1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 23 #include "disasm.h" 24 25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 26 #define BPF_PROG_TYPE(_id, _name) \ 27 [_id] = & _name ## _verifier_ops, 28 #define BPF_MAP_TYPE(_id, _ops) 29 #include <linux/bpf_types.h> 30 #undef BPF_PROG_TYPE 31 #undef BPF_MAP_TYPE 32 }; 33 34 /* bpf_check() is a static code analyzer that walks eBPF program 35 * instruction by instruction and updates register/stack state. 36 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 37 * 38 * The first pass is depth-first-search to check that the program is a DAG. 39 * It rejects the following programs: 40 * - larger than BPF_MAXINSNS insns 41 * - if loop is present (detected via back-edge) 42 * - unreachable insns exist (shouldn't be a forest. program = one function) 43 * - out of bounds or malformed jumps 44 * The second pass is all possible path descent from the 1st insn. 45 * Since it's analyzing all pathes through the program, the length of the 46 * analysis is limited to 64k insn, which may be hit even if total number of 47 * insn is less then 4K, but there are too many branches that change stack/regs. 48 * Number of 'branches to be analyzed' is limited to 1k 49 * 50 * On entry to each instruction, each register has a type, and the instruction 51 * changes the types of the registers depending on instruction semantics. 52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 53 * copied to R1. 54 * 55 * All registers are 64-bit. 56 * R0 - return register 57 * R1-R5 argument passing registers 58 * R6-R9 callee saved registers 59 * R10 - frame pointer read-only 60 * 61 * At the start of BPF program the register R1 contains a pointer to bpf_context 62 * and has type PTR_TO_CTX. 63 * 64 * Verifier tracks arithmetic operations on pointers in case: 65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 67 * 1st insn copies R10 (which has FRAME_PTR) type into R1 68 * and 2nd arithmetic instruction is pattern matched to recognize 69 * that it wants to construct a pointer to some element within stack. 70 * So after 2nd insn, the register R1 has type PTR_TO_STACK 71 * (and -20 constant is saved for further stack bounds checking). 72 * Meaning that this reg is a pointer to stack plus known immediate constant. 73 * 74 * Most of the time the registers have SCALAR_VALUE type, which 75 * means the register has some value, but it's not a valid pointer. 76 * (like pointer plus pointer becomes SCALAR_VALUE type) 77 * 78 * When verifier sees load or store instructions the type of base register 79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 80 * four pointer types recognized by check_mem_access() function. 81 * 82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 83 * and the range of [ptr, ptr + map's value_size) is accessible. 84 * 85 * registers used to pass values to function calls are checked against 86 * function argument constraints. 87 * 88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 89 * It means that the register type passed to this function must be 90 * PTR_TO_STACK and it will be used inside the function as 91 * 'pointer to map element key' 92 * 93 * For example the argument constraints for bpf_map_lookup_elem(): 94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 95 * .arg1_type = ARG_CONST_MAP_PTR, 96 * .arg2_type = ARG_PTR_TO_MAP_KEY, 97 * 98 * ret_type says that this function returns 'pointer to map elem value or null' 99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 100 * 2nd argument should be a pointer to stack, which will be used inside 101 * the helper function as a pointer to map element key. 102 * 103 * On the kernel side the helper function looks like: 104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 105 * { 106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 107 * void *key = (void *) (unsigned long) r2; 108 * void *value; 109 * 110 * here kernel can access 'key' and 'map' pointers safely, knowing that 111 * [key, key + map->key_size) bytes are valid and were initialized on 112 * the stack of eBPF program. 113 * } 114 * 115 * Corresponding eBPF program may look like: 116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 120 * here verifier looks at prototype of map_lookup_elem() and sees: 121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 123 * 124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 126 * and were initialized prior to this call. 127 * If it's ok, then verifier allows this BPF_CALL insn and looks at 128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 130 * returns ether pointer to map value or NULL. 131 * 132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 133 * insn, the register holding that pointer in the true branch changes state to 134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 135 * branch. See check_cond_jmp_op(). 136 * 137 * After the call R0 is set to return type of the function and registers R1-R5 138 * are set to NOT_INIT to indicate that they are no longer readable. 139 * 140 * The following reference types represent a potential reference to a kernel 141 * resource which, after first being allocated, must be checked and freed by 142 * the BPF program: 143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 144 * 145 * When the verifier sees a helper call return a reference type, it allocates a 146 * pointer id for the reference and stores it in the current function state. 147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 149 * passes through a NULL-check conditional. For the branch wherein the state is 150 * changed to CONST_IMM, the verifier releases the reference. 151 * 152 * For each helper function that allocates a reference, such as 153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 154 * bpf_sk_release(). When a reference type passes into the release function, 155 * the verifier also releases the reference. If any unchecked or unreleased 156 * reference remains at the end of the program, the verifier rejects it. 157 */ 158 159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 160 struct bpf_verifier_stack_elem { 161 /* verifer state is 'st' 162 * before processing instruction 'insn_idx' 163 * and after processing instruction 'prev_insn_idx' 164 */ 165 struct bpf_verifier_state st; 166 int insn_idx; 167 int prev_insn_idx; 168 struct bpf_verifier_stack_elem *next; 169 }; 170 171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 172 #define BPF_COMPLEXITY_LIMIT_STATES 64 173 174 #define BPF_MAP_PTR_UNPRIV 1UL 175 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 176 POISON_POINTER_DELTA)) 177 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 178 179 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 180 { 181 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 182 } 183 184 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 185 { 186 return aux->map_state & BPF_MAP_PTR_UNPRIV; 187 } 188 189 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 190 const struct bpf_map *map, bool unpriv) 191 { 192 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 193 unpriv |= bpf_map_ptr_unpriv(aux); 194 aux->map_state = (unsigned long)map | 195 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 196 } 197 198 struct bpf_call_arg_meta { 199 struct bpf_map *map_ptr; 200 bool raw_mode; 201 bool pkt_access; 202 int regno; 203 int access_size; 204 s64 msize_smax_value; 205 u64 msize_umax_value; 206 int ref_obj_id; 207 int func_id; 208 }; 209 210 static DEFINE_MUTEX(bpf_verifier_lock); 211 212 static const struct bpf_line_info * 213 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 214 { 215 const struct bpf_line_info *linfo; 216 const struct bpf_prog *prog; 217 u32 i, nr_linfo; 218 219 prog = env->prog; 220 nr_linfo = prog->aux->nr_linfo; 221 222 if (!nr_linfo || insn_off >= prog->len) 223 return NULL; 224 225 linfo = prog->aux->linfo; 226 for (i = 1; i < nr_linfo; i++) 227 if (insn_off < linfo[i].insn_off) 228 break; 229 230 return &linfo[i - 1]; 231 } 232 233 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 234 va_list args) 235 { 236 unsigned int n; 237 238 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 239 240 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 241 "verifier log line truncated - local buffer too short\n"); 242 243 n = min(log->len_total - log->len_used - 1, n); 244 log->kbuf[n] = '\0'; 245 246 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 247 log->len_used += n; 248 else 249 log->ubuf = NULL; 250 } 251 252 /* log_level controls verbosity level of eBPF verifier. 253 * bpf_verifier_log_write() is used to dump the verification trace to the log, 254 * so the user can figure out what's wrong with the program 255 */ 256 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 257 const char *fmt, ...) 258 { 259 va_list args; 260 261 if (!bpf_verifier_log_needed(&env->log)) 262 return; 263 264 va_start(args, fmt); 265 bpf_verifier_vlog(&env->log, fmt, args); 266 va_end(args); 267 } 268 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 269 270 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 271 { 272 struct bpf_verifier_env *env = private_data; 273 va_list args; 274 275 if (!bpf_verifier_log_needed(&env->log)) 276 return; 277 278 va_start(args, fmt); 279 bpf_verifier_vlog(&env->log, fmt, args); 280 va_end(args); 281 } 282 283 static const char *ltrim(const char *s) 284 { 285 while (isspace(*s)) 286 s++; 287 288 return s; 289 } 290 291 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 292 u32 insn_off, 293 const char *prefix_fmt, ...) 294 { 295 const struct bpf_line_info *linfo; 296 297 if (!bpf_verifier_log_needed(&env->log)) 298 return; 299 300 linfo = find_linfo(env, insn_off); 301 if (!linfo || linfo == env->prev_linfo) 302 return; 303 304 if (prefix_fmt) { 305 va_list args; 306 307 va_start(args, prefix_fmt); 308 bpf_verifier_vlog(&env->log, prefix_fmt, args); 309 va_end(args); 310 } 311 312 verbose(env, "%s\n", 313 ltrim(btf_name_by_offset(env->prog->aux->btf, 314 linfo->line_off))); 315 316 env->prev_linfo = linfo; 317 } 318 319 static bool type_is_pkt_pointer(enum bpf_reg_type type) 320 { 321 return type == PTR_TO_PACKET || 322 type == PTR_TO_PACKET_META; 323 } 324 325 static bool type_is_sk_pointer(enum bpf_reg_type type) 326 { 327 return type == PTR_TO_SOCKET || 328 type == PTR_TO_SOCK_COMMON || 329 type == PTR_TO_TCP_SOCK || 330 type == PTR_TO_XDP_SOCK; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL || 337 type == PTR_TO_SOCK_COMMON_OR_NULL || 338 type == PTR_TO_TCP_SOCK_OR_NULL; 339 } 340 341 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 342 { 343 return reg->type == PTR_TO_MAP_VALUE && 344 map_value_has_spin_lock(reg->map_ptr); 345 } 346 347 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 348 { 349 return type == PTR_TO_SOCKET || 350 type == PTR_TO_SOCKET_OR_NULL || 351 type == PTR_TO_TCP_SOCK || 352 type == PTR_TO_TCP_SOCK_OR_NULL; 353 } 354 355 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 356 { 357 return type == ARG_PTR_TO_SOCK_COMMON; 358 } 359 360 /* Determine whether the function releases some resources allocated by another 361 * function call. The first reference type argument will be assumed to be 362 * released by release_reference(). 363 */ 364 static bool is_release_function(enum bpf_func_id func_id) 365 { 366 return func_id == BPF_FUNC_sk_release; 367 } 368 369 static bool is_acquire_function(enum bpf_func_id func_id) 370 { 371 return func_id == BPF_FUNC_sk_lookup_tcp || 372 func_id == BPF_FUNC_sk_lookup_udp || 373 func_id == BPF_FUNC_skc_lookup_tcp; 374 } 375 376 static bool is_ptr_cast_function(enum bpf_func_id func_id) 377 { 378 return func_id == BPF_FUNC_tcp_sock || 379 func_id == BPF_FUNC_sk_fullsock; 380 } 381 382 /* string representation of 'enum bpf_reg_type' */ 383 static const char * const reg_type_str[] = { 384 [NOT_INIT] = "?", 385 [SCALAR_VALUE] = "inv", 386 [PTR_TO_CTX] = "ctx", 387 [CONST_PTR_TO_MAP] = "map_ptr", 388 [PTR_TO_MAP_VALUE] = "map_value", 389 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 390 [PTR_TO_STACK] = "fp", 391 [PTR_TO_PACKET] = "pkt", 392 [PTR_TO_PACKET_META] = "pkt_meta", 393 [PTR_TO_PACKET_END] = "pkt_end", 394 [PTR_TO_FLOW_KEYS] = "flow_keys", 395 [PTR_TO_SOCKET] = "sock", 396 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 397 [PTR_TO_SOCK_COMMON] = "sock_common", 398 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 399 [PTR_TO_TCP_SOCK] = "tcp_sock", 400 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 401 [PTR_TO_TP_BUFFER] = "tp_buffer", 402 [PTR_TO_XDP_SOCK] = "xdp_sock", 403 }; 404 405 static char slot_type_char[] = { 406 [STACK_INVALID] = '?', 407 [STACK_SPILL] = 'r', 408 [STACK_MISC] = 'm', 409 [STACK_ZERO] = '0', 410 }; 411 412 static void print_liveness(struct bpf_verifier_env *env, 413 enum bpf_reg_liveness live) 414 { 415 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 416 verbose(env, "_"); 417 if (live & REG_LIVE_READ) 418 verbose(env, "r"); 419 if (live & REG_LIVE_WRITTEN) 420 verbose(env, "w"); 421 if (live & REG_LIVE_DONE) 422 verbose(env, "D"); 423 } 424 425 static struct bpf_func_state *func(struct bpf_verifier_env *env, 426 const struct bpf_reg_state *reg) 427 { 428 struct bpf_verifier_state *cur = env->cur_state; 429 430 return cur->frame[reg->frameno]; 431 } 432 433 static void print_verifier_state(struct bpf_verifier_env *env, 434 const struct bpf_func_state *state) 435 { 436 const struct bpf_reg_state *reg; 437 enum bpf_reg_type t; 438 int i; 439 440 if (state->frameno) 441 verbose(env, " frame%d:", state->frameno); 442 for (i = 0; i < MAX_BPF_REG; i++) { 443 reg = &state->regs[i]; 444 t = reg->type; 445 if (t == NOT_INIT) 446 continue; 447 verbose(env, " R%d", i); 448 print_liveness(env, reg->live); 449 verbose(env, "=%s", reg_type_str[t]); 450 if (t == SCALAR_VALUE && reg->precise) 451 verbose(env, "P"); 452 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 453 tnum_is_const(reg->var_off)) { 454 /* reg->off should be 0 for SCALAR_VALUE */ 455 verbose(env, "%lld", reg->var_off.value + reg->off); 456 } else { 457 verbose(env, "(id=%d", reg->id); 458 if (reg_type_may_be_refcounted_or_null(t)) 459 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 460 if (t != SCALAR_VALUE) 461 verbose(env, ",off=%d", reg->off); 462 if (type_is_pkt_pointer(t)) 463 verbose(env, ",r=%d", reg->range); 464 else if (t == CONST_PTR_TO_MAP || 465 t == PTR_TO_MAP_VALUE || 466 t == PTR_TO_MAP_VALUE_OR_NULL) 467 verbose(env, ",ks=%d,vs=%d", 468 reg->map_ptr->key_size, 469 reg->map_ptr->value_size); 470 if (tnum_is_const(reg->var_off)) { 471 /* Typically an immediate SCALAR_VALUE, but 472 * could be a pointer whose offset is too big 473 * for reg->off 474 */ 475 verbose(env, ",imm=%llx", reg->var_off.value); 476 } else { 477 if (reg->smin_value != reg->umin_value && 478 reg->smin_value != S64_MIN) 479 verbose(env, ",smin_value=%lld", 480 (long long)reg->smin_value); 481 if (reg->smax_value != reg->umax_value && 482 reg->smax_value != S64_MAX) 483 verbose(env, ",smax_value=%lld", 484 (long long)reg->smax_value); 485 if (reg->umin_value != 0) 486 verbose(env, ",umin_value=%llu", 487 (unsigned long long)reg->umin_value); 488 if (reg->umax_value != U64_MAX) 489 verbose(env, ",umax_value=%llu", 490 (unsigned long long)reg->umax_value); 491 if (!tnum_is_unknown(reg->var_off)) { 492 char tn_buf[48]; 493 494 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 495 verbose(env, ",var_off=%s", tn_buf); 496 } 497 } 498 verbose(env, ")"); 499 } 500 } 501 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 502 char types_buf[BPF_REG_SIZE + 1]; 503 bool valid = false; 504 int j; 505 506 for (j = 0; j < BPF_REG_SIZE; j++) { 507 if (state->stack[i].slot_type[j] != STACK_INVALID) 508 valid = true; 509 types_buf[j] = slot_type_char[ 510 state->stack[i].slot_type[j]]; 511 } 512 types_buf[BPF_REG_SIZE] = 0; 513 if (!valid) 514 continue; 515 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 516 print_liveness(env, state->stack[i].spilled_ptr.live); 517 if (state->stack[i].slot_type[0] == STACK_SPILL) { 518 reg = &state->stack[i].spilled_ptr; 519 t = reg->type; 520 verbose(env, "=%s", reg_type_str[t]); 521 if (t == SCALAR_VALUE && reg->precise) 522 verbose(env, "P"); 523 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 524 verbose(env, "%lld", reg->var_off.value + reg->off); 525 } else { 526 verbose(env, "=%s", types_buf); 527 } 528 } 529 if (state->acquired_refs && state->refs[0].id) { 530 verbose(env, " refs=%d", state->refs[0].id); 531 for (i = 1; i < state->acquired_refs; i++) 532 if (state->refs[i].id) 533 verbose(env, ",%d", state->refs[i].id); 534 } 535 verbose(env, "\n"); 536 } 537 538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 539 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 540 const struct bpf_func_state *src) \ 541 { \ 542 if (!src->FIELD) \ 543 return 0; \ 544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 545 /* internal bug, make state invalid to reject the program */ \ 546 memset(dst, 0, sizeof(*dst)); \ 547 return -EFAULT; \ 548 } \ 549 memcpy(dst->FIELD, src->FIELD, \ 550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 551 return 0; \ 552 } 553 /* copy_reference_state() */ 554 COPY_STATE_FN(reference, acquired_refs, refs, 1) 555 /* copy_stack_state() */ 556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 557 #undef COPY_STATE_FN 558 559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 561 bool copy_old) \ 562 { \ 563 u32 old_size = state->COUNT; \ 564 struct bpf_##NAME##_state *new_##FIELD; \ 565 int slot = size / SIZE; \ 566 \ 567 if (size <= old_size || !size) { \ 568 if (copy_old) \ 569 return 0; \ 570 state->COUNT = slot * SIZE; \ 571 if (!size && old_size) { \ 572 kfree(state->FIELD); \ 573 state->FIELD = NULL; \ 574 } \ 575 return 0; \ 576 } \ 577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 578 GFP_KERNEL); \ 579 if (!new_##FIELD) \ 580 return -ENOMEM; \ 581 if (copy_old) { \ 582 if (state->FIELD) \ 583 memcpy(new_##FIELD, state->FIELD, \ 584 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 585 memset(new_##FIELD + old_size / SIZE, 0, \ 586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 587 } \ 588 state->COUNT = slot * SIZE; \ 589 kfree(state->FIELD); \ 590 state->FIELD = new_##FIELD; \ 591 return 0; \ 592 } 593 /* realloc_reference_state() */ 594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 595 /* realloc_stack_state() */ 596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 597 #undef REALLOC_STATE_FN 598 599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 600 * make it consume minimal amount of memory. check_stack_write() access from 601 * the program calls into realloc_func_state() to grow the stack size. 602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 603 * which realloc_stack_state() copies over. It points to previous 604 * bpf_verifier_state which is never reallocated. 605 */ 606 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 607 int refs_size, bool copy_old) 608 { 609 int err = realloc_reference_state(state, refs_size, copy_old); 610 if (err) 611 return err; 612 return realloc_stack_state(state, stack_size, copy_old); 613 } 614 615 /* Acquire a pointer id from the env and update the state->refs to include 616 * this new pointer reference. 617 * On success, returns a valid pointer id to associate with the register 618 * On failure, returns a negative errno. 619 */ 620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 621 { 622 struct bpf_func_state *state = cur_func(env); 623 int new_ofs = state->acquired_refs; 624 int id, err; 625 626 err = realloc_reference_state(state, state->acquired_refs + 1, true); 627 if (err) 628 return err; 629 id = ++env->id_gen; 630 state->refs[new_ofs].id = id; 631 state->refs[new_ofs].insn_idx = insn_idx; 632 633 return id; 634 } 635 636 /* release function corresponding to acquire_reference_state(). Idempotent. */ 637 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 638 { 639 int i, last_idx; 640 641 last_idx = state->acquired_refs - 1; 642 for (i = 0; i < state->acquired_refs; i++) { 643 if (state->refs[i].id == ptr_id) { 644 if (last_idx && i != last_idx) 645 memcpy(&state->refs[i], &state->refs[last_idx], 646 sizeof(*state->refs)); 647 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 648 state->acquired_refs--; 649 return 0; 650 } 651 } 652 return -EINVAL; 653 } 654 655 static int transfer_reference_state(struct bpf_func_state *dst, 656 struct bpf_func_state *src) 657 { 658 int err = realloc_reference_state(dst, src->acquired_refs, false); 659 if (err) 660 return err; 661 err = copy_reference_state(dst, src); 662 if (err) 663 return err; 664 return 0; 665 } 666 667 static void free_func_state(struct bpf_func_state *state) 668 { 669 if (!state) 670 return; 671 kfree(state->refs); 672 kfree(state->stack); 673 kfree(state); 674 } 675 676 static void clear_jmp_history(struct bpf_verifier_state *state) 677 { 678 kfree(state->jmp_history); 679 state->jmp_history = NULL; 680 state->jmp_history_cnt = 0; 681 } 682 683 static void free_verifier_state(struct bpf_verifier_state *state, 684 bool free_self) 685 { 686 int i; 687 688 for (i = 0; i <= state->curframe; i++) { 689 free_func_state(state->frame[i]); 690 state->frame[i] = NULL; 691 } 692 clear_jmp_history(state); 693 if (free_self) 694 kfree(state); 695 } 696 697 /* copy verifier state from src to dst growing dst stack space 698 * when necessary to accommodate larger src stack 699 */ 700 static int copy_func_state(struct bpf_func_state *dst, 701 const struct bpf_func_state *src) 702 { 703 int err; 704 705 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 706 false); 707 if (err) 708 return err; 709 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 710 err = copy_reference_state(dst, src); 711 if (err) 712 return err; 713 return copy_stack_state(dst, src); 714 } 715 716 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 717 const struct bpf_verifier_state *src) 718 { 719 struct bpf_func_state *dst; 720 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 721 int i, err; 722 723 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 724 kfree(dst_state->jmp_history); 725 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 726 if (!dst_state->jmp_history) 727 return -ENOMEM; 728 } 729 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 730 dst_state->jmp_history_cnt = src->jmp_history_cnt; 731 732 /* if dst has more stack frames then src frame, free them */ 733 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 734 free_func_state(dst_state->frame[i]); 735 dst_state->frame[i] = NULL; 736 } 737 dst_state->speculative = src->speculative; 738 dst_state->curframe = src->curframe; 739 dst_state->active_spin_lock = src->active_spin_lock; 740 dst_state->branches = src->branches; 741 dst_state->parent = src->parent; 742 dst_state->first_insn_idx = src->first_insn_idx; 743 dst_state->last_insn_idx = src->last_insn_idx; 744 for (i = 0; i <= src->curframe; i++) { 745 dst = dst_state->frame[i]; 746 if (!dst) { 747 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 748 if (!dst) 749 return -ENOMEM; 750 dst_state->frame[i] = dst; 751 } 752 err = copy_func_state(dst, src->frame[i]); 753 if (err) 754 return err; 755 } 756 return 0; 757 } 758 759 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 760 { 761 while (st) { 762 u32 br = --st->branches; 763 764 /* WARN_ON(br > 1) technically makes sense here, 765 * but see comment in push_stack(), hence: 766 */ 767 WARN_ONCE((int)br < 0, 768 "BUG update_branch_counts:branches_to_explore=%d\n", 769 br); 770 if (br) 771 break; 772 st = st->parent; 773 } 774 } 775 776 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 777 int *insn_idx) 778 { 779 struct bpf_verifier_state *cur = env->cur_state; 780 struct bpf_verifier_stack_elem *elem, *head = env->head; 781 int err; 782 783 if (env->head == NULL) 784 return -ENOENT; 785 786 if (cur) { 787 err = copy_verifier_state(cur, &head->st); 788 if (err) 789 return err; 790 } 791 if (insn_idx) 792 *insn_idx = head->insn_idx; 793 if (prev_insn_idx) 794 *prev_insn_idx = head->prev_insn_idx; 795 elem = head->next; 796 free_verifier_state(&head->st, false); 797 kfree(head); 798 env->head = elem; 799 env->stack_size--; 800 return 0; 801 } 802 803 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 804 int insn_idx, int prev_insn_idx, 805 bool speculative) 806 { 807 struct bpf_verifier_state *cur = env->cur_state; 808 struct bpf_verifier_stack_elem *elem; 809 int err; 810 811 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 812 if (!elem) 813 goto err; 814 815 elem->insn_idx = insn_idx; 816 elem->prev_insn_idx = prev_insn_idx; 817 elem->next = env->head; 818 env->head = elem; 819 env->stack_size++; 820 err = copy_verifier_state(&elem->st, cur); 821 if (err) 822 goto err; 823 elem->st.speculative |= speculative; 824 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 825 verbose(env, "The sequence of %d jumps is too complex.\n", 826 env->stack_size); 827 goto err; 828 } 829 if (elem->st.parent) { 830 ++elem->st.parent->branches; 831 /* WARN_ON(branches > 2) technically makes sense here, 832 * but 833 * 1. speculative states will bump 'branches' for non-branch 834 * instructions 835 * 2. is_state_visited() heuristics may decide not to create 836 * a new state for a sequence of branches and all such current 837 * and cloned states will be pointing to a single parent state 838 * which might have large 'branches' count. 839 */ 840 } 841 return &elem->st; 842 err: 843 free_verifier_state(env->cur_state, true); 844 env->cur_state = NULL; 845 /* pop all elements and return */ 846 while (!pop_stack(env, NULL, NULL)); 847 return NULL; 848 } 849 850 #define CALLER_SAVED_REGS 6 851 static const int caller_saved[CALLER_SAVED_REGS] = { 852 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 853 }; 854 855 static void __mark_reg_not_init(struct bpf_reg_state *reg); 856 857 /* Mark the unknown part of a register (variable offset or scalar value) as 858 * known to have the value @imm. 859 */ 860 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 861 { 862 /* Clear id, off, and union(map_ptr, range) */ 863 memset(((u8 *)reg) + sizeof(reg->type), 0, 864 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 865 reg->var_off = tnum_const(imm); 866 reg->smin_value = (s64)imm; 867 reg->smax_value = (s64)imm; 868 reg->umin_value = imm; 869 reg->umax_value = imm; 870 } 871 872 /* Mark the 'variable offset' part of a register as zero. This should be 873 * used only on registers holding a pointer type. 874 */ 875 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 876 { 877 __mark_reg_known(reg, 0); 878 } 879 880 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 881 { 882 __mark_reg_known(reg, 0); 883 reg->type = SCALAR_VALUE; 884 } 885 886 static void mark_reg_known_zero(struct bpf_verifier_env *env, 887 struct bpf_reg_state *regs, u32 regno) 888 { 889 if (WARN_ON(regno >= MAX_BPF_REG)) { 890 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 891 /* Something bad happened, let's kill all regs */ 892 for (regno = 0; regno < MAX_BPF_REG; regno++) 893 __mark_reg_not_init(regs + regno); 894 return; 895 } 896 __mark_reg_known_zero(regs + regno); 897 } 898 899 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 900 { 901 return type_is_pkt_pointer(reg->type); 902 } 903 904 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 905 { 906 return reg_is_pkt_pointer(reg) || 907 reg->type == PTR_TO_PACKET_END; 908 } 909 910 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 911 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 912 enum bpf_reg_type which) 913 { 914 /* The register can already have a range from prior markings. 915 * This is fine as long as it hasn't been advanced from its 916 * origin. 917 */ 918 return reg->type == which && 919 reg->id == 0 && 920 reg->off == 0 && 921 tnum_equals_const(reg->var_off, 0); 922 } 923 924 /* Attempts to improve min/max values based on var_off information */ 925 static void __update_reg_bounds(struct bpf_reg_state *reg) 926 { 927 /* min signed is max(sign bit) | min(other bits) */ 928 reg->smin_value = max_t(s64, reg->smin_value, 929 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 930 /* max signed is min(sign bit) | max(other bits) */ 931 reg->smax_value = min_t(s64, reg->smax_value, 932 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 933 reg->umin_value = max(reg->umin_value, reg->var_off.value); 934 reg->umax_value = min(reg->umax_value, 935 reg->var_off.value | reg->var_off.mask); 936 } 937 938 /* Uses signed min/max values to inform unsigned, and vice-versa */ 939 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 940 { 941 /* Learn sign from signed bounds. 942 * If we cannot cross the sign boundary, then signed and unsigned bounds 943 * are the same, so combine. This works even in the negative case, e.g. 944 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 945 */ 946 if (reg->smin_value >= 0 || reg->smax_value < 0) { 947 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 948 reg->umin_value); 949 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 950 reg->umax_value); 951 return; 952 } 953 /* Learn sign from unsigned bounds. Signed bounds cross the sign 954 * boundary, so we must be careful. 955 */ 956 if ((s64)reg->umax_value >= 0) { 957 /* Positive. We can't learn anything from the smin, but smax 958 * is positive, hence safe. 959 */ 960 reg->smin_value = reg->umin_value; 961 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 962 reg->umax_value); 963 } else if ((s64)reg->umin_value < 0) { 964 /* Negative. We can't learn anything from the smax, but smin 965 * is negative, hence safe. 966 */ 967 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 968 reg->umin_value); 969 reg->smax_value = reg->umax_value; 970 } 971 } 972 973 /* Attempts to improve var_off based on unsigned min/max information */ 974 static void __reg_bound_offset(struct bpf_reg_state *reg) 975 { 976 reg->var_off = tnum_intersect(reg->var_off, 977 tnum_range(reg->umin_value, 978 reg->umax_value)); 979 } 980 981 /* Reset the min/max bounds of a register */ 982 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 983 { 984 reg->smin_value = S64_MIN; 985 reg->smax_value = S64_MAX; 986 reg->umin_value = 0; 987 reg->umax_value = U64_MAX; 988 } 989 990 /* Mark a register as having a completely unknown (scalar) value. */ 991 static void __mark_reg_unknown(struct bpf_reg_state *reg) 992 { 993 /* 994 * Clear type, id, off, and union(map_ptr, range) and 995 * padding between 'type' and union 996 */ 997 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 998 reg->type = SCALAR_VALUE; 999 reg->var_off = tnum_unknown; 1000 reg->frameno = 0; 1001 __mark_reg_unbounded(reg); 1002 } 1003 1004 static void mark_reg_unknown(struct bpf_verifier_env *env, 1005 struct bpf_reg_state *regs, u32 regno) 1006 { 1007 if (WARN_ON(regno >= MAX_BPF_REG)) { 1008 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1009 /* Something bad happened, let's kill all regs except FP */ 1010 for (regno = 0; regno < BPF_REG_FP; regno++) 1011 __mark_reg_not_init(regs + regno); 1012 return; 1013 } 1014 regs += regno; 1015 __mark_reg_unknown(regs); 1016 /* constant backtracking is enabled for root without bpf2bpf calls */ 1017 regs->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ? 1018 true : false; 1019 } 1020 1021 static void __mark_reg_not_init(struct bpf_reg_state *reg) 1022 { 1023 __mark_reg_unknown(reg); 1024 reg->type = NOT_INIT; 1025 } 1026 1027 static void mark_reg_not_init(struct bpf_verifier_env *env, 1028 struct bpf_reg_state *regs, u32 regno) 1029 { 1030 if (WARN_ON(regno >= MAX_BPF_REG)) { 1031 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1032 /* Something bad happened, let's kill all regs except FP */ 1033 for (regno = 0; regno < BPF_REG_FP; regno++) 1034 __mark_reg_not_init(regs + regno); 1035 return; 1036 } 1037 __mark_reg_not_init(regs + regno); 1038 } 1039 1040 #define DEF_NOT_SUBREG (0) 1041 static void init_reg_state(struct bpf_verifier_env *env, 1042 struct bpf_func_state *state) 1043 { 1044 struct bpf_reg_state *regs = state->regs; 1045 int i; 1046 1047 for (i = 0; i < MAX_BPF_REG; i++) { 1048 mark_reg_not_init(env, regs, i); 1049 regs[i].live = REG_LIVE_NONE; 1050 regs[i].parent = NULL; 1051 regs[i].subreg_def = DEF_NOT_SUBREG; 1052 } 1053 1054 /* frame pointer */ 1055 regs[BPF_REG_FP].type = PTR_TO_STACK; 1056 mark_reg_known_zero(env, regs, BPF_REG_FP); 1057 regs[BPF_REG_FP].frameno = state->frameno; 1058 1059 /* 1st arg to a function */ 1060 regs[BPF_REG_1].type = PTR_TO_CTX; 1061 mark_reg_known_zero(env, regs, BPF_REG_1); 1062 } 1063 1064 #define BPF_MAIN_FUNC (-1) 1065 static void init_func_state(struct bpf_verifier_env *env, 1066 struct bpf_func_state *state, 1067 int callsite, int frameno, int subprogno) 1068 { 1069 state->callsite = callsite; 1070 state->frameno = frameno; 1071 state->subprogno = subprogno; 1072 init_reg_state(env, state); 1073 } 1074 1075 enum reg_arg_type { 1076 SRC_OP, /* register is used as source operand */ 1077 DST_OP, /* register is used as destination operand */ 1078 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1079 }; 1080 1081 static int cmp_subprogs(const void *a, const void *b) 1082 { 1083 return ((struct bpf_subprog_info *)a)->start - 1084 ((struct bpf_subprog_info *)b)->start; 1085 } 1086 1087 static int find_subprog(struct bpf_verifier_env *env, int off) 1088 { 1089 struct bpf_subprog_info *p; 1090 1091 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1092 sizeof(env->subprog_info[0]), cmp_subprogs); 1093 if (!p) 1094 return -ENOENT; 1095 return p - env->subprog_info; 1096 1097 } 1098 1099 static int add_subprog(struct bpf_verifier_env *env, int off) 1100 { 1101 int insn_cnt = env->prog->len; 1102 int ret; 1103 1104 if (off >= insn_cnt || off < 0) { 1105 verbose(env, "call to invalid destination\n"); 1106 return -EINVAL; 1107 } 1108 ret = find_subprog(env, off); 1109 if (ret >= 0) 1110 return 0; 1111 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1112 verbose(env, "too many subprograms\n"); 1113 return -E2BIG; 1114 } 1115 env->subprog_info[env->subprog_cnt++].start = off; 1116 sort(env->subprog_info, env->subprog_cnt, 1117 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1118 return 0; 1119 } 1120 1121 static int check_subprogs(struct bpf_verifier_env *env) 1122 { 1123 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1124 struct bpf_subprog_info *subprog = env->subprog_info; 1125 struct bpf_insn *insn = env->prog->insnsi; 1126 int insn_cnt = env->prog->len; 1127 1128 /* Add entry function. */ 1129 ret = add_subprog(env, 0); 1130 if (ret < 0) 1131 return ret; 1132 1133 /* determine subprog starts. The end is one before the next starts */ 1134 for (i = 0; i < insn_cnt; i++) { 1135 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1136 continue; 1137 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1138 continue; 1139 if (!env->allow_ptr_leaks) { 1140 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1141 return -EPERM; 1142 } 1143 ret = add_subprog(env, i + insn[i].imm + 1); 1144 if (ret < 0) 1145 return ret; 1146 } 1147 1148 /* Add a fake 'exit' subprog which could simplify subprog iteration 1149 * logic. 'subprog_cnt' should not be increased. 1150 */ 1151 subprog[env->subprog_cnt].start = insn_cnt; 1152 1153 if (env->log.level & BPF_LOG_LEVEL2) 1154 for (i = 0; i < env->subprog_cnt; i++) 1155 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1156 1157 /* now check that all jumps are within the same subprog */ 1158 subprog_start = subprog[cur_subprog].start; 1159 subprog_end = subprog[cur_subprog + 1].start; 1160 for (i = 0; i < insn_cnt; i++) { 1161 u8 code = insn[i].code; 1162 1163 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1164 goto next; 1165 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1166 goto next; 1167 off = i + insn[i].off + 1; 1168 if (off < subprog_start || off >= subprog_end) { 1169 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1170 return -EINVAL; 1171 } 1172 next: 1173 if (i == subprog_end - 1) { 1174 /* to avoid fall-through from one subprog into another 1175 * the last insn of the subprog should be either exit 1176 * or unconditional jump back 1177 */ 1178 if (code != (BPF_JMP | BPF_EXIT) && 1179 code != (BPF_JMP | BPF_JA)) { 1180 verbose(env, "last insn is not an exit or jmp\n"); 1181 return -EINVAL; 1182 } 1183 subprog_start = subprog_end; 1184 cur_subprog++; 1185 if (cur_subprog < env->subprog_cnt) 1186 subprog_end = subprog[cur_subprog + 1].start; 1187 } 1188 } 1189 return 0; 1190 } 1191 1192 /* Parentage chain of this register (or stack slot) should take care of all 1193 * issues like callee-saved registers, stack slot allocation time, etc. 1194 */ 1195 static int mark_reg_read(struct bpf_verifier_env *env, 1196 const struct bpf_reg_state *state, 1197 struct bpf_reg_state *parent, u8 flag) 1198 { 1199 bool writes = parent == state->parent; /* Observe write marks */ 1200 int cnt = 0; 1201 1202 while (parent) { 1203 /* if read wasn't screened by an earlier write ... */ 1204 if (writes && state->live & REG_LIVE_WRITTEN) 1205 break; 1206 if (parent->live & REG_LIVE_DONE) { 1207 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1208 reg_type_str[parent->type], 1209 parent->var_off.value, parent->off); 1210 return -EFAULT; 1211 } 1212 /* The first condition is more likely to be true than the 1213 * second, checked it first. 1214 */ 1215 if ((parent->live & REG_LIVE_READ) == flag || 1216 parent->live & REG_LIVE_READ64) 1217 /* The parentage chain never changes and 1218 * this parent was already marked as LIVE_READ. 1219 * There is no need to keep walking the chain again and 1220 * keep re-marking all parents as LIVE_READ. 1221 * This case happens when the same register is read 1222 * multiple times without writes into it in-between. 1223 * Also, if parent has the stronger REG_LIVE_READ64 set, 1224 * then no need to set the weak REG_LIVE_READ32. 1225 */ 1226 break; 1227 /* ... then we depend on parent's value */ 1228 parent->live |= flag; 1229 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1230 if (flag == REG_LIVE_READ64) 1231 parent->live &= ~REG_LIVE_READ32; 1232 state = parent; 1233 parent = state->parent; 1234 writes = true; 1235 cnt++; 1236 } 1237 1238 if (env->longest_mark_read_walk < cnt) 1239 env->longest_mark_read_walk = cnt; 1240 return 0; 1241 } 1242 1243 /* This function is supposed to be used by the following 32-bit optimization 1244 * code only. It returns TRUE if the source or destination register operates 1245 * on 64-bit, otherwise return FALSE. 1246 */ 1247 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1248 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1249 { 1250 u8 code, class, op; 1251 1252 code = insn->code; 1253 class = BPF_CLASS(code); 1254 op = BPF_OP(code); 1255 if (class == BPF_JMP) { 1256 /* BPF_EXIT for "main" will reach here. Return TRUE 1257 * conservatively. 1258 */ 1259 if (op == BPF_EXIT) 1260 return true; 1261 if (op == BPF_CALL) { 1262 /* BPF to BPF call will reach here because of marking 1263 * caller saved clobber with DST_OP_NO_MARK for which we 1264 * don't care the register def because they are anyway 1265 * marked as NOT_INIT already. 1266 */ 1267 if (insn->src_reg == BPF_PSEUDO_CALL) 1268 return false; 1269 /* Helper call will reach here because of arg type 1270 * check, conservatively return TRUE. 1271 */ 1272 if (t == SRC_OP) 1273 return true; 1274 1275 return false; 1276 } 1277 } 1278 1279 if (class == BPF_ALU64 || class == BPF_JMP || 1280 /* BPF_END always use BPF_ALU class. */ 1281 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1282 return true; 1283 1284 if (class == BPF_ALU || class == BPF_JMP32) 1285 return false; 1286 1287 if (class == BPF_LDX) { 1288 if (t != SRC_OP) 1289 return BPF_SIZE(code) == BPF_DW; 1290 /* LDX source must be ptr. */ 1291 return true; 1292 } 1293 1294 if (class == BPF_STX) { 1295 if (reg->type != SCALAR_VALUE) 1296 return true; 1297 return BPF_SIZE(code) == BPF_DW; 1298 } 1299 1300 if (class == BPF_LD) { 1301 u8 mode = BPF_MODE(code); 1302 1303 /* LD_IMM64 */ 1304 if (mode == BPF_IMM) 1305 return true; 1306 1307 /* Both LD_IND and LD_ABS return 32-bit data. */ 1308 if (t != SRC_OP) 1309 return false; 1310 1311 /* Implicit ctx ptr. */ 1312 if (regno == BPF_REG_6) 1313 return true; 1314 1315 /* Explicit source could be any width. */ 1316 return true; 1317 } 1318 1319 if (class == BPF_ST) 1320 /* The only source register for BPF_ST is a ptr. */ 1321 return true; 1322 1323 /* Conservatively return true at default. */ 1324 return true; 1325 } 1326 1327 /* Return TRUE if INSN doesn't have explicit value define. */ 1328 static bool insn_no_def(struct bpf_insn *insn) 1329 { 1330 u8 class = BPF_CLASS(insn->code); 1331 1332 return (class == BPF_JMP || class == BPF_JMP32 || 1333 class == BPF_STX || class == BPF_ST); 1334 } 1335 1336 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1337 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1338 { 1339 if (insn_no_def(insn)) 1340 return false; 1341 1342 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1343 } 1344 1345 static void mark_insn_zext(struct bpf_verifier_env *env, 1346 struct bpf_reg_state *reg) 1347 { 1348 s32 def_idx = reg->subreg_def; 1349 1350 if (def_idx == DEF_NOT_SUBREG) 1351 return; 1352 1353 env->insn_aux_data[def_idx - 1].zext_dst = true; 1354 /* The dst will be zero extended, so won't be sub-register anymore. */ 1355 reg->subreg_def = DEF_NOT_SUBREG; 1356 } 1357 1358 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1359 enum reg_arg_type t) 1360 { 1361 struct bpf_verifier_state *vstate = env->cur_state; 1362 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1363 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1364 struct bpf_reg_state *reg, *regs = state->regs; 1365 bool rw64; 1366 1367 if (regno >= MAX_BPF_REG) { 1368 verbose(env, "R%d is invalid\n", regno); 1369 return -EINVAL; 1370 } 1371 1372 reg = ®s[regno]; 1373 rw64 = is_reg64(env, insn, regno, reg, t); 1374 if (t == SRC_OP) { 1375 /* check whether register used as source operand can be read */ 1376 if (reg->type == NOT_INIT) { 1377 verbose(env, "R%d !read_ok\n", regno); 1378 return -EACCES; 1379 } 1380 /* We don't need to worry about FP liveness because it's read-only */ 1381 if (regno == BPF_REG_FP) 1382 return 0; 1383 1384 if (rw64) 1385 mark_insn_zext(env, reg); 1386 1387 return mark_reg_read(env, reg, reg->parent, 1388 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1389 } else { 1390 /* check whether register used as dest operand can be written to */ 1391 if (regno == BPF_REG_FP) { 1392 verbose(env, "frame pointer is read only\n"); 1393 return -EACCES; 1394 } 1395 reg->live |= REG_LIVE_WRITTEN; 1396 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1397 if (t == DST_OP) 1398 mark_reg_unknown(env, regs, regno); 1399 } 1400 return 0; 1401 } 1402 1403 /* for any branch, call, exit record the history of jmps in the given state */ 1404 static int push_jmp_history(struct bpf_verifier_env *env, 1405 struct bpf_verifier_state *cur) 1406 { 1407 u32 cnt = cur->jmp_history_cnt; 1408 struct bpf_idx_pair *p; 1409 1410 cnt++; 1411 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1412 if (!p) 1413 return -ENOMEM; 1414 p[cnt - 1].idx = env->insn_idx; 1415 p[cnt - 1].prev_idx = env->prev_insn_idx; 1416 cur->jmp_history = p; 1417 cur->jmp_history_cnt = cnt; 1418 return 0; 1419 } 1420 1421 /* Backtrack one insn at a time. If idx is not at the top of recorded 1422 * history then previous instruction came from straight line execution. 1423 */ 1424 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1425 u32 *history) 1426 { 1427 u32 cnt = *history; 1428 1429 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1430 i = st->jmp_history[cnt - 1].prev_idx; 1431 (*history)--; 1432 } else { 1433 i--; 1434 } 1435 return i; 1436 } 1437 1438 /* For given verifier state backtrack_insn() is called from the last insn to 1439 * the first insn. Its purpose is to compute a bitmask of registers and 1440 * stack slots that needs precision in the parent verifier state. 1441 */ 1442 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1443 u32 *reg_mask, u64 *stack_mask) 1444 { 1445 const struct bpf_insn_cbs cbs = { 1446 .cb_print = verbose, 1447 .private_data = env, 1448 }; 1449 struct bpf_insn *insn = env->prog->insnsi + idx; 1450 u8 class = BPF_CLASS(insn->code); 1451 u8 opcode = BPF_OP(insn->code); 1452 u8 mode = BPF_MODE(insn->code); 1453 u32 dreg = 1u << insn->dst_reg; 1454 u32 sreg = 1u << insn->src_reg; 1455 u32 spi; 1456 1457 if (insn->code == 0) 1458 return 0; 1459 if (env->log.level & BPF_LOG_LEVEL) { 1460 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1461 verbose(env, "%d: ", idx); 1462 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1463 } 1464 1465 if (class == BPF_ALU || class == BPF_ALU64) { 1466 if (!(*reg_mask & dreg)) 1467 return 0; 1468 if (opcode == BPF_MOV) { 1469 if (BPF_SRC(insn->code) == BPF_X) { 1470 /* dreg = sreg 1471 * dreg needs precision after this insn 1472 * sreg needs precision before this insn 1473 */ 1474 *reg_mask &= ~dreg; 1475 *reg_mask |= sreg; 1476 } else { 1477 /* dreg = K 1478 * dreg needs precision after this insn. 1479 * Corresponding register is already marked 1480 * as precise=true in this verifier state. 1481 * No further markings in parent are necessary 1482 */ 1483 *reg_mask &= ~dreg; 1484 } 1485 } else { 1486 if (BPF_SRC(insn->code) == BPF_X) { 1487 /* dreg += sreg 1488 * both dreg and sreg need precision 1489 * before this insn 1490 */ 1491 *reg_mask |= sreg; 1492 } /* else dreg += K 1493 * dreg still needs precision before this insn 1494 */ 1495 } 1496 } else if (class == BPF_LDX) { 1497 if (!(*reg_mask & dreg)) 1498 return 0; 1499 *reg_mask &= ~dreg; 1500 1501 /* scalars can only be spilled into stack w/o losing precision. 1502 * Load from any other memory can be zero extended. 1503 * The desire to keep that precision is already indicated 1504 * by 'precise' mark in corresponding register of this state. 1505 * No further tracking necessary. 1506 */ 1507 if (insn->src_reg != BPF_REG_FP) 1508 return 0; 1509 if (BPF_SIZE(insn->code) != BPF_DW) 1510 return 0; 1511 1512 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1513 * that [fp - off] slot contains scalar that needs to be 1514 * tracked with precision 1515 */ 1516 spi = (-insn->off - 1) / BPF_REG_SIZE; 1517 if (spi >= 64) { 1518 verbose(env, "BUG spi %d\n", spi); 1519 WARN_ONCE(1, "verifier backtracking bug"); 1520 return -EFAULT; 1521 } 1522 *stack_mask |= 1ull << spi; 1523 } else if (class == BPF_STX || class == BPF_ST) { 1524 if (*reg_mask & dreg) 1525 /* stx & st shouldn't be using _scalar_ dst_reg 1526 * to access memory. It means backtracking 1527 * encountered a case of pointer subtraction. 1528 */ 1529 return -ENOTSUPP; 1530 /* scalars can only be spilled into stack */ 1531 if (insn->dst_reg != BPF_REG_FP) 1532 return 0; 1533 if (BPF_SIZE(insn->code) != BPF_DW) 1534 return 0; 1535 spi = (-insn->off - 1) / BPF_REG_SIZE; 1536 if (spi >= 64) { 1537 verbose(env, "BUG spi %d\n", spi); 1538 WARN_ONCE(1, "verifier backtracking bug"); 1539 return -EFAULT; 1540 } 1541 if (!(*stack_mask & (1ull << spi))) 1542 return 0; 1543 *stack_mask &= ~(1ull << spi); 1544 if (class == BPF_STX) 1545 *reg_mask |= sreg; 1546 } else if (class == BPF_JMP || class == BPF_JMP32) { 1547 if (opcode == BPF_CALL) { 1548 if (insn->src_reg == BPF_PSEUDO_CALL) 1549 return -ENOTSUPP; 1550 /* regular helper call sets R0 */ 1551 *reg_mask &= ~1; 1552 if (*reg_mask & 0x3f) { 1553 /* if backtracing was looking for registers R1-R5 1554 * they should have been found already. 1555 */ 1556 verbose(env, "BUG regs %x\n", *reg_mask); 1557 WARN_ONCE(1, "verifier backtracking bug"); 1558 return -EFAULT; 1559 } 1560 } else if (opcode == BPF_EXIT) { 1561 return -ENOTSUPP; 1562 } 1563 } else if (class == BPF_LD) { 1564 if (!(*reg_mask & dreg)) 1565 return 0; 1566 *reg_mask &= ~dreg; 1567 /* It's ld_imm64 or ld_abs or ld_ind. 1568 * For ld_imm64 no further tracking of precision 1569 * into parent is necessary 1570 */ 1571 if (mode == BPF_IND || mode == BPF_ABS) 1572 /* to be analyzed */ 1573 return -ENOTSUPP; 1574 } 1575 return 0; 1576 } 1577 1578 /* the scalar precision tracking algorithm: 1579 * . at the start all registers have precise=false. 1580 * . scalar ranges are tracked as normal through alu and jmp insns. 1581 * . once precise value of the scalar register is used in: 1582 * . ptr + scalar alu 1583 * . if (scalar cond K|scalar) 1584 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1585 * backtrack through the verifier states and mark all registers and 1586 * stack slots with spilled constants that these scalar regisers 1587 * should be precise. 1588 * . during state pruning two registers (or spilled stack slots) 1589 * are equivalent if both are not precise. 1590 * 1591 * Note the verifier cannot simply walk register parentage chain, 1592 * since many different registers and stack slots could have been 1593 * used to compute single precise scalar. 1594 * 1595 * The approach of starting with precise=true for all registers and then 1596 * backtrack to mark a register as not precise when the verifier detects 1597 * that program doesn't care about specific value (e.g., when helper 1598 * takes register as ARG_ANYTHING parameter) is not safe. 1599 * 1600 * It's ok to walk single parentage chain of the verifier states. 1601 * It's possible that this backtracking will go all the way till 1st insn. 1602 * All other branches will be explored for needing precision later. 1603 * 1604 * The backtracking needs to deal with cases like: 1605 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1606 * r9 -= r8 1607 * r5 = r9 1608 * if r5 > 0x79f goto pc+7 1609 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1610 * r5 += 1 1611 * ... 1612 * call bpf_perf_event_output#25 1613 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1614 * 1615 * and this case: 1616 * r6 = 1 1617 * call foo // uses callee's r6 inside to compute r0 1618 * r0 += r6 1619 * if r0 == 0 goto 1620 * 1621 * to track above reg_mask/stack_mask needs to be independent for each frame. 1622 * 1623 * Also if parent's curframe > frame where backtracking started, 1624 * the verifier need to mark registers in both frames, otherwise callees 1625 * may incorrectly prune callers. This is similar to 1626 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1627 * 1628 * For now backtracking falls back into conservative marking. 1629 */ 1630 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1631 struct bpf_verifier_state *st) 1632 { 1633 struct bpf_func_state *func; 1634 struct bpf_reg_state *reg; 1635 int i, j; 1636 1637 /* big hammer: mark all scalars precise in this path. 1638 * pop_stack may still get !precise scalars. 1639 */ 1640 for (; st; st = st->parent) 1641 for (i = 0; i <= st->curframe; i++) { 1642 func = st->frame[i]; 1643 for (j = 0; j < BPF_REG_FP; j++) { 1644 reg = &func->regs[j]; 1645 if (reg->type != SCALAR_VALUE) 1646 continue; 1647 reg->precise = true; 1648 } 1649 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 1650 if (func->stack[j].slot_type[0] != STACK_SPILL) 1651 continue; 1652 reg = &func->stack[j].spilled_ptr; 1653 if (reg->type != SCALAR_VALUE) 1654 continue; 1655 reg->precise = true; 1656 } 1657 } 1658 } 1659 1660 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 1661 int spi) 1662 { 1663 struct bpf_verifier_state *st = env->cur_state; 1664 int first_idx = st->first_insn_idx; 1665 int last_idx = env->insn_idx; 1666 struct bpf_func_state *func; 1667 struct bpf_reg_state *reg; 1668 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 1669 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 1670 bool skip_first = true; 1671 bool new_marks = false; 1672 int i, err; 1673 1674 if (!env->allow_ptr_leaks) 1675 /* backtracking is root only for now */ 1676 return 0; 1677 1678 func = st->frame[st->curframe]; 1679 if (regno >= 0) { 1680 reg = &func->regs[regno]; 1681 if (reg->type != SCALAR_VALUE) { 1682 WARN_ONCE(1, "backtracing misuse"); 1683 return -EFAULT; 1684 } 1685 if (!reg->precise) 1686 new_marks = true; 1687 else 1688 reg_mask = 0; 1689 reg->precise = true; 1690 } 1691 1692 while (spi >= 0) { 1693 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 1694 stack_mask = 0; 1695 break; 1696 } 1697 reg = &func->stack[spi].spilled_ptr; 1698 if (reg->type != SCALAR_VALUE) { 1699 stack_mask = 0; 1700 break; 1701 } 1702 if (!reg->precise) 1703 new_marks = true; 1704 else 1705 stack_mask = 0; 1706 reg->precise = true; 1707 break; 1708 } 1709 1710 if (!new_marks) 1711 return 0; 1712 if (!reg_mask && !stack_mask) 1713 return 0; 1714 for (;;) { 1715 DECLARE_BITMAP(mask, 64); 1716 u32 history = st->jmp_history_cnt; 1717 1718 if (env->log.level & BPF_LOG_LEVEL) 1719 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 1720 for (i = last_idx;;) { 1721 if (skip_first) { 1722 err = 0; 1723 skip_first = false; 1724 } else { 1725 err = backtrack_insn(env, i, ®_mask, &stack_mask); 1726 } 1727 if (err == -ENOTSUPP) { 1728 mark_all_scalars_precise(env, st); 1729 return 0; 1730 } else if (err) { 1731 return err; 1732 } 1733 if (!reg_mask && !stack_mask) 1734 /* Found assignment(s) into tracked register in this state. 1735 * Since this state is already marked, just return. 1736 * Nothing to be tracked further in the parent state. 1737 */ 1738 return 0; 1739 if (i == first_idx) 1740 break; 1741 i = get_prev_insn_idx(st, i, &history); 1742 if (i >= env->prog->len) { 1743 /* This can happen if backtracking reached insn 0 1744 * and there are still reg_mask or stack_mask 1745 * to backtrack. 1746 * It means the backtracking missed the spot where 1747 * particular register was initialized with a constant. 1748 */ 1749 verbose(env, "BUG backtracking idx %d\n", i); 1750 WARN_ONCE(1, "verifier backtracking bug"); 1751 return -EFAULT; 1752 } 1753 } 1754 st = st->parent; 1755 if (!st) 1756 break; 1757 1758 new_marks = false; 1759 func = st->frame[st->curframe]; 1760 bitmap_from_u64(mask, reg_mask); 1761 for_each_set_bit(i, mask, 32) { 1762 reg = &func->regs[i]; 1763 if (reg->type != SCALAR_VALUE) { 1764 reg_mask &= ~(1u << i); 1765 continue; 1766 } 1767 if (!reg->precise) 1768 new_marks = true; 1769 reg->precise = true; 1770 } 1771 1772 bitmap_from_u64(mask, stack_mask); 1773 for_each_set_bit(i, mask, 64) { 1774 if (i >= func->allocated_stack / BPF_REG_SIZE) { 1775 /* the sequence of instructions: 1776 * 2: (bf) r3 = r10 1777 * 3: (7b) *(u64 *)(r3 -8) = r0 1778 * 4: (79) r4 = *(u64 *)(r10 -8) 1779 * doesn't contain jmps. It's backtracked 1780 * as a single block. 1781 * During backtracking insn 3 is not recognized as 1782 * stack access, so at the end of backtracking 1783 * stack slot fp-8 is still marked in stack_mask. 1784 * However the parent state may not have accessed 1785 * fp-8 and it's "unallocated" stack space. 1786 * In such case fallback to conservative. 1787 */ 1788 mark_all_scalars_precise(env, st); 1789 return 0; 1790 } 1791 1792 if (func->stack[i].slot_type[0] != STACK_SPILL) { 1793 stack_mask &= ~(1ull << i); 1794 continue; 1795 } 1796 reg = &func->stack[i].spilled_ptr; 1797 if (reg->type != SCALAR_VALUE) { 1798 stack_mask &= ~(1ull << i); 1799 continue; 1800 } 1801 if (!reg->precise) 1802 new_marks = true; 1803 reg->precise = true; 1804 } 1805 if (env->log.level & BPF_LOG_LEVEL) { 1806 print_verifier_state(env, func); 1807 verbose(env, "parent %s regs=%x stack=%llx marks\n", 1808 new_marks ? "didn't have" : "already had", 1809 reg_mask, stack_mask); 1810 } 1811 1812 if (!reg_mask && !stack_mask) 1813 break; 1814 if (!new_marks) 1815 break; 1816 1817 last_idx = st->last_insn_idx; 1818 first_idx = st->first_insn_idx; 1819 } 1820 return 0; 1821 } 1822 1823 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 1824 { 1825 return __mark_chain_precision(env, regno, -1); 1826 } 1827 1828 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 1829 { 1830 return __mark_chain_precision(env, -1, spi); 1831 } 1832 1833 static bool is_spillable_regtype(enum bpf_reg_type type) 1834 { 1835 switch (type) { 1836 case PTR_TO_MAP_VALUE: 1837 case PTR_TO_MAP_VALUE_OR_NULL: 1838 case PTR_TO_STACK: 1839 case PTR_TO_CTX: 1840 case PTR_TO_PACKET: 1841 case PTR_TO_PACKET_META: 1842 case PTR_TO_PACKET_END: 1843 case PTR_TO_FLOW_KEYS: 1844 case CONST_PTR_TO_MAP: 1845 case PTR_TO_SOCKET: 1846 case PTR_TO_SOCKET_OR_NULL: 1847 case PTR_TO_SOCK_COMMON: 1848 case PTR_TO_SOCK_COMMON_OR_NULL: 1849 case PTR_TO_TCP_SOCK: 1850 case PTR_TO_TCP_SOCK_OR_NULL: 1851 case PTR_TO_XDP_SOCK: 1852 return true; 1853 default: 1854 return false; 1855 } 1856 } 1857 1858 /* Does this register contain a constant zero? */ 1859 static bool register_is_null(struct bpf_reg_state *reg) 1860 { 1861 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1862 } 1863 1864 static bool register_is_const(struct bpf_reg_state *reg) 1865 { 1866 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 1867 } 1868 1869 static void save_register_state(struct bpf_func_state *state, 1870 int spi, struct bpf_reg_state *reg) 1871 { 1872 int i; 1873 1874 state->stack[spi].spilled_ptr = *reg; 1875 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1876 1877 for (i = 0; i < BPF_REG_SIZE; i++) 1878 state->stack[spi].slot_type[i] = STACK_SPILL; 1879 } 1880 1881 /* check_stack_read/write functions track spill/fill of registers, 1882 * stack boundary and alignment are checked in check_mem_access() 1883 */ 1884 static int check_stack_write(struct bpf_verifier_env *env, 1885 struct bpf_func_state *state, /* func where register points to */ 1886 int off, int size, int value_regno, int insn_idx) 1887 { 1888 struct bpf_func_state *cur; /* state of the current function */ 1889 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1890 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 1891 struct bpf_reg_state *reg = NULL; 1892 1893 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1894 state->acquired_refs, true); 1895 if (err) 1896 return err; 1897 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1898 * so it's aligned access and [off, off + size) are within stack limits 1899 */ 1900 if (!env->allow_ptr_leaks && 1901 state->stack[spi].slot_type[0] == STACK_SPILL && 1902 size != BPF_REG_SIZE) { 1903 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1904 return -EACCES; 1905 } 1906 1907 cur = env->cur_state->frame[env->cur_state->curframe]; 1908 if (value_regno >= 0) 1909 reg = &cur->regs[value_regno]; 1910 1911 if (reg && size == BPF_REG_SIZE && register_is_const(reg) && 1912 !register_is_null(reg) && env->allow_ptr_leaks) { 1913 if (dst_reg != BPF_REG_FP) { 1914 /* The backtracking logic can only recognize explicit 1915 * stack slot address like [fp - 8]. Other spill of 1916 * scalar via different register has to be conervative. 1917 * Backtrack from here and mark all registers as precise 1918 * that contributed into 'reg' being a constant. 1919 */ 1920 err = mark_chain_precision(env, value_regno); 1921 if (err) 1922 return err; 1923 } 1924 save_register_state(state, spi, reg); 1925 } else if (reg && is_spillable_regtype(reg->type)) { 1926 /* register containing pointer is being spilled into stack */ 1927 if (size != BPF_REG_SIZE) { 1928 verbose_linfo(env, insn_idx, "; "); 1929 verbose(env, "invalid size of register spill\n"); 1930 return -EACCES; 1931 } 1932 1933 if (state != cur && reg->type == PTR_TO_STACK) { 1934 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1935 return -EINVAL; 1936 } 1937 1938 if (!env->allow_ptr_leaks) { 1939 bool sanitize = false; 1940 1941 if (state->stack[spi].slot_type[0] == STACK_SPILL && 1942 register_is_const(&state->stack[spi].spilled_ptr)) 1943 sanitize = true; 1944 for (i = 0; i < BPF_REG_SIZE; i++) 1945 if (state->stack[spi].slot_type[i] == STACK_MISC) { 1946 sanitize = true; 1947 break; 1948 } 1949 if (sanitize) { 1950 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1951 int soff = (-spi - 1) * BPF_REG_SIZE; 1952 1953 /* detected reuse of integer stack slot with a pointer 1954 * which means either llvm is reusing stack slot or 1955 * an attacker is trying to exploit CVE-2018-3639 1956 * (speculative store bypass) 1957 * Have to sanitize that slot with preemptive 1958 * store of zero. 1959 */ 1960 if (*poff && *poff != soff) { 1961 /* disallow programs where single insn stores 1962 * into two different stack slots, since verifier 1963 * cannot sanitize them 1964 */ 1965 verbose(env, 1966 "insn %d cannot access two stack slots fp%d and fp%d", 1967 insn_idx, *poff, soff); 1968 return -EINVAL; 1969 } 1970 *poff = soff; 1971 } 1972 } 1973 save_register_state(state, spi, reg); 1974 } else { 1975 u8 type = STACK_MISC; 1976 1977 /* regular write of data into stack destroys any spilled ptr */ 1978 state->stack[spi].spilled_ptr.type = NOT_INIT; 1979 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1980 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1981 for (i = 0; i < BPF_REG_SIZE; i++) 1982 state->stack[spi].slot_type[i] = STACK_MISC; 1983 1984 /* only mark the slot as written if all 8 bytes were written 1985 * otherwise read propagation may incorrectly stop too soon 1986 * when stack slots are partially written. 1987 * This heuristic means that read propagation will be 1988 * conservative, since it will add reg_live_read marks 1989 * to stack slots all the way to first state when programs 1990 * writes+reads less than 8 bytes 1991 */ 1992 if (size == BPF_REG_SIZE) 1993 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1994 1995 /* when we zero initialize stack slots mark them as such */ 1996 if (reg && register_is_null(reg)) { 1997 /* backtracking doesn't work for STACK_ZERO yet. */ 1998 err = mark_chain_precision(env, value_regno); 1999 if (err) 2000 return err; 2001 type = STACK_ZERO; 2002 } 2003 2004 /* Mark slots affected by this stack write. */ 2005 for (i = 0; i < size; i++) 2006 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2007 type; 2008 } 2009 return 0; 2010 } 2011 2012 static int check_stack_read(struct bpf_verifier_env *env, 2013 struct bpf_func_state *reg_state /* func where register points to */, 2014 int off, int size, int value_regno) 2015 { 2016 struct bpf_verifier_state *vstate = env->cur_state; 2017 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2018 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2019 struct bpf_reg_state *reg; 2020 u8 *stype; 2021 2022 if (reg_state->allocated_stack <= slot) { 2023 verbose(env, "invalid read from stack off %d+0 size %d\n", 2024 off, size); 2025 return -EACCES; 2026 } 2027 stype = reg_state->stack[spi].slot_type; 2028 reg = ®_state->stack[spi].spilled_ptr; 2029 2030 if (stype[0] == STACK_SPILL) { 2031 if (size != BPF_REG_SIZE) { 2032 if (reg->type != SCALAR_VALUE) { 2033 verbose_linfo(env, env->insn_idx, "; "); 2034 verbose(env, "invalid size of register fill\n"); 2035 return -EACCES; 2036 } 2037 if (value_regno >= 0) { 2038 mark_reg_unknown(env, state->regs, value_regno); 2039 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2040 } 2041 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2042 return 0; 2043 } 2044 for (i = 1; i < BPF_REG_SIZE; i++) { 2045 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2046 verbose(env, "corrupted spill memory\n"); 2047 return -EACCES; 2048 } 2049 } 2050 2051 if (value_regno >= 0) { 2052 /* restore register state from stack */ 2053 state->regs[value_regno] = *reg; 2054 /* mark reg as written since spilled pointer state likely 2055 * has its liveness marks cleared by is_state_visited() 2056 * which resets stack/reg liveness for state transitions 2057 */ 2058 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2059 } 2060 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2061 } else { 2062 int zeros = 0; 2063 2064 for (i = 0; i < size; i++) { 2065 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2066 continue; 2067 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2068 zeros++; 2069 continue; 2070 } 2071 verbose(env, "invalid read from stack off %d+%d size %d\n", 2072 off, i, size); 2073 return -EACCES; 2074 } 2075 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2076 if (value_regno >= 0) { 2077 if (zeros == size) { 2078 /* any size read into register is zero extended, 2079 * so the whole register == const_zero 2080 */ 2081 __mark_reg_const_zero(&state->regs[value_regno]); 2082 /* backtracking doesn't support STACK_ZERO yet, 2083 * so mark it precise here, so that later 2084 * backtracking can stop here. 2085 * Backtracking may not need this if this register 2086 * doesn't participate in pointer adjustment. 2087 * Forward propagation of precise flag is not 2088 * necessary either. This mark is only to stop 2089 * backtracking. Any register that contributed 2090 * to const 0 was marked precise before spill. 2091 */ 2092 state->regs[value_regno].precise = true; 2093 } else { 2094 /* have read misc data from the stack */ 2095 mark_reg_unknown(env, state->regs, value_regno); 2096 } 2097 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2098 } 2099 } 2100 return 0; 2101 } 2102 2103 static int check_stack_access(struct bpf_verifier_env *env, 2104 const struct bpf_reg_state *reg, 2105 int off, int size) 2106 { 2107 /* Stack accesses must be at a fixed offset, so that we 2108 * can determine what type of data were returned. See 2109 * check_stack_read(). 2110 */ 2111 if (!tnum_is_const(reg->var_off)) { 2112 char tn_buf[48]; 2113 2114 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2115 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2116 tn_buf, off, size); 2117 return -EACCES; 2118 } 2119 2120 if (off >= 0 || off < -MAX_BPF_STACK) { 2121 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2122 return -EACCES; 2123 } 2124 2125 return 0; 2126 } 2127 2128 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2129 int off, int size, enum bpf_access_type type) 2130 { 2131 struct bpf_reg_state *regs = cur_regs(env); 2132 struct bpf_map *map = regs[regno].map_ptr; 2133 u32 cap = bpf_map_flags_to_cap(map); 2134 2135 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2136 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2137 map->value_size, off, size); 2138 return -EACCES; 2139 } 2140 2141 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2142 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2143 map->value_size, off, size); 2144 return -EACCES; 2145 } 2146 2147 return 0; 2148 } 2149 2150 /* check read/write into map element returned by bpf_map_lookup_elem() */ 2151 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 2152 int size, bool zero_size_allowed) 2153 { 2154 struct bpf_reg_state *regs = cur_regs(env); 2155 struct bpf_map *map = regs[regno].map_ptr; 2156 2157 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2158 off + size > map->value_size) { 2159 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2160 map->value_size, off, size); 2161 return -EACCES; 2162 } 2163 return 0; 2164 } 2165 2166 /* check read/write into a map element with possible variable offset */ 2167 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2168 int off, int size, bool zero_size_allowed) 2169 { 2170 struct bpf_verifier_state *vstate = env->cur_state; 2171 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2172 struct bpf_reg_state *reg = &state->regs[regno]; 2173 int err; 2174 2175 /* We may have adjusted the register to this map value, so we 2176 * need to try adding each of min_value and max_value to off 2177 * to make sure our theoretical access will be safe. 2178 */ 2179 if (env->log.level & BPF_LOG_LEVEL) 2180 print_verifier_state(env, state); 2181 2182 /* The minimum value is only important with signed 2183 * comparisons where we can't assume the floor of a 2184 * value is 0. If we are using signed variables for our 2185 * index'es we need to make sure that whatever we use 2186 * will have a set floor within our range. 2187 */ 2188 if (reg->smin_value < 0 && 2189 (reg->smin_value == S64_MIN || 2190 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2191 reg->smin_value + off < 0)) { 2192 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2193 regno); 2194 return -EACCES; 2195 } 2196 err = __check_map_access(env, regno, reg->smin_value + off, size, 2197 zero_size_allowed); 2198 if (err) { 2199 verbose(env, "R%d min value is outside of the array range\n", 2200 regno); 2201 return err; 2202 } 2203 2204 /* If we haven't set a max value then we need to bail since we can't be 2205 * sure we won't do bad things. 2206 * If reg->umax_value + off could overflow, treat that as unbounded too. 2207 */ 2208 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2209 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 2210 regno); 2211 return -EACCES; 2212 } 2213 err = __check_map_access(env, regno, reg->umax_value + off, size, 2214 zero_size_allowed); 2215 if (err) 2216 verbose(env, "R%d max value is outside of the array range\n", 2217 regno); 2218 2219 if (map_value_has_spin_lock(reg->map_ptr)) { 2220 u32 lock = reg->map_ptr->spin_lock_off; 2221 2222 /* if any part of struct bpf_spin_lock can be touched by 2223 * load/store reject this program. 2224 * To check that [x1, x2) overlaps with [y1, y2) 2225 * it is sufficient to check x1 < y2 && y1 < x2. 2226 */ 2227 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2228 lock < reg->umax_value + off + size) { 2229 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2230 return -EACCES; 2231 } 2232 } 2233 return err; 2234 } 2235 2236 #define MAX_PACKET_OFF 0xffff 2237 2238 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2239 const struct bpf_call_arg_meta *meta, 2240 enum bpf_access_type t) 2241 { 2242 switch (env->prog->type) { 2243 /* Program types only with direct read access go here! */ 2244 case BPF_PROG_TYPE_LWT_IN: 2245 case BPF_PROG_TYPE_LWT_OUT: 2246 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2247 case BPF_PROG_TYPE_SK_REUSEPORT: 2248 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2249 case BPF_PROG_TYPE_CGROUP_SKB: 2250 if (t == BPF_WRITE) 2251 return false; 2252 /* fallthrough */ 2253 2254 /* Program types with direct read + write access go here! */ 2255 case BPF_PROG_TYPE_SCHED_CLS: 2256 case BPF_PROG_TYPE_SCHED_ACT: 2257 case BPF_PROG_TYPE_XDP: 2258 case BPF_PROG_TYPE_LWT_XMIT: 2259 case BPF_PROG_TYPE_SK_SKB: 2260 case BPF_PROG_TYPE_SK_MSG: 2261 if (meta) 2262 return meta->pkt_access; 2263 2264 env->seen_direct_write = true; 2265 return true; 2266 2267 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2268 if (t == BPF_WRITE) 2269 env->seen_direct_write = true; 2270 2271 return true; 2272 2273 default: 2274 return false; 2275 } 2276 } 2277 2278 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 2279 int off, int size, bool zero_size_allowed) 2280 { 2281 struct bpf_reg_state *regs = cur_regs(env); 2282 struct bpf_reg_state *reg = ®s[regno]; 2283 2284 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 2285 (u64)off + size > reg->range) { 2286 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2287 off, size, regno, reg->id, reg->off, reg->range); 2288 return -EACCES; 2289 } 2290 return 0; 2291 } 2292 2293 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2294 int size, bool zero_size_allowed) 2295 { 2296 struct bpf_reg_state *regs = cur_regs(env); 2297 struct bpf_reg_state *reg = ®s[regno]; 2298 int err; 2299 2300 /* We may have added a variable offset to the packet pointer; but any 2301 * reg->range we have comes after that. We are only checking the fixed 2302 * offset. 2303 */ 2304 2305 /* We don't allow negative numbers, because we aren't tracking enough 2306 * detail to prove they're safe. 2307 */ 2308 if (reg->smin_value < 0) { 2309 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2310 regno); 2311 return -EACCES; 2312 } 2313 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 2314 if (err) { 2315 verbose(env, "R%d offset is outside of the packet\n", regno); 2316 return err; 2317 } 2318 2319 /* __check_packet_access has made sure "off + size - 1" is within u16. 2320 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2321 * otherwise find_good_pkt_pointers would have refused to set range info 2322 * that __check_packet_access would have rejected this pkt access. 2323 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2324 */ 2325 env->prog->aux->max_pkt_offset = 2326 max_t(u32, env->prog->aux->max_pkt_offset, 2327 off + reg->umax_value + size - 1); 2328 2329 return err; 2330 } 2331 2332 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2333 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2334 enum bpf_access_type t, enum bpf_reg_type *reg_type) 2335 { 2336 struct bpf_insn_access_aux info = { 2337 .reg_type = *reg_type, 2338 }; 2339 2340 if (env->ops->is_valid_access && 2341 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2342 /* A non zero info.ctx_field_size indicates that this field is a 2343 * candidate for later verifier transformation to load the whole 2344 * field and then apply a mask when accessed with a narrower 2345 * access than actual ctx access size. A zero info.ctx_field_size 2346 * will only allow for whole field access and rejects any other 2347 * type of narrower access. 2348 */ 2349 *reg_type = info.reg_type; 2350 2351 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2352 /* remember the offset of last byte accessed in ctx */ 2353 if (env->prog->aux->max_ctx_offset < off + size) 2354 env->prog->aux->max_ctx_offset = off + size; 2355 return 0; 2356 } 2357 2358 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2359 return -EACCES; 2360 } 2361 2362 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2363 int size) 2364 { 2365 if (size < 0 || off < 0 || 2366 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2367 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2368 off, size); 2369 return -EACCES; 2370 } 2371 return 0; 2372 } 2373 2374 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2375 u32 regno, int off, int size, 2376 enum bpf_access_type t) 2377 { 2378 struct bpf_reg_state *regs = cur_regs(env); 2379 struct bpf_reg_state *reg = ®s[regno]; 2380 struct bpf_insn_access_aux info = {}; 2381 bool valid; 2382 2383 if (reg->smin_value < 0) { 2384 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2385 regno); 2386 return -EACCES; 2387 } 2388 2389 switch (reg->type) { 2390 case PTR_TO_SOCK_COMMON: 2391 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2392 break; 2393 case PTR_TO_SOCKET: 2394 valid = bpf_sock_is_valid_access(off, size, t, &info); 2395 break; 2396 case PTR_TO_TCP_SOCK: 2397 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2398 break; 2399 case PTR_TO_XDP_SOCK: 2400 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2401 break; 2402 default: 2403 valid = false; 2404 } 2405 2406 2407 if (valid) { 2408 env->insn_aux_data[insn_idx].ctx_field_size = 2409 info.ctx_field_size; 2410 return 0; 2411 } 2412 2413 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2414 regno, reg_type_str[reg->type], off, size); 2415 2416 return -EACCES; 2417 } 2418 2419 static bool __is_pointer_value(bool allow_ptr_leaks, 2420 const struct bpf_reg_state *reg) 2421 { 2422 if (allow_ptr_leaks) 2423 return false; 2424 2425 return reg->type != SCALAR_VALUE; 2426 } 2427 2428 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2429 { 2430 return cur_regs(env) + regno; 2431 } 2432 2433 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2434 { 2435 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2436 } 2437 2438 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2439 { 2440 const struct bpf_reg_state *reg = reg_state(env, regno); 2441 2442 return reg->type == PTR_TO_CTX; 2443 } 2444 2445 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2446 { 2447 const struct bpf_reg_state *reg = reg_state(env, regno); 2448 2449 return type_is_sk_pointer(reg->type); 2450 } 2451 2452 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2453 { 2454 const struct bpf_reg_state *reg = reg_state(env, regno); 2455 2456 return type_is_pkt_pointer(reg->type); 2457 } 2458 2459 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2460 { 2461 const struct bpf_reg_state *reg = reg_state(env, regno); 2462 2463 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2464 return reg->type == PTR_TO_FLOW_KEYS; 2465 } 2466 2467 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2468 const struct bpf_reg_state *reg, 2469 int off, int size, bool strict) 2470 { 2471 struct tnum reg_off; 2472 int ip_align; 2473 2474 /* Byte size accesses are always allowed. */ 2475 if (!strict || size == 1) 2476 return 0; 2477 2478 /* For platforms that do not have a Kconfig enabling 2479 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2480 * NET_IP_ALIGN is universally set to '2'. And on platforms 2481 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2482 * to this code only in strict mode where we want to emulate 2483 * the NET_IP_ALIGN==2 checking. Therefore use an 2484 * unconditional IP align value of '2'. 2485 */ 2486 ip_align = 2; 2487 2488 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2489 if (!tnum_is_aligned(reg_off, size)) { 2490 char tn_buf[48]; 2491 2492 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2493 verbose(env, 2494 "misaligned packet access off %d+%s+%d+%d size %d\n", 2495 ip_align, tn_buf, reg->off, off, size); 2496 return -EACCES; 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2503 const struct bpf_reg_state *reg, 2504 const char *pointer_desc, 2505 int off, int size, bool strict) 2506 { 2507 struct tnum reg_off; 2508 2509 /* Byte size accesses are always allowed. */ 2510 if (!strict || size == 1) 2511 return 0; 2512 2513 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2514 if (!tnum_is_aligned(reg_off, size)) { 2515 char tn_buf[48]; 2516 2517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2518 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2519 pointer_desc, tn_buf, reg->off, off, size); 2520 return -EACCES; 2521 } 2522 2523 return 0; 2524 } 2525 2526 static int check_ptr_alignment(struct bpf_verifier_env *env, 2527 const struct bpf_reg_state *reg, int off, 2528 int size, bool strict_alignment_once) 2529 { 2530 bool strict = env->strict_alignment || strict_alignment_once; 2531 const char *pointer_desc = ""; 2532 2533 switch (reg->type) { 2534 case PTR_TO_PACKET: 2535 case PTR_TO_PACKET_META: 2536 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2537 * right in front, treat it the very same way. 2538 */ 2539 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2540 case PTR_TO_FLOW_KEYS: 2541 pointer_desc = "flow keys "; 2542 break; 2543 case PTR_TO_MAP_VALUE: 2544 pointer_desc = "value "; 2545 break; 2546 case PTR_TO_CTX: 2547 pointer_desc = "context "; 2548 break; 2549 case PTR_TO_STACK: 2550 pointer_desc = "stack "; 2551 /* The stack spill tracking logic in check_stack_write() 2552 * and check_stack_read() relies on stack accesses being 2553 * aligned. 2554 */ 2555 strict = true; 2556 break; 2557 case PTR_TO_SOCKET: 2558 pointer_desc = "sock "; 2559 break; 2560 case PTR_TO_SOCK_COMMON: 2561 pointer_desc = "sock_common "; 2562 break; 2563 case PTR_TO_TCP_SOCK: 2564 pointer_desc = "tcp_sock "; 2565 break; 2566 case PTR_TO_XDP_SOCK: 2567 pointer_desc = "xdp_sock "; 2568 break; 2569 default: 2570 break; 2571 } 2572 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 2573 strict); 2574 } 2575 2576 static int update_stack_depth(struct bpf_verifier_env *env, 2577 const struct bpf_func_state *func, 2578 int off) 2579 { 2580 u16 stack = env->subprog_info[func->subprogno].stack_depth; 2581 2582 if (stack >= -off) 2583 return 0; 2584 2585 /* update known max for given subprogram */ 2586 env->subprog_info[func->subprogno].stack_depth = -off; 2587 return 0; 2588 } 2589 2590 /* starting from main bpf function walk all instructions of the function 2591 * and recursively walk all callees that given function can call. 2592 * Ignore jump and exit insns. 2593 * Since recursion is prevented by check_cfg() this algorithm 2594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 2595 */ 2596 static int check_max_stack_depth(struct bpf_verifier_env *env) 2597 { 2598 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 2599 struct bpf_subprog_info *subprog = env->subprog_info; 2600 struct bpf_insn *insn = env->prog->insnsi; 2601 int ret_insn[MAX_CALL_FRAMES]; 2602 int ret_prog[MAX_CALL_FRAMES]; 2603 2604 process_func: 2605 /* round up to 32-bytes, since this is granularity 2606 * of interpreter stack size 2607 */ 2608 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2609 if (depth > MAX_BPF_STACK) { 2610 verbose(env, "combined stack size of %d calls is %d. Too large\n", 2611 frame + 1, depth); 2612 return -EACCES; 2613 } 2614 continue_func: 2615 subprog_end = subprog[idx + 1].start; 2616 for (; i < subprog_end; i++) { 2617 if (insn[i].code != (BPF_JMP | BPF_CALL)) 2618 continue; 2619 if (insn[i].src_reg != BPF_PSEUDO_CALL) 2620 continue; 2621 /* remember insn and function to return to */ 2622 ret_insn[frame] = i + 1; 2623 ret_prog[frame] = idx; 2624 2625 /* find the callee */ 2626 i = i + insn[i].imm + 1; 2627 idx = find_subprog(env, i); 2628 if (idx < 0) { 2629 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2630 i); 2631 return -EFAULT; 2632 } 2633 frame++; 2634 if (frame >= MAX_CALL_FRAMES) { 2635 verbose(env, "the call stack of %d frames is too deep !\n", 2636 frame); 2637 return -E2BIG; 2638 } 2639 goto process_func; 2640 } 2641 /* end of for() loop means the last insn of the 'subprog' 2642 * was reached. Doesn't matter whether it was JA or EXIT 2643 */ 2644 if (frame == 0) 2645 return 0; 2646 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 2647 frame--; 2648 i = ret_insn[frame]; 2649 idx = ret_prog[frame]; 2650 goto continue_func; 2651 } 2652 2653 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 2654 static int get_callee_stack_depth(struct bpf_verifier_env *env, 2655 const struct bpf_insn *insn, int idx) 2656 { 2657 int start = idx + insn->imm + 1, subprog; 2658 2659 subprog = find_subprog(env, start); 2660 if (subprog < 0) { 2661 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 2662 start); 2663 return -EFAULT; 2664 } 2665 return env->subprog_info[subprog].stack_depth; 2666 } 2667 #endif 2668 2669 static int check_ctx_reg(struct bpf_verifier_env *env, 2670 const struct bpf_reg_state *reg, int regno) 2671 { 2672 /* Access to ctx or passing it to a helper is only allowed in 2673 * its original, unmodified form. 2674 */ 2675 2676 if (reg->off) { 2677 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 2678 regno, reg->off); 2679 return -EACCES; 2680 } 2681 2682 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2683 char tn_buf[48]; 2684 2685 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2686 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 2687 return -EACCES; 2688 } 2689 2690 return 0; 2691 } 2692 2693 static int check_tp_buffer_access(struct bpf_verifier_env *env, 2694 const struct bpf_reg_state *reg, 2695 int regno, int off, int size) 2696 { 2697 if (off < 0) { 2698 verbose(env, 2699 "R%d invalid tracepoint buffer access: off=%d, size=%d", 2700 regno, off, size); 2701 return -EACCES; 2702 } 2703 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 2704 char tn_buf[48]; 2705 2706 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2707 verbose(env, 2708 "R%d invalid variable buffer offset: off=%d, var_off=%s", 2709 regno, off, tn_buf); 2710 return -EACCES; 2711 } 2712 if (off + size > env->prog->aux->max_tp_access) 2713 env->prog->aux->max_tp_access = off + size; 2714 2715 return 0; 2716 } 2717 2718 2719 /* truncate register to smaller size (in bytes) 2720 * must be called with size < BPF_REG_SIZE 2721 */ 2722 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 2723 { 2724 u64 mask; 2725 2726 /* clear high bits in bit representation */ 2727 reg->var_off = tnum_cast(reg->var_off, size); 2728 2729 /* fix arithmetic bounds */ 2730 mask = ((u64)1 << (size * 8)) - 1; 2731 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 2732 reg->umin_value &= mask; 2733 reg->umax_value &= mask; 2734 } else { 2735 reg->umin_value = 0; 2736 reg->umax_value = mask; 2737 } 2738 reg->smin_value = reg->umin_value; 2739 reg->smax_value = reg->umax_value; 2740 } 2741 2742 /* check whether memory at (regno + off) is accessible for t = (read | write) 2743 * if t==write, value_regno is a register which value is stored into memory 2744 * if t==read, value_regno is a register which will receive the value from memory 2745 * if t==write && value_regno==-1, some unknown value is stored into memory 2746 * if t==read && value_regno==-1, don't care what we read from memory 2747 */ 2748 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 2749 int off, int bpf_size, enum bpf_access_type t, 2750 int value_regno, bool strict_alignment_once) 2751 { 2752 struct bpf_reg_state *regs = cur_regs(env); 2753 struct bpf_reg_state *reg = regs + regno; 2754 struct bpf_func_state *state; 2755 int size, err = 0; 2756 2757 size = bpf_size_to_bytes(bpf_size); 2758 if (size < 0) 2759 return size; 2760 2761 /* alignment checks will add in reg->off themselves */ 2762 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 2763 if (err) 2764 return err; 2765 2766 /* for access checks, reg->off is just part of off */ 2767 off += reg->off; 2768 2769 if (reg->type == PTR_TO_MAP_VALUE) { 2770 if (t == BPF_WRITE && value_regno >= 0 && 2771 is_pointer_value(env, value_regno)) { 2772 verbose(env, "R%d leaks addr into map\n", value_regno); 2773 return -EACCES; 2774 } 2775 err = check_map_access_type(env, regno, off, size, t); 2776 if (err) 2777 return err; 2778 err = check_map_access(env, regno, off, size, false); 2779 if (!err && t == BPF_READ && value_regno >= 0) 2780 mark_reg_unknown(env, regs, value_regno); 2781 2782 } else if (reg->type == PTR_TO_CTX) { 2783 enum bpf_reg_type reg_type = SCALAR_VALUE; 2784 2785 if (t == BPF_WRITE && value_regno >= 0 && 2786 is_pointer_value(env, value_regno)) { 2787 verbose(env, "R%d leaks addr into ctx\n", value_regno); 2788 return -EACCES; 2789 } 2790 2791 err = check_ctx_reg(env, reg, regno); 2792 if (err < 0) 2793 return err; 2794 2795 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 2796 if (!err && t == BPF_READ && value_regno >= 0) { 2797 /* ctx access returns either a scalar, or a 2798 * PTR_TO_PACKET[_META,_END]. In the latter 2799 * case, we know the offset is zero. 2800 */ 2801 if (reg_type == SCALAR_VALUE) { 2802 mark_reg_unknown(env, regs, value_regno); 2803 } else { 2804 mark_reg_known_zero(env, regs, 2805 value_regno); 2806 if (reg_type_may_be_null(reg_type)) 2807 regs[value_regno].id = ++env->id_gen; 2808 /* A load of ctx field could have different 2809 * actual load size with the one encoded in the 2810 * insn. When the dst is PTR, it is for sure not 2811 * a sub-register. 2812 */ 2813 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 2814 } 2815 regs[value_regno].type = reg_type; 2816 } 2817 2818 } else if (reg->type == PTR_TO_STACK) { 2819 off += reg->var_off.value; 2820 err = check_stack_access(env, reg, off, size); 2821 if (err) 2822 return err; 2823 2824 state = func(env, reg); 2825 err = update_stack_depth(env, state, off); 2826 if (err) 2827 return err; 2828 2829 if (t == BPF_WRITE) 2830 err = check_stack_write(env, state, off, size, 2831 value_regno, insn_idx); 2832 else 2833 err = check_stack_read(env, state, off, size, 2834 value_regno); 2835 } else if (reg_is_pkt_pointer(reg)) { 2836 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2837 verbose(env, "cannot write into packet\n"); 2838 return -EACCES; 2839 } 2840 if (t == BPF_WRITE && value_regno >= 0 && 2841 is_pointer_value(env, value_regno)) { 2842 verbose(env, "R%d leaks addr into packet\n", 2843 value_regno); 2844 return -EACCES; 2845 } 2846 err = check_packet_access(env, regno, off, size, false); 2847 if (!err && t == BPF_READ && value_regno >= 0) 2848 mark_reg_unknown(env, regs, value_regno); 2849 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2850 if (t == BPF_WRITE && value_regno >= 0 && 2851 is_pointer_value(env, value_regno)) { 2852 verbose(env, "R%d leaks addr into flow keys\n", 2853 value_regno); 2854 return -EACCES; 2855 } 2856 2857 err = check_flow_keys_access(env, off, size); 2858 if (!err && t == BPF_READ && value_regno >= 0) 2859 mark_reg_unknown(env, regs, value_regno); 2860 } else if (type_is_sk_pointer(reg->type)) { 2861 if (t == BPF_WRITE) { 2862 verbose(env, "R%d cannot write into %s\n", 2863 regno, reg_type_str[reg->type]); 2864 return -EACCES; 2865 } 2866 err = check_sock_access(env, insn_idx, regno, off, size, t); 2867 if (!err && value_regno >= 0) 2868 mark_reg_unknown(env, regs, value_regno); 2869 } else if (reg->type == PTR_TO_TP_BUFFER) { 2870 err = check_tp_buffer_access(env, reg, regno, off, size); 2871 if (!err && t == BPF_READ && value_regno >= 0) 2872 mark_reg_unknown(env, regs, value_regno); 2873 } else { 2874 verbose(env, "R%d invalid mem access '%s'\n", regno, 2875 reg_type_str[reg->type]); 2876 return -EACCES; 2877 } 2878 2879 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2880 regs[value_regno].type == SCALAR_VALUE) { 2881 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2882 coerce_reg_to_size(®s[value_regno], size); 2883 } 2884 return err; 2885 } 2886 2887 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2888 { 2889 int err; 2890 2891 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2892 insn->imm != 0) { 2893 verbose(env, "BPF_XADD uses reserved fields\n"); 2894 return -EINVAL; 2895 } 2896 2897 /* check src1 operand */ 2898 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2899 if (err) 2900 return err; 2901 2902 /* check src2 operand */ 2903 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2904 if (err) 2905 return err; 2906 2907 if (is_pointer_value(env, insn->src_reg)) { 2908 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2909 return -EACCES; 2910 } 2911 2912 if (is_ctx_reg(env, insn->dst_reg) || 2913 is_pkt_reg(env, insn->dst_reg) || 2914 is_flow_key_reg(env, insn->dst_reg) || 2915 is_sk_reg(env, insn->dst_reg)) { 2916 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2917 insn->dst_reg, 2918 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2919 return -EACCES; 2920 } 2921 2922 /* check whether atomic_add can read the memory */ 2923 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2924 BPF_SIZE(insn->code), BPF_READ, -1, true); 2925 if (err) 2926 return err; 2927 2928 /* check whether atomic_add can write into the same memory */ 2929 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2930 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2931 } 2932 2933 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 2934 int off, int access_size, 2935 bool zero_size_allowed) 2936 { 2937 struct bpf_reg_state *reg = reg_state(env, regno); 2938 2939 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2940 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2941 if (tnum_is_const(reg->var_off)) { 2942 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2943 regno, off, access_size); 2944 } else { 2945 char tn_buf[48]; 2946 2947 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2948 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 2949 regno, tn_buf, access_size); 2950 } 2951 return -EACCES; 2952 } 2953 return 0; 2954 } 2955 2956 /* when register 'regno' is passed into function that will read 'access_size' 2957 * bytes from that pointer, make sure that it's within stack boundary 2958 * and all elements of stack are initialized. 2959 * Unlike most pointer bounds-checking functions, this one doesn't take an 2960 * 'off' argument, so it has to add in reg->off itself. 2961 */ 2962 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2963 int access_size, bool zero_size_allowed, 2964 struct bpf_call_arg_meta *meta) 2965 { 2966 struct bpf_reg_state *reg = reg_state(env, regno); 2967 struct bpf_func_state *state = func(env, reg); 2968 int err, min_off, max_off, i, j, slot, spi; 2969 2970 if (reg->type != PTR_TO_STACK) { 2971 /* Allow zero-byte read from NULL, regardless of pointer type */ 2972 if (zero_size_allowed && access_size == 0 && 2973 register_is_null(reg)) 2974 return 0; 2975 2976 verbose(env, "R%d type=%s expected=%s\n", regno, 2977 reg_type_str[reg->type], 2978 reg_type_str[PTR_TO_STACK]); 2979 return -EACCES; 2980 } 2981 2982 if (tnum_is_const(reg->var_off)) { 2983 min_off = max_off = reg->var_off.value + reg->off; 2984 err = __check_stack_boundary(env, regno, min_off, access_size, 2985 zero_size_allowed); 2986 if (err) 2987 return err; 2988 } else { 2989 /* Variable offset is prohibited for unprivileged mode for 2990 * simplicity since it requires corresponding support in 2991 * Spectre masking for stack ALU. 2992 * See also retrieve_ptr_limit(). 2993 */ 2994 if (!env->allow_ptr_leaks) { 2995 char tn_buf[48]; 2996 2997 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2998 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 2999 regno, tn_buf); 3000 return -EACCES; 3001 } 3002 /* Only initialized buffer on stack is allowed to be accessed 3003 * with variable offset. With uninitialized buffer it's hard to 3004 * guarantee that whole memory is marked as initialized on 3005 * helper return since specific bounds are unknown what may 3006 * cause uninitialized stack leaking. 3007 */ 3008 if (meta && meta->raw_mode) 3009 meta = NULL; 3010 3011 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3012 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3013 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3014 regno); 3015 return -EACCES; 3016 } 3017 min_off = reg->smin_value + reg->off; 3018 max_off = reg->smax_value + reg->off; 3019 err = __check_stack_boundary(env, regno, min_off, access_size, 3020 zero_size_allowed); 3021 if (err) { 3022 verbose(env, "R%d min value is outside of stack bound\n", 3023 regno); 3024 return err; 3025 } 3026 err = __check_stack_boundary(env, regno, max_off, access_size, 3027 zero_size_allowed); 3028 if (err) { 3029 verbose(env, "R%d max value is outside of stack bound\n", 3030 regno); 3031 return err; 3032 } 3033 } 3034 3035 if (meta && meta->raw_mode) { 3036 meta->access_size = access_size; 3037 meta->regno = regno; 3038 return 0; 3039 } 3040 3041 for (i = min_off; i < max_off + access_size; i++) { 3042 u8 *stype; 3043 3044 slot = -i - 1; 3045 spi = slot / BPF_REG_SIZE; 3046 if (state->allocated_stack <= slot) 3047 goto err; 3048 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3049 if (*stype == STACK_MISC) 3050 goto mark; 3051 if (*stype == STACK_ZERO) { 3052 /* helper can write anything into the stack */ 3053 *stype = STACK_MISC; 3054 goto mark; 3055 } 3056 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3057 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) { 3058 __mark_reg_unknown(&state->stack[spi].spilled_ptr); 3059 for (j = 0; j < BPF_REG_SIZE; j++) 3060 state->stack[spi].slot_type[j] = STACK_MISC; 3061 goto mark; 3062 } 3063 3064 err: 3065 if (tnum_is_const(reg->var_off)) { 3066 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3067 min_off, i - min_off, access_size); 3068 } else { 3069 char tn_buf[48]; 3070 3071 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3072 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3073 tn_buf, i - min_off, access_size); 3074 } 3075 return -EACCES; 3076 mark: 3077 /* reading any byte out of 8-byte 'spill_slot' will cause 3078 * the whole slot to be marked as 'read' 3079 */ 3080 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3081 state->stack[spi].spilled_ptr.parent, 3082 REG_LIVE_READ64); 3083 } 3084 return update_stack_depth(env, state, min_off); 3085 } 3086 3087 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3088 int access_size, bool zero_size_allowed, 3089 struct bpf_call_arg_meta *meta) 3090 { 3091 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3092 3093 switch (reg->type) { 3094 case PTR_TO_PACKET: 3095 case PTR_TO_PACKET_META: 3096 return check_packet_access(env, regno, reg->off, access_size, 3097 zero_size_allowed); 3098 case PTR_TO_MAP_VALUE: 3099 if (check_map_access_type(env, regno, reg->off, access_size, 3100 meta && meta->raw_mode ? BPF_WRITE : 3101 BPF_READ)) 3102 return -EACCES; 3103 return check_map_access(env, regno, reg->off, access_size, 3104 zero_size_allowed); 3105 default: /* scalar_value|ptr_to_stack or invalid ptr */ 3106 return check_stack_boundary(env, regno, access_size, 3107 zero_size_allowed, meta); 3108 } 3109 } 3110 3111 /* Implementation details: 3112 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3113 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3114 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3115 * value_or_null->value transition, since the verifier only cares about 3116 * the range of access to valid map value pointer and doesn't care about actual 3117 * address of the map element. 3118 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3119 * reg->id > 0 after value_or_null->value transition. By doing so 3120 * two bpf_map_lookups will be considered two different pointers that 3121 * point to different bpf_spin_locks. 3122 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3123 * dead-locks. 3124 * Since only one bpf_spin_lock is allowed the checks are simpler than 3125 * reg_is_refcounted() logic. The verifier needs to remember only 3126 * one spin_lock instead of array of acquired_refs. 3127 * cur_state->active_spin_lock remembers which map value element got locked 3128 * and clears it after bpf_spin_unlock. 3129 */ 3130 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3131 bool is_lock) 3132 { 3133 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3134 struct bpf_verifier_state *cur = env->cur_state; 3135 bool is_const = tnum_is_const(reg->var_off); 3136 struct bpf_map *map = reg->map_ptr; 3137 u64 val = reg->var_off.value; 3138 3139 if (reg->type != PTR_TO_MAP_VALUE) { 3140 verbose(env, "R%d is not a pointer to map_value\n", regno); 3141 return -EINVAL; 3142 } 3143 if (!is_const) { 3144 verbose(env, 3145 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3146 regno); 3147 return -EINVAL; 3148 } 3149 if (!map->btf) { 3150 verbose(env, 3151 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3152 map->name); 3153 return -EINVAL; 3154 } 3155 if (!map_value_has_spin_lock(map)) { 3156 if (map->spin_lock_off == -E2BIG) 3157 verbose(env, 3158 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3159 map->name); 3160 else if (map->spin_lock_off == -ENOENT) 3161 verbose(env, 3162 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3163 map->name); 3164 else 3165 verbose(env, 3166 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3167 map->name); 3168 return -EINVAL; 3169 } 3170 if (map->spin_lock_off != val + reg->off) { 3171 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3172 val + reg->off); 3173 return -EINVAL; 3174 } 3175 if (is_lock) { 3176 if (cur->active_spin_lock) { 3177 verbose(env, 3178 "Locking two bpf_spin_locks are not allowed\n"); 3179 return -EINVAL; 3180 } 3181 cur->active_spin_lock = reg->id; 3182 } else { 3183 if (!cur->active_spin_lock) { 3184 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3185 return -EINVAL; 3186 } 3187 if (cur->active_spin_lock != reg->id) { 3188 verbose(env, "bpf_spin_unlock of different lock\n"); 3189 return -EINVAL; 3190 } 3191 cur->active_spin_lock = 0; 3192 } 3193 return 0; 3194 } 3195 3196 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3197 { 3198 return type == ARG_PTR_TO_MEM || 3199 type == ARG_PTR_TO_MEM_OR_NULL || 3200 type == ARG_PTR_TO_UNINIT_MEM; 3201 } 3202 3203 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3204 { 3205 return type == ARG_CONST_SIZE || 3206 type == ARG_CONST_SIZE_OR_ZERO; 3207 } 3208 3209 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3210 { 3211 return type == ARG_PTR_TO_INT || 3212 type == ARG_PTR_TO_LONG; 3213 } 3214 3215 static int int_ptr_type_to_size(enum bpf_arg_type type) 3216 { 3217 if (type == ARG_PTR_TO_INT) 3218 return sizeof(u32); 3219 else if (type == ARG_PTR_TO_LONG) 3220 return sizeof(u64); 3221 3222 return -EINVAL; 3223 } 3224 3225 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 3226 enum bpf_arg_type arg_type, 3227 struct bpf_call_arg_meta *meta) 3228 { 3229 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3230 enum bpf_reg_type expected_type, type = reg->type; 3231 int err = 0; 3232 3233 if (arg_type == ARG_DONTCARE) 3234 return 0; 3235 3236 err = check_reg_arg(env, regno, SRC_OP); 3237 if (err) 3238 return err; 3239 3240 if (arg_type == ARG_ANYTHING) { 3241 if (is_pointer_value(env, regno)) { 3242 verbose(env, "R%d leaks addr into helper function\n", 3243 regno); 3244 return -EACCES; 3245 } 3246 return 0; 3247 } 3248 3249 if (type_is_pkt_pointer(type) && 3250 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 3251 verbose(env, "helper access to the packet is not allowed\n"); 3252 return -EACCES; 3253 } 3254 3255 if (arg_type == ARG_PTR_TO_MAP_KEY || 3256 arg_type == ARG_PTR_TO_MAP_VALUE || 3257 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 3258 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 3259 expected_type = PTR_TO_STACK; 3260 if (register_is_null(reg) && 3261 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) 3262 /* final test in check_stack_boundary() */; 3263 else if (!type_is_pkt_pointer(type) && 3264 type != PTR_TO_MAP_VALUE && 3265 type != expected_type) 3266 goto err_type; 3267 } else if (arg_type == ARG_CONST_SIZE || 3268 arg_type == ARG_CONST_SIZE_OR_ZERO) { 3269 expected_type = SCALAR_VALUE; 3270 if (type != expected_type) 3271 goto err_type; 3272 } else if (arg_type == ARG_CONST_MAP_PTR) { 3273 expected_type = CONST_PTR_TO_MAP; 3274 if (type != expected_type) 3275 goto err_type; 3276 } else if (arg_type == ARG_PTR_TO_CTX) { 3277 expected_type = PTR_TO_CTX; 3278 if (type != expected_type) 3279 goto err_type; 3280 err = check_ctx_reg(env, reg, regno); 3281 if (err < 0) 3282 return err; 3283 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) { 3284 expected_type = PTR_TO_SOCK_COMMON; 3285 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */ 3286 if (!type_is_sk_pointer(type)) 3287 goto err_type; 3288 if (reg->ref_obj_id) { 3289 if (meta->ref_obj_id) { 3290 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 3291 regno, reg->ref_obj_id, 3292 meta->ref_obj_id); 3293 return -EFAULT; 3294 } 3295 meta->ref_obj_id = reg->ref_obj_id; 3296 } 3297 } else if (arg_type == ARG_PTR_TO_SOCKET) { 3298 expected_type = PTR_TO_SOCKET; 3299 if (type != expected_type) 3300 goto err_type; 3301 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 3302 if (meta->func_id == BPF_FUNC_spin_lock) { 3303 if (process_spin_lock(env, regno, true)) 3304 return -EACCES; 3305 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 3306 if (process_spin_lock(env, regno, false)) 3307 return -EACCES; 3308 } else { 3309 verbose(env, "verifier internal error\n"); 3310 return -EFAULT; 3311 } 3312 } else if (arg_type_is_mem_ptr(arg_type)) { 3313 expected_type = PTR_TO_STACK; 3314 /* One exception here. In case function allows for NULL to be 3315 * passed in as argument, it's a SCALAR_VALUE type. Final test 3316 * happens during stack boundary checking. 3317 */ 3318 if (register_is_null(reg) && 3319 arg_type == ARG_PTR_TO_MEM_OR_NULL) 3320 /* final test in check_stack_boundary() */; 3321 else if (!type_is_pkt_pointer(type) && 3322 type != PTR_TO_MAP_VALUE && 3323 type != expected_type) 3324 goto err_type; 3325 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 3326 } else if (arg_type_is_int_ptr(arg_type)) { 3327 expected_type = PTR_TO_STACK; 3328 if (!type_is_pkt_pointer(type) && 3329 type != PTR_TO_MAP_VALUE && 3330 type != expected_type) 3331 goto err_type; 3332 } else { 3333 verbose(env, "unsupported arg_type %d\n", arg_type); 3334 return -EFAULT; 3335 } 3336 3337 if (arg_type == ARG_CONST_MAP_PTR) { 3338 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 3339 meta->map_ptr = reg->map_ptr; 3340 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 3341 /* bpf_map_xxx(..., map_ptr, ..., key) call: 3342 * check that [key, key + map->key_size) are within 3343 * stack limits and initialized 3344 */ 3345 if (!meta->map_ptr) { 3346 /* in function declaration map_ptr must come before 3347 * map_key, so that it's verified and known before 3348 * we have to check map_key here. Otherwise it means 3349 * that kernel subsystem misconfigured verifier 3350 */ 3351 verbose(env, "invalid map_ptr to access map->key\n"); 3352 return -EACCES; 3353 } 3354 err = check_helper_mem_access(env, regno, 3355 meta->map_ptr->key_size, false, 3356 NULL); 3357 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 3358 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 3359 !register_is_null(reg)) || 3360 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 3361 /* bpf_map_xxx(..., map_ptr, ..., value) call: 3362 * check [value, value + map->value_size) validity 3363 */ 3364 if (!meta->map_ptr) { 3365 /* kernel subsystem misconfigured verifier */ 3366 verbose(env, "invalid map_ptr to access map->value\n"); 3367 return -EACCES; 3368 } 3369 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 3370 err = check_helper_mem_access(env, regno, 3371 meta->map_ptr->value_size, false, 3372 meta); 3373 } else if (arg_type_is_mem_size(arg_type)) { 3374 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 3375 3376 /* remember the mem_size which may be used later 3377 * to refine return values. 3378 */ 3379 meta->msize_smax_value = reg->smax_value; 3380 meta->msize_umax_value = reg->umax_value; 3381 3382 /* The register is SCALAR_VALUE; the access check 3383 * happens using its boundaries. 3384 */ 3385 if (!tnum_is_const(reg->var_off)) 3386 /* For unprivileged variable accesses, disable raw 3387 * mode so that the program is required to 3388 * initialize all the memory that the helper could 3389 * just partially fill up. 3390 */ 3391 meta = NULL; 3392 3393 if (reg->smin_value < 0) { 3394 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 3395 regno); 3396 return -EACCES; 3397 } 3398 3399 if (reg->umin_value == 0) { 3400 err = check_helper_mem_access(env, regno - 1, 0, 3401 zero_size_allowed, 3402 meta); 3403 if (err) 3404 return err; 3405 } 3406 3407 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 3408 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 3409 regno); 3410 return -EACCES; 3411 } 3412 err = check_helper_mem_access(env, regno - 1, 3413 reg->umax_value, 3414 zero_size_allowed, meta); 3415 if (!err) 3416 err = mark_chain_precision(env, regno); 3417 } else if (arg_type_is_int_ptr(arg_type)) { 3418 int size = int_ptr_type_to_size(arg_type); 3419 3420 err = check_helper_mem_access(env, regno, size, false, meta); 3421 if (err) 3422 return err; 3423 err = check_ptr_alignment(env, reg, 0, size, true); 3424 } 3425 3426 return err; 3427 err_type: 3428 verbose(env, "R%d type=%s expected=%s\n", regno, 3429 reg_type_str[type], reg_type_str[expected_type]); 3430 return -EACCES; 3431 } 3432 3433 static int check_map_func_compatibility(struct bpf_verifier_env *env, 3434 struct bpf_map *map, int func_id) 3435 { 3436 if (!map) 3437 return 0; 3438 3439 /* We need a two way check, first is from map perspective ... */ 3440 switch (map->map_type) { 3441 case BPF_MAP_TYPE_PROG_ARRAY: 3442 if (func_id != BPF_FUNC_tail_call) 3443 goto error; 3444 break; 3445 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 3446 if (func_id != BPF_FUNC_perf_event_read && 3447 func_id != BPF_FUNC_perf_event_output && 3448 func_id != BPF_FUNC_perf_event_read_value) 3449 goto error; 3450 break; 3451 case BPF_MAP_TYPE_STACK_TRACE: 3452 if (func_id != BPF_FUNC_get_stackid) 3453 goto error; 3454 break; 3455 case BPF_MAP_TYPE_CGROUP_ARRAY: 3456 if (func_id != BPF_FUNC_skb_under_cgroup && 3457 func_id != BPF_FUNC_current_task_under_cgroup) 3458 goto error; 3459 break; 3460 case BPF_MAP_TYPE_CGROUP_STORAGE: 3461 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 3462 if (func_id != BPF_FUNC_get_local_storage) 3463 goto error; 3464 break; 3465 case BPF_MAP_TYPE_DEVMAP: 3466 case BPF_MAP_TYPE_DEVMAP_HASH: 3467 if (func_id != BPF_FUNC_redirect_map && 3468 func_id != BPF_FUNC_map_lookup_elem) 3469 goto error; 3470 break; 3471 /* Restrict bpf side of cpumap and xskmap, open when use-cases 3472 * appear. 3473 */ 3474 case BPF_MAP_TYPE_CPUMAP: 3475 if (func_id != BPF_FUNC_redirect_map) 3476 goto error; 3477 break; 3478 case BPF_MAP_TYPE_XSKMAP: 3479 if (func_id != BPF_FUNC_redirect_map && 3480 func_id != BPF_FUNC_map_lookup_elem) 3481 goto error; 3482 break; 3483 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 3484 case BPF_MAP_TYPE_HASH_OF_MAPS: 3485 if (func_id != BPF_FUNC_map_lookup_elem) 3486 goto error; 3487 break; 3488 case BPF_MAP_TYPE_SOCKMAP: 3489 if (func_id != BPF_FUNC_sk_redirect_map && 3490 func_id != BPF_FUNC_sock_map_update && 3491 func_id != BPF_FUNC_map_delete_elem && 3492 func_id != BPF_FUNC_msg_redirect_map) 3493 goto error; 3494 break; 3495 case BPF_MAP_TYPE_SOCKHASH: 3496 if (func_id != BPF_FUNC_sk_redirect_hash && 3497 func_id != BPF_FUNC_sock_hash_update && 3498 func_id != BPF_FUNC_map_delete_elem && 3499 func_id != BPF_FUNC_msg_redirect_hash) 3500 goto error; 3501 break; 3502 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 3503 if (func_id != BPF_FUNC_sk_select_reuseport) 3504 goto error; 3505 break; 3506 case BPF_MAP_TYPE_QUEUE: 3507 case BPF_MAP_TYPE_STACK: 3508 if (func_id != BPF_FUNC_map_peek_elem && 3509 func_id != BPF_FUNC_map_pop_elem && 3510 func_id != BPF_FUNC_map_push_elem) 3511 goto error; 3512 break; 3513 case BPF_MAP_TYPE_SK_STORAGE: 3514 if (func_id != BPF_FUNC_sk_storage_get && 3515 func_id != BPF_FUNC_sk_storage_delete) 3516 goto error; 3517 break; 3518 default: 3519 break; 3520 } 3521 3522 /* ... and second from the function itself. */ 3523 switch (func_id) { 3524 case BPF_FUNC_tail_call: 3525 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 3526 goto error; 3527 if (env->subprog_cnt > 1) { 3528 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 3529 return -EINVAL; 3530 } 3531 break; 3532 case BPF_FUNC_perf_event_read: 3533 case BPF_FUNC_perf_event_output: 3534 case BPF_FUNC_perf_event_read_value: 3535 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 3536 goto error; 3537 break; 3538 case BPF_FUNC_get_stackid: 3539 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 3540 goto error; 3541 break; 3542 case BPF_FUNC_current_task_under_cgroup: 3543 case BPF_FUNC_skb_under_cgroup: 3544 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 3545 goto error; 3546 break; 3547 case BPF_FUNC_redirect_map: 3548 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 3549 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 3550 map->map_type != BPF_MAP_TYPE_CPUMAP && 3551 map->map_type != BPF_MAP_TYPE_XSKMAP) 3552 goto error; 3553 break; 3554 case BPF_FUNC_sk_redirect_map: 3555 case BPF_FUNC_msg_redirect_map: 3556 case BPF_FUNC_sock_map_update: 3557 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 3558 goto error; 3559 break; 3560 case BPF_FUNC_sk_redirect_hash: 3561 case BPF_FUNC_msg_redirect_hash: 3562 case BPF_FUNC_sock_hash_update: 3563 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 3564 goto error; 3565 break; 3566 case BPF_FUNC_get_local_storage: 3567 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 3568 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 3569 goto error; 3570 break; 3571 case BPF_FUNC_sk_select_reuseport: 3572 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 3573 goto error; 3574 break; 3575 case BPF_FUNC_map_peek_elem: 3576 case BPF_FUNC_map_pop_elem: 3577 case BPF_FUNC_map_push_elem: 3578 if (map->map_type != BPF_MAP_TYPE_QUEUE && 3579 map->map_type != BPF_MAP_TYPE_STACK) 3580 goto error; 3581 break; 3582 case BPF_FUNC_sk_storage_get: 3583 case BPF_FUNC_sk_storage_delete: 3584 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 3585 goto error; 3586 break; 3587 default: 3588 break; 3589 } 3590 3591 return 0; 3592 error: 3593 verbose(env, "cannot pass map_type %d into func %s#%d\n", 3594 map->map_type, func_id_name(func_id), func_id); 3595 return -EINVAL; 3596 } 3597 3598 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 3599 { 3600 int count = 0; 3601 3602 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 3603 count++; 3604 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 3605 count++; 3606 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 3607 count++; 3608 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 3609 count++; 3610 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 3611 count++; 3612 3613 /* We only support one arg being in raw mode at the moment, 3614 * which is sufficient for the helper functions we have 3615 * right now. 3616 */ 3617 return count <= 1; 3618 } 3619 3620 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 3621 enum bpf_arg_type arg_next) 3622 { 3623 return (arg_type_is_mem_ptr(arg_curr) && 3624 !arg_type_is_mem_size(arg_next)) || 3625 (!arg_type_is_mem_ptr(arg_curr) && 3626 arg_type_is_mem_size(arg_next)); 3627 } 3628 3629 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 3630 { 3631 /* bpf_xxx(..., buf, len) call will access 'len' 3632 * bytes from memory 'buf'. Both arg types need 3633 * to be paired, so make sure there's no buggy 3634 * helper function specification. 3635 */ 3636 if (arg_type_is_mem_size(fn->arg1_type) || 3637 arg_type_is_mem_ptr(fn->arg5_type) || 3638 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 3639 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 3640 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 3641 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 3642 return false; 3643 3644 return true; 3645 } 3646 3647 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 3648 { 3649 int count = 0; 3650 3651 if (arg_type_may_be_refcounted(fn->arg1_type)) 3652 count++; 3653 if (arg_type_may_be_refcounted(fn->arg2_type)) 3654 count++; 3655 if (arg_type_may_be_refcounted(fn->arg3_type)) 3656 count++; 3657 if (arg_type_may_be_refcounted(fn->arg4_type)) 3658 count++; 3659 if (arg_type_may_be_refcounted(fn->arg5_type)) 3660 count++; 3661 3662 /* A reference acquiring function cannot acquire 3663 * another refcounted ptr. 3664 */ 3665 if (is_acquire_function(func_id) && count) 3666 return false; 3667 3668 /* We only support one arg being unreferenced at the moment, 3669 * which is sufficient for the helper functions we have right now. 3670 */ 3671 return count <= 1; 3672 } 3673 3674 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 3675 { 3676 return check_raw_mode_ok(fn) && 3677 check_arg_pair_ok(fn) && 3678 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 3679 } 3680 3681 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 3682 * are now invalid, so turn them into unknown SCALAR_VALUE. 3683 */ 3684 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 3685 struct bpf_func_state *state) 3686 { 3687 struct bpf_reg_state *regs = state->regs, *reg; 3688 int i; 3689 3690 for (i = 0; i < MAX_BPF_REG; i++) 3691 if (reg_is_pkt_pointer_any(®s[i])) 3692 mark_reg_unknown(env, regs, i); 3693 3694 bpf_for_each_spilled_reg(i, state, reg) { 3695 if (!reg) 3696 continue; 3697 if (reg_is_pkt_pointer_any(reg)) 3698 __mark_reg_unknown(reg); 3699 } 3700 } 3701 3702 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 3703 { 3704 struct bpf_verifier_state *vstate = env->cur_state; 3705 int i; 3706 3707 for (i = 0; i <= vstate->curframe; i++) 3708 __clear_all_pkt_pointers(env, vstate->frame[i]); 3709 } 3710 3711 static void release_reg_references(struct bpf_verifier_env *env, 3712 struct bpf_func_state *state, 3713 int ref_obj_id) 3714 { 3715 struct bpf_reg_state *regs = state->regs, *reg; 3716 int i; 3717 3718 for (i = 0; i < MAX_BPF_REG; i++) 3719 if (regs[i].ref_obj_id == ref_obj_id) 3720 mark_reg_unknown(env, regs, i); 3721 3722 bpf_for_each_spilled_reg(i, state, reg) { 3723 if (!reg) 3724 continue; 3725 if (reg->ref_obj_id == ref_obj_id) 3726 __mark_reg_unknown(reg); 3727 } 3728 } 3729 3730 /* The pointer with the specified id has released its reference to kernel 3731 * resources. Identify all copies of the same pointer and clear the reference. 3732 */ 3733 static int release_reference(struct bpf_verifier_env *env, 3734 int ref_obj_id) 3735 { 3736 struct bpf_verifier_state *vstate = env->cur_state; 3737 int err; 3738 int i; 3739 3740 err = release_reference_state(cur_func(env), ref_obj_id); 3741 if (err) 3742 return err; 3743 3744 for (i = 0; i <= vstate->curframe; i++) 3745 release_reg_references(env, vstate->frame[i], ref_obj_id); 3746 3747 return 0; 3748 } 3749 3750 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 3751 int *insn_idx) 3752 { 3753 struct bpf_verifier_state *state = env->cur_state; 3754 struct bpf_func_state *caller, *callee; 3755 int i, err, subprog, target_insn; 3756 3757 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 3758 verbose(env, "the call stack of %d frames is too deep\n", 3759 state->curframe + 2); 3760 return -E2BIG; 3761 } 3762 3763 target_insn = *insn_idx + insn->imm; 3764 subprog = find_subprog(env, target_insn + 1); 3765 if (subprog < 0) { 3766 verbose(env, "verifier bug. No program starts at insn %d\n", 3767 target_insn + 1); 3768 return -EFAULT; 3769 } 3770 3771 caller = state->frame[state->curframe]; 3772 if (state->frame[state->curframe + 1]) { 3773 verbose(env, "verifier bug. Frame %d already allocated\n", 3774 state->curframe + 1); 3775 return -EFAULT; 3776 } 3777 3778 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 3779 if (!callee) 3780 return -ENOMEM; 3781 state->frame[state->curframe + 1] = callee; 3782 3783 /* callee cannot access r0, r6 - r9 for reading and has to write 3784 * into its own stack before reading from it. 3785 * callee can read/write into caller's stack 3786 */ 3787 init_func_state(env, callee, 3788 /* remember the callsite, it will be used by bpf_exit */ 3789 *insn_idx /* callsite */, 3790 state->curframe + 1 /* frameno within this callchain */, 3791 subprog /* subprog number within this prog */); 3792 3793 /* Transfer references to the callee */ 3794 err = transfer_reference_state(callee, caller); 3795 if (err) 3796 return err; 3797 3798 /* copy r1 - r5 args that callee can access. The copy includes parent 3799 * pointers, which connects us up to the liveness chain 3800 */ 3801 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 3802 callee->regs[i] = caller->regs[i]; 3803 3804 /* after the call registers r0 - r5 were scratched */ 3805 for (i = 0; i < CALLER_SAVED_REGS; i++) { 3806 mark_reg_not_init(env, caller->regs, caller_saved[i]); 3807 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 3808 } 3809 3810 /* only increment it after check_reg_arg() finished */ 3811 state->curframe++; 3812 3813 /* and go analyze first insn of the callee */ 3814 *insn_idx = target_insn; 3815 3816 if (env->log.level & BPF_LOG_LEVEL) { 3817 verbose(env, "caller:\n"); 3818 print_verifier_state(env, caller); 3819 verbose(env, "callee:\n"); 3820 print_verifier_state(env, callee); 3821 } 3822 return 0; 3823 } 3824 3825 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 3826 { 3827 struct bpf_verifier_state *state = env->cur_state; 3828 struct bpf_func_state *caller, *callee; 3829 struct bpf_reg_state *r0; 3830 int err; 3831 3832 callee = state->frame[state->curframe]; 3833 r0 = &callee->regs[BPF_REG_0]; 3834 if (r0->type == PTR_TO_STACK) { 3835 /* technically it's ok to return caller's stack pointer 3836 * (or caller's caller's pointer) back to the caller, 3837 * since these pointers are valid. Only current stack 3838 * pointer will be invalid as soon as function exits, 3839 * but let's be conservative 3840 */ 3841 verbose(env, "cannot return stack pointer to the caller\n"); 3842 return -EINVAL; 3843 } 3844 3845 state->curframe--; 3846 caller = state->frame[state->curframe]; 3847 /* return to the caller whatever r0 had in the callee */ 3848 caller->regs[BPF_REG_0] = *r0; 3849 3850 /* Transfer references to the caller */ 3851 err = transfer_reference_state(caller, callee); 3852 if (err) 3853 return err; 3854 3855 *insn_idx = callee->callsite + 1; 3856 if (env->log.level & BPF_LOG_LEVEL) { 3857 verbose(env, "returning from callee:\n"); 3858 print_verifier_state(env, callee); 3859 verbose(env, "to caller at %d:\n", *insn_idx); 3860 print_verifier_state(env, caller); 3861 } 3862 /* clear everything in the callee */ 3863 free_func_state(callee); 3864 state->frame[state->curframe + 1] = NULL; 3865 return 0; 3866 } 3867 3868 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 3869 int func_id, 3870 struct bpf_call_arg_meta *meta) 3871 { 3872 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 3873 3874 if (ret_type != RET_INTEGER || 3875 (func_id != BPF_FUNC_get_stack && 3876 func_id != BPF_FUNC_probe_read_str)) 3877 return; 3878 3879 ret_reg->smax_value = meta->msize_smax_value; 3880 ret_reg->umax_value = meta->msize_umax_value; 3881 __reg_deduce_bounds(ret_reg); 3882 __reg_bound_offset(ret_reg); 3883 } 3884 3885 static int 3886 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 3887 int func_id, int insn_idx) 3888 { 3889 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 3890 struct bpf_map *map = meta->map_ptr; 3891 3892 if (func_id != BPF_FUNC_tail_call && 3893 func_id != BPF_FUNC_map_lookup_elem && 3894 func_id != BPF_FUNC_map_update_elem && 3895 func_id != BPF_FUNC_map_delete_elem && 3896 func_id != BPF_FUNC_map_push_elem && 3897 func_id != BPF_FUNC_map_pop_elem && 3898 func_id != BPF_FUNC_map_peek_elem) 3899 return 0; 3900 3901 if (map == NULL) { 3902 verbose(env, "kernel subsystem misconfigured verifier\n"); 3903 return -EINVAL; 3904 } 3905 3906 /* In case of read-only, some additional restrictions 3907 * need to be applied in order to prevent altering the 3908 * state of the map from program side. 3909 */ 3910 if ((map->map_flags & BPF_F_RDONLY_PROG) && 3911 (func_id == BPF_FUNC_map_delete_elem || 3912 func_id == BPF_FUNC_map_update_elem || 3913 func_id == BPF_FUNC_map_push_elem || 3914 func_id == BPF_FUNC_map_pop_elem)) { 3915 verbose(env, "write into map forbidden\n"); 3916 return -EACCES; 3917 } 3918 3919 if (!BPF_MAP_PTR(aux->map_state)) 3920 bpf_map_ptr_store(aux, meta->map_ptr, 3921 meta->map_ptr->unpriv_array); 3922 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 3923 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 3924 meta->map_ptr->unpriv_array); 3925 return 0; 3926 } 3927 3928 static int check_reference_leak(struct bpf_verifier_env *env) 3929 { 3930 struct bpf_func_state *state = cur_func(env); 3931 int i; 3932 3933 for (i = 0; i < state->acquired_refs; i++) { 3934 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 3935 state->refs[i].id, state->refs[i].insn_idx); 3936 } 3937 return state->acquired_refs ? -EINVAL : 0; 3938 } 3939 3940 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 3941 { 3942 const struct bpf_func_proto *fn = NULL; 3943 struct bpf_reg_state *regs; 3944 struct bpf_call_arg_meta meta; 3945 bool changes_data; 3946 int i, err; 3947 3948 /* find function prototype */ 3949 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 3950 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 3951 func_id); 3952 return -EINVAL; 3953 } 3954 3955 if (env->ops->get_func_proto) 3956 fn = env->ops->get_func_proto(func_id, env->prog); 3957 if (!fn) { 3958 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 3959 func_id); 3960 return -EINVAL; 3961 } 3962 3963 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 3964 if (!env->prog->gpl_compatible && fn->gpl_only) { 3965 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 3966 return -EINVAL; 3967 } 3968 3969 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 3970 changes_data = bpf_helper_changes_pkt_data(fn->func); 3971 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 3972 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 3973 func_id_name(func_id), func_id); 3974 return -EINVAL; 3975 } 3976 3977 memset(&meta, 0, sizeof(meta)); 3978 meta.pkt_access = fn->pkt_access; 3979 3980 err = check_func_proto(fn, func_id); 3981 if (err) { 3982 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 3983 func_id_name(func_id), func_id); 3984 return err; 3985 } 3986 3987 meta.func_id = func_id; 3988 /* check args */ 3989 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 3990 if (err) 3991 return err; 3992 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 3993 if (err) 3994 return err; 3995 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 3996 if (err) 3997 return err; 3998 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 3999 if (err) 4000 return err; 4001 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 4002 if (err) 4003 return err; 4004 4005 err = record_func_map(env, &meta, func_id, insn_idx); 4006 if (err) 4007 return err; 4008 4009 /* Mark slots with STACK_MISC in case of raw mode, stack offset 4010 * is inferred from register state. 4011 */ 4012 for (i = 0; i < meta.access_size; i++) { 4013 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 4014 BPF_WRITE, -1, false); 4015 if (err) 4016 return err; 4017 } 4018 4019 if (func_id == BPF_FUNC_tail_call) { 4020 err = check_reference_leak(env); 4021 if (err) { 4022 verbose(env, "tail_call would lead to reference leak\n"); 4023 return err; 4024 } 4025 } else if (is_release_function(func_id)) { 4026 err = release_reference(env, meta.ref_obj_id); 4027 if (err) { 4028 verbose(env, "func %s#%d reference has not been acquired before\n", 4029 func_id_name(func_id), func_id); 4030 return err; 4031 } 4032 } 4033 4034 regs = cur_regs(env); 4035 4036 /* check that flags argument in get_local_storage(map, flags) is 0, 4037 * this is required because get_local_storage() can't return an error. 4038 */ 4039 if (func_id == BPF_FUNC_get_local_storage && 4040 !register_is_null(®s[BPF_REG_2])) { 4041 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 4042 return -EINVAL; 4043 } 4044 4045 /* reset caller saved regs */ 4046 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4047 mark_reg_not_init(env, regs, caller_saved[i]); 4048 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4049 } 4050 4051 /* helper call returns 64-bit value. */ 4052 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 4053 4054 /* update return register (already marked as written above) */ 4055 if (fn->ret_type == RET_INTEGER) { 4056 /* sets type to SCALAR_VALUE */ 4057 mark_reg_unknown(env, regs, BPF_REG_0); 4058 } else if (fn->ret_type == RET_VOID) { 4059 regs[BPF_REG_0].type = NOT_INIT; 4060 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 4061 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4062 /* There is no offset yet applied, variable or fixed */ 4063 mark_reg_known_zero(env, regs, BPF_REG_0); 4064 /* remember map_ptr, so that check_map_access() 4065 * can check 'value_size' boundary of memory access 4066 * to map element returned from bpf_map_lookup_elem() 4067 */ 4068 if (meta.map_ptr == NULL) { 4069 verbose(env, 4070 "kernel subsystem misconfigured verifier\n"); 4071 return -EINVAL; 4072 } 4073 regs[BPF_REG_0].map_ptr = meta.map_ptr; 4074 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 4075 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 4076 if (map_value_has_spin_lock(meta.map_ptr)) 4077 regs[BPF_REG_0].id = ++env->id_gen; 4078 } else { 4079 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 4080 regs[BPF_REG_0].id = ++env->id_gen; 4081 } 4082 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 4083 mark_reg_known_zero(env, regs, BPF_REG_0); 4084 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 4085 regs[BPF_REG_0].id = ++env->id_gen; 4086 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 4087 mark_reg_known_zero(env, regs, BPF_REG_0); 4088 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 4089 regs[BPF_REG_0].id = ++env->id_gen; 4090 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 4091 mark_reg_known_zero(env, regs, BPF_REG_0); 4092 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 4093 regs[BPF_REG_0].id = ++env->id_gen; 4094 } else { 4095 verbose(env, "unknown return type %d of func %s#%d\n", 4096 fn->ret_type, func_id_name(func_id), func_id); 4097 return -EINVAL; 4098 } 4099 4100 if (is_ptr_cast_function(func_id)) { 4101 /* For release_reference() */ 4102 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 4103 } else if (is_acquire_function(func_id)) { 4104 int id = acquire_reference_state(env, insn_idx); 4105 4106 if (id < 0) 4107 return id; 4108 /* For mark_ptr_or_null_reg() */ 4109 regs[BPF_REG_0].id = id; 4110 /* For release_reference() */ 4111 regs[BPF_REG_0].ref_obj_id = id; 4112 } 4113 4114 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 4115 4116 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 4117 if (err) 4118 return err; 4119 4120 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 4121 const char *err_str; 4122 4123 #ifdef CONFIG_PERF_EVENTS 4124 err = get_callchain_buffers(sysctl_perf_event_max_stack); 4125 err_str = "cannot get callchain buffer for func %s#%d\n"; 4126 #else 4127 err = -ENOTSUPP; 4128 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 4129 #endif 4130 if (err) { 4131 verbose(env, err_str, func_id_name(func_id), func_id); 4132 return err; 4133 } 4134 4135 env->prog->has_callchain_buf = true; 4136 } 4137 4138 if (changes_data) 4139 clear_all_pkt_pointers(env); 4140 return 0; 4141 } 4142 4143 static bool signed_add_overflows(s64 a, s64 b) 4144 { 4145 /* Do the add in u64, where overflow is well-defined */ 4146 s64 res = (s64)((u64)a + (u64)b); 4147 4148 if (b < 0) 4149 return res > a; 4150 return res < a; 4151 } 4152 4153 static bool signed_sub_overflows(s64 a, s64 b) 4154 { 4155 /* Do the sub in u64, where overflow is well-defined */ 4156 s64 res = (s64)((u64)a - (u64)b); 4157 4158 if (b < 0) 4159 return res < a; 4160 return res > a; 4161 } 4162 4163 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 4164 const struct bpf_reg_state *reg, 4165 enum bpf_reg_type type) 4166 { 4167 bool known = tnum_is_const(reg->var_off); 4168 s64 val = reg->var_off.value; 4169 s64 smin = reg->smin_value; 4170 4171 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 4172 verbose(env, "math between %s pointer and %lld is not allowed\n", 4173 reg_type_str[type], val); 4174 return false; 4175 } 4176 4177 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 4178 verbose(env, "%s pointer offset %d is not allowed\n", 4179 reg_type_str[type], reg->off); 4180 return false; 4181 } 4182 4183 if (smin == S64_MIN) { 4184 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 4185 reg_type_str[type]); 4186 return false; 4187 } 4188 4189 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 4190 verbose(env, "value %lld makes %s pointer be out of bounds\n", 4191 smin, reg_type_str[type]); 4192 return false; 4193 } 4194 4195 return true; 4196 } 4197 4198 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 4199 { 4200 return &env->insn_aux_data[env->insn_idx]; 4201 } 4202 4203 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 4204 u32 *ptr_limit, u8 opcode, bool off_is_neg) 4205 { 4206 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 4207 (opcode == BPF_SUB && !off_is_neg); 4208 u32 off; 4209 4210 switch (ptr_reg->type) { 4211 case PTR_TO_STACK: 4212 /* Indirect variable offset stack access is prohibited in 4213 * unprivileged mode so it's not handled here. 4214 */ 4215 off = ptr_reg->off + ptr_reg->var_off.value; 4216 if (mask_to_left) 4217 *ptr_limit = MAX_BPF_STACK + off; 4218 else 4219 *ptr_limit = -off; 4220 return 0; 4221 case PTR_TO_MAP_VALUE: 4222 if (mask_to_left) { 4223 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 4224 } else { 4225 off = ptr_reg->smin_value + ptr_reg->off; 4226 *ptr_limit = ptr_reg->map_ptr->value_size - off; 4227 } 4228 return 0; 4229 default: 4230 return -EINVAL; 4231 } 4232 } 4233 4234 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 4235 const struct bpf_insn *insn) 4236 { 4237 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 4238 } 4239 4240 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 4241 u32 alu_state, u32 alu_limit) 4242 { 4243 /* If we arrived here from different branches with different 4244 * state or limits to sanitize, then this won't work. 4245 */ 4246 if (aux->alu_state && 4247 (aux->alu_state != alu_state || 4248 aux->alu_limit != alu_limit)) 4249 return -EACCES; 4250 4251 /* Corresponding fixup done in fixup_bpf_calls(). */ 4252 aux->alu_state = alu_state; 4253 aux->alu_limit = alu_limit; 4254 return 0; 4255 } 4256 4257 static int sanitize_val_alu(struct bpf_verifier_env *env, 4258 struct bpf_insn *insn) 4259 { 4260 struct bpf_insn_aux_data *aux = cur_aux(env); 4261 4262 if (can_skip_alu_sanitation(env, insn)) 4263 return 0; 4264 4265 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 4266 } 4267 4268 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 4269 struct bpf_insn *insn, 4270 const struct bpf_reg_state *ptr_reg, 4271 struct bpf_reg_state *dst_reg, 4272 bool off_is_neg) 4273 { 4274 struct bpf_verifier_state *vstate = env->cur_state; 4275 struct bpf_insn_aux_data *aux = cur_aux(env); 4276 bool ptr_is_dst_reg = ptr_reg == dst_reg; 4277 u8 opcode = BPF_OP(insn->code); 4278 u32 alu_state, alu_limit; 4279 struct bpf_reg_state tmp; 4280 bool ret; 4281 4282 if (can_skip_alu_sanitation(env, insn)) 4283 return 0; 4284 4285 /* We already marked aux for masking from non-speculative 4286 * paths, thus we got here in the first place. We only care 4287 * to explore bad access from here. 4288 */ 4289 if (vstate->speculative) 4290 goto do_sim; 4291 4292 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 4293 alu_state |= ptr_is_dst_reg ? 4294 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 4295 4296 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 4297 return 0; 4298 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 4299 return -EACCES; 4300 do_sim: 4301 /* Simulate and find potential out-of-bounds access under 4302 * speculative execution from truncation as a result of 4303 * masking when off was not within expected range. If off 4304 * sits in dst, then we temporarily need to move ptr there 4305 * to simulate dst (== 0) +/-= ptr. Needed, for example, 4306 * for cases where we use K-based arithmetic in one direction 4307 * and truncated reg-based in the other in order to explore 4308 * bad access. 4309 */ 4310 if (!ptr_is_dst_reg) { 4311 tmp = *dst_reg; 4312 *dst_reg = *ptr_reg; 4313 } 4314 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 4315 if (!ptr_is_dst_reg && ret) 4316 *dst_reg = tmp; 4317 return !ret ? -EFAULT : 0; 4318 } 4319 4320 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 4321 * Caller should also handle BPF_MOV case separately. 4322 * If we return -EACCES, caller may want to try again treating pointer as a 4323 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 4324 */ 4325 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 4326 struct bpf_insn *insn, 4327 const struct bpf_reg_state *ptr_reg, 4328 const struct bpf_reg_state *off_reg) 4329 { 4330 struct bpf_verifier_state *vstate = env->cur_state; 4331 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4332 struct bpf_reg_state *regs = state->regs, *dst_reg; 4333 bool known = tnum_is_const(off_reg->var_off); 4334 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 4335 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 4336 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 4337 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 4338 u32 dst = insn->dst_reg, src = insn->src_reg; 4339 u8 opcode = BPF_OP(insn->code); 4340 int ret; 4341 4342 dst_reg = ®s[dst]; 4343 4344 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 4345 smin_val > smax_val || umin_val > umax_val) { 4346 /* Taint dst register if offset had invalid bounds derived from 4347 * e.g. dead branches. 4348 */ 4349 __mark_reg_unknown(dst_reg); 4350 return 0; 4351 } 4352 4353 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4354 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 4355 verbose(env, 4356 "R%d 32-bit pointer arithmetic prohibited\n", 4357 dst); 4358 return -EACCES; 4359 } 4360 4361 switch (ptr_reg->type) { 4362 case PTR_TO_MAP_VALUE_OR_NULL: 4363 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 4364 dst, reg_type_str[ptr_reg->type]); 4365 return -EACCES; 4366 case CONST_PTR_TO_MAP: 4367 case PTR_TO_PACKET_END: 4368 case PTR_TO_SOCKET: 4369 case PTR_TO_SOCKET_OR_NULL: 4370 case PTR_TO_SOCK_COMMON: 4371 case PTR_TO_SOCK_COMMON_OR_NULL: 4372 case PTR_TO_TCP_SOCK: 4373 case PTR_TO_TCP_SOCK_OR_NULL: 4374 case PTR_TO_XDP_SOCK: 4375 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 4376 dst, reg_type_str[ptr_reg->type]); 4377 return -EACCES; 4378 case PTR_TO_MAP_VALUE: 4379 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 4380 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 4381 off_reg == dst_reg ? dst : src); 4382 return -EACCES; 4383 } 4384 /* fall-through */ 4385 default: 4386 break; 4387 } 4388 4389 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 4390 * The id may be overwritten later if we create a new variable offset. 4391 */ 4392 dst_reg->type = ptr_reg->type; 4393 dst_reg->id = ptr_reg->id; 4394 4395 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 4396 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 4397 return -EINVAL; 4398 4399 switch (opcode) { 4400 case BPF_ADD: 4401 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4402 if (ret < 0) { 4403 verbose(env, "R%d tried to add from different maps or paths\n", dst); 4404 return ret; 4405 } 4406 /* We can take a fixed offset as long as it doesn't overflow 4407 * the s32 'off' field 4408 */ 4409 if (known && (ptr_reg->off + smin_val == 4410 (s64)(s32)(ptr_reg->off + smin_val))) { 4411 /* pointer += K. Accumulate it into fixed offset */ 4412 dst_reg->smin_value = smin_ptr; 4413 dst_reg->smax_value = smax_ptr; 4414 dst_reg->umin_value = umin_ptr; 4415 dst_reg->umax_value = umax_ptr; 4416 dst_reg->var_off = ptr_reg->var_off; 4417 dst_reg->off = ptr_reg->off + smin_val; 4418 dst_reg->raw = ptr_reg->raw; 4419 break; 4420 } 4421 /* A new variable offset is created. Note that off_reg->off 4422 * == 0, since it's a scalar. 4423 * dst_reg gets the pointer type and since some positive 4424 * integer value was added to the pointer, give it a new 'id' 4425 * if it's a PTR_TO_PACKET. 4426 * this creates a new 'base' pointer, off_reg (variable) gets 4427 * added into the variable offset, and we copy the fixed offset 4428 * from ptr_reg. 4429 */ 4430 if (signed_add_overflows(smin_ptr, smin_val) || 4431 signed_add_overflows(smax_ptr, smax_val)) { 4432 dst_reg->smin_value = S64_MIN; 4433 dst_reg->smax_value = S64_MAX; 4434 } else { 4435 dst_reg->smin_value = smin_ptr + smin_val; 4436 dst_reg->smax_value = smax_ptr + smax_val; 4437 } 4438 if (umin_ptr + umin_val < umin_ptr || 4439 umax_ptr + umax_val < umax_ptr) { 4440 dst_reg->umin_value = 0; 4441 dst_reg->umax_value = U64_MAX; 4442 } else { 4443 dst_reg->umin_value = umin_ptr + umin_val; 4444 dst_reg->umax_value = umax_ptr + umax_val; 4445 } 4446 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 4447 dst_reg->off = ptr_reg->off; 4448 dst_reg->raw = ptr_reg->raw; 4449 if (reg_is_pkt_pointer(ptr_reg)) { 4450 dst_reg->id = ++env->id_gen; 4451 /* something was added to pkt_ptr, set range to zero */ 4452 dst_reg->raw = 0; 4453 } 4454 break; 4455 case BPF_SUB: 4456 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 4457 if (ret < 0) { 4458 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 4459 return ret; 4460 } 4461 if (dst_reg == off_reg) { 4462 /* scalar -= pointer. Creates an unknown scalar */ 4463 verbose(env, "R%d tried to subtract pointer from scalar\n", 4464 dst); 4465 return -EACCES; 4466 } 4467 /* We don't allow subtraction from FP, because (according to 4468 * test_verifier.c test "invalid fp arithmetic", JITs might not 4469 * be able to deal with it. 4470 */ 4471 if (ptr_reg->type == PTR_TO_STACK) { 4472 verbose(env, "R%d subtraction from stack pointer prohibited\n", 4473 dst); 4474 return -EACCES; 4475 } 4476 if (known && (ptr_reg->off - smin_val == 4477 (s64)(s32)(ptr_reg->off - smin_val))) { 4478 /* pointer -= K. Subtract it from fixed offset */ 4479 dst_reg->smin_value = smin_ptr; 4480 dst_reg->smax_value = smax_ptr; 4481 dst_reg->umin_value = umin_ptr; 4482 dst_reg->umax_value = umax_ptr; 4483 dst_reg->var_off = ptr_reg->var_off; 4484 dst_reg->id = ptr_reg->id; 4485 dst_reg->off = ptr_reg->off - smin_val; 4486 dst_reg->raw = ptr_reg->raw; 4487 break; 4488 } 4489 /* A new variable offset is created. If the subtrahend is known 4490 * nonnegative, then any reg->range we had before is still good. 4491 */ 4492 if (signed_sub_overflows(smin_ptr, smax_val) || 4493 signed_sub_overflows(smax_ptr, smin_val)) { 4494 /* Overflow possible, we know nothing */ 4495 dst_reg->smin_value = S64_MIN; 4496 dst_reg->smax_value = S64_MAX; 4497 } else { 4498 dst_reg->smin_value = smin_ptr - smax_val; 4499 dst_reg->smax_value = smax_ptr - smin_val; 4500 } 4501 if (umin_ptr < umax_val) { 4502 /* Overflow possible, we know nothing */ 4503 dst_reg->umin_value = 0; 4504 dst_reg->umax_value = U64_MAX; 4505 } else { 4506 /* Cannot overflow (as long as bounds are consistent) */ 4507 dst_reg->umin_value = umin_ptr - umax_val; 4508 dst_reg->umax_value = umax_ptr - umin_val; 4509 } 4510 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 4511 dst_reg->off = ptr_reg->off; 4512 dst_reg->raw = ptr_reg->raw; 4513 if (reg_is_pkt_pointer(ptr_reg)) { 4514 dst_reg->id = ++env->id_gen; 4515 /* something was added to pkt_ptr, set range to zero */ 4516 if (smin_val < 0) 4517 dst_reg->raw = 0; 4518 } 4519 break; 4520 case BPF_AND: 4521 case BPF_OR: 4522 case BPF_XOR: 4523 /* bitwise ops on pointers are troublesome, prohibit. */ 4524 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 4525 dst, bpf_alu_string[opcode >> 4]); 4526 return -EACCES; 4527 default: 4528 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 4529 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 4530 dst, bpf_alu_string[opcode >> 4]); 4531 return -EACCES; 4532 } 4533 4534 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 4535 return -EINVAL; 4536 4537 __update_reg_bounds(dst_reg); 4538 __reg_deduce_bounds(dst_reg); 4539 __reg_bound_offset(dst_reg); 4540 4541 /* For unprivileged we require that resulting offset must be in bounds 4542 * in order to be able to sanitize access later on. 4543 */ 4544 if (!env->allow_ptr_leaks) { 4545 if (dst_reg->type == PTR_TO_MAP_VALUE && 4546 check_map_access(env, dst, dst_reg->off, 1, false)) { 4547 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 4548 "prohibited for !root\n", dst); 4549 return -EACCES; 4550 } else if (dst_reg->type == PTR_TO_STACK && 4551 check_stack_access(env, dst_reg, dst_reg->off + 4552 dst_reg->var_off.value, 1)) { 4553 verbose(env, "R%d stack pointer arithmetic goes out of range, " 4554 "prohibited for !root\n", dst); 4555 return -EACCES; 4556 } 4557 } 4558 4559 return 0; 4560 } 4561 4562 /* WARNING: This function does calculations on 64-bit values, but the actual 4563 * execution may occur on 32-bit values. Therefore, things like bitshifts 4564 * need extra checks in the 32-bit case. 4565 */ 4566 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 4567 struct bpf_insn *insn, 4568 struct bpf_reg_state *dst_reg, 4569 struct bpf_reg_state src_reg) 4570 { 4571 struct bpf_reg_state *regs = cur_regs(env); 4572 u8 opcode = BPF_OP(insn->code); 4573 bool src_known, dst_known; 4574 s64 smin_val, smax_val; 4575 u64 umin_val, umax_val; 4576 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 4577 u32 dst = insn->dst_reg; 4578 int ret; 4579 4580 if (insn_bitness == 32) { 4581 /* Relevant for 32-bit RSH: Information can propagate towards 4582 * LSB, so it isn't sufficient to only truncate the output to 4583 * 32 bits. 4584 */ 4585 coerce_reg_to_size(dst_reg, 4); 4586 coerce_reg_to_size(&src_reg, 4); 4587 } 4588 4589 smin_val = src_reg.smin_value; 4590 smax_val = src_reg.smax_value; 4591 umin_val = src_reg.umin_value; 4592 umax_val = src_reg.umax_value; 4593 src_known = tnum_is_const(src_reg.var_off); 4594 dst_known = tnum_is_const(dst_reg->var_off); 4595 4596 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 4597 smin_val > smax_val || umin_val > umax_val) { 4598 /* Taint dst register if offset had invalid bounds derived from 4599 * e.g. dead branches. 4600 */ 4601 __mark_reg_unknown(dst_reg); 4602 return 0; 4603 } 4604 4605 if (!src_known && 4606 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 4607 __mark_reg_unknown(dst_reg); 4608 return 0; 4609 } 4610 4611 switch (opcode) { 4612 case BPF_ADD: 4613 ret = sanitize_val_alu(env, insn); 4614 if (ret < 0) { 4615 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 4616 return ret; 4617 } 4618 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 4619 signed_add_overflows(dst_reg->smax_value, smax_val)) { 4620 dst_reg->smin_value = S64_MIN; 4621 dst_reg->smax_value = S64_MAX; 4622 } else { 4623 dst_reg->smin_value += smin_val; 4624 dst_reg->smax_value += smax_val; 4625 } 4626 if (dst_reg->umin_value + umin_val < umin_val || 4627 dst_reg->umax_value + umax_val < umax_val) { 4628 dst_reg->umin_value = 0; 4629 dst_reg->umax_value = U64_MAX; 4630 } else { 4631 dst_reg->umin_value += umin_val; 4632 dst_reg->umax_value += umax_val; 4633 } 4634 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 4635 break; 4636 case BPF_SUB: 4637 ret = sanitize_val_alu(env, insn); 4638 if (ret < 0) { 4639 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 4640 return ret; 4641 } 4642 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 4643 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 4644 /* Overflow possible, we know nothing */ 4645 dst_reg->smin_value = S64_MIN; 4646 dst_reg->smax_value = S64_MAX; 4647 } else { 4648 dst_reg->smin_value -= smax_val; 4649 dst_reg->smax_value -= smin_val; 4650 } 4651 if (dst_reg->umin_value < umax_val) { 4652 /* Overflow possible, we know nothing */ 4653 dst_reg->umin_value = 0; 4654 dst_reg->umax_value = U64_MAX; 4655 } else { 4656 /* Cannot overflow (as long as bounds are consistent) */ 4657 dst_reg->umin_value -= umax_val; 4658 dst_reg->umax_value -= umin_val; 4659 } 4660 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 4661 break; 4662 case BPF_MUL: 4663 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 4664 if (smin_val < 0 || dst_reg->smin_value < 0) { 4665 /* Ain't nobody got time to multiply that sign */ 4666 __mark_reg_unbounded(dst_reg); 4667 __update_reg_bounds(dst_reg); 4668 break; 4669 } 4670 /* Both values are positive, so we can work with unsigned and 4671 * copy the result to signed (unless it exceeds S64_MAX). 4672 */ 4673 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 4674 /* Potential overflow, we know nothing */ 4675 __mark_reg_unbounded(dst_reg); 4676 /* (except what we can learn from the var_off) */ 4677 __update_reg_bounds(dst_reg); 4678 break; 4679 } 4680 dst_reg->umin_value *= umin_val; 4681 dst_reg->umax_value *= umax_val; 4682 if (dst_reg->umax_value > S64_MAX) { 4683 /* Overflow possible, we know nothing */ 4684 dst_reg->smin_value = S64_MIN; 4685 dst_reg->smax_value = S64_MAX; 4686 } else { 4687 dst_reg->smin_value = dst_reg->umin_value; 4688 dst_reg->smax_value = dst_reg->umax_value; 4689 } 4690 break; 4691 case BPF_AND: 4692 if (src_known && dst_known) { 4693 __mark_reg_known(dst_reg, dst_reg->var_off.value & 4694 src_reg.var_off.value); 4695 break; 4696 } 4697 /* We get our minimum from the var_off, since that's inherently 4698 * bitwise. Our maximum is the minimum of the operands' maxima. 4699 */ 4700 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 4701 dst_reg->umin_value = dst_reg->var_off.value; 4702 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 4703 if (dst_reg->smin_value < 0 || smin_val < 0) { 4704 /* Lose signed bounds when ANDing negative numbers, 4705 * ain't nobody got time for that. 4706 */ 4707 dst_reg->smin_value = S64_MIN; 4708 dst_reg->smax_value = S64_MAX; 4709 } else { 4710 /* ANDing two positives gives a positive, so safe to 4711 * cast result into s64. 4712 */ 4713 dst_reg->smin_value = dst_reg->umin_value; 4714 dst_reg->smax_value = dst_reg->umax_value; 4715 } 4716 /* We may learn something more from the var_off */ 4717 __update_reg_bounds(dst_reg); 4718 break; 4719 case BPF_OR: 4720 if (src_known && dst_known) { 4721 __mark_reg_known(dst_reg, dst_reg->var_off.value | 4722 src_reg.var_off.value); 4723 break; 4724 } 4725 /* We get our maximum from the var_off, and our minimum is the 4726 * maximum of the operands' minima 4727 */ 4728 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 4729 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 4730 dst_reg->umax_value = dst_reg->var_off.value | 4731 dst_reg->var_off.mask; 4732 if (dst_reg->smin_value < 0 || smin_val < 0) { 4733 /* Lose signed bounds when ORing negative numbers, 4734 * ain't nobody got time for that. 4735 */ 4736 dst_reg->smin_value = S64_MIN; 4737 dst_reg->smax_value = S64_MAX; 4738 } else { 4739 /* ORing two positives gives a positive, so safe to 4740 * cast result into s64. 4741 */ 4742 dst_reg->smin_value = dst_reg->umin_value; 4743 dst_reg->smax_value = dst_reg->umax_value; 4744 } 4745 /* We may learn something more from the var_off */ 4746 __update_reg_bounds(dst_reg); 4747 break; 4748 case BPF_LSH: 4749 if (umax_val >= insn_bitness) { 4750 /* Shifts greater than 31 or 63 are undefined. 4751 * This includes shifts by a negative number. 4752 */ 4753 mark_reg_unknown(env, regs, insn->dst_reg); 4754 break; 4755 } 4756 /* We lose all sign bit information (except what we can pick 4757 * up from var_off) 4758 */ 4759 dst_reg->smin_value = S64_MIN; 4760 dst_reg->smax_value = S64_MAX; 4761 /* If we might shift our top bit out, then we know nothing */ 4762 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 4763 dst_reg->umin_value = 0; 4764 dst_reg->umax_value = U64_MAX; 4765 } else { 4766 dst_reg->umin_value <<= umin_val; 4767 dst_reg->umax_value <<= umax_val; 4768 } 4769 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 4770 /* We may learn something more from the var_off */ 4771 __update_reg_bounds(dst_reg); 4772 break; 4773 case BPF_RSH: 4774 if (umax_val >= insn_bitness) { 4775 /* Shifts greater than 31 or 63 are undefined. 4776 * This includes shifts by a negative number. 4777 */ 4778 mark_reg_unknown(env, regs, insn->dst_reg); 4779 break; 4780 } 4781 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 4782 * be negative, then either: 4783 * 1) src_reg might be zero, so the sign bit of the result is 4784 * unknown, so we lose our signed bounds 4785 * 2) it's known negative, thus the unsigned bounds capture the 4786 * signed bounds 4787 * 3) the signed bounds cross zero, so they tell us nothing 4788 * about the result 4789 * If the value in dst_reg is known nonnegative, then again the 4790 * unsigned bounts capture the signed bounds. 4791 * Thus, in all cases it suffices to blow away our signed bounds 4792 * and rely on inferring new ones from the unsigned bounds and 4793 * var_off of the result. 4794 */ 4795 dst_reg->smin_value = S64_MIN; 4796 dst_reg->smax_value = S64_MAX; 4797 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 4798 dst_reg->umin_value >>= umax_val; 4799 dst_reg->umax_value >>= umin_val; 4800 /* We may learn something more from the var_off */ 4801 __update_reg_bounds(dst_reg); 4802 break; 4803 case BPF_ARSH: 4804 if (umax_val >= insn_bitness) { 4805 /* Shifts greater than 31 or 63 are undefined. 4806 * This includes shifts by a negative number. 4807 */ 4808 mark_reg_unknown(env, regs, insn->dst_reg); 4809 break; 4810 } 4811 4812 /* Upon reaching here, src_known is true and 4813 * umax_val is equal to umin_val. 4814 */ 4815 dst_reg->smin_value >>= umin_val; 4816 dst_reg->smax_value >>= umin_val; 4817 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 4818 4819 /* blow away the dst_reg umin_value/umax_value and rely on 4820 * dst_reg var_off to refine the result. 4821 */ 4822 dst_reg->umin_value = 0; 4823 dst_reg->umax_value = U64_MAX; 4824 __update_reg_bounds(dst_reg); 4825 break; 4826 default: 4827 mark_reg_unknown(env, regs, insn->dst_reg); 4828 break; 4829 } 4830 4831 if (BPF_CLASS(insn->code) != BPF_ALU64) { 4832 /* 32-bit ALU ops are (32,32)->32 */ 4833 coerce_reg_to_size(dst_reg, 4); 4834 } 4835 4836 __reg_deduce_bounds(dst_reg); 4837 __reg_bound_offset(dst_reg); 4838 return 0; 4839 } 4840 4841 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 4842 * and var_off. 4843 */ 4844 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 4845 struct bpf_insn *insn) 4846 { 4847 struct bpf_verifier_state *vstate = env->cur_state; 4848 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4849 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 4850 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 4851 u8 opcode = BPF_OP(insn->code); 4852 int err; 4853 4854 dst_reg = ®s[insn->dst_reg]; 4855 src_reg = NULL; 4856 if (dst_reg->type != SCALAR_VALUE) 4857 ptr_reg = dst_reg; 4858 if (BPF_SRC(insn->code) == BPF_X) { 4859 src_reg = ®s[insn->src_reg]; 4860 if (src_reg->type != SCALAR_VALUE) { 4861 if (dst_reg->type != SCALAR_VALUE) { 4862 /* Combining two pointers by any ALU op yields 4863 * an arbitrary scalar. Disallow all math except 4864 * pointer subtraction 4865 */ 4866 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 4867 mark_reg_unknown(env, regs, insn->dst_reg); 4868 return 0; 4869 } 4870 verbose(env, "R%d pointer %s pointer prohibited\n", 4871 insn->dst_reg, 4872 bpf_alu_string[opcode >> 4]); 4873 return -EACCES; 4874 } else { 4875 /* scalar += pointer 4876 * This is legal, but we have to reverse our 4877 * src/dest handling in computing the range 4878 */ 4879 err = mark_chain_precision(env, insn->dst_reg); 4880 if (err) 4881 return err; 4882 return adjust_ptr_min_max_vals(env, insn, 4883 src_reg, dst_reg); 4884 } 4885 } else if (ptr_reg) { 4886 /* pointer += scalar */ 4887 err = mark_chain_precision(env, insn->src_reg); 4888 if (err) 4889 return err; 4890 return adjust_ptr_min_max_vals(env, insn, 4891 dst_reg, src_reg); 4892 } 4893 } else { 4894 /* Pretend the src is a reg with a known value, since we only 4895 * need to be able to read from this state. 4896 */ 4897 off_reg.type = SCALAR_VALUE; 4898 __mark_reg_known(&off_reg, insn->imm); 4899 src_reg = &off_reg; 4900 if (ptr_reg) /* pointer += K */ 4901 return adjust_ptr_min_max_vals(env, insn, 4902 ptr_reg, src_reg); 4903 } 4904 4905 /* Got here implies adding two SCALAR_VALUEs */ 4906 if (WARN_ON_ONCE(ptr_reg)) { 4907 print_verifier_state(env, state); 4908 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 4909 return -EINVAL; 4910 } 4911 if (WARN_ON(!src_reg)) { 4912 print_verifier_state(env, state); 4913 verbose(env, "verifier internal error: no src_reg\n"); 4914 return -EINVAL; 4915 } 4916 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 4917 } 4918 4919 /* check validity of 32-bit and 64-bit arithmetic operations */ 4920 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 4921 { 4922 struct bpf_reg_state *regs = cur_regs(env); 4923 u8 opcode = BPF_OP(insn->code); 4924 int err; 4925 4926 if (opcode == BPF_END || opcode == BPF_NEG) { 4927 if (opcode == BPF_NEG) { 4928 if (BPF_SRC(insn->code) != 0 || 4929 insn->src_reg != BPF_REG_0 || 4930 insn->off != 0 || insn->imm != 0) { 4931 verbose(env, "BPF_NEG uses reserved fields\n"); 4932 return -EINVAL; 4933 } 4934 } else { 4935 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 4936 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 4937 BPF_CLASS(insn->code) == BPF_ALU64) { 4938 verbose(env, "BPF_END uses reserved fields\n"); 4939 return -EINVAL; 4940 } 4941 } 4942 4943 /* check src operand */ 4944 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4945 if (err) 4946 return err; 4947 4948 if (is_pointer_value(env, insn->dst_reg)) { 4949 verbose(env, "R%d pointer arithmetic prohibited\n", 4950 insn->dst_reg); 4951 return -EACCES; 4952 } 4953 4954 /* check dest operand */ 4955 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4956 if (err) 4957 return err; 4958 4959 } else if (opcode == BPF_MOV) { 4960 4961 if (BPF_SRC(insn->code) == BPF_X) { 4962 if (insn->imm != 0 || insn->off != 0) { 4963 verbose(env, "BPF_MOV uses reserved fields\n"); 4964 return -EINVAL; 4965 } 4966 4967 /* check src operand */ 4968 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4969 if (err) 4970 return err; 4971 } else { 4972 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 4973 verbose(env, "BPF_MOV uses reserved fields\n"); 4974 return -EINVAL; 4975 } 4976 } 4977 4978 /* check dest operand, mark as required later */ 4979 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 4980 if (err) 4981 return err; 4982 4983 if (BPF_SRC(insn->code) == BPF_X) { 4984 struct bpf_reg_state *src_reg = regs + insn->src_reg; 4985 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 4986 4987 if (BPF_CLASS(insn->code) == BPF_ALU64) { 4988 /* case: R1 = R2 4989 * copy register state to dest reg 4990 */ 4991 *dst_reg = *src_reg; 4992 dst_reg->live |= REG_LIVE_WRITTEN; 4993 dst_reg->subreg_def = DEF_NOT_SUBREG; 4994 } else { 4995 /* R1 = (u32) R2 */ 4996 if (is_pointer_value(env, insn->src_reg)) { 4997 verbose(env, 4998 "R%d partial copy of pointer\n", 4999 insn->src_reg); 5000 return -EACCES; 5001 } else if (src_reg->type == SCALAR_VALUE) { 5002 *dst_reg = *src_reg; 5003 dst_reg->live |= REG_LIVE_WRITTEN; 5004 dst_reg->subreg_def = env->insn_idx + 1; 5005 } else { 5006 mark_reg_unknown(env, regs, 5007 insn->dst_reg); 5008 } 5009 coerce_reg_to_size(dst_reg, 4); 5010 } 5011 } else { 5012 /* case: R = imm 5013 * remember the value we stored into this reg 5014 */ 5015 /* clear any state __mark_reg_known doesn't set */ 5016 mark_reg_unknown(env, regs, insn->dst_reg); 5017 regs[insn->dst_reg].type = SCALAR_VALUE; 5018 if (BPF_CLASS(insn->code) == BPF_ALU64) { 5019 __mark_reg_known(regs + insn->dst_reg, 5020 insn->imm); 5021 } else { 5022 __mark_reg_known(regs + insn->dst_reg, 5023 (u32)insn->imm); 5024 } 5025 } 5026 5027 } else if (opcode > BPF_END) { 5028 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 5029 return -EINVAL; 5030 5031 } else { /* all other ALU ops: and, sub, xor, add, ... */ 5032 5033 if (BPF_SRC(insn->code) == BPF_X) { 5034 if (insn->imm != 0 || insn->off != 0) { 5035 verbose(env, "BPF_ALU uses reserved fields\n"); 5036 return -EINVAL; 5037 } 5038 /* check src1 operand */ 5039 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5040 if (err) 5041 return err; 5042 } else { 5043 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 5044 verbose(env, "BPF_ALU uses reserved fields\n"); 5045 return -EINVAL; 5046 } 5047 } 5048 5049 /* check src2 operand */ 5050 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5051 if (err) 5052 return err; 5053 5054 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 5055 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 5056 verbose(env, "div by zero\n"); 5057 return -EINVAL; 5058 } 5059 5060 if ((opcode == BPF_LSH || opcode == BPF_RSH || 5061 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 5062 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 5063 5064 if (insn->imm < 0 || insn->imm >= size) { 5065 verbose(env, "invalid shift %d\n", insn->imm); 5066 return -EINVAL; 5067 } 5068 } 5069 5070 /* check dest operand */ 5071 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 5072 if (err) 5073 return err; 5074 5075 return adjust_reg_min_max_vals(env, insn); 5076 } 5077 5078 return 0; 5079 } 5080 5081 static void __find_good_pkt_pointers(struct bpf_func_state *state, 5082 struct bpf_reg_state *dst_reg, 5083 enum bpf_reg_type type, u16 new_range) 5084 { 5085 struct bpf_reg_state *reg; 5086 int i; 5087 5088 for (i = 0; i < MAX_BPF_REG; i++) { 5089 reg = &state->regs[i]; 5090 if (reg->type == type && reg->id == dst_reg->id) 5091 /* keep the maximum range already checked */ 5092 reg->range = max(reg->range, new_range); 5093 } 5094 5095 bpf_for_each_spilled_reg(i, state, reg) { 5096 if (!reg) 5097 continue; 5098 if (reg->type == type && reg->id == dst_reg->id) 5099 reg->range = max(reg->range, new_range); 5100 } 5101 } 5102 5103 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 5104 struct bpf_reg_state *dst_reg, 5105 enum bpf_reg_type type, 5106 bool range_right_open) 5107 { 5108 u16 new_range; 5109 int i; 5110 5111 if (dst_reg->off < 0 || 5112 (dst_reg->off == 0 && range_right_open)) 5113 /* This doesn't give us any range */ 5114 return; 5115 5116 if (dst_reg->umax_value > MAX_PACKET_OFF || 5117 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 5118 /* Risk of overflow. For instance, ptr + (1<<63) may be less 5119 * than pkt_end, but that's because it's also less than pkt. 5120 */ 5121 return; 5122 5123 new_range = dst_reg->off; 5124 if (range_right_open) 5125 new_range--; 5126 5127 /* Examples for register markings: 5128 * 5129 * pkt_data in dst register: 5130 * 5131 * r2 = r3; 5132 * r2 += 8; 5133 * if (r2 > pkt_end) goto <handle exception> 5134 * <access okay> 5135 * 5136 * r2 = r3; 5137 * r2 += 8; 5138 * if (r2 < pkt_end) goto <access okay> 5139 * <handle exception> 5140 * 5141 * Where: 5142 * r2 == dst_reg, pkt_end == src_reg 5143 * r2=pkt(id=n,off=8,r=0) 5144 * r3=pkt(id=n,off=0,r=0) 5145 * 5146 * pkt_data in src register: 5147 * 5148 * r2 = r3; 5149 * r2 += 8; 5150 * if (pkt_end >= r2) goto <access okay> 5151 * <handle exception> 5152 * 5153 * r2 = r3; 5154 * r2 += 8; 5155 * if (pkt_end <= r2) goto <handle exception> 5156 * <access okay> 5157 * 5158 * Where: 5159 * pkt_end == dst_reg, r2 == src_reg 5160 * r2=pkt(id=n,off=8,r=0) 5161 * r3=pkt(id=n,off=0,r=0) 5162 * 5163 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 5164 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 5165 * and [r3, r3 + 8-1) respectively is safe to access depending on 5166 * the check. 5167 */ 5168 5169 /* If our ids match, then we must have the same max_value. And we 5170 * don't care about the other reg's fixed offset, since if it's too big 5171 * the range won't allow anything. 5172 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 5173 */ 5174 for (i = 0; i <= vstate->curframe; i++) 5175 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 5176 new_range); 5177 } 5178 5179 /* compute branch direction of the expression "if (reg opcode val) goto target;" 5180 * and return: 5181 * 1 - branch will be taken and "goto target" will be executed 5182 * 0 - branch will not be taken and fall-through to next insn 5183 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 5184 */ 5185 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 5186 bool is_jmp32) 5187 { 5188 struct bpf_reg_state reg_lo; 5189 s64 sval; 5190 5191 if (__is_pointer_value(false, reg)) 5192 return -1; 5193 5194 if (is_jmp32) { 5195 reg_lo = *reg; 5196 reg = ®_lo; 5197 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 5198 * could truncate high bits and update umin/umax according to 5199 * information of low bits. 5200 */ 5201 coerce_reg_to_size(reg, 4); 5202 /* smin/smax need special handling. For example, after coerce, 5203 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 5204 * used as operand to JMP32. It is a negative number from s32's 5205 * point of view, while it is a positive number when seen as 5206 * s64. The smin/smax are kept as s64, therefore, when used with 5207 * JMP32, they need to be transformed into s32, then sign 5208 * extended back to s64. 5209 * 5210 * Also, smin/smax were copied from umin/umax. If umin/umax has 5211 * different sign bit, then min/max relationship doesn't 5212 * maintain after casting into s32, for this case, set smin/smax 5213 * to safest range. 5214 */ 5215 if ((reg->umax_value ^ reg->umin_value) & 5216 (1ULL << 31)) { 5217 reg->smin_value = S32_MIN; 5218 reg->smax_value = S32_MAX; 5219 } 5220 reg->smin_value = (s64)(s32)reg->smin_value; 5221 reg->smax_value = (s64)(s32)reg->smax_value; 5222 5223 val = (u32)val; 5224 sval = (s64)(s32)val; 5225 } else { 5226 sval = (s64)val; 5227 } 5228 5229 switch (opcode) { 5230 case BPF_JEQ: 5231 if (tnum_is_const(reg->var_off)) 5232 return !!tnum_equals_const(reg->var_off, val); 5233 break; 5234 case BPF_JNE: 5235 if (tnum_is_const(reg->var_off)) 5236 return !tnum_equals_const(reg->var_off, val); 5237 break; 5238 case BPF_JSET: 5239 if ((~reg->var_off.mask & reg->var_off.value) & val) 5240 return 1; 5241 if (!((reg->var_off.mask | reg->var_off.value) & val)) 5242 return 0; 5243 break; 5244 case BPF_JGT: 5245 if (reg->umin_value > val) 5246 return 1; 5247 else if (reg->umax_value <= val) 5248 return 0; 5249 break; 5250 case BPF_JSGT: 5251 if (reg->smin_value > sval) 5252 return 1; 5253 else if (reg->smax_value < sval) 5254 return 0; 5255 break; 5256 case BPF_JLT: 5257 if (reg->umax_value < val) 5258 return 1; 5259 else if (reg->umin_value >= val) 5260 return 0; 5261 break; 5262 case BPF_JSLT: 5263 if (reg->smax_value < sval) 5264 return 1; 5265 else if (reg->smin_value >= sval) 5266 return 0; 5267 break; 5268 case BPF_JGE: 5269 if (reg->umin_value >= val) 5270 return 1; 5271 else if (reg->umax_value < val) 5272 return 0; 5273 break; 5274 case BPF_JSGE: 5275 if (reg->smin_value >= sval) 5276 return 1; 5277 else if (reg->smax_value < sval) 5278 return 0; 5279 break; 5280 case BPF_JLE: 5281 if (reg->umax_value <= val) 5282 return 1; 5283 else if (reg->umin_value > val) 5284 return 0; 5285 break; 5286 case BPF_JSLE: 5287 if (reg->smax_value <= sval) 5288 return 1; 5289 else if (reg->smin_value > sval) 5290 return 0; 5291 break; 5292 } 5293 5294 return -1; 5295 } 5296 5297 /* Generate min value of the high 32-bit from TNUM info. */ 5298 static u64 gen_hi_min(struct tnum var) 5299 { 5300 return var.value & ~0xffffffffULL; 5301 } 5302 5303 /* Generate max value of the high 32-bit from TNUM info. */ 5304 static u64 gen_hi_max(struct tnum var) 5305 { 5306 return (var.value | var.mask) & ~0xffffffffULL; 5307 } 5308 5309 /* Return true if VAL is compared with a s64 sign extended from s32, and they 5310 * are with the same signedness. 5311 */ 5312 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 5313 { 5314 return ((s32)sval >= 0 && 5315 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 5316 ((s32)sval < 0 && 5317 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 5318 } 5319 5320 /* Adjusts the register min/max values in the case that the dst_reg is the 5321 * variable register that we are working on, and src_reg is a constant or we're 5322 * simply doing a BPF_K check. 5323 * In JEQ/JNE cases we also adjust the var_off values. 5324 */ 5325 static void reg_set_min_max(struct bpf_reg_state *true_reg, 5326 struct bpf_reg_state *false_reg, u64 val, 5327 u8 opcode, bool is_jmp32) 5328 { 5329 s64 sval; 5330 5331 /* If the dst_reg is a pointer, we can't learn anything about its 5332 * variable offset from the compare (unless src_reg were a pointer into 5333 * the same object, but we don't bother with that. 5334 * Since false_reg and true_reg have the same type by construction, we 5335 * only need to check one of them for pointerness. 5336 */ 5337 if (__is_pointer_value(false, false_reg)) 5338 return; 5339 5340 val = is_jmp32 ? (u32)val : val; 5341 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5342 5343 switch (opcode) { 5344 case BPF_JEQ: 5345 case BPF_JNE: 5346 { 5347 struct bpf_reg_state *reg = 5348 opcode == BPF_JEQ ? true_reg : false_reg; 5349 5350 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 5351 * if it is true we know the value for sure. Likewise for 5352 * BPF_JNE. 5353 */ 5354 if (is_jmp32) { 5355 u64 old_v = reg->var_off.value; 5356 u64 hi_mask = ~0xffffffffULL; 5357 5358 reg->var_off.value = (old_v & hi_mask) | val; 5359 reg->var_off.mask &= hi_mask; 5360 } else { 5361 __mark_reg_known(reg, val); 5362 } 5363 break; 5364 } 5365 case BPF_JSET: 5366 false_reg->var_off = tnum_and(false_reg->var_off, 5367 tnum_const(~val)); 5368 if (is_power_of_2(val)) 5369 true_reg->var_off = tnum_or(true_reg->var_off, 5370 tnum_const(val)); 5371 break; 5372 case BPF_JGE: 5373 case BPF_JGT: 5374 { 5375 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 5376 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 5377 5378 if (is_jmp32) { 5379 false_umax += gen_hi_max(false_reg->var_off); 5380 true_umin += gen_hi_min(true_reg->var_off); 5381 } 5382 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5383 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5384 break; 5385 } 5386 case BPF_JSGE: 5387 case BPF_JSGT: 5388 { 5389 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 5390 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 5391 5392 /* If the full s64 was not sign-extended from s32 then don't 5393 * deduct further info. 5394 */ 5395 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5396 break; 5397 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5398 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5399 break; 5400 } 5401 case BPF_JLE: 5402 case BPF_JLT: 5403 { 5404 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 5405 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 5406 5407 if (is_jmp32) { 5408 false_umin += gen_hi_min(false_reg->var_off); 5409 true_umax += gen_hi_max(true_reg->var_off); 5410 } 5411 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5412 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5413 break; 5414 } 5415 case BPF_JSLE: 5416 case BPF_JSLT: 5417 { 5418 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 5419 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 5420 5421 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5422 break; 5423 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5424 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5425 break; 5426 } 5427 default: 5428 break; 5429 } 5430 5431 __reg_deduce_bounds(false_reg); 5432 __reg_deduce_bounds(true_reg); 5433 /* We might have learned some bits from the bounds. */ 5434 __reg_bound_offset(false_reg); 5435 __reg_bound_offset(true_reg); 5436 /* Intersecting with the old var_off might have improved our bounds 5437 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5438 * then new var_off is (0; 0x7f...fc) which improves our umax. 5439 */ 5440 __update_reg_bounds(false_reg); 5441 __update_reg_bounds(true_reg); 5442 } 5443 5444 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 5445 * the variable reg. 5446 */ 5447 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 5448 struct bpf_reg_state *false_reg, u64 val, 5449 u8 opcode, bool is_jmp32) 5450 { 5451 s64 sval; 5452 5453 if (__is_pointer_value(false, false_reg)) 5454 return; 5455 5456 val = is_jmp32 ? (u32)val : val; 5457 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 5458 5459 switch (opcode) { 5460 case BPF_JEQ: 5461 case BPF_JNE: 5462 { 5463 struct bpf_reg_state *reg = 5464 opcode == BPF_JEQ ? true_reg : false_reg; 5465 5466 if (is_jmp32) { 5467 u64 old_v = reg->var_off.value; 5468 u64 hi_mask = ~0xffffffffULL; 5469 5470 reg->var_off.value = (old_v & hi_mask) | val; 5471 reg->var_off.mask &= hi_mask; 5472 } else { 5473 __mark_reg_known(reg, val); 5474 } 5475 break; 5476 } 5477 case BPF_JSET: 5478 false_reg->var_off = tnum_and(false_reg->var_off, 5479 tnum_const(~val)); 5480 if (is_power_of_2(val)) 5481 true_reg->var_off = tnum_or(true_reg->var_off, 5482 tnum_const(val)); 5483 break; 5484 case BPF_JGE: 5485 case BPF_JGT: 5486 { 5487 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 5488 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 5489 5490 if (is_jmp32) { 5491 false_umin += gen_hi_min(false_reg->var_off); 5492 true_umax += gen_hi_max(true_reg->var_off); 5493 } 5494 false_reg->umin_value = max(false_reg->umin_value, false_umin); 5495 true_reg->umax_value = min(true_reg->umax_value, true_umax); 5496 break; 5497 } 5498 case BPF_JSGE: 5499 case BPF_JSGT: 5500 { 5501 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 5502 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 5503 5504 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5505 break; 5506 false_reg->smin_value = max(false_reg->smin_value, false_smin); 5507 true_reg->smax_value = min(true_reg->smax_value, true_smax); 5508 break; 5509 } 5510 case BPF_JLE: 5511 case BPF_JLT: 5512 { 5513 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 5514 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 5515 5516 if (is_jmp32) { 5517 false_umax += gen_hi_max(false_reg->var_off); 5518 true_umin += gen_hi_min(true_reg->var_off); 5519 } 5520 false_reg->umax_value = min(false_reg->umax_value, false_umax); 5521 true_reg->umin_value = max(true_reg->umin_value, true_umin); 5522 break; 5523 } 5524 case BPF_JSLE: 5525 case BPF_JSLT: 5526 { 5527 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 5528 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 5529 5530 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 5531 break; 5532 false_reg->smax_value = min(false_reg->smax_value, false_smax); 5533 true_reg->smin_value = max(true_reg->smin_value, true_smin); 5534 break; 5535 } 5536 default: 5537 break; 5538 } 5539 5540 __reg_deduce_bounds(false_reg); 5541 __reg_deduce_bounds(true_reg); 5542 /* We might have learned some bits from the bounds. */ 5543 __reg_bound_offset(false_reg); 5544 __reg_bound_offset(true_reg); 5545 /* Intersecting with the old var_off might have improved our bounds 5546 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5547 * then new var_off is (0; 0x7f...fc) which improves our umax. 5548 */ 5549 __update_reg_bounds(false_reg); 5550 __update_reg_bounds(true_reg); 5551 } 5552 5553 /* Regs are known to be equal, so intersect their min/max/var_off */ 5554 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 5555 struct bpf_reg_state *dst_reg) 5556 { 5557 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 5558 dst_reg->umin_value); 5559 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 5560 dst_reg->umax_value); 5561 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 5562 dst_reg->smin_value); 5563 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 5564 dst_reg->smax_value); 5565 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 5566 dst_reg->var_off); 5567 /* We might have learned new bounds from the var_off. */ 5568 __update_reg_bounds(src_reg); 5569 __update_reg_bounds(dst_reg); 5570 /* We might have learned something about the sign bit. */ 5571 __reg_deduce_bounds(src_reg); 5572 __reg_deduce_bounds(dst_reg); 5573 /* We might have learned some bits from the bounds. */ 5574 __reg_bound_offset(src_reg); 5575 __reg_bound_offset(dst_reg); 5576 /* Intersecting with the old var_off might have improved our bounds 5577 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 5578 * then new var_off is (0; 0x7f...fc) which improves our umax. 5579 */ 5580 __update_reg_bounds(src_reg); 5581 __update_reg_bounds(dst_reg); 5582 } 5583 5584 static void reg_combine_min_max(struct bpf_reg_state *true_src, 5585 struct bpf_reg_state *true_dst, 5586 struct bpf_reg_state *false_src, 5587 struct bpf_reg_state *false_dst, 5588 u8 opcode) 5589 { 5590 switch (opcode) { 5591 case BPF_JEQ: 5592 __reg_combine_min_max(true_src, true_dst); 5593 break; 5594 case BPF_JNE: 5595 __reg_combine_min_max(false_src, false_dst); 5596 break; 5597 } 5598 } 5599 5600 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 5601 struct bpf_reg_state *reg, u32 id, 5602 bool is_null) 5603 { 5604 if (reg_type_may_be_null(reg->type) && reg->id == id) { 5605 /* Old offset (both fixed and variable parts) should 5606 * have been known-zero, because we don't allow pointer 5607 * arithmetic on pointers that might be NULL. 5608 */ 5609 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 5610 !tnum_equals_const(reg->var_off, 0) || 5611 reg->off)) { 5612 __mark_reg_known_zero(reg); 5613 reg->off = 0; 5614 } 5615 if (is_null) { 5616 reg->type = SCALAR_VALUE; 5617 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 5618 if (reg->map_ptr->inner_map_meta) { 5619 reg->type = CONST_PTR_TO_MAP; 5620 reg->map_ptr = reg->map_ptr->inner_map_meta; 5621 } else if (reg->map_ptr->map_type == 5622 BPF_MAP_TYPE_XSKMAP) { 5623 reg->type = PTR_TO_XDP_SOCK; 5624 } else { 5625 reg->type = PTR_TO_MAP_VALUE; 5626 } 5627 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 5628 reg->type = PTR_TO_SOCKET; 5629 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 5630 reg->type = PTR_TO_SOCK_COMMON; 5631 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 5632 reg->type = PTR_TO_TCP_SOCK; 5633 } 5634 if (is_null) { 5635 /* We don't need id and ref_obj_id from this point 5636 * onwards anymore, thus we should better reset it, 5637 * so that state pruning has chances to take effect. 5638 */ 5639 reg->id = 0; 5640 reg->ref_obj_id = 0; 5641 } else if (!reg_may_point_to_spin_lock(reg)) { 5642 /* For not-NULL ptr, reg->ref_obj_id will be reset 5643 * in release_reg_references(). 5644 * 5645 * reg->id is still used by spin_lock ptr. Other 5646 * than spin_lock ptr type, reg->id can be reset. 5647 */ 5648 reg->id = 0; 5649 } 5650 } 5651 } 5652 5653 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 5654 bool is_null) 5655 { 5656 struct bpf_reg_state *reg; 5657 int i; 5658 5659 for (i = 0; i < MAX_BPF_REG; i++) 5660 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 5661 5662 bpf_for_each_spilled_reg(i, state, reg) { 5663 if (!reg) 5664 continue; 5665 mark_ptr_or_null_reg(state, reg, id, is_null); 5666 } 5667 } 5668 5669 /* The logic is similar to find_good_pkt_pointers(), both could eventually 5670 * be folded together at some point. 5671 */ 5672 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 5673 bool is_null) 5674 { 5675 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5676 struct bpf_reg_state *regs = state->regs; 5677 u32 ref_obj_id = regs[regno].ref_obj_id; 5678 u32 id = regs[regno].id; 5679 int i; 5680 5681 if (ref_obj_id && ref_obj_id == id && is_null) 5682 /* regs[regno] is in the " == NULL" branch. 5683 * No one could have freed the reference state before 5684 * doing the NULL check. 5685 */ 5686 WARN_ON_ONCE(release_reference_state(state, id)); 5687 5688 for (i = 0; i <= vstate->curframe; i++) 5689 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 5690 } 5691 5692 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 5693 struct bpf_reg_state *dst_reg, 5694 struct bpf_reg_state *src_reg, 5695 struct bpf_verifier_state *this_branch, 5696 struct bpf_verifier_state *other_branch) 5697 { 5698 if (BPF_SRC(insn->code) != BPF_X) 5699 return false; 5700 5701 /* Pointers are always 64-bit. */ 5702 if (BPF_CLASS(insn->code) == BPF_JMP32) 5703 return false; 5704 5705 switch (BPF_OP(insn->code)) { 5706 case BPF_JGT: 5707 if ((dst_reg->type == PTR_TO_PACKET && 5708 src_reg->type == PTR_TO_PACKET_END) || 5709 (dst_reg->type == PTR_TO_PACKET_META && 5710 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5711 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 5712 find_good_pkt_pointers(this_branch, dst_reg, 5713 dst_reg->type, false); 5714 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5715 src_reg->type == PTR_TO_PACKET) || 5716 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5717 src_reg->type == PTR_TO_PACKET_META)) { 5718 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 5719 find_good_pkt_pointers(other_branch, src_reg, 5720 src_reg->type, true); 5721 } else { 5722 return false; 5723 } 5724 break; 5725 case BPF_JLT: 5726 if ((dst_reg->type == PTR_TO_PACKET && 5727 src_reg->type == PTR_TO_PACKET_END) || 5728 (dst_reg->type == PTR_TO_PACKET_META && 5729 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5730 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 5731 find_good_pkt_pointers(other_branch, dst_reg, 5732 dst_reg->type, true); 5733 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5734 src_reg->type == PTR_TO_PACKET) || 5735 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5736 src_reg->type == PTR_TO_PACKET_META)) { 5737 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 5738 find_good_pkt_pointers(this_branch, src_reg, 5739 src_reg->type, false); 5740 } else { 5741 return false; 5742 } 5743 break; 5744 case BPF_JGE: 5745 if ((dst_reg->type == PTR_TO_PACKET && 5746 src_reg->type == PTR_TO_PACKET_END) || 5747 (dst_reg->type == PTR_TO_PACKET_META && 5748 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5749 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 5750 find_good_pkt_pointers(this_branch, dst_reg, 5751 dst_reg->type, true); 5752 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5753 src_reg->type == PTR_TO_PACKET) || 5754 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5755 src_reg->type == PTR_TO_PACKET_META)) { 5756 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 5757 find_good_pkt_pointers(other_branch, src_reg, 5758 src_reg->type, false); 5759 } else { 5760 return false; 5761 } 5762 break; 5763 case BPF_JLE: 5764 if ((dst_reg->type == PTR_TO_PACKET && 5765 src_reg->type == PTR_TO_PACKET_END) || 5766 (dst_reg->type == PTR_TO_PACKET_META && 5767 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 5768 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 5769 find_good_pkt_pointers(other_branch, dst_reg, 5770 dst_reg->type, false); 5771 } else if ((dst_reg->type == PTR_TO_PACKET_END && 5772 src_reg->type == PTR_TO_PACKET) || 5773 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 5774 src_reg->type == PTR_TO_PACKET_META)) { 5775 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 5776 find_good_pkt_pointers(this_branch, src_reg, 5777 src_reg->type, true); 5778 } else { 5779 return false; 5780 } 5781 break; 5782 default: 5783 return false; 5784 } 5785 5786 return true; 5787 } 5788 5789 static int check_cond_jmp_op(struct bpf_verifier_env *env, 5790 struct bpf_insn *insn, int *insn_idx) 5791 { 5792 struct bpf_verifier_state *this_branch = env->cur_state; 5793 struct bpf_verifier_state *other_branch; 5794 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 5795 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 5796 u8 opcode = BPF_OP(insn->code); 5797 bool is_jmp32; 5798 int pred = -1; 5799 int err; 5800 5801 /* Only conditional jumps are expected to reach here. */ 5802 if (opcode == BPF_JA || opcode > BPF_JSLE) { 5803 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 5804 return -EINVAL; 5805 } 5806 5807 if (BPF_SRC(insn->code) == BPF_X) { 5808 if (insn->imm != 0) { 5809 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5810 return -EINVAL; 5811 } 5812 5813 /* check src1 operand */ 5814 err = check_reg_arg(env, insn->src_reg, SRC_OP); 5815 if (err) 5816 return err; 5817 5818 if (is_pointer_value(env, insn->src_reg)) { 5819 verbose(env, "R%d pointer comparison prohibited\n", 5820 insn->src_reg); 5821 return -EACCES; 5822 } 5823 src_reg = ®s[insn->src_reg]; 5824 } else { 5825 if (insn->src_reg != BPF_REG_0) { 5826 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 5827 return -EINVAL; 5828 } 5829 } 5830 5831 /* check src2 operand */ 5832 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 5833 if (err) 5834 return err; 5835 5836 dst_reg = ®s[insn->dst_reg]; 5837 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 5838 5839 if (BPF_SRC(insn->code) == BPF_K) 5840 pred = is_branch_taken(dst_reg, insn->imm, 5841 opcode, is_jmp32); 5842 else if (src_reg->type == SCALAR_VALUE && 5843 tnum_is_const(src_reg->var_off)) 5844 pred = is_branch_taken(dst_reg, src_reg->var_off.value, 5845 opcode, is_jmp32); 5846 if (pred >= 0) { 5847 err = mark_chain_precision(env, insn->dst_reg); 5848 if (BPF_SRC(insn->code) == BPF_X && !err) 5849 err = mark_chain_precision(env, insn->src_reg); 5850 if (err) 5851 return err; 5852 } 5853 if (pred == 1) { 5854 /* only follow the goto, ignore fall-through */ 5855 *insn_idx += insn->off; 5856 return 0; 5857 } else if (pred == 0) { 5858 /* only follow fall-through branch, since 5859 * that's where the program will go 5860 */ 5861 return 0; 5862 } 5863 5864 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 5865 false); 5866 if (!other_branch) 5867 return -EFAULT; 5868 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 5869 5870 /* detect if we are comparing against a constant value so we can adjust 5871 * our min/max values for our dst register. 5872 * this is only legit if both are scalars (or pointers to the same 5873 * object, I suppose, but we don't support that right now), because 5874 * otherwise the different base pointers mean the offsets aren't 5875 * comparable. 5876 */ 5877 if (BPF_SRC(insn->code) == BPF_X) { 5878 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 5879 struct bpf_reg_state lo_reg0 = *dst_reg; 5880 struct bpf_reg_state lo_reg1 = *src_reg; 5881 struct bpf_reg_state *src_lo, *dst_lo; 5882 5883 dst_lo = &lo_reg0; 5884 src_lo = &lo_reg1; 5885 coerce_reg_to_size(dst_lo, 4); 5886 coerce_reg_to_size(src_lo, 4); 5887 5888 if (dst_reg->type == SCALAR_VALUE && 5889 src_reg->type == SCALAR_VALUE) { 5890 if (tnum_is_const(src_reg->var_off) || 5891 (is_jmp32 && tnum_is_const(src_lo->var_off))) 5892 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5893 dst_reg, 5894 is_jmp32 5895 ? src_lo->var_off.value 5896 : src_reg->var_off.value, 5897 opcode, is_jmp32); 5898 else if (tnum_is_const(dst_reg->var_off) || 5899 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 5900 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 5901 src_reg, 5902 is_jmp32 5903 ? dst_lo->var_off.value 5904 : dst_reg->var_off.value, 5905 opcode, is_jmp32); 5906 else if (!is_jmp32 && 5907 (opcode == BPF_JEQ || opcode == BPF_JNE)) 5908 /* Comparing for equality, we can combine knowledge */ 5909 reg_combine_min_max(&other_branch_regs[insn->src_reg], 5910 &other_branch_regs[insn->dst_reg], 5911 src_reg, dst_reg, opcode); 5912 } 5913 } else if (dst_reg->type == SCALAR_VALUE) { 5914 reg_set_min_max(&other_branch_regs[insn->dst_reg], 5915 dst_reg, insn->imm, opcode, is_jmp32); 5916 } 5917 5918 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 5919 * NOTE: these optimizations below are related with pointer comparison 5920 * which will never be JMP32. 5921 */ 5922 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 5923 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 5924 reg_type_may_be_null(dst_reg->type)) { 5925 /* Mark all identical registers in each branch as either 5926 * safe or unknown depending R == 0 or R != 0 conditional. 5927 */ 5928 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 5929 opcode == BPF_JNE); 5930 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 5931 opcode == BPF_JEQ); 5932 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 5933 this_branch, other_branch) && 5934 is_pointer_value(env, insn->dst_reg)) { 5935 verbose(env, "R%d pointer comparison prohibited\n", 5936 insn->dst_reg); 5937 return -EACCES; 5938 } 5939 if (env->log.level & BPF_LOG_LEVEL) 5940 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 5941 return 0; 5942 } 5943 5944 /* verify BPF_LD_IMM64 instruction */ 5945 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 5946 { 5947 struct bpf_insn_aux_data *aux = cur_aux(env); 5948 struct bpf_reg_state *regs = cur_regs(env); 5949 struct bpf_map *map; 5950 int err; 5951 5952 if (BPF_SIZE(insn->code) != BPF_DW) { 5953 verbose(env, "invalid BPF_LD_IMM insn\n"); 5954 return -EINVAL; 5955 } 5956 if (insn->off != 0) { 5957 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 5958 return -EINVAL; 5959 } 5960 5961 err = check_reg_arg(env, insn->dst_reg, DST_OP); 5962 if (err) 5963 return err; 5964 5965 if (insn->src_reg == 0) { 5966 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 5967 5968 regs[insn->dst_reg].type = SCALAR_VALUE; 5969 __mark_reg_known(®s[insn->dst_reg], imm); 5970 return 0; 5971 } 5972 5973 map = env->used_maps[aux->map_index]; 5974 mark_reg_known_zero(env, regs, insn->dst_reg); 5975 regs[insn->dst_reg].map_ptr = map; 5976 5977 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 5978 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; 5979 regs[insn->dst_reg].off = aux->map_off; 5980 if (map_value_has_spin_lock(map)) 5981 regs[insn->dst_reg].id = ++env->id_gen; 5982 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 5983 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 5984 } else { 5985 verbose(env, "bpf verifier is misconfigured\n"); 5986 return -EINVAL; 5987 } 5988 5989 return 0; 5990 } 5991 5992 static bool may_access_skb(enum bpf_prog_type type) 5993 { 5994 switch (type) { 5995 case BPF_PROG_TYPE_SOCKET_FILTER: 5996 case BPF_PROG_TYPE_SCHED_CLS: 5997 case BPF_PROG_TYPE_SCHED_ACT: 5998 return true; 5999 default: 6000 return false; 6001 } 6002 } 6003 6004 /* verify safety of LD_ABS|LD_IND instructions: 6005 * - they can only appear in the programs where ctx == skb 6006 * - since they are wrappers of function calls, they scratch R1-R5 registers, 6007 * preserve R6-R9, and store return value into R0 6008 * 6009 * Implicit input: 6010 * ctx == skb == R6 == CTX 6011 * 6012 * Explicit input: 6013 * SRC == any register 6014 * IMM == 32-bit immediate 6015 * 6016 * Output: 6017 * R0 - 8/16/32-bit skb data converted to cpu endianness 6018 */ 6019 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 6020 { 6021 struct bpf_reg_state *regs = cur_regs(env); 6022 u8 mode = BPF_MODE(insn->code); 6023 int i, err; 6024 6025 if (!may_access_skb(env->prog->type)) { 6026 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 6027 return -EINVAL; 6028 } 6029 6030 if (!env->ops->gen_ld_abs) { 6031 verbose(env, "bpf verifier is misconfigured\n"); 6032 return -EINVAL; 6033 } 6034 6035 if (env->subprog_cnt > 1) { 6036 /* when program has LD_ABS insn JITs and interpreter assume 6037 * that r1 == ctx == skb which is not the case for callees 6038 * that can have arbitrary arguments. It's problematic 6039 * for main prog as well since JITs would need to analyze 6040 * all functions in order to make proper register save/restore 6041 * decisions in the main prog. Hence disallow LD_ABS with calls 6042 */ 6043 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 6044 return -EINVAL; 6045 } 6046 6047 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 6048 BPF_SIZE(insn->code) == BPF_DW || 6049 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 6050 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 6051 return -EINVAL; 6052 } 6053 6054 /* check whether implicit source operand (register R6) is readable */ 6055 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 6056 if (err) 6057 return err; 6058 6059 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 6060 * gen_ld_abs() may terminate the program at runtime, leading to 6061 * reference leak. 6062 */ 6063 err = check_reference_leak(env); 6064 if (err) { 6065 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 6066 return err; 6067 } 6068 6069 if (env->cur_state->active_spin_lock) { 6070 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 6071 return -EINVAL; 6072 } 6073 6074 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 6075 verbose(env, 6076 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 6077 return -EINVAL; 6078 } 6079 6080 if (mode == BPF_IND) { 6081 /* check explicit source operand */ 6082 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6083 if (err) 6084 return err; 6085 } 6086 6087 /* reset caller saved regs to unreadable */ 6088 for (i = 0; i < CALLER_SAVED_REGS; i++) { 6089 mark_reg_not_init(env, regs, caller_saved[i]); 6090 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 6091 } 6092 6093 /* mark destination R0 register as readable, since it contains 6094 * the value fetched from the packet. 6095 * Already marked as written above. 6096 */ 6097 mark_reg_unknown(env, regs, BPF_REG_0); 6098 /* ld_abs load up to 32-bit skb data. */ 6099 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 6100 return 0; 6101 } 6102 6103 static int check_return_code(struct bpf_verifier_env *env) 6104 { 6105 struct tnum enforce_attach_type_range = tnum_unknown; 6106 struct bpf_reg_state *reg; 6107 struct tnum range = tnum_range(0, 1); 6108 6109 switch (env->prog->type) { 6110 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 6111 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 6112 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) 6113 range = tnum_range(1, 1); 6114 break; 6115 case BPF_PROG_TYPE_CGROUP_SKB: 6116 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 6117 range = tnum_range(0, 3); 6118 enforce_attach_type_range = tnum_range(2, 3); 6119 } 6120 break; 6121 case BPF_PROG_TYPE_CGROUP_SOCK: 6122 case BPF_PROG_TYPE_SOCK_OPS: 6123 case BPF_PROG_TYPE_CGROUP_DEVICE: 6124 case BPF_PROG_TYPE_CGROUP_SYSCTL: 6125 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 6126 break; 6127 default: 6128 return 0; 6129 } 6130 6131 reg = cur_regs(env) + BPF_REG_0; 6132 if (reg->type != SCALAR_VALUE) { 6133 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 6134 reg_type_str[reg->type]); 6135 return -EINVAL; 6136 } 6137 6138 if (!tnum_in(range, reg->var_off)) { 6139 char tn_buf[48]; 6140 6141 verbose(env, "At program exit the register R0 "); 6142 if (!tnum_is_unknown(reg->var_off)) { 6143 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 6144 verbose(env, "has value %s", tn_buf); 6145 } else { 6146 verbose(env, "has unknown scalar value"); 6147 } 6148 tnum_strn(tn_buf, sizeof(tn_buf), range); 6149 verbose(env, " should have been in %s\n", tn_buf); 6150 return -EINVAL; 6151 } 6152 6153 if (!tnum_is_unknown(enforce_attach_type_range) && 6154 tnum_in(enforce_attach_type_range, reg->var_off)) 6155 env->prog->enforce_expected_attach_type = 1; 6156 return 0; 6157 } 6158 6159 /* non-recursive DFS pseudo code 6160 * 1 procedure DFS-iterative(G,v): 6161 * 2 label v as discovered 6162 * 3 let S be a stack 6163 * 4 S.push(v) 6164 * 5 while S is not empty 6165 * 6 t <- S.pop() 6166 * 7 if t is what we're looking for: 6167 * 8 return t 6168 * 9 for all edges e in G.adjacentEdges(t) do 6169 * 10 if edge e is already labelled 6170 * 11 continue with the next edge 6171 * 12 w <- G.adjacentVertex(t,e) 6172 * 13 if vertex w is not discovered and not explored 6173 * 14 label e as tree-edge 6174 * 15 label w as discovered 6175 * 16 S.push(w) 6176 * 17 continue at 5 6177 * 18 else if vertex w is discovered 6178 * 19 label e as back-edge 6179 * 20 else 6180 * 21 // vertex w is explored 6181 * 22 label e as forward- or cross-edge 6182 * 23 label t as explored 6183 * 24 S.pop() 6184 * 6185 * convention: 6186 * 0x10 - discovered 6187 * 0x11 - discovered and fall-through edge labelled 6188 * 0x12 - discovered and fall-through and branch edges labelled 6189 * 0x20 - explored 6190 */ 6191 6192 enum { 6193 DISCOVERED = 0x10, 6194 EXPLORED = 0x20, 6195 FALLTHROUGH = 1, 6196 BRANCH = 2, 6197 }; 6198 6199 static u32 state_htab_size(struct bpf_verifier_env *env) 6200 { 6201 return env->prog->len; 6202 } 6203 6204 static struct bpf_verifier_state_list **explored_state( 6205 struct bpf_verifier_env *env, 6206 int idx) 6207 { 6208 struct bpf_verifier_state *cur = env->cur_state; 6209 struct bpf_func_state *state = cur->frame[cur->curframe]; 6210 6211 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 6212 } 6213 6214 static void init_explored_state(struct bpf_verifier_env *env, int idx) 6215 { 6216 env->insn_aux_data[idx].prune_point = true; 6217 } 6218 6219 /* t, w, e - match pseudo-code above: 6220 * t - index of current instruction 6221 * w - next instruction 6222 * e - edge 6223 */ 6224 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 6225 bool loop_ok) 6226 { 6227 int *insn_stack = env->cfg.insn_stack; 6228 int *insn_state = env->cfg.insn_state; 6229 6230 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 6231 return 0; 6232 6233 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 6234 return 0; 6235 6236 if (w < 0 || w >= env->prog->len) { 6237 verbose_linfo(env, t, "%d: ", t); 6238 verbose(env, "jump out of range from insn %d to %d\n", t, w); 6239 return -EINVAL; 6240 } 6241 6242 if (e == BRANCH) 6243 /* mark branch target for state pruning */ 6244 init_explored_state(env, w); 6245 6246 if (insn_state[w] == 0) { 6247 /* tree-edge */ 6248 insn_state[t] = DISCOVERED | e; 6249 insn_state[w] = DISCOVERED; 6250 if (env->cfg.cur_stack >= env->prog->len) 6251 return -E2BIG; 6252 insn_stack[env->cfg.cur_stack++] = w; 6253 return 1; 6254 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 6255 if (loop_ok && env->allow_ptr_leaks) 6256 return 0; 6257 verbose_linfo(env, t, "%d: ", t); 6258 verbose_linfo(env, w, "%d: ", w); 6259 verbose(env, "back-edge from insn %d to %d\n", t, w); 6260 return -EINVAL; 6261 } else if (insn_state[w] == EXPLORED) { 6262 /* forward- or cross-edge */ 6263 insn_state[t] = DISCOVERED | e; 6264 } else { 6265 verbose(env, "insn state internal bug\n"); 6266 return -EFAULT; 6267 } 6268 return 0; 6269 } 6270 6271 /* non-recursive depth-first-search to detect loops in BPF program 6272 * loop == back-edge in directed graph 6273 */ 6274 static int check_cfg(struct bpf_verifier_env *env) 6275 { 6276 struct bpf_insn *insns = env->prog->insnsi; 6277 int insn_cnt = env->prog->len; 6278 int *insn_stack, *insn_state; 6279 int ret = 0; 6280 int i, t; 6281 6282 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6283 if (!insn_state) 6284 return -ENOMEM; 6285 6286 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 6287 if (!insn_stack) { 6288 kvfree(insn_state); 6289 return -ENOMEM; 6290 } 6291 6292 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 6293 insn_stack[0] = 0; /* 0 is the first instruction */ 6294 env->cfg.cur_stack = 1; 6295 6296 peek_stack: 6297 if (env->cfg.cur_stack == 0) 6298 goto check_state; 6299 t = insn_stack[env->cfg.cur_stack - 1]; 6300 6301 if (BPF_CLASS(insns[t].code) == BPF_JMP || 6302 BPF_CLASS(insns[t].code) == BPF_JMP32) { 6303 u8 opcode = BPF_OP(insns[t].code); 6304 6305 if (opcode == BPF_EXIT) { 6306 goto mark_explored; 6307 } else if (opcode == BPF_CALL) { 6308 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6309 if (ret == 1) 6310 goto peek_stack; 6311 else if (ret < 0) 6312 goto err_free; 6313 if (t + 1 < insn_cnt) 6314 init_explored_state(env, t + 1); 6315 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 6316 init_explored_state(env, t); 6317 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 6318 env, false); 6319 if (ret == 1) 6320 goto peek_stack; 6321 else if (ret < 0) 6322 goto err_free; 6323 } 6324 } else if (opcode == BPF_JA) { 6325 if (BPF_SRC(insns[t].code) != BPF_K) { 6326 ret = -EINVAL; 6327 goto err_free; 6328 } 6329 /* unconditional jump with single edge */ 6330 ret = push_insn(t, t + insns[t].off + 1, 6331 FALLTHROUGH, env, true); 6332 if (ret == 1) 6333 goto peek_stack; 6334 else if (ret < 0) 6335 goto err_free; 6336 /* unconditional jmp is not a good pruning point, 6337 * but it's marked, since backtracking needs 6338 * to record jmp history in is_state_visited(). 6339 */ 6340 init_explored_state(env, t + insns[t].off + 1); 6341 /* tell verifier to check for equivalent states 6342 * after every call and jump 6343 */ 6344 if (t + 1 < insn_cnt) 6345 init_explored_state(env, t + 1); 6346 } else { 6347 /* conditional jump with two edges */ 6348 init_explored_state(env, t); 6349 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 6350 if (ret == 1) 6351 goto peek_stack; 6352 else if (ret < 0) 6353 goto err_free; 6354 6355 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 6356 if (ret == 1) 6357 goto peek_stack; 6358 else if (ret < 0) 6359 goto err_free; 6360 } 6361 } else { 6362 /* all other non-branch instructions with single 6363 * fall-through edge 6364 */ 6365 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 6366 if (ret == 1) 6367 goto peek_stack; 6368 else if (ret < 0) 6369 goto err_free; 6370 } 6371 6372 mark_explored: 6373 insn_state[t] = EXPLORED; 6374 if (env->cfg.cur_stack-- <= 0) { 6375 verbose(env, "pop stack internal bug\n"); 6376 ret = -EFAULT; 6377 goto err_free; 6378 } 6379 goto peek_stack; 6380 6381 check_state: 6382 for (i = 0; i < insn_cnt; i++) { 6383 if (insn_state[i] != EXPLORED) { 6384 verbose(env, "unreachable insn %d\n", i); 6385 ret = -EINVAL; 6386 goto err_free; 6387 } 6388 } 6389 ret = 0; /* cfg looks good */ 6390 6391 err_free: 6392 kvfree(insn_state); 6393 kvfree(insn_stack); 6394 env->cfg.insn_state = env->cfg.insn_stack = NULL; 6395 return ret; 6396 } 6397 6398 /* The minimum supported BTF func info size */ 6399 #define MIN_BPF_FUNCINFO_SIZE 8 6400 #define MAX_FUNCINFO_REC_SIZE 252 6401 6402 static int check_btf_func(struct bpf_verifier_env *env, 6403 const union bpf_attr *attr, 6404 union bpf_attr __user *uattr) 6405 { 6406 u32 i, nfuncs, urec_size, min_size; 6407 u32 krec_size = sizeof(struct bpf_func_info); 6408 struct bpf_func_info *krecord; 6409 const struct btf_type *type; 6410 struct bpf_prog *prog; 6411 const struct btf *btf; 6412 void __user *urecord; 6413 u32 prev_offset = 0; 6414 int ret = 0; 6415 6416 nfuncs = attr->func_info_cnt; 6417 if (!nfuncs) 6418 return 0; 6419 6420 if (nfuncs != env->subprog_cnt) { 6421 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 6422 return -EINVAL; 6423 } 6424 6425 urec_size = attr->func_info_rec_size; 6426 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 6427 urec_size > MAX_FUNCINFO_REC_SIZE || 6428 urec_size % sizeof(u32)) { 6429 verbose(env, "invalid func info rec size %u\n", urec_size); 6430 return -EINVAL; 6431 } 6432 6433 prog = env->prog; 6434 btf = prog->aux->btf; 6435 6436 urecord = u64_to_user_ptr(attr->func_info); 6437 min_size = min_t(u32, krec_size, urec_size); 6438 6439 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 6440 if (!krecord) 6441 return -ENOMEM; 6442 6443 for (i = 0; i < nfuncs; i++) { 6444 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 6445 if (ret) { 6446 if (ret == -E2BIG) { 6447 verbose(env, "nonzero tailing record in func info"); 6448 /* set the size kernel expects so loader can zero 6449 * out the rest of the record. 6450 */ 6451 if (put_user(min_size, &uattr->func_info_rec_size)) 6452 ret = -EFAULT; 6453 } 6454 goto err_free; 6455 } 6456 6457 if (copy_from_user(&krecord[i], urecord, min_size)) { 6458 ret = -EFAULT; 6459 goto err_free; 6460 } 6461 6462 /* check insn_off */ 6463 if (i == 0) { 6464 if (krecord[i].insn_off) { 6465 verbose(env, 6466 "nonzero insn_off %u for the first func info record", 6467 krecord[i].insn_off); 6468 ret = -EINVAL; 6469 goto err_free; 6470 } 6471 } else if (krecord[i].insn_off <= prev_offset) { 6472 verbose(env, 6473 "same or smaller insn offset (%u) than previous func info record (%u)", 6474 krecord[i].insn_off, prev_offset); 6475 ret = -EINVAL; 6476 goto err_free; 6477 } 6478 6479 if (env->subprog_info[i].start != krecord[i].insn_off) { 6480 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 6481 ret = -EINVAL; 6482 goto err_free; 6483 } 6484 6485 /* check type_id */ 6486 type = btf_type_by_id(btf, krecord[i].type_id); 6487 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 6488 verbose(env, "invalid type id %d in func info", 6489 krecord[i].type_id); 6490 ret = -EINVAL; 6491 goto err_free; 6492 } 6493 6494 prev_offset = krecord[i].insn_off; 6495 urecord += urec_size; 6496 } 6497 6498 prog->aux->func_info = krecord; 6499 prog->aux->func_info_cnt = nfuncs; 6500 return 0; 6501 6502 err_free: 6503 kvfree(krecord); 6504 return ret; 6505 } 6506 6507 static void adjust_btf_func(struct bpf_verifier_env *env) 6508 { 6509 int i; 6510 6511 if (!env->prog->aux->func_info) 6512 return; 6513 6514 for (i = 0; i < env->subprog_cnt; i++) 6515 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 6516 } 6517 6518 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 6519 sizeof(((struct bpf_line_info *)(0))->line_col)) 6520 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 6521 6522 static int check_btf_line(struct bpf_verifier_env *env, 6523 const union bpf_attr *attr, 6524 union bpf_attr __user *uattr) 6525 { 6526 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 6527 struct bpf_subprog_info *sub; 6528 struct bpf_line_info *linfo; 6529 struct bpf_prog *prog; 6530 const struct btf *btf; 6531 void __user *ulinfo; 6532 int err; 6533 6534 nr_linfo = attr->line_info_cnt; 6535 if (!nr_linfo) 6536 return 0; 6537 6538 rec_size = attr->line_info_rec_size; 6539 if (rec_size < MIN_BPF_LINEINFO_SIZE || 6540 rec_size > MAX_LINEINFO_REC_SIZE || 6541 rec_size & (sizeof(u32) - 1)) 6542 return -EINVAL; 6543 6544 /* Need to zero it in case the userspace may 6545 * pass in a smaller bpf_line_info object. 6546 */ 6547 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 6548 GFP_KERNEL | __GFP_NOWARN); 6549 if (!linfo) 6550 return -ENOMEM; 6551 6552 prog = env->prog; 6553 btf = prog->aux->btf; 6554 6555 s = 0; 6556 sub = env->subprog_info; 6557 ulinfo = u64_to_user_ptr(attr->line_info); 6558 expected_size = sizeof(struct bpf_line_info); 6559 ncopy = min_t(u32, expected_size, rec_size); 6560 for (i = 0; i < nr_linfo; i++) { 6561 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 6562 if (err) { 6563 if (err == -E2BIG) { 6564 verbose(env, "nonzero tailing record in line_info"); 6565 if (put_user(expected_size, 6566 &uattr->line_info_rec_size)) 6567 err = -EFAULT; 6568 } 6569 goto err_free; 6570 } 6571 6572 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 6573 err = -EFAULT; 6574 goto err_free; 6575 } 6576 6577 /* 6578 * Check insn_off to ensure 6579 * 1) strictly increasing AND 6580 * 2) bounded by prog->len 6581 * 6582 * The linfo[0].insn_off == 0 check logically falls into 6583 * the later "missing bpf_line_info for func..." case 6584 * because the first linfo[0].insn_off must be the 6585 * first sub also and the first sub must have 6586 * subprog_info[0].start == 0. 6587 */ 6588 if ((i && linfo[i].insn_off <= prev_offset) || 6589 linfo[i].insn_off >= prog->len) { 6590 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 6591 i, linfo[i].insn_off, prev_offset, 6592 prog->len); 6593 err = -EINVAL; 6594 goto err_free; 6595 } 6596 6597 if (!prog->insnsi[linfo[i].insn_off].code) { 6598 verbose(env, 6599 "Invalid insn code at line_info[%u].insn_off\n", 6600 i); 6601 err = -EINVAL; 6602 goto err_free; 6603 } 6604 6605 if (!btf_name_by_offset(btf, linfo[i].line_off) || 6606 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 6607 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 6608 err = -EINVAL; 6609 goto err_free; 6610 } 6611 6612 if (s != env->subprog_cnt) { 6613 if (linfo[i].insn_off == sub[s].start) { 6614 sub[s].linfo_idx = i; 6615 s++; 6616 } else if (sub[s].start < linfo[i].insn_off) { 6617 verbose(env, "missing bpf_line_info for func#%u\n", s); 6618 err = -EINVAL; 6619 goto err_free; 6620 } 6621 } 6622 6623 prev_offset = linfo[i].insn_off; 6624 ulinfo += rec_size; 6625 } 6626 6627 if (s != env->subprog_cnt) { 6628 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 6629 env->subprog_cnt - s, s); 6630 err = -EINVAL; 6631 goto err_free; 6632 } 6633 6634 prog->aux->linfo = linfo; 6635 prog->aux->nr_linfo = nr_linfo; 6636 6637 return 0; 6638 6639 err_free: 6640 kvfree(linfo); 6641 return err; 6642 } 6643 6644 static int check_btf_info(struct bpf_verifier_env *env, 6645 const union bpf_attr *attr, 6646 union bpf_attr __user *uattr) 6647 { 6648 struct btf *btf; 6649 int err; 6650 6651 if (!attr->func_info_cnt && !attr->line_info_cnt) 6652 return 0; 6653 6654 btf = btf_get_by_fd(attr->prog_btf_fd); 6655 if (IS_ERR(btf)) 6656 return PTR_ERR(btf); 6657 env->prog->aux->btf = btf; 6658 6659 err = check_btf_func(env, attr, uattr); 6660 if (err) 6661 return err; 6662 6663 err = check_btf_line(env, attr, uattr); 6664 if (err) 6665 return err; 6666 6667 return 0; 6668 } 6669 6670 /* check %cur's range satisfies %old's */ 6671 static bool range_within(struct bpf_reg_state *old, 6672 struct bpf_reg_state *cur) 6673 { 6674 return old->umin_value <= cur->umin_value && 6675 old->umax_value >= cur->umax_value && 6676 old->smin_value <= cur->smin_value && 6677 old->smax_value >= cur->smax_value; 6678 } 6679 6680 /* Maximum number of register states that can exist at once */ 6681 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 6682 struct idpair { 6683 u32 old; 6684 u32 cur; 6685 }; 6686 6687 /* If in the old state two registers had the same id, then they need to have 6688 * the same id in the new state as well. But that id could be different from 6689 * the old state, so we need to track the mapping from old to new ids. 6690 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 6691 * regs with old id 5 must also have new id 9 for the new state to be safe. But 6692 * regs with a different old id could still have new id 9, we don't care about 6693 * that. 6694 * So we look through our idmap to see if this old id has been seen before. If 6695 * so, we require the new id to match; otherwise, we add the id pair to the map. 6696 */ 6697 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 6698 { 6699 unsigned int i; 6700 6701 for (i = 0; i < ID_MAP_SIZE; i++) { 6702 if (!idmap[i].old) { 6703 /* Reached an empty slot; haven't seen this id before */ 6704 idmap[i].old = old_id; 6705 idmap[i].cur = cur_id; 6706 return true; 6707 } 6708 if (idmap[i].old == old_id) 6709 return idmap[i].cur == cur_id; 6710 } 6711 /* We ran out of idmap slots, which should be impossible */ 6712 WARN_ON_ONCE(1); 6713 return false; 6714 } 6715 6716 static void clean_func_state(struct bpf_verifier_env *env, 6717 struct bpf_func_state *st) 6718 { 6719 enum bpf_reg_liveness live; 6720 int i, j; 6721 6722 for (i = 0; i < BPF_REG_FP; i++) { 6723 live = st->regs[i].live; 6724 /* liveness must not touch this register anymore */ 6725 st->regs[i].live |= REG_LIVE_DONE; 6726 if (!(live & REG_LIVE_READ)) 6727 /* since the register is unused, clear its state 6728 * to make further comparison simpler 6729 */ 6730 __mark_reg_not_init(&st->regs[i]); 6731 } 6732 6733 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 6734 live = st->stack[i].spilled_ptr.live; 6735 /* liveness must not touch this stack slot anymore */ 6736 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 6737 if (!(live & REG_LIVE_READ)) { 6738 __mark_reg_not_init(&st->stack[i].spilled_ptr); 6739 for (j = 0; j < BPF_REG_SIZE; j++) 6740 st->stack[i].slot_type[j] = STACK_INVALID; 6741 } 6742 } 6743 } 6744 6745 static void clean_verifier_state(struct bpf_verifier_env *env, 6746 struct bpf_verifier_state *st) 6747 { 6748 int i; 6749 6750 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 6751 /* all regs in this state in all frames were already marked */ 6752 return; 6753 6754 for (i = 0; i <= st->curframe; i++) 6755 clean_func_state(env, st->frame[i]); 6756 } 6757 6758 /* the parentage chains form a tree. 6759 * the verifier states are added to state lists at given insn and 6760 * pushed into state stack for future exploration. 6761 * when the verifier reaches bpf_exit insn some of the verifer states 6762 * stored in the state lists have their final liveness state already, 6763 * but a lot of states will get revised from liveness point of view when 6764 * the verifier explores other branches. 6765 * Example: 6766 * 1: r0 = 1 6767 * 2: if r1 == 100 goto pc+1 6768 * 3: r0 = 2 6769 * 4: exit 6770 * when the verifier reaches exit insn the register r0 in the state list of 6771 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 6772 * of insn 2 and goes exploring further. At the insn 4 it will walk the 6773 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 6774 * 6775 * Since the verifier pushes the branch states as it sees them while exploring 6776 * the program the condition of walking the branch instruction for the second 6777 * time means that all states below this branch were already explored and 6778 * their final liveness markes are already propagated. 6779 * Hence when the verifier completes the search of state list in is_state_visited() 6780 * we can call this clean_live_states() function to mark all liveness states 6781 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 6782 * will not be used. 6783 * This function also clears the registers and stack for states that !READ 6784 * to simplify state merging. 6785 * 6786 * Important note here that walking the same branch instruction in the callee 6787 * doesn't meant that the states are DONE. The verifier has to compare 6788 * the callsites 6789 */ 6790 static void clean_live_states(struct bpf_verifier_env *env, int insn, 6791 struct bpf_verifier_state *cur) 6792 { 6793 struct bpf_verifier_state_list *sl; 6794 int i; 6795 6796 sl = *explored_state(env, insn); 6797 while (sl) { 6798 if (sl->state.branches) 6799 goto next; 6800 if (sl->state.insn_idx != insn || 6801 sl->state.curframe != cur->curframe) 6802 goto next; 6803 for (i = 0; i <= cur->curframe; i++) 6804 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 6805 goto next; 6806 clean_verifier_state(env, &sl->state); 6807 next: 6808 sl = sl->next; 6809 } 6810 } 6811 6812 /* Returns true if (rold safe implies rcur safe) */ 6813 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 6814 struct idpair *idmap) 6815 { 6816 bool equal; 6817 6818 if (!(rold->live & REG_LIVE_READ)) 6819 /* explored state didn't use this */ 6820 return true; 6821 6822 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 6823 6824 if (rold->type == PTR_TO_STACK) 6825 /* two stack pointers are equal only if they're pointing to 6826 * the same stack frame, since fp-8 in foo != fp-8 in bar 6827 */ 6828 return equal && rold->frameno == rcur->frameno; 6829 6830 if (equal) 6831 return true; 6832 6833 if (rold->type == NOT_INIT) 6834 /* explored state can't have used this */ 6835 return true; 6836 if (rcur->type == NOT_INIT) 6837 return false; 6838 switch (rold->type) { 6839 case SCALAR_VALUE: 6840 if (rcur->type == SCALAR_VALUE) { 6841 if (!rold->precise && !rcur->precise) 6842 return true; 6843 /* new val must satisfy old val knowledge */ 6844 return range_within(rold, rcur) && 6845 tnum_in(rold->var_off, rcur->var_off); 6846 } else { 6847 /* We're trying to use a pointer in place of a scalar. 6848 * Even if the scalar was unbounded, this could lead to 6849 * pointer leaks because scalars are allowed to leak 6850 * while pointers are not. We could make this safe in 6851 * special cases if root is calling us, but it's 6852 * probably not worth the hassle. 6853 */ 6854 return false; 6855 } 6856 case PTR_TO_MAP_VALUE: 6857 /* If the new min/max/var_off satisfy the old ones and 6858 * everything else matches, we are OK. 6859 * 'id' is not compared, since it's only used for maps with 6860 * bpf_spin_lock inside map element and in such cases if 6861 * the rest of the prog is valid for one map element then 6862 * it's valid for all map elements regardless of the key 6863 * used in bpf_map_lookup() 6864 */ 6865 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 6866 range_within(rold, rcur) && 6867 tnum_in(rold->var_off, rcur->var_off); 6868 case PTR_TO_MAP_VALUE_OR_NULL: 6869 /* a PTR_TO_MAP_VALUE could be safe to use as a 6870 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 6871 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 6872 * checked, doing so could have affected others with the same 6873 * id, and we can't check for that because we lost the id when 6874 * we converted to a PTR_TO_MAP_VALUE. 6875 */ 6876 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 6877 return false; 6878 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 6879 return false; 6880 /* Check our ids match any regs they're supposed to */ 6881 return check_ids(rold->id, rcur->id, idmap); 6882 case PTR_TO_PACKET_META: 6883 case PTR_TO_PACKET: 6884 if (rcur->type != rold->type) 6885 return false; 6886 /* We must have at least as much range as the old ptr 6887 * did, so that any accesses which were safe before are 6888 * still safe. This is true even if old range < old off, 6889 * since someone could have accessed through (ptr - k), or 6890 * even done ptr -= k in a register, to get a safe access. 6891 */ 6892 if (rold->range > rcur->range) 6893 return false; 6894 /* If the offsets don't match, we can't trust our alignment; 6895 * nor can we be sure that we won't fall out of range. 6896 */ 6897 if (rold->off != rcur->off) 6898 return false; 6899 /* id relations must be preserved */ 6900 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 6901 return false; 6902 /* new val must satisfy old val knowledge */ 6903 return range_within(rold, rcur) && 6904 tnum_in(rold->var_off, rcur->var_off); 6905 case PTR_TO_CTX: 6906 case CONST_PTR_TO_MAP: 6907 case PTR_TO_PACKET_END: 6908 case PTR_TO_FLOW_KEYS: 6909 case PTR_TO_SOCKET: 6910 case PTR_TO_SOCKET_OR_NULL: 6911 case PTR_TO_SOCK_COMMON: 6912 case PTR_TO_SOCK_COMMON_OR_NULL: 6913 case PTR_TO_TCP_SOCK: 6914 case PTR_TO_TCP_SOCK_OR_NULL: 6915 case PTR_TO_XDP_SOCK: 6916 /* Only valid matches are exact, which memcmp() above 6917 * would have accepted 6918 */ 6919 default: 6920 /* Don't know what's going on, just say it's not safe */ 6921 return false; 6922 } 6923 6924 /* Shouldn't get here; if we do, say it's not safe */ 6925 WARN_ON_ONCE(1); 6926 return false; 6927 } 6928 6929 static bool stacksafe(struct bpf_func_state *old, 6930 struct bpf_func_state *cur, 6931 struct idpair *idmap) 6932 { 6933 int i, spi; 6934 6935 /* walk slots of the explored stack and ignore any additional 6936 * slots in the current stack, since explored(safe) state 6937 * didn't use them 6938 */ 6939 for (i = 0; i < old->allocated_stack; i++) { 6940 spi = i / BPF_REG_SIZE; 6941 6942 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 6943 i += BPF_REG_SIZE - 1; 6944 /* explored state didn't use this */ 6945 continue; 6946 } 6947 6948 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 6949 continue; 6950 6951 /* explored stack has more populated slots than current stack 6952 * and these slots were used 6953 */ 6954 if (i >= cur->allocated_stack) 6955 return false; 6956 6957 /* if old state was safe with misc data in the stack 6958 * it will be safe with zero-initialized stack. 6959 * The opposite is not true 6960 */ 6961 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 6962 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 6963 continue; 6964 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 6965 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 6966 /* Ex: old explored (safe) state has STACK_SPILL in 6967 * this stack slot, but current has has STACK_MISC -> 6968 * this verifier states are not equivalent, 6969 * return false to continue verification of this path 6970 */ 6971 return false; 6972 if (i % BPF_REG_SIZE) 6973 continue; 6974 if (old->stack[spi].slot_type[0] != STACK_SPILL) 6975 continue; 6976 if (!regsafe(&old->stack[spi].spilled_ptr, 6977 &cur->stack[spi].spilled_ptr, 6978 idmap)) 6979 /* when explored and current stack slot are both storing 6980 * spilled registers, check that stored pointers types 6981 * are the same as well. 6982 * Ex: explored safe path could have stored 6983 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 6984 * but current path has stored: 6985 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 6986 * such verifier states are not equivalent. 6987 * return false to continue verification of this path 6988 */ 6989 return false; 6990 } 6991 return true; 6992 } 6993 6994 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 6995 { 6996 if (old->acquired_refs != cur->acquired_refs) 6997 return false; 6998 return !memcmp(old->refs, cur->refs, 6999 sizeof(*old->refs) * old->acquired_refs); 7000 } 7001 7002 /* compare two verifier states 7003 * 7004 * all states stored in state_list are known to be valid, since 7005 * verifier reached 'bpf_exit' instruction through them 7006 * 7007 * this function is called when verifier exploring different branches of 7008 * execution popped from the state stack. If it sees an old state that has 7009 * more strict register state and more strict stack state then this execution 7010 * branch doesn't need to be explored further, since verifier already 7011 * concluded that more strict state leads to valid finish. 7012 * 7013 * Therefore two states are equivalent if register state is more conservative 7014 * and explored stack state is more conservative than the current one. 7015 * Example: 7016 * explored current 7017 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 7018 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 7019 * 7020 * In other words if current stack state (one being explored) has more 7021 * valid slots than old one that already passed validation, it means 7022 * the verifier can stop exploring and conclude that current state is valid too 7023 * 7024 * Similarly with registers. If explored state has register type as invalid 7025 * whereas register type in current state is meaningful, it means that 7026 * the current state will reach 'bpf_exit' instruction safely 7027 */ 7028 static bool func_states_equal(struct bpf_func_state *old, 7029 struct bpf_func_state *cur) 7030 { 7031 struct idpair *idmap; 7032 bool ret = false; 7033 int i; 7034 7035 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 7036 /* If we failed to allocate the idmap, just say it's not safe */ 7037 if (!idmap) 7038 return false; 7039 7040 for (i = 0; i < MAX_BPF_REG; i++) { 7041 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 7042 goto out_free; 7043 } 7044 7045 if (!stacksafe(old, cur, idmap)) 7046 goto out_free; 7047 7048 if (!refsafe(old, cur)) 7049 goto out_free; 7050 ret = true; 7051 out_free: 7052 kfree(idmap); 7053 return ret; 7054 } 7055 7056 static bool states_equal(struct bpf_verifier_env *env, 7057 struct bpf_verifier_state *old, 7058 struct bpf_verifier_state *cur) 7059 { 7060 int i; 7061 7062 if (old->curframe != cur->curframe) 7063 return false; 7064 7065 /* Verification state from speculative execution simulation 7066 * must never prune a non-speculative execution one. 7067 */ 7068 if (old->speculative && !cur->speculative) 7069 return false; 7070 7071 if (old->active_spin_lock != cur->active_spin_lock) 7072 return false; 7073 7074 /* for states to be equal callsites have to be the same 7075 * and all frame states need to be equivalent 7076 */ 7077 for (i = 0; i <= old->curframe; i++) { 7078 if (old->frame[i]->callsite != cur->frame[i]->callsite) 7079 return false; 7080 if (!func_states_equal(old->frame[i], cur->frame[i])) 7081 return false; 7082 } 7083 return true; 7084 } 7085 7086 /* Return 0 if no propagation happened. Return negative error code if error 7087 * happened. Otherwise, return the propagated bit. 7088 */ 7089 static int propagate_liveness_reg(struct bpf_verifier_env *env, 7090 struct bpf_reg_state *reg, 7091 struct bpf_reg_state *parent_reg) 7092 { 7093 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 7094 u8 flag = reg->live & REG_LIVE_READ; 7095 int err; 7096 7097 /* When comes here, read flags of PARENT_REG or REG could be any of 7098 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 7099 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 7100 */ 7101 if (parent_flag == REG_LIVE_READ64 || 7102 /* Or if there is no read flag from REG. */ 7103 !flag || 7104 /* Or if the read flag from REG is the same as PARENT_REG. */ 7105 parent_flag == flag) 7106 return 0; 7107 7108 err = mark_reg_read(env, reg, parent_reg, flag); 7109 if (err) 7110 return err; 7111 7112 return flag; 7113 } 7114 7115 /* A write screens off any subsequent reads; but write marks come from the 7116 * straight-line code between a state and its parent. When we arrive at an 7117 * equivalent state (jump target or such) we didn't arrive by the straight-line 7118 * code, so read marks in the state must propagate to the parent regardless 7119 * of the state's write marks. That's what 'parent == state->parent' comparison 7120 * in mark_reg_read() is for. 7121 */ 7122 static int propagate_liveness(struct bpf_verifier_env *env, 7123 const struct bpf_verifier_state *vstate, 7124 struct bpf_verifier_state *vparent) 7125 { 7126 struct bpf_reg_state *state_reg, *parent_reg; 7127 struct bpf_func_state *state, *parent; 7128 int i, frame, err = 0; 7129 7130 if (vparent->curframe != vstate->curframe) { 7131 WARN(1, "propagate_live: parent frame %d current frame %d\n", 7132 vparent->curframe, vstate->curframe); 7133 return -EFAULT; 7134 } 7135 /* Propagate read liveness of registers... */ 7136 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 7137 for (frame = 0; frame <= vstate->curframe; frame++) { 7138 parent = vparent->frame[frame]; 7139 state = vstate->frame[frame]; 7140 parent_reg = parent->regs; 7141 state_reg = state->regs; 7142 /* We don't need to worry about FP liveness, it's read-only */ 7143 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 7144 err = propagate_liveness_reg(env, &state_reg[i], 7145 &parent_reg[i]); 7146 if (err < 0) 7147 return err; 7148 if (err == REG_LIVE_READ64) 7149 mark_insn_zext(env, &parent_reg[i]); 7150 } 7151 7152 /* Propagate stack slots. */ 7153 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 7154 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 7155 parent_reg = &parent->stack[i].spilled_ptr; 7156 state_reg = &state->stack[i].spilled_ptr; 7157 err = propagate_liveness_reg(env, state_reg, 7158 parent_reg); 7159 if (err < 0) 7160 return err; 7161 } 7162 } 7163 return 0; 7164 } 7165 7166 /* find precise scalars in the previous equivalent state and 7167 * propagate them into the current state 7168 */ 7169 static int propagate_precision(struct bpf_verifier_env *env, 7170 const struct bpf_verifier_state *old) 7171 { 7172 struct bpf_reg_state *state_reg; 7173 struct bpf_func_state *state; 7174 int i, err = 0; 7175 7176 state = old->frame[old->curframe]; 7177 state_reg = state->regs; 7178 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 7179 if (state_reg->type != SCALAR_VALUE || 7180 !state_reg->precise) 7181 continue; 7182 if (env->log.level & BPF_LOG_LEVEL2) 7183 verbose(env, "propagating r%d\n", i); 7184 err = mark_chain_precision(env, i); 7185 if (err < 0) 7186 return err; 7187 } 7188 7189 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 7190 if (state->stack[i].slot_type[0] != STACK_SPILL) 7191 continue; 7192 state_reg = &state->stack[i].spilled_ptr; 7193 if (state_reg->type != SCALAR_VALUE || 7194 !state_reg->precise) 7195 continue; 7196 if (env->log.level & BPF_LOG_LEVEL2) 7197 verbose(env, "propagating fp%d\n", 7198 (-i - 1) * BPF_REG_SIZE); 7199 err = mark_chain_precision_stack(env, i); 7200 if (err < 0) 7201 return err; 7202 } 7203 return 0; 7204 } 7205 7206 static bool states_maybe_looping(struct bpf_verifier_state *old, 7207 struct bpf_verifier_state *cur) 7208 { 7209 struct bpf_func_state *fold, *fcur; 7210 int i, fr = cur->curframe; 7211 7212 if (old->curframe != fr) 7213 return false; 7214 7215 fold = old->frame[fr]; 7216 fcur = cur->frame[fr]; 7217 for (i = 0; i < MAX_BPF_REG; i++) 7218 if (memcmp(&fold->regs[i], &fcur->regs[i], 7219 offsetof(struct bpf_reg_state, parent))) 7220 return false; 7221 return true; 7222 } 7223 7224 7225 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 7226 { 7227 struct bpf_verifier_state_list *new_sl; 7228 struct bpf_verifier_state_list *sl, **pprev; 7229 struct bpf_verifier_state *cur = env->cur_state, *new; 7230 int i, j, err, states_cnt = 0; 7231 bool add_new_state = env->test_state_freq ? true : false; 7232 7233 cur->last_insn_idx = env->prev_insn_idx; 7234 if (!env->insn_aux_data[insn_idx].prune_point) 7235 /* this 'insn_idx' instruction wasn't marked, so we will not 7236 * be doing state search here 7237 */ 7238 return 0; 7239 7240 /* bpf progs typically have pruning point every 4 instructions 7241 * http://vger.kernel.org/bpfconf2019.html#session-1 7242 * Do not add new state for future pruning if the verifier hasn't seen 7243 * at least 2 jumps and at least 8 instructions. 7244 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 7245 * In tests that amounts to up to 50% reduction into total verifier 7246 * memory consumption and 20% verifier time speedup. 7247 */ 7248 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 7249 env->insn_processed - env->prev_insn_processed >= 8) 7250 add_new_state = true; 7251 7252 pprev = explored_state(env, insn_idx); 7253 sl = *pprev; 7254 7255 clean_live_states(env, insn_idx, cur); 7256 7257 while (sl) { 7258 states_cnt++; 7259 if (sl->state.insn_idx != insn_idx) 7260 goto next; 7261 if (sl->state.branches) { 7262 if (states_maybe_looping(&sl->state, cur) && 7263 states_equal(env, &sl->state, cur)) { 7264 verbose_linfo(env, insn_idx, "; "); 7265 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 7266 return -EINVAL; 7267 } 7268 /* if the verifier is processing a loop, avoid adding new state 7269 * too often, since different loop iterations have distinct 7270 * states and may not help future pruning. 7271 * This threshold shouldn't be too low to make sure that 7272 * a loop with large bound will be rejected quickly. 7273 * The most abusive loop will be: 7274 * r1 += 1 7275 * if r1 < 1000000 goto pc-2 7276 * 1M insn_procssed limit / 100 == 10k peak states. 7277 * This threshold shouldn't be too high either, since states 7278 * at the end of the loop are likely to be useful in pruning. 7279 */ 7280 if (env->jmps_processed - env->prev_jmps_processed < 20 && 7281 env->insn_processed - env->prev_insn_processed < 100) 7282 add_new_state = false; 7283 goto miss; 7284 } 7285 if (states_equal(env, &sl->state, cur)) { 7286 sl->hit_cnt++; 7287 /* reached equivalent register/stack state, 7288 * prune the search. 7289 * Registers read by the continuation are read by us. 7290 * If we have any write marks in env->cur_state, they 7291 * will prevent corresponding reads in the continuation 7292 * from reaching our parent (an explored_state). Our 7293 * own state will get the read marks recorded, but 7294 * they'll be immediately forgotten as we're pruning 7295 * this state and will pop a new one. 7296 */ 7297 err = propagate_liveness(env, &sl->state, cur); 7298 7299 /* if previous state reached the exit with precision and 7300 * current state is equivalent to it (except precsion marks) 7301 * the precision needs to be propagated back in 7302 * the current state. 7303 */ 7304 err = err ? : push_jmp_history(env, cur); 7305 err = err ? : propagate_precision(env, &sl->state); 7306 if (err) 7307 return err; 7308 return 1; 7309 } 7310 miss: 7311 /* when new state is not going to be added do not increase miss count. 7312 * Otherwise several loop iterations will remove the state 7313 * recorded earlier. The goal of these heuristics is to have 7314 * states from some iterations of the loop (some in the beginning 7315 * and some at the end) to help pruning. 7316 */ 7317 if (add_new_state) 7318 sl->miss_cnt++; 7319 /* heuristic to determine whether this state is beneficial 7320 * to keep checking from state equivalence point of view. 7321 * Higher numbers increase max_states_per_insn and verification time, 7322 * but do not meaningfully decrease insn_processed. 7323 */ 7324 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 7325 /* the state is unlikely to be useful. Remove it to 7326 * speed up verification 7327 */ 7328 *pprev = sl->next; 7329 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 7330 u32 br = sl->state.branches; 7331 7332 WARN_ONCE(br, 7333 "BUG live_done but branches_to_explore %d\n", 7334 br); 7335 free_verifier_state(&sl->state, false); 7336 kfree(sl); 7337 env->peak_states--; 7338 } else { 7339 /* cannot free this state, since parentage chain may 7340 * walk it later. Add it for free_list instead to 7341 * be freed at the end of verification 7342 */ 7343 sl->next = env->free_list; 7344 env->free_list = sl; 7345 } 7346 sl = *pprev; 7347 continue; 7348 } 7349 next: 7350 pprev = &sl->next; 7351 sl = *pprev; 7352 } 7353 7354 if (env->max_states_per_insn < states_cnt) 7355 env->max_states_per_insn = states_cnt; 7356 7357 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 7358 return push_jmp_history(env, cur); 7359 7360 if (!add_new_state) 7361 return push_jmp_history(env, cur); 7362 7363 /* There were no equivalent states, remember the current one. 7364 * Technically the current state is not proven to be safe yet, 7365 * but it will either reach outer most bpf_exit (which means it's safe) 7366 * or it will be rejected. When there are no loops the verifier won't be 7367 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 7368 * again on the way to bpf_exit. 7369 * When looping the sl->state.branches will be > 0 and this state 7370 * will not be considered for equivalence until branches == 0. 7371 */ 7372 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 7373 if (!new_sl) 7374 return -ENOMEM; 7375 env->total_states++; 7376 env->peak_states++; 7377 env->prev_jmps_processed = env->jmps_processed; 7378 env->prev_insn_processed = env->insn_processed; 7379 7380 /* add new state to the head of linked list */ 7381 new = &new_sl->state; 7382 err = copy_verifier_state(new, cur); 7383 if (err) { 7384 free_verifier_state(new, false); 7385 kfree(new_sl); 7386 return err; 7387 } 7388 new->insn_idx = insn_idx; 7389 WARN_ONCE(new->branches != 1, 7390 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 7391 7392 cur->parent = new; 7393 cur->first_insn_idx = insn_idx; 7394 clear_jmp_history(cur); 7395 new_sl->next = *explored_state(env, insn_idx); 7396 *explored_state(env, insn_idx) = new_sl; 7397 /* connect new state to parentage chain. Current frame needs all 7398 * registers connected. Only r6 - r9 of the callers are alive (pushed 7399 * to the stack implicitly by JITs) so in callers' frames connect just 7400 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 7401 * the state of the call instruction (with WRITTEN set), and r0 comes 7402 * from callee with its full parentage chain, anyway. 7403 */ 7404 /* clear write marks in current state: the writes we did are not writes 7405 * our child did, so they don't screen off its reads from us. 7406 * (There are no read marks in current state, because reads always mark 7407 * their parent and current state never has children yet. Only 7408 * explored_states can get read marks.) 7409 */ 7410 for (j = 0; j <= cur->curframe; j++) { 7411 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 7412 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 7413 for (i = 0; i < BPF_REG_FP; i++) 7414 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 7415 } 7416 7417 /* all stack frames are accessible from callee, clear them all */ 7418 for (j = 0; j <= cur->curframe; j++) { 7419 struct bpf_func_state *frame = cur->frame[j]; 7420 struct bpf_func_state *newframe = new->frame[j]; 7421 7422 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 7423 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 7424 frame->stack[i].spilled_ptr.parent = 7425 &newframe->stack[i].spilled_ptr; 7426 } 7427 } 7428 return 0; 7429 } 7430 7431 /* Return true if it's OK to have the same insn return a different type. */ 7432 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 7433 { 7434 switch (type) { 7435 case PTR_TO_CTX: 7436 case PTR_TO_SOCKET: 7437 case PTR_TO_SOCKET_OR_NULL: 7438 case PTR_TO_SOCK_COMMON: 7439 case PTR_TO_SOCK_COMMON_OR_NULL: 7440 case PTR_TO_TCP_SOCK: 7441 case PTR_TO_TCP_SOCK_OR_NULL: 7442 case PTR_TO_XDP_SOCK: 7443 return false; 7444 default: 7445 return true; 7446 } 7447 } 7448 7449 /* If an instruction was previously used with particular pointer types, then we 7450 * need to be careful to avoid cases such as the below, where it may be ok 7451 * for one branch accessing the pointer, but not ok for the other branch: 7452 * 7453 * R1 = sock_ptr 7454 * goto X; 7455 * ... 7456 * R1 = some_other_valid_ptr; 7457 * goto X; 7458 * ... 7459 * R2 = *(u32 *)(R1 + 0); 7460 */ 7461 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 7462 { 7463 return src != prev && (!reg_type_mismatch_ok(src) || 7464 !reg_type_mismatch_ok(prev)); 7465 } 7466 7467 static int do_check(struct bpf_verifier_env *env) 7468 { 7469 struct bpf_verifier_state *state; 7470 struct bpf_insn *insns = env->prog->insnsi; 7471 struct bpf_reg_state *regs; 7472 int insn_cnt = env->prog->len; 7473 bool do_print_state = false; 7474 int prev_insn_idx = -1; 7475 7476 env->prev_linfo = NULL; 7477 7478 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 7479 if (!state) 7480 return -ENOMEM; 7481 state->curframe = 0; 7482 state->speculative = false; 7483 state->branches = 1; 7484 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 7485 if (!state->frame[0]) { 7486 kfree(state); 7487 return -ENOMEM; 7488 } 7489 env->cur_state = state; 7490 init_func_state(env, state->frame[0], 7491 BPF_MAIN_FUNC /* callsite */, 7492 0 /* frameno */, 7493 0 /* subprogno, zero == main subprog */); 7494 7495 for (;;) { 7496 struct bpf_insn *insn; 7497 u8 class; 7498 int err; 7499 7500 env->prev_insn_idx = prev_insn_idx; 7501 if (env->insn_idx >= insn_cnt) { 7502 verbose(env, "invalid insn idx %d insn_cnt %d\n", 7503 env->insn_idx, insn_cnt); 7504 return -EFAULT; 7505 } 7506 7507 insn = &insns[env->insn_idx]; 7508 class = BPF_CLASS(insn->code); 7509 7510 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 7511 verbose(env, 7512 "BPF program is too large. Processed %d insn\n", 7513 env->insn_processed); 7514 return -E2BIG; 7515 } 7516 7517 err = is_state_visited(env, env->insn_idx); 7518 if (err < 0) 7519 return err; 7520 if (err == 1) { 7521 /* found equivalent state, can prune the search */ 7522 if (env->log.level & BPF_LOG_LEVEL) { 7523 if (do_print_state) 7524 verbose(env, "\nfrom %d to %d%s: safe\n", 7525 env->prev_insn_idx, env->insn_idx, 7526 env->cur_state->speculative ? 7527 " (speculative execution)" : ""); 7528 else 7529 verbose(env, "%d: safe\n", env->insn_idx); 7530 } 7531 goto process_bpf_exit; 7532 } 7533 7534 if (signal_pending(current)) 7535 return -EAGAIN; 7536 7537 if (need_resched()) 7538 cond_resched(); 7539 7540 if (env->log.level & BPF_LOG_LEVEL2 || 7541 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 7542 if (env->log.level & BPF_LOG_LEVEL2) 7543 verbose(env, "%d:", env->insn_idx); 7544 else 7545 verbose(env, "\nfrom %d to %d%s:", 7546 env->prev_insn_idx, env->insn_idx, 7547 env->cur_state->speculative ? 7548 " (speculative execution)" : ""); 7549 print_verifier_state(env, state->frame[state->curframe]); 7550 do_print_state = false; 7551 } 7552 7553 if (env->log.level & BPF_LOG_LEVEL) { 7554 const struct bpf_insn_cbs cbs = { 7555 .cb_print = verbose, 7556 .private_data = env, 7557 }; 7558 7559 verbose_linfo(env, env->insn_idx, "; "); 7560 verbose(env, "%d: ", env->insn_idx); 7561 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 7562 } 7563 7564 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7565 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 7566 env->prev_insn_idx); 7567 if (err) 7568 return err; 7569 } 7570 7571 regs = cur_regs(env); 7572 env->insn_aux_data[env->insn_idx].seen = true; 7573 prev_insn_idx = env->insn_idx; 7574 7575 if (class == BPF_ALU || class == BPF_ALU64) { 7576 err = check_alu_op(env, insn); 7577 if (err) 7578 return err; 7579 7580 } else if (class == BPF_LDX) { 7581 enum bpf_reg_type *prev_src_type, src_reg_type; 7582 7583 /* check for reserved fields is already done */ 7584 7585 /* check src operand */ 7586 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7587 if (err) 7588 return err; 7589 7590 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 7591 if (err) 7592 return err; 7593 7594 src_reg_type = regs[insn->src_reg].type; 7595 7596 /* check that memory (src_reg + off) is readable, 7597 * the state of dst_reg will be updated by this func 7598 */ 7599 err = check_mem_access(env, env->insn_idx, insn->src_reg, 7600 insn->off, BPF_SIZE(insn->code), 7601 BPF_READ, insn->dst_reg, false); 7602 if (err) 7603 return err; 7604 7605 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7606 7607 if (*prev_src_type == NOT_INIT) { 7608 /* saw a valid insn 7609 * dst_reg = *(u32 *)(src_reg + off) 7610 * save type to validate intersecting paths 7611 */ 7612 *prev_src_type = src_reg_type; 7613 7614 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 7615 /* ABuser program is trying to use the same insn 7616 * dst_reg = *(u32*) (src_reg + off) 7617 * with different pointer types: 7618 * src_reg == ctx in one branch and 7619 * src_reg == stack|map in some other branch. 7620 * Reject it. 7621 */ 7622 verbose(env, "same insn cannot be used with different pointers\n"); 7623 return -EINVAL; 7624 } 7625 7626 } else if (class == BPF_STX) { 7627 enum bpf_reg_type *prev_dst_type, dst_reg_type; 7628 7629 if (BPF_MODE(insn->code) == BPF_XADD) { 7630 err = check_xadd(env, env->insn_idx, insn); 7631 if (err) 7632 return err; 7633 env->insn_idx++; 7634 continue; 7635 } 7636 7637 /* check src1 operand */ 7638 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7639 if (err) 7640 return err; 7641 /* check src2 operand */ 7642 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7643 if (err) 7644 return err; 7645 7646 dst_reg_type = regs[insn->dst_reg].type; 7647 7648 /* check that memory (dst_reg + off) is writeable */ 7649 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7650 insn->off, BPF_SIZE(insn->code), 7651 BPF_WRITE, insn->src_reg, false); 7652 if (err) 7653 return err; 7654 7655 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 7656 7657 if (*prev_dst_type == NOT_INIT) { 7658 *prev_dst_type = dst_reg_type; 7659 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 7660 verbose(env, "same insn cannot be used with different pointers\n"); 7661 return -EINVAL; 7662 } 7663 7664 } else if (class == BPF_ST) { 7665 if (BPF_MODE(insn->code) != BPF_MEM || 7666 insn->src_reg != BPF_REG_0) { 7667 verbose(env, "BPF_ST uses reserved fields\n"); 7668 return -EINVAL; 7669 } 7670 /* check src operand */ 7671 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7672 if (err) 7673 return err; 7674 7675 if (is_ctx_reg(env, insn->dst_reg)) { 7676 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 7677 insn->dst_reg, 7678 reg_type_str[reg_state(env, insn->dst_reg)->type]); 7679 return -EACCES; 7680 } 7681 7682 /* check that memory (dst_reg + off) is writeable */ 7683 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 7684 insn->off, BPF_SIZE(insn->code), 7685 BPF_WRITE, -1, false); 7686 if (err) 7687 return err; 7688 7689 } else if (class == BPF_JMP || class == BPF_JMP32) { 7690 u8 opcode = BPF_OP(insn->code); 7691 7692 env->jmps_processed++; 7693 if (opcode == BPF_CALL) { 7694 if (BPF_SRC(insn->code) != BPF_K || 7695 insn->off != 0 || 7696 (insn->src_reg != BPF_REG_0 && 7697 insn->src_reg != BPF_PSEUDO_CALL) || 7698 insn->dst_reg != BPF_REG_0 || 7699 class == BPF_JMP32) { 7700 verbose(env, "BPF_CALL uses reserved fields\n"); 7701 return -EINVAL; 7702 } 7703 7704 if (env->cur_state->active_spin_lock && 7705 (insn->src_reg == BPF_PSEUDO_CALL || 7706 insn->imm != BPF_FUNC_spin_unlock)) { 7707 verbose(env, "function calls are not allowed while holding a lock\n"); 7708 return -EINVAL; 7709 } 7710 if (insn->src_reg == BPF_PSEUDO_CALL) 7711 err = check_func_call(env, insn, &env->insn_idx); 7712 else 7713 err = check_helper_call(env, insn->imm, env->insn_idx); 7714 if (err) 7715 return err; 7716 7717 } else if (opcode == BPF_JA) { 7718 if (BPF_SRC(insn->code) != BPF_K || 7719 insn->imm != 0 || 7720 insn->src_reg != BPF_REG_0 || 7721 insn->dst_reg != BPF_REG_0 || 7722 class == BPF_JMP32) { 7723 verbose(env, "BPF_JA uses reserved fields\n"); 7724 return -EINVAL; 7725 } 7726 7727 env->insn_idx += insn->off + 1; 7728 continue; 7729 7730 } else if (opcode == BPF_EXIT) { 7731 if (BPF_SRC(insn->code) != BPF_K || 7732 insn->imm != 0 || 7733 insn->src_reg != BPF_REG_0 || 7734 insn->dst_reg != BPF_REG_0 || 7735 class == BPF_JMP32) { 7736 verbose(env, "BPF_EXIT uses reserved fields\n"); 7737 return -EINVAL; 7738 } 7739 7740 if (env->cur_state->active_spin_lock) { 7741 verbose(env, "bpf_spin_unlock is missing\n"); 7742 return -EINVAL; 7743 } 7744 7745 if (state->curframe) { 7746 /* exit from nested function */ 7747 err = prepare_func_exit(env, &env->insn_idx); 7748 if (err) 7749 return err; 7750 do_print_state = true; 7751 continue; 7752 } 7753 7754 err = check_reference_leak(env); 7755 if (err) 7756 return err; 7757 7758 /* eBPF calling convetion is such that R0 is used 7759 * to return the value from eBPF program. 7760 * Make sure that it's readable at this time 7761 * of bpf_exit, which means that program wrote 7762 * something into it earlier 7763 */ 7764 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7765 if (err) 7766 return err; 7767 7768 if (is_pointer_value(env, BPF_REG_0)) { 7769 verbose(env, "R0 leaks addr as return value\n"); 7770 return -EACCES; 7771 } 7772 7773 err = check_return_code(env); 7774 if (err) 7775 return err; 7776 process_bpf_exit: 7777 update_branch_counts(env, env->cur_state); 7778 err = pop_stack(env, &prev_insn_idx, 7779 &env->insn_idx); 7780 if (err < 0) { 7781 if (err != -ENOENT) 7782 return err; 7783 break; 7784 } else { 7785 do_print_state = true; 7786 continue; 7787 } 7788 } else { 7789 err = check_cond_jmp_op(env, insn, &env->insn_idx); 7790 if (err) 7791 return err; 7792 } 7793 } else if (class == BPF_LD) { 7794 u8 mode = BPF_MODE(insn->code); 7795 7796 if (mode == BPF_ABS || mode == BPF_IND) { 7797 err = check_ld_abs(env, insn); 7798 if (err) 7799 return err; 7800 7801 } else if (mode == BPF_IMM) { 7802 err = check_ld_imm(env, insn); 7803 if (err) 7804 return err; 7805 7806 env->insn_idx++; 7807 env->insn_aux_data[env->insn_idx].seen = true; 7808 } else { 7809 verbose(env, "invalid BPF_LD mode\n"); 7810 return -EINVAL; 7811 } 7812 } else { 7813 verbose(env, "unknown insn class %d\n", class); 7814 return -EINVAL; 7815 } 7816 7817 env->insn_idx++; 7818 } 7819 7820 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 7821 return 0; 7822 } 7823 7824 static int check_map_prealloc(struct bpf_map *map) 7825 { 7826 return (map->map_type != BPF_MAP_TYPE_HASH && 7827 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 7828 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 7829 !(map->map_flags & BPF_F_NO_PREALLOC); 7830 } 7831 7832 static bool is_tracing_prog_type(enum bpf_prog_type type) 7833 { 7834 switch (type) { 7835 case BPF_PROG_TYPE_KPROBE: 7836 case BPF_PROG_TYPE_TRACEPOINT: 7837 case BPF_PROG_TYPE_PERF_EVENT: 7838 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7839 return true; 7840 default: 7841 return false; 7842 } 7843 } 7844 7845 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 7846 struct bpf_map *map, 7847 struct bpf_prog *prog) 7848 7849 { 7850 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 7851 * preallocated hash maps, since doing memory allocation 7852 * in overflow_handler can crash depending on where nmi got 7853 * triggered. 7854 */ 7855 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 7856 if (!check_map_prealloc(map)) { 7857 verbose(env, "perf_event programs can only use preallocated hash map\n"); 7858 return -EINVAL; 7859 } 7860 if (map->inner_map_meta && 7861 !check_map_prealloc(map->inner_map_meta)) { 7862 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 7863 return -EINVAL; 7864 } 7865 } 7866 7867 if ((is_tracing_prog_type(prog->type) || 7868 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) && 7869 map_value_has_spin_lock(map)) { 7870 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 7871 return -EINVAL; 7872 } 7873 7874 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 7875 !bpf_offload_prog_map_match(prog, map)) { 7876 verbose(env, "offload device mismatch between prog and map\n"); 7877 return -EINVAL; 7878 } 7879 7880 return 0; 7881 } 7882 7883 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 7884 { 7885 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 7886 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 7887 } 7888 7889 /* look for pseudo eBPF instructions that access map FDs and 7890 * replace them with actual map pointers 7891 */ 7892 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 7893 { 7894 struct bpf_insn *insn = env->prog->insnsi; 7895 int insn_cnt = env->prog->len; 7896 int i, j, err; 7897 7898 err = bpf_prog_calc_tag(env->prog); 7899 if (err) 7900 return err; 7901 7902 for (i = 0; i < insn_cnt; i++, insn++) { 7903 if (BPF_CLASS(insn->code) == BPF_LDX && 7904 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 7905 verbose(env, "BPF_LDX uses reserved fields\n"); 7906 return -EINVAL; 7907 } 7908 7909 if (BPF_CLASS(insn->code) == BPF_STX && 7910 ((BPF_MODE(insn->code) != BPF_MEM && 7911 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 7912 verbose(env, "BPF_STX uses reserved fields\n"); 7913 return -EINVAL; 7914 } 7915 7916 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 7917 struct bpf_insn_aux_data *aux; 7918 struct bpf_map *map; 7919 struct fd f; 7920 u64 addr; 7921 7922 if (i == insn_cnt - 1 || insn[1].code != 0 || 7923 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 7924 insn[1].off != 0) { 7925 verbose(env, "invalid bpf_ld_imm64 insn\n"); 7926 return -EINVAL; 7927 } 7928 7929 if (insn[0].src_reg == 0) 7930 /* valid generic load 64-bit imm */ 7931 goto next_insn; 7932 7933 /* In final convert_pseudo_ld_imm64() step, this is 7934 * converted into regular 64-bit imm load insn. 7935 */ 7936 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 7937 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 7938 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 7939 insn[1].imm != 0)) { 7940 verbose(env, 7941 "unrecognized bpf_ld_imm64 insn\n"); 7942 return -EINVAL; 7943 } 7944 7945 f = fdget(insn[0].imm); 7946 map = __bpf_map_get(f); 7947 if (IS_ERR(map)) { 7948 verbose(env, "fd %d is not pointing to valid bpf_map\n", 7949 insn[0].imm); 7950 return PTR_ERR(map); 7951 } 7952 7953 err = check_map_prog_compatibility(env, map, env->prog); 7954 if (err) { 7955 fdput(f); 7956 return err; 7957 } 7958 7959 aux = &env->insn_aux_data[i]; 7960 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7961 addr = (unsigned long)map; 7962 } else { 7963 u32 off = insn[1].imm; 7964 7965 if (off >= BPF_MAX_VAR_OFF) { 7966 verbose(env, "direct value offset of %u is not allowed\n", off); 7967 fdput(f); 7968 return -EINVAL; 7969 } 7970 7971 if (!map->ops->map_direct_value_addr) { 7972 verbose(env, "no direct value access support for this map type\n"); 7973 fdput(f); 7974 return -EINVAL; 7975 } 7976 7977 err = map->ops->map_direct_value_addr(map, &addr, off); 7978 if (err) { 7979 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 7980 map->value_size, off); 7981 fdput(f); 7982 return err; 7983 } 7984 7985 aux->map_off = off; 7986 addr += off; 7987 } 7988 7989 insn[0].imm = (u32)addr; 7990 insn[1].imm = addr >> 32; 7991 7992 /* check whether we recorded this map already */ 7993 for (j = 0; j < env->used_map_cnt; j++) { 7994 if (env->used_maps[j] == map) { 7995 aux->map_index = j; 7996 fdput(f); 7997 goto next_insn; 7998 } 7999 } 8000 8001 if (env->used_map_cnt >= MAX_USED_MAPS) { 8002 fdput(f); 8003 return -E2BIG; 8004 } 8005 8006 /* hold the map. If the program is rejected by verifier, 8007 * the map will be released by release_maps() or it 8008 * will be used by the valid program until it's unloaded 8009 * and all maps are released in free_used_maps() 8010 */ 8011 map = bpf_map_inc(map, false); 8012 if (IS_ERR(map)) { 8013 fdput(f); 8014 return PTR_ERR(map); 8015 } 8016 8017 aux->map_index = env->used_map_cnt; 8018 env->used_maps[env->used_map_cnt++] = map; 8019 8020 if (bpf_map_is_cgroup_storage(map) && 8021 bpf_cgroup_storage_assign(env->prog, map)) { 8022 verbose(env, "only one cgroup storage of each type is allowed\n"); 8023 fdput(f); 8024 return -EBUSY; 8025 } 8026 8027 fdput(f); 8028 next_insn: 8029 insn++; 8030 i++; 8031 continue; 8032 } 8033 8034 /* Basic sanity check before we invest more work here. */ 8035 if (!bpf_opcode_in_insntable(insn->code)) { 8036 verbose(env, "unknown opcode %02x\n", insn->code); 8037 return -EINVAL; 8038 } 8039 } 8040 8041 /* now all pseudo BPF_LD_IMM64 instructions load valid 8042 * 'struct bpf_map *' into a register instead of user map_fd. 8043 * These pointers will be used later by verifier to validate map access. 8044 */ 8045 return 0; 8046 } 8047 8048 /* drop refcnt of maps used by the rejected program */ 8049 static void release_maps(struct bpf_verifier_env *env) 8050 { 8051 enum bpf_cgroup_storage_type stype; 8052 int i; 8053 8054 for_each_cgroup_storage_type(stype) { 8055 if (!env->prog->aux->cgroup_storage[stype]) 8056 continue; 8057 bpf_cgroup_storage_release(env->prog, 8058 env->prog->aux->cgroup_storage[stype]); 8059 } 8060 8061 for (i = 0; i < env->used_map_cnt; i++) 8062 bpf_map_put(env->used_maps[i]); 8063 } 8064 8065 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 8066 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 8067 { 8068 struct bpf_insn *insn = env->prog->insnsi; 8069 int insn_cnt = env->prog->len; 8070 int i; 8071 8072 for (i = 0; i < insn_cnt; i++, insn++) 8073 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 8074 insn->src_reg = 0; 8075 } 8076 8077 /* single env->prog->insni[off] instruction was replaced with the range 8078 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 8079 * [0, off) and [off, end) to new locations, so the patched range stays zero 8080 */ 8081 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 8082 struct bpf_prog *new_prog, u32 off, u32 cnt) 8083 { 8084 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 8085 struct bpf_insn *insn = new_prog->insnsi; 8086 u32 prog_len; 8087 int i; 8088 8089 /* aux info at OFF always needs adjustment, no matter fast path 8090 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 8091 * original insn at old prog. 8092 */ 8093 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 8094 8095 if (cnt == 1) 8096 return 0; 8097 prog_len = new_prog->len; 8098 new_data = vzalloc(array_size(prog_len, 8099 sizeof(struct bpf_insn_aux_data))); 8100 if (!new_data) 8101 return -ENOMEM; 8102 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 8103 memcpy(new_data + off + cnt - 1, old_data + off, 8104 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 8105 for (i = off; i < off + cnt - 1; i++) { 8106 new_data[i].seen = true; 8107 new_data[i].zext_dst = insn_has_def32(env, insn + i); 8108 } 8109 env->insn_aux_data = new_data; 8110 vfree(old_data); 8111 return 0; 8112 } 8113 8114 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 8115 { 8116 int i; 8117 8118 if (len == 1) 8119 return; 8120 /* NOTE: fake 'exit' subprog should be updated as well. */ 8121 for (i = 0; i <= env->subprog_cnt; i++) { 8122 if (env->subprog_info[i].start <= off) 8123 continue; 8124 env->subprog_info[i].start += len - 1; 8125 } 8126 } 8127 8128 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 8129 const struct bpf_insn *patch, u32 len) 8130 { 8131 struct bpf_prog *new_prog; 8132 8133 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 8134 if (IS_ERR(new_prog)) { 8135 if (PTR_ERR(new_prog) == -ERANGE) 8136 verbose(env, 8137 "insn %d cannot be patched due to 16-bit range\n", 8138 env->insn_aux_data[off].orig_idx); 8139 return NULL; 8140 } 8141 if (adjust_insn_aux_data(env, new_prog, off, len)) 8142 return NULL; 8143 adjust_subprog_starts(env, off, len); 8144 return new_prog; 8145 } 8146 8147 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 8148 u32 off, u32 cnt) 8149 { 8150 int i, j; 8151 8152 /* find first prog starting at or after off (first to remove) */ 8153 for (i = 0; i < env->subprog_cnt; i++) 8154 if (env->subprog_info[i].start >= off) 8155 break; 8156 /* find first prog starting at or after off + cnt (first to stay) */ 8157 for (j = i; j < env->subprog_cnt; j++) 8158 if (env->subprog_info[j].start >= off + cnt) 8159 break; 8160 /* if j doesn't start exactly at off + cnt, we are just removing 8161 * the front of previous prog 8162 */ 8163 if (env->subprog_info[j].start != off + cnt) 8164 j--; 8165 8166 if (j > i) { 8167 struct bpf_prog_aux *aux = env->prog->aux; 8168 int move; 8169 8170 /* move fake 'exit' subprog as well */ 8171 move = env->subprog_cnt + 1 - j; 8172 8173 memmove(env->subprog_info + i, 8174 env->subprog_info + j, 8175 sizeof(*env->subprog_info) * move); 8176 env->subprog_cnt -= j - i; 8177 8178 /* remove func_info */ 8179 if (aux->func_info) { 8180 move = aux->func_info_cnt - j; 8181 8182 memmove(aux->func_info + i, 8183 aux->func_info + j, 8184 sizeof(*aux->func_info) * move); 8185 aux->func_info_cnt -= j - i; 8186 /* func_info->insn_off is set after all code rewrites, 8187 * in adjust_btf_func() - no need to adjust 8188 */ 8189 } 8190 } else { 8191 /* convert i from "first prog to remove" to "first to adjust" */ 8192 if (env->subprog_info[i].start == off) 8193 i++; 8194 } 8195 8196 /* update fake 'exit' subprog as well */ 8197 for (; i <= env->subprog_cnt; i++) 8198 env->subprog_info[i].start -= cnt; 8199 8200 return 0; 8201 } 8202 8203 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 8204 u32 cnt) 8205 { 8206 struct bpf_prog *prog = env->prog; 8207 u32 i, l_off, l_cnt, nr_linfo; 8208 struct bpf_line_info *linfo; 8209 8210 nr_linfo = prog->aux->nr_linfo; 8211 if (!nr_linfo) 8212 return 0; 8213 8214 linfo = prog->aux->linfo; 8215 8216 /* find first line info to remove, count lines to be removed */ 8217 for (i = 0; i < nr_linfo; i++) 8218 if (linfo[i].insn_off >= off) 8219 break; 8220 8221 l_off = i; 8222 l_cnt = 0; 8223 for (; i < nr_linfo; i++) 8224 if (linfo[i].insn_off < off + cnt) 8225 l_cnt++; 8226 else 8227 break; 8228 8229 /* First live insn doesn't match first live linfo, it needs to "inherit" 8230 * last removed linfo. prog is already modified, so prog->len == off 8231 * means no live instructions after (tail of the program was removed). 8232 */ 8233 if (prog->len != off && l_cnt && 8234 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 8235 l_cnt--; 8236 linfo[--i].insn_off = off + cnt; 8237 } 8238 8239 /* remove the line info which refer to the removed instructions */ 8240 if (l_cnt) { 8241 memmove(linfo + l_off, linfo + i, 8242 sizeof(*linfo) * (nr_linfo - i)); 8243 8244 prog->aux->nr_linfo -= l_cnt; 8245 nr_linfo = prog->aux->nr_linfo; 8246 } 8247 8248 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 8249 for (i = l_off; i < nr_linfo; i++) 8250 linfo[i].insn_off -= cnt; 8251 8252 /* fix up all subprogs (incl. 'exit') which start >= off */ 8253 for (i = 0; i <= env->subprog_cnt; i++) 8254 if (env->subprog_info[i].linfo_idx > l_off) { 8255 /* program may have started in the removed region but 8256 * may not be fully removed 8257 */ 8258 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 8259 env->subprog_info[i].linfo_idx -= l_cnt; 8260 else 8261 env->subprog_info[i].linfo_idx = l_off; 8262 } 8263 8264 return 0; 8265 } 8266 8267 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 8268 { 8269 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8270 unsigned int orig_prog_len = env->prog->len; 8271 int err; 8272 8273 if (bpf_prog_is_dev_bound(env->prog->aux)) 8274 bpf_prog_offload_remove_insns(env, off, cnt); 8275 8276 err = bpf_remove_insns(env->prog, off, cnt); 8277 if (err) 8278 return err; 8279 8280 err = adjust_subprog_starts_after_remove(env, off, cnt); 8281 if (err) 8282 return err; 8283 8284 err = bpf_adj_linfo_after_remove(env, off, cnt); 8285 if (err) 8286 return err; 8287 8288 memmove(aux_data + off, aux_data + off + cnt, 8289 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 8290 8291 return 0; 8292 } 8293 8294 /* The verifier does more data flow analysis than llvm and will not 8295 * explore branches that are dead at run time. Malicious programs can 8296 * have dead code too. Therefore replace all dead at-run-time code 8297 * with 'ja -1'. 8298 * 8299 * Just nops are not optimal, e.g. if they would sit at the end of the 8300 * program and through another bug we would manage to jump there, then 8301 * we'd execute beyond program memory otherwise. Returning exception 8302 * code also wouldn't work since we can have subprogs where the dead 8303 * code could be located. 8304 */ 8305 static void sanitize_dead_code(struct bpf_verifier_env *env) 8306 { 8307 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8308 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 8309 struct bpf_insn *insn = env->prog->insnsi; 8310 const int insn_cnt = env->prog->len; 8311 int i; 8312 8313 for (i = 0; i < insn_cnt; i++) { 8314 if (aux_data[i].seen) 8315 continue; 8316 memcpy(insn + i, &trap, sizeof(trap)); 8317 } 8318 } 8319 8320 static bool insn_is_cond_jump(u8 code) 8321 { 8322 u8 op; 8323 8324 if (BPF_CLASS(code) == BPF_JMP32) 8325 return true; 8326 8327 if (BPF_CLASS(code) != BPF_JMP) 8328 return false; 8329 8330 op = BPF_OP(code); 8331 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 8332 } 8333 8334 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 8335 { 8336 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8337 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8338 struct bpf_insn *insn = env->prog->insnsi; 8339 const int insn_cnt = env->prog->len; 8340 int i; 8341 8342 for (i = 0; i < insn_cnt; i++, insn++) { 8343 if (!insn_is_cond_jump(insn->code)) 8344 continue; 8345 8346 if (!aux_data[i + 1].seen) 8347 ja.off = insn->off; 8348 else if (!aux_data[i + 1 + insn->off].seen) 8349 ja.off = 0; 8350 else 8351 continue; 8352 8353 if (bpf_prog_is_dev_bound(env->prog->aux)) 8354 bpf_prog_offload_replace_insn(env, i, &ja); 8355 8356 memcpy(insn, &ja, sizeof(ja)); 8357 } 8358 } 8359 8360 static int opt_remove_dead_code(struct bpf_verifier_env *env) 8361 { 8362 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 8363 int insn_cnt = env->prog->len; 8364 int i, err; 8365 8366 for (i = 0; i < insn_cnt; i++) { 8367 int j; 8368 8369 j = 0; 8370 while (i + j < insn_cnt && !aux_data[i + j].seen) 8371 j++; 8372 if (!j) 8373 continue; 8374 8375 err = verifier_remove_insns(env, i, j); 8376 if (err) 8377 return err; 8378 insn_cnt = env->prog->len; 8379 } 8380 8381 return 0; 8382 } 8383 8384 static int opt_remove_nops(struct bpf_verifier_env *env) 8385 { 8386 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 8387 struct bpf_insn *insn = env->prog->insnsi; 8388 int insn_cnt = env->prog->len; 8389 int i, err; 8390 8391 for (i = 0; i < insn_cnt; i++) { 8392 if (memcmp(&insn[i], &ja, sizeof(ja))) 8393 continue; 8394 8395 err = verifier_remove_insns(env, i, 1); 8396 if (err) 8397 return err; 8398 insn_cnt--; 8399 i--; 8400 } 8401 8402 return 0; 8403 } 8404 8405 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 8406 const union bpf_attr *attr) 8407 { 8408 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 8409 struct bpf_insn_aux_data *aux = env->insn_aux_data; 8410 int i, patch_len, delta = 0, len = env->prog->len; 8411 struct bpf_insn *insns = env->prog->insnsi; 8412 struct bpf_prog *new_prog; 8413 bool rnd_hi32; 8414 8415 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 8416 zext_patch[1] = BPF_ZEXT_REG(0); 8417 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 8418 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 8419 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 8420 for (i = 0; i < len; i++) { 8421 int adj_idx = i + delta; 8422 struct bpf_insn insn; 8423 8424 insn = insns[adj_idx]; 8425 if (!aux[adj_idx].zext_dst) { 8426 u8 code, class; 8427 u32 imm_rnd; 8428 8429 if (!rnd_hi32) 8430 continue; 8431 8432 code = insn.code; 8433 class = BPF_CLASS(code); 8434 if (insn_no_def(&insn)) 8435 continue; 8436 8437 /* NOTE: arg "reg" (the fourth one) is only used for 8438 * BPF_STX which has been ruled out in above 8439 * check, it is safe to pass NULL here. 8440 */ 8441 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 8442 if (class == BPF_LD && 8443 BPF_MODE(code) == BPF_IMM) 8444 i++; 8445 continue; 8446 } 8447 8448 /* ctx load could be transformed into wider load. */ 8449 if (class == BPF_LDX && 8450 aux[adj_idx].ptr_type == PTR_TO_CTX) 8451 continue; 8452 8453 imm_rnd = get_random_int(); 8454 rnd_hi32_patch[0] = insn; 8455 rnd_hi32_patch[1].imm = imm_rnd; 8456 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 8457 patch = rnd_hi32_patch; 8458 patch_len = 4; 8459 goto apply_patch_buffer; 8460 } 8461 8462 if (!bpf_jit_needs_zext()) 8463 continue; 8464 8465 zext_patch[0] = insn; 8466 zext_patch[1].dst_reg = insn.dst_reg; 8467 zext_patch[1].src_reg = insn.dst_reg; 8468 patch = zext_patch; 8469 patch_len = 2; 8470 apply_patch_buffer: 8471 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 8472 if (!new_prog) 8473 return -ENOMEM; 8474 env->prog = new_prog; 8475 insns = new_prog->insnsi; 8476 aux = env->insn_aux_data; 8477 delta += patch_len - 1; 8478 } 8479 8480 return 0; 8481 } 8482 8483 /* convert load instructions that access fields of a context type into a 8484 * sequence of instructions that access fields of the underlying structure: 8485 * struct __sk_buff -> struct sk_buff 8486 * struct bpf_sock_ops -> struct sock 8487 */ 8488 static int convert_ctx_accesses(struct bpf_verifier_env *env) 8489 { 8490 const struct bpf_verifier_ops *ops = env->ops; 8491 int i, cnt, size, ctx_field_size, delta = 0; 8492 const int insn_cnt = env->prog->len; 8493 struct bpf_insn insn_buf[16], *insn; 8494 u32 target_size, size_default, off; 8495 struct bpf_prog *new_prog; 8496 enum bpf_access_type type; 8497 bool is_narrower_load; 8498 8499 if (ops->gen_prologue || env->seen_direct_write) { 8500 if (!ops->gen_prologue) { 8501 verbose(env, "bpf verifier is misconfigured\n"); 8502 return -EINVAL; 8503 } 8504 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 8505 env->prog); 8506 if (cnt >= ARRAY_SIZE(insn_buf)) { 8507 verbose(env, "bpf verifier is misconfigured\n"); 8508 return -EINVAL; 8509 } else if (cnt) { 8510 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 8511 if (!new_prog) 8512 return -ENOMEM; 8513 8514 env->prog = new_prog; 8515 delta += cnt - 1; 8516 } 8517 } 8518 8519 if (bpf_prog_is_dev_bound(env->prog->aux)) 8520 return 0; 8521 8522 insn = env->prog->insnsi + delta; 8523 8524 for (i = 0; i < insn_cnt; i++, insn++) { 8525 bpf_convert_ctx_access_t convert_ctx_access; 8526 8527 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 8528 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 8529 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 8530 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 8531 type = BPF_READ; 8532 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 8533 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 8534 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 8535 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 8536 type = BPF_WRITE; 8537 else 8538 continue; 8539 8540 if (type == BPF_WRITE && 8541 env->insn_aux_data[i + delta].sanitize_stack_off) { 8542 struct bpf_insn patch[] = { 8543 /* Sanitize suspicious stack slot with zero. 8544 * There are no memory dependencies for this store, 8545 * since it's only using frame pointer and immediate 8546 * constant of zero 8547 */ 8548 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 8549 env->insn_aux_data[i + delta].sanitize_stack_off, 8550 0), 8551 /* the original STX instruction will immediately 8552 * overwrite the same stack slot with appropriate value 8553 */ 8554 *insn, 8555 }; 8556 8557 cnt = ARRAY_SIZE(patch); 8558 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 8559 if (!new_prog) 8560 return -ENOMEM; 8561 8562 delta += cnt - 1; 8563 env->prog = new_prog; 8564 insn = new_prog->insnsi + i + delta; 8565 continue; 8566 } 8567 8568 switch (env->insn_aux_data[i + delta].ptr_type) { 8569 case PTR_TO_CTX: 8570 if (!ops->convert_ctx_access) 8571 continue; 8572 convert_ctx_access = ops->convert_ctx_access; 8573 break; 8574 case PTR_TO_SOCKET: 8575 case PTR_TO_SOCK_COMMON: 8576 convert_ctx_access = bpf_sock_convert_ctx_access; 8577 break; 8578 case PTR_TO_TCP_SOCK: 8579 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 8580 break; 8581 case PTR_TO_XDP_SOCK: 8582 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 8583 break; 8584 default: 8585 continue; 8586 } 8587 8588 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 8589 size = BPF_LDST_BYTES(insn); 8590 8591 /* If the read access is a narrower load of the field, 8592 * convert to a 4/8-byte load, to minimum program type specific 8593 * convert_ctx_access changes. If conversion is successful, 8594 * we will apply proper mask to the result. 8595 */ 8596 is_narrower_load = size < ctx_field_size; 8597 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 8598 off = insn->off; 8599 if (is_narrower_load) { 8600 u8 size_code; 8601 8602 if (type == BPF_WRITE) { 8603 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 8604 return -EINVAL; 8605 } 8606 8607 size_code = BPF_H; 8608 if (ctx_field_size == 4) 8609 size_code = BPF_W; 8610 else if (ctx_field_size == 8) 8611 size_code = BPF_DW; 8612 8613 insn->off = off & ~(size_default - 1); 8614 insn->code = BPF_LDX | BPF_MEM | size_code; 8615 } 8616 8617 target_size = 0; 8618 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 8619 &target_size); 8620 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 8621 (ctx_field_size && !target_size)) { 8622 verbose(env, "bpf verifier is misconfigured\n"); 8623 return -EINVAL; 8624 } 8625 8626 if (is_narrower_load && size < target_size) { 8627 u8 shift = bpf_ctx_narrow_access_offset( 8628 off, size, size_default) * 8; 8629 if (ctx_field_size <= 4) { 8630 if (shift) 8631 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 8632 insn->dst_reg, 8633 shift); 8634 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 8635 (1 << size * 8) - 1); 8636 } else { 8637 if (shift) 8638 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 8639 insn->dst_reg, 8640 shift); 8641 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 8642 (1ULL << size * 8) - 1); 8643 } 8644 } 8645 8646 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8647 if (!new_prog) 8648 return -ENOMEM; 8649 8650 delta += cnt - 1; 8651 8652 /* keep walking new program and skip insns we just inserted */ 8653 env->prog = new_prog; 8654 insn = new_prog->insnsi + i + delta; 8655 } 8656 8657 return 0; 8658 } 8659 8660 static int jit_subprogs(struct bpf_verifier_env *env) 8661 { 8662 struct bpf_prog *prog = env->prog, **func, *tmp; 8663 int i, j, subprog_start, subprog_end = 0, len, subprog; 8664 struct bpf_insn *insn; 8665 void *old_bpf_func; 8666 int err; 8667 8668 if (env->subprog_cnt <= 1) 8669 return 0; 8670 8671 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8672 if (insn->code != (BPF_JMP | BPF_CALL) || 8673 insn->src_reg != BPF_PSEUDO_CALL) 8674 continue; 8675 /* Upon error here we cannot fall back to interpreter but 8676 * need a hard reject of the program. Thus -EFAULT is 8677 * propagated in any case. 8678 */ 8679 subprog = find_subprog(env, i + insn->imm + 1); 8680 if (subprog < 0) { 8681 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 8682 i + insn->imm + 1); 8683 return -EFAULT; 8684 } 8685 /* temporarily remember subprog id inside insn instead of 8686 * aux_data, since next loop will split up all insns into funcs 8687 */ 8688 insn->off = subprog; 8689 /* remember original imm in case JIT fails and fallback 8690 * to interpreter will be needed 8691 */ 8692 env->insn_aux_data[i].call_imm = insn->imm; 8693 /* point imm to __bpf_call_base+1 from JITs point of view */ 8694 insn->imm = 1; 8695 } 8696 8697 err = bpf_prog_alloc_jited_linfo(prog); 8698 if (err) 8699 goto out_undo_insn; 8700 8701 err = -ENOMEM; 8702 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 8703 if (!func) 8704 goto out_undo_insn; 8705 8706 for (i = 0; i < env->subprog_cnt; i++) { 8707 subprog_start = subprog_end; 8708 subprog_end = env->subprog_info[i + 1].start; 8709 8710 len = subprog_end - subprog_start; 8711 /* BPF_PROG_RUN doesn't call subprogs directly, 8712 * hence main prog stats include the runtime of subprogs. 8713 * subprogs don't have IDs and not reachable via prog_get_next_id 8714 * func[i]->aux->stats will never be accessed and stays NULL 8715 */ 8716 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 8717 if (!func[i]) 8718 goto out_free; 8719 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 8720 len * sizeof(struct bpf_insn)); 8721 func[i]->type = prog->type; 8722 func[i]->len = len; 8723 if (bpf_prog_calc_tag(func[i])) 8724 goto out_free; 8725 func[i]->is_func = 1; 8726 func[i]->aux->func_idx = i; 8727 /* the btf and func_info will be freed only at prog->aux */ 8728 func[i]->aux->btf = prog->aux->btf; 8729 func[i]->aux->func_info = prog->aux->func_info; 8730 8731 /* Use bpf_prog_F_tag to indicate functions in stack traces. 8732 * Long term would need debug info to populate names 8733 */ 8734 func[i]->aux->name[0] = 'F'; 8735 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 8736 func[i]->jit_requested = 1; 8737 func[i]->aux->linfo = prog->aux->linfo; 8738 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 8739 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 8740 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 8741 func[i] = bpf_int_jit_compile(func[i]); 8742 if (!func[i]->jited) { 8743 err = -ENOTSUPP; 8744 goto out_free; 8745 } 8746 cond_resched(); 8747 } 8748 /* at this point all bpf functions were successfully JITed 8749 * now populate all bpf_calls with correct addresses and 8750 * run last pass of JIT 8751 */ 8752 for (i = 0; i < env->subprog_cnt; i++) { 8753 insn = func[i]->insnsi; 8754 for (j = 0; j < func[i]->len; j++, insn++) { 8755 if (insn->code != (BPF_JMP | BPF_CALL) || 8756 insn->src_reg != BPF_PSEUDO_CALL) 8757 continue; 8758 subprog = insn->off; 8759 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 8760 __bpf_call_base; 8761 } 8762 8763 /* we use the aux data to keep a list of the start addresses 8764 * of the JITed images for each function in the program 8765 * 8766 * for some architectures, such as powerpc64, the imm field 8767 * might not be large enough to hold the offset of the start 8768 * address of the callee's JITed image from __bpf_call_base 8769 * 8770 * in such cases, we can lookup the start address of a callee 8771 * by using its subprog id, available from the off field of 8772 * the call instruction, as an index for this list 8773 */ 8774 func[i]->aux->func = func; 8775 func[i]->aux->func_cnt = env->subprog_cnt; 8776 } 8777 for (i = 0; i < env->subprog_cnt; i++) { 8778 old_bpf_func = func[i]->bpf_func; 8779 tmp = bpf_int_jit_compile(func[i]); 8780 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 8781 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 8782 err = -ENOTSUPP; 8783 goto out_free; 8784 } 8785 cond_resched(); 8786 } 8787 8788 /* finally lock prog and jit images for all functions and 8789 * populate kallsysm 8790 */ 8791 for (i = 0; i < env->subprog_cnt; i++) { 8792 bpf_prog_lock_ro(func[i]); 8793 bpf_prog_kallsyms_add(func[i]); 8794 } 8795 8796 /* Last step: make now unused interpreter insns from main 8797 * prog consistent for later dump requests, so they can 8798 * later look the same as if they were interpreted only. 8799 */ 8800 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8801 if (insn->code != (BPF_JMP | BPF_CALL) || 8802 insn->src_reg != BPF_PSEUDO_CALL) 8803 continue; 8804 insn->off = env->insn_aux_data[i].call_imm; 8805 subprog = find_subprog(env, i + insn->off + 1); 8806 insn->imm = subprog; 8807 } 8808 8809 prog->jited = 1; 8810 prog->bpf_func = func[0]->bpf_func; 8811 prog->aux->func = func; 8812 prog->aux->func_cnt = env->subprog_cnt; 8813 bpf_prog_free_unused_jited_linfo(prog); 8814 return 0; 8815 out_free: 8816 for (i = 0; i < env->subprog_cnt; i++) 8817 if (func[i]) 8818 bpf_jit_free(func[i]); 8819 kfree(func); 8820 out_undo_insn: 8821 /* cleanup main prog to be interpreted */ 8822 prog->jit_requested = 0; 8823 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 8824 if (insn->code != (BPF_JMP | BPF_CALL) || 8825 insn->src_reg != BPF_PSEUDO_CALL) 8826 continue; 8827 insn->off = 0; 8828 insn->imm = env->insn_aux_data[i].call_imm; 8829 } 8830 bpf_prog_free_jited_linfo(prog); 8831 return err; 8832 } 8833 8834 static int fixup_call_args(struct bpf_verifier_env *env) 8835 { 8836 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8837 struct bpf_prog *prog = env->prog; 8838 struct bpf_insn *insn = prog->insnsi; 8839 int i, depth; 8840 #endif 8841 int err = 0; 8842 8843 if (env->prog->jit_requested && 8844 !bpf_prog_is_dev_bound(env->prog->aux)) { 8845 err = jit_subprogs(env); 8846 if (err == 0) 8847 return 0; 8848 if (err == -EFAULT) 8849 return err; 8850 } 8851 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 8852 for (i = 0; i < prog->len; i++, insn++) { 8853 if (insn->code != (BPF_JMP | BPF_CALL) || 8854 insn->src_reg != BPF_PSEUDO_CALL) 8855 continue; 8856 depth = get_callee_stack_depth(env, insn, i); 8857 if (depth < 0) 8858 return depth; 8859 bpf_patch_call_args(insn, depth); 8860 } 8861 err = 0; 8862 #endif 8863 return err; 8864 } 8865 8866 /* fixup insn->imm field of bpf_call instructions 8867 * and inline eligible helpers as explicit sequence of BPF instructions 8868 * 8869 * this function is called after eBPF program passed verification 8870 */ 8871 static int fixup_bpf_calls(struct bpf_verifier_env *env) 8872 { 8873 struct bpf_prog *prog = env->prog; 8874 struct bpf_insn *insn = prog->insnsi; 8875 const struct bpf_func_proto *fn; 8876 const int insn_cnt = prog->len; 8877 const struct bpf_map_ops *ops; 8878 struct bpf_insn_aux_data *aux; 8879 struct bpf_insn insn_buf[16]; 8880 struct bpf_prog *new_prog; 8881 struct bpf_map *map_ptr; 8882 int i, cnt, delta = 0; 8883 8884 for (i = 0; i < insn_cnt; i++, insn++) { 8885 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 8886 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8887 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 8888 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8889 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 8890 struct bpf_insn mask_and_div[] = { 8891 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8892 /* Rx div 0 -> 0 */ 8893 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 8894 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 8895 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 8896 *insn, 8897 }; 8898 struct bpf_insn mask_and_mod[] = { 8899 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 8900 /* Rx mod 0 -> Rx */ 8901 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 8902 *insn, 8903 }; 8904 struct bpf_insn *patchlet; 8905 8906 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 8907 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 8908 patchlet = mask_and_div + (is64 ? 1 : 0); 8909 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 8910 } else { 8911 patchlet = mask_and_mod + (is64 ? 1 : 0); 8912 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 8913 } 8914 8915 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 8916 if (!new_prog) 8917 return -ENOMEM; 8918 8919 delta += cnt - 1; 8920 env->prog = prog = new_prog; 8921 insn = new_prog->insnsi + i + delta; 8922 continue; 8923 } 8924 8925 if (BPF_CLASS(insn->code) == BPF_LD && 8926 (BPF_MODE(insn->code) == BPF_ABS || 8927 BPF_MODE(insn->code) == BPF_IND)) { 8928 cnt = env->ops->gen_ld_abs(insn, insn_buf); 8929 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 8930 verbose(env, "bpf verifier is misconfigured\n"); 8931 return -EINVAL; 8932 } 8933 8934 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8935 if (!new_prog) 8936 return -ENOMEM; 8937 8938 delta += cnt - 1; 8939 env->prog = prog = new_prog; 8940 insn = new_prog->insnsi + i + delta; 8941 continue; 8942 } 8943 8944 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 8945 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 8946 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 8947 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 8948 struct bpf_insn insn_buf[16]; 8949 struct bpf_insn *patch = &insn_buf[0]; 8950 bool issrc, isneg; 8951 u32 off_reg; 8952 8953 aux = &env->insn_aux_data[i + delta]; 8954 if (!aux->alu_state || 8955 aux->alu_state == BPF_ALU_NON_POINTER) 8956 continue; 8957 8958 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 8959 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 8960 BPF_ALU_SANITIZE_SRC; 8961 8962 off_reg = issrc ? insn->src_reg : insn->dst_reg; 8963 if (isneg) 8964 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8965 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 8966 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 8967 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 8968 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 8969 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 8970 if (issrc) { 8971 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 8972 off_reg); 8973 insn->src_reg = BPF_REG_AX; 8974 } else { 8975 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 8976 BPF_REG_AX); 8977 } 8978 if (isneg) 8979 insn->code = insn->code == code_add ? 8980 code_sub : code_add; 8981 *patch++ = *insn; 8982 if (issrc && isneg) 8983 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 8984 cnt = patch - insn_buf; 8985 8986 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 8987 if (!new_prog) 8988 return -ENOMEM; 8989 8990 delta += cnt - 1; 8991 env->prog = prog = new_prog; 8992 insn = new_prog->insnsi + i + delta; 8993 continue; 8994 } 8995 8996 if (insn->code != (BPF_JMP | BPF_CALL)) 8997 continue; 8998 if (insn->src_reg == BPF_PSEUDO_CALL) 8999 continue; 9000 9001 if (insn->imm == BPF_FUNC_get_route_realm) 9002 prog->dst_needed = 1; 9003 if (insn->imm == BPF_FUNC_get_prandom_u32) 9004 bpf_user_rnd_init_once(); 9005 if (insn->imm == BPF_FUNC_override_return) 9006 prog->kprobe_override = 1; 9007 if (insn->imm == BPF_FUNC_tail_call) { 9008 /* If we tail call into other programs, we 9009 * cannot make any assumptions since they can 9010 * be replaced dynamically during runtime in 9011 * the program array. 9012 */ 9013 prog->cb_access = 1; 9014 env->prog->aux->stack_depth = MAX_BPF_STACK; 9015 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 9016 9017 /* mark bpf_tail_call as different opcode to avoid 9018 * conditional branch in the interpeter for every normal 9019 * call and to prevent accidental JITing by JIT compiler 9020 * that doesn't support bpf_tail_call yet 9021 */ 9022 insn->imm = 0; 9023 insn->code = BPF_JMP | BPF_TAIL_CALL; 9024 9025 aux = &env->insn_aux_data[i + delta]; 9026 if (!bpf_map_ptr_unpriv(aux)) 9027 continue; 9028 9029 /* instead of changing every JIT dealing with tail_call 9030 * emit two extra insns: 9031 * if (index >= max_entries) goto out; 9032 * index &= array->index_mask; 9033 * to avoid out-of-bounds cpu speculation 9034 */ 9035 if (bpf_map_ptr_poisoned(aux)) { 9036 verbose(env, "tail_call abusing map_ptr\n"); 9037 return -EINVAL; 9038 } 9039 9040 map_ptr = BPF_MAP_PTR(aux->map_state); 9041 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 9042 map_ptr->max_entries, 2); 9043 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 9044 container_of(map_ptr, 9045 struct bpf_array, 9046 map)->index_mask); 9047 insn_buf[2] = *insn; 9048 cnt = 3; 9049 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 9050 if (!new_prog) 9051 return -ENOMEM; 9052 9053 delta += cnt - 1; 9054 env->prog = prog = new_prog; 9055 insn = new_prog->insnsi + i + delta; 9056 continue; 9057 } 9058 9059 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 9060 * and other inlining handlers are currently limited to 64 bit 9061 * only. 9062 */ 9063 if (prog->jit_requested && BITS_PER_LONG == 64 && 9064 (insn->imm == BPF_FUNC_map_lookup_elem || 9065 insn->imm == BPF_FUNC_map_update_elem || 9066 insn->imm == BPF_FUNC_map_delete_elem || 9067 insn->imm == BPF_FUNC_map_push_elem || 9068 insn->imm == BPF_FUNC_map_pop_elem || 9069 insn->imm == BPF_FUNC_map_peek_elem)) { 9070 aux = &env->insn_aux_data[i + delta]; 9071 if (bpf_map_ptr_poisoned(aux)) 9072 goto patch_call_imm; 9073 9074 map_ptr = BPF_MAP_PTR(aux->map_state); 9075 ops = map_ptr->ops; 9076 if (insn->imm == BPF_FUNC_map_lookup_elem && 9077 ops->map_gen_lookup) { 9078 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 9079 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 9080 verbose(env, "bpf verifier is misconfigured\n"); 9081 return -EINVAL; 9082 } 9083 9084 new_prog = bpf_patch_insn_data(env, i + delta, 9085 insn_buf, cnt); 9086 if (!new_prog) 9087 return -ENOMEM; 9088 9089 delta += cnt - 1; 9090 env->prog = prog = new_prog; 9091 insn = new_prog->insnsi + i + delta; 9092 continue; 9093 } 9094 9095 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 9096 (void *(*)(struct bpf_map *map, void *key))NULL)); 9097 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 9098 (int (*)(struct bpf_map *map, void *key))NULL)); 9099 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 9100 (int (*)(struct bpf_map *map, void *key, void *value, 9101 u64 flags))NULL)); 9102 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 9103 (int (*)(struct bpf_map *map, void *value, 9104 u64 flags))NULL)); 9105 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 9106 (int (*)(struct bpf_map *map, void *value))NULL)); 9107 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 9108 (int (*)(struct bpf_map *map, void *value))NULL)); 9109 9110 switch (insn->imm) { 9111 case BPF_FUNC_map_lookup_elem: 9112 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 9113 __bpf_call_base; 9114 continue; 9115 case BPF_FUNC_map_update_elem: 9116 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 9117 __bpf_call_base; 9118 continue; 9119 case BPF_FUNC_map_delete_elem: 9120 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 9121 __bpf_call_base; 9122 continue; 9123 case BPF_FUNC_map_push_elem: 9124 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 9125 __bpf_call_base; 9126 continue; 9127 case BPF_FUNC_map_pop_elem: 9128 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 9129 __bpf_call_base; 9130 continue; 9131 case BPF_FUNC_map_peek_elem: 9132 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 9133 __bpf_call_base; 9134 continue; 9135 } 9136 9137 goto patch_call_imm; 9138 } 9139 9140 patch_call_imm: 9141 fn = env->ops->get_func_proto(insn->imm, env->prog); 9142 /* all functions that have prototype and verifier allowed 9143 * programs to call them, must be real in-kernel functions 9144 */ 9145 if (!fn->func) { 9146 verbose(env, 9147 "kernel subsystem misconfigured func %s#%d\n", 9148 func_id_name(insn->imm), insn->imm); 9149 return -EFAULT; 9150 } 9151 insn->imm = fn->func - __bpf_call_base; 9152 } 9153 9154 return 0; 9155 } 9156 9157 static void free_states(struct bpf_verifier_env *env) 9158 { 9159 struct bpf_verifier_state_list *sl, *sln; 9160 int i; 9161 9162 sl = env->free_list; 9163 while (sl) { 9164 sln = sl->next; 9165 free_verifier_state(&sl->state, false); 9166 kfree(sl); 9167 sl = sln; 9168 } 9169 9170 if (!env->explored_states) 9171 return; 9172 9173 for (i = 0; i < state_htab_size(env); i++) { 9174 sl = env->explored_states[i]; 9175 9176 while (sl) { 9177 sln = sl->next; 9178 free_verifier_state(&sl->state, false); 9179 kfree(sl); 9180 sl = sln; 9181 } 9182 } 9183 9184 kvfree(env->explored_states); 9185 } 9186 9187 static void print_verification_stats(struct bpf_verifier_env *env) 9188 { 9189 int i; 9190 9191 if (env->log.level & BPF_LOG_STATS) { 9192 verbose(env, "verification time %lld usec\n", 9193 div_u64(env->verification_time, 1000)); 9194 verbose(env, "stack depth "); 9195 for (i = 0; i < env->subprog_cnt; i++) { 9196 u32 depth = env->subprog_info[i].stack_depth; 9197 9198 verbose(env, "%d", depth); 9199 if (i + 1 < env->subprog_cnt) 9200 verbose(env, "+"); 9201 } 9202 verbose(env, "\n"); 9203 } 9204 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 9205 "total_states %d peak_states %d mark_read %d\n", 9206 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 9207 env->max_states_per_insn, env->total_states, 9208 env->peak_states, env->longest_mark_read_walk); 9209 } 9210 9211 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 9212 union bpf_attr __user *uattr) 9213 { 9214 u64 start_time = ktime_get_ns(); 9215 struct bpf_verifier_env *env; 9216 struct bpf_verifier_log *log; 9217 int i, len, ret = -EINVAL; 9218 bool is_priv; 9219 9220 /* no program is valid */ 9221 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 9222 return -EINVAL; 9223 9224 /* 'struct bpf_verifier_env' can be global, but since it's not small, 9225 * allocate/free it every time bpf_check() is called 9226 */ 9227 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 9228 if (!env) 9229 return -ENOMEM; 9230 log = &env->log; 9231 9232 len = (*prog)->len; 9233 env->insn_aux_data = 9234 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 9235 ret = -ENOMEM; 9236 if (!env->insn_aux_data) 9237 goto err_free_env; 9238 for (i = 0; i < len; i++) 9239 env->insn_aux_data[i].orig_idx = i; 9240 env->prog = *prog; 9241 env->ops = bpf_verifier_ops[env->prog->type]; 9242 is_priv = capable(CAP_SYS_ADMIN); 9243 9244 /* grab the mutex to protect few globals used by verifier */ 9245 if (!is_priv) 9246 mutex_lock(&bpf_verifier_lock); 9247 9248 if (attr->log_level || attr->log_buf || attr->log_size) { 9249 /* user requested verbose verifier output 9250 * and supplied buffer to store the verification trace 9251 */ 9252 log->level = attr->log_level; 9253 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 9254 log->len_total = attr->log_size; 9255 9256 ret = -EINVAL; 9257 /* log attributes have to be sane */ 9258 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 9259 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 9260 goto err_unlock; 9261 } 9262 9263 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 9264 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 9265 env->strict_alignment = true; 9266 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 9267 env->strict_alignment = false; 9268 9269 env->allow_ptr_leaks = is_priv; 9270 9271 if (is_priv) 9272 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 9273 9274 ret = replace_map_fd_with_map_ptr(env); 9275 if (ret < 0) 9276 goto skip_full_check; 9277 9278 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9279 ret = bpf_prog_offload_verifier_prep(env->prog); 9280 if (ret) 9281 goto skip_full_check; 9282 } 9283 9284 env->explored_states = kvcalloc(state_htab_size(env), 9285 sizeof(struct bpf_verifier_state_list *), 9286 GFP_USER); 9287 ret = -ENOMEM; 9288 if (!env->explored_states) 9289 goto skip_full_check; 9290 9291 ret = check_subprogs(env); 9292 if (ret < 0) 9293 goto skip_full_check; 9294 9295 ret = check_btf_info(env, attr, uattr); 9296 if (ret < 0) 9297 goto skip_full_check; 9298 9299 ret = check_cfg(env); 9300 if (ret < 0) 9301 goto skip_full_check; 9302 9303 ret = do_check(env); 9304 if (env->cur_state) { 9305 free_verifier_state(env->cur_state, true); 9306 env->cur_state = NULL; 9307 } 9308 9309 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 9310 ret = bpf_prog_offload_finalize(env); 9311 9312 skip_full_check: 9313 while (!pop_stack(env, NULL, NULL)); 9314 free_states(env); 9315 9316 if (ret == 0) 9317 ret = check_max_stack_depth(env); 9318 9319 /* instruction rewrites happen after this point */ 9320 if (is_priv) { 9321 if (ret == 0) 9322 opt_hard_wire_dead_code_branches(env); 9323 if (ret == 0) 9324 ret = opt_remove_dead_code(env); 9325 if (ret == 0) 9326 ret = opt_remove_nops(env); 9327 } else { 9328 if (ret == 0) 9329 sanitize_dead_code(env); 9330 } 9331 9332 if (ret == 0) 9333 /* program is valid, convert *(u32*)(ctx + off) accesses */ 9334 ret = convert_ctx_accesses(env); 9335 9336 if (ret == 0) 9337 ret = fixup_bpf_calls(env); 9338 9339 /* do 32-bit optimization after insn patching has done so those patched 9340 * insns could be handled correctly. 9341 */ 9342 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 9343 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 9344 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 9345 : false; 9346 } 9347 9348 if (ret == 0) 9349 ret = fixup_call_args(env); 9350 9351 env->verification_time = ktime_get_ns() - start_time; 9352 print_verification_stats(env); 9353 9354 if (log->level && bpf_verifier_log_full(log)) 9355 ret = -ENOSPC; 9356 if (log->level && !log->ubuf) { 9357 ret = -EFAULT; 9358 goto err_release_maps; 9359 } 9360 9361 if (ret == 0 && env->used_map_cnt) { 9362 /* if program passed verifier, update used_maps in bpf_prog_info */ 9363 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 9364 sizeof(env->used_maps[0]), 9365 GFP_KERNEL); 9366 9367 if (!env->prog->aux->used_maps) { 9368 ret = -ENOMEM; 9369 goto err_release_maps; 9370 } 9371 9372 memcpy(env->prog->aux->used_maps, env->used_maps, 9373 sizeof(env->used_maps[0]) * env->used_map_cnt); 9374 env->prog->aux->used_map_cnt = env->used_map_cnt; 9375 9376 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 9377 * bpf_ld_imm64 instructions 9378 */ 9379 convert_pseudo_ld_imm64(env); 9380 } 9381 9382 if (ret == 0) 9383 adjust_btf_func(env); 9384 9385 err_release_maps: 9386 if (!env->prog->aux->used_maps) 9387 /* if we didn't copy map pointers into bpf_prog_info, release 9388 * them now. Otherwise free_used_maps() will release them. 9389 */ 9390 release_maps(env); 9391 *prog = env->prog; 9392 err_unlock: 9393 if (!is_priv) 9394 mutex_unlock(&bpf_verifier_lock); 9395 vfree(env->insn_aux_data); 9396 err_free_env: 9397 kfree(env); 9398 return ret; 9399 } 9400