1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 2 * Copyright (c) 2016 Facebook 3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 */ 14 #include <uapi/linux/btf.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/bpf.h> 19 #include <linux/btf.h> 20 #include <linux/bpf_verifier.h> 21 #include <linux/filter.h> 22 #include <net/netlink.h> 23 #include <linux/file.h> 24 #include <linux/vmalloc.h> 25 #include <linux/stringify.h> 26 #include <linux/bsearch.h> 27 #include <linux/sort.h> 28 #include <linux/perf_event.h> 29 #include <linux/ctype.h> 30 31 #include "disasm.h" 32 33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 34 #define BPF_PROG_TYPE(_id, _name) \ 35 [_id] = & _name ## _verifier_ops, 36 #define BPF_MAP_TYPE(_id, _ops) 37 #include <linux/bpf_types.h> 38 #undef BPF_PROG_TYPE 39 #undef BPF_MAP_TYPE 40 }; 41 42 /* bpf_check() is a static code analyzer that walks eBPF program 43 * instruction by instruction and updates register/stack state. 44 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 45 * 46 * The first pass is depth-first-search to check that the program is a DAG. 47 * It rejects the following programs: 48 * - larger than BPF_MAXINSNS insns 49 * - if loop is present (detected via back-edge) 50 * - unreachable insns exist (shouldn't be a forest. program = one function) 51 * - out of bounds or malformed jumps 52 * The second pass is all possible path descent from the 1st insn. 53 * Since it's analyzing all pathes through the program, the length of the 54 * analysis is limited to 64k insn, which may be hit even if total number of 55 * insn is less then 4K, but there are too many branches that change stack/regs. 56 * Number of 'branches to be analyzed' is limited to 1k 57 * 58 * On entry to each instruction, each register has a type, and the instruction 59 * changes the types of the registers depending on instruction semantics. 60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 61 * copied to R1. 62 * 63 * All registers are 64-bit. 64 * R0 - return register 65 * R1-R5 argument passing registers 66 * R6-R9 callee saved registers 67 * R10 - frame pointer read-only 68 * 69 * At the start of BPF program the register R1 contains a pointer to bpf_context 70 * and has type PTR_TO_CTX. 71 * 72 * Verifier tracks arithmetic operations on pointers in case: 73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 75 * 1st insn copies R10 (which has FRAME_PTR) type into R1 76 * and 2nd arithmetic instruction is pattern matched to recognize 77 * that it wants to construct a pointer to some element within stack. 78 * So after 2nd insn, the register R1 has type PTR_TO_STACK 79 * (and -20 constant is saved for further stack bounds checking). 80 * Meaning that this reg is a pointer to stack plus known immediate constant. 81 * 82 * Most of the time the registers have SCALAR_VALUE type, which 83 * means the register has some value, but it's not a valid pointer. 84 * (like pointer plus pointer becomes SCALAR_VALUE type) 85 * 86 * When verifier sees load or store instructions the type of base register 87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 88 * four pointer types recognized by check_mem_access() function. 89 * 90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 91 * and the range of [ptr, ptr + map's value_size) is accessible. 92 * 93 * registers used to pass values to function calls are checked against 94 * function argument constraints. 95 * 96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 97 * It means that the register type passed to this function must be 98 * PTR_TO_STACK and it will be used inside the function as 99 * 'pointer to map element key' 100 * 101 * For example the argument constraints for bpf_map_lookup_elem(): 102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 103 * .arg1_type = ARG_CONST_MAP_PTR, 104 * .arg2_type = ARG_PTR_TO_MAP_KEY, 105 * 106 * ret_type says that this function returns 'pointer to map elem value or null' 107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 108 * 2nd argument should be a pointer to stack, which will be used inside 109 * the helper function as a pointer to map element key. 110 * 111 * On the kernel side the helper function looks like: 112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 113 * { 114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 115 * void *key = (void *) (unsigned long) r2; 116 * void *value; 117 * 118 * here kernel can access 'key' and 'map' pointers safely, knowing that 119 * [key, key + map->key_size) bytes are valid and were initialized on 120 * the stack of eBPF program. 121 * } 122 * 123 * Corresponding eBPF program may look like: 124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 128 * here verifier looks at prototype of map_lookup_elem() and sees: 129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 131 * 132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 134 * and were initialized prior to this call. 135 * If it's ok, then verifier allows this BPF_CALL insn and looks at 136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 138 * returns ether pointer to map value or NULL. 139 * 140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 141 * insn, the register holding that pointer in the true branch changes state to 142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 143 * branch. See check_cond_jmp_op(). 144 * 145 * After the call R0 is set to return type of the function and registers R1-R5 146 * are set to NOT_INIT to indicate that they are no longer readable. 147 * 148 * The following reference types represent a potential reference to a kernel 149 * resource which, after first being allocated, must be checked and freed by 150 * the BPF program: 151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 152 * 153 * When the verifier sees a helper call return a reference type, it allocates a 154 * pointer id for the reference and stores it in the current function state. 155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 157 * passes through a NULL-check conditional. For the branch wherein the state is 158 * changed to CONST_IMM, the verifier releases the reference. 159 * 160 * For each helper function that allocates a reference, such as 161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 162 * bpf_sk_release(). When a reference type passes into the release function, 163 * the verifier also releases the reference. If any unchecked or unreleased 164 * reference remains at the end of the program, the verifier rejects it. 165 */ 166 167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 168 struct bpf_verifier_stack_elem { 169 /* verifer state is 'st' 170 * before processing instruction 'insn_idx' 171 * and after processing instruction 'prev_insn_idx' 172 */ 173 struct bpf_verifier_state st; 174 int insn_idx; 175 int prev_insn_idx; 176 struct bpf_verifier_stack_elem *next; 177 }; 178 179 #define BPF_COMPLEXITY_LIMIT_INSNS 131072 180 #define BPF_COMPLEXITY_LIMIT_STACK 1024 181 #define BPF_COMPLEXITY_LIMIT_STATES 64 182 183 #define BPF_MAP_PTR_UNPRIV 1UL 184 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 185 POISON_POINTER_DELTA)) 186 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 187 188 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 189 { 190 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON; 191 } 192 193 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 194 { 195 return aux->map_state & BPF_MAP_PTR_UNPRIV; 196 } 197 198 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 199 const struct bpf_map *map, bool unpriv) 200 { 201 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 202 unpriv |= bpf_map_ptr_unpriv(aux); 203 aux->map_state = (unsigned long)map | 204 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 205 } 206 207 struct bpf_call_arg_meta { 208 struct bpf_map *map_ptr; 209 bool raw_mode; 210 bool pkt_access; 211 int regno; 212 int access_size; 213 s64 msize_smax_value; 214 u64 msize_umax_value; 215 int ptr_id; 216 }; 217 218 static DEFINE_MUTEX(bpf_verifier_lock); 219 220 static const struct bpf_line_info * 221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 222 { 223 const struct bpf_line_info *linfo; 224 const struct bpf_prog *prog; 225 u32 i, nr_linfo; 226 227 prog = env->prog; 228 nr_linfo = prog->aux->nr_linfo; 229 230 if (!nr_linfo || insn_off >= prog->len) 231 return NULL; 232 233 linfo = prog->aux->linfo; 234 for (i = 1; i < nr_linfo; i++) 235 if (insn_off < linfo[i].insn_off) 236 break; 237 238 return &linfo[i - 1]; 239 } 240 241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 242 va_list args) 243 { 244 unsigned int n; 245 246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 247 248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 249 "verifier log line truncated - local buffer too short\n"); 250 251 n = min(log->len_total - log->len_used - 1, n); 252 log->kbuf[n] = '\0'; 253 254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 255 log->len_used += n; 256 else 257 log->ubuf = NULL; 258 } 259 260 /* log_level controls verbosity level of eBPF verifier. 261 * bpf_verifier_log_write() is used to dump the verification trace to the log, 262 * so the user can figure out what's wrong with the program 263 */ 264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 265 const char *fmt, ...) 266 { 267 va_list args; 268 269 if (!bpf_verifier_log_needed(&env->log)) 270 return; 271 272 va_start(args, fmt); 273 bpf_verifier_vlog(&env->log, fmt, args); 274 va_end(args); 275 } 276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 277 278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 279 { 280 struct bpf_verifier_env *env = private_data; 281 va_list args; 282 283 if (!bpf_verifier_log_needed(&env->log)) 284 return; 285 286 va_start(args, fmt); 287 bpf_verifier_vlog(&env->log, fmt, args); 288 va_end(args); 289 } 290 291 static const char *ltrim(const char *s) 292 { 293 while (isspace(*s)) 294 s++; 295 296 return s; 297 } 298 299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 300 u32 insn_off, 301 const char *prefix_fmt, ...) 302 { 303 const struct bpf_line_info *linfo; 304 305 if (!bpf_verifier_log_needed(&env->log)) 306 return; 307 308 linfo = find_linfo(env, insn_off); 309 if (!linfo || linfo == env->prev_linfo) 310 return; 311 312 if (prefix_fmt) { 313 va_list args; 314 315 va_start(args, prefix_fmt); 316 bpf_verifier_vlog(&env->log, prefix_fmt, args); 317 va_end(args); 318 } 319 320 verbose(env, "%s\n", 321 ltrim(btf_name_by_offset(env->prog->aux->btf, 322 linfo->line_off))); 323 324 env->prev_linfo = linfo; 325 } 326 327 static bool type_is_pkt_pointer(enum bpf_reg_type type) 328 { 329 return type == PTR_TO_PACKET || 330 type == PTR_TO_PACKET_META; 331 } 332 333 static bool reg_type_may_be_null(enum bpf_reg_type type) 334 { 335 return type == PTR_TO_MAP_VALUE_OR_NULL || 336 type == PTR_TO_SOCKET_OR_NULL; 337 } 338 339 static bool type_is_refcounted(enum bpf_reg_type type) 340 { 341 return type == PTR_TO_SOCKET; 342 } 343 344 static bool type_is_refcounted_or_null(enum bpf_reg_type type) 345 { 346 return type == PTR_TO_SOCKET || type == PTR_TO_SOCKET_OR_NULL; 347 } 348 349 static bool reg_is_refcounted(const struct bpf_reg_state *reg) 350 { 351 return type_is_refcounted(reg->type); 352 } 353 354 static bool reg_is_refcounted_or_null(const struct bpf_reg_state *reg) 355 { 356 return type_is_refcounted_or_null(reg->type); 357 } 358 359 static bool arg_type_is_refcounted(enum bpf_arg_type type) 360 { 361 return type == ARG_PTR_TO_SOCKET; 362 } 363 364 /* Determine whether the function releases some resources allocated by another 365 * function call. The first reference type argument will be assumed to be 366 * released by release_reference(). 367 */ 368 static bool is_release_function(enum bpf_func_id func_id) 369 { 370 return func_id == BPF_FUNC_sk_release; 371 } 372 373 /* string representation of 'enum bpf_reg_type' */ 374 static const char * const reg_type_str[] = { 375 [NOT_INIT] = "?", 376 [SCALAR_VALUE] = "inv", 377 [PTR_TO_CTX] = "ctx", 378 [CONST_PTR_TO_MAP] = "map_ptr", 379 [PTR_TO_MAP_VALUE] = "map_value", 380 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 381 [PTR_TO_STACK] = "fp", 382 [PTR_TO_PACKET] = "pkt", 383 [PTR_TO_PACKET_META] = "pkt_meta", 384 [PTR_TO_PACKET_END] = "pkt_end", 385 [PTR_TO_FLOW_KEYS] = "flow_keys", 386 [PTR_TO_SOCKET] = "sock", 387 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 388 }; 389 390 static char slot_type_char[] = { 391 [STACK_INVALID] = '?', 392 [STACK_SPILL] = 'r', 393 [STACK_MISC] = 'm', 394 [STACK_ZERO] = '0', 395 }; 396 397 static void print_liveness(struct bpf_verifier_env *env, 398 enum bpf_reg_liveness live) 399 { 400 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 401 verbose(env, "_"); 402 if (live & REG_LIVE_READ) 403 verbose(env, "r"); 404 if (live & REG_LIVE_WRITTEN) 405 verbose(env, "w"); 406 if (live & REG_LIVE_DONE) 407 verbose(env, "D"); 408 } 409 410 static struct bpf_func_state *func(struct bpf_verifier_env *env, 411 const struct bpf_reg_state *reg) 412 { 413 struct bpf_verifier_state *cur = env->cur_state; 414 415 return cur->frame[reg->frameno]; 416 } 417 418 static void print_verifier_state(struct bpf_verifier_env *env, 419 const struct bpf_func_state *state) 420 { 421 const struct bpf_reg_state *reg; 422 enum bpf_reg_type t; 423 int i; 424 425 if (state->frameno) 426 verbose(env, " frame%d:", state->frameno); 427 for (i = 0; i < MAX_BPF_REG; i++) { 428 reg = &state->regs[i]; 429 t = reg->type; 430 if (t == NOT_INIT) 431 continue; 432 verbose(env, " R%d", i); 433 print_liveness(env, reg->live); 434 verbose(env, "=%s", reg_type_str[t]); 435 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 436 tnum_is_const(reg->var_off)) { 437 /* reg->off should be 0 for SCALAR_VALUE */ 438 verbose(env, "%lld", reg->var_off.value + reg->off); 439 if (t == PTR_TO_STACK) 440 verbose(env, ",call_%d", func(env, reg)->callsite); 441 } else { 442 verbose(env, "(id=%d", reg->id); 443 if (t != SCALAR_VALUE) 444 verbose(env, ",off=%d", reg->off); 445 if (type_is_pkt_pointer(t)) 446 verbose(env, ",r=%d", reg->range); 447 else if (t == CONST_PTR_TO_MAP || 448 t == PTR_TO_MAP_VALUE || 449 t == PTR_TO_MAP_VALUE_OR_NULL) 450 verbose(env, ",ks=%d,vs=%d", 451 reg->map_ptr->key_size, 452 reg->map_ptr->value_size); 453 if (tnum_is_const(reg->var_off)) { 454 /* Typically an immediate SCALAR_VALUE, but 455 * could be a pointer whose offset is too big 456 * for reg->off 457 */ 458 verbose(env, ",imm=%llx", reg->var_off.value); 459 } else { 460 if (reg->smin_value != reg->umin_value && 461 reg->smin_value != S64_MIN) 462 verbose(env, ",smin_value=%lld", 463 (long long)reg->smin_value); 464 if (reg->smax_value != reg->umax_value && 465 reg->smax_value != S64_MAX) 466 verbose(env, ",smax_value=%lld", 467 (long long)reg->smax_value); 468 if (reg->umin_value != 0) 469 verbose(env, ",umin_value=%llu", 470 (unsigned long long)reg->umin_value); 471 if (reg->umax_value != U64_MAX) 472 verbose(env, ",umax_value=%llu", 473 (unsigned long long)reg->umax_value); 474 if (!tnum_is_unknown(reg->var_off)) { 475 char tn_buf[48]; 476 477 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 478 verbose(env, ",var_off=%s", tn_buf); 479 } 480 } 481 verbose(env, ")"); 482 } 483 } 484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 485 char types_buf[BPF_REG_SIZE + 1]; 486 bool valid = false; 487 int j; 488 489 for (j = 0; j < BPF_REG_SIZE; j++) { 490 if (state->stack[i].slot_type[j] != STACK_INVALID) 491 valid = true; 492 types_buf[j] = slot_type_char[ 493 state->stack[i].slot_type[j]]; 494 } 495 types_buf[BPF_REG_SIZE] = 0; 496 if (!valid) 497 continue; 498 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 499 print_liveness(env, state->stack[i].spilled_ptr.live); 500 if (state->stack[i].slot_type[0] == STACK_SPILL) 501 verbose(env, "=%s", 502 reg_type_str[state->stack[i].spilled_ptr.type]); 503 else 504 verbose(env, "=%s", types_buf); 505 } 506 if (state->acquired_refs && state->refs[0].id) { 507 verbose(env, " refs=%d", state->refs[0].id); 508 for (i = 1; i < state->acquired_refs; i++) 509 if (state->refs[i].id) 510 verbose(env, ",%d", state->refs[i].id); 511 } 512 verbose(env, "\n"); 513 } 514 515 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 516 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 517 const struct bpf_func_state *src) \ 518 { \ 519 if (!src->FIELD) \ 520 return 0; \ 521 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 522 /* internal bug, make state invalid to reject the program */ \ 523 memset(dst, 0, sizeof(*dst)); \ 524 return -EFAULT; \ 525 } \ 526 memcpy(dst->FIELD, src->FIELD, \ 527 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 528 return 0; \ 529 } 530 /* copy_reference_state() */ 531 COPY_STATE_FN(reference, acquired_refs, refs, 1) 532 /* copy_stack_state() */ 533 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 534 #undef COPY_STATE_FN 535 536 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 537 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 538 bool copy_old) \ 539 { \ 540 u32 old_size = state->COUNT; \ 541 struct bpf_##NAME##_state *new_##FIELD; \ 542 int slot = size / SIZE; \ 543 \ 544 if (size <= old_size || !size) { \ 545 if (copy_old) \ 546 return 0; \ 547 state->COUNT = slot * SIZE; \ 548 if (!size && old_size) { \ 549 kfree(state->FIELD); \ 550 state->FIELD = NULL; \ 551 } \ 552 return 0; \ 553 } \ 554 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 555 GFP_KERNEL); \ 556 if (!new_##FIELD) \ 557 return -ENOMEM; \ 558 if (copy_old) { \ 559 if (state->FIELD) \ 560 memcpy(new_##FIELD, state->FIELD, \ 561 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 562 memset(new_##FIELD + old_size / SIZE, 0, \ 563 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 564 } \ 565 state->COUNT = slot * SIZE; \ 566 kfree(state->FIELD); \ 567 state->FIELD = new_##FIELD; \ 568 return 0; \ 569 } 570 /* realloc_reference_state() */ 571 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 572 /* realloc_stack_state() */ 573 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 574 #undef REALLOC_STATE_FN 575 576 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 577 * make it consume minimal amount of memory. check_stack_write() access from 578 * the program calls into realloc_func_state() to grow the stack size. 579 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 580 * which realloc_stack_state() copies over. It points to previous 581 * bpf_verifier_state which is never reallocated. 582 */ 583 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 584 int refs_size, bool copy_old) 585 { 586 int err = realloc_reference_state(state, refs_size, copy_old); 587 if (err) 588 return err; 589 return realloc_stack_state(state, stack_size, copy_old); 590 } 591 592 /* Acquire a pointer id from the env and update the state->refs to include 593 * this new pointer reference. 594 * On success, returns a valid pointer id to associate with the register 595 * On failure, returns a negative errno. 596 */ 597 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 598 { 599 struct bpf_func_state *state = cur_func(env); 600 int new_ofs = state->acquired_refs; 601 int id, err; 602 603 err = realloc_reference_state(state, state->acquired_refs + 1, true); 604 if (err) 605 return err; 606 id = ++env->id_gen; 607 state->refs[new_ofs].id = id; 608 state->refs[new_ofs].insn_idx = insn_idx; 609 610 return id; 611 } 612 613 /* release function corresponding to acquire_reference_state(). Idempotent. */ 614 static int __release_reference_state(struct bpf_func_state *state, int ptr_id) 615 { 616 int i, last_idx; 617 618 if (!ptr_id) 619 return -EFAULT; 620 621 last_idx = state->acquired_refs - 1; 622 for (i = 0; i < state->acquired_refs; i++) { 623 if (state->refs[i].id == ptr_id) { 624 if (last_idx && i != last_idx) 625 memcpy(&state->refs[i], &state->refs[last_idx], 626 sizeof(*state->refs)); 627 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 628 state->acquired_refs--; 629 return 0; 630 } 631 } 632 return -EFAULT; 633 } 634 635 /* variation on the above for cases where we expect that there must be an 636 * outstanding reference for the specified ptr_id. 637 */ 638 static int release_reference_state(struct bpf_verifier_env *env, int ptr_id) 639 { 640 struct bpf_func_state *state = cur_func(env); 641 int err; 642 643 err = __release_reference_state(state, ptr_id); 644 if (WARN_ON_ONCE(err != 0)) 645 verbose(env, "verifier internal error: can't release reference\n"); 646 return err; 647 } 648 649 static int transfer_reference_state(struct bpf_func_state *dst, 650 struct bpf_func_state *src) 651 { 652 int err = realloc_reference_state(dst, src->acquired_refs, false); 653 if (err) 654 return err; 655 err = copy_reference_state(dst, src); 656 if (err) 657 return err; 658 return 0; 659 } 660 661 static void free_func_state(struct bpf_func_state *state) 662 { 663 if (!state) 664 return; 665 kfree(state->refs); 666 kfree(state->stack); 667 kfree(state); 668 } 669 670 static void free_verifier_state(struct bpf_verifier_state *state, 671 bool free_self) 672 { 673 int i; 674 675 for (i = 0; i <= state->curframe; i++) { 676 free_func_state(state->frame[i]); 677 state->frame[i] = NULL; 678 } 679 if (free_self) 680 kfree(state); 681 } 682 683 /* copy verifier state from src to dst growing dst stack space 684 * when necessary to accommodate larger src stack 685 */ 686 static int copy_func_state(struct bpf_func_state *dst, 687 const struct bpf_func_state *src) 688 { 689 int err; 690 691 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 692 false); 693 if (err) 694 return err; 695 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 696 err = copy_reference_state(dst, src); 697 if (err) 698 return err; 699 return copy_stack_state(dst, src); 700 } 701 702 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 703 const struct bpf_verifier_state *src) 704 { 705 struct bpf_func_state *dst; 706 int i, err; 707 708 /* if dst has more stack frames then src frame, free them */ 709 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 710 free_func_state(dst_state->frame[i]); 711 dst_state->frame[i] = NULL; 712 } 713 dst_state->speculative = src->speculative; 714 dst_state->curframe = src->curframe; 715 for (i = 0; i <= src->curframe; i++) { 716 dst = dst_state->frame[i]; 717 if (!dst) { 718 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 719 if (!dst) 720 return -ENOMEM; 721 dst_state->frame[i] = dst; 722 } 723 err = copy_func_state(dst, src->frame[i]); 724 if (err) 725 return err; 726 } 727 return 0; 728 } 729 730 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 731 int *insn_idx) 732 { 733 struct bpf_verifier_state *cur = env->cur_state; 734 struct bpf_verifier_stack_elem *elem, *head = env->head; 735 int err; 736 737 if (env->head == NULL) 738 return -ENOENT; 739 740 if (cur) { 741 err = copy_verifier_state(cur, &head->st); 742 if (err) 743 return err; 744 } 745 if (insn_idx) 746 *insn_idx = head->insn_idx; 747 if (prev_insn_idx) 748 *prev_insn_idx = head->prev_insn_idx; 749 elem = head->next; 750 free_verifier_state(&head->st, false); 751 kfree(head); 752 env->head = elem; 753 env->stack_size--; 754 return 0; 755 } 756 757 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 758 int insn_idx, int prev_insn_idx, 759 bool speculative) 760 { 761 struct bpf_verifier_state *cur = env->cur_state; 762 struct bpf_verifier_stack_elem *elem; 763 int err; 764 765 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 766 if (!elem) 767 goto err; 768 769 elem->insn_idx = insn_idx; 770 elem->prev_insn_idx = prev_insn_idx; 771 elem->next = env->head; 772 env->head = elem; 773 env->stack_size++; 774 err = copy_verifier_state(&elem->st, cur); 775 if (err) 776 goto err; 777 elem->st.speculative |= speculative; 778 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { 779 verbose(env, "BPF program is too complex\n"); 780 goto err; 781 } 782 return &elem->st; 783 err: 784 free_verifier_state(env->cur_state, true); 785 env->cur_state = NULL; 786 /* pop all elements and return */ 787 while (!pop_stack(env, NULL, NULL)); 788 return NULL; 789 } 790 791 #define CALLER_SAVED_REGS 6 792 static const int caller_saved[CALLER_SAVED_REGS] = { 793 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 794 }; 795 796 static void __mark_reg_not_init(struct bpf_reg_state *reg); 797 798 /* Mark the unknown part of a register (variable offset or scalar value) as 799 * known to have the value @imm. 800 */ 801 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 802 { 803 /* Clear id, off, and union(map_ptr, range) */ 804 memset(((u8 *)reg) + sizeof(reg->type), 0, 805 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 806 reg->var_off = tnum_const(imm); 807 reg->smin_value = (s64)imm; 808 reg->smax_value = (s64)imm; 809 reg->umin_value = imm; 810 reg->umax_value = imm; 811 } 812 813 /* Mark the 'variable offset' part of a register as zero. This should be 814 * used only on registers holding a pointer type. 815 */ 816 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 817 { 818 __mark_reg_known(reg, 0); 819 } 820 821 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 822 { 823 __mark_reg_known(reg, 0); 824 reg->type = SCALAR_VALUE; 825 } 826 827 static void mark_reg_known_zero(struct bpf_verifier_env *env, 828 struct bpf_reg_state *regs, u32 regno) 829 { 830 if (WARN_ON(regno >= MAX_BPF_REG)) { 831 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 832 /* Something bad happened, let's kill all regs */ 833 for (regno = 0; regno < MAX_BPF_REG; regno++) 834 __mark_reg_not_init(regs + regno); 835 return; 836 } 837 __mark_reg_known_zero(regs + regno); 838 } 839 840 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 841 { 842 return type_is_pkt_pointer(reg->type); 843 } 844 845 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 846 { 847 return reg_is_pkt_pointer(reg) || 848 reg->type == PTR_TO_PACKET_END; 849 } 850 851 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 852 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 853 enum bpf_reg_type which) 854 { 855 /* The register can already have a range from prior markings. 856 * This is fine as long as it hasn't been advanced from its 857 * origin. 858 */ 859 return reg->type == which && 860 reg->id == 0 && 861 reg->off == 0 && 862 tnum_equals_const(reg->var_off, 0); 863 } 864 865 /* Attempts to improve min/max values based on var_off information */ 866 static void __update_reg_bounds(struct bpf_reg_state *reg) 867 { 868 /* min signed is max(sign bit) | min(other bits) */ 869 reg->smin_value = max_t(s64, reg->smin_value, 870 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 871 /* max signed is min(sign bit) | max(other bits) */ 872 reg->smax_value = min_t(s64, reg->smax_value, 873 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 874 reg->umin_value = max(reg->umin_value, reg->var_off.value); 875 reg->umax_value = min(reg->umax_value, 876 reg->var_off.value | reg->var_off.mask); 877 } 878 879 /* Uses signed min/max values to inform unsigned, and vice-versa */ 880 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 881 { 882 /* Learn sign from signed bounds. 883 * If we cannot cross the sign boundary, then signed and unsigned bounds 884 * are the same, so combine. This works even in the negative case, e.g. 885 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 886 */ 887 if (reg->smin_value >= 0 || reg->smax_value < 0) { 888 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 889 reg->umin_value); 890 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 891 reg->umax_value); 892 return; 893 } 894 /* Learn sign from unsigned bounds. Signed bounds cross the sign 895 * boundary, so we must be careful. 896 */ 897 if ((s64)reg->umax_value >= 0) { 898 /* Positive. We can't learn anything from the smin, but smax 899 * is positive, hence safe. 900 */ 901 reg->smin_value = reg->umin_value; 902 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 903 reg->umax_value); 904 } else if ((s64)reg->umin_value < 0) { 905 /* Negative. We can't learn anything from the smax, but smin 906 * is negative, hence safe. 907 */ 908 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 909 reg->umin_value); 910 reg->smax_value = reg->umax_value; 911 } 912 } 913 914 /* Attempts to improve var_off based on unsigned min/max information */ 915 static void __reg_bound_offset(struct bpf_reg_state *reg) 916 { 917 reg->var_off = tnum_intersect(reg->var_off, 918 tnum_range(reg->umin_value, 919 reg->umax_value)); 920 } 921 922 /* Reset the min/max bounds of a register */ 923 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 924 { 925 reg->smin_value = S64_MIN; 926 reg->smax_value = S64_MAX; 927 reg->umin_value = 0; 928 reg->umax_value = U64_MAX; 929 } 930 931 /* Mark a register as having a completely unknown (scalar) value. */ 932 static void __mark_reg_unknown(struct bpf_reg_state *reg) 933 { 934 /* 935 * Clear type, id, off, and union(map_ptr, range) and 936 * padding between 'type' and union 937 */ 938 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 939 reg->type = SCALAR_VALUE; 940 reg->var_off = tnum_unknown; 941 reg->frameno = 0; 942 __mark_reg_unbounded(reg); 943 } 944 945 static void mark_reg_unknown(struct bpf_verifier_env *env, 946 struct bpf_reg_state *regs, u32 regno) 947 { 948 if (WARN_ON(regno >= MAX_BPF_REG)) { 949 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 950 /* Something bad happened, let's kill all regs except FP */ 951 for (regno = 0; regno < BPF_REG_FP; regno++) 952 __mark_reg_not_init(regs + regno); 953 return; 954 } 955 __mark_reg_unknown(regs + regno); 956 } 957 958 static void __mark_reg_not_init(struct bpf_reg_state *reg) 959 { 960 __mark_reg_unknown(reg); 961 reg->type = NOT_INIT; 962 } 963 964 static void mark_reg_not_init(struct bpf_verifier_env *env, 965 struct bpf_reg_state *regs, u32 regno) 966 { 967 if (WARN_ON(regno >= MAX_BPF_REG)) { 968 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 969 /* Something bad happened, let's kill all regs except FP */ 970 for (regno = 0; regno < BPF_REG_FP; regno++) 971 __mark_reg_not_init(regs + regno); 972 return; 973 } 974 __mark_reg_not_init(regs + regno); 975 } 976 977 static void init_reg_state(struct bpf_verifier_env *env, 978 struct bpf_func_state *state) 979 { 980 struct bpf_reg_state *regs = state->regs; 981 int i; 982 983 for (i = 0; i < MAX_BPF_REG; i++) { 984 mark_reg_not_init(env, regs, i); 985 regs[i].live = REG_LIVE_NONE; 986 regs[i].parent = NULL; 987 } 988 989 /* frame pointer */ 990 regs[BPF_REG_FP].type = PTR_TO_STACK; 991 mark_reg_known_zero(env, regs, BPF_REG_FP); 992 regs[BPF_REG_FP].frameno = state->frameno; 993 994 /* 1st arg to a function */ 995 regs[BPF_REG_1].type = PTR_TO_CTX; 996 mark_reg_known_zero(env, regs, BPF_REG_1); 997 } 998 999 #define BPF_MAIN_FUNC (-1) 1000 static void init_func_state(struct bpf_verifier_env *env, 1001 struct bpf_func_state *state, 1002 int callsite, int frameno, int subprogno) 1003 { 1004 state->callsite = callsite; 1005 state->frameno = frameno; 1006 state->subprogno = subprogno; 1007 init_reg_state(env, state); 1008 } 1009 1010 enum reg_arg_type { 1011 SRC_OP, /* register is used as source operand */ 1012 DST_OP, /* register is used as destination operand */ 1013 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1014 }; 1015 1016 static int cmp_subprogs(const void *a, const void *b) 1017 { 1018 return ((struct bpf_subprog_info *)a)->start - 1019 ((struct bpf_subprog_info *)b)->start; 1020 } 1021 1022 static int find_subprog(struct bpf_verifier_env *env, int off) 1023 { 1024 struct bpf_subprog_info *p; 1025 1026 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1027 sizeof(env->subprog_info[0]), cmp_subprogs); 1028 if (!p) 1029 return -ENOENT; 1030 return p - env->subprog_info; 1031 1032 } 1033 1034 static int add_subprog(struct bpf_verifier_env *env, int off) 1035 { 1036 int insn_cnt = env->prog->len; 1037 int ret; 1038 1039 if (off >= insn_cnt || off < 0) { 1040 verbose(env, "call to invalid destination\n"); 1041 return -EINVAL; 1042 } 1043 ret = find_subprog(env, off); 1044 if (ret >= 0) 1045 return 0; 1046 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1047 verbose(env, "too many subprograms\n"); 1048 return -E2BIG; 1049 } 1050 env->subprog_info[env->subprog_cnt++].start = off; 1051 sort(env->subprog_info, env->subprog_cnt, 1052 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1053 return 0; 1054 } 1055 1056 static int check_subprogs(struct bpf_verifier_env *env) 1057 { 1058 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1059 struct bpf_subprog_info *subprog = env->subprog_info; 1060 struct bpf_insn *insn = env->prog->insnsi; 1061 int insn_cnt = env->prog->len; 1062 1063 /* Add entry function. */ 1064 ret = add_subprog(env, 0); 1065 if (ret < 0) 1066 return ret; 1067 1068 /* determine subprog starts. The end is one before the next starts */ 1069 for (i = 0; i < insn_cnt; i++) { 1070 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1071 continue; 1072 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1073 continue; 1074 if (!env->allow_ptr_leaks) { 1075 verbose(env, "function calls to other bpf functions are allowed for root only\n"); 1076 return -EPERM; 1077 } 1078 ret = add_subprog(env, i + insn[i].imm + 1); 1079 if (ret < 0) 1080 return ret; 1081 } 1082 1083 /* Add a fake 'exit' subprog which could simplify subprog iteration 1084 * logic. 'subprog_cnt' should not be increased. 1085 */ 1086 subprog[env->subprog_cnt].start = insn_cnt; 1087 1088 if (env->log.level > 1) 1089 for (i = 0; i < env->subprog_cnt; i++) 1090 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1091 1092 /* now check that all jumps are within the same subprog */ 1093 subprog_start = subprog[cur_subprog].start; 1094 subprog_end = subprog[cur_subprog + 1].start; 1095 for (i = 0; i < insn_cnt; i++) { 1096 u8 code = insn[i].code; 1097 1098 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1099 goto next; 1100 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1101 goto next; 1102 off = i + insn[i].off + 1; 1103 if (off < subprog_start || off >= subprog_end) { 1104 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1105 return -EINVAL; 1106 } 1107 next: 1108 if (i == subprog_end - 1) { 1109 /* to avoid fall-through from one subprog into another 1110 * the last insn of the subprog should be either exit 1111 * or unconditional jump back 1112 */ 1113 if (code != (BPF_JMP | BPF_EXIT) && 1114 code != (BPF_JMP | BPF_JA)) { 1115 verbose(env, "last insn is not an exit or jmp\n"); 1116 return -EINVAL; 1117 } 1118 subprog_start = subprog_end; 1119 cur_subprog++; 1120 if (cur_subprog < env->subprog_cnt) 1121 subprog_end = subprog[cur_subprog + 1].start; 1122 } 1123 } 1124 return 0; 1125 } 1126 1127 /* Parentage chain of this register (or stack slot) should take care of all 1128 * issues like callee-saved registers, stack slot allocation time, etc. 1129 */ 1130 static int mark_reg_read(struct bpf_verifier_env *env, 1131 const struct bpf_reg_state *state, 1132 struct bpf_reg_state *parent) 1133 { 1134 bool writes = parent == state->parent; /* Observe write marks */ 1135 1136 while (parent) { 1137 /* if read wasn't screened by an earlier write ... */ 1138 if (writes && state->live & REG_LIVE_WRITTEN) 1139 break; 1140 if (parent->live & REG_LIVE_DONE) { 1141 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1142 reg_type_str[parent->type], 1143 parent->var_off.value, parent->off); 1144 return -EFAULT; 1145 } 1146 /* ... then we depend on parent's value */ 1147 parent->live |= REG_LIVE_READ; 1148 state = parent; 1149 parent = state->parent; 1150 writes = true; 1151 } 1152 return 0; 1153 } 1154 1155 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1156 enum reg_arg_type t) 1157 { 1158 struct bpf_verifier_state *vstate = env->cur_state; 1159 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1160 struct bpf_reg_state *regs = state->regs; 1161 1162 if (regno >= MAX_BPF_REG) { 1163 verbose(env, "R%d is invalid\n", regno); 1164 return -EINVAL; 1165 } 1166 1167 if (t == SRC_OP) { 1168 /* check whether register used as source operand can be read */ 1169 if (regs[regno].type == NOT_INIT) { 1170 verbose(env, "R%d !read_ok\n", regno); 1171 return -EACCES; 1172 } 1173 /* We don't need to worry about FP liveness because it's read-only */ 1174 if (regno != BPF_REG_FP) 1175 return mark_reg_read(env, ®s[regno], 1176 regs[regno].parent); 1177 } else { 1178 /* check whether register used as dest operand can be written to */ 1179 if (regno == BPF_REG_FP) { 1180 verbose(env, "frame pointer is read only\n"); 1181 return -EACCES; 1182 } 1183 regs[regno].live |= REG_LIVE_WRITTEN; 1184 if (t == DST_OP) 1185 mark_reg_unknown(env, regs, regno); 1186 } 1187 return 0; 1188 } 1189 1190 static bool is_spillable_regtype(enum bpf_reg_type type) 1191 { 1192 switch (type) { 1193 case PTR_TO_MAP_VALUE: 1194 case PTR_TO_MAP_VALUE_OR_NULL: 1195 case PTR_TO_STACK: 1196 case PTR_TO_CTX: 1197 case PTR_TO_PACKET: 1198 case PTR_TO_PACKET_META: 1199 case PTR_TO_PACKET_END: 1200 case PTR_TO_FLOW_KEYS: 1201 case CONST_PTR_TO_MAP: 1202 case PTR_TO_SOCKET: 1203 case PTR_TO_SOCKET_OR_NULL: 1204 return true; 1205 default: 1206 return false; 1207 } 1208 } 1209 1210 /* Does this register contain a constant zero? */ 1211 static bool register_is_null(struct bpf_reg_state *reg) 1212 { 1213 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 1214 } 1215 1216 /* check_stack_read/write functions track spill/fill of registers, 1217 * stack boundary and alignment are checked in check_mem_access() 1218 */ 1219 static int check_stack_write(struct bpf_verifier_env *env, 1220 struct bpf_func_state *state, /* func where register points to */ 1221 int off, int size, int value_regno, int insn_idx) 1222 { 1223 struct bpf_func_state *cur; /* state of the current function */ 1224 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 1225 enum bpf_reg_type type; 1226 1227 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 1228 state->acquired_refs, true); 1229 if (err) 1230 return err; 1231 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 1232 * so it's aligned access and [off, off + size) are within stack limits 1233 */ 1234 if (!env->allow_ptr_leaks && 1235 state->stack[spi].slot_type[0] == STACK_SPILL && 1236 size != BPF_REG_SIZE) { 1237 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 1238 return -EACCES; 1239 } 1240 1241 cur = env->cur_state->frame[env->cur_state->curframe]; 1242 if (value_regno >= 0 && 1243 is_spillable_regtype((type = cur->regs[value_regno].type))) { 1244 1245 /* register containing pointer is being spilled into stack */ 1246 if (size != BPF_REG_SIZE) { 1247 verbose(env, "invalid size of register spill\n"); 1248 return -EACCES; 1249 } 1250 1251 if (state != cur && type == PTR_TO_STACK) { 1252 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 1253 return -EINVAL; 1254 } 1255 1256 /* save register state */ 1257 state->stack[spi].spilled_ptr = cur->regs[value_regno]; 1258 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1259 1260 for (i = 0; i < BPF_REG_SIZE; i++) { 1261 if (state->stack[spi].slot_type[i] == STACK_MISC && 1262 !env->allow_ptr_leaks) { 1263 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 1264 int soff = (-spi - 1) * BPF_REG_SIZE; 1265 1266 /* detected reuse of integer stack slot with a pointer 1267 * which means either llvm is reusing stack slot or 1268 * an attacker is trying to exploit CVE-2018-3639 1269 * (speculative store bypass) 1270 * Have to sanitize that slot with preemptive 1271 * store of zero. 1272 */ 1273 if (*poff && *poff != soff) { 1274 /* disallow programs where single insn stores 1275 * into two different stack slots, since verifier 1276 * cannot sanitize them 1277 */ 1278 verbose(env, 1279 "insn %d cannot access two stack slots fp%d and fp%d", 1280 insn_idx, *poff, soff); 1281 return -EINVAL; 1282 } 1283 *poff = soff; 1284 } 1285 state->stack[spi].slot_type[i] = STACK_SPILL; 1286 } 1287 } else { 1288 u8 type = STACK_MISC; 1289 1290 /* regular write of data into stack destroys any spilled ptr */ 1291 state->stack[spi].spilled_ptr.type = NOT_INIT; 1292 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 1293 if (state->stack[spi].slot_type[0] == STACK_SPILL) 1294 for (i = 0; i < BPF_REG_SIZE; i++) 1295 state->stack[spi].slot_type[i] = STACK_MISC; 1296 1297 /* only mark the slot as written if all 8 bytes were written 1298 * otherwise read propagation may incorrectly stop too soon 1299 * when stack slots are partially written. 1300 * This heuristic means that read propagation will be 1301 * conservative, since it will add reg_live_read marks 1302 * to stack slots all the way to first state when programs 1303 * writes+reads less than 8 bytes 1304 */ 1305 if (size == BPF_REG_SIZE) 1306 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 1307 1308 /* when we zero initialize stack slots mark them as such */ 1309 if (value_regno >= 0 && 1310 register_is_null(&cur->regs[value_regno])) 1311 type = STACK_ZERO; 1312 1313 /* Mark slots affected by this stack write. */ 1314 for (i = 0; i < size; i++) 1315 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 1316 type; 1317 } 1318 return 0; 1319 } 1320 1321 static int check_stack_read(struct bpf_verifier_env *env, 1322 struct bpf_func_state *reg_state /* func where register points to */, 1323 int off, int size, int value_regno) 1324 { 1325 struct bpf_verifier_state *vstate = env->cur_state; 1326 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1327 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 1328 u8 *stype; 1329 1330 if (reg_state->allocated_stack <= slot) { 1331 verbose(env, "invalid read from stack off %d+0 size %d\n", 1332 off, size); 1333 return -EACCES; 1334 } 1335 stype = reg_state->stack[spi].slot_type; 1336 1337 if (stype[0] == STACK_SPILL) { 1338 if (size != BPF_REG_SIZE) { 1339 verbose(env, "invalid size of register spill\n"); 1340 return -EACCES; 1341 } 1342 for (i = 1; i < BPF_REG_SIZE; i++) { 1343 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 1344 verbose(env, "corrupted spill memory\n"); 1345 return -EACCES; 1346 } 1347 } 1348 1349 if (value_regno >= 0) { 1350 /* restore register state from stack */ 1351 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr; 1352 /* mark reg as written since spilled pointer state likely 1353 * has its liveness marks cleared by is_state_visited() 1354 * which resets stack/reg liveness for state transitions 1355 */ 1356 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1357 } 1358 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1359 reg_state->stack[spi].spilled_ptr.parent); 1360 return 0; 1361 } else { 1362 int zeros = 0; 1363 1364 for (i = 0; i < size; i++) { 1365 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 1366 continue; 1367 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 1368 zeros++; 1369 continue; 1370 } 1371 verbose(env, "invalid read from stack off %d+%d size %d\n", 1372 off, i, size); 1373 return -EACCES; 1374 } 1375 mark_reg_read(env, ®_state->stack[spi].spilled_ptr, 1376 reg_state->stack[spi].spilled_ptr.parent); 1377 if (value_regno >= 0) { 1378 if (zeros == size) { 1379 /* any size read into register is zero extended, 1380 * so the whole register == const_zero 1381 */ 1382 __mark_reg_const_zero(&state->regs[value_regno]); 1383 } else { 1384 /* have read misc data from the stack */ 1385 mark_reg_unknown(env, state->regs, value_regno); 1386 } 1387 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 1388 } 1389 return 0; 1390 } 1391 } 1392 1393 static int check_stack_access(struct bpf_verifier_env *env, 1394 const struct bpf_reg_state *reg, 1395 int off, int size) 1396 { 1397 /* Stack accesses must be at a fixed offset, so that we 1398 * can determine what type of data were returned. See 1399 * check_stack_read(). 1400 */ 1401 if (!tnum_is_const(reg->var_off)) { 1402 char tn_buf[48]; 1403 1404 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1405 verbose(env, "variable stack access var_off=%s off=%d size=%d", 1406 tn_buf, off, size); 1407 return -EACCES; 1408 } 1409 1410 if (off >= 0 || off < -MAX_BPF_STACK) { 1411 verbose(env, "invalid stack off=%d size=%d\n", off, size); 1412 return -EACCES; 1413 } 1414 1415 return 0; 1416 } 1417 1418 /* check read/write into map element returned by bpf_map_lookup_elem() */ 1419 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, 1420 int size, bool zero_size_allowed) 1421 { 1422 struct bpf_reg_state *regs = cur_regs(env); 1423 struct bpf_map *map = regs[regno].map_ptr; 1424 1425 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1426 off + size > map->value_size) { 1427 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 1428 map->value_size, off, size); 1429 return -EACCES; 1430 } 1431 return 0; 1432 } 1433 1434 /* check read/write into a map element with possible variable offset */ 1435 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 1436 int off, int size, bool zero_size_allowed) 1437 { 1438 struct bpf_verifier_state *vstate = env->cur_state; 1439 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1440 struct bpf_reg_state *reg = &state->regs[regno]; 1441 int err; 1442 1443 /* We may have adjusted the register to this map value, so we 1444 * need to try adding each of min_value and max_value to off 1445 * to make sure our theoretical access will be safe. 1446 */ 1447 if (env->log.level) 1448 print_verifier_state(env, state); 1449 1450 /* The minimum value is only important with signed 1451 * comparisons where we can't assume the floor of a 1452 * value is 0. If we are using signed variables for our 1453 * index'es we need to make sure that whatever we use 1454 * will have a set floor within our range. 1455 */ 1456 if (reg->smin_value < 0 && 1457 (reg->smin_value == S64_MIN || 1458 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 1459 reg->smin_value + off < 0)) { 1460 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1461 regno); 1462 return -EACCES; 1463 } 1464 err = __check_map_access(env, regno, reg->smin_value + off, size, 1465 zero_size_allowed); 1466 if (err) { 1467 verbose(env, "R%d min value is outside of the array range\n", 1468 regno); 1469 return err; 1470 } 1471 1472 /* If we haven't set a max value then we need to bail since we can't be 1473 * sure we won't do bad things. 1474 * If reg->umax_value + off could overflow, treat that as unbounded too. 1475 */ 1476 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 1477 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n", 1478 regno); 1479 return -EACCES; 1480 } 1481 err = __check_map_access(env, regno, reg->umax_value + off, size, 1482 zero_size_allowed); 1483 if (err) 1484 verbose(env, "R%d max value is outside of the array range\n", 1485 regno); 1486 return err; 1487 } 1488 1489 #define MAX_PACKET_OFF 0xffff 1490 1491 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 1492 const struct bpf_call_arg_meta *meta, 1493 enum bpf_access_type t) 1494 { 1495 switch (env->prog->type) { 1496 /* Program types only with direct read access go here! */ 1497 case BPF_PROG_TYPE_LWT_IN: 1498 case BPF_PROG_TYPE_LWT_OUT: 1499 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 1500 case BPF_PROG_TYPE_SK_REUSEPORT: 1501 case BPF_PROG_TYPE_FLOW_DISSECTOR: 1502 case BPF_PROG_TYPE_CGROUP_SKB: 1503 if (t == BPF_WRITE) 1504 return false; 1505 /* fallthrough */ 1506 1507 /* Program types with direct read + write access go here! */ 1508 case BPF_PROG_TYPE_SCHED_CLS: 1509 case BPF_PROG_TYPE_SCHED_ACT: 1510 case BPF_PROG_TYPE_XDP: 1511 case BPF_PROG_TYPE_LWT_XMIT: 1512 case BPF_PROG_TYPE_SK_SKB: 1513 case BPF_PROG_TYPE_SK_MSG: 1514 if (meta) 1515 return meta->pkt_access; 1516 1517 env->seen_direct_write = true; 1518 return true; 1519 default: 1520 return false; 1521 } 1522 } 1523 1524 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, 1525 int off, int size, bool zero_size_allowed) 1526 { 1527 struct bpf_reg_state *regs = cur_regs(env); 1528 struct bpf_reg_state *reg = ®s[regno]; 1529 1530 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) || 1531 (u64)off + size > reg->range) { 1532 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 1533 off, size, regno, reg->id, reg->off, reg->range); 1534 return -EACCES; 1535 } 1536 return 0; 1537 } 1538 1539 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 1540 int size, bool zero_size_allowed) 1541 { 1542 struct bpf_reg_state *regs = cur_regs(env); 1543 struct bpf_reg_state *reg = ®s[regno]; 1544 int err; 1545 1546 /* We may have added a variable offset to the packet pointer; but any 1547 * reg->range we have comes after that. We are only checking the fixed 1548 * offset. 1549 */ 1550 1551 /* We don't allow negative numbers, because we aren't tracking enough 1552 * detail to prove they're safe. 1553 */ 1554 if (reg->smin_value < 0) { 1555 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1556 regno); 1557 return -EACCES; 1558 } 1559 err = __check_packet_access(env, regno, off, size, zero_size_allowed); 1560 if (err) { 1561 verbose(env, "R%d offset is outside of the packet\n", regno); 1562 return err; 1563 } 1564 1565 /* __check_packet_access has made sure "off + size - 1" is within u16. 1566 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 1567 * otherwise find_good_pkt_pointers would have refused to set range info 1568 * that __check_packet_access would have rejected this pkt access. 1569 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 1570 */ 1571 env->prog->aux->max_pkt_offset = 1572 max_t(u32, env->prog->aux->max_pkt_offset, 1573 off + reg->umax_value + size - 1); 1574 1575 return err; 1576 } 1577 1578 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 1579 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 1580 enum bpf_access_type t, enum bpf_reg_type *reg_type) 1581 { 1582 struct bpf_insn_access_aux info = { 1583 .reg_type = *reg_type, 1584 }; 1585 1586 if (env->ops->is_valid_access && 1587 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 1588 /* A non zero info.ctx_field_size indicates that this field is a 1589 * candidate for later verifier transformation to load the whole 1590 * field and then apply a mask when accessed with a narrower 1591 * access than actual ctx access size. A zero info.ctx_field_size 1592 * will only allow for whole field access and rejects any other 1593 * type of narrower access. 1594 */ 1595 *reg_type = info.reg_type; 1596 1597 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 1598 /* remember the offset of last byte accessed in ctx */ 1599 if (env->prog->aux->max_ctx_offset < off + size) 1600 env->prog->aux->max_ctx_offset = off + size; 1601 return 0; 1602 } 1603 1604 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 1605 return -EACCES; 1606 } 1607 1608 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 1609 int size) 1610 { 1611 if (size < 0 || off < 0 || 1612 (u64)off + size > sizeof(struct bpf_flow_keys)) { 1613 verbose(env, "invalid access to flow keys off=%d size=%d\n", 1614 off, size); 1615 return -EACCES; 1616 } 1617 return 0; 1618 } 1619 1620 static int check_sock_access(struct bpf_verifier_env *env, u32 regno, int off, 1621 int size, enum bpf_access_type t) 1622 { 1623 struct bpf_reg_state *regs = cur_regs(env); 1624 struct bpf_reg_state *reg = ®s[regno]; 1625 struct bpf_insn_access_aux info; 1626 1627 if (reg->smin_value < 0) { 1628 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 1629 regno); 1630 return -EACCES; 1631 } 1632 1633 if (!bpf_sock_is_valid_access(off, size, t, &info)) { 1634 verbose(env, "invalid bpf_sock access off=%d size=%d\n", 1635 off, size); 1636 return -EACCES; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static bool __is_pointer_value(bool allow_ptr_leaks, 1643 const struct bpf_reg_state *reg) 1644 { 1645 if (allow_ptr_leaks) 1646 return false; 1647 1648 return reg->type != SCALAR_VALUE; 1649 } 1650 1651 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 1652 { 1653 return cur_regs(env) + regno; 1654 } 1655 1656 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 1657 { 1658 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 1659 } 1660 1661 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 1662 { 1663 const struct bpf_reg_state *reg = reg_state(env, regno); 1664 1665 return reg->type == PTR_TO_CTX || 1666 reg->type == PTR_TO_SOCKET; 1667 } 1668 1669 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 1670 { 1671 const struct bpf_reg_state *reg = reg_state(env, regno); 1672 1673 return type_is_pkt_pointer(reg->type); 1674 } 1675 1676 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 1677 { 1678 const struct bpf_reg_state *reg = reg_state(env, regno); 1679 1680 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 1681 return reg->type == PTR_TO_FLOW_KEYS; 1682 } 1683 1684 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 1685 const struct bpf_reg_state *reg, 1686 int off, int size, bool strict) 1687 { 1688 struct tnum reg_off; 1689 int ip_align; 1690 1691 /* Byte size accesses are always allowed. */ 1692 if (!strict || size == 1) 1693 return 0; 1694 1695 /* For platforms that do not have a Kconfig enabling 1696 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 1697 * NET_IP_ALIGN is universally set to '2'. And on platforms 1698 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 1699 * to this code only in strict mode where we want to emulate 1700 * the NET_IP_ALIGN==2 checking. Therefore use an 1701 * unconditional IP align value of '2'. 1702 */ 1703 ip_align = 2; 1704 1705 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 1706 if (!tnum_is_aligned(reg_off, size)) { 1707 char tn_buf[48]; 1708 1709 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1710 verbose(env, 1711 "misaligned packet access off %d+%s+%d+%d size %d\n", 1712 ip_align, tn_buf, reg->off, off, size); 1713 return -EACCES; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 1720 const struct bpf_reg_state *reg, 1721 const char *pointer_desc, 1722 int off, int size, bool strict) 1723 { 1724 struct tnum reg_off; 1725 1726 /* Byte size accesses are always allowed. */ 1727 if (!strict || size == 1) 1728 return 0; 1729 1730 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 1731 if (!tnum_is_aligned(reg_off, size)) { 1732 char tn_buf[48]; 1733 1734 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1735 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 1736 pointer_desc, tn_buf, reg->off, off, size); 1737 return -EACCES; 1738 } 1739 1740 return 0; 1741 } 1742 1743 static int check_ptr_alignment(struct bpf_verifier_env *env, 1744 const struct bpf_reg_state *reg, int off, 1745 int size, bool strict_alignment_once) 1746 { 1747 bool strict = env->strict_alignment || strict_alignment_once; 1748 const char *pointer_desc = ""; 1749 1750 switch (reg->type) { 1751 case PTR_TO_PACKET: 1752 case PTR_TO_PACKET_META: 1753 /* Special case, because of NET_IP_ALIGN. Given metadata sits 1754 * right in front, treat it the very same way. 1755 */ 1756 return check_pkt_ptr_alignment(env, reg, off, size, strict); 1757 case PTR_TO_FLOW_KEYS: 1758 pointer_desc = "flow keys "; 1759 break; 1760 case PTR_TO_MAP_VALUE: 1761 pointer_desc = "value "; 1762 break; 1763 case PTR_TO_CTX: 1764 pointer_desc = "context "; 1765 break; 1766 case PTR_TO_STACK: 1767 pointer_desc = "stack "; 1768 /* The stack spill tracking logic in check_stack_write() 1769 * and check_stack_read() relies on stack accesses being 1770 * aligned. 1771 */ 1772 strict = true; 1773 break; 1774 case PTR_TO_SOCKET: 1775 pointer_desc = "sock "; 1776 break; 1777 default: 1778 break; 1779 } 1780 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 1781 strict); 1782 } 1783 1784 static int update_stack_depth(struct bpf_verifier_env *env, 1785 const struct bpf_func_state *func, 1786 int off) 1787 { 1788 u16 stack = env->subprog_info[func->subprogno].stack_depth; 1789 1790 if (stack >= -off) 1791 return 0; 1792 1793 /* update known max for given subprogram */ 1794 env->subprog_info[func->subprogno].stack_depth = -off; 1795 return 0; 1796 } 1797 1798 /* starting from main bpf function walk all instructions of the function 1799 * and recursively walk all callees that given function can call. 1800 * Ignore jump and exit insns. 1801 * Since recursion is prevented by check_cfg() this algorithm 1802 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 1803 */ 1804 static int check_max_stack_depth(struct bpf_verifier_env *env) 1805 { 1806 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 1807 struct bpf_subprog_info *subprog = env->subprog_info; 1808 struct bpf_insn *insn = env->prog->insnsi; 1809 int ret_insn[MAX_CALL_FRAMES]; 1810 int ret_prog[MAX_CALL_FRAMES]; 1811 1812 process_func: 1813 /* round up to 32-bytes, since this is granularity 1814 * of interpreter stack size 1815 */ 1816 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1817 if (depth > MAX_BPF_STACK) { 1818 verbose(env, "combined stack size of %d calls is %d. Too large\n", 1819 frame + 1, depth); 1820 return -EACCES; 1821 } 1822 continue_func: 1823 subprog_end = subprog[idx + 1].start; 1824 for (; i < subprog_end; i++) { 1825 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1826 continue; 1827 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1828 continue; 1829 /* remember insn and function to return to */ 1830 ret_insn[frame] = i + 1; 1831 ret_prog[frame] = idx; 1832 1833 /* find the callee */ 1834 i = i + insn[i].imm + 1; 1835 idx = find_subprog(env, i); 1836 if (idx < 0) { 1837 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1838 i); 1839 return -EFAULT; 1840 } 1841 frame++; 1842 if (frame >= MAX_CALL_FRAMES) { 1843 WARN_ONCE(1, "verifier bug. Call stack is too deep\n"); 1844 return -EFAULT; 1845 } 1846 goto process_func; 1847 } 1848 /* end of for() loop means the last insn of the 'subprog' 1849 * was reached. Doesn't matter whether it was JA or EXIT 1850 */ 1851 if (frame == 0) 1852 return 0; 1853 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 1854 frame--; 1855 i = ret_insn[frame]; 1856 idx = ret_prog[frame]; 1857 goto continue_func; 1858 } 1859 1860 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 1861 static int get_callee_stack_depth(struct bpf_verifier_env *env, 1862 const struct bpf_insn *insn, int idx) 1863 { 1864 int start = idx + insn->imm + 1, subprog; 1865 1866 subprog = find_subprog(env, start); 1867 if (subprog < 0) { 1868 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 1869 start); 1870 return -EFAULT; 1871 } 1872 return env->subprog_info[subprog].stack_depth; 1873 } 1874 #endif 1875 1876 static int check_ctx_reg(struct bpf_verifier_env *env, 1877 const struct bpf_reg_state *reg, int regno) 1878 { 1879 /* Access to ctx or passing it to a helper is only allowed in 1880 * its original, unmodified form. 1881 */ 1882 1883 if (reg->off) { 1884 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 1885 regno, reg->off); 1886 return -EACCES; 1887 } 1888 1889 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 1890 char tn_buf[48]; 1891 1892 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 1893 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 1894 return -EACCES; 1895 } 1896 1897 return 0; 1898 } 1899 1900 /* truncate register to smaller size (in bytes) 1901 * must be called with size < BPF_REG_SIZE 1902 */ 1903 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 1904 { 1905 u64 mask; 1906 1907 /* clear high bits in bit representation */ 1908 reg->var_off = tnum_cast(reg->var_off, size); 1909 1910 /* fix arithmetic bounds */ 1911 mask = ((u64)1 << (size * 8)) - 1; 1912 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 1913 reg->umin_value &= mask; 1914 reg->umax_value &= mask; 1915 } else { 1916 reg->umin_value = 0; 1917 reg->umax_value = mask; 1918 } 1919 reg->smin_value = reg->umin_value; 1920 reg->smax_value = reg->umax_value; 1921 } 1922 1923 /* check whether memory at (regno + off) is accessible for t = (read | write) 1924 * if t==write, value_regno is a register which value is stored into memory 1925 * if t==read, value_regno is a register which will receive the value from memory 1926 * if t==write && value_regno==-1, some unknown value is stored into memory 1927 * if t==read && value_regno==-1, don't care what we read from memory 1928 */ 1929 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 1930 int off, int bpf_size, enum bpf_access_type t, 1931 int value_regno, bool strict_alignment_once) 1932 { 1933 struct bpf_reg_state *regs = cur_regs(env); 1934 struct bpf_reg_state *reg = regs + regno; 1935 struct bpf_func_state *state; 1936 int size, err = 0; 1937 1938 size = bpf_size_to_bytes(bpf_size); 1939 if (size < 0) 1940 return size; 1941 1942 /* alignment checks will add in reg->off themselves */ 1943 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 1944 if (err) 1945 return err; 1946 1947 /* for access checks, reg->off is just part of off */ 1948 off += reg->off; 1949 1950 if (reg->type == PTR_TO_MAP_VALUE) { 1951 if (t == BPF_WRITE && value_regno >= 0 && 1952 is_pointer_value(env, value_regno)) { 1953 verbose(env, "R%d leaks addr into map\n", value_regno); 1954 return -EACCES; 1955 } 1956 1957 err = check_map_access(env, regno, off, size, false); 1958 if (!err && t == BPF_READ && value_regno >= 0) 1959 mark_reg_unknown(env, regs, value_regno); 1960 1961 } else if (reg->type == PTR_TO_CTX) { 1962 enum bpf_reg_type reg_type = SCALAR_VALUE; 1963 1964 if (t == BPF_WRITE && value_regno >= 0 && 1965 is_pointer_value(env, value_regno)) { 1966 verbose(env, "R%d leaks addr into ctx\n", value_regno); 1967 return -EACCES; 1968 } 1969 1970 err = check_ctx_reg(env, reg, regno); 1971 if (err < 0) 1972 return err; 1973 1974 err = check_ctx_access(env, insn_idx, off, size, t, ®_type); 1975 if (!err && t == BPF_READ && value_regno >= 0) { 1976 /* ctx access returns either a scalar, or a 1977 * PTR_TO_PACKET[_META,_END]. In the latter 1978 * case, we know the offset is zero. 1979 */ 1980 if (reg_type == SCALAR_VALUE) 1981 mark_reg_unknown(env, regs, value_regno); 1982 else 1983 mark_reg_known_zero(env, regs, 1984 value_regno); 1985 regs[value_regno].type = reg_type; 1986 } 1987 1988 } else if (reg->type == PTR_TO_STACK) { 1989 off += reg->var_off.value; 1990 err = check_stack_access(env, reg, off, size); 1991 if (err) 1992 return err; 1993 1994 state = func(env, reg); 1995 err = update_stack_depth(env, state, off); 1996 if (err) 1997 return err; 1998 1999 if (t == BPF_WRITE) 2000 err = check_stack_write(env, state, off, size, 2001 value_regno, insn_idx); 2002 else 2003 err = check_stack_read(env, state, off, size, 2004 value_regno); 2005 } else if (reg_is_pkt_pointer(reg)) { 2006 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 2007 verbose(env, "cannot write into packet\n"); 2008 return -EACCES; 2009 } 2010 if (t == BPF_WRITE && value_regno >= 0 && 2011 is_pointer_value(env, value_regno)) { 2012 verbose(env, "R%d leaks addr into packet\n", 2013 value_regno); 2014 return -EACCES; 2015 } 2016 err = check_packet_access(env, regno, off, size, false); 2017 if (!err && t == BPF_READ && value_regno >= 0) 2018 mark_reg_unknown(env, regs, value_regno); 2019 } else if (reg->type == PTR_TO_FLOW_KEYS) { 2020 if (t == BPF_WRITE && value_regno >= 0 && 2021 is_pointer_value(env, value_regno)) { 2022 verbose(env, "R%d leaks addr into flow keys\n", 2023 value_regno); 2024 return -EACCES; 2025 } 2026 2027 err = check_flow_keys_access(env, off, size); 2028 if (!err && t == BPF_READ && value_regno >= 0) 2029 mark_reg_unknown(env, regs, value_regno); 2030 } else if (reg->type == PTR_TO_SOCKET) { 2031 if (t == BPF_WRITE) { 2032 verbose(env, "cannot write into socket\n"); 2033 return -EACCES; 2034 } 2035 err = check_sock_access(env, regno, off, size, t); 2036 if (!err && value_regno >= 0) 2037 mark_reg_unknown(env, regs, value_regno); 2038 } else { 2039 verbose(env, "R%d invalid mem access '%s'\n", regno, 2040 reg_type_str[reg->type]); 2041 return -EACCES; 2042 } 2043 2044 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 2045 regs[value_regno].type == SCALAR_VALUE) { 2046 /* b/h/w load zero-extends, mark upper bits as known 0 */ 2047 coerce_reg_to_size(®s[value_regno], size); 2048 } 2049 return err; 2050 } 2051 2052 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 2053 { 2054 int err; 2055 2056 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 2057 insn->imm != 0) { 2058 verbose(env, "BPF_XADD uses reserved fields\n"); 2059 return -EINVAL; 2060 } 2061 2062 /* check src1 operand */ 2063 err = check_reg_arg(env, insn->src_reg, SRC_OP); 2064 if (err) 2065 return err; 2066 2067 /* check src2 operand */ 2068 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 2069 if (err) 2070 return err; 2071 2072 if (is_pointer_value(env, insn->src_reg)) { 2073 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 2074 return -EACCES; 2075 } 2076 2077 if (is_ctx_reg(env, insn->dst_reg) || 2078 is_pkt_reg(env, insn->dst_reg) || 2079 is_flow_key_reg(env, insn->dst_reg)) { 2080 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 2081 insn->dst_reg, 2082 reg_type_str[reg_state(env, insn->dst_reg)->type]); 2083 return -EACCES; 2084 } 2085 2086 /* check whether atomic_add can read the memory */ 2087 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2088 BPF_SIZE(insn->code), BPF_READ, -1, true); 2089 if (err) 2090 return err; 2091 2092 /* check whether atomic_add can write into the same memory */ 2093 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 2094 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 2095 } 2096 2097 /* when register 'regno' is passed into function that will read 'access_size' 2098 * bytes from that pointer, make sure that it's within stack boundary 2099 * and all elements of stack are initialized. 2100 * Unlike most pointer bounds-checking functions, this one doesn't take an 2101 * 'off' argument, so it has to add in reg->off itself. 2102 */ 2103 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 2104 int access_size, bool zero_size_allowed, 2105 struct bpf_call_arg_meta *meta) 2106 { 2107 struct bpf_reg_state *reg = reg_state(env, regno); 2108 struct bpf_func_state *state = func(env, reg); 2109 int off, i, slot, spi; 2110 2111 if (reg->type != PTR_TO_STACK) { 2112 /* Allow zero-byte read from NULL, regardless of pointer type */ 2113 if (zero_size_allowed && access_size == 0 && 2114 register_is_null(reg)) 2115 return 0; 2116 2117 verbose(env, "R%d type=%s expected=%s\n", regno, 2118 reg_type_str[reg->type], 2119 reg_type_str[PTR_TO_STACK]); 2120 return -EACCES; 2121 } 2122 2123 /* Only allow fixed-offset stack reads */ 2124 if (!tnum_is_const(reg->var_off)) { 2125 char tn_buf[48]; 2126 2127 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2128 verbose(env, "invalid variable stack read R%d var_off=%s\n", 2129 regno, tn_buf); 2130 return -EACCES; 2131 } 2132 off = reg->off + reg->var_off.value; 2133 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 2134 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 2135 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 2136 regno, off, access_size); 2137 return -EACCES; 2138 } 2139 2140 if (meta && meta->raw_mode) { 2141 meta->access_size = access_size; 2142 meta->regno = regno; 2143 return 0; 2144 } 2145 2146 for (i = 0; i < access_size; i++) { 2147 u8 *stype; 2148 2149 slot = -(off + i) - 1; 2150 spi = slot / BPF_REG_SIZE; 2151 if (state->allocated_stack <= slot) 2152 goto err; 2153 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 2154 if (*stype == STACK_MISC) 2155 goto mark; 2156 if (*stype == STACK_ZERO) { 2157 /* helper can write anything into the stack */ 2158 *stype = STACK_MISC; 2159 goto mark; 2160 } 2161 err: 2162 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 2163 off, i, access_size); 2164 return -EACCES; 2165 mark: 2166 /* reading any byte out of 8-byte 'spill_slot' will cause 2167 * the whole slot to be marked as 'read' 2168 */ 2169 mark_reg_read(env, &state->stack[spi].spilled_ptr, 2170 state->stack[spi].spilled_ptr.parent); 2171 } 2172 return update_stack_depth(env, state, off); 2173 } 2174 2175 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 2176 int access_size, bool zero_size_allowed, 2177 struct bpf_call_arg_meta *meta) 2178 { 2179 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2180 2181 switch (reg->type) { 2182 case PTR_TO_PACKET: 2183 case PTR_TO_PACKET_META: 2184 return check_packet_access(env, regno, reg->off, access_size, 2185 zero_size_allowed); 2186 case PTR_TO_MAP_VALUE: 2187 return check_map_access(env, regno, reg->off, access_size, 2188 zero_size_allowed); 2189 default: /* scalar_value|ptr_to_stack or invalid ptr */ 2190 return check_stack_boundary(env, regno, access_size, 2191 zero_size_allowed, meta); 2192 } 2193 } 2194 2195 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 2196 { 2197 return type == ARG_PTR_TO_MEM || 2198 type == ARG_PTR_TO_MEM_OR_NULL || 2199 type == ARG_PTR_TO_UNINIT_MEM; 2200 } 2201 2202 static bool arg_type_is_mem_size(enum bpf_arg_type type) 2203 { 2204 return type == ARG_CONST_SIZE || 2205 type == ARG_CONST_SIZE_OR_ZERO; 2206 } 2207 2208 static int check_func_arg(struct bpf_verifier_env *env, u32 regno, 2209 enum bpf_arg_type arg_type, 2210 struct bpf_call_arg_meta *meta) 2211 { 2212 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 2213 enum bpf_reg_type expected_type, type = reg->type; 2214 int err = 0; 2215 2216 if (arg_type == ARG_DONTCARE) 2217 return 0; 2218 2219 err = check_reg_arg(env, regno, SRC_OP); 2220 if (err) 2221 return err; 2222 2223 if (arg_type == ARG_ANYTHING) { 2224 if (is_pointer_value(env, regno)) { 2225 verbose(env, "R%d leaks addr into helper function\n", 2226 regno); 2227 return -EACCES; 2228 } 2229 return 0; 2230 } 2231 2232 if (type_is_pkt_pointer(type) && 2233 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 2234 verbose(env, "helper access to the packet is not allowed\n"); 2235 return -EACCES; 2236 } 2237 2238 if (arg_type == ARG_PTR_TO_MAP_KEY || 2239 arg_type == ARG_PTR_TO_MAP_VALUE || 2240 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2241 expected_type = PTR_TO_STACK; 2242 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE && 2243 type != expected_type) 2244 goto err_type; 2245 } else if (arg_type == ARG_CONST_SIZE || 2246 arg_type == ARG_CONST_SIZE_OR_ZERO) { 2247 expected_type = SCALAR_VALUE; 2248 if (type != expected_type) 2249 goto err_type; 2250 } else if (arg_type == ARG_CONST_MAP_PTR) { 2251 expected_type = CONST_PTR_TO_MAP; 2252 if (type != expected_type) 2253 goto err_type; 2254 } else if (arg_type == ARG_PTR_TO_CTX) { 2255 expected_type = PTR_TO_CTX; 2256 if (type != expected_type) 2257 goto err_type; 2258 err = check_ctx_reg(env, reg, regno); 2259 if (err < 0) 2260 return err; 2261 } else if (arg_type == ARG_PTR_TO_SOCKET) { 2262 expected_type = PTR_TO_SOCKET; 2263 if (type != expected_type) 2264 goto err_type; 2265 if (meta->ptr_id || !reg->id) { 2266 verbose(env, "verifier internal error: mismatched references meta=%d, reg=%d\n", 2267 meta->ptr_id, reg->id); 2268 return -EFAULT; 2269 } 2270 meta->ptr_id = reg->id; 2271 } else if (arg_type_is_mem_ptr(arg_type)) { 2272 expected_type = PTR_TO_STACK; 2273 /* One exception here. In case function allows for NULL to be 2274 * passed in as argument, it's a SCALAR_VALUE type. Final test 2275 * happens during stack boundary checking. 2276 */ 2277 if (register_is_null(reg) && 2278 arg_type == ARG_PTR_TO_MEM_OR_NULL) 2279 /* final test in check_stack_boundary() */; 2280 else if (!type_is_pkt_pointer(type) && 2281 type != PTR_TO_MAP_VALUE && 2282 type != expected_type) 2283 goto err_type; 2284 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; 2285 } else { 2286 verbose(env, "unsupported arg_type %d\n", arg_type); 2287 return -EFAULT; 2288 } 2289 2290 if (arg_type == ARG_CONST_MAP_PTR) { 2291 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 2292 meta->map_ptr = reg->map_ptr; 2293 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 2294 /* bpf_map_xxx(..., map_ptr, ..., key) call: 2295 * check that [key, key + map->key_size) are within 2296 * stack limits and initialized 2297 */ 2298 if (!meta->map_ptr) { 2299 /* in function declaration map_ptr must come before 2300 * map_key, so that it's verified and known before 2301 * we have to check map_key here. Otherwise it means 2302 * that kernel subsystem misconfigured verifier 2303 */ 2304 verbose(env, "invalid map_ptr to access map->key\n"); 2305 return -EACCES; 2306 } 2307 err = check_helper_mem_access(env, regno, 2308 meta->map_ptr->key_size, false, 2309 NULL); 2310 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 2311 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 2312 /* bpf_map_xxx(..., map_ptr, ..., value) call: 2313 * check [value, value + map->value_size) validity 2314 */ 2315 if (!meta->map_ptr) { 2316 /* kernel subsystem misconfigured verifier */ 2317 verbose(env, "invalid map_ptr to access map->value\n"); 2318 return -EACCES; 2319 } 2320 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 2321 err = check_helper_mem_access(env, regno, 2322 meta->map_ptr->value_size, false, 2323 meta); 2324 } else if (arg_type_is_mem_size(arg_type)) { 2325 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 2326 2327 /* remember the mem_size which may be used later 2328 * to refine return values. 2329 */ 2330 meta->msize_smax_value = reg->smax_value; 2331 meta->msize_umax_value = reg->umax_value; 2332 2333 /* The register is SCALAR_VALUE; the access check 2334 * happens using its boundaries. 2335 */ 2336 if (!tnum_is_const(reg->var_off)) 2337 /* For unprivileged variable accesses, disable raw 2338 * mode so that the program is required to 2339 * initialize all the memory that the helper could 2340 * just partially fill up. 2341 */ 2342 meta = NULL; 2343 2344 if (reg->smin_value < 0) { 2345 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 2346 regno); 2347 return -EACCES; 2348 } 2349 2350 if (reg->umin_value == 0) { 2351 err = check_helper_mem_access(env, regno - 1, 0, 2352 zero_size_allowed, 2353 meta); 2354 if (err) 2355 return err; 2356 } 2357 2358 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 2359 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 2360 regno); 2361 return -EACCES; 2362 } 2363 err = check_helper_mem_access(env, regno - 1, 2364 reg->umax_value, 2365 zero_size_allowed, meta); 2366 } 2367 2368 return err; 2369 err_type: 2370 verbose(env, "R%d type=%s expected=%s\n", regno, 2371 reg_type_str[type], reg_type_str[expected_type]); 2372 return -EACCES; 2373 } 2374 2375 static int check_map_func_compatibility(struct bpf_verifier_env *env, 2376 struct bpf_map *map, int func_id) 2377 { 2378 if (!map) 2379 return 0; 2380 2381 /* We need a two way check, first is from map perspective ... */ 2382 switch (map->map_type) { 2383 case BPF_MAP_TYPE_PROG_ARRAY: 2384 if (func_id != BPF_FUNC_tail_call) 2385 goto error; 2386 break; 2387 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 2388 if (func_id != BPF_FUNC_perf_event_read && 2389 func_id != BPF_FUNC_perf_event_output && 2390 func_id != BPF_FUNC_perf_event_read_value) 2391 goto error; 2392 break; 2393 case BPF_MAP_TYPE_STACK_TRACE: 2394 if (func_id != BPF_FUNC_get_stackid) 2395 goto error; 2396 break; 2397 case BPF_MAP_TYPE_CGROUP_ARRAY: 2398 if (func_id != BPF_FUNC_skb_under_cgroup && 2399 func_id != BPF_FUNC_current_task_under_cgroup) 2400 goto error; 2401 break; 2402 case BPF_MAP_TYPE_CGROUP_STORAGE: 2403 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 2404 if (func_id != BPF_FUNC_get_local_storage) 2405 goto error; 2406 break; 2407 /* devmap returns a pointer to a live net_device ifindex that we cannot 2408 * allow to be modified from bpf side. So do not allow lookup elements 2409 * for now. 2410 */ 2411 case BPF_MAP_TYPE_DEVMAP: 2412 if (func_id != BPF_FUNC_redirect_map) 2413 goto error; 2414 break; 2415 /* Restrict bpf side of cpumap and xskmap, open when use-cases 2416 * appear. 2417 */ 2418 case BPF_MAP_TYPE_CPUMAP: 2419 case BPF_MAP_TYPE_XSKMAP: 2420 if (func_id != BPF_FUNC_redirect_map) 2421 goto error; 2422 break; 2423 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 2424 case BPF_MAP_TYPE_HASH_OF_MAPS: 2425 if (func_id != BPF_FUNC_map_lookup_elem) 2426 goto error; 2427 break; 2428 case BPF_MAP_TYPE_SOCKMAP: 2429 if (func_id != BPF_FUNC_sk_redirect_map && 2430 func_id != BPF_FUNC_sock_map_update && 2431 func_id != BPF_FUNC_map_delete_elem && 2432 func_id != BPF_FUNC_msg_redirect_map) 2433 goto error; 2434 break; 2435 case BPF_MAP_TYPE_SOCKHASH: 2436 if (func_id != BPF_FUNC_sk_redirect_hash && 2437 func_id != BPF_FUNC_sock_hash_update && 2438 func_id != BPF_FUNC_map_delete_elem && 2439 func_id != BPF_FUNC_msg_redirect_hash) 2440 goto error; 2441 break; 2442 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 2443 if (func_id != BPF_FUNC_sk_select_reuseport) 2444 goto error; 2445 break; 2446 case BPF_MAP_TYPE_QUEUE: 2447 case BPF_MAP_TYPE_STACK: 2448 if (func_id != BPF_FUNC_map_peek_elem && 2449 func_id != BPF_FUNC_map_pop_elem && 2450 func_id != BPF_FUNC_map_push_elem) 2451 goto error; 2452 break; 2453 default: 2454 break; 2455 } 2456 2457 /* ... and second from the function itself. */ 2458 switch (func_id) { 2459 case BPF_FUNC_tail_call: 2460 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 2461 goto error; 2462 if (env->subprog_cnt > 1) { 2463 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n"); 2464 return -EINVAL; 2465 } 2466 break; 2467 case BPF_FUNC_perf_event_read: 2468 case BPF_FUNC_perf_event_output: 2469 case BPF_FUNC_perf_event_read_value: 2470 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 2471 goto error; 2472 break; 2473 case BPF_FUNC_get_stackid: 2474 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 2475 goto error; 2476 break; 2477 case BPF_FUNC_current_task_under_cgroup: 2478 case BPF_FUNC_skb_under_cgroup: 2479 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 2480 goto error; 2481 break; 2482 case BPF_FUNC_redirect_map: 2483 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 2484 map->map_type != BPF_MAP_TYPE_CPUMAP && 2485 map->map_type != BPF_MAP_TYPE_XSKMAP) 2486 goto error; 2487 break; 2488 case BPF_FUNC_sk_redirect_map: 2489 case BPF_FUNC_msg_redirect_map: 2490 case BPF_FUNC_sock_map_update: 2491 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 2492 goto error; 2493 break; 2494 case BPF_FUNC_sk_redirect_hash: 2495 case BPF_FUNC_msg_redirect_hash: 2496 case BPF_FUNC_sock_hash_update: 2497 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 2498 goto error; 2499 break; 2500 case BPF_FUNC_get_local_storage: 2501 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 2502 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 2503 goto error; 2504 break; 2505 case BPF_FUNC_sk_select_reuseport: 2506 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) 2507 goto error; 2508 break; 2509 case BPF_FUNC_map_peek_elem: 2510 case BPF_FUNC_map_pop_elem: 2511 case BPF_FUNC_map_push_elem: 2512 if (map->map_type != BPF_MAP_TYPE_QUEUE && 2513 map->map_type != BPF_MAP_TYPE_STACK) 2514 goto error; 2515 break; 2516 default: 2517 break; 2518 } 2519 2520 return 0; 2521 error: 2522 verbose(env, "cannot pass map_type %d into func %s#%d\n", 2523 map->map_type, func_id_name(func_id), func_id); 2524 return -EINVAL; 2525 } 2526 2527 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 2528 { 2529 int count = 0; 2530 2531 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 2532 count++; 2533 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 2534 count++; 2535 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 2536 count++; 2537 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 2538 count++; 2539 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 2540 count++; 2541 2542 /* We only support one arg being in raw mode at the moment, 2543 * which is sufficient for the helper functions we have 2544 * right now. 2545 */ 2546 return count <= 1; 2547 } 2548 2549 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 2550 enum bpf_arg_type arg_next) 2551 { 2552 return (arg_type_is_mem_ptr(arg_curr) && 2553 !arg_type_is_mem_size(arg_next)) || 2554 (!arg_type_is_mem_ptr(arg_curr) && 2555 arg_type_is_mem_size(arg_next)); 2556 } 2557 2558 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 2559 { 2560 /* bpf_xxx(..., buf, len) call will access 'len' 2561 * bytes from memory 'buf'. Both arg types need 2562 * to be paired, so make sure there's no buggy 2563 * helper function specification. 2564 */ 2565 if (arg_type_is_mem_size(fn->arg1_type) || 2566 arg_type_is_mem_ptr(fn->arg5_type) || 2567 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 2568 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 2569 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 2570 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 2571 return false; 2572 2573 return true; 2574 } 2575 2576 static bool check_refcount_ok(const struct bpf_func_proto *fn) 2577 { 2578 int count = 0; 2579 2580 if (arg_type_is_refcounted(fn->arg1_type)) 2581 count++; 2582 if (arg_type_is_refcounted(fn->arg2_type)) 2583 count++; 2584 if (arg_type_is_refcounted(fn->arg3_type)) 2585 count++; 2586 if (arg_type_is_refcounted(fn->arg4_type)) 2587 count++; 2588 if (arg_type_is_refcounted(fn->arg5_type)) 2589 count++; 2590 2591 /* We only support one arg being unreferenced at the moment, 2592 * which is sufficient for the helper functions we have right now. 2593 */ 2594 return count <= 1; 2595 } 2596 2597 static int check_func_proto(const struct bpf_func_proto *fn) 2598 { 2599 return check_raw_mode_ok(fn) && 2600 check_arg_pair_ok(fn) && 2601 check_refcount_ok(fn) ? 0 : -EINVAL; 2602 } 2603 2604 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 2605 * are now invalid, so turn them into unknown SCALAR_VALUE. 2606 */ 2607 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 2608 struct bpf_func_state *state) 2609 { 2610 struct bpf_reg_state *regs = state->regs, *reg; 2611 int i; 2612 2613 for (i = 0; i < MAX_BPF_REG; i++) 2614 if (reg_is_pkt_pointer_any(®s[i])) 2615 mark_reg_unknown(env, regs, i); 2616 2617 bpf_for_each_spilled_reg(i, state, reg) { 2618 if (!reg) 2619 continue; 2620 if (reg_is_pkt_pointer_any(reg)) 2621 __mark_reg_unknown(reg); 2622 } 2623 } 2624 2625 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 2626 { 2627 struct bpf_verifier_state *vstate = env->cur_state; 2628 int i; 2629 2630 for (i = 0; i <= vstate->curframe; i++) 2631 __clear_all_pkt_pointers(env, vstate->frame[i]); 2632 } 2633 2634 static void release_reg_references(struct bpf_verifier_env *env, 2635 struct bpf_func_state *state, int id) 2636 { 2637 struct bpf_reg_state *regs = state->regs, *reg; 2638 int i; 2639 2640 for (i = 0; i < MAX_BPF_REG; i++) 2641 if (regs[i].id == id) 2642 mark_reg_unknown(env, regs, i); 2643 2644 bpf_for_each_spilled_reg(i, state, reg) { 2645 if (!reg) 2646 continue; 2647 if (reg_is_refcounted(reg) && reg->id == id) 2648 __mark_reg_unknown(reg); 2649 } 2650 } 2651 2652 /* The pointer with the specified id has released its reference to kernel 2653 * resources. Identify all copies of the same pointer and clear the reference. 2654 */ 2655 static int release_reference(struct bpf_verifier_env *env, 2656 struct bpf_call_arg_meta *meta) 2657 { 2658 struct bpf_verifier_state *vstate = env->cur_state; 2659 int i; 2660 2661 for (i = 0; i <= vstate->curframe; i++) 2662 release_reg_references(env, vstate->frame[i], meta->ptr_id); 2663 2664 return release_reference_state(env, meta->ptr_id); 2665 } 2666 2667 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 2668 int *insn_idx) 2669 { 2670 struct bpf_verifier_state *state = env->cur_state; 2671 struct bpf_func_state *caller, *callee; 2672 int i, err, subprog, target_insn; 2673 2674 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 2675 verbose(env, "the call stack of %d frames is too deep\n", 2676 state->curframe + 2); 2677 return -E2BIG; 2678 } 2679 2680 target_insn = *insn_idx + insn->imm; 2681 subprog = find_subprog(env, target_insn + 1); 2682 if (subprog < 0) { 2683 verbose(env, "verifier bug. No program starts at insn %d\n", 2684 target_insn + 1); 2685 return -EFAULT; 2686 } 2687 2688 caller = state->frame[state->curframe]; 2689 if (state->frame[state->curframe + 1]) { 2690 verbose(env, "verifier bug. Frame %d already allocated\n", 2691 state->curframe + 1); 2692 return -EFAULT; 2693 } 2694 2695 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 2696 if (!callee) 2697 return -ENOMEM; 2698 state->frame[state->curframe + 1] = callee; 2699 2700 /* callee cannot access r0, r6 - r9 for reading and has to write 2701 * into its own stack before reading from it. 2702 * callee can read/write into caller's stack 2703 */ 2704 init_func_state(env, callee, 2705 /* remember the callsite, it will be used by bpf_exit */ 2706 *insn_idx /* callsite */, 2707 state->curframe + 1 /* frameno within this callchain */, 2708 subprog /* subprog number within this prog */); 2709 2710 /* Transfer references to the callee */ 2711 err = transfer_reference_state(callee, caller); 2712 if (err) 2713 return err; 2714 2715 /* copy r1 - r5 args that callee can access. The copy includes parent 2716 * pointers, which connects us up to the liveness chain 2717 */ 2718 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 2719 callee->regs[i] = caller->regs[i]; 2720 2721 /* after the call registers r0 - r5 were scratched */ 2722 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2723 mark_reg_not_init(env, caller->regs, caller_saved[i]); 2724 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2725 } 2726 2727 /* only increment it after check_reg_arg() finished */ 2728 state->curframe++; 2729 2730 /* and go analyze first insn of the callee */ 2731 *insn_idx = target_insn; 2732 2733 if (env->log.level) { 2734 verbose(env, "caller:\n"); 2735 print_verifier_state(env, caller); 2736 verbose(env, "callee:\n"); 2737 print_verifier_state(env, callee); 2738 } 2739 return 0; 2740 } 2741 2742 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 2743 { 2744 struct bpf_verifier_state *state = env->cur_state; 2745 struct bpf_func_state *caller, *callee; 2746 struct bpf_reg_state *r0; 2747 int err; 2748 2749 callee = state->frame[state->curframe]; 2750 r0 = &callee->regs[BPF_REG_0]; 2751 if (r0->type == PTR_TO_STACK) { 2752 /* technically it's ok to return caller's stack pointer 2753 * (or caller's caller's pointer) back to the caller, 2754 * since these pointers are valid. Only current stack 2755 * pointer will be invalid as soon as function exits, 2756 * but let's be conservative 2757 */ 2758 verbose(env, "cannot return stack pointer to the caller\n"); 2759 return -EINVAL; 2760 } 2761 2762 state->curframe--; 2763 caller = state->frame[state->curframe]; 2764 /* return to the caller whatever r0 had in the callee */ 2765 caller->regs[BPF_REG_0] = *r0; 2766 2767 /* Transfer references to the caller */ 2768 err = transfer_reference_state(caller, callee); 2769 if (err) 2770 return err; 2771 2772 *insn_idx = callee->callsite + 1; 2773 if (env->log.level) { 2774 verbose(env, "returning from callee:\n"); 2775 print_verifier_state(env, callee); 2776 verbose(env, "to caller at %d:\n", *insn_idx); 2777 print_verifier_state(env, caller); 2778 } 2779 /* clear everything in the callee */ 2780 free_func_state(callee); 2781 state->frame[state->curframe + 1] = NULL; 2782 return 0; 2783 } 2784 2785 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 2786 int func_id, 2787 struct bpf_call_arg_meta *meta) 2788 { 2789 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 2790 2791 if (ret_type != RET_INTEGER || 2792 (func_id != BPF_FUNC_get_stack && 2793 func_id != BPF_FUNC_probe_read_str)) 2794 return; 2795 2796 ret_reg->smax_value = meta->msize_smax_value; 2797 ret_reg->umax_value = meta->msize_umax_value; 2798 __reg_deduce_bounds(ret_reg); 2799 __reg_bound_offset(ret_reg); 2800 } 2801 2802 static int 2803 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 2804 int func_id, int insn_idx) 2805 { 2806 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 2807 2808 if (func_id != BPF_FUNC_tail_call && 2809 func_id != BPF_FUNC_map_lookup_elem && 2810 func_id != BPF_FUNC_map_update_elem && 2811 func_id != BPF_FUNC_map_delete_elem && 2812 func_id != BPF_FUNC_map_push_elem && 2813 func_id != BPF_FUNC_map_pop_elem && 2814 func_id != BPF_FUNC_map_peek_elem) 2815 return 0; 2816 2817 if (meta->map_ptr == NULL) { 2818 verbose(env, "kernel subsystem misconfigured verifier\n"); 2819 return -EINVAL; 2820 } 2821 2822 if (!BPF_MAP_PTR(aux->map_state)) 2823 bpf_map_ptr_store(aux, meta->map_ptr, 2824 meta->map_ptr->unpriv_array); 2825 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr) 2826 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 2827 meta->map_ptr->unpriv_array); 2828 return 0; 2829 } 2830 2831 static int check_reference_leak(struct bpf_verifier_env *env) 2832 { 2833 struct bpf_func_state *state = cur_func(env); 2834 int i; 2835 2836 for (i = 0; i < state->acquired_refs; i++) { 2837 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 2838 state->refs[i].id, state->refs[i].insn_idx); 2839 } 2840 return state->acquired_refs ? -EINVAL : 0; 2841 } 2842 2843 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 2844 { 2845 const struct bpf_func_proto *fn = NULL; 2846 struct bpf_reg_state *regs; 2847 struct bpf_call_arg_meta meta; 2848 bool changes_data; 2849 int i, err; 2850 2851 /* find function prototype */ 2852 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 2853 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 2854 func_id); 2855 return -EINVAL; 2856 } 2857 2858 if (env->ops->get_func_proto) 2859 fn = env->ops->get_func_proto(func_id, env->prog); 2860 if (!fn) { 2861 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 2862 func_id); 2863 return -EINVAL; 2864 } 2865 2866 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 2867 if (!env->prog->gpl_compatible && fn->gpl_only) { 2868 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 2869 return -EINVAL; 2870 } 2871 2872 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 2873 changes_data = bpf_helper_changes_pkt_data(fn->func); 2874 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 2875 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 2876 func_id_name(func_id), func_id); 2877 return -EINVAL; 2878 } 2879 2880 memset(&meta, 0, sizeof(meta)); 2881 meta.pkt_access = fn->pkt_access; 2882 2883 err = check_func_proto(fn); 2884 if (err) { 2885 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 2886 func_id_name(func_id), func_id); 2887 return err; 2888 } 2889 2890 /* check args */ 2891 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); 2892 if (err) 2893 return err; 2894 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); 2895 if (err) 2896 return err; 2897 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); 2898 if (err) 2899 return err; 2900 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); 2901 if (err) 2902 return err; 2903 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); 2904 if (err) 2905 return err; 2906 2907 err = record_func_map(env, &meta, func_id, insn_idx); 2908 if (err) 2909 return err; 2910 2911 /* Mark slots with STACK_MISC in case of raw mode, stack offset 2912 * is inferred from register state. 2913 */ 2914 for (i = 0; i < meta.access_size; i++) { 2915 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 2916 BPF_WRITE, -1, false); 2917 if (err) 2918 return err; 2919 } 2920 2921 if (func_id == BPF_FUNC_tail_call) { 2922 err = check_reference_leak(env); 2923 if (err) { 2924 verbose(env, "tail_call would lead to reference leak\n"); 2925 return err; 2926 } 2927 } else if (is_release_function(func_id)) { 2928 err = release_reference(env, &meta); 2929 if (err) 2930 return err; 2931 } 2932 2933 regs = cur_regs(env); 2934 2935 /* check that flags argument in get_local_storage(map, flags) is 0, 2936 * this is required because get_local_storage() can't return an error. 2937 */ 2938 if (func_id == BPF_FUNC_get_local_storage && 2939 !register_is_null(®s[BPF_REG_2])) { 2940 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 2941 return -EINVAL; 2942 } 2943 2944 /* reset caller saved regs */ 2945 for (i = 0; i < CALLER_SAVED_REGS; i++) { 2946 mark_reg_not_init(env, regs, caller_saved[i]); 2947 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 2948 } 2949 2950 /* update return register (already marked as written above) */ 2951 if (fn->ret_type == RET_INTEGER) { 2952 /* sets type to SCALAR_VALUE */ 2953 mark_reg_unknown(env, regs, BPF_REG_0); 2954 } else if (fn->ret_type == RET_VOID) { 2955 regs[BPF_REG_0].type = NOT_INIT; 2956 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 2957 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2958 /* There is no offset yet applied, variable or fixed */ 2959 mark_reg_known_zero(env, regs, BPF_REG_0); 2960 /* remember map_ptr, so that check_map_access() 2961 * can check 'value_size' boundary of memory access 2962 * to map element returned from bpf_map_lookup_elem() 2963 */ 2964 if (meta.map_ptr == NULL) { 2965 verbose(env, 2966 "kernel subsystem misconfigured verifier\n"); 2967 return -EINVAL; 2968 } 2969 regs[BPF_REG_0].map_ptr = meta.map_ptr; 2970 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 2971 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 2972 } else { 2973 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 2974 regs[BPF_REG_0].id = ++env->id_gen; 2975 } 2976 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 2977 int id = acquire_reference_state(env, insn_idx); 2978 if (id < 0) 2979 return id; 2980 mark_reg_known_zero(env, regs, BPF_REG_0); 2981 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 2982 regs[BPF_REG_0].id = id; 2983 } else { 2984 verbose(env, "unknown return type %d of func %s#%d\n", 2985 fn->ret_type, func_id_name(func_id), func_id); 2986 return -EINVAL; 2987 } 2988 2989 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 2990 2991 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 2992 if (err) 2993 return err; 2994 2995 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) { 2996 const char *err_str; 2997 2998 #ifdef CONFIG_PERF_EVENTS 2999 err = get_callchain_buffers(sysctl_perf_event_max_stack); 3000 err_str = "cannot get callchain buffer for func %s#%d\n"; 3001 #else 3002 err = -ENOTSUPP; 3003 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 3004 #endif 3005 if (err) { 3006 verbose(env, err_str, func_id_name(func_id), func_id); 3007 return err; 3008 } 3009 3010 env->prog->has_callchain_buf = true; 3011 } 3012 3013 if (changes_data) 3014 clear_all_pkt_pointers(env); 3015 return 0; 3016 } 3017 3018 static bool signed_add_overflows(s64 a, s64 b) 3019 { 3020 /* Do the add in u64, where overflow is well-defined */ 3021 s64 res = (s64)((u64)a + (u64)b); 3022 3023 if (b < 0) 3024 return res > a; 3025 return res < a; 3026 } 3027 3028 static bool signed_sub_overflows(s64 a, s64 b) 3029 { 3030 /* Do the sub in u64, where overflow is well-defined */ 3031 s64 res = (s64)((u64)a - (u64)b); 3032 3033 if (b < 0) 3034 return res < a; 3035 return res > a; 3036 } 3037 3038 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 3039 const struct bpf_reg_state *reg, 3040 enum bpf_reg_type type) 3041 { 3042 bool known = tnum_is_const(reg->var_off); 3043 s64 val = reg->var_off.value; 3044 s64 smin = reg->smin_value; 3045 3046 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 3047 verbose(env, "math between %s pointer and %lld is not allowed\n", 3048 reg_type_str[type], val); 3049 return false; 3050 } 3051 3052 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 3053 verbose(env, "%s pointer offset %d is not allowed\n", 3054 reg_type_str[type], reg->off); 3055 return false; 3056 } 3057 3058 if (smin == S64_MIN) { 3059 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 3060 reg_type_str[type]); 3061 return false; 3062 } 3063 3064 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 3065 verbose(env, "value %lld makes %s pointer be out of bounds\n", 3066 smin, reg_type_str[type]); 3067 return false; 3068 } 3069 3070 return true; 3071 } 3072 3073 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 3074 { 3075 return &env->insn_aux_data[env->insn_idx]; 3076 } 3077 3078 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 3079 u32 *ptr_limit, u8 opcode, bool off_is_neg) 3080 { 3081 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 3082 (opcode == BPF_SUB && !off_is_neg); 3083 u32 off; 3084 3085 switch (ptr_reg->type) { 3086 case PTR_TO_STACK: 3087 off = ptr_reg->off + ptr_reg->var_off.value; 3088 if (mask_to_left) 3089 *ptr_limit = MAX_BPF_STACK + off; 3090 else 3091 *ptr_limit = -off; 3092 return 0; 3093 case PTR_TO_MAP_VALUE: 3094 if (mask_to_left) { 3095 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 3096 } else { 3097 off = ptr_reg->smin_value + ptr_reg->off; 3098 *ptr_limit = ptr_reg->map_ptr->value_size - off; 3099 } 3100 return 0; 3101 default: 3102 return -EINVAL; 3103 } 3104 } 3105 3106 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 3107 const struct bpf_insn *insn) 3108 { 3109 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; 3110 } 3111 3112 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 3113 u32 alu_state, u32 alu_limit) 3114 { 3115 /* If we arrived here from different branches with different 3116 * state or limits to sanitize, then this won't work. 3117 */ 3118 if (aux->alu_state && 3119 (aux->alu_state != alu_state || 3120 aux->alu_limit != alu_limit)) 3121 return -EACCES; 3122 3123 /* Corresponding fixup done in fixup_bpf_calls(). */ 3124 aux->alu_state = alu_state; 3125 aux->alu_limit = alu_limit; 3126 return 0; 3127 } 3128 3129 static int sanitize_val_alu(struct bpf_verifier_env *env, 3130 struct bpf_insn *insn) 3131 { 3132 struct bpf_insn_aux_data *aux = cur_aux(env); 3133 3134 if (can_skip_alu_sanitation(env, insn)) 3135 return 0; 3136 3137 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 3138 } 3139 3140 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 3141 struct bpf_insn *insn, 3142 const struct bpf_reg_state *ptr_reg, 3143 struct bpf_reg_state *dst_reg, 3144 bool off_is_neg) 3145 { 3146 struct bpf_verifier_state *vstate = env->cur_state; 3147 struct bpf_insn_aux_data *aux = cur_aux(env); 3148 bool ptr_is_dst_reg = ptr_reg == dst_reg; 3149 u8 opcode = BPF_OP(insn->code); 3150 u32 alu_state, alu_limit; 3151 struct bpf_reg_state tmp; 3152 bool ret; 3153 3154 if (can_skip_alu_sanitation(env, insn)) 3155 return 0; 3156 3157 /* We already marked aux for masking from non-speculative 3158 * paths, thus we got here in the first place. We only care 3159 * to explore bad access from here. 3160 */ 3161 if (vstate->speculative) 3162 goto do_sim; 3163 3164 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 3165 alu_state |= ptr_is_dst_reg ? 3166 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 3167 3168 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 3169 return 0; 3170 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 3171 return -EACCES; 3172 do_sim: 3173 /* Simulate and find potential out-of-bounds access under 3174 * speculative execution from truncation as a result of 3175 * masking when off was not within expected range. If off 3176 * sits in dst, then we temporarily need to move ptr there 3177 * to simulate dst (== 0) +/-= ptr. Needed, for example, 3178 * for cases where we use K-based arithmetic in one direction 3179 * and truncated reg-based in the other in order to explore 3180 * bad access. 3181 */ 3182 if (!ptr_is_dst_reg) { 3183 tmp = *dst_reg; 3184 *dst_reg = *ptr_reg; 3185 } 3186 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 3187 if (!ptr_is_dst_reg) 3188 *dst_reg = tmp; 3189 return !ret ? -EFAULT : 0; 3190 } 3191 3192 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 3193 * Caller should also handle BPF_MOV case separately. 3194 * If we return -EACCES, caller may want to try again treating pointer as a 3195 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 3196 */ 3197 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 3198 struct bpf_insn *insn, 3199 const struct bpf_reg_state *ptr_reg, 3200 const struct bpf_reg_state *off_reg) 3201 { 3202 struct bpf_verifier_state *vstate = env->cur_state; 3203 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3204 struct bpf_reg_state *regs = state->regs, *dst_reg; 3205 bool known = tnum_is_const(off_reg->var_off); 3206 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 3207 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 3208 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 3209 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 3210 u32 dst = insn->dst_reg, src = insn->src_reg; 3211 u8 opcode = BPF_OP(insn->code); 3212 int ret; 3213 3214 dst_reg = ®s[dst]; 3215 3216 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 3217 smin_val > smax_val || umin_val > umax_val) { 3218 /* Taint dst register if offset had invalid bounds derived from 3219 * e.g. dead branches. 3220 */ 3221 __mark_reg_unknown(dst_reg); 3222 return 0; 3223 } 3224 3225 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3226 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 3227 verbose(env, 3228 "R%d 32-bit pointer arithmetic prohibited\n", 3229 dst); 3230 return -EACCES; 3231 } 3232 3233 switch (ptr_reg->type) { 3234 case PTR_TO_MAP_VALUE_OR_NULL: 3235 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 3236 dst, reg_type_str[ptr_reg->type]); 3237 return -EACCES; 3238 case CONST_PTR_TO_MAP: 3239 case PTR_TO_PACKET_END: 3240 case PTR_TO_SOCKET: 3241 case PTR_TO_SOCKET_OR_NULL: 3242 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 3243 dst, reg_type_str[ptr_reg->type]); 3244 return -EACCES; 3245 case PTR_TO_MAP_VALUE: 3246 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 3247 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 3248 off_reg == dst_reg ? dst : src); 3249 return -EACCES; 3250 } 3251 /* fall-through */ 3252 default: 3253 break; 3254 } 3255 3256 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 3257 * The id may be overwritten later if we create a new variable offset. 3258 */ 3259 dst_reg->type = ptr_reg->type; 3260 dst_reg->id = ptr_reg->id; 3261 3262 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 3263 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 3264 return -EINVAL; 3265 3266 switch (opcode) { 3267 case BPF_ADD: 3268 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3269 if (ret < 0) { 3270 verbose(env, "R%d tried to add from different maps or paths\n", dst); 3271 return ret; 3272 } 3273 /* We can take a fixed offset as long as it doesn't overflow 3274 * the s32 'off' field 3275 */ 3276 if (known && (ptr_reg->off + smin_val == 3277 (s64)(s32)(ptr_reg->off + smin_val))) { 3278 /* pointer += K. Accumulate it into fixed offset */ 3279 dst_reg->smin_value = smin_ptr; 3280 dst_reg->smax_value = smax_ptr; 3281 dst_reg->umin_value = umin_ptr; 3282 dst_reg->umax_value = umax_ptr; 3283 dst_reg->var_off = ptr_reg->var_off; 3284 dst_reg->off = ptr_reg->off + smin_val; 3285 dst_reg->raw = ptr_reg->raw; 3286 break; 3287 } 3288 /* A new variable offset is created. Note that off_reg->off 3289 * == 0, since it's a scalar. 3290 * dst_reg gets the pointer type and since some positive 3291 * integer value was added to the pointer, give it a new 'id' 3292 * if it's a PTR_TO_PACKET. 3293 * this creates a new 'base' pointer, off_reg (variable) gets 3294 * added into the variable offset, and we copy the fixed offset 3295 * from ptr_reg. 3296 */ 3297 if (signed_add_overflows(smin_ptr, smin_val) || 3298 signed_add_overflows(smax_ptr, smax_val)) { 3299 dst_reg->smin_value = S64_MIN; 3300 dst_reg->smax_value = S64_MAX; 3301 } else { 3302 dst_reg->smin_value = smin_ptr + smin_val; 3303 dst_reg->smax_value = smax_ptr + smax_val; 3304 } 3305 if (umin_ptr + umin_val < umin_ptr || 3306 umax_ptr + umax_val < umax_ptr) { 3307 dst_reg->umin_value = 0; 3308 dst_reg->umax_value = U64_MAX; 3309 } else { 3310 dst_reg->umin_value = umin_ptr + umin_val; 3311 dst_reg->umax_value = umax_ptr + umax_val; 3312 } 3313 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 3314 dst_reg->off = ptr_reg->off; 3315 dst_reg->raw = ptr_reg->raw; 3316 if (reg_is_pkt_pointer(ptr_reg)) { 3317 dst_reg->id = ++env->id_gen; 3318 /* something was added to pkt_ptr, set range to zero */ 3319 dst_reg->raw = 0; 3320 } 3321 break; 3322 case BPF_SUB: 3323 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 3324 if (ret < 0) { 3325 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 3326 return ret; 3327 } 3328 if (dst_reg == off_reg) { 3329 /* scalar -= pointer. Creates an unknown scalar */ 3330 verbose(env, "R%d tried to subtract pointer from scalar\n", 3331 dst); 3332 return -EACCES; 3333 } 3334 /* We don't allow subtraction from FP, because (according to 3335 * test_verifier.c test "invalid fp arithmetic", JITs might not 3336 * be able to deal with it. 3337 */ 3338 if (ptr_reg->type == PTR_TO_STACK) { 3339 verbose(env, "R%d subtraction from stack pointer prohibited\n", 3340 dst); 3341 return -EACCES; 3342 } 3343 if (known && (ptr_reg->off - smin_val == 3344 (s64)(s32)(ptr_reg->off - smin_val))) { 3345 /* pointer -= K. Subtract it from fixed offset */ 3346 dst_reg->smin_value = smin_ptr; 3347 dst_reg->smax_value = smax_ptr; 3348 dst_reg->umin_value = umin_ptr; 3349 dst_reg->umax_value = umax_ptr; 3350 dst_reg->var_off = ptr_reg->var_off; 3351 dst_reg->id = ptr_reg->id; 3352 dst_reg->off = ptr_reg->off - smin_val; 3353 dst_reg->raw = ptr_reg->raw; 3354 break; 3355 } 3356 /* A new variable offset is created. If the subtrahend is known 3357 * nonnegative, then any reg->range we had before is still good. 3358 */ 3359 if (signed_sub_overflows(smin_ptr, smax_val) || 3360 signed_sub_overflows(smax_ptr, smin_val)) { 3361 /* Overflow possible, we know nothing */ 3362 dst_reg->smin_value = S64_MIN; 3363 dst_reg->smax_value = S64_MAX; 3364 } else { 3365 dst_reg->smin_value = smin_ptr - smax_val; 3366 dst_reg->smax_value = smax_ptr - smin_val; 3367 } 3368 if (umin_ptr < umax_val) { 3369 /* Overflow possible, we know nothing */ 3370 dst_reg->umin_value = 0; 3371 dst_reg->umax_value = U64_MAX; 3372 } else { 3373 /* Cannot overflow (as long as bounds are consistent) */ 3374 dst_reg->umin_value = umin_ptr - umax_val; 3375 dst_reg->umax_value = umax_ptr - umin_val; 3376 } 3377 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 3378 dst_reg->off = ptr_reg->off; 3379 dst_reg->raw = ptr_reg->raw; 3380 if (reg_is_pkt_pointer(ptr_reg)) { 3381 dst_reg->id = ++env->id_gen; 3382 /* something was added to pkt_ptr, set range to zero */ 3383 if (smin_val < 0) 3384 dst_reg->raw = 0; 3385 } 3386 break; 3387 case BPF_AND: 3388 case BPF_OR: 3389 case BPF_XOR: 3390 /* bitwise ops on pointers are troublesome, prohibit. */ 3391 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 3392 dst, bpf_alu_string[opcode >> 4]); 3393 return -EACCES; 3394 default: 3395 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 3396 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 3397 dst, bpf_alu_string[opcode >> 4]); 3398 return -EACCES; 3399 } 3400 3401 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 3402 return -EINVAL; 3403 3404 __update_reg_bounds(dst_reg); 3405 __reg_deduce_bounds(dst_reg); 3406 __reg_bound_offset(dst_reg); 3407 3408 /* For unprivileged we require that resulting offset must be in bounds 3409 * in order to be able to sanitize access later on. 3410 */ 3411 if (!env->allow_ptr_leaks) { 3412 if (dst_reg->type == PTR_TO_MAP_VALUE && 3413 check_map_access(env, dst, dst_reg->off, 1, false)) { 3414 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 3415 "prohibited for !root\n", dst); 3416 return -EACCES; 3417 } else if (dst_reg->type == PTR_TO_STACK && 3418 check_stack_access(env, dst_reg, dst_reg->off + 3419 dst_reg->var_off.value, 1)) { 3420 verbose(env, "R%d stack pointer arithmetic goes out of range, " 3421 "prohibited for !root\n", dst); 3422 return -EACCES; 3423 } 3424 } 3425 3426 return 0; 3427 } 3428 3429 /* WARNING: This function does calculations on 64-bit values, but the actual 3430 * execution may occur on 32-bit values. Therefore, things like bitshifts 3431 * need extra checks in the 32-bit case. 3432 */ 3433 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 3434 struct bpf_insn *insn, 3435 struct bpf_reg_state *dst_reg, 3436 struct bpf_reg_state src_reg) 3437 { 3438 struct bpf_reg_state *regs = cur_regs(env); 3439 u8 opcode = BPF_OP(insn->code); 3440 bool src_known, dst_known; 3441 s64 smin_val, smax_val; 3442 u64 umin_val, umax_val; 3443 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 3444 u32 dst = insn->dst_reg; 3445 int ret; 3446 3447 if (insn_bitness == 32) { 3448 /* Relevant for 32-bit RSH: Information can propagate towards 3449 * LSB, so it isn't sufficient to only truncate the output to 3450 * 32 bits. 3451 */ 3452 coerce_reg_to_size(dst_reg, 4); 3453 coerce_reg_to_size(&src_reg, 4); 3454 } 3455 3456 smin_val = src_reg.smin_value; 3457 smax_val = src_reg.smax_value; 3458 umin_val = src_reg.umin_value; 3459 umax_val = src_reg.umax_value; 3460 src_known = tnum_is_const(src_reg.var_off); 3461 dst_known = tnum_is_const(dst_reg->var_off); 3462 3463 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || 3464 smin_val > smax_val || umin_val > umax_val) { 3465 /* Taint dst register if offset had invalid bounds derived from 3466 * e.g. dead branches. 3467 */ 3468 __mark_reg_unknown(dst_reg); 3469 return 0; 3470 } 3471 3472 if (!src_known && 3473 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 3474 __mark_reg_unknown(dst_reg); 3475 return 0; 3476 } 3477 3478 switch (opcode) { 3479 case BPF_ADD: 3480 ret = sanitize_val_alu(env, insn); 3481 if (ret < 0) { 3482 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 3483 return ret; 3484 } 3485 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 3486 signed_add_overflows(dst_reg->smax_value, smax_val)) { 3487 dst_reg->smin_value = S64_MIN; 3488 dst_reg->smax_value = S64_MAX; 3489 } else { 3490 dst_reg->smin_value += smin_val; 3491 dst_reg->smax_value += smax_val; 3492 } 3493 if (dst_reg->umin_value + umin_val < umin_val || 3494 dst_reg->umax_value + umax_val < umax_val) { 3495 dst_reg->umin_value = 0; 3496 dst_reg->umax_value = U64_MAX; 3497 } else { 3498 dst_reg->umin_value += umin_val; 3499 dst_reg->umax_value += umax_val; 3500 } 3501 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 3502 break; 3503 case BPF_SUB: 3504 ret = sanitize_val_alu(env, insn); 3505 if (ret < 0) { 3506 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 3507 return ret; 3508 } 3509 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 3510 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 3511 /* Overflow possible, we know nothing */ 3512 dst_reg->smin_value = S64_MIN; 3513 dst_reg->smax_value = S64_MAX; 3514 } else { 3515 dst_reg->smin_value -= smax_val; 3516 dst_reg->smax_value -= smin_val; 3517 } 3518 if (dst_reg->umin_value < umax_val) { 3519 /* Overflow possible, we know nothing */ 3520 dst_reg->umin_value = 0; 3521 dst_reg->umax_value = U64_MAX; 3522 } else { 3523 /* Cannot overflow (as long as bounds are consistent) */ 3524 dst_reg->umin_value -= umax_val; 3525 dst_reg->umax_value -= umin_val; 3526 } 3527 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 3528 break; 3529 case BPF_MUL: 3530 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 3531 if (smin_val < 0 || dst_reg->smin_value < 0) { 3532 /* Ain't nobody got time to multiply that sign */ 3533 __mark_reg_unbounded(dst_reg); 3534 __update_reg_bounds(dst_reg); 3535 break; 3536 } 3537 /* Both values are positive, so we can work with unsigned and 3538 * copy the result to signed (unless it exceeds S64_MAX). 3539 */ 3540 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 3541 /* Potential overflow, we know nothing */ 3542 __mark_reg_unbounded(dst_reg); 3543 /* (except what we can learn from the var_off) */ 3544 __update_reg_bounds(dst_reg); 3545 break; 3546 } 3547 dst_reg->umin_value *= umin_val; 3548 dst_reg->umax_value *= umax_val; 3549 if (dst_reg->umax_value > S64_MAX) { 3550 /* Overflow possible, we know nothing */ 3551 dst_reg->smin_value = S64_MIN; 3552 dst_reg->smax_value = S64_MAX; 3553 } else { 3554 dst_reg->smin_value = dst_reg->umin_value; 3555 dst_reg->smax_value = dst_reg->umax_value; 3556 } 3557 break; 3558 case BPF_AND: 3559 if (src_known && dst_known) { 3560 __mark_reg_known(dst_reg, dst_reg->var_off.value & 3561 src_reg.var_off.value); 3562 break; 3563 } 3564 /* We get our minimum from the var_off, since that's inherently 3565 * bitwise. Our maximum is the minimum of the operands' maxima. 3566 */ 3567 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 3568 dst_reg->umin_value = dst_reg->var_off.value; 3569 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 3570 if (dst_reg->smin_value < 0 || smin_val < 0) { 3571 /* Lose signed bounds when ANDing negative numbers, 3572 * ain't nobody got time for that. 3573 */ 3574 dst_reg->smin_value = S64_MIN; 3575 dst_reg->smax_value = S64_MAX; 3576 } else { 3577 /* ANDing two positives gives a positive, so safe to 3578 * cast result into s64. 3579 */ 3580 dst_reg->smin_value = dst_reg->umin_value; 3581 dst_reg->smax_value = dst_reg->umax_value; 3582 } 3583 /* We may learn something more from the var_off */ 3584 __update_reg_bounds(dst_reg); 3585 break; 3586 case BPF_OR: 3587 if (src_known && dst_known) { 3588 __mark_reg_known(dst_reg, dst_reg->var_off.value | 3589 src_reg.var_off.value); 3590 break; 3591 } 3592 /* We get our maximum from the var_off, and our minimum is the 3593 * maximum of the operands' minima 3594 */ 3595 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 3596 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 3597 dst_reg->umax_value = dst_reg->var_off.value | 3598 dst_reg->var_off.mask; 3599 if (dst_reg->smin_value < 0 || smin_val < 0) { 3600 /* Lose signed bounds when ORing negative numbers, 3601 * ain't nobody got time for that. 3602 */ 3603 dst_reg->smin_value = S64_MIN; 3604 dst_reg->smax_value = S64_MAX; 3605 } else { 3606 /* ORing two positives gives a positive, so safe to 3607 * cast result into s64. 3608 */ 3609 dst_reg->smin_value = dst_reg->umin_value; 3610 dst_reg->smax_value = dst_reg->umax_value; 3611 } 3612 /* We may learn something more from the var_off */ 3613 __update_reg_bounds(dst_reg); 3614 break; 3615 case BPF_LSH: 3616 if (umax_val >= insn_bitness) { 3617 /* Shifts greater than 31 or 63 are undefined. 3618 * This includes shifts by a negative number. 3619 */ 3620 mark_reg_unknown(env, regs, insn->dst_reg); 3621 break; 3622 } 3623 /* We lose all sign bit information (except what we can pick 3624 * up from var_off) 3625 */ 3626 dst_reg->smin_value = S64_MIN; 3627 dst_reg->smax_value = S64_MAX; 3628 /* If we might shift our top bit out, then we know nothing */ 3629 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 3630 dst_reg->umin_value = 0; 3631 dst_reg->umax_value = U64_MAX; 3632 } else { 3633 dst_reg->umin_value <<= umin_val; 3634 dst_reg->umax_value <<= umax_val; 3635 } 3636 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 3637 /* We may learn something more from the var_off */ 3638 __update_reg_bounds(dst_reg); 3639 break; 3640 case BPF_RSH: 3641 if (umax_val >= insn_bitness) { 3642 /* Shifts greater than 31 or 63 are undefined. 3643 * This includes shifts by a negative number. 3644 */ 3645 mark_reg_unknown(env, regs, insn->dst_reg); 3646 break; 3647 } 3648 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 3649 * be negative, then either: 3650 * 1) src_reg might be zero, so the sign bit of the result is 3651 * unknown, so we lose our signed bounds 3652 * 2) it's known negative, thus the unsigned bounds capture the 3653 * signed bounds 3654 * 3) the signed bounds cross zero, so they tell us nothing 3655 * about the result 3656 * If the value in dst_reg is known nonnegative, then again the 3657 * unsigned bounts capture the signed bounds. 3658 * Thus, in all cases it suffices to blow away our signed bounds 3659 * and rely on inferring new ones from the unsigned bounds and 3660 * var_off of the result. 3661 */ 3662 dst_reg->smin_value = S64_MIN; 3663 dst_reg->smax_value = S64_MAX; 3664 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 3665 dst_reg->umin_value >>= umax_val; 3666 dst_reg->umax_value >>= umin_val; 3667 /* We may learn something more from the var_off */ 3668 __update_reg_bounds(dst_reg); 3669 break; 3670 case BPF_ARSH: 3671 if (umax_val >= insn_bitness) { 3672 /* Shifts greater than 31 or 63 are undefined. 3673 * This includes shifts by a negative number. 3674 */ 3675 mark_reg_unknown(env, regs, insn->dst_reg); 3676 break; 3677 } 3678 3679 /* Upon reaching here, src_known is true and 3680 * umax_val is equal to umin_val. 3681 */ 3682 dst_reg->smin_value >>= umin_val; 3683 dst_reg->smax_value >>= umin_val; 3684 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); 3685 3686 /* blow away the dst_reg umin_value/umax_value and rely on 3687 * dst_reg var_off to refine the result. 3688 */ 3689 dst_reg->umin_value = 0; 3690 dst_reg->umax_value = U64_MAX; 3691 __update_reg_bounds(dst_reg); 3692 break; 3693 default: 3694 mark_reg_unknown(env, regs, insn->dst_reg); 3695 break; 3696 } 3697 3698 if (BPF_CLASS(insn->code) != BPF_ALU64) { 3699 /* 32-bit ALU ops are (32,32)->32 */ 3700 coerce_reg_to_size(dst_reg, 4); 3701 } 3702 3703 __reg_deduce_bounds(dst_reg); 3704 __reg_bound_offset(dst_reg); 3705 return 0; 3706 } 3707 3708 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 3709 * and var_off. 3710 */ 3711 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 3712 struct bpf_insn *insn) 3713 { 3714 struct bpf_verifier_state *vstate = env->cur_state; 3715 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3716 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 3717 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 3718 u8 opcode = BPF_OP(insn->code); 3719 3720 dst_reg = ®s[insn->dst_reg]; 3721 src_reg = NULL; 3722 if (dst_reg->type != SCALAR_VALUE) 3723 ptr_reg = dst_reg; 3724 if (BPF_SRC(insn->code) == BPF_X) { 3725 src_reg = ®s[insn->src_reg]; 3726 if (src_reg->type != SCALAR_VALUE) { 3727 if (dst_reg->type != SCALAR_VALUE) { 3728 /* Combining two pointers by any ALU op yields 3729 * an arbitrary scalar. Disallow all math except 3730 * pointer subtraction 3731 */ 3732 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 3733 mark_reg_unknown(env, regs, insn->dst_reg); 3734 return 0; 3735 } 3736 verbose(env, "R%d pointer %s pointer prohibited\n", 3737 insn->dst_reg, 3738 bpf_alu_string[opcode >> 4]); 3739 return -EACCES; 3740 } else { 3741 /* scalar += pointer 3742 * This is legal, but we have to reverse our 3743 * src/dest handling in computing the range 3744 */ 3745 return adjust_ptr_min_max_vals(env, insn, 3746 src_reg, dst_reg); 3747 } 3748 } else if (ptr_reg) { 3749 /* pointer += scalar */ 3750 return adjust_ptr_min_max_vals(env, insn, 3751 dst_reg, src_reg); 3752 } 3753 } else { 3754 /* Pretend the src is a reg with a known value, since we only 3755 * need to be able to read from this state. 3756 */ 3757 off_reg.type = SCALAR_VALUE; 3758 __mark_reg_known(&off_reg, insn->imm); 3759 src_reg = &off_reg; 3760 if (ptr_reg) /* pointer += K */ 3761 return adjust_ptr_min_max_vals(env, insn, 3762 ptr_reg, src_reg); 3763 } 3764 3765 /* Got here implies adding two SCALAR_VALUEs */ 3766 if (WARN_ON_ONCE(ptr_reg)) { 3767 print_verifier_state(env, state); 3768 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 3769 return -EINVAL; 3770 } 3771 if (WARN_ON(!src_reg)) { 3772 print_verifier_state(env, state); 3773 verbose(env, "verifier internal error: no src_reg\n"); 3774 return -EINVAL; 3775 } 3776 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 3777 } 3778 3779 /* check validity of 32-bit and 64-bit arithmetic operations */ 3780 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 3781 { 3782 struct bpf_reg_state *regs = cur_regs(env); 3783 u8 opcode = BPF_OP(insn->code); 3784 int err; 3785 3786 if (opcode == BPF_END || opcode == BPF_NEG) { 3787 if (opcode == BPF_NEG) { 3788 if (BPF_SRC(insn->code) != 0 || 3789 insn->src_reg != BPF_REG_0 || 3790 insn->off != 0 || insn->imm != 0) { 3791 verbose(env, "BPF_NEG uses reserved fields\n"); 3792 return -EINVAL; 3793 } 3794 } else { 3795 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 3796 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 3797 BPF_CLASS(insn->code) == BPF_ALU64) { 3798 verbose(env, "BPF_END uses reserved fields\n"); 3799 return -EINVAL; 3800 } 3801 } 3802 3803 /* check src operand */ 3804 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3805 if (err) 3806 return err; 3807 3808 if (is_pointer_value(env, insn->dst_reg)) { 3809 verbose(env, "R%d pointer arithmetic prohibited\n", 3810 insn->dst_reg); 3811 return -EACCES; 3812 } 3813 3814 /* check dest operand */ 3815 err = check_reg_arg(env, insn->dst_reg, DST_OP); 3816 if (err) 3817 return err; 3818 3819 } else if (opcode == BPF_MOV) { 3820 3821 if (BPF_SRC(insn->code) == BPF_X) { 3822 if (insn->imm != 0 || insn->off != 0) { 3823 verbose(env, "BPF_MOV uses reserved fields\n"); 3824 return -EINVAL; 3825 } 3826 3827 /* check src operand */ 3828 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3829 if (err) 3830 return err; 3831 } else { 3832 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3833 verbose(env, "BPF_MOV uses reserved fields\n"); 3834 return -EINVAL; 3835 } 3836 } 3837 3838 /* check dest operand, mark as required later */ 3839 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3840 if (err) 3841 return err; 3842 3843 if (BPF_SRC(insn->code) == BPF_X) { 3844 struct bpf_reg_state *src_reg = regs + insn->src_reg; 3845 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 3846 3847 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3848 /* case: R1 = R2 3849 * copy register state to dest reg 3850 */ 3851 *dst_reg = *src_reg; 3852 dst_reg->live |= REG_LIVE_WRITTEN; 3853 } else { 3854 /* R1 = (u32) R2 */ 3855 if (is_pointer_value(env, insn->src_reg)) { 3856 verbose(env, 3857 "R%d partial copy of pointer\n", 3858 insn->src_reg); 3859 return -EACCES; 3860 } else if (src_reg->type == SCALAR_VALUE) { 3861 *dst_reg = *src_reg; 3862 dst_reg->live |= REG_LIVE_WRITTEN; 3863 } else { 3864 mark_reg_unknown(env, regs, 3865 insn->dst_reg); 3866 } 3867 coerce_reg_to_size(dst_reg, 4); 3868 } 3869 } else { 3870 /* case: R = imm 3871 * remember the value we stored into this reg 3872 */ 3873 /* clear any state __mark_reg_known doesn't set */ 3874 mark_reg_unknown(env, regs, insn->dst_reg); 3875 regs[insn->dst_reg].type = SCALAR_VALUE; 3876 if (BPF_CLASS(insn->code) == BPF_ALU64) { 3877 __mark_reg_known(regs + insn->dst_reg, 3878 insn->imm); 3879 } else { 3880 __mark_reg_known(regs + insn->dst_reg, 3881 (u32)insn->imm); 3882 } 3883 } 3884 3885 } else if (opcode > BPF_END) { 3886 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 3887 return -EINVAL; 3888 3889 } else { /* all other ALU ops: and, sub, xor, add, ... */ 3890 3891 if (BPF_SRC(insn->code) == BPF_X) { 3892 if (insn->imm != 0 || insn->off != 0) { 3893 verbose(env, "BPF_ALU uses reserved fields\n"); 3894 return -EINVAL; 3895 } 3896 /* check src1 operand */ 3897 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3898 if (err) 3899 return err; 3900 } else { 3901 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 3902 verbose(env, "BPF_ALU uses reserved fields\n"); 3903 return -EINVAL; 3904 } 3905 } 3906 3907 /* check src2 operand */ 3908 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3909 if (err) 3910 return err; 3911 3912 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 3913 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 3914 verbose(env, "div by zero\n"); 3915 return -EINVAL; 3916 } 3917 3918 if ((opcode == BPF_LSH || opcode == BPF_RSH || 3919 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 3920 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 3921 3922 if (insn->imm < 0 || insn->imm >= size) { 3923 verbose(env, "invalid shift %d\n", insn->imm); 3924 return -EINVAL; 3925 } 3926 } 3927 3928 /* check dest operand */ 3929 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 3930 if (err) 3931 return err; 3932 3933 return adjust_reg_min_max_vals(env, insn); 3934 } 3935 3936 return 0; 3937 } 3938 3939 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 3940 struct bpf_reg_state *dst_reg, 3941 enum bpf_reg_type type, 3942 bool range_right_open) 3943 { 3944 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 3945 struct bpf_reg_state *regs = state->regs, *reg; 3946 u16 new_range; 3947 int i, j; 3948 3949 if (dst_reg->off < 0 || 3950 (dst_reg->off == 0 && range_right_open)) 3951 /* This doesn't give us any range */ 3952 return; 3953 3954 if (dst_reg->umax_value > MAX_PACKET_OFF || 3955 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 3956 /* Risk of overflow. For instance, ptr + (1<<63) may be less 3957 * than pkt_end, but that's because it's also less than pkt. 3958 */ 3959 return; 3960 3961 new_range = dst_reg->off; 3962 if (range_right_open) 3963 new_range--; 3964 3965 /* Examples for register markings: 3966 * 3967 * pkt_data in dst register: 3968 * 3969 * r2 = r3; 3970 * r2 += 8; 3971 * if (r2 > pkt_end) goto <handle exception> 3972 * <access okay> 3973 * 3974 * r2 = r3; 3975 * r2 += 8; 3976 * if (r2 < pkt_end) goto <access okay> 3977 * <handle exception> 3978 * 3979 * Where: 3980 * r2 == dst_reg, pkt_end == src_reg 3981 * r2=pkt(id=n,off=8,r=0) 3982 * r3=pkt(id=n,off=0,r=0) 3983 * 3984 * pkt_data in src register: 3985 * 3986 * r2 = r3; 3987 * r2 += 8; 3988 * if (pkt_end >= r2) goto <access okay> 3989 * <handle exception> 3990 * 3991 * r2 = r3; 3992 * r2 += 8; 3993 * if (pkt_end <= r2) goto <handle exception> 3994 * <access okay> 3995 * 3996 * Where: 3997 * pkt_end == dst_reg, r2 == src_reg 3998 * r2=pkt(id=n,off=8,r=0) 3999 * r3=pkt(id=n,off=0,r=0) 4000 * 4001 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 4002 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 4003 * and [r3, r3 + 8-1) respectively is safe to access depending on 4004 * the check. 4005 */ 4006 4007 /* If our ids match, then we must have the same max_value. And we 4008 * don't care about the other reg's fixed offset, since if it's too big 4009 * the range won't allow anything. 4010 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 4011 */ 4012 for (i = 0; i < MAX_BPF_REG; i++) 4013 if (regs[i].type == type && regs[i].id == dst_reg->id) 4014 /* keep the maximum range already checked */ 4015 regs[i].range = max(regs[i].range, new_range); 4016 4017 for (j = 0; j <= vstate->curframe; j++) { 4018 state = vstate->frame[j]; 4019 bpf_for_each_spilled_reg(i, state, reg) { 4020 if (!reg) 4021 continue; 4022 if (reg->type == type && reg->id == dst_reg->id) 4023 reg->range = max(reg->range, new_range); 4024 } 4025 } 4026 } 4027 4028 /* compute branch direction of the expression "if (reg opcode val) goto target;" 4029 * and return: 4030 * 1 - branch will be taken and "goto target" will be executed 4031 * 0 - branch will not be taken and fall-through to next insn 4032 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10] 4033 */ 4034 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 4035 bool is_jmp32) 4036 { 4037 struct bpf_reg_state reg_lo; 4038 s64 sval; 4039 4040 if (__is_pointer_value(false, reg)) 4041 return -1; 4042 4043 if (is_jmp32) { 4044 reg_lo = *reg; 4045 reg = ®_lo; 4046 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size 4047 * could truncate high bits and update umin/umax according to 4048 * information of low bits. 4049 */ 4050 coerce_reg_to_size(reg, 4); 4051 /* smin/smax need special handling. For example, after coerce, 4052 * if smin_value is 0x00000000ffffffffLL, the value is -1 when 4053 * used as operand to JMP32. It is a negative number from s32's 4054 * point of view, while it is a positive number when seen as 4055 * s64. The smin/smax are kept as s64, therefore, when used with 4056 * JMP32, they need to be transformed into s32, then sign 4057 * extended back to s64. 4058 * 4059 * Also, smin/smax were copied from umin/umax. If umin/umax has 4060 * different sign bit, then min/max relationship doesn't 4061 * maintain after casting into s32, for this case, set smin/smax 4062 * to safest range. 4063 */ 4064 if ((reg->umax_value ^ reg->umin_value) & 4065 (1ULL << 31)) { 4066 reg->smin_value = S32_MIN; 4067 reg->smax_value = S32_MAX; 4068 } 4069 reg->smin_value = (s64)(s32)reg->smin_value; 4070 reg->smax_value = (s64)(s32)reg->smax_value; 4071 4072 val = (u32)val; 4073 sval = (s64)(s32)val; 4074 } else { 4075 sval = (s64)val; 4076 } 4077 4078 switch (opcode) { 4079 case BPF_JEQ: 4080 if (tnum_is_const(reg->var_off)) 4081 return !!tnum_equals_const(reg->var_off, val); 4082 break; 4083 case BPF_JNE: 4084 if (tnum_is_const(reg->var_off)) 4085 return !tnum_equals_const(reg->var_off, val); 4086 break; 4087 case BPF_JSET: 4088 if ((~reg->var_off.mask & reg->var_off.value) & val) 4089 return 1; 4090 if (!((reg->var_off.mask | reg->var_off.value) & val)) 4091 return 0; 4092 break; 4093 case BPF_JGT: 4094 if (reg->umin_value > val) 4095 return 1; 4096 else if (reg->umax_value <= val) 4097 return 0; 4098 break; 4099 case BPF_JSGT: 4100 if (reg->smin_value > sval) 4101 return 1; 4102 else if (reg->smax_value < sval) 4103 return 0; 4104 break; 4105 case BPF_JLT: 4106 if (reg->umax_value < val) 4107 return 1; 4108 else if (reg->umin_value >= val) 4109 return 0; 4110 break; 4111 case BPF_JSLT: 4112 if (reg->smax_value < sval) 4113 return 1; 4114 else if (reg->smin_value >= sval) 4115 return 0; 4116 break; 4117 case BPF_JGE: 4118 if (reg->umin_value >= val) 4119 return 1; 4120 else if (reg->umax_value < val) 4121 return 0; 4122 break; 4123 case BPF_JSGE: 4124 if (reg->smin_value >= sval) 4125 return 1; 4126 else if (reg->smax_value < sval) 4127 return 0; 4128 break; 4129 case BPF_JLE: 4130 if (reg->umax_value <= val) 4131 return 1; 4132 else if (reg->umin_value > val) 4133 return 0; 4134 break; 4135 case BPF_JSLE: 4136 if (reg->smax_value <= sval) 4137 return 1; 4138 else if (reg->smin_value > sval) 4139 return 0; 4140 break; 4141 } 4142 4143 return -1; 4144 } 4145 4146 /* Generate min value of the high 32-bit from TNUM info. */ 4147 static u64 gen_hi_min(struct tnum var) 4148 { 4149 return var.value & ~0xffffffffULL; 4150 } 4151 4152 /* Generate max value of the high 32-bit from TNUM info. */ 4153 static u64 gen_hi_max(struct tnum var) 4154 { 4155 return (var.value | var.mask) & ~0xffffffffULL; 4156 } 4157 4158 /* Return true if VAL is compared with a s64 sign extended from s32, and they 4159 * are with the same signedness. 4160 */ 4161 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg) 4162 { 4163 return ((s32)sval >= 0 && 4164 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) || 4165 ((s32)sval < 0 && 4166 reg->smax_value <= 0 && reg->smin_value >= S32_MIN); 4167 } 4168 4169 /* Adjusts the register min/max values in the case that the dst_reg is the 4170 * variable register that we are working on, and src_reg is a constant or we're 4171 * simply doing a BPF_K check. 4172 * In JEQ/JNE cases we also adjust the var_off values. 4173 */ 4174 static void reg_set_min_max(struct bpf_reg_state *true_reg, 4175 struct bpf_reg_state *false_reg, u64 val, 4176 u8 opcode, bool is_jmp32) 4177 { 4178 s64 sval; 4179 4180 /* If the dst_reg is a pointer, we can't learn anything about its 4181 * variable offset from the compare (unless src_reg were a pointer into 4182 * the same object, but we don't bother with that. 4183 * Since false_reg and true_reg have the same type by construction, we 4184 * only need to check one of them for pointerness. 4185 */ 4186 if (__is_pointer_value(false, false_reg)) 4187 return; 4188 4189 val = is_jmp32 ? (u32)val : val; 4190 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4191 4192 switch (opcode) { 4193 case BPF_JEQ: 4194 case BPF_JNE: 4195 { 4196 struct bpf_reg_state *reg = 4197 opcode == BPF_JEQ ? true_reg : false_reg; 4198 4199 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but 4200 * if it is true we know the value for sure. Likewise for 4201 * BPF_JNE. 4202 */ 4203 if (is_jmp32) { 4204 u64 old_v = reg->var_off.value; 4205 u64 hi_mask = ~0xffffffffULL; 4206 4207 reg->var_off.value = (old_v & hi_mask) | val; 4208 reg->var_off.mask &= hi_mask; 4209 } else { 4210 __mark_reg_known(reg, val); 4211 } 4212 break; 4213 } 4214 case BPF_JSET: 4215 false_reg->var_off = tnum_and(false_reg->var_off, 4216 tnum_const(~val)); 4217 if (is_power_of_2(val)) 4218 true_reg->var_off = tnum_or(true_reg->var_off, 4219 tnum_const(val)); 4220 break; 4221 case BPF_JGE: 4222 case BPF_JGT: 4223 { 4224 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 4225 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 4226 4227 if (is_jmp32) { 4228 false_umax += gen_hi_max(false_reg->var_off); 4229 true_umin += gen_hi_min(true_reg->var_off); 4230 } 4231 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4232 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4233 break; 4234 } 4235 case BPF_JSGE: 4236 case BPF_JSGT: 4237 { 4238 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 4239 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 4240 4241 /* If the full s64 was not sign-extended from s32 then don't 4242 * deduct further info. 4243 */ 4244 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4245 break; 4246 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4247 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4248 break; 4249 } 4250 case BPF_JLE: 4251 case BPF_JLT: 4252 { 4253 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 4254 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 4255 4256 if (is_jmp32) { 4257 false_umin += gen_hi_min(false_reg->var_off); 4258 true_umax += gen_hi_max(true_reg->var_off); 4259 } 4260 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4261 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4262 break; 4263 } 4264 case BPF_JSLE: 4265 case BPF_JSLT: 4266 { 4267 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 4268 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 4269 4270 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4271 break; 4272 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4273 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4274 break; 4275 } 4276 default: 4277 break; 4278 } 4279 4280 __reg_deduce_bounds(false_reg); 4281 __reg_deduce_bounds(true_reg); 4282 /* We might have learned some bits from the bounds. */ 4283 __reg_bound_offset(false_reg); 4284 __reg_bound_offset(true_reg); 4285 /* Intersecting with the old var_off might have improved our bounds 4286 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4287 * then new var_off is (0; 0x7f...fc) which improves our umax. 4288 */ 4289 __update_reg_bounds(false_reg); 4290 __update_reg_bounds(true_reg); 4291 } 4292 4293 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 4294 * the variable reg. 4295 */ 4296 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 4297 struct bpf_reg_state *false_reg, u64 val, 4298 u8 opcode, bool is_jmp32) 4299 { 4300 s64 sval; 4301 4302 if (__is_pointer_value(false, false_reg)) 4303 return; 4304 4305 val = is_jmp32 ? (u32)val : val; 4306 sval = is_jmp32 ? (s64)(s32)val : (s64)val; 4307 4308 switch (opcode) { 4309 case BPF_JEQ: 4310 case BPF_JNE: 4311 { 4312 struct bpf_reg_state *reg = 4313 opcode == BPF_JEQ ? true_reg : false_reg; 4314 4315 if (is_jmp32) { 4316 u64 old_v = reg->var_off.value; 4317 u64 hi_mask = ~0xffffffffULL; 4318 4319 reg->var_off.value = (old_v & hi_mask) | val; 4320 reg->var_off.mask &= hi_mask; 4321 } else { 4322 __mark_reg_known(reg, val); 4323 } 4324 break; 4325 } 4326 case BPF_JSET: 4327 false_reg->var_off = tnum_and(false_reg->var_off, 4328 tnum_const(~val)); 4329 if (is_power_of_2(val)) 4330 true_reg->var_off = tnum_or(true_reg->var_off, 4331 tnum_const(val)); 4332 break; 4333 case BPF_JGE: 4334 case BPF_JGT: 4335 { 4336 u64 false_umin = opcode == BPF_JGT ? val : val + 1; 4337 u64 true_umax = opcode == BPF_JGT ? val - 1 : val; 4338 4339 if (is_jmp32) { 4340 false_umin += gen_hi_min(false_reg->var_off); 4341 true_umax += gen_hi_max(true_reg->var_off); 4342 } 4343 false_reg->umin_value = max(false_reg->umin_value, false_umin); 4344 true_reg->umax_value = min(true_reg->umax_value, true_umax); 4345 break; 4346 } 4347 case BPF_JSGE: 4348 case BPF_JSGT: 4349 { 4350 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1; 4351 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval; 4352 4353 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4354 break; 4355 false_reg->smin_value = max(false_reg->smin_value, false_smin); 4356 true_reg->smax_value = min(true_reg->smax_value, true_smax); 4357 break; 4358 } 4359 case BPF_JLE: 4360 case BPF_JLT: 4361 { 4362 u64 false_umax = opcode == BPF_JLT ? val : val - 1; 4363 u64 true_umin = opcode == BPF_JLT ? val + 1 : val; 4364 4365 if (is_jmp32) { 4366 false_umax += gen_hi_max(false_reg->var_off); 4367 true_umin += gen_hi_min(true_reg->var_off); 4368 } 4369 false_reg->umax_value = min(false_reg->umax_value, false_umax); 4370 true_reg->umin_value = max(true_reg->umin_value, true_umin); 4371 break; 4372 } 4373 case BPF_JSLE: 4374 case BPF_JSLT: 4375 { 4376 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1; 4377 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval; 4378 4379 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg)) 4380 break; 4381 false_reg->smax_value = min(false_reg->smax_value, false_smax); 4382 true_reg->smin_value = max(true_reg->smin_value, true_smin); 4383 break; 4384 } 4385 default: 4386 break; 4387 } 4388 4389 __reg_deduce_bounds(false_reg); 4390 __reg_deduce_bounds(true_reg); 4391 /* We might have learned some bits from the bounds. */ 4392 __reg_bound_offset(false_reg); 4393 __reg_bound_offset(true_reg); 4394 /* Intersecting with the old var_off might have improved our bounds 4395 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4396 * then new var_off is (0; 0x7f...fc) which improves our umax. 4397 */ 4398 __update_reg_bounds(false_reg); 4399 __update_reg_bounds(true_reg); 4400 } 4401 4402 /* Regs are known to be equal, so intersect their min/max/var_off */ 4403 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 4404 struct bpf_reg_state *dst_reg) 4405 { 4406 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 4407 dst_reg->umin_value); 4408 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 4409 dst_reg->umax_value); 4410 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 4411 dst_reg->smin_value); 4412 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 4413 dst_reg->smax_value); 4414 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 4415 dst_reg->var_off); 4416 /* We might have learned new bounds from the var_off. */ 4417 __update_reg_bounds(src_reg); 4418 __update_reg_bounds(dst_reg); 4419 /* We might have learned something about the sign bit. */ 4420 __reg_deduce_bounds(src_reg); 4421 __reg_deduce_bounds(dst_reg); 4422 /* We might have learned some bits from the bounds. */ 4423 __reg_bound_offset(src_reg); 4424 __reg_bound_offset(dst_reg); 4425 /* Intersecting with the old var_off might have improved our bounds 4426 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 4427 * then new var_off is (0; 0x7f...fc) which improves our umax. 4428 */ 4429 __update_reg_bounds(src_reg); 4430 __update_reg_bounds(dst_reg); 4431 } 4432 4433 static void reg_combine_min_max(struct bpf_reg_state *true_src, 4434 struct bpf_reg_state *true_dst, 4435 struct bpf_reg_state *false_src, 4436 struct bpf_reg_state *false_dst, 4437 u8 opcode) 4438 { 4439 switch (opcode) { 4440 case BPF_JEQ: 4441 __reg_combine_min_max(true_src, true_dst); 4442 break; 4443 case BPF_JNE: 4444 __reg_combine_min_max(false_src, false_dst); 4445 break; 4446 } 4447 } 4448 4449 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 4450 struct bpf_reg_state *reg, u32 id, 4451 bool is_null) 4452 { 4453 if (reg_type_may_be_null(reg->type) && reg->id == id) { 4454 /* Old offset (both fixed and variable parts) should 4455 * have been known-zero, because we don't allow pointer 4456 * arithmetic on pointers that might be NULL. 4457 */ 4458 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 4459 !tnum_equals_const(reg->var_off, 0) || 4460 reg->off)) { 4461 __mark_reg_known_zero(reg); 4462 reg->off = 0; 4463 } 4464 if (is_null) { 4465 reg->type = SCALAR_VALUE; 4466 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 4467 if (reg->map_ptr->inner_map_meta) { 4468 reg->type = CONST_PTR_TO_MAP; 4469 reg->map_ptr = reg->map_ptr->inner_map_meta; 4470 } else { 4471 reg->type = PTR_TO_MAP_VALUE; 4472 } 4473 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 4474 reg->type = PTR_TO_SOCKET; 4475 } 4476 if (is_null || !reg_is_refcounted(reg)) { 4477 /* We don't need id from this point onwards anymore, 4478 * thus we should better reset it, so that state 4479 * pruning has chances to take effect. 4480 */ 4481 reg->id = 0; 4482 } 4483 } 4484 } 4485 4486 /* The logic is similar to find_good_pkt_pointers(), both could eventually 4487 * be folded together at some point. 4488 */ 4489 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 4490 bool is_null) 4491 { 4492 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4493 struct bpf_reg_state *reg, *regs = state->regs; 4494 u32 id = regs[regno].id; 4495 int i, j; 4496 4497 if (reg_is_refcounted_or_null(®s[regno]) && is_null) 4498 __release_reference_state(state, id); 4499 4500 for (i = 0; i < MAX_BPF_REG; i++) 4501 mark_ptr_or_null_reg(state, ®s[i], id, is_null); 4502 4503 for (j = 0; j <= vstate->curframe; j++) { 4504 state = vstate->frame[j]; 4505 bpf_for_each_spilled_reg(i, state, reg) { 4506 if (!reg) 4507 continue; 4508 mark_ptr_or_null_reg(state, reg, id, is_null); 4509 } 4510 } 4511 } 4512 4513 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 4514 struct bpf_reg_state *dst_reg, 4515 struct bpf_reg_state *src_reg, 4516 struct bpf_verifier_state *this_branch, 4517 struct bpf_verifier_state *other_branch) 4518 { 4519 if (BPF_SRC(insn->code) != BPF_X) 4520 return false; 4521 4522 /* Pointers are always 64-bit. */ 4523 if (BPF_CLASS(insn->code) == BPF_JMP32) 4524 return false; 4525 4526 switch (BPF_OP(insn->code)) { 4527 case BPF_JGT: 4528 if ((dst_reg->type == PTR_TO_PACKET && 4529 src_reg->type == PTR_TO_PACKET_END) || 4530 (dst_reg->type == PTR_TO_PACKET_META && 4531 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4532 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 4533 find_good_pkt_pointers(this_branch, dst_reg, 4534 dst_reg->type, false); 4535 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4536 src_reg->type == PTR_TO_PACKET) || 4537 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4538 src_reg->type == PTR_TO_PACKET_META)) { 4539 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 4540 find_good_pkt_pointers(other_branch, src_reg, 4541 src_reg->type, true); 4542 } else { 4543 return false; 4544 } 4545 break; 4546 case BPF_JLT: 4547 if ((dst_reg->type == PTR_TO_PACKET && 4548 src_reg->type == PTR_TO_PACKET_END) || 4549 (dst_reg->type == PTR_TO_PACKET_META && 4550 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4551 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 4552 find_good_pkt_pointers(other_branch, dst_reg, 4553 dst_reg->type, true); 4554 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4555 src_reg->type == PTR_TO_PACKET) || 4556 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4557 src_reg->type == PTR_TO_PACKET_META)) { 4558 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 4559 find_good_pkt_pointers(this_branch, src_reg, 4560 src_reg->type, false); 4561 } else { 4562 return false; 4563 } 4564 break; 4565 case BPF_JGE: 4566 if ((dst_reg->type == PTR_TO_PACKET && 4567 src_reg->type == PTR_TO_PACKET_END) || 4568 (dst_reg->type == PTR_TO_PACKET_META && 4569 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4570 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 4571 find_good_pkt_pointers(this_branch, dst_reg, 4572 dst_reg->type, true); 4573 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4574 src_reg->type == PTR_TO_PACKET) || 4575 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4576 src_reg->type == PTR_TO_PACKET_META)) { 4577 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 4578 find_good_pkt_pointers(other_branch, src_reg, 4579 src_reg->type, false); 4580 } else { 4581 return false; 4582 } 4583 break; 4584 case BPF_JLE: 4585 if ((dst_reg->type == PTR_TO_PACKET && 4586 src_reg->type == PTR_TO_PACKET_END) || 4587 (dst_reg->type == PTR_TO_PACKET_META && 4588 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 4589 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 4590 find_good_pkt_pointers(other_branch, dst_reg, 4591 dst_reg->type, false); 4592 } else if ((dst_reg->type == PTR_TO_PACKET_END && 4593 src_reg->type == PTR_TO_PACKET) || 4594 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 4595 src_reg->type == PTR_TO_PACKET_META)) { 4596 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 4597 find_good_pkt_pointers(this_branch, src_reg, 4598 src_reg->type, true); 4599 } else { 4600 return false; 4601 } 4602 break; 4603 default: 4604 return false; 4605 } 4606 4607 return true; 4608 } 4609 4610 static int check_cond_jmp_op(struct bpf_verifier_env *env, 4611 struct bpf_insn *insn, int *insn_idx) 4612 { 4613 struct bpf_verifier_state *this_branch = env->cur_state; 4614 struct bpf_verifier_state *other_branch; 4615 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 4616 struct bpf_reg_state *dst_reg, *other_branch_regs; 4617 u8 opcode = BPF_OP(insn->code); 4618 bool is_jmp32; 4619 int err; 4620 4621 /* Only conditional jumps are expected to reach here. */ 4622 if (opcode == BPF_JA || opcode > BPF_JSLE) { 4623 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 4624 return -EINVAL; 4625 } 4626 4627 if (BPF_SRC(insn->code) == BPF_X) { 4628 if (insn->imm != 0) { 4629 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4630 return -EINVAL; 4631 } 4632 4633 /* check src1 operand */ 4634 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4635 if (err) 4636 return err; 4637 4638 if (is_pointer_value(env, insn->src_reg)) { 4639 verbose(env, "R%d pointer comparison prohibited\n", 4640 insn->src_reg); 4641 return -EACCES; 4642 } 4643 } else { 4644 if (insn->src_reg != BPF_REG_0) { 4645 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 4646 return -EINVAL; 4647 } 4648 } 4649 4650 /* check src2 operand */ 4651 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 4652 if (err) 4653 return err; 4654 4655 dst_reg = ®s[insn->dst_reg]; 4656 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 4657 4658 if (BPF_SRC(insn->code) == BPF_K) { 4659 int pred = is_branch_taken(dst_reg, insn->imm, opcode, 4660 is_jmp32); 4661 4662 if (pred == 1) { 4663 /* only follow the goto, ignore fall-through */ 4664 *insn_idx += insn->off; 4665 return 0; 4666 } else if (pred == 0) { 4667 /* only follow fall-through branch, since 4668 * that's where the program will go 4669 */ 4670 return 0; 4671 } 4672 } 4673 4674 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 4675 false); 4676 if (!other_branch) 4677 return -EFAULT; 4678 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 4679 4680 /* detect if we are comparing against a constant value so we can adjust 4681 * our min/max values for our dst register. 4682 * this is only legit if both are scalars (or pointers to the same 4683 * object, I suppose, but we don't support that right now), because 4684 * otherwise the different base pointers mean the offsets aren't 4685 * comparable. 4686 */ 4687 if (BPF_SRC(insn->code) == BPF_X) { 4688 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 4689 struct bpf_reg_state lo_reg0 = *dst_reg; 4690 struct bpf_reg_state lo_reg1 = *src_reg; 4691 struct bpf_reg_state *src_lo, *dst_lo; 4692 4693 dst_lo = &lo_reg0; 4694 src_lo = &lo_reg1; 4695 coerce_reg_to_size(dst_lo, 4); 4696 coerce_reg_to_size(src_lo, 4); 4697 4698 if (dst_reg->type == SCALAR_VALUE && 4699 src_reg->type == SCALAR_VALUE) { 4700 if (tnum_is_const(src_reg->var_off) || 4701 (is_jmp32 && tnum_is_const(src_lo->var_off))) 4702 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4703 dst_reg, 4704 is_jmp32 4705 ? src_lo->var_off.value 4706 : src_reg->var_off.value, 4707 opcode, is_jmp32); 4708 else if (tnum_is_const(dst_reg->var_off) || 4709 (is_jmp32 && tnum_is_const(dst_lo->var_off))) 4710 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 4711 src_reg, 4712 is_jmp32 4713 ? dst_lo->var_off.value 4714 : dst_reg->var_off.value, 4715 opcode, is_jmp32); 4716 else if (!is_jmp32 && 4717 (opcode == BPF_JEQ || opcode == BPF_JNE)) 4718 /* Comparing for equality, we can combine knowledge */ 4719 reg_combine_min_max(&other_branch_regs[insn->src_reg], 4720 &other_branch_regs[insn->dst_reg], 4721 src_reg, dst_reg, opcode); 4722 } 4723 } else if (dst_reg->type == SCALAR_VALUE) { 4724 reg_set_min_max(&other_branch_regs[insn->dst_reg], 4725 dst_reg, insn->imm, opcode, is_jmp32); 4726 } 4727 4728 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 4729 * NOTE: these optimizations below are related with pointer comparison 4730 * which will never be JMP32. 4731 */ 4732 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 4733 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 4734 reg_type_may_be_null(dst_reg->type)) { 4735 /* Mark all identical registers in each branch as either 4736 * safe or unknown depending R == 0 or R != 0 conditional. 4737 */ 4738 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 4739 opcode == BPF_JNE); 4740 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 4741 opcode == BPF_JEQ); 4742 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 4743 this_branch, other_branch) && 4744 is_pointer_value(env, insn->dst_reg)) { 4745 verbose(env, "R%d pointer comparison prohibited\n", 4746 insn->dst_reg); 4747 return -EACCES; 4748 } 4749 if (env->log.level) 4750 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 4751 return 0; 4752 } 4753 4754 /* return the map pointer stored inside BPF_LD_IMM64 instruction */ 4755 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) 4756 { 4757 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; 4758 4759 return (struct bpf_map *) (unsigned long) imm64; 4760 } 4761 4762 /* verify BPF_LD_IMM64 instruction */ 4763 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 4764 { 4765 struct bpf_reg_state *regs = cur_regs(env); 4766 int err; 4767 4768 if (BPF_SIZE(insn->code) != BPF_DW) { 4769 verbose(env, "invalid BPF_LD_IMM insn\n"); 4770 return -EINVAL; 4771 } 4772 if (insn->off != 0) { 4773 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 4774 return -EINVAL; 4775 } 4776 4777 err = check_reg_arg(env, insn->dst_reg, DST_OP); 4778 if (err) 4779 return err; 4780 4781 if (insn->src_reg == 0) { 4782 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 4783 4784 regs[insn->dst_reg].type = SCALAR_VALUE; 4785 __mark_reg_known(®s[insn->dst_reg], imm); 4786 return 0; 4787 } 4788 4789 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ 4790 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); 4791 4792 regs[insn->dst_reg].type = CONST_PTR_TO_MAP; 4793 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); 4794 return 0; 4795 } 4796 4797 static bool may_access_skb(enum bpf_prog_type type) 4798 { 4799 switch (type) { 4800 case BPF_PROG_TYPE_SOCKET_FILTER: 4801 case BPF_PROG_TYPE_SCHED_CLS: 4802 case BPF_PROG_TYPE_SCHED_ACT: 4803 return true; 4804 default: 4805 return false; 4806 } 4807 } 4808 4809 /* verify safety of LD_ABS|LD_IND instructions: 4810 * - they can only appear in the programs where ctx == skb 4811 * - since they are wrappers of function calls, they scratch R1-R5 registers, 4812 * preserve R6-R9, and store return value into R0 4813 * 4814 * Implicit input: 4815 * ctx == skb == R6 == CTX 4816 * 4817 * Explicit input: 4818 * SRC == any register 4819 * IMM == 32-bit immediate 4820 * 4821 * Output: 4822 * R0 - 8/16/32-bit skb data converted to cpu endianness 4823 */ 4824 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 4825 { 4826 struct bpf_reg_state *regs = cur_regs(env); 4827 u8 mode = BPF_MODE(insn->code); 4828 int i, err; 4829 4830 if (!may_access_skb(env->prog->type)) { 4831 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 4832 return -EINVAL; 4833 } 4834 4835 if (!env->ops->gen_ld_abs) { 4836 verbose(env, "bpf verifier is misconfigured\n"); 4837 return -EINVAL; 4838 } 4839 4840 if (env->subprog_cnt > 1) { 4841 /* when program has LD_ABS insn JITs and interpreter assume 4842 * that r1 == ctx == skb which is not the case for callees 4843 * that can have arbitrary arguments. It's problematic 4844 * for main prog as well since JITs would need to analyze 4845 * all functions in order to make proper register save/restore 4846 * decisions in the main prog. Hence disallow LD_ABS with calls 4847 */ 4848 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n"); 4849 return -EINVAL; 4850 } 4851 4852 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 4853 BPF_SIZE(insn->code) == BPF_DW || 4854 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 4855 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 4856 return -EINVAL; 4857 } 4858 4859 /* check whether implicit source operand (register R6) is readable */ 4860 err = check_reg_arg(env, BPF_REG_6, SRC_OP); 4861 if (err) 4862 return err; 4863 4864 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 4865 * gen_ld_abs() may terminate the program at runtime, leading to 4866 * reference leak. 4867 */ 4868 err = check_reference_leak(env); 4869 if (err) { 4870 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 4871 return err; 4872 } 4873 4874 if (regs[BPF_REG_6].type != PTR_TO_CTX) { 4875 verbose(env, 4876 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 4877 return -EINVAL; 4878 } 4879 4880 if (mode == BPF_IND) { 4881 /* check explicit source operand */ 4882 err = check_reg_arg(env, insn->src_reg, SRC_OP); 4883 if (err) 4884 return err; 4885 } 4886 4887 /* reset caller saved regs to unreadable */ 4888 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4889 mark_reg_not_init(env, regs, caller_saved[i]); 4890 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4891 } 4892 4893 /* mark destination R0 register as readable, since it contains 4894 * the value fetched from the packet. 4895 * Already marked as written above. 4896 */ 4897 mark_reg_unknown(env, regs, BPF_REG_0); 4898 return 0; 4899 } 4900 4901 static int check_return_code(struct bpf_verifier_env *env) 4902 { 4903 struct bpf_reg_state *reg; 4904 struct tnum range = tnum_range(0, 1); 4905 4906 switch (env->prog->type) { 4907 case BPF_PROG_TYPE_CGROUP_SKB: 4908 case BPF_PROG_TYPE_CGROUP_SOCK: 4909 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 4910 case BPF_PROG_TYPE_SOCK_OPS: 4911 case BPF_PROG_TYPE_CGROUP_DEVICE: 4912 break; 4913 default: 4914 return 0; 4915 } 4916 4917 reg = cur_regs(env) + BPF_REG_0; 4918 if (reg->type != SCALAR_VALUE) { 4919 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 4920 reg_type_str[reg->type]); 4921 return -EINVAL; 4922 } 4923 4924 if (!tnum_in(range, reg->var_off)) { 4925 verbose(env, "At program exit the register R0 "); 4926 if (!tnum_is_unknown(reg->var_off)) { 4927 char tn_buf[48]; 4928 4929 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 4930 verbose(env, "has value %s", tn_buf); 4931 } else { 4932 verbose(env, "has unknown scalar value"); 4933 } 4934 verbose(env, " should have been 0 or 1\n"); 4935 return -EINVAL; 4936 } 4937 return 0; 4938 } 4939 4940 /* non-recursive DFS pseudo code 4941 * 1 procedure DFS-iterative(G,v): 4942 * 2 label v as discovered 4943 * 3 let S be a stack 4944 * 4 S.push(v) 4945 * 5 while S is not empty 4946 * 6 t <- S.pop() 4947 * 7 if t is what we're looking for: 4948 * 8 return t 4949 * 9 for all edges e in G.adjacentEdges(t) do 4950 * 10 if edge e is already labelled 4951 * 11 continue with the next edge 4952 * 12 w <- G.adjacentVertex(t,e) 4953 * 13 if vertex w is not discovered and not explored 4954 * 14 label e as tree-edge 4955 * 15 label w as discovered 4956 * 16 S.push(w) 4957 * 17 continue at 5 4958 * 18 else if vertex w is discovered 4959 * 19 label e as back-edge 4960 * 20 else 4961 * 21 // vertex w is explored 4962 * 22 label e as forward- or cross-edge 4963 * 23 label t as explored 4964 * 24 S.pop() 4965 * 4966 * convention: 4967 * 0x10 - discovered 4968 * 0x11 - discovered and fall-through edge labelled 4969 * 0x12 - discovered and fall-through and branch edges labelled 4970 * 0x20 - explored 4971 */ 4972 4973 enum { 4974 DISCOVERED = 0x10, 4975 EXPLORED = 0x20, 4976 FALLTHROUGH = 1, 4977 BRANCH = 2, 4978 }; 4979 4980 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) 4981 4982 static int *insn_stack; /* stack of insns to process */ 4983 static int cur_stack; /* current stack index */ 4984 static int *insn_state; 4985 4986 /* t, w, e - match pseudo-code above: 4987 * t - index of current instruction 4988 * w - next instruction 4989 * e - edge 4990 */ 4991 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) 4992 { 4993 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 4994 return 0; 4995 4996 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 4997 return 0; 4998 4999 if (w < 0 || w >= env->prog->len) { 5000 verbose_linfo(env, t, "%d: ", t); 5001 verbose(env, "jump out of range from insn %d to %d\n", t, w); 5002 return -EINVAL; 5003 } 5004 5005 if (e == BRANCH) 5006 /* mark branch target for state pruning */ 5007 env->explored_states[w] = STATE_LIST_MARK; 5008 5009 if (insn_state[w] == 0) { 5010 /* tree-edge */ 5011 insn_state[t] = DISCOVERED | e; 5012 insn_state[w] = DISCOVERED; 5013 if (cur_stack >= env->prog->len) 5014 return -E2BIG; 5015 insn_stack[cur_stack++] = w; 5016 return 1; 5017 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 5018 verbose_linfo(env, t, "%d: ", t); 5019 verbose_linfo(env, w, "%d: ", w); 5020 verbose(env, "back-edge from insn %d to %d\n", t, w); 5021 return -EINVAL; 5022 } else if (insn_state[w] == EXPLORED) { 5023 /* forward- or cross-edge */ 5024 insn_state[t] = DISCOVERED | e; 5025 } else { 5026 verbose(env, "insn state internal bug\n"); 5027 return -EFAULT; 5028 } 5029 return 0; 5030 } 5031 5032 /* non-recursive depth-first-search to detect loops in BPF program 5033 * loop == back-edge in directed graph 5034 */ 5035 static int check_cfg(struct bpf_verifier_env *env) 5036 { 5037 struct bpf_insn *insns = env->prog->insnsi; 5038 int insn_cnt = env->prog->len; 5039 int ret = 0; 5040 int i, t; 5041 5042 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5043 if (!insn_state) 5044 return -ENOMEM; 5045 5046 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 5047 if (!insn_stack) { 5048 kfree(insn_state); 5049 return -ENOMEM; 5050 } 5051 5052 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 5053 insn_stack[0] = 0; /* 0 is the first instruction */ 5054 cur_stack = 1; 5055 5056 peek_stack: 5057 if (cur_stack == 0) 5058 goto check_state; 5059 t = insn_stack[cur_stack - 1]; 5060 5061 if (BPF_CLASS(insns[t].code) == BPF_JMP || 5062 BPF_CLASS(insns[t].code) == BPF_JMP32) { 5063 u8 opcode = BPF_OP(insns[t].code); 5064 5065 if (opcode == BPF_EXIT) { 5066 goto mark_explored; 5067 } else if (opcode == BPF_CALL) { 5068 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5069 if (ret == 1) 5070 goto peek_stack; 5071 else if (ret < 0) 5072 goto err_free; 5073 if (t + 1 < insn_cnt) 5074 env->explored_states[t + 1] = STATE_LIST_MARK; 5075 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 5076 env->explored_states[t] = STATE_LIST_MARK; 5077 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env); 5078 if (ret == 1) 5079 goto peek_stack; 5080 else if (ret < 0) 5081 goto err_free; 5082 } 5083 } else if (opcode == BPF_JA) { 5084 if (BPF_SRC(insns[t].code) != BPF_K) { 5085 ret = -EINVAL; 5086 goto err_free; 5087 } 5088 /* unconditional jump with single edge */ 5089 ret = push_insn(t, t + insns[t].off + 1, 5090 FALLTHROUGH, env); 5091 if (ret == 1) 5092 goto peek_stack; 5093 else if (ret < 0) 5094 goto err_free; 5095 /* tell verifier to check for equivalent states 5096 * after every call and jump 5097 */ 5098 if (t + 1 < insn_cnt) 5099 env->explored_states[t + 1] = STATE_LIST_MARK; 5100 } else { 5101 /* conditional jump with two edges */ 5102 env->explored_states[t] = STATE_LIST_MARK; 5103 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5104 if (ret == 1) 5105 goto peek_stack; 5106 else if (ret < 0) 5107 goto err_free; 5108 5109 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); 5110 if (ret == 1) 5111 goto peek_stack; 5112 else if (ret < 0) 5113 goto err_free; 5114 } 5115 } else { 5116 /* all other non-branch instructions with single 5117 * fall-through edge 5118 */ 5119 ret = push_insn(t, t + 1, FALLTHROUGH, env); 5120 if (ret == 1) 5121 goto peek_stack; 5122 else if (ret < 0) 5123 goto err_free; 5124 } 5125 5126 mark_explored: 5127 insn_state[t] = EXPLORED; 5128 if (cur_stack-- <= 0) { 5129 verbose(env, "pop stack internal bug\n"); 5130 ret = -EFAULT; 5131 goto err_free; 5132 } 5133 goto peek_stack; 5134 5135 check_state: 5136 for (i = 0; i < insn_cnt; i++) { 5137 if (insn_state[i] != EXPLORED) { 5138 verbose(env, "unreachable insn %d\n", i); 5139 ret = -EINVAL; 5140 goto err_free; 5141 } 5142 } 5143 ret = 0; /* cfg looks good */ 5144 5145 err_free: 5146 kfree(insn_state); 5147 kfree(insn_stack); 5148 return ret; 5149 } 5150 5151 /* The minimum supported BTF func info size */ 5152 #define MIN_BPF_FUNCINFO_SIZE 8 5153 #define MAX_FUNCINFO_REC_SIZE 252 5154 5155 static int check_btf_func(struct bpf_verifier_env *env, 5156 const union bpf_attr *attr, 5157 union bpf_attr __user *uattr) 5158 { 5159 u32 i, nfuncs, urec_size, min_size; 5160 u32 krec_size = sizeof(struct bpf_func_info); 5161 struct bpf_func_info *krecord; 5162 const struct btf_type *type; 5163 struct bpf_prog *prog; 5164 const struct btf *btf; 5165 void __user *urecord; 5166 u32 prev_offset = 0; 5167 int ret = 0; 5168 5169 nfuncs = attr->func_info_cnt; 5170 if (!nfuncs) 5171 return 0; 5172 5173 if (nfuncs != env->subprog_cnt) { 5174 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 5175 return -EINVAL; 5176 } 5177 5178 urec_size = attr->func_info_rec_size; 5179 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 5180 urec_size > MAX_FUNCINFO_REC_SIZE || 5181 urec_size % sizeof(u32)) { 5182 verbose(env, "invalid func info rec size %u\n", urec_size); 5183 return -EINVAL; 5184 } 5185 5186 prog = env->prog; 5187 btf = prog->aux->btf; 5188 5189 urecord = u64_to_user_ptr(attr->func_info); 5190 min_size = min_t(u32, krec_size, urec_size); 5191 5192 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 5193 if (!krecord) 5194 return -ENOMEM; 5195 5196 for (i = 0; i < nfuncs; i++) { 5197 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 5198 if (ret) { 5199 if (ret == -E2BIG) { 5200 verbose(env, "nonzero tailing record in func info"); 5201 /* set the size kernel expects so loader can zero 5202 * out the rest of the record. 5203 */ 5204 if (put_user(min_size, &uattr->func_info_rec_size)) 5205 ret = -EFAULT; 5206 } 5207 goto err_free; 5208 } 5209 5210 if (copy_from_user(&krecord[i], urecord, min_size)) { 5211 ret = -EFAULT; 5212 goto err_free; 5213 } 5214 5215 /* check insn_off */ 5216 if (i == 0) { 5217 if (krecord[i].insn_off) { 5218 verbose(env, 5219 "nonzero insn_off %u for the first func info record", 5220 krecord[i].insn_off); 5221 ret = -EINVAL; 5222 goto err_free; 5223 } 5224 } else if (krecord[i].insn_off <= prev_offset) { 5225 verbose(env, 5226 "same or smaller insn offset (%u) than previous func info record (%u)", 5227 krecord[i].insn_off, prev_offset); 5228 ret = -EINVAL; 5229 goto err_free; 5230 } 5231 5232 if (env->subprog_info[i].start != krecord[i].insn_off) { 5233 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 5234 ret = -EINVAL; 5235 goto err_free; 5236 } 5237 5238 /* check type_id */ 5239 type = btf_type_by_id(btf, krecord[i].type_id); 5240 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) { 5241 verbose(env, "invalid type id %d in func info", 5242 krecord[i].type_id); 5243 ret = -EINVAL; 5244 goto err_free; 5245 } 5246 5247 prev_offset = krecord[i].insn_off; 5248 urecord += urec_size; 5249 } 5250 5251 prog->aux->func_info = krecord; 5252 prog->aux->func_info_cnt = nfuncs; 5253 return 0; 5254 5255 err_free: 5256 kvfree(krecord); 5257 return ret; 5258 } 5259 5260 static void adjust_btf_func(struct bpf_verifier_env *env) 5261 { 5262 int i; 5263 5264 if (!env->prog->aux->func_info) 5265 return; 5266 5267 for (i = 0; i < env->subprog_cnt; i++) 5268 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start; 5269 } 5270 5271 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 5272 sizeof(((struct bpf_line_info *)(0))->line_col)) 5273 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 5274 5275 static int check_btf_line(struct bpf_verifier_env *env, 5276 const union bpf_attr *attr, 5277 union bpf_attr __user *uattr) 5278 { 5279 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 5280 struct bpf_subprog_info *sub; 5281 struct bpf_line_info *linfo; 5282 struct bpf_prog *prog; 5283 const struct btf *btf; 5284 void __user *ulinfo; 5285 int err; 5286 5287 nr_linfo = attr->line_info_cnt; 5288 if (!nr_linfo) 5289 return 0; 5290 5291 rec_size = attr->line_info_rec_size; 5292 if (rec_size < MIN_BPF_LINEINFO_SIZE || 5293 rec_size > MAX_LINEINFO_REC_SIZE || 5294 rec_size & (sizeof(u32) - 1)) 5295 return -EINVAL; 5296 5297 /* Need to zero it in case the userspace may 5298 * pass in a smaller bpf_line_info object. 5299 */ 5300 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 5301 GFP_KERNEL | __GFP_NOWARN); 5302 if (!linfo) 5303 return -ENOMEM; 5304 5305 prog = env->prog; 5306 btf = prog->aux->btf; 5307 5308 s = 0; 5309 sub = env->subprog_info; 5310 ulinfo = u64_to_user_ptr(attr->line_info); 5311 expected_size = sizeof(struct bpf_line_info); 5312 ncopy = min_t(u32, expected_size, rec_size); 5313 for (i = 0; i < nr_linfo; i++) { 5314 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 5315 if (err) { 5316 if (err == -E2BIG) { 5317 verbose(env, "nonzero tailing record in line_info"); 5318 if (put_user(expected_size, 5319 &uattr->line_info_rec_size)) 5320 err = -EFAULT; 5321 } 5322 goto err_free; 5323 } 5324 5325 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 5326 err = -EFAULT; 5327 goto err_free; 5328 } 5329 5330 /* 5331 * Check insn_off to ensure 5332 * 1) strictly increasing AND 5333 * 2) bounded by prog->len 5334 * 5335 * The linfo[0].insn_off == 0 check logically falls into 5336 * the later "missing bpf_line_info for func..." case 5337 * because the first linfo[0].insn_off must be the 5338 * first sub also and the first sub must have 5339 * subprog_info[0].start == 0. 5340 */ 5341 if ((i && linfo[i].insn_off <= prev_offset) || 5342 linfo[i].insn_off >= prog->len) { 5343 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 5344 i, linfo[i].insn_off, prev_offset, 5345 prog->len); 5346 err = -EINVAL; 5347 goto err_free; 5348 } 5349 5350 if (!prog->insnsi[linfo[i].insn_off].code) { 5351 verbose(env, 5352 "Invalid insn code at line_info[%u].insn_off\n", 5353 i); 5354 err = -EINVAL; 5355 goto err_free; 5356 } 5357 5358 if (!btf_name_by_offset(btf, linfo[i].line_off) || 5359 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 5360 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 5361 err = -EINVAL; 5362 goto err_free; 5363 } 5364 5365 if (s != env->subprog_cnt) { 5366 if (linfo[i].insn_off == sub[s].start) { 5367 sub[s].linfo_idx = i; 5368 s++; 5369 } else if (sub[s].start < linfo[i].insn_off) { 5370 verbose(env, "missing bpf_line_info for func#%u\n", s); 5371 err = -EINVAL; 5372 goto err_free; 5373 } 5374 } 5375 5376 prev_offset = linfo[i].insn_off; 5377 ulinfo += rec_size; 5378 } 5379 5380 if (s != env->subprog_cnt) { 5381 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 5382 env->subprog_cnt - s, s); 5383 err = -EINVAL; 5384 goto err_free; 5385 } 5386 5387 prog->aux->linfo = linfo; 5388 prog->aux->nr_linfo = nr_linfo; 5389 5390 return 0; 5391 5392 err_free: 5393 kvfree(linfo); 5394 return err; 5395 } 5396 5397 static int check_btf_info(struct bpf_verifier_env *env, 5398 const union bpf_attr *attr, 5399 union bpf_attr __user *uattr) 5400 { 5401 struct btf *btf; 5402 int err; 5403 5404 if (!attr->func_info_cnt && !attr->line_info_cnt) 5405 return 0; 5406 5407 btf = btf_get_by_fd(attr->prog_btf_fd); 5408 if (IS_ERR(btf)) 5409 return PTR_ERR(btf); 5410 env->prog->aux->btf = btf; 5411 5412 err = check_btf_func(env, attr, uattr); 5413 if (err) 5414 return err; 5415 5416 err = check_btf_line(env, attr, uattr); 5417 if (err) 5418 return err; 5419 5420 return 0; 5421 } 5422 5423 /* check %cur's range satisfies %old's */ 5424 static bool range_within(struct bpf_reg_state *old, 5425 struct bpf_reg_state *cur) 5426 { 5427 return old->umin_value <= cur->umin_value && 5428 old->umax_value >= cur->umax_value && 5429 old->smin_value <= cur->smin_value && 5430 old->smax_value >= cur->smax_value; 5431 } 5432 5433 /* Maximum number of register states that can exist at once */ 5434 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 5435 struct idpair { 5436 u32 old; 5437 u32 cur; 5438 }; 5439 5440 /* If in the old state two registers had the same id, then they need to have 5441 * the same id in the new state as well. But that id could be different from 5442 * the old state, so we need to track the mapping from old to new ids. 5443 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 5444 * regs with old id 5 must also have new id 9 for the new state to be safe. But 5445 * regs with a different old id could still have new id 9, we don't care about 5446 * that. 5447 * So we look through our idmap to see if this old id has been seen before. If 5448 * so, we require the new id to match; otherwise, we add the id pair to the map. 5449 */ 5450 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 5451 { 5452 unsigned int i; 5453 5454 for (i = 0; i < ID_MAP_SIZE; i++) { 5455 if (!idmap[i].old) { 5456 /* Reached an empty slot; haven't seen this id before */ 5457 idmap[i].old = old_id; 5458 idmap[i].cur = cur_id; 5459 return true; 5460 } 5461 if (idmap[i].old == old_id) 5462 return idmap[i].cur == cur_id; 5463 } 5464 /* We ran out of idmap slots, which should be impossible */ 5465 WARN_ON_ONCE(1); 5466 return false; 5467 } 5468 5469 static void clean_func_state(struct bpf_verifier_env *env, 5470 struct bpf_func_state *st) 5471 { 5472 enum bpf_reg_liveness live; 5473 int i, j; 5474 5475 for (i = 0; i < BPF_REG_FP; i++) { 5476 live = st->regs[i].live; 5477 /* liveness must not touch this register anymore */ 5478 st->regs[i].live |= REG_LIVE_DONE; 5479 if (!(live & REG_LIVE_READ)) 5480 /* since the register is unused, clear its state 5481 * to make further comparison simpler 5482 */ 5483 __mark_reg_not_init(&st->regs[i]); 5484 } 5485 5486 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 5487 live = st->stack[i].spilled_ptr.live; 5488 /* liveness must not touch this stack slot anymore */ 5489 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 5490 if (!(live & REG_LIVE_READ)) { 5491 __mark_reg_not_init(&st->stack[i].spilled_ptr); 5492 for (j = 0; j < BPF_REG_SIZE; j++) 5493 st->stack[i].slot_type[j] = STACK_INVALID; 5494 } 5495 } 5496 } 5497 5498 static void clean_verifier_state(struct bpf_verifier_env *env, 5499 struct bpf_verifier_state *st) 5500 { 5501 int i; 5502 5503 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 5504 /* all regs in this state in all frames were already marked */ 5505 return; 5506 5507 for (i = 0; i <= st->curframe; i++) 5508 clean_func_state(env, st->frame[i]); 5509 } 5510 5511 /* the parentage chains form a tree. 5512 * the verifier states are added to state lists at given insn and 5513 * pushed into state stack for future exploration. 5514 * when the verifier reaches bpf_exit insn some of the verifer states 5515 * stored in the state lists have their final liveness state already, 5516 * but a lot of states will get revised from liveness point of view when 5517 * the verifier explores other branches. 5518 * Example: 5519 * 1: r0 = 1 5520 * 2: if r1 == 100 goto pc+1 5521 * 3: r0 = 2 5522 * 4: exit 5523 * when the verifier reaches exit insn the register r0 in the state list of 5524 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 5525 * of insn 2 and goes exploring further. At the insn 4 it will walk the 5526 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 5527 * 5528 * Since the verifier pushes the branch states as it sees them while exploring 5529 * the program the condition of walking the branch instruction for the second 5530 * time means that all states below this branch were already explored and 5531 * their final liveness markes are already propagated. 5532 * Hence when the verifier completes the search of state list in is_state_visited() 5533 * we can call this clean_live_states() function to mark all liveness states 5534 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 5535 * will not be used. 5536 * This function also clears the registers and stack for states that !READ 5537 * to simplify state merging. 5538 * 5539 * Important note here that walking the same branch instruction in the callee 5540 * doesn't meant that the states are DONE. The verifier has to compare 5541 * the callsites 5542 */ 5543 static void clean_live_states(struct bpf_verifier_env *env, int insn, 5544 struct bpf_verifier_state *cur) 5545 { 5546 struct bpf_verifier_state_list *sl; 5547 int i; 5548 5549 sl = env->explored_states[insn]; 5550 if (!sl) 5551 return; 5552 5553 while (sl != STATE_LIST_MARK) { 5554 if (sl->state.curframe != cur->curframe) 5555 goto next; 5556 for (i = 0; i <= cur->curframe; i++) 5557 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 5558 goto next; 5559 clean_verifier_state(env, &sl->state); 5560 next: 5561 sl = sl->next; 5562 } 5563 } 5564 5565 /* Returns true if (rold safe implies rcur safe) */ 5566 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 5567 struct idpair *idmap) 5568 { 5569 bool equal; 5570 5571 if (!(rold->live & REG_LIVE_READ)) 5572 /* explored state didn't use this */ 5573 return true; 5574 5575 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 5576 5577 if (rold->type == PTR_TO_STACK) 5578 /* two stack pointers are equal only if they're pointing to 5579 * the same stack frame, since fp-8 in foo != fp-8 in bar 5580 */ 5581 return equal && rold->frameno == rcur->frameno; 5582 5583 if (equal) 5584 return true; 5585 5586 if (rold->type == NOT_INIT) 5587 /* explored state can't have used this */ 5588 return true; 5589 if (rcur->type == NOT_INIT) 5590 return false; 5591 switch (rold->type) { 5592 case SCALAR_VALUE: 5593 if (rcur->type == SCALAR_VALUE) { 5594 /* new val must satisfy old val knowledge */ 5595 return range_within(rold, rcur) && 5596 tnum_in(rold->var_off, rcur->var_off); 5597 } else { 5598 /* We're trying to use a pointer in place of a scalar. 5599 * Even if the scalar was unbounded, this could lead to 5600 * pointer leaks because scalars are allowed to leak 5601 * while pointers are not. We could make this safe in 5602 * special cases if root is calling us, but it's 5603 * probably not worth the hassle. 5604 */ 5605 return false; 5606 } 5607 case PTR_TO_MAP_VALUE: 5608 /* If the new min/max/var_off satisfy the old ones and 5609 * everything else matches, we are OK. 5610 * We don't care about the 'id' value, because nothing 5611 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) 5612 */ 5613 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 5614 range_within(rold, rcur) && 5615 tnum_in(rold->var_off, rcur->var_off); 5616 case PTR_TO_MAP_VALUE_OR_NULL: 5617 /* a PTR_TO_MAP_VALUE could be safe to use as a 5618 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 5619 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 5620 * checked, doing so could have affected others with the same 5621 * id, and we can't check for that because we lost the id when 5622 * we converted to a PTR_TO_MAP_VALUE. 5623 */ 5624 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 5625 return false; 5626 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 5627 return false; 5628 /* Check our ids match any regs they're supposed to */ 5629 return check_ids(rold->id, rcur->id, idmap); 5630 case PTR_TO_PACKET_META: 5631 case PTR_TO_PACKET: 5632 if (rcur->type != rold->type) 5633 return false; 5634 /* We must have at least as much range as the old ptr 5635 * did, so that any accesses which were safe before are 5636 * still safe. This is true even if old range < old off, 5637 * since someone could have accessed through (ptr - k), or 5638 * even done ptr -= k in a register, to get a safe access. 5639 */ 5640 if (rold->range > rcur->range) 5641 return false; 5642 /* If the offsets don't match, we can't trust our alignment; 5643 * nor can we be sure that we won't fall out of range. 5644 */ 5645 if (rold->off != rcur->off) 5646 return false; 5647 /* id relations must be preserved */ 5648 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 5649 return false; 5650 /* new val must satisfy old val knowledge */ 5651 return range_within(rold, rcur) && 5652 tnum_in(rold->var_off, rcur->var_off); 5653 case PTR_TO_CTX: 5654 case CONST_PTR_TO_MAP: 5655 case PTR_TO_PACKET_END: 5656 case PTR_TO_FLOW_KEYS: 5657 case PTR_TO_SOCKET: 5658 case PTR_TO_SOCKET_OR_NULL: 5659 /* Only valid matches are exact, which memcmp() above 5660 * would have accepted 5661 */ 5662 default: 5663 /* Don't know what's going on, just say it's not safe */ 5664 return false; 5665 } 5666 5667 /* Shouldn't get here; if we do, say it's not safe */ 5668 WARN_ON_ONCE(1); 5669 return false; 5670 } 5671 5672 static bool stacksafe(struct bpf_func_state *old, 5673 struct bpf_func_state *cur, 5674 struct idpair *idmap) 5675 { 5676 int i, spi; 5677 5678 /* walk slots of the explored stack and ignore any additional 5679 * slots in the current stack, since explored(safe) state 5680 * didn't use them 5681 */ 5682 for (i = 0; i < old->allocated_stack; i++) { 5683 spi = i / BPF_REG_SIZE; 5684 5685 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 5686 i += BPF_REG_SIZE - 1; 5687 /* explored state didn't use this */ 5688 continue; 5689 } 5690 5691 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 5692 continue; 5693 5694 /* explored stack has more populated slots than current stack 5695 * and these slots were used 5696 */ 5697 if (i >= cur->allocated_stack) 5698 return false; 5699 5700 /* if old state was safe with misc data in the stack 5701 * it will be safe with zero-initialized stack. 5702 * The opposite is not true 5703 */ 5704 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 5705 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 5706 continue; 5707 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 5708 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 5709 /* Ex: old explored (safe) state has STACK_SPILL in 5710 * this stack slot, but current has has STACK_MISC -> 5711 * this verifier states are not equivalent, 5712 * return false to continue verification of this path 5713 */ 5714 return false; 5715 if (i % BPF_REG_SIZE) 5716 continue; 5717 if (old->stack[spi].slot_type[0] != STACK_SPILL) 5718 continue; 5719 if (!regsafe(&old->stack[spi].spilled_ptr, 5720 &cur->stack[spi].spilled_ptr, 5721 idmap)) 5722 /* when explored and current stack slot are both storing 5723 * spilled registers, check that stored pointers types 5724 * are the same as well. 5725 * Ex: explored safe path could have stored 5726 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 5727 * but current path has stored: 5728 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 5729 * such verifier states are not equivalent. 5730 * return false to continue verification of this path 5731 */ 5732 return false; 5733 } 5734 return true; 5735 } 5736 5737 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 5738 { 5739 if (old->acquired_refs != cur->acquired_refs) 5740 return false; 5741 return !memcmp(old->refs, cur->refs, 5742 sizeof(*old->refs) * old->acquired_refs); 5743 } 5744 5745 /* compare two verifier states 5746 * 5747 * all states stored in state_list are known to be valid, since 5748 * verifier reached 'bpf_exit' instruction through them 5749 * 5750 * this function is called when verifier exploring different branches of 5751 * execution popped from the state stack. If it sees an old state that has 5752 * more strict register state and more strict stack state then this execution 5753 * branch doesn't need to be explored further, since verifier already 5754 * concluded that more strict state leads to valid finish. 5755 * 5756 * Therefore two states are equivalent if register state is more conservative 5757 * and explored stack state is more conservative than the current one. 5758 * Example: 5759 * explored current 5760 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 5761 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 5762 * 5763 * In other words if current stack state (one being explored) has more 5764 * valid slots than old one that already passed validation, it means 5765 * the verifier can stop exploring and conclude that current state is valid too 5766 * 5767 * Similarly with registers. If explored state has register type as invalid 5768 * whereas register type in current state is meaningful, it means that 5769 * the current state will reach 'bpf_exit' instruction safely 5770 */ 5771 static bool func_states_equal(struct bpf_func_state *old, 5772 struct bpf_func_state *cur) 5773 { 5774 struct idpair *idmap; 5775 bool ret = false; 5776 int i; 5777 5778 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 5779 /* If we failed to allocate the idmap, just say it's not safe */ 5780 if (!idmap) 5781 return false; 5782 5783 for (i = 0; i < MAX_BPF_REG; i++) { 5784 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 5785 goto out_free; 5786 } 5787 5788 if (!stacksafe(old, cur, idmap)) 5789 goto out_free; 5790 5791 if (!refsafe(old, cur)) 5792 goto out_free; 5793 ret = true; 5794 out_free: 5795 kfree(idmap); 5796 return ret; 5797 } 5798 5799 static bool states_equal(struct bpf_verifier_env *env, 5800 struct bpf_verifier_state *old, 5801 struct bpf_verifier_state *cur) 5802 { 5803 int i; 5804 5805 if (old->curframe != cur->curframe) 5806 return false; 5807 5808 /* Verification state from speculative execution simulation 5809 * must never prune a non-speculative execution one. 5810 */ 5811 if (old->speculative && !cur->speculative) 5812 return false; 5813 5814 /* for states to be equal callsites have to be the same 5815 * and all frame states need to be equivalent 5816 */ 5817 for (i = 0; i <= old->curframe; i++) { 5818 if (old->frame[i]->callsite != cur->frame[i]->callsite) 5819 return false; 5820 if (!func_states_equal(old->frame[i], cur->frame[i])) 5821 return false; 5822 } 5823 return true; 5824 } 5825 5826 /* A write screens off any subsequent reads; but write marks come from the 5827 * straight-line code between a state and its parent. When we arrive at an 5828 * equivalent state (jump target or such) we didn't arrive by the straight-line 5829 * code, so read marks in the state must propagate to the parent regardless 5830 * of the state's write marks. That's what 'parent == state->parent' comparison 5831 * in mark_reg_read() is for. 5832 */ 5833 static int propagate_liveness(struct bpf_verifier_env *env, 5834 const struct bpf_verifier_state *vstate, 5835 struct bpf_verifier_state *vparent) 5836 { 5837 int i, frame, err = 0; 5838 struct bpf_func_state *state, *parent; 5839 5840 if (vparent->curframe != vstate->curframe) { 5841 WARN(1, "propagate_live: parent frame %d current frame %d\n", 5842 vparent->curframe, vstate->curframe); 5843 return -EFAULT; 5844 } 5845 /* Propagate read liveness of registers... */ 5846 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 5847 /* We don't need to worry about FP liveness because it's read-only */ 5848 for (i = 0; i < BPF_REG_FP; i++) { 5849 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ) 5850 continue; 5851 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) { 5852 err = mark_reg_read(env, &vstate->frame[vstate->curframe]->regs[i], 5853 &vparent->frame[vstate->curframe]->regs[i]); 5854 if (err) 5855 return err; 5856 } 5857 } 5858 5859 /* ... and stack slots */ 5860 for (frame = 0; frame <= vstate->curframe; frame++) { 5861 state = vstate->frame[frame]; 5862 parent = vparent->frame[frame]; 5863 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 5864 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 5865 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) 5866 continue; 5867 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) 5868 mark_reg_read(env, &state->stack[i].spilled_ptr, 5869 &parent->stack[i].spilled_ptr); 5870 } 5871 } 5872 return err; 5873 } 5874 5875 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 5876 { 5877 struct bpf_verifier_state_list *new_sl; 5878 struct bpf_verifier_state_list *sl; 5879 struct bpf_verifier_state *cur = env->cur_state, *new; 5880 int i, j, err, states_cnt = 0; 5881 5882 sl = env->explored_states[insn_idx]; 5883 if (!sl) 5884 /* this 'insn_idx' instruction wasn't marked, so we will not 5885 * be doing state search here 5886 */ 5887 return 0; 5888 5889 clean_live_states(env, insn_idx, cur); 5890 5891 while (sl != STATE_LIST_MARK) { 5892 if (states_equal(env, &sl->state, cur)) { 5893 /* reached equivalent register/stack state, 5894 * prune the search. 5895 * Registers read by the continuation are read by us. 5896 * If we have any write marks in env->cur_state, they 5897 * will prevent corresponding reads in the continuation 5898 * from reaching our parent (an explored_state). Our 5899 * own state will get the read marks recorded, but 5900 * they'll be immediately forgotten as we're pruning 5901 * this state and will pop a new one. 5902 */ 5903 err = propagate_liveness(env, &sl->state, cur); 5904 if (err) 5905 return err; 5906 return 1; 5907 } 5908 sl = sl->next; 5909 states_cnt++; 5910 } 5911 5912 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 5913 return 0; 5914 5915 /* there were no equivalent states, remember current one. 5916 * technically the current state is not proven to be safe yet, 5917 * but it will either reach outer most bpf_exit (which means it's safe) 5918 * or it will be rejected. Since there are no loops, we won't be 5919 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 5920 * again on the way to bpf_exit 5921 */ 5922 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 5923 if (!new_sl) 5924 return -ENOMEM; 5925 5926 /* add new state to the head of linked list */ 5927 new = &new_sl->state; 5928 err = copy_verifier_state(new, cur); 5929 if (err) { 5930 free_verifier_state(new, false); 5931 kfree(new_sl); 5932 return err; 5933 } 5934 new_sl->next = env->explored_states[insn_idx]; 5935 env->explored_states[insn_idx] = new_sl; 5936 /* connect new state to parentage chain. Current frame needs all 5937 * registers connected. Only r6 - r9 of the callers are alive (pushed 5938 * to the stack implicitly by JITs) so in callers' frames connect just 5939 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 5940 * the state of the call instruction (with WRITTEN set), and r0 comes 5941 * from callee with its full parentage chain, anyway. 5942 */ 5943 for (j = 0; j <= cur->curframe; j++) 5944 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 5945 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 5946 /* clear write marks in current state: the writes we did are not writes 5947 * our child did, so they don't screen off its reads from us. 5948 * (There are no read marks in current state, because reads always mark 5949 * their parent and current state never has children yet. Only 5950 * explored_states can get read marks.) 5951 */ 5952 for (i = 0; i < BPF_REG_FP; i++) 5953 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE; 5954 5955 /* all stack frames are accessible from callee, clear them all */ 5956 for (j = 0; j <= cur->curframe; j++) { 5957 struct bpf_func_state *frame = cur->frame[j]; 5958 struct bpf_func_state *newframe = new->frame[j]; 5959 5960 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 5961 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 5962 frame->stack[i].spilled_ptr.parent = 5963 &newframe->stack[i].spilled_ptr; 5964 } 5965 } 5966 return 0; 5967 } 5968 5969 /* Return true if it's OK to have the same insn return a different type. */ 5970 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 5971 { 5972 switch (type) { 5973 case PTR_TO_CTX: 5974 case PTR_TO_SOCKET: 5975 case PTR_TO_SOCKET_OR_NULL: 5976 return false; 5977 default: 5978 return true; 5979 } 5980 } 5981 5982 /* If an instruction was previously used with particular pointer types, then we 5983 * need to be careful to avoid cases such as the below, where it may be ok 5984 * for one branch accessing the pointer, but not ok for the other branch: 5985 * 5986 * R1 = sock_ptr 5987 * goto X; 5988 * ... 5989 * R1 = some_other_valid_ptr; 5990 * goto X; 5991 * ... 5992 * R2 = *(u32 *)(R1 + 0); 5993 */ 5994 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 5995 { 5996 return src != prev && (!reg_type_mismatch_ok(src) || 5997 !reg_type_mismatch_ok(prev)); 5998 } 5999 6000 static int do_check(struct bpf_verifier_env *env) 6001 { 6002 struct bpf_verifier_state *state; 6003 struct bpf_insn *insns = env->prog->insnsi; 6004 struct bpf_reg_state *regs; 6005 int insn_cnt = env->prog->len, i; 6006 int insn_processed = 0; 6007 bool do_print_state = false; 6008 6009 env->prev_linfo = NULL; 6010 6011 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 6012 if (!state) 6013 return -ENOMEM; 6014 state->curframe = 0; 6015 state->speculative = false; 6016 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 6017 if (!state->frame[0]) { 6018 kfree(state); 6019 return -ENOMEM; 6020 } 6021 env->cur_state = state; 6022 init_func_state(env, state->frame[0], 6023 BPF_MAIN_FUNC /* callsite */, 6024 0 /* frameno */, 6025 0 /* subprogno, zero == main subprog */); 6026 6027 for (;;) { 6028 struct bpf_insn *insn; 6029 u8 class; 6030 int err; 6031 6032 if (env->insn_idx >= insn_cnt) { 6033 verbose(env, "invalid insn idx %d insn_cnt %d\n", 6034 env->insn_idx, insn_cnt); 6035 return -EFAULT; 6036 } 6037 6038 insn = &insns[env->insn_idx]; 6039 class = BPF_CLASS(insn->code); 6040 6041 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 6042 verbose(env, 6043 "BPF program is too large. Processed %d insn\n", 6044 insn_processed); 6045 return -E2BIG; 6046 } 6047 6048 err = is_state_visited(env, env->insn_idx); 6049 if (err < 0) 6050 return err; 6051 if (err == 1) { 6052 /* found equivalent state, can prune the search */ 6053 if (env->log.level) { 6054 if (do_print_state) 6055 verbose(env, "\nfrom %d to %d%s: safe\n", 6056 env->prev_insn_idx, env->insn_idx, 6057 env->cur_state->speculative ? 6058 " (speculative execution)" : ""); 6059 else 6060 verbose(env, "%d: safe\n", env->insn_idx); 6061 } 6062 goto process_bpf_exit; 6063 } 6064 6065 if (signal_pending(current)) 6066 return -EAGAIN; 6067 6068 if (need_resched()) 6069 cond_resched(); 6070 6071 if (env->log.level > 1 || (env->log.level && do_print_state)) { 6072 if (env->log.level > 1) 6073 verbose(env, "%d:", env->insn_idx); 6074 else 6075 verbose(env, "\nfrom %d to %d%s:", 6076 env->prev_insn_idx, env->insn_idx, 6077 env->cur_state->speculative ? 6078 " (speculative execution)" : ""); 6079 print_verifier_state(env, state->frame[state->curframe]); 6080 do_print_state = false; 6081 } 6082 6083 if (env->log.level) { 6084 const struct bpf_insn_cbs cbs = { 6085 .cb_print = verbose, 6086 .private_data = env, 6087 }; 6088 6089 verbose_linfo(env, env->insn_idx, "; "); 6090 verbose(env, "%d: ", env->insn_idx); 6091 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 6092 } 6093 6094 if (bpf_prog_is_dev_bound(env->prog->aux)) { 6095 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 6096 env->prev_insn_idx); 6097 if (err) 6098 return err; 6099 } 6100 6101 regs = cur_regs(env); 6102 env->insn_aux_data[env->insn_idx].seen = true; 6103 6104 if (class == BPF_ALU || class == BPF_ALU64) { 6105 err = check_alu_op(env, insn); 6106 if (err) 6107 return err; 6108 6109 } else if (class == BPF_LDX) { 6110 enum bpf_reg_type *prev_src_type, src_reg_type; 6111 6112 /* check for reserved fields is already done */ 6113 6114 /* check src operand */ 6115 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6116 if (err) 6117 return err; 6118 6119 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6120 if (err) 6121 return err; 6122 6123 src_reg_type = regs[insn->src_reg].type; 6124 6125 /* check that memory (src_reg + off) is readable, 6126 * the state of dst_reg will be updated by this func 6127 */ 6128 err = check_mem_access(env, env->insn_idx, insn->src_reg, 6129 insn->off, BPF_SIZE(insn->code), 6130 BPF_READ, insn->dst_reg, false); 6131 if (err) 6132 return err; 6133 6134 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6135 6136 if (*prev_src_type == NOT_INIT) { 6137 /* saw a valid insn 6138 * dst_reg = *(u32 *)(src_reg + off) 6139 * save type to validate intersecting paths 6140 */ 6141 *prev_src_type = src_reg_type; 6142 6143 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 6144 /* ABuser program is trying to use the same insn 6145 * dst_reg = *(u32*) (src_reg + off) 6146 * with different pointer types: 6147 * src_reg == ctx in one branch and 6148 * src_reg == stack|map in some other branch. 6149 * Reject it. 6150 */ 6151 verbose(env, "same insn cannot be used with different pointers\n"); 6152 return -EINVAL; 6153 } 6154 6155 } else if (class == BPF_STX) { 6156 enum bpf_reg_type *prev_dst_type, dst_reg_type; 6157 6158 if (BPF_MODE(insn->code) == BPF_XADD) { 6159 err = check_xadd(env, env->insn_idx, insn); 6160 if (err) 6161 return err; 6162 env->insn_idx++; 6163 continue; 6164 } 6165 6166 /* check src1 operand */ 6167 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6168 if (err) 6169 return err; 6170 /* check src2 operand */ 6171 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6172 if (err) 6173 return err; 6174 6175 dst_reg_type = regs[insn->dst_reg].type; 6176 6177 /* check that memory (dst_reg + off) is writeable */ 6178 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6179 insn->off, BPF_SIZE(insn->code), 6180 BPF_WRITE, insn->src_reg, false); 6181 if (err) 6182 return err; 6183 6184 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 6185 6186 if (*prev_dst_type == NOT_INIT) { 6187 *prev_dst_type = dst_reg_type; 6188 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 6189 verbose(env, "same insn cannot be used with different pointers\n"); 6190 return -EINVAL; 6191 } 6192 6193 } else if (class == BPF_ST) { 6194 if (BPF_MODE(insn->code) != BPF_MEM || 6195 insn->src_reg != BPF_REG_0) { 6196 verbose(env, "BPF_ST uses reserved fields\n"); 6197 return -EINVAL; 6198 } 6199 /* check src operand */ 6200 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6201 if (err) 6202 return err; 6203 6204 if (is_ctx_reg(env, insn->dst_reg)) { 6205 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 6206 insn->dst_reg, 6207 reg_type_str[reg_state(env, insn->dst_reg)->type]); 6208 return -EACCES; 6209 } 6210 6211 /* check that memory (dst_reg + off) is writeable */ 6212 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 6213 insn->off, BPF_SIZE(insn->code), 6214 BPF_WRITE, -1, false); 6215 if (err) 6216 return err; 6217 6218 } else if (class == BPF_JMP || class == BPF_JMP32) { 6219 u8 opcode = BPF_OP(insn->code); 6220 6221 if (opcode == BPF_CALL) { 6222 if (BPF_SRC(insn->code) != BPF_K || 6223 insn->off != 0 || 6224 (insn->src_reg != BPF_REG_0 && 6225 insn->src_reg != BPF_PSEUDO_CALL) || 6226 insn->dst_reg != BPF_REG_0 || 6227 class == BPF_JMP32) { 6228 verbose(env, "BPF_CALL uses reserved fields\n"); 6229 return -EINVAL; 6230 } 6231 6232 if (insn->src_reg == BPF_PSEUDO_CALL) 6233 err = check_func_call(env, insn, &env->insn_idx); 6234 else 6235 err = check_helper_call(env, insn->imm, env->insn_idx); 6236 if (err) 6237 return err; 6238 6239 } else if (opcode == BPF_JA) { 6240 if (BPF_SRC(insn->code) != BPF_K || 6241 insn->imm != 0 || 6242 insn->src_reg != BPF_REG_0 || 6243 insn->dst_reg != BPF_REG_0 || 6244 class == BPF_JMP32) { 6245 verbose(env, "BPF_JA uses reserved fields\n"); 6246 return -EINVAL; 6247 } 6248 6249 env->insn_idx += insn->off + 1; 6250 continue; 6251 6252 } else if (opcode == BPF_EXIT) { 6253 if (BPF_SRC(insn->code) != BPF_K || 6254 insn->imm != 0 || 6255 insn->src_reg != BPF_REG_0 || 6256 insn->dst_reg != BPF_REG_0 || 6257 class == BPF_JMP32) { 6258 verbose(env, "BPF_EXIT uses reserved fields\n"); 6259 return -EINVAL; 6260 } 6261 6262 if (state->curframe) { 6263 /* exit from nested function */ 6264 env->prev_insn_idx = env->insn_idx; 6265 err = prepare_func_exit(env, &env->insn_idx); 6266 if (err) 6267 return err; 6268 do_print_state = true; 6269 continue; 6270 } 6271 6272 err = check_reference_leak(env); 6273 if (err) 6274 return err; 6275 6276 /* eBPF calling convetion is such that R0 is used 6277 * to return the value from eBPF program. 6278 * Make sure that it's readable at this time 6279 * of bpf_exit, which means that program wrote 6280 * something into it earlier 6281 */ 6282 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 6283 if (err) 6284 return err; 6285 6286 if (is_pointer_value(env, BPF_REG_0)) { 6287 verbose(env, "R0 leaks addr as return value\n"); 6288 return -EACCES; 6289 } 6290 6291 err = check_return_code(env); 6292 if (err) 6293 return err; 6294 process_bpf_exit: 6295 err = pop_stack(env, &env->prev_insn_idx, 6296 &env->insn_idx); 6297 if (err < 0) { 6298 if (err != -ENOENT) 6299 return err; 6300 break; 6301 } else { 6302 do_print_state = true; 6303 continue; 6304 } 6305 } else { 6306 err = check_cond_jmp_op(env, insn, &env->insn_idx); 6307 if (err) 6308 return err; 6309 } 6310 } else if (class == BPF_LD) { 6311 u8 mode = BPF_MODE(insn->code); 6312 6313 if (mode == BPF_ABS || mode == BPF_IND) { 6314 err = check_ld_abs(env, insn); 6315 if (err) 6316 return err; 6317 6318 } else if (mode == BPF_IMM) { 6319 err = check_ld_imm(env, insn); 6320 if (err) 6321 return err; 6322 6323 env->insn_idx++; 6324 env->insn_aux_data[env->insn_idx].seen = true; 6325 } else { 6326 verbose(env, "invalid BPF_LD mode\n"); 6327 return -EINVAL; 6328 } 6329 } else { 6330 verbose(env, "unknown insn class %d\n", class); 6331 return -EINVAL; 6332 } 6333 6334 env->insn_idx++; 6335 } 6336 6337 verbose(env, "processed %d insns (limit %d), stack depth ", 6338 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS); 6339 for (i = 0; i < env->subprog_cnt; i++) { 6340 u32 depth = env->subprog_info[i].stack_depth; 6341 6342 verbose(env, "%d", depth); 6343 if (i + 1 < env->subprog_cnt) 6344 verbose(env, "+"); 6345 } 6346 verbose(env, "\n"); 6347 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 6348 return 0; 6349 } 6350 6351 static int check_map_prealloc(struct bpf_map *map) 6352 { 6353 return (map->map_type != BPF_MAP_TYPE_HASH && 6354 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 6355 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 6356 !(map->map_flags & BPF_F_NO_PREALLOC); 6357 } 6358 6359 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 6360 struct bpf_map *map, 6361 struct bpf_prog *prog) 6362 6363 { 6364 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use 6365 * preallocated hash maps, since doing memory allocation 6366 * in overflow_handler can crash depending on where nmi got 6367 * triggered. 6368 */ 6369 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { 6370 if (!check_map_prealloc(map)) { 6371 verbose(env, "perf_event programs can only use preallocated hash map\n"); 6372 return -EINVAL; 6373 } 6374 if (map->inner_map_meta && 6375 !check_map_prealloc(map->inner_map_meta)) { 6376 verbose(env, "perf_event programs can only use preallocated inner hash map\n"); 6377 return -EINVAL; 6378 } 6379 } 6380 6381 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 6382 !bpf_offload_prog_map_match(prog, map)) { 6383 verbose(env, "offload device mismatch between prog and map\n"); 6384 return -EINVAL; 6385 } 6386 6387 return 0; 6388 } 6389 6390 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 6391 { 6392 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 6393 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 6394 } 6395 6396 /* look for pseudo eBPF instructions that access map FDs and 6397 * replace them with actual map pointers 6398 */ 6399 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) 6400 { 6401 struct bpf_insn *insn = env->prog->insnsi; 6402 int insn_cnt = env->prog->len; 6403 int i, j, err; 6404 6405 err = bpf_prog_calc_tag(env->prog); 6406 if (err) 6407 return err; 6408 6409 for (i = 0; i < insn_cnt; i++, insn++) { 6410 if (BPF_CLASS(insn->code) == BPF_LDX && 6411 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 6412 verbose(env, "BPF_LDX uses reserved fields\n"); 6413 return -EINVAL; 6414 } 6415 6416 if (BPF_CLASS(insn->code) == BPF_STX && 6417 ((BPF_MODE(insn->code) != BPF_MEM && 6418 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 6419 verbose(env, "BPF_STX uses reserved fields\n"); 6420 return -EINVAL; 6421 } 6422 6423 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 6424 struct bpf_map *map; 6425 struct fd f; 6426 6427 if (i == insn_cnt - 1 || insn[1].code != 0 || 6428 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 6429 insn[1].off != 0) { 6430 verbose(env, "invalid bpf_ld_imm64 insn\n"); 6431 return -EINVAL; 6432 } 6433 6434 if (insn->src_reg == 0) 6435 /* valid generic load 64-bit imm */ 6436 goto next_insn; 6437 6438 if (insn->src_reg != BPF_PSEUDO_MAP_FD) { 6439 verbose(env, 6440 "unrecognized bpf_ld_imm64 insn\n"); 6441 return -EINVAL; 6442 } 6443 6444 f = fdget(insn->imm); 6445 map = __bpf_map_get(f); 6446 if (IS_ERR(map)) { 6447 verbose(env, "fd %d is not pointing to valid bpf_map\n", 6448 insn->imm); 6449 return PTR_ERR(map); 6450 } 6451 6452 err = check_map_prog_compatibility(env, map, env->prog); 6453 if (err) { 6454 fdput(f); 6455 return err; 6456 } 6457 6458 /* store map pointer inside BPF_LD_IMM64 instruction */ 6459 insn[0].imm = (u32) (unsigned long) map; 6460 insn[1].imm = ((u64) (unsigned long) map) >> 32; 6461 6462 /* check whether we recorded this map already */ 6463 for (j = 0; j < env->used_map_cnt; j++) 6464 if (env->used_maps[j] == map) { 6465 fdput(f); 6466 goto next_insn; 6467 } 6468 6469 if (env->used_map_cnt >= MAX_USED_MAPS) { 6470 fdput(f); 6471 return -E2BIG; 6472 } 6473 6474 /* hold the map. If the program is rejected by verifier, 6475 * the map will be released by release_maps() or it 6476 * will be used by the valid program until it's unloaded 6477 * and all maps are released in free_used_maps() 6478 */ 6479 map = bpf_map_inc(map, false); 6480 if (IS_ERR(map)) { 6481 fdput(f); 6482 return PTR_ERR(map); 6483 } 6484 env->used_maps[env->used_map_cnt++] = map; 6485 6486 if (bpf_map_is_cgroup_storage(map) && 6487 bpf_cgroup_storage_assign(env->prog, map)) { 6488 verbose(env, "only one cgroup storage of each type is allowed\n"); 6489 fdput(f); 6490 return -EBUSY; 6491 } 6492 6493 fdput(f); 6494 next_insn: 6495 insn++; 6496 i++; 6497 continue; 6498 } 6499 6500 /* Basic sanity check before we invest more work here. */ 6501 if (!bpf_opcode_in_insntable(insn->code)) { 6502 verbose(env, "unknown opcode %02x\n", insn->code); 6503 return -EINVAL; 6504 } 6505 } 6506 6507 /* now all pseudo BPF_LD_IMM64 instructions load valid 6508 * 'struct bpf_map *' into a register instead of user map_fd. 6509 * These pointers will be used later by verifier to validate map access. 6510 */ 6511 return 0; 6512 } 6513 6514 /* drop refcnt of maps used by the rejected program */ 6515 static void release_maps(struct bpf_verifier_env *env) 6516 { 6517 enum bpf_cgroup_storage_type stype; 6518 int i; 6519 6520 for_each_cgroup_storage_type(stype) { 6521 if (!env->prog->aux->cgroup_storage[stype]) 6522 continue; 6523 bpf_cgroup_storage_release(env->prog, 6524 env->prog->aux->cgroup_storage[stype]); 6525 } 6526 6527 for (i = 0; i < env->used_map_cnt; i++) 6528 bpf_map_put(env->used_maps[i]); 6529 } 6530 6531 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 6532 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 6533 { 6534 struct bpf_insn *insn = env->prog->insnsi; 6535 int insn_cnt = env->prog->len; 6536 int i; 6537 6538 for (i = 0; i < insn_cnt; i++, insn++) 6539 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 6540 insn->src_reg = 0; 6541 } 6542 6543 /* single env->prog->insni[off] instruction was replaced with the range 6544 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 6545 * [0, off) and [off, end) to new locations, so the patched range stays zero 6546 */ 6547 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, 6548 u32 off, u32 cnt) 6549 { 6550 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 6551 int i; 6552 6553 if (cnt == 1) 6554 return 0; 6555 new_data = vzalloc(array_size(prog_len, 6556 sizeof(struct bpf_insn_aux_data))); 6557 if (!new_data) 6558 return -ENOMEM; 6559 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 6560 memcpy(new_data + off + cnt - 1, old_data + off, 6561 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 6562 for (i = off; i < off + cnt - 1; i++) 6563 new_data[i].seen = true; 6564 env->insn_aux_data = new_data; 6565 vfree(old_data); 6566 return 0; 6567 } 6568 6569 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 6570 { 6571 int i; 6572 6573 if (len == 1) 6574 return; 6575 /* NOTE: fake 'exit' subprog should be updated as well. */ 6576 for (i = 0; i <= env->subprog_cnt; i++) { 6577 if (env->subprog_info[i].start <= off) 6578 continue; 6579 env->subprog_info[i].start += len - 1; 6580 } 6581 } 6582 6583 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 6584 const struct bpf_insn *patch, u32 len) 6585 { 6586 struct bpf_prog *new_prog; 6587 6588 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 6589 if (!new_prog) 6590 return NULL; 6591 if (adjust_insn_aux_data(env, new_prog->len, off, len)) 6592 return NULL; 6593 adjust_subprog_starts(env, off, len); 6594 return new_prog; 6595 } 6596 6597 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 6598 u32 off, u32 cnt) 6599 { 6600 int i, j; 6601 6602 /* find first prog starting at or after off (first to remove) */ 6603 for (i = 0; i < env->subprog_cnt; i++) 6604 if (env->subprog_info[i].start >= off) 6605 break; 6606 /* find first prog starting at or after off + cnt (first to stay) */ 6607 for (j = i; j < env->subprog_cnt; j++) 6608 if (env->subprog_info[j].start >= off + cnt) 6609 break; 6610 /* if j doesn't start exactly at off + cnt, we are just removing 6611 * the front of previous prog 6612 */ 6613 if (env->subprog_info[j].start != off + cnt) 6614 j--; 6615 6616 if (j > i) { 6617 struct bpf_prog_aux *aux = env->prog->aux; 6618 int move; 6619 6620 /* move fake 'exit' subprog as well */ 6621 move = env->subprog_cnt + 1 - j; 6622 6623 memmove(env->subprog_info + i, 6624 env->subprog_info + j, 6625 sizeof(*env->subprog_info) * move); 6626 env->subprog_cnt -= j - i; 6627 6628 /* remove func_info */ 6629 if (aux->func_info) { 6630 move = aux->func_info_cnt - j; 6631 6632 memmove(aux->func_info + i, 6633 aux->func_info + j, 6634 sizeof(*aux->func_info) * move); 6635 aux->func_info_cnt -= j - i; 6636 /* func_info->insn_off is set after all code rewrites, 6637 * in adjust_btf_func() - no need to adjust 6638 */ 6639 } 6640 } else { 6641 /* convert i from "first prog to remove" to "first to adjust" */ 6642 if (env->subprog_info[i].start == off) 6643 i++; 6644 } 6645 6646 /* update fake 'exit' subprog as well */ 6647 for (; i <= env->subprog_cnt; i++) 6648 env->subprog_info[i].start -= cnt; 6649 6650 return 0; 6651 } 6652 6653 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 6654 u32 cnt) 6655 { 6656 struct bpf_prog *prog = env->prog; 6657 u32 i, l_off, l_cnt, nr_linfo; 6658 struct bpf_line_info *linfo; 6659 6660 nr_linfo = prog->aux->nr_linfo; 6661 if (!nr_linfo) 6662 return 0; 6663 6664 linfo = prog->aux->linfo; 6665 6666 /* find first line info to remove, count lines to be removed */ 6667 for (i = 0; i < nr_linfo; i++) 6668 if (linfo[i].insn_off >= off) 6669 break; 6670 6671 l_off = i; 6672 l_cnt = 0; 6673 for (; i < nr_linfo; i++) 6674 if (linfo[i].insn_off < off + cnt) 6675 l_cnt++; 6676 else 6677 break; 6678 6679 /* First live insn doesn't match first live linfo, it needs to "inherit" 6680 * last removed linfo. prog is already modified, so prog->len == off 6681 * means no live instructions after (tail of the program was removed). 6682 */ 6683 if (prog->len != off && l_cnt && 6684 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 6685 l_cnt--; 6686 linfo[--i].insn_off = off + cnt; 6687 } 6688 6689 /* remove the line info which refer to the removed instructions */ 6690 if (l_cnt) { 6691 memmove(linfo + l_off, linfo + i, 6692 sizeof(*linfo) * (nr_linfo - i)); 6693 6694 prog->aux->nr_linfo -= l_cnt; 6695 nr_linfo = prog->aux->nr_linfo; 6696 } 6697 6698 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 6699 for (i = l_off; i < nr_linfo; i++) 6700 linfo[i].insn_off -= cnt; 6701 6702 /* fix up all subprogs (incl. 'exit') which start >= off */ 6703 for (i = 0; i <= env->subprog_cnt; i++) 6704 if (env->subprog_info[i].linfo_idx > l_off) { 6705 /* program may have started in the removed region but 6706 * may not be fully removed 6707 */ 6708 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 6709 env->subprog_info[i].linfo_idx -= l_cnt; 6710 else 6711 env->subprog_info[i].linfo_idx = l_off; 6712 } 6713 6714 return 0; 6715 } 6716 6717 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 6718 { 6719 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6720 unsigned int orig_prog_len = env->prog->len; 6721 int err; 6722 6723 if (bpf_prog_is_dev_bound(env->prog->aux)) 6724 bpf_prog_offload_remove_insns(env, off, cnt); 6725 6726 err = bpf_remove_insns(env->prog, off, cnt); 6727 if (err) 6728 return err; 6729 6730 err = adjust_subprog_starts_after_remove(env, off, cnt); 6731 if (err) 6732 return err; 6733 6734 err = bpf_adj_linfo_after_remove(env, off, cnt); 6735 if (err) 6736 return err; 6737 6738 memmove(aux_data + off, aux_data + off + cnt, 6739 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 6740 6741 return 0; 6742 } 6743 6744 /* The verifier does more data flow analysis than llvm and will not 6745 * explore branches that are dead at run time. Malicious programs can 6746 * have dead code too. Therefore replace all dead at-run-time code 6747 * with 'ja -1'. 6748 * 6749 * Just nops are not optimal, e.g. if they would sit at the end of the 6750 * program and through another bug we would manage to jump there, then 6751 * we'd execute beyond program memory otherwise. Returning exception 6752 * code also wouldn't work since we can have subprogs where the dead 6753 * code could be located. 6754 */ 6755 static void sanitize_dead_code(struct bpf_verifier_env *env) 6756 { 6757 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6758 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 6759 struct bpf_insn *insn = env->prog->insnsi; 6760 const int insn_cnt = env->prog->len; 6761 int i; 6762 6763 for (i = 0; i < insn_cnt; i++) { 6764 if (aux_data[i].seen) 6765 continue; 6766 memcpy(insn + i, &trap, sizeof(trap)); 6767 } 6768 } 6769 6770 static bool insn_is_cond_jump(u8 code) 6771 { 6772 u8 op; 6773 6774 if (BPF_CLASS(code) == BPF_JMP32) 6775 return true; 6776 6777 if (BPF_CLASS(code) != BPF_JMP) 6778 return false; 6779 6780 op = BPF_OP(code); 6781 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 6782 } 6783 6784 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 6785 { 6786 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6787 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 6788 struct bpf_insn *insn = env->prog->insnsi; 6789 const int insn_cnt = env->prog->len; 6790 int i; 6791 6792 for (i = 0; i < insn_cnt; i++, insn++) { 6793 if (!insn_is_cond_jump(insn->code)) 6794 continue; 6795 6796 if (!aux_data[i + 1].seen) 6797 ja.off = insn->off; 6798 else if (!aux_data[i + 1 + insn->off].seen) 6799 ja.off = 0; 6800 else 6801 continue; 6802 6803 if (bpf_prog_is_dev_bound(env->prog->aux)) 6804 bpf_prog_offload_replace_insn(env, i, &ja); 6805 6806 memcpy(insn, &ja, sizeof(ja)); 6807 } 6808 } 6809 6810 static int opt_remove_dead_code(struct bpf_verifier_env *env) 6811 { 6812 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 6813 int insn_cnt = env->prog->len; 6814 int i, err; 6815 6816 for (i = 0; i < insn_cnt; i++) { 6817 int j; 6818 6819 j = 0; 6820 while (i + j < insn_cnt && !aux_data[i + j].seen) 6821 j++; 6822 if (!j) 6823 continue; 6824 6825 err = verifier_remove_insns(env, i, j); 6826 if (err) 6827 return err; 6828 insn_cnt = env->prog->len; 6829 } 6830 6831 return 0; 6832 } 6833 6834 static int opt_remove_nops(struct bpf_verifier_env *env) 6835 { 6836 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 6837 struct bpf_insn *insn = env->prog->insnsi; 6838 int insn_cnt = env->prog->len; 6839 int i, err; 6840 6841 for (i = 0; i < insn_cnt; i++) { 6842 if (memcmp(&insn[i], &ja, sizeof(ja))) 6843 continue; 6844 6845 err = verifier_remove_insns(env, i, 1); 6846 if (err) 6847 return err; 6848 insn_cnt--; 6849 i--; 6850 } 6851 6852 return 0; 6853 } 6854 6855 /* convert load instructions that access fields of a context type into a 6856 * sequence of instructions that access fields of the underlying structure: 6857 * struct __sk_buff -> struct sk_buff 6858 * struct bpf_sock_ops -> struct sock 6859 */ 6860 static int convert_ctx_accesses(struct bpf_verifier_env *env) 6861 { 6862 const struct bpf_verifier_ops *ops = env->ops; 6863 int i, cnt, size, ctx_field_size, delta = 0; 6864 const int insn_cnt = env->prog->len; 6865 struct bpf_insn insn_buf[16], *insn; 6866 u32 target_size, size_default, off; 6867 struct bpf_prog *new_prog; 6868 enum bpf_access_type type; 6869 bool is_narrower_load; 6870 6871 if (ops->gen_prologue || env->seen_direct_write) { 6872 if (!ops->gen_prologue) { 6873 verbose(env, "bpf verifier is misconfigured\n"); 6874 return -EINVAL; 6875 } 6876 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 6877 env->prog); 6878 if (cnt >= ARRAY_SIZE(insn_buf)) { 6879 verbose(env, "bpf verifier is misconfigured\n"); 6880 return -EINVAL; 6881 } else if (cnt) { 6882 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 6883 if (!new_prog) 6884 return -ENOMEM; 6885 6886 env->prog = new_prog; 6887 delta += cnt - 1; 6888 } 6889 } 6890 6891 if (bpf_prog_is_dev_bound(env->prog->aux)) 6892 return 0; 6893 6894 insn = env->prog->insnsi + delta; 6895 6896 for (i = 0; i < insn_cnt; i++, insn++) { 6897 bpf_convert_ctx_access_t convert_ctx_access; 6898 6899 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 6900 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 6901 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 6902 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 6903 type = BPF_READ; 6904 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 6905 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 6906 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 6907 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 6908 type = BPF_WRITE; 6909 else 6910 continue; 6911 6912 if (type == BPF_WRITE && 6913 env->insn_aux_data[i + delta].sanitize_stack_off) { 6914 struct bpf_insn patch[] = { 6915 /* Sanitize suspicious stack slot with zero. 6916 * There are no memory dependencies for this store, 6917 * since it's only using frame pointer and immediate 6918 * constant of zero 6919 */ 6920 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 6921 env->insn_aux_data[i + delta].sanitize_stack_off, 6922 0), 6923 /* the original STX instruction will immediately 6924 * overwrite the same stack slot with appropriate value 6925 */ 6926 *insn, 6927 }; 6928 6929 cnt = ARRAY_SIZE(patch); 6930 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 6931 if (!new_prog) 6932 return -ENOMEM; 6933 6934 delta += cnt - 1; 6935 env->prog = new_prog; 6936 insn = new_prog->insnsi + i + delta; 6937 continue; 6938 } 6939 6940 switch (env->insn_aux_data[i + delta].ptr_type) { 6941 case PTR_TO_CTX: 6942 if (!ops->convert_ctx_access) 6943 continue; 6944 convert_ctx_access = ops->convert_ctx_access; 6945 break; 6946 case PTR_TO_SOCKET: 6947 convert_ctx_access = bpf_sock_convert_ctx_access; 6948 break; 6949 default: 6950 continue; 6951 } 6952 6953 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 6954 size = BPF_LDST_BYTES(insn); 6955 6956 /* If the read access is a narrower load of the field, 6957 * convert to a 4/8-byte load, to minimum program type specific 6958 * convert_ctx_access changes. If conversion is successful, 6959 * we will apply proper mask to the result. 6960 */ 6961 is_narrower_load = size < ctx_field_size; 6962 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 6963 off = insn->off; 6964 if (is_narrower_load) { 6965 u8 size_code; 6966 6967 if (type == BPF_WRITE) { 6968 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 6969 return -EINVAL; 6970 } 6971 6972 size_code = BPF_H; 6973 if (ctx_field_size == 4) 6974 size_code = BPF_W; 6975 else if (ctx_field_size == 8) 6976 size_code = BPF_DW; 6977 6978 insn->off = off & ~(size_default - 1); 6979 insn->code = BPF_LDX | BPF_MEM | size_code; 6980 } 6981 6982 target_size = 0; 6983 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 6984 &target_size); 6985 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 6986 (ctx_field_size && !target_size)) { 6987 verbose(env, "bpf verifier is misconfigured\n"); 6988 return -EINVAL; 6989 } 6990 6991 if (is_narrower_load && size < target_size) { 6992 u8 shift = (off & (size_default - 1)) * 8; 6993 6994 if (ctx_field_size <= 4) { 6995 if (shift) 6996 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 6997 insn->dst_reg, 6998 shift); 6999 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 7000 (1 << size * 8) - 1); 7001 } else { 7002 if (shift) 7003 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 7004 insn->dst_reg, 7005 shift); 7006 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 7007 (1 << size * 8) - 1); 7008 } 7009 } 7010 7011 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7012 if (!new_prog) 7013 return -ENOMEM; 7014 7015 delta += cnt - 1; 7016 7017 /* keep walking new program and skip insns we just inserted */ 7018 env->prog = new_prog; 7019 insn = new_prog->insnsi + i + delta; 7020 } 7021 7022 return 0; 7023 } 7024 7025 static int jit_subprogs(struct bpf_verifier_env *env) 7026 { 7027 struct bpf_prog *prog = env->prog, **func, *tmp; 7028 int i, j, subprog_start, subprog_end = 0, len, subprog; 7029 struct bpf_insn *insn; 7030 void *old_bpf_func; 7031 int err; 7032 7033 if (env->subprog_cnt <= 1) 7034 return 0; 7035 7036 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7037 if (insn->code != (BPF_JMP | BPF_CALL) || 7038 insn->src_reg != BPF_PSEUDO_CALL) 7039 continue; 7040 /* Upon error here we cannot fall back to interpreter but 7041 * need a hard reject of the program. Thus -EFAULT is 7042 * propagated in any case. 7043 */ 7044 subprog = find_subprog(env, i + insn->imm + 1); 7045 if (subprog < 0) { 7046 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 7047 i + insn->imm + 1); 7048 return -EFAULT; 7049 } 7050 /* temporarily remember subprog id inside insn instead of 7051 * aux_data, since next loop will split up all insns into funcs 7052 */ 7053 insn->off = subprog; 7054 /* remember original imm in case JIT fails and fallback 7055 * to interpreter will be needed 7056 */ 7057 env->insn_aux_data[i].call_imm = insn->imm; 7058 /* point imm to __bpf_call_base+1 from JITs point of view */ 7059 insn->imm = 1; 7060 } 7061 7062 err = bpf_prog_alloc_jited_linfo(prog); 7063 if (err) 7064 goto out_undo_insn; 7065 7066 err = -ENOMEM; 7067 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 7068 if (!func) 7069 goto out_undo_insn; 7070 7071 for (i = 0; i < env->subprog_cnt; i++) { 7072 subprog_start = subprog_end; 7073 subprog_end = env->subprog_info[i + 1].start; 7074 7075 len = subprog_end - subprog_start; 7076 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER); 7077 if (!func[i]) 7078 goto out_free; 7079 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 7080 len * sizeof(struct bpf_insn)); 7081 func[i]->type = prog->type; 7082 func[i]->len = len; 7083 if (bpf_prog_calc_tag(func[i])) 7084 goto out_free; 7085 func[i]->is_func = 1; 7086 func[i]->aux->func_idx = i; 7087 /* the btf and func_info will be freed only at prog->aux */ 7088 func[i]->aux->btf = prog->aux->btf; 7089 func[i]->aux->func_info = prog->aux->func_info; 7090 7091 /* Use bpf_prog_F_tag to indicate functions in stack traces. 7092 * Long term would need debug info to populate names 7093 */ 7094 func[i]->aux->name[0] = 'F'; 7095 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 7096 func[i]->jit_requested = 1; 7097 func[i]->aux->linfo = prog->aux->linfo; 7098 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 7099 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 7100 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 7101 func[i] = bpf_int_jit_compile(func[i]); 7102 if (!func[i]->jited) { 7103 err = -ENOTSUPP; 7104 goto out_free; 7105 } 7106 cond_resched(); 7107 } 7108 /* at this point all bpf functions were successfully JITed 7109 * now populate all bpf_calls with correct addresses and 7110 * run last pass of JIT 7111 */ 7112 for (i = 0; i < env->subprog_cnt; i++) { 7113 insn = func[i]->insnsi; 7114 for (j = 0; j < func[i]->len; j++, insn++) { 7115 if (insn->code != (BPF_JMP | BPF_CALL) || 7116 insn->src_reg != BPF_PSEUDO_CALL) 7117 continue; 7118 subprog = insn->off; 7119 insn->imm = (u64 (*)(u64, u64, u64, u64, u64)) 7120 func[subprog]->bpf_func - 7121 __bpf_call_base; 7122 } 7123 7124 /* we use the aux data to keep a list of the start addresses 7125 * of the JITed images for each function in the program 7126 * 7127 * for some architectures, such as powerpc64, the imm field 7128 * might not be large enough to hold the offset of the start 7129 * address of the callee's JITed image from __bpf_call_base 7130 * 7131 * in such cases, we can lookup the start address of a callee 7132 * by using its subprog id, available from the off field of 7133 * the call instruction, as an index for this list 7134 */ 7135 func[i]->aux->func = func; 7136 func[i]->aux->func_cnt = env->subprog_cnt; 7137 } 7138 for (i = 0; i < env->subprog_cnt; i++) { 7139 old_bpf_func = func[i]->bpf_func; 7140 tmp = bpf_int_jit_compile(func[i]); 7141 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 7142 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 7143 err = -ENOTSUPP; 7144 goto out_free; 7145 } 7146 cond_resched(); 7147 } 7148 7149 /* finally lock prog and jit images for all functions and 7150 * populate kallsysm 7151 */ 7152 for (i = 0; i < env->subprog_cnt; i++) { 7153 bpf_prog_lock_ro(func[i]); 7154 bpf_prog_kallsyms_add(func[i]); 7155 } 7156 7157 /* Last step: make now unused interpreter insns from main 7158 * prog consistent for later dump requests, so they can 7159 * later look the same as if they were interpreted only. 7160 */ 7161 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7162 if (insn->code != (BPF_JMP | BPF_CALL) || 7163 insn->src_reg != BPF_PSEUDO_CALL) 7164 continue; 7165 insn->off = env->insn_aux_data[i].call_imm; 7166 subprog = find_subprog(env, i + insn->off + 1); 7167 insn->imm = subprog; 7168 } 7169 7170 prog->jited = 1; 7171 prog->bpf_func = func[0]->bpf_func; 7172 prog->aux->func = func; 7173 prog->aux->func_cnt = env->subprog_cnt; 7174 bpf_prog_free_unused_jited_linfo(prog); 7175 return 0; 7176 out_free: 7177 for (i = 0; i < env->subprog_cnt; i++) 7178 if (func[i]) 7179 bpf_jit_free(func[i]); 7180 kfree(func); 7181 out_undo_insn: 7182 /* cleanup main prog to be interpreted */ 7183 prog->jit_requested = 0; 7184 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 7185 if (insn->code != (BPF_JMP | BPF_CALL) || 7186 insn->src_reg != BPF_PSEUDO_CALL) 7187 continue; 7188 insn->off = 0; 7189 insn->imm = env->insn_aux_data[i].call_imm; 7190 } 7191 bpf_prog_free_jited_linfo(prog); 7192 return err; 7193 } 7194 7195 static int fixup_call_args(struct bpf_verifier_env *env) 7196 { 7197 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7198 struct bpf_prog *prog = env->prog; 7199 struct bpf_insn *insn = prog->insnsi; 7200 int i, depth; 7201 #endif 7202 int err = 0; 7203 7204 if (env->prog->jit_requested && 7205 !bpf_prog_is_dev_bound(env->prog->aux)) { 7206 err = jit_subprogs(env); 7207 if (err == 0) 7208 return 0; 7209 if (err == -EFAULT) 7210 return err; 7211 } 7212 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 7213 for (i = 0; i < prog->len; i++, insn++) { 7214 if (insn->code != (BPF_JMP | BPF_CALL) || 7215 insn->src_reg != BPF_PSEUDO_CALL) 7216 continue; 7217 depth = get_callee_stack_depth(env, insn, i); 7218 if (depth < 0) 7219 return depth; 7220 bpf_patch_call_args(insn, depth); 7221 } 7222 err = 0; 7223 #endif 7224 return err; 7225 } 7226 7227 /* fixup insn->imm field of bpf_call instructions 7228 * and inline eligible helpers as explicit sequence of BPF instructions 7229 * 7230 * this function is called after eBPF program passed verification 7231 */ 7232 static int fixup_bpf_calls(struct bpf_verifier_env *env) 7233 { 7234 struct bpf_prog *prog = env->prog; 7235 struct bpf_insn *insn = prog->insnsi; 7236 const struct bpf_func_proto *fn; 7237 const int insn_cnt = prog->len; 7238 const struct bpf_map_ops *ops; 7239 struct bpf_insn_aux_data *aux; 7240 struct bpf_insn insn_buf[16]; 7241 struct bpf_prog *new_prog; 7242 struct bpf_map *map_ptr; 7243 int i, cnt, delta = 0; 7244 7245 for (i = 0; i < insn_cnt; i++, insn++) { 7246 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 7247 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7248 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 7249 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7250 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 7251 struct bpf_insn mask_and_div[] = { 7252 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7253 /* Rx div 0 -> 0 */ 7254 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 7255 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 7256 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 7257 *insn, 7258 }; 7259 struct bpf_insn mask_and_mod[] = { 7260 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 7261 /* Rx mod 0 -> Rx */ 7262 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 7263 *insn, 7264 }; 7265 struct bpf_insn *patchlet; 7266 7267 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 7268 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 7269 patchlet = mask_and_div + (is64 ? 1 : 0); 7270 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 7271 } else { 7272 patchlet = mask_and_mod + (is64 ? 1 : 0); 7273 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 7274 } 7275 7276 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 7277 if (!new_prog) 7278 return -ENOMEM; 7279 7280 delta += cnt - 1; 7281 env->prog = prog = new_prog; 7282 insn = new_prog->insnsi + i + delta; 7283 continue; 7284 } 7285 7286 if (BPF_CLASS(insn->code) == BPF_LD && 7287 (BPF_MODE(insn->code) == BPF_ABS || 7288 BPF_MODE(insn->code) == BPF_IND)) { 7289 cnt = env->ops->gen_ld_abs(insn, insn_buf); 7290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7291 verbose(env, "bpf verifier is misconfigured\n"); 7292 return -EINVAL; 7293 } 7294 7295 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7296 if (!new_prog) 7297 return -ENOMEM; 7298 7299 delta += cnt - 1; 7300 env->prog = prog = new_prog; 7301 insn = new_prog->insnsi + i + delta; 7302 continue; 7303 } 7304 7305 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 7306 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 7307 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 7308 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 7309 struct bpf_insn insn_buf[16]; 7310 struct bpf_insn *patch = &insn_buf[0]; 7311 bool issrc, isneg; 7312 u32 off_reg; 7313 7314 aux = &env->insn_aux_data[i + delta]; 7315 if (!aux->alu_state) 7316 continue; 7317 7318 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 7319 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 7320 BPF_ALU_SANITIZE_SRC; 7321 7322 off_reg = issrc ? insn->src_reg : insn->dst_reg; 7323 if (isneg) 7324 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7325 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 7326 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 7327 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 7328 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 7329 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 7330 if (issrc) { 7331 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 7332 off_reg); 7333 insn->src_reg = BPF_REG_AX; 7334 } else { 7335 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 7336 BPF_REG_AX); 7337 } 7338 if (isneg) 7339 insn->code = insn->code == code_add ? 7340 code_sub : code_add; 7341 *patch++ = *insn; 7342 if (issrc && isneg) 7343 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 7344 cnt = patch - insn_buf; 7345 7346 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7347 if (!new_prog) 7348 return -ENOMEM; 7349 7350 delta += cnt - 1; 7351 env->prog = prog = new_prog; 7352 insn = new_prog->insnsi + i + delta; 7353 continue; 7354 } 7355 7356 if (insn->code != (BPF_JMP | BPF_CALL)) 7357 continue; 7358 if (insn->src_reg == BPF_PSEUDO_CALL) 7359 continue; 7360 7361 if (insn->imm == BPF_FUNC_get_route_realm) 7362 prog->dst_needed = 1; 7363 if (insn->imm == BPF_FUNC_get_prandom_u32) 7364 bpf_user_rnd_init_once(); 7365 if (insn->imm == BPF_FUNC_override_return) 7366 prog->kprobe_override = 1; 7367 if (insn->imm == BPF_FUNC_tail_call) { 7368 /* If we tail call into other programs, we 7369 * cannot make any assumptions since they can 7370 * be replaced dynamically during runtime in 7371 * the program array. 7372 */ 7373 prog->cb_access = 1; 7374 env->prog->aux->stack_depth = MAX_BPF_STACK; 7375 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF; 7376 7377 /* mark bpf_tail_call as different opcode to avoid 7378 * conditional branch in the interpeter for every normal 7379 * call and to prevent accidental JITing by JIT compiler 7380 * that doesn't support bpf_tail_call yet 7381 */ 7382 insn->imm = 0; 7383 insn->code = BPF_JMP | BPF_TAIL_CALL; 7384 7385 aux = &env->insn_aux_data[i + delta]; 7386 if (!bpf_map_ptr_unpriv(aux)) 7387 continue; 7388 7389 /* instead of changing every JIT dealing with tail_call 7390 * emit two extra insns: 7391 * if (index >= max_entries) goto out; 7392 * index &= array->index_mask; 7393 * to avoid out-of-bounds cpu speculation 7394 */ 7395 if (bpf_map_ptr_poisoned(aux)) { 7396 verbose(env, "tail_call abusing map_ptr\n"); 7397 return -EINVAL; 7398 } 7399 7400 map_ptr = BPF_MAP_PTR(aux->map_state); 7401 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 7402 map_ptr->max_entries, 2); 7403 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 7404 container_of(map_ptr, 7405 struct bpf_array, 7406 map)->index_mask); 7407 insn_buf[2] = *insn; 7408 cnt = 3; 7409 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 7410 if (!new_prog) 7411 return -ENOMEM; 7412 7413 delta += cnt - 1; 7414 env->prog = prog = new_prog; 7415 insn = new_prog->insnsi + i + delta; 7416 continue; 7417 } 7418 7419 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 7420 * and other inlining handlers are currently limited to 64 bit 7421 * only. 7422 */ 7423 if (prog->jit_requested && BITS_PER_LONG == 64 && 7424 (insn->imm == BPF_FUNC_map_lookup_elem || 7425 insn->imm == BPF_FUNC_map_update_elem || 7426 insn->imm == BPF_FUNC_map_delete_elem || 7427 insn->imm == BPF_FUNC_map_push_elem || 7428 insn->imm == BPF_FUNC_map_pop_elem || 7429 insn->imm == BPF_FUNC_map_peek_elem)) { 7430 aux = &env->insn_aux_data[i + delta]; 7431 if (bpf_map_ptr_poisoned(aux)) 7432 goto patch_call_imm; 7433 7434 map_ptr = BPF_MAP_PTR(aux->map_state); 7435 ops = map_ptr->ops; 7436 if (insn->imm == BPF_FUNC_map_lookup_elem && 7437 ops->map_gen_lookup) { 7438 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 7439 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 7440 verbose(env, "bpf verifier is misconfigured\n"); 7441 return -EINVAL; 7442 } 7443 7444 new_prog = bpf_patch_insn_data(env, i + delta, 7445 insn_buf, cnt); 7446 if (!new_prog) 7447 return -ENOMEM; 7448 7449 delta += cnt - 1; 7450 env->prog = prog = new_prog; 7451 insn = new_prog->insnsi + i + delta; 7452 continue; 7453 } 7454 7455 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 7456 (void *(*)(struct bpf_map *map, void *key))NULL)); 7457 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 7458 (int (*)(struct bpf_map *map, void *key))NULL)); 7459 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 7460 (int (*)(struct bpf_map *map, void *key, void *value, 7461 u64 flags))NULL)); 7462 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 7463 (int (*)(struct bpf_map *map, void *value, 7464 u64 flags))NULL)); 7465 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 7466 (int (*)(struct bpf_map *map, void *value))NULL)); 7467 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 7468 (int (*)(struct bpf_map *map, void *value))NULL)); 7469 7470 switch (insn->imm) { 7471 case BPF_FUNC_map_lookup_elem: 7472 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 7473 __bpf_call_base; 7474 continue; 7475 case BPF_FUNC_map_update_elem: 7476 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 7477 __bpf_call_base; 7478 continue; 7479 case BPF_FUNC_map_delete_elem: 7480 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 7481 __bpf_call_base; 7482 continue; 7483 case BPF_FUNC_map_push_elem: 7484 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 7485 __bpf_call_base; 7486 continue; 7487 case BPF_FUNC_map_pop_elem: 7488 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 7489 __bpf_call_base; 7490 continue; 7491 case BPF_FUNC_map_peek_elem: 7492 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 7493 __bpf_call_base; 7494 continue; 7495 } 7496 7497 goto patch_call_imm; 7498 } 7499 7500 patch_call_imm: 7501 fn = env->ops->get_func_proto(insn->imm, env->prog); 7502 /* all functions that have prototype and verifier allowed 7503 * programs to call them, must be real in-kernel functions 7504 */ 7505 if (!fn->func) { 7506 verbose(env, 7507 "kernel subsystem misconfigured func %s#%d\n", 7508 func_id_name(insn->imm), insn->imm); 7509 return -EFAULT; 7510 } 7511 insn->imm = fn->func - __bpf_call_base; 7512 } 7513 7514 return 0; 7515 } 7516 7517 static void free_states(struct bpf_verifier_env *env) 7518 { 7519 struct bpf_verifier_state_list *sl, *sln; 7520 int i; 7521 7522 if (!env->explored_states) 7523 return; 7524 7525 for (i = 0; i < env->prog->len; i++) { 7526 sl = env->explored_states[i]; 7527 7528 if (sl) 7529 while (sl != STATE_LIST_MARK) { 7530 sln = sl->next; 7531 free_verifier_state(&sl->state, false); 7532 kfree(sl); 7533 sl = sln; 7534 } 7535 } 7536 7537 kfree(env->explored_states); 7538 } 7539 7540 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 7541 union bpf_attr __user *uattr) 7542 { 7543 struct bpf_verifier_env *env; 7544 struct bpf_verifier_log *log; 7545 int i, len, ret = -EINVAL; 7546 bool is_priv; 7547 7548 /* no program is valid */ 7549 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 7550 return -EINVAL; 7551 7552 /* 'struct bpf_verifier_env' can be global, but since it's not small, 7553 * allocate/free it every time bpf_check() is called 7554 */ 7555 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 7556 if (!env) 7557 return -ENOMEM; 7558 log = &env->log; 7559 7560 len = (*prog)->len; 7561 env->insn_aux_data = 7562 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 7563 ret = -ENOMEM; 7564 if (!env->insn_aux_data) 7565 goto err_free_env; 7566 for (i = 0; i < len; i++) 7567 env->insn_aux_data[i].orig_idx = i; 7568 env->prog = *prog; 7569 env->ops = bpf_verifier_ops[env->prog->type]; 7570 7571 /* grab the mutex to protect few globals used by verifier */ 7572 mutex_lock(&bpf_verifier_lock); 7573 7574 if (attr->log_level || attr->log_buf || attr->log_size) { 7575 /* user requested verbose verifier output 7576 * and supplied buffer to store the verification trace 7577 */ 7578 log->level = attr->log_level; 7579 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 7580 log->len_total = attr->log_size; 7581 7582 ret = -EINVAL; 7583 /* log attributes have to be sane */ 7584 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 7585 !log->level || !log->ubuf) 7586 goto err_unlock; 7587 } 7588 7589 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 7590 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 7591 env->strict_alignment = true; 7592 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 7593 env->strict_alignment = false; 7594 7595 is_priv = capable(CAP_SYS_ADMIN); 7596 env->allow_ptr_leaks = is_priv; 7597 7598 ret = replace_map_fd_with_map_ptr(env); 7599 if (ret < 0) 7600 goto skip_full_check; 7601 7602 if (bpf_prog_is_dev_bound(env->prog->aux)) { 7603 ret = bpf_prog_offload_verifier_prep(env->prog); 7604 if (ret) 7605 goto skip_full_check; 7606 } 7607 7608 env->explored_states = kcalloc(env->prog->len, 7609 sizeof(struct bpf_verifier_state_list *), 7610 GFP_USER); 7611 ret = -ENOMEM; 7612 if (!env->explored_states) 7613 goto skip_full_check; 7614 7615 ret = check_subprogs(env); 7616 if (ret < 0) 7617 goto skip_full_check; 7618 7619 ret = check_btf_info(env, attr, uattr); 7620 if (ret < 0) 7621 goto skip_full_check; 7622 7623 ret = check_cfg(env); 7624 if (ret < 0) 7625 goto skip_full_check; 7626 7627 ret = do_check(env); 7628 if (env->cur_state) { 7629 free_verifier_state(env->cur_state, true); 7630 env->cur_state = NULL; 7631 } 7632 7633 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 7634 ret = bpf_prog_offload_finalize(env); 7635 7636 skip_full_check: 7637 while (!pop_stack(env, NULL, NULL)); 7638 free_states(env); 7639 7640 if (ret == 0) 7641 ret = check_max_stack_depth(env); 7642 7643 /* instruction rewrites happen after this point */ 7644 if (is_priv) { 7645 if (ret == 0) 7646 opt_hard_wire_dead_code_branches(env); 7647 if (ret == 0) 7648 ret = opt_remove_dead_code(env); 7649 if (ret == 0) 7650 ret = opt_remove_nops(env); 7651 } else { 7652 if (ret == 0) 7653 sanitize_dead_code(env); 7654 } 7655 7656 if (ret == 0) 7657 /* program is valid, convert *(u32*)(ctx + off) accesses */ 7658 ret = convert_ctx_accesses(env); 7659 7660 if (ret == 0) 7661 ret = fixup_bpf_calls(env); 7662 7663 if (ret == 0) 7664 ret = fixup_call_args(env); 7665 7666 if (log->level && bpf_verifier_log_full(log)) 7667 ret = -ENOSPC; 7668 if (log->level && !log->ubuf) { 7669 ret = -EFAULT; 7670 goto err_release_maps; 7671 } 7672 7673 if (ret == 0 && env->used_map_cnt) { 7674 /* if program passed verifier, update used_maps in bpf_prog_info */ 7675 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 7676 sizeof(env->used_maps[0]), 7677 GFP_KERNEL); 7678 7679 if (!env->prog->aux->used_maps) { 7680 ret = -ENOMEM; 7681 goto err_release_maps; 7682 } 7683 7684 memcpy(env->prog->aux->used_maps, env->used_maps, 7685 sizeof(env->used_maps[0]) * env->used_map_cnt); 7686 env->prog->aux->used_map_cnt = env->used_map_cnt; 7687 7688 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 7689 * bpf_ld_imm64 instructions 7690 */ 7691 convert_pseudo_ld_imm64(env); 7692 } 7693 7694 if (ret == 0) 7695 adjust_btf_func(env); 7696 7697 err_release_maps: 7698 if (!env->prog->aux->used_maps) 7699 /* if we didn't copy map pointers into bpf_prog_info, release 7700 * them now. Otherwise free_used_maps() will release them. 7701 */ 7702 release_maps(env); 7703 *prog = env->prog; 7704 err_unlock: 7705 mutex_unlock(&bpf_verifier_lock); 7706 vfree(env->insn_aux_data); 7707 err_free_env: 7708 kfree(env); 7709 return ret; 7710 } 7711