1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ptr_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL; 337 } 338 339 static bool type_is_refcounted(enum bpf_reg_type type) 340 { 341 return type == PTR_TO_SOCKET; 342 } 343 344 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 345 { 346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 347 } 348 349 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 350 { 351 return type_is_refcounted(reg->type); 352 } 353 354 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 355 { 356 return type_is_refcounted_or_null(reg->type); 357 } 358 359 static bool arg_type_is_refcounted(enum bpf_arg_type type) 360 { 361 return type == ARG_PTR_TO_SOCKET; 362 } 363 364 /* Determine whether the function releases some resources allocated by another 365 * function call. The first reference type argument will be assumed to be 366 * released by release_reference(). 367 */ 368 static bool is_release_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_release; 371 } 372 373 /* string representation of 'enum bpf_reg_type' */ 374 static const char * const reg_type_str[] = { 375 [NOT_INIT] = "?", 376 [SCALAR_VALUE] = "inv", 377 [PTR_TO_CTX] = "ctx", 378 [CONST_PTR_TO_MAP] = "map_ptr", 379 [PTR_TO_MAP_VALUE] = "map_value", 380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 381 [PTR_TO_STACK] = "fp", 382 [PTR_TO_PACKET] = "pkt", 383 [PTR_TO_PACKET_META] = "pkt_meta", 384 [PTR_TO_PACKET_END] = "pkt_end", 385 [PTR_TO_FLOW_KEYS] = "flow_keys", 386 [PTR_TO_SOCKET] = "sock", 387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 388 }; 389 390 static char slot_type_char[] = { 391 [STACK_INVALID] = '?', 392 [STACK_SPILL] = 'r', 393 [STACK_MISC] = 'm', 394 [STACK_ZERO] = '0', 395 }; 396 397 static void print_liveness(struct bpf_verifier_env *env, 398 enum bpf_reg_liveness live) 399 { 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 401 verbose(env, "_"); 402 if (live & REG_LIVE_READ) 403 verbose(env, "r"); 404 if (live & REG_LIVE_WRITTEN) 405 verbose(env, "w"); 406 if (live & REG_LIVE_DONE) 407 verbose(env, "D"); 408 } 409 410 static struct bpf_func_state *func(struct bpf_verifier_env *env, 411 const struct bpf_reg_state *reg) 412 { 413 struct bpf_verifier_state *cur = env->cur_state; 414 415 return cur->frame[reg->frameno]; 416 } 417 418 static void print_verifier_state(struct bpf_verifier_env *env, 419 const struct bpf_func_state *state) 420 { 421 const struct bpf_reg_state *reg; 422 enum bpf_reg_type t; 423 int i; 424 425 if (state->frameno) 426 verbose(env, " frame%d:", state->frameno); 427 for (i = 0; i < MAX_BPF_REG; i++) { 428 reg = &state->regs[i]; 429 t = reg->type; 430 if (t == NOT_INIT) 431 continue; 432 verbose(env, " R%d", i); 433 print_liveness(env, reg->live); 434 verbose(env, "=%s", reg_type_str[t]); 435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 436 tnum_is_const(reg->var_off)) { 437 /* reg->off should be 0 for SCALAR_VALUE */ 438 verbose(env, "%lld", reg->var_off.value + reg->off); 439 if (t == PTR_TO_STACK) 440 verbose(env, ",call_%d", func(env, reg)->callsite); 441 } else { 442 verbose(env, "(id=%d", reg->id); 443 if (t != SCALAR_VALUE) 444 verbose(env, ",off=%d", reg->off); 445 if (type_is_pkt_pointer(t)) 446 verbose(env, ",r=%d", reg->range); 447 else if (t == CONST_PTR_TO_MAP || 448 t == PTR_TO_MAP_VALUE || 449 t == PTR_TO_MAP_VALUE_OR_NULL) 450 verbose(env, ",ks=%d,vs=%d", 451 reg->map_ptr->key_size, 452 reg->map_ptr->value_size); 453 if (tnum_is_const(reg->var_off)) { 454 /* Typically an immediate SCALAR_VALUE, but 455 * could be a pointer whose offset is too big 456 * for reg->off 457 */ 458 verbose(env, ",imm=%llx", reg->var_off.value); 459 } else { 460 if (reg->smin_value != reg->umin_value && 461 reg->smin_value != S64_MIN) 462 verbose(env, ",smin_value=%lld", 463 (long long)reg->smin_value); 464 if (reg->smax_value != reg->umax_value && 465 reg->smax_value != S64_MAX) 466 verbose(env, ",smax_value=%lld", 467 (long long)reg->smax_value); 468 if (reg->umin_value != 0) 469 verbose(env, ",umin_value=%llu", 470 (unsigned long long)reg->umin_value); 471 if (reg->umax_value != U64_MAX) 472 verbose(env, ",umax_value=%llu", 473 (unsigned long long)reg->umax_value); 474 if (!tnum_is_unknown(reg->var_off)) { 475 char tn_buf[48]; 476 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 478 verbose(env, ",var_off=%s", tn_buf); 479 } 480 } 481 verbose(env, ")"); 482 } 483 } 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 485 char types_buf[BPF_REG_SIZE + 1]; 486 bool valid = false; 487 int j; 488 489 for (j = 0; j < BPF_REG_SIZE; j++) { 490 if (state->stack[i].slot_type[j] != STACK_INVALID) 491 valid = true; 492 types_buf[j] = slot_type_char[ 493 state->stack[i].slot_type[j]]; 494 } 495 types_buf[BPF_REG_SIZE] = 0; 496 if (!valid) 497 continue; 498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 499 print_liveness(env, state->stack[i].spilled_ptr.live); 500 if (state->stack[i].slot_type[0] == STACK_SPILL) 501 verbose(env, "=%s", 502 reg_type_str[state->stack[i].spilled_ptr.type]); 503 else 504 verbose(env, "=%s", types_buf); 505 } 506 if (state->acquired_refs && state->refs[0].id) { 507 verbose(env, " refs=%d", state->refs[0].id); 508 for (i = 1; i < state->acquired_refs; i++) 509 if (state->refs[i].id) 510 verbose(env, ",%d", state->refs[i].id); 511 } 512 verbose(env, "\n"); 513 } 514 515 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 516 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 517 const struct bpf_func_state *src) \ 518 { \ 519 if (!src->FIELD) \ 520 return 0; \ 521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 522 /* internal bug, make state invalid to reject the program */ \ 523 memset(dst, 0, sizeof(*dst)); \ 524 return -EFAULT; \ 525 } \ 526 memcpy(dst->FIELD, src->FIELD, \ 527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 528 return 0; \ 529 } 530 /* copy_reference_state() */ 531 COPY_STATE_FN(reference, acquired_refs, refs, 1) 532 /* copy_stack_state() */ 533 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 534 #undef COPY_STATE_FN 535 536 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 537 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 538 bool copy_old) \ 539 { \ 540 u32 old_size = state->COUNT; \ 541 struct bpf_##NAME##_state *new_##FIELD; \ 542 int slot = size / SIZE; \ 543 \ 544 if (size <= old_size || !size) { \ 545 if (copy_old) \ 546 return 0; \ 547 state->COUNT = slot * SIZE; \ 548 if (!size && old_size) { \ 549 kfree(state->FIELD); \ 550 state->FIELD = NULL; \ 551 } \ 552 return 0; \ 553 } \ 554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 555 GFP_KERNEL); \ 556 if (!new_##FIELD) \ 557 return -ENOMEM; \ 558 if (copy_old) { \ 559 if (state->FIELD) \ 560 memcpy(new_##FIELD, state->FIELD, \ 561 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 562 memset(new_##FIELD + old_size / SIZE, 0, \ 563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 564 } \ 565 state->COUNT = slot * SIZE; \ 566 kfree(state->FIELD); \ 567 state->FIELD = new_##FIELD; \ 568 return 0; \ 569 } 570 /* realloc_reference_state() */ 571 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 572 /* realloc_stack_state() */ 573 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 574 #undef REALLOC_STATE_FN 575 576 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 577 * make it consume minimal amount of memory. check_stack_write() access from 578 * the program calls into realloc_func_state() to grow the stack size. 579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 580 * which realloc_stack_state() copies over. It points to previous 581 * bpf_verifier_state which is never reallocated. 582 */ 583 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 584 int refs_size, bool copy_old) 585 { 586 int err = realloc_reference_state(state, refs_size, copy_old); 587 if (err) 588 return err; 589 return realloc_stack_state(state, stack_size, copy_old); 590 } 591 592 /* Acquire a pointer id from the env and update the state->refs to include 593 * this new pointer reference. 594 * On success, returns a valid pointer id to associate with the register 595 * On failure, returns a negative errno. 596 */ 597 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 598 { 599 struct bpf_func_state *state = cur_func(env); 600 int new_ofs = state->acquired_refs; 601 int id, err; 602 603 err = realloc_reference_state(state, state->acquired_refs + 1, true); 604 if (err) 605 return err; 606 id = ++env->id_gen; 607 state->refs[new_ofs].id = id; 608 state->refs[new_ofs].insn_idx = insn_idx; 609 610 return id; 611 } 612 613 /* release function corresponding to acquire_reference_state(). Idempotent. */ 614 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 615 { 616 int i, last_idx; 617 618 if (!ptr_id) 619 return -EFAULT; 620 621 last_idx = state->acquired_refs - 1; 622 for (i = 0; i < state->acquired_refs; i++) { 623 if (state->refs[i].id == ptr_id) { 624 if (last_idx && i != last_idx) 625 memcpy(&state->refs[i], &state->refs[last_idx], 626 sizeof(*state->refs)); 627 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 628 state->acquired_refs--; 629 return 0; 630 } 631 } 632 return -EFAULT; 633 } 634 635 /* variation on the above for cases where we expect that there must be an 636 * outstanding reference for the specified ptr_id. 637 */ 638 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 639 { 640 struct bpf_func_state *state = cur_func(env); 641 int err; 642 643 err = __release_reference_state(state, ptr_id); 644 if (WARN_ON_ONCE(err != 0)) 645 verbose(env, "verifier internal error: can't release reference\n"); 646 return err; 647 } 648 649 static int transfer_reference_state(struct bpf_func_state *dst, 650 struct bpf_func_state *src) 651 { 652 int err = realloc_reference_state(dst, src->acquired_refs, false); 653 if (err) 654 return err; 655 err = copy_reference_state(dst, src); 656 if (err) 657 return err; 658 return 0; 659 } 660 661 static void free_func_state(struct bpf_func_state *state) 662 { 663 if (!state) 664 return; 665 kfree(state->refs); 666 kfree(state->stack); 667 kfree(state); 668 } 669 670 static void free_verifier_state(struct bpf_verifier_state *state, 671 bool free_self) 672 { 673 int i; 674 675 for (i = 0; i <= state->curframe; i++) { 676 free_func_state(state->frame[i]); 677 state->frame[i] = NULL; 678 } 679 if (free_self) 680 kfree(state); 681 } 682 683 /* copy verifier state from src to dst growing dst stack space 684 * when necessary to accommodate larger src stack 685 */ 686 static int copy_func_state(struct bpf_func_state *dst, 687 const struct bpf_func_state *src) 688 { 689 int err; 690 691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 692 false); 693 if (err) 694 return err; 695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 696 err = copy_reference_state(dst, src); 697 if (err) 698 return err; 699 return copy_stack_state(dst, src); 700 } 701 702 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 703 const struct bpf_verifier_state *src) 704 { 705 struct bpf_func_state *dst; 706 int i, err; 707 708 /* if dst has more stack frames then src frame, free them */ 709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 710 free_func_state(dst_state->frame[i]); 711 dst_state->frame[i] = NULL; 712 } 713 dst_state->speculative = src->speculative; 714 dst_state->curframe = src->curframe; 715 for (i = 0; i <= src->curframe; i++) { 716 dst = dst_state->frame[i]; 717 if (!dst) { 718 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 719 if (!dst) 720 return -ENOMEM; 721 dst_state->frame[i] = dst; 722 } 723 err = copy_func_state(dst, src->frame[i]); 724 if (err) 725 return err; 726 } 727 return 0; 728 } 729 730 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 731 int *insn_idx) 732 { 733 struct bpf_verifier_state *cur = env->cur_state; 734 struct bpf_verifier_stack_elem *elem, *head = env->head; 735 int err; 736 737 if (env->head == NULL) 738 return -ENOENT; 739 740 if (cur) { 741 err = copy_verifier_state(cur, &head->st); 742 if (err) 743 return err; 744 } 745 if (insn_idx) 746 *insn_idx = head->insn_idx; 747 if (prev_insn_idx) 748 *prev_insn_idx = head->prev_insn_idx; 749 elem = head->next; 750 free_verifier_state(&head->st, false); 751 kfree(head); 752 env->head = elem; 753 env->stack_size--; 754 return 0; 755 } 756 757 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 758 int insn_idx, int prev_insn_idx, 759 bool speculative) 760 { 761 struct bpf_verifier_state *cur = env->cur_state; 762 struct bpf_verifier_stack_elem *elem; 763 int err; 764 765 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 766 if (!elem) 767 goto err; 768 769 elem->insn_idx = insn_idx; 770 elem->prev_insn_idx = prev_insn_idx; 771 elem->next = env->head; 772 env->head = elem; 773 env->stack_size++; 774 err = copy_verifier_state(&elem->st, cur); 775 if (err) 776 goto err; 777 elem->st.speculative |= speculative; 778 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 779 verbose(env, "BPF program is too complex\n"); 780 goto err; 781 } 782 return &elem->st; 783 err: 784 free_verifier_state(env->cur_state, true); 785 env->cur_state = NULL; 786 /* pop all elements and return */ 787 while (!pop_stack(env, NULL, NULL)); 788 return NULL; 789 } 790 791 #define CALLER_SAVED_REGS 6 792 static const int caller_saved[CALLER_SAVED_REGS] = { 793 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 794 }; 795 796 static void __mark_reg_not_init(struct bpf_reg_state *reg); 797 798 /* Mark the unknown part of a register (variable offset or scalar value) as 799 * known to have the value @imm. 800 */ 801 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 802 { 803 /* Clear id, off, and union(map_ptr, range) */ 804 memset(((u8 *)reg) + sizeof(reg->type), 0, 805 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 806 reg->var_off = tnum_const(imm); 807 reg->smin_value = (s64)imm; 808 reg->smax_value = (s64)imm; 809 reg->umin_value = imm; 810 reg->umax_value = imm; 811 } 812 813 /* Mark the 'variable offset' part of a register as zero. This should be 814 * used only on registers holding a pointer type. 815 */ 816 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 817 { 818 __mark_reg_known(reg, 0); 819 } 820 821 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 822 { 823 __mark_reg_known(reg, 0); 824 reg->type = SCALAR_VALUE; 825 } 826 827 static void mark_reg_known_zero(struct bpf_verifier_env *env, 828 struct bpf_reg_state *regs, u32 regno) 829 { 830 if (WARN_ON(regno >= MAX_BPF_REG)) { 831 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 832 /* Something bad happened, let's kill all regs */ 833 for (regno = 0; regno < MAX_BPF_REG; regno++) 834 __mark_reg_not_init(regs + regno); 835 return; 836 } 837 __mark_reg_known_zero(regs + regno); 838 } 839 840 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 841 { 842 return type_is_pkt_pointer(reg->type); 843 } 844 845 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 846 { 847 return reg_is_pkt_pointer(reg) || 848 reg->type == PTR_TO_PACKET_END; 849 } 850 851 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 852 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 853 enum bpf_reg_type which) 854 { 855 /* The register can already have a range from prior markings. 856 * This is fine as long as it hasn't been advanced from its 857 * origin. 858 */ 859 return reg->type == which && 860 reg->id == 0 && 861 reg->off == 0 && 862 tnum_equals_const(reg->var_off, 0); 863 } 864 865 /* Attempts to improve min/max values based on var_off information */ 866 static void __update_reg_bounds(struct bpf_reg_state *reg) 867 { 868 /* min signed is max(sign bit) | min(other bits) */ 869 reg->smin_value = max_t(s64, reg->smin_value, 870 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 871 /* max signed is min(sign bit) | max(other bits) */ 872 reg->smax_value = min_t(s64, reg->smax_value, 873 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 874 reg->umin_value = max(reg->umin_value, reg->var_off.value); 875 reg->umax_value = min(reg->umax_value, 876 reg->var_off.value | reg->var_off.mask); 877 } 878 879 /* Uses signed min/max values to inform unsigned, and vice-versa */ 880 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 881 { 882 /* Learn sign from signed bounds. 883 * If we cannot cross the sign boundary, then signed and unsigned bounds 884 * are the same, so combine. This works even in the negative case, e.g. 885 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 886 */ 887 if (reg->smin_value >= 0 || reg->smax_value < 0) { 888 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 889 reg->umin_value); 890 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 891 reg->umax_value); 892 return; 893 } 894 /* Learn sign from unsigned bounds. Signed bounds cross the sign 895 * boundary, so we must be careful. 896 */ 897 if ((s64)reg->umax_value >= 0) { 898 /* Positive. We can't learn anything from the smin, but smax 899 * is positive, hence safe. 900 */ 901 reg->smin_value = reg->umin_value; 902 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 903 reg->umax_value); 904 } else if ((s64)reg->umin_value < 0) { 905 /* Negative. We can't learn anything from the smax, but smin 906 * is negative, hence safe. 907 */ 908 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 909 reg->umin_value); 910 reg->smax_value = reg->umax_value; 911 } 912 } 913 914 /* Attempts to improve var_off based on unsigned min/max information */ 915 static void __reg_bound_offset(struct bpf_reg_state *reg) 916 { 917 reg->var_off = tnum_intersect(reg->var_off, 918 tnum_range(reg->umin_value, 919 reg->umax_value)); 920 } 921 922 /* Reset the min/max bounds of a register */ 923 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 924 { 925 reg->smin_value = S64_MIN; 926 reg->smax_value = S64_MAX; 927 reg->umin_value = 0; 928 reg->umax_value = U64_MAX; 929 } 930 931 /* Mark a register as having a completely unknown (scalar) value. */ 932 static void __mark_reg_unknown(struct bpf_reg_state *reg) 933 { 934 /* 935 * Clear type, id, off, and union(map_ptr, range) and 936 * padding between 'type' and union 937 */ 938 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 939 reg->type = SCALAR_VALUE; 940 reg->var_off = tnum_unknown; 941 reg->frameno = 0; 942 __mark_reg_unbounded(reg); 943 } 944 945 static void mark_reg_unknown(struct bpf_verifier_env *env, 946 struct bpf_reg_state *regs, u32 regno) 947 { 948 if (WARN_ON(regno >= MAX_BPF_REG)) { 949 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 950 /* Something bad happened, let's kill all regs except FP */ 951 for (regno = 0; regno < BPF_REG_FP; regno++) 952 __mark_reg_not_init(regs + regno); 953 return; 954 } 955 __mark_reg_unknown(regs + regno); 956 } 957 958 static void __mark_reg_not_init(struct bpf_reg_state *reg) 959 { 960 __mark_reg_unknown(reg); 961 reg->type = NOT_INIT; 962 } 963 964 static void mark_reg_not_init(struct bpf_verifier_env *env, 965 struct bpf_reg_state *regs, u32 regno) 966 { 967 if (WARN_ON(regno >= MAX_BPF_REG)) { 968 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 969 /* Something bad happened, let's kill all regs except FP */ 970 for (regno = 0; regno < BPF_REG_FP; regno++) 971 __mark_reg_not_init(regs + regno); 972 return; 973 } 974 __mark_reg_not_init(regs + regno); 975 } 976 977 static void init_reg_state(struct bpf_verifier_env *env, 978 struct bpf_func_state *state) 979 { 980 struct bpf_reg_state *regs = state->regs; 981 int i; 982 983 for (i = 0; i < MAX_BPF_REG; i++) { 984 mark_reg_not_init(env, regs, i); 985 regs[i].live = REG_LIVE_NONE; 986 regs[i].parent = NULL; 987 } 988 989 /* frame pointer */ 990 regs[BPF_REG_FP].type = PTR_TO_STACK; 991 mark_reg_known_zero(env, regs, BPF_REG_FP); 992 regs[BPF_REG_FP].frameno = state->frameno; 993 994 /* 1st arg to a function */ 995 regs[BPF_REG_1].type = PTR_TO_CTX; 996 mark_reg_known_zero(env, regs, BPF_REG_1); 997 } 998 999 #define BPF_MAIN_FUNC (-1) 1000 static void init_func_state(struct bpf_verifier_env *env, 1001 struct bpf_func_state *state, 1002 int callsite, int frameno, int subprogno) 1003 { 1004 state->callsite = callsite; 1005 state->frameno = frameno; 1006 state->subprogno = subprogno; 1007 init_reg_state(env, state); 1008 } 1009 1010 enum reg_arg_type { 1011 SRC_OP, /* register is used as source operand */ 1012 DST_OP, /* register is used as destination operand */ 1013 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1014 }; 1015 1016 static int cmp_subprogs(const void *a, const void *b) 1017 { 1018 return ((struct bpf_subprog_info *)a)->start - 1019 ((struct bpf_subprog_info *)b)->start; 1020 } 1021 1022 static int find_subprog(struct bpf_verifier_env *env, int off) 1023 { 1024 struct bpf_subprog_info *p; 1025 1026 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1027 sizeof(env->subprog_info[0]), cmp_subprogs); 1028 if (!p) 1029 return -ENOENT; 1030 return p - env->subprog_info; 1031 1032 } 1033 1034 static int add_subprog(struct bpf_verifier_env *env, int off) 1035 { 1036 int insn_cnt = env->prog->len; 1037 int ret; 1038 1039 if (off >= insn_cnt || off < 0) { 1040 verbose(env, "call to invalid destination\n"); 1041 return -EINVAL; 1042 } 1043 ret = find_subprog(env, off); 1044 if (ret >= 0) 1045 return 0; 1046 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1047 verbose(env, "too many subprograms\n"); 1048 return -E2BIG; 1049 } 1050 env->subprog_info[env->subprog_cnt++].start = off; 1051 sort(env->subprog_info, env->subprog_cnt, 1052 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1053 return 0; 1054 } 1055 1056 static int check_subprogs(struct bpf_verifier_env *env) 1057 { 1058 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1059 struct bpf_subprog_info *subprog = env->subprog_info; 1060 struct bpf_insn *insn = env->prog->insnsi; 1061 int insn_cnt = env->prog->len; 1062 1063 /* Add entry function. */ 1064 ret = add_subprog(env, 0); 1065 if (ret < 0) 1066 return ret; 1067 1068 /* determine subprog starts. The end is one before the next starts */ 1069 for (i = 0; i < insn_cnt; i++) { 1070 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1071 continue; 1072 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1073 continue; 1074 if (!env->allow_ptr_leaks) { 1075 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1076 return -EPERM; 1077 } 1078 ret = add_subprog(env, i + insn[i].imm + 1); 1079 if (ret < 0) 1080 return ret; 1081 } 1082 1083 /* Add a fake 'exit' subprog which could simplify subprog iteration 1084 * logic. 'subprog_cnt' should not be increased. 1085 */ 1086 subprog[env->subprog_cnt].start = insn_cnt; 1087 1088 if (env->log.level > 1) 1089 for (i = 0; i < env->subprog_cnt; i++) 1090 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1091 1092 /* now check that all jumps are within the same subprog */ 1093 subprog_start = subprog[cur_subprog].start; 1094 subprog_end = subprog[cur_subprog + 1].start; 1095 for (i = 0; i < insn_cnt; i++) { 1096 u8 code = insn[i].code; 1097 1098 if (BPF_CLASS(code) != BPF_JMP) 1099 goto next; 1100 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1101 goto next; 1102 off = i + insn[i].off + 1; 1103 if (off < subprog_start || off >= subprog_end) { 1104 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1105 return -EINVAL; 1106 } 1107 next: 1108 if (i == subprog_end - 1) { 1109 /* to avoid fall-through from one subprog into another 1110 * the last insn of the subprog should be either exit 1111 * or unconditional jump back 1112 */ 1113 if (code != (BPF_JMP | BPF_EXIT) && 1114 code != (BPF_JMP | BPF_JA)) { 1115 verbose(env, "last insn is not an exit or jmp\n"); 1116 return -EINVAL; 1117 } 1118 subprog_start = subprog_end; 1119 cur_subprog++; 1120 if (cur_subprog < env->subprog_cnt) 1121 subprog_end = subprog[cur_subprog + 1].start; 1122 } 1123 } 1124 return 0; 1125 } 1126 1127 /* Parentage chain of this register (or stack slot) should take care of all 1128 * issues like callee-saved registers, stack slot allocation time, etc. 1129 */ 1130 static int mark_reg_read(struct bpf_verifier_env *env, 1131 const struct bpf_reg_state *state, 1132 struct bpf_reg_state *parent) 1133 { 1134 bool writes = parent == state->parent; /* Observe write marks */ 1135 1136 while (parent) { 1137 /* if read wasn't screened by an earlier write ... */ 1138 if (writes && state->live & REG_LIVE_WRITTEN) 1139 break; 1140 if (parent->live & REG_LIVE_DONE) { 1141 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1142 reg_type_str[parent->type], 1143 parent->var_off.value, parent->off); 1144 return -EFAULT; 1145 } 1146 /* ... then we depend on parent's value */ 1147 parent->live |= REG_LIVE_READ; 1148 state = parent; 1149 parent = state->parent; 1150 writes = true; 1151 } 1152 return 0; 1153 } 1154 1155 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1156 enum reg_arg_type t) 1157 { 1158 struct bpf_verifier_state *vstate = env->cur_state; 1159 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1160 struct bpf_reg_state *regs = state->regs; 1161 1162 if (regno >= MAX_BPF_REG) { 1163 verbose(env, "R%d is invalid\n", regno); 1164 return -EINVAL; 1165 } 1166 1167 if (t == SRC_OP) { 1168 /* check whether register used as source operand can be read */ 1169 if (regs[regno].type == NOT_INIT) { 1170 verbose(env, "R%d !read_ok\n", regno); 1171 return -EACCES; 1172 } 1173 /* We don't need to worry about FP liveness because it's read-only */ 1174 if (regno != BPF_REG_FP) 1175 return mark_reg_read(env, ®s[regno], 1176 regs[regno].parent); 1177 } else { 1178 /* check whether register used as dest operand can be written to */ 1179 if (regno == BPF_REG_FP) { 1180 verbose(env, "frame pointer is read only\n"); 1181 return -EACCES; 1182 } 1183 regs[regno].live |= REG_LIVE_WRITTEN; 1184 if (t == DST_OP) 1185 mark_reg_unknown(env, regs, regno); 1186 } 1187 return 0; 1188 } 1189 1190 static bool is_spillable_regtype(enum bpf_reg_type type) 1191 { 1192 switch (type) { 1193 case PTR_TO_MAP_VALUE: 1194 case PTR_TO_MAP_VALUE_OR_NULL: 1195 case PTR_TO_STACK: 1196 case PTR_TO_CTX: 1197 case PTR_TO_PACKET: 1198 case PTR_TO_PACKET_META: 1199 case PTR_TO_PACKET_END: 1200 case PTR_TO_FLOW_KEYS: 1201 case CONST_PTR_TO_MAP: 1202 case PTR_TO_SOCKET: 1203 case PTR_TO_SOCKET_OR_NULL: 1204 return true; 1205 default: 1206 return false; 1207 } 1208 } 1209 1210 /* Does this register contain a constant zero? */ 1211 static bool register_is_null(struct bpf_reg_state *reg) 1212 { 1213 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1214 } 1215 1216 /* check_stack_read/write functions track spill/fill of registers, 1217 * stack boundary and alignment are checked in check_mem_access() 1218 */ 1219 static int check_stack_write(struct bpf_verifier_env *env, 1220 struct bpf_func_state *state, /* func where register points to */ 1221 int off, int size, int value_regno, int insn_idx) 1222 { 1223 struct bpf_func_state *cur; /* state of the current function */ 1224 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1225 enum bpf_reg_type type; 1226 1227 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1228 state->acquired_refs, true); 1229 if (err) 1230 return err; 1231 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1232 * so it's aligned access and [off, off + size) are within stack limits 1233 */ 1234 if (!env->allow_ptr_leaks && 1235 state->stack[spi].slot_type[0] == STACK_SPILL && 1236 size != BPF_REG_SIZE) { 1237 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1238 return -EACCES; 1239 } 1240 1241 cur = env->cur_state->frame[env->cur_state->curframe]; 1242 if (value_regno >= 0 && 1243 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1244 1245 /* register containing pointer is being spilled into stack */ 1246 if (size != BPF_REG_SIZE) { 1247 verbose(env, "invalid size of register spill\n"); 1248 return -EACCES; 1249 } 1250 1251 if (state != cur && type == PTR_TO_STACK) { 1252 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1253 return -EINVAL; 1254 } 1255 1256 /* save register state */ 1257 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1258 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1259 1260 for (i = 0; i < BPF_REG_SIZE; i++) { 1261 if (state->stack[spi].slot_type[i] == STACK_MISC && 1262 !env->allow_ptr_leaks) { 1263 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1264 int soff = (-spi - 1) * BPF_REG_SIZE; 1265 1266 /* detected reuse of integer stack slot with a pointer 1267 * which means either llvm is reusing stack slot or 1268 * an attacker is trying to exploit CVE-2018-3639 1269 * (speculative store bypass) 1270 * Have to sanitize that slot with preemptive 1271 * store of zero. 1272 */ 1273 if (*poff && *poff != soff) { 1274 /* disallow programs where single insn stores 1275 * into two different stack slots, since verifier 1276 * cannot sanitize them 1277 */ 1278 verbose(env, 1279 "insn %d cannot access two stack slots fp%d and fp%d", 1280 insn_idx, *poff, soff); 1281 return -EINVAL; 1282 } 1283 *poff = soff; 1284 } 1285 state->stack[spi].slot_type[i] = STACK_SPILL; 1286 } 1287 } else { 1288 u8 type = STACK_MISC; 1289 1290 /* regular write of data into stack destroys any spilled ptr */ 1291 state->stack[spi].spilled_ptr.type = NOT_INIT; 1292 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1293 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1294 for (i = 0; i < BPF_REG_SIZE; i++) 1295 state->stack[spi].slot_type[i] = STACK_MISC; 1296 1297 /* only mark the slot as written if all 8 bytes were written 1298 * otherwise read propagation may incorrectly stop too soon 1299 * when stack slots are partially written. 1300 * This heuristic means that read propagation will be 1301 * conservative, since it will add reg_live_read marks 1302 * to stack slots all the way to first state when programs 1303 * writes+reads less than 8 bytes 1304 */ 1305 if (size == BPF_REG_SIZE) 1306 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1307 1308 /* when we zero initialize stack slots mark them as such */ 1309 if (value_regno >= 0 && 1310 register_is_null(&cur->regs[value_regno])) 1311 type = STACK_ZERO; 1312 1313 /* Mark slots affected by this stack write. */ 1314 for (i = 0; i < size; i++) 1315 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1316 type; 1317 } 1318 return 0; 1319 } 1320 1321 static int check_stack_read(struct bpf_verifier_env *env, 1322 struct bpf_func_state *reg_state /* func where register points to */, 1323 int off, int size, int value_regno) 1324 { 1325 struct bpf_verifier_state *vstate = env->cur_state; 1326 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1327 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1328 u8 *stype; 1329 1330 if (reg_state->allocated_stack <= slot) { 1331 verbose(env, "invalid read from stack off %d+0 size %d\n", 1332 off, size); 1333 return -EACCES; 1334 } 1335 stype = reg_state->stack[spi].slot_type; 1336 1337 if (stype[0] == STACK_SPILL) { 1338 if (size != BPF_REG_SIZE) { 1339 verbose(env, "invalid size of register spill\n"); 1340 return -EACCES; 1341 } 1342 for (i = 1; i < BPF_REG_SIZE; i++) { 1343 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1344 verbose(env, "corrupted spill memory\n"); 1345 return -EACCES; 1346 } 1347 } 1348 1349 if (value_regno >= 0) { 1350 /* restore register state from stack */ 1351 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1352 /* mark reg as written since spilled pointer state likely 1353 * has its liveness marks cleared by is_state_visited() 1354 * which resets stack/reg liveness for state transitions 1355 */ 1356 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1357 } 1358 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1359 reg_state->stack[spi].spilled_ptr.parent); 1360 return 0; 1361 } else { 1362 int zeros = 0; 1363 1364 for (i = 0; i < size; i++) { 1365 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1366 continue; 1367 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1368 zeros++; 1369 continue; 1370 } 1371 verbose(env, "invalid read from stack off %d+%d size %d\n", 1372 off, i, size); 1373 return -EACCES; 1374 } 1375 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1376 reg_state->stack[spi].spilled_ptr.parent); 1377 if (value_regno >= 0) { 1378 if (zeros == size) { 1379 /* any size read into register is zero extended, 1380 * so the whole register == const_zero 1381 */ 1382 __mark_reg_const_zero(&state->regs[value_regno]); 1383 } else { 1384 /* have read misc data from the stack */ 1385 mark_reg_unknown(env, state->regs, value_regno); 1386 } 1387 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1388 } 1389 return 0; 1390 } 1391 } 1392 1393 static int check_stack_access(struct bpf_verifier_env *env, 1394 const struct bpf_reg_state *reg, 1395 int off, int size) 1396 { 1397 /* Stack accesses must be at a fixed offset, so that we 1398 * can determine what type of data were returned. See 1399 * check_stack_read(). 1400 */ 1401 if (!tnum_is_const(reg->var_off)) { 1402 char tn_buf[48]; 1403 1404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1405 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1406 tn_buf, off, size); 1407 return -EACCES; 1408 } 1409 1410 if (off >= 0 || off < -MAX_BPF_STACK) { 1411 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1412 return -EACCES; 1413 } 1414 1415 return 0; 1416 } 1417 1418 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1419 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1420 int size, bool zero_size_allowed) 1421 { 1422 struct bpf_reg_state *regs = cur_regs(env); 1423 struct bpf_map *map = regs[regno].map_ptr; 1424 1425 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1426 off + size > map->value_size) { 1427 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1428 map->value_size, off, size); 1429 return -EACCES; 1430 } 1431 return 0; 1432 } 1433 1434 /* check read/write into a map element with possible variable offset */ 1435 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1436 int off, int size, bool zero_size_allowed) 1437 { 1438 struct bpf_verifier_state *vstate = env->cur_state; 1439 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1440 struct bpf_reg_state *reg = &state->regs[regno]; 1441 int err; 1442 1443 /* We may have adjusted the register to this map value, so we 1444 * need to try adding each of min_value and max_value to off 1445 * to make sure our theoretical access will be safe. 1446 */ 1447 if (env->log.level) 1448 print_verifier_state(env, state); 1449 1450 /* The minimum value is only important with signed 1451 * comparisons where we can't assume the floor of a 1452 * value is 0. If we are using signed variables for our 1453 * index'es we need to make sure that whatever we use 1454 * will have a set floor within our range. 1455 */ 1456 if (reg->smin_value < 0 && 1457 (reg->smin_value == S64_MIN || 1458 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1459 reg->smin_value + off < 0)) { 1460 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1461 regno); 1462 return -EACCES; 1463 } 1464 err = __check_map_access(env, regno, reg->smin_value + off, size, 1465 zero_size_allowed); 1466 if (err) { 1467 verbose(env, "R%d min value is outside of the array range\n", 1468 regno); 1469 return err; 1470 } 1471 1472 /* If we haven't set a max value then we need to bail since we can't be 1473 * sure we won't do bad things. 1474 * If reg->umax_value + off could overflow, treat that as unbounded too. 1475 */ 1476 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1477 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1478 regno); 1479 return -EACCES; 1480 } 1481 err = __check_map_access(env, regno, reg->umax_value + off, size, 1482 zero_size_allowed); 1483 if (err) 1484 verbose(env, "R%d max value is outside of the array range\n", 1485 regno); 1486 return err; 1487 } 1488 1489 #define MAX_PACKET_OFF 0xffff 1490 1491 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1492 const struct bpf_call_arg_meta *meta, 1493 enum bpf_access_type t) 1494 { 1495 switch (env->prog->type) { 1496 /* Program types only with direct read access go here! */ 1497 case BPF_PROG_TYPE_LWT_IN: 1498 case BPF_PROG_TYPE_LWT_OUT: 1499 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1500 case BPF_PROG_TYPE_SK_REUSEPORT: 1501 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1502 case BPF_PROG_TYPE_CGROUP_SKB: 1503 if (t == BPF_WRITE) 1504 return false; 1505 /* fallthrough */ 1506 1507 /* Program types with direct read + write access go here! */ 1508 case BPF_PROG_TYPE_SCHED_CLS: 1509 case BPF_PROG_TYPE_SCHED_ACT: 1510 case BPF_PROG_TYPE_XDP: 1511 case BPF_PROG_TYPE_LWT_XMIT: 1512 case BPF_PROG_TYPE_SK_SKB: 1513 case BPF_PROG_TYPE_SK_MSG: 1514 if (meta) 1515 return meta->pkt_access; 1516 1517 env->seen_direct_write = true; 1518 return true; 1519 default: 1520 return false; 1521 } 1522 } 1523 1524 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1525 int off, int size, bool zero_size_allowed) 1526 { 1527 struct bpf_reg_state *regs = cur_regs(env); 1528 struct bpf_reg_state *reg = ®s[regno]; 1529 1530 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1531 (u64)off + size > reg->range) { 1532 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1533 off, size, regno, reg->id, reg->off, reg->range); 1534 return -EACCES; 1535 } 1536 return 0; 1537 } 1538 1539 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1540 int size, bool zero_size_allowed) 1541 { 1542 struct bpf_reg_state *regs = cur_regs(env); 1543 struct bpf_reg_state *reg = ®s[regno]; 1544 int err; 1545 1546 /* We may have added a variable offset to the packet pointer; but any 1547 * reg->range we have comes after that. We are only checking the fixed 1548 * offset. 1549 */ 1550 1551 /* We don't allow negative numbers, because we aren't tracking enough 1552 * detail to prove they're safe. 1553 */ 1554 if (reg->smin_value < 0) { 1555 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1556 regno); 1557 return -EACCES; 1558 } 1559 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1560 if (err) { 1561 verbose(env, "R%d offset is outside of the packet\n", regno); 1562 return err; 1563 } 1564 1565 /* __check_packet_access has made sure "off + size - 1" is within u16. 1566 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1567 * otherwise find_good_pkt_pointers would have refused to set range info 1568 * that __check_packet_access would have rejected this pkt access. 1569 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1570 */ 1571 env->prog->aux->max_pkt_offset = 1572 max_t(u32, env->prog->aux->max_pkt_offset, 1573 off + reg->umax_value + size - 1); 1574 1575 return err; 1576 } 1577 1578 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1579 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1580 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1581 { 1582 struct bpf_insn_access_aux info = { 1583 .reg_type = *reg_type, 1584 }; 1585 1586 if (env->ops->is_valid_access && 1587 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1588 /* A non zero info.ctx_field_size indicates that this field is a 1589 * candidate for later verifier transformation to load the whole 1590 * field and then apply a mask when accessed with a narrower 1591 * access than actual ctx access size. A zero info.ctx_field_size 1592 * will only allow for whole field access and rejects any other 1593 * type of narrower access. 1594 */ 1595 *reg_type = info.reg_type; 1596 1597 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1598 /* remember the offset of last byte accessed in ctx */ 1599 if (env->prog->aux->max_ctx_offset < off + size) 1600 env->prog->aux->max_ctx_offset = off + size; 1601 return 0; 1602 } 1603 1604 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1605 return -EACCES; 1606 } 1607 1608 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1609 int size) 1610 { 1611 if (size < 0 || off < 0 || 1612 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1613 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1614 off, size); 1615 return -EACCES; 1616 } 1617 return 0; 1618 } 1619 1620 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 1621 u32 regno, int off, int size, 1622 enum bpf_access_type t) 1623 { 1624 struct bpf_reg_state *regs = cur_regs(env); 1625 struct bpf_reg_state *reg = ®s[regno]; 1626 struct bpf_insn_access_aux info = {}; 1627 1628 if (reg->smin_value < 0) { 1629 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1630 regno); 1631 return -EACCES; 1632 } 1633 1634 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1635 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1636 off, size); 1637 return -EACCES; 1638 } 1639 1640 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1641 1642 return 0; 1643 } 1644 1645 static bool __is_pointer_value(bool allow_ptr_leaks, 1646 const struct bpf_reg_state *reg) 1647 { 1648 if (allow_ptr_leaks) 1649 return false; 1650 1651 return reg->type != SCALAR_VALUE; 1652 } 1653 1654 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1655 { 1656 return cur_regs(env) + regno; 1657 } 1658 1659 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1660 { 1661 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1662 } 1663 1664 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1665 { 1666 const struct bpf_reg_state *reg = reg_state(env, regno); 1667 1668 return reg->type == PTR_TO_CTX || 1669 reg->type == PTR_TO_SOCKET; 1670 } 1671 1672 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1673 { 1674 const struct bpf_reg_state *reg = reg_state(env, regno); 1675 1676 return type_is_pkt_pointer(reg->type); 1677 } 1678 1679 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1680 { 1681 const struct bpf_reg_state *reg = reg_state(env, regno); 1682 1683 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1684 return reg->type == PTR_TO_FLOW_KEYS; 1685 } 1686 1687 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1688 const struct bpf_reg_state *reg, 1689 int off, int size, bool strict) 1690 { 1691 struct tnum reg_off; 1692 int ip_align; 1693 1694 /* Byte size accesses are always allowed. */ 1695 if (!strict || size == 1) 1696 return 0; 1697 1698 /* For platforms that do not have a Kconfig enabling 1699 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1700 * NET_IP_ALIGN is universally set to '2'. And on platforms 1701 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1702 * to this code only in strict mode where we want to emulate 1703 * the NET_IP_ALIGN==2 checking. Therefore use an 1704 * unconditional IP align value of '2'. 1705 */ 1706 ip_align = 2; 1707 1708 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1709 if (!tnum_is_aligned(reg_off, size)) { 1710 char tn_buf[48]; 1711 1712 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1713 verbose(env, 1714 "misaligned packet access off %d+%s+%d+%d size %d\n", 1715 ip_align, tn_buf, reg->off, off, size); 1716 return -EACCES; 1717 } 1718 1719 return 0; 1720 } 1721 1722 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1723 const struct bpf_reg_state *reg, 1724 const char *pointer_desc, 1725 int off, int size, bool strict) 1726 { 1727 struct tnum reg_off; 1728 1729 /* Byte size accesses are always allowed. */ 1730 if (!strict || size == 1) 1731 return 0; 1732 1733 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1734 if (!tnum_is_aligned(reg_off, size)) { 1735 char tn_buf[48]; 1736 1737 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1738 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1739 pointer_desc, tn_buf, reg->off, off, size); 1740 return -EACCES; 1741 } 1742 1743 return 0; 1744 } 1745 1746 static int check_ptr_alignment(struct bpf_verifier_env *env, 1747 const struct bpf_reg_state *reg, int off, 1748 int size, bool strict_alignment_once) 1749 { 1750 bool strict = env->strict_alignment || strict_alignment_once; 1751 const char *pointer_desc = ""; 1752 1753 switch (reg->type) { 1754 case PTR_TO_PACKET: 1755 case PTR_TO_PACKET_META: 1756 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1757 * right in front, treat it the very same way. 1758 */ 1759 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1760 case PTR_TO_FLOW_KEYS: 1761 pointer_desc = "flow keys "; 1762 break; 1763 case PTR_TO_MAP_VALUE: 1764 pointer_desc = "value "; 1765 break; 1766 case PTR_TO_CTX: 1767 pointer_desc = "context "; 1768 break; 1769 case PTR_TO_STACK: 1770 pointer_desc = "stack "; 1771 /* The stack spill tracking logic in check_stack_write() 1772 * and check_stack_read() relies on stack accesses being 1773 * aligned. 1774 */ 1775 strict = true; 1776 break; 1777 case PTR_TO_SOCKET: 1778 pointer_desc = "sock "; 1779 break; 1780 default: 1781 break; 1782 } 1783 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1784 strict); 1785 } 1786 1787 static int update_stack_depth(struct bpf_verifier_env *env, 1788 const struct bpf_func_state *func, 1789 int off) 1790 { 1791 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1792 1793 if (stack >= -off) 1794 return 0; 1795 1796 /* update known max for given subprogram */ 1797 env->subprog_info[func->subprogno].stack_depth = -off; 1798 return 0; 1799 } 1800 1801 /* starting from main bpf function walk all instructions of the function 1802 * and recursively walk all callees that given function can call. 1803 * Ignore jump and exit insns. 1804 * Since recursion is prevented by check_cfg() this algorithm 1805 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1806 */ 1807 static int check_max_stack_depth(struct bpf_verifier_env *env) 1808 { 1809 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1810 struct bpf_subprog_info *subprog = env->subprog_info; 1811 struct bpf_insn *insn = env->prog->insnsi; 1812 int ret_insn[MAX_CALL_FRAMES]; 1813 int ret_prog[MAX_CALL_FRAMES]; 1814 1815 process_func: 1816 /* round up to 32-bytes, since this is granularity 1817 * of interpreter stack size 1818 */ 1819 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1820 if (depth > MAX_BPF_STACK) { 1821 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1822 frame + 1, depth); 1823 return -EACCES; 1824 } 1825 continue_func: 1826 subprog_end = subprog[idx + 1].start; 1827 for (; i < subprog_end; i++) { 1828 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1829 continue; 1830 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1831 continue; 1832 /* remember insn and function to return to */ 1833 ret_insn[frame] = i + 1; 1834 ret_prog[frame] = idx; 1835 1836 /* find the callee */ 1837 i = i + insn[i].imm + 1; 1838 idx = find_subprog(env, i); 1839 if (idx < 0) { 1840 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1841 i); 1842 return -EFAULT; 1843 } 1844 frame++; 1845 if (frame >= MAX_CALL_FRAMES) { 1846 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1847 return -EFAULT; 1848 } 1849 goto process_func; 1850 } 1851 /* end of for() loop means the last insn of the 'subprog' 1852 * was reached. Doesn't matter whether it was JA or EXIT 1853 */ 1854 if (frame == 0) 1855 return 0; 1856 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1857 frame--; 1858 i = ret_insn[frame]; 1859 idx = ret_prog[frame]; 1860 goto continue_func; 1861 } 1862 1863 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1864 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1865 const struct bpf_insn *insn, int idx) 1866 { 1867 int start = idx + insn->imm + 1, subprog; 1868 1869 subprog = find_subprog(env, start); 1870 if (subprog < 0) { 1871 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1872 start); 1873 return -EFAULT; 1874 } 1875 return env->subprog_info[subprog].stack_depth; 1876 } 1877 #endif 1878 1879 static int check_ctx_reg(struct bpf_verifier_env *env, 1880 const struct bpf_reg_state *reg, int regno) 1881 { 1882 /* Access to ctx or passing it to a helper is only allowed in 1883 * its original, unmodified form. 1884 */ 1885 1886 if (reg->off) { 1887 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1888 regno, reg->off); 1889 return -EACCES; 1890 } 1891 1892 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1893 char tn_buf[48]; 1894 1895 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1896 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1897 return -EACCES; 1898 } 1899 1900 return 0; 1901 } 1902 1903 /* truncate register to smaller size (in bytes) 1904 * must be called with size < BPF_REG_SIZE 1905 */ 1906 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1907 { 1908 u64 mask; 1909 1910 /* clear high bits in bit representation */ 1911 reg->var_off = tnum_cast(reg->var_off, size); 1912 1913 /* fix arithmetic bounds */ 1914 mask = ((u64)1 << (size * 8)) - 1; 1915 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1916 reg->umin_value &= mask; 1917 reg->umax_value &= mask; 1918 } else { 1919 reg->umin_value = 0; 1920 reg->umax_value = mask; 1921 } 1922 reg->smin_value = reg->umin_value; 1923 reg->smax_value = reg->umax_value; 1924 } 1925 1926 /* check whether memory at (regno + off) is accessible for t = (read | write) 1927 * if t==write, value_regno is a register which value is stored into memory 1928 * if t==read, value_regno is a register which will receive the value from memory 1929 * if t==write && value_regno==-1, some unknown value is stored into memory 1930 * if t==read && value_regno==-1, don't care what we read from memory 1931 */ 1932 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1933 int off, int bpf_size, enum bpf_access_type t, 1934 int value_regno, bool strict_alignment_once) 1935 { 1936 struct bpf_reg_state *regs = cur_regs(env); 1937 struct bpf_reg_state *reg = regs + regno; 1938 struct bpf_func_state *state; 1939 int size, err = 0; 1940 1941 size = bpf_size_to_bytes(bpf_size); 1942 if (size < 0) 1943 return size; 1944 1945 /* alignment checks will add in reg->off themselves */ 1946 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1947 if (err) 1948 return err; 1949 1950 /* for access checks, reg->off is just part of off */ 1951 off += reg->off; 1952 1953 if (reg->type == PTR_TO_MAP_VALUE) { 1954 if (t == BPF_WRITE && value_regno >= 0 && 1955 is_pointer_value(env, value_regno)) { 1956 verbose(env, "R%d leaks addr into map\n", value_regno); 1957 return -EACCES; 1958 } 1959 1960 err = check_map_access(env, regno, off, size, false); 1961 if (!err && t == BPF_READ && value_regno >= 0) 1962 mark_reg_unknown(env, regs, value_regno); 1963 1964 } else if (reg->type == PTR_TO_CTX) { 1965 enum bpf_reg_type reg_type = SCALAR_VALUE; 1966 1967 if (t == BPF_WRITE && value_regno >= 0 && 1968 is_pointer_value(env, value_regno)) { 1969 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1970 return -EACCES; 1971 } 1972 1973 err = check_ctx_reg(env, reg, regno); 1974 if (err < 0) 1975 return err; 1976 1977 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1978 if (!err && t == BPF_READ && value_regno >= 0) { 1979 /* ctx access returns either a scalar, or a 1980 * PTR_TO_PACKET[_META,_END]. In the latter 1981 * case, we know the offset is zero. 1982 */ 1983 if (reg_type == SCALAR_VALUE) 1984 mark_reg_unknown(env, regs, value_regno); 1985 else 1986 mark_reg_known_zero(env, regs, 1987 value_regno); 1988 regs[value_regno].type = reg_type; 1989 } 1990 1991 } else if (reg->type == PTR_TO_STACK) { 1992 off += reg->var_off.value; 1993 err = check_stack_access(env, reg, off, size); 1994 if (err) 1995 return err; 1996 1997 state = func(env, reg); 1998 err = update_stack_depth(env, state, off); 1999 if (err) 2000 return err; 2001 2002 if (t == BPF_WRITE) 2003 err = check_stack_write(env, state, off, size, 2004 value_regno, insn_idx); 2005 else 2006 err = check_stack_read(env, state, off, size, 2007 value_regno); 2008 } else if (reg_is_pkt_pointer(reg)) { 2009 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2010 verbose(env, "cannot write into packet\n"); 2011 return -EACCES; 2012 } 2013 if (t == BPF_WRITE && value_regno >= 0 && 2014 is_pointer_value(env, value_regno)) { 2015 verbose(env, "R%d leaks addr into packet\n", 2016 value_regno); 2017 return -EACCES; 2018 } 2019 err = check_packet_access(env, regno, off, size, false); 2020 if (!err && t == BPF_READ && value_regno >= 0) 2021 mark_reg_unknown(env, regs, value_regno); 2022 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2023 if (t == BPF_WRITE && value_regno >= 0 && 2024 is_pointer_value(env, value_regno)) { 2025 verbose(env, "R%d leaks addr into flow keys\n", 2026 value_regno); 2027 return -EACCES; 2028 } 2029 2030 err = check_flow_keys_access(env, off, size); 2031 if (!err && t == BPF_READ && value_regno >= 0) 2032 mark_reg_unknown(env, regs, value_regno); 2033 } else if (reg->type == PTR_TO_SOCKET) { 2034 if (t == BPF_WRITE) { 2035 verbose(env, "cannot write into socket\n"); 2036 return -EACCES; 2037 } 2038 err = check_sock_access(env, insn_idx, regno, off, size, t); 2039 if (!err && value_regno >= 0) 2040 mark_reg_unknown(env, regs, value_regno); 2041 } else { 2042 verbose(env, "R%d invalid mem access '%s'\n", regno, 2043 reg_type_str[reg->type]); 2044 return -EACCES; 2045 } 2046 2047 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2048 regs[value_regno].type == SCALAR_VALUE) { 2049 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2050 coerce_reg_to_size(®s[value_regno], size); 2051 } 2052 return err; 2053 } 2054 2055 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2056 { 2057 int err; 2058 2059 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2060 insn->imm != 0) { 2061 verbose(env, "BPF_XADD uses reserved fields\n"); 2062 return -EINVAL; 2063 } 2064 2065 /* check src1 operand */ 2066 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2067 if (err) 2068 return err; 2069 2070 /* check src2 operand */ 2071 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2072 if (err) 2073 return err; 2074 2075 if (is_pointer_value(env, insn->src_reg)) { 2076 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2077 return -EACCES; 2078 } 2079 2080 if (is_ctx_reg(env, insn->dst_reg) || 2081 is_pkt_reg(env, insn->dst_reg) || 2082 is_flow_key_reg(env, insn->dst_reg)) { 2083 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2084 insn->dst_reg, 2085 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2086 return -EACCES; 2087 } 2088 2089 /* check whether atomic_add can read the memory */ 2090 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2091 BPF_SIZE(insn->code), BPF_READ, -1, true); 2092 if (err) 2093 return err; 2094 2095 /* check whether atomic_add can write into the same memory */ 2096 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2097 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2098 } 2099 2100 /* when register 'regno' is passed into function that will read 'access_size' 2101 * bytes from that pointer, make sure that it's within stack boundary 2102 * and all elements of stack are initialized. 2103 * Unlike most pointer bounds-checking functions, this one doesn't take an 2104 * 'off' argument, so it has to add in reg->off itself. 2105 */ 2106 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2107 int access_size, bool zero_size_allowed, 2108 struct bpf_call_arg_meta *meta) 2109 { 2110 struct bpf_reg_state *reg = reg_state(env, regno); 2111 struct bpf_func_state *state = func(env, reg); 2112 int off, i, slot, spi; 2113 2114 if (reg->type != PTR_TO_STACK) { 2115 /* Allow zero-byte read from NULL, regardless of pointer type */ 2116 if (zero_size_allowed && access_size == 0 && 2117 register_is_null(reg)) 2118 return 0; 2119 2120 verbose(env, "R%d type=%s expected=%s\n", regno, 2121 reg_type_str[reg->type], 2122 reg_type_str[PTR_TO_STACK]); 2123 return -EACCES; 2124 } 2125 2126 /* Only allow fixed-offset stack reads */ 2127 if (!tnum_is_const(reg->var_off)) { 2128 char tn_buf[48]; 2129 2130 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2131 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2132 regno, tn_buf); 2133 return -EACCES; 2134 } 2135 off = reg->off + reg->var_off.value; 2136 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2137 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2138 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2139 regno, off, access_size); 2140 return -EACCES; 2141 } 2142 2143 if (meta && meta->raw_mode) { 2144 meta->access_size = access_size; 2145 meta->regno = regno; 2146 return 0; 2147 } 2148 2149 for (i = 0; i < access_size; i++) { 2150 u8 *stype; 2151 2152 slot = -(off + i) - 1; 2153 spi = slot / BPF_REG_SIZE; 2154 if (state->allocated_stack <= slot) 2155 goto err; 2156 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2157 if (*stype == STACK_MISC) 2158 goto mark; 2159 if (*stype == STACK_ZERO) { 2160 /* helper can write anything into the stack */ 2161 *stype = STACK_MISC; 2162 goto mark; 2163 } 2164 err: 2165 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2166 off, i, access_size); 2167 return -EACCES; 2168 mark: 2169 /* reading any byte out of 8-byte 'spill_slot' will cause 2170 * the whole slot to be marked as 'read' 2171 */ 2172 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2173 state->stack[spi].spilled_ptr.parent); 2174 } 2175 return update_stack_depth(env, state, off); 2176 } 2177 2178 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2179 int access_size, bool zero_size_allowed, 2180 struct bpf_call_arg_meta *meta) 2181 { 2182 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2183 2184 switch (reg->type) { 2185 case PTR_TO_PACKET: 2186 case PTR_TO_PACKET_META: 2187 return check_packet_access(env, regno, reg->off, access_size, 2188 zero_size_allowed); 2189 case PTR_TO_MAP_VALUE: 2190 return check_map_access(env, regno, reg->off, access_size, 2191 zero_size_allowed); 2192 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2193 return check_stack_boundary(env, regno, access_size, 2194 zero_size_allowed, meta); 2195 } 2196 } 2197 2198 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2199 { 2200 return type == ARG_PTR_TO_MEM || 2201 type == ARG_PTR_TO_MEM_OR_NULL || 2202 type == ARG_PTR_TO_UNINIT_MEM; 2203 } 2204 2205 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2206 { 2207 return type == ARG_CONST_SIZE || 2208 type == ARG_CONST_SIZE_OR_ZERO; 2209 } 2210 2211 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2212 enum bpf_arg_type arg_type, 2213 struct bpf_call_arg_meta *meta) 2214 { 2215 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2216 enum bpf_reg_type expected_type, type = reg->type; 2217 int err = 0; 2218 2219 if (arg_type == ARG_DONTCARE) 2220 return 0; 2221 2222 err = check_reg_arg(env, regno, SRC_OP); 2223 if (err) 2224 return err; 2225 2226 if (arg_type == ARG_ANYTHING) { 2227 if (is_pointer_value(env, regno)) { 2228 verbose(env, "R%d leaks addr into helper function\n", 2229 regno); 2230 return -EACCES; 2231 } 2232 return 0; 2233 } 2234 2235 if (type_is_pkt_pointer(type) && 2236 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2237 verbose(env, "helper access to the packet is not allowed\n"); 2238 return -EACCES; 2239 } 2240 2241 if (arg_type == ARG_PTR_TO_MAP_KEY || 2242 arg_type == ARG_PTR_TO_MAP_VALUE || 2243 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2244 expected_type = PTR_TO_STACK; 2245 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2246 type != expected_type) 2247 goto err_type; 2248 } else if (arg_type == ARG_CONST_SIZE || 2249 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2250 expected_type = SCALAR_VALUE; 2251 if (type != expected_type) 2252 goto err_type; 2253 } else if (arg_type == ARG_CONST_MAP_PTR) { 2254 expected_type = CONST_PTR_TO_MAP; 2255 if (type != expected_type) 2256 goto err_type; 2257 } else if (arg_type == ARG_PTR_TO_CTX) { 2258 expected_type = PTR_TO_CTX; 2259 if (type != expected_type) 2260 goto err_type; 2261 err = check_ctx_reg(env, reg, regno); 2262 if (err < 0) 2263 return err; 2264 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2265 expected_type = PTR_TO_SOCKET; 2266 if (type != expected_type) 2267 goto err_type; 2268 if (meta->ptr_id || !reg->id) { 2269 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2270 meta->ptr_id, reg->id); 2271 return -EFAULT; 2272 } 2273 meta->ptr_id = reg->id; 2274 } else if (arg_type_is_mem_ptr(arg_type)) { 2275 expected_type = PTR_TO_STACK; 2276 /* One exception here. In case function allows for NULL to be 2277 * passed in as argument, it's a SCALAR_VALUE type. Final test 2278 * happens during stack boundary checking. 2279 */ 2280 if (register_is_null(reg) && 2281 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2282 /* final test in check_stack_boundary() */; 2283 else if (!type_is_pkt_pointer(type) && 2284 type != PTR_TO_MAP_VALUE && 2285 type != expected_type) 2286 goto err_type; 2287 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2288 } else { 2289 verbose(env, "unsupported arg_type %d\n", arg_type); 2290 return -EFAULT; 2291 } 2292 2293 if (arg_type == ARG_CONST_MAP_PTR) { 2294 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2295 meta->map_ptr = reg->map_ptr; 2296 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2297 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2298 * check that [key, key + map->key_size) are within 2299 * stack limits and initialized 2300 */ 2301 if (!meta->map_ptr) { 2302 /* in function declaration map_ptr must come before 2303 * map_key, so that it's verified and known before 2304 * we have to check map_key here. Otherwise it means 2305 * that kernel subsystem misconfigured verifier 2306 */ 2307 verbose(env, "invalid map_ptr to access map->key\n"); 2308 return -EACCES; 2309 } 2310 err = check_helper_mem_access(env, regno, 2311 meta->map_ptr->key_size, false, 2312 NULL); 2313 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2314 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2315 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2316 * check [value, value + map->value_size) validity 2317 */ 2318 if (!meta->map_ptr) { 2319 /* kernel subsystem misconfigured verifier */ 2320 verbose(env, "invalid map_ptr to access map->value\n"); 2321 return -EACCES; 2322 } 2323 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2324 err = check_helper_mem_access(env, regno, 2325 meta->map_ptr->value_size, false, 2326 meta); 2327 } else if (arg_type_is_mem_size(arg_type)) { 2328 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2329 2330 /* remember the mem_size which may be used later 2331 * to refine return values. 2332 */ 2333 meta->msize_smax_value = reg->smax_value; 2334 meta->msize_umax_value = reg->umax_value; 2335 2336 /* The register is SCALAR_VALUE; the access check 2337 * happens using its boundaries. 2338 */ 2339 if (!tnum_is_const(reg->var_off)) 2340 /* For unprivileged variable accesses, disable raw 2341 * mode so that the program is required to 2342 * initialize all the memory that the helper could 2343 * just partially fill up. 2344 */ 2345 meta = NULL; 2346 2347 if (reg->smin_value < 0) { 2348 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2349 regno); 2350 return -EACCES; 2351 } 2352 2353 if (reg->umin_value == 0) { 2354 err = check_helper_mem_access(env, regno - 1, 0, 2355 zero_size_allowed, 2356 meta); 2357 if (err) 2358 return err; 2359 } 2360 2361 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2362 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2363 regno); 2364 return -EACCES; 2365 } 2366 err = check_helper_mem_access(env, regno - 1, 2367 reg->umax_value, 2368 zero_size_allowed, meta); 2369 } 2370 2371 return err; 2372 err_type: 2373 verbose(env, "R%d type=%s expected=%s\n", regno, 2374 reg_type_str[type], reg_type_str[expected_type]); 2375 return -EACCES; 2376 } 2377 2378 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2379 struct bpf_map *map, int func_id) 2380 { 2381 if (!map) 2382 return 0; 2383 2384 /* We need a two way check, first is from map perspective ... */ 2385 switch (map->map_type) { 2386 case BPF_MAP_TYPE_PROG_ARRAY: 2387 if (func_id != BPF_FUNC_tail_call) 2388 goto error; 2389 break; 2390 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2391 if (func_id != BPF_FUNC_perf_event_read && 2392 func_id != BPF_FUNC_perf_event_output && 2393 func_id != BPF_FUNC_perf_event_read_value) 2394 goto error; 2395 break; 2396 case BPF_MAP_TYPE_STACK_TRACE: 2397 if (func_id != BPF_FUNC_get_stackid) 2398 goto error; 2399 break; 2400 case BPF_MAP_TYPE_CGROUP_ARRAY: 2401 if (func_id != BPF_FUNC_skb_under_cgroup && 2402 func_id != BPF_FUNC_current_task_under_cgroup) 2403 goto error; 2404 break; 2405 case BPF_MAP_TYPE_CGROUP_STORAGE: 2406 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2407 if (func_id != BPF_FUNC_get_local_storage) 2408 goto error; 2409 break; 2410 /* devmap returns a pointer to a live net_device ifindex that we cannot 2411 * allow to be modified from bpf side. So do not allow lookup elements 2412 * for now. 2413 */ 2414 case BPF_MAP_TYPE_DEVMAP: 2415 if (func_id != BPF_FUNC_redirect_map) 2416 goto error; 2417 break; 2418 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2419 * appear. 2420 */ 2421 case BPF_MAP_TYPE_CPUMAP: 2422 case BPF_MAP_TYPE_XSKMAP: 2423 if (func_id != BPF_FUNC_redirect_map) 2424 goto error; 2425 break; 2426 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2427 case BPF_MAP_TYPE_HASH_OF_MAPS: 2428 if (func_id != BPF_FUNC_map_lookup_elem) 2429 goto error; 2430 break; 2431 case BPF_MAP_TYPE_SOCKMAP: 2432 if (func_id != BPF_FUNC_sk_redirect_map && 2433 func_id != BPF_FUNC_sock_map_update && 2434 func_id != BPF_FUNC_map_delete_elem && 2435 func_id != BPF_FUNC_msg_redirect_map) 2436 goto error; 2437 break; 2438 case BPF_MAP_TYPE_SOCKHASH: 2439 if (func_id != BPF_FUNC_sk_redirect_hash && 2440 func_id != BPF_FUNC_sock_hash_update && 2441 func_id != BPF_FUNC_map_delete_elem && 2442 func_id != BPF_FUNC_msg_redirect_hash) 2443 goto error; 2444 break; 2445 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2446 if (func_id != BPF_FUNC_sk_select_reuseport) 2447 goto error; 2448 break; 2449 case BPF_MAP_TYPE_QUEUE: 2450 case BPF_MAP_TYPE_STACK: 2451 if (func_id != BPF_FUNC_map_peek_elem && 2452 func_id != BPF_FUNC_map_pop_elem && 2453 func_id != BPF_FUNC_map_push_elem) 2454 goto error; 2455 break; 2456 default: 2457 break; 2458 } 2459 2460 /* ... and second from the function itself. */ 2461 switch (func_id) { 2462 case BPF_FUNC_tail_call: 2463 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2464 goto error; 2465 if (env->subprog_cnt > 1) { 2466 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2467 return -EINVAL; 2468 } 2469 break; 2470 case BPF_FUNC_perf_event_read: 2471 case BPF_FUNC_perf_event_output: 2472 case BPF_FUNC_perf_event_read_value: 2473 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2474 goto error; 2475 break; 2476 case BPF_FUNC_get_stackid: 2477 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2478 goto error; 2479 break; 2480 case BPF_FUNC_current_task_under_cgroup: 2481 case BPF_FUNC_skb_under_cgroup: 2482 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2483 goto error; 2484 break; 2485 case BPF_FUNC_redirect_map: 2486 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2487 map->map_type != BPF_MAP_TYPE_CPUMAP && 2488 map->map_type != BPF_MAP_TYPE_XSKMAP) 2489 goto error; 2490 break; 2491 case BPF_FUNC_sk_redirect_map: 2492 case BPF_FUNC_msg_redirect_map: 2493 case BPF_FUNC_sock_map_update: 2494 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2495 goto error; 2496 break; 2497 case BPF_FUNC_sk_redirect_hash: 2498 case BPF_FUNC_msg_redirect_hash: 2499 case BPF_FUNC_sock_hash_update: 2500 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2501 goto error; 2502 break; 2503 case BPF_FUNC_get_local_storage: 2504 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2505 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2506 goto error; 2507 break; 2508 case BPF_FUNC_sk_select_reuseport: 2509 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2510 goto error; 2511 break; 2512 case BPF_FUNC_map_peek_elem: 2513 case BPF_FUNC_map_pop_elem: 2514 case BPF_FUNC_map_push_elem: 2515 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2516 map->map_type != BPF_MAP_TYPE_STACK) 2517 goto error; 2518 break; 2519 default: 2520 break; 2521 } 2522 2523 return 0; 2524 error: 2525 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2526 map->map_type, func_id_name(func_id), func_id); 2527 return -EINVAL; 2528 } 2529 2530 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2531 { 2532 int count = 0; 2533 2534 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2535 count++; 2536 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2537 count++; 2538 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2539 count++; 2540 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2541 count++; 2542 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2543 count++; 2544 2545 /* We only support one arg being in raw mode at the moment, 2546 * which is sufficient for the helper functions we have 2547 * right now. 2548 */ 2549 return count <= 1; 2550 } 2551 2552 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2553 enum bpf_arg_type arg_next) 2554 { 2555 return (arg_type_is_mem_ptr(arg_curr) && 2556 !arg_type_is_mem_size(arg_next)) || 2557 (!arg_type_is_mem_ptr(arg_curr) && 2558 arg_type_is_mem_size(arg_next)); 2559 } 2560 2561 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2562 { 2563 /* bpf_xxx(..., buf, len) call will access 'len' 2564 * bytes from memory 'buf'. Both arg types need 2565 * to be paired, so make sure there's no buggy 2566 * helper function specification. 2567 */ 2568 if (arg_type_is_mem_size(fn->arg1_type) || 2569 arg_type_is_mem_ptr(fn->arg5_type) || 2570 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2571 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2572 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2573 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2574 return false; 2575 2576 return true; 2577 } 2578 2579 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2580 { 2581 int count = 0; 2582 2583 if (arg_type_is_refcounted(fn->arg1_type)) 2584 count++; 2585 if (arg_type_is_refcounted(fn->arg2_type)) 2586 count++; 2587 if (arg_type_is_refcounted(fn->arg3_type)) 2588 count++; 2589 if (arg_type_is_refcounted(fn->arg4_type)) 2590 count++; 2591 if (arg_type_is_refcounted(fn->arg5_type)) 2592 count++; 2593 2594 /* We only support one arg being unreferenced at the moment, 2595 * which is sufficient for the helper functions we have right now. 2596 */ 2597 return count <= 1; 2598 } 2599 2600 static int check_func_proto(const struct bpf_func_proto *fn) 2601 { 2602 return check_raw_mode_ok(fn) && 2603 check_arg_pair_ok(fn) && 2604 check_refcount_ok(fn) ? 0 : -EINVAL; 2605 } 2606 2607 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2608 * are now invalid, so turn them into unknown SCALAR_VALUE. 2609 */ 2610 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2611 struct bpf_func_state *state) 2612 { 2613 struct bpf_reg_state *regs = state->regs, *reg; 2614 int i; 2615 2616 for (i = 0; i < MAX_BPF_REG; i++) 2617 if (reg_is_pkt_pointer_any(®s[i])) 2618 mark_reg_unknown(env, regs, i); 2619 2620 bpf_for_each_spilled_reg(i, state, reg) { 2621 if (!reg) 2622 continue; 2623 if (reg_is_pkt_pointer_any(reg)) 2624 __mark_reg_unknown(reg); 2625 } 2626 } 2627 2628 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2629 { 2630 struct bpf_verifier_state *vstate = env->cur_state; 2631 int i; 2632 2633 for (i = 0; i <= vstate->curframe; i++) 2634 __clear_all_pkt_pointers(env, vstate->frame[i]); 2635 } 2636 2637 static void release_reg_references(struct bpf_verifier_env *env, 2638 struct bpf_func_state *state, int id) 2639 { 2640 struct bpf_reg_state *regs = state->regs, *reg; 2641 int i; 2642 2643 for (i = 0; i < MAX_BPF_REG; i++) 2644 if (regs[i].id == id) 2645 mark_reg_unknown(env, regs, i); 2646 2647 bpf_for_each_spilled_reg(i, state, reg) { 2648 if (!reg) 2649 continue; 2650 if (reg_is_refcounted(reg) && reg->id == id) 2651 __mark_reg_unknown(reg); 2652 } 2653 } 2654 2655 /* The pointer with the specified id has released its reference to kernel 2656 * resources. Identify all copies of the same pointer and clear the reference. 2657 */ 2658 static int release_reference(struct bpf_verifier_env *env, 2659 struct bpf_call_arg_meta *meta) 2660 { 2661 struct bpf_verifier_state *vstate = env->cur_state; 2662 int i; 2663 2664 for (i = 0; i <= vstate->curframe; i++) 2665 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2666 2667 return release_reference_state(env, meta->ptr_id); 2668 } 2669 2670 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2671 int *insn_idx) 2672 { 2673 struct bpf_verifier_state *state = env->cur_state; 2674 struct bpf_func_state *caller, *callee; 2675 int i, err, subprog, target_insn; 2676 2677 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2678 verbose(env, "the call stack of %d frames is too deep\n", 2679 state->curframe + 2); 2680 return -E2BIG; 2681 } 2682 2683 target_insn = *insn_idx + insn->imm; 2684 subprog = find_subprog(env, target_insn + 1); 2685 if (subprog < 0) { 2686 verbose(env, "verifier bug. No program starts at insn %d\n", 2687 target_insn + 1); 2688 return -EFAULT; 2689 } 2690 2691 caller = state->frame[state->curframe]; 2692 if (state->frame[state->curframe + 1]) { 2693 verbose(env, "verifier bug. Frame %d already allocated\n", 2694 state->curframe + 1); 2695 return -EFAULT; 2696 } 2697 2698 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2699 if (!callee) 2700 return -ENOMEM; 2701 state->frame[state->curframe + 1] = callee; 2702 2703 /* callee cannot access r0, r6 - r9 for reading and has to write 2704 * into its own stack before reading from it. 2705 * callee can read/write into caller's stack 2706 */ 2707 init_func_state(env, callee, 2708 /* remember the callsite, it will be used by bpf_exit */ 2709 *insn_idx /* callsite */, 2710 state->curframe + 1 /* frameno within this callchain */, 2711 subprog /* subprog number within this prog */); 2712 2713 /* Transfer references to the callee */ 2714 err = transfer_reference_state(callee, caller); 2715 if (err) 2716 return err; 2717 2718 /* copy r1 - r5 args that callee can access. The copy includes parent 2719 * pointers, which connects us up to the liveness chain 2720 */ 2721 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2722 callee->regs[i] = caller->regs[i]; 2723 2724 /* after the call registers r0 - r5 were scratched */ 2725 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2726 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2727 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2728 } 2729 2730 /* only increment it after check_reg_arg() finished */ 2731 state->curframe++; 2732 2733 /* and go analyze first insn of the callee */ 2734 *insn_idx = target_insn; 2735 2736 if (env->log.level) { 2737 verbose(env, "caller:\n"); 2738 print_verifier_state(env, caller); 2739 verbose(env, "callee:\n"); 2740 print_verifier_state(env, callee); 2741 } 2742 return 0; 2743 } 2744 2745 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2746 { 2747 struct bpf_verifier_state *state = env->cur_state; 2748 struct bpf_func_state *caller, *callee; 2749 struct bpf_reg_state *r0; 2750 int err; 2751 2752 callee = state->frame[state->curframe]; 2753 r0 = &callee->regs[BPF_REG_0]; 2754 if (r0->type == PTR_TO_STACK) { 2755 /* technically it's ok to return caller's stack pointer 2756 * (or caller's caller's pointer) back to the caller, 2757 * since these pointers are valid. Only current stack 2758 * pointer will be invalid as soon as function exits, 2759 * but let's be conservative 2760 */ 2761 verbose(env, "cannot return stack pointer to the caller\n"); 2762 return -EINVAL; 2763 } 2764 2765 state->curframe--; 2766 caller = state->frame[state->curframe]; 2767 /* return to the caller whatever r0 had in the callee */ 2768 caller->regs[BPF_REG_0] = *r0; 2769 2770 /* Transfer references to the caller */ 2771 err = transfer_reference_state(caller, callee); 2772 if (err) 2773 return err; 2774 2775 *insn_idx = callee->callsite + 1; 2776 if (env->log.level) { 2777 verbose(env, "returning from callee:\n"); 2778 print_verifier_state(env, callee); 2779 verbose(env, "to caller at %d:\n", *insn_idx); 2780 print_verifier_state(env, caller); 2781 } 2782 /* clear everything in the callee */ 2783 free_func_state(callee); 2784 state->frame[state->curframe + 1] = NULL; 2785 return 0; 2786 } 2787 2788 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2789 int func_id, 2790 struct bpf_call_arg_meta *meta) 2791 { 2792 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2793 2794 if (ret_type != RET_INTEGER || 2795 (func_id != BPF_FUNC_get_stack && 2796 func_id != BPF_FUNC_probe_read_str)) 2797 return; 2798 2799 ret_reg->smax_value = meta->msize_smax_value; 2800 ret_reg->umax_value = meta->msize_umax_value; 2801 __reg_deduce_bounds(ret_reg); 2802 __reg_bound_offset(ret_reg); 2803 } 2804 2805 static int 2806 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2807 int func_id, int insn_idx) 2808 { 2809 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2810 2811 if (func_id != BPF_FUNC_tail_call && 2812 func_id != BPF_FUNC_map_lookup_elem && 2813 func_id != BPF_FUNC_map_update_elem && 2814 func_id != BPF_FUNC_map_delete_elem && 2815 func_id != BPF_FUNC_map_push_elem && 2816 func_id != BPF_FUNC_map_pop_elem && 2817 func_id != BPF_FUNC_map_peek_elem) 2818 return 0; 2819 2820 if (meta->map_ptr == NULL) { 2821 verbose(env, "kernel subsystem misconfigured verifier\n"); 2822 return -EINVAL; 2823 } 2824 2825 if (!BPF_MAP_PTR(aux->map_state)) 2826 bpf_map_ptr_store(aux, meta->map_ptr, 2827 meta->map_ptr->unpriv_array); 2828 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2829 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2830 meta->map_ptr->unpriv_array); 2831 return 0; 2832 } 2833 2834 static int check_reference_leak(struct bpf_verifier_env *env) 2835 { 2836 struct bpf_func_state *state = cur_func(env); 2837 int i; 2838 2839 for (i = 0; i < state->acquired_refs; i++) { 2840 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2841 state->refs[i].id, state->refs[i].insn_idx); 2842 } 2843 return state->acquired_refs ? -EINVAL : 0; 2844 } 2845 2846 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2847 { 2848 const struct bpf_func_proto *fn = NULL; 2849 struct bpf_reg_state *regs; 2850 struct bpf_call_arg_meta meta; 2851 bool changes_data; 2852 int i, err; 2853 2854 /* find function prototype */ 2855 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2856 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2857 func_id); 2858 return -EINVAL; 2859 } 2860 2861 if (env->ops->get_func_proto) 2862 fn = env->ops->get_func_proto(func_id, env->prog); 2863 if (!fn) { 2864 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2865 func_id); 2866 return -EINVAL; 2867 } 2868 2869 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2870 if (!env->prog->gpl_compatible && fn->gpl_only) { 2871 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2872 return -EINVAL; 2873 } 2874 2875 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2876 changes_data = bpf_helper_changes_pkt_data(fn->func); 2877 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2878 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2879 func_id_name(func_id), func_id); 2880 return -EINVAL; 2881 } 2882 2883 memset(&meta, 0, sizeof(meta)); 2884 meta.pkt_access = fn->pkt_access; 2885 2886 err = check_func_proto(fn); 2887 if (err) { 2888 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2889 func_id_name(func_id), func_id); 2890 return err; 2891 } 2892 2893 /* check args */ 2894 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2895 if (err) 2896 return err; 2897 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2898 if (err) 2899 return err; 2900 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2901 if (err) 2902 return err; 2903 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2904 if (err) 2905 return err; 2906 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2907 if (err) 2908 return err; 2909 2910 err = record_func_map(env, &meta, func_id, insn_idx); 2911 if (err) 2912 return err; 2913 2914 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2915 * is inferred from register state. 2916 */ 2917 for (i = 0; i < meta.access_size; i++) { 2918 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2919 BPF_WRITE, -1, false); 2920 if (err) 2921 return err; 2922 } 2923 2924 if (func_id == BPF_FUNC_tail_call) { 2925 err = check_reference_leak(env); 2926 if (err) { 2927 verbose(env, "tail_call would lead to reference leak\n"); 2928 return err; 2929 } 2930 } else if (is_release_function(func_id)) { 2931 err = release_reference(env, &meta); 2932 if (err) 2933 return err; 2934 } 2935 2936 regs = cur_regs(env); 2937 2938 /* check that flags argument in get_local_storage(map, flags) is 0, 2939 * this is required because get_local_storage() can't return an error. 2940 */ 2941 if (func_id == BPF_FUNC_get_local_storage && 2942 !register_is_null(®s[BPF_REG_2])) { 2943 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2944 return -EINVAL; 2945 } 2946 2947 /* reset caller saved regs */ 2948 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2949 mark_reg_not_init(env, regs, caller_saved[i]); 2950 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2951 } 2952 2953 /* update return register (already marked as written above) */ 2954 if (fn->ret_type == RET_INTEGER) { 2955 /* sets type to SCALAR_VALUE */ 2956 mark_reg_unknown(env, regs, BPF_REG_0); 2957 } else if (fn->ret_type == RET_VOID) { 2958 regs[BPF_REG_0].type = NOT_INIT; 2959 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2960 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2961 /* There is no offset yet applied, variable or fixed */ 2962 mark_reg_known_zero(env, regs, BPF_REG_0); 2963 /* remember map_ptr, so that check_map_access() 2964 * can check 'value_size' boundary of memory access 2965 * to map element returned from bpf_map_lookup_elem() 2966 */ 2967 if (meta.map_ptr == NULL) { 2968 verbose(env, 2969 "kernel subsystem misconfigured verifier\n"); 2970 return -EINVAL; 2971 } 2972 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2973 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2974 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2975 } else { 2976 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2977 regs[BPF_REG_0].id = ++env->id_gen; 2978 } 2979 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2980 int id = acquire_reference_state(env, insn_idx); 2981 if (id < 0) 2982 return id; 2983 mark_reg_known_zero(env, regs, BPF_REG_0); 2984 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2985 regs[BPF_REG_0].id = id; 2986 } else { 2987 verbose(env, "unknown return type %d of func %s#%d\n", 2988 fn->ret_type, func_id_name(func_id), func_id); 2989 return -EINVAL; 2990 } 2991 2992 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2993 2994 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2995 if (err) 2996 return err; 2997 2998 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2999 const char *err_str; 3000 3001 #ifdef CONFIG_PERF_EVENTS 3002 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3003 err_str = "cannot get callchain buffer for func %s#%d\n"; 3004 #else 3005 err = -ENOTSUPP; 3006 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3007 #endif 3008 if (err) { 3009 verbose(env, err_str, func_id_name(func_id), func_id); 3010 return err; 3011 } 3012 3013 env->prog->has_callchain_buf = true; 3014 } 3015 3016 if (changes_data) 3017 clear_all_pkt_pointers(env); 3018 return 0; 3019 } 3020 3021 static bool signed_add_overflows(s64 a, s64 b) 3022 { 3023 /* Do the add in u64, where overflow is well-defined */ 3024 s64 res = (s64)((u64)a + (u64)b); 3025 3026 if (b < 0) 3027 return res > a; 3028 return res < a; 3029 } 3030 3031 static bool signed_sub_overflows(s64 a, s64 b) 3032 { 3033 /* Do the sub in u64, where overflow is well-defined */ 3034 s64 res = (s64)((u64)a - (u64)b); 3035 3036 if (b < 0) 3037 return res < a; 3038 return res > a; 3039 } 3040 3041 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3042 const struct bpf_reg_state *reg, 3043 enum bpf_reg_type type) 3044 { 3045 bool known = tnum_is_const(reg->var_off); 3046 s64 val = reg->var_off.value; 3047 s64 smin = reg->smin_value; 3048 3049 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3050 verbose(env, "math between %s pointer and %lld is not allowed\n", 3051 reg_type_str[type], val); 3052 return false; 3053 } 3054 3055 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3056 verbose(env, "%s pointer offset %d is not allowed\n", 3057 reg_type_str[type], reg->off); 3058 return false; 3059 } 3060 3061 if (smin == S64_MIN) { 3062 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3063 reg_type_str[type]); 3064 return false; 3065 } 3066 3067 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3068 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3069 smin, reg_type_str[type]); 3070 return false; 3071 } 3072 3073 return true; 3074 } 3075 3076 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3077 { 3078 return &env->insn_aux_data[env->insn_idx]; 3079 } 3080 3081 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3082 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3083 { 3084 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3085 (opcode == BPF_SUB && !off_is_neg); 3086 u32 off; 3087 3088 switch (ptr_reg->type) { 3089 case PTR_TO_STACK: 3090 off = ptr_reg->off + ptr_reg->var_off.value; 3091 if (mask_to_left) 3092 *ptr_limit = MAX_BPF_STACK + off; 3093 else 3094 *ptr_limit = -off; 3095 return 0; 3096 case PTR_TO_MAP_VALUE: 3097 if (mask_to_left) { 3098 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3099 } else { 3100 off = ptr_reg->smin_value + ptr_reg->off; 3101 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3102 } 3103 return 0; 3104 default: 3105 return -EINVAL; 3106 } 3107 } 3108 3109 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3110 const struct bpf_insn *insn) 3111 { 3112 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3113 } 3114 3115 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3116 u32 alu_state, u32 alu_limit) 3117 { 3118 /* If we arrived here from different branches with different 3119 * state or limits to sanitize, then this won't work. 3120 */ 3121 if (aux->alu_state && 3122 (aux->alu_state != alu_state || 3123 aux->alu_limit != alu_limit)) 3124 return -EACCES; 3125 3126 /* Corresponding fixup done in fixup_bpf_calls(). */ 3127 aux->alu_state = alu_state; 3128 aux->alu_limit = alu_limit; 3129 return 0; 3130 } 3131 3132 static int sanitize_val_alu(struct bpf_verifier_env *env, 3133 struct bpf_insn *insn) 3134 { 3135 struct bpf_insn_aux_data *aux = cur_aux(env); 3136 3137 if (can_skip_alu_sanitation(env, insn)) 3138 return 0; 3139 3140 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3141 } 3142 3143 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3144 struct bpf_insn *insn, 3145 const struct bpf_reg_state *ptr_reg, 3146 struct bpf_reg_state *dst_reg, 3147 bool off_is_neg) 3148 { 3149 struct bpf_verifier_state *vstate = env->cur_state; 3150 struct bpf_insn_aux_data *aux = cur_aux(env); 3151 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3152 u8 opcode = BPF_OP(insn->code); 3153 u32 alu_state, alu_limit; 3154 struct bpf_reg_state tmp; 3155 bool ret; 3156 3157 if (can_skip_alu_sanitation(env, insn)) 3158 return 0; 3159 3160 /* We already marked aux for masking from non-speculative 3161 * paths, thus we got here in the first place. We only care 3162 * to explore bad access from here. 3163 */ 3164 if (vstate->speculative) 3165 goto do_sim; 3166 3167 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3168 alu_state |= ptr_is_dst_reg ? 3169 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3170 3171 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3172 return 0; 3173 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3174 return -EACCES; 3175 do_sim: 3176 /* Simulate and find potential out-of-bounds access under 3177 * speculative execution from truncation as a result of 3178 * masking when off was not within expected range. If off 3179 * sits in dst, then we temporarily need to move ptr there 3180 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3181 * for cases where we use K-based arithmetic in one direction 3182 * and truncated reg-based in the other in order to explore 3183 * bad access. 3184 */ 3185 if (!ptr_is_dst_reg) { 3186 tmp = *dst_reg; 3187 *dst_reg = *ptr_reg; 3188 } 3189 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3190 if (!ptr_is_dst_reg) 3191 *dst_reg = tmp; 3192 return !ret ? -EFAULT : 0; 3193 } 3194 3195 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3196 * Caller should also handle BPF_MOV case separately. 3197 * If we return -EACCES, caller may want to try again treating pointer as a 3198 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3199 */ 3200 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3201 struct bpf_insn *insn, 3202 const struct bpf_reg_state *ptr_reg, 3203 const struct bpf_reg_state *off_reg) 3204 { 3205 struct bpf_verifier_state *vstate = env->cur_state; 3206 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3207 struct bpf_reg_state *regs = state->regs, *dst_reg; 3208 bool known = tnum_is_const(off_reg->var_off); 3209 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3210 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3211 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3212 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3213 u32 dst = insn->dst_reg, src = insn->src_reg; 3214 u8 opcode = BPF_OP(insn->code); 3215 int ret; 3216 3217 dst_reg = ®s[dst]; 3218 3219 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3220 smin_val > smax_val || umin_val > umax_val) { 3221 /* Taint dst register if offset had invalid bounds derived from 3222 * e.g. dead branches. 3223 */ 3224 __mark_reg_unknown(dst_reg); 3225 return 0; 3226 } 3227 3228 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3229 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3230 verbose(env, 3231 "R%d 32-bit pointer arithmetic prohibited\n", 3232 dst); 3233 return -EACCES; 3234 } 3235 3236 switch (ptr_reg->type) { 3237 case PTR_TO_MAP_VALUE_OR_NULL: 3238 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3239 dst, reg_type_str[ptr_reg->type]); 3240 return -EACCES; 3241 case CONST_PTR_TO_MAP: 3242 case PTR_TO_PACKET_END: 3243 case PTR_TO_SOCKET: 3244 case PTR_TO_SOCKET_OR_NULL: 3245 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3246 dst, reg_type_str[ptr_reg->type]); 3247 return -EACCES; 3248 case PTR_TO_MAP_VALUE: 3249 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3250 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3251 off_reg == dst_reg ? dst : src); 3252 return -EACCES; 3253 } 3254 /* fall-through */ 3255 default: 3256 break; 3257 } 3258 3259 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3260 * The id may be overwritten later if we create a new variable offset. 3261 */ 3262 dst_reg->type = ptr_reg->type; 3263 dst_reg->id = ptr_reg->id; 3264 3265 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3266 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3267 return -EINVAL; 3268 3269 switch (opcode) { 3270 case BPF_ADD: 3271 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3272 if (ret < 0) { 3273 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3274 return ret; 3275 } 3276 /* We can take a fixed offset as long as it doesn't overflow 3277 * the s32 'off' field 3278 */ 3279 if (known && (ptr_reg->off + smin_val == 3280 (s64)(s32)(ptr_reg->off + smin_val))) { 3281 /* pointer += K. Accumulate it into fixed offset */ 3282 dst_reg->smin_value = smin_ptr; 3283 dst_reg->smax_value = smax_ptr; 3284 dst_reg->umin_value = umin_ptr; 3285 dst_reg->umax_value = umax_ptr; 3286 dst_reg->var_off = ptr_reg->var_off; 3287 dst_reg->off = ptr_reg->off + smin_val; 3288 dst_reg->raw = ptr_reg->raw; 3289 break; 3290 } 3291 /* A new variable offset is created. Note that off_reg->off 3292 * == 0, since it's a scalar. 3293 * dst_reg gets the pointer type and since some positive 3294 * integer value was added to the pointer, give it a new 'id' 3295 * if it's a PTR_TO_PACKET. 3296 * this creates a new 'base' pointer, off_reg (variable) gets 3297 * added into the variable offset, and we copy the fixed offset 3298 * from ptr_reg. 3299 */ 3300 if (signed_add_overflows(smin_ptr, smin_val) || 3301 signed_add_overflows(smax_ptr, smax_val)) { 3302 dst_reg->smin_value = S64_MIN; 3303 dst_reg->smax_value = S64_MAX; 3304 } else { 3305 dst_reg->smin_value = smin_ptr + smin_val; 3306 dst_reg->smax_value = smax_ptr + smax_val; 3307 } 3308 if (umin_ptr + umin_val < umin_ptr || 3309 umax_ptr + umax_val < umax_ptr) { 3310 dst_reg->umin_value = 0; 3311 dst_reg->umax_value = U64_MAX; 3312 } else { 3313 dst_reg->umin_value = umin_ptr + umin_val; 3314 dst_reg->umax_value = umax_ptr + umax_val; 3315 } 3316 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3317 dst_reg->off = ptr_reg->off; 3318 dst_reg->raw = ptr_reg->raw; 3319 if (reg_is_pkt_pointer(ptr_reg)) { 3320 dst_reg->id = ++env->id_gen; 3321 /* something was added to pkt_ptr, set range to zero */ 3322 dst_reg->raw = 0; 3323 } 3324 break; 3325 case BPF_SUB: 3326 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3327 if (ret < 0) { 3328 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3329 return ret; 3330 } 3331 if (dst_reg == off_reg) { 3332 /* scalar -= pointer. Creates an unknown scalar */ 3333 verbose(env, "R%d tried to subtract pointer from scalar\n", 3334 dst); 3335 return -EACCES; 3336 } 3337 /* We don't allow subtraction from FP, because (according to 3338 * test_verifier.c test "invalid fp arithmetic", JITs might not 3339 * be able to deal with it. 3340 */ 3341 if (ptr_reg->type == PTR_TO_STACK) { 3342 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3343 dst); 3344 return -EACCES; 3345 } 3346 if (known && (ptr_reg->off - smin_val == 3347 (s64)(s32)(ptr_reg->off - smin_val))) { 3348 /* pointer -= K. Subtract it from fixed offset */ 3349 dst_reg->smin_value = smin_ptr; 3350 dst_reg->smax_value = smax_ptr; 3351 dst_reg->umin_value = umin_ptr; 3352 dst_reg->umax_value = umax_ptr; 3353 dst_reg->var_off = ptr_reg->var_off; 3354 dst_reg->id = ptr_reg->id; 3355 dst_reg->off = ptr_reg->off - smin_val; 3356 dst_reg->raw = ptr_reg->raw; 3357 break; 3358 } 3359 /* A new variable offset is created. If the subtrahend is known 3360 * nonnegative, then any reg->range we had before is still good. 3361 */ 3362 if (signed_sub_overflows(smin_ptr, smax_val) || 3363 signed_sub_overflows(smax_ptr, smin_val)) { 3364 /* Overflow possible, we know nothing */ 3365 dst_reg->smin_value = S64_MIN; 3366 dst_reg->smax_value = S64_MAX; 3367 } else { 3368 dst_reg->smin_value = smin_ptr - smax_val; 3369 dst_reg->smax_value = smax_ptr - smin_val; 3370 } 3371 if (umin_ptr < umax_val) { 3372 /* Overflow possible, we know nothing */ 3373 dst_reg->umin_value = 0; 3374 dst_reg->umax_value = U64_MAX; 3375 } else { 3376 /* Cannot overflow (as long as bounds are consistent) */ 3377 dst_reg->umin_value = umin_ptr - umax_val; 3378 dst_reg->umax_value = umax_ptr - umin_val; 3379 } 3380 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3381 dst_reg->off = ptr_reg->off; 3382 dst_reg->raw = ptr_reg->raw; 3383 if (reg_is_pkt_pointer(ptr_reg)) { 3384 dst_reg->id = ++env->id_gen; 3385 /* something was added to pkt_ptr, set range to zero */ 3386 if (smin_val < 0) 3387 dst_reg->raw = 0; 3388 } 3389 break; 3390 case BPF_AND: 3391 case BPF_OR: 3392 case BPF_XOR: 3393 /* bitwise ops on pointers are troublesome, prohibit. */ 3394 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3395 dst, bpf_alu_string[opcode >> 4]); 3396 return -EACCES; 3397 default: 3398 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3399 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3400 dst, bpf_alu_string[opcode >> 4]); 3401 return -EACCES; 3402 } 3403 3404 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3405 return -EINVAL; 3406 3407 __update_reg_bounds(dst_reg); 3408 __reg_deduce_bounds(dst_reg); 3409 __reg_bound_offset(dst_reg); 3410 3411 /* For unprivileged we require that resulting offset must be in bounds 3412 * in order to be able to sanitize access later on. 3413 */ 3414 if (!env->allow_ptr_leaks) { 3415 if (dst_reg->type == PTR_TO_MAP_VALUE && 3416 check_map_access(env, dst, dst_reg->off, 1, false)) { 3417 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3418 "prohibited for !root\n", dst); 3419 return -EACCES; 3420 } else if (dst_reg->type == PTR_TO_STACK && 3421 check_stack_access(env, dst_reg, dst_reg->off + 3422 dst_reg->var_off.value, 1)) { 3423 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3424 "prohibited for !root\n", dst); 3425 return -EACCES; 3426 } 3427 } 3428 3429 return 0; 3430 } 3431 3432 /* WARNING: This function does calculations on 64-bit values, but the actual 3433 * execution may occur on 32-bit values. Therefore, things like bitshifts 3434 * need extra checks in the 32-bit case. 3435 */ 3436 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3437 struct bpf_insn *insn, 3438 struct bpf_reg_state *dst_reg, 3439 struct bpf_reg_state src_reg) 3440 { 3441 struct bpf_reg_state *regs = cur_regs(env); 3442 u8 opcode = BPF_OP(insn->code); 3443 bool src_known, dst_known; 3444 s64 smin_val, smax_val; 3445 u64 umin_val, umax_val; 3446 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3447 u32 dst = insn->dst_reg; 3448 int ret; 3449 3450 if (insn_bitness == 32) { 3451 /* Relevant for 32-bit RSH: Information can propagate towards 3452 * LSB, so it isn't sufficient to only truncate the output to 3453 * 32 bits. 3454 */ 3455 coerce_reg_to_size(dst_reg, 4); 3456 coerce_reg_to_size(&src_reg, 4); 3457 } 3458 3459 smin_val = src_reg.smin_value; 3460 smax_val = src_reg.smax_value; 3461 umin_val = src_reg.umin_value; 3462 umax_val = src_reg.umax_value; 3463 src_known = tnum_is_const(src_reg.var_off); 3464 dst_known = tnum_is_const(dst_reg->var_off); 3465 3466 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3467 smin_val > smax_val || umin_val > umax_val) { 3468 /* Taint dst register if offset had invalid bounds derived from 3469 * e.g. dead branches. 3470 */ 3471 __mark_reg_unknown(dst_reg); 3472 return 0; 3473 } 3474 3475 if (!src_known && 3476 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3477 __mark_reg_unknown(dst_reg); 3478 return 0; 3479 } 3480 3481 switch (opcode) { 3482 case BPF_ADD: 3483 ret = sanitize_val_alu(env, insn); 3484 if (ret < 0) { 3485 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3486 return ret; 3487 } 3488 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3489 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3490 dst_reg->smin_value = S64_MIN; 3491 dst_reg->smax_value = S64_MAX; 3492 } else { 3493 dst_reg->smin_value += smin_val; 3494 dst_reg->smax_value += smax_val; 3495 } 3496 if (dst_reg->umin_value + umin_val < umin_val || 3497 dst_reg->umax_value + umax_val < umax_val) { 3498 dst_reg->umin_value = 0; 3499 dst_reg->umax_value = U64_MAX; 3500 } else { 3501 dst_reg->umin_value += umin_val; 3502 dst_reg->umax_value += umax_val; 3503 } 3504 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3505 break; 3506 case BPF_SUB: 3507 ret = sanitize_val_alu(env, insn); 3508 if (ret < 0) { 3509 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3510 return ret; 3511 } 3512 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3513 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3514 /* Overflow possible, we know nothing */ 3515 dst_reg->smin_value = S64_MIN; 3516 dst_reg->smax_value = S64_MAX; 3517 } else { 3518 dst_reg->smin_value -= smax_val; 3519 dst_reg->smax_value -= smin_val; 3520 } 3521 if (dst_reg->umin_value < umax_val) { 3522 /* Overflow possible, we know nothing */ 3523 dst_reg->umin_value = 0; 3524 dst_reg->umax_value = U64_MAX; 3525 } else { 3526 /* Cannot overflow (as long as bounds are consistent) */ 3527 dst_reg->umin_value -= umax_val; 3528 dst_reg->umax_value -= umin_val; 3529 } 3530 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3531 break; 3532 case BPF_MUL: 3533 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3534 if (smin_val < 0 || dst_reg->smin_value < 0) { 3535 /* Ain't nobody got time to multiply that sign */ 3536 __mark_reg_unbounded(dst_reg); 3537 __update_reg_bounds(dst_reg); 3538 break; 3539 } 3540 /* Both values are positive, so we can work with unsigned and 3541 * copy the result to signed (unless it exceeds S64_MAX). 3542 */ 3543 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3544 /* Potential overflow, we know nothing */ 3545 __mark_reg_unbounded(dst_reg); 3546 /* (except what we can learn from the var_off) */ 3547 __update_reg_bounds(dst_reg); 3548 break; 3549 } 3550 dst_reg->umin_value *= umin_val; 3551 dst_reg->umax_value *= umax_val; 3552 if (dst_reg->umax_value > S64_MAX) { 3553 /* Overflow possible, we know nothing */ 3554 dst_reg->smin_value = S64_MIN; 3555 dst_reg->smax_value = S64_MAX; 3556 } else { 3557 dst_reg->smin_value = dst_reg->umin_value; 3558 dst_reg->smax_value = dst_reg->umax_value; 3559 } 3560 break; 3561 case BPF_AND: 3562 if (src_known && dst_known) { 3563 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3564 src_reg.var_off.value); 3565 break; 3566 } 3567 /* We get our minimum from the var_off, since that's inherently 3568 * bitwise. Our maximum is the minimum of the operands' maxima. 3569 */ 3570 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3571 dst_reg->umin_value = dst_reg->var_off.value; 3572 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3573 if (dst_reg->smin_value < 0 || smin_val < 0) { 3574 /* Lose signed bounds when ANDing negative numbers, 3575 * ain't nobody got time for that. 3576 */ 3577 dst_reg->smin_value = S64_MIN; 3578 dst_reg->smax_value = S64_MAX; 3579 } else { 3580 /* ANDing two positives gives a positive, so safe to 3581 * cast result into s64. 3582 */ 3583 dst_reg->smin_value = dst_reg->umin_value; 3584 dst_reg->smax_value = dst_reg->umax_value; 3585 } 3586 /* We may learn something more from the var_off */ 3587 __update_reg_bounds(dst_reg); 3588 break; 3589 case BPF_OR: 3590 if (src_known && dst_known) { 3591 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3592 src_reg.var_off.value); 3593 break; 3594 } 3595 /* We get our maximum from the var_off, and our minimum is the 3596 * maximum of the operands' minima 3597 */ 3598 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3599 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3600 dst_reg->umax_value = dst_reg->var_off.value | 3601 dst_reg->var_off.mask; 3602 if (dst_reg->smin_value < 0 || smin_val < 0) { 3603 /* Lose signed bounds when ORing negative numbers, 3604 * ain't nobody got time for that. 3605 */ 3606 dst_reg->smin_value = S64_MIN; 3607 dst_reg->smax_value = S64_MAX; 3608 } else { 3609 /* ORing two positives gives a positive, so safe to 3610 * cast result into s64. 3611 */ 3612 dst_reg->smin_value = dst_reg->umin_value; 3613 dst_reg->smax_value = dst_reg->umax_value; 3614 } 3615 /* We may learn something more from the var_off */ 3616 __update_reg_bounds(dst_reg); 3617 break; 3618 case BPF_LSH: 3619 if (umax_val >= insn_bitness) { 3620 /* Shifts greater than 31 or 63 are undefined. 3621 * This includes shifts by a negative number. 3622 */ 3623 mark_reg_unknown(env, regs, insn->dst_reg); 3624 break; 3625 } 3626 /* We lose all sign bit information (except what we can pick 3627 * up from var_off) 3628 */ 3629 dst_reg->smin_value = S64_MIN; 3630 dst_reg->smax_value = S64_MAX; 3631 /* If we might shift our top bit out, then we know nothing */ 3632 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3633 dst_reg->umin_value = 0; 3634 dst_reg->umax_value = U64_MAX; 3635 } else { 3636 dst_reg->umin_value <<= umin_val; 3637 dst_reg->umax_value <<= umax_val; 3638 } 3639 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3640 /* We may learn something more from the var_off */ 3641 __update_reg_bounds(dst_reg); 3642 break; 3643 case BPF_RSH: 3644 if (umax_val >= insn_bitness) { 3645 /* Shifts greater than 31 or 63 are undefined. 3646 * This includes shifts by a negative number. 3647 */ 3648 mark_reg_unknown(env, regs, insn->dst_reg); 3649 break; 3650 } 3651 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3652 * be negative, then either: 3653 * 1) src_reg might be zero, so the sign bit of the result is 3654 * unknown, so we lose our signed bounds 3655 * 2) it's known negative, thus the unsigned bounds capture the 3656 * signed bounds 3657 * 3) the signed bounds cross zero, so they tell us nothing 3658 * about the result 3659 * If the value in dst_reg is known nonnegative, then again the 3660 * unsigned bounts capture the signed bounds. 3661 * Thus, in all cases it suffices to blow away our signed bounds 3662 * and rely on inferring new ones from the unsigned bounds and 3663 * var_off of the result. 3664 */ 3665 dst_reg->smin_value = S64_MIN; 3666 dst_reg->smax_value = S64_MAX; 3667 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3668 dst_reg->umin_value >>= umax_val; 3669 dst_reg->umax_value >>= umin_val; 3670 /* We may learn something more from the var_off */ 3671 __update_reg_bounds(dst_reg); 3672 break; 3673 case BPF_ARSH: 3674 if (umax_val >= insn_bitness) { 3675 /* Shifts greater than 31 or 63 are undefined. 3676 * This includes shifts by a negative number. 3677 */ 3678 mark_reg_unknown(env, regs, insn->dst_reg); 3679 break; 3680 } 3681 3682 /* Upon reaching here, src_known is true and 3683 * umax_val is equal to umin_val. 3684 */ 3685 dst_reg->smin_value >>= umin_val; 3686 dst_reg->smax_value >>= umin_val; 3687 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3688 3689 /* blow away the dst_reg umin_value/umax_value and rely on 3690 * dst_reg var_off to refine the result. 3691 */ 3692 dst_reg->umin_value = 0; 3693 dst_reg->umax_value = U64_MAX; 3694 __update_reg_bounds(dst_reg); 3695 break; 3696 default: 3697 mark_reg_unknown(env, regs, insn->dst_reg); 3698 break; 3699 } 3700 3701 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3702 /* 32-bit ALU ops are (32,32)->32 */ 3703 coerce_reg_to_size(dst_reg, 4); 3704 } 3705 3706 __reg_deduce_bounds(dst_reg); 3707 __reg_bound_offset(dst_reg); 3708 return 0; 3709 } 3710 3711 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3712 * and var_off. 3713 */ 3714 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3715 struct bpf_insn *insn) 3716 { 3717 struct bpf_verifier_state *vstate = env->cur_state; 3718 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3719 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3720 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3721 u8 opcode = BPF_OP(insn->code); 3722 3723 dst_reg = ®s[insn->dst_reg]; 3724 src_reg = NULL; 3725 if (dst_reg->type != SCALAR_VALUE) 3726 ptr_reg = dst_reg; 3727 if (BPF_SRC(insn->code) == BPF_X) { 3728 src_reg = ®s[insn->src_reg]; 3729 if (src_reg->type != SCALAR_VALUE) { 3730 if (dst_reg->type != SCALAR_VALUE) { 3731 /* Combining two pointers by any ALU op yields 3732 * an arbitrary scalar. Disallow all math except 3733 * pointer subtraction 3734 */ 3735 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3736 mark_reg_unknown(env, regs, insn->dst_reg); 3737 return 0; 3738 } 3739 verbose(env, "R%d pointer %s pointer prohibited\n", 3740 insn->dst_reg, 3741 bpf_alu_string[opcode >> 4]); 3742 return -EACCES; 3743 } else { 3744 /* scalar += pointer 3745 * This is legal, but we have to reverse our 3746 * src/dest handling in computing the range 3747 */ 3748 return adjust_ptr_min_max_vals(env, insn, 3749 src_reg, dst_reg); 3750 } 3751 } else if (ptr_reg) { 3752 /* pointer += scalar */ 3753 return adjust_ptr_min_max_vals(env, insn, 3754 dst_reg, src_reg); 3755 } 3756 } else { 3757 /* Pretend the src is a reg with a known value, since we only 3758 * need to be able to read from this state. 3759 */ 3760 off_reg.type = SCALAR_VALUE; 3761 __mark_reg_known(&off_reg, insn->imm); 3762 src_reg = &off_reg; 3763 if (ptr_reg) /* pointer += K */ 3764 return adjust_ptr_min_max_vals(env, insn, 3765 ptr_reg, src_reg); 3766 } 3767 3768 /* Got here implies adding two SCALAR_VALUEs */ 3769 if (WARN_ON_ONCE(ptr_reg)) { 3770 print_verifier_state(env, state); 3771 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3772 return -EINVAL; 3773 } 3774 if (WARN_ON(!src_reg)) { 3775 print_verifier_state(env, state); 3776 verbose(env, "verifier internal error: no src_reg\n"); 3777 return -EINVAL; 3778 } 3779 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3780 } 3781 3782 /* check validity of 32-bit and 64-bit arithmetic operations */ 3783 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3784 { 3785 struct bpf_reg_state *regs = cur_regs(env); 3786 u8 opcode = BPF_OP(insn->code); 3787 int err; 3788 3789 if (opcode == BPF_END || opcode == BPF_NEG) { 3790 if (opcode == BPF_NEG) { 3791 if (BPF_SRC(insn->code) != 0 || 3792 insn->src_reg != BPF_REG_0 || 3793 insn->off != 0 || insn->imm != 0) { 3794 verbose(env, "BPF_NEG uses reserved fields\n"); 3795 return -EINVAL; 3796 } 3797 } else { 3798 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3799 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3800 BPF_CLASS(insn->code) == BPF_ALU64) { 3801 verbose(env, "BPF_END uses reserved fields\n"); 3802 return -EINVAL; 3803 } 3804 } 3805 3806 /* check src operand */ 3807 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3808 if (err) 3809 return err; 3810 3811 if (is_pointer_value(env, insn->dst_reg)) { 3812 verbose(env, "R%d pointer arithmetic prohibited\n", 3813 insn->dst_reg); 3814 return -EACCES; 3815 } 3816 3817 /* check dest operand */ 3818 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3819 if (err) 3820 return err; 3821 3822 } else if (opcode == BPF_MOV) { 3823 3824 if (BPF_SRC(insn->code) == BPF_X) { 3825 if (insn->imm != 0 || insn->off != 0) { 3826 verbose(env, "BPF_MOV uses reserved fields\n"); 3827 return -EINVAL; 3828 } 3829 3830 /* check src operand */ 3831 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3832 if (err) 3833 return err; 3834 } else { 3835 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3836 verbose(env, "BPF_MOV uses reserved fields\n"); 3837 return -EINVAL; 3838 } 3839 } 3840 3841 /* check dest operand, mark as required later */ 3842 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3843 if (err) 3844 return err; 3845 3846 if (BPF_SRC(insn->code) == BPF_X) { 3847 struct bpf_reg_state *src_reg = regs + insn->src_reg; 3848 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 3849 3850 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3851 /* case: R1 = R2 3852 * copy register state to dest reg 3853 */ 3854 *dst_reg = *src_reg; 3855 dst_reg->live |= REG_LIVE_WRITTEN; 3856 } else { 3857 /* R1 = (u32) R2 */ 3858 if (is_pointer_value(env, insn->src_reg)) { 3859 verbose(env, 3860 "R%d partial copy of pointer\n", 3861 insn->src_reg); 3862 return -EACCES; 3863 } else if (src_reg->type == SCALAR_VALUE) { 3864 *dst_reg = *src_reg; 3865 dst_reg->live |= REG_LIVE_WRITTEN; 3866 } else { 3867 mark_reg_unknown(env, regs, 3868 insn->dst_reg); 3869 } 3870 coerce_reg_to_size(dst_reg, 4); 3871 } 3872 } else { 3873 /* case: R = imm 3874 * remember the value we stored into this reg 3875 */ 3876 /* clear any state __mark_reg_known doesn't set */ 3877 mark_reg_unknown(env, regs, insn->dst_reg); 3878 regs[insn->dst_reg].type = SCALAR_VALUE; 3879 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3880 __mark_reg_known(regs + insn->dst_reg, 3881 insn->imm); 3882 } else { 3883 __mark_reg_known(regs + insn->dst_reg, 3884 (u32)insn->imm); 3885 } 3886 } 3887 3888 } else if (opcode > BPF_END) { 3889 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3890 return -EINVAL; 3891 3892 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3893 3894 if (BPF_SRC(insn->code) == BPF_X) { 3895 if (insn->imm != 0 || insn->off != 0) { 3896 verbose(env, "BPF_ALU uses reserved fields\n"); 3897 return -EINVAL; 3898 } 3899 /* check src1 operand */ 3900 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3901 if (err) 3902 return err; 3903 } else { 3904 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3905 verbose(env, "BPF_ALU uses reserved fields\n"); 3906 return -EINVAL; 3907 } 3908 } 3909 3910 /* check src2 operand */ 3911 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3912 if (err) 3913 return err; 3914 3915 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3916 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3917 verbose(env, "div by zero\n"); 3918 return -EINVAL; 3919 } 3920 3921 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3922 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3923 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3924 3925 if (insn->imm < 0 || insn->imm >= size) { 3926 verbose(env, "invalid shift %d\n", insn->imm); 3927 return -EINVAL; 3928 } 3929 } 3930 3931 /* check dest operand */ 3932 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3933 if (err) 3934 return err; 3935 3936 return adjust_reg_min_max_vals(env, insn); 3937 } 3938 3939 return 0; 3940 } 3941 3942 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3943 struct bpf_reg_state *dst_reg, 3944 enum bpf_reg_type type, 3945 bool range_right_open) 3946 { 3947 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3948 struct bpf_reg_state *regs = state->regs, *reg; 3949 u16 new_range; 3950 int i, j; 3951 3952 if (dst_reg->off < 0 || 3953 (dst_reg->off == 0 && range_right_open)) 3954 /* This doesn't give us any range */ 3955 return; 3956 3957 if (dst_reg->umax_value > MAX_PACKET_OFF || 3958 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3959 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3960 * than pkt_end, but that's because it's also less than pkt. 3961 */ 3962 return; 3963 3964 new_range = dst_reg->off; 3965 if (range_right_open) 3966 new_range--; 3967 3968 /* Examples for register markings: 3969 * 3970 * pkt_data in dst register: 3971 * 3972 * r2 = r3; 3973 * r2 += 8; 3974 * if (r2 > pkt_end) goto <handle exception> 3975 * <access okay> 3976 * 3977 * r2 = r3; 3978 * r2 += 8; 3979 * if (r2 < pkt_end) goto <access okay> 3980 * <handle exception> 3981 * 3982 * Where: 3983 * r2 == dst_reg, pkt_end == src_reg 3984 * r2=pkt(id=n,off=8,r=0) 3985 * r3=pkt(id=n,off=0,r=0) 3986 * 3987 * pkt_data in src register: 3988 * 3989 * r2 = r3; 3990 * r2 += 8; 3991 * if (pkt_end >= r2) goto <access okay> 3992 * <handle exception> 3993 * 3994 * r2 = r3; 3995 * r2 += 8; 3996 * if (pkt_end <= r2) goto <handle exception> 3997 * <access okay> 3998 * 3999 * Where: 4000 * pkt_end == dst_reg, r2 == src_reg 4001 * r2=pkt(id=n,off=8,r=0) 4002 * r3=pkt(id=n,off=0,r=0) 4003 * 4004 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4005 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4006 * and [r3, r3 + 8-1) respectively is safe to access depending on 4007 * the check. 4008 */ 4009 4010 /* If our ids match, then we must have the same max_value. And we 4011 * don't care about the other reg's fixed offset, since if it's too big 4012 * the range won't allow anything. 4013 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4014 */ 4015 for (i = 0; i < MAX_BPF_REG; i++) 4016 if (regs[i].type == type && regs[i].id == dst_reg->id) 4017 /* keep the maximum range already checked */ 4018 regs[i].range = max(regs[i].range, new_range); 4019 4020 for (j = 0; j <= vstate->curframe; j++) { 4021 state = vstate->frame[j]; 4022 bpf_for_each_spilled_reg(i, state, reg) { 4023 if (!reg) 4024 continue; 4025 if (reg->type == type && reg->id == dst_reg->id) 4026 reg->range = max(reg->range, new_range); 4027 } 4028 } 4029 } 4030 4031 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4032 * and return: 4033 * 1 - branch will be taken and "goto target" will be executed 4034 * 0 - branch will not be taken and fall-through to next insn 4035 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4036 */ 4037 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 4038 { 4039 if (__is_pointer_value(false, reg)) 4040 return -1; 4041 4042 switch (opcode) { 4043 case BPF_JEQ: 4044 if (tnum_is_const(reg->var_off)) 4045 return !!tnum_equals_const(reg->var_off, val); 4046 break; 4047 case BPF_JNE: 4048 if (tnum_is_const(reg->var_off)) 4049 return !tnum_equals_const(reg->var_off, val); 4050 break; 4051 case BPF_JSET: 4052 if ((~reg->var_off.mask & reg->var_off.value) & val) 4053 return 1; 4054 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4055 return 0; 4056 break; 4057 case BPF_JGT: 4058 if (reg->umin_value > val) 4059 return 1; 4060 else if (reg->umax_value <= val) 4061 return 0; 4062 break; 4063 case BPF_JSGT: 4064 if (reg->smin_value > (s64)val) 4065 return 1; 4066 else if (reg->smax_value < (s64)val) 4067 return 0; 4068 break; 4069 case BPF_JLT: 4070 if (reg->umax_value < val) 4071 return 1; 4072 else if (reg->umin_value >= val) 4073 return 0; 4074 break; 4075 case BPF_JSLT: 4076 if (reg->smax_value < (s64)val) 4077 return 1; 4078 else if (reg->smin_value >= (s64)val) 4079 return 0; 4080 break; 4081 case BPF_JGE: 4082 if (reg->umin_value >= val) 4083 return 1; 4084 else if (reg->umax_value < val) 4085 return 0; 4086 break; 4087 case BPF_JSGE: 4088 if (reg->smin_value >= (s64)val) 4089 return 1; 4090 else if (reg->smax_value < (s64)val) 4091 return 0; 4092 break; 4093 case BPF_JLE: 4094 if (reg->umax_value <= val) 4095 return 1; 4096 else if (reg->umin_value > val) 4097 return 0; 4098 break; 4099 case BPF_JSLE: 4100 if (reg->smax_value <= (s64)val) 4101 return 1; 4102 else if (reg->smin_value > (s64)val) 4103 return 0; 4104 break; 4105 } 4106 4107 return -1; 4108 } 4109 4110 /* Adjusts the register min/max values in the case that the dst_reg is the 4111 * variable register that we are working on, and src_reg is a constant or we're 4112 * simply doing a BPF_K check. 4113 * In JEQ/JNE cases we also adjust the var_off values. 4114 */ 4115 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4116 struct bpf_reg_state *false_reg, u64 val, 4117 u8 opcode) 4118 { 4119 /* If the dst_reg is a pointer, we can't learn anything about its 4120 * variable offset from the compare (unless src_reg were a pointer into 4121 * the same object, but we don't bother with that. 4122 * Since false_reg and true_reg have the same type by construction, we 4123 * only need to check one of them for pointerness. 4124 */ 4125 if (__is_pointer_value(false, false_reg)) 4126 return; 4127 4128 switch (opcode) { 4129 case BPF_JEQ: 4130 /* If this is false then we know nothing Jon Snow, but if it is 4131 * true then we know for sure. 4132 */ 4133 __mark_reg_known(true_reg, val); 4134 break; 4135 case BPF_JNE: 4136 /* If this is true we know nothing Jon Snow, but if it is false 4137 * we know the value for sure; 4138 */ 4139 __mark_reg_known(false_reg, val); 4140 break; 4141 case BPF_JSET: 4142 false_reg->var_off = tnum_and(false_reg->var_off, 4143 tnum_const(~val)); 4144 if (is_power_of_2(val)) 4145 true_reg->var_off = tnum_or(true_reg->var_off, 4146 tnum_const(val)); 4147 break; 4148 case BPF_JGT: 4149 false_reg->umax_value = min(false_reg->umax_value, val); 4150 true_reg->umin_value = max(true_reg->umin_value, val + 1); 4151 break; 4152 case BPF_JSGT: 4153 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 4154 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 4155 break; 4156 case BPF_JLT: 4157 false_reg->umin_value = max(false_reg->umin_value, val); 4158 true_reg->umax_value = min(true_reg->umax_value, val - 1); 4159 break; 4160 case BPF_JSLT: 4161 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 4162 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 4163 break; 4164 case BPF_JGE: 4165 false_reg->umax_value = min(false_reg->umax_value, val - 1); 4166 true_reg->umin_value = max(true_reg->umin_value, val); 4167 break; 4168 case BPF_JSGE: 4169 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 4170 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 4171 break; 4172 case BPF_JLE: 4173 false_reg->umin_value = max(false_reg->umin_value, val + 1); 4174 true_reg->umax_value = min(true_reg->umax_value, val); 4175 break; 4176 case BPF_JSLE: 4177 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 4178 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 4179 break; 4180 default: 4181 break; 4182 } 4183 4184 __reg_deduce_bounds(false_reg); 4185 __reg_deduce_bounds(true_reg); 4186 /* We might have learned some bits from the bounds. */ 4187 __reg_bound_offset(false_reg); 4188 __reg_bound_offset(true_reg); 4189 /* Intersecting with the old var_off might have improved our bounds 4190 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4191 * then new var_off is (0; 0x7f...fc) which improves our umax. 4192 */ 4193 __update_reg_bounds(false_reg); 4194 __update_reg_bounds(true_reg); 4195 } 4196 4197 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4198 * the variable reg. 4199 */ 4200 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4201 struct bpf_reg_state *false_reg, u64 val, 4202 u8 opcode) 4203 { 4204 if (__is_pointer_value(false, false_reg)) 4205 return; 4206 4207 switch (opcode) { 4208 case BPF_JEQ: 4209 /* If this is false then we know nothing Jon Snow, but if it is 4210 * true then we know for sure. 4211 */ 4212 __mark_reg_known(true_reg, val); 4213 break; 4214 case BPF_JNE: 4215 /* If this is true we know nothing Jon Snow, but if it is false 4216 * we know the value for sure; 4217 */ 4218 __mark_reg_known(false_reg, val); 4219 break; 4220 case BPF_JSET: 4221 false_reg->var_off = tnum_and(false_reg->var_off, 4222 tnum_const(~val)); 4223 if (is_power_of_2(val)) 4224 true_reg->var_off = tnum_or(true_reg->var_off, 4225 tnum_const(val)); 4226 break; 4227 case BPF_JGT: 4228 true_reg->umax_value = min(true_reg->umax_value, val - 1); 4229 false_reg->umin_value = max(false_reg->umin_value, val); 4230 break; 4231 case BPF_JSGT: 4232 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); 4233 false_reg->smin_value = max_t(s64, false_reg->smin_value, val); 4234 break; 4235 case BPF_JLT: 4236 true_reg->umin_value = max(true_reg->umin_value, val + 1); 4237 false_reg->umax_value = min(false_reg->umax_value, val); 4238 break; 4239 case BPF_JSLT: 4240 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); 4241 false_reg->smax_value = min_t(s64, false_reg->smax_value, val); 4242 break; 4243 case BPF_JGE: 4244 true_reg->umax_value = min(true_reg->umax_value, val); 4245 false_reg->umin_value = max(false_reg->umin_value, val + 1); 4246 break; 4247 case BPF_JSGE: 4248 true_reg->smax_value = min_t(s64, true_reg->smax_value, val); 4249 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); 4250 break; 4251 case BPF_JLE: 4252 true_reg->umin_value = max(true_reg->umin_value, val); 4253 false_reg->umax_value = min(false_reg->umax_value, val - 1); 4254 break; 4255 case BPF_JSLE: 4256 true_reg->smin_value = max_t(s64, true_reg->smin_value, val); 4257 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); 4258 break; 4259 default: 4260 break; 4261 } 4262 4263 __reg_deduce_bounds(false_reg); 4264 __reg_deduce_bounds(true_reg); 4265 /* We might have learned some bits from the bounds. */ 4266 __reg_bound_offset(false_reg); 4267 __reg_bound_offset(true_reg); 4268 /* Intersecting with the old var_off might have improved our bounds 4269 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4270 * then new var_off is (0; 0x7f...fc) which improves our umax. 4271 */ 4272 __update_reg_bounds(false_reg); 4273 __update_reg_bounds(true_reg); 4274 } 4275 4276 /* Regs are known to be equal, so intersect their min/max/var_off */ 4277 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4278 struct bpf_reg_state *dst_reg) 4279 { 4280 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4281 dst_reg->umin_value); 4282 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4283 dst_reg->umax_value); 4284 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4285 dst_reg->smin_value); 4286 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4287 dst_reg->smax_value); 4288 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4289 dst_reg->var_off); 4290 /* We might have learned new bounds from the var_off. */ 4291 __update_reg_bounds(src_reg); 4292 __update_reg_bounds(dst_reg); 4293 /* We might have learned something about the sign bit. */ 4294 __reg_deduce_bounds(src_reg); 4295 __reg_deduce_bounds(dst_reg); 4296 /* We might have learned some bits from the bounds. */ 4297 __reg_bound_offset(src_reg); 4298 __reg_bound_offset(dst_reg); 4299 /* Intersecting with the old var_off might have improved our bounds 4300 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4301 * then new var_off is (0; 0x7f...fc) which improves our umax. 4302 */ 4303 __update_reg_bounds(src_reg); 4304 __update_reg_bounds(dst_reg); 4305 } 4306 4307 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4308 struct bpf_reg_state *true_dst, 4309 struct bpf_reg_state *false_src, 4310 struct bpf_reg_state *false_dst, 4311 u8 opcode) 4312 { 4313 switch (opcode) { 4314 case BPF_JEQ: 4315 __reg_combine_min_max(true_src, true_dst); 4316 break; 4317 case BPF_JNE: 4318 __reg_combine_min_max(false_src, false_dst); 4319 break; 4320 } 4321 } 4322 4323 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4324 struct bpf_reg_state *reg, u32 id, 4325 bool is_null) 4326 { 4327 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4328 /* Old offset (both fixed and variable parts) should 4329 * have been known-zero, because we don't allow pointer 4330 * arithmetic on pointers that might be NULL. 4331 */ 4332 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4333 !tnum_equals_const(reg->var_off, 0) || 4334 reg->off)) { 4335 __mark_reg_known_zero(reg); 4336 reg->off = 0; 4337 } 4338 if (is_null) { 4339 reg->type = SCALAR_VALUE; 4340 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4341 if (reg->map_ptr->inner_map_meta) { 4342 reg->type = CONST_PTR_TO_MAP; 4343 reg->map_ptr = reg->map_ptr->inner_map_meta; 4344 } else { 4345 reg->type = PTR_TO_MAP_VALUE; 4346 } 4347 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4348 reg->type = PTR_TO_SOCKET; 4349 } 4350 if (is_null || !reg_is_refcounted(reg)) { 4351 /* We don't need id from this point onwards anymore, 4352 * thus we should better reset it, so that state 4353 * pruning has chances to take effect. 4354 */ 4355 reg->id = 0; 4356 } 4357 } 4358 } 4359 4360 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4361 * be folded together at some point. 4362 */ 4363 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4364 bool is_null) 4365 { 4366 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4367 struct bpf_reg_state *reg, *regs = state->regs; 4368 u32 id = regs[regno].id; 4369 int i, j; 4370 4371 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4372 __release_reference_state(state, id); 4373 4374 for (i = 0; i < MAX_BPF_REG; i++) 4375 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4376 4377 for (j = 0; j <= vstate->curframe; j++) { 4378 state = vstate->frame[j]; 4379 bpf_for_each_spilled_reg(i, state, reg) { 4380 if (!reg) 4381 continue; 4382 mark_ptr_or_null_reg(state, reg, id, is_null); 4383 } 4384 } 4385 } 4386 4387 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4388 struct bpf_reg_state *dst_reg, 4389 struct bpf_reg_state *src_reg, 4390 struct bpf_verifier_state *this_branch, 4391 struct bpf_verifier_state *other_branch) 4392 { 4393 if (BPF_SRC(insn->code) != BPF_X) 4394 return false; 4395 4396 switch (BPF_OP(insn->code)) { 4397 case BPF_JGT: 4398 if ((dst_reg->type == PTR_TO_PACKET && 4399 src_reg->type == PTR_TO_PACKET_END) || 4400 (dst_reg->type == PTR_TO_PACKET_META && 4401 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4402 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4403 find_good_pkt_pointers(this_branch, dst_reg, 4404 dst_reg->type, false); 4405 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4406 src_reg->type == PTR_TO_PACKET) || 4407 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4408 src_reg->type == PTR_TO_PACKET_META)) { 4409 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4410 find_good_pkt_pointers(other_branch, src_reg, 4411 src_reg->type, true); 4412 } else { 4413 return false; 4414 } 4415 break; 4416 case BPF_JLT: 4417 if ((dst_reg->type == PTR_TO_PACKET && 4418 src_reg->type == PTR_TO_PACKET_END) || 4419 (dst_reg->type == PTR_TO_PACKET_META && 4420 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4421 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4422 find_good_pkt_pointers(other_branch, dst_reg, 4423 dst_reg->type, true); 4424 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4425 src_reg->type == PTR_TO_PACKET) || 4426 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4427 src_reg->type == PTR_TO_PACKET_META)) { 4428 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4429 find_good_pkt_pointers(this_branch, src_reg, 4430 src_reg->type, false); 4431 } else { 4432 return false; 4433 } 4434 break; 4435 case BPF_JGE: 4436 if ((dst_reg->type == PTR_TO_PACKET && 4437 src_reg->type == PTR_TO_PACKET_END) || 4438 (dst_reg->type == PTR_TO_PACKET_META && 4439 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4440 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4441 find_good_pkt_pointers(this_branch, dst_reg, 4442 dst_reg->type, true); 4443 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4444 src_reg->type == PTR_TO_PACKET) || 4445 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4446 src_reg->type == PTR_TO_PACKET_META)) { 4447 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4448 find_good_pkt_pointers(other_branch, src_reg, 4449 src_reg->type, false); 4450 } else { 4451 return false; 4452 } 4453 break; 4454 case BPF_JLE: 4455 if ((dst_reg->type == PTR_TO_PACKET && 4456 src_reg->type == PTR_TO_PACKET_END) || 4457 (dst_reg->type == PTR_TO_PACKET_META && 4458 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4459 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4460 find_good_pkt_pointers(other_branch, dst_reg, 4461 dst_reg->type, false); 4462 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4463 src_reg->type == PTR_TO_PACKET) || 4464 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4465 src_reg->type == PTR_TO_PACKET_META)) { 4466 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4467 find_good_pkt_pointers(this_branch, src_reg, 4468 src_reg->type, true); 4469 } else { 4470 return false; 4471 } 4472 break; 4473 default: 4474 return false; 4475 } 4476 4477 return true; 4478 } 4479 4480 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4481 struct bpf_insn *insn, int *insn_idx) 4482 { 4483 struct bpf_verifier_state *this_branch = env->cur_state; 4484 struct bpf_verifier_state *other_branch; 4485 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4486 struct bpf_reg_state *dst_reg, *other_branch_regs; 4487 u8 opcode = BPF_OP(insn->code); 4488 int err; 4489 4490 if (opcode > BPF_JSLE) { 4491 verbose(env, "invalid BPF_JMP opcode %x\n", opcode); 4492 return -EINVAL; 4493 } 4494 4495 if (BPF_SRC(insn->code) == BPF_X) { 4496 if (insn->imm != 0) { 4497 verbose(env, "BPF_JMP uses reserved fields\n"); 4498 return -EINVAL; 4499 } 4500 4501 /* check src1 operand */ 4502 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4503 if (err) 4504 return err; 4505 4506 if (is_pointer_value(env, insn->src_reg)) { 4507 verbose(env, "R%d pointer comparison prohibited\n", 4508 insn->src_reg); 4509 return -EACCES; 4510 } 4511 } else { 4512 if (insn->src_reg != BPF_REG_0) { 4513 verbose(env, "BPF_JMP uses reserved fields\n"); 4514 return -EINVAL; 4515 } 4516 } 4517 4518 /* check src2 operand */ 4519 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4520 if (err) 4521 return err; 4522 4523 dst_reg = ®s[insn->dst_reg]; 4524 4525 if (BPF_SRC(insn->code) == BPF_K) { 4526 int pred = is_branch_taken(dst_reg, insn->imm, opcode); 4527 4528 if (pred == 1) { 4529 /* only follow the goto, ignore fall-through */ 4530 *insn_idx += insn->off; 4531 return 0; 4532 } else if (pred == 0) { 4533 /* only follow fall-through branch, since 4534 * that's where the program will go 4535 */ 4536 return 0; 4537 } 4538 } 4539 4540 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 4541 false); 4542 if (!other_branch) 4543 return -EFAULT; 4544 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4545 4546 /* detect if we are comparing against a constant value so we can adjust 4547 * our min/max values for our dst register. 4548 * this is only legit if both are scalars (or pointers to the same 4549 * object, I suppose, but we don't support that right now), because 4550 * otherwise the different base pointers mean the offsets aren't 4551 * comparable. 4552 */ 4553 if (BPF_SRC(insn->code) == BPF_X) { 4554 if (dst_reg->type == SCALAR_VALUE && 4555 regs[insn->src_reg].type == SCALAR_VALUE) { 4556 if (tnum_is_const(regs[insn->src_reg].var_off)) 4557 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4558 dst_reg, regs[insn->src_reg].var_off.value, 4559 opcode); 4560 else if (tnum_is_const(dst_reg->var_off)) 4561 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4562 ®s[insn->src_reg], 4563 dst_reg->var_off.value, opcode); 4564 else if (opcode == BPF_JEQ || opcode == BPF_JNE) 4565 /* Comparing for equality, we can combine knowledge */ 4566 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4567 &other_branch_regs[insn->dst_reg], 4568 ®s[insn->src_reg], 4569 ®s[insn->dst_reg], opcode); 4570 } 4571 } else if (dst_reg->type == SCALAR_VALUE) { 4572 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4573 dst_reg, insn->imm, opcode); 4574 } 4575 4576 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ 4577 if (BPF_SRC(insn->code) == BPF_K && 4578 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4579 reg_type_may_be_null(dst_reg->type)) { 4580 /* Mark all identical registers in each branch as either 4581 * safe or unknown depending R == 0 or R != 0 conditional. 4582 */ 4583 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4584 opcode == BPF_JNE); 4585 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4586 opcode == BPF_JEQ); 4587 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4588 this_branch, other_branch) && 4589 is_pointer_value(env, insn->dst_reg)) { 4590 verbose(env, "R%d pointer comparison prohibited\n", 4591 insn->dst_reg); 4592 return -EACCES; 4593 } 4594 if (env->log.level) 4595 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4596 return 0; 4597 } 4598 4599 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4600 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4601 { 4602 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4603 4604 return (struct bpf_map *) (unsigned long) imm64; 4605 } 4606 4607 /* verify BPF_LD_IMM64 instruction */ 4608 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4609 { 4610 struct bpf_reg_state *regs = cur_regs(env); 4611 int err; 4612 4613 if (BPF_SIZE(insn->code) != BPF_DW) { 4614 verbose(env, "invalid BPF_LD_IMM insn\n"); 4615 return -EINVAL; 4616 } 4617 if (insn->off != 0) { 4618 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4619 return -EINVAL; 4620 } 4621 4622 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4623 if (err) 4624 return err; 4625 4626 if (insn->src_reg == 0) { 4627 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4628 4629 regs[insn->dst_reg].type = SCALAR_VALUE; 4630 __mark_reg_known(®s[insn->dst_reg], imm); 4631 return 0; 4632 } 4633 4634 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4635 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4636 4637 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4638 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4639 return 0; 4640 } 4641 4642 static bool may_access_skb(enum bpf_prog_type type) 4643 { 4644 switch (type) { 4645 case BPF_PROG_TYPE_SOCKET_FILTER: 4646 case BPF_PROG_TYPE_SCHED_CLS: 4647 case BPF_PROG_TYPE_SCHED_ACT: 4648 return true; 4649 default: 4650 return false; 4651 } 4652 } 4653 4654 /* verify safety of LD_ABS|LD_IND instructions: 4655 * - they can only appear in the programs where ctx == skb 4656 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4657 * preserve R6-R9, and store return value into R0 4658 * 4659 * Implicit input: 4660 * ctx == skb == R6 == CTX 4661 * 4662 * Explicit input: 4663 * SRC == any register 4664 * IMM == 32-bit immediate 4665 * 4666 * Output: 4667 * R0 - 8/16/32-bit skb data converted to cpu endianness 4668 */ 4669 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4670 { 4671 struct bpf_reg_state *regs = cur_regs(env); 4672 u8 mode = BPF_MODE(insn->code); 4673 int i, err; 4674 4675 if (!may_access_skb(env->prog->type)) { 4676 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4677 return -EINVAL; 4678 } 4679 4680 if (!env->ops->gen_ld_abs) { 4681 verbose(env, "bpf verifier is misconfigured\n"); 4682 return -EINVAL; 4683 } 4684 4685 if (env->subprog_cnt > 1) { 4686 /* when program has LD_ABS insn JITs and interpreter assume 4687 * that r1 == ctx == skb which is not the case for callees 4688 * that can have arbitrary arguments. It's problematic 4689 * for main prog as well since JITs would need to analyze 4690 * all functions in order to make proper register save/restore 4691 * decisions in the main prog. Hence disallow LD_ABS with calls 4692 */ 4693 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4694 return -EINVAL; 4695 } 4696 4697 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4698 BPF_SIZE(insn->code) == BPF_DW || 4699 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4700 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4701 return -EINVAL; 4702 } 4703 4704 /* check whether implicit source operand (register R6) is readable */ 4705 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4706 if (err) 4707 return err; 4708 4709 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4710 * gen_ld_abs() may terminate the program at runtime, leading to 4711 * reference leak. 4712 */ 4713 err = check_reference_leak(env); 4714 if (err) { 4715 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4716 return err; 4717 } 4718 4719 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4720 verbose(env, 4721 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4722 return -EINVAL; 4723 } 4724 4725 if (mode == BPF_IND) { 4726 /* check explicit source operand */ 4727 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4728 if (err) 4729 return err; 4730 } 4731 4732 /* reset caller saved regs to unreadable */ 4733 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4734 mark_reg_not_init(env, regs, caller_saved[i]); 4735 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4736 } 4737 4738 /* mark destination R0 register as readable, since it contains 4739 * the value fetched from the packet. 4740 * Already marked as written above. 4741 */ 4742 mark_reg_unknown(env, regs, BPF_REG_0); 4743 return 0; 4744 } 4745 4746 static int check_return_code(struct bpf_verifier_env *env) 4747 { 4748 struct bpf_reg_state *reg; 4749 struct tnum range = tnum_range(0, 1); 4750 4751 switch (env->prog->type) { 4752 case BPF_PROG_TYPE_CGROUP_SKB: 4753 case BPF_PROG_TYPE_CGROUP_SOCK: 4754 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4755 case BPF_PROG_TYPE_SOCK_OPS: 4756 case BPF_PROG_TYPE_CGROUP_DEVICE: 4757 break; 4758 default: 4759 return 0; 4760 } 4761 4762 reg = cur_regs(env) + BPF_REG_0; 4763 if (reg->type != SCALAR_VALUE) { 4764 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4765 reg_type_str[reg->type]); 4766 return -EINVAL; 4767 } 4768 4769 if (!tnum_in(range, reg->var_off)) { 4770 verbose(env, "At program exit the register R0 "); 4771 if (!tnum_is_unknown(reg->var_off)) { 4772 char tn_buf[48]; 4773 4774 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4775 verbose(env, "has value %s", tn_buf); 4776 } else { 4777 verbose(env, "has unknown scalar value"); 4778 } 4779 verbose(env, " should have been 0 or 1\n"); 4780 return -EINVAL; 4781 } 4782 return 0; 4783 } 4784 4785 /* non-recursive DFS pseudo code 4786 * 1 procedure DFS-iterative(G,v): 4787 * 2 label v as discovered 4788 * 3 let S be a stack 4789 * 4 S.push(v) 4790 * 5 while S is not empty 4791 * 6 t <- S.pop() 4792 * 7 if t is what we're looking for: 4793 * 8 return t 4794 * 9 for all edges e in G.adjacentEdges(t) do 4795 * 10 if edge e is already labelled 4796 * 11 continue with the next edge 4797 * 12 w <- G.adjacentVertex(t,e) 4798 * 13 if vertex w is not discovered and not explored 4799 * 14 label e as tree-edge 4800 * 15 label w as discovered 4801 * 16 S.push(w) 4802 * 17 continue at 5 4803 * 18 else if vertex w is discovered 4804 * 19 label e as back-edge 4805 * 20 else 4806 * 21 // vertex w is explored 4807 * 22 label e as forward- or cross-edge 4808 * 23 label t as explored 4809 * 24 S.pop() 4810 * 4811 * convention: 4812 * 0x10 - discovered 4813 * 0x11 - discovered and fall-through edge labelled 4814 * 0x12 - discovered and fall-through and branch edges labelled 4815 * 0x20 - explored 4816 */ 4817 4818 enum { 4819 DISCOVERED = 0x10, 4820 EXPLORED = 0x20, 4821 FALLTHROUGH = 1, 4822 BRANCH = 2, 4823 }; 4824 4825 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4826 4827 static int *insn_stack; /* stack of insns to process */ 4828 static int cur_stack; /* current stack index */ 4829 static int *insn_state; 4830 4831 /* t, w, e - match pseudo-code above: 4832 * t - index of current instruction 4833 * w - next instruction 4834 * e - edge 4835 */ 4836 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4837 { 4838 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4839 return 0; 4840 4841 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4842 return 0; 4843 4844 if (w < 0 || w >= env->prog->len) { 4845 verbose_linfo(env, t, "%d: ", t); 4846 verbose(env, "jump out of range from insn %d to %d\n", t, w); 4847 return -EINVAL; 4848 } 4849 4850 if (e == BRANCH) 4851 /* mark branch target for state pruning */ 4852 env->explored_states[w] = STATE_LIST_MARK; 4853 4854 if (insn_state[w] == 0) { 4855 /* tree-edge */ 4856 insn_state[t] = DISCOVERED | e; 4857 insn_state[w] = DISCOVERED; 4858 if (cur_stack >= env->prog->len) 4859 return -E2BIG; 4860 insn_stack[cur_stack++] = w; 4861 return 1; 4862 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 4863 verbose_linfo(env, t, "%d: ", t); 4864 verbose_linfo(env, w, "%d: ", w); 4865 verbose(env, "back-edge from insn %d to %d\n", t, w); 4866 return -EINVAL; 4867 } else if (insn_state[w] == EXPLORED) { 4868 /* forward- or cross-edge */ 4869 insn_state[t] = DISCOVERED | e; 4870 } else { 4871 verbose(env, "insn state internal bug\n"); 4872 return -EFAULT; 4873 } 4874 return 0; 4875 } 4876 4877 /* non-recursive depth-first-search to detect loops in BPF program 4878 * loop == back-edge in directed graph 4879 */ 4880 static int check_cfg(struct bpf_verifier_env *env) 4881 { 4882 struct bpf_insn *insns = env->prog->insnsi; 4883 int insn_cnt = env->prog->len; 4884 int ret = 0; 4885 int i, t; 4886 4887 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4888 if (!insn_state) 4889 return -ENOMEM; 4890 4891 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 4892 if (!insn_stack) { 4893 kfree(insn_state); 4894 return -ENOMEM; 4895 } 4896 4897 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 4898 insn_stack[0] = 0; /* 0 is the first instruction */ 4899 cur_stack = 1; 4900 4901 peek_stack: 4902 if (cur_stack == 0) 4903 goto check_state; 4904 t = insn_stack[cur_stack - 1]; 4905 4906 if (BPF_CLASS(insns[t].code) == BPF_JMP) { 4907 u8 opcode = BPF_OP(insns[t].code); 4908 4909 if (opcode == BPF_EXIT) { 4910 goto mark_explored; 4911 } else if (opcode == BPF_CALL) { 4912 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4913 if (ret == 1) 4914 goto peek_stack; 4915 else if (ret < 0) 4916 goto err_free; 4917 if (t + 1 < insn_cnt) 4918 env->explored_states[t + 1] = STATE_LIST_MARK; 4919 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 4920 env->explored_states[t] = STATE_LIST_MARK; 4921 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 4922 if (ret == 1) 4923 goto peek_stack; 4924 else if (ret < 0) 4925 goto err_free; 4926 } 4927 } else if (opcode == BPF_JA) { 4928 if (BPF_SRC(insns[t].code) != BPF_K) { 4929 ret = -EINVAL; 4930 goto err_free; 4931 } 4932 /* unconditional jump with single edge */ 4933 ret = push_insn(t, t + insns[t].off + 1, 4934 FALLTHROUGH, env); 4935 if (ret == 1) 4936 goto peek_stack; 4937 else if (ret < 0) 4938 goto err_free; 4939 /* tell verifier to check for equivalent states 4940 * after every call and jump 4941 */ 4942 if (t + 1 < insn_cnt) 4943 env->explored_states[t + 1] = STATE_LIST_MARK; 4944 } else { 4945 /* conditional jump with two edges */ 4946 env->explored_states[t] = STATE_LIST_MARK; 4947 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4948 if (ret == 1) 4949 goto peek_stack; 4950 else if (ret < 0) 4951 goto err_free; 4952 4953 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 4954 if (ret == 1) 4955 goto peek_stack; 4956 else if (ret < 0) 4957 goto err_free; 4958 } 4959 } else { 4960 /* all other non-branch instructions with single 4961 * fall-through edge 4962 */ 4963 ret = push_insn(t, t + 1, FALLTHROUGH, env); 4964 if (ret == 1) 4965 goto peek_stack; 4966 else if (ret < 0) 4967 goto err_free; 4968 } 4969 4970 mark_explored: 4971 insn_state[t] = EXPLORED; 4972 if (cur_stack-- <= 0) { 4973 verbose(env, "pop stack internal bug\n"); 4974 ret = -EFAULT; 4975 goto err_free; 4976 } 4977 goto peek_stack; 4978 4979 check_state: 4980 for (i = 0; i < insn_cnt; i++) { 4981 if (insn_state[i] != EXPLORED) { 4982 verbose(env, "unreachable insn %d\n", i); 4983 ret = -EINVAL; 4984 goto err_free; 4985 } 4986 } 4987 ret = 0; /* cfg looks good */ 4988 4989 err_free: 4990 kfree(insn_state); 4991 kfree(insn_stack); 4992 return ret; 4993 } 4994 4995 /* The minimum supported BTF func info size */ 4996 #define MIN_BPF_FUNCINFO_SIZE 8 4997 #define MAX_FUNCINFO_REC_SIZE 252 4998 4999 static int check_btf_func(struct bpf_verifier_env *env, 5000 const union bpf_attr *attr, 5001 union bpf_attr __user *uattr) 5002 { 5003 u32 i, nfuncs, urec_size, min_size, prev_offset; 5004 u32 krec_size = sizeof(struct bpf_func_info); 5005 struct bpf_func_info *krecord; 5006 const struct btf_type *type; 5007 struct bpf_prog *prog; 5008 const struct btf *btf; 5009 void __user *urecord; 5010 int ret = 0; 5011 5012 nfuncs = attr->func_info_cnt; 5013 if (!nfuncs) 5014 return 0; 5015 5016 if (nfuncs != env->subprog_cnt) { 5017 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5018 return -EINVAL; 5019 } 5020 5021 urec_size = attr->func_info_rec_size; 5022 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5023 urec_size > MAX_FUNCINFO_REC_SIZE || 5024 urec_size % sizeof(u32)) { 5025 verbose(env, "invalid func info rec size %u\n", urec_size); 5026 return -EINVAL; 5027 } 5028 5029 prog = env->prog; 5030 btf = prog->aux->btf; 5031 5032 urecord = u64_to_user_ptr(attr->func_info); 5033 min_size = min_t(u32, krec_size, urec_size); 5034 5035 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5036 if (!krecord) 5037 return -ENOMEM; 5038 5039 for (i = 0; i < nfuncs; i++) { 5040 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5041 if (ret) { 5042 if (ret == -E2BIG) { 5043 verbose(env, "nonzero tailing record in func info"); 5044 /* set the size kernel expects so loader can zero 5045 * out the rest of the record. 5046 */ 5047 if (put_user(min_size, &uattr->func_info_rec_size)) 5048 ret = -EFAULT; 5049 } 5050 goto err_free; 5051 } 5052 5053 if (copy_from_user(&krecord[i], urecord, min_size)) { 5054 ret = -EFAULT; 5055 goto err_free; 5056 } 5057 5058 /* check insn_off */ 5059 if (i == 0) { 5060 if (krecord[i].insn_off) { 5061 verbose(env, 5062 "nonzero insn_off %u for the first func info record", 5063 krecord[i].insn_off); 5064 ret = -EINVAL; 5065 goto err_free; 5066 } 5067 } else if (krecord[i].insn_off <= prev_offset) { 5068 verbose(env, 5069 "same or smaller insn offset (%u) than previous func info record (%u)", 5070 krecord[i].insn_off, prev_offset); 5071 ret = -EINVAL; 5072 goto err_free; 5073 } 5074 5075 if (env->subprog_info[i].start != krecord[i].insn_off) { 5076 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5077 ret = -EINVAL; 5078 goto err_free; 5079 } 5080 5081 /* check type_id */ 5082 type = btf_type_by_id(btf, krecord[i].type_id); 5083 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5084 verbose(env, "invalid type id %d in func info", 5085 krecord[i].type_id); 5086 ret = -EINVAL; 5087 goto err_free; 5088 } 5089 5090 prev_offset = krecord[i].insn_off; 5091 urecord += urec_size; 5092 } 5093 5094 prog->aux->func_info = krecord; 5095 prog->aux->func_info_cnt = nfuncs; 5096 return 0; 5097 5098 err_free: 5099 kvfree(krecord); 5100 return ret; 5101 } 5102 5103 static void adjust_btf_func(struct bpf_verifier_env *env) 5104 { 5105 int i; 5106 5107 if (!env->prog->aux->func_info) 5108 return; 5109 5110 for (i = 0; i < env->subprog_cnt; i++) 5111 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5112 } 5113 5114 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5115 sizeof(((struct bpf_line_info *)(0))->line_col)) 5116 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5117 5118 static int check_btf_line(struct bpf_verifier_env *env, 5119 const union bpf_attr *attr, 5120 union bpf_attr __user *uattr) 5121 { 5122 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5123 struct bpf_subprog_info *sub; 5124 struct bpf_line_info *linfo; 5125 struct bpf_prog *prog; 5126 const struct btf *btf; 5127 void __user *ulinfo; 5128 int err; 5129 5130 nr_linfo = attr->line_info_cnt; 5131 if (!nr_linfo) 5132 return 0; 5133 5134 rec_size = attr->line_info_rec_size; 5135 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5136 rec_size > MAX_LINEINFO_REC_SIZE || 5137 rec_size & (sizeof(u32) - 1)) 5138 return -EINVAL; 5139 5140 /* Need to zero it in case the userspace may 5141 * pass in a smaller bpf_line_info object. 5142 */ 5143 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5144 GFP_KERNEL | __GFP_NOWARN); 5145 if (!linfo) 5146 return -ENOMEM; 5147 5148 prog = env->prog; 5149 btf = prog->aux->btf; 5150 5151 s = 0; 5152 sub = env->subprog_info; 5153 ulinfo = u64_to_user_ptr(attr->line_info); 5154 expected_size = sizeof(struct bpf_line_info); 5155 ncopy = min_t(u32, expected_size, rec_size); 5156 for (i = 0; i < nr_linfo; i++) { 5157 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5158 if (err) { 5159 if (err == -E2BIG) { 5160 verbose(env, "nonzero tailing record in line_info"); 5161 if (put_user(expected_size, 5162 &uattr->line_info_rec_size)) 5163 err = -EFAULT; 5164 } 5165 goto err_free; 5166 } 5167 5168 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5169 err = -EFAULT; 5170 goto err_free; 5171 } 5172 5173 /* 5174 * Check insn_off to ensure 5175 * 1) strictly increasing AND 5176 * 2) bounded by prog->len 5177 * 5178 * The linfo[0].insn_off == 0 check logically falls into 5179 * the later "missing bpf_line_info for func..." case 5180 * because the first linfo[0].insn_off must be the 5181 * first sub also and the first sub must have 5182 * subprog_info[0].start == 0. 5183 */ 5184 if ((i && linfo[i].insn_off <= prev_offset) || 5185 linfo[i].insn_off >= prog->len) { 5186 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5187 i, linfo[i].insn_off, prev_offset, 5188 prog->len); 5189 err = -EINVAL; 5190 goto err_free; 5191 } 5192 5193 if (!prog->insnsi[linfo[i].insn_off].code) { 5194 verbose(env, 5195 "Invalid insn code at line_info[%u].insn_off\n", 5196 i); 5197 err = -EINVAL; 5198 goto err_free; 5199 } 5200 5201 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5202 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5203 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5204 err = -EINVAL; 5205 goto err_free; 5206 } 5207 5208 if (s != env->subprog_cnt) { 5209 if (linfo[i].insn_off == sub[s].start) { 5210 sub[s].linfo_idx = i; 5211 s++; 5212 } else if (sub[s].start < linfo[i].insn_off) { 5213 verbose(env, "missing bpf_line_info for func#%u\n", s); 5214 err = -EINVAL; 5215 goto err_free; 5216 } 5217 } 5218 5219 prev_offset = linfo[i].insn_off; 5220 ulinfo += rec_size; 5221 } 5222 5223 if (s != env->subprog_cnt) { 5224 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5225 env->subprog_cnt - s, s); 5226 err = -EINVAL; 5227 goto err_free; 5228 } 5229 5230 prog->aux->linfo = linfo; 5231 prog->aux->nr_linfo = nr_linfo; 5232 5233 return 0; 5234 5235 err_free: 5236 kvfree(linfo); 5237 return err; 5238 } 5239 5240 static int check_btf_info(struct bpf_verifier_env *env, 5241 const union bpf_attr *attr, 5242 union bpf_attr __user *uattr) 5243 { 5244 struct btf *btf; 5245 int err; 5246 5247 if (!attr->func_info_cnt && !attr->line_info_cnt) 5248 return 0; 5249 5250 btf = btf_get_by_fd(attr->prog_btf_fd); 5251 if (IS_ERR(btf)) 5252 return PTR_ERR(btf); 5253 env->prog->aux->btf = btf; 5254 5255 err = check_btf_func(env, attr, uattr); 5256 if (err) 5257 return err; 5258 5259 err = check_btf_line(env, attr, uattr); 5260 if (err) 5261 return err; 5262 5263 return 0; 5264 } 5265 5266 /* check %cur's range satisfies %old's */ 5267 static bool range_within(struct bpf_reg_state *old, 5268 struct bpf_reg_state *cur) 5269 { 5270 return old->umin_value <= cur->umin_value && 5271 old->umax_value >= cur->umax_value && 5272 old->smin_value <= cur->smin_value && 5273 old->smax_value >= cur->smax_value; 5274 } 5275 5276 /* Maximum number of register states that can exist at once */ 5277 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5278 struct idpair { 5279 u32 old; 5280 u32 cur; 5281 }; 5282 5283 /* If in the old state two registers had the same id, then they need to have 5284 * the same id in the new state as well. But that id could be different from 5285 * the old state, so we need to track the mapping from old to new ids. 5286 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5287 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5288 * regs with a different old id could still have new id 9, we don't care about 5289 * that. 5290 * So we look through our idmap to see if this old id has been seen before. If 5291 * so, we require the new id to match; otherwise, we add the id pair to the map. 5292 */ 5293 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5294 { 5295 unsigned int i; 5296 5297 for (i = 0; i < ID_MAP_SIZE; i++) { 5298 if (!idmap[i].old) { 5299 /* Reached an empty slot; haven't seen this id before */ 5300 idmap[i].old = old_id; 5301 idmap[i].cur = cur_id; 5302 return true; 5303 } 5304 if (idmap[i].old == old_id) 5305 return idmap[i].cur == cur_id; 5306 } 5307 /* We ran out of idmap slots, which should be impossible */ 5308 WARN_ON_ONCE(1); 5309 return false; 5310 } 5311 5312 static void clean_func_state(struct bpf_verifier_env *env, 5313 struct bpf_func_state *st) 5314 { 5315 enum bpf_reg_liveness live; 5316 int i, j; 5317 5318 for (i = 0; i < BPF_REG_FP; i++) { 5319 live = st->regs[i].live; 5320 /* liveness must not touch this register anymore */ 5321 st->regs[i].live |= REG_LIVE_DONE; 5322 if (!(live & REG_LIVE_READ)) 5323 /* since the register is unused, clear its state 5324 * to make further comparison simpler 5325 */ 5326 __mark_reg_not_init(&st->regs[i]); 5327 } 5328 5329 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5330 live = st->stack[i].spilled_ptr.live; 5331 /* liveness must not touch this stack slot anymore */ 5332 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5333 if (!(live & REG_LIVE_READ)) { 5334 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5335 for (j = 0; j < BPF_REG_SIZE; j++) 5336 st->stack[i].slot_type[j] = STACK_INVALID; 5337 } 5338 } 5339 } 5340 5341 static void clean_verifier_state(struct bpf_verifier_env *env, 5342 struct bpf_verifier_state *st) 5343 { 5344 int i; 5345 5346 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5347 /* all regs in this state in all frames were already marked */ 5348 return; 5349 5350 for (i = 0; i <= st->curframe; i++) 5351 clean_func_state(env, st->frame[i]); 5352 } 5353 5354 /* the parentage chains form a tree. 5355 * the verifier states are added to state lists at given insn and 5356 * pushed into state stack for future exploration. 5357 * when the verifier reaches bpf_exit insn some of the verifer states 5358 * stored in the state lists have their final liveness state already, 5359 * but a lot of states will get revised from liveness point of view when 5360 * the verifier explores other branches. 5361 * Example: 5362 * 1: r0 = 1 5363 * 2: if r1 == 100 goto pc+1 5364 * 3: r0 = 2 5365 * 4: exit 5366 * when the verifier reaches exit insn the register r0 in the state list of 5367 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5368 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5369 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5370 * 5371 * Since the verifier pushes the branch states as it sees them while exploring 5372 * the program the condition of walking the branch instruction for the second 5373 * time means that all states below this branch were already explored and 5374 * their final liveness markes are already propagated. 5375 * Hence when the verifier completes the search of state list in is_state_visited() 5376 * we can call this clean_live_states() function to mark all liveness states 5377 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5378 * will not be used. 5379 * This function also clears the registers and stack for states that !READ 5380 * to simplify state merging. 5381 * 5382 * Important note here that walking the same branch instruction in the callee 5383 * doesn't meant that the states are DONE. The verifier has to compare 5384 * the callsites 5385 */ 5386 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5387 struct bpf_verifier_state *cur) 5388 { 5389 struct bpf_verifier_state_list *sl; 5390 int i; 5391 5392 sl = env->explored_states[insn]; 5393 if (!sl) 5394 return; 5395 5396 while (sl != STATE_LIST_MARK) { 5397 if (sl->state.curframe != cur->curframe) 5398 goto next; 5399 for (i = 0; i <= cur->curframe; i++) 5400 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5401 goto next; 5402 clean_verifier_state(env, &sl->state); 5403 next: 5404 sl = sl->next; 5405 } 5406 } 5407 5408 /* Returns true if (rold safe implies rcur safe) */ 5409 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5410 struct idpair *idmap) 5411 { 5412 bool equal; 5413 5414 if (!(rold->live & REG_LIVE_READ)) 5415 /* explored state didn't use this */ 5416 return true; 5417 5418 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5419 5420 if (rold->type == PTR_TO_STACK) 5421 /* two stack pointers are equal only if they're pointing to 5422 * the same stack frame, since fp-8 in foo != fp-8 in bar 5423 */ 5424 return equal && rold->frameno == rcur->frameno; 5425 5426 if (equal) 5427 return true; 5428 5429 if (rold->type == NOT_INIT) 5430 /* explored state can't have used this */ 5431 return true; 5432 if (rcur->type == NOT_INIT) 5433 return false; 5434 switch (rold->type) { 5435 case SCALAR_VALUE: 5436 if (rcur->type == SCALAR_VALUE) { 5437 /* new val must satisfy old val knowledge */ 5438 return range_within(rold, rcur) && 5439 tnum_in(rold->var_off, rcur->var_off); 5440 } else { 5441 /* We're trying to use a pointer in place of a scalar. 5442 * Even if the scalar was unbounded, this could lead to 5443 * pointer leaks because scalars are allowed to leak 5444 * while pointers are not. We could make this safe in 5445 * special cases if root is calling us, but it's 5446 * probably not worth the hassle. 5447 */ 5448 return false; 5449 } 5450 case PTR_TO_MAP_VALUE: 5451 /* If the new min/max/var_off satisfy the old ones and 5452 * everything else matches, we are OK. 5453 * We don't care about the 'id' value, because nothing 5454 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 5455 */ 5456 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5457 range_within(rold, rcur) && 5458 tnum_in(rold->var_off, rcur->var_off); 5459 case PTR_TO_MAP_VALUE_OR_NULL: 5460 /* a PTR_TO_MAP_VALUE could be safe to use as a 5461 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5462 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5463 * checked, doing so could have affected others with the same 5464 * id, and we can't check for that because we lost the id when 5465 * we converted to a PTR_TO_MAP_VALUE. 5466 */ 5467 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5468 return false; 5469 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5470 return false; 5471 /* Check our ids match any regs they're supposed to */ 5472 return check_ids(rold->id, rcur->id, idmap); 5473 case PTR_TO_PACKET_META: 5474 case PTR_TO_PACKET: 5475 if (rcur->type != rold->type) 5476 return false; 5477 /* We must have at least as much range as the old ptr 5478 * did, so that any accesses which were safe before are 5479 * still safe. This is true even if old range < old off, 5480 * since someone could have accessed through (ptr - k), or 5481 * even done ptr -= k in a register, to get a safe access. 5482 */ 5483 if (rold->range > rcur->range) 5484 return false; 5485 /* If the offsets don't match, we can't trust our alignment; 5486 * nor can we be sure that we won't fall out of range. 5487 */ 5488 if (rold->off != rcur->off) 5489 return false; 5490 /* id relations must be preserved */ 5491 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5492 return false; 5493 /* new val must satisfy old val knowledge */ 5494 return range_within(rold, rcur) && 5495 tnum_in(rold->var_off, rcur->var_off); 5496 case PTR_TO_CTX: 5497 case CONST_PTR_TO_MAP: 5498 case PTR_TO_PACKET_END: 5499 case PTR_TO_FLOW_KEYS: 5500 case PTR_TO_SOCKET: 5501 case PTR_TO_SOCKET_OR_NULL: 5502 /* Only valid matches are exact, which memcmp() above 5503 * would have accepted 5504 */ 5505 default: 5506 /* Don't know what's going on, just say it's not safe */ 5507 return false; 5508 } 5509 5510 /* Shouldn't get here; if we do, say it's not safe */ 5511 WARN_ON_ONCE(1); 5512 return false; 5513 } 5514 5515 static bool stacksafe(struct bpf_func_state *old, 5516 struct bpf_func_state *cur, 5517 struct idpair *idmap) 5518 { 5519 int i, spi; 5520 5521 /* walk slots of the explored stack and ignore any additional 5522 * slots in the current stack, since explored(safe) state 5523 * didn't use them 5524 */ 5525 for (i = 0; i < old->allocated_stack; i++) { 5526 spi = i / BPF_REG_SIZE; 5527 5528 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5529 i += BPF_REG_SIZE - 1; 5530 /* explored state didn't use this */ 5531 continue; 5532 } 5533 5534 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5535 continue; 5536 5537 /* explored stack has more populated slots than current stack 5538 * and these slots were used 5539 */ 5540 if (i >= cur->allocated_stack) 5541 return false; 5542 5543 /* if old state was safe with misc data in the stack 5544 * it will be safe with zero-initialized stack. 5545 * The opposite is not true 5546 */ 5547 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5548 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5549 continue; 5550 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5551 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5552 /* Ex: old explored (safe) state has STACK_SPILL in 5553 * this stack slot, but current has has STACK_MISC -> 5554 * this verifier states are not equivalent, 5555 * return false to continue verification of this path 5556 */ 5557 return false; 5558 if (i % BPF_REG_SIZE) 5559 continue; 5560 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5561 continue; 5562 if (!regsafe(&old->stack[spi].spilled_ptr, 5563 &cur->stack[spi].spilled_ptr, 5564 idmap)) 5565 /* when explored and current stack slot are both storing 5566 * spilled registers, check that stored pointers types 5567 * are the same as well. 5568 * Ex: explored safe path could have stored 5569 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5570 * but current path has stored: 5571 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5572 * such verifier states are not equivalent. 5573 * return false to continue verification of this path 5574 */ 5575 return false; 5576 } 5577 return true; 5578 } 5579 5580 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5581 { 5582 if (old->acquired_refs != cur->acquired_refs) 5583 return false; 5584 return !memcmp(old->refs, cur->refs, 5585 sizeof(*old->refs) * old->acquired_refs); 5586 } 5587 5588 /* compare two verifier states 5589 * 5590 * all states stored in state_list are known to be valid, since 5591 * verifier reached 'bpf_exit' instruction through them 5592 * 5593 * this function is called when verifier exploring different branches of 5594 * execution popped from the state stack. If it sees an old state that has 5595 * more strict register state and more strict stack state then this execution 5596 * branch doesn't need to be explored further, since verifier already 5597 * concluded that more strict state leads to valid finish. 5598 * 5599 * Therefore two states are equivalent if register state is more conservative 5600 * and explored stack state is more conservative than the current one. 5601 * Example: 5602 * explored current 5603 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5604 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5605 * 5606 * In other words if current stack state (one being explored) has more 5607 * valid slots than old one that already passed validation, it means 5608 * the verifier can stop exploring and conclude that current state is valid too 5609 * 5610 * Similarly with registers. If explored state has register type as invalid 5611 * whereas register type in current state is meaningful, it means that 5612 * the current state will reach 'bpf_exit' instruction safely 5613 */ 5614 static bool func_states_equal(struct bpf_func_state *old, 5615 struct bpf_func_state *cur) 5616 { 5617 struct idpair *idmap; 5618 bool ret = false; 5619 int i; 5620 5621 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5622 /* If we failed to allocate the idmap, just say it's not safe */ 5623 if (!idmap) 5624 return false; 5625 5626 for (i = 0; i < MAX_BPF_REG; i++) { 5627 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5628 goto out_free; 5629 } 5630 5631 if (!stacksafe(old, cur, idmap)) 5632 goto out_free; 5633 5634 if (!refsafe(old, cur)) 5635 goto out_free; 5636 ret = true; 5637 out_free: 5638 kfree(idmap); 5639 return ret; 5640 } 5641 5642 static bool states_equal(struct bpf_verifier_env *env, 5643 struct bpf_verifier_state *old, 5644 struct bpf_verifier_state *cur) 5645 { 5646 int i; 5647 5648 if (old->curframe != cur->curframe) 5649 return false; 5650 5651 /* Verification state from speculative execution simulation 5652 * must never prune a non-speculative execution one. 5653 */ 5654 if (old->speculative && !cur->speculative) 5655 return false; 5656 5657 /* for states to be equal callsites have to be the same 5658 * and all frame states need to be equivalent 5659 */ 5660 for (i = 0; i <= old->curframe; i++) { 5661 if (old->frame[i]->callsite != cur->frame[i]->callsite) 5662 return false; 5663 if (!func_states_equal(old->frame[i], cur->frame[i])) 5664 return false; 5665 } 5666 return true; 5667 } 5668 5669 /* A write screens off any subsequent reads; but write marks come from the 5670 * straight-line code between a state and its parent. When we arrive at an 5671 * equivalent state (jump target or such) we didn't arrive by the straight-line 5672 * code, so read marks in the state must propagate to the parent regardless 5673 * of the state's write marks. That's what 'parent == state->parent' comparison 5674 * in mark_reg_read() is for. 5675 */ 5676 static int propagate_liveness(struct bpf_verifier_env *env, 5677 const struct bpf_verifier_state *vstate, 5678 struct bpf_verifier_state *vparent) 5679 { 5680 int i, frame, err = 0; 5681 struct bpf_func_state *state, *parent; 5682 5683 if (vparent->curframe != vstate->curframe) { 5684 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5685 vparent->curframe, vstate->curframe); 5686 return -EFAULT; 5687 } 5688 /* Propagate read liveness of registers... */ 5689 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5690 /* We don't need to worry about FP liveness because it's read-only */ 5691 for (i = 0; i < BPF_REG_FP; i++) { 5692 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5693 continue; 5694 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5695 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5696 &vparent->frame[vstate->curframe]->regs[i]); 5697 if (err) 5698 return err; 5699 } 5700 } 5701 5702 /* ... and stack slots */ 5703 for (frame = 0; frame <= vstate->curframe; frame++) { 5704 state = vstate->frame[frame]; 5705 parent = vparent->frame[frame]; 5706 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5707 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5708 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5709 continue; 5710 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5711 mark_reg_read(env, &state->stack[i].spilled_ptr, 5712 &parent->stack[i].spilled_ptr); 5713 } 5714 } 5715 return err; 5716 } 5717 5718 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5719 { 5720 struct bpf_verifier_state_list *new_sl; 5721 struct bpf_verifier_state_list *sl; 5722 struct bpf_verifier_state *cur = env->cur_state, *new; 5723 int i, j, err, states_cnt = 0; 5724 5725 sl = env->explored_states[insn_idx]; 5726 if (!sl) 5727 /* this 'insn_idx' instruction wasn't marked, so we will not 5728 * be doing state search here 5729 */ 5730 return 0; 5731 5732 clean_live_states(env, insn_idx, cur); 5733 5734 while (sl != STATE_LIST_MARK) { 5735 if (states_equal(env, &sl->state, cur)) { 5736 /* reached equivalent register/stack state, 5737 * prune the search. 5738 * Registers read by the continuation are read by us. 5739 * If we have any write marks in env->cur_state, they 5740 * will prevent corresponding reads in the continuation 5741 * from reaching our parent (an explored_state). Our 5742 * own state will get the read marks recorded, but 5743 * they'll be immediately forgotten as we're pruning 5744 * this state and will pop a new one. 5745 */ 5746 err = propagate_liveness(env, &sl->state, cur); 5747 if (err) 5748 return err; 5749 return 1; 5750 } 5751 sl = sl->next; 5752 states_cnt++; 5753 } 5754 5755 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5756 return 0; 5757 5758 /* there were no equivalent states, remember current one. 5759 * technically the current state is not proven to be safe yet, 5760 * but it will either reach outer most bpf_exit (which means it's safe) 5761 * or it will be rejected. Since there are no loops, we won't be 5762 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5763 * again on the way to bpf_exit 5764 */ 5765 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5766 if (!new_sl) 5767 return -ENOMEM; 5768 5769 /* add new state to the head of linked list */ 5770 new = &new_sl->state; 5771 err = copy_verifier_state(new, cur); 5772 if (err) { 5773 free_verifier_state(new, false); 5774 kfree(new_sl); 5775 return err; 5776 } 5777 new_sl->next = env->explored_states[insn_idx]; 5778 env->explored_states[insn_idx] = new_sl; 5779 /* connect new state to parentage chain. Current frame needs all 5780 * registers connected. Only r6 - r9 of the callers are alive (pushed 5781 * to the stack implicitly by JITs) so in callers' frames connect just 5782 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 5783 * the state of the call instruction (with WRITTEN set), and r0 comes 5784 * from callee with its full parentage chain, anyway. 5785 */ 5786 for (j = 0; j <= cur->curframe; j++) 5787 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 5788 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 5789 /* clear write marks in current state: the writes we did are not writes 5790 * our child did, so they don't screen off its reads from us. 5791 * (There are no read marks in current state, because reads always mark 5792 * their parent and current state never has children yet. Only 5793 * explored_states can get read marks.) 5794 */ 5795 for (i = 0; i < BPF_REG_FP; i++) 5796 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5797 5798 /* all stack frames are accessible from callee, clear them all */ 5799 for (j = 0; j <= cur->curframe; j++) { 5800 struct bpf_func_state *frame = cur->frame[j]; 5801 struct bpf_func_state *newframe = new->frame[j]; 5802 5803 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5804 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5805 frame->stack[i].spilled_ptr.parent = 5806 &newframe->stack[i].spilled_ptr; 5807 } 5808 } 5809 return 0; 5810 } 5811 5812 /* Return true if it's OK to have the same insn return a different type. */ 5813 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5814 { 5815 switch (type) { 5816 case PTR_TO_CTX: 5817 case PTR_TO_SOCKET: 5818 case PTR_TO_SOCKET_OR_NULL: 5819 return false; 5820 default: 5821 return true; 5822 } 5823 } 5824 5825 /* If an instruction was previously used with particular pointer types, then we 5826 * need to be careful to avoid cases such as the below, where it may be ok 5827 * for one branch accessing the pointer, but not ok for the other branch: 5828 * 5829 * R1 = sock_ptr 5830 * goto X; 5831 * ... 5832 * R1 = some_other_valid_ptr; 5833 * goto X; 5834 * ... 5835 * R2 = *(u32 *)(R1 + 0); 5836 */ 5837 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5838 { 5839 return src != prev && (!reg_type_mismatch_ok(src) || 5840 !reg_type_mismatch_ok(prev)); 5841 } 5842 5843 static int do_check(struct bpf_verifier_env *env) 5844 { 5845 struct bpf_verifier_state *state; 5846 struct bpf_insn *insns = env->prog->insnsi; 5847 struct bpf_reg_state *regs; 5848 int insn_cnt = env->prog->len, i; 5849 int insn_processed = 0; 5850 bool do_print_state = false; 5851 5852 env->prev_linfo = NULL; 5853 5854 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 5855 if (!state) 5856 return -ENOMEM; 5857 state->curframe = 0; 5858 state->speculative = false; 5859 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 5860 if (!state->frame[0]) { 5861 kfree(state); 5862 return -ENOMEM; 5863 } 5864 env->cur_state = state; 5865 init_func_state(env, state->frame[0], 5866 BPF_MAIN_FUNC /* callsite */, 5867 0 /* frameno */, 5868 0 /* subprogno, zero == main subprog */); 5869 5870 for (;;) { 5871 struct bpf_insn *insn; 5872 u8 class; 5873 int err; 5874 5875 if (env->insn_idx >= insn_cnt) { 5876 verbose(env, "invalid insn idx %d insn_cnt %d\n", 5877 env->insn_idx, insn_cnt); 5878 return -EFAULT; 5879 } 5880 5881 insn = &insns[env->insn_idx]; 5882 class = BPF_CLASS(insn->code); 5883 5884 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 5885 verbose(env, 5886 "BPF program is too large. Processed %d insn\n", 5887 insn_processed); 5888 return -E2BIG; 5889 } 5890 5891 err = is_state_visited(env, env->insn_idx); 5892 if (err < 0) 5893 return err; 5894 if (err == 1) { 5895 /* found equivalent state, can prune the search */ 5896 if (env->log.level) { 5897 if (do_print_state) 5898 verbose(env, "\nfrom %d to %d%s: safe\n", 5899 env->prev_insn_idx, env->insn_idx, 5900 env->cur_state->speculative ? 5901 " (speculative execution)" : ""); 5902 else 5903 verbose(env, "%d: safe\n", env->insn_idx); 5904 } 5905 goto process_bpf_exit; 5906 } 5907 5908 if (signal_pending(current)) 5909 return -EAGAIN; 5910 5911 if (need_resched()) 5912 cond_resched(); 5913 5914 if (env->log.level > 1 || (env->log.level && do_print_state)) { 5915 if (env->log.level > 1) 5916 verbose(env, "%d:", env->insn_idx); 5917 else 5918 verbose(env, "\nfrom %d to %d%s:", 5919 env->prev_insn_idx, env->insn_idx, 5920 env->cur_state->speculative ? 5921 " (speculative execution)" : ""); 5922 print_verifier_state(env, state->frame[state->curframe]); 5923 do_print_state = false; 5924 } 5925 5926 if (env->log.level) { 5927 const struct bpf_insn_cbs cbs = { 5928 .cb_print = verbose, 5929 .private_data = env, 5930 }; 5931 5932 verbose_linfo(env, env->insn_idx, "; "); 5933 verbose(env, "%d: ", env->insn_idx); 5934 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 5935 } 5936 5937 if (bpf_prog_is_dev_bound(env->prog->aux)) { 5938 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 5939 env->prev_insn_idx); 5940 if (err) 5941 return err; 5942 } 5943 5944 regs = cur_regs(env); 5945 env->insn_aux_data[env->insn_idx].seen = true; 5946 5947 if (class == BPF_ALU || class == BPF_ALU64) { 5948 err = check_alu_op(env, insn); 5949 if (err) 5950 return err; 5951 5952 } else if (class == BPF_LDX) { 5953 enum bpf_reg_type *prev_src_type, src_reg_type; 5954 5955 /* check for reserved fields is already done */ 5956 5957 /* check src operand */ 5958 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5959 if (err) 5960 return err; 5961 5962 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5963 if (err) 5964 return err; 5965 5966 src_reg_type = regs[insn->src_reg].type; 5967 5968 /* check that memory (src_reg + off) is readable, 5969 * the state of dst_reg will be updated by this func 5970 */ 5971 err = check_mem_access(env, env->insn_idx, insn->src_reg, 5972 insn->off, BPF_SIZE(insn->code), 5973 BPF_READ, insn->dst_reg, false); 5974 if (err) 5975 return err; 5976 5977 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 5978 5979 if (*prev_src_type == NOT_INIT) { 5980 /* saw a valid insn 5981 * dst_reg = *(u32 *)(src_reg + off) 5982 * save type to validate intersecting paths 5983 */ 5984 *prev_src_type = src_reg_type; 5985 5986 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 5987 /* ABuser program is trying to use the same insn 5988 * dst_reg = *(u32*) (src_reg + off) 5989 * with different pointer types: 5990 * src_reg == ctx in one branch and 5991 * src_reg == stack|map in some other branch. 5992 * Reject it. 5993 */ 5994 verbose(env, "same insn cannot be used with different pointers\n"); 5995 return -EINVAL; 5996 } 5997 5998 } else if (class == BPF_STX) { 5999 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6000 6001 if (BPF_MODE(insn->code) == BPF_XADD) { 6002 err = check_xadd(env, env->insn_idx, insn); 6003 if (err) 6004 return err; 6005 env->insn_idx++; 6006 continue; 6007 } 6008 6009 /* check src1 operand */ 6010 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6011 if (err) 6012 return err; 6013 /* check src2 operand */ 6014 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6015 if (err) 6016 return err; 6017 6018 dst_reg_type = regs[insn->dst_reg].type; 6019 6020 /* check that memory (dst_reg + off) is writeable */ 6021 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6022 insn->off, BPF_SIZE(insn->code), 6023 BPF_WRITE, insn->src_reg, false); 6024 if (err) 6025 return err; 6026 6027 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6028 6029 if (*prev_dst_type == NOT_INIT) { 6030 *prev_dst_type = dst_reg_type; 6031 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6032 verbose(env, "same insn cannot be used with different pointers\n"); 6033 return -EINVAL; 6034 } 6035 6036 } else if (class == BPF_ST) { 6037 if (BPF_MODE(insn->code) != BPF_MEM || 6038 insn->src_reg != BPF_REG_0) { 6039 verbose(env, "BPF_ST uses reserved fields\n"); 6040 return -EINVAL; 6041 } 6042 /* check src operand */ 6043 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6044 if (err) 6045 return err; 6046 6047 if (is_ctx_reg(env, insn->dst_reg)) { 6048 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6049 insn->dst_reg, 6050 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6051 return -EACCES; 6052 } 6053 6054 /* check that memory (dst_reg + off) is writeable */ 6055 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6056 insn->off, BPF_SIZE(insn->code), 6057 BPF_WRITE, -1, false); 6058 if (err) 6059 return err; 6060 6061 } else if (class == BPF_JMP) { 6062 u8 opcode = BPF_OP(insn->code); 6063 6064 if (opcode == BPF_CALL) { 6065 if (BPF_SRC(insn->code) != BPF_K || 6066 insn->off != 0 || 6067 (insn->src_reg != BPF_REG_0 && 6068 insn->src_reg != BPF_PSEUDO_CALL) || 6069 insn->dst_reg != BPF_REG_0) { 6070 verbose(env, "BPF_CALL uses reserved fields\n"); 6071 return -EINVAL; 6072 } 6073 6074 if (insn->src_reg == BPF_PSEUDO_CALL) 6075 err = check_func_call(env, insn, &env->insn_idx); 6076 else 6077 err = check_helper_call(env, insn->imm, env->insn_idx); 6078 if (err) 6079 return err; 6080 6081 } else if (opcode == BPF_JA) { 6082 if (BPF_SRC(insn->code) != BPF_K || 6083 insn->imm != 0 || 6084 insn->src_reg != BPF_REG_0 || 6085 insn->dst_reg != BPF_REG_0) { 6086 verbose(env, "BPF_JA uses reserved fields\n"); 6087 return -EINVAL; 6088 } 6089 6090 env->insn_idx += insn->off + 1; 6091 continue; 6092 6093 } else if (opcode == BPF_EXIT) { 6094 if (BPF_SRC(insn->code) != BPF_K || 6095 insn->imm != 0 || 6096 insn->src_reg != BPF_REG_0 || 6097 insn->dst_reg != BPF_REG_0) { 6098 verbose(env, "BPF_EXIT uses reserved fields\n"); 6099 return -EINVAL; 6100 } 6101 6102 if (state->curframe) { 6103 /* exit from nested function */ 6104 env->prev_insn_idx = env->insn_idx; 6105 err = prepare_func_exit(env, &env->insn_idx); 6106 if (err) 6107 return err; 6108 do_print_state = true; 6109 continue; 6110 } 6111 6112 err = check_reference_leak(env); 6113 if (err) 6114 return err; 6115 6116 /* eBPF calling convetion is such that R0 is used 6117 * to return the value from eBPF program. 6118 * Make sure that it's readable at this time 6119 * of bpf_exit, which means that program wrote 6120 * something into it earlier 6121 */ 6122 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6123 if (err) 6124 return err; 6125 6126 if (is_pointer_value(env, BPF_REG_0)) { 6127 verbose(env, "R0 leaks addr as return value\n"); 6128 return -EACCES; 6129 } 6130 6131 err = check_return_code(env); 6132 if (err) 6133 return err; 6134 process_bpf_exit: 6135 err = pop_stack(env, &env->prev_insn_idx, 6136 &env->insn_idx); 6137 if (err < 0) { 6138 if (err != -ENOENT) 6139 return err; 6140 break; 6141 } else { 6142 do_print_state = true; 6143 continue; 6144 } 6145 } else { 6146 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6147 if (err) 6148 return err; 6149 } 6150 } else if (class == BPF_LD) { 6151 u8 mode = BPF_MODE(insn->code); 6152 6153 if (mode == BPF_ABS || mode == BPF_IND) { 6154 err = check_ld_abs(env, insn); 6155 if (err) 6156 return err; 6157 6158 } else if (mode == BPF_IMM) { 6159 err = check_ld_imm(env, insn); 6160 if (err) 6161 return err; 6162 6163 env->insn_idx++; 6164 env->insn_aux_data[env->insn_idx].seen = true; 6165 } else { 6166 verbose(env, "invalid BPF_LD mode\n"); 6167 return -EINVAL; 6168 } 6169 } else { 6170 verbose(env, "unknown insn class %d\n", class); 6171 return -EINVAL; 6172 } 6173 6174 env->insn_idx++; 6175 } 6176 6177 verbose(env, "processed %d insns (limit %d), stack depth ", 6178 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 6179 for (i = 0; i < env->subprog_cnt; i++) { 6180 u32 depth = env->subprog_info[i].stack_depth; 6181 6182 verbose(env, "%d", depth); 6183 if (i + 1 < env->subprog_cnt) 6184 verbose(env, "+"); 6185 } 6186 verbose(env, "\n"); 6187 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6188 return 0; 6189 } 6190 6191 static int check_map_prealloc(struct bpf_map *map) 6192 { 6193 return (map->map_type != BPF_MAP_TYPE_HASH && 6194 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6195 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6196 !(map->map_flags & BPF_F_NO_PREALLOC); 6197 } 6198 6199 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6200 struct bpf_map *map, 6201 struct bpf_prog *prog) 6202 6203 { 6204 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6205 * preallocated hash maps, since doing memory allocation 6206 * in overflow_handler can crash depending on where nmi got 6207 * triggered. 6208 */ 6209 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6210 if (!check_map_prealloc(map)) { 6211 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6212 return -EINVAL; 6213 } 6214 if (map->inner_map_meta && 6215 !check_map_prealloc(map->inner_map_meta)) { 6216 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6217 return -EINVAL; 6218 } 6219 } 6220 6221 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6222 !bpf_offload_prog_map_match(prog, map)) { 6223 verbose(env, "offload device mismatch between prog and map\n"); 6224 return -EINVAL; 6225 } 6226 6227 return 0; 6228 } 6229 6230 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6231 { 6232 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6233 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6234 } 6235 6236 /* look for pseudo eBPF instructions that access map FDs and 6237 * replace them with actual map pointers 6238 */ 6239 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6240 { 6241 struct bpf_insn *insn = env->prog->insnsi; 6242 int insn_cnt = env->prog->len; 6243 int i, j, err; 6244 6245 err = bpf_prog_calc_tag(env->prog); 6246 if (err) 6247 return err; 6248 6249 for (i = 0; i < insn_cnt; i++, insn++) { 6250 if (BPF_CLASS(insn->code) == BPF_LDX && 6251 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6252 verbose(env, "BPF_LDX uses reserved fields\n"); 6253 return -EINVAL; 6254 } 6255 6256 if (BPF_CLASS(insn->code) == BPF_STX && 6257 ((BPF_MODE(insn->code) != BPF_MEM && 6258 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6259 verbose(env, "BPF_STX uses reserved fields\n"); 6260 return -EINVAL; 6261 } 6262 6263 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6264 struct bpf_map *map; 6265 struct fd f; 6266 6267 if (i == insn_cnt - 1 || insn[1].code != 0 || 6268 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6269 insn[1].off != 0) { 6270 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6271 return -EINVAL; 6272 } 6273 6274 if (insn->src_reg == 0) 6275 /* valid generic load 64-bit imm */ 6276 goto next_insn; 6277 6278 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 6279 verbose(env, 6280 "unrecognized bpf_ld_imm64 insn\n"); 6281 return -EINVAL; 6282 } 6283 6284 f = fdget(insn->imm); 6285 map = __bpf_map_get(f); 6286 if (IS_ERR(map)) { 6287 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6288 insn->imm); 6289 return PTR_ERR(map); 6290 } 6291 6292 err = check_map_prog_compatibility(env, map, env->prog); 6293 if (err) { 6294 fdput(f); 6295 return err; 6296 } 6297 6298 /* store map pointer inside BPF_LD_IMM64 instruction */ 6299 insn[0].imm = (u32) (unsigned long) map; 6300 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6301 6302 /* check whether we recorded this map already */ 6303 for (j = 0; j < env->used_map_cnt; j++) 6304 if (env->used_maps[j] == map) { 6305 fdput(f); 6306 goto next_insn; 6307 } 6308 6309 if (env->used_map_cnt >= MAX_USED_MAPS) { 6310 fdput(f); 6311 return -E2BIG; 6312 } 6313 6314 /* hold the map. If the program is rejected by verifier, 6315 * the map will be released by release_maps() or it 6316 * will be used by the valid program until it's unloaded 6317 * and all maps are released in free_used_maps() 6318 */ 6319 map = bpf_map_inc(map, false); 6320 if (IS_ERR(map)) { 6321 fdput(f); 6322 return PTR_ERR(map); 6323 } 6324 env->used_maps[env->used_map_cnt++] = map; 6325 6326 if (bpf_map_is_cgroup_storage(map) && 6327 bpf_cgroup_storage_assign(env->prog, map)) { 6328 verbose(env, "only one cgroup storage of each type is allowed\n"); 6329 fdput(f); 6330 return -EBUSY; 6331 } 6332 6333 fdput(f); 6334 next_insn: 6335 insn++; 6336 i++; 6337 continue; 6338 } 6339 6340 /* Basic sanity check before we invest more work here. */ 6341 if (!bpf_opcode_in_insntable(insn->code)) { 6342 verbose(env, "unknown opcode %02x\n", insn->code); 6343 return -EINVAL; 6344 } 6345 } 6346 6347 /* now all pseudo BPF_LD_IMM64 instructions load valid 6348 * 'struct bpf_map *' into a register instead of user map_fd. 6349 * These pointers will be used later by verifier to validate map access. 6350 */ 6351 return 0; 6352 } 6353 6354 /* drop refcnt of maps used by the rejected program */ 6355 static void release_maps(struct bpf_verifier_env *env) 6356 { 6357 enum bpf_cgroup_storage_type stype; 6358 int i; 6359 6360 for_each_cgroup_storage_type(stype) { 6361 if (!env->prog->aux->cgroup_storage[stype]) 6362 continue; 6363 bpf_cgroup_storage_release(env->prog, 6364 env->prog->aux->cgroup_storage[stype]); 6365 } 6366 6367 for (i = 0; i < env->used_map_cnt; i++) 6368 bpf_map_put(env->used_maps[i]); 6369 } 6370 6371 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6372 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6373 { 6374 struct bpf_insn *insn = env->prog->insnsi; 6375 int insn_cnt = env->prog->len; 6376 int i; 6377 6378 for (i = 0; i < insn_cnt; i++, insn++) 6379 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6380 insn->src_reg = 0; 6381 } 6382 6383 /* single env->prog->insni[off] instruction was replaced with the range 6384 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6385 * [0, off) and [off, end) to new locations, so the patched range stays zero 6386 */ 6387 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6388 u32 off, u32 cnt) 6389 { 6390 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6391 int i; 6392 6393 if (cnt == 1) 6394 return 0; 6395 new_data = vzalloc(array_size(prog_len, 6396 sizeof(struct bpf_insn_aux_data))); 6397 if (!new_data) 6398 return -ENOMEM; 6399 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6400 memcpy(new_data + off + cnt - 1, old_data + off, 6401 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6402 for (i = off; i < off + cnt - 1; i++) 6403 new_data[i].seen = true; 6404 env->insn_aux_data = new_data; 6405 vfree(old_data); 6406 return 0; 6407 } 6408 6409 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6410 { 6411 int i; 6412 6413 if (len == 1) 6414 return; 6415 /* NOTE: fake 'exit' subprog should be updated as well. */ 6416 for (i = 0; i <= env->subprog_cnt; i++) { 6417 if (env->subprog_info[i].start <= off) 6418 continue; 6419 env->subprog_info[i].start += len - 1; 6420 } 6421 } 6422 6423 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6424 const struct bpf_insn *patch, u32 len) 6425 { 6426 struct bpf_prog *new_prog; 6427 6428 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6429 if (!new_prog) 6430 return NULL; 6431 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6432 return NULL; 6433 adjust_subprog_starts(env, off, len); 6434 return new_prog; 6435 } 6436 6437 /* The verifier does more data flow analysis than llvm and will not 6438 * explore branches that are dead at run time. Malicious programs can 6439 * have dead code too. Therefore replace all dead at-run-time code 6440 * with 'ja -1'. 6441 * 6442 * Just nops are not optimal, e.g. if they would sit at the end of the 6443 * program and through another bug we would manage to jump there, then 6444 * we'd execute beyond program memory otherwise. Returning exception 6445 * code also wouldn't work since we can have subprogs where the dead 6446 * code could be located. 6447 */ 6448 static void sanitize_dead_code(struct bpf_verifier_env *env) 6449 { 6450 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6451 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 6452 struct bpf_insn *insn = env->prog->insnsi; 6453 const int insn_cnt = env->prog->len; 6454 int i; 6455 6456 for (i = 0; i < insn_cnt; i++) { 6457 if (aux_data[i].seen) 6458 continue; 6459 memcpy(insn + i, &trap, sizeof(trap)); 6460 } 6461 } 6462 6463 /* convert load instructions that access fields of a context type into a 6464 * sequence of instructions that access fields of the underlying structure: 6465 * struct __sk_buff -> struct sk_buff 6466 * struct bpf_sock_ops -> struct sock 6467 */ 6468 static int convert_ctx_accesses(struct bpf_verifier_env *env) 6469 { 6470 const struct bpf_verifier_ops *ops = env->ops; 6471 int i, cnt, size, ctx_field_size, delta = 0; 6472 const int insn_cnt = env->prog->len; 6473 struct bpf_insn insn_buf[16], *insn; 6474 u32 target_size, size_default, off; 6475 struct bpf_prog *new_prog; 6476 enum bpf_access_type type; 6477 bool is_narrower_load; 6478 6479 if (ops->gen_prologue || env->seen_direct_write) { 6480 if (!ops->gen_prologue) { 6481 verbose(env, "bpf verifier is misconfigured\n"); 6482 return -EINVAL; 6483 } 6484 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 6485 env->prog); 6486 if (cnt >= ARRAY_SIZE(insn_buf)) { 6487 verbose(env, "bpf verifier is misconfigured\n"); 6488 return -EINVAL; 6489 } else if (cnt) { 6490 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 6491 if (!new_prog) 6492 return -ENOMEM; 6493 6494 env->prog = new_prog; 6495 delta += cnt - 1; 6496 } 6497 } 6498 6499 if (bpf_prog_is_dev_bound(env->prog->aux)) 6500 return 0; 6501 6502 insn = env->prog->insnsi + delta; 6503 6504 for (i = 0; i < insn_cnt; i++, insn++) { 6505 bpf_convert_ctx_access_t convert_ctx_access; 6506 6507 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 6508 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 6509 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 6510 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 6511 type = BPF_READ; 6512 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 6513 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 6514 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 6515 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 6516 type = BPF_WRITE; 6517 else 6518 continue; 6519 6520 if (type == BPF_WRITE && 6521 env->insn_aux_data[i + delta].sanitize_stack_off) { 6522 struct bpf_insn patch[] = { 6523 /* Sanitize suspicious stack slot with zero. 6524 * There are no memory dependencies for this store, 6525 * since it's only using frame pointer and immediate 6526 * constant of zero 6527 */ 6528 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 6529 env->insn_aux_data[i + delta].sanitize_stack_off, 6530 0), 6531 /* the original STX instruction will immediately 6532 * overwrite the same stack slot with appropriate value 6533 */ 6534 *insn, 6535 }; 6536 6537 cnt = ARRAY_SIZE(patch); 6538 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 6539 if (!new_prog) 6540 return -ENOMEM; 6541 6542 delta += cnt - 1; 6543 env->prog = new_prog; 6544 insn = new_prog->insnsi + i + delta; 6545 continue; 6546 } 6547 6548 switch (env->insn_aux_data[i + delta].ptr_type) { 6549 case PTR_TO_CTX: 6550 if (!ops->convert_ctx_access) 6551 continue; 6552 convert_ctx_access = ops->convert_ctx_access; 6553 break; 6554 case PTR_TO_SOCKET: 6555 convert_ctx_access = bpf_sock_convert_ctx_access; 6556 break; 6557 default: 6558 continue; 6559 } 6560 6561 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 6562 size = BPF_LDST_BYTES(insn); 6563 6564 /* If the read access is a narrower load of the field, 6565 * convert to a 4/8-byte load, to minimum program type specific 6566 * convert_ctx_access changes. If conversion is successful, 6567 * we will apply proper mask to the result. 6568 */ 6569 is_narrower_load = size < ctx_field_size; 6570 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 6571 off = insn->off; 6572 if (is_narrower_load) { 6573 u8 size_code; 6574 6575 if (type == BPF_WRITE) { 6576 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 6577 return -EINVAL; 6578 } 6579 6580 size_code = BPF_H; 6581 if (ctx_field_size == 4) 6582 size_code = BPF_W; 6583 else if (ctx_field_size == 8) 6584 size_code = BPF_DW; 6585 6586 insn->off = off & ~(size_default - 1); 6587 insn->code = BPF_LDX | BPF_MEM | size_code; 6588 } 6589 6590 target_size = 0; 6591 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 6592 &target_size); 6593 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 6594 (ctx_field_size && !target_size)) { 6595 verbose(env, "bpf verifier is misconfigured\n"); 6596 return -EINVAL; 6597 } 6598 6599 if (is_narrower_load && size < target_size) { 6600 u8 shift = (off & (size_default - 1)) * 8; 6601 6602 if (ctx_field_size <= 4) { 6603 if (shift) 6604 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 6605 insn->dst_reg, 6606 shift); 6607 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 6608 (1 << size * 8) - 1); 6609 } else { 6610 if (shift) 6611 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 6612 insn->dst_reg, 6613 shift); 6614 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 6615 (1 << size * 8) - 1); 6616 } 6617 } 6618 6619 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6620 if (!new_prog) 6621 return -ENOMEM; 6622 6623 delta += cnt - 1; 6624 6625 /* keep walking new program and skip insns we just inserted */ 6626 env->prog = new_prog; 6627 insn = new_prog->insnsi + i + delta; 6628 } 6629 6630 return 0; 6631 } 6632 6633 static int jit_subprogs(struct bpf_verifier_env *env) 6634 { 6635 struct bpf_prog *prog = env->prog, **func, *tmp; 6636 int i, j, subprog_start, subprog_end = 0, len, subprog; 6637 struct bpf_insn *insn; 6638 void *old_bpf_func; 6639 int err; 6640 6641 if (env->subprog_cnt <= 1) 6642 return 0; 6643 6644 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6645 if (insn->code != (BPF_JMP | BPF_CALL) || 6646 insn->src_reg != BPF_PSEUDO_CALL) 6647 continue; 6648 /* Upon error here we cannot fall back to interpreter but 6649 * need a hard reject of the program. Thus -EFAULT is 6650 * propagated in any case. 6651 */ 6652 subprog = find_subprog(env, i + insn->imm + 1); 6653 if (subprog < 0) { 6654 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 6655 i + insn->imm + 1); 6656 return -EFAULT; 6657 } 6658 /* temporarily remember subprog id inside insn instead of 6659 * aux_data, since next loop will split up all insns into funcs 6660 */ 6661 insn->off = subprog; 6662 /* remember original imm in case JIT fails and fallback 6663 * to interpreter will be needed 6664 */ 6665 env->insn_aux_data[i].call_imm = insn->imm; 6666 /* point imm to __bpf_call_base+1 from JITs point of view */ 6667 insn->imm = 1; 6668 } 6669 6670 err = bpf_prog_alloc_jited_linfo(prog); 6671 if (err) 6672 goto out_undo_insn; 6673 6674 err = -ENOMEM; 6675 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 6676 if (!func) 6677 goto out_undo_insn; 6678 6679 for (i = 0; i < env->subprog_cnt; i++) { 6680 subprog_start = subprog_end; 6681 subprog_end = env->subprog_info[i + 1].start; 6682 6683 len = subprog_end - subprog_start; 6684 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 6685 if (!func[i]) 6686 goto out_free; 6687 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 6688 len * sizeof(struct bpf_insn)); 6689 func[i]->type = prog->type; 6690 func[i]->len = len; 6691 if (bpf_prog_calc_tag(func[i])) 6692 goto out_free; 6693 func[i]->is_func = 1; 6694 func[i]->aux->func_idx = i; 6695 /* the btf and func_info will be freed only at prog->aux */ 6696 func[i]->aux->btf = prog->aux->btf; 6697 func[i]->aux->func_info = prog->aux->func_info; 6698 6699 /* Use bpf_prog_F_tag to indicate functions in stack traces. 6700 * Long term would need debug info to populate names 6701 */ 6702 func[i]->aux->name[0] = 'F'; 6703 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 6704 func[i]->jit_requested = 1; 6705 func[i]->aux->linfo = prog->aux->linfo; 6706 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 6707 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 6708 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 6709 func[i] = bpf_int_jit_compile(func[i]); 6710 if (!func[i]->jited) { 6711 err = -ENOTSUPP; 6712 goto out_free; 6713 } 6714 cond_resched(); 6715 } 6716 /* at this point all bpf functions were successfully JITed 6717 * now populate all bpf_calls with correct addresses and 6718 * run last pass of JIT 6719 */ 6720 for (i = 0; i < env->subprog_cnt; i++) { 6721 insn = func[i]->insnsi; 6722 for (j = 0; j < func[i]->len; j++, insn++) { 6723 if (insn->code != (BPF_JMP | BPF_CALL) || 6724 insn->src_reg != BPF_PSEUDO_CALL) 6725 continue; 6726 subprog = insn->off; 6727 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 6728 func[subprog]->bpf_func - 6729 __bpf_call_base; 6730 } 6731 6732 /* we use the aux data to keep a list of the start addresses 6733 * of the JITed images for each function in the program 6734 * 6735 * for some architectures, such as powerpc64, the imm field 6736 * might not be large enough to hold the offset of the start 6737 * address of the callee's JITed image from __bpf_call_base 6738 * 6739 * in such cases, we can lookup the start address of a callee 6740 * by using its subprog id, available from the off field of 6741 * the call instruction, as an index for this list 6742 */ 6743 func[i]->aux->func = func; 6744 func[i]->aux->func_cnt = env->subprog_cnt; 6745 } 6746 for (i = 0; i < env->subprog_cnt; i++) { 6747 old_bpf_func = func[i]->bpf_func; 6748 tmp = bpf_int_jit_compile(func[i]); 6749 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 6750 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 6751 err = -ENOTSUPP; 6752 goto out_free; 6753 } 6754 cond_resched(); 6755 } 6756 6757 /* finally lock prog and jit images for all functions and 6758 * populate kallsysm 6759 */ 6760 for (i = 0; i < env->subprog_cnt; i++) { 6761 bpf_prog_lock_ro(func[i]); 6762 bpf_prog_kallsyms_add(func[i]); 6763 } 6764 6765 /* Last step: make now unused interpreter insns from main 6766 * prog consistent for later dump requests, so they can 6767 * later look the same as if they were interpreted only. 6768 */ 6769 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6770 if (insn->code != (BPF_JMP | BPF_CALL) || 6771 insn->src_reg != BPF_PSEUDO_CALL) 6772 continue; 6773 insn->off = env->insn_aux_data[i].call_imm; 6774 subprog = find_subprog(env, i + insn->off + 1); 6775 insn->imm = subprog; 6776 } 6777 6778 prog->jited = 1; 6779 prog->bpf_func = func[0]->bpf_func; 6780 prog->aux->func = func; 6781 prog->aux->func_cnt = env->subprog_cnt; 6782 bpf_prog_free_unused_jited_linfo(prog); 6783 return 0; 6784 out_free: 6785 for (i = 0; i < env->subprog_cnt; i++) 6786 if (func[i]) 6787 bpf_jit_free(func[i]); 6788 kfree(func); 6789 out_undo_insn: 6790 /* cleanup main prog to be interpreted */ 6791 prog->jit_requested = 0; 6792 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 6793 if (insn->code != (BPF_JMP | BPF_CALL) || 6794 insn->src_reg != BPF_PSEUDO_CALL) 6795 continue; 6796 insn->off = 0; 6797 insn->imm = env->insn_aux_data[i].call_imm; 6798 } 6799 bpf_prog_free_jited_linfo(prog); 6800 return err; 6801 } 6802 6803 static int fixup_call_args(struct bpf_verifier_env *env) 6804 { 6805 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6806 struct bpf_prog *prog = env->prog; 6807 struct bpf_insn *insn = prog->insnsi; 6808 int i, depth; 6809 #endif 6810 int err = 0; 6811 6812 if (env->prog->jit_requested && 6813 !bpf_prog_is_dev_bound(env->prog->aux)) { 6814 err = jit_subprogs(env); 6815 if (err == 0) 6816 return 0; 6817 if (err == -EFAULT) 6818 return err; 6819 } 6820 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 6821 for (i = 0; i < prog->len; i++, insn++) { 6822 if (insn->code != (BPF_JMP | BPF_CALL) || 6823 insn->src_reg != BPF_PSEUDO_CALL) 6824 continue; 6825 depth = get_callee_stack_depth(env, insn, i); 6826 if (depth < 0) 6827 return depth; 6828 bpf_patch_call_args(insn, depth); 6829 } 6830 err = 0; 6831 #endif 6832 return err; 6833 } 6834 6835 /* fixup insn->imm field of bpf_call instructions 6836 * and inline eligible helpers as explicit sequence of BPF instructions 6837 * 6838 * this function is called after eBPF program passed verification 6839 */ 6840 static int fixup_bpf_calls(struct bpf_verifier_env *env) 6841 { 6842 struct bpf_prog *prog = env->prog; 6843 struct bpf_insn *insn = prog->insnsi; 6844 const struct bpf_func_proto *fn; 6845 const int insn_cnt = prog->len; 6846 const struct bpf_map_ops *ops; 6847 struct bpf_insn_aux_data *aux; 6848 struct bpf_insn insn_buf[16]; 6849 struct bpf_prog *new_prog; 6850 struct bpf_map *map_ptr; 6851 int i, cnt, delta = 0; 6852 6853 for (i = 0; i < insn_cnt; i++, insn++) { 6854 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 6855 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6856 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 6857 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6858 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 6859 struct bpf_insn mask_and_div[] = { 6860 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6861 /* Rx div 0 -> 0 */ 6862 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 6863 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 6864 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 6865 *insn, 6866 }; 6867 struct bpf_insn mask_and_mod[] = { 6868 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 6869 /* Rx mod 0 -> Rx */ 6870 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 6871 *insn, 6872 }; 6873 struct bpf_insn *patchlet; 6874 6875 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 6876 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 6877 patchlet = mask_and_div + (is64 ? 1 : 0); 6878 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 6879 } else { 6880 patchlet = mask_and_mod + (is64 ? 1 : 0); 6881 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 6882 } 6883 6884 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 6885 if (!new_prog) 6886 return -ENOMEM; 6887 6888 delta += cnt - 1; 6889 env->prog = prog = new_prog; 6890 insn = new_prog->insnsi + i + delta; 6891 continue; 6892 } 6893 6894 if (BPF_CLASS(insn->code) == BPF_LD && 6895 (BPF_MODE(insn->code) == BPF_ABS || 6896 BPF_MODE(insn->code) == BPF_IND)) { 6897 cnt = env->ops->gen_ld_abs(insn, insn_buf); 6898 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 6899 verbose(env, "bpf verifier is misconfigured\n"); 6900 return -EINVAL; 6901 } 6902 6903 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6904 if (!new_prog) 6905 return -ENOMEM; 6906 6907 delta += cnt - 1; 6908 env->prog = prog = new_prog; 6909 insn = new_prog->insnsi + i + delta; 6910 continue; 6911 } 6912 6913 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 6914 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 6915 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 6916 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 6917 struct bpf_insn insn_buf[16]; 6918 struct bpf_insn *patch = &insn_buf[0]; 6919 bool issrc, isneg; 6920 u32 off_reg; 6921 6922 aux = &env->insn_aux_data[i + delta]; 6923 if (!aux->alu_state) 6924 continue; 6925 6926 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 6927 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 6928 BPF_ALU_SANITIZE_SRC; 6929 6930 off_reg = issrc ? insn->src_reg : insn->dst_reg; 6931 if (isneg) 6932 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 6933 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 6934 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 6935 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 6936 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 6937 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 6938 if (issrc) { 6939 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 6940 off_reg); 6941 insn->src_reg = BPF_REG_AX; 6942 } else { 6943 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 6944 BPF_REG_AX); 6945 } 6946 if (isneg) 6947 insn->code = insn->code == code_add ? 6948 code_sub : code_add; 6949 *patch++ = *insn; 6950 if (issrc && isneg) 6951 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 6952 cnt = patch - insn_buf; 6953 6954 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 6955 if (!new_prog) 6956 return -ENOMEM; 6957 6958 delta += cnt - 1; 6959 env->prog = prog = new_prog; 6960 insn = new_prog->insnsi + i + delta; 6961 continue; 6962 } 6963 6964 if (insn->code != (BPF_JMP | BPF_CALL)) 6965 continue; 6966 if (insn->src_reg == BPF_PSEUDO_CALL) 6967 continue; 6968 6969 if (insn->imm == BPF_FUNC_get_route_realm) 6970 prog->dst_needed = 1; 6971 if (insn->imm == BPF_FUNC_get_prandom_u32) 6972 bpf_user_rnd_init_once(); 6973 if (insn->imm == BPF_FUNC_override_return) 6974 prog->kprobe_override = 1; 6975 if (insn->imm == BPF_FUNC_tail_call) { 6976 /* If we tail call into other programs, we 6977 * cannot make any assumptions since they can 6978 * be replaced dynamically during runtime in 6979 * the program array. 6980 */ 6981 prog->cb_access = 1; 6982 env->prog->aux->stack_depth = MAX_BPF_STACK; 6983 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 6984 6985 /* mark bpf_tail_call as different opcode to avoid 6986 * conditional branch in the interpeter for every normal 6987 * call and to prevent accidental JITing by JIT compiler 6988 * that doesn't support bpf_tail_call yet 6989 */ 6990 insn->imm = 0; 6991 insn->code = BPF_JMP | BPF_TAIL_CALL; 6992 6993 aux = &env->insn_aux_data[i + delta]; 6994 if (!bpf_map_ptr_unpriv(aux)) 6995 continue; 6996 6997 /* instead of changing every JIT dealing with tail_call 6998 * emit two extra insns: 6999 * if (index >= max_entries) goto out; 7000 * index &= array->index_mask; 7001 * to avoid out-of-bounds cpu speculation 7002 */ 7003 if (bpf_map_ptr_poisoned(aux)) { 7004 verbose(env, "tail_call abusing map_ptr\n"); 7005 return -EINVAL; 7006 } 7007 7008 map_ptr = BPF_MAP_PTR(aux->map_state); 7009 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7010 map_ptr->max_entries, 2); 7011 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7012 container_of(map_ptr, 7013 struct bpf_array, 7014 map)->index_mask); 7015 insn_buf[2] = *insn; 7016 cnt = 3; 7017 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7018 if (!new_prog) 7019 return -ENOMEM; 7020 7021 delta += cnt - 1; 7022 env->prog = prog = new_prog; 7023 insn = new_prog->insnsi + i + delta; 7024 continue; 7025 } 7026 7027 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 7028 * and other inlining handlers are currently limited to 64 bit 7029 * only. 7030 */ 7031 if (prog->jit_requested && BITS_PER_LONG == 64 && 7032 (insn->imm == BPF_FUNC_map_lookup_elem || 7033 insn->imm == BPF_FUNC_map_update_elem || 7034 insn->imm == BPF_FUNC_map_delete_elem || 7035 insn->imm == BPF_FUNC_map_push_elem || 7036 insn->imm == BPF_FUNC_map_pop_elem || 7037 insn->imm == BPF_FUNC_map_peek_elem)) { 7038 aux = &env->insn_aux_data[i + delta]; 7039 if (bpf_map_ptr_poisoned(aux)) 7040 goto patch_call_imm; 7041 7042 map_ptr = BPF_MAP_PTR(aux->map_state); 7043 ops = map_ptr->ops; 7044 if (insn->imm == BPF_FUNC_map_lookup_elem && 7045 ops->map_gen_lookup) { 7046 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7047 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7048 verbose(env, "bpf verifier is misconfigured\n"); 7049 return -EINVAL; 7050 } 7051 7052 new_prog = bpf_patch_insn_data(env, i + delta, 7053 insn_buf, cnt); 7054 if (!new_prog) 7055 return -ENOMEM; 7056 7057 delta += cnt - 1; 7058 env->prog = prog = new_prog; 7059 insn = new_prog->insnsi + i + delta; 7060 continue; 7061 } 7062 7063 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7064 (void *(*)(struct bpf_map *map, void *key))NULL)); 7065 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7066 (int (*)(struct bpf_map *map, void *key))NULL)); 7067 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7068 (int (*)(struct bpf_map *map, void *key, void *value, 7069 u64 flags))NULL)); 7070 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7071 (int (*)(struct bpf_map *map, void *value, 7072 u64 flags))NULL)); 7073 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7074 (int (*)(struct bpf_map *map, void *value))NULL)); 7075 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7076 (int (*)(struct bpf_map *map, void *value))NULL)); 7077 7078 switch (insn->imm) { 7079 case BPF_FUNC_map_lookup_elem: 7080 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7081 __bpf_call_base; 7082 continue; 7083 case BPF_FUNC_map_update_elem: 7084 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7085 __bpf_call_base; 7086 continue; 7087 case BPF_FUNC_map_delete_elem: 7088 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7089 __bpf_call_base; 7090 continue; 7091 case BPF_FUNC_map_push_elem: 7092 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7093 __bpf_call_base; 7094 continue; 7095 case BPF_FUNC_map_pop_elem: 7096 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7097 __bpf_call_base; 7098 continue; 7099 case BPF_FUNC_map_peek_elem: 7100 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7101 __bpf_call_base; 7102 continue; 7103 } 7104 7105 goto patch_call_imm; 7106 } 7107 7108 patch_call_imm: 7109 fn = env->ops->get_func_proto(insn->imm, env->prog); 7110 /* all functions that have prototype and verifier allowed 7111 * programs to call them, must be real in-kernel functions 7112 */ 7113 if (!fn->func) { 7114 verbose(env, 7115 "kernel subsystem misconfigured func %s#%d\n", 7116 func_id_name(insn->imm), insn->imm); 7117 return -EFAULT; 7118 } 7119 insn->imm = fn->func - __bpf_call_base; 7120 } 7121 7122 return 0; 7123 } 7124 7125 static void free_states(struct bpf_verifier_env *env) 7126 { 7127 struct bpf_verifier_state_list *sl, *sln; 7128 int i; 7129 7130 if (!env->explored_states) 7131 return; 7132 7133 for (i = 0; i < env->prog->len; i++) { 7134 sl = env->explored_states[i]; 7135 7136 if (sl) 7137 while (sl != STATE_LIST_MARK) { 7138 sln = sl->next; 7139 free_verifier_state(&sl->state, false); 7140 kfree(sl); 7141 sl = sln; 7142 } 7143 } 7144 7145 kfree(env->explored_states); 7146 } 7147 7148 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 7149 union bpf_attr __user *uattr) 7150 { 7151 struct bpf_verifier_env *env; 7152 struct bpf_verifier_log *log; 7153 int ret = -EINVAL; 7154 7155 /* no program is valid */ 7156 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 7157 return -EINVAL; 7158 7159 /* 'struct bpf_verifier_env' can be global, but since it's not small, 7160 * allocate/free it every time bpf_check() is called 7161 */ 7162 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 7163 if (!env) 7164 return -ENOMEM; 7165 log = &env->log; 7166 7167 env->insn_aux_data = 7168 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), 7169 (*prog)->len)); 7170 ret = -ENOMEM; 7171 if (!env->insn_aux_data) 7172 goto err_free_env; 7173 env->prog = *prog; 7174 env->ops = bpf_verifier_ops[env->prog->type]; 7175 7176 /* grab the mutex to protect few globals used by verifier */ 7177 mutex_lock(&bpf_verifier_lock); 7178 7179 if (attr->log_level || attr->log_buf || attr->log_size) { 7180 /* user requested verbose verifier output 7181 * and supplied buffer to store the verification trace 7182 */ 7183 log->level = attr->log_level; 7184 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 7185 log->len_total = attr->log_size; 7186 7187 ret = -EINVAL; 7188 /* log attributes have to be sane */ 7189 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 7190 !log->level || !log->ubuf) 7191 goto err_unlock; 7192 } 7193 7194 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 7195 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 7196 env->strict_alignment = true; 7197 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 7198 env->strict_alignment = false; 7199 7200 ret = replace_map_fd_with_map_ptr(env); 7201 if (ret < 0) 7202 goto skip_full_check; 7203 7204 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7205 ret = bpf_prog_offload_verifier_prep(env->prog); 7206 if (ret) 7207 goto skip_full_check; 7208 } 7209 7210 env->explored_states = kcalloc(env->prog->len, 7211 sizeof(struct bpf_verifier_state_list *), 7212 GFP_USER); 7213 ret = -ENOMEM; 7214 if (!env->explored_states) 7215 goto skip_full_check; 7216 7217 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); 7218 7219 ret = check_subprogs(env); 7220 if (ret < 0) 7221 goto skip_full_check; 7222 7223 ret = check_btf_info(env, attr, uattr); 7224 if (ret < 0) 7225 goto skip_full_check; 7226 7227 ret = check_cfg(env); 7228 if (ret < 0) 7229 goto skip_full_check; 7230 7231 ret = do_check(env); 7232 if (env->cur_state) { 7233 free_verifier_state(env->cur_state, true); 7234 env->cur_state = NULL; 7235 } 7236 7237 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 7238 ret = bpf_prog_offload_finalize(env); 7239 7240 skip_full_check: 7241 while (!pop_stack(env, NULL, NULL)); 7242 free_states(env); 7243 7244 if (ret == 0) 7245 ret = check_max_stack_depth(env); 7246 7247 /* instruction rewrites happen after this point */ 7248 if (ret == 0) 7249 sanitize_dead_code(env); 7250 7251 if (ret == 0) 7252 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7253 ret = convert_ctx_accesses(env); 7254 7255 if (ret == 0) 7256 ret = fixup_bpf_calls(env); 7257 7258 if (ret == 0) 7259 ret = fixup_call_args(env); 7260 7261 if (log->level && bpf_verifier_log_full(log)) 7262 ret = -ENOSPC; 7263 if (log->level && !log->ubuf) { 7264 ret = -EFAULT; 7265 goto err_release_maps; 7266 } 7267 7268 if (ret == 0 && env->used_map_cnt) { 7269 /* if program passed verifier, update used_maps in bpf_prog_info */ 7270 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7271 sizeof(env->used_maps[0]), 7272 GFP_KERNEL); 7273 7274 if (!env->prog->aux->used_maps) { 7275 ret = -ENOMEM; 7276 goto err_release_maps; 7277 } 7278 7279 memcpy(env->prog->aux->used_maps, env->used_maps, 7280 sizeof(env->used_maps[0]) * env->used_map_cnt); 7281 env->prog->aux->used_map_cnt = env->used_map_cnt; 7282 7283 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7284 * bpf_ld_imm64 instructions 7285 */ 7286 convert_pseudo_ld_imm64(env); 7287 } 7288 7289 if (ret == 0) 7290 adjust_btf_func(env); 7291 7292 err_release_maps: 7293 if (!env->prog->aux->used_maps) 7294 /* if we didn't copy map pointers into bpf_prog_info, release 7295 * them now. Otherwise free_used_maps() will release them. 7296 */ 7297 release_maps(env); 7298 *prog = env->prog; 7299 err_unlock: 7300 mutex_unlock(&bpf_verifier_lock); 7301 vfree(env->insn_aux_data); 7302 err_free_env: 7303 kfree(env); 7304 return ret; 7305 } 7306