max_value = (u32)reg->umax_value;
1412 
1413 	/* Intersecting with the old var_off might have improved our bounds
1414 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1415 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1416 	 */
1417 	__reg_deduce_bounds(reg);
1418 	__reg_bound_offset(reg);
1419 	__update_reg_bounds(reg);
1420 }
1421 
1422 /* Mark a register as having a completely unknown (scalar) value. */
1423 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1424 			       struct bpf_reg_state *reg)
1425 {
1426 	/*
1427 	 * Clear type, id, off, and union(map_ptr, range) and
1428 	 * padding between 'type' and union
1429 	 */
1430 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1431 	reg->type = SCALAR_VALUE;
1432 	reg->var_off = tnum_unknown;
1433 	reg->frameno = 0;
1434 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1435 	__mark_reg_unbounded(reg);
1436 }
1437 
1438 static void mark_reg_unknown(struct bpf_verifier_env *env,
1439 			     struct bpf_reg_state *regs, u32 regno)
1440 {
1441 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1442 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1443 		/* Something bad happened, let's kill all regs except FP */
1444 		for (regno = 0; regno < BPF_REG_FP; regno++)
1445 			__mark_reg_not_init(env, regs + regno);
1446 		return;
1447 	}
1448 	__mark_reg_unknown(env, regs + regno);
1449 }
1450 
1451 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1452 				struct bpf_reg_state *reg)
1453 {
1454 	__mark_reg_unknown(env, reg);
1455 	reg->type = NOT_INIT;
1456 }
1457 
1458 static void mark_reg_not_init(struct bpf_verifier_env *env,
1459 			      struct bpf_reg_state *regs, u32 regno)
1460 {
1461 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1462 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1463 		/* Something bad happened, let's kill all regs except FP */
1464 		for (regno = 0; regno < BPF_REG_FP; regno++)
1465 			__mark_reg_not_init(env, regs + regno);
1466 		return;
1467 	}
1468 	__mark_reg_not_init(env, regs + regno);
1469 }
1470 
1471 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1472 			    struct bpf_reg_state *regs, u32 regno,
1473 			    enum bpf_reg_type reg_type,
1474 			    struct btf *btf, u32 btf_id)
1475 {
1476 	if (reg_type == SCALAR_VALUE) {
1477 		mark_reg_unknown(env, regs, regno);
1478 		return;
1479 	}
1480 	mark_reg_known_zero(env, regs, regno);
1481 	regs[regno].type = PTR_TO_BTF_ID;
1482 	regs[regno].btf = btf;
1483 	regs[regno].btf_id = btf_id;
1484 }
1485 
1486 #define DEF_NOT_SUBREG	(0)
1487 static void init_reg_state(struct bpf_verifier_env *env,
1488 			   struct bpf_func_state *state)
1489 {
1490 	struct bpf_reg_state *regs = state->regs;
1491 	int i;
1492 
1493 	for (i = 0; i < MAX_BPF_REG; i++) {
1494 		mark_reg_not_init(env, regs, i);
1495 		regs[i].live = REG_LIVE_NONE;
1496 		regs[i].parent = NULL;
1497 		regs[i].subreg_def = DEF_NOT_SUBREG;
1498 	}
1499 
1500 	/* frame pointer */
1501 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1502 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1503 	regs[BPF_REG_FP].frameno = state->frameno;
1504 }
1505 
1506 #define BPF_MAIN_FUNC (-1)
1507 static void init_func_state(struct bpf_verifier_env *env,
1508 			    struct bpf_func_state *state,
1509 			    int callsite, int frameno, int subprogno)
1510 {
1511 	state->callsite = callsite;
1512 	state->frameno = frameno;
1513 	state->subprogno = subprogno;
1514 	init_reg_state(env, state);
1515 }
1516 
1517 enum reg_arg_type {
1518 	SRC_OP,		/* register is used as source operand */
1519 	DST_OP,		/* register is used as destination operand */
1520 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1521 };
1522 
1523 static int cmp_subprogs(const void *a, const void *b)
1524 {
1525 	return ((struct bpf_subprog_info *)a)->start -
1526 	       ((struct bpf_subprog_info *)b)->start;
1527 }
1528 
1529 static int find_subprog(struct bpf_verifier_env *env, int off)
1530 {
1531 	struct bpf_subprog_info *p;
1532 
1533 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1534 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1535 	if (!p)
1536 		return -ENOENT;
1537 	return p - env->subprog_info;
1538 
1539 }
1540 
1541 static int add_subprog(struct bpf_verifier_env *env, int off)
1542 {
1543 	int insn_cnt = env->prog->len;
1544 	int ret;
1545 
1546 	if (off >= insn_cnt || off < 0) {
1547 		verbose(env, "call to invalid destination\n");
1548 		return -EINVAL;
1549 	}
1550 	ret = find_subprog(env, off);
1551 	if (ret >= 0)
1552 		return ret;
1553 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1554 		verbose(env, "too many subprograms\n");
1555 		return -E2BIG;
1556 	}
1557 	env->subprog_info[env->subprog_cnt++].start = off;
1558 	sort(env->subprog_info, env->subprog_cnt,
1559 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1560 	return env->subprog_cnt - 1;
1561 }
1562 
1563 static int check_subprogs(struct bpf_verifier_env *env)
1564 {
1565 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1566 	struct bpf_subprog_info *subprog = env->subprog_info;
1567 	struct bpf_insn *insn = env->prog->insnsi;
1568 	int insn_cnt = env->prog->len;
1569 
1570 	/* Add entry function. */
1571 	ret = add_subprog(env, 0);
1572 	if (ret < 0)
1573 		return ret;
1574 
1575 	/* determine subprog starts. The end is one before the next starts */
1576 	for (i = 0; i < insn_cnt; i++) {
1577 		if (bpf_pseudo_func(insn + i)) {
1578 			if (!env->bpf_capable) {
1579 				verbose(env,
1580 					"function pointers are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1581 				return -EPERM;
1582 			}
1583 			ret = add_subprog(env, i + insn[i].imm + 1);
1584 			if (ret < 0)
1585 				return ret;
1586 			/* remember subprog */
1587 			insn[i + 1].imm = ret;
1588 			continue;
1589 		}
1590 		if (!bpf_pseudo_call(insn + i))
1591 			continue;
1592 		if (!env->bpf_capable) {
1593 			verbose(env,
1594 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1595 			return -EPERM;
1596 		}
1597 		ret = add_subprog(env, i + insn[i].imm + 1);
1598 		if (ret < 0)
1599 			return ret;
1600 	}
1601 
1602 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1603 	 * logic. 'subprog_cnt' should not be increased.
1604 	 */
1605 	subprog[env->subprog_cnt].start = insn_cnt;
1606 
1607 	if (env->log.level & BPF_LOG_LEVEL2)
1608 		for (i = 0; i < env->subprog_cnt; i++)
1609 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1610 
1611 	/* now check that all jumps are within the same subprog */
1612 	subprog_start = subprog[cur_subprog].start;
1613 	subprog_end = subprog[cur_subprog + 1].start;
1614 	for (i = 0; i < insn_cnt; i++) {
1615 		u8 code = insn[i].code;
1616 
1617 		if (code == (BPF_JMP | BPF_CALL) &&
1618 		    insn[i].imm == BPF_FUNC_tail_call &&
1619 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1620 			subprog[cur_subprog].has_tail_call = true;
1621 		if (BPF_CLASS(code) == BPF_LD &&
1622 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1623 			subprog[cur_subprog].has_ld_abs = true;
1624 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1625 			goto next;
1626 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1627 			goto next;
1628 		off = i + insn[i].off + 1;
1629 		if (off < subprog_start || off >= subprog_end) {
1630 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1631 			return -EINVAL;
1632 		}
1633 next:
1634 		if (i == subprog_end - 1) {
1635 			/* to avoid fall-through from one subprog into another
1636 			 * the last insn of the subprog should be either exit
1637 			 * or unconditional jump back
1638 			 */
1639 			if (code != (BPF_JMP | BPF_EXIT) &&
1640 			    code != (BPF_JMP | BPF_JA)) {
1641 				verbose(env, "last insn is not an exit or jmp\n");
1642 				return -EINVAL;
1643 			}
1644 			subprog_start = subprog_end;
1645 			cur_subprog++;
1646 			if (cur_subprog < env->subprog_cnt)
1647 				subprog_end = subprog[cur_subprog + 1].start;
1648 		}
1649 	}
1650 	return 0;
1651 }
1652 
1653 /* Parentage chain of this register (or stack slot) should take care of all
1654  * issues like callee-saved registers, stack slot allocation time, etc.
1655  */
1656 static int mark_reg_read(struct bpf_verifier_env *env,
1657 			 const struct bpf_reg_state *state,
1658 			 struct bpf_reg_state *parent, u8 flag)
1659 {
1660 	bool writes = parent == state->parent; /* Observe write marks */
1661 	int cnt = 0;
1662 
1663 	while (parent) {
1664 		/* if read wasn't screened by an earlier write ... */
1665 		if (writes && state->live & REG_LIVE_WRITTEN)
1666 			break;
1667 		if (parent->live & REG_LIVE_DONE) {
1668 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1669 				reg_type_str[parent->type],
1670 				parent->var_off.value, parent->off);
1671 			return -EFAULT;
1672 		}
1673 		/* The first condition is more likely to be true than the
1674 		 * second, checked it first.
1675 		 */
1676 		if ((parent->live & REG_LIVE_READ) == flag ||
1677 		    parent->live & REG_LIVE_READ64)
1678 			/* The parentage chain never changes and
1679 			 * this parent was already marked as LIVE_READ.
1680 			 * There is no need to keep walking the chain again and
1681 			 * keep re-marking all parents as LIVE_READ.
1682 			 * This case happens when the same register is read
1683 			 * multiple times without writes into it in-between.
1684 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1685 			 * then no need to set the weak REG_LIVE_READ32.
1686 			 */
1687 			break;
1688 		/* ... then we depend on parent's value */
1689 		parent->live |= flag;
1690 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1691 		if (flag == REG_LIVE_READ64)
1692 			parent->live &= ~REG_LIVE_READ32;
1693 		state = parent;
1694 		parent = state->parent;
1695 		writes = true;
1696 		cnt++;
1697 	}
1698 
1699 	if (env->longest_mark_read_walk < cnt)
1700 		env->longest_mark_read_walk = cnt;
1701 	return 0;
1702 }
1703 
1704 /* This function is supposed to be used by the following 32-bit optimization
1705  * code only. It returns TRUE if the source or destination register operates
1706  * on 64-bit, otherwise return FALSE.
1707  */
1708 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1709 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1710 {
1711 	u8 code, class, op;
1712 
1713 	code = insn->code;
1714 	class = BPF_CLASS(code);
1715 	op = BPF_OP(code);
1716 	if (class == BPF_JMP) {
1717 		/* BPF_EXIT for "main" will reach here. Return TRUE
1718 		 * conservatively.
1719 		 */
1720 		if (op == BPF_EXIT)
1721 			return true;
1722 		if (op == BPF_CALL) {
1723 			/* BPF to BPF call will reach here because of marking
1724 			 * caller saved clobber with DST_OP_NO_MARK for which we
1725 			 * don't care the register def because they are anyway
1726 			 * marked as NOT_INIT already.
1727 			 */
1728 			if (insn->src_reg == BPF_PSEUDO_CALL)
1729 				return false;
1730 			/* Helper call will reach here because of arg type
1731 			 * check, conservatively return TRUE.
1732 			 */
1733 			if (t == SRC_OP)
1734 				return true;
1735 
1736 			return false;
1737 		}
1738 	}
1739 
1740 	if (class == BPF_ALU64 || class == BPF_JMP ||
1741 	    /* BPF_END always use BPF_ALU class. */
1742 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1743 		return true;
1744 
1745 	if (class == BPF_ALU || class == BPF_JMP32)
1746 		return false;
1747 
1748 	if (class == BPF_LDX) {
1749 		if (t != SRC_OP)
1750 			return BPF_SIZE(code) == BPF_DW;
1751 		/* LDX source must be ptr. */
1752 		return true;
1753 	}
1754 
1755 	if (class == BPF_STX) {
1756 		/* BPF_STX (including atomic variants) has multiple source
1757 		 * operands, one of which is a ptr. Check whether the caller is
1758 		 * asking about it.
1759 		 */
1760 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
1761 			return true;
1762 		return BPF_SIZE(code) == BPF_DW;
1763 	}
1764 
1765 	if (class == BPF_LD) {
1766 		u8 mode = BPF_MODE(code);
1767 
1768 		/* LD_IMM64 */
1769 		if (mode == BPF_IMM)
1770 			return true;
1771 
1772 		/* Both LD_IND and LD_ABS return 32-bit data. */
1773 		if (t != SRC_OP)
1774 			return  false;
1775 
1776 		/* Implicit ctx ptr. */
1777 		if (regno == BPF_REG_6)
1778 			return true;
1779 
1780 		/* Explicit source could be any width. */
1781 		return true;
1782 	}
1783 
1784 	if (class == BPF_ST)
1785 		/* The only source register for BPF_ST is a ptr. */
1786 		return true;
1787 
1788 	/* Conservatively return true at default. */
1789 	return true;
1790 }
1791 
1792 /* Return the regno defined by the insn, or -1. */
1793 static int insn_def_regno(const struct bpf_insn *insn)
1794 {
1795 	switch (BPF_CLASS(insn->code)) {
1796 	case BPF_JMP:
1797 	case BPF_JMP32:
1798 	case BPF_ST:
1799 		return -1;
1800 	case BPF_STX:
1801 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1802 		    (insn->imm & BPF_FETCH)) {
1803 			if (insn->imm == BPF_CMPXCHG)
1804 				return BPF_REG_0;
1805 			else
1806 				return insn->src_reg;
1807 		} else {
1808 			return -1;
1809 		}
1810 	default:
1811 		return insn->dst_reg;
1812 	}
1813 }
1814 
1815 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1816 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1817 {
1818 	int dst_reg = insn_def_regno(insn);
1819 
1820 	if (dst_reg == -1)
1821 		return false;
1822 
1823 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1824 }
1825 
1826 static void mark_insn_zext(struct bpf_verifier_env *env,
1827 			   struct bpf_reg_state *reg)
1828 {
1829 	s32 def_idx = reg->subreg_def;
1830 
1831 	if (def_idx == DEF_NOT_SUBREG)
1832 		return;
1833 
1834 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1835 	/* The dst will be zero extended, so won't be sub-register anymore. */
1836 	reg->subreg_def = DEF_NOT_SUBREG;
1837 }
1838 
1839 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1840 			 enum reg_arg_type t)
1841 {
1842 	struct bpf_verifier_state *vstate = env->cur_state;
1843 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1844 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1845 	struct bpf_reg_state *reg, *regs = state->regs;
1846 	bool rw64;
1847 
1848 	if (regno >= MAX_BPF_REG) {
1849 		verbose(env, "R%d is invalid\n", regno);
1850 		return -EINVAL;
1851 	}
1852 
1853 	reg = &regs[regno];
1854 	rw64 = is_reg64(env, insn, regno, reg, t);
1855 	if (t == SRC_OP) {
1856 		/* check whether register used as source operand can be read */
1857 		if (reg->type == NOT_INIT) {
1858 			verbose(env, "R%d !read_ok\n", regno);
1859 			return -EACCES;
1860 		}
1861 		/* We don't need to worry about FP liveness because it's read-only */
1862 		if (regno == BPF_REG_FP)
1863 			return 0;
1864 
1865 		if (rw64)
1866 			mark_insn_zext(env, reg);
1867 
1868 		return mark_reg_read(env, reg, reg->parent,
1869 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1870 	} else {
1871 		/* check whether register used as dest operand can be written to */
1872 		if (regno == BPF_REG_FP) {
1873 			verbose(env, "frame pointer is read only\n");
1874 			return -EACCES;
1875 		}
1876 		reg->live |= REG_LIVE_WRITTEN;
1877 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1878 		if (t == DST_OP)
1879 			mark_reg_unknown(env, regs, regno);
1880 	}
1881 	return 0;
1882 }
1883 
1884 /* for any branch, call, exit record the history of jmps in the given state */
1885 static int push_jmp_history(struct bpf_verifier_env *env,
1886 			    struct bpf_verifier_state *cur)
1887 {
1888 	u32 cnt = cur->jmp_history_cnt;
1889 	struct bpf_idx_pair *p;
1890 
1891 	cnt++;
1892 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1893 	if (!p)
1894 		return -ENOMEM;
1895 	p[cnt - 1].idx = env->insn_idx;
1896 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1897 	cur->jmp_history = p;
1898 	cur->jmp_history_cnt = cnt;
1899 	return 0;
1900 }
1901 
1902 /* Backtrack one insn at a time. If idx is not at the top of recorded
1903  * history then previous instruction came from straight line execution.
1904  */
1905 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1906 			     u32 *history)
1907 {
1908 	u32 cnt = *history;
1909 
1910 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1911 		i = st->jmp_history[cnt - 1].prev_idx;
1912 		(*history)--;
1913 	} else {
1914 		i--;
1915 	}
1916 	return i;
1917 }
1918 
1919 /* For given verifier state backtrack_insn() is called from the last insn to
1920  * the first insn. Its purpose is to compute a bitmask of registers and
1921  * stack slots that needs precision in the parent verifier state.
1922  */
1923 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1924 			  u32 *reg_mask, u64 *stack_mask)
1925 {
1926 	const struct bpf_insn_cbs cbs = {
1927 		.cb_print	= verbose,
1928 		.private_data	= env,
1929 	};
1930 	struct bpf_insn *insn = env->prog->insnsi + idx;
1931 	u8 class = BPF_CLASS(insn->code);
1932 	u8 opcode = BPF_OP(insn->code);
1933 	u8 mode = BPF_MODE(insn->code);
1934 	u32 dreg = 1u << insn->dst_reg;
1935 	u32 sreg = 1u << insn->src_reg;
1936 	u32 spi;
1937 
1938 	if (insn->code == 0)
1939 		return 0;
1940 	if (env->log.level & BPF_LOG_LEVEL) {
1941 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1942 		verbose(env, "%d: ", idx);
1943 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1944 	}
1945 
1946 	if (class == BPF_ALU || class == BPF_ALU64) {
1947 		if (!(*reg_mask & dreg))
1948 			return 0;
1949 		if (opcode == BPF_MOV) {
1950 			if (BPF_SRC(insn->code) == BPF_X) {
1951 				/* dreg = sreg
1952 				 * dreg needs precision after this insn
1953 				 * sreg needs precision before this insn
1954 				 */
1955 				*reg_mask &= ~dreg;
1956 				*reg_mask |= sreg;
1957 			} else {
1958 				/* dreg = K
1959 				 * dreg needs precision after this insn.
1960 				 * Corresponding register is already marked
1961 				 * as precise=true in this verifier state.
1962 				 * No further markings in parent are necessary
1963 				 */
1964 				*reg_mask &= ~dreg;
1965 			}
1966 		} else {
1967 			if (BPF_SRC(insn->code) == BPF_X) {
1968 				/* dreg += sreg
1969 				 * both dreg and sreg need precision
1970 				 * before this insn
1971 				 */
1972 				*reg_mask |= sreg;
1973 			} /* else dreg += K
1974 			   * dreg still needs precision before this insn
1975 			   */
1976 		}
1977 	} else if (class == BPF_LDX) {
1978 		if (!(*reg_mask & dreg))
1979 			return 0;
1980 		*reg_mask &= ~dreg;
1981 
1982 		/* scalars can only be spilled into stack w/o losing precision.
1983 		 * Load from any other memory can be zero extended.
1984 		 * The desire to keep that precision is already indicated
1985 		 * by 'precise' mark in corresponding register of this state.
1986 		 * No further tracking necessary.
1987 		 */
1988 		if (insn->src_reg != BPF_REG_FP)
1989 			return 0;
1990 		if (BPF_SIZE(insn->code) != BPF_DW)
1991 			return 0;
1992 
1993 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1994 		 * that [fp - off] slot contains scalar that needs to be
1995 		 * tracked with precision
1996 		 */
1997 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1998 		if (spi >= 64) {
1999 			verbose(env, "BUG spi %d\n", spi);
2000 			WARN_ONCE(1, "verifier backtracking bug");
2001 			return -EFAULT;
2002 		}
2003 		*stack_mask |= 1ull << spi;
2004 	} else if (class == BPF_STX || class == BPF_ST) {
2005 		if (*reg_mask & dreg)
2006 			/* stx & st shouldn't be using _scalar_ dst_reg
2007 			 * to access memory. It means backtracking
2008 			 * encountered a case of pointer subtraction.
2009 			 */
2010 			return -ENOTSUPP;
2011 		/* scalars can only be spilled into stack */
2012 		if (insn->dst_reg != BPF_REG_FP)
2013 			return 0;
2014 		if (BPF_SIZE(insn->code) != BPF_DW)
2015 			return 0;
2016 		spi = (-insn->off - 1) / BPF_REG_SIZE;
2017 		if (spi >= 64) {
2018 			verbose(env, "BUG spi %d\n", spi);
2019 			WARN_ONCE(1, "verifier backtracking bug");
2020 			return -EFAULT;
2021 		}
2022 		if (!(*stack_mask & (1ull << spi)))
2023 			return 0;
2024 		*stack_mask &= ~(1ull << spi);
2025 		if (class == BPF_STX)
2026 			*reg_mask |= sreg;
2027 	} else if (class == BPF_JMP || class == BPF_JMP32) {
2028 		if (opcode == BPF_CALL) {
2029 			if (insn->src_reg == BPF_PSEUDO_CALL)
2030 				return -ENOTSUPP;
2031 			/* regular helper call sets R0 */
2032 			*reg_mask &= ~1;
2033 			if (*reg_mask & 0x3f) {
2034 				/* if backtracing was looking for registers R1-R5
2035 				 * they should have been found already.
2036 				 */
2037 				verbose(env, "BUG regs %x\n", *reg_mask);
2038 				WARN_ONCE(1, "verifier backtracking bug");
2039 				return -EFAULT;
2040 			}
2041 		} else if (opcode == BPF_EXIT) {
2042 			return -ENOTSUPP;
2043 		}
2044 	} else if (class == BPF_LD) {
2045 		if (!(*reg_mask & dreg))
2046 			return 0;
2047 		*reg_mask &= ~dreg;
2048 		/* It's ld_imm64 or ld_abs or ld_ind.
2049 		 * For ld_imm64 no further tracking of precision
2050 		 * into parent is necessary
2051 		 */
2052 		if (mode == BPF_IND || mode == BPF_ABS)
2053 			/* to be analyzed */
2054 			return -ENOTSUPP;
2055 	}
2056 	return 0;
2057 }
2058 
2059 /* the scalar precision tracking algorithm:
2060  * . at the start all registers have precise=false.
2061  * . scalar ranges are tracked as normal through alu and jmp insns.
2062  * . once precise value of the scalar register is used in:
2063  *   .  ptr + scalar alu
2064  *   . if (scalar cond K|scalar)
2065  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
2066  *   backtrack through the verifier states and mark all registers and
2067  *   stack slots with spilled constants that these scalar regisers
2068  *   should be precise.
2069  * . during state pruning two registers (or spilled stack slots)
2070  *   are equivalent if both are not precise.
2071  *
2072  * Note the verifier cannot simply walk register parentage chain,
2073  * since many different registers and stack slots could have been
2074  * used to compute single precise scalar.
2075  *
2076  * The approach of starting with precise=true for all registers and then
2077  * backtrack to mark a register as not precise when the verifier detects
2078  * that program doesn't care about specific value (e.g., when helper
2079  * takes register as ARG_ANYTHING parameter) is not safe.
2080  *
2081  * It's ok to walk single parentage chain of the verifier states.
2082  * It's possible that this backtracking will go all the way till 1st insn.
2083  * All other branches will be explored for needing precision later.
2084  *
2085  * The backtracking needs to deal with cases like:
2086  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2087  * r9 -= r8
2088  * r5 = r9
2089  * if r5 > 0x79f goto pc+7
2090  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2091  * r5 += 1
2092  * ...
2093  * call bpf_perf_event_output#25
2094  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2095  *
2096  * and this case:
2097  * r6 = 1
2098  * call foo // uses callee's r6 inside to compute r0
2099  * r0 += r6
2100  * if r0 == 0 goto
2101  *
2102  * to track above reg_mask/stack_mask needs to be independent for each frame.
2103  *
2104  * Also if parent's curframe > frame where backtracking started,
2105  * the verifier need to mark registers in both frames, otherwise callees
2106  * may incorrectly prune callers. This is similar to
2107  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2108  *
2109  * For now backtracking falls back into conservative marking.
2110  */
2111 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2112 				     struct bpf_verifier_state *st)
2113 {
2114 	struct bpf_func_state *func;
2115 	struct bpf_reg_state *reg;
2116 	int i, j;
2117 
2118 	/* big hammer: mark all scalars precise in this path.
2119 	 * pop_stack may still get !precise scalars.
2120 	 */
2121 	for (; st; st = st->parent)
2122 		for (i = 0; i <= st->curframe; i++) {
2123 			func = st->frame[i];
2124 			for (j = 0; j < BPF_REG_FP; j++) {
2125 				reg = &func->regs[j];
2126 				if (reg->type != SCALAR_VALUE)
2127 					continue;
2128 				reg->precise = true;
2129 			}
2130 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2131 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2132 					continue;
2133 				reg = &func->stack[j].spilled_ptr;
2134 				if (reg->type != SCALAR_VALUE)
2135 					continue;
2136 				reg->precise = true;
2137 			}
2138 		}
2139 }
2140 
2141 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2142 				  int spi)
2143 {
2144 	struct bpf_verifier_state *st = env->cur_state;
2145 	int first_idx = st->first_insn_idx;
2146 	int last_idx = env->insn_idx;
2147 	struct bpf_func_state *func;
2148 	struct bpf_reg_state *reg;
2149 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2150 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2151 	bool skip_first = true;
2152 	bool new_marks = false;
2153 	int i, err;
2154 
2155 	if (!env->bpf_capable)
2156 		return 0;
2157 
2158 	func = st->frame[st->curframe];
2159 	if (regno >= 0) {
2160 		reg = &func->regs[regno];
2161 		if (reg->type != SCALAR_VALUE) {
2162 			WARN_ONCE(1, "backtracing misuse");
2163 			return -EFAULT;
2164 		}
2165 		if (!reg->precise)
2166 			new_marks = true;
2167 		else
2168 			reg_mask = 0;
2169 		reg->precise = true;
2170 	}
2171 
2172 	while (spi >= 0) {
2173 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2174 			stack_mask = 0;
2175 			break;
2176 		}
2177 		reg = &func->stack[spi].spilled_ptr;
2178 		if (reg->type != SCALAR_VALUE) {
2179 			stack_mask = 0;
2180 			break;
2181 		}
2182 		if (!reg->precise)
2183 			new_marks = true;
2184 		else
2185 			stack_mask = 0;
2186 		reg->precise = true;
2187 		break;
2188 	}
2189 
2190 	if (!new_marks)
2191 		return 0;
2192 	if (!reg_mask && !stack_mask)
2193 		return 0;
2194 	for (;;) {
2195 		DECLARE_BITMAP(mask, 64);
2196 		u32 history = st->jmp_history_cnt;
2197 
2198 		if (env->log.level & BPF_LOG_LEVEL)
2199 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2200 		for (i = last_idx;;) {
2201 			if (skip_first) {
2202 				err = 0;
2203 				skip_first = false;
2204 			} else {
2205 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2206 			}
2207 			if (err == -ENOTSUPP) {
2208 				mark_all_scalars_precise(env, st);
2209 				return 0;
2210 			} else if (err) {
2211 				return err;
2212 			}
2213 			if (!reg_mask && !stack_mask)
2214 				/* Found assignment(s) into tracked register in this state.
2215 				 * Since this state is already marked, just return.
2216 				 * Nothing to be tracked further in the parent state.
2217 				 */
2218 				return 0;
2219 			if (i == first_idx)
2220 				break;
2221 			i = get_prev_insn_idx(st, i, &history);
2222 			if (i >= env->prog->len) {
2223 				/* This can happen if backtracking reached insn 0
2224 				 * and there are still reg_mask or stack_mask
2225 				 * to backtrack.
2226 				 * It means the backtracking missed the spot where
2227 				 * particular register was initialized with a constant.
2228 				 */
2229 				verbose(env, "BUG backtracking idx %d\n", i);
2230 				WARN_ONCE(1, "verifier backtracking bug");
2231 				return -EFAULT;
2232 			}
2233 		}
2234 		st = st->parent;
2235 		if (!st)
2236 			break;
2237 
2238 		new_marks = false;
2239 		func = st->frame[st->curframe];
2240 		bitmap_from_u64(mask, reg_mask);
2241 		for_each_set_bit(i, mask, 32) {
2242 			reg = &func->regs[i];
2243 			if (reg->type != SCALAR_VALUE) {
2244 				reg_mask &= ~(1u << i);
2245 				continue;
2246 			}
2247 			if (!reg->precise)
2248 				new_marks = true;
2249 			reg->precise = true;
2250 		}
2251 
2252 		bitmap_from_u64(mask, stack_mask);
2253 		for_each_set_bit(i, mask, 64) {
2254 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2255 				/* the sequence of instructions:
2256 				 * 2: (bf) r3 = r10
2257 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2258 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2259 				 * doesn't contain jmps. It's backtracked
2260 				 * as a single block.
2261 				 * During backtracking insn 3 is not recognized as
2262 				 * stack access, so at the end of backtracking
2263 				 * stack slot fp-8 is still marked in stack_mask.
2264 				 * However the parent state may not have accessed
2265 				 * fp-8 and it's "unallocated" stack space.
2266 				 * In such case fallback to conservative.
2267 				 */
2268 				mark_all_scalars_precise(env, st);
2269 				return 0;
2270 			}
2271 
2272 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2273 				stack_mask &= ~(1ull << i);
2274 				continue;
2275 			}
2276 			reg = &func->stack[i].spilled_ptr;
2277 			if (reg->type != SCALAR_VALUE) {
2278 				stack_mask &= ~(1ull << i);
2279 				continue;
2280 			}
2281 			if (!reg->precise)
2282 				new_marks = true;
2283 			reg->precise = true;
2284 		}
2285 		if (env->log.level & BPF_LOG_LEVEL) {
2286 			print_verifier_state(env, func);
2287 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2288 				new_marks ? "didn't have" : "already had",
2289 				reg_mask, stack_mask);
2290 		}
2291 
2292 		if (!reg_mask && !stack_mask)
2293 			break;
2294 		if (!new_marks)
2295 			break;
2296 
2297 		last_idx = st->last_insn_idx;
2298 		first_idx = st->first_insn_idx;
2299 	}
2300 	return 0;
2301 }
2302 
2303 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2304 {
2305 	return __mark_chain_precision(env, regno, -1);
2306 }
2307 
2308 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2309 {
2310 	return __mark_chain_precision(env, -1, spi);
2311 }
2312 
2313 static bool is_spillable_regtype(enum bpf_reg_type type)
2314 {
2315 	switch (type) {
2316 	case PTR_TO_MAP_VALUE:
2317 	case PTR_TO_MAP_VALUE_OR_NULL:
2318 	case PTR_TO_STACK:
2319 	case PTR_TO_CTX:
2320 	case PTR_TO_PACKET:
2321 	case PTR_TO_PACKET_META:
2322 	case PTR_TO_PACKET_END:
2323 	case PTR_TO_FLOW_KEYS:
2324 	case CONST_PTR_TO_MAP:
2325 	case PTR_TO_SOCKET:
2326 	case PTR_TO_SOCKET_OR_NULL:
2327 	case PTR_TO_SOCK_COMMON:
2328 	case PTR_TO_SOCK_COMMON_OR_NULL:
2329 	case PTR_TO_TCP_SOCK:
2330 	case PTR_TO_TCP_SOCK_OR_NULL:
2331 	case PTR_TO_XDP_SOCK:
2332 	case PTR_TO_BTF_ID:
2333 	case PTR_TO_BTF_ID_OR_NULL:
2334 	case PTR_TO_RDONLY_BUF:
2335 	case PTR_TO_RDONLY_BUF_OR_NULL:
2336 	case PTR_TO_RDWR_BUF:
2337 	case PTR_TO_RDWR_BUF_OR_NULL:
2338 	case PTR_TO_PERCPU_BTF_ID:
2339 	case PTR_TO_MEM:
2340 	case PTR_TO_MEM_OR_NULL:
2341 	case PTR_TO_FUNC:
2342 	case PTR_TO_MAP_KEY:
2343 		return true;
2344 	default:
2345 		return false;
2346 	}
2347 }
2348 
2349 /* Does this register contain a constant zero? */
2350 static bool register_is_null(struct bpf_reg_state *reg)
2351 {
2352 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2353 }
2354 
2355 static bool register_is_const(struct bpf_reg_state *reg)
2356 {
2357 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2358 }
2359 
2360 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2361 {
2362 	return tnum_is_unknown(reg->var_off) &&
2363 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2364 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2365 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2366 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2367 }
2368 
2369 static bool register_is_bounded(struct bpf_reg_state *reg)
2370 {
2371 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2372 }
2373 
2374 static bool __is_pointer_value(bool allow_ptr_leaks,
2375 			       const struct bpf_reg_state *reg)
2376 {
2377 	if (allow_ptr_leaks)
2378 		return false;
2379 
2380 	return reg->type != SCALAR_VALUE;
2381 }
2382 
2383 static void save_register_state(struct bpf_func_state *state,
2384 				int spi, struct bpf_reg_state *reg)
2385 {
2386 	int i;
2387 
2388 	state->stack[spi].spilled_ptr = *reg;
2389 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2390 
2391 	for (i = 0; i < BPF_REG_SIZE; i++)
2392 		state->stack[spi].slot_type[i] = STACK_SPILL;
2393 }
2394 
2395 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2396  * stack boundary and alignment are checked in check_mem_access()
2397  */
2398 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2399 				       /* stack frame we're writing to */
2400 				       struct bpf_func_state *state,
2401 				       int off, int size, int value_regno,
2402 				       int insn_idx)
2403 {
2404 	struct bpf_func_state *cur; /* state of the current function */
2405 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2406 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2407 	struct bpf_reg_state *reg = NULL;
2408 
2409 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2410 				 state->acquired_refs, true);
2411 	if (err)
2412 		return err;
2413 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2414 	 * so it's aligned access and [off, off + size) are within stack limits
2415 	 */
2416 	if (!env->allow_ptr_leaks &&
2417 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2418 	    size != BPF_REG_SIZE) {
2419 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2420 		return -EACCES;
2421 	}
2422 
2423 	cur = env->cur_state->frame[env->cur_state->curframe];
2424 	if (value_regno >= 0)
2425 		reg = &cur->regs[value_regno];
2426 
2427 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2428 	    !register_is_null(reg) && env->bpf_capable) {
2429 		if (dst_reg != BPF_REG_FP) {
2430 			/* The backtracking logic can only recognize explicit
2431 			 * stack slot address like [fp - 8]. Other spill of
2432 			 * scalar via different register has to be conervative.
2433 			 * Backtrack from here and mark all registers as precise
2434 			 * that contributed into 'reg' being a constant.
2435 			 */
2436 			err = mark_chain_precision(env, value_regno);
2437 			if (err)
2438 				return err;
2439 		}
2440 		save_register_state(state, spi, reg);
2441 	} else if (reg && is_spillable_regtype(reg->type)) {
2442 		/* register containing pointer is being spilled into stack */
2443 		if (size != BPF_REG_SIZE) {
2444 			verbose_linfo(env, insn_idx, "; ");
2445 			verbose(env, "invalid size of register spill\n");
2446 			return -EACCES;
2447 		}
2448 
2449 		if (state != cur && reg->type == PTR_TO_STACK) {
2450 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2451 			return -EINVAL;
2452 		}
2453 
2454 		if (!env->bypass_spec_v4) {
2455 			bool sanitize = false;
2456 
2457 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2458 			    register_is_const(&state->stack[spi].spilled_ptr))
2459 				sanitize = true;
2460 			for (i = 0; i < BPF_REG_SIZE; i++)
2461 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2462 					sanitize = true;
2463 					break;
2464 				}
2465 			if (sanitize) {
2466 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2467 				int soff = (-spi - 1) * BPF_REG_SIZE;
2468 
2469 				/* detected reuse of integer stack slot with a pointer
2470 				 * which means either llvm is reusing stack slot or
2471 				 * an attacker is trying to exploit CVE-2018-3639
2472 				 * (speculative store bypass)
2473 				 * Have to sanitize that slot with preemptive
2474 				 * store of zero.
2475 				 */
2476 				if (*poff && *poff != soff) {
2477 					/* disallow programs where single insn stores
2478 					 * into two different stack slots, since verifier
2479 					 * cannot sanitize them
2480 					 */
2481 					verbose(env,
2482 						"insn %d cannot access two stack slots fp%d and fp%d",
2483 						insn_idx, *poff, soff);
2484 					return -EINVAL;
2485 				}
2486 				*poff = soff;
2487 			}
2488 		}
2489 		save_register_state(state, spi, reg);
2490 	} else {
2491 		u8 type = STACK_MISC;
2492 
2493 		/* regular write of data into stack destroys any spilled ptr */
2494 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2495 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2496 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2497 			for (i = 0; i < BPF_REG_SIZE; i++)
2498 				state->stack[spi].slot_type[i] = STACK_MISC;
2499 
2500 		/* only mark the slot as written if all 8 bytes were written
2501 		 * otherwise read propagation may incorrectly stop too soon
2502 		 * when stack slots are partially written.
2503 		 * This heuristic means that read propagation will be
2504 		 * conservative, since it will add reg_live_read marks
2505 		 * to stack slots all the way to first state when programs
2506 		 * writes+reads less than 8 bytes
2507 		 */
2508 		if (size == BPF_REG_SIZE)
2509 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2510 
2511 		/* when we zero initialize stack slots mark them as such */
2512 		if (reg && register_is_null(reg)) {
2513 			/* backtracking doesn't work for STACK_ZERO yet. */
2514 			err = mark_chain_precision(env, value_regno);
2515 			if (err)
2516 				return err;
2517 			type = STACK_ZERO;
2518 		}
2519 
2520 		/* Mark slots affected by this stack write. */
2521 		for (i = 0; i < size; i++)
2522 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2523 				type;
2524 	}
2525 	return 0;
2526 }
2527 
2528 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2529  * known to contain a variable offset.
2530  * This function checks whether the write is permitted and conservatively
2531  * tracks the effects of the write, considering that each stack slot in the
2532  * dynamic range is potentially written to.
2533  *
2534  * 'off' includes 'regno->off'.
2535  * 'value_regno' can be -1, meaning that an unknown value is being written to
2536  * the stack.
2537  *
2538  * Spilled pointers in range are not marked as written because we don't know
2539  * what's going to be actually written. This means that read propagation for
2540  * future reads cannot be terminated by this write.
2541  *
2542  * For privileged programs, uninitialized stack slots are considered
2543  * initialized by this write (even though we don't know exactly what offsets
2544  * are going to be written to). The idea is that we don't want the verifier to
2545  * reject future reads that access slots written to through variable offsets.
2546  */
2547 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2548 				     /* func where register points to */
2549 				     struct bpf_func_state *state,
2550 				     int ptr_regno, int off, int size,
2551 				     int value_regno, int insn_idx)
2552 {
2553 	struct bpf_func_state *cur; /* state of the current function */
2554 	int min_off, max_off;
2555 	int i, err;
2556 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2557 	bool writing_zero = false;
2558 	/* set if the fact that we're writing a zero is used to let any
2559 	 * stack slots remain STACK_ZERO
2560 	 */
2561 	bool zero_used = false;
2562 
2563 	cur = env->cur_state->frame[env->cur_state->curframe];
2564 	ptr_reg = &cur->regs[ptr_regno];
2565 	min_off = ptr_reg->smin_value + off;
2566 	max_off = ptr_reg->smax_value + off + size;
2567 	if (value_regno >= 0)
2568 		value_reg = &cur->regs[value_regno];
2569 	if (value_reg && register_is_null(value_reg))
2570 		writing_zero = true;
2571 
2572 	err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2573 				 state->acquired_refs, true);
2574 	if (err)
2575 		return err;
2576 
2577 
2578 	/* Variable offset writes destroy any spilled pointers in range. */
2579 	for (i = min_off; i < max_off; i++) {
2580 		u8 new_type, *stype;
2581 		int slot, spi;
2582 
2583 		slot = -i - 1;
2584 		spi = slot / BPF_REG_SIZE;
2585 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2586 
2587 		if (!env->allow_ptr_leaks
2588 				&& *stype != NOT_INIT
2589 				&& *stype != SCALAR_VALUE) {
2590 			/* Reject the write if there's are spilled pointers in
2591 			 * range. If we didn't reject here, the ptr status
2592 			 * would be erased below (even though not all slots are
2593 			 * actually overwritten), possibly opening the door to
2594 			 * leaks.
2595 			 */
2596 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2597 				insn_idx, i);
2598 			return -EINVAL;
2599 		}
2600 
2601 		/* Erase all spilled pointers. */
2602 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2603 
2604 		/* Update the slot type. */
2605 		new_type = STACK_MISC;
2606 		if (writing_zero && *stype == STACK_ZERO) {
2607 			new_type = STACK_ZERO;
2608 			zero_used = true;
2609 		}
2610 		/* If the slot is STACK_INVALID, we check whether it's OK to
2611 		 * pretend that it will be initialized by this write. The slot
2612 		 * might not actually be written to, and so if we mark it as
2613 		 * initialized future reads might leak uninitialized memory.
2614 		 * For privileged programs, we will accept such reads to slots
2615 		 * that may or may not be written because, if we're reject
2616 		 * them, the error would be too confusing.
2617 		 */
2618 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2619 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2620 					insn_idx, i);
2621 			return -EINVAL;
2622 		}
2623 		*stype = new_type;
2624 	}
2625 	if (zero_used) {
2626 		/* backtracking doesn't work for STACK_ZERO yet. */
2627 		err = mark_chain_precision(env, value_regno);
2628 		if (err)
2629 			return err;
2630 	}
2631 	return 0;
2632 }
2633 
2634 /* When register 'dst_regno' is assigned some values from stack[min_off,
2635  * max_off), we set the register's type according to the types of the
2636  * respective stack slots. If all the stack values are known to be zeros, then
2637  * so is the destination reg. Otherwise, the register is considered to be
2638  * SCALAR. This function does not deal with register filling; the caller must
2639  * ensure that all spilled registers in the stack range have been marked as
2640  * read.
2641  */
2642 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2643 				/* func where src register points to */
2644 				struct bpf_func_state *ptr_state,
2645 				int min_off, int max_off, int dst_regno)
2646 {
2647 	struct bpf_verifier_state *vstate = env->cur_state;
2648 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2649 	int i, slot, spi;
2650 	u8 *stype;
2651 	int zeros = 0;
2652 
2653 	for (i = min_off; i < max_off; i++) {
2654 		slot = -i - 1;
2655 		spi = slot / BPF_REG_SIZE;
2656 		stype = ptr_state->stack[spi].slot_type;
2657 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2658 			break;
2659 		zeros++;
2660 	}
2661 	if (zeros == max_off - min_off) {
2662 		/* any access_size read into register is zero extended,
2663 		 * so the whole register == const_zero
2664 		 */
2665 		__mark_reg_const_zero(&state->regs[dst_regno]);
2666 		/* backtracking doesn't support STACK_ZERO yet,
2667 		 * so mark it precise here, so that later
2668 		 * backtracking can stop here.
2669 		 * Backtracking may not need this if this register
2670 		 * doesn't participate in pointer adjustment.
2671 		 * Forward propagation of precise flag is not
2672 		 * necessary either. This mark is only to stop
2673 		 * backtracking. Any register that contributed
2674 		 * to const 0 was marked precise before spill.
2675 		 */
2676 		state->regs[dst_regno].precise = true;
2677 	} else {
2678 		/* have read misc data from the stack */
2679 		mark_reg_unknown(env, state->regs, dst_regno);
2680 	}
2681 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2682 }
2683 
2684 /* Read the stack at 'off' and put the results into the register indicated by
2685  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2686  * spilled reg.
2687  *
2688  * 'dst_regno' can be -1, meaning that the read value is not going to a
2689  * register.
2690  *
2691  * The access is assumed to be within the current stack bounds.
2692  */
2693 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2694 				      /* func where src register points to */
2695 				      struct bpf_func_state *reg_state,
2696 				      int off, int size, int dst_regno)
2697 {
2698 	struct bpf_verifier_state *vstate = env->cur_state;
2699 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2700 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2701 	struct bpf_reg_state *reg;
2702 	u8 *stype;
2703 
2704 	stype = reg_state->stack[spi].slot_type;
2705 	reg = &reg_state->stack[spi].spilled_ptr;
2706 
2707 	if (stype[0] == STACK_SPILL) {
2708 		if (size != BPF_REG_SIZE) {
2709 			if (reg->type != SCALAR_VALUE) {
2710 				verbose_linfo(env, env->insn_idx, "; ");
2711 				verbose(env, "invalid size of register fill\n");
2712 				return -EACCES;
2713 			}
2714 			if (dst_regno >= 0) {
2715 				mark_reg_unknown(env, state->regs, dst_regno);
2716 				state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2717 			}
2718 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2719 			return 0;
2720 		}
2721 		for (i = 1; i < BPF_REG_SIZE; i++) {
2722 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2723 				verbose(env, "corrupted spill memory\n");
2724 				return -EACCES;
2725 			}
2726 		}
2727 
2728 		if (dst_regno >= 0) {
2729 			/* restore register state from stack */
2730 			state->regs[dst_regno] = *reg;
2731 			/* mark reg as written since spilled pointer state likely
2732 			 * has its liveness marks cleared by is_state_visited()
2733 			 * which resets stack/reg liveness for state transitions
2734 			 */
2735 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2736 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2737 			/* If dst_regno==-1, the caller is asking us whether
2738 			 * it is acceptable to use this value as a SCALAR_VALUE
2739 			 * (e.g. for XADD).
2740 			 * We must not allow unprivileged callers to do that
2741 			 * with spilled pointers.
2742 			 */
2743 			verbose(env, "leaking pointer from stack off %d\n",
2744 				off);
2745 			return -EACCES;
2746 		}
2747 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2748 	} else {
2749 		u8 type;
2750 
2751 		for (i = 0; i < size; i++) {
2752 			type = stype[(slot - i) % BPF_REG_SIZE];
2753 			if (type == STACK_MISC)
2754 				continue;
2755 			if (type == STACK_ZERO)
2756 				continue;
2757 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2758 				off, i, size);
2759 			return -EACCES;
2760 		}
2761 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2762 		if (dst_regno >= 0)
2763 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2764 	}
2765 	return 0;
2766 }
2767 
2768 enum stack_access_src {
2769 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
2770 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
2771 };
2772 
2773 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2774 					 int regno, int off, int access_size,
2775 					 bool zero_size_allowed,
2776 					 enum stack_access_src type,
2777 					 struct bpf_call_arg_meta *meta);
2778 
2779 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2780 {
2781 	return cur_regs(env) + regno;
2782 }
2783 
2784 /* Read the stack at 'ptr_regno + off' and put the result into the register
2785  * 'dst_regno'.
2786  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2787  * but not its variable offset.
2788  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2789  *
2790  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2791  * filling registers (i.e. reads of spilled register cannot be detected when
2792  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2793  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2794  * offset; for a fixed offset check_stack_read_fixed_off should be used
2795  * instead.
2796  */
2797 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2798 				    int ptr_regno, int off, int size, int dst_regno)
2799 {
2800 	/* The state of the source register. */
2801 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2802 	struct bpf_func_state *ptr_state = func(env, reg);
2803 	int err;
2804 	int min_off, max_off;
2805 
2806 	/* Note that we pass a NULL meta, so raw access will not be permitted.
2807 	 */
2808 	err = check_stack_range_initialized(env, ptr_regno, off, size,
2809 					    false, ACCESS_DIRECT, NULL);
2810 	if (err)
2811 		return err;
2812 
2813 	min_off = reg->smin_value + off;
2814 	max_off = reg->smax_value + off;
2815 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2816 	return 0;
2817 }
2818 
2819 /* check_stack_read dispatches to check_stack_read_fixed_off or
2820  * check_stack_read_var_off.
2821  *
2822  * The caller must ensure that the offset falls within the allocated stack
2823  * bounds.
2824  *
2825  * 'dst_regno' is a register which will receive the value from the stack. It
2826  * can be -1, meaning that the read value is not going to a register.
2827  */
2828 static int check_stack_read(struct bpf_verifier_env *env,
2829 			    int ptr_regno, int off, int size,
2830 			    int dst_regno)
2831 {
2832 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2833 	struct bpf_func_state *state = func(env, reg);
2834 	int err;
2835 	/* Some accesses are only permitted with a static offset. */
2836 	bool var_off = !tnum_is_const(reg->var_off);
2837 
2838 	/* The offset is required to be static when reads don't go to a
2839 	 * register, in order to not leak pointers (see
2840 	 * check_stack_read_fixed_off).
2841 	 */
2842 	if (dst_regno < 0 && var_off) {
2843 		char tn_buf[48];
2844 
2845 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2846 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2847 			tn_buf, off, size);
2848 		return -EACCES;
2849 	}
2850 	/* Variable offset is prohibited for unprivileged mode for simplicity
2851 	 * since it requires corresponding support in Spectre masking for stack
2852 	 * ALU. See also retrieve_ptr_limit().
2853 	 */
2854 	if (!env->bypass_spec_v1 && var_off) {
2855 		char tn_buf[48];
2856 
2857 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2858 		verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2859 				ptr_regno, tn_buf);
2860 		return -EACCES;
2861 	}
2862 
2863 	if (!var_off) {
2864 		off += reg->var_off.value;
2865 		err = check_stack_read_fixed_off(env, state, off, size,
2866 						 dst_regno);
2867 	} else {
2868 		/* Variable offset stack reads need more conservative handling
2869 		 * than fixed offset ones. Note that dst_regno >= 0 on this
2870 		 * branch.
2871 		 */
2872 		err = check_stack_read_var_off(env, ptr_regno, off, size,
2873 					       dst_regno);
2874 	}
2875 	return err;
2876 }
2877 
2878 
2879 /* check_stack_write dispatches to check_stack_write_fixed_off or
2880  * check_stack_write_var_off.
2881  *
2882  * 'ptr_regno' is the register used as a pointer into the stack.
2883  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2884  * 'value_regno' is the register whose value we're writing to the stack. It can
2885  * be -1, meaning that we're not writing from a register.
2886  *
2887  * The caller must ensure that the offset falls within the maximum stack size.
2888  */
2889 static int check_stack_write(struct bpf_verifier_env *env,
2890 			     int ptr_regno, int off, int size,
2891 			     int value_regno, int insn_idx)
2892 {
2893 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2894 	struct bpf_func_state *state = func(env, reg);
2895 	int err;
2896 
2897 	if (tnum_is_const(reg->var_off)) {
2898 		off += reg->var_off.value;
2899 		err = check_stack_write_fixed_off(env, state, off, size,
2900 						  value_regno, insn_idx);
2901 	} else {
2902 		/* Variable offset stack reads need more conservative handling
2903 		 * than fixed offset ones.
2904 		 */
2905 		err = check_stack_write_var_off(env, state,
2906 						ptr_regno, off, size,
2907 						value_regno, insn_idx);
2908 	}
2909 	return err;
2910 }
2911 
2912 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2913 				 int off, int size, enum bpf_access_type type)
2914 {
2915 	struct bpf_reg_state *regs = cur_regs(env);
2916 	struct bpf_map *map = regs[regno].map_ptr;
2917 	u32 cap = bpf_map_flags_to_cap(map);
2918 
2919 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2920 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2921 			map->value_size, off, size);
2922 		return -EACCES;
2923 	}
2924 
2925 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2926 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2927 			map->value_size, off, size);
2928 		return -EACCES;
2929 	}
2930 
2931 	return 0;
2932 }
2933 
2934 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2935 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2936 			      int off, int size, u32 mem_size,
2937 			      bool zero_size_allowed)
2938 {
2939 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2940 	struct bpf_reg_state *reg;
2941 
2942 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2943 		return 0;
2944 
2945 	reg = &cur_regs(env)[regno];
2946 	switch (reg->type) {
2947 	case PTR_TO_MAP_KEY:
2948 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
2949 			mem_size, off, size);
2950 		break;
2951 	case PTR_TO_MAP_VALUE:
2952 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2953 			mem_size, off, size);
2954 		break;
2955 	case PTR_TO_PACKET:
2956 	case PTR_TO_PACKET_META:
2957 	case PTR_TO_PACKET_END:
2958 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2959 			off, size, regno, reg->id, off, mem_size);
2960 		break;
2961 	case PTR_TO_MEM:
2962 	default:
2963 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2964 			mem_size, off, size);
2965 	}
2966 
2967 	return -EACCES;
2968 }
2969 
2970 /* check read/write into a memory region with possible variable offset */
2971 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2972 				   int off, int size, u32 mem_size,
2973 				   bool zero_size_allowed)
2974 {
2975 	struct bpf_verifier_state *vstate = env->cur_state;
2976 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2977 	struct bpf_reg_state *reg = &state->regs[regno];
2978 	int err;
2979 
2980 	/* We may have adjusted the register pointing to memory region, so we
2981 	 * need to try adding each of min_value and max_value to off
2982 	 * to make sure our theoretical access will be safe.
2983 	 */
2984 	if (env->log.level & BPF_LOG_LEVEL)
2985 		print_verifier_state(env, state);
2986 
2987 	/* The minimum value is only important with signed
2988 	 * comparisons where we can't assume the floor of a
2989 	 * value is 0.  If we are using signed variables for our
2990 	 * index'es we need to make sure that whatever we use
2991 	 * will have a set floor within our range.
2992 	 */
2993 	if (reg->smin_value < 0 &&
2994 	    (reg->smin_value == S64_MIN ||
2995 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2996 	      reg->smin_value + off < 0)) {
2997 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2998 			regno);
2999 		return -EACCES;
3000 	}
3001 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
3002 				 mem_size, zero_size_allowed);
3003 	if (err) {
3004 		verbose(env, "R%d min value is outside of the allowed memory range\n",
3005 			regno);
3006 		return err;
3007 	}
3008 
3009 	/* If we haven't set a max value then we need to bail since we can't be
3010 	 * sure we won't do bad things.
3011 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
3012 	 */
3013 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3014 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3015 			regno);
3016 		return -EACCES;
3017 	}
3018 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
3019 				 mem_size, zero_size_allowed);
3020 	if (err) {
3021 		verbose(env, "R%d max value is outside of the allowed memory range\n",
3022 			regno);
3023 		return err;
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 /* check read/write into a map element with possible variable offset */
3030 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3031 			    int off, int size, bool zero_size_allowed)
3032 {
3033 	struct bpf_verifier_state *vstate = env->cur_state;
3034 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3035 	struct bpf_reg_state *reg = &state->regs[regno];
3036 	struct bpf_map *map = reg->map_ptr;
3037 	int err;
3038 
3039 	err = check_mem_region_access(env, regno, off, size, map->value_size,
3040 				      zero_size_allowed);
3041 	if (err)
3042 		return err;
3043 
3044 	if (map_value_has_spin_lock(map)) {
3045 		u32 lock = map->spin_lock_off;
3046 
3047 		/* if any part of struct bpf_spin_lock can be touched by
3048 		 * load/store reject this program.
3049 		 * To check that [x1, x2) overlaps with [y1, y2)
3050 		 * it is sufficient to check x1 < y2 && y1 < x2.
3051 		 */
3052 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3053 		     lock < reg->umax_value + off + size) {
3054 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3055 			return -EACCES;
3056 		}
3057 	}
3058 	return err;
3059 }
3060 
3061 #define MAX_PACKET_OFF 0xffff
3062 
3063 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3064 {
3065 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3066 }
3067 
3068 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3069 				       const struct bpf_call_arg_meta *meta,
3070 				       enum bpf_access_type t)
3071 {
3072 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3073 
3074 	switch (prog_type) {
3075 	/* Program types only with direct read access go here! */
3076 	case BPF_PROG_TYPE_LWT_IN:
3077 	case BPF_PROG_TYPE_LWT_OUT:
3078 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3079 	case BPF_PROG_TYPE_SK_REUSEPORT:
3080 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
3081 	case BPF_PROG_TYPE_CGROUP_SKB:
3082 		if (t == BPF_WRITE)
3083 			return false;
3084 		fallthrough;
3085 
3086 	/* Program types with direct read + write access go here! */
3087 	case BPF_PROG_TYPE_SCHED_CLS:
3088 	case BPF_PROG_TYPE_SCHED_ACT:
3089 	case BPF_PROG_TYPE_XDP:
3090 	case BPF_PROG_TYPE_LWT_XMIT:
3091 	case BPF_PROG_TYPE_SK_SKB:
3092 	case BPF_PROG_TYPE_SK_MSG:
3093 		if (meta)
3094 			return meta->pkt_access;
3095 
3096 		env->seen_direct_write = true;
3097 		return true;
3098 
3099 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3100 		if (t == BPF_WRITE)
3101 			env->seen_direct_write = true;
3102 
3103 		return true;
3104 
3105 	default:
3106 		return false;
3107 	}
3108 }
3109 
3110 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3111 			       int size, bool zero_size_allowed)
3112 {
3113 	struct bpf_reg_state *regs = cur_regs(env);
3114 	struct bpf_reg_state *reg = &regs[regno];
3115 	int err;
3116 
3117 	/* We may have added a variable offset to the packet pointer; but any
3118 	 * reg->range we have comes after that.  We are only checking the fixed
3119 	 * offset.
3120 	 */
3121 
3122 	/* We don't allow negative numbers, because we aren't tracking enough
3123 	 * detail to prove they're safe.
3124 	 */
3125 	if (reg->smin_value < 0) {
3126 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3127 			regno);
3128 		return -EACCES;
3129 	}
3130 
3131 	err = reg->range < 0 ? -EINVAL :
3132 	      __check_mem_access(env, regno, off, size, reg->range,
3133 				 zero_size_allowed);
3134 	if (err) {
3135 		verbose(env, "R%d offset is outside of the packet\n", regno);
3136 		return err;
3137 	}
3138 
3139 	/* __check_mem_access has made sure "off + size - 1" is within u16.
3140 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3141 	 * otherwise find_good_pkt_pointers would have refused to set range info
3142 	 * that __check_mem_access would have rejected this pkt access.
3143 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3144 	 */
3145 	env->prog->aux->max_pkt_offset =
3146 		max_t(u32, env->prog->aux->max_pkt_offset,
3147 		      off + reg->umax_value + size - 1);
3148 
3149 	return err;
3150 }
3151 
3152 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
3153 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3154 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
3155 			    struct btf **btf, u32 *btf_id)
3156 {
3157 	struct bpf_insn_access_aux info = {
3158 		.reg_type = *reg_type,
3159 		.log = &env->log,
3160 	};
3161 
3162 	if (env->ops->is_valid_access &&
3163 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3164 		/* A non zero info.ctx_field_size indicates that this field is a
3165 		 * candidate for later verifier transformation to load the whole
3166 		 * field and then apply a mask when accessed with a narrower
3167 		 * access than actual ctx access size. A zero info.ctx_field_size
3168 		 * will only allow for whole field access and rejects any other
3169 		 * type of narrower access.
3170 		 */
3171 		*reg_type = info.reg_type;
3172 
3173 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3174 			*btf = info.btf;
3175 			*btf_id = info.btf_id;
3176 		} else {
3177 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3178 		}
3179 		/* remember the offset of last byte accessed in ctx */
3180 		if (env->prog->aux->max_ctx_offset < off + size)
3181 			env->prog->aux->max_ctx_offset = off + size;
3182 		return 0;
3183 	}
3184 
3185 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3186 	return -EACCES;
3187 }
3188 
3189 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3190 				  int size)
3191 {
3192 	if (size < 0 || off < 0 ||
3193 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
3194 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
3195 			off, size);
3196 		return -EACCES;
3197 	}
3198 	return 0;
3199 }
3200 
3201 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3202 			     u32 regno, int off, int size,
3203 			     enum bpf_access_type t)
3204 {
3205 	struct bpf_reg_state *regs = cur_regs(env);
3206 	struct bpf_reg_state *reg = &regs[regno];
3207 	struct bpf_insn_access_aux info = {};
3208 	bool valid;
3209 
3210 	if (reg->smin_value < 0) {
3211 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3212 			regno);
3213 		return -EACCES;
3214 	}
3215 
3216 	switch (reg->type) {
3217 	case PTR_TO_SOCK_COMMON:
3218 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3219 		break;
3220 	case PTR_TO_SOCKET:
3221 		valid = bpf_sock_is_valid_access(off, size, t, &info);
3222 		break;
3223 	case PTR_TO_TCP_SOCK:
3224 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3225 		break;
3226 	case PTR_TO_XDP_SOCK:
3227 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3228 		break;
3229 	default:
3230 		valid = false;
3231 	}
3232 
3233 
3234 	if (valid) {
3235 		env->insn_aux_data[insn_idx].ctx_field_size =
3236 			info.ctx_field_size;
3237 		return 0;
3238 	}
3239 
3240 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
3241 		regno, reg_type_str[reg->type], off, size);
3242 
3243 	return -EACCES;
3244 }
3245 
3246 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3247 {
3248 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3249 }
3250 
3251 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3252 {
3253 	const struct bpf_reg_state *reg = reg_state(env, regno);
3254 
3255 	return reg->type == PTR_TO_CTX;
3256 }
3257 
3258 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3259 {
3260 	const struct bpf_reg_state *reg = reg_state(env, regno);
3261 
3262 	return type_is_sk_pointer(reg->type);
3263 }
3264 
3265 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3266 {
3267 	const struct bpf_reg_state *reg = reg_state(env, regno);
3268 
3269 	return type_is_pkt_pointer(reg->type);
3270 }
3271 
3272 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3273 {
3274 	const struct bpf_reg_state *reg = reg_state(env, regno);
3275 
3276 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3277 	return reg->type == PTR_TO_FLOW_KEYS;
3278 }
3279 
3280 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3281 				   const struct bpf_reg_state *reg,
3282 				   int off, int size, bool strict)
3283 {
3284 	struct tnum reg_off;
3285 	int ip_align;
3286 
3287 	/* Byte size accesses are always allowed. */
3288 	if (!strict || size == 1)
3289 		return 0;
3290 
3291 	/* For platforms that do not have a Kconfig enabling
3292 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3293 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
3294 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3295 	 * to this code only in strict mode where we want to emulate
3296 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
3297 	 * unconditional IP align value of '2'.
3298 	 */
3299 	ip_align = 2;
3300 
3301 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3302 	if (!tnum_is_aligned(reg_off, size)) {
3303 		char tn_buf[48];
3304 
3305 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3306 		verbose(env,
3307 			"misaligned packet access off %d+%s+%d+%d size %d\n",
3308 			ip_align, tn_buf, reg->off, off, size);
3309 		return -EACCES;
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3316 				       const struct bpf_reg_state *reg,
3317 				       const char *pointer_desc,
3318 				       int off, int size, bool strict)
3319 {
3320 	struct tnum reg_off;
3321 
3322 	/* Byte size accesses are always allowed. */
3323 	if (!strict || size == 1)
3324 		return 0;
3325 
3326 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3327 	if (!tnum_is_aligned(reg_off, size)) {
3328 		char tn_buf[48];
3329 
3330 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3331 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3332 			pointer_desc, tn_buf, reg->off, off, size);
3333 		return -EACCES;
3334 	}
3335 
3336 	return 0;
3337 }
3338 
3339 static int check_ptr_alignment(struct bpf_verifier_env *env,
3340 			       const struct bpf_reg_state *reg, int off,
3341 			       int size, bool strict_alignment_once)
3342 {
3343 	bool strict = env->strict_alignment || strict_alignment_once;
3344 	const char *pointer_desc = "";
3345 
3346 	switch (reg->type) {
3347 	case PTR_TO_PACKET:
3348 	case PTR_TO_PACKET_META:
3349 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
3350 		 * right in front, treat it the very same way.
3351 		 */
3352 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
3353 	case PTR_TO_FLOW_KEYS:
3354 		pointer_desc = "flow keys ";
3355 		break;
3356 	case PTR_TO_MAP_KEY:
3357 		pointer_desc = "key ";
3358 		break;
3359 	case PTR_TO_MAP_VALUE:
3360 		pointer_desc = "value ";
3361 		break;
3362 	case PTR_TO_CTX:
3363 		pointer_desc = "context ";
3364 		break;
3365 	case PTR_TO_STACK:
3366 		pointer_desc = "stack ";
3367 		/* The stack spill tracking logic in check_stack_write_fixed_off()
3368 		 * and check_stack_read_fixed_off() relies on stack accesses being
3369 		 * aligned.
3370 		 */
3371 		strict = true;
3372 		break;
3373 	case PTR_TO_SOCKET:
3374 		pointer_desc = "sock ";
3375 		break;
3376 	case PTR_TO_SOCK_COMMON:
3377 		pointer_desc = "sock_common ";
3378 		break;
3379 	case PTR_TO_TCP_SOCK:
3380 		pointer_desc = "tcp_sock ";
3381 		break;
3382 	case PTR_TO_XDP_SOCK:
3383 		pointer_desc = "xdp_sock ";
3384 		break;
3385 	default:
3386 		break;
3387 	}
3388 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3389 					   strict);
3390 }
3391 
3392 static int update_stack_depth(struct bpf_verifier_env *env,
3393 			      const struct bpf_func_state *func,
3394 			      int off)
3395 {
3396 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3397 
3398 	if (stack >= -off)
3399 		return 0;
3400 
3401 	/* update known max for given subprogram */
3402 	env->subprog_info[func->subprogno].stack_depth = -off;
3403 	return 0;
3404 }
3405 
3406 /* starting from main bpf function walk all instructions of the function
3407  * and recursively walk all callees that given function can call.
3408  * Ignore jump and exit insns.
3409  * Since recursion is prevented by check_cfg() this algorithm
3410  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3411  */
3412 static int check_max_stack_depth(struct bpf_verifier_env *env)
3413 {
3414 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3415 	struct bpf_subprog_info *subprog = env->subprog_info;
3416 	struct bpf_insn *insn = env->prog->insnsi;
3417 	bool tail_call_reachable = false;
3418 	int ret_insn[MAX_CALL_FRAMES];
3419 	int ret_prog[MAX_CALL_FRAMES];
3420 	int j;
3421 
3422 process_func:
3423 	/* protect against potential stack overflow that might happen when
3424 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3425 	 * depth for such case down to 256 so that the worst case scenario
3426 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3427 	 * 8k).
3428 	 *
3429 	 * To get the idea what might happen, see an example:
3430 	 * func1 -> sub rsp, 128
3431 	 *  subfunc1 -> sub rsp, 256
3432 	 *  tailcall1 -> add rsp, 256
3433 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3434 	 *   subfunc2 -> sub rsp, 64
3435 	 *   subfunc22 -> sub rsp, 128
3436 	 *   tailcall2 -> add rsp, 128
3437 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3438 	 *
3439 	 * tailcall will unwind the current stack frame but it will not get rid
3440 	 * of caller's stack as shown on the example above.
3441 	 */
3442 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3443 		verbose(env,
3444 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3445 			depth);
3446 		return -EACCES;
3447 	}
3448 	/* round up to 32-bytes, since this is granularity
3449 	 * of interpreter stack size
3450 	 */
3451 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3452 	if (depth > MAX_BPF_STACK) {
3453 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3454 			frame + 1, depth);
3455 		return -EACCES;
3456 	}
3457 continue_func:
3458 	subprog_end = subprog[idx + 1].start;
3459 	for (; i < subprog_end; i++) {
3460 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3461 			continue;
3462 		/* remember insn and function to return to */
3463 		ret_insn[frame] = i + 1;
3464 		ret_prog[frame] = idx;
3465 
3466 		/* find the callee */
3467 		i = i + insn[i].imm + 1;
3468 		idx = find_subprog(env, i);
3469 		if (idx < 0) {
3470 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3471 				  i);
3472 			return -EFAULT;
3473 		}
3474 
3475 		if (subprog[idx].has_tail_call)
3476 			tail_call_reachable = true;
3477 
3478 		frame++;
3479 		if (frame >= MAX_CALL_FRAMES) {
3480 			verbose(env, "the call stack of %d frames is too deep !\n",
3481 				frame);
3482 			return -E2BIG;
3483 		}
3484 		goto process_func;
3485 	}
3486 	/* if tail call got detected across bpf2bpf calls then mark each of the
3487 	 * currently present subprog frames as tail call reachable subprogs;
3488 	 * this info will be utilized by JIT so that we will be preserving the
3489 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3490 	 */
3491 	if (tail_call_reachable)
3492 		for (j = 0; j < frame; j++)
3493 			subprog[ret_prog[j]].tail_call_reachable = true;
3494 
3495 	/* end of for() loop means the last insn of the 'subprog'
3496 	 * was reached. Doesn't matter whether it was JA or EXIT
3497 	 */
3498 	if (frame == 0)
3499 		return 0;
3500 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3501 	frame--;
3502 	i = ret_insn[frame];
3503 	idx = ret_prog[frame];
3504 	goto continue_func;
3505 }
3506 
3507 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3508 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3509 				  const struct bpf_insn *insn, int idx)
3510 {
3511 	int start = idx + insn->imm + 1, subprog;
3512 
3513 	subprog = find_subprog(env, start);
3514 	if (subprog < 0) {
3515 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3516 			  start);
3517 		return -EFAULT;
3518 	}
3519 	return env->subprog_info[subprog].stack_depth;
3520 }
3521 #endif
3522 
3523 int check_ctx_reg(struct bpf_verifier_env *env,
3524 		  const struct bpf_reg_state *reg, int regno)
3525 {
3526 	/* Access to ctx or passing it to a helper is only allowed in
3527 	 * its original, unmodified form.
3528 	 */
3529 
3530 	if (reg->off) {
3531 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3532 			regno, reg->off);
3533 		return -EACCES;
3534 	}
3535 
3536 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3537 		char tn_buf[48];
3538 
3539 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3540 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3541 		return -EACCES;
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 static int __check_buffer_access(struct bpf_verifier_env *env,
3548 				 const char *buf_info,
3549 				 const struct bpf_reg_state *reg,
3550 				 int regno, int off, int size)
3551 {
3552 	if (off < 0) {
3553 		verbose(env,
3554 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3555 			regno, buf_info, off, size);
3556 		return -EACCES;
3557 	}
3558 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3559 		char tn_buf[48];
3560 
3561 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3562 		verbose(env,
3563 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3564 			regno, off, tn_buf);
3565 		return -EACCES;
3566 	}
3567 
3568 	return 0;
3569 }
3570 
3571 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3572 				  const struct bpf_reg_state *reg,
3573 				  int regno, int off, int size)
3574 {
3575 	int err;
3576 
3577 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3578 	if (err)
3579 		return err;
3580 
3581 	if (off + size > env->prog->aux->max_tp_access)
3582 		env->prog->aux->max_tp_access = off + size;
3583 
3584 	return 0;
3585 }
3586 
3587 static int check_buffer_access(struct bpf_verifier_env *env,
3588 			       const struct bpf_reg_state *reg,
3589 			       int regno, int off, int size,
3590 			       bool zero_size_allowed,
3591 			       const char *buf_info,
3592 			       u32 *max_access)
3593 {
3594 	int err;
3595 
3596 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3597 	if (err)
3598 		return err;
3599 
3600 	if (off + size > *max_access)
3601 		*max_access = off + size;
3602 
3603 	return 0;
3604 }
3605 
3606 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3607 static void zext_32_to_64(struct bpf_reg_state *reg)
3608 {
3609 	reg->var_off = tnum_subreg(reg->var_off);
3610 	__reg_assign_32_into_64(reg);
3611 }
3612 
3613 /* truncate register to smaller size (in bytes)
3614  * must be called with size < BPF_REG_SIZE
3615  */
3616 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3617 {
3618 	u64 mask;
3619 
3620 	/* clear high bits in bit representation */
3621 	reg->var_off = tnum_cast(reg->var_off, size);
3622 
3623 	/* fix arithmetic bounds */
3624 	mask = ((u64)1 << (size * 8)) - 1;
3625 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3626 		reg->umin_value &= mask;
3627 		reg->umax_value &= mask;
3628 	} else {
3629 		reg->umin_value = 0;
3630 		reg->umax_value = mask;
3631 	}
3632 	reg->smin_value = reg->umin_value;
3633 	reg->smax_value = reg->umax_value;
3634 
3635 	/* If size is smaller than 32bit register the 32bit register
3636 	 * values are also truncated so we push 64-bit bounds into
3637 	 * 32-bit bounds. Above were truncated < 32-bits already.
3638 	 */
3639 	if (size >= 4)
3640 		return;
3641 	__reg_combine_64_into_32(reg);
3642 }
3643 
3644 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3645 {
3646 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3647 }
3648 
3649 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3650 {
3651 	void *ptr;
3652 	u64 addr;
3653 	int err;
3654 
3655 	err = map->ops->map_direct_value_addr(map, &addr, off);
3656 	if (err)
3657 		return err;
3658 	ptr = (void *)(long)addr + off;
3659 
3660 	switch (size) {
3661 	case sizeof(u8):
3662 		*val = (u64)*(u8 *)ptr;
3663 		break;
3664 	case sizeof(u16):
3665 		*val = (u64)*(u16 *)ptr;
3666 		break;
3667 	case sizeof(u32):
3668 		*val = (u64)*(u32 *)ptr;
3669 		break;
3670 	case sizeof(u64):
3671 		*val = *(u64 *)ptr;
3672 		break;
3673 	default:
3674 		return -EINVAL;
3675 	}
3676 	return 0;
3677 }
3678 
3679 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3680 				   struct bpf_reg_state *regs,
3681 				   int regno, int off, int size,
3682 				   enum bpf_access_type atype,
3683 				   int value_regno)
3684 {
3685 	struct bpf_reg_state *reg = regs + regno;
3686 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3687 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3688 	u32 btf_id;
3689 	int ret;
3690 
3691 	if (off < 0) {
3692 		verbose(env,
3693 			"R%d is ptr_%s invalid negative access: off=%d\n",
3694 			regno, tname, off);
3695 		return -EACCES;
3696 	}
3697 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3698 		char tn_buf[48];
3699 
3700 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3701 		verbose(env,
3702 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3703 			regno, tname, off, tn_buf);
3704 		return -EACCES;
3705 	}
3706 
3707 	if (env->ops->btf_struct_access) {
3708 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3709 						  off, size, atype, &btf_id);
3710 	} else {
3711 		if (atype != BPF_READ) {
3712 			verbose(env, "only read is supported\n");
3713 			return -EACCES;
3714 		}
3715 
3716 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3717 					atype, &btf_id);
3718 	}
3719 
3720 	if (ret < 0)
3721 		return ret;
3722 
3723 	if (atype == BPF_READ && value_regno >= 0)
3724 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3725 
3726 	return 0;
3727 }
3728 
3729 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3730 				   struct bpf_reg_state *regs,
3731 				   int regno, int off, int size,
3732 				   enum bpf_access_type atype,
3733 				   int value_regno)
3734 {
3735 	struct bpf_reg_state *reg = regs + regno;
3736 	struct bpf_map *map = reg->map_ptr;
3737 	const struct btf_type *t;
3738 	const char *tname;
3739 	u32 btf_id;
3740 	int ret;
3741 
3742 	if (!btf_vmlinux) {
3743 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3744 		return -ENOTSUPP;
3745 	}
3746 
3747 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3748 		verbose(env, "map_ptr access not supported for map type %d\n",
3749 			map->map_type);
3750 		return -ENOTSUPP;
3751 	}
3752 
3753 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3754 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3755 
3756 	if (!env->allow_ptr_to_map_access) {
3757 		verbose(env,
3758 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3759 			tname);
3760 		return -EPERM;
3761 	}
3762 
3763 	if (off < 0) {
3764 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3765 			regno, tname, off);
3766 		return -EACCES;
3767 	}
3768 
3769 	if (atype != BPF_READ) {
3770 		verbose(env, "only read from %s is supported\n", tname);
3771 		return -EACCES;
3772 	}
3773 
3774 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3775 	if (ret < 0)
3776 		return ret;
3777 
3778 	if (value_regno >= 0)
3779 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3780 
3781 	return 0;
3782 }
3783 
3784 /* Check that the stack access at the given offset is within bounds. The
3785  * maximum valid offset is -1.
3786  *
3787  * The minimum valid offset is -MAX_BPF_STACK for writes, and
3788  * -state->allocated_stack for reads.
3789  */
3790 static int check_stack_slot_within_bounds(int off,
3791 					  struct bpf_func_state *state,
3792 					  enum bpf_access_type t)
3793 {
3794 	int min_valid_off;
3795 
3796 	if (t == BPF_WRITE)
3797 		min_valid_off = -MAX_BPF_STACK;
3798 	else
3799 		min_valid_off = -state->allocated_stack;
3800 
3801 	if (off < min_valid_off || off > -1)
3802 		return -EACCES;
3803 	return 0;
3804 }
3805 
3806 /* Check that the stack access at 'regno + off' falls within the maximum stack
3807  * bounds.
3808  *
3809  * 'off' includes `regno->offset`, but not its dynamic part (if any).
3810  */
3811 static int check_stack_access_within_bounds(
3812 		struct bpf_verifier_env *env,
3813 		int regno, int off, int access_size,
3814 		enum stack_access_src src, enum bpf_access_type type)
3815 {
3816 	struct bpf_reg_state *regs = cur_regs(env);
3817 	struct bpf_reg_state *reg = regs + regno;
3818 	struct bpf_func_state *state = func(env, reg);
3819 	int min_off, max_off;
3820 	int err;
3821 	char *err_extra;
3822 
3823 	if (src == ACCESS_HELPER)
3824 		/* We don't know if helpers are reading or writing (or both). */
3825 		err_extra = " indirect access to";
3826 	else if (type == BPF_READ)
3827 		err_extra = " read from";
3828 	else
3829 		err_extra = " write to";
3830 
3831 	if (tnum_is_const(reg->var_off)) {
3832 		min_off = reg->var_off.value + off;
3833 		if (access_size > 0)
3834 			max_off = min_off + access_size - 1;
3835 		else
3836 			max_off = min_off;
3837 	} else {
3838 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3839 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
3840 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3841 				err_extra, regno);
3842 			return -EACCES;
3843 		}
3844 		min_off = reg->smin_value + off;
3845 		if (access_size > 0)
3846 			max_off = reg->smax_value + off + access_size - 1;
3847 		else
3848 			max_off = min_off;
3849 	}
3850 
3851 	err = check_stack_slot_within_bounds(min_off, state, type);
3852 	if (!err)
3853 		err = check_stack_slot_within_bounds(max_off, state, type);
3854 
3855 	if (err) {
3856 		if (tnum_is_const(reg->var_off)) {
3857 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3858 				err_extra, regno, off, access_size);
3859 		} else {
3860 			char tn_buf[48];
3861 
3862 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3863 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3864 				err_extra, regno, tn_buf, access_size);
3865 		}
3866 	}
3867 	return err;
3868 }
3869 
3870 /* check whether memory at (regno + off) is accessible for t = (read | write)
3871  * if t==write, value_regno is a register which value is stored into memory
3872  * if t==read, value_regno is a register which will receive the value from memory
3873  * if t==write && value_regno==-1, some unknown value is stored into memory
3874  * if t==read && value_regno==-1, don't care what we read from memory
3875  */
3876 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3877 			    int off, int bpf_size, enum bpf_access_type t,
3878 			    int value_regno, bool strict_alignment_once)
3879 {
3880 	struct bpf_reg_state *regs = cur_regs(env);
3881 	struct bpf_reg_state *reg = regs + regno;
3882 	struct bpf_func_state *state;
3883 	int size, err = 0;
3884 
3885 	size = bpf_size_to_bytes(bpf_size);
3886 	if (size < 0)
3887 		return size;
3888 
3889 	/* alignment checks will add in reg->off themselves */
3890 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3891 	if (err)
3892 		return err;
3893 
3894 	/* for access checks, reg->off is just part of off */
3895 	off += reg->off;
3896 
3897 	if (reg->type == PTR_TO_MAP_KEY) {
3898 		if (t == BPF_WRITE) {
3899 			verbose(env, "write to change key R%d not allowed\n", regno);
3900 			return -EACCES;
3901 		}
3902 
3903 		err = check_mem_region_access(env, regno, off, size,
3904 					      reg->map_ptr->key_size, false);
3905 		if (err)
3906 			return err;
3907 		if (value_regno >= 0)
3908 			mark_reg_unknown(env, regs, value_regno);
3909 	} else if (reg->type == PTR_TO_MAP_VALUE) {
3910 		if (t == BPF_WRITE && value_regno >= 0 &&
3911 		    is_pointer_value(env, value_regno)) {
3912 			verbose(env, "R%d leaks addr into map\n", value_regno);
3913 			return -EACCES;
3914 		}
3915 		err = check_map_access_type(env, regno, off, size, t);
3916 		if (err)
3917 			return err;
3918 		err = check_map_access(env, regno, off, size, false);
3919 		if (!err && t == BPF_READ && value_regno >= 0) {
3920 			struct bpf_map *map = reg->map_ptr;
3921 
3922 			/* if map is read-only, track its contents as scalars */
3923 			if (tnum_is_const(reg->var_off) &&
3924 			    bpf_map_is_rdonly(map) &&
3925 			    map->ops->map_direct_value_addr) {
3926 				int map_off = off + reg->var_off.value;
3927 				u64 val = 0;
3928 
3929 				err = bpf_map_direct_read(map, map_off, size,
3930 							  &val);
3931 				if (err)
3932 					return err;
3933 
3934 				regs[value_regno].type = SCALAR_VALUE;
3935 				__mark_reg_known(&regs[value_regno], val);
3936 			} else {
3937 				mark_reg_unknown(env, regs, value_regno);
3938 			}
3939 		}
3940 	} else if (reg->type == PTR_TO_MEM) {
3941 		if (t == BPF_WRITE && value_regno >= 0 &&
3942 		    is_pointer_value(env, value_regno)) {
3943 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3944 			return -EACCES;
3945 		}
3946 		err = check_mem_region_access(env, regno, off, size,
3947 					      reg->mem_size, false);
3948 		if (!err && t == BPF_READ && value_regno >= 0)
3949 			mark_reg_unknown(env, regs, value_regno);
3950 	} else if (reg->type == PTR_TO_CTX) {
3951 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3952 		struct btf *btf = NULL;
3953 		u32 btf_id = 0;
3954 
3955 		if (t == BPF_WRITE && value_regno >= 0 &&
3956 		    is_pointer_value(env, value_regno)) {
3957 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3958 			return -EACCES;
3959 		}
3960 
3961 		err = check_ctx_reg(env, reg, regno);
3962 		if (err < 0)
3963 			return err;
3964 
3965 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3966 		if (err)
3967 			verbose_linfo(env, insn_idx, "; ");
3968 		if (!err && t == BPF_READ && value_regno >= 0) {
3969 			/* ctx access returns either a scalar, or a
3970 			 * PTR_TO_PACKET[_META,_END]. In the latter
3971 			 * case, we know the offset is zero.
3972 			 */
3973 			if (reg_type == SCALAR_VALUE) {
3974 				mark_reg_unknown(env, regs, value_regno);
3975 			} else {
3976 				mark_reg_known_zero(env, regs,
3977 						    value_regno);
3978 				if (reg_type_may_be_null(reg_type))
3979 					regs[value_regno].id = ++env->id_gen;
3980 				/* A load of ctx field could have different
3981 				 * actual load size with the one encoded in the
3982 				 * insn. When the dst is PTR, it is for sure not
3983 				 * a sub-register.
3984 				 */
3985 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3986 				if (reg_type == PTR_TO_BTF_ID ||
3987 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3988 					regs[value_regno].btf = btf;
3989 					regs[value_regno].btf_id = btf_id;
3990 				}
3991 			}
3992 			regs[value_regno].type = reg_type;
3993 		}
3994 
3995 	} else if (reg->type == PTR_TO_STACK) {
3996 		/* Basic bounds checks. */
3997 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3998 		if (err)
3999 			return err;
4000 
4001 		state = func(env, reg);
4002 		err = update_stack_depth(env, state, off);
4003 		if (err)
4004 			return err;
4005 
4006 		if (t == BPF_READ)
4007 			err = check_stack_read(env, regno, off, size,
4008 					       value_regno);
4009 		else
4010 			err = check_stack_write(env, regno, off, size,
4011 						value_regno, insn_idx);
4012 	} else if (reg_is_pkt_pointer(reg)) {
4013 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4014 			verbose(env, "cannot write into packet\n");
4015 			return -EACCES;
4016 		}
4017 		if (t == BPF_WRITE && value_regno >= 0 &&
4018 		    is_pointer_value(env, value_regno)) {
4019 			verbose(env, "R%d leaks addr into packet\n",
4020 				value_regno);
4021 			return -EACCES;
4022 		}
4023 		err = check_packet_access(env, regno, off, size, false);
4024 		if (!err && t == BPF_READ && value_regno >= 0)
4025 			mark_reg_unknown(env, regs, value_regno);
4026 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
4027 		if (t == BPF_WRITE && value_regno >= 0 &&
4028 		    is_pointer_value(env, value_regno)) {
4029 			verbose(env, "R%d leaks addr into flow keys\n",
4030 				value_regno);
4031 			return -EACCES;
4032 		}
4033 
4034 		err = check_flow_keys_access(env, off, size);
4035 		if (!err && t == BPF_READ && value_regno >= 0)
4036 			mark_reg_unknown(env, regs, value_regno);
4037 	} else if (type_is_sk_pointer(reg->type)) {
4038 		if (t == BPF_WRITE) {
4039 			verbose(env, "R%d cannot write into %s\n",
4040 				regno, reg_type_str[reg->type]);
4041 			return -EACCES;
4042 		}
4043 		err = check_sock_access(env, insn_idx, regno, off, size, t);
4044 		if (!err && value_regno >= 0)
4045 			mark_reg_unknown(env, regs, value_regno);
4046 	} else if (reg->type == PTR_TO_TP_BUFFER) {
4047 		err = check_tp_buffer_access(env, reg, regno, off, size);
4048 		if (!err && t == BPF_READ && value_regno >= 0)
4049 			mark_reg_unknown(env, regs, value_regno);
4050 	} else if (reg->type == PTR_TO_BTF_ID) {
4051 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4052 					      value_regno);
4053 	} else if (reg->type == CONST_PTR_TO_MAP) {
4054 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4055 					      value_regno);
4056 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
4057 		if (t == BPF_WRITE) {
4058 			verbose(env, "R%d cannot write into %s\n",
4059 				regno, reg_type_str[reg->type]);
4060 			return -EACCES;
4061 		}
4062 		err = check_buffer_access(env, reg, regno, off, size, false,
4063 					  "rdonly",
4064 					  &env->prog->aux->max_rdonly_access);
4065 		if (!err && value_regno >= 0)
4066 			mark_reg_unknown(env, regs, value_regno);
4067 	} else if (reg->type == PTR_TO_RDWR_BUF) {
4068 		err = check_buffer_access(env, reg, regno, off, size, false,
4069 					  "rdwr",
4070 					  &env->prog->aux->max_rdwr_access);
4071 		if (!err && t == BPF_READ && value_regno >= 0)
4072 			mark_reg_unknown(env, regs, value_regno);
4073 	} else {
4074 		verbose(env, "R%d invalid mem access '%s'\n", regno,
4075 			reg_type_str[reg->type]);
4076 		return -EACCES;
4077 	}
4078 
4079 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4080 	    regs[value_regno].type == SCALAR_VALUE) {
4081 		/* b/h/w load zero-extends, mark upper bits as known 0 */
4082 		coerce_reg_to_size(&regs[value_regno], size);
4083 	}
4084 	return err;
4085 }
4086 
4087 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4088 {
4089 	int load_reg;
4090 	int err;
4091 
4092 	switch (insn->imm) {
4093 	case BPF_ADD:
4094 	case BPF_ADD | BPF_FETCH:
4095 	case BPF_AND:
4096 	case BPF_AND | BPF_FETCH:
4097 	case BPF_OR:
4098 	case BPF_OR | BPF_FETCH:
4099 	case BPF_XOR:
4100 	case BPF_XOR | BPF_FETCH:
4101 	case BPF_XCHG:
4102 	case BPF_CMPXCHG:
4103 		break;
4104 	default:
4105 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4106 		return -EINVAL;
4107 	}
4108 
4109 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4110 		verbose(env, "invalid atomic operand size\n");
4111 		return -EINVAL;
4112 	}
4113 
4114 	/* check src1 operand */
4115 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
4116 	if (err)
4117 		return err;
4118 
4119 	/* check src2 operand */
4120 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4121 	if (err)
4122 		return err;
4123 
4124 	if (insn->imm == BPF_CMPXCHG) {
4125 		/* Check comparison of R0 with memory location */
4126 		err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4127 		if (err)
4128 			return err;
4129 	}
4130 
4131 	if (is_pointer_value(env, insn->src_reg)) {
4132 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4133 		return -EACCES;
4134 	}
4135 
4136 	if (is_ctx_reg(env, insn->dst_reg) ||
4137 	    is_pkt_reg(env, insn->dst_reg) ||
4138 	    is_flow_key_reg(env, insn->dst_reg) ||
4139 	    is_sk_reg(env, insn->dst_reg)) {
4140 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4141 			insn->dst_reg,
4142 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
4143 		return -EACCES;
4144 	}
4145 
4146 	if (insn->imm & BPF_FETCH) {
4147 		if (insn->imm == BPF_CMPXCHG)
4148 			load_reg = BPF_REG_0;
4149 		else
4150 			load_reg = insn->src_reg;
4151 
4152 		/* check and record load of old value */
4153 		err = check_reg_arg(env, load_reg, DST_OP);
4154 		if (err)
4155 			return err;
4156 	} else {
4157 		/* This instruction accesses a memory location but doesn't
4158 		 * actually load it into a register.
4159 		 */
4160 		load_reg = -1;
4161 	}
4162 
4163 	/* check whether we can read the memory */
4164 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4165 			       BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4166 	if (err)
4167 		return err;
4168 
4169 	/* check whether we can write into the same memory */
4170 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4171 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4172 	if (err)
4173 		return err;
4174 
4175 	return 0;
4176 }
4177 
4178 /* When register 'regno' is used to read the stack (either directly or through
4179  * a helper function) make sure that it's within stack boundary and, depending
4180  * on the access type, that all elements of the stack are initialized.
4181  *
4182  * 'off' includes 'regno->off', but not its dynamic part (if any).
4183  *
4184  * All registers that have been spilled on the stack in the slots within the
4185  * read offsets are marked as read.
4186  */
4187 static int check_stack_range_initialized(
4188 		struct bpf_verifier_env *env, int regno, int off,
4189 		int access_size, bool zero_size_allowed,
4190 		enum stack_access_src type, struct bpf_call_arg_meta *meta)
4191 {
4192 	struct bpf_reg_state *reg = reg_state(env, regno);
4193 	struct bpf_func_state *state = func(env, reg);
4194 	int err, min_off, max_off, i, j, slot, spi;
4195 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4196 	enum bpf_access_type bounds_check_type;
4197 	/* Some accesses can write anything into the stack, others are
4198 	 * read-only.
4199 	 */
4200 	bool clobber = false;
4201 
4202 	if (access_size == 0 && !zero_size_allowed) {
4203 		verbose(env, "invalid zero-sized read\n");
4204 		return -EACCES;
4205 	}
4206 
4207 	if (type == ACCESS_HELPER) {
4208 		/* The bounds checks for writes are more permissive than for
4209 		 * reads. However, if raw_mode is not set, we'll do extra
4210 		 * checks below.
4211 		 */
4212 		bounds_check_type = BPF_WRITE;
4213 		clobber = true;
4214 	} else {
4215 		bounds_check_type = BPF_READ;
4216 	}
4217 	err = check_stack_access_within_bounds(env, regno, off, access_size,
4218 					       type, bounds_check_type);
4219 	if (err)
4220 		return err;
4221 
4222 
4223 	if (tnum_is_const(reg->var_off)) {
4224 		min_off = max_off = reg->var_off.value + off;
4225 	} else {
4226 		/* Variable offset is prohibited for unprivileged mode for
4227 		 * simplicity since it requires corresponding support in
4228 		 * Spectre masking for stack ALU.
4229 		 * See also retrieve_ptr_limit().
4230 		 */
4231 		if (!env->bypass_spec_v1) {
4232 			char tn_buf[48];
4233 
4234 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4235 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4236 				regno, err_extra, tn_buf);
4237 			return -EACCES;
4238 		}
4239 		/* Only initialized buffer on stack is allowed to be accessed
4240 		 * with variable offset. With uninitialized buffer it's hard to
4241 		 * guarantee that whole memory is marked as initialized on
4242 		 * helper return since specific bounds are unknown what may
4243 		 * cause uninitialized stack leaking.
4244 		 */
4245 		if (meta && meta->raw_mode)
4246 			meta = NULL;
4247 
4248 		min_off = reg->smin_value + off;
4249 		max_off = reg->smax_value + off;
4250 	}
4251 
4252 	if (meta && meta->raw_mode) {
4253 		meta->access_size = access_size;
4254 		meta->regno = regno;
4255 		return 0;
4256 	}
4257 
4258 	for (i = min_off; i < max_off + access_size; i++) {
4259 		u8 *stype;
4260 
4261 		slot = -i - 1;
4262 		spi = slot / BPF_REG_SIZE;
4263 		if (state->allocated_stack <= slot)
4264 			goto err;
4265 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4266 		if (*stype == STACK_MISC)
4267 			goto mark;
4268 		if (*stype == STACK_ZERO) {
4269 			if (clobber) {
4270 				/* helper can write anything into the stack */
4271 				*stype = STACK_MISC;
4272 			}
4273 			goto mark;
4274 		}
4275 
4276 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4277 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4278 			goto mark;
4279 
4280 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4281 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4282 		     env->allow_ptr_leaks)) {
4283 			if (clobber) {
4284 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4285 				for (j = 0; j < BPF_REG_SIZE; j++)
4286 					state->stack[spi].slot_type[j] = STACK_MISC;
4287 			}
4288 			goto mark;
4289 		}
4290 
4291 err:
4292 		if (tnum_is_const(reg->var_off)) {
4293 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4294 				err_extra, regno, min_off, i - min_off, access_size);
4295 		} else {
4296 			char tn_buf[48];
4297 
4298 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4299 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4300 				err_extra, regno, tn_buf, i - min_off, access_size);
4301 		}
4302 		return -EACCES;
4303 mark:
4304 		/* reading any byte out of 8-byte 'spill_slot' will cause
4305 		 * the whole slot to be marked as 'read'
4306 		 */
4307 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
4308 			      state->stack[spi].spilled_ptr.parent,
4309 			      REG_LIVE_READ64);
4310 	}
4311 	return update_stack_depth(env, state, min_off);
4312 }
4313 
4314 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4315 				   int access_size, bool zero_size_allowed,
4316 				   struct bpf_call_arg_meta *meta)
4317 {
4318 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4319 
4320 	switch (reg->type) {
4321 	case PTR_TO_PACKET:
4322 	case PTR_TO_PACKET_META:
4323 		return check_packet_access(env, regno, reg->off, access_size,
4324 					   zero_size_allowed);
4325 	case PTR_TO_MAP_KEY:
4326 		return check_mem_region_access(env, regno, reg->off, access_size,
4327 					       reg->map_ptr->key_size, false);
4328 	case PTR_TO_MAP_VALUE:
4329 		if (check_map_access_type(env, regno, reg->off, access_size,
4330 					  meta && meta->raw_mode ? BPF_WRITE :
4331 					  BPF_READ))
4332 			return -EACCES;
4333 		return check_map_access(env, regno, reg->off, access_size,
4334 					zero_size_allowed);
4335 	case PTR_TO_MEM:
4336 		return check_mem_region_access(env, regno, reg->off,
4337 					       access_size, reg->mem_size,
4338 					       zero_size_allowed);
4339 	case PTR_TO_RDONLY_BUF:
4340 		if (meta && meta->raw_mode)
4341 			return -EACCES;
4342 		return check_buffer_access(env, reg, regno, reg->off,
4343 					   access_size, zero_size_allowed,
4344 					   "rdonly",
4345 					   &env->prog->aux->max_rdonly_access);
4346 	case PTR_TO_RDWR_BUF:
4347 		return check_buffer_access(env, reg, regno, reg->off,
4348 					   access_size, zero_size_allowed,
4349 					   "rdwr",
4350 					   &env->prog->aux->max_rdwr_access);
4351 	case PTR_TO_STACK:
4352 		return check_stack_range_initialized(
4353 				env,
4354 				regno, reg->off, access_size,
4355 				zero_size_allowed, ACCESS_HELPER, meta);
4356 	default: /* scalar_value or invalid ptr */
4357 		/* Allow zero-byte read from NULL, regardless of pointer type */
4358 		if (zero_size_allowed && access_size == 0 &&
4359 		    register_is_null(reg))
4360 			return 0;
4361 
4362 		verbose(env, "R%d type=%s expected=%s\n", regno,
4363 			reg_type_str[reg->type],
4364 			reg_type_str[PTR_TO_STACK]);
4365 		return -EACCES;
4366 	}
4367 }
4368 
4369 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4370 		   u32 regno, u32 mem_size)
4371 {
4372 	if (register_is_null(reg))
4373 		return 0;
4374 
4375 	if (reg_type_may_be_null(reg->type)) {
4376 		/* Assuming that the register contains a value check if the memory
4377 		 * access is safe. Temporarily save and restore the register's state as
4378 		 * the conversion shouldn't be visible to a caller.
4379 		 */
4380 		const struct bpf_reg_state saved_reg = *reg;
4381 		int rv;
4382 
4383 		mark_ptr_not_null_reg(reg);
4384 		rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4385 		*reg = saved_reg;
4386 		return rv;
4387 	}
4388 
4389 	return check_helper_mem_access(env, regno, mem_size, true, NULL);
4390 }
4391 
4392 /* Implementation details:
4393  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4394  * Two bpf_map_lookups (even with the same key) will have different reg->id.
4395  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4396  * value_or_null->value transition, since the verifier only cares about
4397  * the range of access to valid map value pointer and doesn't care about actual
4398  * address of the map element.
4399  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4400  * reg->id > 0 after value_or_null->value transition. By doing so
4401  * two bpf_map_lookups will be considered two different pointers that
4402  * point to different bpf_spin_locks.
4403  * The verifier allows taking only one bpf_spin_lock at a time to avoid
4404  * dead-locks.
4405  * Since only one bpf_spin_lock is allowed the checks are simpler than
4406  * reg_is_refcounted() logic. The verifier needs to remember only
4407  * one spin_lock instead of array of acquired_refs.
4408  * cur_state->active_spin_lock remembers which map value element got locked
4409  * and clears it after bpf_spin_unlock.
4410  */
4411 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4412 			     bool is_lock)
4413 {
4414 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4415 	struct bpf_verifier_state *cur = env->cur_state;
4416 	bool is_const = tnum_is_const(reg->var_off);
4417 	struct bpf_map *map = reg->map_ptr;
4418 	u64 val = reg->var_off.value;
4419 
4420 	if (!is_const) {
4421 		verbose(env,
4422 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4423 			regno);
4424 		return -EINVAL;
4425 	}
4426 	if (!map->btf) {
4427 		verbose(env,
4428 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
4429 			map->name);
4430 		return -EINVAL;
4431 	}
4432 	if (!map_value_has_spin_lock(map)) {
4433 		if (map->spin_lock_off == -E2BIG)
4434 			verbose(env,
4435 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
4436 				map->name);
4437 		else if (map->spin_lock_off == -ENOENT)
4438 			verbose(env,
4439 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
4440 				map->name);
4441 		else
4442 			verbose(env,
4443 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4444 				map->name);
4445 		return -EINVAL;
4446 	}
4447 	if (map->spin_lock_off != val + reg->off) {
4448 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4449 			val + reg->off);
4450 		return -EINVAL;
4451 	}
4452 	if (is_lock) {
4453 		if (cur->active_spin_lock) {
4454 			verbose(env,
4455 				"Locking two bpf_spin_locks are not allowed\n");
4456 			return -EINVAL;
4457 		}
4458 		cur->active_spin_lock = reg->id;
4459 	} else {
4460 		if (!cur->active_spin_lock) {
4461 			verbose(env, "bpf_spin_unlock without taking a lock\n");
4462 			return -EINVAL;
4463 		}
4464 		if (cur->active_spin_lock != reg->id) {
4465 			verbose(env, "bpf_spin_unlock of different lock\n");
4466 			return -EINVAL;
4467 		}
4468 		cur->active_spin_lock = 0;
4469 	}
4470 	return 0;
4471 }
4472 
4473 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4474 {
4475 	return type == ARG_PTR_TO_MEM ||
4476 	       type == ARG_PTR_TO_MEM_OR_NULL ||
4477 	       type == ARG_PTR_TO_UNINIT_MEM;
4478 }
4479 
4480 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4481 {
4482 	return type == ARG_CONST_SIZE ||
4483 	       type == ARG_CONST_SIZE_OR_ZERO;
4484 }
4485 
4486 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4487 {
4488 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4489 }
4490 
4491 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4492 {
4493 	return type == ARG_PTR_TO_INT ||
4494 	       type == ARG_PTR_TO_LONG;
4495 }
4496 
4497 static int int_ptr_type_to_size(enum bpf_arg_type type)
4498 {
4499 	if (type == ARG_PTR_TO_INT)
4500 		return sizeof(u32);
4501 	else if (type == ARG_PTR_TO_LONG)
4502 		return sizeof(u64);
4503 
4504 	return -EINVAL;
4505 }
4506 
4507 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4508 				 const struct bpf_call_arg_meta *meta,
4509 				 enum bpf_arg_type *arg_type)
4510 {
4511 	if (!meta->map_ptr) {
4512 		/* kernel subsystem misconfigured verifier */
4513 		verbose(env, "invalid map_ptr to access map->type\n");
4514 		return -EACCES;
4515 	}
4516 
4517 	switch (meta->map_ptr->map_type) {
4518 	case BPF_MAP_TYPE_SOCKMAP:
4519 	case BPF_MAP_TYPE_SOCKHASH:
4520 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4521 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4522 		} else {
4523 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
4524 			return -EINVAL;
4525 		}
4526 		break;
4527 
4528 	default:
4529 		break;
4530 	}
4531 	return 0;
4532 }
4533 
4534 struct bpf_reg_types {
4535 	const enum bpf_reg_type types[10];
4536 	u32 *btf_id;
4537 };
4538 
4539 static const struct bpf_reg_types map_key_value_types = {
4540 	.types = {
4541 		PTR_TO_STACK,
4542 		PTR_TO_PACKET,
4543 		PTR_TO_PACKET_META,
4544 		PTR_TO_MAP_KEY,
4545 		PTR_TO_MAP_VALUE,
4546 	},
4547 };
4548 
4549 static const struct bpf_reg_types sock_types = {
4550 	.types = {
4551 		PTR_TO_SOCK_COMMON,
4552 		PTR_TO_SOCKET,
4553 		PTR_TO_TCP_SOCK,
4554 		PTR_TO_XDP_SOCK,
4555 	},
4556 };
4557 
4558 #ifdef CONFIG_NET
4559 static const struct bpf_reg_types btf_id_sock_common_types = {
4560 	.types = {
4561 		PTR_TO_SOCK_COMMON,
4562 		PTR_TO_SOCKET,
4563 		PTR_TO_TCP_SOCK,
4564 		PTR_TO_XDP_SOCK,
4565 		PTR_TO_BTF_ID,
4566 	},
4567 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4568 };
4569 #endif
4570 
4571 static const struct bpf_reg_types mem_types = {
4572 	.types = {
4573 		PTR_TO_STACK,
4574 		PTR_TO_PACKET,
4575 		PTR_TO_PACKET_META,
4576 		PTR_TO_MAP_KEY,
4577 		PTR_TO_MAP_VALUE,
4578 		PTR_TO_MEM,
4579 		PTR_TO_RDONLY_BUF,
4580 		PTR_TO_RDWR_BUF,
4581 	},
4582 };
4583 
4584 static const struct bpf_reg_types int_ptr_types = {
4585 	.types = {
4586 		PTR_TO_STACK,
4587 		PTR_TO_PACKET,
4588 		PTR_TO_PACKET_META,
4589 		PTR_TO_MAP_KEY,
4590 		PTR_TO_MAP_VALUE,
4591 	},
4592 };
4593 
4594 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4595 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4596 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4597 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4598 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4599 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4600 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4601 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4602 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4603 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4604 
4605 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4606 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4607 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4608 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4609 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4610 	[ARG_CONST_SIZE]		= &scalar_types,
4611 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4612 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4613 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4614 	[ARG_PTR_TO_CTX]		= &context_types,
4615 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4616 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4617 #ifdef CONFIG_NET
4618 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4619 #endif
4620 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4621 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4622 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4623 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4624 	[ARG_PTR_TO_MEM]		= &mem_types,
4625 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4626 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4627 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4628 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4629 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4630 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4631 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4632 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
4633 	[ARG_PTR_TO_STACK_OR_NULL]	= &stack_ptr_types,
4634 };
4635 
4636 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4637 			  enum bpf_arg_type arg_type,
4638 			  const u32 *arg_btf_id)
4639 {
4640 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4641 	enum bpf_reg_type expected, type = reg->type;
4642 	const struct bpf_reg_types *compatible;
4643 	int i, j;
4644 
4645 	compatible = compatible_reg_types[arg_type];
4646 	if (!compatible) {
4647 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4648 		return -EFAULT;
4649 	}
4650 
4651 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4652 		expected = compatible->types[i];
4653 		if (expected == NOT_INIT)
4654 			break;
4655 
4656 		if (type == expected)
4657 			goto found;
4658 	}
4659 
4660 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4661 	for (j = 0; j + 1 < i; j++)
4662 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4663 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4664 	return -EACCES;
4665 
4666 found:
4667 	if (type == PTR_TO_BTF_ID) {
4668 		if (!arg_btf_id) {
4669 			if (!compatible->btf_id) {
4670 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4671 				return -EFAULT;
4672 			}
4673 			arg_btf_id = compatible->btf_id;
4674 		}
4675 
4676 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4677 					  btf_vmlinux, *arg_btf_id)) {
4678 			verbose(env, "R%d is of type %s but %s is expected\n",
4679 				regno, kernel_type_name(reg->btf, reg->btf_id),
4680 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4681 			return -EACCES;
4682 		}
4683 
4684 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4685 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4686 				regno);
4687 			return -EACCES;
4688 		}
4689 	}
4690 
4691 	return 0;
4692 }
4693 
4694 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4695 			  struct bpf_call_arg_meta *meta,
4696 			  const struct bpf_func_proto *fn)
4697 {
4698 	u32 regno = BPF_REG_1 + arg;
4699 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4700 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4701 	enum bpf_reg_type type = reg->type;
4702 	int err = 0;
4703 
4704 	if (arg_type == ARG_DONTCARE)
4705 		return 0;
4706 
4707 	err = check_reg_arg(env, regno, SRC_OP);
4708 	if (err)
4709 		return err;
4710 
4711 	if (arg_type == ARG_ANYTHING) {
4712 		if (is_pointer_value(env, regno)) {
4713 			verbose(env, "R%d leaks addr into helper function\n",
4714 				regno);
4715 			return -EACCES;
4716 		}
4717 		return 0;
4718 	}
4719 
4720 	if (type_is_pkt_pointer(type) &&
4721 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4722 		verbose(env, "helper access to the packet is not allowed\n");
4723 		return -EACCES;
4724 	}
4725 
4726 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4727 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4728 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4729 		err = resolve_map_arg_type(env, meta, &arg_type);
4730 		if (err)
4731 			return err;
4732 	}
4733 
4734 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4735 		/* A NULL register has a SCALAR_VALUE type, so skip
4736 		 * type checking.
4737 		 */
4738 		goto skip_type_check;
4739 
4740 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4741 	if (err)
4742 		return err;
4743 
4744 	if (type == PTR_TO_CTX) {
4745 		err = check_ctx_reg(env, reg, regno);
4746 		if (err < 0)
4747 			return err;
4748 	}
4749 
4750 skip_type_check:
4751 	if (reg->ref_obj_id) {
4752 		if (meta->ref_obj_id) {
4753 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4754 				regno, reg->ref_obj_id,
4755 				meta->ref_obj_id);
4756 			return -EFAULT;
4757 		}
4758 		meta->ref_obj_id = reg->ref_obj_id;
4759 	}
4760 
4761 	if (arg_type == ARG_CONST_MAP_PTR) {
4762 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4763 		meta->map_ptr = reg->map_ptr;
4764 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4765 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4766 		 * check that [key, key + map->key_size) are within
4767 		 * stack limits and initialized
4768 		 */
4769 		if (!meta->map_ptr) {
4770 			/* in function declaration map_ptr must come before
4771 			 * map_key, so that it's verified and known before
4772 			 * we have to check map_key here. Otherwise it means
4773 			 * that kernel subsystem misconfigured verifier
4774 			 */
4775 			verbose(env, "invalid map_ptr to access map->key\n");
4776 			return -EACCES;
4777 		}
4778 		err = check_helper_mem_access(env, regno,
4779 					      meta->map_ptr->key_size, false,
4780 					      NULL);
4781 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4782 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4783 		    !register_is_null(reg)) ||
4784 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4785 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4786 		 * check [value, value + map->value_size) validity
4787 		 */
4788 		if (!meta->map_ptr) {
4789 			/* kernel subsystem misconfigured verifier */
4790 			verbose(env, "invalid map_ptr to access map->value\n");
4791 			return -EACCES;
4792 		}
4793 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4794 		err = check_helper_mem_access(env, regno,
4795 					      meta->map_ptr->value_size, false,
4796 					      meta);
4797 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4798 		if (!reg->btf_id) {
4799 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4800 			return -EACCES;
4801 		}
4802 		meta->ret_btf = reg->btf;
4803 		meta->ret_btf_id = reg->btf_id;
4804 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4805 		if (meta->func_id == BPF_FUNC_spin_lock) {
4806 			if (process_spin_lock(env, regno, true))
4807 				return -EACCES;
4808 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4809 			if (process_spin_lock(env, regno, false))
4810 				return -EACCES;
4811 		} else {
4812 			verbose(env, "verifier internal error\n");
4813 			return -EFAULT;
4814 		}
4815 	} else if (arg_type == ARG_PTR_TO_FUNC) {
4816 		meta->subprogno = reg->subprogno;
4817 	} else if (arg_type_is_mem_ptr(arg_type)) {
4818 		/* The access to this pointer is only checked when we hit the
4819 		 * next is_mem_size argument below.
4820 		 */
4821 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4822 	} else if (arg_type_is_mem_size(arg_type)) {
4823 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4824 
4825 		/* This is used to refine r0 return value bounds for helpers
4826 		 * that enforce this value as an upper bound on return values.
4827 		 * See do_refine_retval_range() for helpers that can refine
4828 		 * the return value. C type of helper is u32 so we pull register
4829 		 * bound from umax_value however, if negative verifier errors
4830 		 * out. Only upper bounds can be learned because retval is an
4831 		 * int type and negative retvals are allowed.
4832 		 */
4833 		meta->msize_max_value = reg->umax_value;
4834 
4835 		/* The register is SCALAR_VALUE; the access check
4836 		 * happens using its boundaries.
4837 		 */
4838 		if (!tnum_is_const(reg->var_off))
4839 			/* For unprivileged variable accesses, disable raw
4840 			 * mode so that the program is required to
4841 			 * initialize all the memory that the helper could
4842 			 * just partially fill up.
4843 			 */
4844 			meta = NULL;
4845 
4846 		if (reg->smin_value < 0) {
4847 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4848 				regno);
4849 			return -EACCES;
4850 		}
4851 
4852 		if (reg->umin_value == 0) {
4853 			err = check_helper_mem_access(env, regno - 1, 0,
4854 						      zero_size_allowed,
4855 						      meta);
4856 			if (err)
4857 				return err;
4858 		}
4859 
4860 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4861 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4862 				regno);
4863 			return -EACCES;
4864 		}
4865 		err = check_helper_mem_access(env, regno - 1,
4866 					      reg->umax_value,
4867 					      zero_size_allowed, meta);
4868 		if (!err)
4869 			err = mark_chain_precision(env, regno);
4870 	} else if (arg_type_is_alloc_size(arg_type)) {
4871 		if (!tnum_is_const(reg->var_off)) {
4872 			verbose(env, "R%d is not a known constant'\n",
4873 				regno);
4874 			return -EACCES;
4875 		}
4876 		meta->mem_size = reg->var_off.value;
4877 	} else if (arg_type_is_int_ptr(arg_type)) {
4878 		int size = int_ptr_type_to_size(arg_type);
4879 
4880 		err = check_helper_mem_access(env, regno, size, false, meta);
4881 		if (err)
4882 			return err;
4883 		err = check_ptr_alignment(env, reg, 0, size, true);
4884 	}
4885 
4886 	return err;
4887 }
4888 
4889 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4890 {
4891 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4892 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4893 
4894 	if (func_id != BPF_FUNC_map_update_elem)
4895 		return false;
4896 
4897 	/* It's not possible to get access to a locked struct sock in these
4898 	 * contexts, so updating is safe.
4899 	 */
4900 	switch (type) {
4901 	case BPF_PROG_TYPE_TRACING:
4902 		if (eatype == BPF_TRACE_ITER)
4903 			return true;
4904 		break;
4905 	case BPF_PROG_TYPE_SOCKET_FILTER:
4906 	case BPF_PROG_TYPE_SCHED_CLS:
4907 	case BPF_PROG_TYPE_SCHED_ACT:
4908 	case BPF_PROG_TYPE_XDP:
4909 	case BPF_PROG_TYPE_SK_REUSEPORT:
4910 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4911 	case BPF_PROG_TYPE_SK_LOOKUP:
4912 		return true;
4913 	default:
4914 		break;
4915 	}
4916 
4917 	verbose(env, "cannot update sockmap in this context\n");
4918 	return false;
4919 }
4920 
4921 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4922 {
4923 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4924 }
4925 
4926 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4927 					struct bpf_map *map, int func_id)
4928 {
4929 	if (!map)
4930 		return 0;
4931 
4932 	/* We need a two way check, first is from map perspective ... */
4933 	switch (map->map_type) {
4934 	case BPF_MAP_TYPE_PROG_ARRAY:
4935 		if (func_id != BPF_FUNC_tail_call)
4936 			goto error;
4937 		break;
4938 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4939 		if (func_id != BPF_FUNC_perf_event_read &&
4940 		    func_id != BPF_FUNC_perf_event_output &&
4941 		    func_id != BPF_FUNC_skb_output &&
4942 		    func_id != BPF_FUNC_perf_event_read_value &&
4943 		    func_id != BPF_FUNC_xdp_output)
4944 			goto error;
4945 		break;
4946 	case BPF_MAP_TYPE_RINGBUF:
4947 		if (func_id != BPF_FUNC_ringbuf_output &&
4948 		    func_id != BPF_FUNC_ringbuf_reserve &&
4949 		    func_id != BPF_FUNC_ringbuf_submit &&
4950 		    func_id != BPF_FUNC_ringbuf_discard &&
4951 		    func_id != BPF_FUNC_ringbuf_query)
4952 			goto error;
4953 		break;
4954 	case BPF_MAP_TYPE_STACK_TRACE:
4955 		if (func_id != BPF_FUNC_get_stackid)
4956 			goto error;
4957 		break;
4958 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4959 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4960 		    func_id != BPF_FUNC_current_task_under_cgroup)
4961 			goto error;
4962 		break;
4963 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4964 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4965 		if (func_id != BPF_FUNC_get_local_storage)
4966 			goto error;
4967 		break;
4968 	case BPF_MAP_TYPE_DEVMAP:
4969 	case BPF_MAP_TYPE_DEVMAP_HASH:
4970 		if (func_id != BPF_FUNC_redirect_map &&
4971 		    func_id != BPF_FUNC_map_lookup_elem)
4972 			goto error;
4973 		break;
4974 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4975 	 * appear.
4976 	 */
4977 	case BPF_MAP_TYPE_CPUMAP:
4978 		if (func_id != BPF_FUNC_redirect_map)
4979 			goto error;
4980 		break;
4981 	case BPF_MAP_TYPE_XSKMAP:
4982 		if (func_id != BPF_FUNC_redirect_map &&
4983 		    func_id != BPF_FUNC_map_lookup_elem)
4984 			goto error;
4985 		break;
4986 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4987 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4988 		if (func_id != BPF_FUNC_map_lookup_elem)
4989 			goto error;
4990 		break;
4991 	case BPF_MAP_TYPE_SOCKMAP:
4992 		if (func_id != BPF_FUNC_sk_redirect_map &&
4993 		    func_id != BPF_FUNC_sock_map_update &&
4994 		    func_id != BPF_FUNC_map_delete_elem &&
4995 		    func_id != BPF_FUNC_msg_redirect_map &&
4996 		    func_id != BPF_FUNC_sk_select_reuseport &&
4997 		    func_id != BPF_FUNC_map_lookup_elem &&
4998 		    !may_update_sockmap(env, func_id))
4999 			goto error;
5000 		break;
5001 	case BPF_MAP_TYPE_SOCKHASH:
5002 		if (func_id != BPF_FUNC_sk_redirect_hash &&
5003 		    func_id != BPF_FUNC_sock_hash_update &&
5004 		    func_id != BPF_FUNC_map_delete_elem &&
5005 		    func_id != BPF_FUNC_msg_redirect_hash &&
5006 		    func_id != BPF_FUNC_sk_select_reuseport &&
5007 		    func_id != BPF_FUNC_map_lookup_elem &&
5008 		    !may_update_sockmap(env, func_id))
5009 			goto error;
5010 		break;
5011 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5012 		if (func_id != BPF_FUNC_sk_select_reuseport)
5013 			goto error;
5014 		break;
5015 	case BPF_MAP_TYPE_QUEUE:
5016 	case BPF_MAP_TYPE_STACK:
5017 		if (func_id != BPF_FUNC_map_peek_elem &&
5018 		    func_id != BPF_FUNC_map_pop_elem &&
5019 		    func_id != BPF_FUNC_map_push_elem)
5020 			goto error;
5021 		break;
5022 	case BPF_MAP_TYPE_SK_STORAGE:
5023 		if (func_id != BPF_FUNC_sk_storage_get &&
5024 		    func_id != BPF_FUNC_sk_storage_delete)
5025 			goto error;
5026 		break;
5027 	case BPF_MAP_TYPE_INODE_STORAGE:
5028 		if (func_id != BPF_FUNC_inode_storage_get &&
5029 		    func_id != BPF_FUNC_inode_storage_delete)
5030 			goto error;
5031 		break;
5032 	case BPF_MAP_TYPE_TASK_STORAGE:
5033 		if (func_id != BPF_FUNC_task_storage_get &&
5034 		    func_id != BPF_FUNC_task_storage_delete)
5035 			goto error;
5036 		break;
5037 	default:
5038 		break;
5039 	}
5040 
5041 	/* ... and second from the function itself. */
5042 	switch (func_id) {
5043 	case BPF_FUNC_tail_call:
5044 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5045 			goto error;
5046 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5047 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5048 			return -EINVAL;
5049 		}
5050 		break;
5051 	case BPF_FUNC_perf_event_read:
5052 	case BPF_FUNC_perf_event_output:
5053 	case BPF_FUNC_perf_event_read_value:
5054 	case BPF_FUNC_skb_output:
5055 	case BPF_FUNC_xdp_output:
5056 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5057 			goto error;
5058 		break;
5059 	case BPF_FUNC_get_stackid:
5060 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5061 			goto error;
5062 		break;
5063 	case BPF_FUNC_current_task_under_cgroup:
5064 	case BPF_FUNC_skb_under_cgroup:
5065 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5066 			goto error;
5067 		break;
5068 	case BPF_FUNC_redirect_map:
5069 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5070 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5071 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
5072 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
5073 			goto error;
5074 		break;
5075 	case BPF_FUNC_sk_redirect_map:
5076 	case BPF_FUNC_msg_redirect_map:
5077 	case BPF_FUNC_sock_map_update:
5078 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5079 			goto error;
5080 		break;
5081 	case BPF_FUNC_sk_redirect_hash:
5082 	case BPF_FUNC_msg_redirect_hash:
5083 	case BPF_FUNC_sock_hash_update:
5084 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5085 			goto error;
5086 		break;
5087 	case BPF_FUNC_get_local_storage:
5088 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5089 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5090 			goto error;
5091 		break;
5092 	case BPF_FUNC_sk_select_reuseport:
5093 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5094 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5095 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
5096 			goto error;
5097 		break;
5098 	case BPF_FUNC_map_peek_elem:
5099 	case BPF_FUNC_map_pop_elem:
5100 	case BPF_FUNC_map_push_elem:
5101 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5102 		    map->map_type != BPF_MAP_TYPE_STACK)
5103 			goto error;
5104 		break;
5105 	case BPF_FUNC_sk_storage_get:
5106 	case BPF_FUNC_sk_storage_delete:
5107 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5108 			goto error;
5109 		break;
5110 	case BPF_FUNC_inode_storage_get:
5111 	case BPF_FUNC_inode_storage_delete:
5112 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5113 			goto error;
5114 		break;
5115 	case BPF_FUNC_task_storage_get:
5116 	case BPF_FUNC_task_storage_delete:
5117 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5118 			goto error;
5119 		break;
5120 	default:
5121 		break;
5122 	}
5123 
5124 	return 0;
5125 error:
5126 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
5127 		map->map_type, func_id_name(func_id), func_id);
5128 	return -EINVAL;
5129 }
5130 
5131 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5132 {
5133 	int count = 0;
5134 
5135 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5136 		count++;
5137 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5138 		count++;
5139 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5140 		count++;
5141 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5142 		count++;
5143 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5144 		count++;
5145 
5146 	/* We only support one arg being in raw mode at the moment,
5147 	 * which is sufficient for the helper functions we have
5148 	 * right now.
5149 	 */
5150 	return count <= 1;
5151 }
5152 
5153 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5154 				    enum bpf_arg_type arg_next)
5155 {
5156 	return (arg_type_is_mem_ptr(arg_curr) &&
5157 	        !arg_type_is_mem_size(arg_next)) ||
5158 	       (!arg_type_is_mem_ptr(arg_curr) &&
5159 		arg_type_is_mem_size(arg_next));
5160 }
5161 
5162 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5163 {
5164 	/* bpf_xxx(..., buf, len) call will access 'len'
5165 	 * bytes from memory 'buf'. Both arg types need
5166 	 * to be paired, so make sure there's no buggy
5167 	 * helper function specification.
5168 	 */
5169 	if (arg_type_is_mem_size(fn->arg1_type) ||
5170 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
5171 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5172 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5173 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5174 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5175 		return false;
5176 
5177 	return true;
5178 }
5179 
5180 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5181 {
5182 	int count = 0;
5183 
5184 	if (arg_type_may_be_refcounted(fn->arg1_type))
5185 		count++;
5186 	if (arg_type_may_be_refcounted(fn->arg2_type))
5187 		count++;
5188 	if (arg_type_may_be_refcounted(fn->arg3_type))
5189 		count++;
5190 	if (arg_type_may_be_refcounted(fn->arg4_type))
5191 		count++;
5192 	if (arg_type_may_be_refcounted(fn->arg5_type))
5193 		count++;
5194 
5195 	/* A reference acquiring function cannot acquire
5196 	 * another refcounted ptr.
5197 	 */
5198 	if (may_be_acquire_function(func_id) && count)
5199 		return false;
5200 
5201 	/* We only support one arg being unreferenced at the moment,
5202 	 * which is sufficient for the helper functions we have right now.
5203 	 */
5204 	return count <= 1;
5205 }
5206 
5207 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5208 {
5209 	int i;
5210 
5211 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5212 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5213 			return false;
5214 
5215 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5216 			return false;
5217 	}
5218 
5219 	return true;
5220 }
5221 
5222 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5223 {
5224 	return check_raw_mode_ok(fn) &&
5225 	       check_arg_pair_ok(fn) &&
5226 	       check_btf_id_ok(fn) &&
5227 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5228 }
5229 
5230 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5231  * are now invalid, so turn them into unknown SCALAR_VALUE.
5232  */
5233 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5234 				     struct bpf_func_state *state)
5235 {
5236 	struct bpf_reg_state *regs = state->regs, *reg;
5237 	int i;
5238 
5239 	for (i = 0; i < MAX_BPF_REG; i++)
5240 		if (reg_is_pkt_pointer_any(&regs[i]))
5241 			mark_reg_unknown(env, regs, i);
5242 
5243 	bpf_for_each_spilled_reg(i, state, reg) {
5244 		if (!reg)
5245 			continue;
5246 		if (reg_is_pkt_pointer_any(reg))
5247 			__mark_reg_unknown(env, reg);
5248 	}
5249 }
5250 
5251 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5252 {
5253 	struct bpf_verifier_state *vstate = env->cur_state;
5254 	int i;
5255 
5256 	for (i = 0; i <= vstate->curframe; i++)
5257 		__clear_all_pkt_pointers(env, vstate->frame[i]);
5258 }
5259 
5260 enum {
5261 	AT_PKT_END = -1,
5262 	BEYOND_PKT_END = -2,
5263 };
5264 
5265 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5266 {
5267 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5268 	struct bpf_reg_state *reg = &state->regs[regn];
5269 
5270 	if (reg->type != PTR_TO_PACKET)
5271 		/* PTR_TO_PACKET_META is not supported yet */
5272 		return;
5273 
5274 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5275 	 * How far beyond pkt_end it goes is unknown.
5276 	 * if (!range_open) it's the case of pkt >= pkt_end
5277 	 * if (range_open) it's the case of pkt > pkt_end
5278 	 * hence this pointer is at least 1 byte bigger than pkt_end
5279 	 */
5280 	if (range_open)
5281 		reg->range = BEYOND_PKT_END;
5282 	else
5283 		reg->range = AT_PKT_END;
5284 }
5285 
5286 static void release_reg_references(struct bpf_verifier_env *env,
5287 				   struct bpf_func_state *state,
5288 				   int ref_obj_id)
5289 {
5290 	struct bpf_reg_state *regs = state->regs, *reg;
5291 	int i;
5292 
5293 	for (i = 0; i < MAX_BPF_REG; i++)
5294 		if (regs[i].ref_obj_id == ref_obj_id)
5295 			mark_reg_unknown(env, regs, i);
5296 
5297 	bpf_for_each_spilled_reg(i, state, reg) {
5298 		if (!reg)
5299 			continue;
5300 		if (reg->ref_obj_id == ref_obj_id)
5301 			__mark_reg_unknown(env, reg);
5302 	}
5303 }
5304 
5305 /* The pointer with the specified id has released its reference to kernel
5306  * resources. Identify all copies of the same pointer and clear the reference.
5307  */
5308 static int release_reference(struct bpf_verifier_env *env,
5309 			     int ref_obj_id)
5310 {
5311 	struct bpf_verifier_state *vstate = env->cur_state;
5312 	int err;
5313 	int i;
5314 
5315 	err = release_reference_state(cur_func(env), ref_obj_id);
5316 	if (err)
5317 		return err;
5318 
5319 	for (i = 0; i <= vstate->curframe; i++)
5320 		release_reg_references(env, vstate->frame[i], ref_obj_id);
5321 
5322 	return 0;
5323 }
5324 
5325 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5326 				    struct bpf_reg_state *regs)
5327 {
5328 	int i;
5329 
5330 	/* after the call registers r0 - r5 were scratched */
5331 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5332 		mark_reg_not_init(env, regs, caller_saved[i]);
5333 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5334 	}
5335 }
5336 
5337 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5338 				   struct bpf_func_state *caller,
5339 				   struct bpf_func_state *callee,
5340 				   int insn_idx);
5341 
5342 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5343 			     int *insn_idx, int subprog,
5344 			     set_callee_state_fn set_callee_state_cb)
5345 {
5346 	struct bpf_verifier_state *state = env->cur_state;
5347 	struct bpf_func_info_aux *func_info_aux;
5348 	struct bpf_func_state *caller, *callee;
5349 	int err;
5350 	bool is_global = false;
5351 
5352 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5353 		verbose(env, "the call stack of %d frames is too deep\n",
5354 			state->curframe + 2);
5355 		return -E2BIG;
5356 	}
5357 
5358 	caller = state->frame[state->curframe];
5359 	if (state->frame[state->curframe + 1]) {
5360 		verbose(env, "verifier bug. Frame %d already allocated\n",
5361 			state->curframe + 1);
5362 		return -EFAULT;
5363 	}
5364 
5365 	func_info_aux = env->prog->aux->func_info_aux;
5366 	if (func_info_aux)
5367 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5368 	err = btf_check_func_arg_match(env, subprog, caller->regs);
5369 	if (err == -EFAULT)
5370 		return err;
5371 	if (is_global) {
5372 		if (err) {
5373 			verbose(env, "Caller passes invalid args into func#%d\n",
5374 				subprog);
5375 			return err;
5376 		} else {
5377 			if (env->log.level & BPF_LOG_LEVEL)
5378 				verbose(env,
5379 					"Func#%d is global and valid. Skipping.\n",
5380 					subprog);
5381 			clear_caller_saved_regs(env, caller->regs);
5382 
5383 			/* All global functions return a 64-bit SCALAR_VALUE */
5384 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
5385 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5386 
5387 			/* continue with next insn after call */
5388 			return 0;
5389 		}
5390 	}
5391 
5392 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5393 	if (!callee)
5394 		return -ENOMEM;
5395 	state->frame[state->curframe + 1] = callee;
5396 
5397 	/* callee cannot access r0, r6 - r9 for reading and has to write
5398 	 * into its own stack before reading from it.
5399 	 * callee can read/write into caller's stack
5400 	 */
5401 	init_func_state(env, callee,
5402 			/* remember the callsite, it will be used by bpf_exit */
5403 			*insn_idx /* callsite */,
5404 			state->curframe + 1 /* frameno within this callchain */,
5405 			subprog /* subprog number within this prog */);
5406 
5407 	/* Transfer references to the callee */
5408 	err = transfer_reference_state(callee, caller);
5409 	if (err)
5410 		return err;
5411 
5412 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
5413 	if (err)
5414 		return err;
5415 
5416 	clear_caller_saved_regs(env, caller->regs);
5417 
5418 	/* only increment it after check_reg_arg() finished */
5419 	state->curframe++;
5420 
5421 	/* and go analyze first insn of the callee */
5422 	*insn_idx = env->subprog_info[subprog].start - 1;
5423 
5424 	if (env->log.level & BPF_LOG_LEVEL) {
5425 		verbose(env, "caller:\n");
5426 		print_verifier_state(env, caller);
5427 		verbose(env, "callee:\n");
5428 		print_verifier_state(env, callee);
5429 	}
5430 	return 0;
5431 }
5432 
5433 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5434 				   struct bpf_func_state *caller,
5435 				   struct bpf_func_state *callee)
5436 {
5437 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5438 	 *      void *callback_ctx, u64 flags);
5439 	 * callback_fn(struct bpf_map *map, void *key, void *value,
5440 	 *      void *callback_ctx);
5441 	 */
5442 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5443 
5444 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5445 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5446 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5447 
5448 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5449 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5450 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5451 
5452 	/* pointer to stack or null */
5453 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5454 
5455 	/* unused */
5456 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5457 	return 0;
5458 }
5459 
5460 static int set_callee_state(struct bpf_verifier_env *env,
5461 			    struct bpf_func_state *caller,
5462 			    struct bpf_func_state *callee, int insn_idx)
5463 {
5464 	int i;
5465 
5466 	/* copy r1 - r5 args that callee can access.  The copy includes parent
5467 	 * pointers, which connects us up to the liveness chain
5468 	 */
5469 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5470 		callee->regs[i] = caller->regs[i];
5471 	return 0;
5472 }
5473 
5474 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5475 			   int *insn_idx)
5476 {
5477 	int subprog, target_insn;
5478 
5479 	target_insn = *insn_idx + insn->imm + 1;
5480 	subprog = find_subprog(env, target_insn);
5481 	if (subprog < 0) {
5482 		verbose(env, "verifier bug. No program starts at insn %d\n",
5483 			target_insn);
5484 		return -EFAULT;
5485 	}
5486 
5487 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5488 }
5489 
5490 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5491 				       struct bpf_func_state *caller,
5492 				       struct bpf_func_state *callee,
5493 				       int insn_idx)
5494 {
5495 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5496 	struct bpf_map *map;
5497 	int err;
5498 
5499 	if (bpf_map_ptr_poisoned(insn_aux)) {
5500 		verbose(env, "tail_call abusing map_ptr\n");
5501 		return -EINVAL;
5502 	}
5503 
5504 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5505 	if (!map->ops->map_set_for_each_callback_args ||
5506 	    !map->ops->map_for_each_callback) {
5507 		verbose(env, "callback function not allowed for map\n");
5508 		return -ENOTSUPP;
5509 	}
5510 
5511 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5512 	if (err)
5513 		return err;
5514 
5515 	callee->in_callback_fn = true;
5516 	return 0;
5517 }
5518 
5519 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5520 {
5521 	struct bpf_verifier_state *state = env->cur_state;
5522 	struct bpf_func_state *caller, *callee;
5523 	struct bpf_reg_state *r0;
5524 	int err;
5525 
5526 	callee = state->frame[state->curframe];
5527 	r0 = &callee->regs[BPF_REG_0];
5528 	if (r0->type == PTR_TO_STACK) {
5529 		/* technically it's ok to return caller's stack pointer
5530 		 * (or caller's caller's pointer) back to the caller,
5531 		 * since these pointers are valid. Only current stack
5532 		 * pointer will be invalid as soon as function exits,
5533 		 * but let's be conservative
5534 		 */
5535 		verbose(env, "cannot return stack pointer to the caller\n");
5536 		return -EINVAL;
5537 	}
5538 
5539 	state->curframe--;
5540 	caller = state->frame[state->curframe];
5541 	if (callee->in_callback_fn) {
5542 		/* enforce R0 return value range [0, 1]. */
5543 		struct tnum range = tnum_range(0, 1);
5544 
5545 		if (r0->type != SCALAR_VALUE) {
5546 			verbose(env, "R0 not a scalar value\n");
5547 			return -EACCES;
5548 		}
5549 		if (!tnum_in(range, r0->var_off)) {
5550 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5551 			return -EINVAL;
5552 		}
5553 	} else {
5554 		/* return to the caller whatever r0 had in the callee */
5555 		caller->regs[BPF_REG_0] = *r0;
5556 	}
5557 
5558 	/* Transfer references to the caller */
5559 	err = transfer_reference_state(caller, callee);
5560 	if (err)
5561 		return err;
5562 
5563 	*insn_idx = callee->callsite + 1;
5564 	if (env->log.level & BPF_LOG_LEVEL) {
5565 		verbose(env, "returning from callee:\n");
5566 		print_verifier_state(env, callee);
5567 		verbose(env, "to caller at %d:\n", *insn_idx);
5568 		print_verifier_state(env, caller);
5569 	}
5570 	/* clear everything in the callee */
5571 	free_func_state(callee);
5572 	state->frame[state->curframe + 1] = NULL;
5573 	return 0;
5574 }
5575 
5576 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5577 				   int func_id,
5578 				   struct bpf_call_arg_meta *meta)
5579 {
5580 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5581 
5582 	if (ret_type != RET_INTEGER ||
5583 	    (func_id != BPF_FUNC_get_stack &&
5584 	     func_id != BPF_FUNC_probe_read_str &&
5585 	     func_id != BPF_FUNC_probe_read_kernel_str &&
5586 	     func_id != BPF_FUNC_probe_read_user_str))
5587 		return;
5588 
5589 	ret_reg->smax_value = meta->msize_max_value;
5590 	ret_reg->s32_max_value = meta->msize_max_value;
5591 	ret_reg->smin_value = -MAX_ERRNO;
5592 	ret_reg->s32_min_value = -MAX_ERRNO;
5593 	__reg_deduce_bounds(ret_reg);
5594 	__reg_bound_offset(ret_reg);
5595 	__update_reg_bounds(ret_reg);
5596 }
5597 
5598 static int
5599 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5600 		int func_id, int insn_idx)
5601 {
5602 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5603 	struct bpf_map *map = meta->map_ptr;
5604 
5605 	if (func_id != BPF_FUNC_tail_call &&
5606 	    func_id != BPF_FUNC_map_lookup_elem &&
5607 	    func_id != BPF_FUNC_map_update_elem &&
5608 	    func_id != BPF_FUNC_map_delete_elem &&
5609 	    func_id != BPF_FUNC_map_push_elem &&
5610 	    func_id != BPF_FUNC_map_pop_elem &&
5611 	    func_id != BPF_FUNC_map_peek_elem &&
5612 	    func_id != BPF_FUNC_for_each_map_elem &&
5613 	    func_id != BPF_FUNC_redirect_map)
5614 		return 0;
5615 
5616 	if (map == NULL) {
5617 		verbose(env, "kernel subsystem misconfigured verifier\n");
5618 		return -EINVAL;
5619 	}
5620 
5621 	/* In case of read-only, some additional restrictions
5622 	 * need to be applied in order to prevent altering the
5623 	 * state of the map from program side.
5624 	 */
5625 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5626 	    (func_id == BPF_FUNC_map_delete_elem ||
5627 	     func_id == BPF_FUNC_map_update_elem ||
5628 	     func_id == BPF_FUNC_map_push_elem ||
5629 	     func_id == BPF_FUNC_map_pop_elem)) {
5630 		verbose(env, "write into map forbidden\n");
5631 		return -EACCES;
5632 	}
5633 
5634 	if (!BPF_MAP_PTR(aux->map_ptr_state))
5635 		bpf_map_ptr_store(aux, meta->map_ptr,
5636 				  !meta->map_ptr->bypass_spec_v1);
5637 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5638 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5639 				  !meta->map_ptr->bypass_spec_v1);
5640 	return 0;
5641 }
5642 
5643 static int
5644 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5645 		int func_id, int insn_idx)
5646 {
5647 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5648 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5649 	struct bpf_map *map = meta->map_ptr;
5650 	struct tnum range;
5651 	u64 val;
5652 	int err;
5653 
5654 	if (func_id != BPF_FUNC_tail_call)
5655 		return 0;
5656 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5657 		verbose(env, "kernel subsystem misconfigured verifier\n");
5658 		return -EINVAL;
5659 	}
5660 
5661 	range = tnum_range(0, map->max_entries - 1);
5662 	reg = &regs[BPF_REG_3];
5663 
5664 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5665 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5666 		return 0;
5667 	}
5668 
5669 	err = mark_chain_precision(env, BPF_REG_3);
5670 	if (err)
5671 		return err;
5672 
5673 	val = reg->var_off.value;
5674 	if (bpf_map_key_unseen(aux))
5675 		bpf_map_key_store(aux, val);
5676 	else if (!bpf_map_key_poisoned(aux) &&
5677 		  bpf_map_key_immediate(aux) != val)
5678 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5679 	return 0;
5680 }
5681 
5682 static int check_reference_leak(struct bpf_verifier_env *env)
5683 {
5684 	struct bpf_func_state *state = cur_func(env);
5685 	int i;
5686 
5687 	for (i = 0; i < state->acquired_refs; i++) {
5688 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5689 			state->refs[i].id, state->refs[i].insn_idx);
5690 	}
5691 	return state->acquired_refs ? -EINVAL : 0;
5692 }
5693 
5694 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5695 			     int *insn_idx_p)
5696 {
5697 	const struct bpf_func_proto *fn = NULL;
5698 	struct bpf_reg_state *regs;
5699 	struct bpf_call_arg_meta meta;
5700 	int insn_idx = *insn_idx_p;
5701 	bool changes_data;
5702 	int i, err, func_id;
5703 
5704 	/* find function prototype */
5705 	func_id = insn->imm;
5706 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5707 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5708 			func_id);
5709 		return -EINVAL;
5710 	}
5711 
5712 	if (env->ops->get_func_proto)
5713 		fn = env->ops->get_func_proto(func_id, env->prog);
5714 	if (!fn) {
5715 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5716 			func_id);
5717 		return -EINVAL;
5718 	}
5719 
5720 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5721 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5722 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5723 		return -EINVAL;
5724 	}
5725 
5726 	if (fn->allowed && !fn->allowed(env->prog)) {
5727 		verbose(env, "helper call is not allowed in probe\n");
5728 		return -EINVAL;
5729 	}
5730 
5731 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5732 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5733 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5734 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5735 			func_id_name(func_id), func_id);
5736 		return -EINVAL;
5737 	}
5738 
5739 	memset(&meta, 0, sizeof(meta));
5740 	meta.pkt_access = fn->pkt_access;
5741 
5742 	err = check_func_proto(fn, func_id);
5743 	if (err) {
5744 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5745 			func_id_name(func_id), func_id);
5746 		return err;
5747 	}
5748 
5749 	meta.func_id = func_id;
5750 	/* check args */
5751 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
5752 		err = check_func_arg(env, i, &meta, fn);
5753 		if (err)
5754 			return err;
5755 	}
5756 
5757 	err = record_func_map(env, &meta, func_id, insn_idx);
5758 	if (err)
5759 		return err;
5760 
5761 	err = record_func_key(env, &meta, func_id, insn_idx);
5762 	if (err)
5763 		return err;
5764 
5765 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5766 	 * is inferred from register state.
5767 	 */
5768 	for (i = 0; i < meta.access_size; i++) {
5769 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5770 				       BPF_WRITE, -1, false);
5771 		if (err)
5772 			return err;
5773 	}
5774 
5775 	if (func_id == BPF_FUNC_tail_call) {
5776 		err = check_reference_leak(env);
5777 		if (err) {
5778 			verbose(env, "tail_call would lead to reference leak\n");
5779 			return err;
5780 		}
5781 	} else if (is_release_function(func_id)) {
5782 		err = release_reference(env, meta.ref_obj_id);
5783 		if (err) {
5784 			verbose(env, "func %s#%d reference has not been acquired before\n",
5785 				func_id_name(func_id), func_id);
5786 			return err;
5787 		}
5788 	}
5789 
5790 	regs = cur_regs(env);
5791 
5792 	/* check that flags argument in get_local_storage(map, flags) is 0,
5793 	 * this is required because get_local_storage() can't return an error.
5794 	 */
5795 	if (func_id == BPF_FUNC_get_local_storage &&
5796 	    !register_is_null(&regs[BPF_REG_2])) {
5797 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5798 		return -EINVAL;
5799 	}
5800 
5801 	if (func_id == BPF_FUNC_for_each_map_elem) {
5802 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
5803 					set_map_elem_callback_state);
5804 		if (err < 0)
5805 			return -EINVAL;
5806 	}
5807 
5808 	/* reset caller saved regs */
5809 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5810 		mark_reg_not_init(env, regs, caller_saved[i]);
5811 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5812 	}
5813 
5814 	/* helper call returns 64-bit value. */
5815 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5816 
5817 	/* update return register (already marked as written above) */
5818 	if (fn->ret_type == RET_INTEGER) {
5819 		/* sets type to SCALAR_VALUE */
5820 		mark_reg_unknown(env, regs, BPF_REG_0);
5821 	} else if (fn->ret_type == RET_VOID) {
5822 		regs[BPF_REG_0].type = NOT_INIT;
5823 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5824 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5825 		/* There is no offset yet applied, variable or fixed */
5826 		mark_reg_known_zero(env, regs, BPF_REG_0);
5827 		/* remember map_ptr, so that check_map_access()
5828 		 * can check 'value_size' boundary of memory access
5829 		 * to map element returned from bpf_map_lookup_elem()
5830 		 */
5831 		if (meta.map_ptr == NULL) {
5832 			verbose(env,
5833 				"kernel subsystem misconfigured verifier\n");
5834 			return -EINVAL;
5835 		}
5836 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5837 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5838 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5839 			if (map_value_has_spin_lock(meta.map_ptr))
5840 				regs[BPF_REG_0].id = ++env->id_gen;
5841 		} else {
5842 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5843 		}
5844 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5845 		mark_reg_known_zero(env, regs, BPF_REG_0);
5846 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5847 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5848 		mark_reg_known_zero(env, regs, BPF_REG_0);
5849 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5850 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5851 		mark_reg_known_zero(env, regs, BPF_REG_0);
5852 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5853 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5854 		mark_reg_known_zero(env, regs, BPF_REG_0);
5855 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5856 		regs[BPF_REG_0].mem_size = meta.mem_size;
5857 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5858 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5859 		const struct btf_type *t;
5860 
5861 		mark_reg_known_zero(env, regs, BPF_REG_0);
5862 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5863 		if (!btf_type_is_struct(t)) {
5864 			u32 tsize;
5865 			const struct btf_type *ret;
5866 			const char *tname;
5867 
5868 			/* resolve the type size of ksym. */
5869 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5870 			if (IS_ERR(ret)) {
5871 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5872 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5873 					tname, PTR_ERR(ret));
5874 				return -EINVAL;
5875 			}
5876 			regs[BPF_REG_0].type =
5877 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5878 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5879 			regs[BPF_REG_0].mem_size = tsize;
5880 		} else {
5881 			regs[BPF_REG_0].type =
5882 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5883 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5884 			regs[BPF_REG_0].btf = meta.ret_btf;
5885 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5886 		}
5887 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5888 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5889 		int ret_btf_id;
5890 
5891 		mark_reg_known_zero(env, regs, BPF_REG_0);
5892 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5893 						     PTR_TO_BTF_ID :
5894 						     PTR_TO_BTF_ID_OR_NULL;
5895 		ret_btf_id = *fn->ret_btf_id;
5896 		if (ret_btf_id == 0) {
5897 			verbose(env, "invalid return type %d of func %s#%d\n",
5898 				fn->ret_type, func_id_name(func_id), func_id);
5899 			return -EINVAL;
5900 		}
5901 		/* current BPF helper definitions are only coming from
5902 		 * built-in code with type IDs from  vmlinux BTF
5903 		 */
5904 		regs[BPF_REG_0].btf = btf_vmlinux;
5905 		regs[BPF_REG_0].btf_id = ret_btf_id;
5906 	} else {
5907 		verbose(env, "unknown return type %d of func %s#%d\n",
5908 			fn->ret_type, func_id_name(func_id), func_id);
5909 		return -EINVAL;
5910 	}
5911 
5912 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5913 		regs[BPF_REG_0].id = ++env->id_gen;
5914 
5915 	if (is_ptr_cast_function(func_id)) {
5916 		/* For release_reference() */
5917 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5918 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5919 		int id = acquire_reference_state(env, insn_idx);
5920 
5921 		if (id < 0)
5922 			return id;
5923 		/* For mark_ptr_or_null_reg() */
5924 		regs[BPF_REG_0].id = id;
5925 		/* For release_reference() */
5926 		regs[BPF_REG_0].ref_obj_id = id;
5927 	}
5928 
5929 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5930 
5931 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5932 	if (err)
5933 		return err;
5934 
5935 	if ((func_id == BPF_FUNC_get_stack ||
5936 	     func_id == BPF_FUNC_get_task_stack) &&
5937 	    !env->prog->has_callchain_buf) {
5938 		const char *err_str;
5939 
5940 #ifdef CONFIG_PERF_EVENTS
5941 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5942 		err_str = "cannot get callchain buffer for func %s#%d\n";
5943 #else
5944 		err = -ENOTSUPP;
5945 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5946 #endif
5947 		if (err) {
5948 			verbose(env, err_str, func_id_name(func_id), func_id);
5949 			return err;
5950 		}
5951 
5952 		env->prog->has_callchain_buf = true;
5953 	}
5954 
5955 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5956 		env->prog->call_get_stack = true;
5957 
5958 	if (changes_data)
5959 		clear_all_pkt_pointers(env);
5960 	return 0;
5961 }
5962 
5963 static bool signed_add_overflows(s64 a, s64 b)
5964 {
5965 	/* Do the add in u64, where overflow is well-defined */
5966 	s64 res = (s64)((u64)a + (u64)b);
5967 
5968 	if (b < 0)
5969 		return res > a;
5970 	return res < a;
5971 }
5972 
5973 static bool signed_add32_overflows(s32 a, s32 b)
5974 {
5975 	/* Do the add in u32, where overflow is well-defined */
5976 	s32 res = (s32)((u32)a + (u32)b);
5977 
5978 	if (b < 0)
5979 		return res > a;
5980 	return res < a;
5981 }
5982 
5983 static bool signed_sub_overflows(s64 a, s64 b)
5984 {
5985 	/* Do the sub in u64, where overflow is well-defined */
5986 	s64 res = (s64)((u64)a - (u64)b);
5987 
5988 	if (b < 0)
5989 		return res < a;
5990 	return res > a;
5991 }
5992 
5993 static bool signed_sub32_overflows(s32 a, s32 b)
5994 {
5995 	/* Do the sub in u32, where overflow is well-defined */
5996 	s32 res = (s32)((u32)a - (u32)b);
5997 
5998 	if (b < 0)
5999 		return res < a;
6000 	return res > a;
6001 }
6002 
6003 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6004 				  const struct bpf_reg_state *reg,
6005 				  enum bpf_reg_type type)
6006 {
6007 	bool known = tnum_is_const(reg->var_off);
6008 	s64 val = reg->var_off.value;
6009 	s64 smin = reg->smin_value;
6010 
6011 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6012 		verbose(env, "math between %s pointer and %lld is not allowed\n",
6013 			reg_type_str[type], val);
6014 		return false;
6015 	}
6016 
6017 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6018 		verbose(env, "%s pointer offset %d is not allowed\n",
6019 			reg_type_str[type], reg->off);
6020 		return false;
6021 	}
6022 
6023 	if (smin == S64_MIN) {
6024 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6025 			reg_type_str[type]);
6026 		return false;
6027 	}
6028 
6029 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6030 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
6031 			smin, reg_type_str[type]);
6032 		return false;
6033 	}
6034 
6035 	return true;
6036 }
6037 
6038 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6039 {
6040 	return &env->insn_aux_data[env->insn_idx];
6041 }
6042 
6043 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6044 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
6045 {
6046 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
6047 			    (opcode == BPF_SUB && !off_is_neg);
6048 	u32 off, max;
6049 
6050 	switch (ptr_reg->type) {
6051 	case PTR_TO_STACK:
6052 		/* Offset 0 is out-of-bounds, but acceptable start for the
6053 		 * left direction, see BPF_REG_FP.
6054 		 */
6055 		max = MAX_BPF_STACK + mask_to_left;
6056 		/* Indirect variable offset stack access is prohibited in
6057 		 * unprivileged mode so it's not handled here.
6058 		 */
6059 		off = ptr_reg->off + ptr_reg->var_off.value;
6060 		if (mask_to_left)
6061 			*ptr_limit = MAX_BPF_STACK + off;
6062 		else
6063 			*ptr_limit = -off - 1;
6064 		return *ptr_limit >= max ? -ERANGE : 0;
6065 	case PTR_TO_MAP_KEY:
6066 		/* Currently, this code is not exercised as the only use
6067 		 * is bpf_for_each_map_elem() helper which requires
6068 		 * bpf_capble. The code has been tested manually for
6069 		 * future use.
6070 		 */
6071 		if (mask_to_left) {
6072 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6073 		} else {
6074 			off = ptr_reg->smin_value + ptr_reg->off;
6075 			*ptr_limit = ptr_reg->map_ptr->key_size - off;
6076 		}
6077 		return 0;
6078 	case PTR_TO_MAP_VALUE:
6079 		max = ptr_reg->map_ptr->value_size;
6080 		if (mask_to_left) {
6081 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
6082 		} else {
6083 			off = ptr_reg->smin_value + ptr_reg->off;
6084 			*ptr_limit = ptr_reg->map_ptr->value_size - off - 1;
6085 		}
6086 		return *ptr_limit >= max ? -ERANGE : 0;
6087 	default:
6088 		return -EINVAL;
6089 	}
6090 }
6091 
6092 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6093 				    const struct bpf_insn *insn)
6094 {
6095 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6096 }
6097 
6098 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6099 				       u32 alu_state, u32 alu_limit)
6100 {
6101 	/* If we arrived here from different branches with different
6102 	 * state or limits to sanitize, then this won't work.
6103 	 */
6104 	if (aux->alu_state &&
6105 	    (aux->alu_state != alu_state ||
6106 	     aux->alu_limit != alu_limit))
6107 		return -EACCES;
6108 
6109 	/* Corresponding fixup done in do_misc_fixups(). */
6110 	aux->alu_state = alu_state;
6111 	aux->alu_limit = alu_limit;
6112 	return 0;
6113 }
6114 
6115 static int sanitize_val_alu(struct bpf_verifier_env *env,
6116 			    struct bpf_insn *insn)
6117 {
6118 	struct bpf_insn_aux_data *aux = cur_aux(env);
6119 
6120 	if (can_skip_alu_sanitation(env, insn))
6121 		return 0;
6122 
6123 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6124 }
6125 
6126 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6127 			    struct bpf_insn *insn,
6128 			    const struct bpf_reg_state *ptr_reg,
6129 			    struct bpf_reg_state *dst_reg,
6130 			    bool off_is_neg)
6131 {
6132 	struct bpf_verifier_state *vstate = env->cur_state;
6133 	struct bpf_insn_aux_data *aux = cur_aux(env);
6134 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
6135 	u8 opcode = BPF_OP(insn->code);
6136 	u32 alu_state, alu_limit;
6137 	struct bpf_reg_state tmp;
6138 	bool ret;
6139 	int err;
6140 
6141 	if (can_skip_alu_sanitation(env, insn))
6142 		return 0;
6143 
6144 	/* We already marked aux for masking from non-speculative
6145 	 * paths, thus we got here in the first place. We only care
6146 	 * to explore bad access from here.
6147 	 */
6148 	if (vstate->speculative)
6149 		goto do_sim;
6150 
6151 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6152 	alu_state |= ptr_is_dst_reg ?
6153 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6154 
6155 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg);
6156 	if (err < 0)
6157 		return err;
6158 
6159 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6160 	if (err < 0)
6161 		return err;
6162 do_sim:
6163 	/* Simulate and find potential out-of-bounds access under
6164 	 * speculative execution from truncation as a result of
6165 	 * masking when off was not within expected range. If off
6166 	 * sits in dst, then we temporarily need to move ptr there
6167 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6168 	 * for cases where we use K-based arithmetic in one direction
6169 	 * and truncated reg-based in the other in order to explore
6170 	 * bad access.
6171 	 */
6172 	if (!ptr_is_dst_reg) {
6173 		tmp = *dst_reg;
6174 		*dst_reg = *ptr_reg;
6175 	}
6176 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6177 	if (!ptr_is_dst_reg && ret)
6178 		*dst_reg = tmp;
6179 	return !ret ? -EFAULT : 0;
6180 }
6181 
6182 /* check that stack access falls within stack limits and that 'reg' doesn't
6183  * have a variable offset.
6184  *
6185  * Variable offset is prohibited for unprivileged mode for simplicity since it
6186  * requires corresponding support in Spectre masking for stack ALU.  See also
6187  * retrieve_ptr_limit().
6188  *
6189  *
6190  * 'off' includes 'reg->off'.
6191  */
6192 static int check_stack_access_for_ptr_arithmetic(
6193 				struct bpf_verifier_env *env,
6194 				int regno,
6195 				const struct bpf_reg_state *reg,
6196 				int off)
6197 {
6198 	if (!tnum_is_const(reg->var_off)) {
6199 		char tn_buf[48];
6200 
6201 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6202 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6203 			regno, tn_buf, off);
6204 		return -EACCES;
6205 	}
6206 
6207 	if (off >= 0 || off < -MAX_BPF_STACK) {
6208 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
6209 			"prohibited for !root; off=%d\n", regno, off);
6210 		return -EACCES;
6211 	}
6212 
6213 	return 0;
6214 }
6215 
6216 
6217 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6218  * Caller should also handle BPF_MOV case separately.
6219  * If we return -EACCES, caller may want to try again treating pointer as a
6220  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
6221  */
6222 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6223 				   struct bpf_insn *insn,
6224 				   const struct bpf_reg_state *ptr_reg,
6225 				   const struct bpf_reg_state *off_reg)
6226 {
6227 	struct bpf_verifier_state *vstate = env->cur_state;
6228 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6229 	struct bpf_reg_state *regs = state->regs, *dst_reg;
6230 	bool known = tnum_is_const(off_reg->var_off);
6231 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6232 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6233 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6234 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6235 	u32 dst = insn->dst_reg, src = insn->src_reg;
6236 	u8 opcode = BPF_OP(insn->code);
6237 	int ret;
6238 
6239 	dst_reg = &regs[dst];
6240 
6241 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6242 	    smin_val > smax_val || umin_val > umax_val) {
6243 		/* Taint dst register if offset had invalid bounds derived from
6244 		 * e.g. dead branches.
6245 		 */
6246 		__mark_reg_unknown(env, dst_reg);
6247 		return 0;
6248 	}
6249 
6250 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
6251 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
6252 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6253 			__mark_reg_unknown(env, dst_reg);
6254 			return 0;
6255 		}
6256 
6257 		verbose(env,
6258 			"R%d 32-bit pointer arithmetic prohibited\n",
6259 			dst);
6260 		return -EACCES;
6261 	}
6262 
6263 	switch (ptr_reg->type) {
6264 	case PTR_TO_MAP_VALUE_OR_NULL:
6265 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6266 			dst, reg_type_str[ptr_reg->type]);
6267 		return -EACCES;
6268 	case CONST_PTR_TO_MAP:
6269 		/* smin_val represents the known value */
6270 		if (known && smin_val == 0 && opcode == BPF_ADD)
6271 			break;
6272 		fallthrough;
6273 	case PTR_TO_PACKET_END:
6274 	case PTR_TO_SOCKET:
6275 	case PTR_TO_SOCKET_OR_NULL:
6276 	case PTR_TO_SOCK_COMMON:
6277 	case PTR_TO_SOCK_COMMON_OR_NULL:
6278 	case PTR_TO_TCP_SOCK:
6279 	case PTR_TO_TCP_SOCK_OR_NULL:
6280 	case PTR_TO_XDP_SOCK:
6281 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6282 			dst, reg_type_str[ptr_reg->type]);
6283 		return -EACCES;
6284 	case PTR_TO_MAP_KEY:
6285 	case PTR_TO_MAP_VALUE:
6286 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
6287 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
6288 				off_reg == dst_reg ? dst : src);
6289 			return -EACCES;
6290 		}
6291 		fallthrough;
6292 	default:
6293 		break;
6294 	}
6295 
6296 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6297 	 * The id may be overwritten later if we create a new variable offset.
6298 	 */
6299 	dst_reg->type = ptr_reg->type;
6300 	dst_reg->id = ptr_reg->id;
6301 
6302 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6303 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6304 		return -EINVAL;
6305 
6306 	/* pointer types do not carry 32-bit bounds at the moment. */
6307 	__mark_reg32_unbounded(dst_reg);
6308 
6309 	switch (opcode) {
6310 	case BPF_ADD:
6311 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6312 		if (ret < 0) {
6313 			verbose(env, "R%d tried to add from different maps, paths, or prohibited types\n", dst);
6314 			return ret;
6315 		}
6316 		/* We can take a fixed offset as long as it doesn't overflow
6317 		 * the s32 'off' field
6318 		 */
6319 		if (known && (ptr_reg->off + smin_val ==
6320 			      (s64)(s32)(ptr_reg->off + smin_val))) {
6321 			/* pointer += K.  Accumulate it into fixed offset */
6322 			dst_reg->smin_value = smin_ptr;
6323 			dst_reg->smax_value = smax_ptr;
6324 			dst_reg->umin_value = umin_ptr;
6325 			dst_reg->umax_value = umax_ptr;
6326 			dst_reg->var_off = ptr_reg->var_off;
6327 			dst_reg->off = ptr_reg->off + smin_val;
6328 			dst_reg->raw = ptr_reg->raw;
6329 			break;
6330 		}
6331 		/* A new variable offset is created.  Note that off_reg->off
6332 		 * == 0, since it's a scalar.
6333 		 * dst_reg gets the pointer type and since some positive
6334 		 * integer value was added to the pointer, give it a new 'id'
6335 		 * if it's a PTR_TO_PACKET.
6336 		 * this creates a new 'base' pointer, off_reg (variable) gets
6337 		 * added into the variable offset, and we copy the fixed offset
6338 		 * from ptr_reg.
6339 		 */
6340 		if (signed_add_overflows(smin_ptr, smin_val) ||
6341 		    signed_add_overflows(smax_ptr, smax_val)) {
6342 			dst_reg->smin_value = S64_MIN;
6343 			dst_reg->smax_value = S64_MAX;
6344 		} else {
6345 			dst_reg->smin_value = smin_ptr + smin_val;
6346 			dst_reg->smax_value = smax_ptr + smax_val;
6347 		}
6348 		if (umin_ptr + umin_val < umin_ptr ||
6349 		    umax_ptr + umax_val < umax_ptr) {
6350 			dst_reg->umin_value = 0;
6351 			dst_reg->umax_value = U64_MAX;
6352 		} else {
6353 			dst_reg->umin_value = umin_ptr + umin_val;
6354 			dst_reg->umax_value = umax_ptr + umax_val;
6355 		}
6356 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6357 		dst_reg->off = ptr_reg->off;
6358 		dst_reg->raw = ptr_reg->raw;
6359 		if (reg_is_pkt_pointer(ptr_reg)) {
6360 			dst_reg->id = ++env->id_gen;
6361 			/* something was added to pkt_ptr, set range to zero */
6362 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6363 		}
6364 		break;
6365 	case BPF_SUB:
6366 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
6367 		if (ret < 0) {
6368 			verbose(env, "R%d tried to sub from different maps, paths, or prohibited types\n", dst);
6369 			return ret;
6370 		}
6371 		if (dst_reg == off_reg) {
6372 			/* scalar -= pointer.  Creates an unknown scalar */
6373 			verbose(env, "R%d tried to subtract pointer from scalar\n",
6374 				dst);
6375 			return -EACCES;
6376 		}
6377 		/* We don't allow subtraction from FP, because (according to
6378 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
6379 		 * be able to deal with it.
6380 		 */
6381 		if (ptr_reg->type == PTR_TO_STACK) {
6382 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
6383 				dst);
6384 			return -EACCES;
6385 		}
6386 		if (known && (ptr_reg->off - smin_val ==
6387 			      (s64)(s32)(ptr_reg->off - smin_val))) {
6388 			/* pointer -= K.  Subtract it from fixed offset */
6389 			dst_reg->smin_value = smin_ptr;
6390 			dst_reg->smax_value = smax_ptr;
6391 			dst_reg->umin_value = umin_ptr;
6392 			dst_reg->umax_value = umax_ptr;
6393 			dst_reg->var_off = ptr_reg->var_off;
6394 			dst_reg->id = ptr_reg->id;
6395 			dst_reg->off = ptr_reg->off - smin_val;
6396 			dst_reg->raw = ptr_reg->raw;
6397 			break;
6398 		}
6399 		/* A new variable offset is created.  If the subtrahend is known
6400 		 * nonnegative, then any reg->range we had before is still good.
6401 		 */
6402 		if (signed_sub_overflows(smin_ptr, smax_val) ||
6403 		    signed_sub_overflows(smax_ptr, smin_val)) {
6404 			/* Overflow possible, we know nothing */
6405 			dst_reg->smin_value = S64_MIN;
6406 			dst_reg->smax_value = S64_MAX;
6407 		} else {
6408 			dst_reg->smin_value = smin_ptr - smax_val;
6409 			dst_reg->smax_value = smax_ptr - smin_val;
6410 		}
6411 		if (umin_ptr < umax_val) {
6412 			/* Overflow possible, we know nothing */
6413 			dst_reg->umin_value = 0;
6414 			dst_reg->umax_value = U64_MAX;
6415 		} else {
6416 			/* Cannot overflow (as long as bounds are consistent) */
6417 			dst_reg->umin_value = umin_ptr - umax_val;
6418 			dst_reg->umax_value = umax_ptr - umin_val;
6419 		}
6420 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6421 		dst_reg->off = ptr_reg->off;
6422 		dst_reg->raw = ptr_reg->raw;
6423 		if (reg_is_pkt_pointer(ptr_reg)) {
6424 			dst_reg->id = ++env->id_gen;
6425 			/* something was added to pkt_ptr, set range to zero */
6426 			if (smin_val < 0)
6427 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6428 		}
6429 		break;
6430 	case BPF_AND:
6431 	case BPF_OR:
6432 	case BPF_XOR:
6433 		/* bitwise ops on pointers are troublesome, prohibit. */
6434 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6435 			dst, bpf_alu_string[opcode >> 4]);
6436 		return -EACCES;
6437 	default:
6438 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
6439 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6440 			dst, bpf_alu_string[opcode >> 4]);
6441 		return -EACCES;
6442 	}
6443 
6444 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6445 		return -EINVAL;
6446 
6447 	__update_reg_bounds(dst_reg);
6448 	__reg_deduce_bounds(dst_reg);
6449 	__reg_bound_offset(dst_reg);
6450 
6451 	/* For unprivileged we require that resulting offset must be in bounds
6452 	 * in order to be able to sanitize access later on.
6453 	 */
6454 	if (!env->bypass_spec_v1) {
6455 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
6456 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
6457 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6458 				"prohibited for !root\n", dst);
6459 			return -EACCES;
6460 		} else if (dst_reg->type == PTR_TO_STACK &&
6461 			   check_stack_access_for_ptr_arithmetic(
6462 				   env, dst, dst_reg, dst_reg->off +
6463 				   dst_reg->var_off.value)) {
6464 			return -EACCES;
6465 		}
6466 	}
6467 
6468 	return 0;
6469 }
6470 
6471 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6472 				 struct bpf_reg_state *src_reg)
6473 {
6474 	s32 smin_val = src_reg->s32_min_value;
6475 	s32 smax_val = src_reg->s32_max_value;
6476 	u32 umin_val = src_reg->u32_min_value;
6477 	u32 umax_val = src_reg->u32_max_value;
6478 
6479 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6480 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6481 		dst_reg->s32_min_value = S32_MIN;
6482 		dst_reg->s32_max_value = S32_MAX;
6483 	} else {
6484 		dst_reg->s32_min_value += smin_val;
6485 		dst_reg->s32_max_value += smax_val;
6486 	}
6487 	if (dst_reg->u32_min_value + umin_val < umin_val ||
6488 	    dst_reg->u32_max_value + umax_val < umax_val) {
6489 		dst_reg->u32_min_value = 0;
6490 		dst_reg->u32_max_value = U32_MAX;
6491 	} else {
6492 		dst_reg->u32_min_value += umin_val;
6493 		dst_reg->u32_max_value += umax_val;
6494 	}
6495 }
6496 
6497 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6498 			       struct bpf_reg_state *src_reg)
6499 {
6500 	s64 smin_val = src_reg->smin_value;
6501 	s64 smax_val = src_reg->smax_value;
6502 	u64 umin_val = src_reg->umin_value;
6503 	u64 umax_val = src_reg->umax_value;
6504 
6505 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6506 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
6507 		dst_reg->smin_value = S64_MIN;
6508 		dst_reg->smax_value = S64_MAX;
6509 	} else {
6510 		dst_reg->smin_value += smin_val;
6511 		dst_reg->smax_value += smax_val;
6512 	}
6513 	if (dst_reg->umin_value + umin_val < umin_val ||
6514 	    dst_reg->umax_value + umax_val < umax_val) {
6515 		dst_reg->umin_value = 0;
6516 		dst_reg->umax_value = U64_MAX;
6517 	} else {
6518 		dst_reg->umin_value += umin_val;
6519 		dst_reg->umax_value += umax_val;
6520 	}
6521 }
6522 
6523 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6524 				 struct bpf_reg_state *src_reg)
6525 {
6526 	s32 smin_val = src_reg->s32_min_value;
6527 	s32 smax_val = src_reg->s32_max_value;
6528 	u32 umin_val = src_reg->u32_min_value;
6529 	u32 umax_val = src_reg->u32_max_value;
6530 
6531 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6532 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6533 		/* Overflow possible, we know nothing */
6534 		dst_reg->s32_min_value = S32_MIN;
6535 		dst_reg->s32_max_value = S32_MAX;
6536 	} else {
6537 		dst_reg->s32_min_value -= smax_val;
6538 		dst_reg->s32_max_value -= smin_val;
6539 	}
6540 	if (dst_reg->u32_min_value < umax_val) {
6541 		/* Overflow possible, we know nothing */
6542 		dst_reg->u32_min_value = 0;
6543 		dst_reg->u32_max_value = U32_MAX;
6544 	} else {
6545 		/* Cannot overflow (as long as bounds are consistent) */
6546 		dst_reg->u32_min_value -= umax_val;
6547 		dst_reg->u32_max_value -= umin_val;
6548 	}
6549 }
6550 
6551 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6552 			       struct bpf_reg_state *src_reg)
6553 {
6554 	s64 smin_val = src_reg->smin_value;
6555 	s64 smax_val = src_reg->smax_value;
6556 	u64 umin_val = src_reg->umin_value;
6557 	u64 umax_val = src_reg->umax_value;
6558 
6559 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6560 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6561 		/* Overflow possible, we know nothing */
6562 		dst_reg->smin_value = S64_MIN;
6563 		dst_reg->smax_value = S64_MAX;
6564 	} else {
6565 		dst_reg->smin_value -= smax_val;
6566 		dst_reg->smax_value -= smin_val;
6567 	}
6568 	if (dst_reg->umin_value < umax_val) {
6569 		/* Overflow possible, we know nothing */
6570 		dst_reg->umin_value = 0;
6571 		dst_reg->umax_value = U64_MAX;
6572 	} else {
6573 		/* Cannot overflow (as long as bounds are consistent) */
6574 		dst_reg->umin_value -= umax_val;
6575 		dst_reg->umax_value -= umin_val;
6576 	}
6577 }
6578 
6579 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6580 				 struct bpf_reg_state *src_reg)
6581 {
6582 	s32 smin_val = src_reg->s32_min_value;
6583 	u32 umin_val = src_reg->u32_min_value;
6584 	u32 umax_val = src_reg->u32_max_value;
6585 
6586 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6587 		/* Ain't nobody got time to multiply that sign */
6588 		__mark_reg32_unbounded(dst_reg);
6589 		return;
6590 	}
6591 	/* Both values are positive, so we can work with unsigned and
6592 	 * copy the result to signed (unless it exceeds S32_MAX).
6593 	 */
6594 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6595 		/* Potential overflow, we know nothing */
6596 		__mark_reg32_unbounded(dst_reg);
6597 		return;
6598 	}
6599 	dst_reg->u32_min_value *= umin_val;
6600 	dst_reg->u32_max_value *= umax_val;
6601 	if (dst_reg->u32_max_value > S32_MAX) {
6602 		/* Overflow possible, we know nothing */
6603 		dst_reg->s32_min_value = S32_MIN;
6604 		dst_reg->s32_max_value = S32_MAX;
6605 	} else {
6606 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6607 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6608 	}
6609 }
6610 
6611 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6612 			       struct bpf_reg_state *src_reg)
6613 {
6614 	s64 smin_val = src_reg->smin_value;
6615 	u64 umin_val = src_reg->umin_value;
6616 	u64 umax_val = src_reg->umax_value;
6617 
6618 	if (smin_val < 0 || dst_reg->smin_value < 0) {
6619 		/* Ain't nobody got time to multiply that sign */
6620 		__mark_reg64_unbounded(dst_reg);
6621 		return;
6622 	}
6623 	/* Both values are positive, so we can work with unsigned and
6624 	 * copy the result to signed (unless it exceeds S64_MAX).
6625 	 */
6626 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6627 		/* Potential overflow, we know nothing */
6628 		__mark_reg64_unbounded(dst_reg);
6629 		return;
6630 	}
6631 	dst_reg->umin_value *= umin_val;
6632 	dst_reg->umax_value *= umax_val;
6633 	if (dst_reg->umax_value > S64_MAX) {
6634 		/* Overflow possible, we know nothing */
6635 		dst_reg->smin_value = S64_MIN;
6636 		dst_reg->smax_value = S64_MAX;
6637 	} else {
6638 		dst_reg->smin_value = dst_reg->umin_value;
6639 		dst_reg->smax_value = dst_reg->umax_value;
6640 	}
6641 }
6642 
6643 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6644 				 struct bpf_reg_state *src_reg)
6645 {
6646 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6647 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6648 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6649 	s32 smin_val = src_reg->s32_min_value;
6650 	u32 umax_val = src_reg->u32_max_value;
6651 
6652 	/* Assuming scalar64_min_max_and will be called so its safe
6653 	 * to skip updating register for known 32-bit case.
6654 	 */
6655 	if (src_known && dst_known)
6656 		return;
6657 
6658 	/* We get our minimum from the var_off, since that's inherently
6659 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6660 	 */
6661 	dst_reg->u32_min_value = var32_off.value;
6662 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6663 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6664 		/* Lose signed bounds when ANDing negative numbers,
6665 		 * ain't nobody got time for that.
6666 		 */
6667 		dst_reg->s32_min_value = S32_MIN;
6668 		dst_reg->s32_max_value = S32_MAX;
6669 	} else {
6670 		/* ANDing two positives gives a positive, so safe to
6671 		 * cast result into s64.
6672 		 */
6673 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6674 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6675 	}
6676 
6677 }
6678 
6679 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6680 			       struct bpf_reg_state *src_reg)
6681 {
6682 	bool src_known = tnum_is_const(src_reg->var_off);
6683 	bool dst_known = tnum_is_const(dst_reg->var_off);
6684 	s64 smin_val = src_reg->smin_value;
6685 	u64 umax_val = src_reg->umax_value;
6686 
6687 	if (src_known && dst_known) {
6688 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6689 		return;
6690 	}
6691 
6692 	/* We get our minimum from the var_off, since that's inherently
6693 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
6694 	 */
6695 	dst_reg->umin_value = dst_reg->var_off.value;
6696 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6697 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6698 		/* Lose signed bounds when ANDing negative numbers,
6699 		 * ain't nobody got time for that.
6700 		 */
6701 		dst_reg->smin_value = S64_MIN;
6702 		dst_reg->smax_value = S64_MAX;
6703 	} else {
6704 		/* ANDing two positives gives a positive, so safe to
6705 		 * cast result into s64.
6706 		 */
6707 		dst_reg->smin_value = dst_reg->umin_value;
6708 		dst_reg->smax_value = dst_reg->umax_value;
6709 	}
6710 	/* We may learn something more from the var_off */
6711 	__update_reg_bounds(dst_reg);
6712 }
6713 
6714 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6715 				struct bpf_reg_state *src_reg)
6716 {
6717 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6718 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6719 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6720 	s32 smin_val = src_reg->s32_min_value;
6721 	u32 umin_val = src_reg->u32_min_value;
6722 
6723 	/* Assuming scalar64_min_max_or will be called so it is safe
6724 	 * to skip updating register for known case.
6725 	 */
6726 	if (src_known && dst_known)
6727 		return;
6728 
6729 	/* We get our maximum from the var_off, and our minimum is the
6730 	 * maximum of the operands' minima
6731 	 */
6732 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6733 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6734 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6735 		/* Lose signed bounds when ORing negative numbers,
6736 		 * ain't nobody got time for that.
6737 		 */
6738 		dst_reg->s32_min_value = S32_MIN;
6739 		dst_reg->s32_max_value = S32_MAX;
6740 	} else {
6741 		/* ORing two positives gives a positive, so safe to
6742 		 * cast result into s64.
6743 		 */
6744 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6745 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6746 	}
6747 }
6748 
6749 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6750 			      struct bpf_reg_state *src_reg)
6751 {
6752 	bool src_known = tnum_is_const(src_reg->var_off);
6753 	bool dst_known = tnum_is_const(dst_reg->var_off);
6754 	s64 smin_val = src_reg->smin_value;
6755 	u64 umin_val = src_reg->umin_value;
6756 
6757 	if (src_known && dst_known) {
6758 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6759 		return;
6760 	}
6761 
6762 	/* We get our maximum from the var_off, and our minimum is the
6763 	 * maximum of the operands' minima
6764 	 */
6765 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6766 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6767 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6768 		/* Lose signed bounds when ORing negative numbers,
6769 		 * ain't nobody got time for that.
6770 		 */
6771 		dst_reg->smin_value = S64_MIN;
6772 		dst_reg->smax_value = S64_MAX;
6773 	} else {
6774 		/* ORing two positives gives a positive, so safe to
6775 		 * cast result into s64.
6776 		 */
6777 		dst_reg->smin_value = dst_reg->umin_value;
6778 		dst_reg->smax_value = dst_reg->umax_value;
6779 	}
6780 	/* We may learn something more from the var_off */
6781 	__update_reg_bounds(dst_reg);
6782 }
6783 
6784 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6785 				 struct bpf_reg_state *src_reg)
6786 {
6787 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6788 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6789 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6790 	s32 smin_val = src_reg->s32_min_value;
6791 
6792 	/* Assuming scalar64_min_max_xor will be called so it is safe
6793 	 * to skip updating register for known case.
6794 	 */
6795 	if (src_known && dst_known)
6796 		return;
6797 
6798 	/* We get both minimum and maximum from the var32_off. */
6799 	dst_reg->u32_min_value = var32_off.value;
6800 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6801 
6802 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6803 		/* XORing two positive sign numbers gives a positive,
6804 		 * so safe to cast u32 result into s32.
6805 		 */
6806 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6807 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6808 	} else {
6809 		dst_reg->s32_min_value = S32_MIN;
6810 		dst_reg->s32_max_value = S32_MAX;
6811 	}
6812 }
6813 
6814 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6815 			       struct bpf_reg_state *src_reg)
6816 {
6817 	bool src_known = tnum_is_const(src_reg->var_off);
6818 	bool dst_known = tnum_is_const(dst_reg->var_off);
6819 	s64 smin_val = src_reg->smin_value;
6820 
6821 	if (src_known && dst_known) {
6822 		/* dst_reg->var_off.value has been updated earlier */
6823 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6824 		return;
6825 	}
6826 
6827 	/* We get both minimum and maximum from the var_off. */
6828 	dst_reg->umin_value = dst_reg->var_off.value;
6829 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6830 
6831 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6832 		/* XORing two positive sign numbers gives a positive,
6833 		 * so safe to cast u64 result into s64.
6834 		 */
6835 		dst_reg->smin_value = dst_reg->umin_value;
6836 		dst_reg->smax_value = dst_reg->umax_value;
6837 	} else {
6838 		dst_reg->smin_value = S64_MIN;
6839 		dst_reg->smax_value = S64_MAX;
6840 	}
6841 
6842 	__update_reg_bounds(dst_reg);
6843 }
6844 
6845 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6846 				   u64 umin_val, u64 umax_val)
6847 {
6848 	/* We lose all sign bit information (except what we can pick
6849 	 * up from var_off)
6850 	 */
6851 	dst_reg->s32_min_value = S32_MIN;
6852 	dst_reg->s32_max_value = S32_MAX;
6853 	/* If we might shift our top bit out, then we know nothing */
6854 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6855 		dst_reg->u32_min_value = 0;
6856 		dst_reg->u32_max_value = U32_MAX;
6857 	} else {
6858 		dst_reg->u32_min_value <<= umin_val;
6859 		dst_reg->u32_max_value <<= umax_val;
6860 	}
6861 }
6862 
6863 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6864 				 struct bpf_reg_state *src_reg)
6865 {
6866 	u32 umax_val = src_reg->u32_max_value;
6867 	u32 umin_val = src_reg->u32_min_value;
6868 	/* u32 alu operation will zext upper bits */
6869 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6870 
6871 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6872 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6873 	/* Not required but being careful mark reg64 bounds as unknown so
6874 	 * that we are forced to pick them up from tnum and zext later and
6875 	 * if some path skips this step we are still safe.
6876 	 */
6877 	__mark_reg64_unbounded(dst_reg);
6878 	__update_reg32_bounds(dst_reg);
6879 }
6880 
6881 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6882 				   u64 umin_val, u64 umax_val)
6883 {
6884 	/* Special case <<32 because it is a common compiler pattern to sign
6885 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6886 	 * positive we know this shift will also be positive so we can track
6887 	 * bounds correctly. Otherwise we lose all sign bit information except
6888 	 * what we can pick up from var_off. Perhaps we can generalize this
6889 	 * later to shifts of any length.
6890 	 */
6891 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6892 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6893 	else
6894 		dst_reg->smax_value = S64_MAX;
6895 
6896 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6897 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6898 	else
6899 		dst_reg->smin_value = S64_MIN;
6900 
6901 	/* If we might shift our top bit out, then we know nothing */
6902 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6903 		dst_reg->umin_value = 0;
6904 		dst_reg->umax_value = U64_MAX;
6905 	} else {
6906 		dst_reg->umin_value <<= umin_val;
6907 		dst_reg->umax_value <<= umax_val;
6908 	}
6909 }
6910 
6911 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6912 			       struct bpf_reg_state *src_reg)
6913 {
6914 	u64 umax_val = src_reg->umax_value;
6915 	u64 umin_val = src_reg->umin_value;
6916 
6917 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6918 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6919 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6920 
6921 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6922 	/* We may learn something more from the var_off */
6923 	__update_reg_bounds(dst_reg);
6924 }
6925 
6926 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6927 				 struct bpf_reg_state *src_reg)
6928 {
6929 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6930 	u32 umax_val = src_reg->u32_max_value;
6931 	u32 umin_val = src_reg->u32_min_value;
6932 
6933 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6934 	 * be negative, then either:
6935 	 * 1) src_reg might be zero, so the sign bit of the result is
6936 	 *    unknown, so we lose our signed bounds
6937 	 * 2) it's known negative, thus the unsigned bounds capture the
6938 	 *    signed bounds
6939 	 * 3) the signed bounds cross zero, so they tell us nothing
6940 	 *    about the result
6941 	 * If the value in dst_reg is known nonnegative, then again the
6942 	 * unsigned bounds capture the signed bounds.
6943 	 * Thus, in all cases it suffices to blow away our signed bounds
6944 	 * and rely on inferring new ones from the unsigned bounds and
6945 	 * var_off of the result.
6946 	 */
6947 	dst_reg->s32_min_value = S32_MIN;
6948 	dst_reg->s32_max_value = S32_MAX;
6949 
6950 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6951 	dst_reg->u32_min_value >>= umax_val;
6952 	dst_reg->u32_max_value >>= umin_val;
6953 
6954 	__mark_reg64_unbounded(dst_reg);
6955 	__update_reg32_bounds(dst_reg);
6956 }
6957 
6958 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6959 			       struct bpf_reg_state *src_reg)
6960 {
6961 	u64 umax_val = src_reg->umax_value;
6962 	u64 umin_val = src_reg->umin_value;
6963 
6964 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6965 	 * be negative, then either:
6966 	 * 1) src_reg might be zero, so the sign bit of the result is
6967 	 *    unknown, so we lose our signed bounds
6968 	 * 2) it's known negative, thus the unsigned bounds capture the
6969 	 *    signed bounds
6970 	 * 3) the signed bounds cross zero, so they tell us nothing
6971 	 *    about the result
6972 	 * If the value in dst_reg is known nonnegative, then again the
6973 	 * unsigned bounds capture the signed bounds.
6974 	 * Thus, in all cases it suffices to blow away our signed bounds
6975 	 * and rely on inferring new ones from the unsigned bounds and
6976 	 * var_off of the result.
6977 	 */
6978 	dst_reg->smin_value = S64_MIN;
6979 	dst_reg->smax_value = S64_MAX;
6980 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6981 	dst_reg->umin_value >>= umax_val;
6982 	dst_reg->umax_value >>= umin_val;
6983 
6984 	/* Its not easy to operate on alu32 bounds here because it depends
6985 	 * on bits being shifted in. Take easy way out and mark unbounded
6986 	 * so we can recalculate later from tnum.
6987 	 */
6988 	__mark_reg32_unbounded(dst_reg);
6989 	__update_reg_bounds(dst_reg);
6990 }
6991 
6992 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6993 				  struct bpf_reg_state *src_reg)
6994 {
6995 	u64 umin_val = src_reg->u32_min_value;
6996 
6997 	/* Upon reaching here, src_known is true and
6998 	 * umax_val is equal to umin_val.
6999 	 */
7000 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7001 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7002 
7003 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7004 
7005 	/* blow away the dst_reg umin_value/umax_value and rely on
7006 	 * dst_reg var_off to refine the result.
7007 	 */
7008 	dst_reg->u32_min_value = 0;
7009 	dst_reg->u32_max_value = U32_MAX;
7010 
7011 	__mark_reg64_unbounded(dst_reg);
7012 	__update_reg32_bounds(dst_reg);
7013 }
7014 
7015 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7016 				struct bpf_reg_state *src_reg)
7017 {
7018 	u64 umin_val = src_reg->umin_value;
7019 
7020 	/* Upon reaching here, src_known is true and umax_val is equal
7021 	 * to umin_val.
7022 	 */
7023 	dst_reg->smin_value >>= umin_val;
7024 	dst_reg->smax_value >>= umin_val;
7025 
7026 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7027 
7028 	/* blow away the dst_reg umin_value/umax_value and rely on
7029 	 * dst_reg var_off to refine the result.
7030 	 */
7031 	dst_reg->umin_value = 0;
7032 	dst_reg->umax_value = U64_MAX;
7033 
7034 	/* Its not easy to operate on alu32 bounds here because it depends
7035 	 * on bits being shifted in from upper 32-bits. Take easy way out
7036 	 * and mark unbounded so we can recalculate later from tnum.
7037 	 */
7038 	__mark_reg32_unbounded(dst_reg);
7039 	__update_reg_bounds(dst_reg);
7040 }
7041 
7042 /* WARNING: This function does calculations on 64-bit values, but the actual
7043  * execution may occur on 32-bit values. Therefore, things like bitshifts
7044  * need extra checks in the 32-bit case.
7045  */
7046 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7047 				      struct bpf_insn *insn,
7048 				      struct bpf_reg_state *dst_reg,
7049 				      struct bpf_reg_state src_reg)
7050 {
7051 	struct bpf_reg_state *regs = cur_regs(env);
7052 	u8 opcode = BPF_OP(insn->code);
7053 	bool src_known;
7054 	s64 smin_val, smax_val;
7055 	u64 umin_val, umax_val;
7056 	s32 s32_min_val, s32_max_val;
7057 	u32 u32_min_val, u32_max_val;
7058 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7059 	u32 dst = insn->dst_reg;
7060 	int ret;
7061 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7062 
7063 	smin_val = src_reg.smin_value;
7064 	smax_val = src_reg.smax_value;
7065 	umin_val = src_reg.umin_value;
7066 	umax_val = src_reg.umax_value;
7067 
7068 	s32_min_val = src_reg.s32_min_value;
7069 	s32_max_val = src_reg.s32_max_value;
7070 	u32_min_val = src_reg.u32_min_value;
7071 	u32_max_val = src_reg.u32_max_value;
7072 
7073 	if (alu32) {
7074 		src_known = tnum_subreg_is_const(src_reg.var_off);
7075 		if ((src_known &&
7076 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7077 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7078 			/* Taint dst register if offset had invalid bounds
7079 			 * derived from e.g. dead branches.
7080 			 */
7081 			__mark_reg_unknown(env, dst_reg);
7082 			return 0;
7083 		}
7084 	} else {
7085 		src_known = tnum_is_const(src_reg.var_off);
7086 		if ((src_known &&
7087 		     (smin_val != smax_val || umin_val != umax_val)) ||
7088 		    smin_val > smax_val || umin_val > umax_val) {
7089 			/* Taint dst register if offset had invalid bounds
7090 			 * derived from e.g. dead branches.
7091 			 */
7092 			__mark_reg_unknown(env, dst_reg);
7093 			return 0;
7094 		}
7095 	}
7096 
7097 	if (!src_known &&
7098 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7099 		__mark_reg_unknown(env, dst_reg);
7100 		return 0;
7101 	}
7102 
7103 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7104 	 * There are two classes of instructions: The first class we track both
7105 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
7106 	 * greatest amount of precision when alu operations are mixed with jmp32
7107 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7108 	 * and BPF_OR. This is possible because these ops have fairly easy to
7109 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7110 	 * See alu32 verifier tests for examples. The second class of
7111 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7112 	 * with regards to tracking sign/unsigned bounds because the bits may
7113 	 * cross subreg boundaries in the alu64 case. When this happens we mark
7114 	 * the reg unbounded in the subreg bound space and use the resulting
7115 	 * tnum to calculate an approximation of the sign/unsigned bounds.
7116 	 */
7117 	switch (opcode) {
7118 	case BPF_ADD:
7119 		ret = sanitize_val_alu(env, insn);
7120 		if (ret < 0) {
7121 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
7122 			return ret;
7123 		}
7124 		scalar32_min_max_add(dst_reg, &src_reg);
7125 		scalar_min_max_add(dst_reg, &src_reg);
7126 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7127 		break;
7128 	case BPF_SUB:
7129 		ret = sanitize_val_alu(env, insn);
7130 		if (ret < 0) {
7131 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
7132 			return ret;
7133 		}
7134 		scalar32_min_max_sub(dst_reg, &src_reg);
7135 		scalar_min_max_sub(dst_reg, &src_reg);
7136 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7137 		break;
7138 	case BPF_MUL:
7139 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7140 		scalar32_min_max_mul(dst_reg, &src_reg);
7141 		scalar_min_max_mul(dst_reg, &src_reg);
7142 		break;
7143 	case BPF_AND:
7144 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7145 		scalar32_min_max_and(dst_reg, &src_reg);
7146 		scalar_min_max_and(dst_reg, &src_reg);
7147 		break;
7148 	case BPF_OR:
7149 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7150 		scalar32_min_max_or(dst_reg, &src_reg);
7151 		scalar_min_max_or(dst_reg, &src_reg);
7152 		break;
7153 	case BPF_XOR:
7154 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7155 		scalar32_min_max_xor(dst_reg, &src_reg);
7156 		scalar_min_max_xor(dst_reg, &src_reg);
7157 		break;
7158 	case BPF_LSH:
7159 		if (umax_val >= insn_bitness) {
7160 			/* Shifts greater than 31 or 63 are undefined.
7161 			 * This includes shifts by a negative number.
7162 			 */
7163 			mark_reg_unknown(env, regs, insn->dst_reg);
7164 			break;
7165 		}
7166 		if (alu32)
7167 			scalar32_min_max_lsh(dst_reg, &src_reg);
7168 		else
7169 			scalar_min_max_lsh(dst_reg, &src_reg);
7170 		break;
7171 	case BPF_RSH:
7172 		if (umax_val >= insn_bitness) {
7173 			/* Shifts greater than 31 or 63 are undefined.
7174 			 * This includes shifts by a negative number.
7175 			 */
7176 			mark_reg_unknown(env, regs, insn->dst_reg);
7177 			break;
7178 		}
7179 		if (alu32)
7180 			scalar32_min_max_rsh(dst_reg, &src_reg);
7181 		else
7182 			scalar_min_max_rsh(dst_reg, &src_reg);
7183 		break;
7184 	case BPF_ARSH:
7185 		if (umax_val >= insn_bitness) {
7186 			/* Shifts greater than 31 or 63 are undefined.
7187 			 * This includes shifts by a negative number.
7188 			 */
7189 			mark_reg_unknown(env, regs, insn->dst_reg);
7190 			break;
7191 		}
7192 		if (alu32)
7193 			scalar32_min_max_arsh(dst_reg, &src_reg);
7194 		else
7195 			scalar_min_max_arsh(dst_reg, &src_reg);
7196 		break;
7197 	default:
7198 		mark_reg_unknown(env, regs, insn->dst_reg);
7199 		break;
7200 	}
7201 
7202 	/* ALU32 ops are zero extended into 64bit register */
7203 	if (alu32)
7204 		zext_32_to_64(dst_reg);
7205 
7206 	__update_reg_bounds(dst_reg);
7207 	__reg_deduce_bounds(dst_reg);
7208 	__reg_bound_offset(dst_reg);
7209 	return 0;
7210 }
7211 
7212 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7213  * and var_off.
7214  */
7215 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7216 				   struct bpf_insn *insn)
7217 {
7218 	struct bpf_verifier_state *vstate = env->cur_state;
7219 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7220 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7221 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7222 	u8 opcode = BPF_OP(insn->code);
7223 	int err;
7224 
7225 	dst_reg = &regs[insn->dst_reg];
7226 	src_reg = NULL;
7227 	if (dst_reg->type != SCALAR_VALUE)
7228 		ptr_reg = dst_reg;
7229 	else
7230 		/* Make sure ID is cleared otherwise dst_reg min/max could be
7231 		 * incorrectly propagated into other registers by find_equal_scalars()
7232 		 */
7233 		dst_reg->id = 0;
7234 	if (BPF_SRC(insn->code) == BPF_X) {
7235 		src_reg = &regs[insn->src_reg];
7236 		if (src_reg->type != SCALAR_VALUE) {
7237 			if (dst_reg->type != SCALAR_VALUE) {
7238 				/* Combining two pointers by any ALU op yields
7239 				 * an arbitrary scalar. Disallow all math except
7240 				 * pointer subtraction
7241 				 */
7242 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7243 					mark_reg_unknown(env, regs, insn->dst_reg);
7244 					return 0;
7245 				}
7246 				verbose(env, "R%d pointer %s pointer prohibited\n",
7247 					insn->dst_reg,
7248 					bpf_alu_string[opcode >> 4]);
7249 				return -EACCES;
7250 			} else {
7251 				/* scalar += pointer
7252 				 * This is legal, but we have to reverse our
7253 				 * src/dest handling in computing the range
7254 				 */
7255 				err = mark_chain_precision(env, insn->dst_reg);
7256 				if (err)
7257 					return err;
7258 				return adjust_ptr_min_max_vals(env, insn,
7259 							       src_reg, dst_reg);
7260 			}
7261 		} else if (ptr_reg) {
7262 			/* pointer += scalar */
7263 			err = mark_chain_precision(env, insn->src_reg);
7264 			if (err)
7265 				return err;
7266 			return adjust_ptr_min_max_vals(env, insn,
7267 						       dst_reg, src_reg);
7268 		}
7269 	} else {
7270 		/* Pretend the src is a reg with a known value, since we only
7271 		 * need to be able to read from this state.
7272 		 */
7273 		off_reg.type = SCALAR_VALUE;
7274 		__mark_reg_known(&off_reg, insn->imm);
7275 		src_reg = &off_reg;
7276 		if (ptr_reg) /* pointer += K */
7277 			return adjust_ptr_min_max_vals(env, insn,
7278 						       ptr_reg, src_reg);
7279 	}
7280 
7281 	/* Got here implies adding two SCALAR_VALUEs */
7282 	if (WARN_ON_ONCE(ptr_reg)) {
7283 		print_verifier_state(env, state);
7284 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
7285 		return -EINVAL;
7286 	}
7287 	if (WARN_ON(!src_reg)) {
7288 		print_verifier_state(env, state);
7289 		verbose(env, "verifier internal error: no src_reg\n");
7290 		return -EINVAL;
7291 	}
7292 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7293 }
7294 
7295 /* check validity of 32-bit and 64-bit arithmetic operations */
7296 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7297 {
7298 	struct bpf_reg_state *regs = cur_regs(env);
7299 	u8 opcode = BPF_OP(insn->code);
7300 	int err;
7301 
7302 	if (opcode == BPF_END || opcode == BPF_NEG) {
7303 		if (opcode == BPF_NEG) {
7304 			if (BPF_SRC(insn->code) != 0 ||
7305 			    insn->src_reg != BPF_REG_0 ||
7306 			    insn->off != 0 || insn->imm != 0) {
7307 				verbose(env, "BPF_NEG uses reserved fields\n");
7308 				return -EINVAL;
7309 			}
7310 		} else {
7311 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7312 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7313 			    BPF_CLASS(insn->code) == BPF_ALU64) {
7314 				verbose(env, "BPF_END uses reserved fields\n");
7315 				return -EINVAL;
7316 			}
7317 		}
7318 
7319 		/* check src operand */
7320 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7321 		if (err)
7322 			return err;
7323 
7324 		if (is_pointer_value(env, insn->dst_reg)) {
7325 			verbose(env, "R%d pointer arithmetic prohibited\n",
7326 				insn->dst_reg);
7327 			return -EACCES;
7328 		}
7329 
7330 		/* check dest operand */
7331 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
7332 		if (err)
7333 			return err;
7334 
7335 	} else if (opcode == BPF_MOV) {
7336 
7337 		if (BPF_SRC(insn->code) == BPF_X) {
7338 			if (insn->imm != 0 || insn->off != 0) {
7339 				verbose(env, "BPF_MOV uses reserved fields\n");
7340 				return -EINVAL;
7341 			}
7342 
7343 			/* check src operand */
7344 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7345 			if (err)
7346 				return err;
7347 		} else {
7348 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7349 				verbose(env, "BPF_MOV uses reserved fields\n");
7350 				return -EINVAL;
7351 			}
7352 		}
7353 
7354 		/* check dest operand, mark as required later */
7355 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7356 		if (err)
7357 			return err;
7358 
7359 		if (BPF_SRC(insn->code) == BPF_X) {
7360 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
7361 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7362 
7363 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7364 				/* case: R1 = R2
7365 				 * copy register state to dest reg
7366 				 */
7367 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7368 					/* Assign src and dst registers the same ID
7369 					 * that will be used by find_equal_scalars()
7370 					 * to propagate min/max range.
7371 					 */
7372 					src_reg->id = ++env->id_gen;
7373 				*dst_reg = *src_reg;
7374 				dst_reg->live |= REG_LIVE_WRITTEN;
7375 				dst_reg->subreg_def = DEF_NOT_SUBREG;
7376 			} else {
7377 				/* R1 = (u32) R2 */
7378 				if (is_pointer_value(env, insn->src_reg)) {
7379 					verbose(env,
7380 						"R%d partial copy of pointer\n",
7381 						insn->src_reg);
7382 					return -EACCES;
7383 				} else if (src_reg->type == SCALAR_VALUE) {
7384 					*dst_reg = *src_reg;
7385 					/* Make sure ID is cleared otherwise
7386 					 * dst_reg min/max could be incorrectly
7387 					 * propagated into src_reg by find_equal_scalars()
7388 					 */
7389 					dst_reg->id = 0;
7390 					dst_reg->live |= REG_LIVE_WRITTEN;
7391 					dst_reg->subreg_def = env->insn_idx + 1;
7392 				} else {
7393 					mark_reg_unknown(env, regs,
7394 							 insn->dst_reg);
7395 				}
7396 				zext_32_to_64(dst_reg);
7397 			}
7398 		} else {
7399 			/* case: R = imm
7400 			 * remember the value we stored into this reg
7401 			 */
7402 			/* clear any state __mark_reg_known doesn't set */
7403 			mark_reg_unknown(env, regs, insn->dst_reg);
7404 			regs[insn->dst_reg].type = SCALAR_VALUE;
7405 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
7406 				__mark_reg_known(regs + insn->dst_reg,
7407 						 insn->imm);
7408 			} else {
7409 				__mark_reg_known(regs + insn->dst_reg,
7410 						 (u32)insn->imm);
7411 			}
7412 		}
7413 
7414 	} else if (opcode > BPF_END) {
7415 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7416 		return -EINVAL;
7417 
7418 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
7419 
7420 		if (BPF_SRC(insn->code) == BPF_X) {
7421 			if (insn->imm != 0 || insn->off != 0) {
7422 				verbose(env, "BPF_ALU uses reserved fields\n");
7423 				return -EINVAL;
7424 			}
7425 			/* check src1 operand */
7426 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7427 			if (err)
7428 				return err;
7429 		} else {
7430 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7431 				verbose(env, "BPF_ALU uses reserved fields\n");
7432 				return -EINVAL;
7433 			}
7434 		}
7435 
7436 		/* check src2 operand */
7437 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7438 		if (err)
7439 			return err;
7440 
7441 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7442 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7443 			verbose(env, "div by zero\n");
7444 			return -EINVAL;
7445 		}
7446 
7447 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7448 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7449 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7450 
7451 			if (insn->imm < 0 || insn->imm >= size) {
7452 				verbose(env, "invalid shift %d\n", insn->imm);
7453 				return -EINVAL;
7454 			}
7455 		}
7456 
7457 		/* check dest operand */
7458 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7459 		if (err)
7460 			return err;
7461 
7462 		return adjust_reg_min_max_vals(env, insn);
7463 	}
7464 
7465 	return 0;
7466 }
7467 
7468 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7469 				     struct bpf_reg_state *dst_reg,
7470 				     enum bpf_reg_type type, int new_range)
7471 {
7472 	struct bpf_reg_state *reg;
7473 	int i;
7474 
7475 	for (i = 0; i < MAX_BPF_REG; i++) {
7476 		reg = &state->regs[i];
7477 		if (reg->type == type && reg->id == dst_reg->id)
7478 			/* keep the maximum range already checked */
7479 			reg->range = max(reg->range, new_range);
7480 	}
7481 
7482 	bpf_for_each_spilled_reg(i, state, reg) {
7483 		if (!reg)
7484 			continue;
7485 		if (reg->type == type && reg->id == dst_reg->id)
7486 			reg->range = max(reg->range, new_range);
7487 	}
7488 }
7489 
7490 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7491 				   struct bpf_reg_state *dst_reg,
7492 				   enum bpf_reg_type type,
7493 				   bool range_right_open)
7494 {
7495 	int new_range, i;
7496 
7497 	if (dst_reg->off < 0 ||
7498 	    (dst_reg->off == 0 && range_right_open))
7499 		/* This doesn't give us any range */
7500 		return;
7501 
7502 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
7503 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7504 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
7505 		 * than pkt_end, but that's because it's also less than pkt.
7506 		 */
7507 		return;
7508 
7509 	new_range = dst_reg->off;
7510 	if (range_right_open)
7511 		new_range--;
7512 
7513 	/* Examples for register markings:
7514 	 *
7515 	 * pkt_data in dst register:
7516 	 *
7517 	 *   r2 = r3;
7518 	 *   r2 += 8;
7519 	 *   if (r2 > pkt_end) goto <handle exception>
7520 	 *   <access okay>
7521 	 *
7522 	 *   r2 = r3;
7523 	 *   r2 += 8;
7524 	 *   if (r2 < pkt_end) goto <access okay>
7525 	 *   <handle exception>
7526 	 *
7527 	 *   Where:
7528 	 *     r2 == dst_reg, pkt_end == src_reg
7529 	 *     r2=pkt(id=n,off=8,r=0)
7530 	 *     r3=pkt(id=n,off=0,r=0)
7531 	 *
7532 	 * pkt_data in src register:
7533 	 *
7534 	 *   r2 = r3;
7535 	 *   r2 += 8;
7536 	 *   if (pkt_end >= r2) goto <access okay>
7537 	 *   <handle exception>
7538 	 *
7539 	 *   r2 = r3;
7540 	 *   r2 += 8;
7541 	 *   if (pkt_end <= r2) goto <handle exception>
7542 	 *   <access okay>
7543 	 *
7544 	 *   Where:
7545 	 *     pkt_end == dst_reg, r2 == src_reg
7546 	 *     r2=pkt(id=n,off=8,r=0)
7547 	 *     r3=pkt(id=n,off=0,r=0)
7548 	 *
7549 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7550 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7551 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
7552 	 * the check.
7553 	 */
7554 
7555 	/* If our ids match, then we must have the same max_value.  And we
7556 	 * don't care about the other reg's fixed offset, since if it's too big
7557 	 * the range won't allow anything.
7558 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7559 	 */
7560 	for (i = 0; i <= vstate->curframe; i++)
7561 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7562 					 new_range);
7563 }
7564 
7565 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7566 {
7567 	struct tnum subreg = tnum_subreg(reg->var_off);
7568 	s32 sval = (s32)val;
7569 
7570 	switch (opcode) {
7571 	case BPF_JEQ:
7572 		if (tnum_is_const(subreg))
7573 			return !!tnum_equals_const(subreg, val);
7574 		break;
7575 	case BPF_JNE:
7576 		if (tnum_is_const(subreg))
7577 			return !tnum_equals_const(subreg, val);
7578 		break;
7579 	case BPF_JSET:
7580 		if ((~subreg.mask & subreg.value) & val)
7581 			return 1;
7582 		if (!((subreg.mask | subreg.value) & val))
7583 			return 0;
7584 		break;
7585 	case BPF_JGT:
7586 		if (reg->u32_min_value > val)
7587 			return 1;
7588 		else if (reg->u32_max_value <= val)
7589 			return 0;
7590 		break;
7591 	case BPF_JSGT:
7592 		if (reg->s32_min_value > sval)
7593 			return 1;
7594 		else if (reg->s32_max_value <= sval)
7595 			return 0;
7596 		break;
7597 	case BPF_JLT:
7598 		if (reg->u32_max_value < val)
7599 			return 1;
7600 		else if (reg->u32_min_value >= val)
7601 			return 0;
7602 		break;
7603 	case BPF_JSLT:
7604 		if (reg->s32_max_value < sval)
7605 			return 1;
7606 		else if (reg->s32_min_value >= sval)
7607 			return 0;
7608 		break;
7609 	case BPF_JGE:
7610 		if (reg->u32_min_value >= val)
7611 			return 1;
7612 		else if (reg->u32_max_value < val)
7613 			return 0;
7614 		break;
7615 	case BPF_JSGE:
7616 		if (reg->s32_min_value >= sval)
7617 			return 1;
7618 		else if (reg->s32_max_value < sval)
7619 			return 0;
7620 		break;
7621 	case BPF_JLE:
7622 		if (reg->u32_max_value <= val)
7623 			return 1;
7624 		else if (reg->u32_min_value > val)
7625 			return 0;
7626 		break;
7627 	case BPF_JSLE:
7628 		if (reg->s32_max_value <= sval)
7629 			return 1;
7630 		else if (reg->s32_min_value > sval)
7631 			return 0;
7632 		break;
7633 	}
7634 
7635 	return -1;
7636 }
7637 
7638 
7639 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7640 {
7641 	s64 sval = (s64)val;
7642 
7643 	switch (opcode) {
7644 	case BPF_JEQ:
7645 		if (tnum_is_const(reg->var_off))
7646 			return !!tnum_equals_const(reg->var_off, val);
7647 		break;
7648 	case BPF_JNE:
7649 		if (tnum_is_const(reg->var_off))
7650 			return !tnum_equals_const(reg->var_off, val);
7651 		break;
7652 	case BPF_JSET:
7653 		if ((~reg->var_off.mask & reg->var_off.value) & val)
7654 			return 1;
7655 		if (!((reg->var_off.mask | reg->var_off.value) & val))
7656 			return 0;
7657 		break;
7658 	case BPF_JGT:
7659 		if (reg->umin_value > val)
7660 			return 1;
7661 		else if (reg->umax_value <= val)
7662 			return 0;
7663 		break;
7664 	case BPF_JSGT:
7665 		if (reg->smin_value > sval)
7666 			return 1;
7667 		else if (reg->smax_value <= sval)
7668 			return 0;
7669 		break;
7670 	case BPF_JLT:
7671 		if (reg->umax_value < val)
7672 			return 1;
7673 		else if (reg->umin_value >= val)
7674 			return 0;
7675 		break;
7676 	case BPF_JSLT:
7677 		if (reg->smax_value < sval)
7678 			return 1;
7679 		else if (reg->smin_value >= sval)
7680 			return 0;
7681 		break;
7682 	case BPF_JGE:
7683 		if (reg->umin_value >= val)
7684 			return 1;
7685 		else if (reg->umax_value < val)
7686 			return 0;
7687 		break;
7688 	case BPF_JSGE:
7689 		if (reg->smin_value >= sval)
7690 			return 1;
7691 		else if (reg->smax_value < sval)
7692 			return 0;
7693 		break;
7694 	case BPF_JLE:
7695 		if (reg->umax_value <= val)
7696 			return 1;
7697 		else if (reg->umin_value > val)
7698 			return 0;
7699 		break;
7700 	case BPF_JSLE:
7701 		if (reg->smax_value <= sval)
7702 			return 1;
7703 		else if (reg->smin_value > sval)
7704 			return 0;
7705 		break;
7706 	}
7707 
7708 	return -1;
7709 }
7710 
7711 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7712  * and return:
7713  *  1 - branch will be taken and "goto target" will be executed
7714  *  0 - branch will not be taken and fall-through to next insn
7715  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7716  *      range [0,10]
7717  */
7718 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7719 			   bool is_jmp32)
7720 {
7721 	if (__is_pointer_value(false, reg)) {
7722 		if (!reg_type_not_null(reg->type))
7723 			return -1;
7724 
7725 		/* If pointer is valid tests against zero will fail so we can
7726 		 * use this to direct branch taken.
7727 		 */
7728 		if (val != 0)
7729 			return -1;
7730 
7731 		switch (opcode) {
7732 		case BPF_JEQ:
7733 			return 0;
7734 		case BPF_JNE:
7735 			return 1;
7736 		default:
7737 			return -1;
7738 		}
7739 	}
7740 
7741 	if (is_jmp32)
7742 		return is_branch32_taken(reg, val, opcode);
7743 	return is_branch64_taken(reg, val, opcode);
7744 }
7745 
7746 static int flip_opcode(u32 opcode)
7747 {
7748 	/* How can we transform "a <op> b" into "b <op> a"? */
7749 	static const u8 opcode_flip[16] = {
7750 		/* these stay the same */
7751 		[BPF_JEQ  >> 4] = BPF_JEQ,
7752 		[BPF_JNE  >> 4] = BPF_JNE,
7753 		[BPF_JSET >> 4] = BPF_JSET,
7754 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7755 		[BPF_JGE  >> 4] = BPF_JLE,
7756 		[BPF_JGT  >> 4] = BPF_JLT,
7757 		[BPF_JLE  >> 4] = BPF_JGE,
7758 		[BPF_JLT  >> 4] = BPF_JGT,
7759 		[BPF_JSGE >> 4] = BPF_JSLE,
7760 		[BPF_JSGT >> 4] = BPF_JSLT,
7761 		[BPF_JSLE >> 4] = BPF_JSGE,
7762 		[BPF_JSLT >> 4] = BPF_JSGT
7763 	};
7764 	return opcode_flip[opcode >> 4];
7765 }
7766 
7767 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7768 				   struct bpf_reg_state *src_reg,
7769 				   u8 opcode)
7770 {
7771 	struct bpf_reg_state *pkt;
7772 
7773 	if (src_reg->type == PTR_TO_PACKET_END) {
7774 		pkt = dst_reg;
7775 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7776 		pkt = src_reg;
7777 		opcode = flip_opcode(opcode);
7778 	} else {
7779 		return -1;
7780 	}
7781 
7782 	if (pkt->range >= 0)
7783 		return -1;
7784 
7785 	switch (opcode) {
7786 	case BPF_JLE:
7787 		/* pkt <= pkt_end */
7788 		fallthrough;
7789 	case BPF_JGT:
7790 		/* pkt > pkt_end */
7791 		if (pkt->range == BEYOND_PKT_END)
7792 			/* pkt has at last one extra byte beyond pkt_end */
7793 			return opcode == BPF_JGT;
7794 		break;
7795 	case BPF_JLT:
7796 		/* pkt < pkt_end */
7797 		fallthrough;
7798 	case BPF_JGE:
7799 		/* pkt >= pkt_end */
7800 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7801 			return opcode == BPF_JGE;
7802 		break;
7803 	}
7804 	return -1;
7805 }
7806 
7807 /* Adjusts the register min/max values in the case that the dst_reg is the
7808  * variable register that we are working on, and src_reg is a constant or we're
7809  * simply doing a BPF_K check.
7810  * In JEQ/JNE cases we also adjust the var_off values.
7811  */
7812 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7813 			    struct bpf_reg_state *false_reg,
7814 			    u64 val, u32 val32,
7815 			    u8 opcode, bool is_jmp32)
7816 {
7817 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7818 	struct tnum false_64off = false_reg->var_off;
7819 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7820 	struct tnum true_64off = true_reg->var_off;
7821 	s64 sval = (s64)val;
7822 	s32 sval32 = (s32)val32;
7823 
7824 	/* If the dst_reg is a pointer, we can't learn anything about its
7825 	 * variable offset from the compare (unless src_reg were a pointer into
7826 	 * the same object, but we don't bother with that.
7827 	 * Since false_reg and true_reg have the same type by construction, we
7828 	 * only need to check one of them for pointerness.
7829 	 */
7830 	if (__is_pointer_value(false, false_reg))
7831 		return;
7832 
7833 	switch (opcode) {
7834 	case BPF_JEQ:
7835 	case BPF_JNE:
7836 	{
7837 		struct bpf_reg_state *reg =
7838 			opcode == BPF_JEQ ? true_reg : false_reg;
7839 
7840 		/* JEQ/JNE comparison doesn't change the register equivalence.
7841 		 * r1 = r2;
7842 		 * if (r1 == 42) goto label;
7843 		 * ...
7844 		 * label: // here both r1 and r2 are known to be 42.
7845 		 *
7846 		 * Hence when marking register as known preserve it's ID.
7847 		 */
7848 		if (is_jmp32)
7849 			__mark_reg32_known(reg, val32);
7850 		else
7851 			___mark_reg_known(reg, val);
7852 		break;
7853 	}
7854 	case BPF_JSET:
7855 		if (is_jmp32) {
7856 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7857 			if (is_power_of_2(val32))
7858 				true_32off = tnum_or(true_32off,
7859 						     tnum_const(val32));
7860 		} else {
7861 			false_64off = tnum_and(false_64off, tnum_const(~val));
7862 			if (is_power_of_2(val))
7863 				true_64off = tnum_or(true_64off,
7864 						     tnum_const(val));
7865 		}
7866 		break;
7867 	case BPF_JGE:
7868 	case BPF_JGT:
7869 	{
7870 		if (is_jmp32) {
7871 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7872 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7873 
7874 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7875 						       false_umax);
7876 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7877 						      true_umin);
7878 		} else {
7879 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7880 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7881 
7882 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7883 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7884 		}
7885 		break;
7886 	}
7887 	case BPF_JSGE:
7888 	case BPF_JSGT:
7889 	{
7890 		if (is_jmp32) {
7891 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7892 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7893 
7894 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7895 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7896 		} else {
7897 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7898 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7899 
7900 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7901 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7902 		}
7903 		break;
7904 	}
7905 	case BPF_JLE:
7906 	case BPF_JLT:
7907 	{
7908 		if (is_jmp32) {
7909 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7910 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7911 
7912 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7913 						       false_umin);
7914 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7915 						      true_umax);
7916 		} else {
7917 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7918 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7919 
7920 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7921 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7922 		}
7923 		break;
7924 	}
7925 	case BPF_JSLE:
7926 	case BPF_JSLT:
7927 	{
7928 		if (is_jmp32) {
7929 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7930 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7931 
7932 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7933 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7934 		} else {
7935 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7936 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7937 
7938 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7939 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7940 		}
7941 		break;
7942 	}
7943 	default:
7944 		return;
7945 	}
7946 
7947 	if (is_jmp32) {
7948 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7949 					     tnum_subreg(false_32off));
7950 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7951 					    tnum_subreg(true_32off));
7952 		__reg_combine_32_into_64(false_reg);
7953 		__reg_combine_32_into_64(true_reg);
7954 	} else {
7955 		false_reg->var_off = false_64off;
7956 		true_reg->var_off = true_64off;
7957 		__reg_combine_64_into_32(false_reg);
7958 		__reg_combine_64_into_32(true_reg);
7959 	}
7960 }
7961 
7962 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7963  * the variable reg.
7964  */
7965 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7966 				struct bpf_reg_state *false_reg,
7967 				u64 val, u32 val32,
7968 				u8 opcode, bool is_jmp32)
7969 {
7970 	opcode = flip_opcode(opcode);
7971 	/* This uses zero as "not present in table"; luckily the zero opcode,
7972 	 * BPF_JA, can't get here.
7973 	 */
7974 	if (opcode)
7975 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7976 }
7977 
7978 /* Regs are known to be equal, so intersect their min/max/var_off */
7979 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7980 				  struct bpf_reg_state *dst_reg)
7981 {
7982 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7983 							dst_reg->umin_value);
7984 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7985 							dst_reg->umax_value);
7986 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7987 							dst_reg->smin_value);
7988 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7989 							dst_reg->smax_value);
7990 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7991 							     dst_reg->var_off);
7992 	/* We might have learned new bounds from the var_off. */
7993 	__update_reg_bounds(src_reg);
7994 	__update_reg_bounds(dst_reg);
7995 	/* We might have learned something about the sign bit. */
7996 	__reg_deduce_bounds(src_reg);
7997 	__reg_deduce_bounds(dst_reg);
7998 	/* We might have learned some bits from the bounds. */
7999 	__reg_bound_offset(src_reg);
8000 	__reg_bound_offset(dst_reg);
8001 	/* Intersecting with the old var_off might have improved our bounds
8002 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8003 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
8004 	 */
8005 	__update_reg_bounds(src_reg);
8006 	__update_reg_bounds(dst_reg);
8007 }
8008 
8009 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8010 				struct bpf_reg_state *true_dst,
8011 				struct bpf_reg_state *false_src,
8012 				struct bpf_reg_state *false_dst,
8013 				u8 opcode)
8014 {
8015 	switch (opcode) {
8016 	case BPF_JEQ:
8017 		__reg_combine_min_max(true_src, true_dst);
8018 		break;
8019 	case BPF_JNE:
8020 		__reg_combine_min_max(false_src, false_dst);
8021 		break;
8022 	}
8023 }
8024 
8025 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8026 				 struct bpf_reg_state *reg, u32 id,
8027 				 bool is_null)
8028 {
8029 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
8030 	    !WARN_ON_ONCE(!reg->id)) {
8031 		/* Old offset (both fixed and variable parts) should
8032 		 * have been known-zero, because we don't allow pointer
8033 		 * arithmetic on pointers that might be NULL.
8034 		 */
8035 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8036 				 !tnum_equals_const(reg->var_off, 0) ||
8037 				 reg->off)) {
8038 			__mark_reg_known_zero(reg);
8039 			reg->off = 0;
8040 		}
8041 		if (is_null) {
8042 			reg->type = SCALAR_VALUE;
8043 			/* We don't need id and ref_obj_id from this point
8044 			 * onwards anymore, thus we should better reset it,
8045 			 * so that state pruning has chances to take effect.
8046 			 */
8047 			reg->id = 0;
8048 			reg->ref_obj_id = 0;
8049 
8050 			return;
8051 		}
8052 
8053 		mark_ptr_not_null_reg(reg);
8054 
8055 		if (!reg_may_point_to_spin_lock(reg)) {
8056 			/* For not-NULL ptr, reg->ref_obj_id will be reset
8057 			 * in release_reg_references().
8058 			 *
8059 			 * reg->id is still used by spin_lock ptr. Other
8060 			 * than spin_lock ptr type, reg->id can be reset.
8061 			 */
8062 			reg->id = 0;
8063 		}
8064 	}
8065 }
8066 
8067 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8068 				    bool is_null)
8069 {
8070 	struct bpf_reg_state *reg;
8071 	int i;
8072 
8073 	for (i = 0; i < MAX_BPF_REG; i++)
8074 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8075 
8076 	bpf_for_each_spilled_reg(i, state, reg) {
8077 		if (!reg)
8078 			continue;
8079 		mark_ptr_or_null_reg(state, reg, id, is_null);
8080 	}
8081 }
8082 
8083 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8084  * be folded together at some point.
8085  */
8086 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8087 				  bool is_null)
8088 {
8089 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8090 	struct bpf_reg_state *regs = state->regs;
8091 	u32 ref_obj_id = regs[regno].ref_obj_id;
8092 	u32 id = regs[regno].id;
8093 	int i;
8094 
8095 	if (ref_obj_id && ref_obj_id == id && is_null)
8096 		/* regs[regno] is in the " == NULL" branch.
8097 		 * No one could have freed the reference state before
8098 		 * doing the NULL check.
8099 		 */
8100 		WARN_ON_ONCE(release_reference_state(state, id));
8101 
8102 	for (i = 0; i <= vstate->curframe; i++)
8103 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8104 }
8105 
8106 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8107 				   struct bpf_reg_state *dst_reg,
8108 				   struct bpf_reg_state *src_reg,
8109 				   struct bpf_verifier_state *this_branch,
8110 				   struct bpf_verifier_state *other_branch)
8111 {
8112 	if (BPF_SRC(insn->code) != BPF_X)
8113 		return false;
8114 
8115 	/* Pointers are always 64-bit. */
8116 	if (BPF_CLASS(insn->code) == BPF_JMP32)
8117 		return false;
8118 
8119 	switch (BPF_OP(insn->code)) {
8120 	case BPF_JGT:
8121 		if ((dst_reg->type == PTR_TO_PACKET &&
8122 		     src_reg->type == PTR_TO_PACKET_END) ||
8123 		    (dst_reg->type == PTR_TO_PACKET_META &&
8124 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8125 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8126 			find_good_pkt_pointers(this_branch, dst_reg,
8127 					       dst_reg->type, false);
8128 			mark_pkt_end(other_branch, insn->dst_reg, true);
8129 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8130 			    src_reg->type == PTR_TO_PACKET) ||
8131 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8132 			    src_reg->type == PTR_TO_PACKET_META)) {
8133 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
8134 			find_good_pkt_pointers(other_branch, src_reg,
8135 					       src_reg->type, true);
8136 			mark_pkt_end(this_branch, insn->src_reg, false);
8137 		} else {
8138 			return false;
8139 		}
8140 		break;
8141 	case BPF_JLT:
8142 		if ((dst_reg->type == PTR_TO_PACKET &&
8143 		     src_reg->type == PTR_TO_PACKET_END) ||
8144 		    (dst_reg->type == PTR_TO_PACKET_META &&
8145 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8146 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8147 			find_good_pkt_pointers(other_branch, dst_reg,
8148 					       dst_reg->type, true);
8149 			mark_pkt_end(this_branch, insn->dst_reg, false);
8150 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8151 			    src_reg->type == PTR_TO_PACKET) ||
8152 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8153 			    src_reg->type == PTR_TO_PACKET_META)) {
8154 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
8155 			find_good_pkt_pointers(this_branch, src_reg,
8156 					       src_reg->type, false);
8157 			mark_pkt_end(other_branch, insn->src_reg, true);
8158 		} else {
8159 			return false;
8160 		}
8161 		break;
8162 	case BPF_JGE:
8163 		if ((dst_reg->type == PTR_TO_PACKET &&
8164 		     src_reg->type == PTR_TO_PACKET_END) ||
8165 		    (dst_reg->type == PTR_TO_PACKET_META &&
8166 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8167 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8168 			find_good_pkt_pointers(this_branch, dst_reg,
8169 					       dst_reg->type, true);
8170 			mark_pkt_end(other_branch, insn->dst_reg, false);
8171 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8172 			    src_reg->type == PTR_TO_PACKET) ||
8173 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8174 			    src_reg->type == PTR_TO_PACKET_META)) {
8175 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8176 			find_good_pkt_pointers(other_branch, src_reg,
8177 					       src_reg->type, false);
8178 			mark_pkt_end(this_branch, insn->src_reg, true);
8179 		} else {
8180 			return false;
8181 		}
8182 		break;
8183 	case BPF_JLE:
8184 		if ((dst_reg->type == PTR_TO_PACKET &&
8185 		     src_reg->type == PTR_TO_PACKET_END) ||
8186 		    (dst_reg->type == PTR_TO_PACKET_META &&
8187 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8188 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8189 			find_good_pkt_pointers(other_branch, dst_reg,
8190 					       dst_reg->type, false);
8191 			mark_pkt_end(this_branch, insn->dst_reg, true);
8192 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
8193 			    src_reg->type == PTR_TO_PACKET) ||
8194 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8195 			    src_reg->type == PTR_TO_PACKET_META)) {
8196 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8197 			find_good_pkt_pointers(this_branch, src_reg,
8198 					       src_reg->type, true);
8199 			mark_pkt_end(other_branch, insn->src_reg, false);
8200 		} else {
8201 			return false;
8202 		}
8203 		break;
8204 	default:
8205 		return false;
8206 	}
8207 
8208 	return true;
8209 }
8210 
8211 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8212 			       struct bpf_reg_state *known_reg)
8213 {
8214 	struct bpf_func_state *state;
8215 	struct bpf_reg_state *reg;
8216 	int i, j;
8217 
8218 	for (i = 0; i <= vstate->curframe; i++) {
8219 		state = vstate->frame[i];
8220 		for (j = 0; j < MAX_BPF_REG; j++) {
8221 			reg = &state->regs[j];
8222 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8223 				*reg = *known_reg;
8224 		}
8225 
8226 		bpf_for_each_spilled_reg(j, state, reg) {
8227 			if (!reg)
8228 				continue;
8229 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8230 				*reg = *known_reg;
8231 		}
8232 	}
8233 }
8234 
8235 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8236 			     struct bpf_insn *insn, int *insn_idx)
8237 {
8238 	struct bpf_verifier_state *this_branch = env->cur_state;
8239 	struct bpf_verifier_state *other_branch;
8240 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8241 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8242 	u8 opcode = BPF_OP(insn->code);
8243 	bool is_jmp32;
8244 	int pred = -1;
8245 	int err;
8246 
8247 	/* Only conditional jumps are expected to reach here. */
8248 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
8249 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8250 		return -EINVAL;
8251 	}
8252 
8253 	if (BPF_SRC(insn->code) == BPF_X) {
8254 		if (insn->imm != 0) {
8255 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8256 			return -EINVAL;
8257 		}
8258 
8259 		/* check src1 operand */
8260 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8261 		if (err)
8262 			return err;
8263 
8264 		if (is_pointer_value(env, insn->src_reg)) {
8265 			verbose(env, "R%d pointer comparison prohibited\n",
8266 				insn->src_reg);
8267 			return -EACCES;
8268 		}
8269 		src_reg = &regs[insn->src_reg];
8270 	} else {
8271 		if (insn->src_reg != BPF_REG_0) {
8272 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8273 			return -EINVAL;
8274 		}
8275 	}
8276 
8277 	/* check src2 operand */
8278 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8279 	if (err)
8280 		return err;
8281 
8282 	dst_reg = &regs[insn->dst_reg];
8283 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8284 
8285 	if (BPF_SRC(insn->code) == BPF_K) {
8286 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8287 	} else if (src_reg->type == SCALAR_VALUE &&
8288 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8289 		pred = is_branch_taken(dst_reg,
8290 				       tnum_subreg(src_reg->var_off).value,
8291 				       opcode,
8292 				       is_jmp32);
8293 	} else if (src_reg->type == SCALAR_VALUE &&
8294 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8295 		pred = is_branch_taken(dst_reg,
8296 				       src_reg->var_off.value,
8297 				       opcode,
8298 				       is_jmp32);
8299 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
8300 		   reg_is_pkt_pointer_any(src_reg) &&
8301 		   !is_jmp32) {
8302 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8303 	}
8304 
8305 	if (pred >= 0) {
8306 		/* If we get here with a dst_reg pointer type it is because
8307 		 * above is_branch_taken() special cased the 0 comparison.
8308 		 */
8309 		if (!__is_pointer_value(false, dst_reg))
8310 			err = mark_chain_precision(env, insn->dst_reg);
8311 		if (BPF_SRC(insn->code) == BPF_X && !err &&
8312 		    !__is_pointer_value(false, src_reg))
8313 			err = mark_chain_precision(env, insn->src_reg);
8314 		if (err)
8315 			return err;
8316 	}
8317 	if (pred == 1) {
8318 		/* only follow the goto, ignore fall-through */
8319 		*insn_idx += insn->off;
8320 		return 0;
8321 	} else if (pred == 0) {
8322 		/* only follow fall-through branch, since
8323 		 * that's where the program will go
8324 		 */
8325 		return 0;
8326 	}
8327 
8328 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8329 				  false);
8330 	if (!other_branch)
8331 		return -EFAULT;
8332 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8333 
8334 	/* detect if we are comparing against a constant value so we can adjust
8335 	 * our min/max values for our dst register.
8336 	 * this is only legit if both are scalars (or pointers to the same
8337 	 * object, I suppose, but we don't support that right now), because
8338 	 * otherwise the different base pointers mean the offsets aren't
8339 	 * comparable.
8340 	 */
8341 	if (BPF_SRC(insn->code) == BPF_X) {
8342 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8343 
8344 		if (dst_reg->type == SCALAR_VALUE &&
8345 		    src_reg->type == SCALAR_VALUE) {
8346 			if (tnum_is_const(src_reg->var_off) ||
8347 			    (is_jmp32 &&
8348 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
8349 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
8350 						dst_reg,
8351 						src_reg->var_off.value,
8352 						tnum_subreg(src_reg->var_off).value,
8353 						opcode, is_jmp32);
8354 			else if (tnum_is_const(dst_reg->var_off) ||
8355 				 (is_jmp32 &&
8356 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
8357 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8358 						    src_reg,
8359 						    dst_reg->var_off.value,
8360 						    tnum_subreg(dst_reg->var_off).value,
8361 						    opcode, is_jmp32);
8362 			else if (!is_jmp32 &&
8363 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
8364 				/* Comparing for equality, we can combine knowledge */
8365 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
8366 						    &other_branch_regs[insn->dst_reg],
8367 						    src_reg, dst_reg, opcode);
8368 			if (src_reg->id &&
8369 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8370 				find_equal_scalars(this_branch, src_reg);
8371 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8372 			}
8373 
8374 		}
8375 	} else if (dst_reg->type == SCALAR_VALUE) {
8376 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
8377 					dst_reg, insn->imm, (u32)insn->imm,
8378 					opcode, is_jmp32);
8379 	}
8380 
8381 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8382 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8383 		find_equal_scalars(this_branch, dst_reg);
8384 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8385 	}
8386 
8387 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8388 	 * NOTE: these optimizations below are related with pointer comparison
8389 	 *       which will never be JMP32.
8390 	 */
8391 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8392 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8393 	    reg_type_may_be_null(dst_reg->type)) {
8394 		/* Mark all identical registers in each branch as either
8395 		 * safe or unknown depending R == 0 or R != 0 conditional.
8396 		 */
8397 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8398 				      opcode == BPF_JNE);
8399 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8400 				      opcode == BPF_JEQ);
8401 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8402 					   this_branch, other_branch) &&
8403 		   is_pointer_value(env, insn->dst_reg)) {
8404 		verbose(env, "R%d pointer comparison prohibited\n",
8405 			insn->dst_reg);
8406 		return -EACCES;
8407 	}
8408 	if (env->log.level & BPF_LOG_LEVEL)
8409 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8410 	return 0;
8411 }
8412 
8413 /* verify BPF_LD_IMM64 instruction */
8414 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8415 {
8416 	struct bpf_insn_aux_data *aux = cur_aux(env);
8417 	struct bpf_reg_state *regs = cur_regs(env);
8418 	struct bpf_reg_state *dst_reg;
8419 	struct bpf_map *map;
8420 	int err;
8421 
8422 	if (BPF_SIZE(insn->code) != BPF_DW) {
8423 		verbose(env, "invalid BPF_LD_IMM insn\n");
8424 		return -EINVAL;
8425 	}
8426 	if (insn->off != 0) {
8427 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8428 		return -EINVAL;
8429 	}
8430 
8431 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
8432 	if (err)
8433 		return err;
8434 
8435 	dst_reg = &regs[insn->dst_reg];
8436 	if (insn->src_reg == 0) {
8437 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8438 
8439 		dst_reg->type = SCALAR_VALUE;
8440 		__mark_reg_known(&regs[insn->dst_reg], imm);
8441 		return 0;
8442 	}
8443 
8444 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8445 		mark_reg_known_zero(env, regs, insn->dst_reg);
8446 
8447 		dst_reg->type = aux->btf_var.reg_type;
8448 		switch (dst_reg->type) {
8449 		case PTR_TO_MEM:
8450 			dst_reg->mem_size = aux->btf_var.mem_size;
8451 			break;
8452 		case PTR_TO_BTF_ID:
8453 		case PTR_TO_PERCPU_BTF_ID:
8454 			dst_reg->btf = aux->btf_var.btf;
8455 			dst_reg->btf_id = aux->btf_var.btf_id;
8456 			break;
8457 		default:
8458 			verbose(env, "bpf verifier is misconfigured\n");
8459 			return -EFAULT;
8460 		}
8461 		return 0;
8462 	}
8463 
8464 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
8465 		struct bpf_prog_aux *aux = env->prog->aux;
8466 		u32 subprogno = insn[1].imm;
8467 
8468 		if (!aux->func_info) {
8469 			verbose(env, "missing btf func_info\n");
8470 			return -EINVAL;
8471 		}
8472 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8473 			verbose(env, "callback function not static\n");
8474 			return -EINVAL;
8475 		}
8476 
8477 		dst_reg->type = PTR_TO_FUNC;
8478 		dst_reg->subprogno = subprogno;
8479 		return 0;
8480 	}
8481 
8482 	map = env->used_maps[aux->map_index];
8483 	mark_reg_known_zero(env, regs, insn->dst_reg);
8484 	dst_reg->map_ptr = map;
8485 
8486 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8487 		dst_reg->type = PTR_TO_MAP_VALUE;
8488 		dst_reg->off = aux->map_off;
8489 		if (map_value_has_spin_lock(map))
8490 			dst_reg->id = ++env->id_gen;
8491 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8492 		dst_reg->type = CONST_PTR_TO_MAP;
8493 	} else {
8494 		verbose(env, "bpf verifier is misconfigured\n");
8495 		return -EINVAL;
8496 	}
8497 
8498 	return 0;
8499 }
8500 
8501 static bool may_access_skb(enum bpf_prog_type type)
8502 {
8503 	switch (type) {
8504 	case BPF_PROG_TYPE_SOCKET_FILTER:
8505 	case BPF_PROG_TYPE_SCHED_CLS:
8506 	case BPF_PROG_TYPE_SCHED_ACT:
8507 		return true;
8508 	default:
8509 		return false;
8510 	}
8511 }
8512 
8513 /* verify safety of LD_ABS|LD_IND instructions:
8514  * - they can only appear in the programs where ctx == skb
8515  * - since they are wrappers of function calls, they scratch R1-R5 registers,
8516  *   preserve R6-R9, and store return value into R0
8517  *
8518  * Implicit input:
8519  *   ctx == skb == R6 == CTX
8520  *
8521  * Explicit input:
8522  *   SRC == any register
8523  *   IMM == 32-bit immediate
8524  *
8525  * Output:
8526  *   R0 - 8/16/32-bit skb data converted to cpu endianness
8527  */
8528 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8529 {
8530 	struct bpf_reg_state *regs = cur_regs(env);
8531 	static const int ctx_reg = BPF_REG_6;
8532 	u8 mode = BPF_MODE(insn->code);
8533 	int i, err;
8534 
8535 	if (!may_access_skb(resolve_prog_type(env->prog))) {
8536 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8537 		return -EINVAL;
8538 	}
8539 
8540 	if (!env->ops->gen_ld_abs) {
8541 		verbose(env, "bpf verifier is misconfigured\n");
8542 		return -EINVAL;
8543 	}
8544 
8545 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8546 	    BPF_SIZE(insn->code) == BPF_DW ||
8547 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8548 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8549 		return -EINVAL;
8550 	}
8551 
8552 	/* check whether implicit source operand (register R6) is readable */
8553 	err = check_reg_arg(env, ctx_reg, SRC_OP);
8554 	if (err)
8555 		return err;
8556 
8557 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8558 	 * gen_ld_abs() may terminate the program at runtime, leading to
8559 	 * reference leak.
8560 	 */
8561 	err = check_reference_leak(env);
8562 	if (err) {
8563 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8564 		return err;
8565 	}
8566 
8567 	if (env->cur_state->active_spin_lock) {
8568 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8569 		return -EINVAL;
8570 	}
8571 
8572 	if (regs[ctx_reg].type != PTR_TO_CTX) {
8573 		verbose(env,
8574 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8575 		return -EINVAL;
8576 	}
8577 
8578 	if (mode == BPF_IND) {
8579 		/* check explicit source operand */
8580 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
8581 		if (err)
8582 			return err;
8583 	}
8584 
8585 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8586 	if (err < 0)
8587 		return err;
8588 
8589 	/* reset caller saved regs to unreadable */
8590 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8591 		mark_reg_not_init(env, regs, caller_saved[i]);
8592 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8593 	}
8594 
8595 	/* mark destination R0 register as readable, since it contains
8596 	 * the value fetched from the packet.
8597 	 * Already marked as written above.
8598 	 */
8599 	mark_reg_unknown(env, regs, BPF_REG_0);
8600 	/* ld_abs load up to 32-bit skb data. */
8601 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8602 	return 0;
8603 }
8604 
8605 static int check_return_code(struct bpf_verifier_env *env)
8606 {
8607 	struct tnum enforce_attach_type_range = tnum_unknown;
8608 	const struct bpf_prog *prog = env->prog;
8609 	struct bpf_reg_state *reg;
8610 	struct tnum range = tnum_range(0, 1);
8611 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8612 	int err;
8613 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
8614 
8615 	/* LSM and struct_ops func-ptr's return type could be "void" */
8616 	if (!is_subprog &&
8617 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8618 	     prog_type == BPF_PROG_TYPE_LSM) &&
8619 	    !prog->aux->attach_func_proto->type)
8620 		return 0;
8621 
8622 	/* eBPF calling convetion is such that R0 is used
8623 	 * to return the value from eBPF program.
8624 	 * Make sure that it's readable at this time
8625 	 * of bpf_exit, which means that program wrote
8626 	 * something into it earlier
8627 	 */
8628 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8629 	if (err)
8630 		return err;
8631 
8632 	if (is_pointer_value(env, BPF_REG_0)) {
8633 		verbose(env, "R0 leaks addr as return value\n");
8634 		return -EACCES;
8635 	}
8636 
8637 	reg = cur_regs(env) + BPF_REG_0;
8638 	if (is_subprog) {
8639 		if (reg->type != SCALAR_VALUE) {
8640 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8641 				reg_type_str[reg->type]);
8642 			return -EINVAL;
8643 		}
8644 		return 0;
8645 	}
8646 
8647 	switch (prog_type) {
8648 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8649 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8650 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8651 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8652 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8653 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8654 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8655 			range = tnum_range(1, 1);
8656 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
8657 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
8658 			range = tnum_range(0, 3);
8659 		break;
8660 	case BPF_PROG_TYPE_CGROUP_SKB:
8661 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8662 			range = tnum_range(0, 3);
8663 			enforce_attach_type_range = tnum_range(2, 3);
8664 		}
8665 		break;
8666 	case BPF_PROG_TYPE_CGROUP_SOCK:
8667 	case BPF_PROG_TYPE_SOCK_OPS:
8668 	case BPF_PROG_TYPE_CGROUP_DEVICE:
8669 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
8670 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8671 		break;
8672 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8673 		if (!env->prog->aux->attach_btf_id)
8674 			return 0;
8675 		range = tnum_const(0);
8676 		break;
8677 	case BPF_PROG_TYPE_TRACING:
8678 		switch (env->prog->expected_attach_type) {
8679 		case BPF_TRACE_FENTRY:
8680 		case BPF_TRACE_FEXIT:
8681 			range = tnum_const(0);
8682 			break;
8683 		case BPF_TRACE_RAW_TP:
8684 		case BPF_MODIFY_RETURN:
8685 			return 0;
8686 		case BPF_TRACE_ITER:
8687 			break;
8688 		default:
8689 			return -ENOTSUPP;
8690 		}
8691 		break;
8692 	case BPF_PROG_TYPE_SK_LOOKUP:
8693 		range = tnum_range(SK_DROP, SK_PASS);
8694 		break;
8695 	case BPF_PROG_TYPE_EXT:
8696 		/* freplace program can return anything as its return value
8697 		 * depends on the to-be-replaced kernel func or bpf program.
8698 		 */
8699 	default:
8700 		return 0;
8701 	}
8702 
8703 	if (reg->type != SCALAR_VALUE) {
8704 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8705 			reg_type_str[reg->type]);
8706 		return -EINVAL;
8707 	}
8708 
8709 	if (!tnum_in(range, reg->var_off)) {
8710 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
8711 		return -EINVAL;
8712 	}
8713 
8714 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8715 	    tnum_in(enforce_attach_type_range, reg->var_off))
8716 		env->prog->enforce_expected_attach_type = 1;
8717 	return 0;
8718 }
8719 
8720 /* non-recursive DFS pseudo code
8721  * 1  procedure DFS-iterative(G,v):
8722  * 2      label v as discovered
8723  * 3      let S be a stack
8724  * 4      S.push(v)
8725  * 5      while S is not empty
8726  * 6            t <- S.pop()
8727  * 7            if t is what we're looking for:
8728  * 8                return t
8729  * 9            for all edges e in G.adjacentEdges(t) do
8730  * 10               if edge e is already labelled
8731  * 11                   continue with the next edge
8732  * 12               w <- G.adjacentVertex(t,e)
8733  * 13               if vertex w is not discovered and not explored
8734  * 14                   label e as tree-edge
8735  * 15                   label w as discovered
8736  * 16                   S.push(w)
8737  * 17                   continue at 5
8738  * 18               else if vertex w is discovered
8739  * 19                   label e as back-edge
8740  * 20               else
8741  * 21                   // vertex w is explored
8742  * 22                   label e as forward- or cross-edge
8743  * 23           label t as explored
8744  * 24           S.pop()
8745  *
8746  * convention:
8747  * 0x10 - discovered
8748  * 0x11 - discovered and fall-through edge labelled
8749  * 0x12 - discovered and fall-through and branch edges labelled
8750  * 0x20 - explored
8751  */
8752 
8753 enum {
8754 	DISCOVERED = 0x10,
8755 	EXPLORED = 0x20,
8756 	FALLTHROUGH = 1,
8757 	BRANCH = 2,
8758 };
8759 
8760 static u32 state_htab_size(struct bpf_verifier_env *env)
8761 {
8762 	return env->prog->len;
8763 }
8764 
8765 static struct bpf_verifier_state_list **explored_state(
8766 					struct bpf_verifier_env *env,
8767 					int idx)
8768 {
8769 	struct bpf_verifier_state *cur = env->cur_state;
8770 	struct bpf_func_state *state = cur->frame[cur->curframe];
8771 
8772 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8773 }
8774 
8775 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8776 {
8777 	env->insn_aux_data[idx].prune_point = true;
8778 }
8779 
8780 enum {
8781 	DONE_EXPLORING = 0,
8782 	KEEP_EXPLORING = 1,
8783 };
8784 
8785 /* t, w, e - match pseudo-code above:
8786  * t - index of current instruction
8787  * w - next instruction
8788  * e - edge
8789  */
8790 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8791 		     bool loop_ok)
8792 {
8793 	int *insn_stack = env->cfg.insn_stack;
8794 	int *insn_state = env->cfg.insn_state;
8795 
8796 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8797 		return DONE_EXPLORING;
8798 
8799 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8800 		return DONE_EXPLORING;
8801 
8802 	if (w < 0 || w >= env->prog->len) {
8803 		verbose_linfo(env, t, "%d: ", t);
8804 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8805 		return -EINVAL;
8806 	}
8807 
8808 	if (e == BRANCH)
8809 		/* mark branch target for state pruning */
8810 		init_explored_state(env, w);
8811 
8812 	if (insn_state[w] == 0) {
8813 		/* tree-edge */
8814 		insn_state[t] = DISCOVERED | e;
8815 		insn_state[w] = DISCOVERED;
8816 		if (env->cfg.cur_stack >= env->prog->len)
8817 			return -E2BIG;
8818 		insn_stack[env->cfg.cur_stack++] = w;
8819 		return KEEP_EXPLORING;
8820 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8821 		if (loop_ok && env->bpf_capable)
8822 			return DONE_EXPLORING;
8823 		verbose_linfo(env, t, "%d: ", t);
8824 		verbose_linfo(env, w, "%d: ", w);
8825 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8826 		return -EINVAL;
8827 	} else if (insn_state[w] == EXPLORED) {
8828 		/* forward- or cross-edge */
8829 		insn_state[t] = DISCOVERED | e;
8830 	} else {
8831 		verbose(env, "insn state internal bug\n");
8832 		return -EFAULT;
8833 	}
8834 	return DONE_EXPLORING;
8835 }
8836 
8837 static int visit_func_call_insn(int t, int insn_cnt,
8838 				struct bpf_insn *insns,
8839 				struct bpf_verifier_env *env,
8840 				bool visit_callee)
8841 {
8842 	int ret;
8843 
8844 	ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8845 	if (ret)
8846 		return ret;
8847 
8848 	if (t + 1 < insn_cnt)
8849 		init_explored_state(env, t + 1);
8850 	if (visit_callee) {
8851 		init_explored_state(env, t);
8852 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8853 				env, false);
8854 	}
8855 	return ret;
8856 }
8857 
8858 /* Visits the instruction at index t and returns one of the following:
8859  *  < 0 - an error occurred
8860  *  DONE_EXPLORING - the instruction was fully explored
8861  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8862  */
8863 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8864 {
8865 	struct bpf_insn *insns = env->prog->insnsi;
8866 	int ret;
8867 
8868 	if (bpf_pseudo_func(insns + t))
8869 		return visit_func_call_insn(t, insn_cnt, insns, env, true);
8870 
8871 	/* All non-branch instructions have a single fall-through edge. */
8872 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8873 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8874 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8875 
8876 	switch (BPF_OP(insns[t].code)) {
8877 	case BPF_EXIT:
8878 		return DONE_EXPLORING;
8879 
8880 	case BPF_CALL:
8881 		return visit_func_call_insn(t, insn_cnt, insns, env,
8882 					    insns[t].src_reg == BPF_PSEUDO_CALL);
8883 
8884 	case BPF_JA:
8885 		if (BPF_SRC(insns[t].code) != BPF_K)
8886 			return -EINVAL;
8887 
8888 		/* unconditional jump with single edge */
8889 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8890 				true);
8891 		if (ret)
8892 			return ret;
8893 
8894 		/* unconditional jmp is not a good pruning point,
8895 		 * but it's marked, since backtracking needs
8896 		 * to record jmp history in is_state_visited().
8897 		 */
8898 		init_explored_state(env, t + insns[t].off + 1);
8899 		/* tell verifier to check for equivalent states
8900 		 * after every call and jump
8901 		 */
8902 		if (t + 1 < insn_cnt)
8903 			init_explored_state(env, t + 1);
8904 
8905 		return ret;
8906 
8907 	default:
8908 		/* conditional jump with two edges */
8909 		init_explored_state(env, t);
8910 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8911 		if (ret)
8912 			return ret;
8913 
8914 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8915 	}
8916 }
8917 
8918 /* non-recursive depth-first-search to detect loops in BPF program
8919  * loop == back-edge in directed graph
8920  */
8921 static int check_cfg(struct bpf_verifier_env *env)
8922 {
8923 	int insn_cnt = env->prog->len;
8924 	int *insn_stack, *insn_state;
8925 	int ret = 0;
8926 	int i;
8927 
8928 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8929 	if (!insn_state)
8930 		return -ENOMEM;
8931 
8932 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8933 	if (!insn_stack) {
8934 		kvfree(insn_state);
8935 		return -ENOMEM;
8936 	}
8937 
8938 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8939 	insn_stack[0] = 0; /* 0 is the first instruction */
8940 	env->cfg.cur_stack = 1;
8941 
8942 	while (env->cfg.cur_stack > 0) {
8943 		int t = insn_stack[env->cfg.cur_stack - 1];
8944 
8945 		ret = visit_insn(t, insn_cnt, env);
8946 		switch (ret) {
8947 		case DONE_EXPLORING:
8948 			insn_state[t] = EXPLORED;
8949 			env->cfg.cur_stack--;
8950 			break;
8951 		case KEEP_EXPLORING:
8952 			break;
8953 		default:
8954 			if (ret > 0) {
8955 				verbose(env, "visit_insn internal bug\n");
8956 				ret = -EFAULT;
8957 			}
8958 			goto err_free;
8959 		}
8960 	}
8961 
8962 	if (env->cfg.cur_stack < 0) {
8963 		verbose(env, "pop stack internal bug\n");
8964 		ret = -EFAULT;
8965 		goto err_free;
8966 	}
8967 
8968 	for (i = 0; i < insn_cnt; i++) {
8969 		if (insn_state[i] != EXPLORED) {
8970 			verbose(env, "unreachable insn %d\n", i);
8971 			ret = -EINVAL;
8972 			goto err_free;
8973 		}
8974 	}
8975 	ret = 0; /* cfg looks good */
8976 
8977 err_free:
8978 	kvfree(insn_state);
8979 	kvfree(insn_stack);
8980 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8981 	return ret;
8982 }
8983 
8984 static int check_abnormal_return(struct bpf_verifier_env *env)
8985 {
8986 	int i;
8987 
8988 	for (i = 1; i < env->subprog_cnt; i++) {
8989 		if (env->subprog_info[i].has_ld_abs) {
8990 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8991 			return -EINVAL;
8992 		}
8993 		if (env->subprog_info[i].has_tail_call) {
8994 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8995 			return -EINVAL;
8996 		}
8997 	}
8998 	return 0;
8999 }
9000 
9001 /* The minimum supported BTF func info size */
9002 #define MIN_BPF_FUNCINFO_SIZE	8
9003 #define MAX_FUNCINFO_REC_SIZE	252
9004 
9005 static int check_btf_func(struct bpf_verifier_env *env,
9006 			  const union bpf_attr *attr,
9007 			  union bpf_attr __user *uattr)
9008 {
9009 	const struct btf_type *type, *func_proto, *ret_type;
9010 	u32 i, nfuncs, urec_size, min_size;
9011 	u32 krec_size = sizeof(struct bpf_func_info);
9012 	struct bpf_func_info *krecord;
9013 	struct bpf_func_info_aux *info_aux = NULL;
9014 	struct bpf_prog *prog;
9015 	const struct btf *btf;
9016 	void __user *urecord;
9017 	u32 prev_offset = 0;
9018 	bool scalar_return;
9019 	int ret = -ENOMEM;
9020 
9021 	nfuncs = attr->func_info_cnt;
9022 	if (!nfuncs) {
9023 		if (check_abnormal_return(env))
9024 			return -EINVAL;
9025 		return 0;
9026 	}
9027 
9028 	if (nfuncs != env->subprog_cnt) {
9029 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9030 		return -EINVAL;
9031 	}
9032 
9033 	urec_size = attr->func_info_rec_size;
9034 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9035 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
9036 	    urec_size % sizeof(u32)) {
9037 		verbose(env, "invalid func info rec size %u\n", urec_size);
9038 		return -EINVAL;
9039 	}
9040 
9041 	prog = env->prog;
9042 	btf = prog->aux->btf;
9043 
9044 	urecord = u64_to_user_ptr(attr->func_info);
9045 	min_size = min_t(u32, krec_size, urec_size);
9046 
9047 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9048 	if (!krecord)
9049 		return -ENOMEM;
9050 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9051 	if (!info_aux)
9052 		goto err_free;
9053 
9054 	for (i = 0; i < nfuncs; i++) {
9055 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9056 		if (ret) {
9057 			if (ret == -E2BIG) {
9058 				verbose(env, "nonzero tailing record in func info");
9059 				/* set the size kernel expects so loader can zero
9060 				 * out the rest of the record.
9061 				 */
9062 				if (put_user(min_size, &uattr->func_info_rec_size))
9063 					ret = -EFAULT;
9064 			}
9065 			goto err_free;
9066 		}
9067 
9068 		if (copy_from_user(&krecord[i], urecord, min_size)) {
9069 			ret = -EFAULT;
9070 			goto err_free;
9071 		}
9072 
9073 		/* check insn_off */
9074 		ret = -EINVAL;
9075 		if (i == 0) {
9076 			if (krecord[i].insn_off) {
9077 				verbose(env,
9078 					"nonzero insn_off %u for the first func info record",
9079 					krecord[i].insn_off);
9080 				goto err_free;
9081 			}
9082 		} else if (krecord[i].insn_off <= prev_offset) {
9083 			verbose(env,
9084 				"same or smaller insn offset (%u) than previous func info record (%u)",
9085 				krecord[i].insn_off, prev_offset);
9086 			goto err_free;
9087 		}
9088 
9089 		if (env->subprog_info[i].start != krecord[i].insn_off) {
9090 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9091 			goto err_free;
9092 		}
9093 
9094 		/* check type_id */
9095 		type = btf_type_by_id(btf, krecord[i].type_id);
9096 		if (!type || !btf_type_is_func(type)) {
9097 			verbose(env, "invalid type id %d in func info",
9098 				krecord[i].type_id);
9099 			goto err_free;
9100 		}
9101 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9102 
9103 		func_proto = btf_type_by_id(btf, type->type);
9104 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9105 			/* btf_func_check() already verified it during BTF load */
9106 			goto err_free;
9107 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9108 		scalar_return =
9109 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9110 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9111 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9112 			goto err_free;
9113 		}
9114 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9115 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9116 			goto err_free;
9117 		}
9118 
9119 		prev_offset = krecord[i].insn_off;
9120 		urecord += urec_size;
9121 	}
9122 
9123 	prog->aux->func_info = krecord;
9124 	prog->aux->func_info_cnt = nfuncs;
9125 	prog->aux->func_info_aux = info_aux;
9126 	return 0;
9127 
9128 err_free:
9129 	kvfree(krecord);
9130 	kfree(info_aux);
9131 	return ret;
9132 }
9133 
9134 static void adjust_btf_func(struct bpf_verifier_env *env)
9135 {
9136 	struct bpf_prog_aux *aux = env->prog->aux;
9137 	int i;
9138 
9139 	if (!aux->func_info)
9140 		return;
9141 
9142 	for (i = 0; i < env->subprog_cnt; i++)
9143 		aux->func_info[i].insn_off = env->subprog_info[i].start;
9144 }
9145 
9146 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
9147 		sizeof(((struct bpf_line_info *)(0))->line_col))
9148 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
9149 
9150 static int check_btf_line(struct bpf_verifier_env *env,
9151 			  const union bpf_attr *attr,
9152 			  union bpf_attr __user *uattr)
9153 {
9154 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9155 	struct bpf_subprog_info *sub;
9156 	struct bpf_line_info *linfo;
9157 	struct bpf_prog *prog;
9158 	const struct btf *btf;
9159 	void __user *ulinfo;
9160 	int err;
9161 
9162 	nr_linfo = attr->line_info_cnt;
9163 	if (!nr_linfo)
9164 		return 0;
9165 
9166 	rec_size = attr->line_info_rec_size;
9167 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9168 	    rec_size > MAX_LINEINFO_REC_SIZE ||
9169 	    rec_size & (sizeof(u32) - 1))
9170 		return -EINVAL;
9171 
9172 	/* Need to zero it in case the userspace may
9173 	 * pass in a smaller bpf_line_info object.
9174 	 */
9175 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9176 			 GFP_KERNEL | __GFP_NOWARN);
9177 	if (!linfo)
9178 		return -ENOMEM;
9179 
9180 	prog = env->prog;
9181 	btf = prog->aux->btf;
9182 
9183 	s = 0;
9184 	sub = env->subprog_info;
9185 	ulinfo = u64_to_user_ptr(attr->line_info);
9186 	expected_size = sizeof(struct bpf_line_info);
9187 	ncopy = min_t(u32, expected_size, rec_size);
9188 	for (i = 0; i < nr_linfo; i++) {
9189 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9190 		if (err) {
9191 			if (err == -E2BIG) {
9192 				verbose(env, "nonzero tailing record in line_info");
9193 				if (put_user(expected_size,
9194 					     &uattr->line_info_rec_size))
9195 					err = -EFAULT;
9196 			}
9197 			goto err_free;
9198 		}
9199 
9200 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9201 			err = -EFAULT;
9202 			goto err_free;
9203 		}
9204 
9205 		/*
9206 		 * Check insn_off to ensure
9207 		 * 1) strictly increasing AND
9208 		 * 2) bounded by prog->len
9209 		 *
9210 		 * The linfo[0].insn_off == 0 check logically falls into
9211 		 * the later "missing bpf_line_info for func..." case
9212 		 * because the first linfo[0].insn_off must be the
9213 		 * first sub also and the first sub must have
9214 		 * subprog_info[0].start == 0.
9215 		 */
9216 		if ((i && linfo[i].insn_off <= prev_offset) ||
9217 		    linfo[i].insn_off >= prog->len) {
9218 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9219 				i, linfo[i].insn_off, prev_offset,
9220 				prog->len);
9221 			err = -EINVAL;
9222 			goto err_free;
9223 		}
9224 
9225 		if (!prog->insnsi[linfo[i].insn_off].code) {
9226 			verbose(env,
9227 				"Invalid insn code at line_info[%u].insn_off\n",
9228 				i);
9229 			err = -EINVAL;
9230 			goto err_free;
9231 		}
9232 
9233 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9234 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9235 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9236 			err = -EINVAL;
9237 			goto err_free;
9238 		}
9239 
9240 		if (s != env->subprog_cnt) {
9241 			if (linfo[i].insn_off == sub[s].start) {
9242 				sub[s].linfo_idx = i;
9243 				s++;
9244 			} else if (sub[s].start < linfo[i].insn_off) {
9245 				verbose(env, "missing bpf_line_info for func#%u\n", s);
9246 				err = -EINVAL;
9247 				goto err_free;
9248 			}
9249 		}
9250 
9251 		prev_offset = linfo[i].insn_off;
9252 		ulinfo += rec_size;
9253 	}
9254 
9255 	if (s != env->subprog_cnt) {
9256 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9257 			env->subprog_cnt - s, s);
9258 		err = -EINVAL;
9259 		goto err_free;
9260 	}
9261 
9262 	prog->aux->linfo = linfo;
9263 	prog->aux->nr_linfo = nr_linfo;
9264 
9265 	return 0;
9266 
9267 err_free:
9268 	kvfree(linfo);
9269 	return err;
9270 }
9271 
9272 static int check_btf_info(struct bpf_verifier_env *env,
9273 			  const union bpf_attr *attr,
9274 			  union bpf_attr __user *uattr)
9275 {
9276 	struct btf *btf;
9277 	int err;
9278 
9279 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
9280 		if (check_abnormal_return(env))
9281 			return -EINVAL;
9282 		return 0;
9283 	}
9284 
9285 	btf = btf_get_by_fd(attr->prog_btf_fd);
9286 	if (IS_ERR(btf))
9287 		return PTR_ERR(btf);
9288 	if (btf_is_kernel(btf)) {
9289 		btf_put(btf);
9290 		return -EACCES;
9291 	}
9292 	env->prog->aux->btf = btf;
9293 
9294 	err = check_btf_func(env, attr, uattr);
9295 	if (err)
9296 		return err;
9297 
9298 	err = check_btf_line(env, attr, uattr);
9299 	if (err)
9300 		return err;
9301 
9302 	return 0;
9303 }
9304 
9305 /* check %cur's range satisfies %old's */
9306 static bool range_within(struct bpf_reg_state *old,
9307 			 struct bpf_reg_state *cur)
9308 {
9309 	return old->umin_value <= cur->umin_value &&
9310 	       old->umax_value >= cur->umax_value &&
9311 	       old->smin_value <= cur->smin_value &&
9312 	       old->smax_value >= cur->smax_value &&
9313 	       old->u32_min_value <= cur->u32_min_value &&
9314 	       old->u32_max_value >= cur->u32_max_value &&
9315 	       old->s32_min_value <= cur->s32_min_value &&
9316 	       old->s32_max_value >= cur->s32_max_value;
9317 }
9318 
9319 /* Maximum number of register states that can exist at once */
9320 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9321 struct idpair {
9322 	u32 old;
9323 	u32 cur;
9324 };
9325 
9326 /* If in the old state two registers had the same id, then they need to have
9327  * the same id in the new state as well.  But that id could be different from
9328  * the old state, so we need to track the mapping from old to new ids.
9329  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9330  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
9331  * regs with a different old id could still have new id 9, we don't care about
9332  * that.
9333  * So we look through our idmap to see if this old id has been seen before.  If
9334  * so, we require the new id to match; otherwise, we add the id pair to the map.
9335  */
9336 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9337 {
9338 	unsigned int i;
9339 
9340 	for (i = 0; i < ID_MAP_SIZE; i++) {
9341 		if (!idmap[i].old) {
9342 			/* Reached an empty slot; haven't seen this id before */
9343 			idmap[i].old = old_id;
9344 			idmap[i].cur = cur_id;
9345 			return true;
9346 		}
9347 		if (idmap[i].old == old_id)
9348 			return idmap[i].cur == cur_id;
9349 	}
9350 	/* We ran out of idmap slots, which should be impossible */
9351 	WARN_ON_ONCE(1);
9352 	return false;
9353 }
9354 
9355 static void clean_func_state(struct bpf_verifier_env *env,
9356 			     struct bpf_func_state *st)
9357 {
9358 	enum bpf_reg_liveness live;
9359 	int i, j;
9360 
9361 	for (i = 0; i < BPF_REG_FP; i++) {
9362 		live = st->regs[i].live;
9363 		/* liveness must not touch this register anymore */
9364 		st->regs[i].live |= REG_LIVE_DONE;
9365 		if (!(live & REG_LIVE_READ))
9366 			/* since the register is unused, clear its state
9367 			 * to make further comparison simpler
9368 			 */
9369 			__mark_reg_not_init(env, &st->regs[i]);
9370 	}
9371 
9372 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9373 		live = st->stack[i].spilled_ptr.live;
9374 		/* liveness must not touch this stack slot anymore */
9375 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9376 		if (!(live & REG_LIVE_READ)) {
9377 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9378 			for (j = 0; j < BPF_REG_SIZE; j++)
9379 				st->stack[i].slot_type[j] = STACK_INVALID;
9380 		}
9381 	}
9382 }
9383 
9384 static void clean_verifier_state(struct bpf_verifier_env *env,
9385 				 struct bpf_verifier_state *st)
9386 {
9387 	int i;
9388 
9389 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9390 		/* all regs in this state in all frames were already marked */
9391 		return;
9392 
9393 	for (i = 0; i <= st->curframe; i++)
9394 		clean_func_state(env, st->frame[i]);
9395 }
9396 
9397 /* the parentage chains form a tree.
9398  * the verifier states are added to state lists at given insn and
9399  * pushed into state stack for future exploration.
9400  * when the verifier reaches bpf_exit insn some of the verifer states
9401  * stored in the state lists have their final liveness state already,
9402  * but a lot of states will get revised from liveness point of view when
9403  * the verifier explores other branches.
9404  * Example:
9405  * 1: r0 = 1
9406  * 2: if r1 == 100 goto pc+1
9407  * 3: r0 = 2
9408  * 4: exit
9409  * when the verifier reaches exit insn the register r0 in the state list of
9410  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9411  * of insn 2 and goes exploring further. At the insn 4 it will walk the
9412  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9413  *
9414  * Since the verifier pushes the branch states as it sees them while exploring
9415  * the program the condition of walking the branch instruction for the second
9416  * time means that all states below this branch were already explored and
9417  * their final liveness markes are already propagated.
9418  * Hence when the verifier completes the search of state list in is_state_visited()
9419  * we can call this clean_live_states() function to mark all liveness states
9420  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9421  * will not be used.
9422  * This function also clears the registers and stack for states that !READ
9423  * to simplify state merging.
9424  *
9425  * Important note here that walking the same branch instruction in the callee
9426  * doesn't meant that the states are DONE. The verifier has to compare
9427  * the callsites
9428  */
9429 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9430 			      struct bpf_verifier_state *cur)
9431 {
9432 	struct bpf_verifier_state_list *sl;
9433 	int i;
9434 
9435 	sl = *explored_state(env, insn);
9436 	while (sl) {
9437 		if (sl->state.branches)
9438 			goto next;
9439 		if (sl->state.insn_idx != insn ||
9440 		    sl->state.curframe != cur->curframe)
9441 			goto next;
9442 		for (i = 0; i <= cur->curframe; i++)
9443 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9444 				goto next;
9445 		clean_verifier_state(env, &sl->state);
9446 next:
9447 		sl = sl->next;
9448 	}
9449 }
9450 
9451 /* Returns true if (rold safe implies rcur safe) */
9452 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9453 		    struct idpair *idmap)
9454 {
9455 	bool equal;
9456 
9457 	if (!(rold->live & REG_LIVE_READ))
9458 		/* explored state didn't use this */
9459 		return true;
9460 
9461 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9462 
9463 	if (rold->type == PTR_TO_STACK)
9464 		/* two stack pointers are equal only if they're pointing to
9465 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
9466 		 */
9467 		return equal && rold->frameno == rcur->frameno;
9468 
9469 	if (equal)
9470 		return true;
9471 
9472 	if (rold->type == NOT_INIT)
9473 		/* explored state can't have used this */
9474 		return true;
9475 	if (rcur->type == NOT_INIT)
9476 		return false;
9477 	switch (rold->type) {
9478 	case SCALAR_VALUE:
9479 		if (rcur->type == SCALAR_VALUE) {
9480 			if (!rold->precise && !rcur->precise)
9481 				return true;
9482 			/* new val must satisfy old val knowledge */
9483 			return range_within(rold, rcur) &&
9484 			       tnum_in(rold->var_off, rcur->var_off);
9485 		} else {
9486 			/* We're trying to use a pointer in place of a scalar.
9487 			 * Even if the scalar was unbounded, this could lead to
9488 			 * pointer leaks because scalars are allowed to leak
9489 			 * while pointers are not. We could make this safe in
9490 			 * special cases if root is calling us, but it's
9491 			 * probably not worth the hassle.
9492 			 */
9493 			return false;
9494 		}
9495 	case PTR_TO_MAP_KEY:
9496 	case PTR_TO_MAP_VALUE:
9497 		/* If the new min/max/var_off satisfy the old ones and
9498 		 * everything else matches, we are OK.
9499 		 * 'id' is not compared, since it's only used for maps with
9500 		 * bpf_spin_lock inside map element and in such cases if
9501 		 * the rest of the prog is valid for one map element then
9502 		 * it's valid for all map elements regardless of the key
9503 		 * used in bpf_map_lookup()
9504 		 */
9505 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9506 		       range_within(rold, rcur) &&
9507 		       tnum_in(rold->var_off, rcur->var_off);
9508 	case PTR_TO_MAP_VALUE_OR_NULL:
9509 		/* a PTR_TO_MAP_VALUE could be safe to use as a
9510 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9511 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9512 		 * checked, doing so could have affected others with the same
9513 		 * id, and we can't check for that because we lost the id when
9514 		 * we converted to a PTR_TO_MAP_VALUE.
9515 		 */
9516 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9517 			return false;
9518 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9519 			return false;
9520 		/* Check our ids match any regs they're supposed to */
9521 		return check_ids(rold->id, rcur->id, idmap);
9522 	case PTR_TO_PACKET_META:
9523 	case PTR_TO_PACKET:
9524 		if (rcur->type != rold->type)
9525 			return false;
9526 		/* We must have at least as much range as the old ptr
9527 		 * did, so that any accesses which were safe before are
9528 		 * still safe.  This is true even if old range < old off,
9529 		 * since someone could have accessed through (ptr - k), or
9530 		 * even done ptr -= k in a register, to get a safe access.
9531 		 */
9532 		if (rold->range > rcur->range)
9533 			return false;
9534 		/* If the offsets don't match, we can't trust our alignment;
9535 		 * nor can we be sure that we won't fall out of range.
9536 		 */
9537 		if (rold->off != rcur->off)
9538 			return false;
9539 		/* id relations must be preserved */
9540 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9541 			return false;
9542 		/* new val must satisfy old val knowledge */
9543 		return range_within(rold, rcur) &&
9544 		       tnum_in(rold->var_off, rcur->var_off);
9545 	case PTR_TO_CTX:
9546 	case CONST_PTR_TO_MAP:
9547 	case PTR_TO_PACKET_END:
9548 	case PTR_TO_FLOW_KEYS:
9549 	case PTR_TO_SOCKET:
9550 	case PTR_TO_SOCKET_OR_NULL:
9551 	case PTR_TO_SOCK_COMMON:
9552 	case PTR_TO_SOCK_COMMON_OR_NULL:
9553 	case PTR_TO_TCP_SOCK:
9554 	case PTR_TO_TCP_SOCK_OR_NULL:
9555 	case PTR_TO_XDP_SOCK:
9556 		/* Only valid matches are exact, which memcmp() above
9557 		 * would have accepted
9558 		 */
9559 	default:
9560 		/* Don't know what's going on, just say it's not safe */
9561 		return false;
9562 	}
9563 
9564 	/* Shouldn't get here; if we do, say it's not safe */
9565 	WARN_ON_ONCE(1);
9566 	return false;
9567 }
9568 
9569 static bool stacksafe(struct bpf_func_state *old,
9570 		      struct bpf_func_state *cur,
9571 		      struct idpair *idmap)
9572 {
9573 	int i, spi;
9574 
9575 	/* walk slots of the explored stack and ignore any additional
9576 	 * slots in the current stack, since explored(safe) state
9577 	 * didn't use them
9578 	 */
9579 	for (i = 0; i < old->allocated_stack; i++) {
9580 		spi = i / BPF_REG_SIZE;
9581 
9582 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9583 			i += BPF_REG_SIZE - 1;
9584 			/* explored state didn't use this */
9585 			continue;
9586 		}
9587 
9588 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9589 			continue;
9590 
9591 		/* explored stack has more populated slots than current stack
9592 		 * and these slots were used
9593 		 */
9594 		if (i >= cur->allocated_stack)
9595 			return false;
9596 
9597 		/* if old state was safe with misc data in the stack
9598 		 * it will be safe with zero-initialized stack.
9599 		 * The opposite is not true
9600 		 */
9601 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9602 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9603 			continue;
9604 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9605 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9606 			/* Ex: old explored (safe) state has STACK_SPILL in
9607 			 * this stack slot, but current has STACK_MISC ->
9608 			 * this verifier states are not equivalent,
9609 			 * return false to continue verification of this path
9610 			 */
9611 			return false;
9612 		if (i % BPF_REG_SIZE)
9613 			continue;
9614 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
9615 			continue;
9616 		if (!regsafe(&old->stack[spi].spilled_ptr,
9617 			     &cur->stack[spi].spilled_ptr,
9618 			     idmap))
9619 			/* when explored and current stack slot are both storing
9620 			 * spilled registers, check that stored pointers types
9621 			 * are the same as well.
9622 			 * Ex: explored safe path could have stored
9623 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9624 			 * but current path has stored:
9625 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9626 			 * such verifier states are not equivalent.
9627 			 * return false to continue verification of this path
9628 			 */
9629 			return false;
9630 	}
9631 	return true;
9632 }
9633 
9634 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9635 {
9636 	if (old->acquired_refs != cur->acquired_refs)
9637 		return false;
9638 	return !memcmp(old->refs, cur->refs,
9639 		       sizeof(*old->refs) * old->acquired_refs);
9640 }
9641 
9642 /* compare two verifier states
9643  *
9644  * all states stored in state_list are known to be valid, since
9645  * verifier reached 'bpf_exit' instruction through them
9646  *
9647  * this function is called when verifier exploring different branches of
9648  * execution popped from the state stack. If it sees an old state that has
9649  * more strict register state and more strict stack state then this execution
9650  * branch doesn't need to be explored further, since verifier already
9651  * concluded that more strict state leads to valid finish.
9652  *
9653  * Therefore two states are equivalent if register state is more conservative
9654  * and explored stack state is more conservative than the current one.
9655  * Example:
9656  *       explored                   current
9657  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9658  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9659  *
9660  * In other words if current stack state (one being explored) has more
9661  * valid slots than old one that already passed validation, it means
9662  * the verifier can stop exploring and conclude that current state is valid too
9663  *
9664  * Similarly with registers. If explored state has register type as invalid
9665  * whereas register type in current state is meaningful, it means that
9666  * the current state will reach 'bpf_exit' instruction safely
9667  */
9668 static bool func_states_equal(struct bpf_func_state *old,
9669 			      struct bpf_func_state *cur)
9670 {
9671 	struct idpair *idmap;
9672 	bool ret = false;
9673 	int i;
9674 
9675 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9676 	/* If we failed to allocate the idmap, just say it's not safe */
9677 	if (!idmap)
9678 		return false;
9679 
9680 	for (i = 0; i < MAX_BPF_REG; i++) {
9681 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9682 			goto out_free;
9683 	}
9684 
9685 	if (!stacksafe(old, cur, idmap))
9686 		goto out_free;
9687 
9688 	if (!refsafe(old, cur))
9689 		goto out_free;
9690 	ret = true;
9691 out_free:
9692 	kfree(idmap);
9693 	return ret;
9694 }
9695 
9696 static bool states_equal(struct bpf_verifier_env *env,
9697 			 struct bpf_verifier_state *old,
9698 			 struct bpf_verifier_state *cur)
9699 {
9700 	int i;
9701 
9702 	if (old->curframe != cur->curframe)
9703 		return false;
9704 
9705 	/* Verification state from speculative execution simulation
9706 	 * must never prune a non-speculative execution one.
9707 	 */
9708 	if (old->speculative && !cur->speculative)
9709 		return false;
9710 
9711 	if (old->active_spin_lock != cur->active_spin_lock)
9712 		return false;
9713 
9714 	/* for states to be equal callsites have to be the same
9715 	 * and all frame states need to be equivalent
9716 	 */
9717 	for (i = 0; i <= old->curframe; i++) {
9718 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
9719 			return false;
9720 		if (!func_states_equal(old->frame[i], cur->frame[i]))
9721 			return false;
9722 	}
9723 	return true;
9724 }
9725 
9726 /* Return 0 if no propagation happened. Return negative error code if error
9727  * happened. Otherwise, return the propagated bit.
9728  */
9729 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9730 				  struct bpf_reg_state *reg,
9731 				  struct bpf_reg_state *parent_reg)
9732 {
9733 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9734 	u8 flag = reg->live & REG_LIVE_READ;
9735 	int err;
9736 
9737 	/* When comes here, read flags of PARENT_REG or REG could be any of
9738 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9739 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9740 	 */
9741 	if (parent_flag == REG_LIVE_READ64 ||
9742 	    /* Or if there is no read flag from REG. */
9743 	    !flag ||
9744 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9745 	    parent_flag == flag)
9746 		return 0;
9747 
9748 	err = mark_reg_read(env, reg, parent_reg, flag);
9749 	if (err)
9750 		return err;
9751 
9752 	return flag;
9753 }
9754 
9755 /* A write screens off any subsequent reads; but write marks come from the
9756  * straight-line code between a state and its parent.  When we arrive at an
9757  * equivalent state (jump target or such) we didn't arrive by the straight-line
9758  * code, so read marks in the state must propagate to the parent regardless
9759  * of the state's write marks. That's what 'parent == state->parent' comparison
9760  * in mark_reg_read() is for.
9761  */
9762 static int propagate_liveness(struct bpf_verifier_env *env,
9763 			      const struct bpf_verifier_state *vstate,
9764 			      struct bpf_verifier_state *vparent)
9765 {
9766 	struct bpf_reg_state *state_reg, *parent_reg;
9767 	struct bpf_func_state *state, *parent;
9768 	int i, frame, err = 0;
9769 
9770 	if (vparent->curframe != vstate->curframe) {
9771 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9772 		     vparent->curframe, vstate->curframe);
9773 		return -EFAULT;
9774 	}
9775 	/* Propagate read liveness of registers... */
9776 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9777 	for (frame = 0; frame <= vstate->curframe; frame++) {
9778 		parent = vparent->frame[frame];
9779 		state = vstate->frame[frame];
9780 		parent_reg = parent->regs;
9781 		state_reg = state->regs;
9782 		/* We don't need to worry about FP liveness, it's read-only */
9783 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9784 			err = propagate_liveness_reg(env, &state_reg[i],
9785 						     &parent_reg[i]);
9786 			if (err < 0)
9787 				return err;
9788 			if (err == REG_LIVE_READ64)
9789 				mark_insn_zext(env, &parent_reg[i]);
9790 		}
9791 
9792 		/* Propagate stack slots. */
9793 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9794 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9795 			parent_reg = &parent->stack[i].spilled_ptr;
9796 			state_reg = &state->stack[i].spilled_ptr;
9797 			err = propagate_liveness_reg(env, state_reg,
9798 						     parent_reg);
9799 			if (err < 0)
9800 				return err;
9801 		}
9802 	}
9803 	return 0;
9804 }
9805 
9806 /* find precise scalars in the previous equivalent state and
9807  * propagate them into the current state
9808  */
9809 static int propagate_precision(struct bpf_verifier_env *env,
9810 			       const struct bpf_verifier_state *old)
9811 {
9812 	struct bpf_reg_state *state_reg;
9813 	struct bpf_func_state *state;
9814 	int i, err = 0;
9815 
9816 	state = old->frame[old->curframe];
9817 	state_reg = state->regs;
9818 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9819 		if (state_reg->type != SCALAR_VALUE ||
9820 		    !state_reg->precise)
9821 			continue;
9822 		if (env->log.level & BPF_LOG_LEVEL2)
9823 			verbose(env, "propagating r%d\n", i);
9824 		err = mark_chain_precision(env, i);
9825 		if (err < 0)
9826 			return err;
9827 	}
9828 
9829 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9830 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9831 			continue;
9832 		state_reg = &state->stack[i].spilled_ptr;
9833 		if (state_reg->type != SCALAR_VALUE ||
9834 		    !state_reg->precise)
9835 			continue;
9836 		if (env->log.level & BPF_LOG_LEVEL2)
9837 			verbose(env, "propagating fp%d\n",
9838 				(-i - 1) * BPF_REG_SIZE);
9839 		err = mark_chain_precision_stack(env, i);
9840 		if (err < 0)
9841 			return err;
9842 	}
9843 	return 0;
9844 }
9845 
9846 static bool states_maybe_looping(struct bpf_verifier_state *old,
9847 				 struct bpf_verifier_state *cur)
9848 {
9849 	struct bpf_func_state *fold, *fcur;
9850 	int i, fr = cur->curframe;
9851 
9852 	if (old->curframe != fr)
9853 		return false;
9854 
9855 	fold = old->frame[fr];
9856 	fcur = cur->frame[fr];
9857 	for (i = 0; i < MAX_BPF_REG; i++)
9858 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9859 			   offsetof(struct bpf_reg_state, parent)))
9860 			return false;
9861 	return true;
9862 }
9863 
9864 
9865 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9866 {
9867 	struct bpf_verifier_state_list *new_sl;
9868 	struct bpf_verifier_state_list *sl, **pprev;
9869 	struct bpf_verifier_state *cur = env->cur_state, *new;
9870 	int i, j, err, states_cnt = 0;
9871 	bool add_new_state = env->test_state_freq ? true : false;
9872 
9873 	cur->last_insn_idx = env->prev_insn_idx;
9874 	if (!env->insn_aux_data[insn_idx].prune_point)
9875 		/* this 'insn_idx' instruction wasn't marked, so we will not
9876 		 * be doing state search here
9877 		 */
9878 		return 0;
9879 
9880 	/* bpf progs typically have pruning point every 4 instructions
9881 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9882 	 * Do not add new state for future pruning if the verifier hasn't seen
9883 	 * at least 2 jumps and at least 8 instructions.
9884 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9885 	 * In tests that amounts to up to 50% reduction into total verifier
9886 	 * memory consumption and 20% verifier time speedup.
9887 	 */
9888 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9889 	    env->insn_processed - env->prev_insn_processed >= 8)
9890 		add_new_state = true;
9891 
9892 	pprev = explored_state(env, insn_idx);
9893 	sl = *pprev;
9894 
9895 	clean_live_states(env, insn_idx, cur);
9896 
9897 	while (sl) {
9898 		states_cnt++;
9899 		if (sl->state.insn_idx != insn_idx)
9900 			goto next;
9901 		if (sl->state.branches) {
9902 			if (states_maybe_looping(&sl->state, cur) &&
9903 			    states_equal(env, &sl->state, cur)) {
9904 				verbose_linfo(env, insn_idx, "; ");
9905 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9906 				return -EINVAL;
9907 			}
9908 			/* if the verifier is processing a loop, avoid adding new state
9909 			 * too often, since different loop iterations have distinct
9910 			 * states and may not help future pruning.
9911 			 * This threshold shouldn't be too low to make sure that
9912 			 * a loop with large bound will be rejected quickly.
9913 			 * The most abusive loop will be:
9914 			 * r1 += 1
9915 			 * if r1 < 1000000 goto pc-2
9916 			 * 1M insn_procssed limit / 100 == 10k peak states.
9917 			 * This threshold shouldn't be too high either, since states
9918 			 * at the end of the loop are likely to be useful in pruning.
9919 			 */
9920 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9921 			    env->insn_processed - env->prev_insn_processed < 100)
9922 				add_new_state = false;
9923 			goto miss;
9924 		}
9925 		if (states_equal(env, &sl->state, cur)) {
9926 			sl->hit_cnt++;
9927 			/* reached equivalent register/stack state,
9928 			 * prune the search.
9929 			 * Registers read by the continuation are read by us.
9930 			 * If we have any write marks in env->cur_state, they
9931 			 * will prevent corresponding reads in the continuation
9932 			 * from reaching our parent (an explored_state).  Our
9933 			 * own state will get the read marks recorded, but
9934 			 * they'll be immediately forgotten as we're pruning
9935 			 * this state and will pop a new one.
9936 			 */
9937 			err = propagate_liveness(env, &sl->state, cur);
9938 
9939 			/* if previous state reached the exit with precision and
9940 			 * current state is equivalent to it (except precsion marks)
9941 			 * the precision needs to be propagated back in
9942 			 * the current state.
9943 			 */
9944 			err = err ? : push_jmp_history(env, cur);
9945 			err = err ? : propagate_precision(env, &sl->state);
9946 			if (err)
9947 				return err;
9948 			return 1;
9949 		}
9950 miss:
9951 		/* when new state is not going to be added do not increase miss count.
9952 		 * Otherwise several loop iterations will remove the state
9953 		 * recorded earlier. The goal of these heuristics is to have
9954 		 * states from some iterations of the loop (some in the beginning
9955 		 * and some at the end) to help pruning.
9956 		 */
9957 		if (add_new_state)
9958 			sl->miss_cnt++;
9959 		/* heuristic to determine whether this state is beneficial
9960 		 * to keep checking from state equivalence point of view.
9961 		 * Higher numbers increase max_states_per_insn and verification time,
9962 		 * but do not meaningfully decrease insn_processed.
9963 		 */
9964 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9965 			/* the state is unlikely to be useful. Remove it to
9966 			 * speed up verification
9967 			 */
9968 			*pprev = sl->next;
9969 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9970 				u32 br = sl->state.branches;
9971 
9972 				WARN_ONCE(br,
9973 					  "BUG live_done but branches_to_explore %d\n",
9974 					  br);
9975 				free_verifier_state(&sl->state, false);
9976 				kfree(sl);
9977 				env->peak_states--;
9978 			} else {
9979 				/* cannot free this state, since parentage chain may
9980 				 * walk it later. Add it for free_list instead to
9981 				 * be freed at the end of verification
9982 				 */
9983 				sl->next = env->free_list;
9984 				env->free_list = sl;
9985 			}
9986 			sl = *pprev;
9987 			continue;
9988 		}
9989 next:
9990 		pprev = &sl->next;
9991 		sl = *pprev;
9992 	}
9993 
9994 	if (env->max_states_per_insn < states_cnt)
9995 		env->max_states_per_insn = states_cnt;
9996 
9997 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9998 		return push_jmp_history(env, cur);
9999 
10000 	if (!add_new_state)
10001 		return push_jmp_history(env, cur);
10002 
10003 	/* There were no equivalent states, remember the current one.
10004 	 * Technically the current state is not proven to be safe yet,
10005 	 * but it will either reach outer most bpf_exit (which means it's safe)
10006 	 * or it will be rejected. When there are no loops the verifier won't be
10007 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10008 	 * again on the way to bpf_exit.
10009 	 * When looping the sl->state.branches will be > 0 and this state
10010 	 * will not be considered for equivalence until branches == 0.
10011 	 */
10012 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10013 	if (!new_sl)
10014 		return -ENOMEM;
10015 	env->total_states++;
10016 	env->peak_states++;
10017 	env->prev_jmps_processed = env->jmps_processed;
10018 	env->prev_insn_processed = env->insn_processed;
10019 
10020 	/* add new state to the head of linked list */
10021 	new = &new_sl->state;
10022 	err = copy_verifier_state(new, cur);
10023 	if (err) {
10024 		free_verifier_state(new, false);
10025 		kfree(new_sl);
10026 		return err;
10027 	}
10028 	new->insn_idx = insn_idx;
10029 	WARN_ONCE(new->branches != 1,
10030 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10031 
10032 	cur->parent = new;
10033 	cur->first_insn_idx = insn_idx;
10034 	clear_jmp_history(cur);
10035 	new_sl->next = *explored_state(env, insn_idx);
10036 	*explored_state(env, insn_idx) = new_sl;
10037 	/* connect new state to parentage chain. Current frame needs all
10038 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
10039 	 * to the stack implicitly by JITs) so in callers' frames connect just
10040 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10041 	 * the state of the call instruction (with WRITTEN set), and r0 comes
10042 	 * from callee with its full parentage chain, anyway.
10043 	 */
10044 	/* clear write marks in current state: the writes we did are not writes
10045 	 * our child did, so they don't screen off its reads from us.
10046 	 * (There are no read marks in current state, because reads always mark
10047 	 * their parent and current state never has children yet.  Only
10048 	 * explored_states can get read marks.)
10049 	 */
10050 	for (j = 0; j <= cur->curframe; j++) {
10051 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10052 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10053 		for (i = 0; i < BPF_REG_FP; i++)
10054 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10055 	}
10056 
10057 	/* all stack frames are accessible from callee, clear them all */
10058 	for (j = 0; j <= cur->curframe; j++) {
10059 		struct bpf_func_state *frame = cur->frame[j];
10060 		struct bpf_func_state *newframe = new->frame[j];
10061 
10062 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10063 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10064 			frame->stack[i].spilled_ptr.parent =
10065 						&newframe->stack[i].spilled_ptr;
10066 		}
10067 	}
10068 	return 0;
10069 }
10070 
10071 /* Return true if it's OK to have the same insn return a different type. */
10072 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10073 {
10074 	switch (type) {
10075 	case PTR_TO_CTX:
10076 	case PTR_TO_SOCKET:
10077 	case PTR_TO_SOCKET_OR_NULL:
10078 	case PTR_TO_SOCK_COMMON:
10079 	case PTR_TO_SOCK_COMMON_OR_NULL:
10080 	case PTR_TO_TCP_SOCK:
10081 	case PTR_TO_TCP_SOCK_OR_NULL:
10082 	case PTR_TO_XDP_SOCK:
10083 	case PTR_TO_BTF_ID:
10084 	case PTR_TO_BTF_ID_OR_NULL:
10085 		return false;
10086 	default:
10087 		return true;
10088 	}
10089 }
10090 
10091 /* If an instruction was previously used with particular pointer types, then we
10092  * need to be careful to avoid cases such as the below, where it may be ok
10093  * for one branch accessing the pointer, but not ok for the other branch:
10094  *
10095  * R1 = sock_ptr
10096  * goto X;
10097  * ...
10098  * R1 = some_other_valid_ptr;
10099  * goto X;
10100  * ...
10101  * R2 = *(u32 *)(R1 + 0);
10102  */
10103 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10104 {
10105 	return src != prev && (!reg_type_mismatch_ok(src) ||
10106 			       !reg_type_mismatch_ok(prev));
10107 }
10108 
10109 static int do_check(struct bpf_verifier_env *env)
10110 {
10111 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10112 	struct bpf_verifier_state *state = env->cur_state;
10113 	struct bpf_insn *insns = env->prog->insnsi;
10114 	struct bpf_reg_state *regs;
10115 	int insn_cnt = env->prog->len;
10116 	bool do_print_state = false;
10117 	int prev_insn_idx = -1;
10118 
10119 	for (;;) {
10120 		struct bpf_insn *insn;
10121 		u8 class;
10122 		int err;
10123 
10124 		env->prev_insn_idx = prev_insn_idx;
10125 		if (env->insn_idx >= insn_cnt) {
10126 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
10127 				env->insn_idx, insn_cnt);
10128 			return -EFAULT;
10129 		}
10130 
10131 		insn = &insns[env->insn_idx];
10132 		class = BPF_CLASS(insn->code);
10133 
10134 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10135 			verbose(env,
10136 				"BPF program is too large. Processed %d insn\n",
10137 				env->insn_processed);
10138 			return -E2BIG;
10139 		}
10140 
10141 		err = is_state_visited(env, env->insn_idx);
10142 		if (err < 0)
10143 			return err;
10144 		if (err == 1) {
10145 			/* found equivalent state, can prune the search */
10146 			if (env->log.level & BPF_LOG_LEVEL) {
10147 				if (do_print_state)
10148 					verbose(env, "\nfrom %d to %d%s: safe\n",
10149 						env->prev_insn_idx, env->insn_idx,
10150 						env->cur_state->speculative ?
10151 						" (speculative execution)" : "");
10152 				else
10153 					verbose(env, "%d: safe\n", env->insn_idx);
10154 			}
10155 			goto process_bpf_exit;
10156 		}
10157 
10158 		if (signal_pending(current))
10159 			return -EAGAIN;
10160 
10161 		if (need_resched())
10162 			cond_resched();
10163 
10164 		if (env->log.level & BPF_LOG_LEVEL2 ||
10165 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10166 			if (env->log.level & BPF_LOG_LEVEL2)
10167 				verbose(env, "%d:", env->insn_idx);
10168 			else
10169 				verbose(env, "\nfrom %d to %d%s:",
10170 					env->prev_insn_idx, env->insn_idx,
10171 					env->cur_state->speculative ?
10172 					" (speculative execution)" : "");
10173 			print_verifier_state(env, state->frame[state->curframe]);
10174 			do_print_state = false;
10175 		}
10176 
10177 		if (env->log.level & BPF_LOG_LEVEL) {
10178 			const struct bpf_insn_cbs cbs = {
10179 				.cb_print	= verbose,
10180 				.private_data	= env,
10181 			};
10182 
10183 			verbose_linfo(env, env->insn_idx, "; ");
10184 			verbose(env, "%d: ", env->insn_idx);
10185 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10186 		}
10187 
10188 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
10189 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10190 							   env->prev_insn_idx);
10191 			if (err)
10192 				return err;
10193 		}
10194 
10195 		regs = cur_regs(env);
10196 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10197 		prev_insn_idx = env->insn_idx;
10198 
10199 		if (class == BPF_ALU || class == BPF_ALU64) {
10200 			err = check_alu_op(env, insn);
10201 			if (err)
10202 				return err;
10203 
10204 		} else if (class == BPF_LDX) {
10205 			enum bpf_reg_type *prev_src_type, src_reg_type;
10206 
10207 			/* check for reserved fields is already done */
10208 
10209 			/* check src operand */
10210 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10211 			if (err)
10212 				return err;
10213 
10214 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10215 			if (err)
10216 				return err;
10217 
10218 			src_reg_type = regs[insn->src_reg].type;
10219 
10220 			/* check that memory (src_reg + off) is readable,
10221 			 * the state of dst_reg will be updated by this func
10222 			 */
10223 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
10224 					       insn->off, BPF_SIZE(insn->code),
10225 					       BPF_READ, insn->dst_reg, false);
10226 			if (err)
10227 				return err;
10228 
10229 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10230 
10231 			if (*prev_src_type == NOT_INIT) {
10232 				/* saw a valid insn
10233 				 * dst_reg = *(u32 *)(src_reg + off)
10234 				 * save type to validate intersecting paths
10235 				 */
10236 				*prev_src_type = src_reg_type;
10237 
10238 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10239 				/* ABuser program is trying to use the same insn
10240 				 * dst_reg = *(u32*) (src_reg + off)
10241 				 * with different pointer types:
10242 				 * src_reg == ctx in one branch and
10243 				 * src_reg == stack|map in some other branch.
10244 				 * Reject it.
10245 				 */
10246 				verbose(env, "same insn cannot be used with different pointers\n");
10247 				return -EINVAL;
10248 			}
10249 
10250 		} else if (class == BPF_STX) {
10251 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
10252 
10253 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10254 				err = check_atomic(env, env->insn_idx, insn);
10255 				if (err)
10256 					return err;
10257 				env->insn_idx++;
10258 				continue;
10259 			}
10260 
10261 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10262 				verbose(env, "BPF_STX uses reserved fields\n");
10263 				return -EINVAL;
10264 			}
10265 
10266 			/* check src1 operand */
10267 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
10268 			if (err)
10269 				return err;
10270 			/* check src2 operand */
10271 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10272 			if (err)
10273 				return err;
10274 
10275 			dst_reg_type = regs[insn->dst_reg].type;
10276 
10277 			/* check that memory (dst_reg + off) is writeable */
10278 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10279 					       insn->off, BPF_SIZE(insn->code),
10280 					       BPF_WRITE, insn->src_reg, false);
10281 			if (err)
10282 				return err;
10283 
10284 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10285 
10286 			if (*prev_dst_type == NOT_INIT) {
10287 				*prev_dst_type = dst_reg_type;
10288 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10289 				verbose(env, "same insn cannot be used with different pointers\n");
10290 				return -EINVAL;
10291 			}
10292 
10293 		} else if (class == BPF_ST) {
10294 			if (BPF_MODE(insn->code) != BPF_MEM ||
10295 			    insn->src_reg != BPF_REG_0) {
10296 				verbose(env, "BPF_ST uses reserved fields\n");
10297 				return -EINVAL;
10298 			}
10299 			/* check src operand */
10300 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10301 			if (err)
10302 				return err;
10303 
10304 			if (is_ctx_reg(env, insn->dst_reg)) {
10305 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10306 					insn->dst_reg,
10307 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
10308 				return -EACCES;
10309 			}
10310 
10311 			/* check that memory (dst_reg + off) is writeable */
10312 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10313 					       insn->off, BPF_SIZE(insn->code),
10314 					       BPF_WRITE, -1, false);
10315 			if (err)
10316 				return err;
10317 
10318 		} else if (class == BPF_JMP || class == BPF_JMP32) {
10319 			u8 opcode = BPF_OP(insn->code);
10320 
10321 			env->jmps_processed++;
10322 			if (opcode == BPF_CALL) {
10323 				if (BPF_SRC(insn->code) != BPF_K ||
10324 				    insn->off != 0 ||
10325 				    (insn->src_reg != BPF_REG_0 &&
10326 				     insn->src_reg != BPF_PSEUDO_CALL) ||
10327 				    insn->dst_reg != BPF_REG_0 ||
10328 				    class == BPF_JMP32) {
10329 					verbose(env, "BPF_CALL uses reserved fields\n");
10330 					return -EINVAL;
10331 				}
10332 
10333 				if (env->cur_state->active_spin_lock &&
10334 				    (insn->src_reg == BPF_PSEUDO_CALL ||
10335 				     insn->imm != BPF_FUNC_spin_unlock)) {
10336 					verbose(env, "function calls are not allowed while holding a lock\n");
10337 					return -EINVAL;
10338 				}
10339 				if (insn->src_reg == BPF_PSEUDO_CALL)
10340 					err = check_func_call(env, insn, &env->insn_idx);
10341 				else
10342 					err = check_helper_call(env, insn, &env->insn_idx);
10343 				if (err)
10344 					return err;
10345 			} else if (opcode == BPF_JA) {
10346 				if (BPF_SRC(insn->code) != BPF_K ||
10347 				    insn->imm != 0 ||
10348 				    insn->src_reg != BPF_REG_0 ||
10349 				    insn->dst_reg != BPF_REG_0 ||
10350 				    class == BPF_JMP32) {
10351 					verbose(env, "BPF_JA uses reserved fields\n");
10352 					return -EINVAL;
10353 				}
10354 
10355 				env->insn_idx += insn->off + 1;
10356 				continue;
10357 
10358 			} else if (opcode == BPF_EXIT) {
10359 				if (BPF_SRC(insn->code) != BPF_K ||
10360 				    insn->imm != 0 ||
10361 				    insn->src_reg != BPF_REG_0 ||
10362 				    insn->dst_reg != BPF_REG_0 ||
10363 				    class == BPF_JMP32) {
10364 					verbose(env, "BPF_EXIT uses reserved fields\n");
10365 					return -EINVAL;
10366 				}
10367 
10368 				if (env->cur_state->active_spin_lock) {
10369 					verbose(env, "bpf_spin_unlock is missing\n");
10370 					return -EINVAL;
10371 				}
10372 
10373 				if (state->curframe) {
10374 					/* exit from nested function */
10375 					err = prepare_func_exit(env, &env->insn_idx);
10376 					if (err)
10377 						return err;
10378 					do_print_state = true;
10379 					continue;
10380 				}
10381 
10382 				err = check_reference_leak(env);
10383 				if (err)
10384 					return err;
10385 
10386 				err = check_return_code(env);
10387 				if (err)
10388 					return err;
10389 process_bpf_exit:
10390 				update_branch_counts(env, env->cur_state);
10391 				err = pop_stack(env, &prev_insn_idx,
10392 						&env->insn_idx, pop_log);
10393 				if (err < 0) {
10394 					if (err != -ENOENT)
10395 						return err;
10396 					break;
10397 				} else {
10398 					do_print_state = true;
10399 					continue;
10400 				}
10401 			} else {
10402 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
10403 				if (err)
10404 					return err;
10405 			}
10406 		} else if (class == BPF_LD) {
10407 			u8 mode = BPF_MODE(insn->code);
10408 
10409 			if (mode == BPF_ABS || mode == BPF_IND) {
10410 				err = check_ld_abs(env, insn);
10411 				if (err)
10412 					return err;
10413 
10414 			} else if (mode == BPF_IMM) {
10415 				err = check_ld_imm(env, insn);
10416 				if (err)
10417 					return err;
10418 
10419 				env->insn_idx++;
10420 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10421 			} else {
10422 				verbose(env, "invalid BPF_LD mode\n");
10423 				return -EINVAL;
10424 			}
10425 		} else {
10426 			verbose(env, "unknown insn class %d\n", class);
10427 			return -EINVAL;
10428 		}
10429 
10430 		env->insn_idx++;
10431 	}
10432 
10433 	return 0;
10434 }
10435 
10436 static int find_btf_percpu_datasec(struct btf *btf)
10437 {
10438 	const struct btf_type *t;
10439 	const char *tname;
10440 	int i, n;
10441 
10442 	/*
10443 	 * Both vmlinux and module each have their own ".data..percpu"
10444 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10445 	 * types to look at only module's own BTF types.
10446 	 */
10447 	n = btf_nr_types(btf);
10448 	if (btf_is_module(btf))
10449 		i = btf_nr_types(btf_vmlinux);
10450 	else
10451 		i = 1;
10452 
10453 	for(; i < n; i++) {
10454 		t = btf_type_by_id(btf, i);
10455 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10456 			continue;
10457 
10458 		tname = btf_name_by_offset(btf, t->name_off);
10459 		if (!strcmp(tname, ".data..percpu"))
10460 			return i;
10461 	}
10462 
10463 	return -ENOENT;
10464 }
10465 
10466 /* replace pseudo btf_id with kernel symbol address */
10467 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10468 			       struct bpf_insn *insn,
10469 			       struct bpf_insn_aux_data *aux)
10470 {
10471 	const struct btf_var_secinfo *vsi;
10472 	const struct btf_type *datasec;
10473 	struct btf_mod_pair *btf_mod;
10474 	const struct btf_type *t;
10475 	const char *sym_name;
10476 	bool percpu = false;
10477 	u32 type, id = insn->imm;
10478 	struct btf *btf;
10479 	s32 datasec_id;
10480 	u64 addr;
10481 	int i, btf_fd, err;
10482 
10483 	btf_fd = insn[1].imm;
10484 	if (btf_fd) {
10485 		btf = btf_get_by_fd(btf_fd);
10486 		if (IS_ERR(btf)) {
10487 			verbose(env, "invalid module BTF object FD specified.\n");
10488 			return -EINVAL;
10489 		}
10490 	} else {
10491 		if (!btf_vmlinux) {
10492 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10493 			return -EINVAL;
10494 		}
10495 		btf = btf_vmlinux;
10496 		btf_get(btf);
10497 	}
10498 
10499 	t = btf_type_by_id(btf, id);
10500 	if (!t) {
10501 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10502 		err = -ENOENT;
10503 		goto err_put;
10504 	}
10505 
10506 	if (!btf_type_is_var(t)) {
10507 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10508 		err = -EINVAL;
10509 		goto err_put;
10510 	}
10511 
10512 	sym_name = btf_name_by_offset(btf, t->name_off);
10513 	addr = kallsyms_lookup_name(sym_name);
10514 	if (!addr) {
10515 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10516 			sym_name);
10517 		err = -ENOENT;
10518 		goto err_put;
10519 	}
10520 
10521 	datasec_id = find_btf_percpu_datasec(btf);
10522 	if (datasec_id > 0) {
10523 		datasec = btf_type_by_id(btf, datasec_id);
10524 		for_each_vsi(i, datasec, vsi) {
10525 			if (vsi->type == id) {
10526 				percpu = true;
10527 				break;
10528 			}
10529 		}
10530 	}
10531 
10532 	insn[0].imm = (u32)addr;
10533 	insn[1].imm = addr >> 32;
10534 
10535 	type = t->type;
10536 	t = btf_type_skip_modifiers(btf, type, NULL);
10537 	if (percpu) {
10538 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10539 		aux->btf_var.btf = btf;
10540 		aux->btf_var.btf_id = type;
10541 	} else if (!btf_type_is_struct(t)) {
10542 		const struct btf_type *ret;
10543 		const char *tname;
10544 		u32 tsize;
10545 
10546 		/* resolve the type size of ksym. */
10547 		ret = btf_resolve_size(btf, t, &tsize);
10548 		if (IS_ERR(ret)) {
10549 			tname = btf_name_by_offset(btf, t->name_off);
10550 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10551 				tname, PTR_ERR(ret));
10552 			err = -EINVAL;
10553 			goto err_put;
10554 		}
10555 		aux->btf_var.reg_type = PTR_TO_MEM;
10556 		aux->btf_var.mem_size = tsize;
10557 	} else {
10558 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
10559 		aux->btf_var.btf = btf;
10560 		aux->btf_var.btf_id = type;
10561 	}
10562 
10563 	/* check whether we recorded this BTF (and maybe module) already */
10564 	for (i = 0; i < env->used_btf_cnt; i++) {
10565 		if (env->used_btfs[i].btf == btf) {
10566 			btf_put(btf);
10567 			return 0;
10568 		}
10569 	}
10570 
10571 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
10572 		err = -E2BIG;
10573 		goto err_put;
10574 	}
10575 
10576 	btf_mod = &env->used_btfs[env->used_btf_cnt];
10577 	btf_mod->btf = btf;
10578 	btf_mod->module = NULL;
10579 
10580 	/* if we reference variables from kernel module, bump its refcount */
10581 	if (btf_is_module(btf)) {
10582 		btf_mod->module = btf_try_get_module(btf);
10583 		if (!btf_mod->module) {
10584 			err = -ENXIO;
10585 			goto err_put;
10586 		}
10587 	}
10588 
10589 	env->used_btf_cnt++;
10590 
10591 	return 0;
10592 err_put:
10593 	btf_put(btf);
10594 	return err;
10595 }
10596 
10597 static int check_map_prealloc(struct bpf_map *map)
10598 {
10599 	return (map->map_type != BPF_MAP_TYPE_HASH &&
10600 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10601 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10602 		!(map->map_flags & BPF_F_NO_PREALLOC);
10603 }
10604 
10605 static bool is_tracing_prog_type(enum bpf_prog_type type)
10606 {
10607 	switch (type) {
10608 	case BPF_PROG_TYPE_KPROBE:
10609 	case BPF_PROG_TYPE_TRACEPOINT:
10610 	case BPF_PROG_TYPE_PERF_EVENT:
10611 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
10612 		return true;
10613 	default:
10614 		return false;
10615 	}
10616 }
10617 
10618 static bool is_preallocated_map(struct bpf_map *map)
10619 {
10620 	if (!check_map_prealloc(map))
10621 		return false;
10622 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10623 		return false;
10624 	return true;
10625 }
10626 
10627 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10628 					struct bpf_map *map,
10629 					struct bpf_prog *prog)
10630 
10631 {
10632 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
10633 	/*
10634 	 * Validate that trace type programs use preallocated hash maps.
10635 	 *
10636 	 * For programs attached to PERF events this is mandatory as the
10637 	 * perf NMI can hit any arbitrary code sequence.
10638 	 *
10639 	 * All other trace types using preallocated hash maps are unsafe as
10640 	 * well because tracepoint or kprobes can be inside locked regions
10641 	 * of the memory allocator or at a place where a recursion into the
10642 	 * memory allocator would see inconsistent state.
10643 	 *
10644 	 * On RT enabled kernels run-time allocation of all trace type
10645 	 * programs is strictly prohibited due to lock type constraints. On
10646 	 * !RT kernels it is allowed for backwards compatibility reasons for
10647 	 * now, but warnings are emitted so developers are made aware of
10648 	 * the unsafety and can fix their programs before this is enforced.
10649 	 */
10650 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10651 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10652 			verbose(env, "perf_event programs can only use preallocated hash map\n");
10653 			return -EINVAL;
10654 		}
10655 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10656 			verbose(env, "trace type programs can only use preallocated hash map\n");
10657 			return -EINVAL;
10658 		}
10659 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10660 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10661 	}
10662 
10663 	if (map_value_has_spin_lock(map)) {
10664 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10665 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10666 			return -EINVAL;
10667 		}
10668 
10669 		if (is_tracing_prog_type(prog_type)) {
10670 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10671 			return -EINVAL;
10672 		}
10673 
10674 		if (prog->aux->sleepable) {
10675 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10676 			return -EINVAL;
10677 		}
10678 	}
10679 
10680 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10681 	    !bpf_offload_prog_map_match(prog, map)) {
10682 		verbose(env, "offload device mismatch between prog and map\n");
10683 		return -EINVAL;
10684 	}
10685 
10686 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10687 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10688 		return -EINVAL;
10689 	}
10690 
10691 	if (prog->aux->sleepable)
10692 		switch (map->map_type) {
10693 		case BPF_MAP_TYPE_HASH:
10694 		case BPF_MAP_TYPE_LRU_HASH:
10695 		case BPF_MAP_TYPE_ARRAY:
10696 		case BPF_MAP_TYPE_PERCPU_HASH:
10697 		case BPF_MAP_TYPE_PERCPU_ARRAY:
10698 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10699 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
10700 		case BPF_MAP_TYPE_HASH_OF_MAPS:
10701 			if (!is_preallocated_map(map)) {
10702 				verbose(env,
10703 					"Sleepable programs can only use preallocated maps\n");
10704 				return -EINVAL;
10705 			}
10706 			break;
10707 		case BPF_MAP_TYPE_RINGBUF:
10708 			break;
10709 		default:
10710 			verbose(env,
10711 				"Sleepable programs can only use array, hash, and ringbuf maps\n");
10712 			return -EINVAL;
10713 		}
10714 
10715 	return 0;
10716 }
10717 
10718 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10719 {
10720 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10721 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10722 }
10723 
10724 /* find and rewrite pseudo imm in ld_imm64 instructions:
10725  *
10726  * 1. if it accesses map FD, replace it with actual map pointer.
10727  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10728  *
10729  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10730  */
10731 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10732 {
10733 	struct bpf_insn *insn = env->prog->insnsi;
10734 	int insn_cnt = env->prog->len;
10735 	int i, j, err;
10736 
10737 	err = bpf_prog_calc_tag(env->prog);
10738 	if (err)
10739 		return err;
10740 
10741 	for (i = 0; i < insn_cnt; i++, insn++) {
10742 		if (BPF_CLASS(insn->code) == BPF_LDX &&
10743 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10744 			verbose(env, "BPF_LDX uses reserved fields\n");
10745 			return -EINVAL;
10746 		}
10747 
10748 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10749 			struct bpf_insn_aux_data *aux;
10750 			struct bpf_map *map;
10751 			struct fd f;
10752 			u64 addr;
10753 
10754 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
10755 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10756 			    insn[1].off != 0) {
10757 				verbose(env, "invalid bpf_ld_imm64 insn\n");
10758 				return -EINVAL;
10759 			}
10760 
10761 			if (insn[0].src_reg == 0)
10762 				/* valid generic load 64-bit imm */
10763 				goto next_insn;
10764 
10765 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10766 				aux = &env->insn_aux_data[i];
10767 				err = check_pseudo_btf_id(env, insn, aux);
10768 				if (err)
10769 					return err;
10770 				goto next_insn;
10771 			}
10772 
10773 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
10774 				aux = &env->insn_aux_data[i];
10775 				aux->ptr_type = PTR_TO_FUNC;
10776 				goto next_insn;
10777 			}
10778 
10779 			/* In final convert_pseudo_ld_imm64() step, this is
10780 			 * converted into regular 64-bit imm load insn.
10781 			 */
10782 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10783 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10784 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10785 			     insn[1].imm != 0)) {
10786 				verbose(env,
10787 					"unrecognized bpf_ld_imm64 insn\n");
10788 				return -EINVAL;
10789 			}
10790 
10791 			f = fdget(insn[0].imm);
10792 			map = __bpf_map_get(f);
10793 			if (IS_ERR(map)) {
10794 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
10795 					insn[0].imm);
10796 				return PTR_ERR(map);
10797 			}
10798 
10799 			err = check_map_prog_compatibility(env, map, env->prog);
10800 			if (err) {
10801 				fdput(f);
10802 				return err;
10803 			}
10804 
10805 			aux = &env->insn_aux_data[i];
10806 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10807 				addr = (unsigned long)map;
10808 			} else {
10809 				u32 off = insn[1].imm;
10810 
10811 				if (off >= BPF_MAX_VAR_OFF) {
10812 					verbose(env, "direct value offset of %u is not allowed\n", off);
10813 					fdput(f);
10814 					return -EINVAL;
10815 				}
10816 
10817 				if (!map->ops->map_direct_value_addr) {
10818 					verbose(env, "no direct value access support for this map type\n");
10819 					fdput(f);
10820 					return -EINVAL;
10821 				}
10822 
10823 				err = map->ops->map_direct_value_addr(map, &addr, off);
10824 				if (err) {
10825 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10826 						map->value_size, off);
10827 					fdput(f);
10828 					return err;
10829 				}
10830 
10831 				aux->map_off = off;
10832 				addr += off;
10833 			}
10834 
10835 			insn[0].imm = (u32)addr;
10836 			insn[1].imm = addr >> 32;
10837 
10838 			/* check whether we recorded this map already */
10839 			for (j = 0; j < env->used_map_cnt; j++) {
10840 				if (env->used_maps[j] == map) {
10841 					aux->map_index = j;
10842 					fdput(f);
10843 					goto next_insn;
10844 				}
10845 			}
10846 
10847 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10848 				fdput(f);
10849 				return -E2BIG;
10850 			}
10851 
10852 			/* hold the map. If the program is rejected by verifier,
10853 			 * the map will be released by release_maps() or it
10854 			 * will be used by the valid program until it's unloaded
10855 			 * and all maps are released in free_used_maps()
10856 			 */
10857 			bpf_map_inc(map);
10858 
10859 			aux->map_index = env->used_map_cnt;
10860 			env->used_maps[env->used_map_cnt++] = map;
10861 
10862 			if (bpf_map_is_cgroup_storage(map) &&
10863 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10864 				verbose(env, "only one cgroup storage of each type is allowed\n");
10865 				fdput(f);
10866 				return -EBUSY;
10867 			}
10868 
10869 			fdput(f);
10870 next_insn:
10871 			insn++;
10872 			i++;
10873 			continue;
10874 		}
10875 
10876 		/* Basic sanity check before we invest more work here. */
10877 		if (!bpf_opcode_in_insntable(insn->code)) {
10878 			verbose(env, "unknown opcode %02x\n", insn->code);
10879 			return -EINVAL;
10880 		}
10881 	}
10882 
10883 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10884 	 * 'struct bpf_map *' into a register instead of user map_fd.
10885 	 * These pointers will be used later by verifier to validate map access.
10886 	 */
10887 	return 0;
10888 }
10889 
10890 /* drop refcnt of maps used by the rejected program */
10891 static void release_maps(struct bpf_verifier_env *env)
10892 {
10893 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10894 			     env->used_map_cnt);
10895 }
10896 
10897 /* drop refcnt of maps used by the rejected program */
10898 static void release_btfs(struct bpf_verifier_env *env)
10899 {
10900 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
10901 			     env->used_btf_cnt);
10902 }
10903 
10904 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10905 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10906 {
10907 	struct bpf_insn *insn = env->prog->insnsi;
10908 	int insn_cnt = env->prog->len;
10909 	int i;
10910 
10911 	for (i = 0; i < insn_cnt; i++, insn++) {
10912 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
10913 			continue;
10914 		if (insn->src_reg == BPF_PSEUDO_FUNC)
10915 			continue;
10916 		insn->src_reg = 0;
10917 	}
10918 }
10919 
10920 /* single env->prog->insni[off] instruction was replaced with the range
10921  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10922  * [0, off) and [off, end) to new locations, so the patched range stays zero
10923  */
10924 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10925 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10926 {
10927 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10928 	struct bpf_insn *insn = new_prog->insnsi;
10929 	u32 prog_len;
10930 	int i;
10931 
10932 	/* aux info at OFF always needs adjustment, no matter fast path
10933 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10934 	 * original insn at old prog.
10935 	 */
10936 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10937 
10938 	if (cnt == 1)
10939 		return 0;
10940 	prog_len = new_prog->len;
10941 	new_data = vzalloc(array_size(prog_len,
10942 				      sizeof(struct bpf_insn_aux_data)));
10943 	if (!new_data)
10944 		return -ENOMEM;
10945 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10946 	memcpy(new_data + off + cnt - 1, old_data + off,
10947 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10948 	for (i = off; i < off + cnt - 1; i++) {
10949 		new_data[i].seen = env->pass_cnt;
10950 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10951 	}
10952 	env->insn_aux_data = new_data;
10953 	vfree(old_data);
10954 	return 0;
10955 }
10956 
10957 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10958 {
10959 	int i;
10960 
10961 	if (len == 1)
10962 		return;
10963 	/* NOTE: fake 'exit' subprog should be updated as well. */
10964 	for (i = 0; i <= env->subprog_cnt; i++) {
10965 		if (env->subprog_info[i].start <= off)
10966 			continue;
10967 		env->subprog_info[i].start += len - 1;
10968 	}
10969 }
10970 
10971 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10972 {
10973 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10974 	int i, sz = prog->aux->size_poke_tab;
10975 	struct bpf_jit_poke_descriptor *desc;
10976 
10977 	for (i = 0; i < sz; i++) {
10978 		desc = &tab[i];
10979 		desc->insn_idx += len - 1;
10980 	}
10981 }
10982 
10983 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10984 					    const struct bpf_insn *patch, u32 len)
10985 {
10986 	struct bpf_prog *new_prog;
10987 
10988 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10989 	if (IS_ERR(new_prog)) {
10990 		if (PTR_ERR(new_prog) == -ERANGE)
10991 			verbose(env,
10992 				"insn %d cannot be patched due to 16-bit range\n",
10993 				env->insn_aux_data[off].orig_idx);
10994 		return NULL;
10995 	}
10996 	if (adjust_insn_aux_data(env, new_prog, off, len))
10997 		return NULL;
10998 	adjust_subprog_starts(env, off, len);
10999 	adjust_poke_descs(new_prog, len);
11000 	return new_prog;
11001 }
11002 
11003 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11004 					      u32 off, u32 cnt)
11005 {
11006 	int i, j;
11007 
11008 	/* find first prog starting at or after off (first to remove) */
11009 	for (i = 0; i < env->subprog_cnt; i++)
11010 		if (env->subprog_info[i].start >= off)
11011 			break;
11012 	/* find first prog starting at or after off + cnt (first to stay) */
11013 	for (j = i; j < env->subprog_cnt; j++)
11014 		if (env->subprog_info[j].start >= off + cnt)
11015 			break;
11016 	/* if j doesn't start exactly at off + cnt, we are just removing
11017 	 * the front of previous prog
11018 	 */
11019 	if (env->subprog_info[j].start != off + cnt)
11020 		j--;
11021 
11022 	if (j > i) {
11023 		struct bpf_prog_aux *aux = env->prog->aux;
11024 		int move;
11025 
11026 		/* move fake 'exit' subprog as well */
11027 		move = env->subprog_cnt + 1 - j;
11028 
11029 		memmove(env->subprog_info + i,
11030 			env->subprog_info + j,
11031 			sizeof(*env->subprog_info) * move);
11032 		env->subprog_cnt -= j - i;
11033 
11034 		/* remove func_info */
11035 		if (aux->func_info) {
11036 			move = aux->func_info_cnt - j;
11037 
11038 			memmove(aux->func_info + i,
11039 				aux->func_info + j,
11040 				sizeof(*aux->func_info) * move);
11041 			aux->func_info_cnt -= j - i;
11042 			/* func_info->insn_off is set after all code rewrites,
11043 			 * in adjust_btf_func() - no need to adjust
11044 			 */
11045 		}
11046 	} else {
11047 		/* convert i from "first prog to remove" to "first to adjust" */
11048 		if (env->subprog_info[i].start == off)
11049 			i++;
11050 	}
11051 
11052 	/* update fake 'exit' subprog as well */
11053 	for (; i <= env->subprog_cnt; i++)
11054 		env->subprog_info[i].start -= cnt;
11055 
11056 	return 0;
11057 }
11058 
11059 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11060 				      u32 cnt)
11061 {
11062 	struct bpf_prog *prog = env->prog;
11063 	u32 i, l_off, l_cnt, nr_linfo;
11064 	struct bpf_line_info *linfo;
11065 
11066 	nr_linfo = prog->aux->nr_linfo;
11067 	if (!nr_linfo)
11068 		return 0;
11069 
11070 	linfo = prog->aux->linfo;
11071 
11072 	/* find first line info to remove, count lines to be removed */
11073 	for (i = 0; i < nr_linfo; i++)
11074 		if (linfo[i].insn_off >= off)
11075 			break;
11076 
11077 	l_off = i;
11078 	l_cnt = 0;
11079 	for (; i < nr_linfo; i++)
11080 		if (linfo[i].insn_off < off + cnt)
11081 			l_cnt++;
11082 		else
11083 			break;
11084 
11085 	/* First live insn doesn't match first live linfo, it needs to "inherit"
11086 	 * last removed linfo.  prog is already modified, so prog->len == off
11087 	 * means no live instructions after (tail of the program was removed).
11088 	 */
11089 	if (prog->len != off && l_cnt &&
11090 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11091 		l_cnt--;
11092 		linfo[--i].insn_off = off + cnt;
11093 	}
11094 
11095 	/* remove the line info which refer to the removed instructions */
11096 	if (l_cnt) {
11097 		memmove(linfo + l_off, linfo + i,
11098 			sizeof(*linfo) * (nr_linfo - i));
11099 
11100 		prog->aux->nr_linfo -= l_cnt;
11101 		nr_linfo = prog->aux->nr_linfo;
11102 	}
11103 
11104 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
11105 	for (i = l_off; i < nr_linfo; i++)
11106 		linfo[i].insn_off -= cnt;
11107 
11108 	/* fix up all subprogs (incl. 'exit') which start >= off */
11109 	for (i = 0; i <= env->subprog_cnt; i++)
11110 		if (env->subprog_info[i].linfo_idx > l_off) {
11111 			/* program may have started in the removed region but
11112 			 * may not be fully removed
11113 			 */
11114 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11115 				env->subprog_info[i].linfo_idx -= l_cnt;
11116 			else
11117 				env->subprog_info[i].linfo_idx = l_off;
11118 		}
11119 
11120 	return 0;
11121 }
11122 
11123 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11124 {
11125 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11126 	unsigned int orig_prog_len = env->prog->len;
11127 	int err;
11128 
11129 	if (bpf_prog_is_dev_bound(env->prog->aux))
11130 		bpf_prog_offload_remove_insns(env, off, cnt);
11131 
11132 	err = bpf_remove_insns(env->prog, off, cnt);
11133 	if (err)
11134 		return err;
11135 
11136 	err = adjust_subprog_starts_after_remove(env, off, cnt);
11137 	if (err)
11138 		return err;
11139 
11140 	err = bpf_adj_linfo_after_remove(env, off, cnt);
11141 	if (err)
11142 		return err;
11143 
11144 	memmove(aux_data + off,	aux_data + off + cnt,
11145 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
11146 
11147 	return 0;
11148 }
11149 
11150 /* The verifier does more data flow analysis than llvm and will not
11151  * explore branches that are dead at run time. Malicious programs can
11152  * have dead code too. Therefore replace all dead at-run-time code
11153  * with 'ja -1'.
11154  *
11155  * Just nops are not optimal, e.g. if they would sit at the end of the
11156  * program and through another bug we would manage to jump there, then
11157  * we'd execute beyond program memory otherwise. Returning exception
11158  * code also wouldn't work since we can have subprogs where the dead
11159  * code could be located.
11160  */
11161 static void sanitize_dead_code(struct bpf_verifier_env *env)
11162 {
11163 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11164 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11165 	struct bpf_insn *insn = env->prog->insnsi;
11166 	const int insn_cnt = env->prog->len;
11167 	int i;
11168 
11169 	for (i = 0; i < insn_cnt; i++) {
11170 		if (aux_data[i].seen)
11171 			continue;
11172 		memcpy(insn + i, &trap, sizeof(trap));
11173 	}
11174 }
11175 
11176 static bool insn_is_cond_jump(u8 code)
11177 {
11178 	u8 op;
11179 
11180 	if (BPF_CLASS(code) == BPF_JMP32)
11181 		return true;
11182 
11183 	if (BPF_CLASS(code) != BPF_JMP)
11184 		return false;
11185 
11186 	op = BPF_OP(code);
11187 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11188 }
11189 
11190 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11191 {
11192 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11193 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11194 	struct bpf_insn *insn = env->prog->insnsi;
11195 	const int insn_cnt = env->prog->len;
11196 	int i;
11197 
11198 	for (i = 0; i < insn_cnt; i++, insn++) {
11199 		if (!insn_is_cond_jump(insn->code))
11200 			continue;
11201 
11202 		if (!aux_data[i + 1].seen)
11203 			ja.off = insn->off;
11204 		else if (!aux_data[i + 1 + insn->off].seen)
11205 			ja.off = 0;
11206 		else
11207 			continue;
11208 
11209 		if (bpf_prog_is_dev_bound(env->prog->aux))
11210 			bpf_prog_offload_replace_insn(env, i, &ja);
11211 
11212 		memcpy(insn, &ja, sizeof(ja));
11213 	}
11214 }
11215 
11216 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11217 {
11218 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11219 	int insn_cnt = env->prog->len;
11220 	int i, err;
11221 
11222 	for (i = 0; i < insn_cnt; i++) {
11223 		int j;
11224 
11225 		j = 0;
11226 		while (i + j < insn_cnt && !aux_data[i + j].seen)
11227 			j++;
11228 		if (!j)
11229 			continue;
11230 
11231 		err = verifier_remove_insns(env, i, j);
11232 		if (err)
11233 			return err;
11234 		insn_cnt = env->prog->len;
11235 	}
11236 
11237 	return 0;
11238 }
11239 
11240 static int opt_remove_nops(struct bpf_verifier_env *env)
11241 {
11242 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11243 	struct bpf_insn *insn = env->prog->insnsi;
11244 	int insn_cnt = env->prog->len;
11245 	int i, err;
11246 
11247 	for (i = 0; i < insn_cnt; i++) {
11248 		if (memcmp(&insn[i], &ja, sizeof(ja)))
11249 			continue;
11250 
11251 		err = verifier_remove_insns(env, i, 1);
11252 		if (err)
11253 			return err;
11254 		insn_cnt--;
11255 		i--;
11256 	}
11257 
11258 	return 0;
11259 }
11260 
11261 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11262 					 const union bpf_attr *attr)
11263 {
11264 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11265 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
11266 	int i, patch_len, delta = 0, len = env->prog->len;
11267 	struct bpf_insn *insns = env->prog->insnsi;
11268 	struct bpf_prog *new_prog;
11269 	bool rnd_hi32;
11270 
11271 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11272 	zext_patch[1] = BPF_ZEXT_REG(0);
11273 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11274 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11275 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11276 	for (i = 0; i < len; i++) {
11277 		int adj_idx = i + delta;
11278 		struct bpf_insn insn;
11279 		int load_reg;
11280 
11281 		insn = insns[adj_idx];
11282 		load_reg = insn_def_regno(&insn);
11283 		if (!aux[adj_idx].zext_dst) {
11284 			u8 code, class;
11285 			u32 imm_rnd;
11286 
11287 			if (!rnd_hi32)
11288 				continue;
11289 
11290 			code = insn.code;
11291 			class = BPF_CLASS(code);
11292 			if (load_reg == -1)
11293 				continue;
11294 
11295 			/* NOTE: arg "reg" (the fourth one) is only used for
11296 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
11297 			 *       here.
11298 			 */
11299 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11300 				if (class == BPF_LD &&
11301 				    BPF_MODE(code) == BPF_IMM)
11302 					i++;
11303 				continue;
11304 			}
11305 
11306 			/* ctx load could be transformed into wider load. */
11307 			if (class == BPF_LDX &&
11308 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
11309 				continue;
11310 
11311 			imm_rnd = get_random_int();
11312 			rnd_hi32_patch[0] = insn;
11313 			rnd_hi32_patch[1].imm = imm_rnd;
11314 			rnd_hi32_patch[3].dst_reg = load_reg;
11315 			patch = rnd_hi32_patch;
11316 			patch_len = 4;
11317 			goto apply_patch_buffer;
11318 		}
11319 
11320 		/* Add in an zero-extend instruction if a) the JIT has requested
11321 		 * it or b) it's a CMPXCHG.
11322 		 *
11323 		 * The latter is because: BPF_CMPXCHG always loads a value into
11324 		 * R0, therefore always zero-extends. However some archs'
11325 		 * equivalent instruction only does this load when the
11326 		 * comparison is successful. This detail of CMPXCHG is
11327 		 * orthogonal to the general zero-extension behaviour of the
11328 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
11329 		 */
11330 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11331 			continue;
11332 
11333 		if (WARN_ON(load_reg == -1)) {
11334 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11335 			return -EFAULT;
11336 		}
11337 
11338 		zext_patch[0] = insn;
11339 		zext_patch[1].dst_reg = load_reg;
11340 		zext_patch[1].src_reg = load_reg;
11341 		patch = zext_patch;
11342 		patch_len = 2;
11343 apply_patch_buffer:
11344 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11345 		if (!new_prog)
11346 			return -ENOMEM;
11347 		env->prog = new_prog;
11348 		insns = new_prog->insnsi;
11349 		aux = env->insn_aux_data;
11350 		delta += patch_len - 1;
11351 	}
11352 
11353 	return 0;
11354 }
11355 
11356 /* convert load instructions that access fields of a context type into a
11357  * sequence of instructions that access fields of the underlying structure:
11358  *     struct __sk_buff    -> struct sk_buff
11359  *     struct bpf_sock_ops -> struct sock
11360  */
11361 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11362 {
11363 	const struct bpf_verifier_ops *ops = env->ops;
11364 	int i, cnt, size, ctx_field_size, delta = 0;
11365 	const int insn_cnt = env->prog->len;
11366 	struct bpf_insn insn_buf[16], *insn;
11367 	u32 target_size, size_default, off;
11368 	struct bpf_prog *new_prog;
11369 	enum bpf_access_type type;
11370 	bool is_narrower_load;
11371 
11372 	if (ops->gen_prologue || env->seen_direct_write) {
11373 		if (!ops->gen_prologue) {
11374 			verbose(env, "bpf verifier is misconfigured\n");
11375 			return -EINVAL;
11376 		}
11377 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11378 					env->prog);
11379 		if (cnt >= ARRAY_SIZE(insn_buf)) {
11380 			verbose(env, "bpf verifier is misconfigured\n");
11381 			return -EINVAL;
11382 		} else if (cnt) {
11383 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11384 			if (!new_prog)
11385 				return -ENOMEM;
11386 
11387 			env->prog = new_prog;
11388 			delta += cnt - 1;
11389 		}
11390 	}
11391 
11392 	if (bpf_prog_is_dev_bound(env->prog->aux))
11393 		return 0;
11394 
11395 	insn = env->prog->insnsi + delta;
11396 
11397 	for (i = 0; i < insn_cnt; i++, insn++) {
11398 		bpf_convert_ctx_access_t convert_ctx_access;
11399 
11400 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11401 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11402 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11403 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11404 			type = BPF_READ;
11405 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11406 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11407 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11408 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11409 			type = BPF_WRITE;
11410 		else
11411 			continue;
11412 
11413 		if (type == BPF_WRITE &&
11414 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
11415 			struct bpf_insn patch[] = {
11416 				/* Sanitize suspicious stack slot with zero.
11417 				 * There are no memory dependencies for this store,
11418 				 * since it's only using frame pointer and immediate
11419 				 * constant of zero
11420 				 */
11421 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11422 					   env->insn_aux_data[i + delta].sanitize_stack_off,
11423 					   0),
11424 				/* the original STX instruction will immediately
11425 				 * overwrite the same stack slot with appropriate value
11426 				 */
11427 				*insn,
11428 			};
11429 
11430 			cnt = ARRAY_SIZE(patch);
11431 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11432 			if (!new_prog)
11433 				return -ENOMEM;
11434 
11435 			delta    += cnt - 1;
11436 			env->prog = new_prog;
11437 			insn      = new_prog->insnsi + i + delta;
11438 			continue;
11439 		}
11440 
11441 		switch (env->insn_aux_data[i + delta].ptr_type) {
11442 		case PTR_TO_CTX:
11443 			if (!ops->convert_ctx_access)
11444 				continue;
11445 			convert_ctx_access = ops->convert_ctx_access;
11446 			break;
11447 		case PTR_TO_SOCKET:
11448 		case PTR_TO_SOCK_COMMON:
11449 			convert_ctx_access = bpf_sock_convert_ctx_access;
11450 			break;
11451 		case PTR_TO_TCP_SOCK:
11452 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11453 			break;
11454 		case PTR_TO_XDP_SOCK:
11455 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11456 			break;
11457 		case PTR_TO_BTF_ID:
11458 			if (type == BPF_READ) {
11459 				insn->code = BPF_LDX | BPF_PROBE_MEM |
11460 					BPF_SIZE((insn)->code);
11461 				env->prog->aux->num_exentries++;
11462 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11463 				verbose(env, "Writes through BTF pointers are not allowed\n");
11464 				return -EINVAL;
11465 			}
11466 			continue;
11467 		default:
11468 			continue;
11469 		}
11470 
11471 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11472 		size = BPF_LDST_BYTES(insn);
11473 
11474 		/* If the read access is a narrower load of the field,
11475 		 * convert to a 4/8-byte load, to minimum program type specific
11476 		 * convert_ctx_access changes. If conversion is successful,
11477 		 * we will apply proper mask to the result.
11478 		 */
11479 		is_narrower_load = size < ctx_field_size;
11480 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11481 		off = insn->off;
11482 		if (is_narrower_load) {
11483 			u8 size_code;
11484 
11485 			if (type == BPF_WRITE) {
11486 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11487 				return -EINVAL;
11488 			}
11489 
11490 			size_code = BPF_H;
11491 			if (ctx_field_size == 4)
11492 				size_code = BPF_W;
11493 			else if (ctx_field_size == 8)
11494 				size_code = BPF_DW;
11495 
11496 			insn->off = off & ~(size_default - 1);
11497 			insn->code = BPF_LDX | BPF_MEM | size_code;
11498 		}
11499 
11500 		target_size = 0;
11501 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11502 					 &target_size);
11503 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11504 		    (ctx_field_size && !target_size)) {
11505 			verbose(env, "bpf verifier is misconfigured\n");
11506 			return -EINVAL;
11507 		}
11508 
11509 		if (is_narrower_load && size < target_size) {
11510 			u8 shift = bpf_ctx_narrow_access_offset(
11511 				off, size, size_default) * 8;
11512 			if (ctx_field_size <= 4) {
11513 				if (shift)
11514 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11515 									insn->dst_reg,
11516 									shift);
11517 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11518 								(1 << size * 8) - 1);
11519 			} else {
11520 				if (shift)
11521 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11522 									insn->dst_reg,
11523 									shift);
11524 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11525 								(1ULL << size * 8) - 1);
11526 			}
11527 		}
11528 
11529 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11530 		if (!new_prog)
11531 			return -ENOMEM;
11532 
11533 		delta += cnt - 1;
11534 
11535 		/* keep walking new program and skip insns we just inserted */
11536 		env->prog = new_prog;
11537 		insn      = new_prog->insnsi + i + delta;
11538 	}
11539 
11540 	return 0;
11541 }
11542 
11543 static int jit_subprogs(struct bpf_verifier_env *env)
11544 {
11545 	struct bpf_prog *prog = env->prog, **func, *tmp;
11546 	int i, j, subprog_start, subprog_end = 0, len, subprog;
11547 	struct bpf_map *map_ptr;
11548 	struct bpf_insn *insn;
11549 	void *old_bpf_func;
11550 	int err, num_exentries;
11551 
11552 	if (env->subprog_cnt <= 1)
11553 		return 0;
11554 
11555 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11556 		if (bpf_pseudo_func(insn)) {
11557 			env->insn_aux_data[i].call_imm = insn->imm;
11558 			/* subprog is encoded in insn[1].imm */
11559 			continue;
11560 		}
11561 
11562 		if (!bpf_pseudo_call(insn))
11563 			continue;
11564 		/* Upon error here we cannot fall back to interpreter but
11565 		 * need a hard reject of the program. Thus -EFAULT is
11566 		 * propagated in any case.
11567 		 */
11568 		subprog = find_subprog(env, i + insn->imm + 1);
11569 		if (subprog < 0) {
11570 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11571 				  i + insn->imm + 1);
11572 			return -EFAULT;
11573 		}
11574 		/* temporarily remember subprog id inside insn instead of
11575 		 * aux_data, since next loop will split up all insns into funcs
11576 		 */
11577 		insn->off = subprog;
11578 		/* remember original imm in case JIT fails and fallback
11579 		 * to interpreter will be needed
11580 		 */
11581 		env->insn_aux_data[i].call_imm = insn->imm;
11582 		/* point imm to __bpf_call_base+1 from JITs point of view */
11583 		insn->imm = 1;
11584 	}
11585 
11586 	err = bpf_prog_alloc_jited_linfo(prog);
11587 	if (err)
11588 		goto out_undo_insn;
11589 
11590 	err = -ENOMEM;
11591 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11592 	if (!func)
11593 		goto out_undo_insn;
11594 
11595 	for (i = 0; i < env->subprog_cnt; i++) {
11596 		subprog_start = subprog_end;
11597 		subprog_end = env->subprog_info[i + 1].start;
11598 
11599 		len = subprog_end - subprog_start;
11600 		/* BPF_PROG_RUN doesn't call subprogs directly,
11601 		 * hence main prog stats include the runtime of subprogs.
11602 		 * subprogs don't have IDs and not reachable via prog_get_next_id
11603 		 * func[i]->stats will never be accessed and stays NULL
11604 		 */
11605 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11606 		if (!func[i])
11607 			goto out_free;
11608 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11609 		       len * sizeof(struct bpf_insn));
11610 		func[i]->type = prog->type;
11611 		func[i]->len = len;
11612 		if (bpf_prog_calc_tag(func[i]))
11613 			goto out_free;
11614 		func[i]->is_func = 1;
11615 		func[i]->aux->func_idx = i;
11616 		/* the btf and func_info will be freed only at prog->aux */
11617 		func[i]->aux->btf = prog->aux->btf;
11618 		func[i]->aux->func_info = prog->aux->func_info;
11619 
11620 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
11621 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11622 			int ret;
11623 
11624 			if (!(insn_idx >= subprog_start &&
11625 			      insn_idx <= subprog_end))
11626 				continue;
11627 
11628 			ret = bpf_jit_add_poke_descriptor(func[i],
11629 							  &prog->aux->poke_tab[j]);
11630 			if (ret < 0) {
11631 				verbose(env, "adding tail call poke descriptor failed\n");
11632 				goto out_free;
11633 			}
11634 
11635 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11636 
11637 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11638 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11639 			if (ret < 0) {
11640 				verbose(env, "tracking tail call prog failed\n");
11641 				goto out_free;
11642 			}
11643 		}
11644 
11645 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
11646 		 * Long term would need debug info to populate names
11647 		 */
11648 		func[i]->aux->name[0] = 'F';
11649 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11650 		func[i]->jit_requested = 1;
11651 		func[i]->aux->linfo = prog->aux->linfo;
11652 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11653 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11654 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11655 		num_exentries = 0;
11656 		insn = func[i]->insnsi;
11657 		for (j = 0; j < func[i]->len; j++, insn++) {
11658 			if (BPF_CLASS(insn->code) == BPF_LDX &&
11659 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
11660 				num_exentries++;
11661 		}
11662 		func[i]->aux->num_exentries = num_exentries;
11663 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11664 		func[i] = bpf_int_jit_compile(func[i]);
11665 		if (!func[i]->jited) {
11666 			err = -ENOTSUPP;
11667 			goto out_free;
11668 		}
11669 		cond_resched();
11670 	}
11671 
11672 	/* Untrack main program's aux structs so that during map_poke_run()
11673 	 * we will not stumble upon the unfilled poke descriptors; each
11674 	 * of the main program's poke descs got distributed across subprogs
11675 	 * and got tracked onto map, so we are sure that none of them will
11676 	 * be missed after the operation below
11677 	 */
11678 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11679 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11680 
11681 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11682 	}
11683 
11684 	/* at this point all bpf functions were successfully JITed
11685 	 * now populate all bpf_calls with correct addresses and
11686 	 * run last pass of JIT
11687 	 */
11688 	for (i = 0; i < env->subprog_cnt; i++) {
11689 		insn = func[i]->insnsi;
11690 		for (j = 0; j < func[i]->len; j++, insn++) {
11691 			if (bpf_pseudo_func(insn)) {
11692 				subprog = insn[1].imm;
11693 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
11694 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
11695 				continue;
11696 			}
11697 			if (!bpf_pseudo_call(insn))
11698 				continue;
11699 			subprog = insn->off;
11700 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11701 				    __bpf_call_base;
11702 		}
11703 
11704 		/* we use the aux data to keep a list of the start addresses
11705 		 * of the JITed images for each function in the program
11706 		 *
11707 		 * for some architectures, such as powerpc64, the imm field
11708 		 * might not be large enough to hold the offset of the start
11709 		 * address of the callee's JITed image from __bpf_call_base
11710 		 *
11711 		 * in such cases, we can lookup the start address of a callee
11712 		 * by using its subprog id, available from the off field of
11713 		 * the call instruction, as an index for this list
11714 		 */
11715 		func[i]->aux->func = func;
11716 		func[i]->aux->func_cnt = env->subprog_cnt;
11717 	}
11718 	for (i = 0; i < env->subprog_cnt; i++) {
11719 		old_bpf_func = func[i]->bpf_func;
11720 		tmp = bpf_int_jit_compile(func[i]);
11721 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11722 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11723 			err = -ENOTSUPP;
11724 			goto out_free;
11725 		}
11726 		cond_resched();
11727 	}
11728 
11729 	/* finally lock prog and jit images for all functions and
11730 	 * populate kallsysm
11731 	 */
11732 	for (i = 0; i < env->subprog_cnt; i++) {
11733 		bpf_prog_lock_ro(func[i]);
11734 		bpf_prog_kallsyms_add(func[i]);
11735 	}
11736 
11737 	/* Last step: make now unused interpreter insns from main
11738 	 * prog consistent for later dump requests, so they can
11739 	 * later look the same as if they were interpreted only.
11740 	 */
11741 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11742 		if (bpf_pseudo_func(insn)) {
11743 			insn[0].imm = env->insn_aux_data[i].call_imm;
11744 			insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
11745 			continue;
11746 		}
11747 		if (!bpf_pseudo_call(insn))
11748 			continue;
11749 		insn->off = env->insn_aux_data[i].call_imm;
11750 		subprog = find_subprog(env, i + insn->off + 1);
11751 		insn->imm = subprog;
11752 	}
11753 
11754 	prog->jited = 1;
11755 	prog->bpf_func = func[0]->bpf_func;
11756 	prog->aux->func = func;
11757 	prog->aux->func_cnt = env->subprog_cnt;
11758 	bpf_prog_free_unused_jited_linfo(prog);
11759 	return 0;
11760 out_free:
11761 	for (i = 0; i < env->subprog_cnt; i++) {
11762 		if (!func[i])
11763 			continue;
11764 
11765 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11766 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11767 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11768 		}
11769 		bpf_jit_free(func[i]);
11770 	}
11771 	kfree(func);
11772 out_undo_insn:
11773 	/* cleanup main prog to be interpreted */
11774 	prog->jit_requested = 0;
11775 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11776 		if (!bpf_pseudo_call(insn))
11777 			continue;
11778 		insn->off = 0;
11779 		insn->imm = env->insn_aux_data[i].call_imm;
11780 	}
11781 	bpf_prog_free_jited_linfo(prog);
11782 	return err;
11783 }
11784 
11785 static int fixup_call_args(struct bpf_verifier_env *env)
11786 {
11787 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11788 	struct bpf_prog *prog = env->prog;
11789 	struct bpf_insn *insn = prog->insnsi;
11790 	int i, depth;
11791 #endif
11792 	int err = 0;
11793 
11794 	if (env->prog->jit_requested &&
11795 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
11796 		err = jit_subprogs(env);
11797 		if (err == 0)
11798 			return 0;
11799 		if (err == -EFAULT)
11800 			return err;
11801 	}
11802 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11803 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11804 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
11805 		 * have to be rejected, since interpreter doesn't support them yet.
11806 		 */
11807 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11808 		return -EINVAL;
11809 	}
11810 	for (i = 0; i < prog->len; i++, insn++) {
11811 		if (bpf_pseudo_func(insn)) {
11812 			/* When JIT fails the progs with callback calls
11813 			 * have to be rejected, since interpreter doesn't support them yet.
11814 			 */
11815 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
11816 			return -EINVAL;
11817 		}
11818 
11819 		if (!bpf_pseudo_call(insn))
11820 			continue;
11821 		depth = get_callee_stack_depth(env, insn, i);
11822 		if (depth < 0)
11823 			return depth;
11824 		bpf_patch_call_args(insn, depth);
11825 	}
11826 	err = 0;
11827 #endif
11828 	return err;
11829 }
11830 
11831 /* Do various post-verification rewrites in a single program pass.
11832  * These rewrites simplify JIT and interpreter implementations.
11833  */
11834 static int do_misc_fixups(struct bpf_verifier_env *env)
11835 {
11836 	struct bpf_prog *prog = env->prog;
11837 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
11838 	struct bpf_insn *insn = prog->insnsi;
11839 	const struct bpf_func_proto *fn;
11840 	const int insn_cnt = prog->len;
11841 	const struct bpf_map_ops *ops;
11842 	struct bpf_insn_aux_data *aux;
11843 	struct bpf_insn insn_buf[16];
11844 	struct bpf_prog *new_prog;
11845 	struct bpf_map *map_ptr;
11846 	int i, ret, cnt, delta = 0;
11847 
11848 	for (i = 0; i < insn_cnt; i++, insn++) {
11849 		/* Make divide-by-zero exceptions impossible. */
11850 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11851 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11852 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11853 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11854 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11855 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11856 			struct bpf_insn *patchlet;
11857 			struct bpf_insn chk_and_div[] = {
11858 				/* [R,W]x div 0 -> 0 */
11859 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11860 					     BPF_JNE | BPF_K, insn->src_reg,
11861 					     0, 2, 0),
11862 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11863 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11864 				*insn,
11865 			};
11866 			struct bpf_insn chk_and_mod[] = {
11867 				/* [R,W]x mod 0 -> [R,W]x */
11868 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11869 					     BPF_JEQ | BPF_K, insn->src_reg,
11870 					     0, 1 + (is64 ? 0 : 1), 0),
11871 				*insn,
11872 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11873 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11874 			};
11875 
11876 			patchlet = isdiv ? chk_and_div : chk_and_mod;
11877 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11878 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11879 
11880 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11881 			if (!new_prog)
11882 				return -ENOMEM;
11883 
11884 			delta    += cnt - 1;
11885 			env->prog = prog = new_prog;
11886 			insn      = new_prog->insnsi + i + delta;
11887 			continue;
11888 		}
11889 
11890 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
11891 		if (BPF_CLASS(insn->code) == BPF_LD &&
11892 		    (BPF_MODE(insn->code) == BPF_ABS ||
11893 		     BPF_MODE(insn->code) == BPF_IND)) {
11894 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11895 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11896 				verbose(env, "bpf verifier is misconfigured\n");
11897 				return -EINVAL;
11898 			}
11899 
11900 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11901 			if (!new_prog)
11902 				return -ENOMEM;
11903 
11904 			delta    += cnt - 1;
11905 			env->prog = prog = new_prog;
11906 			insn      = new_prog->insnsi + i + delta;
11907 			continue;
11908 		}
11909 
11910 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
11911 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11912 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11913 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11914 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11915 			struct bpf_insn *patch = &insn_buf[0];
11916 			bool issrc, isneg;
11917 			u32 off_reg;
11918 
11919 			aux = &env->insn_aux_data[i + delta];
11920 			if (!aux->alu_state ||
11921 			    aux->alu_state == BPF_ALU_NON_POINTER)
11922 				continue;
11923 
11924 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11925 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11926 				BPF_ALU_SANITIZE_SRC;
11927 
11928 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11929 			if (isneg)
11930 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11931 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11932 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11933 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11934 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11935 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11936 			if (issrc) {
11937 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11938 							 off_reg);
11939 				insn->src_reg = BPF_REG_AX;
11940 			} else {
11941 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11942 							 BPF_REG_AX);
11943 			}
11944 			if (isneg)
11945 				insn->code = insn->code == code_add ?
11946 					     code_sub : code_add;
11947 			*patch++ = *insn;
11948 			if (issrc && isneg)
11949 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11950 			cnt = patch - insn_buf;
11951 
11952 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11953 			if (!new_prog)
11954 				return -ENOMEM;
11955 
11956 			delta    += cnt - 1;
11957 			env->prog = prog = new_prog;
11958 			insn      = new_prog->insnsi + i + delta;
11959 			continue;
11960 		}
11961 
11962 		if (insn->code != (BPF_JMP | BPF_CALL))
11963 			continue;
11964 		if (insn->src_reg == BPF_PSEUDO_CALL)
11965 			continue;
11966 
11967 		if (insn->imm == BPF_FUNC_get_route_realm)
11968 			prog->dst_needed = 1;
11969 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11970 			bpf_user_rnd_init_once();
11971 		if (insn->imm == BPF_FUNC_override_return)
11972 			prog->kprobe_override = 1;
11973 		if (insn->imm == BPF_FUNC_tail_call) {
11974 			/* If we tail call into other programs, we
11975 			 * cannot make any assumptions since they can
11976 			 * be replaced dynamically during runtime in
11977 			 * the program array.
11978 			 */
11979 			prog->cb_access = 1;
11980 			if (!allow_tail_call_in_subprogs(env))
11981 				prog->aux->stack_depth = MAX_BPF_STACK;
11982 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11983 
11984 			/* mark bpf_tail_call as different opcode to avoid
11985 			 * conditional branch in the interpeter for every normal
11986 			 * call and to prevent accidental JITing by JIT compiler
11987 			 * that doesn't support bpf_tail_call yet
11988 			 */
11989 			insn->imm = 0;
11990 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11991 
11992 			aux = &env->insn_aux_data[i + delta];
11993 			if (env->bpf_capable && !expect_blinding &&
11994 			    prog->jit_requested &&
11995 			    !bpf_map_key_poisoned(aux) &&
11996 			    !bpf_map_ptr_poisoned(aux) &&
11997 			    !bpf_map_ptr_unpriv(aux)) {
11998 				struct bpf_jit_poke_descriptor desc = {
11999 					.reason = BPF_POKE_REASON_TAIL_CALL,
12000 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12001 					.tail_call.key = bpf_map_key_immediate(aux),
12002 					.insn_idx = i + delta,
12003 				};
12004 
12005 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
12006 				if (ret < 0) {
12007 					verbose(env, "adding tail call poke descriptor failed\n");
12008 					return ret;
12009 				}
12010 
12011 				insn->imm = ret + 1;
12012 				continue;
12013 			}
12014 
12015 			if (!bpf_map_ptr_unpriv(aux))
12016 				continue;
12017 
12018 			/* instead of changing every JIT dealing with tail_call
12019 			 * emit two extra insns:
12020 			 * if (index >= max_entries) goto out;
12021 			 * index &= array->index_mask;
12022 			 * to avoid out-of-bounds cpu speculation
12023 			 */
12024 			if (bpf_map_ptr_poisoned(aux)) {
12025 				verbose(env, "tail_call abusing map_ptr\n");
12026 				return -EINVAL;
12027 			}
12028 
12029 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12030 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12031 						  map_ptr->max_entries, 2);
12032 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12033 						    container_of(map_ptr,
12034 								 struct bpf_array,
12035 								 map)->index_mask);
12036 			insn_buf[2] = *insn;
12037 			cnt = 3;
12038 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12039 			if (!new_prog)
12040 				return -ENOMEM;
12041 
12042 			delta    += cnt - 1;
12043 			env->prog = prog = new_prog;
12044 			insn      = new_prog->insnsi + i + delta;
12045 			continue;
12046 		}
12047 
12048 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12049 		 * and other inlining handlers are currently limited to 64 bit
12050 		 * only.
12051 		 */
12052 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12053 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
12054 		     insn->imm == BPF_FUNC_map_update_elem ||
12055 		     insn->imm == BPF_FUNC_map_delete_elem ||
12056 		     insn->imm == BPF_FUNC_map_push_elem   ||
12057 		     insn->imm == BPF_FUNC_map_pop_elem    ||
12058 		     insn->imm == BPF_FUNC_map_peek_elem   ||
12059 		     insn->imm == BPF_FUNC_redirect_map)) {
12060 			aux = &env->insn_aux_data[i + delta];
12061 			if (bpf_map_ptr_poisoned(aux))
12062 				goto patch_call_imm;
12063 
12064 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12065 			ops = map_ptr->ops;
12066 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
12067 			    ops->map_gen_lookup) {
12068 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12069 				if (cnt == -EOPNOTSUPP)
12070 					goto patch_map_ops_generic;
12071 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12072 					verbose(env, "bpf verifier is misconfigured\n");
12073 					return -EINVAL;
12074 				}
12075 
12076 				new_prog = bpf_patch_insn_data(env, i + delta,
12077 							       insn_buf, cnt);
12078 				if (!new_prog)
12079 					return -ENOMEM;
12080 
12081 				delta    += cnt - 1;
12082 				env->prog = prog = new_prog;
12083 				insn      = new_prog->insnsi + i + delta;
12084 				continue;
12085 			}
12086 
12087 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12088 				     (void *(*)(struct bpf_map *map, void *key))NULL));
12089 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12090 				     (int (*)(struct bpf_map *map, void *key))NULL));
12091 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12092 				     (int (*)(struct bpf_map *map, void *key, void *value,
12093 					      u64 flags))NULL));
12094 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12095 				     (int (*)(struct bpf_map *map, void *value,
12096 					      u64 flags))NULL));
12097 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12098 				     (int (*)(struct bpf_map *map, void *value))NULL));
12099 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12100 				     (int (*)(struct bpf_map *map, void *value))NULL));
12101 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
12102 				     (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12103 
12104 patch_map_ops_generic:
12105 			switch (insn->imm) {
12106 			case BPF_FUNC_map_lookup_elem:
12107 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12108 					    __bpf_call_base;
12109 				continue;
12110 			case BPF_FUNC_map_update_elem:
12111 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12112 					    __bpf_call_base;
12113 				continue;
12114 			case BPF_FUNC_map_delete_elem:
12115 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12116 					    __bpf_call_base;
12117 				continue;
12118 			case BPF_FUNC_map_push_elem:
12119 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12120 					    __bpf_call_base;
12121 				continue;
12122 			case BPF_FUNC_map_pop_elem:
12123 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12124 					    __bpf_call_base;
12125 				continue;
12126 			case BPF_FUNC_map_peek_elem:
12127 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12128 					    __bpf_call_base;
12129 				continue;
12130 			case BPF_FUNC_redirect_map:
12131 				insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12132 					    __bpf_call_base;
12133 				continue;
12134 			}
12135 
12136 			goto patch_call_imm;
12137 		}
12138 
12139 		/* Implement bpf_jiffies64 inline. */
12140 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
12141 		    insn->imm == BPF_FUNC_jiffies64) {
12142 			struct bpf_insn ld_jiffies_addr[2] = {
12143 				BPF_LD_IMM64(BPF_REG_0,
12144 					     (unsigned long)&jiffies),
12145 			};
12146 
12147 			insn_buf[0] = ld_jiffies_addr[0];
12148 			insn_buf[1] = ld_jiffies_addr[1];
12149 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12150 						  BPF_REG_0, 0);
12151 			cnt = 3;
12152 
12153 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12154 						       cnt);
12155 			if (!new_prog)
12156 				return -ENOMEM;
12157 
12158 			delta    += cnt - 1;
12159 			env->prog = prog = new_prog;
12160 			insn      = new_prog->insnsi + i + delta;
12161 			continue;
12162 		}
12163 
12164 patch_call_imm:
12165 		fn = env->ops->get_func_proto(insn->imm, env->prog);
12166 		/* all functions that have prototype and verifier allowed
12167 		 * programs to call them, must be real in-kernel functions
12168 		 */
12169 		if (!fn->func) {
12170 			verbose(env,
12171 				"kernel subsystem misconfigured func %s#%d\n",
12172 				func_id_name(insn->imm), insn->imm);
12173 			return -EFAULT;
12174 		}
12175 		insn->imm = fn->func - __bpf_call_base;
12176 	}
12177 
12178 	/* Since poke tab is now finalized, publish aux to tracker. */
12179 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
12180 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
12181 		if (!map_ptr->ops->map_poke_track ||
12182 		    !map_ptr->ops->map_poke_untrack ||
12183 		    !map_ptr->ops->map_poke_run) {
12184 			verbose(env, "bpf verifier is misconfigured\n");
12185 			return -EINVAL;
12186 		}
12187 
12188 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12189 		if (ret < 0) {
12190 			verbose(env, "tracking tail call prog failed\n");
12191 			return ret;
12192 		}
12193 	}
12194 
12195 	return 0;
12196 }
12197 
12198 static void free_states(struct bpf_verifier_env *env)
12199 {
12200 	struct bpf_verifier_state_list *sl, *sln;
12201 	int i;
12202 
12203 	sl = env->free_list;
12204 	while (sl) {
12205 		sln = sl->next;
12206 		free_verifier_state(&sl->state, false);
12207 		kfree(sl);
12208 		sl = sln;
12209 	}
12210 	env->free_list = NULL;
12211 
12212 	if (!env->explored_states)
12213 		return;
12214 
12215 	for (i = 0; i < state_htab_size(env); i++) {
12216 		sl = env->explored_states[i];
12217 
12218 		while (sl) {
12219 			sln = sl->next;
12220 			free_verifier_state(&sl->state, false);
12221 			kfree(sl);
12222 			sl = sln;
12223 		}
12224 		env->explored_states[i] = NULL;
12225 	}
12226 }
12227 
12228 /* The verifier is using insn_aux_data[] to store temporary data during
12229  * verification and to store information for passes that run after the
12230  * verification like dead code sanitization. do_check_common() for subprogram N
12231  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12232  * temporary data after do_check_common() finds that subprogram N cannot be
12233  * verified independently. pass_cnt counts the number of times
12234  * do_check_common() was run and insn->aux->seen tells the pass number
12235  * insn_aux_data was touched. These variables are compared to clear temporary
12236  * data from failed pass. For testing and experiments do_check_common() can be
12237  * run multiple times even when prior attempt to verify is unsuccessful.
12238  */
12239 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12240 {
12241 	struct bpf_insn *insn = env->prog->insnsi;
12242 	struct bpf_insn_aux_data *aux;
12243 	int i, class;
12244 
12245 	for (i = 0; i < env->prog->len; i++) {
12246 		class = BPF_CLASS(insn[i].code);
12247 		if (class != BPF_LDX && class != BPF_STX)
12248 			continue;
12249 		aux = &env->insn_aux_data[i];
12250 		if (aux->seen != env->pass_cnt)
12251 			continue;
12252 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12253 	}
12254 }
12255 
12256 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12257 {
12258 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12259 	struct bpf_verifier_state *state;
12260 	struct bpf_reg_state *regs;
12261 	int ret, i;
12262 
12263 	env->prev_linfo = NULL;
12264 	env->pass_cnt++;
12265 
12266 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12267 	if (!state)
12268 		return -ENOMEM;
12269 	state->curframe = 0;
12270 	state->speculative = false;
12271 	state->branches = 1;
12272 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12273 	if (!state->frame[0]) {
12274 		kfree(state);
12275 		return -ENOMEM;
12276 	}
12277 	env->cur_state = state;
12278 	init_func_state(env, state->frame[0],
12279 			BPF_MAIN_FUNC /* callsite */,
12280 			0 /* frameno */,
12281 			subprog);
12282 
12283 	regs = state->frame[state->curframe]->regs;
12284 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12285 		ret = btf_prepare_func_args(env, subprog, regs);
12286 		if (ret)
12287 			goto out;
12288 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12289 			if (regs[i].type == PTR_TO_CTX)
12290 				mark_reg_known_zero(env, regs, i);
12291 			else if (regs[i].type == SCALAR_VALUE)
12292 				mark_reg_unknown(env, regs, i);
12293 			else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12294 				const u32 mem_size = regs[i].mem_size;
12295 
12296 				mark_reg_known_zero(env, regs, i);
12297 				regs[i].mem_size = mem_size;
12298 				regs[i].id = ++env->id_gen;
12299 			}
12300 		}
12301 	} else {
12302 		/* 1st arg to a function */
12303 		regs[BPF_REG_1].type = PTR_TO_CTX;
12304 		mark_reg_known_zero(env, regs, BPF_REG_1);
12305 		ret = btf_check_func_arg_match(env, subprog, regs);
12306 		if (ret == -EFAULT)
12307 			/* unlikely verifier bug. abort.
12308 			 * ret == 0 and ret < 0 are sadly acceptable for
12309 			 * main() function due to backward compatibility.
12310 			 * Like socket filter program may be written as:
12311 			 * int bpf_prog(struct pt_regs *ctx)
12312 			 * and never dereference that ctx in the program.
12313 			 * 'struct pt_regs' is a type mismatch for socket
12314 			 * filter that should be using 'struct __sk_buff'.
12315 			 */
12316 			goto out;
12317 	}
12318 
12319 	ret = do_check(env);
12320 out:
12321 	/* check for NULL is necessary, since cur_state can be freed inside
12322 	 * do_check() under memory pressure.
12323 	 */
12324 	if (env->cur_state) {
12325 		free_verifier_state(env->cur_state, true);
12326 		env->cur_state = NULL;
12327 	}
12328 	while (!pop_stack(env, NULL, NULL, false));
12329 	if (!ret && pop_log)
12330 		bpf_vlog_reset(&env->log, 0);
12331 	free_states(env);
12332 	if (ret)
12333 		/* clean aux data in case subprog was rejected */
12334 		sanitize_insn_aux_data(env);
12335 	return ret;
12336 }
12337 
12338 /* Verify all global functions in a BPF program one by one based on their BTF.
12339  * All global functions must pass verification. Otherwise the whole program is rejected.
12340  * Consider:
12341  * int bar(int);
12342  * int foo(int f)
12343  * {
12344  *    return bar(f);
12345  * }
12346  * int bar(int b)
12347  * {
12348  *    ...
12349  * }
12350  * foo() will be verified first for R1=any_scalar_value. During verification it
12351  * will be assumed that bar() already verified successfully and call to bar()
12352  * from foo() will be checked for type match only. Later bar() will be verified
12353  * independently to check that it's safe for R1=any_scalar_value.
12354  */
12355 static int do_check_subprogs(struct bpf_verifier_env *env)
12356 {
12357 	struct bpf_prog_aux *aux = env->prog->aux;
12358 	int i, ret;
12359 
12360 	if (!aux->func_info)
12361 		return 0;
12362 
12363 	for (i = 1; i < env->subprog_cnt; i++) {
12364 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12365 			continue;
12366 		env->insn_idx = env->subprog_info[i].start;
12367 		WARN_ON_ONCE(env->insn_idx == 0);
12368 		ret = do_check_common(env, i);
12369 		if (ret) {
12370 			return ret;
12371 		} else if (env->log.level & BPF_LOG_LEVEL) {
12372 			verbose(env,
12373 				"Func#%d is safe for any args that match its prototype\n",
12374 				i);
12375 		}
12376 	}
12377 	return 0;
12378 }
12379 
12380 static int do_check_main(struct bpf_verifier_env *env)
12381 {
12382 	int ret;
12383 
12384 	env->insn_idx = 0;
12385 	ret = do_check_common(env, 0);
12386 	if (!ret)
12387 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12388 	return ret;
12389 }
12390 
12391 
12392 static void print_verification_stats(struct bpf_verifier_env *env)
12393 {
12394 	int i;
12395 
12396 	if (env->log.level & BPF_LOG_STATS) {
12397 		verbose(env, "verification time %lld usec\n",
12398 			div_u64(env->verification_time, 1000));
12399 		verbose(env, "stack depth ");
12400 		for (i = 0; i < env->subprog_cnt; i++) {
12401 			u32 depth = env->subprog_info[i].stack_depth;
12402 
12403 			verbose(env, "%d", depth);
12404 			if (i + 1 < env->subprog_cnt)
12405 				verbose(env, "+");
12406 		}
12407 		verbose(env, "\n");
12408 	}
12409 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12410 		"total_states %d peak_states %d mark_read %d\n",
12411 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12412 		env->max_states_per_insn, env->total_states,
12413 		env->peak_states, env->longest_mark_read_walk);
12414 }
12415 
12416 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12417 {
12418 	const struct btf_type *t, *func_proto;
12419 	const struct bpf_struct_ops *st_ops;
12420 	const struct btf_member *member;
12421 	struct bpf_prog *prog = env->prog;
12422 	u32 btf_id, member_idx;
12423 	const char *mname;
12424 
12425 	btf_id = prog->aux->attach_btf_id;
12426 	st_ops = bpf_struct_ops_find(btf_id);
12427 	if (!st_ops) {
12428 		verbose(env, "attach_btf_id %u is not a supported struct\n",
12429 			btf_id);
12430 		return -ENOTSUPP;
12431 	}
12432 
12433 	t = st_ops->type;
12434 	member_idx = prog->expected_attach_type;
12435 	if (member_idx >= btf_type_vlen(t)) {
12436 		verbose(env, "attach to invalid member idx %u of struct %s\n",
12437 			member_idx, st_ops->name);
12438 		return -EINVAL;
12439 	}
12440 
12441 	member = &btf_type_member(t)[member_idx];
12442 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12443 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12444 					       NULL);
12445 	if (!func_proto) {
12446 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12447 			mname, member_idx, st_ops->name);
12448 		return -EINVAL;
12449 	}
12450 
12451 	if (st_ops->check_member) {
12452 		int err = st_ops->check_member(t, member);
12453 
12454 		if (err) {
12455 			verbose(env, "attach to unsupported member %s of struct %s\n",
12456 				mname, st_ops->name);
12457 			return err;
12458 		}
12459 	}
12460 
12461 	prog->aux->attach_func_proto = func_proto;
12462 	prog->aux->attach_func_name = mname;
12463 	env->ops = st_ops->verifier_ops;
12464 
12465 	return 0;
12466 }
12467 #define SECURITY_PREFIX "security_"
12468 
12469 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12470 {
12471 	if (within_error_injection_list(addr) ||
12472 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12473 		return 0;
12474 
12475 	return -EINVAL;
12476 }
12477 
12478 /* list of non-sleepable functions that are otherwise on
12479  * ALLOW_ERROR_INJECTION list
12480  */
12481 BTF_SET_START(btf_non_sleepable_error_inject)
12482 /* Three functions below can be called from sleepable and non-sleepable context.
12483  * Assume non-sleepable from bpf safety point of view.
12484  */
12485 BTF_ID(func, __add_to_page_cache_locked)
12486 BTF_ID(func, should_fail_alloc_page)
12487 BTF_ID(func, should_failslab)
12488 BTF_SET_END(btf_non_sleepable_error_inject)
12489 
12490 static int check_non_sleepable_error_inject(u32 btf_id)
12491 {
12492 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12493 }
12494 
12495 int bpf_check_attach_target(struct bpf_verifier_log *log,
12496 			    const struct bpf_prog *prog,
12497 			    const struct bpf_prog *tgt_prog,
12498 			    u32 btf_id,
12499 			    struct bpf_attach_target_info *tgt_info)
12500 {
12501 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12502 	const char prefix[] = "btf_trace_";
12503 	int ret = 0, subprog = -1, i;
12504 	const struct btf_type *t;
12505 	bool conservative = true;
12506 	const char *tname;
12507 	struct btf *btf;
12508 	long addr = 0;
12509 
12510 	if (!btf_id) {
12511 		bpf_log(log, "Tracing programs must provide btf_id\n");
12512 		return -EINVAL;
12513 	}
12514 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12515 	if (!btf) {
12516 		bpf_log(log,
12517 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12518 		return -EINVAL;
12519 	}
12520 	t = btf_type_by_id(btf, btf_id);
12521 	if (!t) {
12522 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12523 		return -EINVAL;
12524 	}
12525 	tname = btf_name_by_offset(btf, t->name_off);
12526 	if (!tname) {
12527 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12528 		return -EINVAL;
12529 	}
12530 	if (tgt_prog) {
12531 		struct bpf_prog_aux *aux = tgt_prog->aux;
12532 
12533 		for (i = 0; i < aux->func_info_cnt; i++)
12534 			if (aux->func_info[i].type_id == btf_id) {
12535 				subprog = i;
12536 				break;
12537 			}
12538 		if (subprog == -1) {
12539 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
12540 			return -EINVAL;
12541 		}
12542 		conservative = aux->func_info_aux[subprog].unreliable;
12543 		if (prog_extension) {
12544 			if (conservative) {
12545 				bpf_log(log,
12546 					"Cannot replace static functions\n");
12547 				return -EINVAL;
12548 			}
12549 			if (!prog->jit_requested) {
12550 				bpf_log(log,
12551 					"Extension programs should be JITed\n");
12552 				return -EINVAL;
12553 			}
12554 		}
12555 		if (!tgt_prog->jited) {
12556 			bpf_log(log, "Can attach to only JITed progs\n");
12557 			return -EINVAL;
12558 		}
12559 		if (tgt_prog->type == prog->type) {
12560 			/* Cannot fentry/fexit another fentry/fexit program.
12561 			 * Cannot attach program extension to another extension.
12562 			 * It's ok to attach fentry/fexit to extension program.
12563 			 */
12564 			bpf_log(log, "Cannot recursively attach\n");
12565 			return -EINVAL;
12566 		}
12567 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12568 		    prog_extension &&
12569 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12570 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12571 			/* Program extensions can extend all program types
12572 			 * except fentry/fexit. The reason is the following.
12573 			 * The fentry/fexit programs are used for performance
12574 			 * analysis, stats and can be attached to any program
12575 			 * type except themselves. When extension program is
12576 			 * replacing XDP function it is necessary to allow
12577 			 * performance analysis of all functions. Both original
12578 			 * XDP program and its program extension. Hence
12579 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12580 			 * allowed. If extending of fentry/fexit was allowed it
12581 			 * would be possible to create long call chain
12582 			 * fentry->extension->fentry->extension beyond
12583 			 * reasonable stack size. Hence extending fentry is not
12584 			 * allowed.
12585 			 */
12586 			bpf_log(log, "Cannot extend fentry/fexit\n");
12587 			return -EINVAL;
12588 		}
12589 	} else {
12590 		if (prog_extension) {
12591 			bpf_log(log, "Cannot replace kernel functions\n");
12592 			return -EINVAL;
12593 		}
12594 	}
12595 
12596 	switch (prog->expected_attach_type) {
12597 	case BPF_TRACE_RAW_TP:
12598 		if (tgt_prog) {
12599 			bpf_log(log,
12600 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12601 			return -EINVAL;
12602 		}
12603 		if (!btf_type_is_typedef(t)) {
12604 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
12605 				btf_id);
12606 			return -EINVAL;
12607 		}
12608 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12609 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12610 				btf_id, tname);
12611 			return -EINVAL;
12612 		}
12613 		tname += sizeof(prefix) - 1;
12614 		t = btf_type_by_id(btf, t->type);
12615 		if (!btf_type_is_ptr(t))
12616 			/* should never happen in valid vmlinux build */
12617 			return -EINVAL;
12618 		t = btf_type_by_id(btf, t->type);
12619 		if (!btf_type_is_func_proto(t))
12620 			/* should never happen in valid vmlinux build */
12621 			return -EINVAL;
12622 
12623 		break;
12624 	case BPF_TRACE_ITER:
12625 		if (!btf_type_is_func(t)) {
12626 			bpf_log(log, "attach_btf_id %u is not a function\n",
12627 				btf_id);
12628 			return -EINVAL;
12629 		}
12630 		t = btf_type_by_id(btf, t->type);
12631 		if (!btf_type_is_func_proto(t))
12632 			return -EINVAL;
12633 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12634 		if (ret)
12635 			return ret;
12636 		break;
12637 	default:
12638 		if (!prog_extension)
12639 			return -EINVAL;
12640 		fallthrough;
12641 	case BPF_MODIFY_RETURN:
12642 	case BPF_LSM_MAC:
12643 	case BPF_TRACE_FENTRY:
12644 	case BPF_TRACE_FEXIT:
12645 		if (!btf_type_is_func(t)) {
12646 			bpf_log(log, "attach_btf_id %u is not a function\n",
12647 				btf_id);
12648 			return -EINVAL;
12649 		}
12650 		if (prog_extension &&
12651 		    btf_check_type_match(log, prog, btf, t))
12652 			return -EINVAL;
12653 		t = btf_type_by_id(btf, t->type);
12654 		if (!btf_type_is_func_proto(t))
12655 			return -EINVAL;
12656 
12657 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12658 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12659 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12660 			return -EINVAL;
12661 
12662 		if (tgt_prog && conservative)
12663 			t = NULL;
12664 
12665 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12666 		if (ret < 0)
12667 			return ret;
12668 
12669 		if (tgt_prog) {
12670 			if (subprog == 0)
12671 				addr = (long) tgt_prog->bpf_func;
12672 			else
12673 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12674 		} else {
12675 			addr = kallsyms_lookup_name(tname);
12676 			if (!addr) {
12677 				bpf_log(log,
12678 					"The address of function %s cannot be found\n",
12679 					tname);
12680 				return -ENOENT;
12681 			}
12682 		}
12683 
12684 		if (prog->aux->sleepable) {
12685 			ret = -EINVAL;
12686 			switch (prog->type) {
12687 			case BPF_PROG_TYPE_TRACING:
12688 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
12689 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12690 				 */
12691 				if (!check_non_sleepable_error_inject(btf_id) &&
12692 				    within_error_injection_list(addr))
12693 					ret = 0;
12694 				break;
12695 			case BPF_PROG_TYPE_LSM:
12696 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
12697 				 * Only some of them are sleepable.
12698 				 */
12699 				if (bpf_lsm_is_sleepable_hook(btf_id))
12700 					ret = 0;
12701 				break;
12702 			default:
12703 				break;
12704 			}
12705 			if (ret) {
12706 				bpf_log(log, "%s is not sleepable\n", tname);
12707 				return ret;
12708 			}
12709 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12710 			if (tgt_prog) {
12711 				bpf_log(log, "can't modify return codes of BPF programs\n");
12712 				return -EINVAL;
12713 			}
12714 			ret = check_attach_modify_return(addr, tname);
12715 			if (ret) {
12716 				bpf_log(log, "%s() is not modifiable\n", tname);
12717 				return ret;
12718 			}
12719 		}
12720 
12721 		break;
12722 	}
12723 	tgt_info->tgt_addr = addr;
12724 	tgt_info->tgt_name = tname;
12725 	tgt_info->tgt_type = t;
12726 	return 0;
12727 }
12728 
12729 static int check_attach_btf_id(struct bpf_verifier_env *env)
12730 {
12731 	struct bpf_prog *prog = env->prog;
12732 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12733 	struct bpf_attach_target_info tgt_info = {};
12734 	u32 btf_id = prog->aux->attach_btf_id;
12735 	struct bpf_trampoline *tr;
12736 	int ret;
12737 	u64 key;
12738 
12739 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12740 	    prog->type != BPF_PROG_TYPE_LSM) {
12741 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12742 		return -EINVAL;
12743 	}
12744 
12745 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12746 		return check_struct_ops_btf_id(env);
12747 
12748 	if (prog->type != BPF_PROG_TYPE_TRACING &&
12749 	    prog->type != BPF_PROG_TYPE_LSM &&
12750 	    prog->type != BPF_PROG_TYPE_EXT)
12751 		return 0;
12752 
12753 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12754 	if (ret)
12755 		return ret;
12756 
12757 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12758 		/* to make freplace equivalent to their targets, they need to
12759 		 * inherit env->ops and expected_attach_type for the rest of the
12760 		 * verification
12761 		 */
12762 		env->ops = bpf_verifier_ops[tgt_prog->type];
12763 		prog->expected_attach_type = tgt_prog->expected_attach_type;
12764 	}
12765 
12766 	/* store info about the attachment target that will be used later */
12767 	prog->aux->attach_func_proto = tgt_info.tgt_type;
12768 	prog->aux->attach_func_name = tgt_info.tgt_name;
12769 
12770 	if (tgt_prog) {
12771 		prog->aux->saved_dst_prog_type = tgt_prog->type;
12772 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12773 	}
12774 
12775 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12776 		prog->aux->attach_btf_trace = true;
12777 		return 0;
12778 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12779 		if (!bpf_iter_prog_supported(prog))
12780 			return -EINVAL;
12781 		return 0;
12782 	}
12783 
12784 	if (prog->type == BPF_PROG_TYPE_LSM) {
12785 		ret = bpf_lsm_verify_prog(&env->log, prog);
12786 		if (ret < 0)
12787 			return ret;
12788 	}
12789 
12790 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12791 	tr = bpf_trampoline_get(key, &tgt_info);
12792 	if (!tr)
12793 		return -ENOMEM;
12794 
12795 	prog->aux->dst_trampoline = tr;
12796 	return 0;
12797 }
12798 
12799 struct btf *bpf_get_btf_vmlinux(void)
12800 {
12801 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12802 		mutex_lock(&bpf_verifier_lock);
12803 		if (!btf_vmlinux)
12804 			btf_vmlinux = btf_parse_vmlinux();
12805 		mutex_unlock(&bpf_verifier_lock);
12806 	}
12807 	return btf_vmlinux;
12808 }
12809 
12810 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12811 	      union bpf_attr __user *uattr)
12812 {
12813 	u64 start_time = ktime_get_ns();
12814 	struct bpf_verifier_env *env;
12815 	struct bpf_verifier_log *log;
12816 	int i, len, ret = -EINVAL;
12817 	bool is_priv;
12818 
12819 	/* no program is valid */
12820 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12821 		return -EINVAL;
12822 
12823 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
12824 	 * allocate/free it every time bpf_check() is called
12825 	 */
12826 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12827 	if (!env)
12828 		return -ENOMEM;
12829 	log = &env->log;
12830 
12831 	len = (*prog)->len;
12832 	env->insn_aux_data =
12833 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12834 	ret = -ENOMEM;
12835 	if (!env->insn_aux_data)
12836 		goto err_free_env;
12837 	for (i = 0; i < len; i++)
12838 		env->insn_aux_data[i].orig_idx = i;
12839 	env->prog = *prog;
12840 	env->ops = bpf_verifier_ops[env->prog->type];
12841 	is_priv = bpf_capable();
12842 
12843 	bpf_get_btf_vmlinux();
12844 
12845 	/* grab the mutex to protect few globals used by verifier */
12846 	if (!is_priv)
12847 		mutex_lock(&bpf_verifier_lock);
12848 
12849 	if (attr->log_level || attr->log_buf || attr->log_size) {
12850 		/* user requested verbose verifier output
12851 		 * and supplied buffer to store the verification trace
12852 		 */
12853 		log->level = attr->log_level;
12854 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12855 		log->len_total = attr->log_size;
12856 
12857 		ret = -EINVAL;
12858 		/* log attributes have to be sane */
12859 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12860 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12861 			goto err_unlock;
12862 	}
12863 
12864 	if (IS_ERR(btf_vmlinux)) {
12865 		/* Either gcc or pahole or kernel are broken. */
12866 		verbose(env, "in-kernel BTF is malformed\n");
12867 		ret = PTR_ERR(btf_vmlinux);
12868 		goto skip_full_check;
12869 	}
12870 
12871 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12872 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12873 		env->strict_alignment = true;
12874 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12875 		env->strict_alignment = false;
12876 
12877 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12878 	env->allow_uninit_stack = bpf_allow_uninit_stack();
12879 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12880 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12881 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12882 	env->bpf_capable = bpf_capable();
12883 
12884 	if (is_priv)
12885 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12886 
12887 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12888 		ret = bpf_prog_offload_verifier_prep(env->prog);
12889 		if (ret)
12890 			goto skip_full_check;
12891 	}
12892 
12893 	env->explored_states = kvcalloc(state_htab_size(env),
12894 				       sizeof(struct bpf_verifier_state_list *),
12895 				       GFP_USER);
12896 	ret = -ENOMEM;
12897 	if (!env->explored_states)
12898 		goto skip_full_check;
12899 
12900 	ret = check_subprogs(env);
12901 	if (ret < 0)
12902 		goto skip_full_check;
12903 
12904 	ret = check_btf_info(env, attr, uattr);
12905 	if (ret < 0)
12906 		goto skip_full_check;
12907 
12908 	ret = check_attach_btf_id(env);
12909 	if (ret)
12910 		goto skip_full_check;
12911 
12912 	ret = resolve_pseudo_ldimm64(env);
12913 	if (ret < 0)
12914 		goto skip_full_check;
12915 
12916 	ret = check_cfg(env);
12917 	if (ret < 0)
12918 		goto skip_full_check;
12919 
12920 	ret = do_check_subprogs(env);
12921 	ret = ret ?: do_check_main(env);
12922 
12923 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12924 		ret = bpf_prog_offload_finalize(env);
12925 
12926 skip_full_check:
12927 	kvfree(env->explored_states);
12928 
12929 	if (ret == 0)
12930 		ret = check_max_stack_depth(env);
12931 
12932 	/* instruction rewrites happen after this point */
12933 	if (is_priv) {
12934 		if (ret == 0)
12935 			opt_hard_wire_dead_code_branches(env);
12936 		if (ret == 0)
12937 			ret = opt_remove_dead_code(env);
12938 		if (ret == 0)
12939 			ret = opt_remove_nops(env);
12940 	} else {
12941 		if (ret == 0)
12942 			sanitize_dead_code(env);
12943 	}
12944 
12945 	if (ret == 0)
12946 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12947 		ret = convert_ctx_accesses(env);
12948 
12949 	if (ret == 0)
12950 		ret = do_misc_fixups(env);
12951 
12952 	/* do 32-bit optimization after insn patching has done so those patched
12953 	 * insns could be handled correctly.
12954 	 */
12955 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12956 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12957 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12958 								     : false;
12959 	}
12960 
12961 	if (ret == 0)
12962 		ret = fixup_call_args(env);
12963 
12964 	env->verification_time = ktime_get_ns() - start_time;
12965 	print_verification_stats(env);
12966 
12967 	if (log->level && bpf_verifier_log_full(log))
12968 		ret = -ENOSPC;
12969 	if (log->level && !log->ubuf) {
12970 		ret = -EFAULT;
12971 		goto err_release_maps;
12972 	}
12973 
12974 	if (ret)
12975 		goto err_release_maps;
12976 
12977 	if (env->used_map_cnt) {
12978 		/* if program passed verifier, update used_maps in bpf_prog_info */
12979 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12980 							  sizeof(env->used_maps[0]),
12981 							  GFP_KERNEL);
12982 
12983 		if (!env->prog->aux->used_maps) {
12984 			ret = -ENOMEM;
12985 			goto err_release_maps;
12986 		}
12987 
12988 		memcpy(env->prog->aux->used_maps, env->used_maps,
12989 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12990 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12991 	}
12992 	if (env->used_btf_cnt) {
12993 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
12994 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
12995 							  sizeof(env->used_btfs[0]),
12996 							  GFP_KERNEL);
12997 		if (!env->prog->aux->used_btfs) {
12998 			ret = -ENOMEM;
12999 			goto err_release_maps;
13000 		}
13001 
13002 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
13003 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13004 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13005 	}
13006 	if (env->used_map_cnt || env->used_btf_cnt) {
13007 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
13008 		 * bpf_ld_imm64 instructions
13009 		 */
13010 		convert_pseudo_ld_imm64(env);
13011 	}
13012 
13013 	adjust_btf_func(env);
13014 
13015 err_release_maps:
13016 	if (!env->prog->aux->used_maps)
13017 		/* if we didn't copy map pointers into bpf_prog_info, release
13018 		 * them now. Otherwise free_used_maps() will release them.
13019 		 */
13020 		release_maps(env);
13021 	if (!env->prog->aux->used_btfs)
13022 		release_btfs(env);
13023 
13024 	/* extension progs temporarily inherit the attach_type of their targets
13025 	   for verification purposes, so set it back to zero before returning
13026 	 */
13027 	if (env->prog->type == BPF_PROG_TYPE_EXT)
13028 		env->prog->expected_attach_type = 0;
13029 
13030 	*prog = env->prog;
13031 err_unlock:
13032 	if (!is_priv)
13033 		mutex_unlock(&bpf_verifier_lock);
13034 	vfree(env->insn_aux_data);
13035 err_free_env:
13036 	kfree(env);
13037 	return ret;
13038 }
13039