xref: /openbmc/linux/kernel/bpf/verifier.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 
23 #include "disasm.h"
24 
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
27 	[_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33 
34 /* bpf_check() is a static code analyzer that walks eBPF program
35  * instruction by instruction and updates register/stack state.
36  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37  *
38  * The first pass is depth-first-search to check that the program is a DAG.
39  * It rejects the following programs:
40  * - larger than BPF_MAXINSNS insns
41  * - if loop is present (detected via back-edge)
42  * - unreachable insns exist (shouldn't be a forest. program = one function)
43  * - out of bounds or malformed jumps
44  * The second pass is all possible path descent from the 1st insn.
45  * Since it's analyzing all pathes through the program, the length of the
46  * analysis is limited to 64k insn, which may be hit even if total number of
47  * insn is less then 4K, but there are too many branches that change stack/regs.
48  * Number of 'branches to be analyzed' is limited to 1k
49  *
50  * On entry to each instruction, each register has a type, and the instruction
51  * changes the types of the registers depending on instruction semantics.
52  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53  * copied to R1.
54  *
55  * All registers are 64-bit.
56  * R0 - return register
57  * R1-R5 argument passing registers
58  * R6-R9 callee saved registers
59  * R10 - frame pointer read-only
60  *
61  * At the start of BPF program the register R1 contains a pointer to bpf_context
62  * and has type PTR_TO_CTX.
63  *
64  * Verifier tracks arithmetic operations on pointers in case:
65  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67  * 1st insn copies R10 (which has FRAME_PTR) type into R1
68  * and 2nd arithmetic instruction is pattern matched to recognize
69  * that it wants to construct a pointer to some element within stack.
70  * So after 2nd insn, the register R1 has type PTR_TO_STACK
71  * (and -20 constant is saved for further stack bounds checking).
72  * Meaning that this reg is a pointer to stack plus known immediate constant.
73  *
74  * Most of the time the registers have SCALAR_VALUE type, which
75  * means the register has some value, but it's not a valid pointer.
76  * (like pointer plus pointer becomes SCALAR_VALUE type)
77  *
78  * When verifier sees load or store instructions the type of base register
79  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80  * four pointer types recognized by check_mem_access() function.
81  *
82  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83  * and the range of [ptr, ptr + map's value_size) is accessible.
84  *
85  * registers used to pass values to function calls are checked against
86  * function argument constraints.
87  *
88  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89  * It means that the register type passed to this function must be
90  * PTR_TO_STACK and it will be used inside the function as
91  * 'pointer to map element key'
92  *
93  * For example the argument constraints for bpf_map_lookup_elem():
94  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95  *   .arg1_type = ARG_CONST_MAP_PTR,
96  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
97  *
98  * ret_type says that this function returns 'pointer to map elem value or null'
99  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100  * 2nd argument should be a pointer to stack, which will be used inside
101  * the helper function as a pointer to map element key.
102  *
103  * On the kernel side the helper function looks like:
104  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105  * {
106  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107  *    void *key = (void *) (unsigned long) r2;
108  *    void *value;
109  *
110  *    here kernel can access 'key' and 'map' pointers safely, knowing that
111  *    [key, key + map->key_size) bytes are valid and were initialized on
112  *    the stack of eBPF program.
113  * }
114  *
115  * Corresponding eBPF program may look like:
116  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
117  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
119  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120  * here verifier looks at prototype of map_lookup_elem() and sees:
121  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123  *
124  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126  * and were initialized prior to this call.
127  * If it's ok, then verifier allows this BPF_CALL insn and looks at
128  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130  * returns ether pointer to map value or NULL.
131  *
132  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133  * insn, the register holding that pointer in the true branch changes state to
134  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135  * branch. See check_cond_jmp_op().
136  *
137  * After the call R0 is set to return type of the function and registers R1-R5
138  * are set to NOT_INIT to indicate that they are no longer readable.
139  *
140  * The following reference types represent a potential reference to a kernel
141  * resource which, after first being allocated, must be checked and freed by
142  * the BPF program:
143  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144  *
145  * When the verifier sees a helper call return a reference type, it allocates a
146  * pointer id for the reference and stores it in the current function state.
147  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149  * passes through a NULL-check conditional. For the branch wherein the state is
150  * changed to CONST_IMM, the verifier releases the reference.
151  *
152  * For each helper function that allocates a reference, such as
153  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154  * bpf_sk_release(). When a reference type passes into the release function,
155  * the verifier also releases the reference. If any unchecked or unreleased
156  * reference remains at the end of the program, the verifier rejects it.
157  */
158 
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 	/* verifer state is 'st'
162 	 * before processing instruction 'insn_idx'
163 	 * and after processing instruction 'prev_insn_idx'
164 	 */
165 	struct bpf_verifier_state st;
166 	int insn_idx;
167 	int prev_insn_idx;
168 	struct bpf_verifier_stack_elem *next;
169 };
170 
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
172 #define BPF_COMPLEXITY_LIMIT_STATES	64
173 
174 #define BPF_MAP_KEY_POISON	(1ULL << 63)
175 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
176 
177 #define BPF_MAP_PTR_UNPRIV	1UL
178 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
179 					  POISON_POINTER_DELTA))
180 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181 
182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183 {
184 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
185 }
186 
187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188 {
189 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
190 }
191 
192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 			      const struct bpf_map *map, bool unpriv)
194 {
195 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 	unpriv |= bpf_map_ptr_unpriv(aux);
197 	aux->map_ptr_state = (unsigned long)map |
198 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199 }
200 
201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202 {
203 	return aux->map_key_state & BPF_MAP_KEY_POISON;
204 }
205 
206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207 {
208 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209 }
210 
211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212 {
213 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214 }
215 
216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217 {
218 	bool poisoned = bpf_map_key_poisoned(aux);
219 
220 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
222 }
223 
224 struct bpf_call_arg_meta {
225 	struct bpf_map *map_ptr;
226 	bool raw_mode;
227 	bool pkt_access;
228 	int regno;
229 	int access_size;
230 	s64 msize_smax_value;
231 	u64 msize_umax_value;
232 	int ref_obj_id;
233 	int func_id;
234 	u32 btf_id;
235 };
236 
237 struct btf *btf_vmlinux;
238 
239 static DEFINE_MUTEX(bpf_verifier_lock);
240 
241 static const struct bpf_line_info *
242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243 {
244 	const struct bpf_line_info *linfo;
245 	const struct bpf_prog *prog;
246 	u32 i, nr_linfo;
247 
248 	prog = env->prog;
249 	nr_linfo = prog->aux->nr_linfo;
250 
251 	if (!nr_linfo || insn_off >= prog->len)
252 		return NULL;
253 
254 	linfo = prog->aux->linfo;
255 	for (i = 1; i < nr_linfo; i++)
256 		if (insn_off < linfo[i].insn_off)
257 			break;
258 
259 	return &linfo[i - 1];
260 }
261 
262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 		       va_list args)
264 {
265 	unsigned int n;
266 
267 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
268 
269 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 		  "verifier log line truncated - local buffer too short\n");
271 
272 	n = min(log->len_total - log->len_used - 1, n);
273 	log->kbuf[n] = '\0';
274 
275 	if (log->level == BPF_LOG_KERNEL) {
276 		pr_err("BPF:%s\n", log->kbuf);
277 		return;
278 	}
279 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 		log->len_used += n;
281 	else
282 		log->ubuf = NULL;
283 }
284 
285 /* log_level controls verbosity level of eBPF verifier.
286  * bpf_verifier_log_write() is used to dump the verification trace to the log,
287  * so the user can figure out what's wrong with the program
288  */
289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 					   const char *fmt, ...)
291 {
292 	va_list args;
293 
294 	if (!bpf_verifier_log_needed(&env->log))
295 		return;
296 
297 	va_start(args, fmt);
298 	bpf_verifier_vlog(&env->log, fmt, args);
299 	va_end(args);
300 }
301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302 
303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304 {
305 	struct bpf_verifier_env *env = private_data;
306 	va_list args;
307 
308 	if (!bpf_verifier_log_needed(&env->log))
309 		return;
310 
311 	va_start(args, fmt);
312 	bpf_verifier_vlog(&env->log, fmt, args);
313 	va_end(args);
314 }
315 
316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 			    const char *fmt, ...)
318 {
319 	va_list args;
320 
321 	if (!bpf_verifier_log_needed(log))
322 		return;
323 
324 	va_start(args, fmt);
325 	bpf_verifier_vlog(log, fmt, args);
326 	va_end(args);
327 }
328 
329 static const char *ltrim(const char *s)
330 {
331 	while (isspace(*s))
332 		s++;
333 
334 	return s;
335 }
336 
337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 					 u32 insn_off,
339 					 const char *prefix_fmt, ...)
340 {
341 	const struct bpf_line_info *linfo;
342 
343 	if (!bpf_verifier_log_needed(&env->log))
344 		return;
345 
346 	linfo = find_linfo(env, insn_off);
347 	if (!linfo || linfo == env->prev_linfo)
348 		return;
349 
350 	if (prefix_fmt) {
351 		va_list args;
352 
353 		va_start(args, prefix_fmt);
354 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 		va_end(args);
356 	}
357 
358 	verbose(env, "%s\n",
359 		ltrim(btf_name_by_offset(env->prog->aux->btf,
360 					 linfo->line_off)));
361 
362 	env->prev_linfo = linfo;
363 }
364 
365 static bool type_is_pkt_pointer(enum bpf_reg_type type)
366 {
367 	return type == PTR_TO_PACKET ||
368 	       type == PTR_TO_PACKET_META;
369 }
370 
371 static bool type_is_sk_pointer(enum bpf_reg_type type)
372 {
373 	return type == PTR_TO_SOCKET ||
374 		type == PTR_TO_SOCK_COMMON ||
375 		type == PTR_TO_TCP_SOCK ||
376 		type == PTR_TO_XDP_SOCK;
377 }
378 
379 static bool reg_type_may_be_null(enum bpf_reg_type type)
380 {
381 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
382 	       type == PTR_TO_SOCKET_OR_NULL ||
383 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 	       type == PTR_TO_TCP_SOCK_OR_NULL;
385 }
386 
387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388 {
389 	return reg->type == PTR_TO_MAP_VALUE &&
390 		map_value_has_spin_lock(reg->map_ptr);
391 }
392 
393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCKET_OR_NULL ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_TCP_SOCK_OR_NULL;
399 }
400 
401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
402 {
403 	return type == ARG_PTR_TO_SOCK_COMMON;
404 }
405 
406 /* Determine whether the function releases some resources allocated by another
407  * function call. The first reference type argument will be assumed to be
408  * released by release_reference().
409  */
410 static bool is_release_function(enum bpf_func_id func_id)
411 {
412 	return func_id == BPF_FUNC_sk_release;
413 }
414 
415 static bool is_acquire_function(enum bpf_func_id func_id)
416 {
417 	return func_id == BPF_FUNC_sk_lookup_tcp ||
418 		func_id == BPF_FUNC_sk_lookup_udp ||
419 		func_id == BPF_FUNC_skc_lookup_tcp;
420 }
421 
422 static bool is_ptr_cast_function(enum bpf_func_id func_id)
423 {
424 	return func_id == BPF_FUNC_tcp_sock ||
425 		func_id == BPF_FUNC_sk_fullsock;
426 }
427 
428 /* string representation of 'enum bpf_reg_type' */
429 static const char * const reg_type_str[] = {
430 	[NOT_INIT]		= "?",
431 	[SCALAR_VALUE]		= "inv",
432 	[PTR_TO_CTX]		= "ctx",
433 	[CONST_PTR_TO_MAP]	= "map_ptr",
434 	[PTR_TO_MAP_VALUE]	= "map_value",
435 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
436 	[PTR_TO_STACK]		= "fp",
437 	[PTR_TO_PACKET]		= "pkt",
438 	[PTR_TO_PACKET_META]	= "pkt_meta",
439 	[PTR_TO_PACKET_END]	= "pkt_end",
440 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
441 	[PTR_TO_SOCKET]		= "sock",
442 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
443 	[PTR_TO_SOCK_COMMON]	= "sock_common",
444 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
445 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
446 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
447 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
448 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
449 	[PTR_TO_BTF_ID]		= "ptr_",
450 };
451 
452 static char slot_type_char[] = {
453 	[STACK_INVALID]	= '?',
454 	[STACK_SPILL]	= 'r',
455 	[STACK_MISC]	= 'm',
456 	[STACK_ZERO]	= '0',
457 };
458 
459 static void print_liveness(struct bpf_verifier_env *env,
460 			   enum bpf_reg_liveness live)
461 {
462 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
463 	    verbose(env, "_");
464 	if (live & REG_LIVE_READ)
465 		verbose(env, "r");
466 	if (live & REG_LIVE_WRITTEN)
467 		verbose(env, "w");
468 	if (live & REG_LIVE_DONE)
469 		verbose(env, "D");
470 }
471 
472 static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 				   const struct bpf_reg_state *reg)
474 {
475 	struct bpf_verifier_state *cur = env->cur_state;
476 
477 	return cur->frame[reg->frameno];
478 }
479 
480 const char *kernel_type_name(u32 id)
481 {
482 	return btf_name_by_offset(btf_vmlinux,
483 				  btf_type_by_id(btf_vmlinux, id)->name_off);
484 }
485 
486 static void print_verifier_state(struct bpf_verifier_env *env,
487 				 const struct bpf_func_state *state)
488 {
489 	const struct bpf_reg_state *reg;
490 	enum bpf_reg_type t;
491 	int i;
492 
493 	if (state->frameno)
494 		verbose(env, " frame%d:", state->frameno);
495 	for (i = 0; i < MAX_BPF_REG; i++) {
496 		reg = &state->regs[i];
497 		t = reg->type;
498 		if (t == NOT_INIT)
499 			continue;
500 		verbose(env, " R%d", i);
501 		print_liveness(env, reg->live);
502 		verbose(env, "=%s", reg_type_str[t]);
503 		if (t == SCALAR_VALUE && reg->precise)
504 			verbose(env, "P");
505 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 		    tnum_is_const(reg->var_off)) {
507 			/* reg->off should be 0 for SCALAR_VALUE */
508 			verbose(env, "%lld", reg->var_off.value + reg->off);
509 		} else {
510 			if (t == PTR_TO_BTF_ID)
511 				verbose(env, "%s", kernel_type_name(reg->btf_id));
512 			verbose(env, "(id=%d", reg->id);
513 			if (reg_type_may_be_refcounted_or_null(t))
514 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
515 			if (t != SCALAR_VALUE)
516 				verbose(env, ",off=%d", reg->off);
517 			if (type_is_pkt_pointer(t))
518 				verbose(env, ",r=%d", reg->range);
519 			else if (t == CONST_PTR_TO_MAP ||
520 				 t == PTR_TO_MAP_VALUE ||
521 				 t == PTR_TO_MAP_VALUE_OR_NULL)
522 				verbose(env, ",ks=%d,vs=%d",
523 					reg->map_ptr->key_size,
524 					reg->map_ptr->value_size);
525 			if (tnum_is_const(reg->var_off)) {
526 				/* Typically an immediate SCALAR_VALUE, but
527 				 * could be a pointer whose offset is too big
528 				 * for reg->off
529 				 */
530 				verbose(env, ",imm=%llx", reg->var_off.value);
531 			} else {
532 				if (reg->smin_value != reg->umin_value &&
533 				    reg->smin_value != S64_MIN)
534 					verbose(env, ",smin_value=%lld",
535 						(long long)reg->smin_value);
536 				if (reg->smax_value != reg->umax_value &&
537 				    reg->smax_value != S64_MAX)
538 					verbose(env, ",smax_value=%lld",
539 						(long long)reg->smax_value);
540 				if (reg->umin_value != 0)
541 					verbose(env, ",umin_value=%llu",
542 						(unsigned long long)reg->umin_value);
543 				if (reg->umax_value != U64_MAX)
544 					verbose(env, ",umax_value=%llu",
545 						(unsigned long long)reg->umax_value);
546 				if (!tnum_is_unknown(reg->var_off)) {
547 					char tn_buf[48];
548 
549 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
550 					verbose(env, ",var_off=%s", tn_buf);
551 				}
552 			}
553 			verbose(env, ")");
554 		}
555 	}
556 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
557 		char types_buf[BPF_REG_SIZE + 1];
558 		bool valid = false;
559 		int j;
560 
561 		for (j = 0; j < BPF_REG_SIZE; j++) {
562 			if (state->stack[i].slot_type[j] != STACK_INVALID)
563 				valid = true;
564 			types_buf[j] = slot_type_char[
565 					state->stack[i].slot_type[j]];
566 		}
567 		types_buf[BPF_REG_SIZE] = 0;
568 		if (!valid)
569 			continue;
570 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 		print_liveness(env, state->stack[i].spilled_ptr.live);
572 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 			reg = &state->stack[i].spilled_ptr;
574 			t = reg->type;
575 			verbose(env, "=%s", reg_type_str[t]);
576 			if (t == SCALAR_VALUE && reg->precise)
577 				verbose(env, "P");
578 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 				verbose(env, "%lld", reg->var_off.value + reg->off);
580 		} else {
581 			verbose(env, "=%s", types_buf);
582 		}
583 	}
584 	if (state->acquired_refs && state->refs[0].id) {
585 		verbose(env, " refs=%d", state->refs[0].id);
586 		for (i = 1; i < state->acquired_refs; i++)
587 			if (state->refs[i].id)
588 				verbose(env, ",%d", state->refs[i].id);
589 	}
590 	verbose(env, "\n");
591 }
592 
593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
594 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
595 			       const struct bpf_func_state *src)	\
596 {									\
597 	if (!src->FIELD)						\
598 		return 0;						\
599 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
600 		/* internal bug, make state invalid to reject the program */ \
601 		memset(dst, 0, sizeof(*dst));				\
602 		return -EFAULT;						\
603 	}								\
604 	memcpy(dst->FIELD, src->FIELD,					\
605 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
606 	return 0;							\
607 }
608 /* copy_reference_state() */
609 COPY_STATE_FN(reference, acquired_refs, refs, 1)
610 /* copy_stack_state() */
611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612 #undef COPY_STATE_FN
613 
614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 				  bool copy_old)			\
617 {									\
618 	u32 old_size = state->COUNT;					\
619 	struct bpf_##NAME##_state *new_##FIELD;				\
620 	int slot = size / SIZE;						\
621 									\
622 	if (size <= old_size || !size) {				\
623 		if (copy_old)						\
624 			return 0;					\
625 		state->COUNT = slot * SIZE;				\
626 		if (!size && old_size) {				\
627 			kfree(state->FIELD);				\
628 			state->FIELD = NULL;				\
629 		}							\
630 		return 0;						\
631 	}								\
632 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 				    GFP_KERNEL);			\
634 	if (!new_##FIELD)						\
635 		return -ENOMEM;						\
636 	if (copy_old) {							\
637 		if (state->FIELD)					\
638 			memcpy(new_##FIELD, state->FIELD,		\
639 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 		memset(new_##FIELD + old_size / SIZE, 0,		\
641 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 	}								\
643 	state->COUNT = slot * SIZE;					\
644 	kfree(state->FIELD);						\
645 	state->FIELD = new_##FIELD;					\
646 	return 0;							\
647 }
648 /* realloc_reference_state() */
649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
650 /* realloc_stack_state() */
651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652 #undef REALLOC_STATE_FN
653 
654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655  * make it consume minimal amount of memory. check_stack_write() access from
656  * the program calls into realloc_func_state() to grow the stack size.
657  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658  * which realloc_stack_state() copies over. It points to previous
659  * bpf_verifier_state which is never reallocated.
660  */
661 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 			      int refs_size, bool copy_old)
663 {
664 	int err = realloc_reference_state(state, refs_size, copy_old);
665 	if (err)
666 		return err;
667 	return realloc_stack_state(state, stack_size, copy_old);
668 }
669 
670 /* Acquire a pointer id from the env and update the state->refs to include
671  * this new pointer reference.
672  * On success, returns a valid pointer id to associate with the register
673  * On failure, returns a negative errno.
674  */
675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
676 {
677 	struct bpf_func_state *state = cur_func(env);
678 	int new_ofs = state->acquired_refs;
679 	int id, err;
680 
681 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 	if (err)
683 		return err;
684 	id = ++env->id_gen;
685 	state->refs[new_ofs].id = id;
686 	state->refs[new_ofs].insn_idx = insn_idx;
687 
688 	return id;
689 }
690 
691 /* release function corresponding to acquire_reference_state(). Idempotent. */
692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
693 {
694 	int i, last_idx;
695 
696 	last_idx = state->acquired_refs - 1;
697 	for (i = 0; i < state->acquired_refs; i++) {
698 		if (state->refs[i].id == ptr_id) {
699 			if (last_idx && i != last_idx)
700 				memcpy(&state->refs[i], &state->refs[last_idx],
701 				       sizeof(*state->refs));
702 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 			state->acquired_refs--;
704 			return 0;
705 		}
706 	}
707 	return -EINVAL;
708 }
709 
710 static int transfer_reference_state(struct bpf_func_state *dst,
711 				    struct bpf_func_state *src)
712 {
713 	int err = realloc_reference_state(dst, src->acquired_refs, false);
714 	if (err)
715 		return err;
716 	err = copy_reference_state(dst, src);
717 	if (err)
718 		return err;
719 	return 0;
720 }
721 
722 static void free_func_state(struct bpf_func_state *state)
723 {
724 	if (!state)
725 		return;
726 	kfree(state->refs);
727 	kfree(state->stack);
728 	kfree(state);
729 }
730 
731 static void clear_jmp_history(struct bpf_verifier_state *state)
732 {
733 	kfree(state->jmp_history);
734 	state->jmp_history = NULL;
735 	state->jmp_history_cnt = 0;
736 }
737 
738 static void free_verifier_state(struct bpf_verifier_state *state,
739 				bool free_self)
740 {
741 	int i;
742 
743 	for (i = 0; i <= state->curframe; i++) {
744 		free_func_state(state->frame[i]);
745 		state->frame[i] = NULL;
746 	}
747 	clear_jmp_history(state);
748 	if (free_self)
749 		kfree(state);
750 }
751 
752 /* copy verifier state from src to dst growing dst stack space
753  * when necessary to accommodate larger src stack
754  */
755 static int copy_func_state(struct bpf_func_state *dst,
756 			   const struct bpf_func_state *src)
757 {
758 	int err;
759 
760 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 				 false);
762 	if (err)
763 		return err;
764 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 	err = copy_reference_state(dst, src);
766 	if (err)
767 		return err;
768 	return copy_stack_state(dst, src);
769 }
770 
771 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 			       const struct bpf_verifier_state *src)
773 {
774 	struct bpf_func_state *dst;
775 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
776 	int i, err;
777 
778 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 		kfree(dst_state->jmp_history);
780 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 		if (!dst_state->jmp_history)
782 			return -ENOMEM;
783 	}
784 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
786 
787 	/* if dst has more stack frames then src frame, free them */
788 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 		free_func_state(dst_state->frame[i]);
790 		dst_state->frame[i] = NULL;
791 	}
792 	dst_state->speculative = src->speculative;
793 	dst_state->curframe = src->curframe;
794 	dst_state->active_spin_lock = src->active_spin_lock;
795 	dst_state->branches = src->branches;
796 	dst_state->parent = src->parent;
797 	dst_state->first_insn_idx = src->first_insn_idx;
798 	dst_state->last_insn_idx = src->last_insn_idx;
799 	for (i = 0; i <= src->curframe; i++) {
800 		dst = dst_state->frame[i];
801 		if (!dst) {
802 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 			if (!dst)
804 				return -ENOMEM;
805 			dst_state->frame[i] = dst;
806 		}
807 		err = copy_func_state(dst, src->frame[i]);
808 		if (err)
809 			return err;
810 	}
811 	return 0;
812 }
813 
814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815 {
816 	while (st) {
817 		u32 br = --st->branches;
818 
819 		/* WARN_ON(br > 1) technically makes sense here,
820 		 * but see comment in push_stack(), hence:
821 		 */
822 		WARN_ONCE((int)br < 0,
823 			  "BUG update_branch_counts:branches_to_explore=%d\n",
824 			  br);
825 		if (br)
826 			break;
827 		st = st->parent;
828 	}
829 }
830 
831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 		     int *insn_idx)
833 {
834 	struct bpf_verifier_state *cur = env->cur_state;
835 	struct bpf_verifier_stack_elem *elem, *head = env->head;
836 	int err;
837 
838 	if (env->head == NULL)
839 		return -ENOENT;
840 
841 	if (cur) {
842 		err = copy_verifier_state(cur, &head->st);
843 		if (err)
844 			return err;
845 	}
846 	if (insn_idx)
847 		*insn_idx = head->insn_idx;
848 	if (prev_insn_idx)
849 		*prev_insn_idx = head->prev_insn_idx;
850 	elem = head->next;
851 	free_verifier_state(&head->st, false);
852 	kfree(head);
853 	env->head = elem;
854 	env->stack_size--;
855 	return 0;
856 }
857 
858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
859 					     int insn_idx, int prev_insn_idx,
860 					     bool speculative)
861 {
862 	struct bpf_verifier_state *cur = env->cur_state;
863 	struct bpf_verifier_stack_elem *elem;
864 	int err;
865 
866 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
867 	if (!elem)
868 		goto err;
869 
870 	elem->insn_idx = insn_idx;
871 	elem->prev_insn_idx = prev_insn_idx;
872 	elem->next = env->head;
873 	env->head = elem;
874 	env->stack_size++;
875 	err = copy_verifier_state(&elem->st, cur);
876 	if (err)
877 		goto err;
878 	elem->st.speculative |= speculative;
879 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 		verbose(env, "The sequence of %d jumps is too complex.\n",
881 			env->stack_size);
882 		goto err;
883 	}
884 	if (elem->st.parent) {
885 		++elem->st.parent->branches;
886 		/* WARN_ON(branches > 2) technically makes sense here,
887 		 * but
888 		 * 1. speculative states will bump 'branches' for non-branch
889 		 * instructions
890 		 * 2. is_state_visited() heuristics may decide not to create
891 		 * a new state for a sequence of branches and all such current
892 		 * and cloned states will be pointing to a single parent state
893 		 * which might have large 'branches' count.
894 		 */
895 	}
896 	return &elem->st;
897 err:
898 	free_verifier_state(env->cur_state, true);
899 	env->cur_state = NULL;
900 	/* pop all elements and return */
901 	while (!pop_stack(env, NULL, NULL));
902 	return NULL;
903 }
904 
905 #define CALLER_SAVED_REGS 6
906 static const int caller_saved[CALLER_SAVED_REGS] = {
907 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908 };
909 
910 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 				struct bpf_reg_state *reg);
912 
913 /* Mark the unknown part of a register (variable offset or scalar value) as
914  * known to have the value @imm.
915  */
916 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917 {
918 	/* Clear id, off, and union(map_ptr, range) */
919 	memset(((u8 *)reg) + sizeof(reg->type), 0,
920 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
921 	reg->var_off = tnum_const(imm);
922 	reg->smin_value = (s64)imm;
923 	reg->smax_value = (s64)imm;
924 	reg->umin_value = imm;
925 	reg->umax_value = imm;
926 }
927 
928 /* Mark the 'variable offset' part of a register as zero.  This should be
929  * used only on registers holding a pointer type.
930  */
931 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
932 {
933 	__mark_reg_known(reg, 0);
934 }
935 
936 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937 {
938 	__mark_reg_known(reg, 0);
939 	reg->type = SCALAR_VALUE;
940 }
941 
942 static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 				struct bpf_reg_state *regs, u32 regno)
944 {
945 	if (WARN_ON(regno >= MAX_BPF_REG)) {
946 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
947 		/* Something bad happened, let's kill all regs */
948 		for (regno = 0; regno < MAX_BPF_REG; regno++)
949 			__mark_reg_not_init(env, regs + regno);
950 		return;
951 	}
952 	__mark_reg_known_zero(regs + regno);
953 }
954 
955 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956 {
957 	return type_is_pkt_pointer(reg->type);
958 }
959 
960 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961 {
962 	return reg_is_pkt_pointer(reg) ||
963 	       reg->type == PTR_TO_PACKET_END;
964 }
965 
966 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 				    enum bpf_reg_type which)
969 {
970 	/* The register can already have a range from prior markings.
971 	 * This is fine as long as it hasn't been advanced from its
972 	 * origin.
973 	 */
974 	return reg->type == which &&
975 	       reg->id == 0 &&
976 	       reg->off == 0 &&
977 	       tnum_equals_const(reg->var_off, 0);
978 }
979 
980 /* Attempts to improve min/max values based on var_off information */
981 static void __update_reg_bounds(struct bpf_reg_state *reg)
982 {
983 	/* min signed is max(sign bit) | min(other bits) */
984 	reg->smin_value = max_t(s64, reg->smin_value,
985 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 	/* max signed is min(sign bit) | max(other bits) */
987 	reg->smax_value = min_t(s64, reg->smax_value,
988 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 	reg->umax_value = min(reg->umax_value,
991 			      reg->var_off.value | reg->var_off.mask);
992 }
993 
994 /* Uses signed min/max values to inform unsigned, and vice-versa */
995 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996 {
997 	/* Learn sign from signed bounds.
998 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 	 * are the same, so combine.  This works even in the negative case, e.g.
1000 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 	 */
1002 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 							  reg->umin_value);
1005 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 							  reg->umax_value);
1007 		return;
1008 	}
1009 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1010 	 * boundary, so we must be careful.
1011 	 */
1012 	if ((s64)reg->umax_value >= 0) {
1013 		/* Positive.  We can't learn anything from the smin, but smax
1014 		 * is positive, hence safe.
1015 		 */
1016 		reg->smin_value = reg->umin_value;
1017 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 							  reg->umax_value);
1019 	} else if ((s64)reg->umin_value < 0) {
1020 		/* Negative.  We can't learn anything from the smax, but smin
1021 		 * is negative, hence safe.
1022 		 */
1023 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 							  reg->umin_value);
1025 		reg->smax_value = reg->umax_value;
1026 	}
1027 }
1028 
1029 /* Attempts to improve var_off based on unsigned min/max information */
1030 static void __reg_bound_offset(struct bpf_reg_state *reg)
1031 {
1032 	reg->var_off = tnum_intersect(reg->var_off,
1033 				      tnum_range(reg->umin_value,
1034 						 reg->umax_value));
1035 }
1036 
1037 static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038 {
1039 	u64 mask = 0xffffFFFF;
1040 	struct tnum range = tnum_range(reg->umin_value & mask,
1041 				       reg->umax_value & mask);
1042 	struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 	struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044 
1045 	reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046 }
1047 
1048 /* Reset the min/max bounds of a register */
1049 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050 {
1051 	reg->smin_value = S64_MIN;
1052 	reg->smax_value = S64_MAX;
1053 	reg->umin_value = 0;
1054 	reg->umax_value = U64_MAX;
1055 }
1056 
1057 /* Mark a register as having a completely unknown (scalar) value. */
1058 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 			       struct bpf_reg_state *reg)
1060 {
1061 	/*
1062 	 * Clear type, id, off, and union(map_ptr, range) and
1063 	 * padding between 'type' and union
1064 	 */
1065 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1066 	reg->type = SCALAR_VALUE;
1067 	reg->var_off = tnum_unknown;
1068 	reg->frameno = 0;
1069 	reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 		       true : false;
1071 	__mark_reg_unbounded(reg);
1072 }
1073 
1074 static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 			     struct bpf_reg_state *regs, u32 regno)
1076 {
1077 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1078 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1079 		/* Something bad happened, let's kill all regs except FP */
1080 		for (regno = 0; regno < BPF_REG_FP; regno++)
1081 			__mark_reg_not_init(env, regs + regno);
1082 		return;
1083 	}
1084 	__mark_reg_unknown(env, regs + regno);
1085 }
1086 
1087 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 				struct bpf_reg_state *reg)
1089 {
1090 	__mark_reg_unknown(env, reg);
1091 	reg->type = NOT_INIT;
1092 }
1093 
1094 static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 			      struct bpf_reg_state *regs, u32 regno)
1096 {
1097 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1098 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1099 		/* Something bad happened, let's kill all regs except FP */
1100 		for (regno = 0; regno < BPF_REG_FP; regno++)
1101 			__mark_reg_not_init(env, regs + regno);
1102 		return;
1103 	}
1104 	__mark_reg_not_init(env, regs + regno);
1105 }
1106 
1107 #define DEF_NOT_SUBREG	(0)
1108 static void init_reg_state(struct bpf_verifier_env *env,
1109 			   struct bpf_func_state *state)
1110 {
1111 	struct bpf_reg_state *regs = state->regs;
1112 	int i;
1113 
1114 	for (i = 0; i < MAX_BPF_REG; i++) {
1115 		mark_reg_not_init(env, regs, i);
1116 		regs[i].live = REG_LIVE_NONE;
1117 		regs[i].parent = NULL;
1118 		regs[i].subreg_def = DEF_NOT_SUBREG;
1119 	}
1120 
1121 	/* frame pointer */
1122 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1123 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1124 	regs[BPF_REG_FP].frameno = state->frameno;
1125 }
1126 
1127 #define BPF_MAIN_FUNC (-1)
1128 static void init_func_state(struct bpf_verifier_env *env,
1129 			    struct bpf_func_state *state,
1130 			    int callsite, int frameno, int subprogno)
1131 {
1132 	state->callsite = callsite;
1133 	state->frameno = frameno;
1134 	state->subprogno = subprogno;
1135 	init_reg_state(env, state);
1136 }
1137 
1138 enum reg_arg_type {
1139 	SRC_OP,		/* register is used as source operand */
1140 	DST_OP,		/* register is used as destination operand */
1141 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1142 };
1143 
1144 static int cmp_subprogs(const void *a, const void *b)
1145 {
1146 	return ((struct bpf_subprog_info *)a)->start -
1147 	       ((struct bpf_subprog_info *)b)->start;
1148 }
1149 
1150 static int find_subprog(struct bpf_verifier_env *env, int off)
1151 {
1152 	struct bpf_subprog_info *p;
1153 
1154 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1155 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1156 	if (!p)
1157 		return -ENOENT;
1158 	return p - env->subprog_info;
1159 
1160 }
1161 
1162 static int add_subprog(struct bpf_verifier_env *env, int off)
1163 {
1164 	int insn_cnt = env->prog->len;
1165 	int ret;
1166 
1167 	if (off >= insn_cnt || off < 0) {
1168 		verbose(env, "call to invalid destination\n");
1169 		return -EINVAL;
1170 	}
1171 	ret = find_subprog(env, off);
1172 	if (ret >= 0)
1173 		return 0;
1174 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1175 		verbose(env, "too many subprograms\n");
1176 		return -E2BIG;
1177 	}
1178 	env->subprog_info[env->subprog_cnt++].start = off;
1179 	sort(env->subprog_info, env->subprog_cnt,
1180 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1181 	return 0;
1182 }
1183 
1184 static int check_subprogs(struct bpf_verifier_env *env)
1185 {
1186 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1187 	struct bpf_subprog_info *subprog = env->subprog_info;
1188 	struct bpf_insn *insn = env->prog->insnsi;
1189 	int insn_cnt = env->prog->len;
1190 
1191 	/* Add entry function. */
1192 	ret = add_subprog(env, 0);
1193 	if (ret < 0)
1194 		return ret;
1195 
1196 	/* determine subprog starts. The end is one before the next starts */
1197 	for (i = 0; i < insn_cnt; i++) {
1198 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1199 			continue;
1200 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1201 			continue;
1202 		if (!env->allow_ptr_leaks) {
1203 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
1204 			return -EPERM;
1205 		}
1206 		ret = add_subprog(env, i + insn[i].imm + 1);
1207 		if (ret < 0)
1208 			return ret;
1209 	}
1210 
1211 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1212 	 * logic. 'subprog_cnt' should not be increased.
1213 	 */
1214 	subprog[env->subprog_cnt].start = insn_cnt;
1215 
1216 	if (env->log.level & BPF_LOG_LEVEL2)
1217 		for (i = 0; i < env->subprog_cnt; i++)
1218 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1219 
1220 	/* now check that all jumps are within the same subprog */
1221 	subprog_start = subprog[cur_subprog].start;
1222 	subprog_end = subprog[cur_subprog + 1].start;
1223 	for (i = 0; i < insn_cnt; i++) {
1224 		u8 code = insn[i].code;
1225 
1226 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1227 			goto next;
1228 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1229 			goto next;
1230 		off = i + insn[i].off + 1;
1231 		if (off < subprog_start || off >= subprog_end) {
1232 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1233 			return -EINVAL;
1234 		}
1235 next:
1236 		if (i == subprog_end - 1) {
1237 			/* to avoid fall-through from one subprog into another
1238 			 * the last insn of the subprog should be either exit
1239 			 * or unconditional jump back
1240 			 */
1241 			if (code != (BPF_JMP | BPF_EXIT) &&
1242 			    code != (BPF_JMP | BPF_JA)) {
1243 				verbose(env, "last insn is not an exit or jmp\n");
1244 				return -EINVAL;
1245 			}
1246 			subprog_start = subprog_end;
1247 			cur_subprog++;
1248 			if (cur_subprog < env->subprog_cnt)
1249 				subprog_end = subprog[cur_subprog + 1].start;
1250 		}
1251 	}
1252 	return 0;
1253 }
1254 
1255 /* Parentage chain of this register (or stack slot) should take care of all
1256  * issues like callee-saved registers, stack slot allocation time, etc.
1257  */
1258 static int mark_reg_read(struct bpf_verifier_env *env,
1259 			 const struct bpf_reg_state *state,
1260 			 struct bpf_reg_state *parent, u8 flag)
1261 {
1262 	bool writes = parent == state->parent; /* Observe write marks */
1263 	int cnt = 0;
1264 
1265 	while (parent) {
1266 		/* if read wasn't screened by an earlier write ... */
1267 		if (writes && state->live & REG_LIVE_WRITTEN)
1268 			break;
1269 		if (parent->live & REG_LIVE_DONE) {
1270 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1271 				reg_type_str[parent->type],
1272 				parent->var_off.value, parent->off);
1273 			return -EFAULT;
1274 		}
1275 		/* The first condition is more likely to be true than the
1276 		 * second, checked it first.
1277 		 */
1278 		if ((parent->live & REG_LIVE_READ) == flag ||
1279 		    parent->live & REG_LIVE_READ64)
1280 			/* The parentage chain never changes and
1281 			 * this parent was already marked as LIVE_READ.
1282 			 * There is no need to keep walking the chain again and
1283 			 * keep re-marking all parents as LIVE_READ.
1284 			 * This case happens when the same register is read
1285 			 * multiple times without writes into it in-between.
1286 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1287 			 * then no need to set the weak REG_LIVE_READ32.
1288 			 */
1289 			break;
1290 		/* ... then we depend on parent's value */
1291 		parent->live |= flag;
1292 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1293 		if (flag == REG_LIVE_READ64)
1294 			parent->live &= ~REG_LIVE_READ32;
1295 		state = parent;
1296 		parent = state->parent;
1297 		writes = true;
1298 		cnt++;
1299 	}
1300 
1301 	if (env->longest_mark_read_walk < cnt)
1302 		env->longest_mark_read_walk = cnt;
1303 	return 0;
1304 }
1305 
1306 /* This function is supposed to be used by the following 32-bit optimization
1307  * code only. It returns TRUE if the source or destination register operates
1308  * on 64-bit, otherwise return FALSE.
1309  */
1310 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1311 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1312 {
1313 	u8 code, class, op;
1314 
1315 	code = insn->code;
1316 	class = BPF_CLASS(code);
1317 	op = BPF_OP(code);
1318 	if (class == BPF_JMP) {
1319 		/* BPF_EXIT for "main" will reach here. Return TRUE
1320 		 * conservatively.
1321 		 */
1322 		if (op == BPF_EXIT)
1323 			return true;
1324 		if (op == BPF_CALL) {
1325 			/* BPF to BPF call will reach here because of marking
1326 			 * caller saved clobber with DST_OP_NO_MARK for which we
1327 			 * don't care the register def because they are anyway
1328 			 * marked as NOT_INIT already.
1329 			 */
1330 			if (insn->src_reg == BPF_PSEUDO_CALL)
1331 				return false;
1332 			/* Helper call will reach here because of arg type
1333 			 * check, conservatively return TRUE.
1334 			 */
1335 			if (t == SRC_OP)
1336 				return true;
1337 
1338 			return false;
1339 		}
1340 	}
1341 
1342 	if (class == BPF_ALU64 || class == BPF_JMP ||
1343 	    /* BPF_END always use BPF_ALU class. */
1344 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1345 		return true;
1346 
1347 	if (class == BPF_ALU || class == BPF_JMP32)
1348 		return false;
1349 
1350 	if (class == BPF_LDX) {
1351 		if (t != SRC_OP)
1352 			return BPF_SIZE(code) == BPF_DW;
1353 		/* LDX source must be ptr. */
1354 		return true;
1355 	}
1356 
1357 	if (class == BPF_STX) {
1358 		if (reg->type != SCALAR_VALUE)
1359 			return true;
1360 		return BPF_SIZE(code) == BPF_DW;
1361 	}
1362 
1363 	if (class == BPF_LD) {
1364 		u8 mode = BPF_MODE(code);
1365 
1366 		/* LD_IMM64 */
1367 		if (mode == BPF_IMM)
1368 			return true;
1369 
1370 		/* Both LD_IND and LD_ABS return 32-bit data. */
1371 		if (t != SRC_OP)
1372 			return  false;
1373 
1374 		/* Implicit ctx ptr. */
1375 		if (regno == BPF_REG_6)
1376 			return true;
1377 
1378 		/* Explicit source could be any width. */
1379 		return true;
1380 	}
1381 
1382 	if (class == BPF_ST)
1383 		/* The only source register for BPF_ST is a ptr. */
1384 		return true;
1385 
1386 	/* Conservatively return true at default. */
1387 	return true;
1388 }
1389 
1390 /* Return TRUE if INSN doesn't have explicit value define. */
1391 static bool insn_no_def(struct bpf_insn *insn)
1392 {
1393 	u8 class = BPF_CLASS(insn->code);
1394 
1395 	return (class == BPF_JMP || class == BPF_JMP32 ||
1396 		class == BPF_STX || class == BPF_ST);
1397 }
1398 
1399 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1400 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1401 {
1402 	if (insn_no_def(insn))
1403 		return false;
1404 
1405 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1406 }
1407 
1408 static void mark_insn_zext(struct bpf_verifier_env *env,
1409 			   struct bpf_reg_state *reg)
1410 {
1411 	s32 def_idx = reg->subreg_def;
1412 
1413 	if (def_idx == DEF_NOT_SUBREG)
1414 		return;
1415 
1416 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1417 	/* The dst will be zero extended, so won't be sub-register anymore. */
1418 	reg->subreg_def = DEF_NOT_SUBREG;
1419 }
1420 
1421 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1422 			 enum reg_arg_type t)
1423 {
1424 	struct bpf_verifier_state *vstate = env->cur_state;
1425 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1426 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1427 	struct bpf_reg_state *reg, *regs = state->regs;
1428 	bool rw64;
1429 
1430 	if (regno >= MAX_BPF_REG) {
1431 		verbose(env, "R%d is invalid\n", regno);
1432 		return -EINVAL;
1433 	}
1434 
1435 	reg = &regs[regno];
1436 	rw64 = is_reg64(env, insn, regno, reg, t);
1437 	if (t == SRC_OP) {
1438 		/* check whether register used as source operand can be read */
1439 		if (reg->type == NOT_INIT) {
1440 			verbose(env, "R%d !read_ok\n", regno);
1441 			return -EACCES;
1442 		}
1443 		/* We don't need to worry about FP liveness because it's read-only */
1444 		if (regno == BPF_REG_FP)
1445 			return 0;
1446 
1447 		if (rw64)
1448 			mark_insn_zext(env, reg);
1449 
1450 		return mark_reg_read(env, reg, reg->parent,
1451 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1452 	} else {
1453 		/* check whether register used as dest operand can be written to */
1454 		if (regno == BPF_REG_FP) {
1455 			verbose(env, "frame pointer is read only\n");
1456 			return -EACCES;
1457 		}
1458 		reg->live |= REG_LIVE_WRITTEN;
1459 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1460 		if (t == DST_OP)
1461 			mark_reg_unknown(env, regs, regno);
1462 	}
1463 	return 0;
1464 }
1465 
1466 /* for any branch, call, exit record the history of jmps in the given state */
1467 static int push_jmp_history(struct bpf_verifier_env *env,
1468 			    struct bpf_verifier_state *cur)
1469 {
1470 	u32 cnt = cur->jmp_history_cnt;
1471 	struct bpf_idx_pair *p;
1472 
1473 	cnt++;
1474 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1475 	if (!p)
1476 		return -ENOMEM;
1477 	p[cnt - 1].idx = env->insn_idx;
1478 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1479 	cur->jmp_history = p;
1480 	cur->jmp_history_cnt = cnt;
1481 	return 0;
1482 }
1483 
1484 /* Backtrack one insn at a time. If idx is not at the top of recorded
1485  * history then previous instruction came from straight line execution.
1486  */
1487 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1488 			     u32 *history)
1489 {
1490 	u32 cnt = *history;
1491 
1492 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1493 		i = st->jmp_history[cnt - 1].prev_idx;
1494 		(*history)--;
1495 	} else {
1496 		i--;
1497 	}
1498 	return i;
1499 }
1500 
1501 /* For given verifier state backtrack_insn() is called from the last insn to
1502  * the first insn. Its purpose is to compute a bitmask of registers and
1503  * stack slots that needs precision in the parent verifier state.
1504  */
1505 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1506 			  u32 *reg_mask, u64 *stack_mask)
1507 {
1508 	const struct bpf_insn_cbs cbs = {
1509 		.cb_print	= verbose,
1510 		.private_data	= env,
1511 	};
1512 	struct bpf_insn *insn = env->prog->insnsi + idx;
1513 	u8 class = BPF_CLASS(insn->code);
1514 	u8 opcode = BPF_OP(insn->code);
1515 	u8 mode = BPF_MODE(insn->code);
1516 	u32 dreg = 1u << insn->dst_reg;
1517 	u32 sreg = 1u << insn->src_reg;
1518 	u32 spi;
1519 
1520 	if (insn->code == 0)
1521 		return 0;
1522 	if (env->log.level & BPF_LOG_LEVEL) {
1523 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1524 		verbose(env, "%d: ", idx);
1525 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1526 	}
1527 
1528 	if (class == BPF_ALU || class == BPF_ALU64) {
1529 		if (!(*reg_mask & dreg))
1530 			return 0;
1531 		if (opcode == BPF_MOV) {
1532 			if (BPF_SRC(insn->code) == BPF_X) {
1533 				/* dreg = sreg
1534 				 * dreg needs precision after this insn
1535 				 * sreg needs precision before this insn
1536 				 */
1537 				*reg_mask &= ~dreg;
1538 				*reg_mask |= sreg;
1539 			} else {
1540 				/* dreg = K
1541 				 * dreg needs precision after this insn.
1542 				 * Corresponding register is already marked
1543 				 * as precise=true in this verifier state.
1544 				 * No further markings in parent are necessary
1545 				 */
1546 				*reg_mask &= ~dreg;
1547 			}
1548 		} else {
1549 			if (BPF_SRC(insn->code) == BPF_X) {
1550 				/* dreg += sreg
1551 				 * both dreg and sreg need precision
1552 				 * before this insn
1553 				 */
1554 				*reg_mask |= sreg;
1555 			} /* else dreg += K
1556 			   * dreg still needs precision before this insn
1557 			   */
1558 		}
1559 	} else if (class == BPF_LDX) {
1560 		if (!(*reg_mask & dreg))
1561 			return 0;
1562 		*reg_mask &= ~dreg;
1563 
1564 		/* scalars can only be spilled into stack w/o losing precision.
1565 		 * Load from any other memory can be zero extended.
1566 		 * The desire to keep that precision is already indicated
1567 		 * by 'precise' mark in corresponding register of this state.
1568 		 * No further tracking necessary.
1569 		 */
1570 		if (insn->src_reg != BPF_REG_FP)
1571 			return 0;
1572 		if (BPF_SIZE(insn->code) != BPF_DW)
1573 			return 0;
1574 
1575 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1576 		 * that [fp - off] slot contains scalar that needs to be
1577 		 * tracked with precision
1578 		 */
1579 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1580 		if (spi >= 64) {
1581 			verbose(env, "BUG spi %d\n", spi);
1582 			WARN_ONCE(1, "verifier backtracking bug");
1583 			return -EFAULT;
1584 		}
1585 		*stack_mask |= 1ull << spi;
1586 	} else if (class == BPF_STX || class == BPF_ST) {
1587 		if (*reg_mask & dreg)
1588 			/* stx & st shouldn't be using _scalar_ dst_reg
1589 			 * to access memory. It means backtracking
1590 			 * encountered a case of pointer subtraction.
1591 			 */
1592 			return -ENOTSUPP;
1593 		/* scalars can only be spilled into stack */
1594 		if (insn->dst_reg != BPF_REG_FP)
1595 			return 0;
1596 		if (BPF_SIZE(insn->code) != BPF_DW)
1597 			return 0;
1598 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1599 		if (spi >= 64) {
1600 			verbose(env, "BUG spi %d\n", spi);
1601 			WARN_ONCE(1, "verifier backtracking bug");
1602 			return -EFAULT;
1603 		}
1604 		if (!(*stack_mask & (1ull << spi)))
1605 			return 0;
1606 		*stack_mask &= ~(1ull << spi);
1607 		if (class == BPF_STX)
1608 			*reg_mask |= sreg;
1609 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1610 		if (opcode == BPF_CALL) {
1611 			if (insn->src_reg == BPF_PSEUDO_CALL)
1612 				return -ENOTSUPP;
1613 			/* regular helper call sets R0 */
1614 			*reg_mask &= ~1;
1615 			if (*reg_mask & 0x3f) {
1616 				/* if backtracing was looking for registers R1-R5
1617 				 * they should have been found already.
1618 				 */
1619 				verbose(env, "BUG regs %x\n", *reg_mask);
1620 				WARN_ONCE(1, "verifier backtracking bug");
1621 				return -EFAULT;
1622 			}
1623 		} else if (opcode == BPF_EXIT) {
1624 			return -ENOTSUPP;
1625 		}
1626 	} else if (class == BPF_LD) {
1627 		if (!(*reg_mask & dreg))
1628 			return 0;
1629 		*reg_mask &= ~dreg;
1630 		/* It's ld_imm64 or ld_abs or ld_ind.
1631 		 * For ld_imm64 no further tracking of precision
1632 		 * into parent is necessary
1633 		 */
1634 		if (mode == BPF_IND || mode == BPF_ABS)
1635 			/* to be analyzed */
1636 			return -ENOTSUPP;
1637 	}
1638 	return 0;
1639 }
1640 
1641 /* the scalar precision tracking algorithm:
1642  * . at the start all registers have precise=false.
1643  * . scalar ranges are tracked as normal through alu and jmp insns.
1644  * . once precise value of the scalar register is used in:
1645  *   .  ptr + scalar alu
1646  *   . if (scalar cond K|scalar)
1647  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1648  *   backtrack through the verifier states and mark all registers and
1649  *   stack slots with spilled constants that these scalar regisers
1650  *   should be precise.
1651  * . during state pruning two registers (or spilled stack slots)
1652  *   are equivalent if both are not precise.
1653  *
1654  * Note the verifier cannot simply walk register parentage chain,
1655  * since many different registers and stack slots could have been
1656  * used to compute single precise scalar.
1657  *
1658  * The approach of starting with precise=true for all registers and then
1659  * backtrack to mark a register as not precise when the verifier detects
1660  * that program doesn't care about specific value (e.g., when helper
1661  * takes register as ARG_ANYTHING parameter) is not safe.
1662  *
1663  * It's ok to walk single parentage chain of the verifier states.
1664  * It's possible that this backtracking will go all the way till 1st insn.
1665  * All other branches will be explored for needing precision later.
1666  *
1667  * The backtracking needs to deal with cases like:
1668  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1669  * r9 -= r8
1670  * r5 = r9
1671  * if r5 > 0x79f goto pc+7
1672  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1673  * r5 += 1
1674  * ...
1675  * call bpf_perf_event_output#25
1676  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1677  *
1678  * and this case:
1679  * r6 = 1
1680  * call foo // uses callee's r6 inside to compute r0
1681  * r0 += r6
1682  * if r0 == 0 goto
1683  *
1684  * to track above reg_mask/stack_mask needs to be independent for each frame.
1685  *
1686  * Also if parent's curframe > frame where backtracking started,
1687  * the verifier need to mark registers in both frames, otherwise callees
1688  * may incorrectly prune callers. This is similar to
1689  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1690  *
1691  * For now backtracking falls back into conservative marking.
1692  */
1693 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1694 				     struct bpf_verifier_state *st)
1695 {
1696 	struct bpf_func_state *func;
1697 	struct bpf_reg_state *reg;
1698 	int i, j;
1699 
1700 	/* big hammer: mark all scalars precise in this path.
1701 	 * pop_stack may still get !precise scalars.
1702 	 */
1703 	for (; st; st = st->parent)
1704 		for (i = 0; i <= st->curframe; i++) {
1705 			func = st->frame[i];
1706 			for (j = 0; j < BPF_REG_FP; j++) {
1707 				reg = &func->regs[j];
1708 				if (reg->type != SCALAR_VALUE)
1709 					continue;
1710 				reg->precise = true;
1711 			}
1712 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1713 				if (func->stack[j].slot_type[0] != STACK_SPILL)
1714 					continue;
1715 				reg = &func->stack[j].spilled_ptr;
1716 				if (reg->type != SCALAR_VALUE)
1717 					continue;
1718 				reg->precise = true;
1719 			}
1720 		}
1721 }
1722 
1723 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1724 				  int spi)
1725 {
1726 	struct bpf_verifier_state *st = env->cur_state;
1727 	int first_idx = st->first_insn_idx;
1728 	int last_idx = env->insn_idx;
1729 	struct bpf_func_state *func;
1730 	struct bpf_reg_state *reg;
1731 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1732 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1733 	bool skip_first = true;
1734 	bool new_marks = false;
1735 	int i, err;
1736 
1737 	if (!env->allow_ptr_leaks)
1738 		/* backtracking is root only for now */
1739 		return 0;
1740 
1741 	func = st->frame[st->curframe];
1742 	if (regno >= 0) {
1743 		reg = &func->regs[regno];
1744 		if (reg->type != SCALAR_VALUE) {
1745 			WARN_ONCE(1, "backtracing misuse");
1746 			return -EFAULT;
1747 		}
1748 		if (!reg->precise)
1749 			new_marks = true;
1750 		else
1751 			reg_mask = 0;
1752 		reg->precise = true;
1753 	}
1754 
1755 	while (spi >= 0) {
1756 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1757 			stack_mask = 0;
1758 			break;
1759 		}
1760 		reg = &func->stack[spi].spilled_ptr;
1761 		if (reg->type != SCALAR_VALUE) {
1762 			stack_mask = 0;
1763 			break;
1764 		}
1765 		if (!reg->precise)
1766 			new_marks = true;
1767 		else
1768 			stack_mask = 0;
1769 		reg->precise = true;
1770 		break;
1771 	}
1772 
1773 	if (!new_marks)
1774 		return 0;
1775 	if (!reg_mask && !stack_mask)
1776 		return 0;
1777 	for (;;) {
1778 		DECLARE_BITMAP(mask, 64);
1779 		u32 history = st->jmp_history_cnt;
1780 
1781 		if (env->log.level & BPF_LOG_LEVEL)
1782 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1783 		for (i = last_idx;;) {
1784 			if (skip_first) {
1785 				err = 0;
1786 				skip_first = false;
1787 			} else {
1788 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1789 			}
1790 			if (err == -ENOTSUPP) {
1791 				mark_all_scalars_precise(env, st);
1792 				return 0;
1793 			} else if (err) {
1794 				return err;
1795 			}
1796 			if (!reg_mask && !stack_mask)
1797 				/* Found assignment(s) into tracked register in this state.
1798 				 * Since this state is already marked, just return.
1799 				 * Nothing to be tracked further in the parent state.
1800 				 */
1801 				return 0;
1802 			if (i == first_idx)
1803 				break;
1804 			i = get_prev_insn_idx(st, i, &history);
1805 			if (i >= env->prog->len) {
1806 				/* This can happen if backtracking reached insn 0
1807 				 * and there are still reg_mask or stack_mask
1808 				 * to backtrack.
1809 				 * It means the backtracking missed the spot where
1810 				 * particular register was initialized with a constant.
1811 				 */
1812 				verbose(env, "BUG backtracking idx %d\n", i);
1813 				WARN_ONCE(1, "verifier backtracking bug");
1814 				return -EFAULT;
1815 			}
1816 		}
1817 		st = st->parent;
1818 		if (!st)
1819 			break;
1820 
1821 		new_marks = false;
1822 		func = st->frame[st->curframe];
1823 		bitmap_from_u64(mask, reg_mask);
1824 		for_each_set_bit(i, mask, 32) {
1825 			reg = &func->regs[i];
1826 			if (reg->type != SCALAR_VALUE) {
1827 				reg_mask &= ~(1u << i);
1828 				continue;
1829 			}
1830 			if (!reg->precise)
1831 				new_marks = true;
1832 			reg->precise = true;
1833 		}
1834 
1835 		bitmap_from_u64(mask, stack_mask);
1836 		for_each_set_bit(i, mask, 64) {
1837 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
1838 				/* the sequence of instructions:
1839 				 * 2: (bf) r3 = r10
1840 				 * 3: (7b) *(u64 *)(r3 -8) = r0
1841 				 * 4: (79) r4 = *(u64 *)(r10 -8)
1842 				 * doesn't contain jmps. It's backtracked
1843 				 * as a single block.
1844 				 * During backtracking insn 3 is not recognized as
1845 				 * stack access, so at the end of backtracking
1846 				 * stack slot fp-8 is still marked in stack_mask.
1847 				 * However the parent state may not have accessed
1848 				 * fp-8 and it's "unallocated" stack space.
1849 				 * In such case fallback to conservative.
1850 				 */
1851 				mark_all_scalars_precise(env, st);
1852 				return 0;
1853 			}
1854 
1855 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
1856 				stack_mask &= ~(1ull << i);
1857 				continue;
1858 			}
1859 			reg = &func->stack[i].spilled_ptr;
1860 			if (reg->type != SCALAR_VALUE) {
1861 				stack_mask &= ~(1ull << i);
1862 				continue;
1863 			}
1864 			if (!reg->precise)
1865 				new_marks = true;
1866 			reg->precise = true;
1867 		}
1868 		if (env->log.level & BPF_LOG_LEVEL) {
1869 			print_verifier_state(env, func);
1870 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
1871 				new_marks ? "didn't have" : "already had",
1872 				reg_mask, stack_mask);
1873 		}
1874 
1875 		if (!reg_mask && !stack_mask)
1876 			break;
1877 		if (!new_marks)
1878 			break;
1879 
1880 		last_idx = st->last_insn_idx;
1881 		first_idx = st->first_insn_idx;
1882 	}
1883 	return 0;
1884 }
1885 
1886 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1887 {
1888 	return __mark_chain_precision(env, regno, -1);
1889 }
1890 
1891 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1892 {
1893 	return __mark_chain_precision(env, -1, spi);
1894 }
1895 
1896 static bool is_spillable_regtype(enum bpf_reg_type type)
1897 {
1898 	switch (type) {
1899 	case PTR_TO_MAP_VALUE:
1900 	case PTR_TO_MAP_VALUE_OR_NULL:
1901 	case PTR_TO_STACK:
1902 	case PTR_TO_CTX:
1903 	case PTR_TO_PACKET:
1904 	case PTR_TO_PACKET_META:
1905 	case PTR_TO_PACKET_END:
1906 	case PTR_TO_FLOW_KEYS:
1907 	case CONST_PTR_TO_MAP:
1908 	case PTR_TO_SOCKET:
1909 	case PTR_TO_SOCKET_OR_NULL:
1910 	case PTR_TO_SOCK_COMMON:
1911 	case PTR_TO_SOCK_COMMON_OR_NULL:
1912 	case PTR_TO_TCP_SOCK:
1913 	case PTR_TO_TCP_SOCK_OR_NULL:
1914 	case PTR_TO_XDP_SOCK:
1915 	case PTR_TO_BTF_ID:
1916 		return true;
1917 	default:
1918 		return false;
1919 	}
1920 }
1921 
1922 /* Does this register contain a constant zero? */
1923 static bool register_is_null(struct bpf_reg_state *reg)
1924 {
1925 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1926 }
1927 
1928 static bool register_is_const(struct bpf_reg_state *reg)
1929 {
1930 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1931 }
1932 
1933 static void save_register_state(struct bpf_func_state *state,
1934 				int spi, struct bpf_reg_state *reg)
1935 {
1936 	int i;
1937 
1938 	state->stack[spi].spilled_ptr = *reg;
1939 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1940 
1941 	for (i = 0; i < BPF_REG_SIZE; i++)
1942 		state->stack[spi].slot_type[i] = STACK_SPILL;
1943 }
1944 
1945 /* check_stack_read/write functions track spill/fill of registers,
1946  * stack boundary and alignment are checked in check_mem_access()
1947  */
1948 static int check_stack_write(struct bpf_verifier_env *env,
1949 			     struct bpf_func_state *state, /* func where register points to */
1950 			     int off, int size, int value_regno, int insn_idx)
1951 {
1952 	struct bpf_func_state *cur; /* state of the current function */
1953 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1954 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1955 	struct bpf_reg_state *reg = NULL;
1956 
1957 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1958 				 state->acquired_refs, true);
1959 	if (err)
1960 		return err;
1961 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1962 	 * so it's aligned access and [off, off + size) are within stack limits
1963 	 */
1964 	if (!env->allow_ptr_leaks &&
1965 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1966 	    size != BPF_REG_SIZE) {
1967 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1968 		return -EACCES;
1969 	}
1970 
1971 	cur = env->cur_state->frame[env->cur_state->curframe];
1972 	if (value_regno >= 0)
1973 		reg = &cur->regs[value_regno];
1974 
1975 	if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1976 	    !register_is_null(reg) && env->allow_ptr_leaks) {
1977 		if (dst_reg != BPF_REG_FP) {
1978 			/* The backtracking logic can only recognize explicit
1979 			 * stack slot address like [fp - 8]. Other spill of
1980 			 * scalar via different register has to be conervative.
1981 			 * Backtrack from here and mark all registers as precise
1982 			 * that contributed into 'reg' being a constant.
1983 			 */
1984 			err = mark_chain_precision(env, value_regno);
1985 			if (err)
1986 				return err;
1987 		}
1988 		save_register_state(state, spi, reg);
1989 	} else if (reg && is_spillable_regtype(reg->type)) {
1990 		/* register containing pointer is being spilled into stack */
1991 		if (size != BPF_REG_SIZE) {
1992 			verbose_linfo(env, insn_idx, "; ");
1993 			verbose(env, "invalid size of register spill\n");
1994 			return -EACCES;
1995 		}
1996 
1997 		if (state != cur && reg->type == PTR_TO_STACK) {
1998 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1999 			return -EINVAL;
2000 		}
2001 
2002 		if (!env->allow_ptr_leaks) {
2003 			bool sanitize = false;
2004 
2005 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2006 			    register_is_const(&state->stack[spi].spilled_ptr))
2007 				sanitize = true;
2008 			for (i = 0; i < BPF_REG_SIZE; i++)
2009 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2010 					sanitize = true;
2011 					break;
2012 				}
2013 			if (sanitize) {
2014 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2015 				int soff = (-spi - 1) * BPF_REG_SIZE;
2016 
2017 				/* detected reuse of integer stack slot with a pointer
2018 				 * which means either llvm is reusing stack slot or
2019 				 * an attacker is trying to exploit CVE-2018-3639
2020 				 * (speculative store bypass)
2021 				 * Have to sanitize that slot with preemptive
2022 				 * store of zero.
2023 				 */
2024 				if (*poff && *poff != soff) {
2025 					/* disallow programs where single insn stores
2026 					 * into two different stack slots, since verifier
2027 					 * cannot sanitize them
2028 					 */
2029 					verbose(env,
2030 						"insn %d cannot access two stack slots fp%d and fp%d",
2031 						insn_idx, *poff, soff);
2032 					return -EINVAL;
2033 				}
2034 				*poff = soff;
2035 			}
2036 		}
2037 		save_register_state(state, spi, reg);
2038 	} else {
2039 		u8 type = STACK_MISC;
2040 
2041 		/* regular write of data into stack destroys any spilled ptr */
2042 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2043 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2044 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2045 			for (i = 0; i < BPF_REG_SIZE; i++)
2046 				state->stack[spi].slot_type[i] = STACK_MISC;
2047 
2048 		/* only mark the slot as written if all 8 bytes were written
2049 		 * otherwise read propagation may incorrectly stop too soon
2050 		 * when stack slots are partially written.
2051 		 * This heuristic means that read propagation will be
2052 		 * conservative, since it will add reg_live_read marks
2053 		 * to stack slots all the way to first state when programs
2054 		 * writes+reads less than 8 bytes
2055 		 */
2056 		if (size == BPF_REG_SIZE)
2057 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2058 
2059 		/* when we zero initialize stack slots mark them as such */
2060 		if (reg && register_is_null(reg)) {
2061 			/* backtracking doesn't work for STACK_ZERO yet. */
2062 			err = mark_chain_precision(env, value_regno);
2063 			if (err)
2064 				return err;
2065 			type = STACK_ZERO;
2066 		}
2067 
2068 		/* Mark slots affected by this stack write. */
2069 		for (i = 0; i < size; i++)
2070 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2071 				type;
2072 	}
2073 	return 0;
2074 }
2075 
2076 static int check_stack_read(struct bpf_verifier_env *env,
2077 			    struct bpf_func_state *reg_state /* func where register points to */,
2078 			    int off, int size, int value_regno)
2079 {
2080 	struct bpf_verifier_state *vstate = env->cur_state;
2081 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2082 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2083 	struct bpf_reg_state *reg;
2084 	u8 *stype;
2085 
2086 	if (reg_state->allocated_stack <= slot) {
2087 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2088 			off, size);
2089 		return -EACCES;
2090 	}
2091 	stype = reg_state->stack[spi].slot_type;
2092 	reg = &reg_state->stack[spi].spilled_ptr;
2093 
2094 	if (stype[0] == STACK_SPILL) {
2095 		if (size != BPF_REG_SIZE) {
2096 			if (reg->type != SCALAR_VALUE) {
2097 				verbose_linfo(env, env->insn_idx, "; ");
2098 				verbose(env, "invalid size of register fill\n");
2099 				return -EACCES;
2100 			}
2101 			if (value_regno >= 0) {
2102 				mark_reg_unknown(env, state->regs, value_regno);
2103 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2104 			}
2105 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2106 			return 0;
2107 		}
2108 		for (i = 1; i < BPF_REG_SIZE; i++) {
2109 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2110 				verbose(env, "corrupted spill memory\n");
2111 				return -EACCES;
2112 			}
2113 		}
2114 
2115 		if (value_regno >= 0) {
2116 			/* restore register state from stack */
2117 			state->regs[value_regno] = *reg;
2118 			/* mark reg as written since spilled pointer state likely
2119 			 * has its liveness marks cleared by is_state_visited()
2120 			 * which resets stack/reg liveness for state transitions
2121 			 */
2122 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2123 		}
2124 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2125 	} else {
2126 		int zeros = 0;
2127 
2128 		for (i = 0; i < size; i++) {
2129 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2130 				continue;
2131 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2132 				zeros++;
2133 				continue;
2134 			}
2135 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2136 				off, i, size);
2137 			return -EACCES;
2138 		}
2139 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2140 		if (value_regno >= 0) {
2141 			if (zeros == size) {
2142 				/* any size read into register is zero extended,
2143 				 * so the whole register == const_zero
2144 				 */
2145 				__mark_reg_const_zero(&state->regs[value_regno]);
2146 				/* backtracking doesn't support STACK_ZERO yet,
2147 				 * so mark it precise here, so that later
2148 				 * backtracking can stop here.
2149 				 * Backtracking may not need this if this register
2150 				 * doesn't participate in pointer adjustment.
2151 				 * Forward propagation of precise flag is not
2152 				 * necessary either. This mark is only to stop
2153 				 * backtracking. Any register that contributed
2154 				 * to const 0 was marked precise before spill.
2155 				 */
2156 				state->regs[value_regno].precise = true;
2157 			} else {
2158 				/* have read misc data from the stack */
2159 				mark_reg_unknown(env, state->regs, value_regno);
2160 			}
2161 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2162 		}
2163 	}
2164 	return 0;
2165 }
2166 
2167 static int check_stack_access(struct bpf_verifier_env *env,
2168 			      const struct bpf_reg_state *reg,
2169 			      int off, int size)
2170 {
2171 	/* Stack accesses must be at a fixed offset, so that we
2172 	 * can determine what type of data were returned. See
2173 	 * check_stack_read().
2174 	 */
2175 	if (!tnum_is_const(reg->var_off)) {
2176 		char tn_buf[48];
2177 
2178 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2179 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2180 			tn_buf, off, size);
2181 		return -EACCES;
2182 	}
2183 
2184 	if (off >= 0 || off < -MAX_BPF_STACK) {
2185 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2186 		return -EACCES;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2193 				 int off, int size, enum bpf_access_type type)
2194 {
2195 	struct bpf_reg_state *regs = cur_regs(env);
2196 	struct bpf_map *map = regs[regno].map_ptr;
2197 	u32 cap = bpf_map_flags_to_cap(map);
2198 
2199 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2200 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2201 			map->value_size, off, size);
2202 		return -EACCES;
2203 	}
2204 
2205 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2206 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2207 			map->value_size, off, size);
2208 		return -EACCES;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 /* check read/write into map element returned by bpf_map_lookup_elem() */
2215 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2216 			      int size, bool zero_size_allowed)
2217 {
2218 	struct bpf_reg_state *regs = cur_regs(env);
2219 	struct bpf_map *map = regs[regno].map_ptr;
2220 
2221 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2222 	    off + size > map->value_size) {
2223 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2224 			map->value_size, off, size);
2225 		return -EACCES;
2226 	}
2227 	return 0;
2228 }
2229 
2230 /* check read/write into a map element with possible variable offset */
2231 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2232 			    int off, int size, bool zero_size_allowed)
2233 {
2234 	struct bpf_verifier_state *vstate = env->cur_state;
2235 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2236 	struct bpf_reg_state *reg = &state->regs[regno];
2237 	int err;
2238 
2239 	/* We may have adjusted the register to this map value, so we
2240 	 * need to try adding each of min_value and max_value to off
2241 	 * to make sure our theoretical access will be safe.
2242 	 */
2243 	if (env->log.level & BPF_LOG_LEVEL)
2244 		print_verifier_state(env, state);
2245 
2246 	/* The minimum value is only important with signed
2247 	 * comparisons where we can't assume the floor of a
2248 	 * value is 0.  If we are using signed variables for our
2249 	 * index'es we need to make sure that whatever we use
2250 	 * will have a set floor within our range.
2251 	 */
2252 	if (reg->smin_value < 0 &&
2253 	    (reg->smin_value == S64_MIN ||
2254 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2255 	      reg->smin_value + off < 0)) {
2256 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2257 			regno);
2258 		return -EACCES;
2259 	}
2260 	err = __check_map_access(env, regno, reg->smin_value + off, size,
2261 				 zero_size_allowed);
2262 	if (err) {
2263 		verbose(env, "R%d min value is outside of the array range\n",
2264 			regno);
2265 		return err;
2266 	}
2267 
2268 	/* If we haven't set a max value then we need to bail since we can't be
2269 	 * sure we won't do bad things.
2270 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2271 	 */
2272 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2273 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2274 			regno);
2275 		return -EACCES;
2276 	}
2277 	err = __check_map_access(env, regno, reg->umax_value + off, size,
2278 				 zero_size_allowed);
2279 	if (err)
2280 		verbose(env, "R%d max value is outside of the array range\n",
2281 			regno);
2282 
2283 	if (map_value_has_spin_lock(reg->map_ptr)) {
2284 		u32 lock = reg->map_ptr->spin_lock_off;
2285 
2286 		/* if any part of struct bpf_spin_lock can be touched by
2287 		 * load/store reject this program.
2288 		 * To check that [x1, x2) overlaps with [y1, y2)
2289 		 * it is sufficient to check x1 < y2 && y1 < x2.
2290 		 */
2291 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2292 		     lock < reg->umax_value + off + size) {
2293 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2294 			return -EACCES;
2295 		}
2296 	}
2297 	return err;
2298 }
2299 
2300 #define MAX_PACKET_OFF 0xffff
2301 
2302 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2303 				       const struct bpf_call_arg_meta *meta,
2304 				       enum bpf_access_type t)
2305 {
2306 	switch (env->prog->type) {
2307 	/* Program types only with direct read access go here! */
2308 	case BPF_PROG_TYPE_LWT_IN:
2309 	case BPF_PROG_TYPE_LWT_OUT:
2310 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2311 	case BPF_PROG_TYPE_SK_REUSEPORT:
2312 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2313 	case BPF_PROG_TYPE_CGROUP_SKB:
2314 		if (t == BPF_WRITE)
2315 			return false;
2316 		/* fallthrough */
2317 
2318 	/* Program types with direct read + write access go here! */
2319 	case BPF_PROG_TYPE_SCHED_CLS:
2320 	case BPF_PROG_TYPE_SCHED_ACT:
2321 	case BPF_PROG_TYPE_XDP:
2322 	case BPF_PROG_TYPE_LWT_XMIT:
2323 	case BPF_PROG_TYPE_SK_SKB:
2324 	case BPF_PROG_TYPE_SK_MSG:
2325 		if (meta)
2326 			return meta->pkt_access;
2327 
2328 		env->seen_direct_write = true;
2329 		return true;
2330 
2331 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2332 		if (t == BPF_WRITE)
2333 			env->seen_direct_write = true;
2334 
2335 		return true;
2336 
2337 	default:
2338 		return false;
2339 	}
2340 }
2341 
2342 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2343 				 int off, int size, bool zero_size_allowed)
2344 {
2345 	struct bpf_reg_state *regs = cur_regs(env);
2346 	struct bpf_reg_state *reg = &regs[regno];
2347 
2348 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2349 	    (u64)off + size > reg->range) {
2350 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2351 			off, size, regno, reg->id, reg->off, reg->range);
2352 		return -EACCES;
2353 	}
2354 	return 0;
2355 }
2356 
2357 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2358 			       int size, bool zero_size_allowed)
2359 {
2360 	struct bpf_reg_state *regs = cur_regs(env);
2361 	struct bpf_reg_state *reg = &regs[regno];
2362 	int err;
2363 
2364 	/* We may have added a variable offset to the packet pointer; but any
2365 	 * reg->range we have comes after that.  We are only checking the fixed
2366 	 * offset.
2367 	 */
2368 
2369 	/* We don't allow negative numbers, because we aren't tracking enough
2370 	 * detail to prove they're safe.
2371 	 */
2372 	if (reg->smin_value < 0) {
2373 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2374 			regno);
2375 		return -EACCES;
2376 	}
2377 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2378 	if (err) {
2379 		verbose(env, "R%d offset is outside of the packet\n", regno);
2380 		return err;
2381 	}
2382 
2383 	/* __check_packet_access has made sure "off + size - 1" is within u16.
2384 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2385 	 * otherwise find_good_pkt_pointers would have refused to set range info
2386 	 * that __check_packet_access would have rejected this pkt access.
2387 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2388 	 */
2389 	env->prog->aux->max_pkt_offset =
2390 		max_t(u32, env->prog->aux->max_pkt_offset,
2391 		      off + reg->umax_value + size - 1);
2392 
2393 	return err;
2394 }
2395 
2396 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2397 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2398 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2399 			    u32 *btf_id)
2400 {
2401 	struct bpf_insn_access_aux info = {
2402 		.reg_type = *reg_type,
2403 		.log = &env->log,
2404 	};
2405 
2406 	if (env->ops->is_valid_access &&
2407 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2408 		/* A non zero info.ctx_field_size indicates that this field is a
2409 		 * candidate for later verifier transformation to load the whole
2410 		 * field and then apply a mask when accessed with a narrower
2411 		 * access than actual ctx access size. A zero info.ctx_field_size
2412 		 * will only allow for whole field access and rejects any other
2413 		 * type of narrower access.
2414 		 */
2415 		*reg_type = info.reg_type;
2416 
2417 		if (*reg_type == PTR_TO_BTF_ID)
2418 			*btf_id = info.btf_id;
2419 		else
2420 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2421 		/* remember the offset of last byte accessed in ctx */
2422 		if (env->prog->aux->max_ctx_offset < off + size)
2423 			env->prog->aux->max_ctx_offset = off + size;
2424 		return 0;
2425 	}
2426 
2427 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2428 	return -EACCES;
2429 }
2430 
2431 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2432 				  int size)
2433 {
2434 	if (size < 0 || off < 0 ||
2435 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2436 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2437 			off, size);
2438 		return -EACCES;
2439 	}
2440 	return 0;
2441 }
2442 
2443 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2444 			     u32 regno, int off, int size,
2445 			     enum bpf_access_type t)
2446 {
2447 	struct bpf_reg_state *regs = cur_regs(env);
2448 	struct bpf_reg_state *reg = &regs[regno];
2449 	struct bpf_insn_access_aux info = {};
2450 	bool valid;
2451 
2452 	if (reg->smin_value < 0) {
2453 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2454 			regno);
2455 		return -EACCES;
2456 	}
2457 
2458 	switch (reg->type) {
2459 	case PTR_TO_SOCK_COMMON:
2460 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2461 		break;
2462 	case PTR_TO_SOCKET:
2463 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2464 		break;
2465 	case PTR_TO_TCP_SOCK:
2466 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2467 		break;
2468 	case PTR_TO_XDP_SOCK:
2469 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2470 		break;
2471 	default:
2472 		valid = false;
2473 	}
2474 
2475 
2476 	if (valid) {
2477 		env->insn_aux_data[insn_idx].ctx_field_size =
2478 			info.ctx_field_size;
2479 		return 0;
2480 	}
2481 
2482 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2483 		regno, reg_type_str[reg->type], off, size);
2484 
2485 	return -EACCES;
2486 }
2487 
2488 static bool __is_pointer_value(bool allow_ptr_leaks,
2489 			       const struct bpf_reg_state *reg)
2490 {
2491 	if (allow_ptr_leaks)
2492 		return false;
2493 
2494 	return reg->type != SCALAR_VALUE;
2495 }
2496 
2497 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2498 {
2499 	return cur_regs(env) + regno;
2500 }
2501 
2502 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2503 {
2504 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2505 }
2506 
2507 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2508 {
2509 	const struct bpf_reg_state *reg = reg_state(env, regno);
2510 
2511 	return reg->type == PTR_TO_CTX;
2512 }
2513 
2514 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2515 {
2516 	const struct bpf_reg_state *reg = reg_state(env, regno);
2517 
2518 	return type_is_sk_pointer(reg->type);
2519 }
2520 
2521 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2522 {
2523 	const struct bpf_reg_state *reg = reg_state(env, regno);
2524 
2525 	return type_is_pkt_pointer(reg->type);
2526 }
2527 
2528 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2529 {
2530 	const struct bpf_reg_state *reg = reg_state(env, regno);
2531 
2532 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2533 	return reg->type == PTR_TO_FLOW_KEYS;
2534 }
2535 
2536 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2537 				   const struct bpf_reg_state *reg,
2538 				   int off, int size, bool strict)
2539 {
2540 	struct tnum reg_off;
2541 	int ip_align;
2542 
2543 	/* Byte size accesses are always allowed. */
2544 	if (!strict || size == 1)
2545 		return 0;
2546 
2547 	/* For platforms that do not have a Kconfig enabling
2548 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2549 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2550 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2551 	 * to this code only in strict mode where we want to emulate
2552 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2553 	 * unconditional IP align value of '2'.
2554 	 */
2555 	ip_align = 2;
2556 
2557 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2558 	if (!tnum_is_aligned(reg_off, size)) {
2559 		char tn_buf[48];
2560 
2561 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2562 		verbose(env,
2563 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2564 			ip_align, tn_buf, reg->off, off, size);
2565 		return -EACCES;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2572 				       const struct bpf_reg_state *reg,
2573 				       const char *pointer_desc,
2574 				       int off, int size, bool strict)
2575 {
2576 	struct tnum reg_off;
2577 
2578 	/* Byte size accesses are always allowed. */
2579 	if (!strict || size == 1)
2580 		return 0;
2581 
2582 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2583 	if (!tnum_is_aligned(reg_off, size)) {
2584 		char tn_buf[48];
2585 
2586 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2587 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2588 			pointer_desc, tn_buf, reg->off, off, size);
2589 		return -EACCES;
2590 	}
2591 
2592 	return 0;
2593 }
2594 
2595 static int check_ptr_alignment(struct bpf_verifier_env *env,
2596 			       const struct bpf_reg_state *reg, int off,
2597 			       int size, bool strict_alignment_once)
2598 {
2599 	bool strict = env->strict_alignment || strict_alignment_once;
2600 	const char *pointer_desc = "";
2601 
2602 	switch (reg->type) {
2603 	case PTR_TO_PACKET:
2604 	case PTR_TO_PACKET_META:
2605 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2606 		 * right in front, treat it the very same way.
2607 		 */
2608 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2609 	case PTR_TO_FLOW_KEYS:
2610 		pointer_desc = "flow keys ";
2611 		break;
2612 	case PTR_TO_MAP_VALUE:
2613 		pointer_desc = "value ";
2614 		break;
2615 	case PTR_TO_CTX:
2616 		pointer_desc = "context ";
2617 		break;
2618 	case PTR_TO_STACK:
2619 		pointer_desc = "stack ";
2620 		/* The stack spill tracking logic in check_stack_write()
2621 		 * and check_stack_read() relies on stack accesses being
2622 		 * aligned.
2623 		 */
2624 		strict = true;
2625 		break;
2626 	case PTR_TO_SOCKET:
2627 		pointer_desc = "sock ";
2628 		break;
2629 	case PTR_TO_SOCK_COMMON:
2630 		pointer_desc = "sock_common ";
2631 		break;
2632 	case PTR_TO_TCP_SOCK:
2633 		pointer_desc = "tcp_sock ";
2634 		break;
2635 	case PTR_TO_XDP_SOCK:
2636 		pointer_desc = "xdp_sock ";
2637 		break;
2638 	default:
2639 		break;
2640 	}
2641 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2642 					   strict);
2643 }
2644 
2645 static int update_stack_depth(struct bpf_verifier_env *env,
2646 			      const struct bpf_func_state *func,
2647 			      int off)
2648 {
2649 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
2650 
2651 	if (stack >= -off)
2652 		return 0;
2653 
2654 	/* update known max for given subprogram */
2655 	env->subprog_info[func->subprogno].stack_depth = -off;
2656 	return 0;
2657 }
2658 
2659 /* starting from main bpf function walk all instructions of the function
2660  * and recursively walk all callees that given function can call.
2661  * Ignore jump and exit insns.
2662  * Since recursion is prevented by check_cfg() this algorithm
2663  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2664  */
2665 static int check_max_stack_depth(struct bpf_verifier_env *env)
2666 {
2667 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2668 	struct bpf_subprog_info *subprog = env->subprog_info;
2669 	struct bpf_insn *insn = env->prog->insnsi;
2670 	int ret_insn[MAX_CALL_FRAMES];
2671 	int ret_prog[MAX_CALL_FRAMES];
2672 
2673 process_func:
2674 	/* round up to 32-bytes, since this is granularity
2675 	 * of interpreter stack size
2676 	 */
2677 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2678 	if (depth > MAX_BPF_STACK) {
2679 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
2680 			frame + 1, depth);
2681 		return -EACCES;
2682 	}
2683 continue_func:
2684 	subprog_end = subprog[idx + 1].start;
2685 	for (; i < subprog_end; i++) {
2686 		if (insn[i].code != (BPF_JMP | BPF_CALL))
2687 			continue;
2688 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
2689 			continue;
2690 		/* remember insn and function to return to */
2691 		ret_insn[frame] = i + 1;
2692 		ret_prog[frame] = idx;
2693 
2694 		/* find the callee */
2695 		i = i + insn[i].imm + 1;
2696 		idx = find_subprog(env, i);
2697 		if (idx < 0) {
2698 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2699 				  i);
2700 			return -EFAULT;
2701 		}
2702 		frame++;
2703 		if (frame >= MAX_CALL_FRAMES) {
2704 			verbose(env, "the call stack of %d frames is too deep !\n",
2705 				frame);
2706 			return -E2BIG;
2707 		}
2708 		goto process_func;
2709 	}
2710 	/* end of for() loop means the last insn of the 'subprog'
2711 	 * was reached. Doesn't matter whether it was JA or EXIT
2712 	 */
2713 	if (frame == 0)
2714 		return 0;
2715 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2716 	frame--;
2717 	i = ret_insn[frame];
2718 	idx = ret_prog[frame];
2719 	goto continue_func;
2720 }
2721 
2722 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2723 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2724 				  const struct bpf_insn *insn, int idx)
2725 {
2726 	int start = idx + insn->imm + 1, subprog;
2727 
2728 	subprog = find_subprog(env, start);
2729 	if (subprog < 0) {
2730 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2731 			  start);
2732 		return -EFAULT;
2733 	}
2734 	return env->subprog_info[subprog].stack_depth;
2735 }
2736 #endif
2737 
2738 int check_ctx_reg(struct bpf_verifier_env *env,
2739 		  const struct bpf_reg_state *reg, int regno)
2740 {
2741 	/* Access to ctx or passing it to a helper is only allowed in
2742 	 * its original, unmodified form.
2743 	 */
2744 
2745 	if (reg->off) {
2746 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2747 			regno, reg->off);
2748 		return -EACCES;
2749 	}
2750 
2751 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2752 		char tn_buf[48];
2753 
2754 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2755 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2756 		return -EACCES;
2757 	}
2758 
2759 	return 0;
2760 }
2761 
2762 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2763 				  const struct bpf_reg_state *reg,
2764 				  int regno, int off, int size)
2765 {
2766 	if (off < 0) {
2767 		verbose(env,
2768 			"R%d invalid tracepoint buffer access: off=%d, size=%d",
2769 			regno, off, size);
2770 		return -EACCES;
2771 	}
2772 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2773 		char tn_buf[48];
2774 
2775 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2776 		verbose(env,
2777 			"R%d invalid variable buffer offset: off=%d, var_off=%s",
2778 			regno, off, tn_buf);
2779 		return -EACCES;
2780 	}
2781 	if (off + size > env->prog->aux->max_tp_access)
2782 		env->prog->aux->max_tp_access = off + size;
2783 
2784 	return 0;
2785 }
2786 
2787 
2788 /* truncate register to smaller size (in bytes)
2789  * must be called with size < BPF_REG_SIZE
2790  */
2791 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2792 {
2793 	u64 mask;
2794 
2795 	/* clear high bits in bit representation */
2796 	reg->var_off = tnum_cast(reg->var_off, size);
2797 
2798 	/* fix arithmetic bounds */
2799 	mask = ((u64)1 << (size * 8)) - 1;
2800 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2801 		reg->umin_value &= mask;
2802 		reg->umax_value &= mask;
2803 	} else {
2804 		reg->umin_value = 0;
2805 		reg->umax_value = mask;
2806 	}
2807 	reg->smin_value = reg->umin_value;
2808 	reg->smax_value = reg->umax_value;
2809 }
2810 
2811 static bool bpf_map_is_rdonly(const struct bpf_map *map)
2812 {
2813 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2814 }
2815 
2816 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2817 {
2818 	void *ptr;
2819 	u64 addr;
2820 	int err;
2821 
2822 	err = map->ops->map_direct_value_addr(map, &addr, off);
2823 	if (err)
2824 		return err;
2825 	ptr = (void *)(long)addr + off;
2826 
2827 	switch (size) {
2828 	case sizeof(u8):
2829 		*val = (u64)*(u8 *)ptr;
2830 		break;
2831 	case sizeof(u16):
2832 		*val = (u64)*(u16 *)ptr;
2833 		break;
2834 	case sizeof(u32):
2835 		*val = (u64)*(u32 *)ptr;
2836 		break;
2837 	case sizeof(u64):
2838 		*val = *(u64 *)ptr;
2839 		break;
2840 	default:
2841 		return -EINVAL;
2842 	}
2843 	return 0;
2844 }
2845 
2846 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2847 				   struct bpf_reg_state *regs,
2848 				   int regno, int off, int size,
2849 				   enum bpf_access_type atype,
2850 				   int value_regno)
2851 {
2852 	struct bpf_reg_state *reg = regs + regno;
2853 	const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2854 	const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2855 	u32 btf_id;
2856 	int ret;
2857 
2858 	if (off < 0) {
2859 		verbose(env,
2860 			"R%d is ptr_%s invalid negative access: off=%d\n",
2861 			regno, tname, off);
2862 		return -EACCES;
2863 	}
2864 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2865 		char tn_buf[48];
2866 
2867 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2868 		verbose(env,
2869 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2870 			regno, tname, off, tn_buf);
2871 		return -EACCES;
2872 	}
2873 
2874 	if (env->ops->btf_struct_access) {
2875 		ret = env->ops->btf_struct_access(&env->log, t, off, size,
2876 						  atype, &btf_id);
2877 	} else {
2878 		if (atype != BPF_READ) {
2879 			verbose(env, "only read is supported\n");
2880 			return -EACCES;
2881 		}
2882 
2883 		ret = btf_struct_access(&env->log, t, off, size, atype,
2884 					&btf_id);
2885 	}
2886 
2887 	if (ret < 0)
2888 		return ret;
2889 
2890 	if (atype == BPF_READ) {
2891 		if (ret == SCALAR_VALUE) {
2892 			mark_reg_unknown(env, regs, value_regno);
2893 			return 0;
2894 		}
2895 		mark_reg_known_zero(env, regs, value_regno);
2896 		regs[value_regno].type = PTR_TO_BTF_ID;
2897 		regs[value_regno].btf_id = btf_id;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 /* check whether memory at (regno + off) is accessible for t = (read | write)
2904  * if t==write, value_regno is a register which value is stored into memory
2905  * if t==read, value_regno is a register which will receive the value from memory
2906  * if t==write && value_regno==-1, some unknown value is stored into memory
2907  * if t==read && value_regno==-1, don't care what we read from memory
2908  */
2909 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2910 			    int off, int bpf_size, enum bpf_access_type t,
2911 			    int value_regno, bool strict_alignment_once)
2912 {
2913 	struct bpf_reg_state *regs = cur_regs(env);
2914 	struct bpf_reg_state *reg = regs + regno;
2915 	struct bpf_func_state *state;
2916 	int size, err = 0;
2917 
2918 	size = bpf_size_to_bytes(bpf_size);
2919 	if (size < 0)
2920 		return size;
2921 
2922 	/* alignment checks will add in reg->off themselves */
2923 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2924 	if (err)
2925 		return err;
2926 
2927 	/* for access checks, reg->off is just part of off */
2928 	off += reg->off;
2929 
2930 	if (reg->type == PTR_TO_MAP_VALUE) {
2931 		if (t == BPF_WRITE && value_regno >= 0 &&
2932 		    is_pointer_value(env, value_regno)) {
2933 			verbose(env, "R%d leaks addr into map\n", value_regno);
2934 			return -EACCES;
2935 		}
2936 		err = check_map_access_type(env, regno, off, size, t);
2937 		if (err)
2938 			return err;
2939 		err = check_map_access(env, regno, off, size, false);
2940 		if (!err && t == BPF_READ && value_regno >= 0) {
2941 			struct bpf_map *map = reg->map_ptr;
2942 
2943 			/* if map is read-only, track its contents as scalars */
2944 			if (tnum_is_const(reg->var_off) &&
2945 			    bpf_map_is_rdonly(map) &&
2946 			    map->ops->map_direct_value_addr) {
2947 				int map_off = off + reg->var_off.value;
2948 				u64 val = 0;
2949 
2950 				err = bpf_map_direct_read(map, map_off, size,
2951 							  &val);
2952 				if (err)
2953 					return err;
2954 
2955 				regs[value_regno].type = SCALAR_VALUE;
2956 				__mark_reg_known(&regs[value_regno], val);
2957 			} else {
2958 				mark_reg_unknown(env, regs, value_regno);
2959 			}
2960 		}
2961 	} else if (reg->type == PTR_TO_CTX) {
2962 		enum bpf_reg_type reg_type = SCALAR_VALUE;
2963 		u32 btf_id = 0;
2964 
2965 		if (t == BPF_WRITE && value_regno >= 0 &&
2966 		    is_pointer_value(env, value_regno)) {
2967 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
2968 			return -EACCES;
2969 		}
2970 
2971 		err = check_ctx_reg(env, reg, regno);
2972 		if (err < 0)
2973 			return err;
2974 
2975 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2976 		if (err)
2977 			verbose_linfo(env, insn_idx, "; ");
2978 		if (!err && t == BPF_READ && value_regno >= 0) {
2979 			/* ctx access returns either a scalar, or a
2980 			 * PTR_TO_PACKET[_META,_END]. In the latter
2981 			 * case, we know the offset is zero.
2982 			 */
2983 			if (reg_type == SCALAR_VALUE) {
2984 				mark_reg_unknown(env, regs, value_regno);
2985 			} else {
2986 				mark_reg_known_zero(env, regs,
2987 						    value_regno);
2988 				if (reg_type_may_be_null(reg_type))
2989 					regs[value_regno].id = ++env->id_gen;
2990 				/* A load of ctx field could have different
2991 				 * actual load size with the one encoded in the
2992 				 * insn. When the dst is PTR, it is for sure not
2993 				 * a sub-register.
2994 				 */
2995 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2996 				if (reg_type == PTR_TO_BTF_ID)
2997 					regs[value_regno].btf_id = btf_id;
2998 			}
2999 			regs[value_regno].type = reg_type;
3000 		}
3001 
3002 	} else if (reg->type == PTR_TO_STACK) {
3003 		off += reg->var_off.value;
3004 		err = check_stack_access(env, reg, off, size);
3005 		if (err)
3006 			return err;
3007 
3008 		state = func(env, reg);
3009 		err = update_stack_depth(env, state, off);
3010 		if (err)
3011 			return err;
3012 
3013 		if (t == BPF_WRITE)
3014 			err = check_stack_write(env, state, off, size,
3015 						value_regno, insn_idx);
3016 		else
3017 			err = check_stack_read(env, state, off, size,
3018 					       value_regno);
3019 	} else if (reg_is_pkt_pointer(reg)) {
3020 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3021 			verbose(env, "cannot write into packet\n");
3022 			return -EACCES;
3023 		}
3024 		if (t == BPF_WRITE && value_regno >= 0 &&
3025 		    is_pointer_value(env, value_regno)) {
3026 			verbose(env, "R%d leaks addr into packet\n",
3027 				value_regno);
3028 			return -EACCES;
3029 		}
3030 		err = check_packet_access(env, regno, off, size, false);
3031 		if (!err && t == BPF_READ && value_regno >= 0)
3032 			mark_reg_unknown(env, regs, value_regno);
3033 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3034 		if (t == BPF_WRITE && value_regno >= 0 &&
3035 		    is_pointer_value(env, value_regno)) {
3036 			verbose(env, "R%d leaks addr into flow keys\n",
3037 				value_regno);
3038 			return -EACCES;
3039 		}
3040 
3041 		err = check_flow_keys_access(env, off, size);
3042 		if (!err && t == BPF_READ && value_regno >= 0)
3043 			mark_reg_unknown(env, regs, value_regno);
3044 	} else if (type_is_sk_pointer(reg->type)) {
3045 		if (t == BPF_WRITE) {
3046 			verbose(env, "R%d cannot write into %s\n",
3047 				regno, reg_type_str[reg->type]);
3048 			return -EACCES;
3049 		}
3050 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3051 		if (!err && value_regno >= 0)
3052 			mark_reg_unknown(env, regs, value_regno);
3053 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3054 		err = check_tp_buffer_access(env, reg, regno, off, size);
3055 		if (!err && t == BPF_READ && value_regno >= 0)
3056 			mark_reg_unknown(env, regs, value_regno);
3057 	} else if (reg->type == PTR_TO_BTF_ID) {
3058 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3059 					      value_regno);
3060 	} else {
3061 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3062 			reg_type_str[reg->type]);
3063 		return -EACCES;
3064 	}
3065 
3066 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3067 	    regs[value_regno].type == SCALAR_VALUE) {
3068 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3069 		coerce_reg_to_size(&regs[value_regno], size);
3070 	}
3071 	return err;
3072 }
3073 
3074 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3075 {
3076 	int err;
3077 
3078 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3079 	    insn->imm != 0) {
3080 		verbose(env, "BPF_XADD uses reserved fields\n");
3081 		return -EINVAL;
3082 	}
3083 
3084 	/* check src1 operand */
3085 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3086 	if (err)
3087 		return err;
3088 
3089 	/* check src2 operand */
3090 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3091 	if (err)
3092 		return err;
3093 
3094 	if (is_pointer_value(env, insn->src_reg)) {
3095 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3096 		return -EACCES;
3097 	}
3098 
3099 	if (is_ctx_reg(env, insn->dst_reg) ||
3100 	    is_pkt_reg(env, insn->dst_reg) ||
3101 	    is_flow_key_reg(env, insn->dst_reg) ||
3102 	    is_sk_reg(env, insn->dst_reg)) {
3103 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3104 			insn->dst_reg,
3105 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3106 		return -EACCES;
3107 	}
3108 
3109 	/* check whether atomic_add can read the memory */
3110 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3111 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3112 	if (err)
3113 		return err;
3114 
3115 	/* check whether atomic_add can write into the same memory */
3116 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3117 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3118 }
3119 
3120 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3121 				  int off, int access_size,
3122 				  bool zero_size_allowed)
3123 {
3124 	struct bpf_reg_state *reg = reg_state(env, regno);
3125 
3126 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3127 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3128 		if (tnum_is_const(reg->var_off)) {
3129 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3130 				regno, off, access_size);
3131 		} else {
3132 			char tn_buf[48];
3133 
3134 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3135 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3136 				regno, tn_buf, access_size);
3137 		}
3138 		return -EACCES;
3139 	}
3140 	return 0;
3141 }
3142 
3143 /* when register 'regno' is passed into function that will read 'access_size'
3144  * bytes from that pointer, make sure that it's within stack boundary
3145  * and all elements of stack are initialized.
3146  * Unlike most pointer bounds-checking functions, this one doesn't take an
3147  * 'off' argument, so it has to add in reg->off itself.
3148  */
3149 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3150 				int access_size, bool zero_size_allowed,
3151 				struct bpf_call_arg_meta *meta)
3152 {
3153 	struct bpf_reg_state *reg = reg_state(env, regno);
3154 	struct bpf_func_state *state = func(env, reg);
3155 	int err, min_off, max_off, i, j, slot, spi;
3156 
3157 	if (reg->type != PTR_TO_STACK) {
3158 		/* Allow zero-byte read from NULL, regardless of pointer type */
3159 		if (zero_size_allowed && access_size == 0 &&
3160 		    register_is_null(reg))
3161 			return 0;
3162 
3163 		verbose(env, "R%d type=%s expected=%s\n", regno,
3164 			reg_type_str[reg->type],
3165 			reg_type_str[PTR_TO_STACK]);
3166 		return -EACCES;
3167 	}
3168 
3169 	if (tnum_is_const(reg->var_off)) {
3170 		min_off = max_off = reg->var_off.value + reg->off;
3171 		err = __check_stack_boundary(env, regno, min_off, access_size,
3172 					     zero_size_allowed);
3173 		if (err)
3174 			return err;
3175 	} else {
3176 		/* Variable offset is prohibited for unprivileged mode for
3177 		 * simplicity since it requires corresponding support in
3178 		 * Spectre masking for stack ALU.
3179 		 * See also retrieve_ptr_limit().
3180 		 */
3181 		if (!env->allow_ptr_leaks) {
3182 			char tn_buf[48];
3183 
3184 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3185 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3186 				regno, tn_buf);
3187 			return -EACCES;
3188 		}
3189 		/* Only initialized buffer on stack is allowed to be accessed
3190 		 * with variable offset. With uninitialized buffer it's hard to
3191 		 * guarantee that whole memory is marked as initialized on
3192 		 * helper return since specific bounds are unknown what may
3193 		 * cause uninitialized stack leaking.
3194 		 */
3195 		if (meta && meta->raw_mode)
3196 			meta = NULL;
3197 
3198 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3199 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3200 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3201 				regno);
3202 			return -EACCES;
3203 		}
3204 		min_off = reg->smin_value + reg->off;
3205 		max_off = reg->smax_value + reg->off;
3206 		err = __check_stack_boundary(env, regno, min_off, access_size,
3207 					     zero_size_allowed);
3208 		if (err) {
3209 			verbose(env, "R%d min value is outside of stack bound\n",
3210 				regno);
3211 			return err;
3212 		}
3213 		err = __check_stack_boundary(env, regno, max_off, access_size,
3214 					     zero_size_allowed);
3215 		if (err) {
3216 			verbose(env, "R%d max value is outside of stack bound\n",
3217 				regno);
3218 			return err;
3219 		}
3220 	}
3221 
3222 	if (meta && meta->raw_mode) {
3223 		meta->access_size = access_size;
3224 		meta->regno = regno;
3225 		return 0;
3226 	}
3227 
3228 	for (i = min_off; i < max_off + access_size; i++) {
3229 		u8 *stype;
3230 
3231 		slot = -i - 1;
3232 		spi = slot / BPF_REG_SIZE;
3233 		if (state->allocated_stack <= slot)
3234 			goto err;
3235 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3236 		if (*stype == STACK_MISC)
3237 			goto mark;
3238 		if (*stype == STACK_ZERO) {
3239 			/* helper can write anything into the stack */
3240 			*stype = STACK_MISC;
3241 			goto mark;
3242 		}
3243 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3244 		    state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3245 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3246 			for (j = 0; j < BPF_REG_SIZE; j++)
3247 				state->stack[spi].slot_type[j] = STACK_MISC;
3248 			goto mark;
3249 		}
3250 
3251 err:
3252 		if (tnum_is_const(reg->var_off)) {
3253 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3254 				min_off, i - min_off, access_size);
3255 		} else {
3256 			char tn_buf[48];
3257 
3258 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3259 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3260 				tn_buf, i - min_off, access_size);
3261 		}
3262 		return -EACCES;
3263 mark:
3264 		/* reading any byte out of 8-byte 'spill_slot' will cause
3265 		 * the whole slot to be marked as 'read'
3266 		 */
3267 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3268 			      state->stack[spi].spilled_ptr.parent,
3269 			      REG_LIVE_READ64);
3270 	}
3271 	return update_stack_depth(env, state, min_off);
3272 }
3273 
3274 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3275 				   int access_size, bool zero_size_allowed,
3276 				   struct bpf_call_arg_meta *meta)
3277 {
3278 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3279 
3280 	switch (reg->type) {
3281 	case PTR_TO_PACKET:
3282 	case PTR_TO_PACKET_META:
3283 		return check_packet_access(env, regno, reg->off, access_size,
3284 					   zero_size_allowed);
3285 	case PTR_TO_MAP_VALUE:
3286 		if (check_map_access_type(env, regno, reg->off, access_size,
3287 					  meta && meta->raw_mode ? BPF_WRITE :
3288 					  BPF_READ))
3289 			return -EACCES;
3290 		return check_map_access(env, regno, reg->off, access_size,
3291 					zero_size_allowed);
3292 	default: /* scalar_value|ptr_to_stack or invalid ptr */
3293 		return check_stack_boundary(env, regno, access_size,
3294 					    zero_size_allowed, meta);
3295 	}
3296 }
3297 
3298 /* Implementation details:
3299  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3300  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3301  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3302  * value_or_null->value transition, since the verifier only cares about
3303  * the range of access to valid map value pointer and doesn't care about actual
3304  * address of the map element.
3305  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3306  * reg->id > 0 after value_or_null->value transition. By doing so
3307  * two bpf_map_lookups will be considered two different pointers that
3308  * point to different bpf_spin_locks.
3309  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3310  * dead-locks.
3311  * Since only one bpf_spin_lock is allowed the checks are simpler than
3312  * reg_is_refcounted() logic. The verifier needs to remember only
3313  * one spin_lock instead of array of acquired_refs.
3314  * cur_state->active_spin_lock remembers which map value element got locked
3315  * and clears it after bpf_spin_unlock.
3316  */
3317 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3318 			     bool is_lock)
3319 {
3320 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3321 	struct bpf_verifier_state *cur = env->cur_state;
3322 	bool is_const = tnum_is_const(reg->var_off);
3323 	struct bpf_map *map = reg->map_ptr;
3324 	u64 val = reg->var_off.value;
3325 
3326 	if (reg->type != PTR_TO_MAP_VALUE) {
3327 		verbose(env, "R%d is not a pointer to map_value\n", regno);
3328 		return -EINVAL;
3329 	}
3330 	if (!is_const) {
3331 		verbose(env,
3332 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3333 			regno);
3334 		return -EINVAL;
3335 	}
3336 	if (!map->btf) {
3337 		verbose(env,
3338 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3339 			map->name);
3340 		return -EINVAL;
3341 	}
3342 	if (!map_value_has_spin_lock(map)) {
3343 		if (map->spin_lock_off == -E2BIG)
3344 			verbose(env,
3345 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3346 				map->name);
3347 		else if (map->spin_lock_off == -ENOENT)
3348 			verbose(env,
3349 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3350 				map->name);
3351 		else
3352 			verbose(env,
3353 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3354 				map->name);
3355 		return -EINVAL;
3356 	}
3357 	if (map->spin_lock_off != val + reg->off) {
3358 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3359 			val + reg->off);
3360 		return -EINVAL;
3361 	}
3362 	if (is_lock) {
3363 		if (cur->active_spin_lock) {
3364 			verbose(env,
3365 				"Locking two bpf_spin_locks are not allowed\n");
3366 			return -EINVAL;
3367 		}
3368 		cur->active_spin_lock = reg->id;
3369 	} else {
3370 		if (!cur->active_spin_lock) {
3371 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3372 			return -EINVAL;
3373 		}
3374 		if (cur->active_spin_lock != reg->id) {
3375 			verbose(env, "bpf_spin_unlock of different lock\n");
3376 			return -EINVAL;
3377 		}
3378 		cur->active_spin_lock = 0;
3379 	}
3380 	return 0;
3381 }
3382 
3383 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3384 {
3385 	return type == ARG_PTR_TO_MEM ||
3386 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3387 	       type == ARG_PTR_TO_UNINIT_MEM;
3388 }
3389 
3390 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3391 {
3392 	return type == ARG_CONST_SIZE ||
3393 	       type == ARG_CONST_SIZE_OR_ZERO;
3394 }
3395 
3396 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3397 {
3398 	return type == ARG_PTR_TO_INT ||
3399 	       type == ARG_PTR_TO_LONG;
3400 }
3401 
3402 static int int_ptr_type_to_size(enum bpf_arg_type type)
3403 {
3404 	if (type == ARG_PTR_TO_INT)
3405 		return sizeof(u32);
3406 	else if (type == ARG_PTR_TO_LONG)
3407 		return sizeof(u64);
3408 
3409 	return -EINVAL;
3410 }
3411 
3412 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3413 			  enum bpf_arg_type arg_type,
3414 			  struct bpf_call_arg_meta *meta)
3415 {
3416 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3417 	enum bpf_reg_type expected_type, type = reg->type;
3418 	int err = 0;
3419 
3420 	if (arg_type == ARG_DONTCARE)
3421 		return 0;
3422 
3423 	err = check_reg_arg(env, regno, SRC_OP);
3424 	if (err)
3425 		return err;
3426 
3427 	if (arg_type == ARG_ANYTHING) {
3428 		if (is_pointer_value(env, regno)) {
3429 			verbose(env, "R%d leaks addr into helper function\n",
3430 				regno);
3431 			return -EACCES;
3432 		}
3433 		return 0;
3434 	}
3435 
3436 	if (type_is_pkt_pointer(type) &&
3437 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3438 		verbose(env, "helper access to the packet is not allowed\n");
3439 		return -EACCES;
3440 	}
3441 
3442 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
3443 	    arg_type == ARG_PTR_TO_MAP_VALUE ||
3444 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3445 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3446 		expected_type = PTR_TO_STACK;
3447 		if (register_is_null(reg) &&
3448 		    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3449 			/* final test in check_stack_boundary() */;
3450 		else if (!type_is_pkt_pointer(type) &&
3451 			 type != PTR_TO_MAP_VALUE &&
3452 			 type != expected_type)
3453 			goto err_type;
3454 	} else if (arg_type == ARG_CONST_SIZE ||
3455 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
3456 		expected_type = SCALAR_VALUE;
3457 		if (type != expected_type)
3458 			goto err_type;
3459 	} else if (arg_type == ARG_CONST_MAP_PTR) {
3460 		expected_type = CONST_PTR_TO_MAP;
3461 		if (type != expected_type)
3462 			goto err_type;
3463 	} else if (arg_type == ARG_PTR_TO_CTX) {
3464 		expected_type = PTR_TO_CTX;
3465 		if (type != expected_type)
3466 			goto err_type;
3467 		err = check_ctx_reg(env, reg, regno);
3468 		if (err < 0)
3469 			return err;
3470 	} else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3471 		expected_type = PTR_TO_SOCK_COMMON;
3472 		/* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3473 		if (!type_is_sk_pointer(type))
3474 			goto err_type;
3475 		if (reg->ref_obj_id) {
3476 			if (meta->ref_obj_id) {
3477 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3478 					regno, reg->ref_obj_id,
3479 					meta->ref_obj_id);
3480 				return -EFAULT;
3481 			}
3482 			meta->ref_obj_id = reg->ref_obj_id;
3483 		}
3484 	} else if (arg_type == ARG_PTR_TO_SOCKET) {
3485 		expected_type = PTR_TO_SOCKET;
3486 		if (type != expected_type)
3487 			goto err_type;
3488 	} else if (arg_type == ARG_PTR_TO_BTF_ID) {
3489 		expected_type = PTR_TO_BTF_ID;
3490 		if (type != expected_type)
3491 			goto err_type;
3492 		if (reg->btf_id != meta->btf_id) {
3493 			verbose(env, "Helper has type %s got %s in R%d\n",
3494 				kernel_type_name(meta->btf_id),
3495 				kernel_type_name(reg->btf_id), regno);
3496 
3497 			return -EACCES;
3498 		}
3499 		if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3500 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3501 				regno);
3502 			return -EACCES;
3503 		}
3504 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3505 		if (meta->func_id == BPF_FUNC_spin_lock) {
3506 			if (process_spin_lock(env, regno, true))
3507 				return -EACCES;
3508 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
3509 			if (process_spin_lock(env, regno, false))
3510 				return -EACCES;
3511 		} else {
3512 			verbose(env, "verifier internal error\n");
3513 			return -EFAULT;
3514 		}
3515 	} else if (arg_type_is_mem_ptr(arg_type)) {
3516 		expected_type = PTR_TO_STACK;
3517 		/* One exception here. In case function allows for NULL to be
3518 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
3519 		 * happens during stack boundary checking.
3520 		 */
3521 		if (register_is_null(reg) &&
3522 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
3523 			/* final test in check_stack_boundary() */;
3524 		else if (!type_is_pkt_pointer(type) &&
3525 			 type != PTR_TO_MAP_VALUE &&
3526 			 type != expected_type)
3527 			goto err_type;
3528 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3529 	} else if (arg_type_is_int_ptr(arg_type)) {
3530 		expected_type = PTR_TO_STACK;
3531 		if (!type_is_pkt_pointer(type) &&
3532 		    type != PTR_TO_MAP_VALUE &&
3533 		    type != expected_type)
3534 			goto err_type;
3535 	} else {
3536 		verbose(env, "unsupported arg_type %d\n", arg_type);
3537 		return -EFAULT;
3538 	}
3539 
3540 	if (arg_type == ARG_CONST_MAP_PTR) {
3541 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3542 		meta->map_ptr = reg->map_ptr;
3543 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3544 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
3545 		 * check that [key, key + map->key_size) are within
3546 		 * stack limits and initialized
3547 		 */
3548 		if (!meta->map_ptr) {
3549 			/* in function declaration map_ptr must come before
3550 			 * map_key, so that it's verified and known before
3551 			 * we have to check map_key here. Otherwise it means
3552 			 * that kernel subsystem misconfigured verifier
3553 			 */
3554 			verbose(env, "invalid map_ptr to access map->key\n");
3555 			return -EACCES;
3556 		}
3557 		err = check_helper_mem_access(env, regno,
3558 					      meta->map_ptr->key_size, false,
3559 					      NULL);
3560 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3561 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3562 		    !register_is_null(reg)) ||
3563 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3564 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
3565 		 * check [value, value + map->value_size) validity
3566 		 */
3567 		if (!meta->map_ptr) {
3568 			/* kernel subsystem misconfigured verifier */
3569 			verbose(env, "invalid map_ptr to access map->value\n");
3570 			return -EACCES;
3571 		}
3572 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3573 		err = check_helper_mem_access(env, regno,
3574 					      meta->map_ptr->value_size, false,
3575 					      meta);
3576 	} else if (arg_type_is_mem_size(arg_type)) {
3577 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3578 
3579 		/* remember the mem_size which may be used later
3580 		 * to refine return values.
3581 		 */
3582 		meta->msize_smax_value = reg->smax_value;
3583 		meta->msize_umax_value = reg->umax_value;
3584 
3585 		/* The register is SCALAR_VALUE; the access check
3586 		 * happens using its boundaries.
3587 		 */
3588 		if (!tnum_is_const(reg->var_off))
3589 			/* For unprivileged variable accesses, disable raw
3590 			 * mode so that the program is required to
3591 			 * initialize all the memory that the helper could
3592 			 * just partially fill up.
3593 			 */
3594 			meta = NULL;
3595 
3596 		if (reg->smin_value < 0) {
3597 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3598 				regno);
3599 			return -EACCES;
3600 		}
3601 
3602 		if (reg->umin_value == 0) {
3603 			err = check_helper_mem_access(env, regno - 1, 0,
3604 						      zero_size_allowed,
3605 						      meta);
3606 			if (err)
3607 				return err;
3608 		}
3609 
3610 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3611 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3612 				regno);
3613 			return -EACCES;
3614 		}
3615 		err = check_helper_mem_access(env, regno - 1,
3616 					      reg->umax_value,
3617 					      zero_size_allowed, meta);
3618 		if (!err)
3619 			err = mark_chain_precision(env, regno);
3620 	} else if (arg_type_is_int_ptr(arg_type)) {
3621 		int size = int_ptr_type_to_size(arg_type);
3622 
3623 		err = check_helper_mem_access(env, regno, size, false, meta);
3624 		if (err)
3625 			return err;
3626 		err = check_ptr_alignment(env, reg, 0, size, true);
3627 	}
3628 
3629 	return err;
3630 err_type:
3631 	verbose(env, "R%d type=%s expected=%s\n", regno,
3632 		reg_type_str[type], reg_type_str[expected_type]);
3633 	return -EACCES;
3634 }
3635 
3636 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3637 					struct bpf_map *map, int func_id)
3638 {
3639 	if (!map)
3640 		return 0;
3641 
3642 	/* We need a two way check, first is from map perspective ... */
3643 	switch (map->map_type) {
3644 	case BPF_MAP_TYPE_PROG_ARRAY:
3645 		if (func_id != BPF_FUNC_tail_call)
3646 			goto error;
3647 		break;
3648 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3649 		if (func_id != BPF_FUNC_perf_event_read &&
3650 		    func_id != BPF_FUNC_perf_event_output &&
3651 		    func_id != BPF_FUNC_skb_output &&
3652 		    func_id != BPF_FUNC_perf_event_read_value)
3653 			goto error;
3654 		break;
3655 	case BPF_MAP_TYPE_STACK_TRACE:
3656 		if (func_id != BPF_FUNC_get_stackid)
3657 			goto error;
3658 		break;
3659 	case BPF_MAP_TYPE_CGROUP_ARRAY:
3660 		if (func_id != BPF_FUNC_skb_under_cgroup &&
3661 		    func_id != BPF_FUNC_current_task_under_cgroup)
3662 			goto error;
3663 		break;
3664 	case BPF_MAP_TYPE_CGROUP_STORAGE:
3665 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3666 		if (func_id != BPF_FUNC_get_local_storage)
3667 			goto error;
3668 		break;
3669 	case BPF_MAP_TYPE_DEVMAP:
3670 	case BPF_MAP_TYPE_DEVMAP_HASH:
3671 		if (func_id != BPF_FUNC_redirect_map &&
3672 		    func_id != BPF_FUNC_map_lookup_elem)
3673 			goto error;
3674 		break;
3675 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
3676 	 * appear.
3677 	 */
3678 	case BPF_MAP_TYPE_CPUMAP:
3679 		if (func_id != BPF_FUNC_redirect_map)
3680 			goto error;
3681 		break;
3682 	case BPF_MAP_TYPE_XSKMAP:
3683 		if (func_id != BPF_FUNC_redirect_map &&
3684 		    func_id != BPF_FUNC_map_lookup_elem)
3685 			goto error;
3686 		break;
3687 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3688 	case BPF_MAP_TYPE_HASH_OF_MAPS:
3689 		if (func_id != BPF_FUNC_map_lookup_elem)
3690 			goto error;
3691 		break;
3692 	case BPF_MAP_TYPE_SOCKMAP:
3693 		if (func_id != BPF_FUNC_sk_redirect_map &&
3694 		    func_id != BPF_FUNC_sock_map_update &&
3695 		    func_id != BPF_FUNC_map_delete_elem &&
3696 		    func_id != BPF_FUNC_msg_redirect_map)
3697 			goto error;
3698 		break;
3699 	case BPF_MAP_TYPE_SOCKHASH:
3700 		if (func_id != BPF_FUNC_sk_redirect_hash &&
3701 		    func_id != BPF_FUNC_sock_hash_update &&
3702 		    func_id != BPF_FUNC_map_delete_elem &&
3703 		    func_id != BPF_FUNC_msg_redirect_hash)
3704 			goto error;
3705 		break;
3706 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3707 		if (func_id != BPF_FUNC_sk_select_reuseport)
3708 			goto error;
3709 		break;
3710 	case BPF_MAP_TYPE_QUEUE:
3711 	case BPF_MAP_TYPE_STACK:
3712 		if (func_id != BPF_FUNC_map_peek_elem &&
3713 		    func_id != BPF_FUNC_map_pop_elem &&
3714 		    func_id != BPF_FUNC_map_push_elem)
3715 			goto error;
3716 		break;
3717 	case BPF_MAP_TYPE_SK_STORAGE:
3718 		if (func_id != BPF_FUNC_sk_storage_get &&
3719 		    func_id != BPF_FUNC_sk_storage_delete)
3720 			goto error;
3721 		break;
3722 	default:
3723 		break;
3724 	}
3725 
3726 	/* ... and second from the function itself. */
3727 	switch (func_id) {
3728 	case BPF_FUNC_tail_call:
3729 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3730 			goto error;
3731 		if (env->subprog_cnt > 1) {
3732 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3733 			return -EINVAL;
3734 		}
3735 		break;
3736 	case BPF_FUNC_perf_event_read:
3737 	case BPF_FUNC_perf_event_output:
3738 	case BPF_FUNC_perf_event_read_value:
3739 	case BPF_FUNC_skb_output:
3740 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3741 			goto error;
3742 		break;
3743 	case BPF_FUNC_get_stackid:
3744 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3745 			goto error;
3746 		break;
3747 	case BPF_FUNC_current_task_under_cgroup:
3748 	case BPF_FUNC_skb_under_cgroup:
3749 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3750 			goto error;
3751 		break;
3752 	case BPF_FUNC_redirect_map:
3753 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3754 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3755 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
3756 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
3757 			goto error;
3758 		break;
3759 	case BPF_FUNC_sk_redirect_map:
3760 	case BPF_FUNC_msg_redirect_map:
3761 	case BPF_FUNC_sock_map_update:
3762 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3763 			goto error;
3764 		break;
3765 	case BPF_FUNC_sk_redirect_hash:
3766 	case BPF_FUNC_msg_redirect_hash:
3767 	case BPF_FUNC_sock_hash_update:
3768 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3769 			goto error;
3770 		break;
3771 	case BPF_FUNC_get_local_storage:
3772 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3773 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3774 			goto error;
3775 		break;
3776 	case BPF_FUNC_sk_select_reuseport:
3777 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3778 			goto error;
3779 		break;
3780 	case BPF_FUNC_map_peek_elem:
3781 	case BPF_FUNC_map_pop_elem:
3782 	case BPF_FUNC_map_push_elem:
3783 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3784 		    map->map_type != BPF_MAP_TYPE_STACK)
3785 			goto error;
3786 		break;
3787 	case BPF_FUNC_sk_storage_get:
3788 	case BPF_FUNC_sk_storage_delete:
3789 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3790 			goto error;
3791 		break;
3792 	default:
3793 		break;
3794 	}
3795 
3796 	return 0;
3797 error:
3798 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
3799 		map->map_type, func_id_name(func_id), func_id);
3800 	return -EINVAL;
3801 }
3802 
3803 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3804 {
3805 	int count = 0;
3806 
3807 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3808 		count++;
3809 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3810 		count++;
3811 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3812 		count++;
3813 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3814 		count++;
3815 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3816 		count++;
3817 
3818 	/* We only support one arg being in raw mode at the moment,
3819 	 * which is sufficient for the helper functions we have
3820 	 * right now.
3821 	 */
3822 	return count <= 1;
3823 }
3824 
3825 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3826 				    enum bpf_arg_type arg_next)
3827 {
3828 	return (arg_type_is_mem_ptr(arg_curr) &&
3829 	        !arg_type_is_mem_size(arg_next)) ||
3830 	       (!arg_type_is_mem_ptr(arg_curr) &&
3831 		arg_type_is_mem_size(arg_next));
3832 }
3833 
3834 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3835 {
3836 	/* bpf_xxx(..., buf, len) call will access 'len'
3837 	 * bytes from memory 'buf'. Both arg types need
3838 	 * to be paired, so make sure there's no buggy
3839 	 * helper function specification.
3840 	 */
3841 	if (arg_type_is_mem_size(fn->arg1_type) ||
3842 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
3843 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3844 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3845 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3846 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3847 		return false;
3848 
3849 	return true;
3850 }
3851 
3852 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3853 {
3854 	int count = 0;
3855 
3856 	if (arg_type_may_be_refcounted(fn->arg1_type))
3857 		count++;
3858 	if (arg_type_may_be_refcounted(fn->arg2_type))
3859 		count++;
3860 	if (arg_type_may_be_refcounted(fn->arg3_type))
3861 		count++;
3862 	if (arg_type_may_be_refcounted(fn->arg4_type))
3863 		count++;
3864 	if (arg_type_may_be_refcounted(fn->arg5_type))
3865 		count++;
3866 
3867 	/* A reference acquiring function cannot acquire
3868 	 * another refcounted ptr.
3869 	 */
3870 	if (is_acquire_function(func_id) && count)
3871 		return false;
3872 
3873 	/* We only support one arg being unreferenced at the moment,
3874 	 * which is sufficient for the helper functions we have right now.
3875 	 */
3876 	return count <= 1;
3877 }
3878 
3879 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3880 {
3881 	return check_raw_mode_ok(fn) &&
3882 	       check_arg_pair_ok(fn) &&
3883 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3884 }
3885 
3886 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3887  * are now invalid, so turn them into unknown SCALAR_VALUE.
3888  */
3889 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3890 				     struct bpf_func_state *state)
3891 {
3892 	struct bpf_reg_state *regs = state->regs, *reg;
3893 	int i;
3894 
3895 	for (i = 0; i < MAX_BPF_REG; i++)
3896 		if (reg_is_pkt_pointer_any(&regs[i]))
3897 			mark_reg_unknown(env, regs, i);
3898 
3899 	bpf_for_each_spilled_reg(i, state, reg) {
3900 		if (!reg)
3901 			continue;
3902 		if (reg_is_pkt_pointer_any(reg))
3903 			__mark_reg_unknown(env, reg);
3904 	}
3905 }
3906 
3907 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3908 {
3909 	struct bpf_verifier_state *vstate = env->cur_state;
3910 	int i;
3911 
3912 	for (i = 0; i <= vstate->curframe; i++)
3913 		__clear_all_pkt_pointers(env, vstate->frame[i]);
3914 }
3915 
3916 static void release_reg_references(struct bpf_verifier_env *env,
3917 				   struct bpf_func_state *state,
3918 				   int ref_obj_id)
3919 {
3920 	struct bpf_reg_state *regs = state->regs, *reg;
3921 	int i;
3922 
3923 	for (i = 0; i < MAX_BPF_REG; i++)
3924 		if (regs[i].ref_obj_id == ref_obj_id)
3925 			mark_reg_unknown(env, regs, i);
3926 
3927 	bpf_for_each_spilled_reg(i, state, reg) {
3928 		if (!reg)
3929 			continue;
3930 		if (reg->ref_obj_id == ref_obj_id)
3931 			__mark_reg_unknown(env, reg);
3932 	}
3933 }
3934 
3935 /* The pointer with the specified id has released its reference to kernel
3936  * resources. Identify all copies of the same pointer and clear the reference.
3937  */
3938 static int release_reference(struct bpf_verifier_env *env,
3939 			     int ref_obj_id)
3940 {
3941 	struct bpf_verifier_state *vstate = env->cur_state;
3942 	int err;
3943 	int i;
3944 
3945 	err = release_reference_state(cur_func(env), ref_obj_id);
3946 	if (err)
3947 		return err;
3948 
3949 	for (i = 0; i <= vstate->curframe; i++)
3950 		release_reg_references(env, vstate->frame[i], ref_obj_id);
3951 
3952 	return 0;
3953 }
3954 
3955 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
3956 				    struct bpf_reg_state *regs)
3957 {
3958 	int i;
3959 
3960 	/* after the call registers r0 - r5 were scratched */
3961 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
3962 		mark_reg_not_init(env, regs, caller_saved[i]);
3963 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3964 	}
3965 }
3966 
3967 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3968 			   int *insn_idx)
3969 {
3970 	struct bpf_verifier_state *state = env->cur_state;
3971 	struct bpf_func_info_aux *func_info_aux;
3972 	struct bpf_func_state *caller, *callee;
3973 	int i, err, subprog, target_insn;
3974 	bool is_global = false;
3975 
3976 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3977 		verbose(env, "the call stack of %d frames is too deep\n",
3978 			state->curframe + 2);
3979 		return -E2BIG;
3980 	}
3981 
3982 	target_insn = *insn_idx + insn->imm;
3983 	subprog = find_subprog(env, target_insn + 1);
3984 	if (subprog < 0) {
3985 		verbose(env, "verifier bug. No program starts at insn %d\n",
3986 			target_insn + 1);
3987 		return -EFAULT;
3988 	}
3989 
3990 	caller = state->frame[state->curframe];
3991 	if (state->frame[state->curframe + 1]) {
3992 		verbose(env, "verifier bug. Frame %d already allocated\n",
3993 			state->curframe + 1);
3994 		return -EFAULT;
3995 	}
3996 
3997 	func_info_aux = env->prog->aux->func_info_aux;
3998 	if (func_info_aux)
3999 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4000 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4001 	if (err == -EFAULT)
4002 		return err;
4003 	if (is_global) {
4004 		if (err) {
4005 			verbose(env, "Caller passes invalid args into func#%d\n",
4006 				subprog);
4007 			return err;
4008 		} else {
4009 			if (env->log.level & BPF_LOG_LEVEL)
4010 				verbose(env,
4011 					"Func#%d is global and valid. Skipping.\n",
4012 					subprog);
4013 			clear_caller_saved_regs(env, caller->regs);
4014 
4015 			/* All global functions return SCALAR_VALUE */
4016 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4017 
4018 			/* continue with next insn after call */
4019 			return 0;
4020 		}
4021 	}
4022 
4023 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4024 	if (!callee)
4025 		return -ENOMEM;
4026 	state->frame[state->curframe + 1] = callee;
4027 
4028 	/* callee cannot access r0, r6 - r9 for reading and has to write
4029 	 * into its own stack before reading from it.
4030 	 * callee can read/write into caller's stack
4031 	 */
4032 	init_func_state(env, callee,
4033 			/* remember the callsite, it will be used by bpf_exit */
4034 			*insn_idx /* callsite */,
4035 			state->curframe + 1 /* frameno within this callchain */,
4036 			subprog /* subprog number within this prog */);
4037 
4038 	/* Transfer references to the callee */
4039 	err = transfer_reference_state(callee, caller);
4040 	if (err)
4041 		return err;
4042 
4043 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4044 	 * pointers, which connects us up to the liveness chain
4045 	 */
4046 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4047 		callee->regs[i] = caller->regs[i];
4048 
4049 	clear_caller_saved_regs(env, caller->regs);
4050 
4051 	/* only increment it after check_reg_arg() finished */
4052 	state->curframe++;
4053 
4054 	/* and go analyze first insn of the callee */
4055 	*insn_idx = target_insn;
4056 
4057 	if (env->log.level & BPF_LOG_LEVEL) {
4058 		verbose(env, "caller:\n");
4059 		print_verifier_state(env, caller);
4060 		verbose(env, "callee:\n");
4061 		print_verifier_state(env, callee);
4062 	}
4063 	return 0;
4064 }
4065 
4066 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4067 {
4068 	struct bpf_verifier_state *state = env->cur_state;
4069 	struct bpf_func_state *caller, *callee;
4070 	struct bpf_reg_state *r0;
4071 	int err;
4072 
4073 	callee = state->frame[state->curframe];
4074 	r0 = &callee->regs[BPF_REG_0];
4075 	if (r0->type == PTR_TO_STACK) {
4076 		/* technically it's ok to return caller's stack pointer
4077 		 * (or caller's caller's pointer) back to the caller,
4078 		 * since these pointers are valid. Only current stack
4079 		 * pointer will be invalid as soon as function exits,
4080 		 * but let's be conservative
4081 		 */
4082 		verbose(env, "cannot return stack pointer to the caller\n");
4083 		return -EINVAL;
4084 	}
4085 
4086 	state->curframe--;
4087 	caller = state->frame[state->curframe];
4088 	/* return to the caller whatever r0 had in the callee */
4089 	caller->regs[BPF_REG_0] = *r0;
4090 
4091 	/* Transfer references to the caller */
4092 	err = transfer_reference_state(caller, callee);
4093 	if (err)
4094 		return err;
4095 
4096 	*insn_idx = callee->callsite + 1;
4097 	if (env->log.level & BPF_LOG_LEVEL) {
4098 		verbose(env, "returning from callee:\n");
4099 		print_verifier_state(env, callee);
4100 		verbose(env, "to caller at %d:\n", *insn_idx);
4101 		print_verifier_state(env, caller);
4102 	}
4103 	/* clear everything in the callee */
4104 	free_func_state(callee);
4105 	state->frame[state->curframe + 1] = NULL;
4106 	return 0;
4107 }
4108 
4109 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4110 				   int func_id,
4111 				   struct bpf_call_arg_meta *meta)
4112 {
4113 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4114 
4115 	if (ret_type != RET_INTEGER ||
4116 	    (func_id != BPF_FUNC_get_stack &&
4117 	     func_id != BPF_FUNC_probe_read_str))
4118 		return;
4119 
4120 	ret_reg->smax_value = meta->msize_smax_value;
4121 	ret_reg->umax_value = meta->msize_umax_value;
4122 	__reg_deduce_bounds(ret_reg);
4123 	__reg_bound_offset(ret_reg);
4124 }
4125 
4126 static int
4127 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4128 		int func_id, int insn_idx)
4129 {
4130 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4131 	struct bpf_map *map = meta->map_ptr;
4132 
4133 	if (func_id != BPF_FUNC_tail_call &&
4134 	    func_id != BPF_FUNC_map_lookup_elem &&
4135 	    func_id != BPF_FUNC_map_update_elem &&
4136 	    func_id != BPF_FUNC_map_delete_elem &&
4137 	    func_id != BPF_FUNC_map_push_elem &&
4138 	    func_id != BPF_FUNC_map_pop_elem &&
4139 	    func_id != BPF_FUNC_map_peek_elem)
4140 		return 0;
4141 
4142 	if (map == NULL) {
4143 		verbose(env, "kernel subsystem misconfigured verifier\n");
4144 		return -EINVAL;
4145 	}
4146 
4147 	/* In case of read-only, some additional restrictions
4148 	 * need to be applied in order to prevent altering the
4149 	 * state of the map from program side.
4150 	 */
4151 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4152 	    (func_id == BPF_FUNC_map_delete_elem ||
4153 	     func_id == BPF_FUNC_map_update_elem ||
4154 	     func_id == BPF_FUNC_map_push_elem ||
4155 	     func_id == BPF_FUNC_map_pop_elem)) {
4156 		verbose(env, "write into map forbidden\n");
4157 		return -EACCES;
4158 	}
4159 
4160 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4161 		bpf_map_ptr_store(aux, meta->map_ptr,
4162 				  meta->map_ptr->unpriv_array);
4163 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4164 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4165 				  meta->map_ptr->unpriv_array);
4166 	return 0;
4167 }
4168 
4169 static int
4170 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4171 		int func_id, int insn_idx)
4172 {
4173 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4174 	struct bpf_reg_state *regs = cur_regs(env), *reg;
4175 	struct bpf_map *map = meta->map_ptr;
4176 	struct tnum range;
4177 	u64 val;
4178 	int err;
4179 
4180 	if (func_id != BPF_FUNC_tail_call)
4181 		return 0;
4182 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4183 		verbose(env, "kernel subsystem misconfigured verifier\n");
4184 		return -EINVAL;
4185 	}
4186 
4187 	range = tnum_range(0, map->max_entries - 1);
4188 	reg = &regs[BPF_REG_3];
4189 
4190 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4191 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4192 		return 0;
4193 	}
4194 
4195 	err = mark_chain_precision(env, BPF_REG_3);
4196 	if (err)
4197 		return err;
4198 
4199 	val = reg->var_off.value;
4200 	if (bpf_map_key_unseen(aux))
4201 		bpf_map_key_store(aux, val);
4202 	else if (!bpf_map_key_poisoned(aux) &&
4203 		  bpf_map_key_immediate(aux) != val)
4204 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4205 	return 0;
4206 }
4207 
4208 static int check_reference_leak(struct bpf_verifier_env *env)
4209 {
4210 	struct bpf_func_state *state = cur_func(env);
4211 	int i;
4212 
4213 	for (i = 0; i < state->acquired_refs; i++) {
4214 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4215 			state->refs[i].id, state->refs[i].insn_idx);
4216 	}
4217 	return state->acquired_refs ? -EINVAL : 0;
4218 }
4219 
4220 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4221 {
4222 	const struct bpf_func_proto *fn = NULL;
4223 	struct bpf_reg_state *regs;
4224 	struct bpf_call_arg_meta meta;
4225 	bool changes_data;
4226 	int i, err;
4227 
4228 	/* find function prototype */
4229 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4230 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4231 			func_id);
4232 		return -EINVAL;
4233 	}
4234 
4235 	if (env->ops->get_func_proto)
4236 		fn = env->ops->get_func_proto(func_id, env->prog);
4237 	if (!fn) {
4238 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4239 			func_id);
4240 		return -EINVAL;
4241 	}
4242 
4243 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
4244 	if (!env->prog->gpl_compatible && fn->gpl_only) {
4245 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4246 		return -EINVAL;
4247 	}
4248 
4249 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
4250 	changes_data = bpf_helper_changes_pkt_data(fn->func);
4251 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4252 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4253 			func_id_name(func_id), func_id);
4254 		return -EINVAL;
4255 	}
4256 
4257 	memset(&meta, 0, sizeof(meta));
4258 	meta.pkt_access = fn->pkt_access;
4259 
4260 	err = check_func_proto(fn, func_id);
4261 	if (err) {
4262 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4263 			func_id_name(func_id), func_id);
4264 		return err;
4265 	}
4266 
4267 	meta.func_id = func_id;
4268 	/* check args */
4269 	for (i = 0; i < 5; i++) {
4270 		err = btf_resolve_helper_id(&env->log, fn, i);
4271 		if (err > 0)
4272 			meta.btf_id = err;
4273 		err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4274 		if (err)
4275 			return err;
4276 	}
4277 
4278 	err = record_func_map(env, &meta, func_id, insn_idx);
4279 	if (err)
4280 		return err;
4281 
4282 	err = record_func_key(env, &meta, func_id, insn_idx);
4283 	if (err)
4284 		return err;
4285 
4286 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
4287 	 * is inferred from register state.
4288 	 */
4289 	for (i = 0; i < meta.access_size; i++) {
4290 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4291 				       BPF_WRITE, -1, false);
4292 		if (err)
4293 			return err;
4294 	}
4295 
4296 	if (func_id == BPF_FUNC_tail_call) {
4297 		err = check_reference_leak(env);
4298 		if (err) {
4299 			verbose(env, "tail_call would lead to reference leak\n");
4300 			return err;
4301 		}
4302 	} else if (is_release_function(func_id)) {
4303 		err = release_reference(env, meta.ref_obj_id);
4304 		if (err) {
4305 			verbose(env, "func %s#%d reference has not been acquired before\n",
4306 				func_id_name(func_id), func_id);
4307 			return err;
4308 		}
4309 	}
4310 
4311 	regs = cur_regs(env);
4312 
4313 	/* check that flags argument in get_local_storage(map, flags) is 0,
4314 	 * this is required because get_local_storage() can't return an error.
4315 	 */
4316 	if (func_id == BPF_FUNC_get_local_storage &&
4317 	    !register_is_null(&regs[BPF_REG_2])) {
4318 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4319 		return -EINVAL;
4320 	}
4321 
4322 	/* reset caller saved regs */
4323 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4324 		mark_reg_not_init(env, regs, caller_saved[i]);
4325 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4326 	}
4327 
4328 	/* helper call returns 64-bit value. */
4329 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4330 
4331 	/* update return register (already marked as written above) */
4332 	if (fn->ret_type == RET_INTEGER) {
4333 		/* sets type to SCALAR_VALUE */
4334 		mark_reg_unknown(env, regs, BPF_REG_0);
4335 	} else if (fn->ret_type == RET_VOID) {
4336 		regs[BPF_REG_0].type = NOT_INIT;
4337 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4338 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4339 		/* There is no offset yet applied, variable or fixed */
4340 		mark_reg_known_zero(env, regs, BPF_REG_0);
4341 		/* remember map_ptr, so that check_map_access()
4342 		 * can check 'value_size' boundary of memory access
4343 		 * to map element returned from bpf_map_lookup_elem()
4344 		 */
4345 		if (meta.map_ptr == NULL) {
4346 			verbose(env,
4347 				"kernel subsystem misconfigured verifier\n");
4348 			return -EINVAL;
4349 		}
4350 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
4351 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4352 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4353 			if (map_value_has_spin_lock(meta.map_ptr))
4354 				regs[BPF_REG_0].id = ++env->id_gen;
4355 		} else {
4356 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4357 			regs[BPF_REG_0].id = ++env->id_gen;
4358 		}
4359 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4360 		mark_reg_known_zero(env, regs, BPF_REG_0);
4361 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4362 		regs[BPF_REG_0].id = ++env->id_gen;
4363 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4364 		mark_reg_known_zero(env, regs, BPF_REG_0);
4365 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4366 		regs[BPF_REG_0].id = ++env->id_gen;
4367 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4368 		mark_reg_known_zero(env, regs, BPF_REG_0);
4369 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4370 		regs[BPF_REG_0].id = ++env->id_gen;
4371 	} else {
4372 		verbose(env, "unknown return type %d of func %s#%d\n",
4373 			fn->ret_type, func_id_name(func_id), func_id);
4374 		return -EINVAL;
4375 	}
4376 
4377 	if (is_ptr_cast_function(func_id)) {
4378 		/* For release_reference() */
4379 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4380 	} else if (is_acquire_function(func_id)) {
4381 		int id = acquire_reference_state(env, insn_idx);
4382 
4383 		if (id < 0)
4384 			return id;
4385 		/* For mark_ptr_or_null_reg() */
4386 		regs[BPF_REG_0].id = id;
4387 		/* For release_reference() */
4388 		regs[BPF_REG_0].ref_obj_id = id;
4389 	}
4390 
4391 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4392 
4393 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4394 	if (err)
4395 		return err;
4396 
4397 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4398 		const char *err_str;
4399 
4400 #ifdef CONFIG_PERF_EVENTS
4401 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
4402 		err_str = "cannot get callchain buffer for func %s#%d\n";
4403 #else
4404 		err = -ENOTSUPP;
4405 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4406 #endif
4407 		if (err) {
4408 			verbose(env, err_str, func_id_name(func_id), func_id);
4409 			return err;
4410 		}
4411 
4412 		env->prog->has_callchain_buf = true;
4413 	}
4414 
4415 	if (changes_data)
4416 		clear_all_pkt_pointers(env);
4417 	return 0;
4418 }
4419 
4420 static bool signed_add_overflows(s64 a, s64 b)
4421 {
4422 	/* Do the add in u64, where overflow is well-defined */
4423 	s64 res = (s64)((u64)a + (u64)b);
4424 
4425 	if (b < 0)
4426 		return res > a;
4427 	return res < a;
4428 }
4429 
4430 static bool signed_sub_overflows(s64 a, s64 b)
4431 {
4432 	/* Do the sub in u64, where overflow is well-defined */
4433 	s64 res = (s64)((u64)a - (u64)b);
4434 
4435 	if (b < 0)
4436 		return res < a;
4437 	return res > a;
4438 }
4439 
4440 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4441 				  const struct bpf_reg_state *reg,
4442 				  enum bpf_reg_type type)
4443 {
4444 	bool known = tnum_is_const(reg->var_off);
4445 	s64 val = reg->var_off.value;
4446 	s64 smin = reg->smin_value;
4447 
4448 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4449 		verbose(env, "math between %s pointer and %lld is not allowed\n",
4450 			reg_type_str[type], val);
4451 		return false;
4452 	}
4453 
4454 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4455 		verbose(env, "%s pointer offset %d is not allowed\n",
4456 			reg_type_str[type], reg->off);
4457 		return false;
4458 	}
4459 
4460 	if (smin == S64_MIN) {
4461 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4462 			reg_type_str[type]);
4463 		return false;
4464 	}
4465 
4466 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4467 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
4468 			smin, reg_type_str[type]);
4469 		return false;
4470 	}
4471 
4472 	return true;
4473 }
4474 
4475 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4476 {
4477 	return &env->insn_aux_data[env->insn_idx];
4478 }
4479 
4480 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4481 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
4482 {
4483 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
4484 			    (opcode == BPF_SUB && !off_is_neg);
4485 	u32 off;
4486 
4487 	switch (ptr_reg->type) {
4488 	case PTR_TO_STACK:
4489 		/* Indirect variable offset stack access is prohibited in
4490 		 * unprivileged mode so it's not handled here.
4491 		 */
4492 		off = ptr_reg->off + ptr_reg->var_off.value;
4493 		if (mask_to_left)
4494 			*ptr_limit = MAX_BPF_STACK + off;
4495 		else
4496 			*ptr_limit = -off;
4497 		return 0;
4498 	case PTR_TO_MAP_VALUE:
4499 		if (mask_to_left) {
4500 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4501 		} else {
4502 			off = ptr_reg->smin_value + ptr_reg->off;
4503 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
4504 		}
4505 		return 0;
4506 	default:
4507 		return -EINVAL;
4508 	}
4509 }
4510 
4511 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4512 				    const struct bpf_insn *insn)
4513 {
4514 	return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4515 }
4516 
4517 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4518 				       u32 alu_state, u32 alu_limit)
4519 {
4520 	/* If we arrived here from different branches with different
4521 	 * state or limits to sanitize, then this won't work.
4522 	 */
4523 	if (aux->alu_state &&
4524 	    (aux->alu_state != alu_state ||
4525 	     aux->alu_limit != alu_limit))
4526 		return -EACCES;
4527 
4528 	/* Corresponding fixup done in fixup_bpf_calls(). */
4529 	aux->alu_state = alu_state;
4530 	aux->alu_limit = alu_limit;
4531 	return 0;
4532 }
4533 
4534 static int sanitize_val_alu(struct bpf_verifier_env *env,
4535 			    struct bpf_insn *insn)
4536 {
4537 	struct bpf_insn_aux_data *aux = cur_aux(env);
4538 
4539 	if (can_skip_alu_sanitation(env, insn))
4540 		return 0;
4541 
4542 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4543 }
4544 
4545 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4546 			    struct bpf_insn *insn,
4547 			    const struct bpf_reg_state *ptr_reg,
4548 			    struct bpf_reg_state *dst_reg,
4549 			    bool off_is_neg)
4550 {
4551 	struct bpf_verifier_state *vstate = env->cur_state;
4552 	struct bpf_insn_aux_data *aux = cur_aux(env);
4553 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
4554 	u8 opcode = BPF_OP(insn->code);
4555 	u32 alu_state, alu_limit;
4556 	struct bpf_reg_state tmp;
4557 	bool ret;
4558 
4559 	if (can_skip_alu_sanitation(env, insn))
4560 		return 0;
4561 
4562 	/* We already marked aux for masking from non-speculative
4563 	 * paths, thus we got here in the first place. We only care
4564 	 * to explore bad access from here.
4565 	 */
4566 	if (vstate->speculative)
4567 		goto do_sim;
4568 
4569 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4570 	alu_state |= ptr_is_dst_reg ?
4571 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4572 
4573 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4574 		return 0;
4575 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4576 		return -EACCES;
4577 do_sim:
4578 	/* Simulate and find potential out-of-bounds access under
4579 	 * speculative execution from truncation as a result of
4580 	 * masking when off was not within expected range. If off
4581 	 * sits in dst, then we temporarily need to move ptr there
4582 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4583 	 * for cases where we use K-based arithmetic in one direction
4584 	 * and truncated reg-based in the other in order to explore
4585 	 * bad access.
4586 	 */
4587 	if (!ptr_is_dst_reg) {
4588 		tmp = *dst_reg;
4589 		*dst_reg = *ptr_reg;
4590 	}
4591 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4592 	if (!ptr_is_dst_reg && ret)
4593 		*dst_reg = tmp;
4594 	return !ret ? -EFAULT : 0;
4595 }
4596 
4597 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4598  * Caller should also handle BPF_MOV case separately.
4599  * If we return -EACCES, caller may want to try again treating pointer as a
4600  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
4601  */
4602 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4603 				   struct bpf_insn *insn,
4604 				   const struct bpf_reg_state *ptr_reg,
4605 				   const struct bpf_reg_state *off_reg)
4606 {
4607 	struct bpf_verifier_state *vstate = env->cur_state;
4608 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4609 	struct bpf_reg_state *regs = state->regs, *dst_reg;
4610 	bool known = tnum_is_const(off_reg->var_off);
4611 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4612 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4613 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4614 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4615 	u32 dst = insn->dst_reg, src = insn->src_reg;
4616 	u8 opcode = BPF_OP(insn->code);
4617 	int ret;
4618 
4619 	dst_reg = &regs[dst];
4620 
4621 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4622 	    smin_val > smax_val || umin_val > umax_val) {
4623 		/* Taint dst register if offset had invalid bounds derived from
4624 		 * e.g. dead branches.
4625 		 */
4626 		__mark_reg_unknown(env, dst_reg);
4627 		return 0;
4628 	}
4629 
4630 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
4631 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
4632 		verbose(env,
4633 			"R%d 32-bit pointer arithmetic prohibited\n",
4634 			dst);
4635 		return -EACCES;
4636 	}
4637 
4638 	switch (ptr_reg->type) {
4639 	case PTR_TO_MAP_VALUE_OR_NULL:
4640 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4641 			dst, reg_type_str[ptr_reg->type]);
4642 		return -EACCES;
4643 	case CONST_PTR_TO_MAP:
4644 	case PTR_TO_PACKET_END:
4645 	case PTR_TO_SOCKET:
4646 	case PTR_TO_SOCKET_OR_NULL:
4647 	case PTR_TO_SOCK_COMMON:
4648 	case PTR_TO_SOCK_COMMON_OR_NULL:
4649 	case PTR_TO_TCP_SOCK:
4650 	case PTR_TO_TCP_SOCK_OR_NULL:
4651 	case PTR_TO_XDP_SOCK:
4652 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4653 			dst, reg_type_str[ptr_reg->type]);
4654 		return -EACCES;
4655 	case PTR_TO_MAP_VALUE:
4656 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4657 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4658 				off_reg == dst_reg ? dst : src);
4659 			return -EACCES;
4660 		}
4661 		/* fall-through */
4662 	default:
4663 		break;
4664 	}
4665 
4666 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4667 	 * The id may be overwritten later if we create a new variable offset.
4668 	 */
4669 	dst_reg->type = ptr_reg->type;
4670 	dst_reg->id = ptr_reg->id;
4671 
4672 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4673 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4674 		return -EINVAL;
4675 
4676 	switch (opcode) {
4677 	case BPF_ADD:
4678 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4679 		if (ret < 0) {
4680 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
4681 			return ret;
4682 		}
4683 		/* We can take a fixed offset as long as it doesn't overflow
4684 		 * the s32 'off' field
4685 		 */
4686 		if (known && (ptr_reg->off + smin_val ==
4687 			      (s64)(s32)(ptr_reg->off + smin_val))) {
4688 			/* pointer += K.  Accumulate it into fixed offset */
4689 			dst_reg->smin_value = smin_ptr;
4690 			dst_reg->smax_value = smax_ptr;
4691 			dst_reg->umin_value = umin_ptr;
4692 			dst_reg->umax_value = umax_ptr;
4693 			dst_reg->var_off = ptr_reg->var_off;
4694 			dst_reg->off = ptr_reg->off + smin_val;
4695 			dst_reg->raw = ptr_reg->raw;
4696 			break;
4697 		}
4698 		/* A new variable offset is created.  Note that off_reg->off
4699 		 * == 0, since it's a scalar.
4700 		 * dst_reg gets the pointer type and since some positive
4701 		 * integer value was added to the pointer, give it a new 'id'
4702 		 * if it's a PTR_TO_PACKET.
4703 		 * this creates a new 'base' pointer, off_reg (variable) gets
4704 		 * added into the variable offset, and we copy the fixed offset
4705 		 * from ptr_reg.
4706 		 */
4707 		if (signed_add_overflows(smin_ptr, smin_val) ||
4708 		    signed_add_overflows(smax_ptr, smax_val)) {
4709 			dst_reg->smin_value = S64_MIN;
4710 			dst_reg->smax_value = S64_MAX;
4711 		} else {
4712 			dst_reg->smin_value = smin_ptr + smin_val;
4713 			dst_reg->smax_value = smax_ptr + smax_val;
4714 		}
4715 		if (umin_ptr + umin_val < umin_ptr ||
4716 		    umax_ptr + umax_val < umax_ptr) {
4717 			dst_reg->umin_value = 0;
4718 			dst_reg->umax_value = U64_MAX;
4719 		} else {
4720 			dst_reg->umin_value = umin_ptr + umin_val;
4721 			dst_reg->umax_value = umax_ptr + umax_val;
4722 		}
4723 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4724 		dst_reg->off = ptr_reg->off;
4725 		dst_reg->raw = ptr_reg->raw;
4726 		if (reg_is_pkt_pointer(ptr_reg)) {
4727 			dst_reg->id = ++env->id_gen;
4728 			/* something was added to pkt_ptr, set range to zero */
4729 			dst_reg->raw = 0;
4730 		}
4731 		break;
4732 	case BPF_SUB:
4733 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4734 		if (ret < 0) {
4735 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4736 			return ret;
4737 		}
4738 		if (dst_reg == off_reg) {
4739 			/* scalar -= pointer.  Creates an unknown scalar */
4740 			verbose(env, "R%d tried to subtract pointer from scalar\n",
4741 				dst);
4742 			return -EACCES;
4743 		}
4744 		/* We don't allow subtraction from FP, because (according to
4745 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
4746 		 * be able to deal with it.
4747 		 */
4748 		if (ptr_reg->type == PTR_TO_STACK) {
4749 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
4750 				dst);
4751 			return -EACCES;
4752 		}
4753 		if (known && (ptr_reg->off - smin_val ==
4754 			      (s64)(s32)(ptr_reg->off - smin_val))) {
4755 			/* pointer -= K.  Subtract it from fixed offset */
4756 			dst_reg->smin_value = smin_ptr;
4757 			dst_reg->smax_value = smax_ptr;
4758 			dst_reg->umin_value = umin_ptr;
4759 			dst_reg->umax_value = umax_ptr;
4760 			dst_reg->var_off = ptr_reg->var_off;
4761 			dst_reg->id = ptr_reg->id;
4762 			dst_reg->off = ptr_reg->off - smin_val;
4763 			dst_reg->raw = ptr_reg->raw;
4764 			break;
4765 		}
4766 		/* A new variable offset is created.  If the subtrahend is known
4767 		 * nonnegative, then any reg->range we had before is still good.
4768 		 */
4769 		if (signed_sub_overflows(smin_ptr, smax_val) ||
4770 		    signed_sub_overflows(smax_ptr, smin_val)) {
4771 			/* Overflow possible, we know nothing */
4772 			dst_reg->smin_value = S64_MIN;
4773 			dst_reg->smax_value = S64_MAX;
4774 		} else {
4775 			dst_reg->smin_value = smin_ptr - smax_val;
4776 			dst_reg->smax_value = smax_ptr - smin_val;
4777 		}
4778 		if (umin_ptr < umax_val) {
4779 			/* Overflow possible, we know nothing */
4780 			dst_reg->umin_value = 0;
4781 			dst_reg->umax_value = U64_MAX;
4782 		} else {
4783 			/* Cannot overflow (as long as bounds are consistent) */
4784 			dst_reg->umin_value = umin_ptr - umax_val;
4785 			dst_reg->umax_value = umax_ptr - umin_val;
4786 		}
4787 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4788 		dst_reg->off = ptr_reg->off;
4789 		dst_reg->raw = ptr_reg->raw;
4790 		if (reg_is_pkt_pointer(ptr_reg)) {
4791 			dst_reg->id = ++env->id_gen;
4792 			/* something was added to pkt_ptr, set range to zero */
4793 			if (smin_val < 0)
4794 				dst_reg->raw = 0;
4795 		}
4796 		break;
4797 	case BPF_AND:
4798 	case BPF_OR:
4799 	case BPF_XOR:
4800 		/* bitwise ops on pointers are troublesome, prohibit. */
4801 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4802 			dst, bpf_alu_string[opcode >> 4]);
4803 		return -EACCES;
4804 	default:
4805 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
4806 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4807 			dst, bpf_alu_string[opcode >> 4]);
4808 		return -EACCES;
4809 	}
4810 
4811 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4812 		return -EINVAL;
4813 
4814 	__update_reg_bounds(dst_reg);
4815 	__reg_deduce_bounds(dst_reg);
4816 	__reg_bound_offset(dst_reg);
4817 
4818 	/* For unprivileged we require that resulting offset must be in bounds
4819 	 * in order to be able to sanitize access later on.
4820 	 */
4821 	if (!env->allow_ptr_leaks) {
4822 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
4823 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
4824 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4825 				"prohibited for !root\n", dst);
4826 			return -EACCES;
4827 		} else if (dst_reg->type == PTR_TO_STACK &&
4828 			   check_stack_access(env, dst_reg, dst_reg->off +
4829 					      dst_reg->var_off.value, 1)) {
4830 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
4831 				"prohibited for !root\n", dst);
4832 			return -EACCES;
4833 		}
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 /* WARNING: This function does calculations on 64-bit values, but the actual
4840  * execution may occur on 32-bit values. Therefore, things like bitshifts
4841  * need extra checks in the 32-bit case.
4842  */
4843 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4844 				      struct bpf_insn *insn,
4845 				      struct bpf_reg_state *dst_reg,
4846 				      struct bpf_reg_state src_reg)
4847 {
4848 	struct bpf_reg_state *regs = cur_regs(env);
4849 	u8 opcode = BPF_OP(insn->code);
4850 	bool src_known, dst_known;
4851 	s64 smin_val, smax_val;
4852 	u64 umin_val, umax_val;
4853 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4854 	u32 dst = insn->dst_reg;
4855 	int ret;
4856 
4857 	if (insn_bitness == 32) {
4858 		/* Relevant for 32-bit RSH: Information can propagate towards
4859 		 * LSB, so it isn't sufficient to only truncate the output to
4860 		 * 32 bits.
4861 		 */
4862 		coerce_reg_to_size(dst_reg, 4);
4863 		coerce_reg_to_size(&src_reg, 4);
4864 	}
4865 
4866 	smin_val = src_reg.smin_value;
4867 	smax_val = src_reg.smax_value;
4868 	umin_val = src_reg.umin_value;
4869 	umax_val = src_reg.umax_value;
4870 	src_known = tnum_is_const(src_reg.var_off);
4871 	dst_known = tnum_is_const(dst_reg->var_off);
4872 
4873 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4874 	    smin_val > smax_val || umin_val > umax_val) {
4875 		/* Taint dst register if offset had invalid bounds derived from
4876 		 * e.g. dead branches.
4877 		 */
4878 		__mark_reg_unknown(env, dst_reg);
4879 		return 0;
4880 	}
4881 
4882 	if (!src_known &&
4883 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4884 		__mark_reg_unknown(env, dst_reg);
4885 		return 0;
4886 	}
4887 
4888 	switch (opcode) {
4889 	case BPF_ADD:
4890 		ret = sanitize_val_alu(env, insn);
4891 		if (ret < 0) {
4892 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4893 			return ret;
4894 		}
4895 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4896 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
4897 			dst_reg->smin_value = S64_MIN;
4898 			dst_reg->smax_value = S64_MAX;
4899 		} else {
4900 			dst_reg->smin_value += smin_val;
4901 			dst_reg->smax_value += smax_val;
4902 		}
4903 		if (dst_reg->umin_value + umin_val < umin_val ||
4904 		    dst_reg->umax_value + umax_val < umax_val) {
4905 			dst_reg->umin_value = 0;
4906 			dst_reg->umax_value = U64_MAX;
4907 		} else {
4908 			dst_reg->umin_value += umin_val;
4909 			dst_reg->umax_value += umax_val;
4910 		}
4911 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4912 		break;
4913 	case BPF_SUB:
4914 		ret = sanitize_val_alu(env, insn);
4915 		if (ret < 0) {
4916 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4917 			return ret;
4918 		}
4919 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4920 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4921 			/* Overflow possible, we know nothing */
4922 			dst_reg->smin_value = S64_MIN;
4923 			dst_reg->smax_value = S64_MAX;
4924 		} else {
4925 			dst_reg->smin_value -= smax_val;
4926 			dst_reg->smax_value -= smin_val;
4927 		}
4928 		if (dst_reg->umin_value < umax_val) {
4929 			/* Overflow possible, we know nothing */
4930 			dst_reg->umin_value = 0;
4931 			dst_reg->umax_value = U64_MAX;
4932 		} else {
4933 			/* Cannot overflow (as long as bounds are consistent) */
4934 			dst_reg->umin_value -= umax_val;
4935 			dst_reg->umax_value -= umin_val;
4936 		}
4937 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4938 		break;
4939 	case BPF_MUL:
4940 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4941 		if (smin_val < 0 || dst_reg->smin_value < 0) {
4942 			/* Ain't nobody got time to multiply that sign */
4943 			__mark_reg_unbounded(dst_reg);
4944 			__update_reg_bounds(dst_reg);
4945 			break;
4946 		}
4947 		/* Both values are positive, so we can work with unsigned and
4948 		 * copy the result to signed (unless it exceeds S64_MAX).
4949 		 */
4950 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4951 			/* Potential overflow, we know nothing */
4952 			__mark_reg_unbounded(dst_reg);
4953 			/* (except what we can learn from the var_off) */
4954 			__update_reg_bounds(dst_reg);
4955 			break;
4956 		}
4957 		dst_reg->umin_value *= umin_val;
4958 		dst_reg->umax_value *= umax_val;
4959 		if (dst_reg->umax_value > S64_MAX) {
4960 			/* Overflow possible, we know nothing */
4961 			dst_reg->smin_value = S64_MIN;
4962 			dst_reg->smax_value = S64_MAX;
4963 		} else {
4964 			dst_reg->smin_value = dst_reg->umin_value;
4965 			dst_reg->smax_value = dst_reg->umax_value;
4966 		}
4967 		break;
4968 	case BPF_AND:
4969 		if (src_known && dst_known) {
4970 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
4971 						  src_reg.var_off.value);
4972 			break;
4973 		}
4974 		/* We get our minimum from the var_off, since that's inherently
4975 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
4976 		 */
4977 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4978 		dst_reg->umin_value = dst_reg->var_off.value;
4979 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4980 		if (dst_reg->smin_value < 0 || smin_val < 0) {
4981 			/* Lose signed bounds when ANDing negative numbers,
4982 			 * ain't nobody got time for that.
4983 			 */
4984 			dst_reg->smin_value = S64_MIN;
4985 			dst_reg->smax_value = S64_MAX;
4986 		} else {
4987 			/* ANDing two positives gives a positive, so safe to
4988 			 * cast result into s64.
4989 			 */
4990 			dst_reg->smin_value = dst_reg->umin_value;
4991 			dst_reg->smax_value = dst_reg->umax_value;
4992 		}
4993 		/* We may learn something more from the var_off */
4994 		__update_reg_bounds(dst_reg);
4995 		break;
4996 	case BPF_OR:
4997 		if (src_known && dst_known) {
4998 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
4999 						  src_reg.var_off.value);
5000 			break;
5001 		}
5002 		/* We get our maximum from the var_off, and our minimum is the
5003 		 * maximum of the operands' minima
5004 		 */
5005 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5006 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5007 		dst_reg->umax_value = dst_reg->var_off.value |
5008 				      dst_reg->var_off.mask;
5009 		if (dst_reg->smin_value < 0 || smin_val < 0) {
5010 			/* Lose signed bounds when ORing negative numbers,
5011 			 * ain't nobody got time for that.
5012 			 */
5013 			dst_reg->smin_value = S64_MIN;
5014 			dst_reg->smax_value = S64_MAX;
5015 		} else {
5016 			/* ORing two positives gives a positive, so safe to
5017 			 * cast result into s64.
5018 			 */
5019 			dst_reg->smin_value = dst_reg->umin_value;
5020 			dst_reg->smax_value = dst_reg->umax_value;
5021 		}
5022 		/* We may learn something more from the var_off */
5023 		__update_reg_bounds(dst_reg);
5024 		break;
5025 	case BPF_LSH:
5026 		if (umax_val >= insn_bitness) {
5027 			/* Shifts greater than 31 or 63 are undefined.
5028 			 * This includes shifts by a negative number.
5029 			 */
5030 			mark_reg_unknown(env, regs, insn->dst_reg);
5031 			break;
5032 		}
5033 		/* We lose all sign bit information (except what we can pick
5034 		 * up from var_off)
5035 		 */
5036 		dst_reg->smin_value = S64_MIN;
5037 		dst_reg->smax_value = S64_MAX;
5038 		/* If we might shift our top bit out, then we know nothing */
5039 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5040 			dst_reg->umin_value = 0;
5041 			dst_reg->umax_value = U64_MAX;
5042 		} else {
5043 			dst_reg->umin_value <<= umin_val;
5044 			dst_reg->umax_value <<= umax_val;
5045 		}
5046 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5047 		/* We may learn something more from the var_off */
5048 		__update_reg_bounds(dst_reg);
5049 		break;
5050 	case BPF_RSH:
5051 		if (umax_val >= insn_bitness) {
5052 			/* Shifts greater than 31 or 63 are undefined.
5053 			 * This includes shifts by a negative number.
5054 			 */
5055 			mark_reg_unknown(env, regs, insn->dst_reg);
5056 			break;
5057 		}
5058 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
5059 		 * be negative, then either:
5060 		 * 1) src_reg might be zero, so the sign bit of the result is
5061 		 *    unknown, so we lose our signed bounds
5062 		 * 2) it's known negative, thus the unsigned bounds capture the
5063 		 *    signed bounds
5064 		 * 3) the signed bounds cross zero, so they tell us nothing
5065 		 *    about the result
5066 		 * If the value in dst_reg is known nonnegative, then again the
5067 		 * unsigned bounts capture the signed bounds.
5068 		 * Thus, in all cases it suffices to blow away our signed bounds
5069 		 * and rely on inferring new ones from the unsigned bounds and
5070 		 * var_off of the result.
5071 		 */
5072 		dst_reg->smin_value = S64_MIN;
5073 		dst_reg->smax_value = S64_MAX;
5074 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5075 		dst_reg->umin_value >>= umax_val;
5076 		dst_reg->umax_value >>= umin_val;
5077 		/* We may learn something more from the var_off */
5078 		__update_reg_bounds(dst_reg);
5079 		break;
5080 	case BPF_ARSH:
5081 		if (umax_val >= insn_bitness) {
5082 			/* Shifts greater than 31 or 63 are undefined.
5083 			 * This includes shifts by a negative number.
5084 			 */
5085 			mark_reg_unknown(env, regs, insn->dst_reg);
5086 			break;
5087 		}
5088 
5089 		/* Upon reaching here, src_known is true and
5090 		 * umax_val is equal to umin_val.
5091 		 */
5092 		if (insn_bitness == 32) {
5093 			dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val);
5094 			dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val);
5095 		} else {
5096 			dst_reg->smin_value >>= umin_val;
5097 			dst_reg->smax_value >>= umin_val;
5098 		}
5099 
5100 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val,
5101 						insn_bitness);
5102 
5103 		/* blow away the dst_reg umin_value/umax_value and rely on
5104 		 * dst_reg var_off to refine the result.
5105 		 */
5106 		dst_reg->umin_value = 0;
5107 		dst_reg->umax_value = U64_MAX;
5108 		__update_reg_bounds(dst_reg);
5109 		break;
5110 	default:
5111 		mark_reg_unknown(env, regs, insn->dst_reg);
5112 		break;
5113 	}
5114 
5115 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5116 		/* 32-bit ALU ops are (32,32)->32 */
5117 		coerce_reg_to_size(dst_reg, 4);
5118 	}
5119 
5120 	__reg_deduce_bounds(dst_reg);
5121 	__reg_bound_offset(dst_reg);
5122 	return 0;
5123 }
5124 
5125 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5126  * and var_off.
5127  */
5128 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5129 				   struct bpf_insn *insn)
5130 {
5131 	struct bpf_verifier_state *vstate = env->cur_state;
5132 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5133 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5134 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5135 	u8 opcode = BPF_OP(insn->code);
5136 	int err;
5137 
5138 	dst_reg = &regs[insn->dst_reg];
5139 	src_reg = NULL;
5140 	if (dst_reg->type != SCALAR_VALUE)
5141 		ptr_reg = dst_reg;
5142 	if (BPF_SRC(insn->code) == BPF_X) {
5143 		src_reg = &regs[insn->src_reg];
5144 		if (src_reg->type != SCALAR_VALUE) {
5145 			if (dst_reg->type != SCALAR_VALUE) {
5146 				/* Combining two pointers by any ALU op yields
5147 				 * an arbitrary scalar. Disallow all math except
5148 				 * pointer subtraction
5149 				 */
5150 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5151 					mark_reg_unknown(env, regs, insn->dst_reg);
5152 					return 0;
5153 				}
5154 				verbose(env, "R%d pointer %s pointer prohibited\n",
5155 					insn->dst_reg,
5156 					bpf_alu_string[opcode >> 4]);
5157 				return -EACCES;
5158 			} else {
5159 				/* scalar += pointer
5160 				 * This is legal, but we have to reverse our
5161 				 * src/dest handling in computing the range
5162 				 */
5163 				err = mark_chain_precision(env, insn->dst_reg);
5164 				if (err)
5165 					return err;
5166 				return adjust_ptr_min_max_vals(env, insn,
5167 							       src_reg, dst_reg);
5168 			}
5169 		} else if (ptr_reg) {
5170 			/* pointer += scalar */
5171 			err = mark_chain_precision(env, insn->src_reg);
5172 			if (err)
5173 				return err;
5174 			return adjust_ptr_min_max_vals(env, insn,
5175 						       dst_reg, src_reg);
5176 		}
5177 	} else {
5178 		/* Pretend the src is a reg with a known value, since we only
5179 		 * need to be able to read from this state.
5180 		 */
5181 		off_reg.type = SCALAR_VALUE;
5182 		__mark_reg_known(&off_reg, insn->imm);
5183 		src_reg = &off_reg;
5184 		if (ptr_reg) /* pointer += K */
5185 			return adjust_ptr_min_max_vals(env, insn,
5186 						       ptr_reg, src_reg);
5187 	}
5188 
5189 	/* Got here implies adding two SCALAR_VALUEs */
5190 	if (WARN_ON_ONCE(ptr_reg)) {
5191 		print_verifier_state(env, state);
5192 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
5193 		return -EINVAL;
5194 	}
5195 	if (WARN_ON(!src_reg)) {
5196 		print_verifier_state(env, state);
5197 		verbose(env, "verifier internal error: no src_reg\n");
5198 		return -EINVAL;
5199 	}
5200 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5201 }
5202 
5203 /* check validity of 32-bit and 64-bit arithmetic operations */
5204 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5205 {
5206 	struct bpf_reg_state *regs = cur_regs(env);
5207 	u8 opcode = BPF_OP(insn->code);
5208 	int err;
5209 
5210 	if (opcode == BPF_END || opcode == BPF_NEG) {
5211 		if (opcode == BPF_NEG) {
5212 			if (BPF_SRC(insn->code) != 0 ||
5213 			    insn->src_reg != BPF_REG_0 ||
5214 			    insn->off != 0 || insn->imm != 0) {
5215 				verbose(env, "BPF_NEG uses reserved fields\n");
5216 				return -EINVAL;
5217 			}
5218 		} else {
5219 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5220 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5221 			    BPF_CLASS(insn->code) == BPF_ALU64) {
5222 				verbose(env, "BPF_END uses reserved fields\n");
5223 				return -EINVAL;
5224 			}
5225 		}
5226 
5227 		/* check src operand */
5228 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5229 		if (err)
5230 			return err;
5231 
5232 		if (is_pointer_value(env, insn->dst_reg)) {
5233 			verbose(env, "R%d pointer arithmetic prohibited\n",
5234 				insn->dst_reg);
5235 			return -EACCES;
5236 		}
5237 
5238 		/* check dest operand */
5239 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
5240 		if (err)
5241 			return err;
5242 
5243 	} else if (opcode == BPF_MOV) {
5244 
5245 		if (BPF_SRC(insn->code) == BPF_X) {
5246 			if (insn->imm != 0 || insn->off != 0) {
5247 				verbose(env, "BPF_MOV uses reserved fields\n");
5248 				return -EINVAL;
5249 			}
5250 
5251 			/* check src operand */
5252 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5253 			if (err)
5254 				return err;
5255 		} else {
5256 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5257 				verbose(env, "BPF_MOV uses reserved fields\n");
5258 				return -EINVAL;
5259 			}
5260 		}
5261 
5262 		/* check dest operand, mark as required later */
5263 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5264 		if (err)
5265 			return err;
5266 
5267 		if (BPF_SRC(insn->code) == BPF_X) {
5268 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
5269 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5270 
5271 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5272 				/* case: R1 = R2
5273 				 * copy register state to dest reg
5274 				 */
5275 				*dst_reg = *src_reg;
5276 				dst_reg->live |= REG_LIVE_WRITTEN;
5277 				dst_reg->subreg_def = DEF_NOT_SUBREG;
5278 			} else {
5279 				/* R1 = (u32) R2 */
5280 				if (is_pointer_value(env, insn->src_reg)) {
5281 					verbose(env,
5282 						"R%d partial copy of pointer\n",
5283 						insn->src_reg);
5284 					return -EACCES;
5285 				} else if (src_reg->type == SCALAR_VALUE) {
5286 					*dst_reg = *src_reg;
5287 					dst_reg->live |= REG_LIVE_WRITTEN;
5288 					dst_reg->subreg_def = env->insn_idx + 1;
5289 				} else {
5290 					mark_reg_unknown(env, regs,
5291 							 insn->dst_reg);
5292 				}
5293 				coerce_reg_to_size(dst_reg, 4);
5294 			}
5295 		} else {
5296 			/* case: R = imm
5297 			 * remember the value we stored into this reg
5298 			 */
5299 			/* clear any state __mark_reg_known doesn't set */
5300 			mark_reg_unknown(env, regs, insn->dst_reg);
5301 			regs[insn->dst_reg].type = SCALAR_VALUE;
5302 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
5303 				__mark_reg_known(regs + insn->dst_reg,
5304 						 insn->imm);
5305 			} else {
5306 				__mark_reg_known(regs + insn->dst_reg,
5307 						 (u32)insn->imm);
5308 			}
5309 		}
5310 
5311 	} else if (opcode > BPF_END) {
5312 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5313 		return -EINVAL;
5314 
5315 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
5316 
5317 		if (BPF_SRC(insn->code) == BPF_X) {
5318 			if (insn->imm != 0 || insn->off != 0) {
5319 				verbose(env, "BPF_ALU uses reserved fields\n");
5320 				return -EINVAL;
5321 			}
5322 			/* check src1 operand */
5323 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
5324 			if (err)
5325 				return err;
5326 		} else {
5327 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5328 				verbose(env, "BPF_ALU uses reserved fields\n");
5329 				return -EINVAL;
5330 			}
5331 		}
5332 
5333 		/* check src2 operand */
5334 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5335 		if (err)
5336 			return err;
5337 
5338 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5339 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5340 			verbose(env, "div by zero\n");
5341 			return -EINVAL;
5342 		}
5343 
5344 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5345 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5346 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5347 
5348 			if (insn->imm < 0 || insn->imm >= size) {
5349 				verbose(env, "invalid shift %d\n", insn->imm);
5350 				return -EINVAL;
5351 			}
5352 		}
5353 
5354 		/* check dest operand */
5355 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5356 		if (err)
5357 			return err;
5358 
5359 		return adjust_reg_min_max_vals(env, insn);
5360 	}
5361 
5362 	return 0;
5363 }
5364 
5365 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5366 				     struct bpf_reg_state *dst_reg,
5367 				     enum bpf_reg_type type, u16 new_range)
5368 {
5369 	struct bpf_reg_state *reg;
5370 	int i;
5371 
5372 	for (i = 0; i < MAX_BPF_REG; i++) {
5373 		reg = &state->regs[i];
5374 		if (reg->type == type && reg->id == dst_reg->id)
5375 			/* keep the maximum range already checked */
5376 			reg->range = max(reg->range, new_range);
5377 	}
5378 
5379 	bpf_for_each_spilled_reg(i, state, reg) {
5380 		if (!reg)
5381 			continue;
5382 		if (reg->type == type && reg->id == dst_reg->id)
5383 			reg->range = max(reg->range, new_range);
5384 	}
5385 }
5386 
5387 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5388 				   struct bpf_reg_state *dst_reg,
5389 				   enum bpf_reg_type type,
5390 				   bool range_right_open)
5391 {
5392 	u16 new_range;
5393 	int i;
5394 
5395 	if (dst_reg->off < 0 ||
5396 	    (dst_reg->off == 0 && range_right_open))
5397 		/* This doesn't give us any range */
5398 		return;
5399 
5400 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
5401 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5402 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
5403 		 * than pkt_end, but that's because it's also less than pkt.
5404 		 */
5405 		return;
5406 
5407 	new_range = dst_reg->off;
5408 	if (range_right_open)
5409 		new_range--;
5410 
5411 	/* Examples for register markings:
5412 	 *
5413 	 * pkt_data in dst register:
5414 	 *
5415 	 *   r2 = r3;
5416 	 *   r2 += 8;
5417 	 *   if (r2 > pkt_end) goto <handle exception>
5418 	 *   <access okay>
5419 	 *
5420 	 *   r2 = r3;
5421 	 *   r2 += 8;
5422 	 *   if (r2 < pkt_end) goto <access okay>
5423 	 *   <handle exception>
5424 	 *
5425 	 *   Where:
5426 	 *     r2 == dst_reg, pkt_end == src_reg
5427 	 *     r2=pkt(id=n,off=8,r=0)
5428 	 *     r3=pkt(id=n,off=0,r=0)
5429 	 *
5430 	 * pkt_data in src register:
5431 	 *
5432 	 *   r2 = r3;
5433 	 *   r2 += 8;
5434 	 *   if (pkt_end >= r2) goto <access okay>
5435 	 *   <handle exception>
5436 	 *
5437 	 *   r2 = r3;
5438 	 *   r2 += 8;
5439 	 *   if (pkt_end <= r2) goto <handle exception>
5440 	 *   <access okay>
5441 	 *
5442 	 *   Where:
5443 	 *     pkt_end == dst_reg, r2 == src_reg
5444 	 *     r2=pkt(id=n,off=8,r=0)
5445 	 *     r3=pkt(id=n,off=0,r=0)
5446 	 *
5447 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5448 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5449 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
5450 	 * the check.
5451 	 */
5452 
5453 	/* If our ids match, then we must have the same max_value.  And we
5454 	 * don't care about the other reg's fixed offset, since if it's too big
5455 	 * the range won't allow anything.
5456 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5457 	 */
5458 	for (i = 0; i <= vstate->curframe; i++)
5459 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5460 					 new_range);
5461 }
5462 
5463 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5464  * and return:
5465  *  1 - branch will be taken and "goto target" will be executed
5466  *  0 - branch will not be taken and fall-through to next insn
5467  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5468  */
5469 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5470 			   bool is_jmp32)
5471 {
5472 	struct bpf_reg_state reg_lo;
5473 	s64 sval;
5474 
5475 	if (__is_pointer_value(false, reg))
5476 		return -1;
5477 
5478 	if (is_jmp32) {
5479 		reg_lo = *reg;
5480 		reg = &reg_lo;
5481 		/* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5482 		 * could truncate high bits and update umin/umax according to
5483 		 * information of low bits.
5484 		 */
5485 		coerce_reg_to_size(reg, 4);
5486 		/* smin/smax need special handling. For example, after coerce,
5487 		 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5488 		 * used as operand to JMP32. It is a negative number from s32's
5489 		 * point of view, while it is a positive number when seen as
5490 		 * s64. The smin/smax are kept as s64, therefore, when used with
5491 		 * JMP32, they need to be transformed into s32, then sign
5492 		 * extended back to s64.
5493 		 *
5494 		 * Also, smin/smax were copied from umin/umax. If umin/umax has
5495 		 * different sign bit, then min/max relationship doesn't
5496 		 * maintain after casting into s32, for this case, set smin/smax
5497 		 * to safest range.
5498 		 */
5499 		if ((reg->umax_value ^ reg->umin_value) &
5500 		    (1ULL << 31)) {
5501 			reg->smin_value = S32_MIN;
5502 			reg->smax_value = S32_MAX;
5503 		}
5504 		reg->smin_value = (s64)(s32)reg->smin_value;
5505 		reg->smax_value = (s64)(s32)reg->smax_value;
5506 
5507 		val = (u32)val;
5508 		sval = (s64)(s32)val;
5509 	} else {
5510 		sval = (s64)val;
5511 	}
5512 
5513 	switch (opcode) {
5514 	case BPF_JEQ:
5515 		if (tnum_is_const(reg->var_off))
5516 			return !!tnum_equals_const(reg->var_off, val);
5517 		break;
5518 	case BPF_JNE:
5519 		if (tnum_is_const(reg->var_off))
5520 			return !tnum_equals_const(reg->var_off, val);
5521 		break;
5522 	case BPF_JSET:
5523 		if ((~reg->var_off.mask & reg->var_off.value) & val)
5524 			return 1;
5525 		if (!((reg->var_off.mask | reg->var_off.value) & val))
5526 			return 0;
5527 		break;
5528 	case BPF_JGT:
5529 		if (reg->umin_value > val)
5530 			return 1;
5531 		else if (reg->umax_value <= val)
5532 			return 0;
5533 		break;
5534 	case BPF_JSGT:
5535 		if (reg->smin_value > sval)
5536 			return 1;
5537 		else if (reg->smax_value < sval)
5538 			return 0;
5539 		break;
5540 	case BPF_JLT:
5541 		if (reg->umax_value < val)
5542 			return 1;
5543 		else if (reg->umin_value >= val)
5544 			return 0;
5545 		break;
5546 	case BPF_JSLT:
5547 		if (reg->smax_value < sval)
5548 			return 1;
5549 		else if (reg->smin_value >= sval)
5550 			return 0;
5551 		break;
5552 	case BPF_JGE:
5553 		if (reg->umin_value >= val)
5554 			return 1;
5555 		else if (reg->umax_value < val)
5556 			return 0;
5557 		break;
5558 	case BPF_JSGE:
5559 		if (reg->smin_value >= sval)
5560 			return 1;
5561 		else if (reg->smax_value < sval)
5562 			return 0;
5563 		break;
5564 	case BPF_JLE:
5565 		if (reg->umax_value <= val)
5566 			return 1;
5567 		else if (reg->umin_value > val)
5568 			return 0;
5569 		break;
5570 	case BPF_JSLE:
5571 		if (reg->smax_value <= sval)
5572 			return 1;
5573 		else if (reg->smin_value > sval)
5574 			return 0;
5575 		break;
5576 	}
5577 
5578 	return -1;
5579 }
5580 
5581 /* Generate min value of the high 32-bit from TNUM info. */
5582 static u64 gen_hi_min(struct tnum var)
5583 {
5584 	return var.value & ~0xffffffffULL;
5585 }
5586 
5587 /* Generate max value of the high 32-bit from TNUM info. */
5588 static u64 gen_hi_max(struct tnum var)
5589 {
5590 	return (var.value | var.mask) & ~0xffffffffULL;
5591 }
5592 
5593 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5594  * are with the same signedness.
5595  */
5596 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5597 {
5598 	return ((s32)sval >= 0 &&
5599 		reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5600 	       ((s32)sval < 0 &&
5601 		reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5602 }
5603 
5604 /* Adjusts the register min/max values in the case that the dst_reg is the
5605  * variable register that we are working on, and src_reg is a constant or we're
5606  * simply doing a BPF_K check.
5607  * In JEQ/JNE cases we also adjust the var_off values.
5608  */
5609 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5610 			    struct bpf_reg_state *false_reg, u64 val,
5611 			    u8 opcode, bool is_jmp32)
5612 {
5613 	s64 sval;
5614 
5615 	/* If the dst_reg is a pointer, we can't learn anything about its
5616 	 * variable offset from the compare (unless src_reg were a pointer into
5617 	 * the same object, but we don't bother with that.
5618 	 * Since false_reg and true_reg have the same type by construction, we
5619 	 * only need to check one of them for pointerness.
5620 	 */
5621 	if (__is_pointer_value(false, false_reg))
5622 		return;
5623 
5624 	val = is_jmp32 ? (u32)val : val;
5625 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5626 
5627 	switch (opcode) {
5628 	case BPF_JEQ:
5629 	case BPF_JNE:
5630 	{
5631 		struct bpf_reg_state *reg =
5632 			opcode == BPF_JEQ ? true_reg : false_reg;
5633 
5634 		/* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5635 		 * if it is true we know the value for sure. Likewise for
5636 		 * BPF_JNE.
5637 		 */
5638 		if (is_jmp32) {
5639 			u64 old_v = reg->var_off.value;
5640 			u64 hi_mask = ~0xffffffffULL;
5641 
5642 			reg->var_off.value = (old_v & hi_mask) | val;
5643 			reg->var_off.mask &= hi_mask;
5644 		} else {
5645 			__mark_reg_known(reg, val);
5646 		}
5647 		break;
5648 	}
5649 	case BPF_JSET:
5650 		false_reg->var_off = tnum_and(false_reg->var_off,
5651 					      tnum_const(~val));
5652 		if (is_power_of_2(val))
5653 			true_reg->var_off = tnum_or(true_reg->var_off,
5654 						    tnum_const(val));
5655 		break;
5656 	case BPF_JGE:
5657 	case BPF_JGT:
5658 	{
5659 		u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
5660 		u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5661 
5662 		if (is_jmp32) {
5663 			false_umax += gen_hi_max(false_reg->var_off);
5664 			true_umin += gen_hi_min(true_reg->var_off);
5665 		}
5666 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5667 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5668 		break;
5669 	}
5670 	case BPF_JSGE:
5671 	case BPF_JSGT:
5672 	{
5673 		s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
5674 		s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5675 
5676 		/* If the full s64 was not sign-extended from s32 then don't
5677 		 * deduct further info.
5678 		 */
5679 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5680 			break;
5681 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5682 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5683 		break;
5684 	}
5685 	case BPF_JLE:
5686 	case BPF_JLT:
5687 	{
5688 		u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
5689 		u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5690 
5691 		if (is_jmp32) {
5692 			false_umin += gen_hi_min(false_reg->var_off);
5693 			true_umax += gen_hi_max(true_reg->var_off);
5694 		}
5695 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5696 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5697 		break;
5698 	}
5699 	case BPF_JSLE:
5700 	case BPF_JSLT:
5701 	{
5702 		s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
5703 		s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5704 
5705 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5706 			break;
5707 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5708 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5709 		break;
5710 	}
5711 	default:
5712 		break;
5713 	}
5714 
5715 	__reg_deduce_bounds(false_reg);
5716 	__reg_deduce_bounds(true_reg);
5717 	/* We might have learned some bits from the bounds. */
5718 	__reg_bound_offset(false_reg);
5719 	__reg_bound_offset(true_reg);
5720 	if (is_jmp32) {
5721 		__reg_bound_offset32(false_reg);
5722 		__reg_bound_offset32(true_reg);
5723 	}
5724 	/* Intersecting with the old var_off might have improved our bounds
5725 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5726 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5727 	 */
5728 	__update_reg_bounds(false_reg);
5729 	__update_reg_bounds(true_reg);
5730 }
5731 
5732 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5733  * the variable reg.
5734  */
5735 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5736 				struct bpf_reg_state *false_reg, u64 val,
5737 				u8 opcode, bool is_jmp32)
5738 {
5739 	s64 sval;
5740 
5741 	if (__is_pointer_value(false, false_reg))
5742 		return;
5743 
5744 	val = is_jmp32 ? (u32)val : val;
5745 	sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5746 
5747 	switch (opcode) {
5748 	case BPF_JEQ:
5749 	case BPF_JNE:
5750 	{
5751 		struct bpf_reg_state *reg =
5752 			opcode == BPF_JEQ ? true_reg : false_reg;
5753 
5754 		if (is_jmp32) {
5755 			u64 old_v = reg->var_off.value;
5756 			u64 hi_mask = ~0xffffffffULL;
5757 
5758 			reg->var_off.value = (old_v & hi_mask) | val;
5759 			reg->var_off.mask &= hi_mask;
5760 		} else {
5761 			__mark_reg_known(reg, val);
5762 		}
5763 		break;
5764 	}
5765 	case BPF_JSET:
5766 		false_reg->var_off = tnum_and(false_reg->var_off,
5767 					      tnum_const(~val));
5768 		if (is_power_of_2(val))
5769 			true_reg->var_off = tnum_or(true_reg->var_off,
5770 						    tnum_const(val));
5771 		break;
5772 	case BPF_JGE:
5773 	case BPF_JGT:
5774 	{
5775 		u64 false_umin = opcode == BPF_JGT ? val    : val + 1;
5776 		u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5777 
5778 		if (is_jmp32) {
5779 			false_umin += gen_hi_min(false_reg->var_off);
5780 			true_umax += gen_hi_max(true_reg->var_off);
5781 		}
5782 		false_reg->umin_value = max(false_reg->umin_value, false_umin);
5783 		true_reg->umax_value = min(true_reg->umax_value, true_umax);
5784 		break;
5785 	}
5786 	case BPF_JSGE:
5787 	case BPF_JSGT:
5788 	{
5789 		s64 false_smin = opcode == BPF_JSGT ? sval    : sval + 1;
5790 		s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5791 
5792 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5793 			break;
5794 		false_reg->smin_value = max(false_reg->smin_value, false_smin);
5795 		true_reg->smax_value = min(true_reg->smax_value, true_smax);
5796 		break;
5797 	}
5798 	case BPF_JLE:
5799 	case BPF_JLT:
5800 	{
5801 		u64 false_umax = opcode == BPF_JLT ? val    : val - 1;
5802 		u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5803 
5804 		if (is_jmp32) {
5805 			false_umax += gen_hi_max(false_reg->var_off);
5806 			true_umin += gen_hi_min(true_reg->var_off);
5807 		}
5808 		false_reg->umax_value = min(false_reg->umax_value, false_umax);
5809 		true_reg->umin_value = max(true_reg->umin_value, true_umin);
5810 		break;
5811 	}
5812 	case BPF_JSLE:
5813 	case BPF_JSLT:
5814 	{
5815 		s64 false_smax = opcode == BPF_JSLT ? sval    : sval - 1;
5816 		s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5817 
5818 		if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5819 			break;
5820 		false_reg->smax_value = min(false_reg->smax_value, false_smax);
5821 		true_reg->smin_value = max(true_reg->smin_value, true_smin);
5822 		break;
5823 	}
5824 	default:
5825 		break;
5826 	}
5827 
5828 	__reg_deduce_bounds(false_reg);
5829 	__reg_deduce_bounds(true_reg);
5830 	/* We might have learned some bits from the bounds. */
5831 	__reg_bound_offset(false_reg);
5832 	__reg_bound_offset(true_reg);
5833 	if (is_jmp32) {
5834 		__reg_bound_offset32(false_reg);
5835 		__reg_bound_offset32(true_reg);
5836 	}
5837 	/* Intersecting with the old var_off might have improved our bounds
5838 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5839 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5840 	 */
5841 	__update_reg_bounds(false_reg);
5842 	__update_reg_bounds(true_reg);
5843 }
5844 
5845 /* Regs are known to be equal, so intersect their min/max/var_off */
5846 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5847 				  struct bpf_reg_state *dst_reg)
5848 {
5849 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5850 							dst_reg->umin_value);
5851 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5852 							dst_reg->umax_value);
5853 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5854 							dst_reg->smin_value);
5855 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5856 							dst_reg->smax_value);
5857 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5858 							     dst_reg->var_off);
5859 	/* We might have learned new bounds from the var_off. */
5860 	__update_reg_bounds(src_reg);
5861 	__update_reg_bounds(dst_reg);
5862 	/* We might have learned something about the sign bit. */
5863 	__reg_deduce_bounds(src_reg);
5864 	__reg_deduce_bounds(dst_reg);
5865 	/* We might have learned some bits from the bounds. */
5866 	__reg_bound_offset(src_reg);
5867 	__reg_bound_offset(dst_reg);
5868 	/* Intersecting with the old var_off might have improved our bounds
5869 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5870 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
5871 	 */
5872 	__update_reg_bounds(src_reg);
5873 	__update_reg_bounds(dst_reg);
5874 }
5875 
5876 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5877 				struct bpf_reg_state *true_dst,
5878 				struct bpf_reg_state *false_src,
5879 				struct bpf_reg_state *false_dst,
5880 				u8 opcode)
5881 {
5882 	switch (opcode) {
5883 	case BPF_JEQ:
5884 		__reg_combine_min_max(true_src, true_dst);
5885 		break;
5886 	case BPF_JNE:
5887 		__reg_combine_min_max(false_src, false_dst);
5888 		break;
5889 	}
5890 }
5891 
5892 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5893 				 struct bpf_reg_state *reg, u32 id,
5894 				 bool is_null)
5895 {
5896 	if (reg_type_may_be_null(reg->type) && reg->id == id) {
5897 		/* Old offset (both fixed and variable parts) should
5898 		 * have been known-zero, because we don't allow pointer
5899 		 * arithmetic on pointers that might be NULL.
5900 		 */
5901 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5902 				 !tnum_equals_const(reg->var_off, 0) ||
5903 				 reg->off)) {
5904 			__mark_reg_known_zero(reg);
5905 			reg->off = 0;
5906 		}
5907 		if (is_null) {
5908 			reg->type = SCALAR_VALUE;
5909 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5910 			if (reg->map_ptr->inner_map_meta) {
5911 				reg->type = CONST_PTR_TO_MAP;
5912 				reg->map_ptr = reg->map_ptr->inner_map_meta;
5913 			} else if (reg->map_ptr->map_type ==
5914 				   BPF_MAP_TYPE_XSKMAP) {
5915 				reg->type = PTR_TO_XDP_SOCK;
5916 			} else {
5917 				reg->type = PTR_TO_MAP_VALUE;
5918 			}
5919 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5920 			reg->type = PTR_TO_SOCKET;
5921 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5922 			reg->type = PTR_TO_SOCK_COMMON;
5923 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5924 			reg->type = PTR_TO_TCP_SOCK;
5925 		}
5926 		if (is_null) {
5927 			/* We don't need id and ref_obj_id from this point
5928 			 * onwards anymore, thus we should better reset it,
5929 			 * so that state pruning has chances to take effect.
5930 			 */
5931 			reg->id = 0;
5932 			reg->ref_obj_id = 0;
5933 		} else if (!reg_may_point_to_spin_lock(reg)) {
5934 			/* For not-NULL ptr, reg->ref_obj_id will be reset
5935 			 * in release_reg_references().
5936 			 *
5937 			 * reg->id is still used by spin_lock ptr. Other
5938 			 * than spin_lock ptr type, reg->id can be reset.
5939 			 */
5940 			reg->id = 0;
5941 		}
5942 	}
5943 }
5944 
5945 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5946 				    bool is_null)
5947 {
5948 	struct bpf_reg_state *reg;
5949 	int i;
5950 
5951 	for (i = 0; i < MAX_BPF_REG; i++)
5952 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5953 
5954 	bpf_for_each_spilled_reg(i, state, reg) {
5955 		if (!reg)
5956 			continue;
5957 		mark_ptr_or_null_reg(state, reg, id, is_null);
5958 	}
5959 }
5960 
5961 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5962  * be folded together at some point.
5963  */
5964 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5965 				  bool is_null)
5966 {
5967 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5968 	struct bpf_reg_state *regs = state->regs;
5969 	u32 ref_obj_id = regs[regno].ref_obj_id;
5970 	u32 id = regs[regno].id;
5971 	int i;
5972 
5973 	if (ref_obj_id && ref_obj_id == id && is_null)
5974 		/* regs[regno] is in the " == NULL" branch.
5975 		 * No one could have freed the reference state before
5976 		 * doing the NULL check.
5977 		 */
5978 		WARN_ON_ONCE(release_reference_state(state, id));
5979 
5980 	for (i = 0; i <= vstate->curframe; i++)
5981 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5982 }
5983 
5984 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5985 				   struct bpf_reg_state *dst_reg,
5986 				   struct bpf_reg_state *src_reg,
5987 				   struct bpf_verifier_state *this_branch,
5988 				   struct bpf_verifier_state *other_branch)
5989 {
5990 	if (BPF_SRC(insn->code) != BPF_X)
5991 		return false;
5992 
5993 	/* Pointers are always 64-bit. */
5994 	if (BPF_CLASS(insn->code) == BPF_JMP32)
5995 		return false;
5996 
5997 	switch (BPF_OP(insn->code)) {
5998 	case BPF_JGT:
5999 		if ((dst_reg->type == PTR_TO_PACKET &&
6000 		     src_reg->type == PTR_TO_PACKET_END) ||
6001 		    (dst_reg->type == PTR_TO_PACKET_META &&
6002 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6003 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6004 			find_good_pkt_pointers(this_branch, dst_reg,
6005 					       dst_reg->type, false);
6006 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6007 			    src_reg->type == PTR_TO_PACKET) ||
6008 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6009 			    src_reg->type == PTR_TO_PACKET_META)) {
6010 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
6011 			find_good_pkt_pointers(other_branch, src_reg,
6012 					       src_reg->type, true);
6013 		} else {
6014 			return false;
6015 		}
6016 		break;
6017 	case BPF_JLT:
6018 		if ((dst_reg->type == PTR_TO_PACKET &&
6019 		     src_reg->type == PTR_TO_PACKET_END) ||
6020 		    (dst_reg->type == PTR_TO_PACKET_META &&
6021 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6022 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6023 			find_good_pkt_pointers(other_branch, dst_reg,
6024 					       dst_reg->type, true);
6025 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6026 			    src_reg->type == PTR_TO_PACKET) ||
6027 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6028 			    src_reg->type == PTR_TO_PACKET_META)) {
6029 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
6030 			find_good_pkt_pointers(this_branch, src_reg,
6031 					       src_reg->type, false);
6032 		} else {
6033 			return false;
6034 		}
6035 		break;
6036 	case BPF_JGE:
6037 		if ((dst_reg->type == PTR_TO_PACKET &&
6038 		     src_reg->type == PTR_TO_PACKET_END) ||
6039 		    (dst_reg->type == PTR_TO_PACKET_META &&
6040 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6041 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6042 			find_good_pkt_pointers(this_branch, dst_reg,
6043 					       dst_reg->type, true);
6044 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6045 			    src_reg->type == PTR_TO_PACKET) ||
6046 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6047 			    src_reg->type == PTR_TO_PACKET_META)) {
6048 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6049 			find_good_pkt_pointers(other_branch, src_reg,
6050 					       src_reg->type, false);
6051 		} else {
6052 			return false;
6053 		}
6054 		break;
6055 	case BPF_JLE:
6056 		if ((dst_reg->type == PTR_TO_PACKET &&
6057 		     src_reg->type == PTR_TO_PACKET_END) ||
6058 		    (dst_reg->type == PTR_TO_PACKET_META &&
6059 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6060 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6061 			find_good_pkt_pointers(other_branch, dst_reg,
6062 					       dst_reg->type, false);
6063 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
6064 			    src_reg->type == PTR_TO_PACKET) ||
6065 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6066 			    src_reg->type == PTR_TO_PACKET_META)) {
6067 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6068 			find_good_pkt_pointers(this_branch, src_reg,
6069 					       src_reg->type, true);
6070 		} else {
6071 			return false;
6072 		}
6073 		break;
6074 	default:
6075 		return false;
6076 	}
6077 
6078 	return true;
6079 }
6080 
6081 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6082 			     struct bpf_insn *insn, int *insn_idx)
6083 {
6084 	struct bpf_verifier_state *this_branch = env->cur_state;
6085 	struct bpf_verifier_state *other_branch;
6086 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6087 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6088 	u8 opcode = BPF_OP(insn->code);
6089 	bool is_jmp32;
6090 	int pred = -1;
6091 	int err;
6092 
6093 	/* Only conditional jumps are expected to reach here. */
6094 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
6095 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6096 		return -EINVAL;
6097 	}
6098 
6099 	if (BPF_SRC(insn->code) == BPF_X) {
6100 		if (insn->imm != 0) {
6101 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6102 			return -EINVAL;
6103 		}
6104 
6105 		/* check src1 operand */
6106 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6107 		if (err)
6108 			return err;
6109 
6110 		if (is_pointer_value(env, insn->src_reg)) {
6111 			verbose(env, "R%d pointer comparison prohibited\n",
6112 				insn->src_reg);
6113 			return -EACCES;
6114 		}
6115 		src_reg = &regs[insn->src_reg];
6116 	} else {
6117 		if (insn->src_reg != BPF_REG_0) {
6118 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6119 			return -EINVAL;
6120 		}
6121 	}
6122 
6123 	/* check src2 operand */
6124 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6125 	if (err)
6126 		return err;
6127 
6128 	dst_reg = &regs[insn->dst_reg];
6129 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6130 
6131 	if (BPF_SRC(insn->code) == BPF_K)
6132 		pred = is_branch_taken(dst_reg, insn->imm,
6133 				       opcode, is_jmp32);
6134 	else if (src_reg->type == SCALAR_VALUE &&
6135 		 tnum_is_const(src_reg->var_off))
6136 		pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6137 				       opcode, is_jmp32);
6138 	if (pred >= 0) {
6139 		err = mark_chain_precision(env, insn->dst_reg);
6140 		if (BPF_SRC(insn->code) == BPF_X && !err)
6141 			err = mark_chain_precision(env, insn->src_reg);
6142 		if (err)
6143 			return err;
6144 	}
6145 	if (pred == 1) {
6146 		/* only follow the goto, ignore fall-through */
6147 		*insn_idx += insn->off;
6148 		return 0;
6149 	} else if (pred == 0) {
6150 		/* only follow fall-through branch, since
6151 		 * that's where the program will go
6152 		 */
6153 		return 0;
6154 	}
6155 
6156 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6157 				  false);
6158 	if (!other_branch)
6159 		return -EFAULT;
6160 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6161 
6162 	/* detect if we are comparing against a constant value so we can adjust
6163 	 * our min/max values for our dst register.
6164 	 * this is only legit if both are scalars (or pointers to the same
6165 	 * object, I suppose, but we don't support that right now), because
6166 	 * otherwise the different base pointers mean the offsets aren't
6167 	 * comparable.
6168 	 */
6169 	if (BPF_SRC(insn->code) == BPF_X) {
6170 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6171 		struct bpf_reg_state lo_reg0 = *dst_reg;
6172 		struct bpf_reg_state lo_reg1 = *src_reg;
6173 		struct bpf_reg_state *src_lo, *dst_lo;
6174 
6175 		dst_lo = &lo_reg0;
6176 		src_lo = &lo_reg1;
6177 		coerce_reg_to_size(dst_lo, 4);
6178 		coerce_reg_to_size(src_lo, 4);
6179 
6180 		if (dst_reg->type == SCALAR_VALUE &&
6181 		    src_reg->type == SCALAR_VALUE) {
6182 			if (tnum_is_const(src_reg->var_off) ||
6183 			    (is_jmp32 && tnum_is_const(src_lo->var_off)))
6184 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
6185 						dst_reg,
6186 						is_jmp32
6187 						? src_lo->var_off.value
6188 						: src_reg->var_off.value,
6189 						opcode, is_jmp32);
6190 			else if (tnum_is_const(dst_reg->var_off) ||
6191 				 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
6192 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6193 						    src_reg,
6194 						    is_jmp32
6195 						    ? dst_lo->var_off.value
6196 						    : dst_reg->var_off.value,
6197 						    opcode, is_jmp32);
6198 			else if (!is_jmp32 &&
6199 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
6200 				/* Comparing for equality, we can combine knowledge */
6201 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
6202 						    &other_branch_regs[insn->dst_reg],
6203 						    src_reg, dst_reg, opcode);
6204 		}
6205 	} else if (dst_reg->type == SCALAR_VALUE) {
6206 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
6207 					dst_reg, insn->imm, opcode, is_jmp32);
6208 	}
6209 
6210 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6211 	 * NOTE: these optimizations below are related with pointer comparison
6212 	 *       which will never be JMP32.
6213 	 */
6214 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6215 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6216 	    reg_type_may_be_null(dst_reg->type)) {
6217 		/* Mark all identical registers in each branch as either
6218 		 * safe or unknown depending R == 0 or R != 0 conditional.
6219 		 */
6220 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6221 				      opcode == BPF_JNE);
6222 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6223 				      opcode == BPF_JEQ);
6224 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6225 					   this_branch, other_branch) &&
6226 		   is_pointer_value(env, insn->dst_reg)) {
6227 		verbose(env, "R%d pointer comparison prohibited\n",
6228 			insn->dst_reg);
6229 		return -EACCES;
6230 	}
6231 	if (env->log.level & BPF_LOG_LEVEL)
6232 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6233 	return 0;
6234 }
6235 
6236 /* verify BPF_LD_IMM64 instruction */
6237 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6238 {
6239 	struct bpf_insn_aux_data *aux = cur_aux(env);
6240 	struct bpf_reg_state *regs = cur_regs(env);
6241 	struct bpf_map *map;
6242 	int err;
6243 
6244 	if (BPF_SIZE(insn->code) != BPF_DW) {
6245 		verbose(env, "invalid BPF_LD_IMM insn\n");
6246 		return -EINVAL;
6247 	}
6248 	if (insn->off != 0) {
6249 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6250 		return -EINVAL;
6251 	}
6252 
6253 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
6254 	if (err)
6255 		return err;
6256 
6257 	if (insn->src_reg == 0) {
6258 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6259 
6260 		regs[insn->dst_reg].type = SCALAR_VALUE;
6261 		__mark_reg_known(&regs[insn->dst_reg], imm);
6262 		return 0;
6263 	}
6264 
6265 	map = env->used_maps[aux->map_index];
6266 	mark_reg_known_zero(env, regs, insn->dst_reg);
6267 	regs[insn->dst_reg].map_ptr = map;
6268 
6269 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6270 		regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6271 		regs[insn->dst_reg].off = aux->map_off;
6272 		if (map_value_has_spin_lock(map))
6273 			regs[insn->dst_reg].id = ++env->id_gen;
6274 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6275 		regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6276 	} else {
6277 		verbose(env, "bpf verifier is misconfigured\n");
6278 		return -EINVAL;
6279 	}
6280 
6281 	return 0;
6282 }
6283 
6284 static bool may_access_skb(enum bpf_prog_type type)
6285 {
6286 	switch (type) {
6287 	case BPF_PROG_TYPE_SOCKET_FILTER:
6288 	case BPF_PROG_TYPE_SCHED_CLS:
6289 	case BPF_PROG_TYPE_SCHED_ACT:
6290 		return true;
6291 	default:
6292 		return false;
6293 	}
6294 }
6295 
6296 /* verify safety of LD_ABS|LD_IND instructions:
6297  * - they can only appear in the programs where ctx == skb
6298  * - since they are wrappers of function calls, they scratch R1-R5 registers,
6299  *   preserve R6-R9, and store return value into R0
6300  *
6301  * Implicit input:
6302  *   ctx == skb == R6 == CTX
6303  *
6304  * Explicit input:
6305  *   SRC == any register
6306  *   IMM == 32-bit immediate
6307  *
6308  * Output:
6309  *   R0 - 8/16/32-bit skb data converted to cpu endianness
6310  */
6311 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6312 {
6313 	struct bpf_reg_state *regs = cur_regs(env);
6314 	static const int ctx_reg = BPF_REG_6;
6315 	u8 mode = BPF_MODE(insn->code);
6316 	int i, err;
6317 
6318 	if (!may_access_skb(env->prog->type)) {
6319 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6320 		return -EINVAL;
6321 	}
6322 
6323 	if (!env->ops->gen_ld_abs) {
6324 		verbose(env, "bpf verifier is misconfigured\n");
6325 		return -EINVAL;
6326 	}
6327 
6328 	if (env->subprog_cnt > 1) {
6329 		/* when program has LD_ABS insn JITs and interpreter assume
6330 		 * that r1 == ctx == skb which is not the case for callees
6331 		 * that can have arbitrary arguments. It's problematic
6332 		 * for main prog as well since JITs would need to analyze
6333 		 * all functions in order to make proper register save/restore
6334 		 * decisions in the main prog. Hence disallow LD_ABS with calls
6335 		 */
6336 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6337 		return -EINVAL;
6338 	}
6339 
6340 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6341 	    BPF_SIZE(insn->code) == BPF_DW ||
6342 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6343 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6344 		return -EINVAL;
6345 	}
6346 
6347 	/* check whether implicit source operand (register R6) is readable */
6348 	err = check_reg_arg(env, ctx_reg, SRC_OP);
6349 	if (err)
6350 		return err;
6351 
6352 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6353 	 * gen_ld_abs() may terminate the program at runtime, leading to
6354 	 * reference leak.
6355 	 */
6356 	err = check_reference_leak(env);
6357 	if (err) {
6358 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6359 		return err;
6360 	}
6361 
6362 	if (env->cur_state->active_spin_lock) {
6363 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6364 		return -EINVAL;
6365 	}
6366 
6367 	if (regs[ctx_reg].type != PTR_TO_CTX) {
6368 		verbose(env,
6369 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6370 		return -EINVAL;
6371 	}
6372 
6373 	if (mode == BPF_IND) {
6374 		/* check explicit source operand */
6375 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
6376 		if (err)
6377 			return err;
6378 	}
6379 
6380 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6381 	if (err < 0)
6382 		return err;
6383 
6384 	/* reset caller saved regs to unreadable */
6385 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
6386 		mark_reg_not_init(env, regs, caller_saved[i]);
6387 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6388 	}
6389 
6390 	/* mark destination R0 register as readable, since it contains
6391 	 * the value fetched from the packet.
6392 	 * Already marked as written above.
6393 	 */
6394 	mark_reg_unknown(env, regs, BPF_REG_0);
6395 	/* ld_abs load up to 32-bit skb data. */
6396 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6397 	return 0;
6398 }
6399 
6400 static int check_return_code(struct bpf_verifier_env *env)
6401 {
6402 	struct tnum enforce_attach_type_range = tnum_unknown;
6403 	const struct bpf_prog *prog = env->prog;
6404 	struct bpf_reg_state *reg;
6405 	struct tnum range = tnum_range(0, 1);
6406 	int err;
6407 
6408 	/* The struct_ops func-ptr's return type could be "void" */
6409 	if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS &&
6410 	    !prog->aux->attach_func_proto->type)
6411 		return 0;
6412 
6413 	/* eBPF calling convetion is such that R0 is used
6414 	 * to return the value from eBPF program.
6415 	 * Make sure that it's readable at this time
6416 	 * of bpf_exit, which means that program wrote
6417 	 * something into it earlier
6418 	 */
6419 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6420 	if (err)
6421 		return err;
6422 
6423 	if (is_pointer_value(env, BPF_REG_0)) {
6424 		verbose(env, "R0 leaks addr as return value\n");
6425 		return -EACCES;
6426 	}
6427 
6428 	switch (env->prog->type) {
6429 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6430 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6431 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6432 			range = tnum_range(1, 1);
6433 		break;
6434 	case BPF_PROG_TYPE_CGROUP_SKB:
6435 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6436 			range = tnum_range(0, 3);
6437 			enforce_attach_type_range = tnum_range(2, 3);
6438 		}
6439 		break;
6440 	case BPF_PROG_TYPE_CGROUP_SOCK:
6441 	case BPF_PROG_TYPE_SOCK_OPS:
6442 	case BPF_PROG_TYPE_CGROUP_DEVICE:
6443 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
6444 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6445 		break;
6446 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6447 		if (!env->prog->aux->attach_btf_id)
6448 			return 0;
6449 		range = tnum_const(0);
6450 		break;
6451 	default:
6452 		return 0;
6453 	}
6454 
6455 	reg = cur_regs(env) + BPF_REG_0;
6456 	if (reg->type != SCALAR_VALUE) {
6457 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6458 			reg_type_str[reg->type]);
6459 		return -EINVAL;
6460 	}
6461 
6462 	if (!tnum_in(range, reg->var_off)) {
6463 		char tn_buf[48];
6464 
6465 		verbose(env, "At program exit the register R0 ");
6466 		if (!tnum_is_unknown(reg->var_off)) {
6467 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6468 			verbose(env, "has value %s", tn_buf);
6469 		} else {
6470 			verbose(env, "has unknown scalar value");
6471 		}
6472 		tnum_strn(tn_buf, sizeof(tn_buf), range);
6473 		verbose(env, " should have been in %s\n", tn_buf);
6474 		return -EINVAL;
6475 	}
6476 
6477 	if (!tnum_is_unknown(enforce_attach_type_range) &&
6478 	    tnum_in(enforce_attach_type_range, reg->var_off))
6479 		env->prog->enforce_expected_attach_type = 1;
6480 	return 0;
6481 }
6482 
6483 /* non-recursive DFS pseudo code
6484  * 1  procedure DFS-iterative(G,v):
6485  * 2      label v as discovered
6486  * 3      let S be a stack
6487  * 4      S.push(v)
6488  * 5      while S is not empty
6489  * 6            t <- S.pop()
6490  * 7            if t is what we're looking for:
6491  * 8                return t
6492  * 9            for all edges e in G.adjacentEdges(t) do
6493  * 10               if edge e is already labelled
6494  * 11                   continue with the next edge
6495  * 12               w <- G.adjacentVertex(t,e)
6496  * 13               if vertex w is not discovered and not explored
6497  * 14                   label e as tree-edge
6498  * 15                   label w as discovered
6499  * 16                   S.push(w)
6500  * 17                   continue at 5
6501  * 18               else if vertex w is discovered
6502  * 19                   label e as back-edge
6503  * 20               else
6504  * 21                   // vertex w is explored
6505  * 22                   label e as forward- or cross-edge
6506  * 23           label t as explored
6507  * 24           S.pop()
6508  *
6509  * convention:
6510  * 0x10 - discovered
6511  * 0x11 - discovered and fall-through edge labelled
6512  * 0x12 - discovered and fall-through and branch edges labelled
6513  * 0x20 - explored
6514  */
6515 
6516 enum {
6517 	DISCOVERED = 0x10,
6518 	EXPLORED = 0x20,
6519 	FALLTHROUGH = 1,
6520 	BRANCH = 2,
6521 };
6522 
6523 static u32 state_htab_size(struct bpf_verifier_env *env)
6524 {
6525 	return env->prog->len;
6526 }
6527 
6528 static struct bpf_verifier_state_list **explored_state(
6529 					struct bpf_verifier_env *env,
6530 					int idx)
6531 {
6532 	struct bpf_verifier_state *cur = env->cur_state;
6533 	struct bpf_func_state *state = cur->frame[cur->curframe];
6534 
6535 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6536 }
6537 
6538 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6539 {
6540 	env->insn_aux_data[idx].prune_point = true;
6541 }
6542 
6543 /* t, w, e - match pseudo-code above:
6544  * t - index of current instruction
6545  * w - next instruction
6546  * e - edge
6547  */
6548 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6549 		     bool loop_ok)
6550 {
6551 	int *insn_stack = env->cfg.insn_stack;
6552 	int *insn_state = env->cfg.insn_state;
6553 
6554 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6555 		return 0;
6556 
6557 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6558 		return 0;
6559 
6560 	if (w < 0 || w >= env->prog->len) {
6561 		verbose_linfo(env, t, "%d: ", t);
6562 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
6563 		return -EINVAL;
6564 	}
6565 
6566 	if (e == BRANCH)
6567 		/* mark branch target for state pruning */
6568 		init_explored_state(env, w);
6569 
6570 	if (insn_state[w] == 0) {
6571 		/* tree-edge */
6572 		insn_state[t] = DISCOVERED | e;
6573 		insn_state[w] = DISCOVERED;
6574 		if (env->cfg.cur_stack >= env->prog->len)
6575 			return -E2BIG;
6576 		insn_stack[env->cfg.cur_stack++] = w;
6577 		return 1;
6578 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6579 		if (loop_ok && env->allow_ptr_leaks)
6580 			return 0;
6581 		verbose_linfo(env, t, "%d: ", t);
6582 		verbose_linfo(env, w, "%d: ", w);
6583 		verbose(env, "back-edge from insn %d to %d\n", t, w);
6584 		return -EINVAL;
6585 	} else if (insn_state[w] == EXPLORED) {
6586 		/* forward- or cross-edge */
6587 		insn_state[t] = DISCOVERED | e;
6588 	} else {
6589 		verbose(env, "insn state internal bug\n");
6590 		return -EFAULT;
6591 	}
6592 	return 0;
6593 }
6594 
6595 /* non-recursive depth-first-search to detect loops in BPF program
6596  * loop == back-edge in directed graph
6597  */
6598 static int check_cfg(struct bpf_verifier_env *env)
6599 {
6600 	struct bpf_insn *insns = env->prog->insnsi;
6601 	int insn_cnt = env->prog->len;
6602 	int *insn_stack, *insn_state;
6603 	int ret = 0;
6604 	int i, t;
6605 
6606 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6607 	if (!insn_state)
6608 		return -ENOMEM;
6609 
6610 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6611 	if (!insn_stack) {
6612 		kvfree(insn_state);
6613 		return -ENOMEM;
6614 	}
6615 
6616 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6617 	insn_stack[0] = 0; /* 0 is the first instruction */
6618 	env->cfg.cur_stack = 1;
6619 
6620 peek_stack:
6621 	if (env->cfg.cur_stack == 0)
6622 		goto check_state;
6623 	t = insn_stack[env->cfg.cur_stack - 1];
6624 
6625 	if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6626 	    BPF_CLASS(insns[t].code) == BPF_JMP32) {
6627 		u8 opcode = BPF_OP(insns[t].code);
6628 
6629 		if (opcode == BPF_EXIT) {
6630 			goto mark_explored;
6631 		} else if (opcode == BPF_CALL) {
6632 			ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6633 			if (ret == 1)
6634 				goto peek_stack;
6635 			else if (ret < 0)
6636 				goto err_free;
6637 			if (t + 1 < insn_cnt)
6638 				init_explored_state(env, t + 1);
6639 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6640 				init_explored_state(env, t);
6641 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6642 						env, false);
6643 				if (ret == 1)
6644 					goto peek_stack;
6645 				else if (ret < 0)
6646 					goto err_free;
6647 			}
6648 		} else if (opcode == BPF_JA) {
6649 			if (BPF_SRC(insns[t].code) != BPF_K) {
6650 				ret = -EINVAL;
6651 				goto err_free;
6652 			}
6653 			/* unconditional jump with single edge */
6654 			ret = push_insn(t, t + insns[t].off + 1,
6655 					FALLTHROUGH, env, true);
6656 			if (ret == 1)
6657 				goto peek_stack;
6658 			else if (ret < 0)
6659 				goto err_free;
6660 			/* unconditional jmp is not a good pruning point,
6661 			 * but it's marked, since backtracking needs
6662 			 * to record jmp history in is_state_visited().
6663 			 */
6664 			init_explored_state(env, t + insns[t].off + 1);
6665 			/* tell verifier to check for equivalent states
6666 			 * after every call and jump
6667 			 */
6668 			if (t + 1 < insn_cnt)
6669 				init_explored_state(env, t + 1);
6670 		} else {
6671 			/* conditional jump with two edges */
6672 			init_explored_state(env, t);
6673 			ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6674 			if (ret == 1)
6675 				goto peek_stack;
6676 			else if (ret < 0)
6677 				goto err_free;
6678 
6679 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6680 			if (ret == 1)
6681 				goto peek_stack;
6682 			else if (ret < 0)
6683 				goto err_free;
6684 		}
6685 	} else {
6686 		/* all other non-branch instructions with single
6687 		 * fall-through edge
6688 		 */
6689 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6690 		if (ret == 1)
6691 			goto peek_stack;
6692 		else if (ret < 0)
6693 			goto err_free;
6694 	}
6695 
6696 mark_explored:
6697 	insn_state[t] = EXPLORED;
6698 	if (env->cfg.cur_stack-- <= 0) {
6699 		verbose(env, "pop stack internal bug\n");
6700 		ret = -EFAULT;
6701 		goto err_free;
6702 	}
6703 	goto peek_stack;
6704 
6705 check_state:
6706 	for (i = 0; i < insn_cnt; i++) {
6707 		if (insn_state[i] != EXPLORED) {
6708 			verbose(env, "unreachable insn %d\n", i);
6709 			ret = -EINVAL;
6710 			goto err_free;
6711 		}
6712 	}
6713 	ret = 0; /* cfg looks good */
6714 
6715 err_free:
6716 	kvfree(insn_state);
6717 	kvfree(insn_stack);
6718 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
6719 	return ret;
6720 }
6721 
6722 /* The minimum supported BTF func info size */
6723 #define MIN_BPF_FUNCINFO_SIZE	8
6724 #define MAX_FUNCINFO_REC_SIZE	252
6725 
6726 static int check_btf_func(struct bpf_verifier_env *env,
6727 			  const union bpf_attr *attr,
6728 			  union bpf_attr __user *uattr)
6729 {
6730 	u32 i, nfuncs, urec_size, min_size;
6731 	u32 krec_size = sizeof(struct bpf_func_info);
6732 	struct bpf_func_info *krecord;
6733 	struct bpf_func_info_aux *info_aux = NULL;
6734 	const struct btf_type *type;
6735 	struct bpf_prog *prog;
6736 	const struct btf *btf;
6737 	void __user *urecord;
6738 	u32 prev_offset = 0;
6739 	int ret = 0;
6740 
6741 	nfuncs = attr->func_info_cnt;
6742 	if (!nfuncs)
6743 		return 0;
6744 
6745 	if (nfuncs != env->subprog_cnt) {
6746 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6747 		return -EINVAL;
6748 	}
6749 
6750 	urec_size = attr->func_info_rec_size;
6751 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6752 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
6753 	    urec_size % sizeof(u32)) {
6754 		verbose(env, "invalid func info rec size %u\n", urec_size);
6755 		return -EINVAL;
6756 	}
6757 
6758 	prog = env->prog;
6759 	btf = prog->aux->btf;
6760 
6761 	urecord = u64_to_user_ptr(attr->func_info);
6762 	min_size = min_t(u32, krec_size, urec_size);
6763 
6764 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6765 	if (!krecord)
6766 		return -ENOMEM;
6767 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6768 	if (!info_aux)
6769 		goto err_free;
6770 
6771 	for (i = 0; i < nfuncs; i++) {
6772 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6773 		if (ret) {
6774 			if (ret == -E2BIG) {
6775 				verbose(env, "nonzero tailing record in func info");
6776 				/* set the size kernel expects so loader can zero
6777 				 * out the rest of the record.
6778 				 */
6779 				if (put_user(min_size, &uattr->func_info_rec_size))
6780 					ret = -EFAULT;
6781 			}
6782 			goto err_free;
6783 		}
6784 
6785 		if (copy_from_user(&krecord[i], urecord, min_size)) {
6786 			ret = -EFAULT;
6787 			goto err_free;
6788 		}
6789 
6790 		/* check insn_off */
6791 		if (i == 0) {
6792 			if (krecord[i].insn_off) {
6793 				verbose(env,
6794 					"nonzero insn_off %u for the first func info record",
6795 					krecord[i].insn_off);
6796 				ret = -EINVAL;
6797 				goto err_free;
6798 			}
6799 		} else if (krecord[i].insn_off <= prev_offset) {
6800 			verbose(env,
6801 				"same or smaller insn offset (%u) than previous func info record (%u)",
6802 				krecord[i].insn_off, prev_offset);
6803 			ret = -EINVAL;
6804 			goto err_free;
6805 		}
6806 
6807 		if (env->subprog_info[i].start != krecord[i].insn_off) {
6808 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6809 			ret = -EINVAL;
6810 			goto err_free;
6811 		}
6812 
6813 		/* check type_id */
6814 		type = btf_type_by_id(btf, krecord[i].type_id);
6815 		if (!type || !btf_type_is_func(type)) {
6816 			verbose(env, "invalid type id %d in func info",
6817 				krecord[i].type_id);
6818 			ret = -EINVAL;
6819 			goto err_free;
6820 		}
6821 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
6822 		prev_offset = krecord[i].insn_off;
6823 		urecord += urec_size;
6824 	}
6825 
6826 	prog->aux->func_info = krecord;
6827 	prog->aux->func_info_cnt = nfuncs;
6828 	prog->aux->func_info_aux = info_aux;
6829 	return 0;
6830 
6831 err_free:
6832 	kvfree(krecord);
6833 	kfree(info_aux);
6834 	return ret;
6835 }
6836 
6837 static void adjust_btf_func(struct bpf_verifier_env *env)
6838 {
6839 	struct bpf_prog_aux *aux = env->prog->aux;
6840 	int i;
6841 
6842 	if (!aux->func_info)
6843 		return;
6844 
6845 	for (i = 0; i < env->subprog_cnt; i++)
6846 		aux->func_info[i].insn_off = env->subprog_info[i].start;
6847 }
6848 
6849 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
6850 		sizeof(((struct bpf_line_info *)(0))->line_col))
6851 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
6852 
6853 static int check_btf_line(struct bpf_verifier_env *env,
6854 			  const union bpf_attr *attr,
6855 			  union bpf_attr __user *uattr)
6856 {
6857 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6858 	struct bpf_subprog_info *sub;
6859 	struct bpf_line_info *linfo;
6860 	struct bpf_prog *prog;
6861 	const struct btf *btf;
6862 	void __user *ulinfo;
6863 	int err;
6864 
6865 	nr_linfo = attr->line_info_cnt;
6866 	if (!nr_linfo)
6867 		return 0;
6868 
6869 	rec_size = attr->line_info_rec_size;
6870 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6871 	    rec_size > MAX_LINEINFO_REC_SIZE ||
6872 	    rec_size & (sizeof(u32) - 1))
6873 		return -EINVAL;
6874 
6875 	/* Need to zero it in case the userspace may
6876 	 * pass in a smaller bpf_line_info object.
6877 	 */
6878 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6879 			 GFP_KERNEL | __GFP_NOWARN);
6880 	if (!linfo)
6881 		return -ENOMEM;
6882 
6883 	prog = env->prog;
6884 	btf = prog->aux->btf;
6885 
6886 	s = 0;
6887 	sub = env->subprog_info;
6888 	ulinfo = u64_to_user_ptr(attr->line_info);
6889 	expected_size = sizeof(struct bpf_line_info);
6890 	ncopy = min_t(u32, expected_size, rec_size);
6891 	for (i = 0; i < nr_linfo; i++) {
6892 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6893 		if (err) {
6894 			if (err == -E2BIG) {
6895 				verbose(env, "nonzero tailing record in line_info");
6896 				if (put_user(expected_size,
6897 					     &uattr->line_info_rec_size))
6898 					err = -EFAULT;
6899 			}
6900 			goto err_free;
6901 		}
6902 
6903 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6904 			err = -EFAULT;
6905 			goto err_free;
6906 		}
6907 
6908 		/*
6909 		 * Check insn_off to ensure
6910 		 * 1) strictly increasing AND
6911 		 * 2) bounded by prog->len
6912 		 *
6913 		 * The linfo[0].insn_off == 0 check logically falls into
6914 		 * the later "missing bpf_line_info for func..." case
6915 		 * because the first linfo[0].insn_off must be the
6916 		 * first sub also and the first sub must have
6917 		 * subprog_info[0].start == 0.
6918 		 */
6919 		if ((i && linfo[i].insn_off <= prev_offset) ||
6920 		    linfo[i].insn_off >= prog->len) {
6921 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6922 				i, linfo[i].insn_off, prev_offset,
6923 				prog->len);
6924 			err = -EINVAL;
6925 			goto err_free;
6926 		}
6927 
6928 		if (!prog->insnsi[linfo[i].insn_off].code) {
6929 			verbose(env,
6930 				"Invalid insn code at line_info[%u].insn_off\n",
6931 				i);
6932 			err = -EINVAL;
6933 			goto err_free;
6934 		}
6935 
6936 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6937 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6938 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6939 			err = -EINVAL;
6940 			goto err_free;
6941 		}
6942 
6943 		if (s != env->subprog_cnt) {
6944 			if (linfo[i].insn_off == sub[s].start) {
6945 				sub[s].linfo_idx = i;
6946 				s++;
6947 			} else if (sub[s].start < linfo[i].insn_off) {
6948 				verbose(env, "missing bpf_line_info for func#%u\n", s);
6949 				err = -EINVAL;
6950 				goto err_free;
6951 			}
6952 		}
6953 
6954 		prev_offset = linfo[i].insn_off;
6955 		ulinfo += rec_size;
6956 	}
6957 
6958 	if (s != env->subprog_cnt) {
6959 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6960 			env->subprog_cnt - s, s);
6961 		err = -EINVAL;
6962 		goto err_free;
6963 	}
6964 
6965 	prog->aux->linfo = linfo;
6966 	prog->aux->nr_linfo = nr_linfo;
6967 
6968 	return 0;
6969 
6970 err_free:
6971 	kvfree(linfo);
6972 	return err;
6973 }
6974 
6975 static int check_btf_info(struct bpf_verifier_env *env,
6976 			  const union bpf_attr *attr,
6977 			  union bpf_attr __user *uattr)
6978 {
6979 	struct btf *btf;
6980 	int err;
6981 
6982 	if (!attr->func_info_cnt && !attr->line_info_cnt)
6983 		return 0;
6984 
6985 	btf = btf_get_by_fd(attr->prog_btf_fd);
6986 	if (IS_ERR(btf))
6987 		return PTR_ERR(btf);
6988 	env->prog->aux->btf = btf;
6989 
6990 	err = check_btf_func(env, attr, uattr);
6991 	if (err)
6992 		return err;
6993 
6994 	err = check_btf_line(env, attr, uattr);
6995 	if (err)
6996 		return err;
6997 
6998 	return 0;
6999 }
7000 
7001 /* check %cur's range satisfies %old's */
7002 static bool range_within(struct bpf_reg_state *old,
7003 			 struct bpf_reg_state *cur)
7004 {
7005 	return old->umin_value <= cur->umin_value &&
7006 	       old->umax_value >= cur->umax_value &&
7007 	       old->smin_value <= cur->smin_value &&
7008 	       old->smax_value >= cur->smax_value;
7009 }
7010 
7011 /* Maximum number of register states that can exist at once */
7012 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7013 struct idpair {
7014 	u32 old;
7015 	u32 cur;
7016 };
7017 
7018 /* If in the old state two registers had the same id, then they need to have
7019  * the same id in the new state as well.  But that id could be different from
7020  * the old state, so we need to track the mapping from old to new ids.
7021  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7022  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
7023  * regs with a different old id could still have new id 9, we don't care about
7024  * that.
7025  * So we look through our idmap to see if this old id has been seen before.  If
7026  * so, we require the new id to match; otherwise, we add the id pair to the map.
7027  */
7028 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7029 {
7030 	unsigned int i;
7031 
7032 	for (i = 0; i < ID_MAP_SIZE; i++) {
7033 		if (!idmap[i].old) {
7034 			/* Reached an empty slot; haven't seen this id before */
7035 			idmap[i].old = old_id;
7036 			idmap[i].cur = cur_id;
7037 			return true;
7038 		}
7039 		if (idmap[i].old == old_id)
7040 			return idmap[i].cur == cur_id;
7041 	}
7042 	/* We ran out of idmap slots, which should be impossible */
7043 	WARN_ON_ONCE(1);
7044 	return false;
7045 }
7046 
7047 static void clean_func_state(struct bpf_verifier_env *env,
7048 			     struct bpf_func_state *st)
7049 {
7050 	enum bpf_reg_liveness live;
7051 	int i, j;
7052 
7053 	for (i = 0; i < BPF_REG_FP; i++) {
7054 		live = st->regs[i].live;
7055 		/* liveness must not touch this register anymore */
7056 		st->regs[i].live |= REG_LIVE_DONE;
7057 		if (!(live & REG_LIVE_READ))
7058 			/* since the register is unused, clear its state
7059 			 * to make further comparison simpler
7060 			 */
7061 			__mark_reg_not_init(env, &st->regs[i]);
7062 	}
7063 
7064 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7065 		live = st->stack[i].spilled_ptr.live;
7066 		/* liveness must not touch this stack slot anymore */
7067 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7068 		if (!(live & REG_LIVE_READ)) {
7069 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7070 			for (j = 0; j < BPF_REG_SIZE; j++)
7071 				st->stack[i].slot_type[j] = STACK_INVALID;
7072 		}
7073 	}
7074 }
7075 
7076 static void clean_verifier_state(struct bpf_verifier_env *env,
7077 				 struct bpf_verifier_state *st)
7078 {
7079 	int i;
7080 
7081 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7082 		/* all regs in this state in all frames were already marked */
7083 		return;
7084 
7085 	for (i = 0; i <= st->curframe; i++)
7086 		clean_func_state(env, st->frame[i]);
7087 }
7088 
7089 /* the parentage chains form a tree.
7090  * the verifier states are added to state lists at given insn and
7091  * pushed into state stack for future exploration.
7092  * when the verifier reaches bpf_exit insn some of the verifer states
7093  * stored in the state lists have their final liveness state already,
7094  * but a lot of states will get revised from liveness point of view when
7095  * the verifier explores other branches.
7096  * Example:
7097  * 1: r0 = 1
7098  * 2: if r1 == 100 goto pc+1
7099  * 3: r0 = 2
7100  * 4: exit
7101  * when the verifier reaches exit insn the register r0 in the state list of
7102  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7103  * of insn 2 and goes exploring further. At the insn 4 it will walk the
7104  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7105  *
7106  * Since the verifier pushes the branch states as it sees them while exploring
7107  * the program the condition of walking the branch instruction for the second
7108  * time means that all states below this branch were already explored and
7109  * their final liveness markes are already propagated.
7110  * Hence when the verifier completes the search of state list in is_state_visited()
7111  * we can call this clean_live_states() function to mark all liveness states
7112  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7113  * will not be used.
7114  * This function also clears the registers and stack for states that !READ
7115  * to simplify state merging.
7116  *
7117  * Important note here that walking the same branch instruction in the callee
7118  * doesn't meant that the states are DONE. The verifier has to compare
7119  * the callsites
7120  */
7121 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7122 			      struct bpf_verifier_state *cur)
7123 {
7124 	struct bpf_verifier_state_list *sl;
7125 	int i;
7126 
7127 	sl = *explored_state(env, insn);
7128 	while (sl) {
7129 		if (sl->state.branches)
7130 			goto next;
7131 		if (sl->state.insn_idx != insn ||
7132 		    sl->state.curframe != cur->curframe)
7133 			goto next;
7134 		for (i = 0; i <= cur->curframe; i++)
7135 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7136 				goto next;
7137 		clean_verifier_state(env, &sl->state);
7138 next:
7139 		sl = sl->next;
7140 	}
7141 }
7142 
7143 /* Returns true if (rold safe implies rcur safe) */
7144 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7145 		    struct idpair *idmap)
7146 {
7147 	bool equal;
7148 
7149 	if (!(rold->live & REG_LIVE_READ))
7150 		/* explored state didn't use this */
7151 		return true;
7152 
7153 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7154 
7155 	if (rold->type == PTR_TO_STACK)
7156 		/* two stack pointers are equal only if they're pointing to
7157 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
7158 		 */
7159 		return equal && rold->frameno == rcur->frameno;
7160 
7161 	if (equal)
7162 		return true;
7163 
7164 	if (rold->type == NOT_INIT)
7165 		/* explored state can't have used this */
7166 		return true;
7167 	if (rcur->type == NOT_INIT)
7168 		return false;
7169 	switch (rold->type) {
7170 	case SCALAR_VALUE:
7171 		if (rcur->type == SCALAR_VALUE) {
7172 			if (!rold->precise && !rcur->precise)
7173 				return true;
7174 			/* new val must satisfy old val knowledge */
7175 			return range_within(rold, rcur) &&
7176 			       tnum_in(rold->var_off, rcur->var_off);
7177 		} else {
7178 			/* We're trying to use a pointer in place of a scalar.
7179 			 * Even if the scalar was unbounded, this could lead to
7180 			 * pointer leaks because scalars are allowed to leak
7181 			 * while pointers are not. We could make this safe in
7182 			 * special cases if root is calling us, but it's
7183 			 * probably not worth the hassle.
7184 			 */
7185 			return false;
7186 		}
7187 	case PTR_TO_MAP_VALUE:
7188 		/* If the new min/max/var_off satisfy the old ones and
7189 		 * everything else matches, we are OK.
7190 		 * 'id' is not compared, since it's only used for maps with
7191 		 * bpf_spin_lock inside map element and in such cases if
7192 		 * the rest of the prog is valid for one map element then
7193 		 * it's valid for all map elements regardless of the key
7194 		 * used in bpf_map_lookup()
7195 		 */
7196 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7197 		       range_within(rold, rcur) &&
7198 		       tnum_in(rold->var_off, rcur->var_off);
7199 	case PTR_TO_MAP_VALUE_OR_NULL:
7200 		/* a PTR_TO_MAP_VALUE could be safe to use as a
7201 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7202 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7203 		 * checked, doing so could have affected others with the same
7204 		 * id, and we can't check for that because we lost the id when
7205 		 * we converted to a PTR_TO_MAP_VALUE.
7206 		 */
7207 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7208 			return false;
7209 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7210 			return false;
7211 		/* Check our ids match any regs they're supposed to */
7212 		return check_ids(rold->id, rcur->id, idmap);
7213 	case PTR_TO_PACKET_META:
7214 	case PTR_TO_PACKET:
7215 		if (rcur->type != rold->type)
7216 			return false;
7217 		/* We must have at least as much range as the old ptr
7218 		 * did, so that any accesses which were safe before are
7219 		 * still safe.  This is true even if old range < old off,
7220 		 * since someone could have accessed through (ptr - k), or
7221 		 * even done ptr -= k in a register, to get a safe access.
7222 		 */
7223 		if (rold->range > rcur->range)
7224 			return false;
7225 		/* If the offsets don't match, we can't trust our alignment;
7226 		 * nor can we be sure that we won't fall out of range.
7227 		 */
7228 		if (rold->off != rcur->off)
7229 			return false;
7230 		/* id relations must be preserved */
7231 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7232 			return false;
7233 		/* new val must satisfy old val knowledge */
7234 		return range_within(rold, rcur) &&
7235 		       tnum_in(rold->var_off, rcur->var_off);
7236 	case PTR_TO_CTX:
7237 	case CONST_PTR_TO_MAP:
7238 	case PTR_TO_PACKET_END:
7239 	case PTR_TO_FLOW_KEYS:
7240 	case PTR_TO_SOCKET:
7241 	case PTR_TO_SOCKET_OR_NULL:
7242 	case PTR_TO_SOCK_COMMON:
7243 	case PTR_TO_SOCK_COMMON_OR_NULL:
7244 	case PTR_TO_TCP_SOCK:
7245 	case PTR_TO_TCP_SOCK_OR_NULL:
7246 	case PTR_TO_XDP_SOCK:
7247 		/* Only valid matches are exact, which memcmp() above
7248 		 * would have accepted
7249 		 */
7250 	default:
7251 		/* Don't know what's going on, just say it's not safe */
7252 		return false;
7253 	}
7254 
7255 	/* Shouldn't get here; if we do, say it's not safe */
7256 	WARN_ON_ONCE(1);
7257 	return false;
7258 }
7259 
7260 static bool stacksafe(struct bpf_func_state *old,
7261 		      struct bpf_func_state *cur,
7262 		      struct idpair *idmap)
7263 {
7264 	int i, spi;
7265 
7266 	/* walk slots of the explored stack and ignore any additional
7267 	 * slots in the current stack, since explored(safe) state
7268 	 * didn't use them
7269 	 */
7270 	for (i = 0; i < old->allocated_stack; i++) {
7271 		spi = i / BPF_REG_SIZE;
7272 
7273 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7274 			i += BPF_REG_SIZE - 1;
7275 			/* explored state didn't use this */
7276 			continue;
7277 		}
7278 
7279 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7280 			continue;
7281 
7282 		/* explored stack has more populated slots than current stack
7283 		 * and these slots were used
7284 		 */
7285 		if (i >= cur->allocated_stack)
7286 			return false;
7287 
7288 		/* if old state was safe with misc data in the stack
7289 		 * it will be safe with zero-initialized stack.
7290 		 * The opposite is not true
7291 		 */
7292 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7293 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7294 			continue;
7295 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7296 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7297 			/* Ex: old explored (safe) state has STACK_SPILL in
7298 			 * this stack slot, but current has has STACK_MISC ->
7299 			 * this verifier states are not equivalent,
7300 			 * return false to continue verification of this path
7301 			 */
7302 			return false;
7303 		if (i % BPF_REG_SIZE)
7304 			continue;
7305 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
7306 			continue;
7307 		if (!regsafe(&old->stack[spi].spilled_ptr,
7308 			     &cur->stack[spi].spilled_ptr,
7309 			     idmap))
7310 			/* when explored and current stack slot are both storing
7311 			 * spilled registers, check that stored pointers types
7312 			 * are the same as well.
7313 			 * Ex: explored safe path could have stored
7314 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7315 			 * but current path has stored:
7316 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7317 			 * such verifier states are not equivalent.
7318 			 * return false to continue verification of this path
7319 			 */
7320 			return false;
7321 	}
7322 	return true;
7323 }
7324 
7325 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7326 {
7327 	if (old->acquired_refs != cur->acquired_refs)
7328 		return false;
7329 	return !memcmp(old->refs, cur->refs,
7330 		       sizeof(*old->refs) * old->acquired_refs);
7331 }
7332 
7333 /* compare two verifier states
7334  *
7335  * all states stored in state_list are known to be valid, since
7336  * verifier reached 'bpf_exit' instruction through them
7337  *
7338  * this function is called when verifier exploring different branches of
7339  * execution popped from the state stack. If it sees an old state that has
7340  * more strict register state and more strict stack state then this execution
7341  * branch doesn't need to be explored further, since verifier already
7342  * concluded that more strict state leads to valid finish.
7343  *
7344  * Therefore two states are equivalent if register state is more conservative
7345  * and explored stack state is more conservative than the current one.
7346  * Example:
7347  *       explored                   current
7348  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7349  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7350  *
7351  * In other words if current stack state (one being explored) has more
7352  * valid slots than old one that already passed validation, it means
7353  * the verifier can stop exploring and conclude that current state is valid too
7354  *
7355  * Similarly with registers. If explored state has register type as invalid
7356  * whereas register type in current state is meaningful, it means that
7357  * the current state will reach 'bpf_exit' instruction safely
7358  */
7359 static bool func_states_equal(struct bpf_func_state *old,
7360 			      struct bpf_func_state *cur)
7361 {
7362 	struct idpair *idmap;
7363 	bool ret = false;
7364 	int i;
7365 
7366 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7367 	/* If we failed to allocate the idmap, just say it's not safe */
7368 	if (!idmap)
7369 		return false;
7370 
7371 	for (i = 0; i < MAX_BPF_REG; i++) {
7372 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7373 			goto out_free;
7374 	}
7375 
7376 	if (!stacksafe(old, cur, idmap))
7377 		goto out_free;
7378 
7379 	if (!refsafe(old, cur))
7380 		goto out_free;
7381 	ret = true;
7382 out_free:
7383 	kfree(idmap);
7384 	return ret;
7385 }
7386 
7387 static bool states_equal(struct bpf_verifier_env *env,
7388 			 struct bpf_verifier_state *old,
7389 			 struct bpf_verifier_state *cur)
7390 {
7391 	int i;
7392 
7393 	if (old->curframe != cur->curframe)
7394 		return false;
7395 
7396 	/* Verification state from speculative execution simulation
7397 	 * must never prune a non-speculative execution one.
7398 	 */
7399 	if (old->speculative && !cur->speculative)
7400 		return false;
7401 
7402 	if (old->active_spin_lock != cur->active_spin_lock)
7403 		return false;
7404 
7405 	/* for states to be equal callsites have to be the same
7406 	 * and all frame states need to be equivalent
7407 	 */
7408 	for (i = 0; i <= old->curframe; i++) {
7409 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
7410 			return false;
7411 		if (!func_states_equal(old->frame[i], cur->frame[i]))
7412 			return false;
7413 	}
7414 	return true;
7415 }
7416 
7417 /* Return 0 if no propagation happened. Return negative error code if error
7418  * happened. Otherwise, return the propagated bit.
7419  */
7420 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7421 				  struct bpf_reg_state *reg,
7422 				  struct bpf_reg_state *parent_reg)
7423 {
7424 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7425 	u8 flag = reg->live & REG_LIVE_READ;
7426 	int err;
7427 
7428 	/* When comes here, read flags of PARENT_REG or REG could be any of
7429 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7430 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7431 	 */
7432 	if (parent_flag == REG_LIVE_READ64 ||
7433 	    /* Or if there is no read flag from REG. */
7434 	    !flag ||
7435 	    /* Or if the read flag from REG is the same as PARENT_REG. */
7436 	    parent_flag == flag)
7437 		return 0;
7438 
7439 	err = mark_reg_read(env, reg, parent_reg, flag);
7440 	if (err)
7441 		return err;
7442 
7443 	return flag;
7444 }
7445 
7446 /* A write screens off any subsequent reads; but write marks come from the
7447  * straight-line code between a state and its parent.  When we arrive at an
7448  * equivalent state (jump target or such) we didn't arrive by the straight-line
7449  * code, so read marks in the state must propagate to the parent regardless
7450  * of the state's write marks. That's what 'parent == state->parent' comparison
7451  * in mark_reg_read() is for.
7452  */
7453 static int propagate_liveness(struct bpf_verifier_env *env,
7454 			      const struct bpf_verifier_state *vstate,
7455 			      struct bpf_verifier_state *vparent)
7456 {
7457 	struct bpf_reg_state *state_reg, *parent_reg;
7458 	struct bpf_func_state *state, *parent;
7459 	int i, frame, err = 0;
7460 
7461 	if (vparent->curframe != vstate->curframe) {
7462 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
7463 		     vparent->curframe, vstate->curframe);
7464 		return -EFAULT;
7465 	}
7466 	/* Propagate read liveness of registers... */
7467 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7468 	for (frame = 0; frame <= vstate->curframe; frame++) {
7469 		parent = vparent->frame[frame];
7470 		state = vstate->frame[frame];
7471 		parent_reg = parent->regs;
7472 		state_reg = state->regs;
7473 		/* We don't need to worry about FP liveness, it's read-only */
7474 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7475 			err = propagate_liveness_reg(env, &state_reg[i],
7476 						     &parent_reg[i]);
7477 			if (err < 0)
7478 				return err;
7479 			if (err == REG_LIVE_READ64)
7480 				mark_insn_zext(env, &parent_reg[i]);
7481 		}
7482 
7483 		/* Propagate stack slots. */
7484 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7485 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7486 			parent_reg = &parent->stack[i].spilled_ptr;
7487 			state_reg = &state->stack[i].spilled_ptr;
7488 			err = propagate_liveness_reg(env, state_reg,
7489 						     parent_reg);
7490 			if (err < 0)
7491 				return err;
7492 		}
7493 	}
7494 	return 0;
7495 }
7496 
7497 /* find precise scalars in the previous equivalent state and
7498  * propagate them into the current state
7499  */
7500 static int propagate_precision(struct bpf_verifier_env *env,
7501 			       const struct bpf_verifier_state *old)
7502 {
7503 	struct bpf_reg_state *state_reg;
7504 	struct bpf_func_state *state;
7505 	int i, err = 0;
7506 
7507 	state = old->frame[old->curframe];
7508 	state_reg = state->regs;
7509 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7510 		if (state_reg->type != SCALAR_VALUE ||
7511 		    !state_reg->precise)
7512 			continue;
7513 		if (env->log.level & BPF_LOG_LEVEL2)
7514 			verbose(env, "propagating r%d\n", i);
7515 		err = mark_chain_precision(env, i);
7516 		if (err < 0)
7517 			return err;
7518 	}
7519 
7520 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7521 		if (state->stack[i].slot_type[0] != STACK_SPILL)
7522 			continue;
7523 		state_reg = &state->stack[i].spilled_ptr;
7524 		if (state_reg->type != SCALAR_VALUE ||
7525 		    !state_reg->precise)
7526 			continue;
7527 		if (env->log.level & BPF_LOG_LEVEL2)
7528 			verbose(env, "propagating fp%d\n",
7529 				(-i - 1) * BPF_REG_SIZE);
7530 		err = mark_chain_precision_stack(env, i);
7531 		if (err < 0)
7532 			return err;
7533 	}
7534 	return 0;
7535 }
7536 
7537 static bool states_maybe_looping(struct bpf_verifier_state *old,
7538 				 struct bpf_verifier_state *cur)
7539 {
7540 	struct bpf_func_state *fold, *fcur;
7541 	int i, fr = cur->curframe;
7542 
7543 	if (old->curframe != fr)
7544 		return false;
7545 
7546 	fold = old->frame[fr];
7547 	fcur = cur->frame[fr];
7548 	for (i = 0; i < MAX_BPF_REG; i++)
7549 		if (memcmp(&fold->regs[i], &fcur->regs[i],
7550 			   offsetof(struct bpf_reg_state, parent)))
7551 			return false;
7552 	return true;
7553 }
7554 
7555 
7556 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7557 {
7558 	struct bpf_verifier_state_list *new_sl;
7559 	struct bpf_verifier_state_list *sl, **pprev;
7560 	struct bpf_verifier_state *cur = env->cur_state, *new;
7561 	int i, j, err, states_cnt = 0;
7562 	bool add_new_state = env->test_state_freq ? true : false;
7563 
7564 	cur->last_insn_idx = env->prev_insn_idx;
7565 	if (!env->insn_aux_data[insn_idx].prune_point)
7566 		/* this 'insn_idx' instruction wasn't marked, so we will not
7567 		 * be doing state search here
7568 		 */
7569 		return 0;
7570 
7571 	/* bpf progs typically have pruning point every 4 instructions
7572 	 * http://vger.kernel.org/bpfconf2019.html#session-1
7573 	 * Do not add new state for future pruning if the verifier hasn't seen
7574 	 * at least 2 jumps and at least 8 instructions.
7575 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7576 	 * In tests that amounts to up to 50% reduction into total verifier
7577 	 * memory consumption and 20% verifier time speedup.
7578 	 */
7579 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7580 	    env->insn_processed - env->prev_insn_processed >= 8)
7581 		add_new_state = true;
7582 
7583 	pprev = explored_state(env, insn_idx);
7584 	sl = *pprev;
7585 
7586 	clean_live_states(env, insn_idx, cur);
7587 
7588 	while (sl) {
7589 		states_cnt++;
7590 		if (sl->state.insn_idx != insn_idx)
7591 			goto next;
7592 		if (sl->state.branches) {
7593 			if (states_maybe_looping(&sl->state, cur) &&
7594 			    states_equal(env, &sl->state, cur)) {
7595 				verbose_linfo(env, insn_idx, "; ");
7596 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7597 				return -EINVAL;
7598 			}
7599 			/* if the verifier is processing a loop, avoid adding new state
7600 			 * too often, since different loop iterations have distinct
7601 			 * states and may not help future pruning.
7602 			 * This threshold shouldn't be too low to make sure that
7603 			 * a loop with large bound will be rejected quickly.
7604 			 * The most abusive loop will be:
7605 			 * r1 += 1
7606 			 * if r1 < 1000000 goto pc-2
7607 			 * 1M insn_procssed limit / 100 == 10k peak states.
7608 			 * This threshold shouldn't be too high either, since states
7609 			 * at the end of the loop are likely to be useful in pruning.
7610 			 */
7611 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7612 			    env->insn_processed - env->prev_insn_processed < 100)
7613 				add_new_state = false;
7614 			goto miss;
7615 		}
7616 		if (states_equal(env, &sl->state, cur)) {
7617 			sl->hit_cnt++;
7618 			/* reached equivalent register/stack state,
7619 			 * prune the search.
7620 			 * Registers read by the continuation are read by us.
7621 			 * If we have any write marks in env->cur_state, they
7622 			 * will prevent corresponding reads in the continuation
7623 			 * from reaching our parent (an explored_state).  Our
7624 			 * own state will get the read marks recorded, but
7625 			 * they'll be immediately forgotten as we're pruning
7626 			 * this state and will pop a new one.
7627 			 */
7628 			err = propagate_liveness(env, &sl->state, cur);
7629 
7630 			/* if previous state reached the exit with precision and
7631 			 * current state is equivalent to it (except precsion marks)
7632 			 * the precision needs to be propagated back in
7633 			 * the current state.
7634 			 */
7635 			err = err ? : push_jmp_history(env, cur);
7636 			err = err ? : propagate_precision(env, &sl->state);
7637 			if (err)
7638 				return err;
7639 			return 1;
7640 		}
7641 miss:
7642 		/* when new state is not going to be added do not increase miss count.
7643 		 * Otherwise several loop iterations will remove the state
7644 		 * recorded earlier. The goal of these heuristics is to have
7645 		 * states from some iterations of the loop (some in the beginning
7646 		 * and some at the end) to help pruning.
7647 		 */
7648 		if (add_new_state)
7649 			sl->miss_cnt++;
7650 		/* heuristic to determine whether this state is beneficial
7651 		 * to keep checking from state equivalence point of view.
7652 		 * Higher numbers increase max_states_per_insn and verification time,
7653 		 * but do not meaningfully decrease insn_processed.
7654 		 */
7655 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7656 			/* the state is unlikely to be useful. Remove it to
7657 			 * speed up verification
7658 			 */
7659 			*pprev = sl->next;
7660 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7661 				u32 br = sl->state.branches;
7662 
7663 				WARN_ONCE(br,
7664 					  "BUG live_done but branches_to_explore %d\n",
7665 					  br);
7666 				free_verifier_state(&sl->state, false);
7667 				kfree(sl);
7668 				env->peak_states--;
7669 			} else {
7670 				/* cannot free this state, since parentage chain may
7671 				 * walk it later. Add it for free_list instead to
7672 				 * be freed at the end of verification
7673 				 */
7674 				sl->next = env->free_list;
7675 				env->free_list = sl;
7676 			}
7677 			sl = *pprev;
7678 			continue;
7679 		}
7680 next:
7681 		pprev = &sl->next;
7682 		sl = *pprev;
7683 	}
7684 
7685 	if (env->max_states_per_insn < states_cnt)
7686 		env->max_states_per_insn = states_cnt;
7687 
7688 	if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7689 		return push_jmp_history(env, cur);
7690 
7691 	if (!add_new_state)
7692 		return push_jmp_history(env, cur);
7693 
7694 	/* There were no equivalent states, remember the current one.
7695 	 * Technically the current state is not proven to be safe yet,
7696 	 * but it will either reach outer most bpf_exit (which means it's safe)
7697 	 * or it will be rejected. When there are no loops the verifier won't be
7698 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7699 	 * again on the way to bpf_exit.
7700 	 * When looping the sl->state.branches will be > 0 and this state
7701 	 * will not be considered for equivalence until branches == 0.
7702 	 */
7703 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7704 	if (!new_sl)
7705 		return -ENOMEM;
7706 	env->total_states++;
7707 	env->peak_states++;
7708 	env->prev_jmps_processed = env->jmps_processed;
7709 	env->prev_insn_processed = env->insn_processed;
7710 
7711 	/* add new state to the head of linked list */
7712 	new = &new_sl->state;
7713 	err = copy_verifier_state(new, cur);
7714 	if (err) {
7715 		free_verifier_state(new, false);
7716 		kfree(new_sl);
7717 		return err;
7718 	}
7719 	new->insn_idx = insn_idx;
7720 	WARN_ONCE(new->branches != 1,
7721 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7722 
7723 	cur->parent = new;
7724 	cur->first_insn_idx = insn_idx;
7725 	clear_jmp_history(cur);
7726 	new_sl->next = *explored_state(env, insn_idx);
7727 	*explored_state(env, insn_idx) = new_sl;
7728 	/* connect new state to parentage chain. Current frame needs all
7729 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
7730 	 * to the stack implicitly by JITs) so in callers' frames connect just
7731 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7732 	 * the state of the call instruction (with WRITTEN set), and r0 comes
7733 	 * from callee with its full parentage chain, anyway.
7734 	 */
7735 	/* clear write marks in current state: the writes we did are not writes
7736 	 * our child did, so they don't screen off its reads from us.
7737 	 * (There are no read marks in current state, because reads always mark
7738 	 * their parent and current state never has children yet.  Only
7739 	 * explored_states can get read marks.)
7740 	 */
7741 	for (j = 0; j <= cur->curframe; j++) {
7742 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7743 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7744 		for (i = 0; i < BPF_REG_FP; i++)
7745 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7746 	}
7747 
7748 	/* all stack frames are accessible from callee, clear them all */
7749 	for (j = 0; j <= cur->curframe; j++) {
7750 		struct bpf_func_state *frame = cur->frame[j];
7751 		struct bpf_func_state *newframe = new->frame[j];
7752 
7753 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7754 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7755 			frame->stack[i].spilled_ptr.parent =
7756 						&newframe->stack[i].spilled_ptr;
7757 		}
7758 	}
7759 	return 0;
7760 }
7761 
7762 /* Return true if it's OK to have the same insn return a different type. */
7763 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7764 {
7765 	switch (type) {
7766 	case PTR_TO_CTX:
7767 	case PTR_TO_SOCKET:
7768 	case PTR_TO_SOCKET_OR_NULL:
7769 	case PTR_TO_SOCK_COMMON:
7770 	case PTR_TO_SOCK_COMMON_OR_NULL:
7771 	case PTR_TO_TCP_SOCK:
7772 	case PTR_TO_TCP_SOCK_OR_NULL:
7773 	case PTR_TO_XDP_SOCK:
7774 	case PTR_TO_BTF_ID:
7775 		return false;
7776 	default:
7777 		return true;
7778 	}
7779 }
7780 
7781 /* If an instruction was previously used with particular pointer types, then we
7782  * need to be careful to avoid cases such as the below, where it may be ok
7783  * for one branch accessing the pointer, but not ok for the other branch:
7784  *
7785  * R1 = sock_ptr
7786  * goto X;
7787  * ...
7788  * R1 = some_other_valid_ptr;
7789  * goto X;
7790  * ...
7791  * R2 = *(u32 *)(R1 + 0);
7792  */
7793 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7794 {
7795 	return src != prev && (!reg_type_mismatch_ok(src) ||
7796 			       !reg_type_mismatch_ok(prev));
7797 }
7798 
7799 static int do_check(struct bpf_verifier_env *env)
7800 {
7801 	struct bpf_verifier_state *state = env->cur_state;
7802 	struct bpf_insn *insns = env->prog->insnsi;
7803 	struct bpf_reg_state *regs;
7804 	int insn_cnt = env->prog->len;
7805 	bool do_print_state = false;
7806 	int prev_insn_idx = -1;
7807 
7808 	for (;;) {
7809 		struct bpf_insn *insn;
7810 		u8 class;
7811 		int err;
7812 
7813 		env->prev_insn_idx = prev_insn_idx;
7814 		if (env->insn_idx >= insn_cnt) {
7815 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
7816 				env->insn_idx, insn_cnt);
7817 			return -EFAULT;
7818 		}
7819 
7820 		insn = &insns[env->insn_idx];
7821 		class = BPF_CLASS(insn->code);
7822 
7823 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7824 			verbose(env,
7825 				"BPF program is too large. Processed %d insn\n",
7826 				env->insn_processed);
7827 			return -E2BIG;
7828 		}
7829 
7830 		err = is_state_visited(env, env->insn_idx);
7831 		if (err < 0)
7832 			return err;
7833 		if (err == 1) {
7834 			/* found equivalent state, can prune the search */
7835 			if (env->log.level & BPF_LOG_LEVEL) {
7836 				if (do_print_state)
7837 					verbose(env, "\nfrom %d to %d%s: safe\n",
7838 						env->prev_insn_idx, env->insn_idx,
7839 						env->cur_state->speculative ?
7840 						" (speculative execution)" : "");
7841 				else
7842 					verbose(env, "%d: safe\n", env->insn_idx);
7843 			}
7844 			goto process_bpf_exit;
7845 		}
7846 
7847 		if (signal_pending(current))
7848 			return -EAGAIN;
7849 
7850 		if (need_resched())
7851 			cond_resched();
7852 
7853 		if (env->log.level & BPF_LOG_LEVEL2 ||
7854 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7855 			if (env->log.level & BPF_LOG_LEVEL2)
7856 				verbose(env, "%d:", env->insn_idx);
7857 			else
7858 				verbose(env, "\nfrom %d to %d%s:",
7859 					env->prev_insn_idx, env->insn_idx,
7860 					env->cur_state->speculative ?
7861 					" (speculative execution)" : "");
7862 			print_verifier_state(env, state->frame[state->curframe]);
7863 			do_print_state = false;
7864 		}
7865 
7866 		if (env->log.level & BPF_LOG_LEVEL) {
7867 			const struct bpf_insn_cbs cbs = {
7868 				.cb_print	= verbose,
7869 				.private_data	= env,
7870 			};
7871 
7872 			verbose_linfo(env, env->insn_idx, "; ");
7873 			verbose(env, "%d: ", env->insn_idx);
7874 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7875 		}
7876 
7877 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
7878 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7879 							   env->prev_insn_idx);
7880 			if (err)
7881 				return err;
7882 		}
7883 
7884 		regs = cur_regs(env);
7885 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7886 		prev_insn_idx = env->insn_idx;
7887 
7888 		if (class == BPF_ALU || class == BPF_ALU64) {
7889 			err = check_alu_op(env, insn);
7890 			if (err)
7891 				return err;
7892 
7893 		} else if (class == BPF_LDX) {
7894 			enum bpf_reg_type *prev_src_type, src_reg_type;
7895 
7896 			/* check for reserved fields is already done */
7897 
7898 			/* check src operand */
7899 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7900 			if (err)
7901 				return err;
7902 
7903 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7904 			if (err)
7905 				return err;
7906 
7907 			src_reg_type = regs[insn->src_reg].type;
7908 
7909 			/* check that memory (src_reg + off) is readable,
7910 			 * the state of dst_reg will be updated by this func
7911 			 */
7912 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
7913 					       insn->off, BPF_SIZE(insn->code),
7914 					       BPF_READ, insn->dst_reg, false);
7915 			if (err)
7916 				return err;
7917 
7918 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7919 
7920 			if (*prev_src_type == NOT_INIT) {
7921 				/* saw a valid insn
7922 				 * dst_reg = *(u32 *)(src_reg + off)
7923 				 * save type to validate intersecting paths
7924 				 */
7925 				*prev_src_type = src_reg_type;
7926 
7927 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7928 				/* ABuser program is trying to use the same insn
7929 				 * dst_reg = *(u32*) (src_reg + off)
7930 				 * with different pointer types:
7931 				 * src_reg == ctx in one branch and
7932 				 * src_reg == stack|map in some other branch.
7933 				 * Reject it.
7934 				 */
7935 				verbose(env, "same insn cannot be used with different pointers\n");
7936 				return -EINVAL;
7937 			}
7938 
7939 		} else if (class == BPF_STX) {
7940 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
7941 
7942 			if (BPF_MODE(insn->code) == BPF_XADD) {
7943 				err = check_xadd(env, env->insn_idx, insn);
7944 				if (err)
7945 					return err;
7946 				env->insn_idx++;
7947 				continue;
7948 			}
7949 
7950 			/* check src1 operand */
7951 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
7952 			if (err)
7953 				return err;
7954 			/* check src2 operand */
7955 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7956 			if (err)
7957 				return err;
7958 
7959 			dst_reg_type = regs[insn->dst_reg].type;
7960 
7961 			/* check that memory (dst_reg + off) is writeable */
7962 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7963 					       insn->off, BPF_SIZE(insn->code),
7964 					       BPF_WRITE, insn->src_reg, false);
7965 			if (err)
7966 				return err;
7967 
7968 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7969 
7970 			if (*prev_dst_type == NOT_INIT) {
7971 				*prev_dst_type = dst_reg_type;
7972 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7973 				verbose(env, "same insn cannot be used with different pointers\n");
7974 				return -EINVAL;
7975 			}
7976 
7977 		} else if (class == BPF_ST) {
7978 			if (BPF_MODE(insn->code) != BPF_MEM ||
7979 			    insn->src_reg != BPF_REG_0) {
7980 				verbose(env, "BPF_ST uses reserved fields\n");
7981 				return -EINVAL;
7982 			}
7983 			/* check src operand */
7984 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7985 			if (err)
7986 				return err;
7987 
7988 			if (is_ctx_reg(env, insn->dst_reg)) {
7989 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7990 					insn->dst_reg,
7991 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
7992 				return -EACCES;
7993 			}
7994 
7995 			/* check that memory (dst_reg + off) is writeable */
7996 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7997 					       insn->off, BPF_SIZE(insn->code),
7998 					       BPF_WRITE, -1, false);
7999 			if (err)
8000 				return err;
8001 
8002 		} else if (class == BPF_JMP || class == BPF_JMP32) {
8003 			u8 opcode = BPF_OP(insn->code);
8004 
8005 			env->jmps_processed++;
8006 			if (opcode == BPF_CALL) {
8007 				if (BPF_SRC(insn->code) != BPF_K ||
8008 				    insn->off != 0 ||
8009 				    (insn->src_reg != BPF_REG_0 &&
8010 				     insn->src_reg != BPF_PSEUDO_CALL) ||
8011 				    insn->dst_reg != BPF_REG_0 ||
8012 				    class == BPF_JMP32) {
8013 					verbose(env, "BPF_CALL uses reserved fields\n");
8014 					return -EINVAL;
8015 				}
8016 
8017 				if (env->cur_state->active_spin_lock &&
8018 				    (insn->src_reg == BPF_PSEUDO_CALL ||
8019 				     insn->imm != BPF_FUNC_spin_unlock)) {
8020 					verbose(env, "function calls are not allowed while holding a lock\n");
8021 					return -EINVAL;
8022 				}
8023 				if (insn->src_reg == BPF_PSEUDO_CALL)
8024 					err = check_func_call(env, insn, &env->insn_idx);
8025 				else
8026 					err = check_helper_call(env, insn->imm, env->insn_idx);
8027 				if (err)
8028 					return err;
8029 
8030 			} else if (opcode == BPF_JA) {
8031 				if (BPF_SRC(insn->code) != BPF_K ||
8032 				    insn->imm != 0 ||
8033 				    insn->src_reg != BPF_REG_0 ||
8034 				    insn->dst_reg != BPF_REG_0 ||
8035 				    class == BPF_JMP32) {
8036 					verbose(env, "BPF_JA uses reserved fields\n");
8037 					return -EINVAL;
8038 				}
8039 
8040 				env->insn_idx += insn->off + 1;
8041 				continue;
8042 
8043 			} else if (opcode == BPF_EXIT) {
8044 				if (BPF_SRC(insn->code) != BPF_K ||
8045 				    insn->imm != 0 ||
8046 				    insn->src_reg != BPF_REG_0 ||
8047 				    insn->dst_reg != BPF_REG_0 ||
8048 				    class == BPF_JMP32) {
8049 					verbose(env, "BPF_EXIT uses reserved fields\n");
8050 					return -EINVAL;
8051 				}
8052 
8053 				if (env->cur_state->active_spin_lock) {
8054 					verbose(env, "bpf_spin_unlock is missing\n");
8055 					return -EINVAL;
8056 				}
8057 
8058 				if (state->curframe) {
8059 					/* exit from nested function */
8060 					err = prepare_func_exit(env, &env->insn_idx);
8061 					if (err)
8062 						return err;
8063 					do_print_state = true;
8064 					continue;
8065 				}
8066 
8067 				err = check_reference_leak(env);
8068 				if (err)
8069 					return err;
8070 
8071 				err = check_return_code(env);
8072 				if (err)
8073 					return err;
8074 process_bpf_exit:
8075 				update_branch_counts(env, env->cur_state);
8076 				err = pop_stack(env, &prev_insn_idx,
8077 						&env->insn_idx);
8078 				if (err < 0) {
8079 					if (err != -ENOENT)
8080 						return err;
8081 					break;
8082 				} else {
8083 					do_print_state = true;
8084 					continue;
8085 				}
8086 			} else {
8087 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
8088 				if (err)
8089 					return err;
8090 			}
8091 		} else if (class == BPF_LD) {
8092 			u8 mode = BPF_MODE(insn->code);
8093 
8094 			if (mode == BPF_ABS || mode == BPF_IND) {
8095 				err = check_ld_abs(env, insn);
8096 				if (err)
8097 					return err;
8098 
8099 			} else if (mode == BPF_IMM) {
8100 				err = check_ld_imm(env, insn);
8101 				if (err)
8102 					return err;
8103 
8104 				env->insn_idx++;
8105 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8106 			} else {
8107 				verbose(env, "invalid BPF_LD mode\n");
8108 				return -EINVAL;
8109 			}
8110 		} else {
8111 			verbose(env, "unknown insn class %d\n", class);
8112 			return -EINVAL;
8113 		}
8114 
8115 		env->insn_idx++;
8116 	}
8117 
8118 	return 0;
8119 }
8120 
8121 static int check_map_prealloc(struct bpf_map *map)
8122 {
8123 	return (map->map_type != BPF_MAP_TYPE_HASH &&
8124 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8125 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8126 		!(map->map_flags & BPF_F_NO_PREALLOC);
8127 }
8128 
8129 static bool is_tracing_prog_type(enum bpf_prog_type type)
8130 {
8131 	switch (type) {
8132 	case BPF_PROG_TYPE_KPROBE:
8133 	case BPF_PROG_TYPE_TRACEPOINT:
8134 	case BPF_PROG_TYPE_PERF_EVENT:
8135 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
8136 		return true;
8137 	default:
8138 		return false;
8139 	}
8140 }
8141 
8142 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8143 					struct bpf_map *map,
8144 					struct bpf_prog *prog)
8145 
8146 {
8147 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8148 	 * preallocated hash maps, since doing memory allocation
8149 	 * in overflow_handler can crash depending on where nmi got
8150 	 * triggered.
8151 	 */
8152 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8153 		if (!check_map_prealloc(map)) {
8154 			verbose(env, "perf_event programs can only use preallocated hash map\n");
8155 			return -EINVAL;
8156 		}
8157 		if (map->inner_map_meta &&
8158 		    !check_map_prealloc(map->inner_map_meta)) {
8159 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8160 			return -EINVAL;
8161 		}
8162 	}
8163 
8164 	if ((is_tracing_prog_type(prog->type) ||
8165 	     prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8166 	    map_value_has_spin_lock(map)) {
8167 		verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8168 		return -EINVAL;
8169 	}
8170 
8171 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8172 	    !bpf_offload_prog_map_match(prog, map)) {
8173 		verbose(env, "offload device mismatch between prog and map\n");
8174 		return -EINVAL;
8175 	}
8176 
8177 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8178 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8179 		return -EINVAL;
8180 	}
8181 
8182 	return 0;
8183 }
8184 
8185 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8186 {
8187 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8188 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8189 }
8190 
8191 /* look for pseudo eBPF instructions that access map FDs and
8192  * replace them with actual map pointers
8193  */
8194 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8195 {
8196 	struct bpf_insn *insn = env->prog->insnsi;
8197 	int insn_cnt = env->prog->len;
8198 	int i, j, err;
8199 
8200 	err = bpf_prog_calc_tag(env->prog);
8201 	if (err)
8202 		return err;
8203 
8204 	for (i = 0; i < insn_cnt; i++, insn++) {
8205 		if (BPF_CLASS(insn->code) == BPF_LDX &&
8206 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8207 			verbose(env, "BPF_LDX uses reserved fields\n");
8208 			return -EINVAL;
8209 		}
8210 
8211 		if (BPF_CLASS(insn->code) == BPF_STX &&
8212 		    ((BPF_MODE(insn->code) != BPF_MEM &&
8213 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8214 			verbose(env, "BPF_STX uses reserved fields\n");
8215 			return -EINVAL;
8216 		}
8217 
8218 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8219 			struct bpf_insn_aux_data *aux;
8220 			struct bpf_map *map;
8221 			struct fd f;
8222 			u64 addr;
8223 
8224 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
8225 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8226 			    insn[1].off != 0) {
8227 				verbose(env, "invalid bpf_ld_imm64 insn\n");
8228 				return -EINVAL;
8229 			}
8230 
8231 			if (insn[0].src_reg == 0)
8232 				/* valid generic load 64-bit imm */
8233 				goto next_insn;
8234 
8235 			/* In final convert_pseudo_ld_imm64() step, this is
8236 			 * converted into regular 64-bit imm load insn.
8237 			 */
8238 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8239 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8240 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8241 			     insn[1].imm != 0)) {
8242 				verbose(env,
8243 					"unrecognized bpf_ld_imm64 insn\n");
8244 				return -EINVAL;
8245 			}
8246 
8247 			f = fdget(insn[0].imm);
8248 			map = __bpf_map_get(f);
8249 			if (IS_ERR(map)) {
8250 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
8251 					insn[0].imm);
8252 				return PTR_ERR(map);
8253 			}
8254 
8255 			err = check_map_prog_compatibility(env, map, env->prog);
8256 			if (err) {
8257 				fdput(f);
8258 				return err;
8259 			}
8260 
8261 			aux = &env->insn_aux_data[i];
8262 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8263 				addr = (unsigned long)map;
8264 			} else {
8265 				u32 off = insn[1].imm;
8266 
8267 				if (off >= BPF_MAX_VAR_OFF) {
8268 					verbose(env, "direct value offset of %u is not allowed\n", off);
8269 					fdput(f);
8270 					return -EINVAL;
8271 				}
8272 
8273 				if (!map->ops->map_direct_value_addr) {
8274 					verbose(env, "no direct value access support for this map type\n");
8275 					fdput(f);
8276 					return -EINVAL;
8277 				}
8278 
8279 				err = map->ops->map_direct_value_addr(map, &addr, off);
8280 				if (err) {
8281 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8282 						map->value_size, off);
8283 					fdput(f);
8284 					return err;
8285 				}
8286 
8287 				aux->map_off = off;
8288 				addr += off;
8289 			}
8290 
8291 			insn[0].imm = (u32)addr;
8292 			insn[1].imm = addr >> 32;
8293 
8294 			/* check whether we recorded this map already */
8295 			for (j = 0; j < env->used_map_cnt; j++) {
8296 				if (env->used_maps[j] == map) {
8297 					aux->map_index = j;
8298 					fdput(f);
8299 					goto next_insn;
8300 				}
8301 			}
8302 
8303 			if (env->used_map_cnt >= MAX_USED_MAPS) {
8304 				fdput(f);
8305 				return -E2BIG;
8306 			}
8307 
8308 			/* hold the map. If the program is rejected by verifier,
8309 			 * the map will be released by release_maps() or it
8310 			 * will be used by the valid program until it's unloaded
8311 			 * and all maps are released in free_used_maps()
8312 			 */
8313 			bpf_map_inc(map);
8314 
8315 			aux->map_index = env->used_map_cnt;
8316 			env->used_maps[env->used_map_cnt++] = map;
8317 
8318 			if (bpf_map_is_cgroup_storage(map) &&
8319 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
8320 				verbose(env, "only one cgroup storage of each type is allowed\n");
8321 				fdput(f);
8322 				return -EBUSY;
8323 			}
8324 
8325 			fdput(f);
8326 next_insn:
8327 			insn++;
8328 			i++;
8329 			continue;
8330 		}
8331 
8332 		/* Basic sanity check before we invest more work here. */
8333 		if (!bpf_opcode_in_insntable(insn->code)) {
8334 			verbose(env, "unknown opcode %02x\n", insn->code);
8335 			return -EINVAL;
8336 		}
8337 	}
8338 
8339 	/* now all pseudo BPF_LD_IMM64 instructions load valid
8340 	 * 'struct bpf_map *' into a register instead of user map_fd.
8341 	 * These pointers will be used later by verifier to validate map access.
8342 	 */
8343 	return 0;
8344 }
8345 
8346 /* drop refcnt of maps used by the rejected program */
8347 static void release_maps(struct bpf_verifier_env *env)
8348 {
8349 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
8350 			     env->used_map_cnt);
8351 }
8352 
8353 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8354 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8355 {
8356 	struct bpf_insn *insn = env->prog->insnsi;
8357 	int insn_cnt = env->prog->len;
8358 	int i;
8359 
8360 	for (i = 0; i < insn_cnt; i++, insn++)
8361 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8362 			insn->src_reg = 0;
8363 }
8364 
8365 /* single env->prog->insni[off] instruction was replaced with the range
8366  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
8367  * [0, off) and [off, end) to new locations, so the patched range stays zero
8368  */
8369 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8370 				struct bpf_prog *new_prog, u32 off, u32 cnt)
8371 {
8372 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8373 	struct bpf_insn *insn = new_prog->insnsi;
8374 	u32 prog_len;
8375 	int i;
8376 
8377 	/* aux info at OFF always needs adjustment, no matter fast path
8378 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8379 	 * original insn at old prog.
8380 	 */
8381 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8382 
8383 	if (cnt == 1)
8384 		return 0;
8385 	prog_len = new_prog->len;
8386 	new_data = vzalloc(array_size(prog_len,
8387 				      sizeof(struct bpf_insn_aux_data)));
8388 	if (!new_data)
8389 		return -ENOMEM;
8390 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8391 	memcpy(new_data + off + cnt - 1, old_data + off,
8392 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8393 	for (i = off; i < off + cnt - 1; i++) {
8394 		new_data[i].seen = env->pass_cnt;
8395 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
8396 	}
8397 	env->insn_aux_data = new_data;
8398 	vfree(old_data);
8399 	return 0;
8400 }
8401 
8402 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8403 {
8404 	int i;
8405 
8406 	if (len == 1)
8407 		return;
8408 	/* NOTE: fake 'exit' subprog should be updated as well. */
8409 	for (i = 0; i <= env->subprog_cnt; i++) {
8410 		if (env->subprog_info[i].start <= off)
8411 			continue;
8412 		env->subprog_info[i].start += len - 1;
8413 	}
8414 }
8415 
8416 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8417 					    const struct bpf_insn *patch, u32 len)
8418 {
8419 	struct bpf_prog *new_prog;
8420 
8421 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8422 	if (IS_ERR(new_prog)) {
8423 		if (PTR_ERR(new_prog) == -ERANGE)
8424 			verbose(env,
8425 				"insn %d cannot be patched due to 16-bit range\n",
8426 				env->insn_aux_data[off].orig_idx);
8427 		return NULL;
8428 	}
8429 	if (adjust_insn_aux_data(env, new_prog, off, len))
8430 		return NULL;
8431 	adjust_subprog_starts(env, off, len);
8432 	return new_prog;
8433 }
8434 
8435 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8436 					      u32 off, u32 cnt)
8437 {
8438 	int i, j;
8439 
8440 	/* find first prog starting at or after off (first to remove) */
8441 	for (i = 0; i < env->subprog_cnt; i++)
8442 		if (env->subprog_info[i].start >= off)
8443 			break;
8444 	/* find first prog starting at or after off + cnt (first to stay) */
8445 	for (j = i; j < env->subprog_cnt; j++)
8446 		if (env->subprog_info[j].start >= off + cnt)
8447 			break;
8448 	/* if j doesn't start exactly at off + cnt, we are just removing
8449 	 * the front of previous prog
8450 	 */
8451 	if (env->subprog_info[j].start != off + cnt)
8452 		j--;
8453 
8454 	if (j > i) {
8455 		struct bpf_prog_aux *aux = env->prog->aux;
8456 		int move;
8457 
8458 		/* move fake 'exit' subprog as well */
8459 		move = env->subprog_cnt + 1 - j;
8460 
8461 		memmove(env->subprog_info + i,
8462 			env->subprog_info + j,
8463 			sizeof(*env->subprog_info) * move);
8464 		env->subprog_cnt -= j - i;
8465 
8466 		/* remove func_info */
8467 		if (aux->func_info) {
8468 			move = aux->func_info_cnt - j;
8469 
8470 			memmove(aux->func_info + i,
8471 				aux->func_info + j,
8472 				sizeof(*aux->func_info) * move);
8473 			aux->func_info_cnt -= j - i;
8474 			/* func_info->insn_off is set after all code rewrites,
8475 			 * in adjust_btf_func() - no need to adjust
8476 			 */
8477 		}
8478 	} else {
8479 		/* convert i from "first prog to remove" to "first to adjust" */
8480 		if (env->subprog_info[i].start == off)
8481 			i++;
8482 	}
8483 
8484 	/* update fake 'exit' subprog as well */
8485 	for (; i <= env->subprog_cnt; i++)
8486 		env->subprog_info[i].start -= cnt;
8487 
8488 	return 0;
8489 }
8490 
8491 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8492 				      u32 cnt)
8493 {
8494 	struct bpf_prog *prog = env->prog;
8495 	u32 i, l_off, l_cnt, nr_linfo;
8496 	struct bpf_line_info *linfo;
8497 
8498 	nr_linfo = prog->aux->nr_linfo;
8499 	if (!nr_linfo)
8500 		return 0;
8501 
8502 	linfo = prog->aux->linfo;
8503 
8504 	/* find first line info to remove, count lines to be removed */
8505 	for (i = 0; i < nr_linfo; i++)
8506 		if (linfo[i].insn_off >= off)
8507 			break;
8508 
8509 	l_off = i;
8510 	l_cnt = 0;
8511 	for (; i < nr_linfo; i++)
8512 		if (linfo[i].insn_off < off + cnt)
8513 			l_cnt++;
8514 		else
8515 			break;
8516 
8517 	/* First live insn doesn't match first live linfo, it needs to "inherit"
8518 	 * last removed linfo.  prog is already modified, so prog->len == off
8519 	 * means no live instructions after (tail of the program was removed).
8520 	 */
8521 	if (prog->len != off && l_cnt &&
8522 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8523 		l_cnt--;
8524 		linfo[--i].insn_off = off + cnt;
8525 	}
8526 
8527 	/* remove the line info which refer to the removed instructions */
8528 	if (l_cnt) {
8529 		memmove(linfo + l_off, linfo + i,
8530 			sizeof(*linfo) * (nr_linfo - i));
8531 
8532 		prog->aux->nr_linfo -= l_cnt;
8533 		nr_linfo = prog->aux->nr_linfo;
8534 	}
8535 
8536 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
8537 	for (i = l_off; i < nr_linfo; i++)
8538 		linfo[i].insn_off -= cnt;
8539 
8540 	/* fix up all subprogs (incl. 'exit') which start >= off */
8541 	for (i = 0; i <= env->subprog_cnt; i++)
8542 		if (env->subprog_info[i].linfo_idx > l_off) {
8543 			/* program may have started in the removed region but
8544 			 * may not be fully removed
8545 			 */
8546 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8547 				env->subprog_info[i].linfo_idx -= l_cnt;
8548 			else
8549 				env->subprog_info[i].linfo_idx = l_off;
8550 		}
8551 
8552 	return 0;
8553 }
8554 
8555 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8556 {
8557 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8558 	unsigned int orig_prog_len = env->prog->len;
8559 	int err;
8560 
8561 	if (bpf_prog_is_dev_bound(env->prog->aux))
8562 		bpf_prog_offload_remove_insns(env, off, cnt);
8563 
8564 	err = bpf_remove_insns(env->prog, off, cnt);
8565 	if (err)
8566 		return err;
8567 
8568 	err = adjust_subprog_starts_after_remove(env, off, cnt);
8569 	if (err)
8570 		return err;
8571 
8572 	err = bpf_adj_linfo_after_remove(env, off, cnt);
8573 	if (err)
8574 		return err;
8575 
8576 	memmove(aux_data + off,	aux_data + off + cnt,
8577 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
8578 
8579 	return 0;
8580 }
8581 
8582 /* The verifier does more data flow analysis than llvm and will not
8583  * explore branches that are dead at run time. Malicious programs can
8584  * have dead code too. Therefore replace all dead at-run-time code
8585  * with 'ja -1'.
8586  *
8587  * Just nops are not optimal, e.g. if they would sit at the end of the
8588  * program and through another bug we would manage to jump there, then
8589  * we'd execute beyond program memory otherwise. Returning exception
8590  * code also wouldn't work since we can have subprogs where the dead
8591  * code could be located.
8592  */
8593 static void sanitize_dead_code(struct bpf_verifier_env *env)
8594 {
8595 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8596 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8597 	struct bpf_insn *insn = env->prog->insnsi;
8598 	const int insn_cnt = env->prog->len;
8599 	int i;
8600 
8601 	for (i = 0; i < insn_cnt; i++) {
8602 		if (aux_data[i].seen)
8603 			continue;
8604 		memcpy(insn + i, &trap, sizeof(trap));
8605 	}
8606 }
8607 
8608 static bool insn_is_cond_jump(u8 code)
8609 {
8610 	u8 op;
8611 
8612 	if (BPF_CLASS(code) == BPF_JMP32)
8613 		return true;
8614 
8615 	if (BPF_CLASS(code) != BPF_JMP)
8616 		return false;
8617 
8618 	op = BPF_OP(code);
8619 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8620 }
8621 
8622 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8623 {
8624 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8625 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8626 	struct bpf_insn *insn = env->prog->insnsi;
8627 	const int insn_cnt = env->prog->len;
8628 	int i;
8629 
8630 	for (i = 0; i < insn_cnt; i++, insn++) {
8631 		if (!insn_is_cond_jump(insn->code))
8632 			continue;
8633 
8634 		if (!aux_data[i + 1].seen)
8635 			ja.off = insn->off;
8636 		else if (!aux_data[i + 1 + insn->off].seen)
8637 			ja.off = 0;
8638 		else
8639 			continue;
8640 
8641 		if (bpf_prog_is_dev_bound(env->prog->aux))
8642 			bpf_prog_offload_replace_insn(env, i, &ja);
8643 
8644 		memcpy(insn, &ja, sizeof(ja));
8645 	}
8646 }
8647 
8648 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8649 {
8650 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8651 	int insn_cnt = env->prog->len;
8652 	int i, err;
8653 
8654 	for (i = 0; i < insn_cnt; i++) {
8655 		int j;
8656 
8657 		j = 0;
8658 		while (i + j < insn_cnt && !aux_data[i + j].seen)
8659 			j++;
8660 		if (!j)
8661 			continue;
8662 
8663 		err = verifier_remove_insns(env, i, j);
8664 		if (err)
8665 			return err;
8666 		insn_cnt = env->prog->len;
8667 	}
8668 
8669 	return 0;
8670 }
8671 
8672 static int opt_remove_nops(struct bpf_verifier_env *env)
8673 {
8674 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8675 	struct bpf_insn *insn = env->prog->insnsi;
8676 	int insn_cnt = env->prog->len;
8677 	int i, err;
8678 
8679 	for (i = 0; i < insn_cnt; i++) {
8680 		if (memcmp(&insn[i], &ja, sizeof(ja)))
8681 			continue;
8682 
8683 		err = verifier_remove_insns(env, i, 1);
8684 		if (err)
8685 			return err;
8686 		insn_cnt--;
8687 		i--;
8688 	}
8689 
8690 	return 0;
8691 }
8692 
8693 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8694 					 const union bpf_attr *attr)
8695 {
8696 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8697 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
8698 	int i, patch_len, delta = 0, len = env->prog->len;
8699 	struct bpf_insn *insns = env->prog->insnsi;
8700 	struct bpf_prog *new_prog;
8701 	bool rnd_hi32;
8702 
8703 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8704 	zext_patch[1] = BPF_ZEXT_REG(0);
8705 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8706 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8707 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8708 	for (i = 0; i < len; i++) {
8709 		int adj_idx = i + delta;
8710 		struct bpf_insn insn;
8711 
8712 		insn = insns[adj_idx];
8713 		if (!aux[adj_idx].zext_dst) {
8714 			u8 code, class;
8715 			u32 imm_rnd;
8716 
8717 			if (!rnd_hi32)
8718 				continue;
8719 
8720 			code = insn.code;
8721 			class = BPF_CLASS(code);
8722 			if (insn_no_def(&insn))
8723 				continue;
8724 
8725 			/* NOTE: arg "reg" (the fourth one) is only used for
8726 			 *       BPF_STX which has been ruled out in above
8727 			 *       check, it is safe to pass NULL here.
8728 			 */
8729 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8730 				if (class == BPF_LD &&
8731 				    BPF_MODE(code) == BPF_IMM)
8732 					i++;
8733 				continue;
8734 			}
8735 
8736 			/* ctx load could be transformed into wider load. */
8737 			if (class == BPF_LDX &&
8738 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
8739 				continue;
8740 
8741 			imm_rnd = get_random_int();
8742 			rnd_hi32_patch[0] = insn;
8743 			rnd_hi32_patch[1].imm = imm_rnd;
8744 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8745 			patch = rnd_hi32_patch;
8746 			patch_len = 4;
8747 			goto apply_patch_buffer;
8748 		}
8749 
8750 		if (!bpf_jit_needs_zext())
8751 			continue;
8752 
8753 		zext_patch[0] = insn;
8754 		zext_patch[1].dst_reg = insn.dst_reg;
8755 		zext_patch[1].src_reg = insn.dst_reg;
8756 		patch = zext_patch;
8757 		patch_len = 2;
8758 apply_patch_buffer:
8759 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8760 		if (!new_prog)
8761 			return -ENOMEM;
8762 		env->prog = new_prog;
8763 		insns = new_prog->insnsi;
8764 		aux = env->insn_aux_data;
8765 		delta += patch_len - 1;
8766 	}
8767 
8768 	return 0;
8769 }
8770 
8771 /* convert load instructions that access fields of a context type into a
8772  * sequence of instructions that access fields of the underlying structure:
8773  *     struct __sk_buff    -> struct sk_buff
8774  *     struct bpf_sock_ops -> struct sock
8775  */
8776 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8777 {
8778 	const struct bpf_verifier_ops *ops = env->ops;
8779 	int i, cnt, size, ctx_field_size, delta = 0;
8780 	const int insn_cnt = env->prog->len;
8781 	struct bpf_insn insn_buf[16], *insn;
8782 	u32 target_size, size_default, off;
8783 	struct bpf_prog *new_prog;
8784 	enum bpf_access_type type;
8785 	bool is_narrower_load;
8786 
8787 	if (ops->gen_prologue || env->seen_direct_write) {
8788 		if (!ops->gen_prologue) {
8789 			verbose(env, "bpf verifier is misconfigured\n");
8790 			return -EINVAL;
8791 		}
8792 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8793 					env->prog);
8794 		if (cnt >= ARRAY_SIZE(insn_buf)) {
8795 			verbose(env, "bpf verifier is misconfigured\n");
8796 			return -EINVAL;
8797 		} else if (cnt) {
8798 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8799 			if (!new_prog)
8800 				return -ENOMEM;
8801 
8802 			env->prog = new_prog;
8803 			delta += cnt - 1;
8804 		}
8805 	}
8806 
8807 	if (bpf_prog_is_dev_bound(env->prog->aux))
8808 		return 0;
8809 
8810 	insn = env->prog->insnsi + delta;
8811 
8812 	for (i = 0; i < insn_cnt; i++, insn++) {
8813 		bpf_convert_ctx_access_t convert_ctx_access;
8814 
8815 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8816 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8817 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8818 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8819 			type = BPF_READ;
8820 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8821 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8822 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8823 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8824 			type = BPF_WRITE;
8825 		else
8826 			continue;
8827 
8828 		if (type == BPF_WRITE &&
8829 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
8830 			struct bpf_insn patch[] = {
8831 				/* Sanitize suspicious stack slot with zero.
8832 				 * There are no memory dependencies for this store,
8833 				 * since it's only using frame pointer and immediate
8834 				 * constant of zero
8835 				 */
8836 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8837 					   env->insn_aux_data[i + delta].sanitize_stack_off,
8838 					   0),
8839 				/* the original STX instruction will immediately
8840 				 * overwrite the same stack slot with appropriate value
8841 				 */
8842 				*insn,
8843 			};
8844 
8845 			cnt = ARRAY_SIZE(patch);
8846 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8847 			if (!new_prog)
8848 				return -ENOMEM;
8849 
8850 			delta    += cnt - 1;
8851 			env->prog = new_prog;
8852 			insn      = new_prog->insnsi + i + delta;
8853 			continue;
8854 		}
8855 
8856 		switch (env->insn_aux_data[i + delta].ptr_type) {
8857 		case PTR_TO_CTX:
8858 			if (!ops->convert_ctx_access)
8859 				continue;
8860 			convert_ctx_access = ops->convert_ctx_access;
8861 			break;
8862 		case PTR_TO_SOCKET:
8863 		case PTR_TO_SOCK_COMMON:
8864 			convert_ctx_access = bpf_sock_convert_ctx_access;
8865 			break;
8866 		case PTR_TO_TCP_SOCK:
8867 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8868 			break;
8869 		case PTR_TO_XDP_SOCK:
8870 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8871 			break;
8872 		case PTR_TO_BTF_ID:
8873 			if (type == BPF_READ) {
8874 				insn->code = BPF_LDX | BPF_PROBE_MEM |
8875 					BPF_SIZE((insn)->code);
8876 				env->prog->aux->num_exentries++;
8877 			} else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8878 				verbose(env, "Writes through BTF pointers are not allowed\n");
8879 				return -EINVAL;
8880 			}
8881 			continue;
8882 		default:
8883 			continue;
8884 		}
8885 
8886 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8887 		size = BPF_LDST_BYTES(insn);
8888 
8889 		/* If the read access is a narrower load of the field,
8890 		 * convert to a 4/8-byte load, to minimum program type specific
8891 		 * convert_ctx_access changes. If conversion is successful,
8892 		 * we will apply proper mask to the result.
8893 		 */
8894 		is_narrower_load = size < ctx_field_size;
8895 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8896 		off = insn->off;
8897 		if (is_narrower_load) {
8898 			u8 size_code;
8899 
8900 			if (type == BPF_WRITE) {
8901 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8902 				return -EINVAL;
8903 			}
8904 
8905 			size_code = BPF_H;
8906 			if (ctx_field_size == 4)
8907 				size_code = BPF_W;
8908 			else if (ctx_field_size == 8)
8909 				size_code = BPF_DW;
8910 
8911 			insn->off = off & ~(size_default - 1);
8912 			insn->code = BPF_LDX | BPF_MEM | size_code;
8913 		}
8914 
8915 		target_size = 0;
8916 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8917 					 &target_size);
8918 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8919 		    (ctx_field_size && !target_size)) {
8920 			verbose(env, "bpf verifier is misconfigured\n");
8921 			return -EINVAL;
8922 		}
8923 
8924 		if (is_narrower_load && size < target_size) {
8925 			u8 shift = bpf_ctx_narrow_access_offset(
8926 				off, size, size_default) * 8;
8927 			if (ctx_field_size <= 4) {
8928 				if (shift)
8929 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8930 									insn->dst_reg,
8931 									shift);
8932 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8933 								(1 << size * 8) - 1);
8934 			} else {
8935 				if (shift)
8936 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8937 									insn->dst_reg,
8938 									shift);
8939 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8940 								(1ULL << size * 8) - 1);
8941 			}
8942 		}
8943 
8944 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8945 		if (!new_prog)
8946 			return -ENOMEM;
8947 
8948 		delta += cnt - 1;
8949 
8950 		/* keep walking new program and skip insns we just inserted */
8951 		env->prog = new_prog;
8952 		insn      = new_prog->insnsi + i + delta;
8953 	}
8954 
8955 	return 0;
8956 }
8957 
8958 static int jit_subprogs(struct bpf_verifier_env *env)
8959 {
8960 	struct bpf_prog *prog = env->prog, **func, *tmp;
8961 	int i, j, subprog_start, subprog_end = 0, len, subprog;
8962 	struct bpf_insn *insn;
8963 	void *old_bpf_func;
8964 	int err;
8965 
8966 	if (env->subprog_cnt <= 1)
8967 		return 0;
8968 
8969 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8970 		if (insn->code != (BPF_JMP | BPF_CALL) ||
8971 		    insn->src_reg != BPF_PSEUDO_CALL)
8972 			continue;
8973 		/* Upon error here we cannot fall back to interpreter but
8974 		 * need a hard reject of the program. Thus -EFAULT is
8975 		 * propagated in any case.
8976 		 */
8977 		subprog = find_subprog(env, i + insn->imm + 1);
8978 		if (subprog < 0) {
8979 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8980 				  i + insn->imm + 1);
8981 			return -EFAULT;
8982 		}
8983 		/* temporarily remember subprog id inside insn instead of
8984 		 * aux_data, since next loop will split up all insns into funcs
8985 		 */
8986 		insn->off = subprog;
8987 		/* remember original imm in case JIT fails and fallback
8988 		 * to interpreter will be needed
8989 		 */
8990 		env->insn_aux_data[i].call_imm = insn->imm;
8991 		/* point imm to __bpf_call_base+1 from JITs point of view */
8992 		insn->imm = 1;
8993 	}
8994 
8995 	err = bpf_prog_alloc_jited_linfo(prog);
8996 	if (err)
8997 		goto out_undo_insn;
8998 
8999 	err = -ENOMEM;
9000 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9001 	if (!func)
9002 		goto out_undo_insn;
9003 
9004 	for (i = 0; i < env->subprog_cnt; i++) {
9005 		subprog_start = subprog_end;
9006 		subprog_end = env->subprog_info[i + 1].start;
9007 
9008 		len = subprog_end - subprog_start;
9009 		/* BPF_PROG_RUN doesn't call subprogs directly,
9010 		 * hence main prog stats include the runtime of subprogs.
9011 		 * subprogs don't have IDs and not reachable via prog_get_next_id
9012 		 * func[i]->aux->stats will never be accessed and stays NULL
9013 		 */
9014 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9015 		if (!func[i])
9016 			goto out_free;
9017 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9018 		       len * sizeof(struct bpf_insn));
9019 		func[i]->type = prog->type;
9020 		func[i]->len = len;
9021 		if (bpf_prog_calc_tag(func[i]))
9022 			goto out_free;
9023 		func[i]->is_func = 1;
9024 		func[i]->aux->func_idx = i;
9025 		/* the btf and func_info will be freed only at prog->aux */
9026 		func[i]->aux->btf = prog->aux->btf;
9027 		func[i]->aux->func_info = prog->aux->func_info;
9028 
9029 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
9030 		 * Long term would need debug info to populate names
9031 		 */
9032 		func[i]->aux->name[0] = 'F';
9033 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9034 		func[i]->jit_requested = 1;
9035 		func[i]->aux->linfo = prog->aux->linfo;
9036 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9037 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9038 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9039 		func[i] = bpf_int_jit_compile(func[i]);
9040 		if (!func[i]->jited) {
9041 			err = -ENOTSUPP;
9042 			goto out_free;
9043 		}
9044 		cond_resched();
9045 	}
9046 	/* at this point all bpf functions were successfully JITed
9047 	 * now populate all bpf_calls with correct addresses and
9048 	 * run last pass of JIT
9049 	 */
9050 	for (i = 0; i < env->subprog_cnt; i++) {
9051 		insn = func[i]->insnsi;
9052 		for (j = 0; j < func[i]->len; j++, insn++) {
9053 			if (insn->code != (BPF_JMP | BPF_CALL) ||
9054 			    insn->src_reg != BPF_PSEUDO_CALL)
9055 				continue;
9056 			subprog = insn->off;
9057 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9058 				    __bpf_call_base;
9059 		}
9060 
9061 		/* we use the aux data to keep a list of the start addresses
9062 		 * of the JITed images for each function in the program
9063 		 *
9064 		 * for some architectures, such as powerpc64, the imm field
9065 		 * might not be large enough to hold the offset of the start
9066 		 * address of the callee's JITed image from __bpf_call_base
9067 		 *
9068 		 * in such cases, we can lookup the start address of a callee
9069 		 * by using its subprog id, available from the off field of
9070 		 * the call instruction, as an index for this list
9071 		 */
9072 		func[i]->aux->func = func;
9073 		func[i]->aux->func_cnt = env->subprog_cnt;
9074 	}
9075 	for (i = 0; i < env->subprog_cnt; i++) {
9076 		old_bpf_func = func[i]->bpf_func;
9077 		tmp = bpf_int_jit_compile(func[i]);
9078 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9079 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9080 			err = -ENOTSUPP;
9081 			goto out_free;
9082 		}
9083 		cond_resched();
9084 	}
9085 
9086 	/* finally lock prog and jit images for all functions and
9087 	 * populate kallsysm
9088 	 */
9089 	for (i = 0; i < env->subprog_cnt; i++) {
9090 		bpf_prog_lock_ro(func[i]);
9091 		bpf_prog_kallsyms_add(func[i]);
9092 	}
9093 
9094 	/* Last step: make now unused interpreter insns from main
9095 	 * prog consistent for later dump requests, so they can
9096 	 * later look the same as if they were interpreted only.
9097 	 */
9098 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9099 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9100 		    insn->src_reg != BPF_PSEUDO_CALL)
9101 			continue;
9102 		insn->off = env->insn_aux_data[i].call_imm;
9103 		subprog = find_subprog(env, i + insn->off + 1);
9104 		insn->imm = subprog;
9105 	}
9106 
9107 	prog->jited = 1;
9108 	prog->bpf_func = func[0]->bpf_func;
9109 	prog->aux->func = func;
9110 	prog->aux->func_cnt = env->subprog_cnt;
9111 	bpf_prog_free_unused_jited_linfo(prog);
9112 	return 0;
9113 out_free:
9114 	for (i = 0; i < env->subprog_cnt; i++)
9115 		if (func[i])
9116 			bpf_jit_free(func[i]);
9117 	kfree(func);
9118 out_undo_insn:
9119 	/* cleanup main prog to be interpreted */
9120 	prog->jit_requested = 0;
9121 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9122 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9123 		    insn->src_reg != BPF_PSEUDO_CALL)
9124 			continue;
9125 		insn->off = 0;
9126 		insn->imm = env->insn_aux_data[i].call_imm;
9127 	}
9128 	bpf_prog_free_jited_linfo(prog);
9129 	return err;
9130 }
9131 
9132 static int fixup_call_args(struct bpf_verifier_env *env)
9133 {
9134 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9135 	struct bpf_prog *prog = env->prog;
9136 	struct bpf_insn *insn = prog->insnsi;
9137 	int i, depth;
9138 #endif
9139 	int err = 0;
9140 
9141 	if (env->prog->jit_requested &&
9142 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
9143 		err = jit_subprogs(env);
9144 		if (err == 0)
9145 			return 0;
9146 		if (err == -EFAULT)
9147 			return err;
9148 	}
9149 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9150 	for (i = 0; i < prog->len; i++, insn++) {
9151 		if (insn->code != (BPF_JMP | BPF_CALL) ||
9152 		    insn->src_reg != BPF_PSEUDO_CALL)
9153 			continue;
9154 		depth = get_callee_stack_depth(env, insn, i);
9155 		if (depth < 0)
9156 			return depth;
9157 		bpf_patch_call_args(insn, depth);
9158 	}
9159 	err = 0;
9160 #endif
9161 	return err;
9162 }
9163 
9164 /* fixup insn->imm field of bpf_call instructions
9165  * and inline eligible helpers as explicit sequence of BPF instructions
9166  *
9167  * this function is called after eBPF program passed verification
9168  */
9169 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9170 {
9171 	struct bpf_prog *prog = env->prog;
9172 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
9173 	struct bpf_insn *insn = prog->insnsi;
9174 	const struct bpf_func_proto *fn;
9175 	const int insn_cnt = prog->len;
9176 	const struct bpf_map_ops *ops;
9177 	struct bpf_insn_aux_data *aux;
9178 	struct bpf_insn insn_buf[16];
9179 	struct bpf_prog *new_prog;
9180 	struct bpf_map *map_ptr;
9181 	int i, ret, cnt, delta = 0;
9182 
9183 	for (i = 0; i < insn_cnt; i++, insn++) {
9184 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9185 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9186 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9187 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9188 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9189 			struct bpf_insn mask_and_div[] = {
9190 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9191 				/* Rx div 0 -> 0 */
9192 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9193 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9194 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9195 				*insn,
9196 			};
9197 			struct bpf_insn mask_and_mod[] = {
9198 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9199 				/* Rx mod 0 -> Rx */
9200 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9201 				*insn,
9202 			};
9203 			struct bpf_insn *patchlet;
9204 
9205 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9206 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9207 				patchlet = mask_and_div + (is64 ? 1 : 0);
9208 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9209 			} else {
9210 				patchlet = mask_and_mod + (is64 ? 1 : 0);
9211 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9212 			}
9213 
9214 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9215 			if (!new_prog)
9216 				return -ENOMEM;
9217 
9218 			delta    += cnt - 1;
9219 			env->prog = prog = new_prog;
9220 			insn      = new_prog->insnsi + i + delta;
9221 			continue;
9222 		}
9223 
9224 		if (BPF_CLASS(insn->code) == BPF_LD &&
9225 		    (BPF_MODE(insn->code) == BPF_ABS ||
9226 		     BPF_MODE(insn->code) == BPF_IND)) {
9227 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
9228 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9229 				verbose(env, "bpf verifier is misconfigured\n");
9230 				return -EINVAL;
9231 			}
9232 
9233 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9234 			if (!new_prog)
9235 				return -ENOMEM;
9236 
9237 			delta    += cnt - 1;
9238 			env->prog = prog = new_prog;
9239 			insn      = new_prog->insnsi + i + delta;
9240 			continue;
9241 		}
9242 
9243 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9244 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9245 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9246 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9247 			struct bpf_insn insn_buf[16];
9248 			struct bpf_insn *patch = &insn_buf[0];
9249 			bool issrc, isneg;
9250 			u32 off_reg;
9251 
9252 			aux = &env->insn_aux_data[i + delta];
9253 			if (!aux->alu_state ||
9254 			    aux->alu_state == BPF_ALU_NON_POINTER)
9255 				continue;
9256 
9257 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9258 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9259 				BPF_ALU_SANITIZE_SRC;
9260 
9261 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
9262 			if (isneg)
9263 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9264 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9265 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9266 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9267 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9268 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9269 			if (issrc) {
9270 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9271 							 off_reg);
9272 				insn->src_reg = BPF_REG_AX;
9273 			} else {
9274 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9275 							 BPF_REG_AX);
9276 			}
9277 			if (isneg)
9278 				insn->code = insn->code == code_add ?
9279 					     code_sub : code_add;
9280 			*patch++ = *insn;
9281 			if (issrc && isneg)
9282 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9283 			cnt = patch - insn_buf;
9284 
9285 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9286 			if (!new_prog)
9287 				return -ENOMEM;
9288 
9289 			delta    += cnt - 1;
9290 			env->prog = prog = new_prog;
9291 			insn      = new_prog->insnsi + i + delta;
9292 			continue;
9293 		}
9294 
9295 		if (insn->code != (BPF_JMP | BPF_CALL))
9296 			continue;
9297 		if (insn->src_reg == BPF_PSEUDO_CALL)
9298 			continue;
9299 
9300 		if (insn->imm == BPF_FUNC_get_route_realm)
9301 			prog->dst_needed = 1;
9302 		if (insn->imm == BPF_FUNC_get_prandom_u32)
9303 			bpf_user_rnd_init_once();
9304 		if (insn->imm == BPF_FUNC_override_return)
9305 			prog->kprobe_override = 1;
9306 		if (insn->imm == BPF_FUNC_tail_call) {
9307 			/* If we tail call into other programs, we
9308 			 * cannot make any assumptions since they can
9309 			 * be replaced dynamically during runtime in
9310 			 * the program array.
9311 			 */
9312 			prog->cb_access = 1;
9313 			env->prog->aux->stack_depth = MAX_BPF_STACK;
9314 			env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9315 
9316 			/* mark bpf_tail_call as different opcode to avoid
9317 			 * conditional branch in the interpeter for every normal
9318 			 * call and to prevent accidental JITing by JIT compiler
9319 			 * that doesn't support bpf_tail_call yet
9320 			 */
9321 			insn->imm = 0;
9322 			insn->code = BPF_JMP | BPF_TAIL_CALL;
9323 
9324 			aux = &env->insn_aux_data[i + delta];
9325 			if (env->allow_ptr_leaks && !expect_blinding &&
9326 			    prog->jit_requested &&
9327 			    !bpf_map_key_poisoned(aux) &&
9328 			    !bpf_map_ptr_poisoned(aux) &&
9329 			    !bpf_map_ptr_unpriv(aux)) {
9330 				struct bpf_jit_poke_descriptor desc = {
9331 					.reason = BPF_POKE_REASON_TAIL_CALL,
9332 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9333 					.tail_call.key = bpf_map_key_immediate(aux),
9334 				};
9335 
9336 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
9337 				if (ret < 0) {
9338 					verbose(env, "adding tail call poke descriptor failed\n");
9339 					return ret;
9340 				}
9341 
9342 				insn->imm = ret + 1;
9343 				continue;
9344 			}
9345 
9346 			if (!bpf_map_ptr_unpriv(aux))
9347 				continue;
9348 
9349 			/* instead of changing every JIT dealing with tail_call
9350 			 * emit two extra insns:
9351 			 * if (index >= max_entries) goto out;
9352 			 * index &= array->index_mask;
9353 			 * to avoid out-of-bounds cpu speculation
9354 			 */
9355 			if (bpf_map_ptr_poisoned(aux)) {
9356 				verbose(env, "tail_call abusing map_ptr\n");
9357 				return -EINVAL;
9358 			}
9359 
9360 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9361 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9362 						  map_ptr->max_entries, 2);
9363 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9364 						    container_of(map_ptr,
9365 								 struct bpf_array,
9366 								 map)->index_mask);
9367 			insn_buf[2] = *insn;
9368 			cnt = 3;
9369 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9370 			if (!new_prog)
9371 				return -ENOMEM;
9372 
9373 			delta    += cnt - 1;
9374 			env->prog = prog = new_prog;
9375 			insn      = new_prog->insnsi + i + delta;
9376 			continue;
9377 		}
9378 
9379 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9380 		 * and other inlining handlers are currently limited to 64 bit
9381 		 * only.
9382 		 */
9383 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9384 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
9385 		     insn->imm == BPF_FUNC_map_update_elem ||
9386 		     insn->imm == BPF_FUNC_map_delete_elem ||
9387 		     insn->imm == BPF_FUNC_map_push_elem   ||
9388 		     insn->imm == BPF_FUNC_map_pop_elem    ||
9389 		     insn->imm == BPF_FUNC_map_peek_elem)) {
9390 			aux = &env->insn_aux_data[i + delta];
9391 			if (bpf_map_ptr_poisoned(aux))
9392 				goto patch_call_imm;
9393 
9394 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9395 			ops = map_ptr->ops;
9396 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
9397 			    ops->map_gen_lookup) {
9398 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9399 				if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9400 					verbose(env, "bpf verifier is misconfigured\n");
9401 					return -EINVAL;
9402 				}
9403 
9404 				new_prog = bpf_patch_insn_data(env, i + delta,
9405 							       insn_buf, cnt);
9406 				if (!new_prog)
9407 					return -ENOMEM;
9408 
9409 				delta    += cnt - 1;
9410 				env->prog = prog = new_prog;
9411 				insn      = new_prog->insnsi + i + delta;
9412 				continue;
9413 			}
9414 
9415 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9416 				     (void *(*)(struct bpf_map *map, void *key))NULL));
9417 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9418 				     (int (*)(struct bpf_map *map, void *key))NULL));
9419 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9420 				     (int (*)(struct bpf_map *map, void *key, void *value,
9421 					      u64 flags))NULL));
9422 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9423 				     (int (*)(struct bpf_map *map, void *value,
9424 					      u64 flags))NULL));
9425 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9426 				     (int (*)(struct bpf_map *map, void *value))NULL));
9427 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9428 				     (int (*)(struct bpf_map *map, void *value))NULL));
9429 
9430 			switch (insn->imm) {
9431 			case BPF_FUNC_map_lookup_elem:
9432 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9433 					    __bpf_call_base;
9434 				continue;
9435 			case BPF_FUNC_map_update_elem:
9436 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9437 					    __bpf_call_base;
9438 				continue;
9439 			case BPF_FUNC_map_delete_elem:
9440 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9441 					    __bpf_call_base;
9442 				continue;
9443 			case BPF_FUNC_map_push_elem:
9444 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9445 					    __bpf_call_base;
9446 				continue;
9447 			case BPF_FUNC_map_pop_elem:
9448 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9449 					    __bpf_call_base;
9450 				continue;
9451 			case BPF_FUNC_map_peek_elem:
9452 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9453 					    __bpf_call_base;
9454 				continue;
9455 			}
9456 
9457 			goto patch_call_imm;
9458 		}
9459 
9460 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
9461 		    insn->imm == BPF_FUNC_jiffies64) {
9462 			struct bpf_insn ld_jiffies_addr[2] = {
9463 				BPF_LD_IMM64(BPF_REG_0,
9464 					     (unsigned long)&jiffies),
9465 			};
9466 
9467 			insn_buf[0] = ld_jiffies_addr[0];
9468 			insn_buf[1] = ld_jiffies_addr[1];
9469 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
9470 						  BPF_REG_0, 0);
9471 			cnt = 3;
9472 
9473 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
9474 						       cnt);
9475 			if (!new_prog)
9476 				return -ENOMEM;
9477 
9478 			delta    += cnt - 1;
9479 			env->prog = prog = new_prog;
9480 			insn      = new_prog->insnsi + i + delta;
9481 			continue;
9482 		}
9483 
9484 patch_call_imm:
9485 		fn = env->ops->get_func_proto(insn->imm, env->prog);
9486 		/* all functions that have prototype and verifier allowed
9487 		 * programs to call them, must be real in-kernel functions
9488 		 */
9489 		if (!fn->func) {
9490 			verbose(env,
9491 				"kernel subsystem misconfigured func %s#%d\n",
9492 				func_id_name(insn->imm), insn->imm);
9493 			return -EFAULT;
9494 		}
9495 		insn->imm = fn->func - __bpf_call_base;
9496 	}
9497 
9498 	/* Since poke tab is now finalized, publish aux to tracker. */
9499 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
9500 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
9501 		if (!map_ptr->ops->map_poke_track ||
9502 		    !map_ptr->ops->map_poke_untrack ||
9503 		    !map_ptr->ops->map_poke_run) {
9504 			verbose(env, "bpf verifier is misconfigured\n");
9505 			return -EINVAL;
9506 		}
9507 
9508 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9509 		if (ret < 0) {
9510 			verbose(env, "tracking tail call prog failed\n");
9511 			return ret;
9512 		}
9513 	}
9514 
9515 	return 0;
9516 }
9517 
9518 static void free_states(struct bpf_verifier_env *env)
9519 {
9520 	struct bpf_verifier_state_list *sl, *sln;
9521 	int i;
9522 
9523 	sl = env->free_list;
9524 	while (sl) {
9525 		sln = sl->next;
9526 		free_verifier_state(&sl->state, false);
9527 		kfree(sl);
9528 		sl = sln;
9529 	}
9530 	env->free_list = NULL;
9531 
9532 	if (!env->explored_states)
9533 		return;
9534 
9535 	for (i = 0; i < state_htab_size(env); i++) {
9536 		sl = env->explored_states[i];
9537 
9538 		while (sl) {
9539 			sln = sl->next;
9540 			free_verifier_state(&sl->state, false);
9541 			kfree(sl);
9542 			sl = sln;
9543 		}
9544 		env->explored_states[i] = NULL;
9545 	}
9546 }
9547 
9548 /* The verifier is using insn_aux_data[] to store temporary data during
9549  * verification and to store information for passes that run after the
9550  * verification like dead code sanitization. do_check_common() for subprogram N
9551  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
9552  * temporary data after do_check_common() finds that subprogram N cannot be
9553  * verified independently. pass_cnt counts the number of times
9554  * do_check_common() was run and insn->aux->seen tells the pass number
9555  * insn_aux_data was touched. These variables are compared to clear temporary
9556  * data from failed pass. For testing and experiments do_check_common() can be
9557  * run multiple times even when prior attempt to verify is unsuccessful.
9558  */
9559 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
9560 {
9561 	struct bpf_insn *insn = env->prog->insnsi;
9562 	struct bpf_insn_aux_data *aux;
9563 	int i, class;
9564 
9565 	for (i = 0; i < env->prog->len; i++) {
9566 		class = BPF_CLASS(insn[i].code);
9567 		if (class != BPF_LDX && class != BPF_STX)
9568 			continue;
9569 		aux = &env->insn_aux_data[i];
9570 		if (aux->seen != env->pass_cnt)
9571 			continue;
9572 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
9573 	}
9574 }
9575 
9576 static int do_check_common(struct bpf_verifier_env *env, int subprog)
9577 {
9578 	struct bpf_verifier_state *state;
9579 	struct bpf_reg_state *regs;
9580 	int ret, i;
9581 
9582 	env->prev_linfo = NULL;
9583 	env->pass_cnt++;
9584 
9585 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
9586 	if (!state)
9587 		return -ENOMEM;
9588 	state->curframe = 0;
9589 	state->speculative = false;
9590 	state->branches = 1;
9591 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
9592 	if (!state->frame[0]) {
9593 		kfree(state);
9594 		return -ENOMEM;
9595 	}
9596 	env->cur_state = state;
9597 	init_func_state(env, state->frame[0],
9598 			BPF_MAIN_FUNC /* callsite */,
9599 			0 /* frameno */,
9600 			subprog);
9601 
9602 	regs = state->frame[state->curframe]->regs;
9603 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
9604 		ret = btf_prepare_func_args(env, subprog, regs);
9605 		if (ret)
9606 			goto out;
9607 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
9608 			if (regs[i].type == PTR_TO_CTX)
9609 				mark_reg_known_zero(env, regs, i);
9610 			else if (regs[i].type == SCALAR_VALUE)
9611 				mark_reg_unknown(env, regs, i);
9612 		}
9613 	} else {
9614 		/* 1st arg to a function */
9615 		regs[BPF_REG_1].type = PTR_TO_CTX;
9616 		mark_reg_known_zero(env, regs, BPF_REG_1);
9617 		ret = btf_check_func_arg_match(env, subprog, regs);
9618 		if (ret == -EFAULT)
9619 			/* unlikely verifier bug. abort.
9620 			 * ret == 0 and ret < 0 are sadly acceptable for
9621 			 * main() function due to backward compatibility.
9622 			 * Like socket filter program may be written as:
9623 			 * int bpf_prog(struct pt_regs *ctx)
9624 			 * and never dereference that ctx in the program.
9625 			 * 'struct pt_regs' is a type mismatch for socket
9626 			 * filter that should be using 'struct __sk_buff'.
9627 			 */
9628 			goto out;
9629 	}
9630 
9631 	ret = do_check(env);
9632 out:
9633 	/* check for NULL is necessary, since cur_state can be freed inside
9634 	 * do_check() under memory pressure.
9635 	 */
9636 	if (env->cur_state) {
9637 		free_verifier_state(env->cur_state, true);
9638 		env->cur_state = NULL;
9639 	}
9640 	while (!pop_stack(env, NULL, NULL));
9641 	free_states(env);
9642 	if (ret)
9643 		/* clean aux data in case subprog was rejected */
9644 		sanitize_insn_aux_data(env);
9645 	return ret;
9646 }
9647 
9648 /* Verify all global functions in a BPF program one by one based on their BTF.
9649  * All global functions must pass verification. Otherwise the whole program is rejected.
9650  * Consider:
9651  * int bar(int);
9652  * int foo(int f)
9653  * {
9654  *    return bar(f);
9655  * }
9656  * int bar(int b)
9657  * {
9658  *    ...
9659  * }
9660  * foo() will be verified first for R1=any_scalar_value. During verification it
9661  * will be assumed that bar() already verified successfully and call to bar()
9662  * from foo() will be checked for type match only. Later bar() will be verified
9663  * independently to check that it's safe for R1=any_scalar_value.
9664  */
9665 static int do_check_subprogs(struct bpf_verifier_env *env)
9666 {
9667 	struct bpf_prog_aux *aux = env->prog->aux;
9668 	int i, ret;
9669 
9670 	if (!aux->func_info)
9671 		return 0;
9672 
9673 	for (i = 1; i < env->subprog_cnt; i++) {
9674 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
9675 			continue;
9676 		env->insn_idx = env->subprog_info[i].start;
9677 		WARN_ON_ONCE(env->insn_idx == 0);
9678 		ret = do_check_common(env, i);
9679 		if (ret) {
9680 			return ret;
9681 		} else if (env->log.level & BPF_LOG_LEVEL) {
9682 			verbose(env,
9683 				"Func#%d is safe for any args that match its prototype\n",
9684 				i);
9685 		}
9686 	}
9687 	return 0;
9688 }
9689 
9690 static int do_check_main(struct bpf_verifier_env *env)
9691 {
9692 	int ret;
9693 
9694 	env->insn_idx = 0;
9695 	ret = do_check_common(env, 0);
9696 	if (!ret)
9697 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
9698 	return ret;
9699 }
9700 
9701 
9702 static void print_verification_stats(struct bpf_verifier_env *env)
9703 {
9704 	int i;
9705 
9706 	if (env->log.level & BPF_LOG_STATS) {
9707 		verbose(env, "verification time %lld usec\n",
9708 			div_u64(env->verification_time, 1000));
9709 		verbose(env, "stack depth ");
9710 		for (i = 0; i < env->subprog_cnt; i++) {
9711 			u32 depth = env->subprog_info[i].stack_depth;
9712 
9713 			verbose(env, "%d", depth);
9714 			if (i + 1 < env->subprog_cnt)
9715 				verbose(env, "+");
9716 		}
9717 		verbose(env, "\n");
9718 	}
9719 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9720 		"total_states %d peak_states %d mark_read %d\n",
9721 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9722 		env->max_states_per_insn, env->total_states,
9723 		env->peak_states, env->longest_mark_read_walk);
9724 }
9725 
9726 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
9727 {
9728 	const struct btf_type *t, *func_proto;
9729 	const struct bpf_struct_ops *st_ops;
9730 	const struct btf_member *member;
9731 	struct bpf_prog *prog = env->prog;
9732 	u32 btf_id, member_idx;
9733 	const char *mname;
9734 
9735 	btf_id = prog->aux->attach_btf_id;
9736 	st_ops = bpf_struct_ops_find(btf_id);
9737 	if (!st_ops) {
9738 		verbose(env, "attach_btf_id %u is not a supported struct\n",
9739 			btf_id);
9740 		return -ENOTSUPP;
9741 	}
9742 
9743 	t = st_ops->type;
9744 	member_idx = prog->expected_attach_type;
9745 	if (member_idx >= btf_type_vlen(t)) {
9746 		verbose(env, "attach to invalid member idx %u of struct %s\n",
9747 			member_idx, st_ops->name);
9748 		return -EINVAL;
9749 	}
9750 
9751 	member = &btf_type_member(t)[member_idx];
9752 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
9753 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
9754 					       NULL);
9755 	if (!func_proto) {
9756 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
9757 			mname, member_idx, st_ops->name);
9758 		return -EINVAL;
9759 	}
9760 
9761 	if (st_ops->check_member) {
9762 		int err = st_ops->check_member(t, member);
9763 
9764 		if (err) {
9765 			verbose(env, "attach to unsupported member %s of struct %s\n",
9766 				mname, st_ops->name);
9767 			return err;
9768 		}
9769 	}
9770 
9771 	prog->aux->attach_func_proto = func_proto;
9772 	prog->aux->attach_func_name = mname;
9773 	env->ops = st_ops->verifier_ops;
9774 
9775 	return 0;
9776 }
9777 
9778 static int check_attach_btf_id(struct bpf_verifier_env *env)
9779 {
9780 	struct bpf_prog *prog = env->prog;
9781 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
9782 	struct bpf_prog *tgt_prog = prog->aux->linked_prog;
9783 	u32 btf_id = prog->aux->attach_btf_id;
9784 	const char prefix[] = "btf_trace_";
9785 	int ret = 0, subprog = -1, i;
9786 	struct bpf_trampoline *tr;
9787 	const struct btf_type *t;
9788 	bool conservative = true;
9789 	const char *tname;
9790 	struct btf *btf;
9791 	long addr;
9792 	u64 key;
9793 
9794 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
9795 		return check_struct_ops_btf_id(env);
9796 
9797 	if (prog->type != BPF_PROG_TYPE_TRACING && !prog_extension)
9798 		return 0;
9799 
9800 	if (!btf_id) {
9801 		verbose(env, "Tracing programs must provide btf_id\n");
9802 		return -EINVAL;
9803 	}
9804 	btf = bpf_prog_get_target_btf(prog);
9805 	if (!btf) {
9806 		verbose(env,
9807 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9808 		return -EINVAL;
9809 	}
9810 	t = btf_type_by_id(btf, btf_id);
9811 	if (!t) {
9812 		verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9813 		return -EINVAL;
9814 	}
9815 	tname = btf_name_by_offset(btf, t->name_off);
9816 	if (!tname) {
9817 		verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9818 		return -EINVAL;
9819 	}
9820 	if (tgt_prog) {
9821 		struct bpf_prog_aux *aux = tgt_prog->aux;
9822 
9823 		for (i = 0; i < aux->func_info_cnt; i++)
9824 			if (aux->func_info[i].type_id == btf_id) {
9825 				subprog = i;
9826 				break;
9827 			}
9828 		if (subprog == -1) {
9829 			verbose(env, "Subprog %s doesn't exist\n", tname);
9830 			return -EINVAL;
9831 		}
9832 		conservative = aux->func_info_aux[subprog].unreliable;
9833 		if (prog_extension) {
9834 			if (conservative) {
9835 				verbose(env,
9836 					"Cannot replace static functions\n");
9837 				return -EINVAL;
9838 			}
9839 			if (!prog->jit_requested) {
9840 				verbose(env,
9841 					"Extension programs should be JITed\n");
9842 				return -EINVAL;
9843 			}
9844 			env->ops = bpf_verifier_ops[tgt_prog->type];
9845 		}
9846 		if (!tgt_prog->jited) {
9847 			verbose(env, "Can attach to only JITed progs\n");
9848 			return -EINVAL;
9849 		}
9850 		if (tgt_prog->type == prog->type) {
9851 			/* Cannot fentry/fexit another fentry/fexit program.
9852 			 * Cannot attach program extension to another extension.
9853 			 * It's ok to attach fentry/fexit to extension program.
9854 			 */
9855 			verbose(env, "Cannot recursively attach\n");
9856 			return -EINVAL;
9857 		}
9858 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
9859 		    prog_extension &&
9860 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
9861 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
9862 			/* Program extensions can extend all program types
9863 			 * except fentry/fexit. The reason is the following.
9864 			 * The fentry/fexit programs are used for performance
9865 			 * analysis, stats and can be attached to any program
9866 			 * type except themselves. When extension program is
9867 			 * replacing XDP function it is necessary to allow
9868 			 * performance analysis of all functions. Both original
9869 			 * XDP program and its program extension. Hence
9870 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
9871 			 * allowed. If extending of fentry/fexit was allowed it
9872 			 * would be possible to create long call chain
9873 			 * fentry->extension->fentry->extension beyond
9874 			 * reasonable stack size. Hence extending fentry is not
9875 			 * allowed.
9876 			 */
9877 			verbose(env, "Cannot extend fentry/fexit\n");
9878 			return -EINVAL;
9879 		}
9880 		key = ((u64)aux->id) << 32 | btf_id;
9881 	} else {
9882 		if (prog_extension) {
9883 			verbose(env, "Cannot replace kernel functions\n");
9884 			return -EINVAL;
9885 		}
9886 		key = btf_id;
9887 	}
9888 
9889 	switch (prog->expected_attach_type) {
9890 	case BPF_TRACE_RAW_TP:
9891 		if (tgt_prog) {
9892 			verbose(env,
9893 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9894 			return -EINVAL;
9895 		}
9896 		if (!btf_type_is_typedef(t)) {
9897 			verbose(env, "attach_btf_id %u is not a typedef\n",
9898 				btf_id);
9899 			return -EINVAL;
9900 		}
9901 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
9902 			verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9903 				btf_id, tname);
9904 			return -EINVAL;
9905 		}
9906 		tname += sizeof(prefix) - 1;
9907 		t = btf_type_by_id(btf, t->type);
9908 		if (!btf_type_is_ptr(t))
9909 			/* should never happen in valid vmlinux build */
9910 			return -EINVAL;
9911 		t = btf_type_by_id(btf, t->type);
9912 		if (!btf_type_is_func_proto(t))
9913 			/* should never happen in valid vmlinux build */
9914 			return -EINVAL;
9915 
9916 		/* remember two read only pointers that are valid for
9917 		 * the life time of the kernel
9918 		 */
9919 		prog->aux->attach_func_name = tname;
9920 		prog->aux->attach_func_proto = t;
9921 		prog->aux->attach_btf_trace = true;
9922 		return 0;
9923 	default:
9924 		if (!prog_extension)
9925 			return -EINVAL;
9926 		/* fallthrough */
9927 	case BPF_TRACE_FENTRY:
9928 	case BPF_TRACE_FEXIT:
9929 		if (!btf_type_is_func(t)) {
9930 			verbose(env, "attach_btf_id %u is not a function\n",
9931 				btf_id);
9932 			return -EINVAL;
9933 		}
9934 		if (prog_extension &&
9935 		    btf_check_type_match(env, prog, btf, t))
9936 			return -EINVAL;
9937 		t = btf_type_by_id(btf, t->type);
9938 		if (!btf_type_is_func_proto(t))
9939 			return -EINVAL;
9940 		tr = bpf_trampoline_lookup(key);
9941 		if (!tr)
9942 			return -ENOMEM;
9943 		prog->aux->attach_func_name = tname;
9944 		/* t is either vmlinux type or another program's type */
9945 		prog->aux->attach_func_proto = t;
9946 		mutex_lock(&tr->mutex);
9947 		if (tr->func.addr) {
9948 			prog->aux->trampoline = tr;
9949 			goto out;
9950 		}
9951 		if (tgt_prog && conservative) {
9952 			prog->aux->attach_func_proto = NULL;
9953 			t = NULL;
9954 		}
9955 		ret = btf_distill_func_proto(&env->log, btf, t,
9956 					     tname, &tr->func.model);
9957 		if (ret < 0)
9958 			goto out;
9959 		if (tgt_prog) {
9960 			if (subprog == 0)
9961 				addr = (long) tgt_prog->bpf_func;
9962 			else
9963 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
9964 		} else {
9965 			addr = kallsyms_lookup_name(tname);
9966 			if (!addr) {
9967 				verbose(env,
9968 					"The address of function %s cannot be found\n",
9969 					tname);
9970 				ret = -ENOENT;
9971 				goto out;
9972 			}
9973 		}
9974 		tr->func.addr = (void *)addr;
9975 		prog->aux->trampoline = tr;
9976 out:
9977 		mutex_unlock(&tr->mutex);
9978 		if (ret)
9979 			bpf_trampoline_put(tr);
9980 		return ret;
9981 	}
9982 }
9983 
9984 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9985 	      union bpf_attr __user *uattr)
9986 {
9987 	u64 start_time = ktime_get_ns();
9988 	struct bpf_verifier_env *env;
9989 	struct bpf_verifier_log *log;
9990 	int i, len, ret = -EINVAL;
9991 	bool is_priv;
9992 
9993 	/* no program is valid */
9994 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9995 		return -EINVAL;
9996 
9997 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
9998 	 * allocate/free it every time bpf_check() is called
9999 	 */
10000 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10001 	if (!env)
10002 		return -ENOMEM;
10003 	log = &env->log;
10004 
10005 	len = (*prog)->len;
10006 	env->insn_aux_data =
10007 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10008 	ret = -ENOMEM;
10009 	if (!env->insn_aux_data)
10010 		goto err_free_env;
10011 	for (i = 0; i < len; i++)
10012 		env->insn_aux_data[i].orig_idx = i;
10013 	env->prog = *prog;
10014 	env->ops = bpf_verifier_ops[env->prog->type];
10015 	is_priv = capable(CAP_SYS_ADMIN);
10016 
10017 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10018 		mutex_lock(&bpf_verifier_lock);
10019 		if (!btf_vmlinux)
10020 			btf_vmlinux = btf_parse_vmlinux();
10021 		mutex_unlock(&bpf_verifier_lock);
10022 	}
10023 
10024 	/* grab the mutex to protect few globals used by verifier */
10025 	if (!is_priv)
10026 		mutex_lock(&bpf_verifier_lock);
10027 
10028 	if (attr->log_level || attr->log_buf || attr->log_size) {
10029 		/* user requested verbose verifier output
10030 		 * and supplied buffer to store the verification trace
10031 		 */
10032 		log->level = attr->log_level;
10033 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10034 		log->len_total = attr->log_size;
10035 
10036 		ret = -EINVAL;
10037 		/* log attributes have to be sane */
10038 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10039 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10040 			goto err_unlock;
10041 	}
10042 
10043 	if (IS_ERR(btf_vmlinux)) {
10044 		/* Either gcc or pahole or kernel are broken. */
10045 		verbose(env, "in-kernel BTF is malformed\n");
10046 		ret = PTR_ERR(btf_vmlinux);
10047 		goto skip_full_check;
10048 	}
10049 
10050 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10051 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10052 		env->strict_alignment = true;
10053 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10054 		env->strict_alignment = false;
10055 
10056 	env->allow_ptr_leaks = is_priv;
10057 
10058 	if (is_priv)
10059 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10060 
10061 	ret = replace_map_fd_with_map_ptr(env);
10062 	if (ret < 0)
10063 		goto skip_full_check;
10064 
10065 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
10066 		ret = bpf_prog_offload_verifier_prep(env->prog);
10067 		if (ret)
10068 			goto skip_full_check;
10069 	}
10070 
10071 	env->explored_states = kvcalloc(state_htab_size(env),
10072 				       sizeof(struct bpf_verifier_state_list *),
10073 				       GFP_USER);
10074 	ret = -ENOMEM;
10075 	if (!env->explored_states)
10076 		goto skip_full_check;
10077 
10078 	ret = check_subprogs(env);
10079 	if (ret < 0)
10080 		goto skip_full_check;
10081 
10082 	ret = check_btf_info(env, attr, uattr);
10083 	if (ret < 0)
10084 		goto skip_full_check;
10085 
10086 	ret = check_attach_btf_id(env);
10087 	if (ret)
10088 		goto skip_full_check;
10089 
10090 	ret = check_cfg(env);
10091 	if (ret < 0)
10092 		goto skip_full_check;
10093 
10094 	ret = do_check_subprogs(env);
10095 	ret = ret ?: do_check_main(env);
10096 
10097 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10098 		ret = bpf_prog_offload_finalize(env);
10099 
10100 skip_full_check:
10101 	kvfree(env->explored_states);
10102 
10103 	if (ret == 0)
10104 		ret = check_max_stack_depth(env);
10105 
10106 	/* instruction rewrites happen after this point */
10107 	if (is_priv) {
10108 		if (ret == 0)
10109 			opt_hard_wire_dead_code_branches(env);
10110 		if (ret == 0)
10111 			ret = opt_remove_dead_code(env);
10112 		if (ret == 0)
10113 			ret = opt_remove_nops(env);
10114 	} else {
10115 		if (ret == 0)
10116 			sanitize_dead_code(env);
10117 	}
10118 
10119 	if (ret == 0)
10120 		/* program is valid, convert *(u32*)(ctx + off) accesses */
10121 		ret = convert_ctx_accesses(env);
10122 
10123 	if (ret == 0)
10124 		ret = fixup_bpf_calls(env);
10125 
10126 	/* do 32-bit optimization after insn patching has done so those patched
10127 	 * insns could be handled correctly.
10128 	 */
10129 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10130 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10131 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10132 								     : false;
10133 	}
10134 
10135 	if (ret == 0)
10136 		ret = fixup_call_args(env);
10137 
10138 	env->verification_time = ktime_get_ns() - start_time;
10139 	print_verification_stats(env);
10140 
10141 	if (log->level && bpf_verifier_log_full(log))
10142 		ret = -ENOSPC;
10143 	if (log->level && !log->ubuf) {
10144 		ret = -EFAULT;
10145 		goto err_release_maps;
10146 	}
10147 
10148 	if (ret == 0 && env->used_map_cnt) {
10149 		/* if program passed verifier, update used_maps in bpf_prog_info */
10150 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10151 							  sizeof(env->used_maps[0]),
10152 							  GFP_KERNEL);
10153 
10154 		if (!env->prog->aux->used_maps) {
10155 			ret = -ENOMEM;
10156 			goto err_release_maps;
10157 		}
10158 
10159 		memcpy(env->prog->aux->used_maps, env->used_maps,
10160 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
10161 		env->prog->aux->used_map_cnt = env->used_map_cnt;
10162 
10163 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
10164 		 * bpf_ld_imm64 instructions
10165 		 */
10166 		convert_pseudo_ld_imm64(env);
10167 	}
10168 
10169 	if (ret == 0)
10170 		adjust_btf_func(env);
10171 
10172 err_release_maps:
10173 	if (!env->prog->aux->used_maps)
10174 		/* if we didn't copy map pointers into bpf_prog_info, release
10175 		 * them now. Otherwise free_used_maps() will release them.
10176 		 */
10177 		release_maps(env);
10178 	*prog = env->prog;
10179 err_unlock:
10180 	if (!is_priv)
10181 		mutex_unlock(&bpf_verifier_lock);
10182 	vfree(env->insn_aux_data);
10183 err_free_env:
10184 	kfree(env);
10185 	return ret;
10186 }
10187