xref: /openbmc/linux/kernel/bpf/verifier.c (revision 7ebf812b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/bpf-cgroup.h>
8 #include <linux/kernel.h>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/bpf.h>
12 #include <linux/btf.h>
13 #include <linux/bpf_verifier.h>
14 #include <linux/filter.h>
15 #include <net/netlink.h>
16 #include <linux/file.h>
17 #include <linux/vmalloc.h>
18 #include <linux/stringify.h>
19 #include <linux/bsearch.h>
20 #include <linux/sort.h>
21 #include <linux/perf_event.h>
22 #include <linux/ctype.h>
23 #include <linux/error-injection.h>
24 #include <linux/bpf_lsm.h>
25 #include <linux/btf_ids.h>
26 #include <linux/poison.h>
27 #include <linux/module.h>
28 #include <linux/cpumask.h>
29 #include <net/xdp.h>
30 
31 #include "disasm.h"
32 
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
35 	[_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #define BPF_LINK_TYPE(_id, _name)
38 #include <linux/bpf_types.h>
39 #undef BPF_PROG_TYPE
40 #undef BPF_MAP_TYPE
41 #undef BPF_LINK_TYPE
42 };
43 
44 /* bpf_check() is a static code analyzer that walks eBPF program
45  * instruction by instruction and updates register/stack state.
46  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
47  *
48  * The first pass is depth-first-search to check that the program is a DAG.
49  * It rejects the following programs:
50  * - larger than BPF_MAXINSNS insns
51  * - if loop is present (detected via back-edge)
52  * - unreachable insns exist (shouldn't be a forest. program = one function)
53  * - out of bounds or malformed jumps
54  * The second pass is all possible path descent from the 1st insn.
55  * Since it's analyzing all paths through the program, the length of the
56  * analysis is limited to 64k insn, which may be hit even if total number of
57  * insn is less then 4K, but there are too many branches that change stack/regs.
58  * Number of 'branches to be analyzed' is limited to 1k
59  *
60  * On entry to each instruction, each register has a type, and the instruction
61  * changes the types of the registers depending on instruction semantics.
62  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
63  * copied to R1.
64  *
65  * All registers are 64-bit.
66  * R0 - return register
67  * R1-R5 argument passing registers
68  * R6-R9 callee saved registers
69  * R10 - frame pointer read-only
70  *
71  * At the start of BPF program the register R1 contains a pointer to bpf_context
72  * and has type PTR_TO_CTX.
73  *
74  * Verifier tracks arithmetic operations on pointers in case:
75  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
76  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
77  * 1st insn copies R10 (which has FRAME_PTR) type into R1
78  * and 2nd arithmetic instruction is pattern matched to recognize
79  * that it wants to construct a pointer to some element within stack.
80  * So after 2nd insn, the register R1 has type PTR_TO_STACK
81  * (and -20 constant is saved for further stack bounds checking).
82  * Meaning that this reg is a pointer to stack plus known immediate constant.
83  *
84  * Most of the time the registers have SCALAR_VALUE type, which
85  * means the register has some value, but it's not a valid pointer.
86  * (like pointer plus pointer becomes SCALAR_VALUE type)
87  *
88  * When verifier sees load or store instructions the type of base register
89  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
90  * four pointer types recognized by check_mem_access() function.
91  *
92  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
93  * and the range of [ptr, ptr + map's value_size) is accessible.
94  *
95  * registers used to pass values to function calls are checked against
96  * function argument constraints.
97  *
98  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
99  * It means that the register type passed to this function must be
100  * PTR_TO_STACK and it will be used inside the function as
101  * 'pointer to map element key'
102  *
103  * For example the argument constraints for bpf_map_lookup_elem():
104  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
105  *   .arg1_type = ARG_CONST_MAP_PTR,
106  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
107  *
108  * ret_type says that this function returns 'pointer to map elem value or null'
109  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
110  * 2nd argument should be a pointer to stack, which will be used inside
111  * the helper function as a pointer to map element key.
112  *
113  * On the kernel side the helper function looks like:
114  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
115  * {
116  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
117  *    void *key = (void *) (unsigned long) r2;
118  *    void *value;
119  *
120  *    here kernel can access 'key' and 'map' pointers safely, knowing that
121  *    [key, key + map->key_size) bytes are valid and were initialized on
122  *    the stack of eBPF program.
123  * }
124  *
125  * Corresponding eBPF program may look like:
126  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
127  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
128  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
129  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
130  * here verifier looks at prototype of map_lookup_elem() and sees:
131  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
132  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
133  *
134  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
135  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
136  * and were initialized prior to this call.
137  * If it's ok, then verifier allows this BPF_CALL insn and looks at
138  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
139  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
140  * returns either pointer to map value or NULL.
141  *
142  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
143  * insn, the register holding that pointer in the true branch changes state to
144  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
145  * branch. See check_cond_jmp_op().
146  *
147  * After the call R0 is set to return type of the function and registers R1-R5
148  * are set to NOT_INIT to indicate that they are no longer readable.
149  *
150  * The following reference types represent a potential reference to a kernel
151  * resource which, after first being allocated, must be checked and freed by
152  * the BPF program:
153  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
154  *
155  * When the verifier sees a helper call return a reference type, it allocates a
156  * pointer id for the reference and stores it in the current function state.
157  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
158  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
159  * passes through a NULL-check conditional. For the branch wherein the state is
160  * changed to CONST_IMM, the verifier releases the reference.
161  *
162  * For each helper function that allocates a reference, such as
163  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
164  * bpf_sk_release(). When a reference type passes into the release function,
165  * the verifier also releases the reference. If any unchecked or unreleased
166  * reference remains at the end of the program, the verifier rejects it.
167  */
168 
169 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
170 struct bpf_verifier_stack_elem {
171 	/* verifer state is 'st'
172 	 * before processing instruction 'insn_idx'
173 	 * and after processing instruction 'prev_insn_idx'
174 	 */
175 	struct bpf_verifier_state st;
176 	int insn_idx;
177 	int prev_insn_idx;
178 	struct bpf_verifier_stack_elem *next;
179 	/* length of verifier log at the time this state was pushed on stack */
180 	u32 log_pos;
181 };
182 
183 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
184 #define BPF_COMPLEXITY_LIMIT_STATES	64
185 
186 #define BPF_MAP_KEY_POISON	(1ULL << 63)
187 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
188 
189 #define BPF_MAP_PTR_UNPRIV	1UL
190 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
191 					  POISON_POINTER_DELTA))
192 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
193 
194 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx);
195 static int release_reference(struct bpf_verifier_env *env, int ref_obj_id);
196 static void invalidate_non_owning_refs(struct bpf_verifier_env *env);
197 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env);
198 static int ref_set_non_owning(struct bpf_verifier_env *env,
199 			      struct bpf_reg_state *reg);
200 static void specialize_kfunc(struct bpf_verifier_env *env,
201 			     u32 func_id, u16 offset, unsigned long *addr);
202 static bool is_trusted_reg(const struct bpf_reg_state *reg);
203 
204 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
205 {
206 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
207 }
208 
209 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
210 {
211 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
212 }
213 
214 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
215 			      const struct bpf_map *map, bool unpriv)
216 {
217 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
218 	unpriv |= bpf_map_ptr_unpriv(aux);
219 	aux->map_ptr_state = (unsigned long)map |
220 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
221 }
222 
223 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
224 {
225 	return aux->map_key_state & BPF_MAP_KEY_POISON;
226 }
227 
228 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
229 {
230 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
231 }
232 
233 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
234 {
235 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
236 }
237 
238 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
239 {
240 	bool poisoned = bpf_map_key_poisoned(aux);
241 
242 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
243 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
244 }
245 
246 static bool bpf_helper_call(const struct bpf_insn *insn)
247 {
248 	return insn->code == (BPF_JMP | BPF_CALL) &&
249 	       insn->src_reg == 0;
250 }
251 
252 static bool bpf_pseudo_call(const struct bpf_insn *insn)
253 {
254 	return insn->code == (BPF_JMP | BPF_CALL) &&
255 	       insn->src_reg == BPF_PSEUDO_CALL;
256 }
257 
258 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
259 {
260 	return insn->code == (BPF_JMP | BPF_CALL) &&
261 	       insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
262 }
263 
264 struct bpf_call_arg_meta {
265 	struct bpf_map *map_ptr;
266 	bool raw_mode;
267 	bool pkt_access;
268 	u8 release_regno;
269 	int regno;
270 	int access_size;
271 	int mem_size;
272 	u64 msize_max_value;
273 	int ref_obj_id;
274 	int dynptr_id;
275 	int map_uid;
276 	int func_id;
277 	struct btf *btf;
278 	u32 btf_id;
279 	struct btf *ret_btf;
280 	u32 ret_btf_id;
281 	u32 subprogno;
282 	struct btf_field *kptr_field;
283 };
284 
285 struct bpf_kfunc_call_arg_meta {
286 	/* In parameters */
287 	struct btf *btf;
288 	u32 func_id;
289 	u32 kfunc_flags;
290 	const struct btf_type *func_proto;
291 	const char *func_name;
292 	/* Out parameters */
293 	u32 ref_obj_id;
294 	u8 release_regno;
295 	bool r0_rdonly;
296 	u32 ret_btf_id;
297 	u64 r0_size;
298 	u32 subprogno;
299 	struct {
300 		u64 value;
301 		bool found;
302 	} arg_constant;
303 
304 	/* arg_{btf,btf_id,owning_ref} are used by kfunc-specific handling,
305 	 * generally to pass info about user-defined local kptr types to later
306 	 * verification logic
307 	 *   bpf_obj_drop
308 	 *     Record the local kptr type to be drop'd
309 	 *   bpf_refcount_acquire (via KF_ARG_PTR_TO_REFCOUNTED_KPTR arg type)
310 	 *     Record the local kptr type to be refcount_incr'd and use
311 	 *     arg_owning_ref to determine whether refcount_acquire should be
312 	 *     fallible
313 	 */
314 	struct btf *arg_btf;
315 	u32 arg_btf_id;
316 	bool arg_owning_ref;
317 
318 	struct {
319 		struct btf_field *field;
320 	} arg_list_head;
321 	struct {
322 		struct btf_field *field;
323 	} arg_rbtree_root;
324 	struct {
325 		enum bpf_dynptr_type type;
326 		u32 id;
327 		u32 ref_obj_id;
328 	} initialized_dynptr;
329 	struct {
330 		u8 spi;
331 		u8 frameno;
332 	} iter;
333 	u64 mem_size;
334 };
335 
336 struct btf *btf_vmlinux;
337 
338 static DEFINE_MUTEX(bpf_verifier_lock);
339 
340 static const struct bpf_line_info *
341 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
342 {
343 	const struct bpf_line_info *linfo;
344 	const struct bpf_prog *prog;
345 	u32 i, nr_linfo;
346 
347 	prog = env->prog;
348 	nr_linfo = prog->aux->nr_linfo;
349 
350 	if (!nr_linfo || insn_off >= prog->len)
351 		return NULL;
352 
353 	linfo = prog->aux->linfo;
354 	for (i = 1; i < nr_linfo; i++)
355 		if (insn_off < linfo[i].insn_off)
356 			break;
357 
358 	return &linfo[i - 1];
359 }
360 
361 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
362 {
363 	struct bpf_verifier_env *env = private_data;
364 	va_list args;
365 
366 	if (!bpf_verifier_log_needed(&env->log))
367 		return;
368 
369 	va_start(args, fmt);
370 	bpf_verifier_vlog(&env->log, fmt, args);
371 	va_end(args);
372 }
373 
374 static const char *ltrim(const char *s)
375 {
376 	while (isspace(*s))
377 		s++;
378 
379 	return s;
380 }
381 
382 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
383 					 u32 insn_off,
384 					 const char *prefix_fmt, ...)
385 {
386 	const struct bpf_line_info *linfo;
387 
388 	if (!bpf_verifier_log_needed(&env->log))
389 		return;
390 
391 	linfo = find_linfo(env, insn_off);
392 	if (!linfo || linfo == env->prev_linfo)
393 		return;
394 
395 	if (prefix_fmt) {
396 		va_list args;
397 
398 		va_start(args, prefix_fmt);
399 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
400 		va_end(args);
401 	}
402 
403 	verbose(env, "%s\n",
404 		ltrim(btf_name_by_offset(env->prog->aux->btf,
405 					 linfo->line_off)));
406 
407 	env->prev_linfo = linfo;
408 }
409 
410 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
411 				   struct bpf_reg_state *reg,
412 				   struct tnum *range, const char *ctx,
413 				   const char *reg_name)
414 {
415 	char tn_buf[48];
416 
417 	verbose(env, "At %s the register %s ", ctx, reg_name);
418 	if (!tnum_is_unknown(reg->var_off)) {
419 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
420 		verbose(env, "has value %s", tn_buf);
421 	} else {
422 		verbose(env, "has unknown scalar value");
423 	}
424 	tnum_strn(tn_buf, sizeof(tn_buf), *range);
425 	verbose(env, " should have been in %s\n", tn_buf);
426 }
427 
428 static bool type_is_pkt_pointer(enum bpf_reg_type type)
429 {
430 	type = base_type(type);
431 	return type == PTR_TO_PACKET ||
432 	       type == PTR_TO_PACKET_META;
433 }
434 
435 static bool type_is_sk_pointer(enum bpf_reg_type type)
436 {
437 	return type == PTR_TO_SOCKET ||
438 		type == PTR_TO_SOCK_COMMON ||
439 		type == PTR_TO_TCP_SOCK ||
440 		type == PTR_TO_XDP_SOCK;
441 }
442 
443 static bool type_may_be_null(u32 type)
444 {
445 	return type & PTR_MAYBE_NULL;
446 }
447 
448 static bool reg_not_null(const struct bpf_reg_state *reg)
449 {
450 	enum bpf_reg_type type;
451 
452 	type = reg->type;
453 	if (type_may_be_null(type))
454 		return false;
455 
456 	type = base_type(type);
457 	return type == PTR_TO_SOCKET ||
458 		type == PTR_TO_TCP_SOCK ||
459 		type == PTR_TO_MAP_VALUE ||
460 		type == PTR_TO_MAP_KEY ||
461 		type == PTR_TO_SOCK_COMMON ||
462 		(type == PTR_TO_BTF_ID && is_trusted_reg(reg)) ||
463 		type == PTR_TO_MEM;
464 }
465 
466 static bool type_is_ptr_alloc_obj(u32 type)
467 {
468 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
469 }
470 
471 static bool type_is_non_owning_ref(u32 type)
472 {
473 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
474 }
475 
476 static struct btf_record *reg_btf_record(const struct bpf_reg_state *reg)
477 {
478 	struct btf_record *rec = NULL;
479 	struct btf_struct_meta *meta;
480 
481 	if (reg->type == PTR_TO_MAP_VALUE) {
482 		rec = reg->map_ptr->record;
483 	} else if (type_is_ptr_alloc_obj(reg->type)) {
484 		meta = btf_find_struct_meta(reg->btf, reg->btf_id);
485 		if (meta)
486 			rec = meta->record;
487 	}
488 	return rec;
489 }
490 
491 static bool subprog_is_global(const struct bpf_verifier_env *env, int subprog)
492 {
493 	struct bpf_func_info_aux *aux = env->prog->aux->func_info_aux;
494 
495 	return aux && aux[subprog].linkage == BTF_FUNC_GLOBAL;
496 }
497 
498 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
499 {
500 	return btf_record_has_field(reg_btf_record(reg), BPF_SPIN_LOCK);
501 }
502 
503 static bool type_is_rdonly_mem(u32 type)
504 {
505 	return type & MEM_RDONLY;
506 }
507 
508 static bool is_acquire_function(enum bpf_func_id func_id,
509 				const struct bpf_map *map)
510 {
511 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
512 
513 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
514 	    func_id == BPF_FUNC_sk_lookup_udp ||
515 	    func_id == BPF_FUNC_skc_lookup_tcp ||
516 	    func_id == BPF_FUNC_ringbuf_reserve ||
517 	    func_id == BPF_FUNC_kptr_xchg)
518 		return true;
519 
520 	if (func_id == BPF_FUNC_map_lookup_elem &&
521 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
522 	     map_type == BPF_MAP_TYPE_SOCKHASH))
523 		return true;
524 
525 	return false;
526 }
527 
528 static bool is_ptr_cast_function(enum bpf_func_id func_id)
529 {
530 	return func_id == BPF_FUNC_tcp_sock ||
531 		func_id == BPF_FUNC_sk_fullsock ||
532 		func_id == BPF_FUNC_skc_to_tcp_sock ||
533 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
534 		func_id == BPF_FUNC_skc_to_udp6_sock ||
535 		func_id == BPF_FUNC_skc_to_mptcp_sock ||
536 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539 
540 static bool is_dynptr_ref_function(enum bpf_func_id func_id)
541 {
542 	return func_id == BPF_FUNC_dynptr_data;
543 }
544 
545 static bool is_callback_calling_kfunc(u32 btf_id);
546 
547 static bool is_callback_calling_function(enum bpf_func_id func_id)
548 {
549 	return func_id == BPF_FUNC_for_each_map_elem ||
550 	       func_id == BPF_FUNC_timer_set_callback ||
551 	       func_id == BPF_FUNC_find_vma ||
552 	       func_id == BPF_FUNC_loop ||
553 	       func_id == BPF_FUNC_user_ringbuf_drain;
554 }
555 
556 static bool is_async_callback_calling_function(enum bpf_func_id func_id)
557 {
558 	return func_id == BPF_FUNC_timer_set_callback;
559 }
560 
561 static bool is_storage_get_function(enum bpf_func_id func_id)
562 {
563 	return func_id == BPF_FUNC_sk_storage_get ||
564 	       func_id == BPF_FUNC_inode_storage_get ||
565 	       func_id == BPF_FUNC_task_storage_get ||
566 	       func_id == BPF_FUNC_cgrp_storage_get;
567 }
568 
569 static bool helper_multiple_ref_obj_use(enum bpf_func_id func_id,
570 					const struct bpf_map *map)
571 {
572 	int ref_obj_uses = 0;
573 
574 	if (is_ptr_cast_function(func_id))
575 		ref_obj_uses++;
576 	if (is_acquire_function(func_id, map))
577 		ref_obj_uses++;
578 	if (is_dynptr_ref_function(func_id))
579 		ref_obj_uses++;
580 
581 	return ref_obj_uses > 1;
582 }
583 
584 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
585 {
586 	return BPF_CLASS(insn->code) == BPF_STX &&
587 	       BPF_MODE(insn->code) == BPF_ATOMIC &&
588 	       insn->imm == BPF_CMPXCHG;
589 }
590 
591 /* string representation of 'enum bpf_reg_type'
592  *
593  * Note that reg_type_str() can not appear more than once in a single verbose()
594  * statement.
595  */
596 static const char *reg_type_str(struct bpf_verifier_env *env,
597 				enum bpf_reg_type type)
598 {
599 	char postfix[16] = {0}, prefix[64] = {0};
600 	static const char * const str[] = {
601 		[NOT_INIT]		= "?",
602 		[SCALAR_VALUE]		= "scalar",
603 		[PTR_TO_CTX]		= "ctx",
604 		[CONST_PTR_TO_MAP]	= "map_ptr",
605 		[PTR_TO_MAP_VALUE]	= "map_value",
606 		[PTR_TO_STACK]		= "fp",
607 		[PTR_TO_PACKET]		= "pkt",
608 		[PTR_TO_PACKET_META]	= "pkt_meta",
609 		[PTR_TO_PACKET_END]	= "pkt_end",
610 		[PTR_TO_FLOW_KEYS]	= "flow_keys",
611 		[PTR_TO_SOCKET]		= "sock",
612 		[PTR_TO_SOCK_COMMON]	= "sock_common",
613 		[PTR_TO_TCP_SOCK]	= "tcp_sock",
614 		[PTR_TO_TP_BUFFER]	= "tp_buffer",
615 		[PTR_TO_XDP_SOCK]	= "xdp_sock",
616 		[PTR_TO_BTF_ID]		= "ptr_",
617 		[PTR_TO_MEM]		= "mem",
618 		[PTR_TO_BUF]		= "buf",
619 		[PTR_TO_FUNC]		= "func",
620 		[PTR_TO_MAP_KEY]	= "map_key",
621 		[CONST_PTR_TO_DYNPTR]	= "dynptr_ptr",
622 	};
623 
624 	if (type & PTR_MAYBE_NULL) {
625 		if (base_type(type) == PTR_TO_BTF_ID)
626 			strncpy(postfix, "or_null_", 16);
627 		else
628 			strncpy(postfix, "_or_null", 16);
629 	}
630 
631 	snprintf(prefix, sizeof(prefix), "%s%s%s%s%s%s%s",
632 		 type & MEM_RDONLY ? "rdonly_" : "",
633 		 type & MEM_RINGBUF ? "ringbuf_" : "",
634 		 type & MEM_USER ? "user_" : "",
635 		 type & MEM_PERCPU ? "percpu_" : "",
636 		 type & MEM_RCU ? "rcu_" : "",
637 		 type & PTR_UNTRUSTED ? "untrusted_" : "",
638 		 type & PTR_TRUSTED ? "trusted_" : ""
639 	);
640 
641 	snprintf(env->tmp_str_buf, TMP_STR_BUF_LEN, "%s%s%s",
642 		 prefix, str[base_type(type)], postfix);
643 	return env->tmp_str_buf;
644 }
645 
646 static char slot_type_char[] = {
647 	[STACK_INVALID]	= '?',
648 	[STACK_SPILL]	= 'r',
649 	[STACK_MISC]	= 'm',
650 	[STACK_ZERO]	= '0',
651 	[STACK_DYNPTR]	= 'd',
652 	[STACK_ITER]	= 'i',
653 };
654 
655 static void print_liveness(struct bpf_verifier_env *env,
656 			   enum bpf_reg_liveness live)
657 {
658 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
659 	    verbose(env, "_");
660 	if (live & REG_LIVE_READ)
661 		verbose(env, "r");
662 	if (live & REG_LIVE_WRITTEN)
663 		verbose(env, "w");
664 	if (live & REG_LIVE_DONE)
665 		verbose(env, "D");
666 }
667 
668 static int __get_spi(s32 off)
669 {
670 	return (-off - 1) / BPF_REG_SIZE;
671 }
672 
673 static struct bpf_func_state *func(struct bpf_verifier_env *env,
674 				   const struct bpf_reg_state *reg)
675 {
676 	struct bpf_verifier_state *cur = env->cur_state;
677 
678 	return cur->frame[reg->frameno];
679 }
680 
681 static bool is_spi_bounds_valid(struct bpf_func_state *state, int spi, int nr_slots)
682 {
683        int allocated_slots = state->allocated_stack / BPF_REG_SIZE;
684 
685        /* We need to check that slots between [spi - nr_slots + 1, spi] are
686 	* within [0, allocated_stack).
687 	*
688 	* Please note that the spi grows downwards. For example, a dynptr
689 	* takes the size of two stack slots; the first slot will be at
690 	* spi and the second slot will be at spi - 1.
691 	*/
692        return spi - nr_slots + 1 >= 0 && spi < allocated_slots;
693 }
694 
695 static int stack_slot_obj_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
696 			          const char *obj_kind, int nr_slots)
697 {
698 	int off, spi;
699 
700 	if (!tnum_is_const(reg->var_off)) {
701 		verbose(env, "%s has to be at a constant offset\n", obj_kind);
702 		return -EINVAL;
703 	}
704 
705 	off = reg->off + reg->var_off.value;
706 	if (off % BPF_REG_SIZE) {
707 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
708 		return -EINVAL;
709 	}
710 
711 	spi = __get_spi(off);
712 	if (spi + 1 < nr_slots) {
713 		verbose(env, "cannot pass in %s at an offset=%d\n", obj_kind, off);
714 		return -EINVAL;
715 	}
716 
717 	if (!is_spi_bounds_valid(func(env, reg), spi, nr_slots))
718 		return -ERANGE;
719 	return spi;
720 }
721 
722 static int dynptr_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
723 {
724 	return stack_slot_obj_get_spi(env, reg, "dynptr", BPF_DYNPTR_NR_SLOTS);
725 }
726 
727 static int iter_get_spi(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int nr_slots)
728 {
729 	return stack_slot_obj_get_spi(env, reg, "iter", nr_slots);
730 }
731 
732 static const char *btf_type_name(const struct btf *btf, u32 id)
733 {
734 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
735 }
736 
737 static const char *dynptr_type_str(enum bpf_dynptr_type type)
738 {
739 	switch (type) {
740 	case BPF_DYNPTR_TYPE_LOCAL:
741 		return "local";
742 	case BPF_DYNPTR_TYPE_RINGBUF:
743 		return "ringbuf";
744 	case BPF_DYNPTR_TYPE_SKB:
745 		return "skb";
746 	case BPF_DYNPTR_TYPE_XDP:
747 		return "xdp";
748 	case BPF_DYNPTR_TYPE_INVALID:
749 		return "<invalid>";
750 	default:
751 		WARN_ONCE(1, "unknown dynptr type %d\n", type);
752 		return "<unknown>";
753 	}
754 }
755 
756 static const char *iter_type_str(const struct btf *btf, u32 btf_id)
757 {
758 	if (!btf || btf_id == 0)
759 		return "<invalid>";
760 
761 	/* we already validated that type is valid and has conforming name */
762 	return btf_type_name(btf, btf_id) + sizeof(ITER_PREFIX) - 1;
763 }
764 
765 static const char *iter_state_str(enum bpf_iter_state state)
766 {
767 	switch (state) {
768 	case BPF_ITER_STATE_ACTIVE:
769 		return "active";
770 	case BPF_ITER_STATE_DRAINED:
771 		return "drained";
772 	case BPF_ITER_STATE_INVALID:
773 		return "<invalid>";
774 	default:
775 		WARN_ONCE(1, "unknown iter state %d\n", state);
776 		return "<unknown>";
777 	}
778 }
779 
780 static void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
781 {
782 	env->scratched_regs |= 1U << regno;
783 }
784 
785 static void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
786 {
787 	env->scratched_stack_slots |= 1ULL << spi;
788 }
789 
790 static bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
791 {
792 	return (env->scratched_regs >> regno) & 1;
793 }
794 
795 static bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
796 {
797 	return (env->scratched_stack_slots >> regno) & 1;
798 }
799 
800 static bool verifier_state_scratched(const struct bpf_verifier_env *env)
801 {
802 	return env->scratched_regs || env->scratched_stack_slots;
803 }
804 
805 static void mark_verifier_state_clean(struct bpf_verifier_env *env)
806 {
807 	env->scratched_regs = 0U;
808 	env->scratched_stack_slots = 0ULL;
809 }
810 
811 /* Used for printing the entire verifier state. */
812 static void mark_verifier_state_scratched(struct bpf_verifier_env *env)
813 {
814 	env->scratched_regs = ~0U;
815 	env->scratched_stack_slots = ~0ULL;
816 }
817 
818 static enum bpf_dynptr_type arg_to_dynptr_type(enum bpf_arg_type arg_type)
819 {
820 	switch (arg_type & DYNPTR_TYPE_FLAG_MASK) {
821 	case DYNPTR_TYPE_LOCAL:
822 		return BPF_DYNPTR_TYPE_LOCAL;
823 	case DYNPTR_TYPE_RINGBUF:
824 		return BPF_DYNPTR_TYPE_RINGBUF;
825 	case DYNPTR_TYPE_SKB:
826 		return BPF_DYNPTR_TYPE_SKB;
827 	case DYNPTR_TYPE_XDP:
828 		return BPF_DYNPTR_TYPE_XDP;
829 	default:
830 		return BPF_DYNPTR_TYPE_INVALID;
831 	}
832 }
833 
834 static enum bpf_type_flag get_dynptr_type_flag(enum bpf_dynptr_type type)
835 {
836 	switch (type) {
837 	case BPF_DYNPTR_TYPE_LOCAL:
838 		return DYNPTR_TYPE_LOCAL;
839 	case BPF_DYNPTR_TYPE_RINGBUF:
840 		return DYNPTR_TYPE_RINGBUF;
841 	case BPF_DYNPTR_TYPE_SKB:
842 		return DYNPTR_TYPE_SKB;
843 	case BPF_DYNPTR_TYPE_XDP:
844 		return DYNPTR_TYPE_XDP;
845 	default:
846 		return 0;
847 	}
848 }
849 
850 static bool dynptr_type_refcounted(enum bpf_dynptr_type type)
851 {
852 	return type == BPF_DYNPTR_TYPE_RINGBUF;
853 }
854 
855 static void __mark_dynptr_reg(struct bpf_reg_state *reg,
856 			      enum bpf_dynptr_type type,
857 			      bool first_slot, int dynptr_id);
858 
859 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
860 				struct bpf_reg_state *reg);
861 
862 static void mark_dynptr_stack_regs(struct bpf_verifier_env *env,
863 				   struct bpf_reg_state *sreg1,
864 				   struct bpf_reg_state *sreg2,
865 				   enum bpf_dynptr_type type)
866 {
867 	int id = ++env->id_gen;
868 
869 	__mark_dynptr_reg(sreg1, type, true, id);
870 	__mark_dynptr_reg(sreg2, type, false, id);
871 }
872 
873 static void mark_dynptr_cb_reg(struct bpf_verifier_env *env,
874 			       struct bpf_reg_state *reg,
875 			       enum bpf_dynptr_type type)
876 {
877 	__mark_dynptr_reg(reg, type, true, ++env->id_gen);
878 }
879 
880 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
881 				        struct bpf_func_state *state, int spi);
882 
883 static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
884 				   enum bpf_arg_type arg_type, int insn_idx, int clone_ref_obj_id)
885 {
886 	struct bpf_func_state *state = func(env, reg);
887 	enum bpf_dynptr_type type;
888 	int spi, i, err;
889 
890 	spi = dynptr_get_spi(env, reg);
891 	if (spi < 0)
892 		return spi;
893 
894 	/* We cannot assume both spi and spi - 1 belong to the same dynptr,
895 	 * hence we need to call destroy_if_dynptr_stack_slot twice for both,
896 	 * to ensure that for the following example:
897 	 *	[d1][d1][d2][d2]
898 	 * spi    3   2   1   0
899 	 * So marking spi = 2 should lead to destruction of both d1 and d2. In
900 	 * case they do belong to same dynptr, second call won't see slot_type
901 	 * as STACK_DYNPTR and will simply skip destruction.
902 	 */
903 	err = destroy_if_dynptr_stack_slot(env, state, spi);
904 	if (err)
905 		return err;
906 	err = destroy_if_dynptr_stack_slot(env, state, spi - 1);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i < BPF_REG_SIZE; i++) {
911 		state->stack[spi].slot_type[i] = STACK_DYNPTR;
912 		state->stack[spi - 1].slot_type[i] = STACK_DYNPTR;
913 	}
914 
915 	type = arg_to_dynptr_type(arg_type);
916 	if (type == BPF_DYNPTR_TYPE_INVALID)
917 		return -EINVAL;
918 
919 	mark_dynptr_stack_regs(env, &state->stack[spi].spilled_ptr,
920 			       &state->stack[spi - 1].spilled_ptr, type);
921 
922 	if (dynptr_type_refcounted(type)) {
923 		/* The id is used to track proper releasing */
924 		int id;
925 
926 		if (clone_ref_obj_id)
927 			id = clone_ref_obj_id;
928 		else
929 			id = acquire_reference_state(env, insn_idx);
930 
931 		if (id < 0)
932 			return id;
933 
934 		state->stack[spi].spilled_ptr.ref_obj_id = id;
935 		state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
936 	}
937 
938 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
939 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
940 
941 	return 0;
942 }
943 
944 static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_state *state, int spi)
945 {
946 	int i;
947 
948 	for (i = 0; i < BPF_REG_SIZE; i++) {
949 		state->stack[spi].slot_type[i] = STACK_INVALID;
950 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
951 	}
952 
953 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
954 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
955 
956 	/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
957 	 *
958 	 * While we don't allow reading STACK_INVALID, it is still possible to
959 	 * do <8 byte writes marking some but not all slots as STACK_MISC. Then,
960 	 * helpers or insns can do partial read of that part without failing,
961 	 * but check_stack_range_initialized, check_stack_read_var_off, and
962 	 * check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
963 	 * the slot conservatively. Hence we need to prevent those liveness
964 	 * marking walks.
965 	 *
966 	 * This was not a problem before because STACK_INVALID is only set by
967 	 * default (where the default reg state has its reg->parent as NULL), or
968 	 * in clean_live_states after REG_LIVE_DONE (at which point
969 	 * mark_reg_read won't walk reg->parent chain), but not randomly during
970 	 * verifier state exploration (like we did above). Hence, for our case
971 	 * parentage chain will still be live (i.e. reg->parent may be
972 	 * non-NULL), while earlier reg->parent was NULL, so we need
973 	 * REG_LIVE_WRITTEN to screen off read marker propagation when it is
974 	 * done later on reads or by mark_dynptr_read as well to unnecessary
975 	 * mark registers in verifier state.
976 	 */
977 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
978 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
979 }
980 
981 static int unmark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
982 {
983 	struct bpf_func_state *state = func(env, reg);
984 	int spi, ref_obj_id, i;
985 
986 	spi = dynptr_get_spi(env, reg);
987 	if (spi < 0)
988 		return spi;
989 
990 	if (!dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
991 		invalidate_dynptr(env, state, spi);
992 		return 0;
993 	}
994 
995 	ref_obj_id = state->stack[spi].spilled_ptr.ref_obj_id;
996 
997 	/* If the dynptr has a ref_obj_id, then we need to invalidate
998 	 * two things:
999 	 *
1000 	 * 1) Any dynptrs with a matching ref_obj_id (clones)
1001 	 * 2) Any slices derived from this dynptr.
1002 	 */
1003 
1004 	/* Invalidate any slices associated with this dynptr */
1005 	WARN_ON_ONCE(release_reference(env, ref_obj_id));
1006 
1007 	/* Invalidate any dynptr clones */
1008 	for (i = 1; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1009 		if (state->stack[i].spilled_ptr.ref_obj_id != ref_obj_id)
1010 			continue;
1011 
1012 		/* it should always be the case that if the ref obj id
1013 		 * matches then the stack slot also belongs to a
1014 		 * dynptr
1015 		 */
1016 		if (state->stack[i].slot_type[0] != STACK_DYNPTR) {
1017 			verbose(env, "verifier internal error: misconfigured ref_obj_id\n");
1018 			return -EFAULT;
1019 		}
1020 		if (state->stack[i].spilled_ptr.dynptr.first_slot)
1021 			invalidate_dynptr(env, state, i);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1028 			       struct bpf_reg_state *reg);
1029 
1030 static void mark_reg_invalid(const struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1031 {
1032 	if (!env->allow_ptr_leaks)
1033 		__mark_reg_not_init(env, reg);
1034 	else
1035 		__mark_reg_unknown(env, reg);
1036 }
1037 
1038 static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
1039 				        struct bpf_func_state *state, int spi)
1040 {
1041 	struct bpf_func_state *fstate;
1042 	struct bpf_reg_state *dreg;
1043 	int i, dynptr_id;
1044 
1045 	/* We always ensure that STACK_DYNPTR is never set partially,
1046 	 * hence just checking for slot_type[0] is enough. This is
1047 	 * different for STACK_SPILL, where it may be only set for
1048 	 * 1 byte, so code has to use is_spilled_reg.
1049 	 */
1050 	if (state->stack[spi].slot_type[0] != STACK_DYNPTR)
1051 		return 0;
1052 
1053 	/* Reposition spi to first slot */
1054 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1055 		spi = spi + 1;
1056 
1057 	if (dynptr_type_refcounted(state->stack[spi].spilled_ptr.dynptr.type)) {
1058 		verbose(env, "cannot overwrite referenced dynptr\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	mark_stack_slot_scratched(env, spi);
1063 	mark_stack_slot_scratched(env, spi - 1);
1064 
1065 	/* Writing partially to one dynptr stack slot destroys both. */
1066 	for (i = 0; i < BPF_REG_SIZE; i++) {
1067 		state->stack[spi].slot_type[i] = STACK_INVALID;
1068 		state->stack[spi - 1].slot_type[i] = STACK_INVALID;
1069 	}
1070 
1071 	dynptr_id = state->stack[spi].spilled_ptr.id;
1072 	/* Invalidate any slices associated with this dynptr */
1073 	bpf_for_each_reg_in_vstate(env->cur_state, fstate, dreg, ({
1074 		/* Dynptr slices are only PTR_TO_MEM_OR_NULL and PTR_TO_MEM */
1075 		if (dreg->type != (PTR_TO_MEM | PTR_MAYBE_NULL) && dreg->type != PTR_TO_MEM)
1076 			continue;
1077 		if (dreg->dynptr_id == dynptr_id)
1078 			mark_reg_invalid(env, dreg);
1079 	}));
1080 
1081 	/* Do not release reference state, we are destroying dynptr on stack,
1082 	 * not using some helper to release it. Just reset register.
1083 	 */
1084 	__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
1085 	__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
1086 
1087 	/* Same reason as unmark_stack_slots_dynptr above */
1088 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1089 	state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
1090 
1091 	return 0;
1092 }
1093 
1094 static bool is_dynptr_reg_valid_uninit(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1095 {
1096 	int spi;
1097 
1098 	if (reg->type == CONST_PTR_TO_DYNPTR)
1099 		return false;
1100 
1101 	spi = dynptr_get_spi(env, reg);
1102 
1103 	/* -ERANGE (i.e. spi not falling into allocated stack slots) isn't an
1104 	 * error because this just means the stack state hasn't been updated yet.
1105 	 * We will do check_mem_access to check and update stack bounds later.
1106 	 */
1107 	if (spi < 0 && spi != -ERANGE)
1108 		return false;
1109 
1110 	/* We don't need to check if the stack slots are marked by previous
1111 	 * dynptr initializations because we allow overwriting existing unreferenced
1112 	 * STACK_DYNPTR slots, see mark_stack_slots_dynptr which calls
1113 	 * destroy_if_dynptr_stack_slot to ensure dynptr objects at the slots we are
1114 	 * touching are completely destructed before we reinitialize them for a new
1115 	 * one. For referenced ones, destroy_if_dynptr_stack_slot returns an error early
1116 	 * instead of delaying it until the end where the user will get "Unreleased
1117 	 * reference" error.
1118 	 */
1119 	return true;
1120 }
1121 
1122 static bool is_dynptr_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
1123 {
1124 	struct bpf_func_state *state = func(env, reg);
1125 	int i, spi;
1126 
1127 	/* This already represents first slot of initialized bpf_dynptr.
1128 	 *
1129 	 * CONST_PTR_TO_DYNPTR already has fixed and var_off as 0 due to
1130 	 * check_func_arg_reg_off's logic, so we don't need to check its
1131 	 * offset and alignment.
1132 	 */
1133 	if (reg->type == CONST_PTR_TO_DYNPTR)
1134 		return true;
1135 
1136 	spi = dynptr_get_spi(env, reg);
1137 	if (spi < 0)
1138 		return false;
1139 	if (!state->stack[spi].spilled_ptr.dynptr.first_slot)
1140 		return false;
1141 
1142 	for (i = 0; i < BPF_REG_SIZE; i++) {
1143 		if (state->stack[spi].slot_type[i] != STACK_DYNPTR ||
1144 		    state->stack[spi - 1].slot_type[i] != STACK_DYNPTR)
1145 			return false;
1146 	}
1147 
1148 	return true;
1149 }
1150 
1151 static bool is_dynptr_type_expected(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1152 				    enum bpf_arg_type arg_type)
1153 {
1154 	struct bpf_func_state *state = func(env, reg);
1155 	enum bpf_dynptr_type dynptr_type;
1156 	int spi;
1157 
1158 	/* ARG_PTR_TO_DYNPTR takes any type of dynptr */
1159 	if (arg_type == ARG_PTR_TO_DYNPTR)
1160 		return true;
1161 
1162 	dynptr_type = arg_to_dynptr_type(arg_type);
1163 	if (reg->type == CONST_PTR_TO_DYNPTR) {
1164 		return reg->dynptr.type == dynptr_type;
1165 	} else {
1166 		spi = dynptr_get_spi(env, reg);
1167 		if (spi < 0)
1168 			return false;
1169 		return state->stack[spi].spilled_ptr.dynptr.type == dynptr_type;
1170 	}
1171 }
1172 
1173 static void __mark_reg_known_zero(struct bpf_reg_state *reg);
1174 
1175 static int mark_stack_slots_iter(struct bpf_verifier_env *env,
1176 				 struct bpf_reg_state *reg, int insn_idx,
1177 				 struct btf *btf, u32 btf_id, int nr_slots)
1178 {
1179 	struct bpf_func_state *state = func(env, reg);
1180 	int spi, i, j, id;
1181 
1182 	spi = iter_get_spi(env, reg, nr_slots);
1183 	if (spi < 0)
1184 		return spi;
1185 
1186 	id = acquire_reference_state(env, insn_idx);
1187 	if (id < 0)
1188 		return id;
1189 
1190 	for (i = 0; i < nr_slots; i++) {
1191 		struct bpf_stack_state *slot = &state->stack[spi - i];
1192 		struct bpf_reg_state *st = &slot->spilled_ptr;
1193 
1194 		__mark_reg_known_zero(st);
1195 		st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
1196 		st->live |= REG_LIVE_WRITTEN;
1197 		st->ref_obj_id = i == 0 ? id : 0;
1198 		st->iter.btf = btf;
1199 		st->iter.btf_id = btf_id;
1200 		st->iter.state = BPF_ITER_STATE_ACTIVE;
1201 		st->iter.depth = 0;
1202 
1203 		for (j = 0; j < BPF_REG_SIZE; j++)
1204 			slot->slot_type[j] = STACK_ITER;
1205 
1206 		mark_stack_slot_scratched(env, spi - i);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
1213 				   struct bpf_reg_state *reg, int nr_slots)
1214 {
1215 	struct bpf_func_state *state = func(env, reg);
1216 	int spi, i, j;
1217 
1218 	spi = iter_get_spi(env, reg, nr_slots);
1219 	if (spi < 0)
1220 		return spi;
1221 
1222 	for (i = 0; i < nr_slots; i++) {
1223 		struct bpf_stack_state *slot = &state->stack[spi - i];
1224 		struct bpf_reg_state *st = &slot->spilled_ptr;
1225 
1226 		if (i == 0)
1227 			WARN_ON_ONCE(release_reference(env, st->ref_obj_id));
1228 
1229 		__mark_reg_not_init(env, st);
1230 
1231 		/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
1232 		st->live |= REG_LIVE_WRITTEN;
1233 
1234 		for (j = 0; j < BPF_REG_SIZE; j++)
1235 			slot->slot_type[j] = STACK_INVALID;
1236 
1237 		mark_stack_slot_scratched(env, spi - i);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static bool is_iter_reg_valid_uninit(struct bpf_verifier_env *env,
1244 				     struct bpf_reg_state *reg, int nr_slots)
1245 {
1246 	struct bpf_func_state *state = func(env, reg);
1247 	int spi, i, j;
1248 
1249 	/* For -ERANGE (i.e. spi not falling into allocated stack slots), we
1250 	 * will do check_mem_access to check and update stack bounds later, so
1251 	 * return true for that case.
1252 	 */
1253 	spi = iter_get_spi(env, reg, nr_slots);
1254 	if (spi == -ERANGE)
1255 		return true;
1256 	if (spi < 0)
1257 		return false;
1258 
1259 	for (i = 0; i < nr_slots; i++) {
1260 		struct bpf_stack_state *slot = &state->stack[spi - i];
1261 
1262 		for (j = 0; j < BPF_REG_SIZE; j++)
1263 			if (slot->slot_type[j] == STACK_ITER)
1264 				return false;
1265 	}
1266 
1267 	return true;
1268 }
1269 
1270 static bool is_iter_reg_valid_init(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
1271 				   struct btf *btf, u32 btf_id, int nr_slots)
1272 {
1273 	struct bpf_func_state *state = func(env, reg);
1274 	int spi, i, j;
1275 
1276 	spi = iter_get_spi(env, reg, nr_slots);
1277 	if (spi < 0)
1278 		return false;
1279 
1280 	for (i = 0; i < nr_slots; i++) {
1281 		struct bpf_stack_state *slot = &state->stack[spi - i];
1282 		struct bpf_reg_state *st = &slot->spilled_ptr;
1283 
1284 		/* only main (first) slot has ref_obj_id set */
1285 		if (i == 0 && !st->ref_obj_id)
1286 			return false;
1287 		if (i != 0 && st->ref_obj_id)
1288 			return false;
1289 		if (st->iter.btf != btf || st->iter.btf_id != btf_id)
1290 			return false;
1291 
1292 		for (j = 0; j < BPF_REG_SIZE; j++)
1293 			if (slot->slot_type[j] != STACK_ITER)
1294 				return false;
1295 	}
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if given stack slot is "special":
1301  *   - spilled register state (STACK_SPILL);
1302  *   - dynptr state (STACK_DYNPTR);
1303  *   - iter state (STACK_ITER).
1304  */
1305 static bool is_stack_slot_special(const struct bpf_stack_state *stack)
1306 {
1307 	enum bpf_stack_slot_type type = stack->slot_type[BPF_REG_SIZE - 1];
1308 
1309 	switch (type) {
1310 	case STACK_SPILL:
1311 	case STACK_DYNPTR:
1312 	case STACK_ITER:
1313 		return true;
1314 	case STACK_INVALID:
1315 	case STACK_MISC:
1316 	case STACK_ZERO:
1317 		return false;
1318 	default:
1319 		WARN_ONCE(1, "unknown stack slot type %d\n", type);
1320 		return true;
1321 	}
1322 }
1323 
1324 /* The reg state of a pointer or a bounded scalar was saved when
1325  * it was spilled to the stack.
1326  */
1327 static bool is_spilled_reg(const struct bpf_stack_state *stack)
1328 {
1329 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL;
1330 }
1331 
1332 static bool is_spilled_scalar_reg(const struct bpf_stack_state *stack)
1333 {
1334 	return stack->slot_type[BPF_REG_SIZE - 1] == STACK_SPILL &&
1335 	       stack->spilled_ptr.type == SCALAR_VALUE;
1336 }
1337 
1338 static void scrub_spilled_slot(u8 *stype)
1339 {
1340 	if (*stype != STACK_INVALID)
1341 		*stype = STACK_MISC;
1342 }
1343 
1344 static void print_verifier_state(struct bpf_verifier_env *env,
1345 				 const struct bpf_func_state *state,
1346 				 bool print_all)
1347 {
1348 	const struct bpf_reg_state *reg;
1349 	enum bpf_reg_type t;
1350 	int i;
1351 
1352 	if (state->frameno)
1353 		verbose(env, " frame%d:", state->frameno);
1354 	for (i = 0; i < MAX_BPF_REG; i++) {
1355 		reg = &state->regs[i];
1356 		t = reg->type;
1357 		if (t == NOT_INIT)
1358 			continue;
1359 		if (!print_all && !reg_scratched(env, i))
1360 			continue;
1361 		verbose(env, " R%d", i);
1362 		print_liveness(env, reg->live);
1363 		verbose(env, "=");
1364 		if (t == SCALAR_VALUE && reg->precise)
1365 			verbose(env, "P");
1366 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
1367 		    tnum_is_const(reg->var_off)) {
1368 			/* reg->off should be 0 for SCALAR_VALUE */
1369 			verbose(env, "%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1370 			verbose(env, "%lld", reg->var_off.value + reg->off);
1371 		} else {
1372 			const char *sep = "";
1373 
1374 			verbose(env, "%s", reg_type_str(env, t));
1375 			if (base_type(t) == PTR_TO_BTF_ID)
1376 				verbose(env, "%s", btf_type_name(reg->btf, reg->btf_id));
1377 			verbose(env, "(");
1378 /*
1379  * _a stands for append, was shortened to avoid multiline statements below.
1380  * This macro is used to output a comma separated list of attributes.
1381  */
1382 #define verbose_a(fmt, ...) ({ verbose(env, "%s" fmt, sep, __VA_ARGS__); sep = ","; })
1383 
1384 			if (reg->id)
1385 				verbose_a("id=%d", reg->id);
1386 			if (reg->ref_obj_id)
1387 				verbose_a("ref_obj_id=%d", reg->ref_obj_id);
1388 			if (type_is_non_owning_ref(reg->type))
1389 				verbose_a("%s", "non_own_ref");
1390 			if (t != SCALAR_VALUE)
1391 				verbose_a("off=%d", reg->off);
1392 			if (type_is_pkt_pointer(t))
1393 				verbose_a("r=%d", reg->range);
1394 			else if (base_type(t) == CONST_PTR_TO_MAP ||
1395 				 base_type(t) == PTR_TO_MAP_KEY ||
1396 				 base_type(t) == PTR_TO_MAP_VALUE)
1397 				verbose_a("ks=%d,vs=%d",
1398 					  reg->map_ptr->key_size,
1399 					  reg->map_ptr->value_size);
1400 			if (tnum_is_const(reg->var_off)) {
1401 				/* Typically an immediate SCALAR_VALUE, but
1402 				 * could be a pointer whose offset is too big
1403 				 * for reg->off
1404 				 */
1405 				verbose_a("imm=%llx", reg->var_off.value);
1406 			} else {
1407 				if (reg->smin_value != reg->umin_value &&
1408 				    reg->smin_value != S64_MIN)
1409 					verbose_a("smin=%lld", (long long)reg->smin_value);
1410 				if (reg->smax_value != reg->umax_value &&
1411 				    reg->smax_value != S64_MAX)
1412 					verbose_a("smax=%lld", (long long)reg->smax_value);
1413 				if (reg->umin_value != 0)
1414 					verbose_a("umin=%llu", (unsigned long long)reg->umin_value);
1415 				if (reg->umax_value != U64_MAX)
1416 					verbose_a("umax=%llu", (unsigned long long)reg->umax_value);
1417 				if (!tnum_is_unknown(reg->var_off)) {
1418 					char tn_buf[48];
1419 
1420 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1421 					verbose_a("var_off=%s", tn_buf);
1422 				}
1423 				if (reg->s32_min_value != reg->smin_value &&
1424 				    reg->s32_min_value != S32_MIN)
1425 					verbose_a("s32_min=%d", (int)(reg->s32_min_value));
1426 				if (reg->s32_max_value != reg->smax_value &&
1427 				    reg->s32_max_value != S32_MAX)
1428 					verbose_a("s32_max=%d", (int)(reg->s32_max_value));
1429 				if (reg->u32_min_value != reg->umin_value &&
1430 				    reg->u32_min_value != U32_MIN)
1431 					verbose_a("u32_min=%d", (int)(reg->u32_min_value));
1432 				if (reg->u32_max_value != reg->umax_value &&
1433 				    reg->u32_max_value != U32_MAX)
1434 					verbose_a("u32_max=%d", (int)(reg->u32_max_value));
1435 			}
1436 #undef verbose_a
1437 
1438 			verbose(env, ")");
1439 		}
1440 	}
1441 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1442 		char types_buf[BPF_REG_SIZE + 1];
1443 		bool valid = false;
1444 		int j;
1445 
1446 		for (j = 0; j < BPF_REG_SIZE; j++) {
1447 			if (state->stack[i].slot_type[j] != STACK_INVALID)
1448 				valid = true;
1449 			types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1450 		}
1451 		types_buf[BPF_REG_SIZE] = 0;
1452 		if (!valid)
1453 			continue;
1454 		if (!print_all && !stack_slot_scratched(env, i))
1455 			continue;
1456 		switch (state->stack[i].slot_type[BPF_REG_SIZE - 1]) {
1457 		case STACK_SPILL:
1458 			reg = &state->stack[i].spilled_ptr;
1459 			t = reg->type;
1460 
1461 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1462 			print_liveness(env, reg->live);
1463 			verbose(env, "=%s", t == SCALAR_VALUE ? "" : reg_type_str(env, t));
1464 			if (t == SCALAR_VALUE && reg->precise)
1465 				verbose(env, "P");
1466 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
1467 				verbose(env, "%lld", reg->var_off.value + reg->off);
1468 			break;
1469 		case STACK_DYNPTR:
1470 			i += BPF_DYNPTR_NR_SLOTS - 1;
1471 			reg = &state->stack[i].spilled_ptr;
1472 
1473 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1474 			print_liveness(env, reg->live);
1475 			verbose(env, "=dynptr_%s", dynptr_type_str(reg->dynptr.type));
1476 			if (reg->ref_obj_id)
1477 				verbose(env, "(ref_id=%d)", reg->ref_obj_id);
1478 			break;
1479 		case STACK_ITER:
1480 			/* only main slot has ref_obj_id set; skip others */
1481 			reg = &state->stack[i].spilled_ptr;
1482 			if (!reg->ref_obj_id)
1483 				continue;
1484 
1485 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1486 			print_liveness(env, reg->live);
1487 			verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
1488 				iter_type_str(reg->iter.btf, reg->iter.btf_id),
1489 				reg->ref_obj_id, iter_state_str(reg->iter.state),
1490 				reg->iter.depth);
1491 			break;
1492 		case STACK_MISC:
1493 		case STACK_ZERO:
1494 		default:
1495 			reg = &state->stack[i].spilled_ptr;
1496 
1497 			for (j = 0; j < BPF_REG_SIZE; j++)
1498 				types_buf[j] = slot_type_char[state->stack[i].slot_type[j]];
1499 			types_buf[BPF_REG_SIZE] = 0;
1500 
1501 			verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
1502 			print_liveness(env, reg->live);
1503 			verbose(env, "=%s", types_buf);
1504 			break;
1505 		}
1506 	}
1507 	if (state->acquired_refs && state->refs[0].id) {
1508 		verbose(env, " refs=%d", state->refs[0].id);
1509 		for (i = 1; i < state->acquired_refs; i++)
1510 			if (state->refs[i].id)
1511 				verbose(env, ",%d", state->refs[i].id);
1512 	}
1513 	if (state->in_callback_fn)
1514 		verbose(env, " cb");
1515 	if (state->in_async_callback_fn)
1516 		verbose(env, " async_cb");
1517 	verbose(env, "\n");
1518 	if (!print_all)
1519 		mark_verifier_state_clean(env);
1520 }
1521 
1522 static inline u32 vlog_alignment(u32 pos)
1523 {
1524 	return round_up(max(pos + BPF_LOG_MIN_ALIGNMENT / 2, BPF_LOG_ALIGNMENT),
1525 			BPF_LOG_MIN_ALIGNMENT) - pos - 1;
1526 }
1527 
1528 static void print_insn_state(struct bpf_verifier_env *env,
1529 			     const struct bpf_func_state *state)
1530 {
1531 	if (env->prev_log_pos && env->prev_log_pos == env->log.end_pos) {
1532 		/* remove new line character */
1533 		bpf_vlog_reset(&env->log, env->prev_log_pos - 1);
1534 		verbose(env, "%*c;", vlog_alignment(env->prev_insn_print_pos), ' ');
1535 	} else {
1536 		verbose(env, "%d:", env->insn_idx);
1537 	}
1538 	print_verifier_state(env, state, false);
1539 }
1540 
1541 /* copy array src of length n * size bytes to dst. dst is reallocated if it's too
1542  * small to hold src. This is different from krealloc since we don't want to preserve
1543  * the contents of dst.
1544  *
1545  * Leaves dst untouched if src is NULL or length is zero. Returns NULL if memory could
1546  * not be allocated.
1547  */
1548 static void *copy_array(void *dst, const void *src, size_t n, size_t size, gfp_t flags)
1549 {
1550 	size_t alloc_bytes;
1551 	void *orig = dst;
1552 	size_t bytes;
1553 
1554 	if (ZERO_OR_NULL_PTR(src))
1555 		goto out;
1556 
1557 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1558 		return NULL;
1559 
1560 	alloc_bytes = max(ksize(orig), kmalloc_size_roundup(bytes));
1561 	dst = krealloc(orig, alloc_bytes, flags);
1562 	if (!dst) {
1563 		kfree(orig);
1564 		return NULL;
1565 	}
1566 
1567 	memcpy(dst, src, bytes);
1568 out:
1569 	return dst ? dst : ZERO_SIZE_PTR;
1570 }
1571 
1572 /* resize an array from old_n items to new_n items. the array is reallocated if it's too
1573  * small to hold new_n items. new items are zeroed out if the array grows.
1574  *
1575  * Contrary to krealloc_array, does not free arr if new_n is zero.
1576  */
1577 static void *realloc_array(void *arr, size_t old_n, size_t new_n, size_t size)
1578 {
1579 	size_t alloc_size;
1580 	void *new_arr;
1581 
1582 	if (!new_n || old_n == new_n)
1583 		goto out;
1584 
1585 	alloc_size = kmalloc_size_roundup(size_mul(new_n, size));
1586 	new_arr = krealloc(arr, alloc_size, GFP_KERNEL);
1587 	if (!new_arr) {
1588 		kfree(arr);
1589 		return NULL;
1590 	}
1591 	arr = new_arr;
1592 
1593 	if (new_n > old_n)
1594 		memset(arr + old_n * size, 0, (new_n - old_n) * size);
1595 
1596 out:
1597 	return arr ? arr : ZERO_SIZE_PTR;
1598 }
1599 
1600 static int copy_reference_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1601 {
1602 	dst->refs = copy_array(dst->refs, src->refs, src->acquired_refs,
1603 			       sizeof(struct bpf_reference_state), GFP_KERNEL);
1604 	if (!dst->refs)
1605 		return -ENOMEM;
1606 
1607 	dst->acquired_refs = src->acquired_refs;
1608 	return 0;
1609 }
1610 
1611 static int copy_stack_state(struct bpf_func_state *dst, const struct bpf_func_state *src)
1612 {
1613 	size_t n = src->allocated_stack / BPF_REG_SIZE;
1614 
1615 	dst->stack = copy_array(dst->stack, src->stack, n, sizeof(struct bpf_stack_state),
1616 				GFP_KERNEL);
1617 	if (!dst->stack)
1618 		return -ENOMEM;
1619 
1620 	dst->allocated_stack = src->allocated_stack;
1621 	return 0;
1622 }
1623 
1624 static int resize_reference_state(struct bpf_func_state *state, size_t n)
1625 {
1626 	state->refs = realloc_array(state->refs, state->acquired_refs, n,
1627 				    sizeof(struct bpf_reference_state));
1628 	if (!state->refs)
1629 		return -ENOMEM;
1630 
1631 	state->acquired_refs = n;
1632 	return 0;
1633 }
1634 
1635 /* Possibly update state->allocated_stack to be at least size bytes. Also
1636  * possibly update the function's high-water mark in its bpf_subprog_info.
1637  */
1638 static int grow_stack_state(struct bpf_verifier_env *env, struct bpf_func_state *state, int size)
1639 {
1640 	size_t old_n = state->allocated_stack / BPF_REG_SIZE, n = size / BPF_REG_SIZE;
1641 
1642 	if (old_n >= n)
1643 		return 0;
1644 
1645 	state->stack = realloc_array(state->stack, old_n, n, sizeof(struct bpf_stack_state));
1646 	if (!state->stack)
1647 		return -ENOMEM;
1648 
1649 	state->allocated_stack = size;
1650 
1651 	/* update known max for given subprogram */
1652 	if (env->subprog_info[state->subprogno].stack_depth < size)
1653 		env->subprog_info[state->subprogno].stack_depth = size;
1654 
1655 	return 0;
1656 }
1657 
1658 /* Acquire a pointer id from the env and update the state->refs to include
1659  * this new pointer reference.
1660  * On success, returns a valid pointer id to associate with the register
1661  * On failure, returns a negative errno.
1662  */
1663 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
1664 {
1665 	struct bpf_func_state *state = cur_func(env);
1666 	int new_ofs = state->acquired_refs;
1667 	int id, err;
1668 
1669 	err = resize_reference_state(state, state->acquired_refs + 1);
1670 	if (err)
1671 		return err;
1672 	id = ++env->id_gen;
1673 	state->refs[new_ofs].id = id;
1674 	state->refs[new_ofs].insn_idx = insn_idx;
1675 	state->refs[new_ofs].callback_ref = state->in_callback_fn ? state->frameno : 0;
1676 
1677 	return id;
1678 }
1679 
1680 /* release function corresponding to acquire_reference_state(). Idempotent. */
1681 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
1682 {
1683 	int i, last_idx;
1684 
1685 	last_idx = state->acquired_refs - 1;
1686 	for (i = 0; i < state->acquired_refs; i++) {
1687 		if (state->refs[i].id == ptr_id) {
1688 			/* Cannot release caller references in callbacks */
1689 			if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
1690 				return -EINVAL;
1691 			if (last_idx && i != last_idx)
1692 				memcpy(&state->refs[i], &state->refs[last_idx],
1693 				       sizeof(*state->refs));
1694 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
1695 			state->acquired_refs--;
1696 			return 0;
1697 		}
1698 	}
1699 	return -EINVAL;
1700 }
1701 
1702 static void free_func_state(struct bpf_func_state *state)
1703 {
1704 	if (!state)
1705 		return;
1706 	kfree(state->refs);
1707 	kfree(state->stack);
1708 	kfree(state);
1709 }
1710 
1711 static void clear_jmp_history(struct bpf_verifier_state *state)
1712 {
1713 	kfree(state->jmp_history);
1714 	state->jmp_history = NULL;
1715 	state->jmp_history_cnt = 0;
1716 }
1717 
1718 static void free_verifier_state(struct bpf_verifier_state *state,
1719 				bool free_self)
1720 {
1721 	int i;
1722 
1723 	for (i = 0; i <= state->curframe; i++) {
1724 		free_func_state(state->frame[i]);
1725 		state->frame[i] = NULL;
1726 	}
1727 	clear_jmp_history(state);
1728 	if (free_self)
1729 		kfree(state);
1730 }
1731 
1732 /* copy verifier state from src to dst growing dst stack space
1733  * when necessary to accommodate larger src stack
1734  */
1735 static int copy_func_state(struct bpf_func_state *dst,
1736 			   const struct bpf_func_state *src)
1737 {
1738 	int err;
1739 
1740 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
1741 	err = copy_reference_state(dst, src);
1742 	if (err)
1743 		return err;
1744 	return copy_stack_state(dst, src);
1745 }
1746 
1747 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
1748 			       const struct bpf_verifier_state *src)
1749 {
1750 	struct bpf_func_state *dst;
1751 	int i, err;
1752 
1753 	dst_state->jmp_history = copy_array(dst_state->jmp_history, src->jmp_history,
1754 					    src->jmp_history_cnt, sizeof(struct bpf_idx_pair),
1755 					    GFP_USER);
1756 	if (!dst_state->jmp_history)
1757 		return -ENOMEM;
1758 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
1759 
1760 	/* if dst has more stack frames then src frame, free them */
1761 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
1762 		free_func_state(dst_state->frame[i]);
1763 		dst_state->frame[i] = NULL;
1764 	}
1765 	dst_state->speculative = src->speculative;
1766 	dst_state->active_rcu_lock = src->active_rcu_lock;
1767 	dst_state->curframe = src->curframe;
1768 	dst_state->active_lock.ptr = src->active_lock.ptr;
1769 	dst_state->active_lock.id = src->active_lock.id;
1770 	dst_state->branches = src->branches;
1771 	dst_state->parent = src->parent;
1772 	dst_state->first_insn_idx = src->first_insn_idx;
1773 	dst_state->last_insn_idx = src->last_insn_idx;
1774 	for (i = 0; i <= src->curframe; i++) {
1775 		dst = dst_state->frame[i];
1776 		if (!dst) {
1777 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
1778 			if (!dst)
1779 				return -ENOMEM;
1780 			dst_state->frame[i] = dst;
1781 		}
1782 		err = copy_func_state(dst, src->frame[i]);
1783 		if (err)
1784 			return err;
1785 	}
1786 	return 0;
1787 }
1788 
1789 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
1790 {
1791 	while (st) {
1792 		u32 br = --st->branches;
1793 
1794 		/* WARN_ON(br > 1) technically makes sense here,
1795 		 * but see comment in push_stack(), hence:
1796 		 */
1797 		WARN_ONCE((int)br < 0,
1798 			  "BUG update_branch_counts:branches_to_explore=%d\n",
1799 			  br);
1800 		if (br)
1801 			break;
1802 		st = st->parent;
1803 	}
1804 }
1805 
1806 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
1807 		     int *insn_idx, bool pop_log)
1808 {
1809 	struct bpf_verifier_state *cur = env->cur_state;
1810 	struct bpf_verifier_stack_elem *elem, *head = env->head;
1811 	int err;
1812 
1813 	if (env->head == NULL)
1814 		return -ENOENT;
1815 
1816 	if (cur) {
1817 		err = copy_verifier_state(cur, &head->st);
1818 		if (err)
1819 			return err;
1820 	}
1821 	if (pop_log)
1822 		bpf_vlog_reset(&env->log, head->log_pos);
1823 	if (insn_idx)
1824 		*insn_idx = head->insn_idx;
1825 	if (prev_insn_idx)
1826 		*prev_insn_idx = head->prev_insn_idx;
1827 	elem = head->next;
1828 	free_verifier_state(&head->st, false);
1829 	kfree(head);
1830 	env->head = elem;
1831 	env->stack_size--;
1832 	return 0;
1833 }
1834 
1835 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1836 					     int insn_idx, int prev_insn_idx,
1837 					     bool speculative)
1838 {
1839 	struct bpf_verifier_state *cur = env->cur_state;
1840 	struct bpf_verifier_stack_elem *elem;
1841 	int err;
1842 
1843 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1844 	if (!elem)
1845 		goto err;
1846 
1847 	elem->insn_idx = insn_idx;
1848 	elem->prev_insn_idx = prev_insn_idx;
1849 	elem->next = env->head;
1850 	elem->log_pos = env->log.end_pos;
1851 	env->head = elem;
1852 	env->stack_size++;
1853 	err = copy_verifier_state(&elem->st, cur);
1854 	if (err)
1855 		goto err;
1856 	elem->st.speculative |= speculative;
1857 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1858 		verbose(env, "The sequence of %d jumps is too complex.\n",
1859 			env->stack_size);
1860 		goto err;
1861 	}
1862 	if (elem->st.parent) {
1863 		++elem->st.parent->branches;
1864 		/* WARN_ON(branches > 2) technically makes sense here,
1865 		 * but
1866 		 * 1. speculative states will bump 'branches' for non-branch
1867 		 * instructions
1868 		 * 2. is_state_visited() heuristics may decide not to create
1869 		 * a new state for a sequence of branches and all such current
1870 		 * and cloned states will be pointing to a single parent state
1871 		 * which might have large 'branches' count.
1872 		 */
1873 	}
1874 	return &elem->st;
1875 err:
1876 	free_verifier_state(env->cur_state, true);
1877 	env->cur_state = NULL;
1878 	/* pop all elements and return */
1879 	while (!pop_stack(env, NULL, NULL, false));
1880 	return NULL;
1881 }
1882 
1883 #define CALLER_SAVED_REGS 6
1884 static const int caller_saved[CALLER_SAVED_REGS] = {
1885 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1886 };
1887 
1888 /* This helper doesn't clear reg->id */
1889 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1890 {
1891 	reg->var_off = tnum_const(imm);
1892 	reg->smin_value = (s64)imm;
1893 	reg->smax_value = (s64)imm;
1894 	reg->umin_value = imm;
1895 	reg->umax_value = imm;
1896 
1897 	reg->s32_min_value = (s32)imm;
1898 	reg->s32_max_value = (s32)imm;
1899 	reg->u32_min_value = (u32)imm;
1900 	reg->u32_max_value = (u32)imm;
1901 }
1902 
1903 /* Mark the unknown part of a register (variable offset or scalar value) as
1904  * known to have the value @imm.
1905  */
1906 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1907 {
1908 	/* Clear off and union(map_ptr, range) */
1909 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1910 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1911 	reg->id = 0;
1912 	reg->ref_obj_id = 0;
1913 	___mark_reg_known(reg, imm);
1914 }
1915 
1916 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1917 {
1918 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1919 	reg->s32_min_value = (s32)imm;
1920 	reg->s32_max_value = (s32)imm;
1921 	reg->u32_min_value = (u32)imm;
1922 	reg->u32_max_value = (u32)imm;
1923 }
1924 
1925 /* Mark the 'variable offset' part of a register as zero.  This should be
1926  * used only on registers holding a pointer type.
1927  */
1928 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1929 {
1930 	__mark_reg_known(reg, 0);
1931 }
1932 
1933 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1934 {
1935 	__mark_reg_known(reg, 0);
1936 	reg->type = SCALAR_VALUE;
1937 }
1938 
1939 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1940 				struct bpf_reg_state *regs, u32 regno)
1941 {
1942 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1943 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1944 		/* Something bad happened, let's kill all regs */
1945 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1946 			__mark_reg_not_init(env, regs + regno);
1947 		return;
1948 	}
1949 	__mark_reg_known_zero(regs + regno);
1950 }
1951 
1952 static void __mark_dynptr_reg(struct bpf_reg_state *reg, enum bpf_dynptr_type type,
1953 			      bool first_slot, int dynptr_id)
1954 {
1955 	/* reg->type has no meaning for STACK_DYNPTR, but when we set reg for
1956 	 * callback arguments, it does need to be CONST_PTR_TO_DYNPTR, so simply
1957 	 * set it unconditionally as it is ignored for STACK_DYNPTR anyway.
1958 	 */
1959 	__mark_reg_known_zero(reg);
1960 	reg->type = CONST_PTR_TO_DYNPTR;
1961 	/* Give each dynptr a unique id to uniquely associate slices to it. */
1962 	reg->id = dynptr_id;
1963 	reg->dynptr.type = type;
1964 	reg->dynptr.first_slot = first_slot;
1965 }
1966 
1967 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1968 {
1969 	if (base_type(reg->type) == PTR_TO_MAP_VALUE) {
1970 		const struct bpf_map *map = reg->map_ptr;
1971 
1972 		if (map->inner_map_meta) {
1973 			reg->type = CONST_PTR_TO_MAP;
1974 			reg->map_ptr = map->inner_map_meta;
1975 			/* transfer reg's id which is unique for every map_lookup_elem
1976 			 * as UID of the inner map.
1977 			 */
1978 			if (btf_record_has_field(map->inner_map_meta->record, BPF_TIMER))
1979 				reg->map_uid = reg->id;
1980 		} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1981 			reg->type = PTR_TO_XDP_SOCK;
1982 		} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1983 			   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1984 			reg->type = PTR_TO_SOCKET;
1985 		} else {
1986 			reg->type = PTR_TO_MAP_VALUE;
1987 		}
1988 		return;
1989 	}
1990 
1991 	reg->type &= ~PTR_MAYBE_NULL;
1992 }
1993 
1994 static void mark_reg_graph_node(struct bpf_reg_state *regs, u32 regno,
1995 				struct btf_field_graph_root *ds_head)
1996 {
1997 	__mark_reg_known_zero(&regs[regno]);
1998 	regs[regno].type = PTR_TO_BTF_ID | MEM_ALLOC;
1999 	regs[regno].btf = ds_head->btf;
2000 	regs[regno].btf_id = ds_head->value_btf_id;
2001 	regs[regno].off = ds_head->node_offset;
2002 }
2003 
2004 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
2005 {
2006 	return type_is_pkt_pointer(reg->type);
2007 }
2008 
2009 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
2010 {
2011 	return reg_is_pkt_pointer(reg) ||
2012 	       reg->type == PTR_TO_PACKET_END;
2013 }
2014 
2015 static bool reg_is_dynptr_slice_pkt(const struct bpf_reg_state *reg)
2016 {
2017 	return base_type(reg->type) == PTR_TO_MEM &&
2018 		(reg->type & DYNPTR_TYPE_SKB || reg->type & DYNPTR_TYPE_XDP);
2019 }
2020 
2021 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
2022 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
2023 				    enum bpf_reg_type which)
2024 {
2025 	/* The register can already have a range from prior markings.
2026 	 * This is fine as long as it hasn't been advanced from its
2027 	 * origin.
2028 	 */
2029 	return reg->type == which &&
2030 	       reg->id == 0 &&
2031 	       reg->off == 0 &&
2032 	       tnum_equals_const(reg->var_off, 0);
2033 }
2034 
2035 /* Reset the min/max bounds of a register */
2036 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
2037 {
2038 	reg->smin_value = S64_MIN;
2039 	reg->smax_value = S64_MAX;
2040 	reg->umin_value = 0;
2041 	reg->umax_value = U64_MAX;
2042 
2043 	reg->s32_min_value = S32_MIN;
2044 	reg->s32_max_value = S32_MAX;
2045 	reg->u32_min_value = 0;
2046 	reg->u32_max_value = U32_MAX;
2047 }
2048 
2049 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
2050 {
2051 	reg->smin_value = S64_MIN;
2052 	reg->smax_value = S64_MAX;
2053 	reg->umin_value = 0;
2054 	reg->umax_value = U64_MAX;
2055 }
2056 
2057 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
2058 {
2059 	reg->s32_min_value = S32_MIN;
2060 	reg->s32_max_value = S32_MAX;
2061 	reg->u32_min_value = 0;
2062 	reg->u32_max_value = U32_MAX;
2063 }
2064 
2065 static void __update_reg32_bounds(struct bpf_reg_state *reg)
2066 {
2067 	struct tnum var32_off = tnum_subreg(reg->var_off);
2068 
2069 	/* min signed is max(sign bit) | min(other bits) */
2070 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
2071 			var32_off.value | (var32_off.mask & S32_MIN));
2072 	/* max signed is min(sign bit) | max(other bits) */
2073 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
2074 			var32_off.value | (var32_off.mask & S32_MAX));
2075 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
2076 	reg->u32_max_value = min(reg->u32_max_value,
2077 				 (u32)(var32_off.value | var32_off.mask));
2078 }
2079 
2080 static void __update_reg64_bounds(struct bpf_reg_state *reg)
2081 {
2082 	/* min signed is max(sign bit) | min(other bits) */
2083 	reg->smin_value = max_t(s64, reg->smin_value,
2084 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
2085 	/* max signed is min(sign bit) | max(other bits) */
2086 	reg->smax_value = min_t(s64, reg->smax_value,
2087 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
2088 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
2089 	reg->umax_value = min(reg->umax_value,
2090 			      reg->var_off.value | reg->var_off.mask);
2091 }
2092 
2093 static void __update_reg_bounds(struct bpf_reg_state *reg)
2094 {
2095 	__update_reg32_bounds(reg);
2096 	__update_reg64_bounds(reg);
2097 }
2098 
2099 /* Uses signed min/max values to inform unsigned, and vice-versa */
2100 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
2101 {
2102 	/* Learn sign from signed bounds.
2103 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2104 	 * are the same, so combine.  This works even in the negative case, e.g.
2105 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2106 	 */
2107 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
2108 		reg->s32_min_value = reg->u32_min_value =
2109 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2110 		reg->s32_max_value = reg->u32_max_value =
2111 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2112 		return;
2113 	}
2114 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2115 	 * boundary, so we must be careful.
2116 	 */
2117 	if ((s32)reg->u32_max_value >= 0) {
2118 		/* Positive.  We can't learn anything from the smin, but smax
2119 		 * is positive, hence safe.
2120 		 */
2121 		reg->s32_min_value = reg->u32_min_value;
2122 		reg->s32_max_value = reg->u32_max_value =
2123 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
2124 	} else if ((s32)reg->u32_min_value < 0) {
2125 		/* Negative.  We can't learn anything from the smax, but smin
2126 		 * is negative, hence safe.
2127 		 */
2128 		reg->s32_min_value = reg->u32_min_value =
2129 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
2130 		reg->s32_max_value = reg->u32_max_value;
2131 	}
2132 }
2133 
2134 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
2135 {
2136 	/* Learn sign from signed bounds.
2137 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
2138 	 * are the same, so combine.  This works even in the negative case, e.g.
2139 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
2140 	 */
2141 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
2142 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2143 							  reg->umin_value);
2144 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2145 							  reg->umax_value);
2146 		return;
2147 	}
2148 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
2149 	 * boundary, so we must be careful.
2150 	 */
2151 	if ((s64)reg->umax_value >= 0) {
2152 		/* Positive.  We can't learn anything from the smin, but smax
2153 		 * is positive, hence safe.
2154 		 */
2155 		reg->smin_value = reg->umin_value;
2156 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
2157 							  reg->umax_value);
2158 	} else if ((s64)reg->umin_value < 0) {
2159 		/* Negative.  We can't learn anything from the smax, but smin
2160 		 * is negative, hence safe.
2161 		 */
2162 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
2163 							  reg->umin_value);
2164 		reg->smax_value = reg->umax_value;
2165 	}
2166 }
2167 
2168 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
2169 {
2170 	__reg32_deduce_bounds(reg);
2171 	__reg64_deduce_bounds(reg);
2172 }
2173 
2174 /* Attempts to improve var_off based on unsigned min/max information */
2175 static void __reg_bound_offset(struct bpf_reg_state *reg)
2176 {
2177 	struct tnum var64_off = tnum_intersect(reg->var_off,
2178 					       tnum_range(reg->umin_value,
2179 							  reg->umax_value));
2180 	struct tnum var32_off = tnum_intersect(tnum_subreg(var64_off),
2181 					       tnum_range(reg->u32_min_value,
2182 							  reg->u32_max_value));
2183 
2184 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
2185 }
2186 
2187 static void reg_bounds_sync(struct bpf_reg_state *reg)
2188 {
2189 	/* We might have learned new bounds from the var_off. */
2190 	__update_reg_bounds(reg);
2191 	/* We might have learned something about the sign bit. */
2192 	__reg_deduce_bounds(reg);
2193 	/* We might have learned some bits from the bounds. */
2194 	__reg_bound_offset(reg);
2195 	/* Intersecting with the old var_off might have improved our bounds
2196 	 * slightly, e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2197 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
2198 	 */
2199 	__update_reg_bounds(reg);
2200 }
2201 
2202 static bool __reg32_bound_s64(s32 a)
2203 {
2204 	return a >= 0 && a <= S32_MAX;
2205 }
2206 
2207 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
2208 {
2209 	reg->umin_value = reg->u32_min_value;
2210 	reg->umax_value = reg->u32_max_value;
2211 
2212 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds but must
2213 	 * be positive otherwise set to worse case bounds and refine later
2214 	 * from tnum.
2215 	 */
2216 	if (__reg32_bound_s64(reg->s32_min_value) &&
2217 	    __reg32_bound_s64(reg->s32_max_value)) {
2218 		reg->smin_value = reg->s32_min_value;
2219 		reg->smax_value = reg->s32_max_value;
2220 	} else {
2221 		reg->smin_value = 0;
2222 		reg->smax_value = U32_MAX;
2223 	}
2224 }
2225 
2226 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
2227 {
2228 	/* special case when 64-bit register has upper 32-bit register
2229 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
2230 	 * allowing us to use 32-bit bounds directly,
2231 	 */
2232 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
2233 		__reg_assign_32_into_64(reg);
2234 	} else {
2235 		/* Otherwise the best we can do is push lower 32bit known and
2236 		 * unknown bits into register (var_off set from jmp logic)
2237 		 * then learn as much as possible from the 64-bit tnum
2238 		 * known and unknown bits. The previous smin/smax bounds are
2239 		 * invalid here because of jmp32 compare so mark them unknown
2240 		 * so they do not impact tnum bounds calculation.
2241 		 */
2242 		__mark_reg64_unbounded(reg);
2243 	}
2244 	reg_bounds_sync(reg);
2245 }
2246 
2247 static bool __reg64_bound_s32(s64 a)
2248 {
2249 	return a >= S32_MIN && a <= S32_MAX;
2250 }
2251 
2252 static bool __reg64_bound_u32(u64 a)
2253 {
2254 	return a >= U32_MIN && a <= U32_MAX;
2255 }
2256 
2257 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
2258 {
2259 	__mark_reg32_unbounded(reg);
2260 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
2261 		reg->s32_min_value = (s32)reg->smin_value;
2262 		reg->s32_max_value = (s32)reg->smax_value;
2263 	}
2264 	if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
2265 		reg->u32_min_value = (u32)reg->umin_value;
2266 		reg->u32_max_value = (u32)reg->umax_value;
2267 	}
2268 	reg_bounds_sync(reg);
2269 }
2270 
2271 /* Mark a register as having a completely unknown (scalar) value. */
2272 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
2273 			       struct bpf_reg_state *reg)
2274 {
2275 	/*
2276 	 * Clear type, off, and union(map_ptr, range) and
2277 	 * padding between 'type' and union
2278 	 */
2279 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
2280 	reg->type = SCALAR_VALUE;
2281 	reg->id = 0;
2282 	reg->ref_obj_id = 0;
2283 	reg->var_off = tnum_unknown;
2284 	reg->frameno = 0;
2285 	reg->precise = !env->bpf_capable;
2286 	__mark_reg_unbounded(reg);
2287 }
2288 
2289 static void mark_reg_unknown(struct bpf_verifier_env *env,
2290 			     struct bpf_reg_state *regs, u32 regno)
2291 {
2292 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2293 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
2294 		/* Something bad happened, let's kill all regs except FP */
2295 		for (regno = 0; regno < BPF_REG_FP; regno++)
2296 			__mark_reg_not_init(env, regs + regno);
2297 		return;
2298 	}
2299 	__mark_reg_unknown(env, regs + regno);
2300 }
2301 
2302 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
2303 				struct bpf_reg_state *reg)
2304 {
2305 	__mark_reg_unknown(env, reg);
2306 	reg->type = NOT_INIT;
2307 }
2308 
2309 static void mark_reg_not_init(struct bpf_verifier_env *env,
2310 			      struct bpf_reg_state *regs, u32 regno)
2311 {
2312 	if (WARN_ON(regno >= MAX_BPF_REG)) {
2313 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
2314 		/* Something bad happened, let's kill all regs except FP */
2315 		for (regno = 0; regno < BPF_REG_FP; regno++)
2316 			__mark_reg_not_init(env, regs + regno);
2317 		return;
2318 	}
2319 	__mark_reg_not_init(env, regs + regno);
2320 }
2321 
2322 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
2323 			    struct bpf_reg_state *regs, u32 regno,
2324 			    enum bpf_reg_type reg_type,
2325 			    struct btf *btf, u32 btf_id,
2326 			    enum bpf_type_flag flag)
2327 {
2328 	if (reg_type == SCALAR_VALUE) {
2329 		mark_reg_unknown(env, regs, regno);
2330 		return;
2331 	}
2332 	mark_reg_known_zero(env, regs, regno);
2333 	regs[regno].type = PTR_TO_BTF_ID | flag;
2334 	regs[regno].btf = btf;
2335 	regs[regno].btf_id = btf_id;
2336 }
2337 
2338 #define DEF_NOT_SUBREG	(0)
2339 static void init_reg_state(struct bpf_verifier_env *env,
2340 			   struct bpf_func_state *state)
2341 {
2342 	struct bpf_reg_state *regs = state->regs;
2343 	int i;
2344 
2345 	for (i = 0; i < MAX_BPF_REG; i++) {
2346 		mark_reg_not_init(env, regs, i);
2347 		regs[i].live = REG_LIVE_NONE;
2348 		regs[i].parent = NULL;
2349 		regs[i].subreg_def = DEF_NOT_SUBREG;
2350 	}
2351 
2352 	/* frame pointer */
2353 	regs[BPF_REG_FP].type = PTR_TO_STACK;
2354 	mark_reg_known_zero(env, regs, BPF_REG_FP);
2355 	regs[BPF_REG_FP].frameno = state->frameno;
2356 }
2357 
2358 #define BPF_MAIN_FUNC (-1)
2359 static void init_func_state(struct bpf_verifier_env *env,
2360 			    struct bpf_func_state *state,
2361 			    int callsite, int frameno, int subprogno)
2362 {
2363 	state->callsite = callsite;
2364 	state->frameno = frameno;
2365 	state->subprogno = subprogno;
2366 	state->callback_ret_range = tnum_range(0, 0);
2367 	init_reg_state(env, state);
2368 	mark_verifier_state_scratched(env);
2369 }
2370 
2371 /* Similar to push_stack(), but for async callbacks */
2372 static struct bpf_verifier_state *push_async_cb(struct bpf_verifier_env *env,
2373 						int insn_idx, int prev_insn_idx,
2374 						int subprog)
2375 {
2376 	struct bpf_verifier_stack_elem *elem;
2377 	struct bpf_func_state *frame;
2378 
2379 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
2380 	if (!elem)
2381 		goto err;
2382 
2383 	elem->insn_idx = insn_idx;
2384 	elem->prev_insn_idx = prev_insn_idx;
2385 	elem->next = env->head;
2386 	elem->log_pos = env->log.end_pos;
2387 	env->head = elem;
2388 	env->stack_size++;
2389 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
2390 		verbose(env,
2391 			"The sequence of %d jumps is too complex for async cb.\n",
2392 			env->stack_size);
2393 		goto err;
2394 	}
2395 	/* Unlike push_stack() do not copy_verifier_state().
2396 	 * The caller state doesn't matter.
2397 	 * This is async callback. It starts in a fresh stack.
2398 	 * Initialize it similar to do_check_common().
2399 	 */
2400 	elem->st.branches = 1;
2401 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
2402 	if (!frame)
2403 		goto err;
2404 	init_func_state(env, frame,
2405 			BPF_MAIN_FUNC /* callsite */,
2406 			0 /* frameno within this callchain */,
2407 			subprog /* subprog number within this prog */);
2408 	elem->st.frame[0] = frame;
2409 	return &elem->st;
2410 err:
2411 	free_verifier_state(env->cur_state, true);
2412 	env->cur_state = NULL;
2413 	/* pop all elements and return */
2414 	while (!pop_stack(env, NULL, NULL, false));
2415 	return NULL;
2416 }
2417 
2418 
2419 enum reg_arg_type {
2420 	SRC_OP,		/* register is used as source operand */
2421 	DST_OP,		/* register is used as destination operand */
2422 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
2423 };
2424 
2425 static int cmp_subprogs(const void *a, const void *b)
2426 {
2427 	return ((struct bpf_subprog_info *)a)->start -
2428 	       ((struct bpf_subprog_info *)b)->start;
2429 }
2430 
2431 static int find_subprog(struct bpf_verifier_env *env, int off)
2432 {
2433 	struct bpf_subprog_info *p;
2434 
2435 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
2436 		    sizeof(env->subprog_info[0]), cmp_subprogs);
2437 	if (!p)
2438 		return -ENOENT;
2439 	return p - env->subprog_info;
2440 
2441 }
2442 
2443 static int add_subprog(struct bpf_verifier_env *env, int off)
2444 {
2445 	int insn_cnt = env->prog->len;
2446 	int ret;
2447 
2448 	if (off >= insn_cnt || off < 0) {
2449 		verbose(env, "call to invalid destination\n");
2450 		return -EINVAL;
2451 	}
2452 	ret = find_subprog(env, off);
2453 	if (ret >= 0)
2454 		return ret;
2455 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
2456 		verbose(env, "too many subprograms\n");
2457 		return -E2BIG;
2458 	}
2459 	/* determine subprog starts. The end is one before the next starts */
2460 	env->subprog_info[env->subprog_cnt++].start = off;
2461 	sort(env->subprog_info, env->subprog_cnt,
2462 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
2463 	return env->subprog_cnt - 1;
2464 }
2465 
2466 #define MAX_KFUNC_DESCS 256
2467 #define MAX_KFUNC_BTFS	256
2468 
2469 struct bpf_kfunc_desc {
2470 	struct btf_func_model func_model;
2471 	u32 func_id;
2472 	s32 imm;
2473 	u16 offset;
2474 	unsigned long addr;
2475 };
2476 
2477 struct bpf_kfunc_btf {
2478 	struct btf *btf;
2479 	struct module *module;
2480 	u16 offset;
2481 };
2482 
2483 struct bpf_kfunc_desc_tab {
2484 	/* Sorted by func_id (BTF ID) and offset (fd_array offset) during
2485 	 * verification. JITs do lookups by bpf_insn, where func_id may not be
2486 	 * available, therefore at the end of verification do_misc_fixups()
2487 	 * sorts this by imm and offset.
2488 	 */
2489 	struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
2490 	u32 nr_descs;
2491 };
2492 
2493 struct bpf_kfunc_btf_tab {
2494 	struct bpf_kfunc_btf descs[MAX_KFUNC_BTFS];
2495 	u32 nr_descs;
2496 };
2497 
2498 static int kfunc_desc_cmp_by_id_off(const void *a, const void *b)
2499 {
2500 	const struct bpf_kfunc_desc *d0 = a;
2501 	const struct bpf_kfunc_desc *d1 = b;
2502 
2503 	/* func_id is not greater than BTF_MAX_TYPE */
2504 	return d0->func_id - d1->func_id ?: d0->offset - d1->offset;
2505 }
2506 
2507 static int kfunc_btf_cmp_by_off(const void *a, const void *b)
2508 {
2509 	const struct bpf_kfunc_btf *d0 = a;
2510 	const struct bpf_kfunc_btf *d1 = b;
2511 
2512 	return d0->offset - d1->offset;
2513 }
2514 
2515 static const struct bpf_kfunc_desc *
2516 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id, u16 offset)
2517 {
2518 	struct bpf_kfunc_desc desc = {
2519 		.func_id = func_id,
2520 		.offset = offset,
2521 	};
2522 	struct bpf_kfunc_desc_tab *tab;
2523 
2524 	tab = prog->aux->kfunc_tab;
2525 	return bsearch(&desc, tab->descs, tab->nr_descs,
2526 		       sizeof(tab->descs[0]), kfunc_desc_cmp_by_id_off);
2527 }
2528 
2529 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2530 		       u16 btf_fd_idx, u8 **func_addr)
2531 {
2532 	const struct bpf_kfunc_desc *desc;
2533 
2534 	desc = find_kfunc_desc(prog, func_id, btf_fd_idx);
2535 	if (!desc)
2536 		return -EFAULT;
2537 
2538 	*func_addr = (u8 *)desc->addr;
2539 	return 0;
2540 }
2541 
2542 static struct btf *__find_kfunc_desc_btf(struct bpf_verifier_env *env,
2543 					 s16 offset)
2544 {
2545 	struct bpf_kfunc_btf kf_btf = { .offset = offset };
2546 	struct bpf_kfunc_btf_tab *tab;
2547 	struct bpf_kfunc_btf *b;
2548 	struct module *mod;
2549 	struct btf *btf;
2550 	int btf_fd;
2551 
2552 	tab = env->prog->aux->kfunc_btf_tab;
2553 	b = bsearch(&kf_btf, tab->descs, tab->nr_descs,
2554 		    sizeof(tab->descs[0]), kfunc_btf_cmp_by_off);
2555 	if (!b) {
2556 		if (tab->nr_descs == MAX_KFUNC_BTFS) {
2557 			verbose(env, "too many different module BTFs\n");
2558 			return ERR_PTR(-E2BIG);
2559 		}
2560 
2561 		if (bpfptr_is_null(env->fd_array)) {
2562 			verbose(env, "kfunc offset > 0 without fd_array is invalid\n");
2563 			return ERR_PTR(-EPROTO);
2564 		}
2565 
2566 		if (copy_from_bpfptr_offset(&btf_fd, env->fd_array,
2567 					    offset * sizeof(btf_fd),
2568 					    sizeof(btf_fd)))
2569 			return ERR_PTR(-EFAULT);
2570 
2571 		btf = btf_get_by_fd(btf_fd);
2572 		if (IS_ERR(btf)) {
2573 			verbose(env, "invalid module BTF fd specified\n");
2574 			return btf;
2575 		}
2576 
2577 		if (!btf_is_module(btf)) {
2578 			verbose(env, "BTF fd for kfunc is not a module BTF\n");
2579 			btf_put(btf);
2580 			return ERR_PTR(-EINVAL);
2581 		}
2582 
2583 		mod = btf_try_get_module(btf);
2584 		if (!mod) {
2585 			btf_put(btf);
2586 			return ERR_PTR(-ENXIO);
2587 		}
2588 
2589 		b = &tab->descs[tab->nr_descs++];
2590 		b->btf = btf;
2591 		b->module = mod;
2592 		b->offset = offset;
2593 
2594 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2595 		     kfunc_btf_cmp_by_off, NULL);
2596 	}
2597 	return b->btf;
2598 }
2599 
2600 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab)
2601 {
2602 	if (!tab)
2603 		return;
2604 
2605 	while (tab->nr_descs--) {
2606 		module_put(tab->descs[tab->nr_descs].module);
2607 		btf_put(tab->descs[tab->nr_descs].btf);
2608 	}
2609 	kfree(tab);
2610 }
2611 
2612 static struct btf *find_kfunc_desc_btf(struct bpf_verifier_env *env, s16 offset)
2613 {
2614 	if (offset) {
2615 		if (offset < 0) {
2616 			/* In the future, this can be allowed to increase limit
2617 			 * of fd index into fd_array, interpreted as u16.
2618 			 */
2619 			verbose(env, "negative offset disallowed for kernel module function call\n");
2620 			return ERR_PTR(-EINVAL);
2621 		}
2622 
2623 		return __find_kfunc_desc_btf(env, offset);
2624 	}
2625 	return btf_vmlinux ?: ERR_PTR(-ENOENT);
2626 }
2627 
2628 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id, s16 offset)
2629 {
2630 	const struct btf_type *func, *func_proto;
2631 	struct bpf_kfunc_btf_tab *btf_tab;
2632 	struct bpf_kfunc_desc_tab *tab;
2633 	struct bpf_prog_aux *prog_aux;
2634 	struct bpf_kfunc_desc *desc;
2635 	const char *func_name;
2636 	struct btf *desc_btf;
2637 	unsigned long call_imm;
2638 	unsigned long addr;
2639 	int err;
2640 
2641 	prog_aux = env->prog->aux;
2642 	tab = prog_aux->kfunc_tab;
2643 	btf_tab = prog_aux->kfunc_btf_tab;
2644 	if (!tab) {
2645 		if (!btf_vmlinux) {
2646 			verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
2647 			return -ENOTSUPP;
2648 		}
2649 
2650 		if (!env->prog->jit_requested) {
2651 			verbose(env, "JIT is required for calling kernel function\n");
2652 			return -ENOTSUPP;
2653 		}
2654 
2655 		if (!bpf_jit_supports_kfunc_call()) {
2656 			verbose(env, "JIT does not support calling kernel function\n");
2657 			return -ENOTSUPP;
2658 		}
2659 
2660 		if (!env->prog->gpl_compatible) {
2661 			verbose(env, "cannot call kernel function from non-GPL compatible program\n");
2662 			return -EINVAL;
2663 		}
2664 
2665 		tab = kzalloc(sizeof(*tab), GFP_KERNEL);
2666 		if (!tab)
2667 			return -ENOMEM;
2668 		prog_aux->kfunc_tab = tab;
2669 	}
2670 
2671 	/* func_id == 0 is always invalid, but instead of returning an error, be
2672 	 * conservative and wait until the code elimination pass before returning
2673 	 * error, so that invalid calls that get pruned out can be in BPF programs
2674 	 * loaded from userspace.  It is also required that offset be untouched
2675 	 * for such calls.
2676 	 */
2677 	if (!func_id && !offset)
2678 		return 0;
2679 
2680 	if (!btf_tab && offset) {
2681 		btf_tab = kzalloc(sizeof(*btf_tab), GFP_KERNEL);
2682 		if (!btf_tab)
2683 			return -ENOMEM;
2684 		prog_aux->kfunc_btf_tab = btf_tab;
2685 	}
2686 
2687 	desc_btf = find_kfunc_desc_btf(env, offset);
2688 	if (IS_ERR(desc_btf)) {
2689 		verbose(env, "failed to find BTF for kernel function\n");
2690 		return PTR_ERR(desc_btf);
2691 	}
2692 
2693 	if (find_kfunc_desc(env->prog, func_id, offset))
2694 		return 0;
2695 
2696 	if (tab->nr_descs == MAX_KFUNC_DESCS) {
2697 		verbose(env, "too many different kernel function calls\n");
2698 		return -E2BIG;
2699 	}
2700 
2701 	func = btf_type_by_id(desc_btf, func_id);
2702 	if (!func || !btf_type_is_func(func)) {
2703 		verbose(env, "kernel btf_id %u is not a function\n",
2704 			func_id);
2705 		return -EINVAL;
2706 	}
2707 	func_proto = btf_type_by_id(desc_btf, func->type);
2708 	if (!func_proto || !btf_type_is_func_proto(func_proto)) {
2709 		verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
2710 			func_id);
2711 		return -EINVAL;
2712 	}
2713 
2714 	func_name = btf_name_by_offset(desc_btf, func->name_off);
2715 	addr = kallsyms_lookup_name(func_name);
2716 	if (!addr) {
2717 		verbose(env, "cannot find address for kernel function %s\n",
2718 			func_name);
2719 		return -EINVAL;
2720 	}
2721 	specialize_kfunc(env, func_id, offset, &addr);
2722 
2723 	if (bpf_jit_supports_far_kfunc_call()) {
2724 		call_imm = func_id;
2725 	} else {
2726 		call_imm = BPF_CALL_IMM(addr);
2727 		/* Check whether the relative offset overflows desc->imm */
2728 		if ((unsigned long)(s32)call_imm != call_imm) {
2729 			verbose(env, "address of kernel function %s is out of range\n",
2730 				func_name);
2731 			return -EINVAL;
2732 		}
2733 	}
2734 
2735 	if (bpf_dev_bound_kfunc_id(func_id)) {
2736 		err = bpf_dev_bound_kfunc_check(&env->log, prog_aux);
2737 		if (err)
2738 			return err;
2739 	}
2740 
2741 	desc = &tab->descs[tab->nr_descs++];
2742 	desc->func_id = func_id;
2743 	desc->imm = call_imm;
2744 	desc->offset = offset;
2745 	desc->addr = addr;
2746 	err = btf_distill_func_proto(&env->log, desc_btf,
2747 				     func_proto, func_name,
2748 				     &desc->func_model);
2749 	if (!err)
2750 		sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2751 		     kfunc_desc_cmp_by_id_off, NULL);
2752 	return err;
2753 }
2754 
2755 static int kfunc_desc_cmp_by_imm_off(const void *a, const void *b)
2756 {
2757 	const struct bpf_kfunc_desc *d0 = a;
2758 	const struct bpf_kfunc_desc *d1 = b;
2759 
2760 	if (d0->imm != d1->imm)
2761 		return d0->imm < d1->imm ? -1 : 1;
2762 	if (d0->offset != d1->offset)
2763 		return d0->offset < d1->offset ? -1 : 1;
2764 	return 0;
2765 }
2766 
2767 static void sort_kfunc_descs_by_imm_off(struct bpf_prog *prog)
2768 {
2769 	struct bpf_kfunc_desc_tab *tab;
2770 
2771 	tab = prog->aux->kfunc_tab;
2772 	if (!tab)
2773 		return;
2774 
2775 	sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
2776 	     kfunc_desc_cmp_by_imm_off, NULL);
2777 }
2778 
2779 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2780 {
2781 	return !!prog->aux->kfunc_tab;
2782 }
2783 
2784 const struct btf_func_model *
2785 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2786 			 const struct bpf_insn *insn)
2787 {
2788 	const struct bpf_kfunc_desc desc = {
2789 		.imm = insn->imm,
2790 		.offset = insn->off,
2791 	};
2792 	const struct bpf_kfunc_desc *res;
2793 	struct bpf_kfunc_desc_tab *tab;
2794 
2795 	tab = prog->aux->kfunc_tab;
2796 	res = bsearch(&desc, tab->descs, tab->nr_descs,
2797 		      sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm_off);
2798 
2799 	return res ? &res->func_model : NULL;
2800 }
2801 
2802 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
2803 {
2804 	struct bpf_subprog_info *subprog = env->subprog_info;
2805 	struct bpf_insn *insn = env->prog->insnsi;
2806 	int i, ret, insn_cnt = env->prog->len;
2807 
2808 	/* Add entry function. */
2809 	ret = add_subprog(env, 0);
2810 	if (ret)
2811 		return ret;
2812 
2813 	for (i = 0; i < insn_cnt; i++, insn++) {
2814 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
2815 		    !bpf_pseudo_kfunc_call(insn))
2816 			continue;
2817 
2818 		if (!env->bpf_capable) {
2819 			verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
2820 			return -EPERM;
2821 		}
2822 
2823 		if (bpf_pseudo_func(insn) || bpf_pseudo_call(insn))
2824 			ret = add_subprog(env, i + insn->imm + 1);
2825 		else
2826 			ret = add_kfunc_call(env, insn->imm, insn->off);
2827 
2828 		if (ret < 0)
2829 			return ret;
2830 	}
2831 
2832 	/* Add a fake 'exit' subprog which could simplify subprog iteration
2833 	 * logic. 'subprog_cnt' should not be increased.
2834 	 */
2835 	subprog[env->subprog_cnt].start = insn_cnt;
2836 
2837 	if (env->log.level & BPF_LOG_LEVEL2)
2838 		for (i = 0; i < env->subprog_cnt; i++)
2839 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
2840 
2841 	return 0;
2842 }
2843 
2844 static int check_subprogs(struct bpf_verifier_env *env)
2845 {
2846 	int i, subprog_start, subprog_end, off, cur_subprog = 0;
2847 	struct bpf_subprog_info *subprog = env->subprog_info;
2848 	struct bpf_insn *insn = env->prog->insnsi;
2849 	int insn_cnt = env->prog->len;
2850 
2851 	/* now check that all jumps are within the same subprog */
2852 	subprog_start = subprog[cur_subprog].start;
2853 	subprog_end = subprog[cur_subprog + 1].start;
2854 	for (i = 0; i < insn_cnt; i++) {
2855 		u8 code = insn[i].code;
2856 
2857 		if (code == (BPF_JMP | BPF_CALL) &&
2858 		    insn[i].src_reg == 0 &&
2859 		    insn[i].imm == BPF_FUNC_tail_call)
2860 			subprog[cur_subprog].has_tail_call = true;
2861 		if (BPF_CLASS(code) == BPF_LD &&
2862 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
2863 			subprog[cur_subprog].has_ld_abs = true;
2864 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
2865 			goto next;
2866 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
2867 			goto next;
2868 		if (code == (BPF_JMP32 | BPF_JA))
2869 			off = i + insn[i].imm + 1;
2870 		else
2871 			off = i + insn[i].off + 1;
2872 		if (off < subprog_start || off >= subprog_end) {
2873 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
2874 			return -EINVAL;
2875 		}
2876 next:
2877 		if (i == subprog_end - 1) {
2878 			/* to avoid fall-through from one subprog into another
2879 			 * the last insn of the subprog should be either exit
2880 			 * or unconditional jump back
2881 			 */
2882 			if (code != (BPF_JMP | BPF_EXIT) &&
2883 			    code != (BPF_JMP32 | BPF_JA) &&
2884 			    code != (BPF_JMP | BPF_JA)) {
2885 				verbose(env, "last insn is not an exit or jmp\n");
2886 				return -EINVAL;
2887 			}
2888 			subprog_start = subprog_end;
2889 			cur_subprog++;
2890 			if (cur_subprog < env->subprog_cnt)
2891 				subprog_end = subprog[cur_subprog + 1].start;
2892 		}
2893 	}
2894 	return 0;
2895 }
2896 
2897 /* Parentage chain of this register (or stack slot) should take care of all
2898  * issues like callee-saved registers, stack slot allocation time, etc.
2899  */
2900 static int mark_reg_read(struct bpf_verifier_env *env,
2901 			 const struct bpf_reg_state *state,
2902 			 struct bpf_reg_state *parent, u8 flag)
2903 {
2904 	bool writes = parent == state->parent; /* Observe write marks */
2905 	int cnt = 0;
2906 
2907 	while (parent) {
2908 		/* if read wasn't screened by an earlier write ... */
2909 		if (writes && state->live & REG_LIVE_WRITTEN)
2910 			break;
2911 		if (parent->live & REG_LIVE_DONE) {
2912 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
2913 				reg_type_str(env, parent->type),
2914 				parent->var_off.value, parent->off);
2915 			return -EFAULT;
2916 		}
2917 		/* The first condition is more likely to be true than the
2918 		 * second, checked it first.
2919 		 */
2920 		if ((parent->live & REG_LIVE_READ) == flag ||
2921 		    parent->live & REG_LIVE_READ64)
2922 			/* The parentage chain never changes and
2923 			 * this parent was already marked as LIVE_READ.
2924 			 * There is no need to keep walking the chain again and
2925 			 * keep re-marking all parents as LIVE_READ.
2926 			 * This case happens when the same register is read
2927 			 * multiple times without writes into it in-between.
2928 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
2929 			 * then no need to set the weak REG_LIVE_READ32.
2930 			 */
2931 			break;
2932 		/* ... then we depend on parent's value */
2933 		parent->live |= flag;
2934 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
2935 		if (flag == REG_LIVE_READ64)
2936 			parent->live &= ~REG_LIVE_READ32;
2937 		state = parent;
2938 		parent = state->parent;
2939 		writes = true;
2940 		cnt++;
2941 	}
2942 
2943 	if (env->longest_mark_read_walk < cnt)
2944 		env->longest_mark_read_walk = cnt;
2945 	return 0;
2946 }
2947 
2948 static int mark_dynptr_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
2949 {
2950 	struct bpf_func_state *state = func(env, reg);
2951 	int spi, ret;
2952 
2953 	/* For CONST_PTR_TO_DYNPTR, it must have already been done by
2954 	 * check_reg_arg in check_helper_call and mark_btf_func_reg_size in
2955 	 * check_kfunc_call.
2956 	 */
2957 	if (reg->type == CONST_PTR_TO_DYNPTR)
2958 		return 0;
2959 	spi = dynptr_get_spi(env, reg);
2960 	if (spi < 0)
2961 		return spi;
2962 	/* Caller ensures dynptr is valid and initialized, which means spi is in
2963 	 * bounds and spi is the first dynptr slot. Simply mark stack slot as
2964 	 * read.
2965 	 */
2966 	ret = mark_reg_read(env, &state->stack[spi].spilled_ptr,
2967 			    state->stack[spi].spilled_ptr.parent, REG_LIVE_READ64);
2968 	if (ret)
2969 		return ret;
2970 	return mark_reg_read(env, &state->stack[spi - 1].spilled_ptr,
2971 			     state->stack[spi - 1].spilled_ptr.parent, REG_LIVE_READ64);
2972 }
2973 
2974 static int mark_iter_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
2975 			  int spi, int nr_slots)
2976 {
2977 	struct bpf_func_state *state = func(env, reg);
2978 	int err, i;
2979 
2980 	for (i = 0; i < nr_slots; i++) {
2981 		struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
2982 
2983 		err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
2984 		if (err)
2985 			return err;
2986 
2987 		mark_stack_slot_scratched(env, spi - i);
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 /* This function is supposed to be used by the following 32-bit optimization
2994  * code only. It returns TRUE if the source or destination register operates
2995  * on 64-bit, otherwise return FALSE.
2996  */
2997 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
2998 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
2999 {
3000 	u8 code, class, op;
3001 
3002 	code = insn->code;
3003 	class = BPF_CLASS(code);
3004 	op = BPF_OP(code);
3005 	if (class == BPF_JMP) {
3006 		/* BPF_EXIT for "main" will reach here. Return TRUE
3007 		 * conservatively.
3008 		 */
3009 		if (op == BPF_EXIT)
3010 			return true;
3011 		if (op == BPF_CALL) {
3012 			/* BPF to BPF call will reach here because of marking
3013 			 * caller saved clobber with DST_OP_NO_MARK for which we
3014 			 * don't care the register def because they are anyway
3015 			 * marked as NOT_INIT already.
3016 			 */
3017 			if (insn->src_reg == BPF_PSEUDO_CALL)
3018 				return false;
3019 			/* Helper call will reach here because of arg type
3020 			 * check, conservatively return TRUE.
3021 			 */
3022 			if (t == SRC_OP)
3023 				return true;
3024 
3025 			return false;
3026 		}
3027 	}
3028 
3029 	if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
3030 		return false;
3031 
3032 	if (class == BPF_ALU64 || class == BPF_JMP ||
3033 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
3034 		return true;
3035 
3036 	if (class == BPF_ALU || class == BPF_JMP32)
3037 		return false;
3038 
3039 	if (class == BPF_LDX) {
3040 		if (t != SRC_OP)
3041 			return BPF_SIZE(code) == BPF_DW;
3042 		/* LDX source must be ptr. */
3043 		return true;
3044 	}
3045 
3046 	if (class == BPF_STX) {
3047 		/* BPF_STX (including atomic variants) has multiple source
3048 		 * operands, one of which is a ptr. Check whether the caller is
3049 		 * asking about it.
3050 		 */
3051 		if (t == SRC_OP && reg->type != SCALAR_VALUE)
3052 			return true;
3053 		return BPF_SIZE(code) == BPF_DW;
3054 	}
3055 
3056 	if (class == BPF_LD) {
3057 		u8 mode = BPF_MODE(code);
3058 
3059 		/* LD_IMM64 */
3060 		if (mode == BPF_IMM)
3061 			return true;
3062 
3063 		/* Both LD_IND and LD_ABS return 32-bit data. */
3064 		if (t != SRC_OP)
3065 			return  false;
3066 
3067 		/* Implicit ctx ptr. */
3068 		if (regno == BPF_REG_6)
3069 			return true;
3070 
3071 		/* Explicit source could be any width. */
3072 		return true;
3073 	}
3074 
3075 	if (class == BPF_ST)
3076 		/* The only source register for BPF_ST is a ptr. */
3077 		return true;
3078 
3079 	/* Conservatively return true at default. */
3080 	return true;
3081 }
3082 
3083 /* Return the regno defined by the insn, or -1. */
3084 static int insn_def_regno(const struct bpf_insn *insn)
3085 {
3086 	switch (BPF_CLASS(insn->code)) {
3087 	case BPF_JMP:
3088 	case BPF_JMP32:
3089 	case BPF_ST:
3090 		return -1;
3091 	case BPF_STX:
3092 		if (BPF_MODE(insn->code) == BPF_ATOMIC &&
3093 		    (insn->imm & BPF_FETCH)) {
3094 			if (insn->imm == BPF_CMPXCHG)
3095 				return BPF_REG_0;
3096 			else
3097 				return insn->src_reg;
3098 		} else {
3099 			return -1;
3100 		}
3101 	default:
3102 		return insn->dst_reg;
3103 	}
3104 }
3105 
3106 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
3107 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
3108 {
3109 	int dst_reg = insn_def_regno(insn);
3110 
3111 	if (dst_reg == -1)
3112 		return false;
3113 
3114 	return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
3115 }
3116 
3117 static void mark_insn_zext(struct bpf_verifier_env *env,
3118 			   struct bpf_reg_state *reg)
3119 {
3120 	s32 def_idx = reg->subreg_def;
3121 
3122 	if (def_idx == DEF_NOT_SUBREG)
3123 		return;
3124 
3125 	env->insn_aux_data[def_idx - 1].zext_dst = true;
3126 	/* The dst will be zero extended, so won't be sub-register anymore. */
3127 	reg->subreg_def = DEF_NOT_SUBREG;
3128 }
3129 
3130 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
3131 			 enum reg_arg_type t)
3132 {
3133 	struct bpf_verifier_state *vstate = env->cur_state;
3134 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3135 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
3136 	struct bpf_reg_state *reg, *regs = state->regs;
3137 	bool rw64;
3138 
3139 	if (regno >= MAX_BPF_REG) {
3140 		verbose(env, "R%d is invalid\n", regno);
3141 		return -EINVAL;
3142 	}
3143 
3144 	mark_reg_scratched(env, regno);
3145 
3146 	reg = &regs[regno];
3147 	rw64 = is_reg64(env, insn, regno, reg, t);
3148 	if (t == SRC_OP) {
3149 		/* check whether register used as source operand can be read */
3150 		if (reg->type == NOT_INIT) {
3151 			verbose(env, "R%d !read_ok\n", regno);
3152 			return -EACCES;
3153 		}
3154 		/* We don't need to worry about FP liveness because it's read-only */
3155 		if (regno == BPF_REG_FP)
3156 			return 0;
3157 
3158 		if (rw64)
3159 			mark_insn_zext(env, reg);
3160 
3161 		return mark_reg_read(env, reg, reg->parent,
3162 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
3163 	} else {
3164 		/* check whether register used as dest operand can be written to */
3165 		if (regno == BPF_REG_FP) {
3166 			verbose(env, "frame pointer is read only\n");
3167 			return -EACCES;
3168 		}
3169 		reg->live |= REG_LIVE_WRITTEN;
3170 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
3171 		if (t == DST_OP)
3172 			mark_reg_unknown(env, regs, regno);
3173 	}
3174 	return 0;
3175 }
3176 
3177 static void mark_jmp_point(struct bpf_verifier_env *env, int idx)
3178 {
3179 	env->insn_aux_data[idx].jmp_point = true;
3180 }
3181 
3182 static bool is_jmp_point(struct bpf_verifier_env *env, int insn_idx)
3183 {
3184 	return env->insn_aux_data[insn_idx].jmp_point;
3185 }
3186 
3187 /* for any branch, call, exit record the history of jmps in the given state */
3188 static int push_jmp_history(struct bpf_verifier_env *env,
3189 			    struct bpf_verifier_state *cur)
3190 {
3191 	u32 cnt = cur->jmp_history_cnt;
3192 	struct bpf_idx_pair *p;
3193 	size_t alloc_size;
3194 
3195 	if (!is_jmp_point(env, env->insn_idx))
3196 		return 0;
3197 
3198 	cnt++;
3199 	alloc_size = kmalloc_size_roundup(size_mul(cnt, sizeof(*p)));
3200 	p = krealloc(cur->jmp_history, alloc_size, GFP_USER);
3201 	if (!p)
3202 		return -ENOMEM;
3203 	p[cnt - 1].idx = env->insn_idx;
3204 	p[cnt - 1].prev_idx = env->prev_insn_idx;
3205 	cur->jmp_history = p;
3206 	cur->jmp_history_cnt = cnt;
3207 	return 0;
3208 }
3209 
3210 /* Backtrack one insn at a time. If idx is not at the top of recorded
3211  * history then previous instruction came from straight line execution.
3212  * Return -ENOENT if we exhausted all instructions within given state.
3213  *
3214  * It's legal to have a bit of a looping with the same starting and ending
3215  * insn index within the same state, e.g.: 3->4->5->3, so just because current
3216  * instruction index is the same as state's first_idx doesn't mean we are
3217  * done. If there is still some jump history left, we should keep going. We
3218  * need to take into account that we might have a jump history between given
3219  * state's parent and itself, due to checkpointing. In this case, we'll have
3220  * history entry recording a jump from last instruction of parent state and
3221  * first instruction of given state.
3222  */
3223 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
3224 			     u32 *history)
3225 {
3226 	u32 cnt = *history;
3227 
3228 	if (i == st->first_insn_idx) {
3229 		if (cnt == 0)
3230 			return -ENOENT;
3231 		if (cnt == 1 && st->jmp_history[0].idx == i)
3232 			return -ENOENT;
3233 	}
3234 
3235 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
3236 		i = st->jmp_history[cnt - 1].prev_idx;
3237 		(*history)--;
3238 	} else {
3239 		i--;
3240 	}
3241 	return i;
3242 }
3243 
3244 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
3245 {
3246 	const struct btf_type *func;
3247 	struct btf *desc_btf;
3248 
3249 	if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
3250 		return NULL;
3251 
3252 	desc_btf = find_kfunc_desc_btf(data, insn->off);
3253 	if (IS_ERR(desc_btf))
3254 		return "<error>";
3255 
3256 	func = btf_type_by_id(desc_btf, insn->imm);
3257 	return btf_name_by_offset(desc_btf, func->name_off);
3258 }
3259 
3260 static inline void bt_init(struct backtrack_state *bt, u32 frame)
3261 {
3262 	bt->frame = frame;
3263 }
3264 
3265 static inline void bt_reset(struct backtrack_state *bt)
3266 {
3267 	struct bpf_verifier_env *env = bt->env;
3268 
3269 	memset(bt, 0, sizeof(*bt));
3270 	bt->env = env;
3271 }
3272 
3273 static inline u32 bt_empty(struct backtrack_state *bt)
3274 {
3275 	u64 mask = 0;
3276 	int i;
3277 
3278 	for (i = 0; i <= bt->frame; i++)
3279 		mask |= bt->reg_masks[i] | bt->stack_masks[i];
3280 
3281 	return mask == 0;
3282 }
3283 
3284 static inline int bt_subprog_enter(struct backtrack_state *bt)
3285 {
3286 	if (bt->frame == MAX_CALL_FRAMES - 1) {
3287 		verbose(bt->env, "BUG subprog enter from frame %d\n", bt->frame);
3288 		WARN_ONCE(1, "verifier backtracking bug");
3289 		return -EFAULT;
3290 	}
3291 	bt->frame++;
3292 	return 0;
3293 }
3294 
3295 static inline int bt_subprog_exit(struct backtrack_state *bt)
3296 {
3297 	if (bt->frame == 0) {
3298 		verbose(bt->env, "BUG subprog exit from frame 0\n");
3299 		WARN_ONCE(1, "verifier backtracking bug");
3300 		return -EFAULT;
3301 	}
3302 	bt->frame--;
3303 	return 0;
3304 }
3305 
3306 static inline void bt_set_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3307 {
3308 	bt->reg_masks[frame] |= 1 << reg;
3309 }
3310 
3311 static inline void bt_clear_frame_reg(struct backtrack_state *bt, u32 frame, u32 reg)
3312 {
3313 	bt->reg_masks[frame] &= ~(1 << reg);
3314 }
3315 
3316 static inline void bt_set_reg(struct backtrack_state *bt, u32 reg)
3317 {
3318 	bt_set_frame_reg(bt, bt->frame, reg);
3319 }
3320 
3321 static inline void bt_clear_reg(struct backtrack_state *bt, u32 reg)
3322 {
3323 	bt_clear_frame_reg(bt, bt->frame, reg);
3324 }
3325 
3326 static inline void bt_set_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3327 {
3328 	bt->stack_masks[frame] |= 1ull << slot;
3329 }
3330 
3331 static inline void bt_clear_frame_slot(struct backtrack_state *bt, u32 frame, u32 slot)
3332 {
3333 	bt->stack_masks[frame] &= ~(1ull << slot);
3334 }
3335 
3336 static inline void bt_set_slot(struct backtrack_state *bt, u32 slot)
3337 {
3338 	bt_set_frame_slot(bt, bt->frame, slot);
3339 }
3340 
3341 static inline void bt_clear_slot(struct backtrack_state *bt, u32 slot)
3342 {
3343 	bt_clear_frame_slot(bt, bt->frame, slot);
3344 }
3345 
3346 static inline u32 bt_frame_reg_mask(struct backtrack_state *bt, u32 frame)
3347 {
3348 	return bt->reg_masks[frame];
3349 }
3350 
3351 static inline u32 bt_reg_mask(struct backtrack_state *bt)
3352 {
3353 	return bt->reg_masks[bt->frame];
3354 }
3355 
3356 static inline u64 bt_frame_stack_mask(struct backtrack_state *bt, u32 frame)
3357 {
3358 	return bt->stack_masks[frame];
3359 }
3360 
3361 static inline u64 bt_stack_mask(struct backtrack_state *bt)
3362 {
3363 	return bt->stack_masks[bt->frame];
3364 }
3365 
3366 static inline bool bt_is_reg_set(struct backtrack_state *bt, u32 reg)
3367 {
3368 	return bt->reg_masks[bt->frame] & (1 << reg);
3369 }
3370 
3371 static inline bool bt_is_slot_set(struct backtrack_state *bt, u32 slot)
3372 {
3373 	return bt->stack_masks[bt->frame] & (1ull << slot);
3374 }
3375 
3376 /* format registers bitmask, e.g., "r0,r2,r4" for 0x15 mask */
3377 static void fmt_reg_mask(char *buf, ssize_t buf_sz, u32 reg_mask)
3378 {
3379 	DECLARE_BITMAP(mask, 64);
3380 	bool first = true;
3381 	int i, n;
3382 
3383 	buf[0] = '\0';
3384 
3385 	bitmap_from_u64(mask, reg_mask);
3386 	for_each_set_bit(i, mask, 32) {
3387 		n = snprintf(buf, buf_sz, "%sr%d", first ? "" : ",", i);
3388 		first = false;
3389 		buf += n;
3390 		buf_sz -= n;
3391 		if (buf_sz < 0)
3392 			break;
3393 	}
3394 }
3395 /* format stack slots bitmask, e.g., "-8,-24,-40" for 0x15 mask */
3396 static void fmt_stack_mask(char *buf, ssize_t buf_sz, u64 stack_mask)
3397 {
3398 	DECLARE_BITMAP(mask, 64);
3399 	bool first = true;
3400 	int i, n;
3401 
3402 	buf[0] = '\0';
3403 
3404 	bitmap_from_u64(mask, stack_mask);
3405 	for_each_set_bit(i, mask, 64) {
3406 		n = snprintf(buf, buf_sz, "%s%d", first ? "" : ",", -(i + 1) * 8);
3407 		first = false;
3408 		buf += n;
3409 		buf_sz -= n;
3410 		if (buf_sz < 0)
3411 			break;
3412 	}
3413 }
3414 
3415 /* For given verifier state backtrack_insn() is called from the last insn to
3416  * the first insn. Its purpose is to compute a bitmask of registers and
3417  * stack slots that needs precision in the parent verifier state.
3418  *
3419  * @idx is an index of the instruction we are currently processing;
3420  * @subseq_idx is an index of the subsequent instruction that:
3421  *   - *would be* executed next, if jump history is viewed in forward order;
3422  *   - *was* processed previously during backtracking.
3423  */
3424 static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
3425 			  struct backtrack_state *bt)
3426 {
3427 	const struct bpf_insn_cbs cbs = {
3428 		.cb_call	= disasm_kfunc_name,
3429 		.cb_print	= verbose,
3430 		.private_data	= env,
3431 	};
3432 	struct bpf_insn *insn = env->prog->insnsi + idx;
3433 	u8 class = BPF_CLASS(insn->code);
3434 	u8 opcode = BPF_OP(insn->code);
3435 	u8 mode = BPF_MODE(insn->code);
3436 	u32 dreg = insn->dst_reg;
3437 	u32 sreg = insn->src_reg;
3438 	u32 spi, i;
3439 
3440 	if (insn->code == 0)
3441 		return 0;
3442 	if (env->log.level & BPF_LOG_LEVEL2) {
3443 		fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_reg_mask(bt));
3444 		verbose(env, "mark_precise: frame%d: regs=%s ",
3445 			bt->frame, env->tmp_str_buf);
3446 		fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN, bt_stack_mask(bt));
3447 		verbose(env, "stack=%s before ", env->tmp_str_buf);
3448 		verbose(env, "%d: ", idx);
3449 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
3450 	}
3451 
3452 	if (class == BPF_ALU || class == BPF_ALU64) {
3453 		if (!bt_is_reg_set(bt, dreg))
3454 			return 0;
3455 		if (opcode == BPF_END || opcode == BPF_NEG) {
3456 			/* sreg is reserved and unused
3457 			 * dreg still need precision before this insn
3458 			 */
3459 			return 0;
3460 		} else if (opcode == BPF_MOV) {
3461 			if (BPF_SRC(insn->code) == BPF_X) {
3462 				/* dreg = sreg or dreg = (s8, s16, s32)sreg
3463 				 * dreg needs precision after this insn
3464 				 * sreg needs precision before this insn
3465 				 */
3466 				bt_clear_reg(bt, dreg);
3467 				bt_set_reg(bt, sreg);
3468 			} else {
3469 				/* dreg = K
3470 				 * dreg needs precision after this insn.
3471 				 * Corresponding register is already marked
3472 				 * as precise=true in this verifier state.
3473 				 * No further markings in parent are necessary
3474 				 */
3475 				bt_clear_reg(bt, dreg);
3476 			}
3477 		} else {
3478 			if (BPF_SRC(insn->code) == BPF_X) {
3479 				/* dreg += sreg
3480 				 * both dreg and sreg need precision
3481 				 * before this insn
3482 				 */
3483 				bt_set_reg(bt, sreg);
3484 			} /* else dreg += K
3485 			   * dreg still needs precision before this insn
3486 			   */
3487 		}
3488 	} else if (class == BPF_LDX) {
3489 		if (!bt_is_reg_set(bt, dreg))
3490 			return 0;
3491 		bt_clear_reg(bt, dreg);
3492 
3493 		/* scalars can only be spilled into stack w/o losing precision.
3494 		 * Load from any other memory can be zero extended.
3495 		 * The desire to keep that precision is already indicated
3496 		 * by 'precise' mark in corresponding register of this state.
3497 		 * No further tracking necessary.
3498 		 */
3499 		if (insn->src_reg != BPF_REG_FP)
3500 			return 0;
3501 
3502 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
3503 		 * that [fp - off] slot contains scalar that needs to be
3504 		 * tracked with precision
3505 		 */
3506 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3507 		if (spi >= 64) {
3508 			verbose(env, "BUG spi %d\n", spi);
3509 			WARN_ONCE(1, "verifier backtracking bug");
3510 			return -EFAULT;
3511 		}
3512 		bt_set_slot(bt, spi);
3513 	} else if (class == BPF_STX || class == BPF_ST) {
3514 		if (bt_is_reg_set(bt, dreg))
3515 			/* stx & st shouldn't be using _scalar_ dst_reg
3516 			 * to access memory. It means backtracking
3517 			 * encountered a case of pointer subtraction.
3518 			 */
3519 			return -ENOTSUPP;
3520 		/* scalars can only be spilled into stack */
3521 		if (insn->dst_reg != BPF_REG_FP)
3522 			return 0;
3523 		spi = (-insn->off - 1) / BPF_REG_SIZE;
3524 		if (spi >= 64) {
3525 			verbose(env, "BUG spi %d\n", spi);
3526 			WARN_ONCE(1, "verifier backtracking bug");
3527 			return -EFAULT;
3528 		}
3529 		if (!bt_is_slot_set(bt, spi))
3530 			return 0;
3531 		bt_clear_slot(bt, spi);
3532 		if (class == BPF_STX)
3533 			bt_set_reg(bt, sreg);
3534 	} else if (class == BPF_JMP || class == BPF_JMP32) {
3535 		if (bpf_pseudo_call(insn)) {
3536 			int subprog_insn_idx, subprog;
3537 
3538 			subprog_insn_idx = idx + insn->imm + 1;
3539 			subprog = find_subprog(env, subprog_insn_idx);
3540 			if (subprog < 0)
3541 				return -EFAULT;
3542 
3543 			if (subprog_is_global(env, subprog)) {
3544 				/* check that jump history doesn't have any
3545 				 * extra instructions from subprog; the next
3546 				 * instruction after call to global subprog
3547 				 * should be literally next instruction in
3548 				 * caller program
3549 				 */
3550 				WARN_ONCE(idx + 1 != subseq_idx, "verifier backtracking bug");
3551 				/* r1-r5 are invalidated after subprog call,
3552 				 * so for global func call it shouldn't be set
3553 				 * anymore
3554 				 */
3555 				if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3556 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3557 					WARN_ONCE(1, "verifier backtracking bug");
3558 					return -EFAULT;
3559 				}
3560 				/* global subprog always sets R0 */
3561 				bt_clear_reg(bt, BPF_REG_0);
3562 				return 0;
3563 			} else {
3564 				/* static subprog call instruction, which
3565 				 * means that we are exiting current subprog,
3566 				 * so only r1-r5 could be still requested as
3567 				 * precise, r0 and r6-r10 or any stack slot in
3568 				 * the current frame should be zero by now
3569 				 */
3570 				if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3571 					verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3572 					WARN_ONCE(1, "verifier backtracking bug");
3573 					return -EFAULT;
3574 				}
3575 				/* we don't track register spills perfectly,
3576 				 * so fallback to force-precise instead of failing */
3577 				if (bt_stack_mask(bt) != 0)
3578 					return -ENOTSUPP;
3579 				/* propagate r1-r5 to the caller */
3580 				for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
3581 					if (bt_is_reg_set(bt, i)) {
3582 						bt_clear_reg(bt, i);
3583 						bt_set_frame_reg(bt, bt->frame - 1, i);
3584 					}
3585 				}
3586 				if (bt_subprog_exit(bt))
3587 					return -EFAULT;
3588 				return 0;
3589 			}
3590 		} else if ((bpf_helper_call(insn) &&
3591 			    is_callback_calling_function(insn->imm) &&
3592 			    !is_async_callback_calling_function(insn->imm)) ||
3593 			   (bpf_pseudo_kfunc_call(insn) && is_callback_calling_kfunc(insn->imm))) {
3594 			/* callback-calling helper or kfunc call, which means
3595 			 * we are exiting from subprog, but unlike the subprog
3596 			 * call handling above, we shouldn't propagate
3597 			 * precision of r1-r5 (if any requested), as they are
3598 			 * not actually arguments passed directly to callback
3599 			 * subprogs
3600 			 */
3601 			if (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) {
3602 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3603 				WARN_ONCE(1, "verifier backtracking bug");
3604 				return -EFAULT;
3605 			}
3606 			if (bt_stack_mask(bt) != 0)
3607 				return -ENOTSUPP;
3608 			/* clear r1-r5 in callback subprog's mask */
3609 			for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3610 				bt_clear_reg(bt, i);
3611 			if (bt_subprog_exit(bt))
3612 				return -EFAULT;
3613 			return 0;
3614 		} else if (opcode == BPF_CALL) {
3615 			/* kfunc with imm==0 is invalid and fixup_kfunc_call will
3616 			 * catch this error later. Make backtracking conservative
3617 			 * with ENOTSUPP.
3618 			 */
3619 			if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL && insn->imm == 0)
3620 				return -ENOTSUPP;
3621 			/* regular helper call sets R0 */
3622 			bt_clear_reg(bt, BPF_REG_0);
3623 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3624 				/* if backtracing was looking for registers R1-R5
3625 				 * they should have been found already.
3626 				 */
3627 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3628 				WARN_ONCE(1, "verifier backtracking bug");
3629 				return -EFAULT;
3630 			}
3631 		} else if (opcode == BPF_EXIT) {
3632 			bool r0_precise;
3633 
3634 			if (bt_reg_mask(bt) & BPF_REGMASK_ARGS) {
3635 				/* if backtracing was looking for registers R1-R5
3636 				 * they should have been found already.
3637 				 */
3638 				verbose(env, "BUG regs %x\n", bt_reg_mask(bt));
3639 				WARN_ONCE(1, "verifier backtracking bug");
3640 				return -EFAULT;
3641 			}
3642 
3643 			/* BPF_EXIT in subprog or callback always returns
3644 			 * right after the call instruction, so by checking
3645 			 * whether the instruction at subseq_idx-1 is subprog
3646 			 * call or not we can distinguish actual exit from
3647 			 * *subprog* from exit from *callback*. In the former
3648 			 * case, we need to propagate r0 precision, if
3649 			 * necessary. In the former we never do that.
3650 			 */
3651 			r0_precise = subseq_idx - 1 >= 0 &&
3652 				     bpf_pseudo_call(&env->prog->insnsi[subseq_idx - 1]) &&
3653 				     bt_is_reg_set(bt, BPF_REG_0);
3654 
3655 			bt_clear_reg(bt, BPF_REG_0);
3656 			if (bt_subprog_enter(bt))
3657 				return -EFAULT;
3658 
3659 			if (r0_precise)
3660 				bt_set_reg(bt, BPF_REG_0);
3661 			/* r6-r9 and stack slots will stay set in caller frame
3662 			 * bitmasks until we return back from callee(s)
3663 			 */
3664 			return 0;
3665 		} else if (BPF_SRC(insn->code) == BPF_X) {
3666 			if (!bt_is_reg_set(bt, dreg) && !bt_is_reg_set(bt, sreg))
3667 				return 0;
3668 			/* dreg <cond> sreg
3669 			 * Both dreg and sreg need precision before
3670 			 * this insn. If only sreg was marked precise
3671 			 * before it would be equally necessary to
3672 			 * propagate it to dreg.
3673 			 */
3674 			bt_set_reg(bt, dreg);
3675 			bt_set_reg(bt, sreg);
3676 			 /* else dreg <cond> K
3677 			  * Only dreg still needs precision before
3678 			  * this insn, so for the K-based conditional
3679 			  * there is nothing new to be marked.
3680 			  */
3681 		}
3682 	} else if (class == BPF_LD) {
3683 		if (!bt_is_reg_set(bt, dreg))
3684 			return 0;
3685 		bt_clear_reg(bt, dreg);
3686 		/* It's ld_imm64 or ld_abs or ld_ind.
3687 		 * For ld_imm64 no further tracking of precision
3688 		 * into parent is necessary
3689 		 */
3690 		if (mode == BPF_IND || mode == BPF_ABS)
3691 			/* to be analyzed */
3692 			return -ENOTSUPP;
3693 	}
3694 	return 0;
3695 }
3696 
3697 /* the scalar precision tracking algorithm:
3698  * . at the start all registers have precise=false.
3699  * . scalar ranges are tracked as normal through alu and jmp insns.
3700  * . once precise value of the scalar register is used in:
3701  *   .  ptr + scalar alu
3702  *   . if (scalar cond K|scalar)
3703  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
3704  *   backtrack through the verifier states and mark all registers and
3705  *   stack slots with spilled constants that these scalar regisers
3706  *   should be precise.
3707  * . during state pruning two registers (or spilled stack slots)
3708  *   are equivalent if both are not precise.
3709  *
3710  * Note the verifier cannot simply walk register parentage chain,
3711  * since many different registers and stack slots could have been
3712  * used to compute single precise scalar.
3713  *
3714  * The approach of starting with precise=true for all registers and then
3715  * backtrack to mark a register as not precise when the verifier detects
3716  * that program doesn't care about specific value (e.g., when helper
3717  * takes register as ARG_ANYTHING parameter) is not safe.
3718  *
3719  * It's ok to walk single parentage chain of the verifier states.
3720  * It's possible that this backtracking will go all the way till 1st insn.
3721  * All other branches will be explored for needing precision later.
3722  *
3723  * The backtracking needs to deal with cases like:
3724  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
3725  * r9 -= r8
3726  * r5 = r9
3727  * if r5 > 0x79f goto pc+7
3728  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
3729  * r5 += 1
3730  * ...
3731  * call bpf_perf_event_output#25
3732  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
3733  *
3734  * and this case:
3735  * r6 = 1
3736  * call foo // uses callee's r6 inside to compute r0
3737  * r0 += r6
3738  * if r0 == 0 goto
3739  *
3740  * to track above reg_mask/stack_mask needs to be independent for each frame.
3741  *
3742  * Also if parent's curframe > frame where backtracking started,
3743  * the verifier need to mark registers in both frames, otherwise callees
3744  * may incorrectly prune callers. This is similar to
3745  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
3746  *
3747  * For now backtracking falls back into conservative marking.
3748  */
3749 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
3750 				     struct bpf_verifier_state *st)
3751 {
3752 	struct bpf_func_state *func;
3753 	struct bpf_reg_state *reg;
3754 	int i, j;
3755 
3756 	if (env->log.level & BPF_LOG_LEVEL2) {
3757 		verbose(env, "mark_precise: frame%d: falling back to forcing all scalars precise\n",
3758 			st->curframe);
3759 	}
3760 
3761 	/* big hammer: mark all scalars precise in this path.
3762 	 * pop_stack may still get !precise scalars.
3763 	 * We also skip current state and go straight to first parent state,
3764 	 * because precision markings in current non-checkpointed state are
3765 	 * not needed. See why in the comment in __mark_chain_precision below.
3766 	 */
3767 	for (st = st->parent; st; st = st->parent) {
3768 		for (i = 0; i <= st->curframe; i++) {
3769 			func = st->frame[i];
3770 			for (j = 0; j < BPF_REG_FP; j++) {
3771 				reg = &func->regs[j];
3772 				if (reg->type != SCALAR_VALUE || reg->precise)
3773 					continue;
3774 				reg->precise = true;
3775 				if (env->log.level & BPF_LOG_LEVEL2) {
3776 					verbose(env, "force_precise: frame%d: forcing r%d to be precise\n",
3777 						i, j);
3778 				}
3779 			}
3780 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3781 				if (!is_spilled_reg(&func->stack[j]))
3782 					continue;
3783 				reg = &func->stack[j].spilled_ptr;
3784 				if (reg->type != SCALAR_VALUE || reg->precise)
3785 					continue;
3786 				reg->precise = true;
3787 				if (env->log.level & BPF_LOG_LEVEL2) {
3788 					verbose(env, "force_precise: frame%d: forcing fp%d to be precise\n",
3789 						i, -(j + 1) * 8);
3790 				}
3791 			}
3792 		}
3793 	}
3794 }
3795 
3796 static void mark_all_scalars_imprecise(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3797 {
3798 	struct bpf_func_state *func;
3799 	struct bpf_reg_state *reg;
3800 	int i, j;
3801 
3802 	for (i = 0; i <= st->curframe; i++) {
3803 		func = st->frame[i];
3804 		for (j = 0; j < BPF_REG_FP; j++) {
3805 			reg = &func->regs[j];
3806 			if (reg->type != SCALAR_VALUE)
3807 				continue;
3808 			reg->precise = false;
3809 		}
3810 		for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
3811 			if (!is_spilled_reg(&func->stack[j]))
3812 				continue;
3813 			reg = &func->stack[j].spilled_ptr;
3814 			if (reg->type != SCALAR_VALUE)
3815 				continue;
3816 			reg->precise = false;
3817 		}
3818 	}
3819 }
3820 
3821 static bool idset_contains(struct bpf_idset *s, u32 id)
3822 {
3823 	u32 i;
3824 
3825 	for (i = 0; i < s->count; ++i)
3826 		if (s->ids[i] == id)
3827 			return true;
3828 
3829 	return false;
3830 }
3831 
3832 static int idset_push(struct bpf_idset *s, u32 id)
3833 {
3834 	if (WARN_ON_ONCE(s->count >= ARRAY_SIZE(s->ids)))
3835 		return -EFAULT;
3836 	s->ids[s->count++] = id;
3837 	return 0;
3838 }
3839 
3840 static void idset_reset(struct bpf_idset *s)
3841 {
3842 	s->count = 0;
3843 }
3844 
3845 /* Collect a set of IDs for all registers currently marked as precise in env->bt.
3846  * Mark all registers with these IDs as precise.
3847  */
3848 static int mark_precise_scalar_ids(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
3849 {
3850 	struct bpf_idset *precise_ids = &env->idset_scratch;
3851 	struct backtrack_state *bt = &env->bt;
3852 	struct bpf_func_state *func;
3853 	struct bpf_reg_state *reg;
3854 	DECLARE_BITMAP(mask, 64);
3855 	int i, fr;
3856 
3857 	idset_reset(precise_ids);
3858 
3859 	for (fr = bt->frame; fr >= 0; fr--) {
3860 		func = st->frame[fr];
3861 
3862 		bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
3863 		for_each_set_bit(i, mask, 32) {
3864 			reg = &func->regs[i];
3865 			if (!reg->id || reg->type != SCALAR_VALUE)
3866 				continue;
3867 			if (idset_push(precise_ids, reg->id))
3868 				return -EFAULT;
3869 		}
3870 
3871 		bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
3872 		for_each_set_bit(i, mask, 64) {
3873 			if (i >= func->allocated_stack / BPF_REG_SIZE)
3874 				break;
3875 			if (!is_spilled_scalar_reg(&func->stack[i]))
3876 				continue;
3877 			reg = &func->stack[i].spilled_ptr;
3878 			if (!reg->id)
3879 				continue;
3880 			if (idset_push(precise_ids, reg->id))
3881 				return -EFAULT;
3882 		}
3883 	}
3884 
3885 	for (fr = 0; fr <= st->curframe; ++fr) {
3886 		func = st->frame[fr];
3887 
3888 		for (i = BPF_REG_0; i < BPF_REG_10; ++i) {
3889 			reg = &func->regs[i];
3890 			if (!reg->id)
3891 				continue;
3892 			if (!idset_contains(precise_ids, reg->id))
3893 				continue;
3894 			bt_set_frame_reg(bt, fr, i);
3895 		}
3896 		for (i = 0; i < func->allocated_stack / BPF_REG_SIZE; ++i) {
3897 			if (!is_spilled_scalar_reg(&func->stack[i]))
3898 				continue;
3899 			reg = &func->stack[i].spilled_ptr;
3900 			if (!reg->id)
3901 				continue;
3902 			if (!idset_contains(precise_ids, reg->id))
3903 				continue;
3904 			bt_set_frame_slot(bt, fr, i);
3905 		}
3906 	}
3907 
3908 	return 0;
3909 }
3910 
3911 /*
3912  * __mark_chain_precision() backtracks BPF program instruction sequence and
3913  * chain of verifier states making sure that register *regno* (if regno >= 0)
3914  * and/or stack slot *spi* (if spi >= 0) are marked as precisely tracked
3915  * SCALARS, as well as any other registers and slots that contribute to
3916  * a tracked state of given registers/stack slots, depending on specific BPF
3917  * assembly instructions (see backtrack_insns() for exact instruction handling
3918  * logic). This backtracking relies on recorded jmp_history and is able to
3919  * traverse entire chain of parent states. This process ends only when all the
3920  * necessary registers/slots and their transitive dependencies are marked as
3921  * precise.
3922  *
3923  * One important and subtle aspect is that precise marks *do not matter* in
3924  * the currently verified state (current state). It is important to understand
3925  * why this is the case.
3926  *
3927  * First, note that current state is the state that is not yet "checkpointed",
3928  * i.e., it is not yet put into env->explored_states, and it has no children
3929  * states as well. It's ephemeral, and can end up either a) being discarded if
3930  * compatible explored state is found at some point or BPF_EXIT instruction is
3931  * reached or b) checkpointed and put into env->explored_states, branching out
3932  * into one or more children states.
3933  *
3934  * In the former case, precise markings in current state are completely
3935  * ignored by state comparison code (see regsafe() for details). Only
3936  * checkpointed ("old") state precise markings are important, and if old
3937  * state's register/slot is precise, regsafe() assumes current state's
3938  * register/slot as precise and checks value ranges exactly and precisely. If
3939  * states turn out to be compatible, current state's necessary precise
3940  * markings and any required parent states' precise markings are enforced
3941  * after the fact with propagate_precision() logic, after the fact. But it's
3942  * important to realize that in this case, even after marking current state
3943  * registers/slots as precise, we immediately discard current state. So what
3944  * actually matters is any of the precise markings propagated into current
3945  * state's parent states, which are always checkpointed (due to b) case above).
3946  * As such, for scenario a) it doesn't matter if current state has precise
3947  * markings set or not.
3948  *
3949  * Now, for the scenario b), checkpointing and forking into child(ren)
3950  * state(s). Note that before current state gets to checkpointing step, any
3951  * processed instruction always assumes precise SCALAR register/slot
3952  * knowledge: if precise value or range is useful to prune jump branch, BPF
3953  * verifier takes this opportunity enthusiastically. Similarly, when
3954  * register's value is used to calculate offset or memory address, exact
3955  * knowledge of SCALAR range is assumed, checked, and enforced. So, similar to
3956  * what we mentioned above about state comparison ignoring precise markings
3957  * during state comparison, BPF verifier ignores and also assumes precise
3958  * markings *at will* during instruction verification process. But as verifier
3959  * assumes precision, it also propagates any precision dependencies across
3960  * parent states, which are not yet finalized, so can be further restricted
3961  * based on new knowledge gained from restrictions enforced by their children
3962  * states. This is so that once those parent states are finalized, i.e., when
3963  * they have no more active children state, state comparison logic in
3964  * is_state_visited() would enforce strict and precise SCALAR ranges, if
3965  * required for correctness.
3966  *
3967  * To build a bit more intuition, note also that once a state is checkpointed,
3968  * the path we took to get to that state is not important. This is crucial
3969  * property for state pruning. When state is checkpointed and finalized at
3970  * some instruction index, it can be correctly and safely used to "short
3971  * circuit" any *compatible* state that reaches exactly the same instruction
3972  * index. I.e., if we jumped to that instruction from a completely different
3973  * code path than original finalized state was derived from, it doesn't
3974  * matter, current state can be discarded because from that instruction
3975  * forward having a compatible state will ensure we will safely reach the
3976  * exit. States describe preconditions for further exploration, but completely
3977  * forget the history of how we got here.
3978  *
3979  * This also means that even if we needed precise SCALAR range to get to
3980  * finalized state, but from that point forward *that same* SCALAR register is
3981  * never used in a precise context (i.e., it's precise value is not needed for
3982  * correctness), it's correct and safe to mark such register as "imprecise"
3983  * (i.e., precise marking set to false). This is what we rely on when we do
3984  * not set precise marking in current state. If no child state requires
3985  * precision for any given SCALAR register, it's safe to dictate that it can
3986  * be imprecise. If any child state does require this register to be precise,
3987  * we'll mark it precise later retroactively during precise markings
3988  * propagation from child state to parent states.
3989  *
3990  * Skipping precise marking setting in current state is a mild version of
3991  * relying on the above observation. But we can utilize this property even
3992  * more aggressively by proactively forgetting any precise marking in the
3993  * current state (which we inherited from the parent state), right before we
3994  * checkpoint it and branch off into new child state. This is done by
3995  * mark_all_scalars_imprecise() to hopefully get more permissive and generic
3996  * finalized states which help in short circuiting more future states.
3997  */
3998 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno)
3999 {
4000 	struct backtrack_state *bt = &env->bt;
4001 	struct bpf_verifier_state *st = env->cur_state;
4002 	int first_idx = st->first_insn_idx;
4003 	int last_idx = env->insn_idx;
4004 	int subseq_idx = -1;
4005 	struct bpf_func_state *func;
4006 	struct bpf_reg_state *reg;
4007 	bool skip_first = true;
4008 	int i, fr, err;
4009 
4010 	if (!env->bpf_capable)
4011 		return 0;
4012 
4013 	/* set frame number from which we are starting to backtrack */
4014 	bt_init(bt, env->cur_state->curframe);
4015 
4016 	/* Do sanity checks against current state of register and/or stack
4017 	 * slot, but don't set precise flag in current state, as precision
4018 	 * tracking in the current state is unnecessary.
4019 	 */
4020 	func = st->frame[bt->frame];
4021 	if (regno >= 0) {
4022 		reg = &func->regs[regno];
4023 		if (reg->type != SCALAR_VALUE) {
4024 			WARN_ONCE(1, "backtracing misuse");
4025 			return -EFAULT;
4026 		}
4027 		bt_set_reg(bt, regno);
4028 	}
4029 
4030 	if (bt_empty(bt))
4031 		return 0;
4032 
4033 	for (;;) {
4034 		DECLARE_BITMAP(mask, 64);
4035 		u32 history = st->jmp_history_cnt;
4036 
4037 		if (env->log.level & BPF_LOG_LEVEL2) {
4038 			verbose(env, "mark_precise: frame%d: last_idx %d first_idx %d subseq_idx %d \n",
4039 				bt->frame, last_idx, first_idx, subseq_idx);
4040 		}
4041 
4042 		/* If some register with scalar ID is marked as precise,
4043 		 * make sure that all registers sharing this ID are also precise.
4044 		 * This is needed to estimate effect of find_equal_scalars().
4045 		 * Do this at the last instruction of each state,
4046 		 * bpf_reg_state::id fields are valid for these instructions.
4047 		 *
4048 		 * Allows to track precision in situation like below:
4049 		 *
4050 		 *     r2 = unknown value
4051 		 *     ...
4052 		 *   --- state #0 ---
4053 		 *     ...
4054 		 *     r1 = r2                 // r1 and r2 now share the same ID
4055 		 *     ...
4056 		 *   --- state #1 {r1.id = A, r2.id = A} ---
4057 		 *     ...
4058 		 *     if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
4059 		 *     ...
4060 		 *   --- state #2 {r1.id = A, r2.id = A} ---
4061 		 *     r3 = r10
4062 		 *     r3 += r1                // need to mark both r1 and r2
4063 		 */
4064 		if (mark_precise_scalar_ids(env, st))
4065 			return -EFAULT;
4066 
4067 		if (last_idx < 0) {
4068 			/* we are at the entry into subprog, which
4069 			 * is expected for global funcs, but only if
4070 			 * requested precise registers are R1-R5
4071 			 * (which are global func's input arguments)
4072 			 */
4073 			if (st->curframe == 0 &&
4074 			    st->frame[0]->subprogno > 0 &&
4075 			    st->frame[0]->callsite == BPF_MAIN_FUNC &&
4076 			    bt_stack_mask(bt) == 0 &&
4077 			    (bt_reg_mask(bt) & ~BPF_REGMASK_ARGS) == 0) {
4078 				bitmap_from_u64(mask, bt_reg_mask(bt));
4079 				for_each_set_bit(i, mask, 32) {
4080 					reg = &st->frame[0]->regs[i];
4081 					bt_clear_reg(bt, i);
4082 					if (reg->type == SCALAR_VALUE)
4083 						reg->precise = true;
4084 				}
4085 				return 0;
4086 			}
4087 
4088 			verbose(env, "BUG backtracking func entry subprog %d reg_mask %x stack_mask %llx\n",
4089 				st->frame[0]->subprogno, bt_reg_mask(bt), bt_stack_mask(bt));
4090 			WARN_ONCE(1, "verifier backtracking bug");
4091 			return -EFAULT;
4092 		}
4093 
4094 		for (i = last_idx;;) {
4095 			if (skip_first) {
4096 				err = 0;
4097 				skip_first = false;
4098 			} else {
4099 				err = backtrack_insn(env, i, subseq_idx, bt);
4100 			}
4101 			if (err == -ENOTSUPP) {
4102 				mark_all_scalars_precise(env, env->cur_state);
4103 				bt_reset(bt);
4104 				return 0;
4105 			} else if (err) {
4106 				return err;
4107 			}
4108 			if (bt_empty(bt))
4109 				/* Found assignment(s) into tracked register in this state.
4110 				 * Since this state is already marked, just return.
4111 				 * Nothing to be tracked further in the parent state.
4112 				 */
4113 				return 0;
4114 			subseq_idx = i;
4115 			i = get_prev_insn_idx(st, i, &history);
4116 			if (i == -ENOENT)
4117 				break;
4118 			if (i >= env->prog->len) {
4119 				/* This can happen if backtracking reached insn 0
4120 				 * and there are still reg_mask or stack_mask
4121 				 * to backtrack.
4122 				 * It means the backtracking missed the spot where
4123 				 * particular register was initialized with a constant.
4124 				 */
4125 				verbose(env, "BUG backtracking idx %d\n", i);
4126 				WARN_ONCE(1, "verifier backtracking bug");
4127 				return -EFAULT;
4128 			}
4129 		}
4130 		st = st->parent;
4131 		if (!st)
4132 			break;
4133 
4134 		for (fr = bt->frame; fr >= 0; fr--) {
4135 			func = st->frame[fr];
4136 			bitmap_from_u64(mask, bt_frame_reg_mask(bt, fr));
4137 			for_each_set_bit(i, mask, 32) {
4138 				reg = &func->regs[i];
4139 				if (reg->type != SCALAR_VALUE) {
4140 					bt_clear_frame_reg(bt, fr, i);
4141 					continue;
4142 				}
4143 				if (reg->precise)
4144 					bt_clear_frame_reg(bt, fr, i);
4145 				else
4146 					reg->precise = true;
4147 			}
4148 
4149 			bitmap_from_u64(mask, bt_frame_stack_mask(bt, fr));
4150 			for_each_set_bit(i, mask, 64) {
4151 				if (i >= func->allocated_stack / BPF_REG_SIZE) {
4152 					/* the sequence of instructions:
4153 					 * 2: (bf) r3 = r10
4154 					 * 3: (7b) *(u64 *)(r3 -8) = r0
4155 					 * 4: (79) r4 = *(u64 *)(r10 -8)
4156 					 * doesn't contain jmps. It's backtracked
4157 					 * as a single block.
4158 					 * During backtracking insn 3 is not recognized as
4159 					 * stack access, so at the end of backtracking
4160 					 * stack slot fp-8 is still marked in stack_mask.
4161 					 * However the parent state may not have accessed
4162 					 * fp-8 and it's "unallocated" stack space.
4163 					 * In such case fallback to conservative.
4164 					 */
4165 					mark_all_scalars_precise(env, env->cur_state);
4166 					bt_reset(bt);
4167 					return 0;
4168 				}
4169 
4170 				if (!is_spilled_scalar_reg(&func->stack[i])) {
4171 					bt_clear_frame_slot(bt, fr, i);
4172 					continue;
4173 				}
4174 				reg = &func->stack[i].spilled_ptr;
4175 				if (reg->precise)
4176 					bt_clear_frame_slot(bt, fr, i);
4177 				else
4178 					reg->precise = true;
4179 			}
4180 			if (env->log.level & BPF_LOG_LEVEL2) {
4181 				fmt_reg_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4182 					     bt_frame_reg_mask(bt, fr));
4183 				verbose(env, "mark_precise: frame%d: parent state regs=%s ",
4184 					fr, env->tmp_str_buf);
4185 				fmt_stack_mask(env->tmp_str_buf, TMP_STR_BUF_LEN,
4186 					       bt_frame_stack_mask(bt, fr));
4187 				verbose(env, "stack=%s: ", env->tmp_str_buf);
4188 				print_verifier_state(env, func, true);
4189 			}
4190 		}
4191 
4192 		if (bt_empty(bt))
4193 			return 0;
4194 
4195 		subseq_idx = first_idx;
4196 		last_idx = st->last_insn_idx;
4197 		first_idx = st->first_insn_idx;
4198 	}
4199 
4200 	/* if we still have requested precise regs or slots, we missed
4201 	 * something (e.g., stack access through non-r10 register), so
4202 	 * fallback to marking all precise
4203 	 */
4204 	if (!bt_empty(bt)) {
4205 		mark_all_scalars_precise(env, env->cur_state);
4206 		bt_reset(bt);
4207 	}
4208 
4209 	return 0;
4210 }
4211 
4212 int mark_chain_precision(struct bpf_verifier_env *env, int regno)
4213 {
4214 	return __mark_chain_precision(env, regno);
4215 }
4216 
4217 /* mark_chain_precision_batch() assumes that env->bt is set in the caller to
4218  * desired reg and stack masks across all relevant frames
4219  */
4220 static int mark_chain_precision_batch(struct bpf_verifier_env *env)
4221 {
4222 	return __mark_chain_precision(env, -1);
4223 }
4224 
4225 static bool is_spillable_regtype(enum bpf_reg_type type)
4226 {
4227 	switch (base_type(type)) {
4228 	case PTR_TO_MAP_VALUE:
4229 	case PTR_TO_STACK:
4230 	case PTR_TO_CTX:
4231 	case PTR_TO_PACKET:
4232 	case PTR_TO_PACKET_META:
4233 	case PTR_TO_PACKET_END:
4234 	case PTR_TO_FLOW_KEYS:
4235 	case CONST_PTR_TO_MAP:
4236 	case PTR_TO_SOCKET:
4237 	case PTR_TO_SOCK_COMMON:
4238 	case PTR_TO_TCP_SOCK:
4239 	case PTR_TO_XDP_SOCK:
4240 	case PTR_TO_BTF_ID:
4241 	case PTR_TO_BUF:
4242 	case PTR_TO_MEM:
4243 	case PTR_TO_FUNC:
4244 	case PTR_TO_MAP_KEY:
4245 		return true;
4246 	default:
4247 		return false;
4248 	}
4249 }
4250 
4251 /* Does this register contain a constant zero? */
4252 static bool register_is_null(struct bpf_reg_state *reg)
4253 {
4254 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
4255 }
4256 
4257 static bool register_is_const(struct bpf_reg_state *reg)
4258 {
4259 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
4260 }
4261 
4262 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
4263 {
4264 	return tnum_is_unknown(reg->var_off) &&
4265 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
4266 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
4267 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
4268 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
4269 }
4270 
4271 static bool register_is_bounded(struct bpf_reg_state *reg)
4272 {
4273 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
4274 }
4275 
4276 static bool __is_pointer_value(bool allow_ptr_leaks,
4277 			       const struct bpf_reg_state *reg)
4278 {
4279 	if (allow_ptr_leaks)
4280 		return false;
4281 
4282 	return reg->type != SCALAR_VALUE;
4283 }
4284 
4285 /* Copy src state preserving dst->parent and dst->live fields */
4286 static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
4287 {
4288 	struct bpf_reg_state *parent = dst->parent;
4289 	enum bpf_reg_liveness live = dst->live;
4290 
4291 	*dst = *src;
4292 	dst->parent = parent;
4293 	dst->live = live;
4294 }
4295 
4296 static void save_register_state(struct bpf_func_state *state,
4297 				int spi, struct bpf_reg_state *reg,
4298 				int size)
4299 {
4300 	int i;
4301 
4302 	copy_register_state(&state->stack[spi].spilled_ptr, reg);
4303 	if (size == BPF_REG_SIZE)
4304 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4305 
4306 	for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
4307 		state->stack[spi].slot_type[i - 1] = STACK_SPILL;
4308 
4309 	/* size < 8 bytes spill */
4310 	for (; i; i--)
4311 		scrub_spilled_slot(&state->stack[spi].slot_type[i - 1]);
4312 }
4313 
4314 static bool is_bpf_st_mem(struct bpf_insn *insn)
4315 {
4316 	return BPF_CLASS(insn->code) == BPF_ST && BPF_MODE(insn->code) == BPF_MEM;
4317 }
4318 
4319 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
4320  * stack boundary and alignment are checked in check_mem_access()
4321  */
4322 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
4323 				       /* stack frame we're writing to */
4324 				       struct bpf_func_state *state,
4325 				       int off, int size, int value_regno,
4326 				       int insn_idx)
4327 {
4328 	struct bpf_func_state *cur; /* state of the current function */
4329 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
4330 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4331 	struct bpf_reg_state *reg = NULL;
4332 	u32 dst_reg = insn->dst_reg;
4333 
4334 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
4335 	 * so it's aligned access and [off, off + size) are within stack limits
4336 	 */
4337 	if (!env->allow_ptr_leaks &&
4338 	    is_spilled_reg(&state->stack[spi]) &&
4339 	    size != BPF_REG_SIZE) {
4340 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
4341 		return -EACCES;
4342 	}
4343 
4344 	cur = env->cur_state->frame[env->cur_state->curframe];
4345 	if (value_regno >= 0)
4346 		reg = &cur->regs[value_regno];
4347 	if (!env->bypass_spec_v4) {
4348 		bool sanitize = reg && is_spillable_regtype(reg->type);
4349 
4350 		for (i = 0; i < size; i++) {
4351 			u8 type = state->stack[spi].slot_type[i];
4352 
4353 			if (type != STACK_MISC && type != STACK_ZERO) {
4354 				sanitize = true;
4355 				break;
4356 			}
4357 		}
4358 
4359 		if (sanitize)
4360 			env->insn_aux_data[insn_idx].sanitize_stack_spill = true;
4361 	}
4362 
4363 	err = destroy_if_dynptr_stack_slot(env, state, spi);
4364 	if (err)
4365 		return err;
4366 
4367 	mark_stack_slot_scratched(env, spi);
4368 	if (reg && !(off % BPF_REG_SIZE) && register_is_bounded(reg) &&
4369 	    !register_is_null(reg) && env->bpf_capable) {
4370 		if (dst_reg != BPF_REG_FP) {
4371 			/* The backtracking logic can only recognize explicit
4372 			 * stack slot address like [fp - 8]. Other spill of
4373 			 * scalar via different register has to be conservative.
4374 			 * Backtrack from here and mark all registers as precise
4375 			 * that contributed into 'reg' being a constant.
4376 			 */
4377 			err = mark_chain_precision(env, value_regno);
4378 			if (err)
4379 				return err;
4380 		}
4381 		save_register_state(state, spi, reg, size);
4382 		/* Break the relation on a narrowing spill. */
4383 		if (fls64(reg->umax_value) > BITS_PER_BYTE * size)
4384 			state->stack[spi].spilled_ptr.id = 0;
4385 	} else if (!reg && !(off % BPF_REG_SIZE) && is_bpf_st_mem(insn) &&
4386 		   insn->imm != 0 && env->bpf_capable) {
4387 		struct bpf_reg_state fake_reg = {};
4388 
4389 		__mark_reg_known(&fake_reg, insn->imm);
4390 		fake_reg.type = SCALAR_VALUE;
4391 		save_register_state(state, spi, &fake_reg, size);
4392 	} else if (reg && is_spillable_regtype(reg->type)) {
4393 		/* register containing pointer is being spilled into stack */
4394 		if (size != BPF_REG_SIZE) {
4395 			verbose_linfo(env, insn_idx, "; ");
4396 			verbose(env, "invalid size of register spill\n");
4397 			return -EACCES;
4398 		}
4399 		if (state != cur && reg->type == PTR_TO_STACK) {
4400 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
4401 			return -EINVAL;
4402 		}
4403 		save_register_state(state, spi, reg, size);
4404 	} else {
4405 		u8 type = STACK_MISC;
4406 
4407 		/* regular write of data into stack destroys any spilled ptr */
4408 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4409 		/* Mark slots as STACK_MISC if they belonged to spilled ptr/dynptr/iter. */
4410 		if (is_stack_slot_special(&state->stack[spi]))
4411 			for (i = 0; i < BPF_REG_SIZE; i++)
4412 				scrub_spilled_slot(&state->stack[spi].slot_type[i]);
4413 
4414 		/* only mark the slot as written if all 8 bytes were written
4415 		 * otherwise read propagation may incorrectly stop too soon
4416 		 * when stack slots are partially written.
4417 		 * This heuristic means that read propagation will be
4418 		 * conservative, since it will add reg_live_read marks
4419 		 * to stack slots all the way to first state when programs
4420 		 * writes+reads less than 8 bytes
4421 		 */
4422 		if (size == BPF_REG_SIZE)
4423 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
4424 
4425 		/* when we zero initialize stack slots mark them as such */
4426 		if ((reg && register_is_null(reg)) ||
4427 		    (!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
4428 			/* backtracking doesn't work for STACK_ZERO yet. */
4429 			err = mark_chain_precision(env, value_regno);
4430 			if (err)
4431 				return err;
4432 			type = STACK_ZERO;
4433 		}
4434 
4435 		/* Mark slots affected by this stack write. */
4436 		for (i = 0; i < size; i++)
4437 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
4438 				type;
4439 	}
4440 	return 0;
4441 }
4442 
4443 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
4444  * known to contain a variable offset.
4445  * This function checks whether the write is permitted and conservatively
4446  * tracks the effects of the write, considering that each stack slot in the
4447  * dynamic range is potentially written to.
4448  *
4449  * 'off' includes 'regno->off'.
4450  * 'value_regno' can be -1, meaning that an unknown value is being written to
4451  * the stack.
4452  *
4453  * Spilled pointers in range are not marked as written because we don't know
4454  * what's going to be actually written. This means that read propagation for
4455  * future reads cannot be terminated by this write.
4456  *
4457  * For privileged programs, uninitialized stack slots are considered
4458  * initialized by this write (even though we don't know exactly what offsets
4459  * are going to be written to). The idea is that we don't want the verifier to
4460  * reject future reads that access slots written to through variable offsets.
4461  */
4462 static int check_stack_write_var_off(struct bpf_verifier_env *env,
4463 				     /* func where register points to */
4464 				     struct bpf_func_state *state,
4465 				     int ptr_regno, int off, int size,
4466 				     int value_regno, int insn_idx)
4467 {
4468 	struct bpf_func_state *cur; /* state of the current function */
4469 	int min_off, max_off;
4470 	int i, err;
4471 	struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
4472 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
4473 	bool writing_zero = false;
4474 	/* set if the fact that we're writing a zero is used to let any
4475 	 * stack slots remain STACK_ZERO
4476 	 */
4477 	bool zero_used = false;
4478 
4479 	cur = env->cur_state->frame[env->cur_state->curframe];
4480 	ptr_reg = &cur->regs[ptr_regno];
4481 	min_off = ptr_reg->smin_value + off;
4482 	max_off = ptr_reg->smax_value + off + size;
4483 	if (value_regno >= 0)
4484 		value_reg = &cur->regs[value_regno];
4485 	if ((value_reg && register_is_null(value_reg)) ||
4486 	    (!value_reg && is_bpf_st_mem(insn) && insn->imm == 0))
4487 		writing_zero = true;
4488 
4489 	for (i = min_off; i < max_off; i++) {
4490 		int spi;
4491 
4492 		spi = __get_spi(i);
4493 		err = destroy_if_dynptr_stack_slot(env, state, spi);
4494 		if (err)
4495 			return err;
4496 	}
4497 
4498 	/* Variable offset writes destroy any spilled pointers in range. */
4499 	for (i = min_off; i < max_off; i++) {
4500 		u8 new_type, *stype;
4501 		int slot, spi;
4502 
4503 		slot = -i - 1;
4504 		spi = slot / BPF_REG_SIZE;
4505 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4506 		mark_stack_slot_scratched(env, spi);
4507 
4508 		if (!env->allow_ptr_leaks && *stype != STACK_MISC && *stype != STACK_ZERO) {
4509 			/* Reject the write if range we may write to has not
4510 			 * been initialized beforehand. If we didn't reject
4511 			 * here, the ptr status would be erased below (even
4512 			 * though not all slots are actually overwritten),
4513 			 * possibly opening the door to leaks.
4514 			 *
4515 			 * We do however catch STACK_INVALID case below, and
4516 			 * only allow reading possibly uninitialized memory
4517 			 * later for CAP_PERFMON, as the write may not happen to
4518 			 * that slot.
4519 			 */
4520 			verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
4521 				insn_idx, i);
4522 			return -EINVAL;
4523 		}
4524 
4525 		/* Erase all spilled pointers. */
4526 		state->stack[spi].spilled_ptr.type = NOT_INIT;
4527 
4528 		/* Update the slot type. */
4529 		new_type = STACK_MISC;
4530 		if (writing_zero && *stype == STACK_ZERO) {
4531 			new_type = STACK_ZERO;
4532 			zero_used = true;
4533 		}
4534 		/* If the slot is STACK_INVALID, we check whether it's OK to
4535 		 * pretend that it will be initialized by this write. The slot
4536 		 * might not actually be written to, and so if we mark it as
4537 		 * initialized future reads might leak uninitialized memory.
4538 		 * For privileged programs, we will accept such reads to slots
4539 		 * that may or may not be written because, if we're reject
4540 		 * them, the error would be too confusing.
4541 		 */
4542 		if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
4543 			verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
4544 					insn_idx, i);
4545 			return -EINVAL;
4546 		}
4547 		*stype = new_type;
4548 	}
4549 	if (zero_used) {
4550 		/* backtracking doesn't work for STACK_ZERO yet. */
4551 		err = mark_chain_precision(env, value_regno);
4552 		if (err)
4553 			return err;
4554 	}
4555 	return 0;
4556 }
4557 
4558 /* When register 'dst_regno' is assigned some values from stack[min_off,
4559  * max_off), we set the register's type according to the types of the
4560  * respective stack slots. If all the stack values are known to be zeros, then
4561  * so is the destination reg. Otherwise, the register is considered to be
4562  * SCALAR. This function does not deal with register filling; the caller must
4563  * ensure that all spilled registers in the stack range have been marked as
4564  * read.
4565  */
4566 static void mark_reg_stack_read(struct bpf_verifier_env *env,
4567 				/* func where src register points to */
4568 				struct bpf_func_state *ptr_state,
4569 				int min_off, int max_off, int dst_regno)
4570 {
4571 	struct bpf_verifier_state *vstate = env->cur_state;
4572 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4573 	int i, slot, spi;
4574 	u8 *stype;
4575 	int zeros = 0;
4576 
4577 	for (i = min_off; i < max_off; i++) {
4578 		slot = -i - 1;
4579 		spi = slot / BPF_REG_SIZE;
4580 		mark_stack_slot_scratched(env, spi);
4581 		stype = ptr_state->stack[spi].slot_type;
4582 		if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
4583 			break;
4584 		zeros++;
4585 	}
4586 	if (zeros == max_off - min_off) {
4587 		/* any access_size read into register is zero extended,
4588 		 * so the whole register == const_zero
4589 		 */
4590 		__mark_reg_const_zero(&state->regs[dst_regno]);
4591 		/* backtracking doesn't support STACK_ZERO yet,
4592 		 * so mark it precise here, so that later
4593 		 * backtracking can stop here.
4594 		 * Backtracking may not need this if this register
4595 		 * doesn't participate in pointer adjustment.
4596 		 * Forward propagation of precise flag is not
4597 		 * necessary either. This mark is only to stop
4598 		 * backtracking. Any register that contributed
4599 		 * to const 0 was marked precise before spill.
4600 		 */
4601 		state->regs[dst_regno].precise = true;
4602 	} else {
4603 		/* have read misc data from the stack */
4604 		mark_reg_unknown(env, state->regs, dst_regno);
4605 	}
4606 	state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4607 }
4608 
4609 /* Read the stack at 'off' and put the results into the register indicated by
4610  * 'dst_regno'. It handles reg filling if the addressed stack slot is a
4611  * spilled reg.
4612  *
4613  * 'dst_regno' can be -1, meaning that the read value is not going to a
4614  * register.
4615  *
4616  * The access is assumed to be within the current stack bounds.
4617  */
4618 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
4619 				      /* func where src register points to */
4620 				      struct bpf_func_state *reg_state,
4621 				      int off, int size, int dst_regno)
4622 {
4623 	struct bpf_verifier_state *vstate = env->cur_state;
4624 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4625 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
4626 	struct bpf_reg_state *reg;
4627 	u8 *stype, type;
4628 
4629 	stype = reg_state->stack[spi].slot_type;
4630 	reg = &reg_state->stack[spi].spilled_ptr;
4631 
4632 	mark_stack_slot_scratched(env, spi);
4633 
4634 	if (is_spilled_reg(&reg_state->stack[spi])) {
4635 		u8 spill_size = 1;
4636 
4637 		for (i = BPF_REG_SIZE - 1; i > 0 && stype[i - 1] == STACK_SPILL; i--)
4638 			spill_size++;
4639 
4640 		if (size != BPF_REG_SIZE || spill_size != BPF_REG_SIZE) {
4641 			if (reg->type != SCALAR_VALUE) {
4642 				verbose_linfo(env, env->insn_idx, "; ");
4643 				verbose(env, "invalid size of register fill\n");
4644 				return -EACCES;
4645 			}
4646 
4647 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4648 			if (dst_regno < 0)
4649 				return 0;
4650 
4651 			if (!(off % BPF_REG_SIZE) && size == spill_size) {
4652 				/* The earlier check_reg_arg() has decided the
4653 				 * subreg_def for this insn.  Save it first.
4654 				 */
4655 				s32 subreg_def = state->regs[dst_regno].subreg_def;
4656 
4657 				copy_register_state(&state->regs[dst_regno], reg);
4658 				state->regs[dst_regno].subreg_def = subreg_def;
4659 			} else {
4660 				for (i = 0; i < size; i++) {
4661 					type = stype[(slot - i) % BPF_REG_SIZE];
4662 					if (type == STACK_SPILL)
4663 						continue;
4664 					if (type == STACK_MISC)
4665 						continue;
4666 					if (type == STACK_INVALID && env->allow_uninit_stack)
4667 						continue;
4668 					verbose(env, "invalid read from stack off %d+%d size %d\n",
4669 						off, i, size);
4670 					return -EACCES;
4671 				}
4672 				mark_reg_unknown(env, state->regs, dst_regno);
4673 			}
4674 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4675 			return 0;
4676 		}
4677 
4678 		if (dst_regno >= 0) {
4679 			/* restore register state from stack */
4680 			copy_register_state(&state->regs[dst_regno], reg);
4681 			/* mark reg as written since spilled pointer state likely
4682 			 * has its liveness marks cleared by is_state_visited()
4683 			 * which resets stack/reg liveness for state transitions
4684 			 */
4685 			state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
4686 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
4687 			/* If dst_regno==-1, the caller is asking us whether
4688 			 * it is acceptable to use this value as a SCALAR_VALUE
4689 			 * (e.g. for XADD).
4690 			 * We must not allow unprivileged callers to do that
4691 			 * with spilled pointers.
4692 			 */
4693 			verbose(env, "leaking pointer from stack off %d\n",
4694 				off);
4695 			return -EACCES;
4696 		}
4697 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4698 	} else {
4699 		for (i = 0; i < size; i++) {
4700 			type = stype[(slot - i) % BPF_REG_SIZE];
4701 			if (type == STACK_MISC)
4702 				continue;
4703 			if (type == STACK_ZERO)
4704 				continue;
4705 			if (type == STACK_INVALID && env->allow_uninit_stack)
4706 				continue;
4707 			verbose(env, "invalid read from stack off %d+%d size %d\n",
4708 				off, i, size);
4709 			return -EACCES;
4710 		}
4711 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
4712 		if (dst_regno >= 0)
4713 			mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
4714 	}
4715 	return 0;
4716 }
4717 
4718 enum bpf_access_src {
4719 	ACCESS_DIRECT = 1,  /* the access is performed by an instruction */
4720 	ACCESS_HELPER = 2,  /* the access is performed by a helper */
4721 };
4722 
4723 static int check_stack_range_initialized(struct bpf_verifier_env *env,
4724 					 int regno, int off, int access_size,
4725 					 bool zero_size_allowed,
4726 					 enum bpf_access_src type,
4727 					 struct bpf_call_arg_meta *meta);
4728 
4729 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
4730 {
4731 	return cur_regs(env) + regno;
4732 }
4733 
4734 /* Read the stack at 'ptr_regno + off' and put the result into the register
4735  * 'dst_regno'.
4736  * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
4737  * but not its variable offset.
4738  * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
4739  *
4740  * As opposed to check_stack_read_fixed_off, this function doesn't deal with
4741  * filling registers (i.e. reads of spilled register cannot be detected when
4742  * the offset is not fixed). We conservatively mark 'dst_regno' as containing
4743  * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
4744  * offset; for a fixed offset check_stack_read_fixed_off should be used
4745  * instead.
4746  */
4747 static int check_stack_read_var_off(struct bpf_verifier_env *env,
4748 				    int ptr_regno, int off, int size, int dst_regno)
4749 {
4750 	/* The state of the source register. */
4751 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4752 	struct bpf_func_state *ptr_state = func(env, reg);
4753 	int err;
4754 	int min_off, max_off;
4755 
4756 	/* Note that we pass a NULL meta, so raw access will not be permitted.
4757 	 */
4758 	err = check_stack_range_initialized(env, ptr_regno, off, size,
4759 					    false, ACCESS_DIRECT, NULL);
4760 	if (err)
4761 		return err;
4762 
4763 	min_off = reg->smin_value + off;
4764 	max_off = reg->smax_value + off;
4765 	mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
4766 	return 0;
4767 }
4768 
4769 /* check_stack_read dispatches to check_stack_read_fixed_off or
4770  * check_stack_read_var_off.
4771  *
4772  * The caller must ensure that the offset falls within the allocated stack
4773  * bounds.
4774  *
4775  * 'dst_regno' is a register which will receive the value from the stack. It
4776  * can be -1, meaning that the read value is not going to a register.
4777  */
4778 static int check_stack_read(struct bpf_verifier_env *env,
4779 			    int ptr_regno, int off, int size,
4780 			    int dst_regno)
4781 {
4782 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4783 	struct bpf_func_state *state = func(env, reg);
4784 	int err;
4785 	/* Some accesses are only permitted with a static offset. */
4786 	bool var_off = !tnum_is_const(reg->var_off);
4787 
4788 	/* The offset is required to be static when reads don't go to a
4789 	 * register, in order to not leak pointers (see
4790 	 * check_stack_read_fixed_off).
4791 	 */
4792 	if (dst_regno < 0 && var_off) {
4793 		char tn_buf[48];
4794 
4795 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4796 		verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
4797 			tn_buf, off, size);
4798 		return -EACCES;
4799 	}
4800 	/* Variable offset is prohibited for unprivileged mode for simplicity
4801 	 * since it requires corresponding support in Spectre masking for stack
4802 	 * ALU. See also retrieve_ptr_limit(). The check in
4803 	 * check_stack_access_for_ptr_arithmetic() called by
4804 	 * adjust_ptr_min_max_vals() prevents users from creating stack pointers
4805 	 * with variable offsets, therefore no check is required here. Further,
4806 	 * just checking it here would be insufficient as speculative stack
4807 	 * writes could still lead to unsafe speculative behaviour.
4808 	 */
4809 	if (!var_off) {
4810 		off += reg->var_off.value;
4811 		err = check_stack_read_fixed_off(env, state, off, size,
4812 						 dst_regno);
4813 	} else {
4814 		/* Variable offset stack reads need more conservative handling
4815 		 * than fixed offset ones. Note that dst_regno >= 0 on this
4816 		 * branch.
4817 		 */
4818 		err = check_stack_read_var_off(env, ptr_regno, off, size,
4819 					       dst_regno);
4820 	}
4821 	return err;
4822 }
4823 
4824 
4825 /* check_stack_write dispatches to check_stack_write_fixed_off or
4826  * check_stack_write_var_off.
4827  *
4828  * 'ptr_regno' is the register used as a pointer into the stack.
4829  * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
4830  * 'value_regno' is the register whose value we're writing to the stack. It can
4831  * be -1, meaning that we're not writing from a register.
4832  *
4833  * The caller must ensure that the offset falls within the maximum stack size.
4834  */
4835 static int check_stack_write(struct bpf_verifier_env *env,
4836 			     int ptr_regno, int off, int size,
4837 			     int value_regno, int insn_idx)
4838 {
4839 	struct bpf_reg_state *reg = reg_state(env, ptr_regno);
4840 	struct bpf_func_state *state = func(env, reg);
4841 	int err;
4842 
4843 	if (tnum_is_const(reg->var_off)) {
4844 		off += reg->var_off.value;
4845 		err = check_stack_write_fixed_off(env, state, off, size,
4846 						  value_regno, insn_idx);
4847 	} else {
4848 		/* Variable offset stack reads need more conservative handling
4849 		 * than fixed offset ones.
4850 		 */
4851 		err = check_stack_write_var_off(env, state,
4852 						ptr_regno, off, size,
4853 						value_regno, insn_idx);
4854 	}
4855 	return err;
4856 }
4857 
4858 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
4859 				 int off, int size, enum bpf_access_type type)
4860 {
4861 	struct bpf_reg_state *regs = cur_regs(env);
4862 	struct bpf_map *map = regs[regno].map_ptr;
4863 	u32 cap = bpf_map_flags_to_cap(map);
4864 
4865 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
4866 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
4867 			map->value_size, off, size);
4868 		return -EACCES;
4869 	}
4870 
4871 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
4872 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
4873 			map->value_size, off, size);
4874 		return -EACCES;
4875 	}
4876 
4877 	return 0;
4878 }
4879 
4880 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
4881 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
4882 			      int off, int size, u32 mem_size,
4883 			      bool zero_size_allowed)
4884 {
4885 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
4886 	struct bpf_reg_state *reg;
4887 
4888 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
4889 		return 0;
4890 
4891 	reg = &cur_regs(env)[regno];
4892 	switch (reg->type) {
4893 	case PTR_TO_MAP_KEY:
4894 		verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
4895 			mem_size, off, size);
4896 		break;
4897 	case PTR_TO_MAP_VALUE:
4898 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
4899 			mem_size, off, size);
4900 		break;
4901 	case PTR_TO_PACKET:
4902 	case PTR_TO_PACKET_META:
4903 	case PTR_TO_PACKET_END:
4904 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
4905 			off, size, regno, reg->id, off, mem_size);
4906 		break;
4907 	case PTR_TO_MEM:
4908 	default:
4909 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
4910 			mem_size, off, size);
4911 	}
4912 
4913 	return -EACCES;
4914 }
4915 
4916 /* check read/write into a memory region with possible variable offset */
4917 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
4918 				   int off, int size, u32 mem_size,
4919 				   bool zero_size_allowed)
4920 {
4921 	struct bpf_verifier_state *vstate = env->cur_state;
4922 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4923 	struct bpf_reg_state *reg = &state->regs[regno];
4924 	int err;
4925 
4926 	/* We may have adjusted the register pointing to memory region, so we
4927 	 * need to try adding each of min_value and max_value to off
4928 	 * to make sure our theoretical access will be safe.
4929 	 *
4930 	 * The minimum value is only important with signed
4931 	 * comparisons where we can't assume the floor of a
4932 	 * value is 0.  If we are using signed variables for our
4933 	 * index'es we need to make sure that whatever we use
4934 	 * will have a set floor within our range.
4935 	 */
4936 	if (reg->smin_value < 0 &&
4937 	    (reg->smin_value == S64_MIN ||
4938 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
4939 	      reg->smin_value + off < 0)) {
4940 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
4941 			regno);
4942 		return -EACCES;
4943 	}
4944 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
4945 				 mem_size, zero_size_allowed);
4946 	if (err) {
4947 		verbose(env, "R%d min value is outside of the allowed memory range\n",
4948 			regno);
4949 		return err;
4950 	}
4951 
4952 	/* If we haven't set a max value then we need to bail since we can't be
4953 	 * sure we won't do bad things.
4954 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
4955 	 */
4956 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
4957 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
4958 			regno);
4959 		return -EACCES;
4960 	}
4961 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
4962 				 mem_size, zero_size_allowed);
4963 	if (err) {
4964 		verbose(env, "R%d max value is outside of the allowed memory range\n",
4965 			regno);
4966 		return err;
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 static int __check_ptr_off_reg(struct bpf_verifier_env *env,
4973 			       const struct bpf_reg_state *reg, int regno,
4974 			       bool fixed_off_ok)
4975 {
4976 	/* Access to this pointer-typed register or passing it to a helper
4977 	 * is only allowed in its original, unmodified form.
4978 	 */
4979 
4980 	if (reg->off < 0) {
4981 		verbose(env, "negative offset %s ptr R%d off=%d disallowed\n",
4982 			reg_type_str(env, reg->type), regno, reg->off);
4983 		return -EACCES;
4984 	}
4985 
4986 	if (!fixed_off_ok && reg->off) {
4987 		verbose(env, "dereference of modified %s ptr R%d off=%d disallowed\n",
4988 			reg_type_str(env, reg->type), regno, reg->off);
4989 		return -EACCES;
4990 	}
4991 
4992 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4993 		char tn_buf[48];
4994 
4995 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4996 		verbose(env, "variable %s access var_off=%s disallowed\n",
4997 			reg_type_str(env, reg->type), tn_buf);
4998 		return -EACCES;
4999 	}
5000 
5001 	return 0;
5002 }
5003 
5004 int check_ptr_off_reg(struct bpf_verifier_env *env,
5005 		      const struct bpf_reg_state *reg, int regno)
5006 {
5007 	return __check_ptr_off_reg(env, reg, regno, false);
5008 }
5009 
5010 static int map_kptr_match_type(struct bpf_verifier_env *env,
5011 			       struct btf_field *kptr_field,
5012 			       struct bpf_reg_state *reg, u32 regno)
5013 {
5014 	const char *targ_name = btf_type_name(kptr_field->kptr.btf, kptr_field->kptr.btf_id);
5015 	int perm_flags;
5016 	const char *reg_name = "";
5017 
5018 	if (btf_is_kernel(reg->btf)) {
5019 		perm_flags = PTR_MAYBE_NULL | PTR_TRUSTED | MEM_RCU;
5020 
5021 		/* Only unreferenced case accepts untrusted pointers */
5022 		if (kptr_field->type == BPF_KPTR_UNREF)
5023 			perm_flags |= PTR_UNTRUSTED;
5024 	} else {
5025 		perm_flags = PTR_MAYBE_NULL | MEM_ALLOC;
5026 	}
5027 
5028 	if (base_type(reg->type) != PTR_TO_BTF_ID || (type_flag(reg->type) & ~perm_flags))
5029 		goto bad_type;
5030 
5031 	/* We need to verify reg->type and reg->btf, before accessing reg->btf */
5032 	reg_name = btf_type_name(reg->btf, reg->btf_id);
5033 
5034 	/* For ref_ptr case, release function check should ensure we get one
5035 	 * referenced PTR_TO_BTF_ID, and that its fixed offset is 0. For the
5036 	 * normal store of unreferenced kptr, we must ensure var_off is zero.
5037 	 * Since ref_ptr cannot be accessed directly by BPF insns, checks for
5038 	 * reg->off and reg->ref_obj_id are not needed here.
5039 	 */
5040 	if (__check_ptr_off_reg(env, reg, regno, true))
5041 		return -EACCES;
5042 
5043 	/* A full type match is needed, as BTF can be vmlinux, module or prog BTF, and
5044 	 * we also need to take into account the reg->off.
5045 	 *
5046 	 * We want to support cases like:
5047 	 *
5048 	 * struct foo {
5049 	 *         struct bar br;
5050 	 *         struct baz bz;
5051 	 * };
5052 	 *
5053 	 * struct foo *v;
5054 	 * v = func();	      // PTR_TO_BTF_ID
5055 	 * val->foo = v;      // reg->off is zero, btf and btf_id match type
5056 	 * val->bar = &v->br; // reg->off is still zero, but we need to retry with
5057 	 *                    // first member type of struct after comparison fails
5058 	 * val->baz = &v->bz; // reg->off is non-zero, so struct needs to be walked
5059 	 *                    // to match type
5060 	 *
5061 	 * In the kptr_ref case, check_func_arg_reg_off already ensures reg->off
5062 	 * is zero. We must also ensure that btf_struct_ids_match does not walk
5063 	 * the struct to match type against first member of struct, i.e. reject
5064 	 * second case from above. Hence, when type is BPF_KPTR_REF, we set
5065 	 * strict mode to true for type match.
5066 	 */
5067 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
5068 				  kptr_field->kptr.btf, kptr_field->kptr.btf_id,
5069 				  kptr_field->type == BPF_KPTR_REF))
5070 		goto bad_type;
5071 	return 0;
5072 bad_type:
5073 	verbose(env, "invalid kptr access, R%d type=%s%s ", regno,
5074 		reg_type_str(env, reg->type), reg_name);
5075 	verbose(env, "expected=%s%s", reg_type_str(env, PTR_TO_BTF_ID), targ_name);
5076 	if (kptr_field->type == BPF_KPTR_UNREF)
5077 		verbose(env, " or %s%s\n", reg_type_str(env, PTR_TO_BTF_ID | PTR_UNTRUSTED),
5078 			targ_name);
5079 	else
5080 		verbose(env, "\n");
5081 	return -EINVAL;
5082 }
5083 
5084 /* The non-sleepable programs and sleepable programs with explicit bpf_rcu_read_lock()
5085  * can dereference RCU protected pointers and result is PTR_TRUSTED.
5086  */
5087 static bool in_rcu_cs(struct bpf_verifier_env *env)
5088 {
5089 	return env->cur_state->active_rcu_lock ||
5090 	       env->cur_state->active_lock.ptr ||
5091 	       !env->prog->aux->sleepable;
5092 }
5093 
5094 /* Once GCC supports btf_type_tag the following mechanism will be replaced with tag check */
5095 BTF_SET_START(rcu_protected_types)
5096 BTF_ID(struct, prog_test_ref_kfunc)
5097 BTF_ID(struct, cgroup)
5098 BTF_ID(struct, bpf_cpumask)
5099 BTF_ID(struct, task_struct)
5100 BTF_SET_END(rcu_protected_types)
5101 
5102 static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
5103 {
5104 	if (!btf_is_kernel(btf))
5105 		return false;
5106 	return btf_id_set_contains(&rcu_protected_types, btf_id);
5107 }
5108 
5109 static bool rcu_safe_kptr(const struct btf_field *field)
5110 {
5111 	const struct btf_field_kptr *kptr = &field->kptr;
5112 
5113 	return field->type == BPF_KPTR_REF && rcu_protected_object(kptr->btf, kptr->btf_id);
5114 }
5115 
5116 static int check_map_kptr_access(struct bpf_verifier_env *env, u32 regno,
5117 				 int value_regno, int insn_idx,
5118 				 struct btf_field *kptr_field)
5119 {
5120 	struct bpf_insn *insn = &env->prog->insnsi[insn_idx];
5121 	int class = BPF_CLASS(insn->code);
5122 	struct bpf_reg_state *val_reg;
5123 
5124 	/* Things we already checked for in check_map_access and caller:
5125 	 *  - Reject cases where variable offset may touch kptr
5126 	 *  - size of access (must be BPF_DW)
5127 	 *  - tnum_is_const(reg->var_off)
5128 	 *  - kptr_field->offset == off + reg->var_off.value
5129 	 */
5130 	/* Only BPF_[LDX,STX,ST] | BPF_MEM | BPF_DW is supported */
5131 	if (BPF_MODE(insn->code) != BPF_MEM) {
5132 		verbose(env, "kptr in map can only be accessed using BPF_MEM instruction mode\n");
5133 		return -EACCES;
5134 	}
5135 
5136 	/* We only allow loading referenced kptr, since it will be marked as
5137 	 * untrusted, similar to unreferenced kptr.
5138 	 */
5139 	if (class != BPF_LDX && kptr_field->type == BPF_KPTR_REF) {
5140 		verbose(env, "store to referenced kptr disallowed\n");
5141 		return -EACCES;
5142 	}
5143 
5144 	if (class == BPF_LDX) {
5145 		val_reg = reg_state(env, value_regno);
5146 		/* We can simply mark the value_regno receiving the pointer
5147 		 * value from map as PTR_TO_BTF_ID, with the correct type.
5148 		 */
5149 		mark_btf_ld_reg(env, cur_regs(env), value_regno, PTR_TO_BTF_ID, kptr_field->kptr.btf,
5150 				kptr_field->kptr.btf_id,
5151 				rcu_safe_kptr(kptr_field) && in_rcu_cs(env) ?
5152 				PTR_MAYBE_NULL | MEM_RCU :
5153 				PTR_MAYBE_NULL | PTR_UNTRUSTED);
5154 		/* For mark_ptr_or_null_reg */
5155 		val_reg->id = ++env->id_gen;
5156 	} else if (class == BPF_STX) {
5157 		val_reg = reg_state(env, value_regno);
5158 		if (!register_is_null(val_reg) &&
5159 		    map_kptr_match_type(env, kptr_field, val_reg, value_regno))
5160 			return -EACCES;
5161 	} else if (class == BPF_ST) {
5162 		if (insn->imm) {
5163 			verbose(env, "BPF_ST imm must be 0 when storing to kptr at off=%u\n",
5164 				kptr_field->offset);
5165 			return -EACCES;
5166 		}
5167 	} else {
5168 		verbose(env, "kptr in map can only be accessed using BPF_LDX/BPF_STX/BPF_ST\n");
5169 		return -EACCES;
5170 	}
5171 	return 0;
5172 }
5173 
5174 /* check read/write into a map element with possible variable offset */
5175 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
5176 			    int off, int size, bool zero_size_allowed,
5177 			    enum bpf_access_src src)
5178 {
5179 	struct bpf_verifier_state *vstate = env->cur_state;
5180 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5181 	struct bpf_reg_state *reg = &state->regs[regno];
5182 	struct bpf_map *map = reg->map_ptr;
5183 	struct btf_record *rec;
5184 	int err, i;
5185 
5186 	err = check_mem_region_access(env, regno, off, size, map->value_size,
5187 				      zero_size_allowed);
5188 	if (err)
5189 		return err;
5190 
5191 	if (IS_ERR_OR_NULL(map->record))
5192 		return 0;
5193 	rec = map->record;
5194 	for (i = 0; i < rec->cnt; i++) {
5195 		struct btf_field *field = &rec->fields[i];
5196 		u32 p = field->offset;
5197 
5198 		/* If any part of a field  can be touched by load/store, reject
5199 		 * this program. To check that [x1, x2) overlaps with [y1, y2),
5200 		 * it is sufficient to check x1 < y2 && y1 < x2.
5201 		 */
5202 		if (reg->smin_value + off < p + btf_field_type_size(field->type) &&
5203 		    p < reg->umax_value + off + size) {
5204 			switch (field->type) {
5205 			case BPF_KPTR_UNREF:
5206 			case BPF_KPTR_REF:
5207 				if (src != ACCESS_DIRECT) {
5208 					verbose(env, "kptr cannot be accessed indirectly by helper\n");
5209 					return -EACCES;
5210 				}
5211 				if (!tnum_is_const(reg->var_off)) {
5212 					verbose(env, "kptr access cannot have variable offset\n");
5213 					return -EACCES;
5214 				}
5215 				if (p != off + reg->var_off.value) {
5216 					verbose(env, "kptr access misaligned expected=%u off=%llu\n",
5217 						p, off + reg->var_off.value);
5218 					return -EACCES;
5219 				}
5220 				if (size != bpf_size_to_bytes(BPF_DW)) {
5221 					verbose(env, "kptr access size must be BPF_DW\n");
5222 					return -EACCES;
5223 				}
5224 				break;
5225 			default:
5226 				verbose(env, "%s cannot be accessed directly by load/store\n",
5227 					btf_field_type_name(field->type));
5228 				return -EACCES;
5229 			}
5230 		}
5231 	}
5232 	return 0;
5233 }
5234 
5235 #define MAX_PACKET_OFF 0xffff
5236 
5237 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
5238 				       const struct bpf_call_arg_meta *meta,
5239 				       enum bpf_access_type t)
5240 {
5241 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
5242 
5243 	switch (prog_type) {
5244 	/* Program types only with direct read access go here! */
5245 	case BPF_PROG_TYPE_LWT_IN:
5246 	case BPF_PROG_TYPE_LWT_OUT:
5247 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
5248 	case BPF_PROG_TYPE_SK_REUSEPORT:
5249 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
5250 	case BPF_PROG_TYPE_CGROUP_SKB:
5251 		if (t == BPF_WRITE)
5252 			return false;
5253 		fallthrough;
5254 
5255 	/* Program types with direct read + write access go here! */
5256 	case BPF_PROG_TYPE_SCHED_CLS:
5257 	case BPF_PROG_TYPE_SCHED_ACT:
5258 	case BPF_PROG_TYPE_XDP:
5259 	case BPF_PROG_TYPE_LWT_XMIT:
5260 	case BPF_PROG_TYPE_SK_SKB:
5261 	case BPF_PROG_TYPE_SK_MSG:
5262 		if (meta)
5263 			return meta->pkt_access;
5264 
5265 		env->seen_direct_write = true;
5266 		return true;
5267 
5268 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
5269 		if (t == BPF_WRITE)
5270 			env->seen_direct_write = true;
5271 
5272 		return true;
5273 
5274 	default:
5275 		return false;
5276 	}
5277 }
5278 
5279 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
5280 			       int size, bool zero_size_allowed)
5281 {
5282 	struct bpf_reg_state *regs = cur_regs(env);
5283 	struct bpf_reg_state *reg = &regs[regno];
5284 	int err;
5285 
5286 	/* We may have added a variable offset to the packet pointer; but any
5287 	 * reg->range we have comes after that.  We are only checking the fixed
5288 	 * offset.
5289 	 */
5290 
5291 	/* We don't allow negative numbers, because we aren't tracking enough
5292 	 * detail to prove they're safe.
5293 	 */
5294 	if (reg->smin_value < 0) {
5295 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5296 			regno);
5297 		return -EACCES;
5298 	}
5299 
5300 	err = reg->range < 0 ? -EINVAL :
5301 	      __check_mem_access(env, regno, off, size, reg->range,
5302 				 zero_size_allowed);
5303 	if (err) {
5304 		verbose(env, "R%d offset is outside of the packet\n", regno);
5305 		return err;
5306 	}
5307 
5308 	/* __check_mem_access has made sure "off + size - 1" is within u16.
5309 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
5310 	 * otherwise find_good_pkt_pointers would have refused to set range info
5311 	 * that __check_mem_access would have rejected this pkt access.
5312 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
5313 	 */
5314 	env->prog->aux->max_pkt_offset =
5315 		max_t(u32, env->prog->aux->max_pkt_offset,
5316 		      off + reg->umax_value + size - 1);
5317 
5318 	return err;
5319 }
5320 
5321 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
5322 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
5323 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
5324 			    struct btf **btf, u32 *btf_id)
5325 {
5326 	struct bpf_insn_access_aux info = {
5327 		.reg_type = *reg_type,
5328 		.log = &env->log,
5329 	};
5330 
5331 	if (env->ops->is_valid_access &&
5332 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
5333 		/* A non zero info.ctx_field_size indicates that this field is a
5334 		 * candidate for later verifier transformation to load the whole
5335 		 * field and then apply a mask when accessed with a narrower
5336 		 * access than actual ctx access size. A zero info.ctx_field_size
5337 		 * will only allow for whole field access and rejects any other
5338 		 * type of narrower access.
5339 		 */
5340 		*reg_type = info.reg_type;
5341 
5342 		if (base_type(*reg_type) == PTR_TO_BTF_ID) {
5343 			*btf = info.btf;
5344 			*btf_id = info.btf_id;
5345 		} else {
5346 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
5347 		}
5348 		/* remember the offset of last byte accessed in ctx */
5349 		if (env->prog->aux->max_ctx_offset < off + size)
5350 			env->prog->aux->max_ctx_offset = off + size;
5351 		return 0;
5352 	}
5353 
5354 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
5355 	return -EACCES;
5356 }
5357 
5358 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
5359 				  int size)
5360 {
5361 	if (size < 0 || off < 0 ||
5362 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
5363 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
5364 			off, size);
5365 		return -EACCES;
5366 	}
5367 	return 0;
5368 }
5369 
5370 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
5371 			     u32 regno, int off, int size,
5372 			     enum bpf_access_type t)
5373 {
5374 	struct bpf_reg_state *regs = cur_regs(env);
5375 	struct bpf_reg_state *reg = &regs[regno];
5376 	struct bpf_insn_access_aux info = {};
5377 	bool valid;
5378 
5379 	if (reg->smin_value < 0) {
5380 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
5381 			regno);
5382 		return -EACCES;
5383 	}
5384 
5385 	switch (reg->type) {
5386 	case PTR_TO_SOCK_COMMON:
5387 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
5388 		break;
5389 	case PTR_TO_SOCKET:
5390 		valid = bpf_sock_is_valid_access(off, size, t, &info);
5391 		break;
5392 	case PTR_TO_TCP_SOCK:
5393 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
5394 		break;
5395 	case PTR_TO_XDP_SOCK:
5396 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
5397 		break;
5398 	default:
5399 		valid = false;
5400 	}
5401 
5402 
5403 	if (valid) {
5404 		env->insn_aux_data[insn_idx].ctx_field_size =
5405 			info.ctx_field_size;
5406 		return 0;
5407 	}
5408 
5409 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
5410 		regno, reg_type_str(env, reg->type), off, size);
5411 
5412 	return -EACCES;
5413 }
5414 
5415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
5416 {
5417 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
5418 }
5419 
5420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
5421 {
5422 	const struct bpf_reg_state *reg = reg_state(env, regno);
5423 
5424 	return reg->type == PTR_TO_CTX;
5425 }
5426 
5427 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
5428 {
5429 	const struct bpf_reg_state *reg = reg_state(env, regno);
5430 
5431 	return type_is_sk_pointer(reg->type);
5432 }
5433 
5434 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
5435 {
5436 	const struct bpf_reg_state *reg = reg_state(env, regno);
5437 
5438 	return type_is_pkt_pointer(reg->type);
5439 }
5440 
5441 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
5442 {
5443 	const struct bpf_reg_state *reg = reg_state(env, regno);
5444 
5445 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
5446 	return reg->type == PTR_TO_FLOW_KEYS;
5447 }
5448 
5449 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5450 #ifdef CONFIG_NET
5451 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5452 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5453 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5454 #endif
5455 	[CONST_PTR_TO_MAP] = btf_bpf_map_id,
5456 };
5457 
5458 static bool is_trusted_reg(const struct bpf_reg_state *reg)
5459 {
5460 	/* A referenced register is always trusted. */
5461 	if (reg->ref_obj_id)
5462 		return true;
5463 
5464 	/* Types listed in the reg2btf_ids are always trusted */
5465 	if (reg2btf_ids[base_type(reg->type)])
5466 		return true;
5467 
5468 	/* If a register is not referenced, it is trusted if it has the
5469 	 * MEM_ALLOC or PTR_TRUSTED type modifiers, and no others. Some of the
5470 	 * other type modifiers may be safe, but we elect to take an opt-in
5471 	 * approach here as some (e.g. PTR_UNTRUSTED and PTR_MAYBE_NULL) are
5472 	 * not.
5473 	 *
5474 	 * Eventually, we should make PTR_TRUSTED the single source of truth
5475 	 * for whether a register is trusted.
5476 	 */
5477 	return type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS &&
5478 	       !bpf_type_has_unsafe_modifiers(reg->type);
5479 }
5480 
5481 static bool is_rcu_reg(const struct bpf_reg_state *reg)
5482 {
5483 	return reg->type & MEM_RCU;
5484 }
5485 
5486 static void clear_trusted_flags(enum bpf_type_flag *flag)
5487 {
5488 	*flag &= ~(BPF_REG_TRUSTED_MODIFIERS | MEM_RCU);
5489 }
5490 
5491 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
5492 				   const struct bpf_reg_state *reg,
5493 				   int off, int size, bool strict)
5494 {
5495 	struct tnum reg_off;
5496 	int ip_align;
5497 
5498 	/* Byte size accesses are always allowed. */
5499 	if (!strict || size == 1)
5500 		return 0;
5501 
5502 	/* For platforms that do not have a Kconfig enabling
5503 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
5504 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
5505 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
5506 	 * to this code only in strict mode where we want to emulate
5507 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
5508 	 * unconditional IP align value of '2'.
5509 	 */
5510 	ip_align = 2;
5511 
5512 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
5513 	if (!tnum_is_aligned(reg_off, size)) {
5514 		char tn_buf[48];
5515 
5516 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5517 		verbose(env,
5518 			"misaligned packet access off %d+%s+%d+%d size %d\n",
5519 			ip_align, tn_buf, reg->off, off, size);
5520 		return -EACCES;
5521 	}
5522 
5523 	return 0;
5524 }
5525 
5526 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
5527 				       const struct bpf_reg_state *reg,
5528 				       const char *pointer_desc,
5529 				       int off, int size, bool strict)
5530 {
5531 	struct tnum reg_off;
5532 
5533 	/* Byte size accesses are always allowed. */
5534 	if (!strict || size == 1)
5535 		return 0;
5536 
5537 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
5538 	if (!tnum_is_aligned(reg_off, size)) {
5539 		char tn_buf[48];
5540 
5541 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5542 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
5543 			pointer_desc, tn_buf, reg->off, off, size);
5544 		return -EACCES;
5545 	}
5546 
5547 	return 0;
5548 }
5549 
5550 static int check_ptr_alignment(struct bpf_verifier_env *env,
5551 			       const struct bpf_reg_state *reg, int off,
5552 			       int size, bool strict_alignment_once)
5553 {
5554 	bool strict = env->strict_alignment || strict_alignment_once;
5555 	const char *pointer_desc = "";
5556 
5557 	switch (reg->type) {
5558 	case PTR_TO_PACKET:
5559 	case PTR_TO_PACKET_META:
5560 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
5561 		 * right in front, treat it the very same way.
5562 		 */
5563 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
5564 	case PTR_TO_FLOW_KEYS:
5565 		pointer_desc = "flow keys ";
5566 		break;
5567 	case PTR_TO_MAP_KEY:
5568 		pointer_desc = "key ";
5569 		break;
5570 	case PTR_TO_MAP_VALUE:
5571 		pointer_desc = "value ";
5572 		break;
5573 	case PTR_TO_CTX:
5574 		pointer_desc = "context ";
5575 		break;
5576 	case PTR_TO_STACK:
5577 		pointer_desc = "stack ";
5578 		/* The stack spill tracking logic in check_stack_write_fixed_off()
5579 		 * and check_stack_read_fixed_off() relies on stack accesses being
5580 		 * aligned.
5581 		 */
5582 		strict = true;
5583 		break;
5584 	case PTR_TO_SOCKET:
5585 		pointer_desc = "sock ";
5586 		break;
5587 	case PTR_TO_SOCK_COMMON:
5588 		pointer_desc = "sock_common ";
5589 		break;
5590 	case PTR_TO_TCP_SOCK:
5591 		pointer_desc = "tcp_sock ";
5592 		break;
5593 	case PTR_TO_XDP_SOCK:
5594 		pointer_desc = "xdp_sock ";
5595 		break;
5596 	default:
5597 		break;
5598 	}
5599 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
5600 					   strict);
5601 }
5602 
5603 /* starting from main bpf function walk all instructions of the function
5604  * and recursively walk all callees that given function can call.
5605  * Ignore jump and exit insns.
5606  * Since recursion is prevented by check_cfg() this algorithm
5607  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
5608  */
5609 static int check_max_stack_depth_subprog(struct bpf_verifier_env *env, int idx)
5610 {
5611 	struct bpf_subprog_info *subprog = env->subprog_info;
5612 	struct bpf_insn *insn = env->prog->insnsi;
5613 	int depth = 0, frame = 0, i, subprog_end;
5614 	bool tail_call_reachable = false;
5615 	int ret_insn[MAX_CALL_FRAMES];
5616 	int ret_prog[MAX_CALL_FRAMES];
5617 	int j;
5618 
5619 	i = subprog[idx].start;
5620 process_func:
5621 	/* protect against potential stack overflow that might happen when
5622 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
5623 	 * depth for such case down to 256 so that the worst case scenario
5624 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
5625 	 * 8k).
5626 	 *
5627 	 * To get the idea what might happen, see an example:
5628 	 * func1 -> sub rsp, 128
5629 	 *  subfunc1 -> sub rsp, 256
5630 	 *  tailcall1 -> add rsp, 256
5631 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
5632 	 *   subfunc2 -> sub rsp, 64
5633 	 *   subfunc22 -> sub rsp, 128
5634 	 *   tailcall2 -> add rsp, 128
5635 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
5636 	 *
5637 	 * tailcall will unwind the current stack frame but it will not get rid
5638 	 * of caller's stack as shown on the example above.
5639 	 */
5640 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
5641 		verbose(env,
5642 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
5643 			depth);
5644 		return -EACCES;
5645 	}
5646 	/* round up to 32-bytes, since this is granularity
5647 	 * of interpreter stack size
5648 	 */
5649 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5650 	if (depth > MAX_BPF_STACK) {
5651 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
5652 			frame + 1, depth);
5653 		return -EACCES;
5654 	}
5655 continue_func:
5656 	subprog_end = subprog[idx + 1].start;
5657 	for (; i < subprog_end; i++) {
5658 		int next_insn, sidx;
5659 
5660 		if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
5661 			continue;
5662 		/* remember insn and function to return to */
5663 		ret_insn[frame] = i + 1;
5664 		ret_prog[frame] = idx;
5665 
5666 		/* find the callee */
5667 		next_insn = i + insn[i].imm + 1;
5668 		sidx = find_subprog(env, next_insn);
5669 		if (sidx < 0) {
5670 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5671 				  next_insn);
5672 			return -EFAULT;
5673 		}
5674 		if (subprog[sidx].is_async_cb) {
5675 			if (subprog[sidx].has_tail_call) {
5676 				verbose(env, "verifier bug. subprog has tail_call and async cb\n");
5677 				return -EFAULT;
5678 			}
5679 			/* async callbacks don't increase bpf prog stack size unless called directly */
5680 			if (!bpf_pseudo_call(insn + i))
5681 				continue;
5682 		}
5683 		i = next_insn;
5684 		idx = sidx;
5685 
5686 		if (subprog[idx].has_tail_call)
5687 			tail_call_reachable = true;
5688 
5689 		frame++;
5690 		if (frame >= MAX_CALL_FRAMES) {
5691 			verbose(env, "the call stack of %d frames is too deep !\n",
5692 				frame);
5693 			return -E2BIG;
5694 		}
5695 		goto process_func;
5696 	}
5697 	/* if tail call got detected across bpf2bpf calls then mark each of the
5698 	 * currently present subprog frames as tail call reachable subprogs;
5699 	 * this info will be utilized by JIT so that we will be preserving the
5700 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
5701 	 */
5702 	if (tail_call_reachable)
5703 		for (j = 0; j < frame; j++)
5704 			subprog[ret_prog[j]].tail_call_reachable = true;
5705 	if (subprog[0].tail_call_reachable)
5706 		env->prog->aux->tail_call_reachable = true;
5707 
5708 	/* end of for() loop means the last insn of the 'subprog'
5709 	 * was reached. Doesn't matter whether it was JA or EXIT
5710 	 */
5711 	if (frame == 0)
5712 		return 0;
5713 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
5714 	frame--;
5715 	i = ret_insn[frame];
5716 	idx = ret_prog[frame];
5717 	goto continue_func;
5718 }
5719 
5720 static int check_max_stack_depth(struct bpf_verifier_env *env)
5721 {
5722 	struct bpf_subprog_info *si = env->subprog_info;
5723 	int ret;
5724 
5725 	for (int i = 0; i < env->subprog_cnt; i++) {
5726 		if (!i || si[i].is_async_cb) {
5727 			ret = check_max_stack_depth_subprog(env, i);
5728 			if (ret < 0)
5729 				return ret;
5730 		}
5731 		continue;
5732 	}
5733 	return 0;
5734 }
5735 
5736 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5737 static int get_callee_stack_depth(struct bpf_verifier_env *env,
5738 				  const struct bpf_insn *insn, int idx)
5739 {
5740 	int start = idx + insn->imm + 1, subprog;
5741 
5742 	subprog = find_subprog(env, start);
5743 	if (subprog < 0) {
5744 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5745 			  start);
5746 		return -EFAULT;
5747 	}
5748 	return env->subprog_info[subprog].stack_depth;
5749 }
5750 #endif
5751 
5752 static int __check_buffer_access(struct bpf_verifier_env *env,
5753 				 const char *buf_info,
5754 				 const struct bpf_reg_state *reg,
5755 				 int regno, int off, int size)
5756 {
5757 	if (off < 0) {
5758 		verbose(env,
5759 			"R%d invalid %s buffer access: off=%d, size=%d\n",
5760 			regno, buf_info, off, size);
5761 		return -EACCES;
5762 	}
5763 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
5764 		char tn_buf[48];
5765 
5766 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5767 		verbose(env,
5768 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
5769 			regno, off, tn_buf);
5770 		return -EACCES;
5771 	}
5772 
5773 	return 0;
5774 }
5775 
5776 static int check_tp_buffer_access(struct bpf_verifier_env *env,
5777 				  const struct bpf_reg_state *reg,
5778 				  int regno, int off, int size)
5779 {
5780 	int err;
5781 
5782 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
5783 	if (err)
5784 		return err;
5785 
5786 	if (off + size > env->prog->aux->max_tp_access)
5787 		env->prog->aux->max_tp_access = off + size;
5788 
5789 	return 0;
5790 }
5791 
5792 static int check_buffer_access(struct bpf_verifier_env *env,
5793 			       const struct bpf_reg_state *reg,
5794 			       int regno, int off, int size,
5795 			       bool zero_size_allowed,
5796 			       u32 *max_access)
5797 {
5798 	const char *buf_info = type_is_rdonly_mem(reg->type) ? "rdonly" : "rdwr";
5799 	int err;
5800 
5801 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
5802 	if (err)
5803 		return err;
5804 
5805 	if (off + size > *max_access)
5806 		*max_access = off + size;
5807 
5808 	return 0;
5809 }
5810 
5811 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
5812 static void zext_32_to_64(struct bpf_reg_state *reg)
5813 {
5814 	reg->var_off = tnum_subreg(reg->var_off);
5815 	__reg_assign_32_into_64(reg);
5816 }
5817 
5818 /* truncate register to smaller size (in bytes)
5819  * must be called with size < BPF_REG_SIZE
5820  */
5821 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
5822 {
5823 	u64 mask;
5824 
5825 	/* clear high bits in bit representation */
5826 	reg->var_off = tnum_cast(reg->var_off, size);
5827 
5828 	/* fix arithmetic bounds */
5829 	mask = ((u64)1 << (size * 8)) - 1;
5830 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
5831 		reg->umin_value &= mask;
5832 		reg->umax_value &= mask;
5833 	} else {
5834 		reg->umin_value = 0;
5835 		reg->umax_value = mask;
5836 	}
5837 	reg->smin_value = reg->umin_value;
5838 	reg->smax_value = reg->umax_value;
5839 
5840 	/* If size is smaller than 32bit register the 32bit register
5841 	 * values are also truncated so we push 64-bit bounds into
5842 	 * 32-bit bounds. Above were truncated < 32-bits already.
5843 	 */
5844 	if (size >= 4)
5845 		return;
5846 	__reg_combine_64_into_32(reg);
5847 }
5848 
5849 static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
5850 {
5851 	if (size == 1) {
5852 		reg->smin_value = reg->s32_min_value = S8_MIN;
5853 		reg->smax_value = reg->s32_max_value = S8_MAX;
5854 	} else if (size == 2) {
5855 		reg->smin_value = reg->s32_min_value = S16_MIN;
5856 		reg->smax_value = reg->s32_max_value = S16_MAX;
5857 	} else {
5858 		/* size == 4 */
5859 		reg->smin_value = reg->s32_min_value = S32_MIN;
5860 		reg->smax_value = reg->s32_max_value = S32_MAX;
5861 	}
5862 	reg->umin_value = reg->u32_min_value = 0;
5863 	reg->umax_value = U64_MAX;
5864 	reg->u32_max_value = U32_MAX;
5865 	reg->var_off = tnum_unknown;
5866 }
5867 
5868 static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
5869 {
5870 	s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
5871 	u64 top_smax_value, top_smin_value;
5872 	u64 num_bits = size * 8;
5873 
5874 	if (tnum_is_const(reg->var_off)) {
5875 		u64_cval = reg->var_off.value;
5876 		if (size == 1)
5877 			reg->var_off = tnum_const((s8)u64_cval);
5878 		else if (size == 2)
5879 			reg->var_off = tnum_const((s16)u64_cval);
5880 		else
5881 			/* size == 4 */
5882 			reg->var_off = tnum_const((s32)u64_cval);
5883 
5884 		u64_cval = reg->var_off.value;
5885 		reg->smax_value = reg->smin_value = u64_cval;
5886 		reg->umax_value = reg->umin_value = u64_cval;
5887 		reg->s32_max_value = reg->s32_min_value = u64_cval;
5888 		reg->u32_max_value = reg->u32_min_value = u64_cval;
5889 		return;
5890 	}
5891 
5892 	top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
5893 	top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
5894 
5895 	if (top_smax_value != top_smin_value)
5896 		goto out;
5897 
5898 	/* find the s64_min and s64_min after sign extension */
5899 	if (size == 1) {
5900 		init_s64_max = (s8)reg->smax_value;
5901 		init_s64_min = (s8)reg->smin_value;
5902 	} else if (size == 2) {
5903 		init_s64_max = (s16)reg->smax_value;
5904 		init_s64_min = (s16)reg->smin_value;
5905 	} else {
5906 		init_s64_max = (s32)reg->smax_value;
5907 		init_s64_min = (s32)reg->smin_value;
5908 	}
5909 
5910 	s64_max = max(init_s64_max, init_s64_min);
5911 	s64_min = min(init_s64_max, init_s64_min);
5912 
5913 	/* both of s64_max/s64_min positive or negative */
5914 	if ((s64_max >= 0) == (s64_min >= 0)) {
5915 		reg->smin_value = reg->s32_min_value = s64_min;
5916 		reg->smax_value = reg->s32_max_value = s64_max;
5917 		reg->umin_value = reg->u32_min_value = s64_min;
5918 		reg->umax_value = reg->u32_max_value = s64_max;
5919 		reg->var_off = tnum_range(s64_min, s64_max);
5920 		return;
5921 	}
5922 
5923 out:
5924 	set_sext64_default_val(reg, size);
5925 }
5926 
5927 static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
5928 {
5929 	if (size == 1) {
5930 		reg->s32_min_value = S8_MIN;
5931 		reg->s32_max_value = S8_MAX;
5932 	} else {
5933 		/* size == 2 */
5934 		reg->s32_min_value = S16_MIN;
5935 		reg->s32_max_value = S16_MAX;
5936 	}
5937 	reg->u32_min_value = 0;
5938 	reg->u32_max_value = U32_MAX;
5939 }
5940 
5941 static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
5942 {
5943 	s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
5944 	u32 top_smax_value, top_smin_value;
5945 	u32 num_bits = size * 8;
5946 
5947 	if (tnum_is_const(reg->var_off)) {
5948 		u32_val = reg->var_off.value;
5949 		if (size == 1)
5950 			reg->var_off = tnum_const((s8)u32_val);
5951 		else
5952 			reg->var_off = tnum_const((s16)u32_val);
5953 
5954 		u32_val = reg->var_off.value;
5955 		reg->s32_min_value = reg->s32_max_value = u32_val;
5956 		reg->u32_min_value = reg->u32_max_value = u32_val;
5957 		return;
5958 	}
5959 
5960 	top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
5961 	top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
5962 
5963 	if (top_smax_value != top_smin_value)
5964 		goto out;
5965 
5966 	/* find the s32_min and s32_min after sign extension */
5967 	if (size == 1) {
5968 		init_s32_max = (s8)reg->s32_max_value;
5969 		init_s32_min = (s8)reg->s32_min_value;
5970 	} else {
5971 		/* size == 2 */
5972 		init_s32_max = (s16)reg->s32_max_value;
5973 		init_s32_min = (s16)reg->s32_min_value;
5974 	}
5975 	s32_max = max(init_s32_max, init_s32_min);
5976 	s32_min = min(init_s32_max, init_s32_min);
5977 
5978 	if ((s32_min >= 0) == (s32_max >= 0)) {
5979 		reg->s32_min_value = s32_min;
5980 		reg->s32_max_value = s32_max;
5981 		reg->u32_min_value = (u32)s32_min;
5982 		reg->u32_max_value = (u32)s32_max;
5983 		return;
5984 	}
5985 
5986 out:
5987 	set_sext32_default_val(reg, size);
5988 }
5989 
5990 static bool bpf_map_is_rdonly(const struct bpf_map *map)
5991 {
5992 	/* A map is considered read-only if the following condition are true:
5993 	 *
5994 	 * 1) BPF program side cannot change any of the map content. The
5995 	 *    BPF_F_RDONLY_PROG flag is throughout the lifetime of a map
5996 	 *    and was set at map creation time.
5997 	 * 2) The map value(s) have been initialized from user space by a
5998 	 *    loader and then "frozen", such that no new map update/delete
5999 	 *    operations from syscall side are possible for the rest of
6000 	 *    the map's lifetime from that point onwards.
6001 	 * 3) Any parallel/pending map update/delete operations from syscall
6002 	 *    side have been completed. Only after that point, it's safe to
6003 	 *    assume that map value(s) are immutable.
6004 	 */
6005 	return (map->map_flags & BPF_F_RDONLY_PROG) &&
6006 	       READ_ONCE(map->frozen) &&
6007 	       !bpf_map_write_active(map);
6008 }
6009 
6010 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
6011 			       bool is_ldsx)
6012 {
6013 	void *ptr;
6014 	u64 addr;
6015 	int err;
6016 
6017 	err = map->ops->map_direct_value_addr(map, &addr, off);
6018 	if (err)
6019 		return err;
6020 	ptr = (void *)(long)addr + off;
6021 
6022 	switch (size) {
6023 	case sizeof(u8):
6024 		*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
6025 		break;
6026 	case sizeof(u16):
6027 		*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
6028 		break;
6029 	case sizeof(u32):
6030 		*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
6031 		break;
6032 	case sizeof(u64):
6033 		*val = *(u64 *)ptr;
6034 		break;
6035 	default:
6036 		return -EINVAL;
6037 	}
6038 	return 0;
6039 }
6040 
6041 #define BTF_TYPE_SAFE_RCU(__type)  __PASTE(__type, __safe_rcu)
6042 #define BTF_TYPE_SAFE_RCU_OR_NULL(__type)  __PASTE(__type, __safe_rcu_or_null)
6043 #define BTF_TYPE_SAFE_TRUSTED(__type)  __PASTE(__type, __safe_trusted)
6044 
6045 /*
6046  * Allow list few fields as RCU trusted or full trusted.
6047  * This logic doesn't allow mix tagging and will be removed once GCC supports
6048  * btf_type_tag.
6049  */
6050 
6051 /* RCU trusted: these fields are trusted in RCU CS and never NULL */
6052 BTF_TYPE_SAFE_RCU(struct task_struct) {
6053 	const cpumask_t *cpus_ptr;
6054 	struct css_set __rcu *cgroups;
6055 	struct task_struct __rcu *real_parent;
6056 	struct task_struct *group_leader;
6057 };
6058 
6059 BTF_TYPE_SAFE_RCU(struct cgroup) {
6060 	/* cgrp->kn is always accessible as documented in kernel/cgroup/cgroup.c */
6061 	struct kernfs_node *kn;
6062 };
6063 
6064 BTF_TYPE_SAFE_RCU(struct css_set) {
6065 	struct cgroup *dfl_cgrp;
6066 };
6067 
6068 /* RCU trusted: these fields are trusted in RCU CS and can be NULL */
6069 BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct) {
6070 	struct file __rcu *exe_file;
6071 };
6072 
6073 /* skb->sk, req->sk are not RCU protected, but we mark them as such
6074  * because bpf prog accessible sockets are SOCK_RCU_FREE.
6075  */
6076 BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff) {
6077 	struct sock *sk;
6078 };
6079 
6080 BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock) {
6081 	struct sock *sk;
6082 };
6083 
6084 /* full trusted: these fields are trusted even outside of RCU CS and never NULL */
6085 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta) {
6086 	struct seq_file *seq;
6087 };
6088 
6089 BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task) {
6090 	struct bpf_iter_meta *meta;
6091 	struct task_struct *task;
6092 };
6093 
6094 BTF_TYPE_SAFE_TRUSTED(struct linux_binprm) {
6095 	struct file *file;
6096 };
6097 
6098 BTF_TYPE_SAFE_TRUSTED(struct file) {
6099 	struct inode *f_inode;
6100 };
6101 
6102 BTF_TYPE_SAFE_TRUSTED(struct dentry) {
6103 	/* no negative dentry-s in places where bpf can see it */
6104 	struct inode *d_inode;
6105 };
6106 
6107 BTF_TYPE_SAFE_TRUSTED(struct socket) {
6108 	struct sock *sk;
6109 };
6110 
6111 static bool type_is_rcu(struct bpf_verifier_env *env,
6112 			struct bpf_reg_state *reg,
6113 			const char *field_name, u32 btf_id)
6114 {
6115 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct task_struct));
6116 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct cgroup));
6117 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU(struct css_set));
6118 
6119 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu");
6120 }
6121 
6122 static bool type_is_rcu_or_null(struct bpf_verifier_env *env,
6123 				struct bpf_reg_state *reg,
6124 				const char *field_name, u32 btf_id)
6125 {
6126 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct mm_struct));
6127 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct sk_buff));
6128 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_RCU_OR_NULL(struct request_sock));
6129 
6130 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_rcu_or_null");
6131 }
6132 
6133 static bool type_is_trusted(struct bpf_verifier_env *env,
6134 			    struct bpf_reg_state *reg,
6135 			    const char *field_name, u32 btf_id)
6136 {
6137 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter_meta));
6138 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct bpf_iter__task));
6139 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct linux_binprm));
6140 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct file));
6141 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct dentry));
6142 	BTF_TYPE_EMIT(BTF_TYPE_SAFE_TRUSTED(struct socket));
6143 
6144 	return btf_nested_type_is_trusted(&env->log, reg, field_name, btf_id, "__safe_trusted");
6145 }
6146 
6147 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
6148 				   struct bpf_reg_state *regs,
6149 				   int regno, int off, int size,
6150 				   enum bpf_access_type atype,
6151 				   int value_regno)
6152 {
6153 	struct bpf_reg_state *reg = regs + regno;
6154 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
6155 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
6156 	const char *field_name = NULL;
6157 	enum bpf_type_flag flag = 0;
6158 	u32 btf_id = 0;
6159 	int ret;
6160 
6161 	if (!env->allow_ptr_leaks) {
6162 		verbose(env,
6163 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6164 			tname);
6165 		return -EPERM;
6166 	}
6167 	if (!env->prog->gpl_compatible && btf_is_kernel(reg->btf)) {
6168 		verbose(env,
6169 			"Cannot access kernel 'struct %s' from non-GPL compatible program\n",
6170 			tname);
6171 		return -EINVAL;
6172 	}
6173 	if (off < 0) {
6174 		verbose(env,
6175 			"R%d is ptr_%s invalid negative access: off=%d\n",
6176 			regno, tname, off);
6177 		return -EACCES;
6178 	}
6179 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
6180 		char tn_buf[48];
6181 
6182 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6183 		verbose(env,
6184 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
6185 			regno, tname, off, tn_buf);
6186 		return -EACCES;
6187 	}
6188 
6189 	if (reg->type & MEM_USER) {
6190 		verbose(env,
6191 			"R%d is ptr_%s access user memory: off=%d\n",
6192 			regno, tname, off);
6193 		return -EACCES;
6194 	}
6195 
6196 	if (reg->type & MEM_PERCPU) {
6197 		verbose(env,
6198 			"R%d is ptr_%s access percpu memory: off=%d\n",
6199 			regno, tname, off);
6200 		return -EACCES;
6201 	}
6202 
6203 	if (env->ops->btf_struct_access && !type_is_alloc(reg->type) && atype == BPF_WRITE) {
6204 		if (!btf_is_kernel(reg->btf)) {
6205 			verbose(env, "verifier internal error: reg->btf must be kernel btf\n");
6206 			return -EFAULT;
6207 		}
6208 		ret = env->ops->btf_struct_access(&env->log, reg, off, size);
6209 	} else {
6210 		/* Writes are permitted with default btf_struct_access for
6211 		 * program allocated objects (which always have ref_obj_id > 0),
6212 		 * but not for untrusted PTR_TO_BTF_ID | MEM_ALLOC.
6213 		 */
6214 		if (atype != BPF_READ && !type_is_ptr_alloc_obj(reg->type)) {
6215 			verbose(env, "only read is supported\n");
6216 			return -EACCES;
6217 		}
6218 
6219 		if (type_is_alloc(reg->type) && !type_is_non_owning_ref(reg->type) &&
6220 		    !reg->ref_obj_id) {
6221 			verbose(env, "verifier internal error: ref_obj_id for allocated object must be non-zero\n");
6222 			return -EFAULT;
6223 		}
6224 
6225 		ret = btf_struct_access(&env->log, reg, off, size, atype, &btf_id, &flag, &field_name);
6226 	}
6227 
6228 	if (ret < 0)
6229 		return ret;
6230 
6231 	if (ret != PTR_TO_BTF_ID) {
6232 		/* just mark; */
6233 
6234 	} else if (type_flag(reg->type) & PTR_UNTRUSTED) {
6235 		/* If this is an untrusted pointer, all pointers formed by walking it
6236 		 * also inherit the untrusted flag.
6237 		 */
6238 		flag = PTR_UNTRUSTED;
6239 
6240 	} else if (is_trusted_reg(reg) || is_rcu_reg(reg)) {
6241 		/* By default any pointer obtained from walking a trusted pointer is no
6242 		 * longer trusted, unless the field being accessed has explicitly been
6243 		 * marked as inheriting its parent's state of trust (either full or RCU).
6244 		 * For example:
6245 		 * 'cgroups' pointer is untrusted if task->cgroups dereference
6246 		 * happened in a sleepable program outside of bpf_rcu_read_lock()
6247 		 * section. In a non-sleepable program it's trusted while in RCU CS (aka MEM_RCU).
6248 		 * Note bpf_rcu_read_unlock() converts MEM_RCU pointers to PTR_UNTRUSTED.
6249 		 *
6250 		 * A regular RCU-protected pointer with __rcu tag can also be deemed
6251 		 * trusted if we are in an RCU CS. Such pointer can be NULL.
6252 		 */
6253 		if (type_is_trusted(env, reg, field_name, btf_id)) {
6254 			flag |= PTR_TRUSTED;
6255 		} else if (in_rcu_cs(env) && !type_may_be_null(reg->type)) {
6256 			if (type_is_rcu(env, reg, field_name, btf_id)) {
6257 				/* ignore __rcu tag and mark it MEM_RCU */
6258 				flag |= MEM_RCU;
6259 			} else if (flag & MEM_RCU ||
6260 				   type_is_rcu_or_null(env, reg, field_name, btf_id)) {
6261 				/* __rcu tagged pointers can be NULL */
6262 				flag |= MEM_RCU | PTR_MAYBE_NULL;
6263 
6264 				/* We always trust them */
6265 				if (type_is_rcu_or_null(env, reg, field_name, btf_id) &&
6266 				    flag & PTR_UNTRUSTED)
6267 					flag &= ~PTR_UNTRUSTED;
6268 			} else if (flag & (MEM_PERCPU | MEM_USER)) {
6269 				/* keep as-is */
6270 			} else {
6271 				/* walking unknown pointers yields old deprecated PTR_TO_BTF_ID */
6272 				clear_trusted_flags(&flag);
6273 			}
6274 		} else {
6275 			/*
6276 			 * If not in RCU CS or MEM_RCU pointer can be NULL then
6277 			 * aggressively mark as untrusted otherwise such
6278 			 * pointers will be plain PTR_TO_BTF_ID without flags
6279 			 * and will be allowed to be passed into helpers for
6280 			 * compat reasons.
6281 			 */
6282 			flag = PTR_UNTRUSTED;
6283 		}
6284 	} else {
6285 		/* Old compat. Deprecated */
6286 		clear_trusted_flags(&flag);
6287 	}
6288 
6289 	if (atype == BPF_READ && value_regno >= 0)
6290 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id, flag);
6291 
6292 	return 0;
6293 }
6294 
6295 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
6296 				   struct bpf_reg_state *regs,
6297 				   int regno, int off, int size,
6298 				   enum bpf_access_type atype,
6299 				   int value_regno)
6300 {
6301 	struct bpf_reg_state *reg = regs + regno;
6302 	struct bpf_map *map = reg->map_ptr;
6303 	struct bpf_reg_state map_reg;
6304 	enum bpf_type_flag flag = 0;
6305 	const struct btf_type *t;
6306 	const char *tname;
6307 	u32 btf_id;
6308 	int ret;
6309 
6310 	if (!btf_vmlinux) {
6311 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
6312 		return -ENOTSUPP;
6313 	}
6314 
6315 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
6316 		verbose(env, "map_ptr access not supported for map type %d\n",
6317 			map->map_type);
6318 		return -ENOTSUPP;
6319 	}
6320 
6321 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
6322 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
6323 
6324 	if (!env->allow_ptr_leaks) {
6325 		verbose(env,
6326 			"'struct %s' access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
6327 			tname);
6328 		return -EPERM;
6329 	}
6330 
6331 	if (off < 0) {
6332 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
6333 			regno, tname, off);
6334 		return -EACCES;
6335 	}
6336 
6337 	if (atype != BPF_READ) {
6338 		verbose(env, "only read from %s is supported\n", tname);
6339 		return -EACCES;
6340 	}
6341 
6342 	/* Simulate access to a PTR_TO_BTF_ID */
6343 	memset(&map_reg, 0, sizeof(map_reg));
6344 	mark_btf_ld_reg(env, &map_reg, 0, PTR_TO_BTF_ID, btf_vmlinux, *map->ops->map_btf_id, 0);
6345 	ret = btf_struct_access(&env->log, &map_reg, off, size, atype, &btf_id, &flag, NULL);
6346 	if (ret < 0)
6347 		return ret;
6348 
6349 	if (value_regno >= 0)
6350 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id, flag);
6351 
6352 	return 0;
6353 }
6354 
6355 /* Check that the stack access at the given offset is within bounds. The
6356  * maximum valid offset is -1.
6357  *
6358  * The minimum valid offset is -MAX_BPF_STACK for writes, and
6359  * -state->allocated_stack for reads.
6360  */
6361 static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
6362                                           s64 off,
6363                                           struct bpf_func_state *state,
6364                                           enum bpf_access_type t)
6365 {
6366 	int min_valid_off;
6367 
6368 	if (t == BPF_WRITE || env->allow_uninit_stack)
6369 		min_valid_off = -MAX_BPF_STACK;
6370 	else
6371 		min_valid_off = -state->allocated_stack;
6372 
6373 	if (off < min_valid_off || off > -1)
6374 		return -EACCES;
6375 	return 0;
6376 }
6377 
6378 /* Check that the stack access at 'regno + off' falls within the maximum stack
6379  * bounds.
6380  *
6381  * 'off' includes `regno->offset`, but not its dynamic part (if any).
6382  */
6383 static int check_stack_access_within_bounds(
6384 		struct bpf_verifier_env *env,
6385 		int regno, int off, int access_size,
6386 		enum bpf_access_src src, enum bpf_access_type type)
6387 {
6388 	struct bpf_reg_state *regs = cur_regs(env);
6389 	struct bpf_reg_state *reg = regs + regno;
6390 	struct bpf_func_state *state = func(env, reg);
6391 	s64 min_off, max_off;
6392 	int err;
6393 	char *err_extra;
6394 
6395 	if (src == ACCESS_HELPER)
6396 		/* We don't know if helpers are reading or writing (or both). */
6397 		err_extra = " indirect access to";
6398 	else if (type == BPF_READ)
6399 		err_extra = " read from";
6400 	else
6401 		err_extra = " write to";
6402 
6403 	if (tnum_is_const(reg->var_off)) {
6404 		min_off = (s64)reg->var_off.value + off;
6405 		max_off = min_off + access_size;
6406 	} else {
6407 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
6408 		    reg->smin_value <= -BPF_MAX_VAR_OFF) {
6409 			verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
6410 				err_extra, regno);
6411 			return -EACCES;
6412 		}
6413 		min_off = reg->smin_value + off;
6414 		max_off = reg->smax_value + off + access_size;
6415 	}
6416 
6417 	err = check_stack_slot_within_bounds(env, min_off, state, type);
6418 	if (!err && max_off > 0)
6419 		err = -EINVAL; /* out of stack access into non-negative offsets */
6420 
6421 	if (err) {
6422 		if (tnum_is_const(reg->var_off)) {
6423 			verbose(env, "invalid%s stack R%d off=%d size=%d\n",
6424 				err_extra, regno, off, access_size);
6425 		} else {
6426 			char tn_buf[48];
6427 
6428 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6429 			verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
6430 				err_extra, regno, tn_buf, access_size);
6431 		}
6432 		return err;
6433 	}
6434 
6435 	return grow_stack_state(env, state, round_up(-min_off, BPF_REG_SIZE));
6436 }
6437 
6438 /* check whether memory at (regno + off) is accessible for t = (read | write)
6439  * if t==write, value_regno is a register which value is stored into memory
6440  * if t==read, value_regno is a register which will receive the value from memory
6441  * if t==write && value_regno==-1, some unknown value is stored into memory
6442  * if t==read && value_regno==-1, don't care what we read from memory
6443  */
6444 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
6445 			    int off, int bpf_size, enum bpf_access_type t,
6446 			    int value_regno, bool strict_alignment_once, bool is_ldsx)
6447 {
6448 	struct bpf_reg_state *regs = cur_regs(env);
6449 	struct bpf_reg_state *reg = regs + regno;
6450 	int size, err = 0;
6451 
6452 	size = bpf_size_to_bytes(bpf_size);
6453 	if (size < 0)
6454 		return size;
6455 
6456 	/* alignment checks will add in reg->off themselves */
6457 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
6458 	if (err)
6459 		return err;
6460 
6461 	/* for access checks, reg->off is just part of off */
6462 	off += reg->off;
6463 
6464 	if (reg->type == PTR_TO_MAP_KEY) {
6465 		if (t == BPF_WRITE) {
6466 			verbose(env, "write to change key R%d not allowed\n", regno);
6467 			return -EACCES;
6468 		}
6469 
6470 		err = check_mem_region_access(env, regno, off, size,
6471 					      reg->map_ptr->key_size, false);
6472 		if (err)
6473 			return err;
6474 		if (value_regno >= 0)
6475 			mark_reg_unknown(env, regs, value_regno);
6476 	} else if (reg->type == PTR_TO_MAP_VALUE) {
6477 		struct btf_field *kptr_field = NULL;
6478 
6479 		if (t == BPF_WRITE && value_regno >= 0 &&
6480 		    is_pointer_value(env, value_regno)) {
6481 			verbose(env, "R%d leaks addr into map\n", value_regno);
6482 			return -EACCES;
6483 		}
6484 		err = check_map_access_type(env, regno, off, size, t);
6485 		if (err)
6486 			return err;
6487 		err = check_map_access(env, regno, off, size, false, ACCESS_DIRECT);
6488 		if (err)
6489 			return err;
6490 		if (tnum_is_const(reg->var_off))
6491 			kptr_field = btf_record_find(reg->map_ptr->record,
6492 						     off + reg->var_off.value, BPF_KPTR);
6493 		if (kptr_field) {
6494 			err = check_map_kptr_access(env, regno, value_regno, insn_idx, kptr_field);
6495 		} else if (t == BPF_READ && value_regno >= 0) {
6496 			struct bpf_map *map = reg->map_ptr;
6497 
6498 			/* if map is read-only, track its contents as scalars */
6499 			if (tnum_is_const(reg->var_off) &&
6500 			    bpf_map_is_rdonly(map) &&
6501 			    map->ops->map_direct_value_addr) {
6502 				int map_off = off + reg->var_off.value;
6503 				u64 val = 0;
6504 
6505 				err = bpf_map_direct_read(map, map_off, size,
6506 							  &val, is_ldsx);
6507 				if (err)
6508 					return err;
6509 
6510 				regs[value_regno].type = SCALAR_VALUE;
6511 				__mark_reg_known(&regs[value_regno], val);
6512 			} else {
6513 				mark_reg_unknown(env, regs, value_regno);
6514 			}
6515 		}
6516 	} else if (base_type(reg->type) == PTR_TO_MEM) {
6517 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6518 
6519 		if (type_may_be_null(reg->type)) {
6520 			verbose(env, "R%d invalid mem access '%s'\n", regno,
6521 				reg_type_str(env, reg->type));
6522 			return -EACCES;
6523 		}
6524 
6525 		if (t == BPF_WRITE && rdonly_mem) {
6526 			verbose(env, "R%d cannot write into %s\n",
6527 				regno, reg_type_str(env, reg->type));
6528 			return -EACCES;
6529 		}
6530 
6531 		if (t == BPF_WRITE && value_regno >= 0 &&
6532 		    is_pointer_value(env, value_regno)) {
6533 			verbose(env, "R%d leaks addr into mem\n", value_regno);
6534 			return -EACCES;
6535 		}
6536 
6537 		err = check_mem_region_access(env, regno, off, size,
6538 					      reg->mem_size, false);
6539 		if (!err && value_regno >= 0 && (t == BPF_READ || rdonly_mem))
6540 			mark_reg_unknown(env, regs, value_regno);
6541 	} else if (reg->type == PTR_TO_CTX) {
6542 		enum bpf_reg_type reg_type = SCALAR_VALUE;
6543 		struct btf *btf = NULL;
6544 		u32 btf_id = 0;
6545 
6546 		if (t == BPF_WRITE && value_regno >= 0 &&
6547 		    is_pointer_value(env, value_regno)) {
6548 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
6549 			return -EACCES;
6550 		}
6551 
6552 		err = check_ptr_off_reg(env, reg, regno);
6553 		if (err < 0)
6554 			return err;
6555 
6556 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf,
6557 				       &btf_id);
6558 		if (err)
6559 			verbose_linfo(env, insn_idx, "; ");
6560 		if (!err && t == BPF_READ && value_regno >= 0) {
6561 			/* ctx access returns either a scalar, or a
6562 			 * PTR_TO_PACKET[_META,_END]. In the latter
6563 			 * case, we know the offset is zero.
6564 			 */
6565 			if (reg_type == SCALAR_VALUE) {
6566 				mark_reg_unknown(env, regs, value_regno);
6567 			} else {
6568 				mark_reg_known_zero(env, regs,
6569 						    value_regno);
6570 				if (type_may_be_null(reg_type))
6571 					regs[value_regno].id = ++env->id_gen;
6572 				/* A load of ctx field could have different
6573 				 * actual load size with the one encoded in the
6574 				 * insn. When the dst is PTR, it is for sure not
6575 				 * a sub-register.
6576 				 */
6577 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
6578 				if (base_type(reg_type) == PTR_TO_BTF_ID) {
6579 					regs[value_regno].btf = btf;
6580 					regs[value_regno].btf_id = btf_id;
6581 				}
6582 			}
6583 			regs[value_regno].type = reg_type;
6584 		}
6585 
6586 	} else if (reg->type == PTR_TO_STACK) {
6587 		/* Basic bounds checks. */
6588 		err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
6589 		if (err)
6590 			return err;
6591 
6592 		if (t == BPF_READ)
6593 			err = check_stack_read(env, regno, off, size,
6594 					       value_regno);
6595 		else
6596 			err = check_stack_write(env, regno, off, size,
6597 						value_regno, insn_idx);
6598 	} else if (reg_is_pkt_pointer(reg)) {
6599 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
6600 			verbose(env, "cannot write into packet\n");
6601 			return -EACCES;
6602 		}
6603 		if (t == BPF_WRITE && value_regno >= 0 &&
6604 		    is_pointer_value(env, value_regno)) {
6605 			verbose(env, "R%d leaks addr into packet\n",
6606 				value_regno);
6607 			return -EACCES;
6608 		}
6609 		err = check_packet_access(env, regno, off, size, false);
6610 		if (!err && t == BPF_READ && value_regno >= 0)
6611 			mark_reg_unknown(env, regs, value_regno);
6612 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
6613 		if (t == BPF_WRITE && value_regno >= 0 &&
6614 		    is_pointer_value(env, value_regno)) {
6615 			verbose(env, "R%d leaks addr into flow keys\n",
6616 				value_regno);
6617 			return -EACCES;
6618 		}
6619 
6620 		err = check_flow_keys_access(env, off, size);
6621 		if (!err && t == BPF_READ && value_regno >= 0)
6622 			mark_reg_unknown(env, regs, value_regno);
6623 	} else if (type_is_sk_pointer(reg->type)) {
6624 		if (t == BPF_WRITE) {
6625 			verbose(env, "R%d cannot write into %s\n",
6626 				regno, reg_type_str(env, reg->type));
6627 			return -EACCES;
6628 		}
6629 		err = check_sock_access(env, insn_idx, regno, off, size, t);
6630 		if (!err && value_regno >= 0)
6631 			mark_reg_unknown(env, regs, value_regno);
6632 	} else if (reg->type == PTR_TO_TP_BUFFER) {
6633 		err = check_tp_buffer_access(env, reg, regno, off, size);
6634 		if (!err && t == BPF_READ && value_regno >= 0)
6635 			mark_reg_unknown(env, regs, value_regno);
6636 	} else if (base_type(reg->type) == PTR_TO_BTF_ID &&
6637 		   !type_may_be_null(reg->type)) {
6638 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
6639 					      value_regno);
6640 	} else if (reg->type == CONST_PTR_TO_MAP) {
6641 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
6642 					      value_regno);
6643 	} else if (base_type(reg->type) == PTR_TO_BUF) {
6644 		bool rdonly_mem = type_is_rdonly_mem(reg->type);
6645 		u32 *max_access;
6646 
6647 		if (rdonly_mem) {
6648 			if (t == BPF_WRITE) {
6649 				verbose(env, "R%d cannot write into %s\n",
6650 					regno, reg_type_str(env, reg->type));
6651 				return -EACCES;
6652 			}
6653 			max_access = &env->prog->aux->max_rdonly_access;
6654 		} else {
6655 			max_access = &env->prog->aux->max_rdwr_access;
6656 		}
6657 
6658 		err = check_buffer_access(env, reg, regno, off, size, false,
6659 					  max_access);
6660 
6661 		if (!err && value_regno >= 0 && (rdonly_mem || t == BPF_READ))
6662 			mark_reg_unknown(env, regs, value_regno);
6663 	} else {
6664 		verbose(env, "R%d invalid mem access '%s'\n", regno,
6665 			reg_type_str(env, reg->type));
6666 		return -EACCES;
6667 	}
6668 
6669 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
6670 	    regs[value_regno].type == SCALAR_VALUE) {
6671 		if (!is_ldsx)
6672 			/* b/h/w load zero-extends, mark upper bits as known 0 */
6673 			coerce_reg_to_size(&regs[value_regno], size);
6674 		else
6675 			coerce_reg_to_size_sx(&regs[value_regno], size);
6676 	}
6677 	return err;
6678 }
6679 
6680 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
6681 {
6682 	int load_reg;
6683 	int err;
6684 
6685 	switch (insn->imm) {
6686 	case BPF_ADD:
6687 	case BPF_ADD | BPF_FETCH:
6688 	case BPF_AND:
6689 	case BPF_AND | BPF_FETCH:
6690 	case BPF_OR:
6691 	case BPF_OR | BPF_FETCH:
6692 	case BPF_XOR:
6693 	case BPF_XOR | BPF_FETCH:
6694 	case BPF_XCHG:
6695 	case BPF_CMPXCHG:
6696 		break;
6697 	default:
6698 		verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
6699 		return -EINVAL;
6700 	}
6701 
6702 	if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
6703 		verbose(env, "invalid atomic operand size\n");
6704 		return -EINVAL;
6705 	}
6706 
6707 	/* check src1 operand */
6708 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
6709 	if (err)
6710 		return err;
6711 
6712 	/* check src2 operand */
6713 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6714 	if (err)
6715 		return err;
6716 
6717 	if (insn->imm == BPF_CMPXCHG) {
6718 		/* Check comparison of R0 with memory location */
6719 		const u32 aux_reg = BPF_REG_0;
6720 
6721 		err = check_reg_arg(env, aux_reg, SRC_OP);
6722 		if (err)
6723 			return err;
6724 
6725 		if (is_pointer_value(env, aux_reg)) {
6726 			verbose(env, "R%d leaks addr into mem\n", aux_reg);
6727 			return -EACCES;
6728 		}
6729 	}
6730 
6731 	if (is_pointer_value(env, insn->src_reg)) {
6732 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6733 		return -EACCES;
6734 	}
6735 
6736 	if (is_ctx_reg(env, insn->dst_reg) ||
6737 	    is_pkt_reg(env, insn->dst_reg) ||
6738 	    is_flow_key_reg(env, insn->dst_reg) ||
6739 	    is_sk_reg(env, insn->dst_reg)) {
6740 		verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
6741 			insn->dst_reg,
6742 			reg_type_str(env, reg_state(env, insn->dst_reg)->type));
6743 		return -EACCES;
6744 	}
6745 
6746 	if (insn->imm & BPF_FETCH) {
6747 		if (insn->imm == BPF_CMPXCHG)
6748 			load_reg = BPF_REG_0;
6749 		else
6750 			load_reg = insn->src_reg;
6751 
6752 		/* check and record load of old value */
6753 		err = check_reg_arg(env, load_reg, DST_OP);
6754 		if (err)
6755 			return err;
6756 	} else {
6757 		/* This instruction accesses a memory location but doesn't
6758 		 * actually load it into a register.
6759 		 */
6760 		load_reg = -1;
6761 	}
6762 
6763 	/* Check whether we can read the memory, with second call for fetch
6764 	 * case to simulate the register fill.
6765 	 */
6766 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6767 			       BPF_SIZE(insn->code), BPF_READ, -1, true, false);
6768 	if (!err && load_reg >= 0)
6769 		err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6770 				       BPF_SIZE(insn->code), BPF_READ, load_reg,
6771 				       true, false);
6772 	if (err)
6773 		return err;
6774 
6775 	/* Check whether we can write into the same memory. */
6776 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
6777 			       BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
6778 	if (err)
6779 		return err;
6780 
6781 	return 0;
6782 }
6783 
6784 /* When register 'regno' is used to read the stack (either directly or through
6785  * a helper function) make sure that it's within stack boundary and, depending
6786  * on the access type and privileges, that all elements of the stack are
6787  * initialized.
6788  *
6789  * 'off' includes 'regno->off', but not its dynamic part (if any).
6790  *
6791  * All registers that have been spilled on the stack in the slots within the
6792  * read offsets are marked as read.
6793  */
6794 static int check_stack_range_initialized(
6795 		struct bpf_verifier_env *env, int regno, int off,
6796 		int access_size, bool zero_size_allowed,
6797 		enum bpf_access_src type, struct bpf_call_arg_meta *meta)
6798 {
6799 	struct bpf_reg_state *reg = reg_state(env, regno);
6800 	struct bpf_func_state *state = func(env, reg);
6801 	int err, min_off, max_off, i, j, slot, spi;
6802 	char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
6803 	enum bpf_access_type bounds_check_type;
6804 	/* Some accesses can write anything into the stack, others are
6805 	 * read-only.
6806 	 */
6807 	bool clobber = false;
6808 
6809 	if (access_size == 0 && !zero_size_allowed) {
6810 		verbose(env, "invalid zero-sized read\n");
6811 		return -EACCES;
6812 	}
6813 
6814 	if (type == ACCESS_HELPER) {
6815 		/* The bounds checks for writes are more permissive than for
6816 		 * reads. However, if raw_mode is not set, we'll do extra
6817 		 * checks below.
6818 		 */
6819 		bounds_check_type = BPF_WRITE;
6820 		clobber = true;
6821 	} else {
6822 		bounds_check_type = BPF_READ;
6823 	}
6824 	err = check_stack_access_within_bounds(env, regno, off, access_size,
6825 					       type, bounds_check_type);
6826 	if (err)
6827 		return err;
6828 
6829 
6830 	if (tnum_is_const(reg->var_off)) {
6831 		min_off = max_off = reg->var_off.value + off;
6832 	} else {
6833 		/* Variable offset is prohibited for unprivileged mode for
6834 		 * simplicity since it requires corresponding support in
6835 		 * Spectre masking for stack ALU.
6836 		 * See also retrieve_ptr_limit().
6837 		 */
6838 		if (!env->bypass_spec_v1) {
6839 			char tn_buf[48];
6840 
6841 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6842 			verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
6843 				regno, err_extra, tn_buf);
6844 			return -EACCES;
6845 		}
6846 		/* Only initialized buffer on stack is allowed to be accessed
6847 		 * with variable offset. With uninitialized buffer it's hard to
6848 		 * guarantee that whole memory is marked as initialized on
6849 		 * helper return since specific bounds are unknown what may
6850 		 * cause uninitialized stack leaking.
6851 		 */
6852 		if (meta && meta->raw_mode)
6853 			meta = NULL;
6854 
6855 		min_off = reg->smin_value + off;
6856 		max_off = reg->smax_value + off;
6857 	}
6858 
6859 	if (meta && meta->raw_mode) {
6860 		/* Ensure we won't be overwriting dynptrs when simulating byte
6861 		 * by byte access in check_helper_call using meta.access_size.
6862 		 * This would be a problem if we have a helper in the future
6863 		 * which takes:
6864 		 *
6865 		 *	helper(uninit_mem, len, dynptr)
6866 		 *
6867 		 * Now, uninint_mem may overlap with dynptr pointer. Hence, it
6868 		 * may end up writing to dynptr itself when touching memory from
6869 		 * arg 1. This can be relaxed on a case by case basis for known
6870 		 * safe cases, but reject due to the possibilitiy of aliasing by
6871 		 * default.
6872 		 */
6873 		for (i = min_off; i < max_off + access_size; i++) {
6874 			int stack_off = -i - 1;
6875 
6876 			spi = __get_spi(i);
6877 			/* raw_mode may write past allocated_stack */
6878 			if (state->allocated_stack <= stack_off)
6879 				continue;
6880 			if (state->stack[spi].slot_type[stack_off % BPF_REG_SIZE] == STACK_DYNPTR) {
6881 				verbose(env, "potential write to dynptr at off=%d disallowed\n", i);
6882 				return -EACCES;
6883 			}
6884 		}
6885 		meta->access_size = access_size;
6886 		meta->regno = regno;
6887 		return 0;
6888 	}
6889 
6890 	for (i = min_off; i < max_off + access_size; i++) {
6891 		u8 *stype;
6892 
6893 		slot = -i - 1;
6894 		spi = slot / BPF_REG_SIZE;
6895 		if (state->allocated_stack <= slot) {
6896 			verbose(env, "verifier bug: allocated_stack too small");
6897 			return -EFAULT;
6898 		}
6899 
6900 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
6901 		if (*stype == STACK_MISC)
6902 			goto mark;
6903 		if ((*stype == STACK_ZERO) ||
6904 		    (*stype == STACK_INVALID && env->allow_uninit_stack)) {
6905 			if (clobber) {
6906 				/* helper can write anything into the stack */
6907 				*stype = STACK_MISC;
6908 			}
6909 			goto mark;
6910 		}
6911 
6912 		if (is_spilled_reg(&state->stack[spi]) &&
6913 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
6914 		     env->allow_ptr_leaks)) {
6915 			if (clobber) {
6916 				__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
6917 				for (j = 0; j < BPF_REG_SIZE; j++)
6918 					scrub_spilled_slot(&state->stack[spi].slot_type[j]);
6919 			}
6920 			goto mark;
6921 		}
6922 
6923 		if (tnum_is_const(reg->var_off)) {
6924 			verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
6925 				err_extra, regno, min_off, i - min_off, access_size);
6926 		} else {
6927 			char tn_buf[48];
6928 
6929 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6930 			verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
6931 				err_extra, regno, tn_buf, i - min_off, access_size);
6932 		}
6933 		return -EACCES;
6934 mark:
6935 		/* reading any byte out of 8-byte 'spill_slot' will cause
6936 		 * the whole slot to be marked as 'read'
6937 		 */
6938 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
6939 			      state->stack[spi].spilled_ptr.parent,
6940 			      REG_LIVE_READ64);
6941 		/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
6942 		 * be sure that whether stack slot is written to or not. Hence,
6943 		 * we must still conservatively propagate reads upwards even if
6944 		 * helper may write to the entire memory range.
6945 		 */
6946 	}
6947 	return 0;
6948 }
6949 
6950 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
6951 				   int access_size, bool zero_size_allowed,
6952 				   struct bpf_call_arg_meta *meta)
6953 {
6954 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6955 	u32 *max_access;
6956 
6957 	switch (base_type(reg->type)) {
6958 	case PTR_TO_PACKET:
6959 	case PTR_TO_PACKET_META:
6960 		return check_packet_access(env, regno, reg->off, access_size,
6961 					   zero_size_allowed);
6962 	case PTR_TO_MAP_KEY:
6963 		if (meta && meta->raw_mode) {
6964 			verbose(env, "R%d cannot write into %s\n", regno,
6965 				reg_type_str(env, reg->type));
6966 			return -EACCES;
6967 		}
6968 		return check_mem_region_access(env, regno, reg->off, access_size,
6969 					       reg->map_ptr->key_size, false);
6970 	case PTR_TO_MAP_VALUE:
6971 		if (check_map_access_type(env, regno, reg->off, access_size,
6972 					  meta && meta->raw_mode ? BPF_WRITE :
6973 					  BPF_READ))
6974 			return -EACCES;
6975 		return check_map_access(env, regno, reg->off, access_size,
6976 					zero_size_allowed, ACCESS_HELPER);
6977 	case PTR_TO_MEM:
6978 		if (type_is_rdonly_mem(reg->type)) {
6979 			if (meta && meta->raw_mode) {
6980 				verbose(env, "R%d cannot write into %s\n", regno,
6981 					reg_type_str(env, reg->type));
6982 				return -EACCES;
6983 			}
6984 		}
6985 		return check_mem_region_access(env, regno, reg->off,
6986 					       access_size, reg->mem_size,
6987 					       zero_size_allowed);
6988 	case PTR_TO_BUF:
6989 		if (type_is_rdonly_mem(reg->type)) {
6990 			if (meta && meta->raw_mode) {
6991 				verbose(env, "R%d cannot write into %s\n", regno,
6992 					reg_type_str(env, reg->type));
6993 				return -EACCES;
6994 			}
6995 
6996 			max_access = &env->prog->aux->max_rdonly_access;
6997 		} else {
6998 			max_access = &env->prog->aux->max_rdwr_access;
6999 		}
7000 		return check_buffer_access(env, reg, regno, reg->off,
7001 					   access_size, zero_size_allowed,
7002 					   max_access);
7003 	case PTR_TO_STACK:
7004 		return check_stack_range_initialized(
7005 				env,
7006 				regno, reg->off, access_size,
7007 				zero_size_allowed, ACCESS_HELPER, meta);
7008 	case PTR_TO_BTF_ID:
7009 		return check_ptr_to_btf_access(env, regs, regno, reg->off,
7010 					       access_size, BPF_READ, -1);
7011 	case PTR_TO_CTX:
7012 		/* in case the function doesn't know how to access the context,
7013 		 * (because we are in a program of type SYSCALL for example), we
7014 		 * can not statically check its size.
7015 		 * Dynamically check it now.
7016 		 */
7017 		if (!env->ops->convert_ctx_access) {
7018 			enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
7019 			int offset = access_size - 1;
7020 
7021 			/* Allow zero-byte read from PTR_TO_CTX */
7022 			if (access_size == 0)
7023 				return zero_size_allowed ? 0 : -EACCES;
7024 
7025 			return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
7026 						atype, -1, false, false);
7027 		}
7028 
7029 		fallthrough;
7030 	default: /* scalar_value or invalid ptr */
7031 		/* Allow zero-byte read from NULL, regardless of pointer type */
7032 		if (zero_size_allowed && access_size == 0 &&
7033 		    register_is_null(reg))
7034 			return 0;
7035 
7036 		verbose(env, "R%d type=%s ", regno,
7037 			reg_type_str(env, reg->type));
7038 		verbose(env, "expected=%s\n", reg_type_str(env, PTR_TO_STACK));
7039 		return -EACCES;
7040 	}
7041 }
7042 
7043 static int check_mem_size_reg(struct bpf_verifier_env *env,
7044 			      struct bpf_reg_state *reg, u32 regno,
7045 			      bool zero_size_allowed,
7046 			      struct bpf_call_arg_meta *meta)
7047 {
7048 	int err;
7049 
7050 	/* This is used to refine r0 return value bounds for helpers
7051 	 * that enforce this value as an upper bound on return values.
7052 	 * See do_refine_retval_range() for helpers that can refine
7053 	 * the return value. C type of helper is u32 so we pull register
7054 	 * bound from umax_value however, if negative verifier errors
7055 	 * out. Only upper bounds can be learned because retval is an
7056 	 * int type and negative retvals are allowed.
7057 	 */
7058 	meta->msize_max_value = reg->umax_value;
7059 
7060 	/* The register is SCALAR_VALUE; the access check
7061 	 * happens using its boundaries.
7062 	 */
7063 	if (!tnum_is_const(reg->var_off))
7064 		/* For unprivileged variable accesses, disable raw
7065 		 * mode so that the program is required to
7066 		 * initialize all the memory that the helper could
7067 		 * just partially fill up.
7068 		 */
7069 		meta = NULL;
7070 
7071 	if (reg->smin_value < 0) {
7072 		verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
7073 			regno);
7074 		return -EACCES;
7075 	}
7076 
7077 	if (reg->umin_value == 0) {
7078 		err = check_helper_mem_access(env, regno - 1, 0,
7079 					      zero_size_allowed,
7080 					      meta);
7081 		if (err)
7082 			return err;
7083 	}
7084 
7085 	if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
7086 		verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
7087 			regno);
7088 		return -EACCES;
7089 	}
7090 	err = check_helper_mem_access(env, regno - 1,
7091 				      reg->umax_value,
7092 				      zero_size_allowed, meta);
7093 	if (!err)
7094 		err = mark_chain_precision(env, regno);
7095 	return err;
7096 }
7097 
7098 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7099 		   u32 regno, u32 mem_size)
7100 {
7101 	bool may_be_null = type_may_be_null(reg->type);
7102 	struct bpf_reg_state saved_reg;
7103 	struct bpf_call_arg_meta meta;
7104 	int err;
7105 
7106 	if (register_is_null(reg))
7107 		return 0;
7108 
7109 	memset(&meta, 0, sizeof(meta));
7110 	/* Assuming that the register contains a value check if the memory
7111 	 * access is safe. Temporarily save and restore the register's state as
7112 	 * the conversion shouldn't be visible to a caller.
7113 	 */
7114 	if (may_be_null) {
7115 		saved_reg = *reg;
7116 		mark_ptr_not_null_reg(reg);
7117 	}
7118 
7119 	err = check_helper_mem_access(env, regno, mem_size, true, &meta);
7120 	/* Check access for BPF_WRITE */
7121 	meta.raw_mode = true;
7122 	err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
7123 
7124 	if (may_be_null)
7125 		*reg = saved_reg;
7126 
7127 	return err;
7128 }
7129 
7130 static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
7131 				    u32 regno)
7132 {
7133 	struct bpf_reg_state *mem_reg = &cur_regs(env)[regno - 1];
7134 	bool may_be_null = type_may_be_null(mem_reg->type);
7135 	struct bpf_reg_state saved_reg;
7136 	struct bpf_call_arg_meta meta;
7137 	int err;
7138 
7139 	WARN_ON_ONCE(regno < BPF_REG_2 || regno > BPF_REG_5);
7140 
7141 	memset(&meta, 0, sizeof(meta));
7142 
7143 	if (may_be_null) {
7144 		saved_reg = *mem_reg;
7145 		mark_ptr_not_null_reg(mem_reg);
7146 	}
7147 
7148 	err = check_mem_size_reg(env, reg, regno, true, &meta);
7149 	/* Check access for BPF_WRITE */
7150 	meta.raw_mode = true;
7151 	err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
7152 
7153 	if (may_be_null)
7154 		*mem_reg = saved_reg;
7155 	return err;
7156 }
7157 
7158 /* Implementation details:
7159  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL.
7160  * bpf_obj_new returns PTR_TO_BTF_ID | MEM_ALLOC | PTR_MAYBE_NULL.
7161  * Two bpf_map_lookups (even with the same key) will have different reg->id.
7162  * Two separate bpf_obj_new will also have different reg->id.
7163  * For traditional PTR_TO_MAP_VALUE or PTR_TO_BTF_ID | MEM_ALLOC, the verifier
7164  * clears reg->id after value_or_null->value transition, since the verifier only
7165  * cares about the range of access to valid map value pointer and doesn't care
7166  * about actual address of the map element.
7167  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
7168  * reg->id > 0 after value_or_null->value transition. By doing so
7169  * two bpf_map_lookups will be considered two different pointers that
7170  * point to different bpf_spin_locks. Likewise for pointers to allocated objects
7171  * returned from bpf_obj_new.
7172  * The verifier allows taking only one bpf_spin_lock at a time to avoid
7173  * dead-locks.
7174  * Since only one bpf_spin_lock is allowed the checks are simpler than
7175  * reg_is_refcounted() logic. The verifier needs to remember only
7176  * one spin_lock instead of array of acquired_refs.
7177  * cur_state->active_lock remembers which map value element or allocated
7178  * object got locked and clears it after bpf_spin_unlock.
7179  */
7180 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
7181 			     bool is_lock)
7182 {
7183 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7184 	struct bpf_verifier_state *cur = env->cur_state;
7185 	bool is_const = tnum_is_const(reg->var_off);
7186 	u64 val = reg->var_off.value;
7187 	struct bpf_map *map = NULL;
7188 	struct btf *btf = NULL;
7189 	struct btf_record *rec;
7190 
7191 	if (!is_const) {
7192 		verbose(env,
7193 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
7194 			regno);
7195 		return -EINVAL;
7196 	}
7197 	if (reg->type == PTR_TO_MAP_VALUE) {
7198 		map = reg->map_ptr;
7199 		if (!map->btf) {
7200 			verbose(env,
7201 				"map '%s' has to have BTF in order to use bpf_spin_lock\n",
7202 				map->name);
7203 			return -EINVAL;
7204 		}
7205 	} else {
7206 		btf = reg->btf;
7207 	}
7208 
7209 	rec = reg_btf_record(reg);
7210 	if (!btf_record_has_field(rec, BPF_SPIN_LOCK)) {
7211 		verbose(env, "%s '%s' has no valid bpf_spin_lock\n", map ? "map" : "local",
7212 			map ? map->name : "kptr");
7213 		return -EINVAL;
7214 	}
7215 	if (rec->spin_lock_off != val + reg->off) {
7216 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock' that is at %d\n",
7217 			val + reg->off, rec->spin_lock_off);
7218 		return -EINVAL;
7219 	}
7220 	if (is_lock) {
7221 		if (cur->active_lock.ptr) {
7222 			verbose(env,
7223 				"Locking two bpf_spin_locks are not allowed\n");
7224 			return -EINVAL;
7225 		}
7226 		if (map)
7227 			cur->active_lock.ptr = map;
7228 		else
7229 			cur->active_lock.ptr = btf;
7230 		cur->active_lock.id = reg->id;
7231 	} else {
7232 		void *ptr;
7233 
7234 		if (map)
7235 			ptr = map;
7236 		else
7237 			ptr = btf;
7238 
7239 		if (!cur->active_lock.ptr) {
7240 			verbose(env, "bpf_spin_unlock without taking a lock\n");
7241 			return -EINVAL;
7242 		}
7243 		if (cur->active_lock.ptr != ptr ||
7244 		    cur->active_lock.id != reg->id) {
7245 			verbose(env, "bpf_spin_unlock of different lock\n");
7246 			return -EINVAL;
7247 		}
7248 
7249 		invalidate_non_owning_refs(env);
7250 
7251 		cur->active_lock.ptr = NULL;
7252 		cur->active_lock.id = 0;
7253 	}
7254 	return 0;
7255 }
7256 
7257 static int process_timer_func(struct bpf_verifier_env *env, int regno,
7258 			      struct bpf_call_arg_meta *meta)
7259 {
7260 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7261 	bool is_const = tnum_is_const(reg->var_off);
7262 	struct bpf_map *map = reg->map_ptr;
7263 	u64 val = reg->var_off.value;
7264 
7265 	if (!is_const) {
7266 		verbose(env,
7267 			"R%d doesn't have constant offset. bpf_timer has to be at the constant offset\n",
7268 			regno);
7269 		return -EINVAL;
7270 	}
7271 	if (!map->btf) {
7272 		verbose(env, "map '%s' has to have BTF in order to use bpf_timer\n",
7273 			map->name);
7274 		return -EINVAL;
7275 	}
7276 	if (!btf_record_has_field(map->record, BPF_TIMER)) {
7277 		verbose(env, "map '%s' has no valid bpf_timer\n", map->name);
7278 		return -EINVAL;
7279 	}
7280 	if (map->record->timer_off != val + reg->off) {
7281 		verbose(env, "off %lld doesn't point to 'struct bpf_timer' that is at %d\n",
7282 			val + reg->off, map->record->timer_off);
7283 		return -EINVAL;
7284 	}
7285 	if (meta->map_ptr) {
7286 		verbose(env, "verifier bug. Two map pointers in a timer helper\n");
7287 		return -EFAULT;
7288 	}
7289 	meta->map_uid = reg->map_uid;
7290 	meta->map_ptr = map;
7291 	return 0;
7292 }
7293 
7294 static int process_kptr_func(struct bpf_verifier_env *env, int regno,
7295 			     struct bpf_call_arg_meta *meta)
7296 {
7297 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7298 	struct bpf_map *map_ptr = reg->map_ptr;
7299 	struct btf_field *kptr_field;
7300 	u32 kptr_off;
7301 
7302 	if (!tnum_is_const(reg->var_off)) {
7303 		verbose(env,
7304 			"R%d doesn't have constant offset. kptr has to be at the constant offset\n",
7305 			regno);
7306 		return -EINVAL;
7307 	}
7308 	if (!map_ptr->btf) {
7309 		verbose(env, "map '%s' has to have BTF in order to use bpf_kptr_xchg\n",
7310 			map_ptr->name);
7311 		return -EINVAL;
7312 	}
7313 	if (!btf_record_has_field(map_ptr->record, BPF_KPTR)) {
7314 		verbose(env, "map '%s' has no valid kptr\n", map_ptr->name);
7315 		return -EINVAL;
7316 	}
7317 
7318 	meta->map_ptr = map_ptr;
7319 	kptr_off = reg->off + reg->var_off.value;
7320 	kptr_field = btf_record_find(map_ptr->record, kptr_off, BPF_KPTR);
7321 	if (!kptr_field) {
7322 		verbose(env, "off=%d doesn't point to kptr\n", kptr_off);
7323 		return -EACCES;
7324 	}
7325 	if (kptr_field->type != BPF_KPTR_REF) {
7326 		verbose(env, "off=%d kptr isn't referenced kptr\n", kptr_off);
7327 		return -EACCES;
7328 	}
7329 	meta->kptr_field = kptr_field;
7330 	return 0;
7331 }
7332 
7333 /* There are two register types representing a bpf_dynptr, one is PTR_TO_STACK
7334  * which points to a stack slot, and the other is CONST_PTR_TO_DYNPTR.
7335  *
7336  * In both cases we deal with the first 8 bytes, but need to mark the next 8
7337  * bytes as STACK_DYNPTR in case of PTR_TO_STACK. In case of
7338  * CONST_PTR_TO_DYNPTR, we are guaranteed to get the beginning of the object.
7339  *
7340  * Mutability of bpf_dynptr is at two levels, one is at the level of struct
7341  * bpf_dynptr itself, i.e. whether the helper is receiving a pointer to struct
7342  * bpf_dynptr or pointer to const struct bpf_dynptr. In the former case, it can
7343  * mutate the view of the dynptr and also possibly destroy it. In the latter
7344  * case, it cannot mutate the bpf_dynptr itself but it can still mutate the
7345  * memory that dynptr points to.
7346  *
7347  * The verifier will keep track both levels of mutation (bpf_dynptr's in
7348  * reg->type and the memory's in reg->dynptr.type), but there is no support for
7349  * readonly dynptr view yet, hence only the first case is tracked and checked.
7350  *
7351  * This is consistent with how C applies the const modifier to a struct object,
7352  * where the pointer itself inside bpf_dynptr becomes const but not what it
7353  * points to.
7354  *
7355  * Helpers which do not mutate the bpf_dynptr set MEM_RDONLY in their argument
7356  * type, and declare it as 'const struct bpf_dynptr *' in their prototype.
7357  */
7358 static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn_idx,
7359 			       enum bpf_arg_type arg_type, int clone_ref_obj_id)
7360 {
7361 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7362 	int err;
7363 
7364 	/* MEM_UNINIT and MEM_RDONLY are exclusive, when applied to an
7365 	 * ARG_PTR_TO_DYNPTR (or ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_*):
7366 	 */
7367 	if ((arg_type & (MEM_UNINIT | MEM_RDONLY)) == (MEM_UNINIT | MEM_RDONLY)) {
7368 		verbose(env, "verifier internal error: misconfigured dynptr helper type flags\n");
7369 		return -EFAULT;
7370 	}
7371 
7372 	/*  MEM_UNINIT - Points to memory that is an appropriate candidate for
7373 	 *		 constructing a mutable bpf_dynptr object.
7374 	 *
7375 	 *		 Currently, this is only possible with PTR_TO_STACK
7376 	 *		 pointing to a region of at least 16 bytes which doesn't
7377 	 *		 contain an existing bpf_dynptr.
7378 	 *
7379 	 *  MEM_RDONLY - Points to a initialized bpf_dynptr that will not be
7380 	 *		 mutated or destroyed. However, the memory it points to
7381 	 *		 may be mutated.
7382 	 *
7383 	 *  None       - Points to a initialized dynptr that can be mutated and
7384 	 *		 destroyed, including mutation of the memory it points
7385 	 *		 to.
7386 	 */
7387 	if (arg_type & MEM_UNINIT) {
7388 		int i;
7389 
7390 		if (!is_dynptr_reg_valid_uninit(env, reg)) {
7391 			verbose(env, "Dynptr has to be an uninitialized dynptr\n");
7392 			return -EINVAL;
7393 		}
7394 
7395 		/* we write BPF_DW bits (8 bytes) at a time */
7396 		for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
7397 			err = check_mem_access(env, insn_idx, regno,
7398 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7399 			if (err)
7400 				return err;
7401 		}
7402 
7403 		err = mark_stack_slots_dynptr(env, reg, arg_type, insn_idx, clone_ref_obj_id);
7404 	} else /* MEM_RDONLY and None case from above */ {
7405 		/* For the reg->type == PTR_TO_STACK case, bpf_dynptr is never const */
7406 		if (reg->type == CONST_PTR_TO_DYNPTR && !(arg_type & MEM_RDONLY)) {
7407 			verbose(env, "cannot pass pointer to const bpf_dynptr, the helper mutates it\n");
7408 			return -EINVAL;
7409 		}
7410 
7411 		if (!is_dynptr_reg_valid_init(env, reg)) {
7412 			verbose(env,
7413 				"Expected an initialized dynptr as arg #%d\n",
7414 				regno);
7415 			return -EINVAL;
7416 		}
7417 
7418 		/* Fold modifiers (in this case, MEM_RDONLY) when checking expected type */
7419 		if (!is_dynptr_type_expected(env, reg, arg_type & ~MEM_RDONLY)) {
7420 			verbose(env,
7421 				"Expected a dynptr of type %s as arg #%d\n",
7422 				dynptr_type_str(arg_to_dynptr_type(arg_type)), regno);
7423 			return -EINVAL;
7424 		}
7425 
7426 		err = mark_dynptr_read(env, reg);
7427 	}
7428 	return err;
7429 }
7430 
7431 static u32 iter_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg, int spi)
7432 {
7433 	struct bpf_func_state *state = func(env, reg);
7434 
7435 	return state->stack[spi].spilled_ptr.ref_obj_id;
7436 }
7437 
7438 static bool is_iter_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7439 {
7440 	return meta->kfunc_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7441 }
7442 
7443 static bool is_iter_new_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7444 {
7445 	return meta->kfunc_flags & KF_ITER_NEW;
7446 }
7447 
7448 static bool is_iter_next_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7449 {
7450 	return meta->kfunc_flags & KF_ITER_NEXT;
7451 }
7452 
7453 static bool is_iter_destroy_kfunc(struct bpf_kfunc_call_arg_meta *meta)
7454 {
7455 	return meta->kfunc_flags & KF_ITER_DESTROY;
7456 }
7457 
7458 static bool is_kfunc_arg_iter(struct bpf_kfunc_call_arg_meta *meta, int arg)
7459 {
7460 	/* btf_check_iter_kfuncs() guarantees that first argument of any iter
7461 	 * kfunc is iter state pointer
7462 	 */
7463 	return arg == 0 && is_iter_kfunc(meta);
7464 }
7465 
7466 static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_idx,
7467 			    struct bpf_kfunc_call_arg_meta *meta)
7468 {
7469 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7470 	const struct btf_type *t;
7471 	const struct btf_param *arg;
7472 	int spi, err, i, nr_slots;
7473 	u32 btf_id;
7474 
7475 	/* btf_check_iter_kfuncs() ensures we don't need to validate anything here */
7476 	arg = &btf_params(meta->func_proto)[0];
7477 	t = btf_type_skip_modifiers(meta->btf, arg->type, NULL);	/* PTR */
7478 	t = btf_type_skip_modifiers(meta->btf, t->type, &btf_id);	/* STRUCT */
7479 	nr_slots = t->size / BPF_REG_SIZE;
7480 
7481 	if (is_iter_new_kfunc(meta)) {
7482 		/* bpf_iter_<type>_new() expects pointer to uninit iter state */
7483 		if (!is_iter_reg_valid_uninit(env, reg, nr_slots)) {
7484 			verbose(env, "expected uninitialized iter_%s as arg #%d\n",
7485 				iter_type_str(meta->btf, btf_id), regno);
7486 			return -EINVAL;
7487 		}
7488 
7489 		for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
7490 			err = check_mem_access(env, insn_idx, regno,
7491 					       i, BPF_DW, BPF_WRITE, -1, false, false);
7492 			if (err)
7493 				return err;
7494 		}
7495 
7496 		err = mark_stack_slots_iter(env, reg, insn_idx, meta->btf, btf_id, nr_slots);
7497 		if (err)
7498 			return err;
7499 	} else {
7500 		/* iter_next() or iter_destroy() expect initialized iter state*/
7501 		if (!is_iter_reg_valid_init(env, reg, meta->btf, btf_id, nr_slots)) {
7502 			verbose(env, "expected an initialized iter_%s as arg #%d\n",
7503 				iter_type_str(meta->btf, btf_id), regno);
7504 			return -EINVAL;
7505 		}
7506 
7507 		spi = iter_get_spi(env, reg, nr_slots);
7508 		if (spi < 0)
7509 			return spi;
7510 
7511 		err = mark_iter_read(env, reg, spi, nr_slots);
7512 		if (err)
7513 			return err;
7514 
7515 		/* remember meta->iter info for process_iter_next_call() */
7516 		meta->iter.spi = spi;
7517 		meta->iter.frameno = reg->frameno;
7518 		meta->ref_obj_id = iter_ref_obj_id(env, reg, spi);
7519 
7520 		if (is_iter_destroy_kfunc(meta)) {
7521 			err = unmark_stack_slots_iter(env, reg, nr_slots);
7522 			if (err)
7523 				return err;
7524 		}
7525 	}
7526 
7527 	return 0;
7528 }
7529 
7530 /* process_iter_next_call() is called when verifier gets to iterator's next
7531  * "method" (e.g., bpf_iter_num_next() for numbers iterator) call. We'll refer
7532  * to it as just "iter_next()" in comments below.
7533  *
7534  * BPF verifier relies on a crucial contract for any iter_next()
7535  * implementation: it should *eventually* return NULL, and once that happens
7536  * it should keep returning NULL. That is, once iterator exhausts elements to
7537  * iterate, it should never reset or spuriously return new elements.
7538  *
7539  * With the assumption of such contract, process_iter_next_call() simulates
7540  * a fork in the verifier state to validate loop logic correctness and safety
7541  * without having to simulate infinite amount of iterations.
7542  *
7543  * In current state, we first assume that iter_next() returned NULL and
7544  * iterator state is set to DRAINED (BPF_ITER_STATE_DRAINED). In such
7545  * conditions we should not form an infinite loop and should eventually reach
7546  * exit.
7547  *
7548  * Besides that, we also fork current state and enqueue it for later
7549  * verification. In a forked state we keep iterator state as ACTIVE
7550  * (BPF_ITER_STATE_ACTIVE) and assume non-NULL return from iter_next(). We
7551  * also bump iteration depth to prevent erroneous infinite loop detection
7552  * later on (see iter_active_depths_differ() comment for details). In this
7553  * state we assume that we'll eventually loop back to another iter_next()
7554  * calls (it could be in exactly same location or in some other instruction,
7555  * it doesn't matter, we don't make any unnecessary assumptions about this,
7556  * everything revolves around iterator state in a stack slot, not which
7557  * instruction is calling iter_next()). When that happens, we either will come
7558  * to iter_next() with equivalent state and can conclude that next iteration
7559  * will proceed in exactly the same way as we just verified, so it's safe to
7560  * assume that loop converges. If not, we'll go on another iteration
7561  * simulation with a different input state, until all possible starting states
7562  * are validated or we reach maximum number of instructions limit.
7563  *
7564  * This way, we will either exhaustively discover all possible input states
7565  * that iterator loop can start with and eventually will converge, or we'll
7566  * effectively regress into bounded loop simulation logic and either reach
7567  * maximum number of instructions if loop is not provably convergent, or there
7568  * is some statically known limit on number of iterations (e.g., if there is
7569  * an explicit `if n > 100 then break;` statement somewhere in the loop).
7570  *
7571  * One very subtle but very important aspect is that we *always* simulate NULL
7572  * condition first (as the current state) before we simulate non-NULL case.
7573  * This has to do with intricacies of scalar precision tracking. By simulating
7574  * "exit condition" of iter_next() returning NULL first, we make sure all the
7575  * relevant precision marks *that will be set **after** we exit iterator loop*
7576  * are propagated backwards to common parent state of NULL and non-NULL
7577  * branches. Thanks to that, state equivalence checks done later in forked
7578  * state, when reaching iter_next() for ACTIVE iterator, can assume that
7579  * precision marks are finalized and won't change. Because simulating another
7580  * ACTIVE iterator iteration won't change them (because given same input
7581  * states we'll end up with exactly same output states which we are currently
7582  * comparing; and verification after the loop already propagated back what
7583  * needs to be **additionally** tracked as precise). It's subtle, grok
7584  * precision tracking for more intuitive understanding.
7585  */
7586 static int process_iter_next_call(struct bpf_verifier_env *env, int insn_idx,
7587 				  struct bpf_kfunc_call_arg_meta *meta)
7588 {
7589 	struct bpf_verifier_state *cur_st = env->cur_state, *queued_st;
7590 	struct bpf_func_state *cur_fr = cur_st->frame[cur_st->curframe], *queued_fr;
7591 	struct bpf_reg_state *cur_iter, *queued_iter;
7592 	int iter_frameno = meta->iter.frameno;
7593 	int iter_spi = meta->iter.spi;
7594 
7595 	BTF_TYPE_EMIT(struct bpf_iter);
7596 
7597 	cur_iter = &env->cur_state->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7598 
7599 	if (cur_iter->iter.state != BPF_ITER_STATE_ACTIVE &&
7600 	    cur_iter->iter.state != BPF_ITER_STATE_DRAINED) {
7601 		verbose(env, "verifier internal error: unexpected iterator state %d (%s)\n",
7602 			cur_iter->iter.state, iter_state_str(cur_iter->iter.state));
7603 		return -EFAULT;
7604 	}
7605 
7606 	if (cur_iter->iter.state == BPF_ITER_STATE_ACTIVE) {
7607 		/* branch out active iter state */
7608 		queued_st = push_stack(env, insn_idx + 1, insn_idx, false);
7609 		if (!queued_st)
7610 			return -ENOMEM;
7611 
7612 		queued_iter = &queued_st->frame[iter_frameno]->stack[iter_spi].spilled_ptr;
7613 		queued_iter->iter.state = BPF_ITER_STATE_ACTIVE;
7614 		queued_iter->iter.depth++;
7615 
7616 		queued_fr = queued_st->frame[queued_st->curframe];
7617 		mark_ptr_not_null_reg(&queued_fr->regs[BPF_REG_0]);
7618 	}
7619 
7620 	/* switch to DRAINED state, but keep the depth unchanged */
7621 	/* mark current iter state as drained and assume returned NULL */
7622 	cur_iter->iter.state = BPF_ITER_STATE_DRAINED;
7623 	__mark_reg_const_zero(&cur_fr->regs[BPF_REG_0]);
7624 
7625 	return 0;
7626 }
7627 
7628 static bool arg_type_is_mem_size(enum bpf_arg_type type)
7629 {
7630 	return type == ARG_CONST_SIZE ||
7631 	       type == ARG_CONST_SIZE_OR_ZERO;
7632 }
7633 
7634 static bool arg_type_is_release(enum bpf_arg_type type)
7635 {
7636 	return type & OBJ_RELEASE;
7637 }
7638 
7639 static bool arg_type_is_dynptr(enum bpf_arg_type type)
7640 {
7641 	return base_type(type) == ARG_PTR_TO_DYNPTR;
7642 }
7643 
7644 static int int_ptr_type_to_size(enum bpf_arg_type type)
7645 {
7646 	if (type == ARG_PTR_TO_INT)
7647 		return sizeof(u32);
7648 	else if (type == ARG_PTR_TO_LONG)
7649 		return sizeof(u64);
7650 
7651 	return -EINVAL;
7652 }
7653 
7654 static int resolve_map_arg_type(struct bpf_verifier_env *env,
7655 				 const struct bpf_call_arg_meta *meta,
7656 				 enum bpf_arg_type *arg_type)
7657 {
7658 	if (!meta->map_ptr) {
7659 		/* kernel subsystem misconfigured verifier */
7660 		verbose(env, "invalid map_ptr to access map->type\n");
7661 		return -EACCES;
7662 	}
7663 
7664 	switch (meta->map_ptr->map_type) {
7665 	case BPF_MAP_TYPE_SOCKMAP:
7666 	case BPF_MAP_TYPE_SOCKHASH:
7667 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
7668 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
7669 		} else {
7670 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
7671 			return -EINVAL;
7672 		}
7673 		break;
7674 	case BPF_MAP_TYPE_BLOOM_FILTER:
7675 		if (meta->func_id == BPF_FUNC_map_peek_elem)
7676 			*arg_type = ARG_PTR_TO_MAP_VALUE;
7677 		break;
7678 	default:
7679 		break;
7680 	}
7681 	return 0;
7682 }
7683 
7684 struct bpf_reg_types {
7685 	const enum bpf_reg_type types[10];
7686 	u32 *btf_id;
7687 };
7688 
7689 static const struct bpf_reg_types sock_types = {
7690 	.types = {
7691 		PTR_TO_SOCK_COMMON,
7692 		PTR_TO_SOCKET,
7693 		PTR_TO_TCP_SOCK,
7694 		PTR_TO_XDP_SOCK,
7695 	},
7696 };
7697 
7698 #ifdef CONFIG_NET
7699 static const struct bpf_reg_types btf_id_sock_common_types = {
7700 	.types = {
7701 		PTR_TO_SOCK_COMMON,
7702 		PTR_TO_SOCKET,
7703 		PTR_TO_TCP_SOCK,
7704 		PTR_TO_XDP_SOCK,
7705 		PTR_TO_BTF_ID,
7706 		PTR_TO_BTF_ID | PTR_TRUSTED,
7707 	},
7708 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
7709 };
7710 #endif
7711 
7712 static const struct bpf_reg_types mem_types = {
7713 	.types = {
7714 		PTR_TO_STACK,
7715 		PTR_TO_PACKET,
7716 		PTR_TO_PACKET_META,
7717 		PTR_TO_MAP_KEY,
7718 		PTR_TO_MAP_VALUE,
7719 		PTR_TO_MEM,
7720 		PTR_TO_MEM | MEM_RINGBUF,
7721 		PTR_TO_BUF,
7722 		PTR_TO_BTF_ID | PTR_TRUSTED,
7723 	},
7724 };
7725 
7726 static const struct bpf_reg_types int_ptr_types = {
7727 	.types = {
7728 		PTR_TO_STACK,
7729 		PTR_TO_PACKET,
7730 		PTR_TO_PACKET_META,
7731 		PTR_TO_MAP_KEY,
7732 		PTR_TO_MAP_VALUE,
7733 	},
7734 };
7735 
7736 static const struct bpf_reg_types spin_lock_types = {
7737 	.types = {
7738 		PTR_TO_MAP_VALUE,
7739 		PTR_TO_BTF_ID | MEM_ALLOC,
7740 	}
7741 };
7742 
7743 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
7744 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
7745 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
7746 static const struct bpf_reg_types ringbuf_mem_types = { .types = { PTR_TO_MEM | MEM_RINGBUF } };
7747 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
7748 static const struct bpf_reg_types btf_ptr_types = {
7749 	.types = {
7750 		PTR_TO_BTF_ID,
7751 		PTR_TO_BTF_ID | PTR_TRUSTED,
7752 		PTR_TO_BTF_ID | MEM_RCU,
7753 	},
7754 };
7755 static const struct bpf_reg_types percpu_btf_ptr_types = {
7756 	.types = {
7757 		PTR_TO_BTF_ID | MEM_PERCPU,
7758 		PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED,
7759 	}
7760 };
7761 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
7762 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
7763 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
7764 static const struct bpf_reg_types timer_types = { .types = { PTR_TO_MAP_VALUE } };
7765 static const struct bpf_reg_types kptr_types = { .types = { PTR_TO_MAP_VALUE } };
7766 static const struct bpf_reg_types dynptr_types = {
7767 	.types = {
7768 		PTR_TO_STACK,
7769 		CONST_PTR_TO_DYNPTR,
7770 	}
7771 };
7772 
7773 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
7774 	[ARG_PTR_TO_MAP_KEY]		= &mem_types,
7775 	[ARG_PTR_TO_MAP_VALUE]		= &mem_types,
7776 	[ARG_CONST_SIZE]		= &scalar_types,
7777 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
7778 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
7779 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
7780 	[ARG_PTR_TO_CTX]		= &context_types,
7781 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
7782 #ifdef CONFIG_NET
7783 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
7784 #endif
7785 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
7786 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
7787 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
7788 	[ARG_PTR_TO_MEM]		= &mem_types,
7789 	[ARG_PTR_TO_RINGBUF_MEM]	= &ringbuf_mem_types,
7790 	[ARG_PTR_TO_INT]		= &int_ptr_types,
7791 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
7792 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
7793 	[ARG_PTR_TO_FUNC]		= &func_ptr_types,
7794 	[ARG_PTR_TO_STACK]		= &stack_ptr_types,
7795 	[ARG_PTR_TO_CONST_STR]		= &const_str_ptr_types,
7796 	[ARG_PTR_TO_TIMER]		= &timer_types,
7797 	[ARG_PTR_TO_KPTR]		= &kptr_types,
7798 	[ARG_PTR_TO_DYNPTR]		= &dynptr_types,
7799 };
7800 
7801 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
7802 			  enum bpf_arg_type arg_type,
7803 			  const u32 *arg_btf_id,
7804 			  struct bpf_call_arg_meta *meta)
7805 {
7806 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
7807 	enum bpf_reg_type expected, type = reg->type;
7808 	const struct bpf_reg_types *compatible;
7809 	int i, j;
7810 
7811 	compatible = compatible_reg_types[base_type(arg_type)];
7812 	if (!compatible) {
7813 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
7814 		return -EFAULT;
7815 	}
7816 
7817 	/* ARG_PTR_TO_MEM + RDONLY is compatible with PTR_TO_MEM and PTR_TO_MEM + RDONLY,
7818 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM and NOT with PTR_TO_MEM + RDONLY
7819 	 *
7820 	 * Same for MAYBE_NULL:
7821 	 *
7822 	 * ARG_PTR_TO_MEM + MAYBE_NULL is compatible with PTR_TO_MEM and PTR_TO_MEM + MAYBE_NULL,
7823 	 * but ARG_PTR_TO_MEM is compatible only with PTR_TO_MEM but NOT with PTR_TO_MEM + MAYBE_NULL
7824 	 *
7825 	 * ARG_PTR_TO_MEM is compatible with PTR_TO_MEM that is tagged with a dynptr type.
7826 	 *
7827 	 * Therefore we fold these flags depending on the arg_type before comparison.
7828 	 */
7829 	if (arg_type & MEM_RDONLY)
7830 		type &= ~MEM_RDONLY;
7831 	if (arg_type & PTR_MAYBE_NULL)
7832 		type &= ~PTR_MAYBE_NULL;
7833 	if (base_type(arg_type) == ARG_PTR_TO_MEM)
7834 		type &= ~DYNPTR_TYPE_FLAG_MASK;
7835 
7836 	if (meta->func_id == BPF_FUNC_kptr_xchg && type_is_alloc(type))
7837 		type &= ~MEM_ALLOC;
7838 
7839 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
7840 		expected = compatible->types[i];
7841 		if (expected == NOT_INIT)
7842 			break;
7843 
7844 		if (type == expected)
7845 			goto found;
7846 	}
7847 
7848 	verbose(env, "R%d type=%s expected=", regno, reg_type_str(env, reg->type));
7849 	for (j = 0; j + 1 < i; j++)
7850 		verbose(env, "%s, ", reg_type_str(env, compatible->types[j]));
7851 	verbose(env, "%s\n", reg_type_str(env, compatible->types[j]));
7852 	return -EACCES;
7853 
7854 found:
7855 	if (base_type(reg->type) != PTR_TO_BTF_ID)
7856 		return 0;
7857 
7858 	if (compatible == &mem_types) {
7859 		if (!(arg_type & MEM_RDONLY)) {
7860 			verbose(env,
7861 				"%s() may write into memory pointed by R%d type=%s\n",
7862 				func_id_name(meta->func_id),
7863 				regno, reg_type_str(env, reg->type));
7864 			return -EACCES;
7865 		}
7866 		return 0;
7867 	}
7868 
7869 	switch ((int)reg->type) {
7870 	case PTR_TO_BTF_ID:
7871 	case PTR_TO_BTF_ID | PTR_TRUSTED:
7872 	case PTR_TO_BTF_ID | MEM_RCU:
7873 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL:
7874 	case PTR_TO_BTF_ID | PTR_MAYBE_NULL | MEM_RCU:
7875 	{
7876 		/* For bpf_sk_release, it needs to match against first member
7877 		 * 'struct sock_common', hence make an exception for it. This
7878 		 * allows bpf_sk_release to work for multiple socket types.
7879 		 */
7880 		bool strict_type_match = arg_type_is_release(arg_type) &&
7881 					 meta->func_id != BPF_FUNC_sk_release;
7882 
7883 		if (type_may_be_null(reg->type) &&
7884 		    (!type_may_be_null(arg_type) || arg_type_is_release(arg_type))) {
7885 			verbose(env, "Possibly NULL pointer passed to helper arg%d\n", regno);
7886 			return -EACCES;
7887 		}
7888 
7889 		if (!arg_btf_id) {
7890 			if (!compatible->btf_id) {
7891 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
7892 				return -EFAULT;
7893 			}
7894 			arg_btf_id = compatible->btf_id;
7895 		}
7896 
7897 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7898 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7899 				return -EACCES;
7900 		} else {
7901 			if (arg_btf_id == BPF_PTR_POISON) {
7902 				verbose(env, "verifier internal error:");
7903 				verbose(env, "R%d has non-overwritten BPF_PTR_POISON type\n",
7904 					regno);
7905 				return -EACCES;
7906 			}
7907 
7908 			if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
7909 						  btf_vmlinux, *arg_btf_id,
7910 						  strict_type_match)) {
7911 				verbose(env, "R%d is of type %s but %s is expected\n",
7912 					regno, btf_type_name(reg->btf, reg->btf_id),
7913 					btf_type_name(btf_vmlinux, *arg_btf_id));
7914 				return -EACCES;
7915 			}
7916 		}
7917 		break;
7918 	}
7919 	case PTR_TO_BTF_ID | MEM_ALLOC:
7920 		if (meta->func_id != BPF_FUNC_spin_lock && meta->func_id != BPF_FUNC_spin_unlock &&
7921 		    meta->func_id != BPF_FUNC_kptr_xchg) {
7922 			verbose(env, "verifier internal error: unimplemented handling of MEM_ALLOC\n");
7923 			return -EFAULT;
7924 		}
7925 		if (meta->func_id == BPF_FUNC_kptr_xchg) {
7926 			if (map_kptr_match_type(env, meta->kptr_field, reg, regno))
7927 				return -EACCES;
7928 		}
7929 		break;
7930 	case PTR_TO_BTF_ID | MEM_PERCPU:
7931 	case PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED:
7932 		/* Handled by helper specific checks */
7933 		break;
7934 	default:
7935 		verbose(env, "verifier internal error: invalid PTR_TO_BTF_ID register for type match\n");
7936 		return -EFAULT;
7937 	}
7938 	return 0;
7939 }
7940 
7941 static struct btf_field *
7942 reg_find_field_offset(const struct bpf_reg_state *reg, s32 off, u32 fields)
7943 {
7944 	struct btf_field *field;
7945 	struct btf_record *rec;
7946 
7947 	rec = reg_btf_record(reg);
7948 	if (!rec)
7949 		return NULL;
7950 
7951 	field = btf_record_find(rec, off, fields);
7952 	if (!field)
7953 		return NULL;
7954 
7955 	return field;
7956 }
7957 
7958 int check_func_arg_reg_off(struct bpf_verifier_env *env,
7959 			   const struct bpf_reg_state *reg, int regno,
7960 			   enum bpf_arg_type arg_type)
7961 {
7962 	u32 type = reg->type;
7963 
7964 	/* When referenced register is passed to release function, its fixed
7965 	 * offset must be 0.
7966 	 *
7967 	 * We will check arg_type_is_release reg has ref_obj_id when storing
7968 	 * meta->release_regno.
7969 	 */
7970 	if (arg_type_is_release(arg_type)) {
7971 		/* ARG_PTR_TO_DYNPTR with OBJ_RELEASE is a bit special, as it
7972 		 * may not directly point to the object being released, but to
7973 		 * dynptr pointing to such object, which might be at some offset
7974 		 * on the stack. In that case, we simply to fallback to the
7975 		 * default handling.
7976 		 */
7977 		if (arg_type_is_dynptr(arg_type) && type == PTR_TO_STACK)
7978 			return 0;
7979 
7980 		/* Doing check_ptr_off_reg check for the offset will catch this
7981 		 * because fixed_off_ok is false, but checking here allows us
7982 		 * to give the user a better error message.
7983 		 */
7984 		if (reg->off) {
7985 			verbose(env, "R%d must have zero offset when passed to release func or trusted arg to kfunc\n",
7986 				regno);
7987 			return -EINVAL;
7988 		}
7989 		return __check_ptr_off_reg(env, reg, regno, false);
7990 	}
7991 
7992 	switch (type) {
7993 	/* Pointer types where both fixed and variable offset is explicitly allowed: */
7994 	case PTR_TO_STACK:
7995 	case PTR_TO_PACKET:
7996 	case PTR_TO_PACKET_META:
7997 	case PTR_TO_MAP_KEY:
7998 	case PTR_TO_MAP_VALUE:
7999 	case PTR_TO_MEM:
8000 	case PTR_TO_MEM | MEM_RDONLY:
8001 	case PTR_TO_MEM | MEM_RINGBUF:
8002 	case PTR_TO_BUF:
8003 	case PTR_TO_BUF | MEM_RDONLY:
8004 	case SCALAR_VALUE:
8005 		return 0;
8006 	/* All the rest must be rejected, except PTR_TO_BTF_ID which allows
8007 	 * fixed offset.
8008 	 */
8009 	case PTR_TO_BTF_ID:
8010 	case PTR_TO_BTF_ID | MEM_ALLOC:
8011 	case PTR_TO_BTF_ID | PTR_TRUSTED:
8012 	case PTR_TO_BTF_ID | MEM_RCU:
8013 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF:
8014 	case PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU:
8015 		/* When referenced PTR_TO_BTF_ID is passed to release function,
8016 		 * its fixed offset must be 0. In the other cases, fixed offset
8017 		 * can be non-zero. This was already checked above. So pass
8018 		 * fixed_off_ok as true to allow fixed offset for all other
8019 		 * cases. var_off always must be 0 for PTR_TO_BTF_ID, hence we
8020 		 * still need to do checks instead of returning.
8021 		 */
8022 		return __check_ptr_off_reg(env, reg, regno, true);
8023 	default:
8024 		return __check_ptr_off_reg(env, reg, regno, false);
8025 	}
8026 }
8027 
8028 static struct bpf_reg_state *get_dynptr_arg_reg(struct bpf_verifier_env *env,
8029 						const struct bpf_func_proto *fn,
8030 						struct bpf_reg_state *regs)
8031 {
8032 	struct bpf_reg_state *state = NULL;
8033 	int i;
8034 
8035 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
8036 		if (arg_type_is_dynptr(fn->arg_type[i])) {
8037 			if (state) {
8038 				verbose(env, "verifier internal error: multiple dynptr args\n");
8039 				return NULL;
8040 			}
8041 			state = &regs[BPF_REG_1 + i];
8042 		}
8043 
8044 	if (!state)
8045 		verbose(env, "verifier internal error: no dynptr arg found\n");
8046 
8047 	return state;
8048 }
8049 
8050 static int dynptr_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8051 {
8052 	struct bpf_func_state *state = func(env, reg);
8053 	int spi;
8054 
8055 	if (reg->type == CONST_PTR_TO_DYNPTR)
8056 		return reg->id;
8057 	spi = dynptr_get_spi(env, reg);
8058 	if (spi < 0)
8059 		return spi;
8060 	return state->stack[spi].spilled_ptr.id;
8061 }
8062 
8063 static int dynptr_ref_obj_id(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
8064 {
8065 	struct bpf_func_state *state = func(env, reg);
8066 	int spi;
8067 
8068 	if (reg->type == CONST_PTR_TO_DYNPTR)
8069 		return reg->ref_obj_id;
8070 	spi = dynptr_get_spi(env, reg);
8071 	if (spi < 0)
8072 		return spi;
8073 	return state->stack[spi].spilled_ptr.ref_obj_id;
8074 }
8075 
8076 static enum bpf_dynptr_type dynptr_get_type(struct bpf_verifier_env *env,
8077 					    struct bpf_reg_state *reg)
8078 {
8079 	struct bpf_func_state *state = func(env, reg);
8080 	int spi;
8081 
8082 	if (reg->type == CONST_PTR_TO_DYNPTR)
8083 		return reg->dynptr.type;
8084 
8085 	spi = __get_spi(reg->off);
8086 	if (spi < 0) {
8087 		verbose(env, "verifier internal error: invalid spi when querying dynptr type\n");
8088 		return BPF_DYNPTR_TYPE_INVALID;
8089 	}
8090 
8091 	return state->stack[spi].spilled_ptr.dynptr.type;
8092 }
8093 
8094 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
8095 			  struct bpf_call_arg_meta *meta,
8096 			  const struct bpf_func_proto *fn,
8097 			  int insn_idx)
8098 {
8099 	u32 regno = BPF_REG_1 + arg;
8100 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
8101 	enum bpf_arg_type arg_type = fn->arg_type[arg];
8102 	enum bpf_reg_type type = reg->type;
8103 	u32 *arg_btf_id = NULL;
8104 	int err = 0;
8105 
8106 	if (arg_type == ARG_DONTCARE)
8107 		return 0;
8108 
8109 	err = check_reg_arg(env, regno, SRC_OP);
8110 	if (err)
8111 		return err;
8112 
8113 	if (arg_type == ARG_ANYTHING) {
8114 		if (is_pointer_value(env, regno)) {
8115 			verbose(env, "R%d leaks addr into helper function\n",
8116 				regno);
8117 			return -EACCES;
8118 		}
8119 		return 0;
8120 	}
8121 
8122 	if (type_is_pkt_pointer(type) &&
8123 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
8124 		verbose(env, "helper access to the packet is not allowed\n");
8125 		return -EACCES;
8126 	}
8127 
8128 	if (base_type(arg_type) == ARG_PTR_TO_MAP_VALUE) {
8129 		err = resolve_map_arg_type(env, meta, &arg_type);
8130 		if (err)
8131 			return err;
8132 	}
8133 
8134 	if (register_is_null(reg) && type_may_be_null(arg_type))
8135 		/* A NULL register has a SCALAR_VALUE type, so skip
8136 		 * type checking.
8137 		 */
8138 		goto skip_type_check;
8139 
8140 	/* arg_btf_id and arg_size are in a union. */
8141 	if (base_type(arg_type) == ARG_PTR_TO_BTF_ID ||
8142 	    base_type(arg_type) == ARG_PTR_TO_SPIN_LOCK)
8143 		arg_btf_id = fn->arg_btf_id[arg];
8144 
8145 	err = check_reg_type(env, regno, arg_type, arg_btf_id, meta);
8146 	if (err)
8147 		return err;
8148 
8149 	err = check_func_arg_reg_off(env, reg, regno, arg_type);
8150 	if (err)
8151 		return err;
8152 
8153 skip_type_check:
8154 	if (arg_type_is_release(arg_type)) {
8155 		if (arg_type_is_dynptr(arg_type)) {
8156 			struct bpf_func_state *state = func(env, reg);
8157 			int spi;
8158 
8159 			/* Only dynptr created on stack can be released, thus
8160 			 * the get_spi and stack state checks for spilled_ptr
8161 			 * should only be done before process_dynptr_func for
8162 			 * PTR_TO_STACK.
8163 			 */
8164 			if (reg->type == PTR_TO_STACK) {
8165 				spi = dynptr_get_spi(env, reg);
8166 				if (spi < 0 || !state->stack[spi].spilled_ptr.ref_obj_id) {
8167 					verbose(env, "arg %d is an unacquired reference\n", regno);
8168 					return -EINVAL;
8169 				}
8170 			} else {
8171 				verbose(env, "cannot release unowned const bpf_dynptr\n");
8172 				return -EINVAL;
8173 			}
8174 		} else if (!reg->ref_obj_id && !register_is_null(reg)) {
8175 			verbose(env, "R%d must be referenced when passed to release function\n",
8176 				regno);
8177 			return -EINVAL;
8178 		}
8179 		if (meta->release_regno) {
8180 			verbose(env, "verifier internal error: more than one release argument\n");
8181 			return -EFAULT;
8182 		}
8183 		meta->release_regno = regno;
8184 	}
8185 
8186 	if (reg->ref_obj_id) {
8187 		if (meta->ref_obj_id) {
8188 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
8189 				regno, reg->ref_obj_id,
8190 				meta->ref_obj_id);
8191 			return -EFAULT;
8192 		}
8193 		meta->ref_obj_id = reg->ref_obj_id;
8194 	}
8195 
8196 	switch (base_type(arg_type)) {
8197 	case ARG_CONST_MAP_PTR:
8198 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
8199 		if (meta->map_ptr) {
8200 			/* Use map_uid (which is unique id of inner map) to reject:
8201 			 * inner_map1 = bpf_map_lookup_elem(outer_map, key1)
8202 			 * inner_map2 = bpf_map_lookup_elem(outer_map, key2)
8203 			 * if (inner_map1 && inner_map2) {
8204 			 *     timer = bpf_map_lookup_elem(inner_map1);
8205 			 *     if (timer)
8206 			 *         // mismatch would have been allowed
8207 			 *         bpf_timer_init(timer, inner_map2);
8208 			 * }
8209 			 *
8210 			 * Comparing map_ptr is enough to distinguish normal and outer maps.
8211 			 */
8212 			if (meta->map_ptr != reg->map_ptr ||
8213 			    meta->map_uid != reg->map_uid) {
8214 				verbose(env,
8215 					"timer pointer in R1 map_uid=%d doesn't match map pointer in R2 map_uid=%d\n",
8216 					meta->map_uid, reg->map_uid);
8217 				return -EINVAL;
8218 			}
8219 		}
8220 		meta->map_ptr = reg->map_ptr;
8221 		meta->map_uid = reg->map_uid;
8222 		break;
8223 	case ARG_PTR_TO_MAP_KEY:
8224 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
8225 		 * check that [key, key + map->key_size) are within
8226 		 * stack limits and initialized
8227 		 */
8228 		if (!meta->map_ptr) {
8229 			/* in function declaration map_ptr must come before
8230 			 * map_key, so that it's verified and known before
8231 			 * we have to check map_key here. Otherwise it means
8232 			 * that kernel subsystem misconfigured verifier
8233 			 */
8234 			verbose(env, "invalid map_ptr to access map->key\n");
8235 			return -EACCES;
8236 		}
8237 		err = check_helper_mem_access(env, regno,
8238 					      meta->map_ptr->key_size, false,
8239 					      NULL);
8240 		break;
8241 	case ARG_PTR_TO_MAP_VALUE:
8242 		if (type_may_be_null(arg_type) && register_is_null(reg))
8243 			return 0;
8244 
8245 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
8246 		 * check [value, value + map->value_size) validity
8247 		 */
8248 		if (!meta->map_ptr) {
8249 			/* kernel subsystem misconfigured verifier */
8250 			verbose(env, "invalid map_ptr to access map->value\n");
8251 			return -EACCES;
8252 		}
8253 		meta->raw_mode = arg_type & MEM_UNINIT;
8254 		err = check_helper_mem_access(env, regno,
8255 					      meta->map_ptr->value_size, false,
8256 					      meta);
8257 		break;
8258 	case ARG_PTR_TO_PERCPU_BTF_ID:
8259 		if (!reg->btf_id) {
8260 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
8261 			return -EACCES;
8262 		}
8263 		meta->ret_btf = reg->btf;
8264 		meta->ret_btf_id = reg->btf_id;
8265 		break;
8266 	case ARG_PTR_TO_SPIN_LOCK:
8267 		if (in_rbtree_lock_required_cb(env)) {
8268 			verbose(env, "can't spin_{lock,unlock} in rbtree cb\n");
8269 			return -EACCES;
8270 		}
8271 		if (meta->func_id == BPF_FUNC_spin_lock) {
8272 			err = process_spin_lock(env, regno, true);
8273 			if (err)
8274 				return err;
8275 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
8276 			err = process_spin_lock(env, regno, false);
8277 			if (err)
8278 				return err;
8279 		} else {
8280 			verbose(env, "verifier internal error\n");
8281 			return -EFAULT;
8282 		}
8283 		break;
8284 	case ARG_PTR_TO_TIMER:
8285 		err = process_timer_func(env, regno, meta);
8286 		if (err)
8287 			return err;
8288 		break;
8289 	case ARG_PTR_TO_FUNC:
8290 		meta->subprogno = reg->subprogno;
8291 		break;
8292 	case ARG_PTR_TO_MEM:
8293 		/* The access to this pointer is only checked when we hit the
8294 		 * next is_mem_size argument below.
8295 		 */
8296 		meta->raw_mode = arg_type & MEM_UNINIT;
8297 		if (arg_type & MEM_FIXED_SIZE) {
8298 			err = check_helper_mem_access(env, regno,
8299 						      fn->arg_size[arg], false,
8300 						      meta);
8301 		}
8302 		break;
8303 	case ARG_CONST_SIZE:
8304 		err = check_mem_size_reg(env, reg, regno, false, meta);
8305 		break;
8306 	case ARG_CONST_SIZE_OR_ZERO:
8307 		err = check_mem_size_reg(env, reg, regno, true, meta);
8308 		break;
8309 	case ARG_PTR_TO_DYNPTR:
8310 		err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
8311 		if (err)
8312 			return err;
8313 		break;
8314 	case ARG_CONST_ALLOC_SIZE_OR_ZERO:
8315 		if (!tnum_is_const(reg->var_off)) {
8316 			verbose(env, "R%d is not a known constant'\n",
8317 				regno);
8318 			return -EACCES;
8319 		}
8320 		meta->mem_size = reg->var_off.value;
8321 		err = mark_chain_precision(env, regno);
8322 		if (err)
8323 			return err;
8324 		break;
8325 	case ARG_PTR_TO_INT:
8326 	case ARG_PTR_TO_LONG:
8327 	{
8328 		int size = int_ptr_type_to_size(arg_type);
8329 
8330 		err = check_helper_mem_access(env, regno, size, false, meta);
8331 		if (err)
8332 			return err;
8333 		err = check_ptr_alignment(env, reg, 0, size, true);
8334 		break;
8335 	}
8336 	case ARG_PTR_TO_CONST_STR:
8337 	{
8338 		struct bpf_map *map = reg->map_ptr;
8339 		int map_off;
8340 		u64 map_addr;
8341 		char *str_ptr;
8342 
8343 		if (!bpf_map_is_rdonly(map)) {
8344 			verbose(env, "R%d does not point to a readonly map'\n", regno);
8345 			return -EACCES;
8346 		}
8347 
8348 		if (!tnum_is_const(reg->var_off)) {
8349 			verbose(env, "R%d is not a constant address'\n", regno);
8350 			return -EACCES;
8351 		}
8352 
8353 		if (!map->ops->map_direct_value_addr) {
8354 			verbose(env, "no direct value access support for this map type\n");
8355 			return -EACCES;
8356 		}
8357 
8358 		err = check_map_access(env, regno, reg->off,
8359 				       map->value_size - reg->off, false,
8360 				       ACCESS_HELPER);
8361 		if (err)
8362 			return err;
8363 
8364 		map_off = reg->off + reg->var_off.value;
8365 		err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
8366 		if (err) {
8367 			verbose(env, "direct value access on string failed\n");
8368 			return err;
8369 		}
8370 
8371 		str_ptr = (char *)(long)(map_addr);
8372 		if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
8373 			verbose(env, "string is not zero-terminated\n");
8374 			return -EINVAL;
8375 		}
8376 		break;
8377 	}
8378 	case ARG_PTR_TO_KPTR:
8379 		err = process_kptr_func(env, regno, meta);
8380 		if (err)
8381 			return err;
8382 		break;
8383 	}
8384 
8385 	return err;
8386 }
8387 
8388 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
8389 {
8390 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
8391 	enum bpf_prog_type type = resolve_prog_type(env->prog);
8392 
8393 	if (func_id != BPF_FUNC_map_update_elem)
8394 		return false;
8395 
8396 	/* It's not possible to get access to a locked struct sock in these
8397 	 * contexts, so updating is safe.
8398 	 */
8399 	switch (type) {
8400 	case BPF_PROG_TYPE_TRACING:
8401 		if (eatype == BPF_TRACE_ITER)
8402 			return true;
8403 		break;
8404 	case BPF_PROG_TYPE_SOCKET_FILTER:
8405 	case BPF_PROG_TYPE_SCHED_CLS:
8406 	case BPF_PROG_TYPE_SCHED_ACT:
8407 	case BPF_PROG_TYPE_XDP:
8408 	case BPF_PROG_TYPE_SK_REUSEPORT:
8409 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
8410 	case BPF_PROG_TYPE_SK_LOOKUP:
8411 		return true;
8412 	default:
8413 		break;
8414 	}
8415 
8416 	verbose(env, "cannot update sockmap in this context\n");
8417 	return false;
8418 }
8419 
8420 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
8421 {
8422 	return env->prog->jit_requested &&
8423 	       bpf_jit_supports_subprog_tailcalls();
8424 }
8425 
8426 static int check_map_func_compatibility(struct bpf_verifier_env *env,
8427 					struct bpf_map *map, int func_id)
8428 {
8429 	if (!map)
8430 		return 0;
8431 
8432 	/* We need a two way check, first is from map perspective ... */
8433 	switch (map->map_type) {
8434 	case BPF_MAP_TYPE_PROG_ARRAY:
8435 		if (func_id != BPF_FUNC_tail_call)
8436 			goto error;
8437 		break;
8438 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
8439 		if (func_id != BPF_FUNC_perf_event_read &&
8440 		    func_id != BPF_FUNC_perf_event_output &&
8441 		    func_id != BPF_FUNC_skb_output &&
8442 		    func_id != BPF_FUNC_perf_event_read_value &&
8443 		    func_id != BPF_FUNC_xdp_output)
8444 			goto error;
8445 		break;
8446 	case BPF_MAP_TYPE_RINGBUF:
8447 		if (func_id != BPF_FUNC_ringbuf_output &&
8448 		    func_id != BPF_FUNC_ringbuf_reserve &&
8449 		    func_id != BPF_FUNC_ringbuf_query &&
8450 		    func_id != BPF_FUNC_ringbuf_reserve_dynptr &&
8451 		    func_id != BPF_FUNC_ringbuf_submit_dynptr &&
8452 		    func_id != BPF_FUNC_ringbuf_discard_dynptr)
8453 			goto error;
8454 		break;
8455 	case BPF_MAP_TYPE_USER_RINGBUF:
8456 		if (func_id != BPF_FUNC_user_ringbuf_drain)
8457 			goto error;
8458 		break;
8459 	case BPF_MAP_TYPE_STACK_TRACE:
8460 		if (func_id != BPF_FUNC_get_stackid)
8461 			goto error;
8462 		break;
8463 	case BPF_MAP_TYPE_CGROUP_ARRAY:
8464 		if (func_id != BPF_FUNC_skb_under_cgroup &&
8465 		    func_id != BPF_FUNC_current_task_under_cgroup)
8466 			goto error;
8467 		break;
8468 	case BPF_MAP_TYPE_CGROUP_STORAGE:
8469 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
8470 		if (func_id != BPF_FUNC_get_local_storage)
8471 			goto error;
8472 		break;
8473 	case BPF_MAP_TYPE_DEVMAP:
8474 	case BPF_MAP_TYPE_DEVMAP_HASH:
8475 		if (func_id != BPF_FUNC_redirect_map &&
8476 		    func_id != BPF_FUNC_map_lookup_elem)
8477 			goto error;
8478 		break;
8479 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
8480 	 * appear.
8481 	 */
8482 	case BPF_MAP_TYPE_CPUMAP:
8483 		if (func_id != BPF_FUNC_redirect_map)
8484 			goto error;
8485 		break;
8486 	case BPF_MAP_TYPE_XSKMAP:
8487 		if (func_id != BPF_FUNC_redirect_map &&
8488 		    func_id != BPF_FUNC_map_lookup_elem)
8489 			goto error;
8490 		break;
8491 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
8492 	case BPF_MAP_TYPE_HASH_OF_MAPS:
8493 		if (func_id != BPF_FUNC_map_lookup_elem)
8494 			goto error;
8495 		break;
8496 	case BPF_MAP_TYPE_SOCKMAP:
8497 		if (func_id != BPF_FUNC_sk_redirect_map &&
8498 		    func_id != BPF_FUNC_sock_map_update &&
8499 		    func_id != BPF_FUNC_map_delete_elem &&
8500 		    func_id != BPF_FUNC_msg_redirect_map &&
8501 		    func_id != BPF_FUNC_sk_select_reuseport &&
8502 		    func_id != BPF_FUNC_map_lookup_elem &&
8503 		    !may_update_sockmap(env, func_id))
8504 			goto error;
8505 		break;
8506 	case BPF_MAP_TYPE_SOCKHASH:
8507 		if (func_id != BPF_FUNC_sk_redirect_hash &&
8508 		    func_id != BPF_FUNC_sock_hash_update &&
8509 		    func_id != BPF_FUNC_map_delete_elem &&
8510 		    func_id != BPF_FUNC_msg_redirect_hash &&
8511 		    func_id != BPF_FUNC_sk_select_reuseport &&
8512 		    func_id != BPF_FUNC_map_lookup_elem &&
8513 		    !may_update_sockmap(env, func_id))
8514 			goto error;
8515 		break;
8516 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
8517 		if (func_id != BPF_FUNC_sk_select_reuseport)
8518 			goto error;
8519 		break;
8520 	case BPF_MAP_TYPE_QUEUE:
8521 	case BPF_MAP_TYPE_STACK:
8522 		if (func_id != BPF_FUNC_map_peek_elem &&
8523 		    func_id != BPF_FUNC_map_pop_elem &&
8524 		    func_id != BPF_FUNC_map_push_elem)
8525 			goto error;
8526 		break;
8527 	case BPF_MAP_TYPE_SK_STORAGE:
8528 		if (func_id != BPF_FUNC_sk_storage_get &&
8529 		    func_id != BPF_FUNC_sk_storage_delete &&
8530 		    func_id != BPF_FUNC_kptr_xchg)
8531 			goto error;
8532 		break;
8533 	case BPF_MAP_TYPE_INODE_STORAGE:
8534 		if (func_id != BPF_FUNC_inode_storage_get &&
8535 		    func_id != BPF_FUNC_inode_storage_delete &&
8536 		    func_id != BPF_FUNC_kptr_xchg)
8537 			goto error;
8538 		break;
8539 	case BPF_MAP_TYPE_TASK_STORAGE:
8540 		if (func_id != BPF_FUNC_task_storage_get &&
8541 		    func_id != BPF_FUNC_task_storage_delete &&
8542 		    func_id != BPF_FUNC_kptr_xchg)
8543 			goto error;
8544 		break;
8545 	case BPF_MAP_TYPE_CGRP_STORAGE:
8546 		if (func_id != BPF_FUNC_cgrp_storage_get &&
8547 		    func_id != BPF_FUNC_cgrp_storage_delete &&
8548 		    func_id != BPF_FUNC_kptr_xchg)
8549 			goto error;
8550 		break;
8551 	case BPF_MAP_TYPE_BLOOM_FILTER:
8552 		if (func_id != BPF_FUNC_map_peek_elem &&
8553 		    func_id != BPF_FUNC_map_push_elem)
8554 			goto error;
8555 		break;
8556 	default:
8557 		break;
8558 	}
8559 
8560 	/* ... and second from the function itself. */
8561 	switch (func_id) {
8562 	case BPF_FUNC_tail_call:
8563 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
8564 			goto error;
8565 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
8566 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
8567 			return -EINVAL;
8568 		}
8569 		break;
8570 	case BPF_FUNC_perf_event_read:
8571 	case BPF_FUNC_perf_event_output:
8572 	case BPF_FUNC_perf_event_read_value:
8573 	case BPF_FUNC_skb_output:
8574 	case BPF_FUNC_xdp_output:
8575 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
8576 			goto error;
8577 		break;
8578 	case BPF_FUNC_ringbuf_output:
8579 	case BPF_FUNC_ringbuf_reserve:
8580 	case BPF_FUNC_ringbuf_query:
8581 	case BPF_FUNC_ringbuf_reserve_dynptr:
8582 	case BPF_FUNC_ringbuf_submit_dynptr:
8583 	case BPF_FUNC_ringbuf_discard_dynptr:
8584 		if (map->map_type != BPF_MAP_TYPE_RINGBUF)
8585 			goto error;
8586 		break;
8587 	case BPF_FUNC_user_ringbuf_drain:
8588 		if (map->map_type != BPF_MAP_TYPE_USER_RINGBUF)
8589 			goto error;
8590 		break;
8591 	case BPF_FUNC_get_stackid:
8592 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
8593 			goto error;
8594 		break;
8595 	case BPF_FUNC_current_task_under_cgroup:
8596 	case BPF_FUNC_skb_under_cgroup:
8597 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
8598 			goto error;
8599 		break;
8600 	case BPF_FUNC_redirect_map:
8601 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
8602 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
8603 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
8604 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
8605 			goto error;
8606 		break;
8607 	case BPF_FUNC_sk_redirect_map:
8608 	case BPF_FUNC_msg_redirect_map:
8609 	case BPF_FUNC_sock_map_update:
8610 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
8611 			goto error;
8612 		break;
8613 	case BPF_FUNC_sk_redirect_hash:
8614 	case BPF_FUNC_msg_redirect_hash:
8615 	case BPF_FUNC_sock_hash_update:
8616 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
8617 			goto error;
8618 		break;
8619 	case BPF_FUNC_get_local_storage:
8620 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
8621 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
8622 			goto error;
8623 		break;
8624 	case BPF_FUNC_sk_select_reuseport:
8625 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
8626 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
8627 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
8628 			goto error;
8629 		break;
8630 	case BPF_FUNC_map_pop_elem:
8631 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8632 		    map->map_type != BPF_MAP_TYPE_STACK)
8633 			goto error;
8634 		break;
8635 	case BPF_FUNC_map_peek_elem:
8636 	case BPF_FUNC_map_push_elem:
8637 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
8638 		    map->map_type != BPF_MAP_TYPE_STACK &&
8639 		    map->map_type != BPF_MAP_TYPE_BLOOM_FILTER)
8640 			goto error;
8641 		break;
8642 	case BPF_FUNC_map_lookup_percpu_elem:
8643 		if (map->map_type != BPF_MAP_TYPE_PERCPU_ARRAY &&
8644 		    map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8645 		    map->map_type != BPF_MAP_TYPE_LRU_PERCPU_HASH)
8646 			goto error;
8647 		break;
8648 	case BPF_FUNC_sk_storage_get:
8649 	case BPF_FUNC_sk_storage_delete:
8650 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
8651 			goto error;
8652 		break;
8653 	case BPF_FUNC_inode_storage_get:
8654 	case BPF_FUNC_inode_storage_delete:
8655 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
8656 			goto error;
8657 		break;
8658 	case BPF_FUNC_task_storage_get:
8659 	case BPF_FUNC_task_storage_delete:
8660 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
8661 			goto error;
8662 		break;
8663 	case BPF_FUNC_cgrp_storage_get:
8664 	case BPF_FUNC_cgrp_storage_delete:
8665 		if (map->map_type != BPF_MAP_TYPE_CGRP_STORAGE)
8666 			goto error;
8667 		break;
8668 	default:
8669 		break;
8670 	}
8671 
8672 	return 0;
8673 error:
8674 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
8675 		map->map_type, func_id_name(func_id), func_id);
8676 	return -EINVAL;
8677 }
8678 
8679 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
8680 {
8681 	int count = 0;
8682 
8683 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
8684 		count++;
8685 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
8686 		count++;
8687 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
8688 		count++;
8689 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
8690 		count++;
8691 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
8692 		count++;
8693 
8694 	/* We only support one arg being in raw mode at the moment,
8695 	 * which is sufficient for the helper functions we have
8696 	 * right now.
8697 	 */
8698 	return count <= 1;
8699 }
8700 
8701 static bool check_args_pair_invalid(const struct bpf_func_proto *fn, int arg)
8702 {
8703 	bool is_fixed = fn->arg_type[arg] & MEM_FIXED_SIZE;
8704 	bool has_size = fn->arg_size[arg] != 0;
8705 	bool is_next_size = false;
8706 
8707 	if (arg + 1 < ARRAY_SIZE(fn->arg_type))
8708 		is_next_size = arg_type_is_mem_size(fn->arg_type[arg + 1]);
8709 
8710 	if (base_type(fn->arg_type[arg]) != ARG_PTR_TO_MEM)
8711 		return is_next_size;
8712 
8713 	return has_size == is_next_size || is_next_size == is_fixed;
8714 }
8715 
8716 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
8717 {
8718 	/* bpf_xxx(..., buf, len) call will access 'len'
8719 	 * bytes from memory 'buf'. Both arg types need
8720 	 * to be paired, so make sure there's no buggy
8721 	 * helper function specification.
8722 	 */
8723 	if (arg_type_is_mem_size(fn->arg1_type) ||
8724 	    check_args_pair_invalid(fn, 0) ||
8725 	    check_args_pair_invalid(fn, 1) ||
8726 	    check_args_pair_invalid(fn, 2) ||
8727 	    check_args_pair_invalid(fn, 3) ||
8728 	    check_args_pair_invalid(fn, 4))
8729 		return false;
8730 
8731 	return true;
8732 }
8733 
8734 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
8735 {
8736 	int i;
8737 
8738 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
8739 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_BTF_ID)
8740 			return !!fn->arg_btf_id[i];
8741 		if (base_type(fn->arg_type[i]) == ARG_PTR_TO_SPIN_LOCK)
8742 			return fn->arg_btf_id[i] == BPF_PTR_POISON;
8743 		if (base_type(fn->arg_type[i]) != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i] &&
8744 		    /* arg_btf_id and arg_size are in a union. */
8745 		    (base_type(fn->arg_type[i]) != ARG_PTR_TO_MEM ||
8746 		     !(fn->arg_type[i] & MEM_FIXED_SIZE)))
8747 			return false;
8748 	}
8749 
8750 	return true;
8751 }
8752 
8753 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
8754 {
8755 	return check_raw_mode_ok(fn) &&
8756 	       check_arg_pair_ok(fn) &&
8757 	       check_btf_id_ok(fn) ? 0 : -EINVAL;
8758 }
8759 
8760 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
8761  * are now invalid, so turn them into unknown SCALAR_VALUE.
8762  *
8763  * This also applies to dynptr slices belonging to skb and xdp dynptrs,
8764  * since these slices point to packet data.
8765  */
8766 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
8767 {
8768 	struct bpf_func_state *state;
8769 	struct bpf_reg_state *reg;
8770 
8771 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8772 		if (reg_is_pkt_pointer_any(reg) || reg_is_dynptr_slice_pkt(reg))
8773 			mark_reg_invalid(env, reg);
8774 	}));
8775 }
8776 
8777 enum {
8778 	AT_PKT_END = -1,
8779 	BEYOND_PKT_END = -2,
8780 };
8781 
8782 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
8783 {
8784 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
8785 	struct bpf_reg_state *reg = &state->regs[regn];
8786 
8787 	if (reg->type != PTR_TO_PACKET)
8788 		/* PTR_TO_PACKET_META is not supported yet */
8789 		return;
8790 
8791 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
8792 	 * How far beyond pkt_end it goes is unknown.
8793 	 * if (!range_open) it's the case of pkt >= pkt_end
8794 	 * if (range_open) it's the case of pkt > pkt_end
8795 	 * hence this pointer is at least 1 byte bigger than pkt_end
8796 	 */
8797 	if (range_open)
8798 		reg->range = BEYOND_PKT_END;
8799 	else
8800 		reg->range = AT_PKT_END;
8801 }
8802 
8803 /* The pointer with the specified id has released its reference to kernel
8804  * resources. Identify all copies of the same pointer and clear the reference.
8805  */
8806 static int release_reference(struct bpf_verifier_env *env,
8807 			     int ref_obj_id)
8808 {
8809 	struct bpf_func_state *state;
8810 	struct bpf_reg_state *reg;
8811 	int err;
8812 
8813 	err = release_reference_state(cur_func(env), ref_obj_id);
8814 	if (err)
8815 		return err;
8816 
8817 	bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
8818 		if (reg->ref_obj_id == ref_obj_id)
8819 			mark_reg_invalid(env, reg);
8820 	}));
8821 
8822 	return 0;
8823 }
8824 
8825 static void invalidate_non_owning_refs(struct bpf_verifier_env *env)
8826 {
8827 	struct bpf_func_state *unused;
8828 	struct bpf_reg_state *reg;
8829 
8830 	bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
8831 		if (type_is_non_owning_ref(reg->type))
8832 			mark_reg_invalid(env, reg);
8833 	}));
8834 }
8835 
8836 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
8837 				    struct bpf_reg_state *regs)
8838 {
8839 	int i;
8840 
8841 	/* after the call registers r0 - r5 were scratched */
8842 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
8843 		mark_reg_not_init(env, regs, caller_saved[i]);
8844 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8845 	}
8846 }
8847 
8848 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
8849 				   struct bpf_func_state *caller,
8850 				   struct bpf_func_state *callee,
8851 				   int insn_idx);
8852 
8853 static int set_callee_state(struct bpf_verifier_env *env,
8854 			    struct bpf_func_state *caller,
8855 			    struct bpf_func_state *callee, int insn_idx);
8856 
8857 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
8858 			     int *insn_idx, int subprog,
8859 			     set_callee_state_fn set_callee_state_cb)
8860 {
8861 	struct bpf_verifier_state *state = env->cur_state;
8862 	struct bpf_func_state *caller, *callee;
8863 	int err;
8864 
8865 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
8866 		verbose(env, "the call stack of %d frames is too deep\n",
8867 			state->curframe + 2);
8868 		return -E2BIG;
8869 	}
8870 
8871 	caller = state->frame[state->curframe];
8872 	if (state->frame[state->curframe + 1]) {
8873 		verbose(env, "verifier bug. Frame %d already allocated\n",
8874 			state->curframe + 1);
8875 		return -EFAULT;
8876 	}
8877 
8878 	err = btf_check_subprog_call(env, subprog, caller->regs);
8879 	if (err == -EFAULT)
8880 		return err;
8881 	if (subprog_is_global(env, subprog)) {
8882 		if (err) {
8883 			verbose(env, "Caller passes invalid args into func#%d\n",
8884 				subprog);
8885 			return err;
8886 		} else {
8887 			if (env->log.level & BPF_LOG_LEVEL)
8888 				verbose(env,
8889 					"Func#%d is global and valid. Skipping.\n",
8890 					subprog);
8891 			clear_caller_saved_regs(env, caller->regs);
8892 
8893 			/* All global functions return a 64-bit SCALAR_VALUE */
8894 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
8895 			caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8896 
8897 			/* continue with next insn after call */
8898 			return 0;
8899 		}
8900 	}
8901 
8902 	/* set_callee_state is used for direct subprog calls, but we are
8903 	 * interested in validating only BPF helpers that can call subprogs as
8904 	 * callbacks
8905 	 */
8906 	if (set_callee_state_cb != set_callee_state) {
8907 		if (bpf_pseudo_kfunc_call(insn) &&
8908 		    !is_callback_calling_kfunc(insn->imm)) {
8909 			verbose(env, "verifier bug: kfunc %s#%d not marked as callback-calling\n",
8910 				func_id_name(insn->imm), insn->imm);
8911 			return -EFAULT;
8912 		} else if (!bpf_pseudo_kfunc_call(insn) &&
8913 			   !is_callback_calling_function(insn->imm)) { /* helper */
8914 			verbose(env, "verifier bug: helper %s#%d not marked as callback-calling\n",
8915 				func_id_name(insn->imm), insn->imm);
8916 			return -EFAULT;
8917 		}
8918 	}
8919 
8920 	if (insn->code == (BPF_JMP | BPF_CALL) &&
8921 	    insn->src_reg == 0 &&
8922 	    insn->imm == BPF_FUNC_timer_set_callback) {
8923 		struct bpf_verifier_state *async_cb;
8924 
8925 		/* there is no real recursion here. timer callbacks are async */
8926 		env->subprog_info[subprog].is_async_cb = true;
8927 		async_cb = push_async_cb(env, env->subprog_info[subprog].start,
8928 					 *insn_idx, subprog);
8929 		if (!async_cb)
8930 			return -EFAULT;
8931 		callee = async_cb->frame[0];
8932 		callee->async_entry_cnt = caller->async_entry_cnt + 1;
8933 
8934 		/* Convert bpf_timer_set_callback() args into timer callback args */
8935 		err = set_callee_state_cb(env, caller, callee, *insn_idx);
8936 		if (err)
8937 			return err;
8938 
8939 		clear_caller_saved_regs(env, caller->regs);
8940 		mark_reg_unknown(env, caller->regs, BPF_REG_0);
8941 		caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
8942 		/* continue with next insn after call */
8943 		return 0;
8944 	}
8945 
8946 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
8947 	if (!callee)
8948 		return -ENOMEM;
8949 	state->frame[state->curframe + 1] = callee;
8950 
8951 	/* callee cannot access r0, r6 - r9 for reading and has to write
8952 	 * into its own stack before reading from it.
8953 	 * callee can read/write into caller's stack
8954 	 */
8955 	init_func_state(env, callee,
8956 			/* remember the callsite, it will be used by bpf_exit */
8957 			*insn_idx /* callsite */,
8958 			state->curframe + 1 /* frameno within this callchain */,
8959 			subprog /* subprog number within this prog */);
8960 
8961 	/* Transfer references to the callee */
8962 	err = copy_reference_state(callee, caller);
8963 	if (err)
8964 		goto err_out;
8965 
8966 	err = set_callee_state_cb(env, caller, callee, *insn_idx);
8967 	if (err)
8968 		goto err_out;
8969 
8970 	clear_caller_saved_regs(env, caller->regs);
8971 
8972 	/* only increment it after check_reg_arg() finished */
8973 	state->curframe++;
8974 
8975 	/* and go analyze first insn of the callee */
8976 	*insn_idx = env->subprog_info[subprog].start - 1;
8977 
8978 	if (env->log.level & BPF_LOG_LEVEL) {
8979 		verbose(env, "caller:\n");
8980 		print_verifier_state(env, caller, true);
8981 		verbose(env, "callee:\n");
8982 		print_verifier_state(env, callee, true);
8983 	}
8984 	return 0;
8985 
8986 err_out:
8987 	free_func_state(callee);
8988 	state->frame[state->curframe + 1] = NULL;
8989 	return err;
8990 }
8991 
8992 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
8993 				   struct bpf_func_state *caller,
8994 				   struct bpf_func_state *callee)
8995 {
8996 	/* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
8997 	 *      void *callback_ctx, u64 flags);
8998 	 * callback_fn(struct bpf_map *map, void *key, void *value,
8999 	 *      void *callback_ctx);
9000 	 */
9001 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9002 
9003 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9004 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9005 	callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9006 
9007 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9008 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9009 	callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
9010 
9011 	/* pointer to stack or null */
9012 	callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
9013 
9014 	/* unused */
9015 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9016 	return 0;
9017 }
9018 
9019 static int set_callee_state(struct bpf_verifier_env *env,
9020 			    struct bpf_func_state *caller,
9021 			    struct bpf_func_state *callee, int insn_idx)
9022 {
9023 	int i;
9024 
9025 	/* copy r1 - r5 args that callee can access.  The copy includes parent
9026 	 * pointers, which connects us up to the liveness chain
9027 	 */
9028 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
9029 		callee->regs[i] = caller->regs[i];
9030 	return 0;
9031 }
9032 
9033 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9034 			   int *insn_idx)
9035 {
9036 	int subprog, target_insn;
9037 
9038 	target_insn = *insn_idx + insn->imm + 1;
9039 	subprog = find_subprog(env, target_insn);
9040 	if (subprog < 0) {
9041 		verbose(env, "verifier bug. No program starts at insn %d\n",
9042 			target_insn);
9043 		return -EFAULT;
9044 	}
9045 
9046 	return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
9047 }
9048 
9049 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
9050 				       struct bpf_func_state *caller,
9051 				       struct bpf_func_state *callee,
9052 				       int insn_idx)
9053 {
9054 	struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
9055 	struct bpf_map *map;
9056 	int err;
9057 
9058 	if (bpf_map_ptr_poisoned(insn_aux)) {
9059 		verbose(env, "tail_call abusing map_ptr\n");
9060 		return -EINVAL;
9061 	}
9062 
9063 	map = BPF_MAP_PTR(insn_aux->map_ptr_state);
9064 	if (!map->ops->map_set_for_each_callback_args ||
9065 	    !map->ops->map_for_each_callback) {
9066 		verbose(env, "callback function not allowed for map\n");
9067 		return -ENOTSUPP;
9068 	}
9069 
9070 	err = map->ops->map_set_for_each_callback_args(env, caller, callee);
9071 	if (err)
9072 		return err;
9073 
9074 	callee->in_callback_fn = true;
9075 	callee->callback_ret_range = tnum_range(0, 1);
9076 	return 0;
9077 }
9078 
9079 static int set_loop_callback_state(struct bpf_verifier_env *env,
9080 				   struct bpf_func_state *caller,
9081 				   struct bpf_func_state *callee,
9082 				   int insn_idx)
9083 {
9084 	/* bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
9085 	 *	    u64 flags);
9086 	 * callback_fn(u32 index, void *callback_ctx);
9087 	 */
9088 	callee->regs[BPF_REG_1].type = SCALAR_VALUE;
9089 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9090 
9091 	/* unused */
9092 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9093 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9094 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9095 
9096 	callee->in_callback_fn = true;
9097 	callee->callback_ret_range = tnum_range(0, 1);
9098 	return 0;
9099 }
9100 
9101 static int set_timer_callback_state(struct bpf_verifier_env *env,
9102 				    struct bpf_func_state *caller,
9103 				    struct bpf_func_state *callee,
9104 				    int insn_idx)
9105 {
9106 	struct bpf_map *map_ptr = caller->regs[BPF_REG_1].map_ptr;
9107 
9108 	/* bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);
9109 	 * callback_fn(struct bpf_map *map, void *key, void *value);
9110 	 */
9111 	callee->regs[BPF_REG_1].type = CONST_PTR_TO_MAP;
9112 	__mark_reg_known_zero(&callee->regs[BPF_REG_1]);
9113 	callee->regs[BPF_REG_1].map_ptr = map_ptr;
9114 
9115 	callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
9116 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9117 	callee->regs[BPF_REG_2].map_ptr = map_ptr;
9118 
9119 	callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
9120 	__mark_reg_known_zero(&callee->regs[BPF_REG_3]);
9121 	callee->regs[BPF_REG_3].map_ptr = map_ptr;
9122 
9123 	/* unused */
9124 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9125 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9126 	callee->in_async_callback_fn = true;
9127 	callee->callback_ret_range = tnum_range(0, 1);
9128 	return 0;
9129 }
9130 
9131 static int set_find_vma_callback_state(struct bpf_verifier_env *env,
9132 				       struct bpf_func_state *caller,
9133 				       struct bpf_func_state *callee,
9134 				       int insn_idx)
9135 {
9136 	/* bpf_find_vma(struct task_struct *task, u64 addr,
9137 	 *               void *callback_fn, void *callback_ctx, u64 flags)
9138 	 * (callback_fn)(struct task_struct *task,
9139 	 *               struct vm_area_struct *vma, void *callback_ctx);
9140 	 */
9141 	callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
9142 
9143 	callee->regs[BPF_REG_2].type = PTR_TO_BTF_ID;
9144 	__mark_reg_known_zero(&callee->regs[BPF_REG_2]);
9145 	callee->regs[BPF_REG_2].btf =  btf_vmlinux;
9146 	callee->regs[BPF_REG_2].btf_id = btf_tracing_ids[BTF_TRACING_TYPE_VMA],
9147 
9148 	/* pointer to stack or null */
9149 	callee->regs[BPF_REG_3] = caller->regs[BPF_REG_4];
9150 
9151 	/* unused */
9152 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9153 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9154 	callee->in_callback_fn = true;
9155 	callee->callback_ret_range = tnum_range(0, 1);
9156 	return 0;
9157 }
9158 
9159 static int set_user_ringbuf_callback_state(struct bpf_verifier_env *env,
9160 					   struct bpf_func_state *caller,
9161 					   struct bpf_func_state *callee,
9162 					   int insn_idx)
9163 {
9164 	/* bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void
9165 	 *			  callback_ctx, u64 flags);
9166 	 * callback_fn(const struct bpf_dynptr_t* dynptr, void *callback_ctx);
9167 	 */
9168 	__mark_reg_not_init(env, &callee->regs[BPF_REG_0]);
9169 	mark_dynptr_cb_reg(env, &callee->regs[BPF_REG_1], BPF_DYNPTR_TYPE_LOCAL);
9170 	callee->regs[BPF_REG_2] = caller->regs[BPF_REG_3];
9171 
9172 	/* unused */
9173 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9174 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9175 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9176 
9177 	callee->in_callback_fn = true;
9178 	callee->callback_ret_range = tnum_range(0, 1);
9179 	return 0;
9180 }
9181 
9182 static int set_rbtree_add_callback_state(struct bpf_verifier_env *env,
9183 					 struct bpf_func_state *caller,
9184 					 struct bpf_func_state *callee,
9185 					 int insn_idx)
9186 {
9187 	/* void bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
9188 	 *                     bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b));
9189 	 *
9190 	 * 'struct bpf_rb_node *node' arg to bpf_rbtree_add_impl is the same PTR_TO_BTF_ID w/ offset
9191 	 * that 'less' callback args will be receiving. However, 'node' arg was release_reference'd
9192 	 * by this point, so look at 'root'
9193 	 */
9194 	struct btf_field *field;
9195 
9196 	field = reg_find_field_offset(&caller->regs[BPF_REG_1], caller->regs[BPF_REG_1].off,
9197 				      BPF_RB_ROOT);
9198 	if (!field || !field->graph_root.value_btf_id)
9199 		return -EFAULT;
9200 
9201 	mark_reg_graph_node(callee->regs, BPF_REG_1, &field->graph_root);
9202 	ref_set_non_owning(env, &callee->regs[BPF_REG_1]);
9203 	mark_reg_graph_node(callee->regs, BPF_REG_2, &field->graph_root);
9204 	ref_set_non_owning(env, &callee->regs[BPF_REG_2]);
9205 
9206 	__mark_reg_not_init(env, &callee->regs[BPF_REG_3]);
9207 	__mark_reg_not_init(env, &callee->regs[BPF_REG_4]);
9208 	__mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
9209 	callee->in_callback_fn = true;
9210 	callee->callback_ret_range = tnum_range(0, 1);
9211 	return 0;
9212 }
9213 
9214 static bool is_rbtree_lock_required_kfunc(u32 btf_id);
9215 
9216 /* Are we currently verifying the callback for a rbtree helper that must
9217  * be called with lock held? If so, no need to complain about unreleased
9218  * lock
9219  */
9220 static bool in_rbtree_lock_required_cb(struct bpf_verifier_env *env)
9221 {
9222 	struct bpf_verifier_state *state = env->cur_state;
9223 	struct bpf_insn *insn = env->prog->insnsi;
9224 	struct bpf_func_state *callee;
9225 	int kfunc_btf_id;
9226 
9227 	if (!state->curframe)
9228 		return false;
9229 
9230 	callee = state->frame[state->curframe];
9231 
9232 	if (!callee->in_callback_fn)
9233 		return false;
9234 
9235 	kfunc_btf_id = insn[callee->callsite].imm;
9236 	return is_rbtree_lock_required_kfunc(kfunc_btf_id);
9237 }
9238 
9239 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
9240 {
9241 	struct bpf_verifier_state *state = env->cur_state;
9242 	struct bpf_func_state *caller, *callee;
9243 	struct bpf_reg_state *r0;
9244 	int err;
9245 
9246 	callee = state->frame[state->curframe];
9247 	r0 = &callee->regs[BPF_REG_0];
9248 	if (r0->type == PTR_TO_STACK) {
9249 		/* technically it's ok to return caller's stack pointer
9250 		 * (or caller's caller's pointer) back to the caller,
9251 		 * since these pointers are valid. Only current stack
9252 		 * pointer will be invalid as soon as function exits,
9253 		 * but let's be conservative
9254 		 */
9255 		verbose(env, "cannot return stack pointer to the caller\n");
9256 		return -EINVAL;
9257 	}
9258 
9259 	caller = state->frame[state->curframe - 1];
9260 	if (callee->in_callback_fn) {
9261 		/* enforce R0 return value range [0, 1]. */
9262 		struct tnum range = callee->callback_ret_range;
9263 
9264 		if (r0->type != SCALAR_VALUE) {
9265 			verbose(env, "R0 not a scalar value\n");
9266 			return -EACCES;
9267 		}
9268 
9269 		/* we are going to rely on register's precise value */
9270 		err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
9271 		err = err ?: mark_chain_precision(env, BPF_REG_0);
9272 		if (err)
9273 			return err;
9274 
9275 		if (!tnum_in(range, r0->var_off)) {
9276 			verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
9277 			return -EINVAL;
9278 		}
9279 	} else {
9280 		/* return to the caller whatever r0 had in the callee */
9281 		caller->regs[BPF_REG_0] = *r0;
9282 	}
9283 
9284 	/* callback_fn frame should have released its own additions to parent's
9285 	 * reference state at this point, or check_reference_leak would
9286 	 * complain, hence it must be the same as the caller. There is no need
9287 	 * to copy it back.
9288 	 */
9289 	if (!callee->in_callback_fn) {
9290 		/* Transfer references to the caller */
9291 		err = copy_reference_state(caller, callee);
9292 		if (err)
9293 			return err;
9294 	}
9295 
9296 	*insn_idx = callee->callsite + 1;
9297 	if (env->log.level & BPF_LOG_LEVEL) {
9298 		verbose(env, "returning from callee:\n");
9299 		print_verifier_state(env, callee, true);
9300 		verbose(env, "to caller at %d:\n", *insn_idx);
9301 		print_verifier_state(env, caller, true);
9302 	}
9303 	/* clear everything in the callee */
9304 	free_func_state(callee);
9305 	state->frame[state->curframe--] = NULL;
9306 	return 0;
9307 }
9308 
9309 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
9310 				   int func_id,
9311 				   struct bpf_call_arg_meta *meta)
9312 {
9313 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
9314 
9315 	if (ret_type != RET_INTEGER)
9316 		return;
9317 
9318 	switch (func_id) {
9319 	case BPF_FUNC_get_stack:
9320 	case BPF_FUNC_get_task_stack:
9321 	case BPF_FUNC_probe_read_str:
9322 	case BPF_FUNC_probe_read_kernel_str:
9323 	case BPF_FUNC_probe_read_user_str:
9324 		ret_reg->smax_value = meta->msize_max_value;
9325 		ret_reg->s32_max_value = meta->msize_max_value;
9326 		ret_reg->smin_value = -MAX_ERRNO;
9327 		ret_reg->s32_min_value = -MAX_ERRNO;
9328 		reg_bounds_sync(ret_reg);
9329 		break;
9330 	case BPF_FUNC_get_smp_processor_id:
9331 		ret_reg->umax_value = nr_cpu_ids - 1;
9332 		ret_reg->u32_max_value = nr_cpu_ids - 1;
9333 		ret_reg->smax_value = nr_cpu_ids - 1;
9334 		ret_reg->s32_max_value = nr_cpu_ids - 1;
9335 		ret_reg->umin_value = 0;
9336 		ret_reg->u32_min_value = 0;
9337 		ret_reg->smin_value = 0;
9338 		ret_reg->s32_min_value = 0;
9339 		reg_bounds_sync(ret_reg);
9340 		break;
9341 	}
9342 }
9343 
9344 static int
9345 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9346 		int func_id, int insn_idx)
9347 {
9348 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9349 	struct bpf_map *map = meta->map_ptr;
9350 
9351 	if (func_id != BPF_FUNC_tail_call &&
9352 	    func_id != BPF_FUNC_map_lookup_elem &&
9353 	    func_id != BPF_FUNC_map_update_elem &&
9354 	    func_id != BPF_FUNC_map_delete_elem &&
9355 	    func_id != BPF_FUNC_map_push_elem &&
9356 	    func_id != BPF_FUNC_map_pop_elem &&
9357 	    func_id != BPF_FUNC_map_peek_elem &&
9358 	    func_id != BPF_FUNC_for_each_map_elem &&
9359 	    func_id != BPF_FUNC_redirect_map &&
9360 	    func_id != BPF_FUNC_map_lookup_percpu_elem)
9361 		return 0;
9362 
9363 	if (map == NULL) {
9364 		verbose(env, "kernel subsystem misconfigured verifier\n");
9365 		return -EINVAL;
9366 	}
9367 
9368 	/* In case of read-only, some additional restrictions
9369 	 * need to be applied in order to prevent altering the
9370 	 * state of the map from program side.
9371 	 */
9372 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
9373 	    (func_id == BPF_FUNC_map_delete_elem ||
9374 	     func_id == BPF_FUNC_map_update_elem ||
9375 	     func_id == BPF_FUNC_map_push_elem ||
9376 	     func_id == BPF_FUNC_map_pop_elem)) {
9377 		verbose(env, "write into map forbidden\n");
9378 		return -EACCES;
9379 	}
9380 
9381 	if (!BPF_MAP_PTR(aux->map_ptr_state))
9382 		bpf_map_ptr_store(aux, meta->map_ptr,
9383 				  !meta->map_ptr->bypass_spec_v1);
9384 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
9385 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
9386 				  !meta->map_ptr->bypass_spec_v1);
9387 	return 0;
9388 }
9389 
9390 static int
9391 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
9392 		int func_id, int insn_idx)
9393 {
9394 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
9395 	struct bpf_reg_state *regs = cur_regs(env), *reg;
9396 	struct bpf_map *map = meta->map_ptr;
9397 	u64 val, max;
9398 	int err;
9399 
9400 	if (func_id != BPF_FUNC_tail_call)
9401 		return 0;
9402 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
9403 		verbose(env, "kernel subsystem misconfigured verifier\n");
9404 		return -EINVAL;
9405 	}
9406 
9407 	reg = &regs[BPF_REG_3];
9408 	val = reg->var_off.value;
9409 	max = map->max_entries;
9410 
9411 	if (!(register_is_const(reg) && val < max)) {
9412 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9413 		return 0;
9414 	}
9415 
9416 	err = mark_chain_precision(env, BPF_REG_3);
9417 	if (err)
9418 		return err;
9419 	if (bpf_map_key_unseen(aux))
9420 		bpf_map_key_store(aux, val);
9421 	else if (!bpf_map_key_poisoned(aux) &&
9422 		  bpf_map_key_immediate(aux) != val)
9423 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
9424 	return 0;
9425 }
9426 
9427 static int check_reference_leak(struct bpf_verifier_env *env)
9428 {
9429 	struct bpf_func_state *state = cur_func(env);
9430 	bool refs_lingering = false;
9431 	int i;
9432 
9433 	if (state->frameno && !state->in_callback_fn)
9434 		return 0;
9435 
9436 	for (i = 0; i < state->acquired_refs; i++) {
9437 		if (state->in_callback_fn && state->refs[i].callback_ref != state->frameno)
9438 			continue;
9439 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
9440 			state->refs[i].id, state->refs[i].insn_idx);
9441 		refs_lingering = true;
9442 	}
9443 	return refs_lingering ? -EINVAL : 0;
9444 }
9445 
9446 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
9447 				   struct bpf_reg_state *regs)
9448 {
9449 	struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
9450 	struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
9451 	struct bpf_map *fmt_map = fmt_reg->map_ptr;
9452 	struct bpf_bprintf_data data = {};
9453 	int err, fmt_map_off, num_args;
9454 	u64 fmt_addr;
9455 	char *fmt;
9456 
9457 	/* data must be an array of u64 */
9458 	if (data_len_reg->var_off.value % 8)
9459 		return -EINVAL;
9460 	num_args = data_len_reg->var_off.value / 8;
9461 
9462 	/* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
9463 	 * and map_direct_value_addr is set.
9464 	 */
9465 	fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
9466 	err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
9467 						  fmt_map_off);
9468 	if (err) {
9469 		verbose(env, "verifier bug\n");
9470 		return -EFAULT;
9471 	}
9472 	fmt = (char *)(long)fmt_addr + fmt_map_off;
9473 
9474 	/* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
9475 	 * can focus on validating the format specifiers.
9476 	 */
9477 	err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, num_args, &data);
9478 	if (err < 0)
9479 		verbose(env, "Invalid format string\n");
9480 
9481 	return err;
9482 }
9483 
9484 static int check_get_func_ip(struct bpf_verifier_env *env)
9485 {
9486 	enum bpf_prog_type type = resolve_prog_type(env->prog);
9487 	int func_id = BPF_FUNC_get_func_ip;
9488 
9489 	if (type == BPF_PROG_TYPE_TRACING) {
9490 		if (!bpf_prog_has_trampoline(env->prog)) {
9491 			verbose(env, "func %s#%d supported only for fentry/fexit/fmod_ret programs\n",
9492 				func_id_name(func_id), func_id);
9493 			return -ENOTSUPP;
9494 		}
9495 		return 0;
9496 	} else if (type == BPF_PROG_TYPE_KPROBE) {
9497 		return 0;
9498 	}
9499 
9500 	verbose(env, "func %s#%d not supported for program type %d\n",
9501 		func_id_name(func_id), func_id, type);
9502 	return -ENOTSUPP;
9503 }
9504 
9505 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
9506 {
9507 	return &env->insn_aux_data[env->insn_idx];
9508 }
9509 
9510 static bool loop_flag_is_zero(struct bpf_verifier_env *env)
9511 {
9512 	struct bpf_reg_state *regs = cur_regs(env);
9513 	struct bpf_reg_state *reg = &regs[BPF_REG_4];
9514 	bool reg_is_null = register_is_null(reg);
9515 
9516 	if (reg_is_null)
9517 		mark_chain_precision(env, BPF_REG_4);
9518 
9519 	return reg_is_null;
9520 }
9521 
9522 static void update_loop_inline_state(struct bpf_verifier_env *env, u32 subprogno)
9523 {
9524 	struct bpf_loop_inline_state *state = &cur_aux(env)->loop_inline_state;
9525 
9526 	if (!state->initialized) {
9527 		state->initialized = 1;
9528 		state->fit_for_inline = loop_flag_is_zero(env);
9529 		state->callback_subprogno = subprogno;
9530 		return;
9531 	}
9532 
9533 	if (!state->fit_for_inline)
9534 		return;
9535 
9536 	state->fit_for_inline = (loop_flag_is_zero(env) &&
9537 				 state->callback_subprogno == subprogno);
9538 }
9539 
9540 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
9541 			     int *insn_idx_p)
9542 {
9543 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9544 	const struct bpf_func_proto *fn = NULL;
9545 	enum bpf_return_type ret_type;
9546 	enum bpf_type_flag ret_flag;
9547 	struct bpf_reg_state *regs;
9548 	struct bpf_call_arg_meta meta;
9549 	int insn_idx = *insn_idx_p;
9550 	bool changes_data;
9551 	int i, err, func_id;
9552 
9553 	/* find function prototype */
9554 	func_id = insn->imm;
9555 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
9556 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
9557 			func_id);
9558 		return -EINVAL;
9559 	}
9560 
9561 	if (env->ops->get_func_proto)
9562 		fn = env->ops->get_func_proto(func_id, env->prog);
9563 	if (!fn) {
9564 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
9565 			func_id);
9566 		return -EINVAL;
9567 	}
9568 
9569 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
9570 	if (!env->prog->gpl_compatible && fn->gpl_only) {
9571 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
9572 		return -EINVAL;
9573 	}
9574 
9575 	if (fn->allowed && !fn->allowed(env->prog)) {
9576 		verbose(env, "helper call is not allowed in probe\n");
9577 		return -EINVAL;
9578 	}
9579 
9580 	if (!env->prog->aux->sleepable && fn->might_sleep) {
9581 		verbose(env, "helper call might sleep in a non-sleepable prog\n");
9582 		return -EINVAL;
9583 	}
9584 
9585 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
9586 	changes_data = bpf_helper_changes_pkt_data(fn->func);
9587 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
9588 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
9589 			func_id_name(func_id), func_id);
9590 		return -EINVAL;
9591 	}
9592 
9593 	memset(&meta, 0, sizeof(meta));
9594 	meta.pkt_access = fn->pkt_access;
9595 
9596 	err = check_func_proto(fn, func_id);
9597 	if (err) {
9598 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
9599 			func_id_name(func_id), func_id);
9600 		return err;
9601 	}
9602 
9603 	if (env->cur_state->active_rcu_lock) {
9604 		if (fn->might_sleep) {
9605 			verbose(env, "sleepable helper %s#%d in rcu_read_lock region\n",
9606 				func_id_name(func_id), func_id);
9607 			return -EINVAL;
9608 		}
9609 
9610 		if (env->prog->aux->sleepable && is_storage_get_function(func_id))
9611 			env->insn_aux_data[insn_idx].storage_get_func_atomic = true;
9612 	}
9613 
9614 	meta.func_id = func_id;
9615 	/* check args */
9616 	for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
9617 		err = check_func_arg(env, i, &meta, fn, insn_idx);
9618 		if (err)
9619 			return err;
9620 	}
9621 
9622 	err = record_func_map(env, &meta, func_id, insn_idx);
9623 	if (err)
9624 		return err;
9625 
9626 	err = record_func_key(env, &meta, func_id, insn_idx);
9627 	if (err)
9628 		return err;
9629 
9630 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
9631 	 * is inferred from register state.
9632 	 */
9633 	for (i = 0; i < meta.access_size; i++) {
9634 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
9635 				       BPF_WRITE, -1, false, false);
9636 		if (err)
9637 			return err;
9638 	}
9639 
9640 	regs = cur_regs(env);
9641 
9642 	if (meta.release_regno) {
9643 		err = -EINVAL;
9644 		/* This can only be set for PTR_TO_STACK, as CONST_PTR_TO_DYNPTR cannot
9645 		 * be released by any dynptr helper. Hence, unmark_stack_slots_dynptr
9646 		 * is safe to do directly.
9647 		 */
9648 		if (arg_type_is_dynptr(fn->arg_type[meta.release_regno - BPF_REG_1])) {
9649 			if (regs[meta.release_regno].type == CONST_PTR_TO_DYNPTR) {
9650 				verbose(env, "verifier internal error: CONST_PTR_TO_DYNPTR cannot be released\n");
9651 				return -EFAULT;
9652 			}
9653 			err = unmark_stack_slots_dynptr(env, &regs[meta.release_regno]);
9654 		} else if (meta.ref_obj_id) {
9655 			err = release_reference(env, meta.ref_obj_id);
9656 		} else if (register_is_null(&regs[meta.release_regno])) {
9657 			/* meta.ref_obj_id can only be 0 if register that is meant to be
9658 			 * released is NULL, which must be > R0.
9659 			 */
9660 			err = 0;
9661 		}
9662 		if (err) {
9663 			verbose(env, "func %s#%d reference has not been acquired before\n",
9664 				func_id_name(func_id), func_id);
9665 			return err;
9666 		}
9667 	}
9668 
9669 	switch (func_id) {
9670 	case BPF_FUNC_tail_call:
9671 		err = check_reference_leak(env);
9672 		if (err) {
9673 			verbose(env, "tail_call would lead to reference leak\n");
9674 			return err;
9675 		}
9676 		break;
9677 	case BPF_FUNC_get_local_storage:
9678 		/* check that flags argument in get_local_storage(map, flags) is 0,
9679 		 * this is required because get_local_storage() can't return an error.
9680 		 */
9681 		if (!register_is_null(&regs[BPF_REG_2])) {
9682 			verbose(env, "get_local_storage() doesn't support non-zero flags\n");
9683 			return -EINVAL;
9684 		}
9685 		break;
9686 	case BPF_FUNC_for_each_map_elem:
9687 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9688 					set_map_elem_callback_state);
9689 		break;
9690 	case BPF_FUNC_timer_set_callback:
9691 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9692 					set_timer_callback_state);
9693 		break;
9694 	case BPF_FUNC_find_vma:
9695 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9696 					set_find_vma_callback_state);
9697 		break;
9698 	case BPF_FUNC_snprintf:
9699 		err = check_bpf_snprintf_call(env, regs);
9700 		break;
9701 	case BPF_FUNC_loop:
9702 		update_loop_inline_state(env, meta.subprogno);
9703 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9704 					set_loop_callback_state);
9705 		break;
9706 	case BPF_FUNC_dynptr_from_mem:
9707 		if (regs[BPF_REG_1].type != PTR_TO_MAP_VALUE) {
9708 			verbose(env, "Unsupported reg type %s for bpf_dynptr_from_mem data\n",
9709 				reg_type_str(env, regs[BPF_REG_1].type));
9710 			return -EACCES;
9711 		}
9712 		break;
9713 	case BPF_FUNC_set_retval:
9714 		if (prog_type == BPF_PROG_TYPE_LSM &&
9715 		    env->prog->expected_attach_type == BPF_LSM_CGROUP) {
9716 			if (!env->prog->aux->attach_func_proto->type) {
9717 				/* Make sure programs that attach to void
9718 				 * hooks don't try to modify return value.
9719 				 */
9720 				verbose(env, "BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
9721 				return -EINVAL;
9722 			}
9723 		}
9724 		break;
9725 	case BPF_FUNC_dynptr_data:
9726 	{
9727 		struct bpf_reg_state *reg;
9728 		int id, ref_obj_id;
9729 
9730 		reg = get_dynptr_arg_reg(env, fn, regs);
9731 		if (!reg)
9732 			return -EFAULT;
9733 
9734 
9735 		if (meta.dynptr_id) {
9736 			verbose(env, "verifier internal error: meta.dynptr_id already set\n");
9737 			return -EFAULT;
9738 		}
9739 		if (meta.ref_obj_id) {
9740 			verbose(env, "verifier internal error: meta.ref_obj_id already set\n");
9741 			return -EFAULT;
9742 		}
9743 
9744 		id = dynptr_id(env, reg);
9745 		if (id < 0) {
9746 			verbose(env, "verifier internal error: failed to obtain dynptr id\n");
9747 			return id;
9748 		}
9749 
9750 		ref_obj_id = dynptr_ref_obj_id(env, reg);
9751 		if (ref_obj_id < 0) {
9752 			verbose(env, "verifier internal error: failed to obtain dynptr ref_obj_id\n");
9753 			return ref_obj_id;
9754 		}
9755 
9756 		meta.dynptr_id = id;
9757 		meta.ref_obj_id = ref_obj_id;
9758 
9759 		break;
9760 	}
9761 	case BPF_FUNC_dynptr_write:
9762 	{
9763 		enum bpf_dynptr_type dynptr_type;
9764 		struct bpf_reg_state *reg;
9765 
9766 		reg = get_dynptr_arg_reg(env, fn, regs);
9767 		if (!reg)
9768 			return -EFAULT;
9769 
9770 		dynptr_type = dynptr_get_type(env, reg);
9771 		if (dynptr_type == BPF_DYNPTR_TYPE_INVALID)
9772 			return -EFAULT;
9773 
9774 		if (dynptr_type == BPF_DYNPTR_TYPE_SKB)
9775 			/* this will trigger clear_all_pkt_pointers(), which will
9776 			 * invalidate all dynptr slices associated with the skb
9777 			 */
9778 			changes_data = true;
9779 
9780 		break;
9781 	}
9782 	case BPF_FUNC_user_ringbuf_drain:
9783 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
9784 					set_user_ringbuf_callback_state);
9785 		break;
9786 	}
9787 
9788 	if (err)
9789 		return err;
9790 
9791 	/* reset caller saved regs */
9792 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
9793 		mark_reg_not_init(env, regs, caller_saved[i]);
9794 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9795 	}
9796 
9797 	/* helper call returns 64-bit value. */
9798 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
9799 
9800 	/* update return register (already marked as written above) */
9801 	ret_type = fn->ret_type;
9802 	ret_flag = type_flag(ret_type);
9803 
9804 	switch (base_type(ret_type)) {
9805 	case RET_INTEGER:
9806 		/* sets type to SCALAR_VALUE */
9807 		mark_reg_unknown(env, regs, BPF_REG_0);
9808 		break;
9809 	case RET_VOID:
9810 		regs[BPF_REG_0].type = NOT_INIT;
9811 		break;
9812 	case RET_PTR_TO_MAP_VALUE:
9813 		/* There is no offset yet applied, variable or fixed */
9814 		mark_reg_known_zero(env, regs, BPF_REG_0);
9815 		/* remember map_ptr, so that check_map_access()
9816 		 * can check 'value_size' boundary of memory access
9817 		 * to map element returned from bpf_map_lookup_elem()
9818 		 */
9819 		if (meta.map_ptr == NULL) {
9820 			verbose(env,
9821 				"kernel subsystem misconfigured verifier\n");
9822 			return -EINVAL;
9823 		}
9824 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
9825 		regs[BPF_REG_0].map_uid = meta.map_uid;
9826 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE | ret_flag;
9827 		if (!type_may_be_null(ret_type) &&
9828 		    btf_record_has_field(meta.map_ptr->record, BPF_SPIN_LOCK)) {
9829 			regs[BPF_REG_0].id = ++env->id_gen;
9830 		}
9831 		break;
9832 	case RET_PTR_TO_SOCKET:
9833 		mark_reg_known_zero(env, regs, BPF_REG_0);
9834 		regs[BPF_REG_0].type = PTR_TO_SOCKET | ret_flag;
9835 		break;
9836 	case RET_PTR_TO_SOCK_COMMON:
9837 		mark_reg_known_zero(env, regs, BPF_REG_0);
9838 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON | ret_flag;
9839 		break;
9840 	case RET_PTR_TO_TCP_SOCK:
9841 		mark_reg_known_zero(env, regs, BPF_REG_0);
9842 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK | ret_flag;
9843 		break;
9844 	case RET_PTR_TO_MEM:
9845 		mark_reg_known_zero(env, regs, BPF_REG_0);
9846 		regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9847 		regs[BPF_REG_0].mem_size = meta.mem_size;
9848 		break;
9849 	case RET_PTR_TO_MEM_OR_BTF_ID:
9850 	{
9851 		const struct btf_type *t;
9852 
9853 		mark_reg_known_zero(env, regs, BPF_REG_0);
9854 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
9855 		if (!btf_type_is_struct(t)) {
9856 			u32 tsize;
9857 			const struct btf_type *ret;
9858 			const char *tname;
9859 
9860 			/* resolve the type size of ksym. */
9861 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
9862 			if (IS_ERR(ret)) {
9863 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
9864 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
9865 					tname, PTR_ERR(ret));
9866 				return -EINVAL;
9867 			}
9868 			regs[BPF_REG_0].type = PTR_TO_MEM | ret_flag;
9869 			regs[BPF_REG_0].mem_size = tsize;
9870 		} else {
9871 			/* MEM_RDONLY may be carried from ret_flag, but it
9872 			 * doesn't apply on PTR_TO_BTF_ID. Fold it, otherwise
9873 			 * it will confuse the check of PTR_TO_BTF_ID in
9874 			 * check_mem_access().
9875 			 */
9876 			ret_flag &= ~MEM_RDONLY;
9877 
9878 			regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9879 			regs[BPF_REG_0].btf = meta.ret_btf;
9880 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
9881 		}
9882 		break;
9883 	}
9884 	case RET_PTR_TO_BTF_ID:
9885 	{
9886 		struct btf *ret_btf;
9887 		int ret_btf_id;
9888 
9889 		mark_reg_known_zero(env, regs, BPF_REG_0);
9890 		regs[BPF_REG_0].type = PTR_TO_BTF_ID | ret_flag;
9891 		if (func_id == BPF_FUNC_kptr_xchg) {
9892 			ret_btf = meta.kptr_field->kptr.btf;
9893 			ret_btf_id = meta.kptr_field->kptr.btf_id;
9894 			if (!btf_is_kernel(ret_btf))
9895 				regs[BPF_REG_0].type |= MEM_ALLOC;
9896 		} else {
9897 			if (fn->ret_btf_id == BPF_PTR_POISON) {
9898 				verbose(env, "verifier internal error:");
9899 				verbose(env, "func %s has non-overwritten BPF_PTR_POISON return type\n",
9900 					func_id_name(func_id));
9901 				return -EINVAL;
9902 			}
9903 			ret_btf = btf_vmlinux;
9904 			ret_btf_id = *fn->ret_btf_id;
9905 		}
9906 		if (ret_btf_id == 0) {
9907 			verbose(env, "invalid return type %u of func %s#%d\n",
9908 				base_type(ret_type), func_id_name(func_id),
9909 				func_id);
9910 			return -EINVAL;
9911 		}
9912 		regs[BPF_REG_0].btf = ret_btf;
9913 		regs[BPF_REG_0].btf_id = ret_btf_id;
9914 		break;
9915 	}
9916 	default:
9917 		verbose(env, "unknown return type %u of func %s#%d\n",
9918 			base_type(ret_type), func_id_name(func_id), func_id);
9919 		return -EINVAL;
9920 	}
9921 
9922 	if (type_may_be_null(regs[BPF_REG_0].type))
9923 		regs[BPF_REG_0].id = ++env->id_gen;
9924 
9925 	if (helper_multiple_ref_obj_use(func_id, meta.map_ptr)) {
9926 		verbose(env, "verifier internal error: func %s#%d sets ref_obj_id more than once\n",
9927 			func_id_name(func_id), func_id);
9928 		return -EFAULT;
9929 	}
9930 
9931 	if (is_dynptr_ref_function(func_id))
9932 		regs[BPF_REG_0].dynptr_id = meta.dynptr_id;
9933 
9934 	if (is_ptr_cast_function(func_id) || is_dynptr_ref_function(func_id)) {
9935 		/* For release_reference() */
9936 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
9937 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
9938 		int id = acquire_reference_state(env, insn_idx);
9939 
9940 		if (id < 0)
9941 			return id;
9942 		/* For mark_ptr_or_null_reg() */
9943 		regs[BPF_REG_0].id = id;
9944 		/* For release_reference() */
9945 		regs[BPF_REG_0].ref_obj_id = id;
9946 	}
9947 
9948 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
9949 
9950 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
9951 	if (err)
9952 		return err;
9953 
9954 	if ((func_id == BPF_FUNC_get_stack ||
9955 	     func_id == BPF_FUNC_get_task_stack) &&
9956 	    !env->prog->has_callchain_buf) {
9957 		const char *err_str;
9958 
9959 #ifdef CONFIG_PERF_EVENTS
9960 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
9961 		err_str = "cannot get callchain buffer for func %s#%d\n";
9962 #else
9963 		err = -ENOTSUPP;
9964 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
9965 #endif
9966 		if (err) {
9967 			verbose(env, err_str, func_id_name(func_id), func_id);
9968 			return err;
9969 		}
9970 
9971 		env->prog->has_callchain_buf = true;
9972 	}
9973 
9974 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
9975 		env->prog->call_get_stack = true;
9976 
9977 	if (func_id == BPF_FUNC_get_func_ip) {
9978 		if (check_get_func_ip(env))
9979 			return -ENOTSUPP;
9980 		env->prog->call_get_func_ip = true;
9981 	}
9982 
9983 	if (changes_data)
9984 		clear_all_pkt_pointers(env);
9985 	return 0;
9986 }
9987 
9988 /* mark_btf_func_reg_size() is used when the reg size is determined by
9989  * the BTF func_proto's return value size and argument.
9990  */
9991 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
9992 				   size_t reg_size)
9993 {
9994 	struct bpf_reg_state *reg = &cur_regs(env)[regno];
9995 
9996 	if (regno == BPF_REG_0) {
9997 		/* Function return value */
9998 		reg->live |= REG_LIVE_WRITTEN;
9999 		reg->subreg_def = reg_size == sizeof(u64) ?
10000 			DEF_NOT_SUBREG : env->insn_idx + 1;
10001 	} else {
10002 		/* Function argument */
10003 		if (reg_size == sizeof(u64)) {
10004 			mark_insn_zext(env, reg);
10005 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
10006 		} else {
10007 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
10008 		}
10009 	}
10010 }
10011 
10012 static bool is_kfunc_acquire(struct bpf_kfunc_call_arg_meta *meta)
10013 {
10014 	return meta->kfunc_flags & KF_ACQUIRE;
10015 }
10016 
10017 static bool is_kfunc_release(struct bpf_kfunc_call_arg_meta *meta)
10018 {
10019 	return meta->kfunc_flags & KF_RELEASE;
10020 }
10021 
10022 static bool is_kfunc_trusted_args(struct bpf_kfunc_call_arg_meta *meta)
10023 {
10024 	return (meta->kfunc_flags & KF_TRUSTED_ARGS) || is_kfunc_release(meta);
10025 }
10026 
10027 static bool is_kfunc_sleepable(struct bpf_kfunc_call_arg_meta *meta)
10028 {
10029 	return meta->kfunc_flags & KF_SLEEPABLE;
10030 }
10031 
10032 static bool is_kfunc_destructive(struct bpf_kfunc_call_arg_meta *meta)
10033 {
10034 	return meta->kfunc_flags & KF_DESTRUCTIVE;
10035 }
10036 
10037 static bool is_kfunc_rcu(struct bpf_kfunc_call_arg_meta *meta)
10038 {
10039 	return meta->kfunc_flags & KF_RCU;
10040 }
10041 
10042 static bool __kfunc_param_match_suffix(const struct btf *btf,
10043 				       const struct btf_param *arg,
10044 				       const char *suffix)
10045 {
10046 	int suffix_len = strlen(suffix), len;
10047 	const char *param_name;
10048 
10049 	/* In the future, this can be ported to use BTF tagging */
10050 	param_name = btf_name_by_offset(btf, arg->name_off);
10051 	if (str_is_empty(param_name))
10052 		return false;
10053 	len = strlen(param_name);
10054 	if (len < suffix_len)
10055 		return false;
10056 	param_name += len - suffix_len;
10057 	return !strncmp(param_name, suffix, suffix_len);
10058 }
10059 
10060 static bool is_kfunc_arg_mem_size(const struct btf *btf,
10061 				  const struct btf_param *arg,
10062 				  const struct bpf_reg_state *reg)
10063 {
10064 	const struct btf_type *t;
10065 
10066 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10067 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10068 		return false;
10069 
10070 	return __kfunc_param_match_suffix(btf, arg, "__sz");
10071 }
10072 
10073 static bool is_kfunc_arg_const_mem_size(const struct btf *btf,
10074 					const struct btf_param *arg,
10075 					const struct bpf_reg_state *reg)
10076 {
10077 	const struct btf_type *t;
10078 
10079 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10080 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
10081 		return false;
10082 
10083 	return __kfunc_param_match_suffix(btf, arg, "__szk");
10084 }
10085 
10086 static bool is_kfunc_arg_optional(const struct btf *btf, const struct btf_param *arg)
10087 {
10088 	return __kfunc_param_match_suffix(btf, arg, "__opt");
10089 }
10090 
10091 static bool is_kfunc_arg_constant(const struct btf *btf, const struct btf_param *arg)
10092 {
10093 	return __kfunc_param_match_suffix(btf, arg, "__k");
10094 }
10095 
10096 static bool is_kfunc_arg_ignore(const struct btf *btf, const struct btf_param *arg)
10097 {
10098 	return __kfunc_param_match_suffix(btf, arg, "__ign");
10099 }
10100 
10101 static bool is_kfunc_arg_alloc_obj(const struct btf *btf, const struct btf_param *arg)
10102 {
10103 	return __kfunc_param_match_suffix(btf, arg, "__alloc");
10104 }
10105 
10106 static bool is_kfunc_arg_uninit(const struct btf *btf, const struct btf_param *arg)
10107 {
10108 	return __kfunc_param_match_suffix(btf, arg, "__uninit");
10109 }
10110 
10111 static bool is_kfunc_arg_refcounted_kptr(const struct btf *btf, const struct btf_param *arg)
10112 {
10113 	return __kfunc_param_match_suffix(btf, arg, "__refcounted_kptr");
10114 }
10115 
10116 static bool is_kfunc_arg_scalar_with_name(const struct btf *btf,
10117 					  const struct btf_param *arg,
10118 					  const char *name)
10119 {
10120 	int len, target_len = strlen(name);
10121 	const char *param_name;
10122 
10123 	param_name = btf_name_by_offset(btf, arg->name_off);
10124 	if (str_is_empty(param_name))
10125 		return false;
10126 	len = strlen(param_name);
10127 	if (len != target_len)
10128 		return false;
10129 	if (strcmp(param_name, name))
10130 		return false;
10131 
10132 	return true;
10133 }
10134 
10135 enum {
10136 	KF_ARG_DYNPTR_ID,
10137 	KF_ARG_LIST_HEAD_ID,
10138 	KF_ARG_LIST_NODE_ID,
10139 	KF_ARG_RB_ROOT_ID,
10140 	KF_ARG_RB_NODE_ID,
10141 };
10142 
10143 BTF_ID_LIST(kf_arg_btf_ids)
10144 BTF_ID(struct, bpf_dynptr_kern)
10145 BTF_ID(struct, bpf_list_head)
10146 BTF_ID(struct, bpf_list_node)
10147 BTF_ID(struct, bpf_rb_root)
10148 BTF_ID(struct, bpf_rb_node)
10149 
10150 static bool __is_kfunc_ptr_arg_type(const struct btf *btf,
10151 				    const struct btf_param *arg, int type)
10152 {
10153 	const struct btf_type *t;
10154 	u32 res_id;
10155 
10156 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
10157 	if (!t)
10158 		return false;
10159 	if (!btf_type_is_ptr(t))
10160 		return false;
10161 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
10162 	if (!t)
10163 		return false;
10164 	return btf_types_are_same(btf, res_id, btf_vmlinux, kf_arg_btf_ids[type]);
10165 }
10166 
10167 static bool is_kfunc_arg_dynptr(const struct btf *btf, const struct btf_param *arg)
10168 {
10169 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_DYNPTR_ID);
10170 }
10171 
10172 static bool is_kfunc_arg_list_head(const struct btf *btf, const struct btf_param *arg)
10173 {
10174 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_HEAD_ID);
10175 }
10176 
10177 static bool is_kfunc_arg_list_node(const struct btf *btf, const struct btf_param *arg)
10178 {
10179 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_LIST_NODE_ID);
10180 }
10181 
10182 static bool is_kfunc_arg_rbtree_root(const struct btf *btf, const struct btf_param *arg)
10183 {
10184 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_ROOT_ID);
10185 }
10186 
10187 static bool is_kfunc_arg_rbtree_node(const struct btf *btf, const struct btf_param *arg)
10188 {
10189 	return __is_kfunc_ptr_arg_type(btf, arg, KF_ARG_RB_NODE_ID);
10190 }
10191 
10192 static bool is_kfunc_arg_callback(struct bpf_verifier_env *env, const struct btf *btf,
10193 				  const struct btf_param *arg)
10194 {
10195 	const struct btf_type *t;
10196 
10197 	t = btf_type_resolve_func_ptr(btf, arg->type, NULL);
10198 	if (!t)
10199 		return false;
10200 
10201 	return true;
10202 }
10203 
10204 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
10205 static bool __btf_type_is_scalar_struct(struct bpf_verifier_env *env,
10206 					const struct btf *btf,
10207 					const struct btf_type *t, int rec)
10208 {
10209 	const struct btf_type *member_type;
10210 	const struct btf_member *member;
10211 	u32 i;
10212 
10213 	if (!btf_type_is_struct(t))
10214 		return false;
10215 
10216 	for_each_member(i, t, member) {
10217 		const struct btf_array *array;
10218 
10219 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
10220 		if (btf_type_is_struct(member_type)) {
10221 			if (rec >= 3) {
10222 				verbose(env, "max struct nesting depth exceeded\n");
10223 				return false;
10224 			}
10225 			if (!__btf_type_is_scalar_struct(env, btf, member_type, rec + 1))
10226 				return false;
10227 			continue;
10228 		}
10229 		if (btf_type_is_array(member_type)) {
10230 			array = btf_array(member_type);
10231 			if (!array->nelems)
10232 				return false;
10233 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
10234 			if (!btf_type_is_scalar(member_type))
10235 				return false;
10236 			continue;
10237 		}
10238 		if (!btf_type_is_scalar(member_type))
10239 			return false;
10240 	}
10241 	return true;
10242 }
10243 
10244 enum kfunc_ptr_arg_type {
10245 	KF_ARG_PTR_TO_CTX,
10246 	KF_ARG_PTR_TO_ALLOC_BTF_ID,    /* Allocated object */
10247 	KF_ARG_PTR_TO_REFCOUNTED_KPTR, /* Refcounted local kptr */
10248 	KF_ARG_PTR_TO_DYNPTR,
10249 	KF_ARG_PTR_TO_ITER,
10250 	KF_ARG_PTR_TO_LIST_HEAD,
10251 	KF_ARG_PTR_TO_LIST_NODE,
10252 	KF_ARG_PTR_TO_BTF_ID,	       /* Also covers reg2btf_ids conversions */
10253 	KF_ARG_PTR_TO_MEM,
10254 	KF_ARG_PTR_TO_MEM_SIZE,	       /* Size derived from next argument, skip it */
10255 	KF_ARG_PTR_TO_CALLBACK,
10256 	KF_ARG_PTR_TO_RB_ROOT,
10257 	KF_ARG_PTR_TO_RB_NODE,
10258 };
10259 
10260 enum special_kfunc_type {
10261 	KF_bpf_obj_new_impl,
10262 	KF_bpf_obj_drop_impl,
10263 	KF_bpf_refcount_acquire_impl,
10264 	KF_bpf_list_push_front_impl,
10265 	KF_bpf_list_push_back_impl,
10266 	KF_bpf_list_pop_front,
10267 	KF_bpf_list_pop_back,
10268 	KF_bpf_cast_to_kern_ctx,
10269 	KF_bpf_rdonly_cast,
10270 	KF_bpf_rcu_read_lock,
10271 	KF_bpf_rcu_read_unlock,
10272 	KF_bpf_rbtree_remove,
10273 	KF_bpf_rbtree_add_impl,
10274 	KF_bpf_rbtree_first,
10275 	KF_bpf_dynptr_from_skb,
10276 	KF_bpf_dynptr_from_xdp,
10277 	KF_bpf_dynptr_slice,
10278 	KF_bpf_dynptr_slice_rdwr,
10279 	KF_bpf_dynptr_clone,
10280 };
10281 
10282 BTF_SET_START(special_kfunc_set)
10283 BTF_ID(func, bpf_obj_new_impl)
10284 BTF_ID(func, bpf_obj_drop_impl)
10285 BTF_ID(func, bpf_refcount_acquire_impl)
10286 BTF_ID(func, bpf_list_push_front_impl)
10287 BTF_ID(func, bpf_list_push_back_impl)
10288 BTF_ID(func, bpf_list_pop_front)
10289 BTF_ID(func, bpf_list_pop_back)
10290 BTF_ID(func, bpf_cast_to_kern_ctx)
10291 BTF_ID(func, bpf_rdonly_cast)
10292 BTF_ID(func, bpf_rbtree_remove)
10293 BTF_ID(func, bpf_rbtree_add_impl)
10294 BTF_ID(func, bpf_rbtree_first)
10295 BTF_ID(func, bpf_dynptr_from_skb)
10296 BTF_ID(func, bpf_dynptr_from_xdp)
10297 BTF_ID(func, bpf_dynptr_slice)
10298 BTF_ID(func, bpf_dynptr_slice_rdwr)
10299 BTF_ID(func, bpf_dynptr_clone)
10300 BTF_SET_END(special_kfunc_set)
10301 
10302 BTF_ID_LIST(special_kfunc_list)
10303 BTF_ID(func, bpf_obj_new_impl)
10304 BTF_ID(func, bpf_obj_drop_impl)
10305 BTF_ID(func, bpf_refcount_acquire_impl)
10306 BTF_ID(func, bpf_list_push_front_impl)
10307 BTF_ID(func, bpf_list_push_back_impl)
10308 BTF_ID(func, bpf_list_pop_front)
10309 BTF_ID(func, bpf_list_pop_back)
10310 BTF_ID(func, bpf_cast_to_kern_ctx)
10311 BTF_ID(func, bpf_rdonly_cast)
10312 BTF_ID(func, bpf_rcu_read_lock)
10313 BTF_ID(func, bpf_rcu_read_unlock)
10314 BTF_ID(func, bpf_rbtree_remove)
10315 BTF_ID(func, bpf_rbtree_add_impl)
10316 BTF_ID(func, bpf_rbtree_first)
10317 BTF_ID(func, bpf_dynptr_from_skb)
10318 BTF_ID(func, bpf_dynptr_from_xdp)
10319 BTF_ID(func, bpf_dynptr_slice)
10320 BTF_ID(func, bpf_dynptr_slice_rdwr)
10321 BTF_ID(func, bpf_dynptr_clone)
10322 
10323 static bool is_kfunc_ret_null(struct bpf_kfunc_call_arg_meta *meta)
10324 {
10325 	if (meta->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
10326 	    meta->arg_owning_ref) {
10327 		return false;
10328 	}
10329 
10330 	return meta->kfunc_flags & KF_RET_NULL;
10331 }
10332 
10333 static bool is_kfunc_bpf_rcu_read_lock(struct bpf_kfunc_call_arg_meta *meta)
10334 {
10335 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_lock];
10336 }
10337 
10338 static bool is_kfunc_bpf_rcu_read_unlock(struct bpf_kfunc_call_arg_meta *meta)
10339 {
10340 	return meta->func_id == special_kfunc_list[KF_bpf_rcu_read_unlock];
10341 }
10342 
10343 static enum kfunc_ptr_arg_type
10344 get_kfunc_ptr_arg_type(struct bpf_verifier_env *env,
10345 		       struct bpf_kfunc_call_arg_meta *meta,
10346 		       const struct btf_type *t, const struct btf_type *ref_t,
10347 		       const char *ref_tname, const struct btf_param *args,
10348 		       int argno, int nargs)
10349 {
10350 	u32 regno = argno + 1;
10351 	struct bpf_reg_state *regs = cur_regs(env);
10352 	struct bpf_reg_state *reg = &regs[regno];
10353 	bool arg_mem_size = false;
10354 
10355 	if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx])
10356 		return KF_ARG_PTR_TO_CTX;
10357 
10358 	/* In this function, we verify the kfunc's BTF as per the argument type,
10359 	 * leaving the rest of the verification with respect to the register
10360 	 * type to our caller. When a set of conditions hold in the BTF type of
10361 	 * arguments, we resolve it to a known kfunc_ptr_arg_type.
10362 	 */
10363 	if (btf_get_prog_ctx_type(&env->log, meta->btf, t, resolve_prog_type(env->prog), argno))
10364 		return KF_ARG_PTR_TO_CTX;
10365 
10366 	if (is_kfunc_arg_alloc_obj(meta->btf, &args[argno]))
10367 		return KF_ARG_PTR_TO_ALLOC_BTF_ID;
10368 
10369 	if (is_kfunc_arg_refcounted_kptr(meta->btf, &args[argno]))
10370 		return KF_ARG_PTR_TO_REFCOUNTED_KPTR;
10371 
10372 	if (is_kfunc_arg_dynptr(meta->btf, &args[argno]))
10373 		return KF_ARG_PTR_TO_DYNPTR;
10374 
10375 	if (is_kfunc_arg_iter(meta, argno))
10376 		return KF_ARG_PTR_TO_ITER;
10377 
10378 	if (is_kfunc_arg_list_head(meta->btf, &args[argno]))
10379 		return KF_ARG_PTR_TO_LIST_HEAD;
10380 
10381 	if (is_kfunc_arg_list_node(meta->btf, &args[argno]))
10382 		return KF_ARG_PTR_TO_LIST_NODE;
10383 
10384 	if (is_kfunc_arg_rbtree_root(meta->btf, &args[argno]))
10385 		return KF_ARG_PTR_TO_RB_ROOT;
10386 
10387 	if (is_kfunc_arg_rbtree_node(meta->btf, &args[argno]))
10388 		return KF_ARG_PTR_TO_RB_NODE;
10389 
10390 	if ((base_type(reg->type) == PTR_TO_BTF_ID || reg2btf_ids[base_type(reg->type)])) {
10391 		if (!btf_type_is_struct(ref_t)) {
10392 			verbose(env, "kernel function %s args#%d pointer type %s %s is not supported\n",
10393 				meta->func_name, argno, btf_type_str(ref_t), ref_tname);
10394 			return -EINVAL;
10395 		}
10396 		return KF_ARG_PTR_TO_BTF_ID;
10397 	}
10398 
10399 	if (is_kfunc_arg_callback(env, meta->btf, &args[argno]))
10400 		return KF_ARG_PTR_TO_CALLBACK;
10401 
10402 
10403 	if (argno + 1 < nargs &&
10404 	    (is_kfunc_arg_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1]) ||
10405 	     is_kfunc_arg_const_mem_size(meta->btf, &args[argno + 1], &regs[regno + 1])))
10406 		arg_mem_size = true;
10407 
10408 	/* This is the catch all argument type of register types supported by
10409 	 * check_helper_mem_access. However, we only allow when argument type is
10410 	 * pointer to scalar, or struct composed (recursively) of scalars. When
10411 	 * arg_mem_size is true, the pointer can be void *.
10412 	 */
10413 	if (!btf_type_is_scalar(ref_t) && !__btf_type_is_scalar_struct(env, meta->btf, ref_t, 0) &&
10414 	    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
10415 		verbose(env, "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
10416 			argno, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
10417 		return -EINVAL;
10418 	}
10419 	return arg_mem_size ? KF_ARG_PTR_TO_MEM_SIZE : KF_ARG_PTR_TO_MEM;
10420 }
10421 
10422 static int process_kf_arg_ptr_to_btf_id(struct bpf_verifier_env *env,
10423 					struct bpf_reg_state *reg,
10424 					const struct btf_type *ref_t,
10425 					const char *ref_tname, u32 ref_id,
10426 					struct bpf_kfunc_call_arg_meta *meta,
10427 					int argno)
10428 {
10429 	const struct btf_type *reg_ref_t;
10430 	bool strict_type_match = false;
10431 	const struct btf *reg_btf;
10432 	const char *reg_ref_tname;
10433 	u32 reg_ref_id;
10434 
10435 	if (base_type(reg->type) == PTR_TO_BTF_ID) {
10436 		reg_btf = reg->btf;
10437 		reg_ref_id = reg->btf_id;
10438 	} else {
10439 		reg_btf = btf_vmlinux;
10440 		reg_ref_id = *reg2btf_ids[base_type(reg->type)];
10441 	}
10442 
10443 	/* Enforce strict type matching for calls to kfuncs that are acquiring
10444 	 * or releasing a reference, or are no-cast aliases. We do _not_
10445 	 * enforce strict matching for plain KF_TRUSTED_ARGS kfuncs by default,
10446 	 * as we want to enable BPF programs to pass types that are bitwise
10447 	 * equivalent without forcing them to explicitly cast with something
10448 	 * like bpf_cast_to_kern_ctx().
10449 	 *
10450 	 * For example, say we had a type like the following:
10451 	 *
10452 	 * struct bpf_cpumask {
10453 	 *	cpumask_t cpumask;
10454 	 *	refcount_t usage;
10455 	 * };
10456 	 *
10457 	 * Note that as specified in <linux/cpumask.h>, cpumask_t is typedef'ed
10458 	 * to a struct cpumask, so it would be safe to pass a struct
10459 	 * bpf_cpumask * to a kfunc expecting a struct cpumask *.
10460 	 *
10461 	 * The philosophy here is similar to how we allow scalars of different
10462 	 * types to be passed to kfuncs as long as the size is the same. The
10463 	 * only difference here is that we're simply allowing
10464 	 * btf_struct_ids_match() to walk the struct at the 0th offset, and
10465 	 * resolve types.
10466 	 */
10467 	if (is_kfunc_acquire(meta) ||
10468 	    (is_kfunc_release(meta) && reg->ref_obj_id) ||
10469 	    btf_type_ids_nocast_alias(&env->log, reg_btf, reg_ref_id, meta->btf, ref_id))
10470 		strict_type_match = true;
10471 
10472 	WARN_ON_ONCE(is_kfunc_trusted_args(meta) && reg->off);
10473 
10474 	reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, &reg_ref_id);
10475 	reg_ref_tname = btf_name_by_offset(reg_btf, reg_ref_t->name_off);
10476 	if (!btf_struct_ids_match(&env->log, reg_btf, reg_ref_id, reg->off, meta->btf, ref_id, strict_type_match)) {
10477 		verbose(env, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
10478 			meta->func_name, argno, btf_type_str(ref_t), ref_tname, argno + 1,
10479 			btf_type_str(reg_ref_t), reg_ref_tname);
10480 		return -EINVAL;
10481 	}
10482 	return 0;
10483 }
10484 
10485 static int ref_set_non_owning(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10486 {
10487 	struct bpf_verifier_state *state = env->cur_state;
10488 	struct btf_record *rec = reg_btf_record(reg);
10489 
10490 	if (!state->active_lock.ptr) {
10491 		verbose(env, "verifier internal error: ref_set_non_owning w/o active lock\n");
10492 		return -EFAULT;
10493 	}
10494 
10495 	if (type_flag(reg->type) & NON_OWN_REF) {
10496 		verbose(env, "verifier internal error: NON_OWN_REF already set\n");
10497 		return -EFAULT;
10498 	}
10499 
10500 	reg->type |= NON_OWN_REF;
10501 	if (rec->refcount_off >= 0)
10502 		reg->type |= MEM_RCU;
10503 
10504 	return 0;
10505 }
10506 
10507 static int ref_convert_owning_non_owning(struct bpf_verifier_env *env, u32 ref_obj_id)
10508 {
10509 	struct bpf_func_state *state, *unused;
10510 	struct bpf_reg_state *reg;
10511 	int i;
10512 
10513 	state = cur_func(env);
10514 
10515 	if (!ref_obj_id) {
10516 		verbose(env, "verifier internal error: ref_obj_id is zero for "
10517 			     "owning -> non-owning conversion\n");
10518 		return -EFAULT;
10519 	}
10520 
10521 	for (i = 0; i < state->acquired_refs; i++) {
10522 		if (state->refs[i].id != ref_obj_id)
10523 			continue;
10524 
10525 		/* Clear ref_obj_id here so release_reference doesn't clobber
10526 		 * the whole reg
10527 		 */
10528 		bpf_for_each_reg_in_vstate(env->cur_state, unused, reg, ({
10529 			if (reg->ref_obj_id == ref_obj_id) {
10530 				reg->ref_obj_id = 0;
10531 				ref_set_non_owning(env, reg);
10532 			}
10533 		}));
10534 		return 0;
10535 	}
10536 
10537 	verbose(env, "verifier internal error: ref state missing for ref_obj_id\n");
10538 	return -EFAULT;
10539 }
10540 
10541 /* Implementation details:
10542  *
10543  * Each register points to some region of memory, which we define as an
10544  * allocation. Each allocation may embed a bpf_spin_lock which protects any
10545  * special BPF objects (bpf_list_head, bpf_rb_root, etc.) part of the same
10546  * allocation. The lock and the data it protects are colocated in the same
10547  * memory region.
10548  *
10549  * Hence, everytime a register holds a pointer value pointing to such
10550  * allocation, the verifier preserves a unique reg->id for it.
10551  *
10552  * The verifier remembers the lock 'ptr' and the lock 'id' whenever
10553  * bpf_spin_lock is called.
10554  *
10555  * To enable this, lock state in the verifier captures two values:
10556  *	active_lock.ptr = Register's type specific pointer
10557  *	active_lock.id  = A unique ID for each register pointer value
10558  *
10559  * Currently, PTR_TO_MAP_VALUE and PTR_TO_BTF_ID | MEM_ALLOC are the two
10560  * supported register types.
10561  *
10562  * The active_lock.ptr in case of map values is the reg->map_ptr, and in case of
10563  * allocated objects is the reg->btf pointer.
10564  *
10565  * The active_lock.id is non-unique for maps supporting direct_value_addr, as we
10566  * can establish the provenance of the map value statically for each distinct
10567  * lookup into such maps. They always contain a single map value hence unique
10568  * IDs for each pseudo load pessimizes the algorithm and rejects valid programs.
10569  *
10570  * So, in case of global variables, they use array maps with max_entries = 1,
10571  * hence their active_lock.ptr becomes map_ptr and id = 0 (since they all point
10572  * into the same map value as max_entries is 1, as described above).
10573  *
10574  * In case of inner map lookups, the inner map pointer has same map_ptr as the
10575  * outer map pointer (in verifier context), but each lookup into an inner map
10576  * assigns a fresh reg->id to the lookup, so while lookups into distinct inner
10577  * maps from the same outer map share the same map_ptr as active_lock.ptr, they
10578  * will get different reg->id assigned to each lookup, hence different
10579  * active_lock.id.
10580  *
10581  * In case of allocated objects, active_lock.ptr is the reg->btf, and the
10582  * reg->id is a unique ID preserved after the NULL pointer check on the pointer
10583  * returned from bpf_obj_new. Each allocation receives a new reg->id.
10584  */
10585 static int check_reg_allocation_locked(struct bpf_verifier_env *env, struct bpf_reg_state *reg)
10586 {
10587 	void *ptr;
10588 	u32 id;
10589 
10590 	switch ((int)reg->type) {
10591 	case PTR_TO_MAP_VALUE:
10592 		ptr = reg->map_ptr;
10593 		break;
10594 	case PTR_TO_BTF_ID | MEM_ALLOC:
10595 		ptr = reg->btf;
10596 		break;
10597 	default:
10598 		verbose(env, "verifier internal error: unknown reg type for lock check\n");
10599 		return -EFAULT;
10600 	}
10601 	id = reg->id;
10602 
10603 	if (!env->cur_state->active_lock.ptr)
10604 		return -EINVAL;
10605 	if (env->cur_state->active_lock.ptr != ptr ||
10606 	    env->cur_state->active_lock.id != id) {
10607 		verbose(env, "held lock and object are not in the same allocation\n");
10608 		return -EINVAL;
10609 	}
10610 	return 0;
10611 }
10612 
10613 static bool is_bpf_list_api_kfunc(u32 btf_id)
10614 {
10615 	return btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10616 	       btf_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
10617 	       btf_id == special_kfunc_list[KF_bpf_list_pop_front] ||
10618 	       btf_id == special_kfunc_list[KF_bpf_list_pop_back];
10619 }
10620 
10621 static bool is_bpf_rbtree_api_kfunc(u32 btf_id)
10622 {
10623 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl] ||
10624 	       btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10625 	       btf_id == special_kfunc_list[KF_bpf_rbtree_first];
10626 }
10627 
10628 static bool is_bpf_graph_api_kfunc(u32 btf_id)
10629 {
10630 	return is_bpf_list_api_kfunc(btf_id) || is_bpf_rbtree_api_kfunc(btf_id) ||
10631 	       btf_id == special_kfunc_list[KF_bpf_refcount_acquire_impl];
10632 }
10633 
10634 static bool is_callback_calling_kfunc(u32 btf_id)
10635 {
10636 	return btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl];
10637 }
10638 
10639 static bool is_rbtree_lock_required_kfunc(u32 btf_id)
10640 {
10641 	return is_bpf_rbtree_api_kfunc(btf_id);
10642 }
10643 
10644 static bool check_kfunc_is_graph_root_api(struct bpf_verifier_env *env,
10645 					  enum btf_field_type head_field_type,
10646 					  u32 kfunc_btf_id)
10647 {
10648 	bool ret;
10649 
10650 	switch (head_field_type) {
10651 	case BPF_LIST_HEAD:
10652 		ret = is_bpf_list_api_kfunc(kfunc_btf_id);
10653 		break;
10654 	case BPF_RB_ROOT:
10655 		ret = is_bpf_rbtree_api_kfunc(kfunc_btf_id);
10656 		break;
10657 	default:
10658 		verbose(env, "verifier internal error: unexpected graph root argument type %s\n",
10659 			btf_field_type_name(head_field_type));
10660 		return false;
10661 	}
10662 
10663 	if (!ret)
10664 		verbose(env, "verifier internal error: %s head arg for unknown kfunc\n",
10665 			btf_field_type_name(head_field_type));
10666 	return ret;
10667 }
10668 
10669 static bool check_kfunc_is_graph_node_api(struct bpf_verifier_env *env,
10670 					  enum btf_field_type node_field_type,
10671 					  u32 kfunc_btf_id)
10672 {
10673 	bool ret;
10674 
10675 	switch (node_field_type) {
10676 	case BPF_LIST_NODE:
10677 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
10678 		       kfunc_btf_id == special_kfunc_list[KF_bpf_list_push_back_impl]);
10679 		break;
10680 	case BPF_RB_NODE:
10681 		ret = (kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
10682 		       kfunc_btf_id == special_kfunc_list[KF_bpf_rbtree_add_impl]);
10683 		break;
10684 	default:
10685 		verbose(env, "verifier internal error: unexpected graph node argument type %s\n",
10686 			btf_field_type_name(node_field_type));
10687 		return false;
10688 	}
10689 
10690 	if (!ret)
10691 		verbose(env, "verifier internal error: %s node arg for unknown kfunc\n",
10692 			btf_field_type_name(node_field_type));
10693 	return ret;
10694 }
10695 
10696 static int
10697 __process_kf_arg_ptr_to_graph_root(struct bpf_verifier_env *env,
10698 				   struct bpf_reg_state *reg, u32 regno,
10699 				   struct bpf_kfunc_call_arg_meta *meta,
10700 				   enum btf_field_type head_field_type,
10701 				   struct btf_field **head_field)
10702 {
10703 	const char *head_type_name;
10704 	struct btf_field *field;
10705 	struct btf_record *rec;
10706 	u32 head_off;
10707 
10708 	if (meta->btf != btf_vmlinux) {
10709 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10710 		return -EFAULT;
10711 	}
10712 
10713 	if (!check_kfunc_is_graph_root_api(env, head_field_type, meta->func_id))
10714 		return -EFAULT;
10715 
10716 	head_type_name = btf_field_type_name(head_field_type);
10717 	if (!tnum_is_const(reg->var_off)) {
10718 		verbose(env,
10719 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10720 			regno, head_type_name);
10721 		return -EINVAL;
10722 	}
10723 
10724 	rec = reg_btf_record(reg);
10725 	head_off = reg->off + reg->var_off.value;
10726 	field = btf_record_find(rec, head_off, head_field_type);
10727 	if (!field) {
10728 		verbose(env, "%s not found at offset=%u\n", head_type_name, head_off);
10729 		return -EINVAL;
10730 	}
10731 
10732 	/* All functions require bpf_list_head to be protected using a bpf_spin_lock */
10733 	if (check_reg_allocation_locked(env, reg)) {
10734 		verbose(env, "bpf_spin_lock at off=%d must be held for %s\n",
10735 			rec->spin_lock_off, head_type_name);
10736 		return -EINVAL;
10737 	}
10738 
10739 	if (*head_field) {
10740 		verbose(env, "verifier internal error: repeating %s arg\n", head_type_name);
10741 		return -EFAULT;
10742 	}
10743 	*head_field = field;
10744 	return 0;
10745 }
10746 
10747 static int process_kf_arg_ptr_to_list_head(struct bpf_verifier_env *env,
10748 					   struct bpf_reg_state *reg, u32 regno,
10749 					   struct bpf_kfunc_call_arg_meta *meta)
10750 {
10751 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_LIST_HEAD,
10752 							  &meta->arg_list_head.field);
10753 }
10754 
10755 static int process_kf_arg_ptr_to_rbtree_root(struct bpf_verifier_env *env,
10756 					     struct bpf_reg_state *reg, u32 regno,
10757 					     struct bpf_kfunc_call_arg_meta *meta)
10758 {
10759 	return __process_kf_arg_ptr_to_graph_root(env, reg, regno, meta, BPF_RB_ROOT,
10760 							  &meta->arg_rbtree_root.field);
10761 }
10762 
10763 static int
10764 __process_kf_arg_ptr_to_graph_node(struct bpf_verifier_env *env,
10765 				   struct bpf_reg_state *reg, u32 regno,
10766 				   struct bpf_kfunc_call_arg_meta *meta,
10767 				   enum btf_field_type head_field_type,
10768 				   enum btf_field_type node_field_type,
10769 				   struct btf_field **node_field)
10770 {
10771 	const char *node_type_name;
10772 	const struct btf_type *et, *t;
10773 	struct btf_field *field;
10774 	u32 node_off;
10775 
10776 	if (meta->btf != btf_vmlinux) {
10777 		verbose(env, "verifier internal error: unexpected btf mismatch in kfunc call\n");
10778 		return -EFAULT;
10779 	}
10780 
10781 	if (!check_kfunc_is_graph_node_api(env, node_field_type, meta->func_id))
10782 		return -EFAULT;
10783 
10784 	node_type_name = btf_field_type_name(node_field_type);
10785 	if (!tnum_is_const(reg->var_off)) {
10786 		verbose(env,
10787 			"R%d doesn't have constant offset. %s has to be at the constant offset\n",
10788 			regno, node_type_name);
10789 		return -EINVAL;
10790 	}
10791 
10792 	node_off = reg->off + reg->var_off.value;
10793 	field = reg_find_field_offset(reg, node_off, node_field_type);
10794 	if (!field || field->offset != node_off) {
10795 		verbose(env, "%s not found at offset=%u\n", node_type_name, node_off);
10796 		return -EINVAL;
10797 	}
10798 
10799 	field = *node_field;
10800 
10801 	et = btf_type_by_id(field->graph_root.btf, field->graph_root.value_btf_id);
10802 	t = btf_type_by_id(reg->btf, reg->btf_id);
10803 	if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, 0, field->graph_root.btf,
10804 				  field->graph_root.value_btf_id, true)) {
10805 		verbose(env, "operation on %s expects arg#1 %s at offset=%d "
10806 			"in struct %s, but arg is at offset=%d in struct %s\n",
10807 			btf_field_type_name(head_field_type),
10808 			btf_field_type_name(node_field_type),
10809 			field->graph_root.node_offset,
10810 			btf_name_by_offset(field->graph_root.btf, et->name_off),
10811 			node_off, btf_name_by_offset(reg->btf, t->name_off));
10812 		return -EINVAL;
10813 	}
10814 	meta->arg_btf = reg->btf;
10815 	meta->arg_btf_id = reg->btf_id;
10816 
10817 	if (node_off != field->graph_root.node_offset) {
10818 		verbose(env, "arg#1 offset=%d, but expected %s at offset=%d in struct %s\n",
10819 			node_off, btf_field_type_name(node_field_type),
10820 			field->graph_root.node_offset,
10821 			btf_name_by_offset(field->graph_root.btf, et->name_off));
10822 		return -EINVAL;
10823 	}
10824 
10825 	return 0;
10826 }
10827 
10828 static int process_kf_arg_ptr_to_list_node(struct bpf_verifier_env *env,
10829 					   struct bpf_reg_state *reg, u32 regno,
10830 					   struct bpf_kfunc_call_arg_meta *meta)
10831 {
10832 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10833 						  BPF_LIST_HEAD, BPF_LIST_NODE,
10834 						  &meta->arg_list_head.field);
10835 }
10836 
10837 static int process_kf_arg_ptr_to_rbtree_node(struct bpf_verifier_env *env,
10838 					     struct bpf_reg_state *reg, u32 regno,
10839 					     struct bpf_kfunc_call_arg_meta *meta)
10840 {
10841 	return __process_kf_arg_ptr_to_graph_node(env, reg, regno, meta,
10842 						  BPF_RB_ROOT, BPF_RB_NODE,
10843 						  &meta->arg_rbtree_root.field);
10844 }
10845 
10846 static int check_kfunc_args(struct bpf_verifier_env *env, struct bpf_kfunc_call_arg_meta *meta,
10847 			    int insn_idx)
10848 {
10849 	const char *func_name = meta->func_name, *ref_tname;
10850 	const struct btf *btf = meta->btf;
10851 	const struct btf_param *args;
10852 	struct btf_record *rec;
10853 	u32 i, nargs;
10854 	int ret;
10855 
10856 	args = (const struct btf_param *)(meta->func_proto + 1);
10857 	nargs = btf_type_vlen(meta->func_proto);
10858 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
10859 		verbose(env, "Function %s has %d > %d args\n", func_name, nargs,
10860 			MAX_BPF_FUNC_REG_ARGS);
10861 		return -EINVAL;
10862 	}
10863 
10864 	/* Check that BTF function arguments match actual types that the
10865 	 * verifier sees.
10866 	 */
10867 	for (i = 0; i < nargs; i++) {
10868 		struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[i + 1];
10869 		const struct btf_type *t, *ref_t, *resolve_ret;
10870 		enum bpf_arg_type arg_type = ARG_DONTCARE;
10871 		u32 regno = i + 1, ref_id, type_size;
10872 		bool is_ret_buf_sz = false;
10873 		int kf_arg_type;
10874 
10875 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
10876 
10877 		if (is_kfunc_arg_ignore(btf, &args[i]))
10878 			continue;
10879 
10880 		if (btf_type_is_scalar(t)) {
10881 			if (reg->type != SCALAR_VALUE) {
10882 				verbose(env, "R%d is not a scalar\n", regno);
10883 				return -EINVAL;
10884 			}
10885 
10886 			if (is_kfunc_arg_constant(meta->btf, &args[i])) {
10887 				if (meta->arg_constant.found) {
10888 					verbose(env, "verifier internal error: only one constant argument permitted\n");
10889 					return -EFAULT;
10890 				}
10891 				if (!tnum_is_const(reg->var_off)) {
10892 					verbose(env, "R%d must be a known constant\n", regno);
10893 					return -EINVAL;
10894 				}
10895 				ret = mark_chain_precision(env, regno);
10896 				if (ret < 0)
10897 					return ret;
10898 				meta->arg_constant.found = true;
10899 				meta->arg_constant.value = reg->var_off.value;
10900 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdonly_buf_size")) {
10901 				meta->r0_rdonly = true;
10902 				is_ret_buf_sz = true;
10903 			} else if (is_kfunc_arg_scalar_with_name(btf, &args[i], "rdwr_buf_size")) {
10904 				is_ret_buf_sz = true;
10905 			}
10906 
10907 			if (is_ret_buf_sz) {
10908 				if (meta->r0_size) {
10909 					verbose(env, "2 or more rdonly/rdwr_buf_size parameters for kfunc");
10910 					return -EINVAL;
10911 				}
10912 
10913 				if (!tnum_is_const(reg->var_off)) {
10914 					verbose(env, "R%d is not a const\n", regno);
10915 					return -EINVAL;
10916 				}
10917 
10918 				meta->r0_size = reg->var_off.value;
10919 				ret = mark_chain_precision(env, regno);
10920 				if (ret)
10921 					return ret;
10922 			}
10923 			continue;
10924 		}
10925 
10926 		if (!btf_type_is_ptr(t)) {
10927 			verbose(env, "Unrecognized arg#%d type %s\n", i, btf_type_str(t));
10928 			return -EINVAL;
10929 		}
10930 
10931 		if ((is_kfunc_trusted_args(meta) || is_kfunc_rcu(meta)) &&
10932 		    (register_is_null(reg) || type_may_be_null(reg->type))) {
10933 			verbose(env, "Possibly NULL pointer passed to trusted arg%d\n", i);
10934 			return -EACCES;
10935 		}
10936 
10937 		if (reg->ref_obj_id) {
10938 			if (is_kfunc_release(meta) && meta->ref_obj_id) {
10939 				verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
10940 					regno, reg->ref_obj_id,
10941 					meta->ref_obj_id);
10942 				return -EFAULT;
10943 			}
10944 			meta->ref_obj_id = reg->ref_obj_id;
10945 			if (is_kfunc_release(meta))
10946 				meta->release_regno = regno;
10947 		}
10948 
10949 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
10950 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
10951 
10952 		kf_arg_type = get_kfunc_ptr_arg_type(env, meta, t, ref_t, ref_tname, args, i, nargs);
10953 		if (kf_arg_type < 0)
10954 			return kf_arg_type;
10955 
10956 		switch (kf_arg_type) {
10957 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
10958 		case KF_ARG_PTR_TO_BTF_ID:
10959 			if (!is_kfunc_trusted_args(meta) && !is_kfunc_rcu(meta))
10960 				break;
10961 
10962 			if (!is_trusted_reg(reg)) {
10963 				if (!is_kfunc_rcu(meta)) {
10964 					verbose(env, "R%d must be referenced or trusted\n", regno);
10965 					return -EINVAL;
10966 				}
10967 				if (!is_rcu_reg(reg)) {
10968 					verbose(env, "R%d must be a rcu pointer\n", regno);
10969 					return -EINVAL;
10970 				}
10971 			}
10972 
10973 			fallthrough;
10974 		case KF_ARG_PTR_TO_CTX:
10975 			/* Trusted arguments have the same offset checks as release arguments */
10976 			arg_type |= OBJ_RELEASE;
10977 			break;
10978 		case KF_ARG_PTR_TO_DYNPTR:
10979 		case KF_ARG_PTR_TO_ITER:
10980 		case KF_ARG_PTR_TO_LIST_HEAD:
10981 		case KF_ARG_PTR_TO_LIST_NODE:
10982 		case KF_ARG_PTR_TO_RB_ROOT:
10983 		case KF_ARG_PTR_TO_RB_NODE:
10984 		case KF_ARG_PTR_TO_MEM:
10985 		case KF_ARG_PTR_TO_MEM_SIZE:
10986 		case KF_ARG_PTR_TO_CALLBACK:
10987 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
10988 			/* Trusted by default */
10989 			break;
10990 		default:
10991 			WARN_ON_ONCE(1);
10992 			return -EFAULT;
10993 		}
10994 
10995 		if (is_kfunc_release(meta) && reg->ref_obj_id)
10996 			arg_type |= OBJ_RELEASE;
10997 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
10998 		if (ret < 0)
10999 			return ret;
11000 
11001 		switch (kf_arg_type) {
11002 		case KF_ARG_PTR_TO_CTX:
11003 			if (reg->type != PTR_TO_CTX) {
11004 				verbose(env, "arg#%d expected pointer to ctx, but got %s\n", i, btf_type_str(t));
11005 				return -EINVAL;
11006 			}
11007 
11008 			if (meta->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11009 				ret = get_kern_ctx_btf_id(&env->log, resolve_prog_type(env->prog));
11010 				if (ret < 0)
11011 					return -EINVAL;
11012 				meta->ret_btf_id  = ret;
11013 			}
11014 			break;
11015 		case KF_ARG_PTR_TO_ALLOC_BTF_ID:
11016 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11017 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11018 				return -EINVAL;
11019 			}
11020 			if (!reg->ref_obj_id) {
11021 				verbose(env, "allocated object must be referenced\n");
11022 				return -EINVAL;
11023 			}
11024 			if (meta->btf == btf_vmlinux &&
11025 			    meta->func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11026 				meta->arg_btf = reg->btf;
11027 				meta->arg_btf_id = reg->btf_id;
11028 			}
11029 			break;
11030 		case KF_ARG_PTR_TO_DYNPTR:
11031 		{
11032 			enum bpf_arg_type dynptr_arg_type = ARG_PTR_TO_DYNPTR;
11033 			int clone_ref_obj_id = 0;
11034 
11035 			if (reg->type != PTR_TO_STACK &&
11036 			    reg->type != CONST_PTR_TO_DYNPTR) {
11037 				verbose(env, "arg#%d expected pointer to stack or dynptr_ptr\n", i);
11038 				return -EINVAL;
11039 			}
11040 
11041 			if (reg->type == CONST_PTR_TO_DYNPTR)
11042 				dynptr_arg_type |= MEM_RDONLY;
11043 
11044 			if (is_kfunc_arg_uninit(btf, &args[i]))
11045 				dynptr_arg_type |= MEM_UNINIT;
11046 
11047 			if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
11048 				dynptr_arg_type |= DYNPTR_TYPE_SKB;
11049 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_from_xdp]) {
11050 				dynptr_arg_type |= DYNPTR_TYPE_XDP;
11051 			} else if (meta->func_id == special_kfunc_list[KF_bpf_dynptr_clone] &&
11052 				   (dynptr_arg_type & MEM_UNINIT)) {
11053 				enum bpf_dynptr_type parent_type = meta->initialized_dynptr.type;
11054 
11055 				if (parent_type == BPF_DYNPTR_TYPE_INVALID) {
11056 					verbose(env, "verifier internal error: no dynptr type for parent of clone\n");
11057 					return -EFAULT;
11058 				}
11059 
11060 				dynptr_arg_type |= (unsigned int)get_dynptr_type_flag(parent_type);
11061 				clone_ref_obj_id = meta->initialized_dynptr.ref_obj_id;
11062 				if (dynptr_type_refcounted(parent_type) && !clone_ref_obj_id) {
11063 					verbose(env, "verifier internal error: missing ref obj id for parent of clone\n");
11064 					return -EFAULT;
11065 				}
11066 			}
11067 
11068 			ret = process_dynptr_func(env, regno, insn_idx, dynptr_arg_type, clone_ref_obj_id);
11069 			if (ret < 0)
11070 				return ret;
11071 
11072 			if (!(dynptr_arg_type & MEM_UNINIT)) {
11073 				int id = dynptr_id(env, reg);
11074 
11075 				if (id < 0) {
11076 					verbose(env, "verifier internal error: failed to obtain dynptr id\n");
11077 					return id;
11078 				}
11079 				meta->initialized_dynptr.id = id;
11080 				meta->initialized_dynptr.type = dynptr_get_type(env, reg);
11081 				meta->initialized_dynptr.ref_obj_id = dynptr_ref_obj_id(env, reg);
11082 			}
11083 
11084 			break;
11085 		}
11086 		case KF_ARG_PTR_TO_ITER:
11087 			ret = process_iter_arg(env, regno, insn_idx, meta);
11088 			if (ret < 0)
11089 				return ret;
11090 			break;
11091 		case KF_ARG_PTR_TO_LIST_HEAD:
11092 			if (reg->type != PTR_TO_MAP_VALUE &&
11093 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11094 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11095 				return -EINVAL;
11096 			}
11097 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11098 				verbose(env, "allocated object must be referenced\n");
11099 				return -EINVAL;
11100 			}
11101 			ret = process_kf_arg_ptr_to_list_head(env, reg, regno, meta);
11102 			if (ret < 0)
11103 				return ret;
11104 			break;
11105 		case KF_ARG_PTR_TO_RB_ROOT:
11106 			if (reg->type != PTR_TO_MAP_VALUE &&
11107 			    reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11108 				verbose(env, "arg#%d expected pointer to map value or allocated object\n", i);
11109 				return -EINVAL;
11110 			}
11111 			if (reg->type == (PTR_TO_BTF_ID | MEM_ALLOC) && !reg->ref_obj_id) {
11112 				verbose(env, "allocated object must be referenced\n");
11113 				return -EINVAL;
11114 			}
11115 			ret = process_kf_arg_ptr_to_rbtree_root(env, reg, regno, meta);
11116 			if (ret < 0)
11117 				return ret;
11118 			break;
11119 		case KF_ARG_PTR_TO_LIST_NODE:
11120 			if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11121 				verbose(env, "arg#%d expected pointer to allocated object\n", i);
11122 				return -EINVAL;
11123 			}
11124 			if (!reg->ref_obj_id) {
11125 				verbose(env, "allocated object must be referenced\n");
11126 				return -EINVAL;
11127 			}
11128 			ret = process_kf_arg_ptr_to_list_node(env, reg, regno, meta);
11129 			if (ret < 0)
11130 				return ret;
11131 			break;
11132 		case KF_ARG_PTR_TO_RB_NODE:
11133 			if (meta->func_id == special_kfunc_list[KF_bpf_rbtree_remove]) {
11134 				if (!type_is_non_owning_ref(reg->type) || reg->ref_obj_id) {
11135 					verbose(env, "rbtree_remove node input must be non-owning ref\n");
11136 					return -EINVAL;
11137 				}
11138 				if (in_rbtree_lock_required_cb(env)) {
11139 					verbose(env, "rbtree_remove not allowed in rbtree cb\n");
11140 					return -EINVAL;
11141 				}
11142 			} else {
11143 				if (reg->type != (PTR_TO_BTF_ID | MEM_ALLOC)) {
11144 					verbose(env, "arg#%d expected pointer to allocated object\n", i);
11145 					return -EINVAL;
11146 				}
11147 				if (!reg->ref_obj_id) {
11148 					verbose(env, "allocated object must be referenced\n");
11149 					return -EINVAL;
11150 				}
11151 			}
11152 
11153 			ret = process_kf_arg_ptr_to_rbtree_node(env, reg, regno, meta);
11154 			if (ret < 0)
11155 				return ret;
11156 			break;
11157 		case KF_ARG_PTR_TO_BTF_ID:
11158 			/* Only base_type is checked, further checks are done here */
11159 			if ((base_type(reg->type) != PTR_TO_BTF_ID ||
11160 			     (bpf_type_has_unsafe_modifiers(reg->type) && !is_rcu_reg(reg))) &&
11161 			    !reg2btf_ids[base_type(reg->type)]) {
11162 				verbose(env, "arg#%d is %s ", i, reg_type_str(env, reg->type));
11163 				verbose(env, "expected %s or socket\n",
11164 					reg_type_str(env, base_type(reg->type) |
11165 							  (type_flag(reg->type) & BPF_REG_TRUSTED_MODIFIERS)));
11166 				return -EINVAL;
11167 			}
11168 			ret = process_kf_arg_ptr_to_btf_id(env, reg, ref_t, ref_tname, ref_id, meta, i);
11169 			if (ret < 0)
11170 				return ret;
11171 			break;
11172 		case KF_ARG_PTR_TO_MEM:
11173 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
11174 			if (IS_ERR(resolve_ret)) {
11175 				verbose(env, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
11176 					i, btf_type_str(ref_t), ref_tname, PTR_ERR(resolve_ret));
11177 				return -EINVAL;
11178 			}
11179 			ret = check_mem_reg(env, reg, regno, type_size);
11180 			if (ret < 0)
11181 				return ret;
11182 			break;
11183 		case KF_ARG_PTR_TO_MEM_SIZE:
11184 		{
11185 			struct bpf_reg_state *buff_reg = &regs[regno];
11186 			const struct btf_param *buff_arg = &args[i];
11187 			struct bpf_reg_state *size_reg = &regs[regno + 1];
11188 			const struct btf_param *size_arg = &args[i + 1];
11189 
11190 			if (!register_is_null(buff_reg) || !is_kfunc_arg_optional(meta->btf, buff_arg)) {
11191 				ret = check_kfunc_mem_size_reg(env, size_reg, regno + 1);
11192 				if (ret < 0) {
11193 					verbose(env, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", i, i + 1);
11194 					return ret;
11195 				}
11196 			}
11197 
11198 			if (is_kfunc_arg_const_mem_size(meta->btf, size_arg, size_reg)) {
11199 				if (meta->arg_constant.found) {
11200 					verbose(env, "verifier internal error: only one constant argument permitted\n");
11201 					return -EFAULT;
11202 				}
11203 				if (!tnum_is_const(size_reg->var_off)) {
11204 					verbose(env, "R%d must be a known constant\n", regno + 1);
11205 					return -EINVAL;
11206 				}
11207 				meta->arg_constant.found = true;
11208 				meta->arg_constant.value = size_reg->var_off.value;
11209 			}
11210 
11211 			/* Skip next '__sz' or '__szk' argument */
11212 			i++;
11213 			break;
11214 		}
11215 		case KF_ARG_PTR_TO_CALLBACK:
11216 			if (reg->type != PTR_TO_FUNC) {
11217 				verbose(env, "arg%d expected pointer to func\n", i);
11218 				return -EINVAL;
11219 			}
11220 			meta->subprogno = reg->subprogno;
11221 			break;
11222 		case KF_ARG_PTR_TO_REFCOUNTED_KPTR:
11223 			if (!type_is_ptr_alloc_obj(reg->type)) {
11224 				verbose(env, "arg#%d is neither owning or non-owning ref\n", i);
11225 				return -EINVAL;
11226 			}
11227 			if (!type_is_non_owning_ref(reg->type))
11228 				meta->arg_owning_ref = true;
11229 
11230 			rec = reg_btf_record(reg);
11231 			if (!rec) {
11232 				verbose(env, "verifier internal error: Couldn't find btf_record\n");
11233 				return -EFAULT;
11234 			}
11235 
11236 			if (rec->refcount_off < 0) {
11237 				verbose(env, "arg#%d doesn't point to a type with bpf_refcount field\n", i);
11238 				return -EINVAL;
11239 			}
11240 
11241 			meta->arg_btf = reg->btf;
11242 			meta->arg_btf_id = reg->btf_id;
11243 			break;
11244 		}
11245 	}
11246 
11247 	if (is_kfunc_release(meta) && !meta->release_regno) {
11248 		verbose(env, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
11249 			func_name);
11250 		return -EINVAL;
11251 	}
11252 
11253 	return 0;
11254 }
11255 
11256 static int fetch_kfunc_meta(struct bpf_verifier_env *env,
11257 			    struct bpf_insn *insn,
11258 			    struct bpf_kfunc_call_arg_meta *meta,
11259 			    const char **kfunc_name)
11260 {
11261 	const struct btf_type *func, *func_proto;
11262 	u32 func_id, *kfunc_flags;
11263 	const char *func_name;
11264 	struct btf *desc_btf;
11265 
11266 	if (kfunc_name)
11267 		*kfunc_name = NULL;
11268 
11269 	if (!insn->imm)
11270 		return -EINVAL;
11271 
11272 	desc_btf = find_kfunc_desc_btf(env, insn->off);
11273 	if (IS_ERR(desc_btf))
11274 		return PTR_ERR(desc_btf);
11275 
11276 	func_id = insn->imm;
11277 	func = btf_type_by_id(desc_btf, func_id);
11278 	func_name = btf_name_by_offset(desc_btf, func->name_off);
11279 	if (kfunc_name)
11280 		*kfunc_name = func_name;
11281 	func_proto = btf_type_by_id(desc_btf, func->type);
11282 
11283 	kfunc_flags = btf_kfunc_id_set_contains(desc_btf, func_id, env->prog);
11284 	if (!kfunc_flags) {
11285 		return -EACCES;
11286 	}
11287 
11288 	memset(meta, 0, sizeof(*meta));
11289 	meta->btf = desc_btf;
11290 	meta->func_id = func_id;
11291 	meta->kfunc_flags = *kfunc_flags;
11292 	meta->func_proto = func_proto;
11293 	meta->func_name = func_name;
11294 
11295 	return 0;
11296 }
11297 
11298 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
11299 			    int *insn_idx_p)
11300 {
11301 	const struct btf_type *t, *ptr_type;
11302 	u32 i, nargs, ptr_type_id, release_ref_obj_id;
11303 	struct bpf_reg_state *regs = cur_regs(env);
11304 	const char *func_name, *ptr_type_name;
11305 	bool sleepable, rcu_lock, rcu_unlock;
11306 	struct bpf_kfunc_call_arg_meta meta;
11307 	struct bpf_insn_aux_data *insn_aux;
11308 	int err, insn_idx = *insn_idx_p;
11309 	const struct btf_param *args;
11310 	const struct btf_type *ret_t;
11311 	struct btf *desc_btf;
11312 
11313 	/* skip for now, but return error when we find this in fixup_kfunc_call */
11314 	if (!insn->imm)
11315 		return 0;
11316 
11317 	err = fetch_kfunc_meta(env, insn, &meta, &func_name);
11318 	if (err == -EACCES && func_name)
11319 		verbose(env, "calling kernel function %s is not allowed\n", func_name);
11320 	if (err)
11321 		return err;
11322 	desc_btf = meta.btf;
11323 	insn_aux = &env->insn_aux_data[insn_idx];
11324 
11325 	insn_aux->is_iter_next = is_iter_next_kfunc(&meta);
11326 
11327 	if (is_kfunc_destructive(&meta) && !capable(CAP_SYS_BOOT)) {
11328 		verbose(env, "destructive kfunc calls require CAP_SYS_BOOT capability\n");
11329 		return -EACCES;
11330 	}
11331 
11332 	sleepable = is_kfunc_sleepable(&meta);
11333 	if (sleepable && !env->prog->aux->sleepable) {
11334 		verbose(env, "program must be sleepable to call sleepable kfunc %s\n", func_name);
11335 		return -EACCES;
11336 	}
11337 
11338 	rcu_lock = is_kfunc_bpf_rcu_read_lock(&meta);
11339 	rcu_unlock = is_kfunc_bpf_rcu_read_unlock(&meta);
11340 
11341 	if (env->cur_state->active_rcu_lock) {
11342 		struct bpf_func_state *state;
11343 		struct bpf_reg_state *reg;
11344 
11345 		if (in_rbtree_lock_required_cb(env) && (rcu_lock || rcu_unlock)) {
11346 			verbose(env, "Calling bpf_rcu_read_{lock,unlock} in unnecessary rbtree callback\n");
11347 			return -EACCES;
11348 		}
11349 
11350 		if (rcu_lock) {
11351 			verbose(env, "nested rcu read lock (kernel function %s)\n", func_name);
11352 			return -EINVAL;
11353 		} else if (rcu_unlock) {
11354 			bpf_for_each_reg_in_vstate(env->cur_state, state, reg, ({
11355 				if (reg->type & MEM_RCU) {
11356 					reg->type &= ~(MEM_RCU | PTR_MAYBE_NULL);
11357 					reg->type |= PTR_UNTRUSTED;
11358 				}
11359 			}));
11360 			env->cur_state->active_rcu_lock = false;
11361 		} else if (sleepable) {
11362 			verbose(env, "kernel func %s is sleepable within rcu_read_lock region\n", func_name);
11363 			return -EACCES;
11364 		}
11365 	} else if (rcu_lock) {
11366 		env->cur_state->active_rcu_lock = true;
11367 	} else if (rcu_unlock) {
11368 		verbose(env, "unmatched rcu read unlock (kernel function %s)\n", func_name);
11369 		return -EINVAL;
11370 	}
11371 
11372 	/* Check the arguments */
11373 	err = check_kfunc_args(env, &meta, insn_idx);
11374 	if (err < 0)
11375 		return err;
11376 	/* In case of release function, we get register number of refcounted
11377 	 * PTR_TO_BTF_ID in bpf_kfunc_arg_meta, do the release now.
11378 	 */
11379 	if (meta.release_regno) {
11380 		err = release_reference(env, regs[meta.release_regno].ref_obj_id);
11381 		if (err) {
11382 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11383 				func_name, meta.func_id);
11384 			return err;
11385 		}
11386 	}
11387 
11388 	if (meta.func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
11389 	    meta.func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
11390 	    meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11391 		release_ref_obj_id = regs[BPF_REG_2].ref_obj_id;
11392 		insn_aux->insert_off = regs[BPF_REG_2].off;
11393 		insn_aux->kptr_struct_meta = btf_find_struct_meta(meta.arg_btf, meta.arg_btf_id);
11394 		err = ref_convert_owning_non_owning(env, release_ref_obj_id);
11395 		if (err) {
11396 			verbose(env, "kfunc %s#%d conversion of owning ref to non-owning failed\n",
11397 				func_name, meta.func_id);
11398 			return err;
11399 		}
11400 
11401 		err = release_reference(env, release_ref_obj_id);
11402 		if (err) {
11403 			verbose(env, "kfunc %s#%d reference has not been acquired before\n",
11404 				func_name, meta.func_id);
11405 			return err;
11406 		}
11407 	}
11408 
11409 	if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
11410 		err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
11411 					set_rbtree_add_callback_state);
11412 		if (err) {
11413 			verbose(env, "kfunc %s#%d failed callback verification\n",
11414 				func_name, meta.func_id);
11415 			return err;
11416 		}
11417 	}
11418 
11419 	for (i = 0; i < CALLER_SAVED_REGS; i++)
11420 		mark_reg_not_init(env, regs, caller_saved[i]);
11421 
11422 	/* Check return type */
11423 	t = btf_type_skip_modifiers(desc_btf, meta.func_proto->type, NULL);
11424 
11425 	if (is_kfunc_acquire(&meta) && !btf_type_is_struct_ptr(meta.btf, t)) {
11426 		/* Only exception is bpf_obj_new_impl */
11427 		if (meta.btf != btf_vmlinux ||
11428 		    (meta.func_id != special_kfunc_list[KF_bpf_obj_new_impl] &&
11429 		     meta.func_id != special_kfunc_list[KF_bpf_refcount_acquire_impl])) {
11430 			verbose(env, "acquire kernel function does not return PTR_TO_BTF_ID\n");
11431 			return -EINVAL;
11432 		}
11433 	}
11434 
11435 	if (btf_type_is_scalar(t)) {
11436 		mark_reg_unknown(env, regs, BPF_REG_0);
11437 		mark_btf_func_reg_size(env, BPF_REG_0, t->size);
11438 	} else if (btf_type_is_ptr(t)) {
11439 		ptr_type = btf_type_skip_modifiers(desc_btf, t->type, &ptr_type_id);
11440 
11441 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11442 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
11443 				struct btf *ret_btf;
11444 				u32 ret_btf_id;
11445 
11446 				if (unlikely(!bpf_global_ma_set))
11447 					return -ENOMEM;
11448 
11449 				if (((u64)(u32)meta.arg_constant.value) != meta.arg_constant.value) {
11450 					verbose(env, "local type ID argument must be in range [0, U32_MAX]\n");
11451 					return -EINVAL;
11452 				}
11453 
11454 				ret_btf = env->prog->aux->btf;
11455 				ret_btf_id = meta.arg_constant.value;
11456 
11457 				/* This may be NULL due to user not supplying a BTF */
11458 				if (!ret_btf) {
11459 					verbose(env, "bpf_obj_new requires prog BTF\n");
11460 					return -EINVAL;
11461 				}
11462 
11463 				ret_t = btf_type_by_id(ret_btf, ret_btf_id);
11464 				if (!ret_t || !__btf_type_is_struct(ret_t)) {
11465 					verbose(env, "bpf_obj_new type ID argument must be of a struct\n");
11466 					return -EINVAL;
11467 				}
11468 
11469 				mark_reg_known_zero(env, regs, BPF_REG_0);
11470 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11471 				regs[BPF_REG_0].btf = ret_btf;
11472 				regs[BPF_REG_0].btf_id = ret_btf_id;
11473 
11474 				insn_aux->obj_new_size = ret_t->size;
11475 				insn_aux->kptr_struct_meta =
11476 					btf_find_struct_meta(ret_btf, ret_btf_id);
11477 			} else if (meta.func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
11478 				mark_reg_known_zero(env, regs, BPF_REG_0);
11479 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | MEM_ALLOC;
11480 				regs[BPF_REG_0].btf = meta.arg_btf;
11481 				regs[BPF_REG_0].btf_id = meta.arg_btf_id;
11482 
11483 				insn_aux->kptr_struct_meta =
11484 					btf_find_struct_meta(meta.arg_btf,
11485 							     meta.arg_btf_id);
11486 			} else if (meta.func_id == special_kfunc_list[KF_bpf_list_pop_front] ||
11487 				   meta.func_id == special_kfunc_list[KF_bpf_list_pop_back]) {
11488 				struct btf_field *field = meta.arg_list_head.field;
11489 
11490 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11491 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_remove] ||
11492 				   meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11493 				struct btf_field *field = meta.arg_rbtree_root.field;
11494 
11495 				mark_reg_graph_node(regs, BPF_REG_0, &field->graph_root);
11496 			} else if (meta.func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx]) {
11497 				mark_reg_known_zero(env, regs, BPF_REG_0);
11498 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_TRUSTED;
11499 				regs[BPF_REG_0].btf = desc_btf;
11500 				regs[BPF_REG_0].btf_id = meta.ret_btf_id;
11501 			} else if (meta.func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
11502 				ret_t = btf_type_by_id(desc_btf, meta.arg_constant.value);
11503 				if (!ret_t || !btf_type_is_struct(ret_t)) {
11504 					verbose(env,
11505 						"kfunc bpf_rdonly_cast type ID argument must be of a struct\n");
11506 					return -EINVAL;
11507 				}
11508 
11509 				mark_reg_known_zero(env, regs, BPF_REG_0);
11510 				regs[BPF_REG_0].type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
11511 				regs[BPF_REG_0].btf = desc_btf;
11512 				regs[BPF_REG_0].btf_id = meta.arg_constant.value;
11513 			} else if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice] ||
11514 				   meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice_rdwr]) {
11515 				enum bpf_type_flag type_flag = get_dynptr_type_flag(meta.initialized_dynptr.type);
11516 
11517 				mark_reg_known_zero(env, regs, BPF_REG_0);
11518 
11519 				if (!meta.arg_constant.found) {
11520 					verbose(env, "verifier internal error: bpf_dynptr_slice(_rdwr) no constant size\n");
11521 					return -EFAULT;
11522 				}
11523 
11524 				regs[BPF_REG_0].mem_size = meta.arg_constant.value;
11525 
11526 				/* PTR_MAYBE_NULL will be added when is_kfunc_ret_null is checked */
11527 				regs[BPF_REG_0].type = PTR_TO_MEM | type_flag;
11528 
11529 				if (meta.func_id == special_kfunc_list[KF_bpf_dynptr_slice]) {
11530 					regs[BPF_REG_0].type |= MEM_RDONLY;
11531 				} else {
11532 					/* this will set env->seen_direct_write to true */
11533 					if (!may_access_direct_pkt_data(env, NULL, BPF_WRITE)) {
11534 						verbose(env, "the prog does not allow writes to packet data\n");
11535 						return -EINVAL;
11536 					}
11537 				}
11538 
11539 				if (!meta.initialized_dynptr.id) {
11540 					verbose(env, "verifier internal error: no dynptr id\n");
11541 					return -EFAULT;
11542 				}
11543 				regs[BPF_REG_0].dynptr_id = meta.initialized_dynptr.id;
11544 
11545 				/* we don't need to set BPF_REG_0's ref obj id
11546 				 * because packet slices are not refcounted (see
11547 				 * dynptr_type_refcounted)
11548 				 */
11549 			} else {
11550 				verbose(env, "kernel function %s unhandled dynamic return type\n",
11551 					meta.func_name);
11552 				return -EFAULT;
11553 			}
11554 		} else if (!__btf_type_is_struct(ptr_type)) {
11555 			if (!meta.r0_size) {
11556 				__u32 sz;
11557 
11558 				if (!IS_ERR(btf_resolve_size(desc_btf, ptr_type, &sz))) {
11559 					meta.r0_size = sz;
11560 					meta.r0_rdonly = true;
11561 				}
11562 			}
11563 			if (!meta.r0_size) {
11564 				ptr_type_name = btf_name_by_offset(desc_btf,
11565 								   ptr_type->name_off);
11566 				verbose(env,
11567 					"kernel function %s returns pointer type %s %s is not supported\n",
11568 					func_name,
11569 					btf_type_str(ptr_type),
11570 					ptr_type_name);
11571 				return -EINVAL;
11572 			}
11573 
11574 			mark_reg_known_zero(env, regs, BPF_REG_0);
11575 			regs[BPF_REG_0].type = PTR_TO_MEM;
11576 			regs[BPF_REG_0].mem_size = meta.r0_size;
11577 
11578 			if (meta.r0_rdonly)
11579 				regs[BPF_REG_0].type |= MEM_RDONLY;
11580 
11581 			/* Ensures we don't access the memory after a release_reference() */
11582 			if (meta.ref_obj_id)
11583 				regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
11584 		} else {
11585 			mark_reg_known_zero(env, regs, BPF_REG_0);
11586 			regs[BPF_REG_0].btf = desc_btf;
11587 			regs[BPF_REG_0].type = PTR_TO_BTF_ID;
11588 			regs[BPF_REG_0].btf_id = ptr_type_id;
11589 		}
11590 
11591 		if (is_kfunc_ret_null(&meta)) {
11592 			regs[BPF_REG_0].type |= PTR_MAYBE_NULL;
11593 			/* For mark_ptr_or_null_reg, see 93c230e3f5bd6 */
11594 			regs[BPF_REG_0].id = ++env->id_gen;
11595 		}
11596 		mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
11597 		if (is_kfunc_acquire(&meta)) {
11598 			int id = acquire_reference_state(env, insn_idx);
11599 
11600 			if (id < 0)
11601 				return id;
11602 			if (is_kfunc_ret_null(&meta))
11603 				regs[BPF_REG_0].id = id;
11604 			regs[BPF_REG_0].ref_obj_id = id;
11605 		} else if (meta.func_id == special_kfunc_list[KF_bpf_rbtree_first]) {
11606 			ref_set_non_owning(env, &regs[BPF_REG_0]);
11607 		}
11608 
11609 		if (reg_may_point_to_spin_lock(&regs[BPF_REG_0]) && !regs[BPF_REG_0].id)
11610 			regs[BPF_REG_0].id = ++env->id_gen;
11611 	} else if (btf_type_is_void(t)) {
11612 		if (meta.btf == btf_vmlinux && btf_id_set_contains(&special_kfunc_set, meta.func_id)) {
11613 			if (meta.func_id == special_kfunc_list[KF_bpf_obj_drop_impl]) {
11614 				insn_aux->kptr_struct_meta =
11615 					btf_find_struct_meta(meta.arg_btf,
11616 							     meta.arg_btf_id);
11617 			}
11618 		}
11619 	}
11620 
11621 	nargs = btf_type_vlen(meta.func_proto);
11622 	args = (const struct btf_param *)(meta.func_proto + 1);
11623 	for (i = 0; i < nargs; i++) {
11624 		u32 regno = i + 1;
11625 
11626 		t = btf_type_skip_modifiers(desc_btf, args[i].type, NULL);
11627 		if (btf_type_is_ptr(t))
11628 			mark_btf_func_reg_size(env, regno, sizeof(void *));
11629 		else
11630 			/* scalar. ensured by btf_check_kfunc_arg_match() */
11631 			mark_btf_func_reg_size(env, regno, t->size);
11632 	}
11633 
11634 	if (is_iter_next_kfunc(&meta)) {
11635 		err = process_iter_next_call(env, insn_idx, &meta);
11636 		if (err)
11637 			return err;
11638 	}
11639 
11640 	return 0;
11641 }
11642 
11643 static bool signed_add_overflows(s64 a, s64 b)
11644 {
11645 	/* Do the add in u64, where overflow is well-defined */
11646 	s64 res = (s64)((u64)a + (u64)b);
11647 
11648 	if (b < 0)
11649 		return res > a;
11650 	return res < a;
11651 }
11652 
11653 static bool signed_add32_overflows(s32 a, s32 b)
11654 {
11655 	/* Do the add in u32, where overflow is well-defined */
11656 	s32 res = (s32)((u32)a + (u32)b);
11657 
11658 	if (b < 0)
11659 		return res > a;
11660 	return res < a;
11661 }
11662 
11663 static bool signed_sub_overflows(s64 a, s64 b)
11664 {
11665 	/* Do the sub in u64, where overflow is well-defined */
11666 	s64 res = (s64)((u64)a - (u64)b);
11667 
11668 	if (b < 0)
11669 		return res < a;
11670 	return res > a;
11671 }
11672 
11673 static bool signed_sub32_overflows(s32 a, s32 b)
11674 {
11675 	/* Do the sub in u32, where overflow is well-defined */
11676 	s32 res = (s32)((u32)a - (u32)b);
11677 
11678 	if (b < 0)
11679 		return res < a;
11680 	return res > a;
11681 }
11682 
11683 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
11684 				  const struct bpf_reg_state *reg,
11685 				  enum bpf_reg_type type)
11686 {
11687 	bool known = tnum_is_const(reg->var_off);
11688 	s64 val = reg->var_off.value;
11689 	s64 smin = reg->smin_value;
11690 
11691 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
11692 		verbose(env, "math between %s pointer and %lld is not allowed\n",
11693 			reg_type_str(env, type), val);
11694 		return false;
11695 	}
11696 
11697 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
11698 		verbose(env, "%s pointer offset %d is not allowed\n",
11699 			reg_type_str(env, type), reg->off);
11700 		return false;
11701 	}
11702 
11703 	if (smin == S64_MIN) {
11704 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
11705 			reg_type_str(env, type));
11706 		return false;
11707 	}
11708 
11709 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
11710 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
11711 			smin, reg_type_str(env, type));
11712 		return false;
11713 	}
11714 
11715 	return true;
11716 }
11717 
11718 enum {
11719 	REASON_BOUNDS	= -1,
11720 	REASON_TYPE	= -2,
11721 	REASON_PATHS	= -3,
11722 	REASON_LIMIT	= -4,
11723 	REASON_STACK	= -5,
11724 };
11725 
11726 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
11727 			      u32 *alu_limit, bool mask_to_left)
11728 {
11729 	u32 max = 0, ptr_limit = 0;
11730 
11731 	switch (ptr_reg->type) {
11732 	case PTR_TO_STACK:
11733 		/* Offset 0 is out-of-bounds, but acceptable start for the
11734 		 * left direction, see BPF_REG_FP. Also, unknown scalar
11735 		 * offset where we would need to deal with min/max bounds is
11736 		 * currently prohibited for unprivileged.
11737 		 */
11738 		max = MAX_BPF_STACK + mask_to_left;
11739 		ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
11740 		break;
11741 	case PTR_TO_MAP_VALUE:
11742 		max = ptr_reg->map_ptr->value_size;
11743 		ptr_limit = (mask_to_left ?
11744 			     ptr_reg->smin_value :
11745 			     ptr_reg->umax_value) + ptr_reg->off;
11746 		break;
11747 	default:
11748 		return REASON_TYPE;
11749 	}
11750 
11751 	if (ptr_limit >= max)
11752 		return REASON_LIMIT;
11753 	*alu_limit = ptr_limit;
11754 	return 0;
11755 }
11756 
11757 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
11758 				    const struct bpf_insn *insn)
11759 {
11760 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
11761 }
11762 
11763 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
11764 				       u32 alu_state, u32 alu_limit)
11765 {
11766 	/* If we arrived here from different branches with different
11767 	 * state or limits to sanitize, then this won't work.
11768 	 */
11769 	if (aux->alu_state &&
11770 	    (aux->alu_state != alu_state ||
11771 	     aux->alu_limit != alu_limit))
11772 		return REASON_PATHS;
11773 
11774 	/* Corresponding fixup done in do_misc_fixups(). */
11775 	aux->alu_state = alu_state;
11776 	aux->alu_limit = alu_limit;
11777 	return 0;
11778 }
11779 
11780 static int sanitize_val_alu(struct bpf_verifier_env *env,
11781 			    struct bpf_insn *insn)
11782 {
11783 	struct bpf_insn_aux_data *aux = cur_aux(env);
11784 
11785 	if (can_skip_alu_sanitation(env, insn))
11786 		return 0;
11787 
11788 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
11789 }
11790 
11791 static bool sanitize_needed(u8 opcode)
11792 {
11793 	return opcode == BPF_ADD || opcode == BPF_SUB;
11794 }
11795 
11796 struct bpf_sanitize_info {
11797 	struct bpf_insn_aux_data aux;
11798 	bool mask_to_left;
11799 };
11800 
11801 static struct bpf_verifier_state *
11802 sanitize_speculative_path(struct bpf_verifier_env *env,
11803 			  const struct bpf_insn *insn,
11804 			  u32 next_idx, u32 curr_idx)
11805 {
11806 	struct bpf_verifier_state *branch;
11807 	struct bpf_reg_state *regs;
11808 
11809 	branch = push_stack(env, next_idx, curr_idx, true);
11810 	if (branch && insn) {
11811 		regs = branch->frame[branch->curframe]->regs;
11812 		if (BPF_SRC(insn->code) == BPF_K) {
11813 			mark_reg_unknown(env, regs, insn->dst_reg);
11814 		} else if (BPF_SRC(insn->code) == BPF_X) {
11815 			mark_reg_unknown(env, regs, insn->dst_reg);
11816 			mark_reg_unknown(env, regs, insn->src_reg);
11817 		}
11818 	}
11819 	return branch;
11820 }
11821 
11822 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
11823 			    struct bpf_insn *insn,
11824 			    const struct bpf_reg_state *ptr_reg,
11825 			    const struct bpf_reg_state *off_reg,
11826 			    struct bpf_reg_state *dst_reg,
11827 			    struct bpf_sanitize_info *info,
11828 			    const bool commit_window)
11829 {
11830 	struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
11831 	struct bpf_verifier_state *vstate = env->cur_state;
11832 	bool off_is_imm = tnum_is_const(off_reg->var_off);
11833 	bool off_is_neg = off_reg->smin_value < 0;
11834 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
11835 	u8 opcode = BPF_OP(insn->code);
11836 	u32 alu_state, alu_limit;
11837 	struct bpf_reg_state tmp;
11838 	bool ret;
11839 	int err;
11840 
11841 	if (can_skip_alu_sanitation(env, insn))
11842 		return 0;
11843 
11844 	/* We already marked aux for masking from non-speculative
11845 	 * paths, thus we got here in the first place. We only care
11846 	 * to explore bad access from here.
11847 	 */
11848 	if (vstate->speculative)
11849 		goto do_sim;
11850 
11851 	if (!commit_window) {
11852 		if (!tnum_is_const(off_reg->var_off) &&
11853 		    (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
11854 			return REASON_BOUNDS;
11855 
11856 		info->mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
11857 				     (opcode == BPF_SUB && !off_is_neg);
11858 	}
11859 
11860 	err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
11861 	if (err < 0)
11862 		return err;
11863 
11864 	if (commit_window) {
11865 		/* In commit phase we narrow the masking window based on
11866 		 * the observed pointer move after the simulated operation.
11867 		 */
11868 		alu_state = info->aux.alu_state;
11869 		alu_limit = abs(info->aux.alu_limit - alu_limit);
11870 	} else {
11871 		alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
11872 		alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
11873 		alu_state |= ptr_is_dst_reg ?
11874 			     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
11875 
11876 		/* Limit pruning on unknown scalars to enable deep search for
11877 		 * potential masking differences from other program paths.
11878 		 */
11879 		if (!off_is_imm)
11880 			env->explore_alu_limits = true;
11881 	}
11882 
11883 	err = update_alu_sanitation_state(aux, alu_state, alu_limit);
11884 	if (err < 0)
11885 		return err;
11886 do_sim:
11887 	/* If we're in commit phase, we're done here given we already
11888 	 * pushed the truncated dst_reg into the speculative verification
11889 	 * stack.
11890 	 *
11891 	 * Also, when register is a known constant, we rewrite register-based
11892 	 * operation to immediate-based, and thus do not need masking (and as
11893 	 * a consequence, do not need to simulate the zero-truncation either).
11894 	 */
11895 	if (commit_window || off_is_imm)
11896 		return 0;
11897 
11898 	/* Simulate and find potential out-of-bounds access under
11899 	 * speculative execution from truncation as a result of
11900 	 * masking when off was not within expected range. If off
11901 	 * sits in dst, then we temporarily need to move ptr there
11902 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
11903 	 * for cases where we use K-based arithmetic in one direction
11904 	 * and truncated reg-based in the other in order to explore
11905 	 * bad access.
11906 	 */
11907 	if (!ptr_is_dst_reg) {
11908 		tmp = *dst_reg;
11909 		copy_register_state(dst_reg, ptr_reg);
11910 	}
11911 	ret = sanitize_speculative_path(env, NULL, env->insn_idx + 1,
11912 					env->insn_idx);
11913 	if (!ptr_is_dst_reg && ret)
11914 		*dst_reg = tmp;
11915 	return !ret ? REASON_STACK : 0;
11916 }
11917 
11918 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
11919 {
11920 	struct bpf_verifier_state *vstate = env->cur_state;
11921 
11922 	/* If we simulate paths under speculation, we don't update the
11923 	 * insn as 'seen' such that when we verify unreachable paths in
11924 	 * the non-speculative domain, sanitize_dead_code() can still
11925 	 * rewrite/sanitize them.
11926 	 */
11927 	if (!vstate->speculative)
11928 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
11929 }
11930 
11931 static int sanitize_err(struct bpf_verifier_env *env,
11932 			const struct bpf_insn *insn, int reason,
11933 			const struct bpf_reg_state *off_reg,
11934 			const struct bpf_reg_state *dst_reg)
11935 {
11936 	static const char *err = "pointer arithmetic with it prohibited for !root";
11937 	const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
11938 	u32 dst = insn->dst_reg, src = insn->src_reg;
11939 
11940 	switch (reason) {
11941 	case REASON_BOUNDS:
11942 		verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
11943 			off_reg == dst_reg ? dst : src, err);
11944 		break;
11945 	case REASON_TYPE:
11946 		verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
11947 			off_reg == dst_reg ? src : dst, err);
11948 		break;
11949 	case REASON_PATHS:
11950 		verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
11951 			dst, op, err);
11952 		break;
11953 	case REASON_LIMIT:
11954 		verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
11955 			dst, op, err);
11956 		break;
11957 	case REASON_STACK:
11958 		verbose(env, "R%d could not be pushed for speculative verification, %s\n",
11959 			dst, err);
11960 		break;
11961 	default:
11962 		verbose(env, "verifier internal error: unknown reason (%d)\n",
11963 			reason);
11964 		break;
11965 	}
11966 
11967 	return -EACCES;
11968 }
11969 
11970 /* check that stack access falls within stack limits and that 'reg' doesn't
11971  * have a variable offset.
11972  *
11973  * Variable offset is prohibited for unprivileged mode for simplicity since it
11974  * requires corresponding support in Spectre masking for stack ALU.  See also
11975  * retrieve_ptr_limit().
11976  *
11977  *
11978  * 'off' includes 'reg->off'.
11979  */
11980 static int check_stack_access_for_ptr_arithmetic(
11981 				struct bpf_verifier_env *env,
11982 				int regno,
11983 				const struct bpf_reg_state *reg,
11984 				int off)
11985 {
11986 	if (!tnum_is_const(reg->var_off)) {
11987 		char tn_buf[48];
11988 
11989 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
11990 		verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
11991 			regno, tn_buf, off);
11992 		return -EACCES;
11993 	}
11994 
11995 	if (off >= 0 || off < -MAX_BPF_STACK) {
11996 		verbose(env, "R%d stack pointer arithmetic goes out of range, "
11997 			"prohibited for !root; off=%d\n", regno, off);
11998 		return -EACCES;
11999 	}
12000 
12001 	return 0;
12002 }
12003 
12004 static int sanitize_check_bounds(struct bpf_verifier_env *env,
12005 				 const struct bpf_insn *insn,
12006 				 const struct bpf_reg_state *dst_reg)
12007 {
12008 	u32 dst = insn->dst_reg;
12009 
12010 	/* For unprivileged we require that resulting offset must be in bounds
12011 	 * in order to be able to sanitize access later on.
12012 	 */
12013 	if (env->bypass_spec_v1)
12014 		return 0;
12015 
12016 	switch (dst_reg->type) {
12017 	case PTR_TO_STACK:
12018 		if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
12019 					dst_reg->off + dst_reg->var_off.value))
12020 			return -EACCES;
12021 		break;
12022 	case PTR_TO_MAP_VALUE:
12023 		if (check_map_access(env, dst, dst_reg->off, 1, false, ACCESS_HELPER)) {
12024 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
12025 				"prohibited for !root\n", dst);
12026 			return -EACCES;
12027 		}
12028 		break;
12029 	default:
12030 		break;
12031 	}
12032 
12033 	return 0;
12034 }
12035 
12036 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
12037  * Caller should also handle BPF_MOV case separately.
12038  * If we return -EACCES, caller may want to try again treating pointer as a
12039  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
12040  */
12041 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
12042 				   struct bpf_insn *insn,
12043 				   const struct bpf_reg_state *ptr_reg,
12044 				   const struct bpf_reg_state *off_reg)
12045 {
12046 	struct bpf_verifier_state *vstate = env->cur_state;
12047 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
12048 	struct bpf_reg_state *regs = state->regs, *dst_reg;
12049 	bool known = tnum_is_const(off_reg->var_off);
12050 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
12051 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
12052 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
12053 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
12054 	struct bpf_sanitize_info info = {};
12055 	u8 opcode = BPF_OP(insn->code);
12056 	u32 dst = insn->dst_reg;
12057 	int ret;
12058 
12059 	dst_reg = &regs[dst];
12060 
12061 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
12062 	    smin_val > smax_val || umin_val > umax_val) {
12063 		/* Taint dst register if offset had invalid bounds derived from
12064 		 * e.g. dead branches.
12065 		 */
12066 		__mark_reg_unknown(env, dst_reg);
12067 		return 0;
12068 	}
12069 
12070 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
12071 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
12072 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
12073 			__mark_reg_unknown(env, dst_reg);
12074 			return 0;
12075 		}
12076 
12077 		verbose(env,
12078 			"R%d 32-bit pointer arithmetic prohibited\n",
12079 			dst);
12080 		return -EACCES;
12081 	}
12082 
12083 	if (ptr_reg->type & PTR_MAYBE_NULL) {
12084 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
12085 			dst, reg_type_str(env, ptr_reg->type));
12086 		return -EACCES;
12087 	}
12088 
12089 	switch (base_type(ptr_reg->type)) {
12090 	case PTR_TO_FLOW_KEYS:
12091 		if (known)
12092 			break;
12093 		fallthrough;
12094 	case CONST_PTR_TO_MAP:
12095 		/* smin_val represents the known value */
12096 		if (known && smin_val == 0 && opcode == BPF_ADD)
12097 			break;
12098 		fallthrough;
12099 	case PTR_TO_PACKET_END:
12100 	case PTR_TO_SOCKET:
12101 	case PTR_TO_SOCK_COMMON:
12102 	case PTR_TO_TCP_SOCK:
12103 	case PTR_TO_XDP_SOCK:
12104 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
12105 			dst, reg_type_str(env, ptr_reg->type));
12106 		return -EACCES;
12107 	default:
12108 		break;
12109 	}
12110 
12111 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
12112 	 * The id may be overwritten later if we create a new variable offset.
12113 	 */
12114 	dst_reg->type = ptr_reg->type;
12115 	dst_reg->id = ptr_reg->id;
12116 
12117 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
12118 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
12119 		return -EINVAL;
12120 
12121 	/* pointer types do not carry 32-bit bounds at the moment. */
12122 	__mark_reg32_unbounded(dst_reg);
12123 
12124 	if (sanitize_needed(opcode)) {
12125 		ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
12126 				       &info, false);
12127 		if (ret < 0)
12128 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12129 	}
12130 
12131 	switch (opcode) {
12132 	case BPF_ADD:
12133 		/* We can take a fixed offset as long as it doesn't overflow
12134 		 * the s32 'off' field
12135 		 */
12136 		if (known && (ptr_reg->off + smin_val ==
12137 			      (s64)(s32)(ptr_reg->off + smin_val))) {
12138 			/* pointer += K.  Accumulate it into fixed offset */
12139 			dst_reg->smin_value = smin_ptr;
12140 			dst_reg->smax_value = smax_ptr;
12141 			dst_reg->umin_value = umin_ptr;
12142 			dst_reg->umax_value = umax_ptr;
12143 			dst_reg->var_off = ptr_reg->var_off;
12144 			dst_reg->off = ptr_reg->off + smin_val;
12145 			dst_reg->raw = ptr_reg->raw;
12146 			break;
12147 		}
12148 		/* A new variable offset is created.  Note that off_reg->off
12149 		 * == 0, since it's a scalar.
12150 		 * dst_reg gets the pointer type and since some positive
12151 		 * integer value was added to the pointer, give it a new 'id'
12152 		 * if it's a PTR_TO_PACKET.
12153 		 * this creates a new 'base' pointer, off_reg (variable) gets
12154 		 * added into the variable offset, and we copy the fixed offset
12155 		 * from ptr_reg.
12156 		 */
12157 		if (signed_add_overflows(smin_ptr, smin_val) ||
12158 		    signed_add_overflows(smax_ptr, smax_val)) {
12159 			dst_reg->smin_value = S64_MIN;
12160 			dst_reg->smax_value = S64_MAX;
12161 		} else {
12162 			dst_reg->smin_value = smin_ptr + smin_val;
12163 			dst_reg->smax_value = smax_ptr + smax_val;
12164 		}
12165 		if (umin_ptr + umin_val < umin_ptr ||
12166 		    umax_ptr + umax_val < umax_ptr) {
12167 			dst_reg->umin_value = 0;
12168 			dst_reg->umax_value = U64_MAX;
12169 		} else {
12170 			dst_reg->umin_value = umin_ptr + umin_val;
12171 			dst_reg->umax_value = umax_ptr + umax_val;
12172 		}
12173 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
12174 		dst_reg->off = ptr_reg->off;
12175 		dst_reg->raw = ptr_reg->raw;
12176 		if (reg_is_pkt_pointer(ptr_reg)) {
12177 			dst_reg->id = ++env->id_gen;
12178 			/* something was added to pkt_ptr, set range to zero */
12179 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12180 		}
12181 		break;
12182 	case BPF_SUB:
12183 		if (dst_reg == off_reg) {
12184 			/* scalar -= pointer.  Creates an unknown scalar */
12185 			verbose(env, "R%d tried to subtract pointer from scalar\n",
12186 				dst);
12187 			return -EACCES;
12188 		}
12189 		/* We don't allow subtraction from FP, because (according to
12190 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
12191 		 * be able to deal with it.
12192 		 */
12193 		if (ptr_reg->type == PTR_TO_STACK) {
12194 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
12195 				dst);
12196 			return -EACCES;
12197 		}
12198 		if (known && (ptr_reg->off - smin_val ==
12199 			      (s64)(s32)(ptr_reg->off - smin_val))) {
12200 			/* pointer -= K.  Subtract it from fixed offset */
12201 			dst_reg->smin_value = smin_ptr;
12202 			dst_reg->smax_value = smax_ptr;
12203 			dst_reg->umin_value = umin_ptr;
12204 			dst_reg->umax_value = umax_ptr;
12205 			dst_reg->var_off = ptr_reg->var_off;
12206 			dst_reg->id = ptr_reg->id;
12207 			dst_reg->off = ptr_reg->off - smin_val;
12208 			dst_reg->raw = ptr_reg->raw;
12209 			break;
12210 		}
12211 		/* A new variable offset is created.  If the subtrahend is known
12212 		 * nonnegative, then any reg->range we had before is still good.
12213 		 */
12214 		if (signed_sub_overflows(smin_ptr, smax_val) ||
12215 		    signed_sub_overflows(smax_ptr, smin_val)) {
12216 			/* Overflow possible, we know nothing */
12217 			dst_reg->smin_value = S64_MIN;
12218 			dst_reg->smax_value = S64_MAX;
12219 		} else {
12220 			dst_reg->smin_value = smin_ptr - smax_val;
12221 			dst_reg->smax_value = smax_ptr - smin_val;
12222 		}
12223 		if (umin_ptr < umax_val) {
12224 			/* Overflow possible, we know nothing */
12225 			dst_reg->umin_value = 0;
12226 			dst_reg->umax_value = U64_MAX;
12227 		} else {
12228 			/* Cannot overflow (as long as bounds are consistent) */
12229 			dst_reg->umin_value = umin_ptr - umax_val;
12230 			dst_reg->umax_value = umax_ptr - umin_val;
12231 		}
12232 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
12233 		dst_reg->off = ptr_reg->off;
12234 		dst_reg->raw = ptr_reg->raw;
12235 		if (reg_is_pkt_pointer(ptr_reg)) {
12236 			dst_reg->id = ++env->id_gen;
12237 			/* something was added to pkt_ptr, set range to zero */
12238 			if (smin_val < 0)
12239 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
12240 		}
12241 		break;
12242 	case BPF_AND:
12243 	case BPF_OR:
12244 	case BPF_XOR:
12245 		/* bitwise ops on pointers are troublesome, prohibit. */
12246 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
12247 			dst, bpf_alu_string[opcode >> 4]);
12248 		return -EACCES;
12249 	default:
12250 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
12251 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
12252 			dst, bpf_alu_string[opcode >> 4]);
12253 		return -EACCES;
12254 	}
12255 
12256 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
12257 		return -EINVAL;
12258 	reg_bounds_sync(dst_reg);
12259 	if (sanitize_check_bounds(env, insn, dst_reg) < 0)
12260 		return -EACCES;
12261 	if (sanitize_needed(opcode)) {
12262 		ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
12263 				       &info, true);
12264 		if (ret < 0)
12265 			return sanitize_err(env, insn, ret, off_reg, dst_reg);
12266 	}
12267 
12268 	return 0;
12269 }
12270 
12271 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
12272 				 struct bpf_reg_state *src_reg)
12273 {
12274 	s32 smin_val = src_reg->s32_min_value;
12275 	s32 smax_val = src_reg->s32_max_value;
12276 	u32 umin_val = src_reg->u32_min_value;
12277 	u32 umax_val = src_reg->u32_max_value;
12278 
12279 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
12280 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
12281 		dst_reg->s32_min_value = S32_MIN;
12282 		dst_reg->s32_max_value = S32_MAX;
12283 	} else {
12284 		dst_reg->s32_min_value += smin_val;
12285 		dst_reg->s32_max_value += smax_val;
12286 	}
12287 	if (dst_reg->u32_min_value + umin_val < umin_val ||
12288 	    dst_reg->u32_max_value + umax_val < umax_val) {
12289 		dst_reg->u32_min_value = 0;
12290 		dst_reg->u32_max_value = U32_MAX;
12291 	} else {
12292 		dst_reg->u32_min_value += umin_val;
12293 		dst_reg->u32_max_value += umax_val;
12294 	}
12295 }
12296 
12297 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
12298 			       struct bpf_reg_state *src_reg)
12299 {
12300 	s64 smin_val = src_reg->smin_value;
12301 	s64 smax_val = src_reg->smax_value;
12302 	u64 umin_val = src_reg->umin_value;
12303 	u64 umax_val = src_reg->umax_value;
12304 
12305 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
12306 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
12307 		dst_reg->smin_value = S64_MIN;
12308 		dst_reg->smax_value = S64_MAX;
12309 	} else {
12310 		dst_reg->smin_value += smin_val;
12311 		dst_reg->smax_value += smax_val;
12312 	}
12313 	if (dst_reg->umin_value + umin_val < umin_val ||
12314 	    dst_reg->umax_value + umax_val < umax_val) {
12315 		dst_reg->umin_value = 0;
12316 		dst_reg->umax_value = U64_MAX;
12317 	} else {
12318 		dst_reg->umin_value += umin_val;
12319 		dst_reg->umax_value += umax_val;
12320 	}
12321 }
12322 
12323 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
12324 				 struct bpf_reg_state *src_reg)
12325 {
12326 	s32 smin_val = src_reg->s32_min_value;
12327 	s32 smax_val = src_reg->s32_max_value;
12328 	u32 umin_val = src_reg->u32_min_value;
12329 	u32 umax_val = src_reg->u32_max_value;
12330 
12331 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
12332 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
12333 		/* Overflow possible, we know nothing */
12334 		dst_reg->s32_min_value = S32_MIN;
12335 		dst_reg->s32_max_value = S32_MAX;
12336 	} else {
12337 		dst_reg->s32_min_value -= smax_val;
12338 		dst_reg->s32_max_value -= smin_val;
12339 	}
12340 	if (dst_reg->u32_min_value < umax_val) {
12341 		/* Overflow possible, we know nothing */
12342 		dst_reg->u32_min_value = 0;
12343 		dst_reg->u32_max_value = U32_MAX;
12344 	} else {
12345 		/* Cannot overflow (as long as bounds are consistent) */
12346 		dst_reg->u32_min_value -= umax_val;
12347 		dst_reg->u32_max_value -= umin_val;
12348 	}
12349 }
12350 
12351 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
12352 			       struct bpf_reg_state *src_reg)
12353 {
12354 	s64 smin_val = src_reg->smin_value;
12355 	s64 smax_val = src_reg->smax_value;
12356 	u64 umin_val = src_reg->umin_value;
12357 	u64 umax_val = src_reg->umax_value;
12358 
12359 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
12360 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
12361 		/* Overflow possible, we know nothing */
12362 		dst_reg->smin_value = S64_MIN;
12363 		dst_reg->smax_value = S64_MAX;
12364 	} else {
12365 		dst_reg->smin_value -= smax_val;
12366 		dst_reg->smax_value -= smin_val;
12367 	}
12368 	if (dst_reg->umin_value < umax_val) {
12369 		/* Overflow possible, we know nothing */
12370 		dst_reg->umin_value = 0;
12371 		dst_reg->umax_value = U64_MAX;
12372 	} else {
12373 		/* Cannot overflow (as long as bounds are consistent) */
12374 		dst_reg->umin_value -= umax_val;
12375 		dst_reg->umax_value -= umin_val;
12376 	}
12377 }
12378 
12379 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
12380 				 struct bpf_reg_state *src_reg)
12381 {
12382 	s32 smin_val = src_reg->s32_min_value;
12383 	u32 umin_val = src_reg->u32_min_value;
12384 	u32 umax_val = src_reg->u32_max_value;
12385 
12386 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
12387 		/* Ain't nobody got time to multiply that sign */
12388 		__mark_reg32_unbounded(dst_reg);
12389 		return;
12390 	}
12391 	/* Both values are positive, so we can work with unsigned and
12392 	 * copy the result to signed (unless it exceeds S32_MAX).
12393 	 */
12394 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
12395 		/* Potential overflow, we know nothing */
12396 		__mark_reg32_unbounded(dst_reg);
12397 		return;
12398 	}
12399 	dst_reg->u32_min_value *= umin_val;
12400 	dst_reg->u32_max_value *= umax_val;
12401 	if (dst_reg->u32_max_value > S32_MAX) {
12402 		/* Overflow possible, we know nothing */
12403 		dst_reg->s32_min_value = S32_MIN;
12404 		dst_reg->s32_max_value = S32_MAX;
12405 	} else {
12406 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12407 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12408 	}
12409 }
12410 
12411 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
12412 			       struct bpf_reg_state *src_reg)
12413 {
12414 	s64 smin_val = src_reg->smin_value;
12415 	u64 umin_val = src_reg->umin_value;
12416 	u64 umax_val = src_reg->umax_value;
12417 
12418 	if (smin_val < 0 || dst_reg->smin_value < 0) {
12419 		/* Ain't nobody got time to multiply that sign */
12420 		__mark_reg64_unbounded(dst_reg);
12421 		return;
12422 	}
12423 	/* Both values are positive, so we can work with unsigned and
12424 	 * copy the result to signed (unless it exceeds S64_MAX).
12425 	 */
12426 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
12427 		/* Potential overflow, we know nothing */
12428 		__mark_reg64_unbounded(dst_reg);
12429 		return;
12430 	}
12431 	dst_reg->umin_value *= umin_val;
12432 	dst_reg->umax_value *= umax_val;
12433 	if (dst_reg->umax_value > S64_MAX) {
12434 		/* Overflow possible, we know nothing */
12435 		dst_reg->smin_value = S64_MIN;
12436 		dst_reg->smax_value = S64_MAX;
12437 	} else {
12438 		dst_reg->smin_value = dst_reg->umin_value;
12439 		dst_reg->smax_value = dst_reg->umax_value;
12440 	}
12441 }
12442 
12443 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
12444 				 struct bpf_reg_state *src_reg)
12445 {
12446 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12447 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12448 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12449 	s32 smin_val = src_reg->s32_min_value;
12450 	u32 umax_val = src_reg->u32_max_value;
12451 
12452 	if (src_known && dst_known) {
12453 		__mark_reg32_known(dst_reg, var32_off.value);
12454 		return;
12455 	}
12456 
12457 	/* We get our minimum from the var_off, since that's inherently
12458 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12459 	 */
12460 	dst_reg->u32_min_value = var32_off.value;
12461 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
12462 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12463 		/* Lose signed bounds when ANDing negative numbers,
12464 		 * ain't nobody got time for that.
12465 		 */
12466 		dst_reg->s32_min_value = S32_MIN;
12467 		dst_reg->s32_max_value = S32_MAX;
12468 	} else {
12469 		/* ANDing two positives gives a positive, so safe to
12470 		 * cast result into s64.
12471 		 */
12472 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12473 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12474 	}
12475 }
12476 
12477 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
12478 			       struct bpf_reg_state *src_reg)
12479 {
12480 	bool src_known = tnum_is_const(src_reg->var_off);
12481 	bool dst_known = tnum_is_const(dst_reg->var_off);
12482 	s64 smin_val = src_reg->smin_value;
12483 	u64 umax_val = src_reg->umax_value;
12484 
12485 	if (src_known && dst_known) {
12486 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12487 		return;
12488 	}
12489 
12490 	/* We get our minimum from the var_off, since that's inherently
12491 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
12492 	 */
12493 	dst_reg->umin_value = dst_reg->var_off.value;
12494 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
12495 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12496 		/* Lose signed bounds when ANDing negative numbers,
12497 		 * ain't nobody got time for that.
12498 		 */
12499 		dst_reg->smin_value = S64_MIN;
12500 		dst_reg->smax_value = S64_MAX;
12501 	} else {
12502 		/* ANDing two positives gives a positive, so safe to
12503 		 * cast result into s64.
12504 		 */
12505 		dst_reg->smin_value = dst_reg->umin_value;
12506 		dst_reg->smax_value = dst_reg->umax_value;
12507 	}
12508 	/* We may learn something more from the var_off */
12509 	__update_reg_bounds(dst_reg);
12510 }
12511 
12512 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
12513 				struct bpf_reg_state *src_reg)
12514 {
12515 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12516 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12517 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12518 	s32 smin_val = src_reg->s32_min_value;
12519 	u32 umin_val = src_reg->u32_min_value;
12520 
12521 	if (src_known && dst_known) {
12522 		__mark_reg32_known(dst_reg, var32_off.value);
12523 		return;
12524 	}
12525 
12526 	/* We get our maximum from the var_off, and our minimum is the
12527 	 * maximum of the operands' minima
12528 	 */
12529 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
12530 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12531 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
12532 		/* Lose signed bounds when ORing negative numbers,
12533 		 * ain't nobody got time for that.
12534 		 */
12535 		dst_reg->s32_min_value = S32_MIN;
12536 		dst_reg->s32_max_value = S32_MAX;
12537 	} else {
12538 		/* ORing two positives gives a positive, so safe to
12539 		 * cast result into s64.
12540 		 */
12541 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12542 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12543 	}
12544 }
12545 
12546 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
12547 			      struct bpf_reg_state *src_reg)
12548 {
12549 	bool src_known = tnum_is_const(src_reg->var_off);
12550 	bool dst_known = tnum_is_const(dst_reg->var_off);
12551 	s64 smin_val = src_reg->smin_value;
12552 	u64 umin_val = src_reg->umin_value;
12553 
12554 	if (src_known && dst_known) {
12555 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12556 		return;
12557 	}
12558 
12559 	/* We get our maximum from the var_off, and our minimum is the
12560 	 * maximum of the operands' minima
12561 	 */
12562 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
12563 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12564 	if (dst_reg->smin_value < 0 || smin_val < 0) {
12565 		/* Lose signed bounds when ORing negative numbers,
12566 		 * ain't nobody got time for that.
12567 		 */
12568 		dst_reg->smin_value = S64_MIN;
12569 		dst_reg->smax_value = S64_MAX;
12570 	} else {
12571 		/* ORing two positives gives a positive, so safe to
12572 		 * cast result into s64.
12573 		 */
12574 		dst_reg->smin_value = dst_reg->umin_value;
12575 		dst_reg->smax_value = dst_reg->umax_value;
12576 	}
12577 	/* We may learn something more from the var_off */
12578 	__update_reg_bounds(dst_reg);
12579 }
12580 
12581 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
12582 				 struct bpf_reg_state *src_reg)
12583 {
12584 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
12585 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
12586 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
12587 	s32 smin_val = src_reg->s32_min_value;
12588 
12589 	if (src_known && dst_known) {
12590 		__mark_reg32_known(dst_reg, var32_off.value);
12591 		return;
12592 	}
12593 
12594 	/* We get both minimum and maximum from the var32_off. */
12595 	dst_reg->u32_min_value = var32_off.value;
12596 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
12597 
12598 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
12599 		/* XORing two positive sign numbers gives a positive,
12600 		 * so safe to cast u32 result into s32.
12601 		 */
12602 		dst_reg->s32_min_value = dst_reg->u32_min_value;
12603 		dst_reg->s32_max_value = dst_reg->u32_max_value;
12604 	} else {
12605 		dst_reg->s32_min_value = S32_MIN;
12606 		dst_reg->s32_max_value = S32_MAX;
12607 	}
12608 }
12609 
12610 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
12611 			       struct bpf_reg_state *src_reg)
12612 {
12613 	bool src_known = tnum_is_const(src_reg->var_off);
12614 	bool dst_known = tnum_is_const(dst_reg->var_off);
12615 	s64 smin_val = src_reg->smin_value;
12616 
12617 	if (src_known && dst_known) {
12618 		/* dst_reg->var_off.value has been updated earlier */
12619 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
12620 		return;
12621 	}
12622 
12623 	/* We get both minimum and maximum from the var_off. */
12624 	dst_reg->umin_value = dst_reg->var_off.value;
12625 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
12626 
12627 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
12628 		/* XORing two positive sign numbers gives a positive,
12629 		 * so safe to cast u64 result into s64.
12630 		 */
12631 		dst_reg->smin_value = dst_reg->umin_value;
12632 		dst_reg->smax_value = dst_reg->umax_value;
12633 	} else {
12634 		dst_reg->smin_value = S64_MIN;
12635 		dst_reg->smax_value = S64_MAX;
12636 	}
12637 
12638 	__update_reg_bounds(dst_reg);
12639 }
12640 
12641 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12642 				   u64 umin_val, u64 umax_val)
12643 {
12644 	/* We lose all sign bit information (except what we can pick
12645 	 * up from var_off)
12646 	 */
12647 	dst_reg->s32_min_value = S32_MIN;
12648 	dst_reg->s32_max_value = S32_MAX;
12649 	/* If we might shift our top bit out, then we know nothing */
12650 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
12651 		dst_reg->u32_min_value = 0;
12652 		dst_reg->u32_max_value = U32_MAX;
12653 	} else {
12654 		dst_reg->u32_min_value <<= umin_val;
12655 		dst_reg->u32_max_value <<= umax_val;
12656 	}
12657 }
12658 
12659 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
12660 				 struct bpf_reg_state *src_reg)
12661 {
12662 	u32 umax_val = src_reg->u32_max_value;
12663 	u32 umin_val = src_reg->u32_min_value;
12664 	/* u32 alu operation will zext upper bits */
12665 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12666 
12667 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12668 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
12669 	/* Not required but being careful mark reg64 bounds as unknown so
12670 	 * that we are forced to pick them up from tnum and zext later and
12671 	 * if some path skips this step we are still safe.
12672 	 */
12673 	__mark_reg64_unbounded(dst_reg);
12674 	__update_reg32_bounds(dst_reg);
12675 }
12676 
12677 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
12678 				   u64 umin_val, u64 umax_val)
12679 {
12680 	/* Special case <<32 because it is a common compiler pattern to sign
12681 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
12682 	 * positive we know this shift will also be positive so we can track
12683 	 * bounds correctly. Otherwise we lose all sign bit information except
12684 	 * what we can pick up from var_off. Perhaps we can generalize this
12685 	 * later to shifts of any length.
12686 	 */
12687 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
12688 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
12689 	else
12690 		dst_reg->smax_value = S64_MAX;
12691 
12692 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
12693 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
12694 	else
12695 		dst_reg->smin_value = S64_MIN;
12696 
12697 	/* If we might shift our top bit out, then we know nothing */
12698 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
12699 		dst_reg->umin_value = 0;
12700 		dst_reg->umax_value = U64_MAX;
12701 	} else {
12702 		dst_reg->umin_value <<= umin_val;
12703 		dst_reg->umax_value <<= umax_val;
12704 	}
12705 }
12706 
12707 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
12708 			       struct bpf_reg_state *src_reg)
12709 {
12710 	u64 umax_val = src_reg->umax_value;
12711 	u64 umin_val = src_reg->umin_value;
12712 
12713 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
12714 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
12715 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
12716 
12717 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
12718 	/* We may learn something more from the var_off */
12719 	__update_reg_bounds(dst_reg);
12720 }
12721 
12722 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
12723 				 struct bpf_reg_state *src_reg)
12724 {
12725 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
12726 	u32 umax_val = src_reg->u32_max_value;
12727 	u32 umin_val = src_reg->u32_min_value;
12728 
12729 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12730 	 * be negative, then either:
12731 	 * 1) src_reg might be zero, so the sign bit of the result is
12732 	 *    unknown, so we lose our signed bounds
12733 	 * 2) it's known negative, thus the unsigned bounds capture the
12734 	 *    signed bounds
12735 	 * 3) the signed bounds cross zero, so they tell us nothing
12736 	 *    about the result
12737 	 * If the value in dst_reg is known nonnegative, then again the
12738 	 * unsigned bounds capture the signed bounds.
12739 	 * Thus, in all cases it suffices to blow away our signed bounds
12740 	 * and rely on inferring new ones from the unsigned bounds and
12741 	 * var_off of the result.
12742 	 */
12743 	dst_reg->s32_min_value = S32_MIN;
12744 	dst_reg->s32_max_value = S32_MAX;
12745 
12746 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
12747 	dst_reg->u32_min_value >>= umax_val;
12748 	dst_reg->u32_max_value >>= umin_val;
12749 
12750 	__mark_reg64_unbounded(dst_reg);
12751 	__update_reg32_bounds(dst_reg);
12752 }
12753 
12754 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
12755 			       struct bpf_reg_state *src_reg)
12756 {
12757 	u64 umax_val = src_reg->umax_value;
12758 	u64 umin_val = src_reg->umin_value;
12759 
12760 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
12761 	 * be negative, then either:
12762 	 * 1) src_reg might be zero, so the sign bit of the result is
12763 	 *    unknown, so we lose our signed bounds
12764 	 * 2) it's known negative, thus the unsigned bounds capture the
12765 	 *    signed bounds
12766 	 * 3) the signed bounds cross zero, so they tell us nothing
12767 	 *    about the result
12768 	 * If the value in dst_reg is known nonnegative, then again the
12769 	 * unsigned bounds capture the signed bounds.
12770 	 * Thus, in all cases it suffices to blow away our signed bounds
12771 	 * and rely on inferring new ones from the unsigned bounds and
12772 	 * var_off of the result.
12773 	 */
12774 	dst_reg->smin_value = S64_MIN;
12775 	dst_reg->smax_value = S64_MAX;
12776 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
12777 	dst_reg->umin_value >>= umax_val;
12778 	dst_reg->umax_value >>= umin_val;
12779 
12780 	/* Its not easy to operate on alu32 bounds here because it depends
12781 	 * on bits being shifted in. Take easy way out and mark unbounded
12782 	 * so we can recalculate later from tnum.
12783 	 */
12784 	__mark_reg32_unbounded(dst_reg);
12785 	__update_reg_bounds(dst_reg);
12786 }
12787 
12788 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
12789 				  struct bpf_reg_state *src_reg)
12790 {
12791 	u64 umin_val = src_reg->u32_min_value;
12792 
12793 	/* Upon reaching here, src_known is true and
12794 	 * umax_val is equal to umin_val.
12795 	 */
12796 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
12797 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
12798 
12799 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
12800 
12801 	/* blow away the dst_reg umin_value/umax_value and rely on
12802 	 * dst_reg var_off to refine the result.
12803 	 */
12804 	dst_reg->u32_min_value = 0;
12805 	dst_reg->u32_max_value = U32_MAX;
12806 
12807 	__mark_reg64_unbounded(dst_reg);
12808 	__update_reg32_bounds(dst_reg);
12809 }
12810 
12811 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
12812 				struct bpf_reg_state *src_reg)
12813 {
12814 	u64 umin_val = src_reg->umin_value;
12815 
12816 	/* Upon reaching here, src_known is true and umax_val is equal
12817 	 * to umin_val.
12818 	 */
12819 	dst_reg->smin_value >>= umin_val;
12820 	dst_reg->smax_value >>= umin_val;
12821 
12822 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
12823 
12824 	/* blow away the dst_reg umin_value/umax_value and rely on
12825 	 * dst_reg var_off to refine the result.
12826 	 */
12827 	dst_reg->umin_value = 0;
12828 	dst_reg->umax_value = U64_MAX;
12829 
12830 	/* Its not easy to operate on alu32 bounds here because it depends
12831 	 * on bits being shifted in from upper 32-bits. Take easy way out
12832 	 * and mark unbounded so we can recalculate later from tnum.
12833 	 */
12834 	__mark_reg32_unbounded(dst_reg);
12835 	__update_reg_bounds(dst_reg);
12836 }
12837 
12838 /* WARNING: This function does calculations on 64-bit values, but the actual
12839  * execution may occur on 32-bit values. Therefore, things like bitshifts
12840  * need extra checks in the 32-bit case.
12841  */
12842 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
12843 				      struct bpf_insn *insn,
12844 				      struct bpf_reg_state *dst_reg,
12845 				      struct bpf_reg_state src_reg)
12846 {
12847 	struct bpf_reg_state *regs = cur_regs(env);
12848 	u8 opcode = BPF_OP(insn->code);
12849 	bool src_known;
12850 	s64 smin_val, smax_val;
12851 	u64 umin_val, umax_val;
12852 	s32 s32_min_val, s32_max_val;
12853 	u32 u32_min_val, u32_max_val;
12854 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
12855 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
12856 	int ret;
12857 
12858 	smin_val = src_reg.smin_value;
12859 	smax_val = src_reg.smax_value;
12860 	umin_val = src_reg.umin_value;
12861 	umax_val = src_reg.umax_value;
12862 
12863 	s32_min_val = src_reg.s32_min_value;
12864 	s32_max_val = src_reg.s32_max_value;
12865 	u32_min_val = src_reg.u32_min_value;
12866 	u32_max_val = src_reg.u32_max_value;
12867 
12868 	if (alu32) {
12869 		src_known = tnum_subreg_is_const(src_reg.var_off);
12870 		if ((src_known &&
12871 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
12872 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
12873 			/* Taint dst register if offset had invalid bounds
12874 			 * derived from e.g. dead branches.
12875 			 */
12876 			__mark_reg_unknown(env, dst_reg);
12877 			return 0;
12878 		}
12879 	} else {
12880 		src_known = tnum_is_const(src_reg.var_off);
12881 		if ((src_known &&
12882 		     (smin_val != smax_val || umin_val != umax_val)) ||
12883 		    smin_val > smax_val || umin_val > umax_val) {
12884 			/* Taint dst register if offset had invalid bounds
12885 			 * derived from e.g. dead branches.
12886 			 */
12887 			__mark_reg_unknown(env, dst_reg);
12888 			return 0;
12889 		}
12890 	}
12891 
12892 	if (!src_known &&
12893 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
12894 		__mark_reg_unknown(env, dst_reg);
12895 		return 0;
12896 	}
12897 
12898 	if (sanitize_needed(opcode)) {
12899 		ret = sanitize_val_alu(env, insn);
12900 		if (ret < 0)
12901 			return sanitize_err(env, insn, ret, NULL, NULL);
12902 	}
12903 
12904 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
12905 	 * There are two classes of instructions: The first class we track both
12906 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
12907 	 * greatest amount of precision when alu operations are mixed with jmp32
12908 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
12909 	 * and BPF_OR. This is possible because these ops have fairly easy to
12910 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
12911 	 * See alu32 verifier tests for examples. The second class of
12912 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
12913 	 * with regards to tracking sign/unsigned bounds because the bits may
12914 	 * cross subreg boundaries in the alu64 case. When this happens we mark
12915 	 * the reg unbounded in the subreg bound space and use the resulting
12916 	 * tnum to calculate an approximation of the sign/unsigned bounds.
12917 	 */
12918 	switch (opcode) {
12919 	case BPF_ADD:
12920 		scalar32_min_max_add(dst_reg, &src_reg);
12921 		scalar_min_max_add(dst_reg, &src_reg);
12922 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
12923 		break;
12924 	case BPF_SUB:
12925 		scalar32_min_max_sub(dst_reg, &src_reg);
12926 		scalar_min_max_sub(dst_reg, &src_reg);
12927 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
12928 		break;
12929 	case BPF_MUL:
12930 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
12931 		scalar32_min_max_mul(dst_reg, &src_reg);
12932 		scalar_min_max_mul(dst_reg, &src_reg);
12933 		break;
12934 	case BPF_AND:
12935 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
12936 		scalar32_min_max_and(dst_reg, &src_reg);
12937 		scalar_min_max_and(dst_reg, &src_reg);
12938 		break;
12939 	case BPF_OR:
12940 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
12941 		scalar32_min_max_or(dst_reg, &src_reg);
12942 		scalar_min_max_or(dst_reg, &src_reg);
12943 		break;
12944 	case BPF_XOR:
12945 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
12946 		scalar32_min_max_xor(dst_reg, &src_reg);
12947 		scalar_min_max_xor(dst_reg, &src_reg);
12948 		break;
12949 	case BPF_LSH:
12950 		if (umax_val >= insn_bitness) {
12951 			/* Shifts greater than 31 or 63 are undefined.
12952 			 * This includes shifts by a negative number.
12953 			 */
12954 			mark_reg_unknown(env, regs, insn->dst_reg);
12955 			break;
12956 		}
12957 		if (alu32)
12958 			scalar32_min_max_lsh(dst_reg, &src_reg);
12959 		else
12960 			scalar_min_max_lsh(dst_reg, &src_reg);
12961 		break;
12962 	case BPF_RSH:
12963 		if (umax_val >= insn_bitness) {
12964 			/* Shifts greater than 31 or 63 are undefined.
12965 			 * This includes shifts by a negative number.
12966 			 */
12967 			mark_reg_unknown(env, regs, insn->dst_reg);
12968 			break;
12969 		}
12970 		if (alu32)
12971 			scalar32_min_max_rsh(dst_reg, &src_reg);
12972 		else
12973 			scalar_min_max_rsh(dst_reg, &src_reg);
12974 		break;
12975 	case BPF_ARSH:
12976 		if (umax_val >= insn_bitness) {
12977 			/* Shifts greater than 31 or 63 are undefined.
12978 			 * This includes shifts by a negative number.
12979 			 */
12980 			mark_reg_unknown(env, regs, insn->dst_reg);
12981 			break;
12982 		}
12983 		if (alu32)
12984 			scalar32_min_max_arsh(dst_reg, &src_reg);
12985 		else
12986 			scalar_min_max_arsh(dst_reg, &src_reg);
12987 		break;
12988 	default:
12989 		mark_reg_unknown(env, regs, insn->dst_reg);
12990 		break;
12991 	}
12992 
12993 	/* ALU32 ops are zero extended into 64bit register */
12994 	if (alu32)
12995 		zext_32_to_64(dst_reg);
12996 	reg_bounds_sync(dst_reg);
12997 	return 0;
12998 }
12999 
13000 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
13001  * and var_off.
13002  */
13003 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
13004 				   struct bpf_insn *insn)
13005 {
13006 	struct bpf_verifier_state *vstate = env->cur_state;
13007 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13008 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
13009 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
13010 	u8 opcode = BPF_OP(insn->code);
13011 	int err;
13012 
13013 	dst_reg = &regs[insn->dst_reg];
13014 	src_reg = NULL;
13015 	if (dst_reg->type != SCALAR_VALUE)
13016 		ptr_reg = dst_reg;
13017 	else
13018 		/* Make sure ID is cleared otherwise dst_reg min/max could be
13019 		 * incorrectly propagated into other registers by find_equal_scalars()
13020 		 */
13021 		dst_reg->id = 0;
13022 	if (BPF_SRC(insn->code) == BPF_X) {
13023 		src_reg = &regs[insn->src_reg];
13024 		if (src_reg->type != SCALAR_VALUE) {
13025 			if (dst_reg->type != SCALAR_VALUE) {
13026 				/* Combining two pointers by any ALU op yields
13027 				 * an arbitrary scalar. Disallow all math except
13028 				 * pointer subtraction
13029 				 */
13030 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
13031 					mark_reg_unknown(env, regs, insn->dst_reg);
13032 					return 0;
13033 				}
13034 				verbose(env, "R%d pointer %s pointer prohibited\n",
13035 					insn->dst_reg,
13036 					bpf_alu_string[opcode >> 4]);
13037 				return -EACCES;
13038 			} else {
13039 				/* scalar += pointer
13040 				 * This is legal, but we have to reverse our
13041 				 * src/dest handling in computing the range
13042 				 */
13043 				err = mark_chain_precision(env, insn->dst_reg);
13044 				if (err)
13045 					return err;
13046 				return adjust_ptr_min_max_vals(env, insn,
13047 							       src_reg, dst_reg);
13048 			}
13049 		} else if (ptr_reg) {
13050 			/* pointer += scalar */
13051 			err = mark_chain_precision(env, insn->src_reg);
13052 			if (err)
13053 				return err;
13054 			return adjust_ptr_min_max_vals(env, insn,
13055 						       dst_reg, src_reg);
13056 		} else if (dst_reg->precise) {
13057 			/* if dst_reg is precise, src_reg should be precise as well */
13058 			err = mark_chain_precision(env, insn->src_reg);
13059 			if (err)
13060 				return err;
13061 		}
13062 	} else {
13063 		/* Pretend the src is a reg with a known value, since we only
13064 		 * need to be able to read from this state.
13065 		 */
13066 		off_reg.type = SCALAR_VALUE;
13067 		__mark_reg_known(&off_reg, insn->imm);
13068 		src_reg = &off_reg;
13069 		if (ptr_reg) /* pointer += K */
13070 			return adjust_ptr_min_max_vals(env, insn,
13071 						       ptr_reg, src_reg);
13072 	}
13073 
13074 	/* Got here implies adding two SCALAR_VALUEs */
13075 	if (WARN_ON_ONCE(ptr_reg)) {
13076 		print_verifier_state(env, state, true);
13077 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
13078 		return -EINVAL;
13079 	}
13080 	if (WARN_ON(!src_reg)) {
13081 		print_verifier_state(env, state, true);
13082 		verbose(env, "verifier internal error: no src_reg\n");
13083 		return -EINVAL;
13084 	}
13085 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
13086 }
13087 
13088 /* check validity of 32-bit and 64-bit arithmetic operations */
13089 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
13090 {
13091 	struct bpf_reg_state *regs = cur_regs(env);
13092 	u8 opcode = BPF_OP(insn->code);
13093 	int err;
13094 
13095 	if (opcode == BPF_END || opcode == BPF_NEG) {
13096 		if (opcode == BPF_NEG) {
13097 			if (BPF_SRC(insn->code) != BPF_K ||
13098 			    insn->src_reg != BPF_REG_0 ||
13099 			    insn->off != 0 || insn->imm != 0) {
13100 				verbose(env, "BPF_NEG uses reserved fields\n");
13101 				return -EINVAL;
13102 			}
13103 		} else {
13104 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
13105 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
13106 			    (BPF_CLASS(insn->code) == BPF_ALU64 &&
13107 			     BPF_SRC(insn->code) != BPF_TO_LE)) {
13108 				verbose(env, "BPF_END uses reserved fields\n");
13109 				return -EINVAL;
13110 			}
13111 		}
13112 
13113 		/* check src operand */
13114 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13115 		if (err)
13116 			return err;
13117 
13118 		if (is_pointer_value(env, insn->dst_reg)) {
13119 			verbose(env, "R%d pointer arithmetic prohibited\n",
13120 				insn->dst_reg);
13121 			return -EACCES;
13122 		}
13123 
13124 		/* check dest operand */
13125 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
13126 		if (err)
13127 			return err;
13128 
13129 	} else if (opcode == BPF_MOV) {
13130 
13131 		if (BPF_SRC(insn->code) == BPF_X) {
13132 			if (insn->imm != 0) {
13133 				verbose(env, "BPF_MOV uses reserved fields\n");
13134 				return -EINVAL;
13135 			}
13136 
13137 			if (BPF_CLASS(insn->code) == BPF_ALU) {
13138 				if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
13139 					verbose(env, "BPF_MOV uses reserved fields\n");
13140 					return -EINVAL;
13141 				}
13142 			} else {
13143 				if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
13144 				    insn->off != 32) {
13145 					verbose(env, "BPF_MOV uses reserved fields\n");
13146 					return -EINVAL;
13147 				}
13148 			}
13149 
13150 			/* check src operand */
13151 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13152 			if (err)
13153 				return err;
13154 		} else {
13155 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
13156 				verbose(env, "BPF_MOV uses reserved fields\n");
13157 				return -EINVAL;
13158 			}
13159 		}
13160 
13161 		/* check dest operand, mark as required later */
13162 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13163 		if (err)
13164 			return err;
13165 
13166 		if (BPF_SRC(insn->code) == BPF_X) {
13167 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
13168 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
13169 			bool need_id = src_reg->type == SCALAR_VALUE && !src_reg->id &&
13170 				       !tnum_is_const(src_reg->var_off);
13171 
13172 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13173 				if (insn->off == 0) {
13174 					/* case: R1 = R2
13175 					 * copy register state to dest reg
13176 					 */
13177 					if (need_id)
13178 						/* Assign src and dst registers the same ID
13179 						 * that will be used by find_equal_scalars()
13180 						 * to propagate min/max range.
13181 						 */
13182 						src_reg->id = ++env->id_gen;
13183 					copy_register_state(dst_reg, src_reg);
13184 					dst_reg->live |= REG_LIVE_WRITTEN;
13185 					dst_reg->subreg_def = DEF_NOT_SUBREG;
13186 				} else {
13187 					/* case: R1 = (s8, s16 s32)R2 */
13188 					if (is_pointer_value(env, insn->src_reg)) {
13189 						verbose(env,
13190 							"R%d sign-extension part of pointer\n",
13191 							insn->src_reg);
13192 						return -EACCES;
13193 					} else if (src_reg->type == SCALAR_VALUE) {
13194 						bool no_sext;
13195 
13196 						no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13197 						if (no_sext && need_id)
13198 							src_reg->id = ++env->id_gen;
13199 						copy_register_state(dst_reg, src_reg);
13200 						if (!no_sext)
13201 							dst_reg->id = 0;
13202 						coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
13203 						dst_reg->live |= REG_LIVE_WRITTEN;
13204 						dst_reg->subreg_def = DEF_NOT_SUBREG;
13205 					} else {
13206 						mark_reg_unknown(env, regs, insn->dst_reg);
13207 					}
13208 				}
13209 			} else {
13210 				/* R1 = (u32) R2 */
13211 				if (is_pointer_value(env, insn->src_reg)) {
13212 					verbose(env,
13213 						"R%d partial copy of pointer\n",
13214 						insn->src_reg);
13215 					return -EACCES;
13216 				} else if (src_reg->type == SCALAR_VALUE) {
13217 					if (insn->off == 0) {
13218 						bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
13219 
13220 						if (is_src_reg_u32 && need_id)
13221 							src_reg->id = ++env->id_gen;
13222 						copy_register_state(dst_reg, src_reg);
13223 						/* Make sure ID is cleared if src_reg is not in u32
13224 						 * range otherwise dst_reg min/max could be incorrectly
13225 						 * propagated into src_reg by find_equal_scalars()
13226 						 */
13227 						if (!is_src_reg_u32)
13228 							dst_reg->id = 0;
13229 						dst_reg->live |= REG_LIVE_WRITTEN;
13230 						dst_reg->subreg_def = env->insn_idx + 1;
13231 					} else {
13232 						/* case: W1 = (s8, s16)W2 */
13233 						bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
13234 
13235 						if (no_sext && need_id)
13236 							src_reg->id = ++env->id_gen;
13237 						copy_register_state(dst_reg, src_reg);
13238 						if (!no_sext)
13239 							dst_reg->id = 0;
13240 						dst_reg->live |= REG_LIVE_WRITTEN;
13241 						dst_reg->subreg_def = env->insn_idx + 1;
13242 						coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
13243 					}
13244 				} else {
13245 					mark_reg_unknown(env, regs,
13246 							 insn->dst_reg);
13247 				}
13248 				zext_32_to_64(dst_reg);
13249 				reg_bounds_sync(dst_reg);
13250 			}
13251 		} else {
13252 			/* case: R = imm
13253 			 * remember the value we stored into this reg
13254 			 */
13255 			/* clear any state __mark_reg_known doesn't set */
13256 			mark_reg_unknown(env, regs, insn->dst_reg);
13257 			regs[insn->dst_reg].type = SCALAR_VALUE;
13258 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
13259 				__mark_reg_known(regs + insn->dst_reg,
13260 						 insn->imm);
13261 			} else {
13262 				__mark_reg_known(regs + insn->dst_reg,
13263 						 (u32)insn->imm);
13264 			}
13265 		}
13266 
13267 	} else if (opcode > BPF_END) {
13268 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
13269 		return -EINVAL;
13270 
13271 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
13272 
13273 		if (BPF_SRC(insn->code) == BPF_X) {
13274 			if (insn->imm != 0 || insn->off > 1 ||
13275 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13276 				verbose(env, "BPF_ALU uses reserved fields\n");
13277 				return -EINVAL;
13278 			}
13279 			/* check src1 operand */
13280 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
13281 			if (err)
13282 				return err;
13283 		} else {
13284 			if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
13285 			    (insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
13286 				verbose(env, "BPF_ALU uses reserved fields\n");
13287 				return -EINVAL;
13288 			}
13289 		}
13290 
13291 		/* check src2 operand */
13292 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
13293 		if (err)
13294 			return err;
13295 
13296 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
13297 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
13298 			verbose(env, "div by zero\n");
13299 			return -EINVAL;
13300 		}
13301 
13302 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
13303 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
13304 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
13305 
13306 			if (insn->imm < 0 || insn->imm >= size) {
13307 				verbose(env, "invalid shift %d\n", insn->imm);
13308 				return -EINVAL;
13309 			}
13310 		}
13311 
13312 		/* check dest operand */
13313 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
13314 		if (err)
13315 			return err;
13316 
13317 		return adjust_reg_min_max_vals(env, insn);
13318 	}
13319 
13320 	return 0;
13321 }
13322 
13323 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
13324 				   struct bpf_reg_state *dst_reg,
13325 				   enum bpf_reg_type type,
13326 				   bool range_right_open)
13327 {
13328 	struct bpf_func_state *state;
13329 	struct bpf_reg_state *reg;
13330 	int new_range;
13331 
13332 	if (dst_reg->off < 0 ||
13333 	    (dst_reg->off == 0 && range_right_open))
13334 		/* This doesn't give us any range */
13335 		return;
13336 
13337 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
13338 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
13339 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
13340 		 * than pkt_end, but that's because it's also less than pkt.
13341 		 */
13342 		return;
13343 
13344 	new_range = dst_reg->off;
13345 	if (range_right_open)
13346 		new_range++;
13347 
13348 	/* Examples for register markings:
13349 	 *
13350 	 * pkt_data in dst register:
13351 	 *
13352 	 *   r2 = r3;
13353 	 *   r2 += 8;
13354 	 *   if (r2 > pkt_end) goto <handle exception>
13355 	 *   <access okay>
13356 	 *
13357 	 *   r2 = r3;
13358 	 *   r2 += 8;
13359 	 *   if (r2 < pkt_end) goto <access okay>
13360 	 *   <handle exception>
13361 	 *
13362 	 *   Where:
13363 	 *     r2 == dst_reg, pkt_end == src_reg
13364 	 *     r2=pkt(id=n,off=8,r=0)
13365 	 *     r3=pkt(id=n,off=0,r=0)
13366 	 *
13367 	 * pkt_data in src register:
13368 	 *
13369 	 *   r2 = r3;
13370 	 *   r2 += 8;
13371 	 *   if (pkt_end >= r2) goto <access okay>
13372 	 *   <handle exception>
13373 	 *
13374 	 *   r2 = r3;
13375 	 *   r2 += 8;
13376 	 *   if (pkt_end <= r2) goto <handle exception>
13377 	 *   <access okay>
13378 	 *
13379 	 *   Where:
13380 	 *     pkt_end == dst_reg, r2 == src_reg
13381 	 *     r2=pkt(id=n,off=8,r=0)
13382 	 *     r3=pkt(id=n,off=0,r=0)
13383 	 *
13384 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
13385 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
13386 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
13387 	 * the check.
13388 	 */
13389 
13390 	/* If our ids match, then we must have the same max_value.  And we
13391 	 * don't care about the other reg's fixed offset, since if it's too big
13392 	 * the range won't allow anything.
13393 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
13394 	 */
13395 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13396 		if (reg->type == type && reg->id == dst_reg->id)
13397 			/* keep the maximum range already checked */
13398 			reg->range = max(reg->range, new_range);
13399 	}));
13400 }
13401 
13402 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
13403 {
13404 	struct tnum subreg = tnum_subreg(reg->var_off);
13405 	s32 sval = (s32)val;
13406 
13407 	switch (opcode) {
13408 	case BPF_JEQ:
13409 		if (tnum_is_const(subreg))
13410 			return !!tnum_equals_const(subreg, val);
13411 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13412 			return 0;
13413 		break;
13414 	case BPF_JNE:
13415 		if (tnum_is_const(subreg))
13416 			return !tnum_equals_const(subreg, val);
13417 		else if (val < reg->u32_min_value || val > reg->u32_max_value)
13418 			return 1;
13419 		break;
13420 	case BPF_JSET:
13421 		if ((~subreg.mask & subreg.value) & val)
13422 			return 1;
13423 		if (!((subreg.mask | subreg.value) & val))
13424 			return 0;
13425 		break;
13426 	case BPF_JGT:
13427 		if (reg->u32_min_value > val)
13428 			return 1;
13429 		else if (reg->u32_max_value <= val)
13430 			return 0;
13431 		break;
13432 	case BPF_JSGT:
13433 		if (reg->s32_min_value > sval)
13434 			return 1;
13435 		else if (reg->s32_max_value <= sval)
13436 			return 0;
13437 		break;
13438 	case BPF_JLT:
13439 		if (reg->u32_max_value < val)
13440 			return 1;
13441 		else if (reg->u32_min_value >= val)
13442 			return 0;
13443 		break;
13444 	case BPF_JSLT:
13445 		if (reg->s32_max_value < sval)
13446 			return 1;
13447 		else if (reg->s32_min_value >= sval)
13448 			return 0;
13449 		break;
13450 	case BPF_JGE:
13451 		if (reg->u32_min_value >= val)
13452 			return 1;
13453 		else if (reg->u32_max_value < val)
13454 			return 0;
13455 		break;
13456 	case BPF_JSGE:
13457 		if (reg->s32_min_value >= sval)
13458 			return 1;
13459 		else if (reg->s32_max_value < sval)
13460 			return 0;
13461 		break;
13462 	case BPF_JLE:
13463 		if (reg->u32_max_value <= val)
13464 			return 1;
13465 		else if (reg->u32_min_value > val)
13466 			return 0;
13467 		break;
13468 	case BPF_JSLE:
13469 		if (reg->s32_max_value <= sval)
13470 			return 1;
13471 		else if (reg->s32_min_value > sval)
13472 			return 0;
13473 		break;
13474 	}
13475 
13476 	return -1;
13477 }
13478 
13479 
13480 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
13481 {
13482 	s64 sval = (s64)val;
13483 
13484 	switch (opcode) {
13485 	case BPF_JEQ:
13486 		if (tnum_is_const(reg->var_off))
13487 			return !!tnum_equals_const(reg->var_off, val);
13488 		else if (val < reg->umin_value || val > reg->umax_value)
13489 			return 0;
13490 		break;
13491 	case BPF_JNE:
13492 		if (tnum_is_const(reg->var_off))
13493 			return !tnum_equals_const(reg->var_off, val);
13494 		else if (val < reg->umin_value || val > reg->umax_value)
13495 			return 1;
13496 		break;
13497 	case BPF_JSET:
13498 		if ((~reg->var_off.mask & reg->var_off.value) & val)
13499 			return 1;
13500 		if (!((reg->var_off.mask | reg->var_off.value) & val))
13501 			return 0;
13502 		break;
13503 	case BPF_JGT:
13504 		if (reg->umin_value > val)
13505 			return 1;
13506 		else if (reg->umax_value <= val)
13507 			return 0;
13508 		break;
13509 	case BPF_JSGT:
13510 		if (reg->smin_value > sval)
13511 			return 1;
13512 		else if (reg->smax_value <= sval)
13513 			return 0;
13514 		break;
13515 	case BPF_JLT:
13516 		if (reg->umax_value < val)
13517 			return 1;
13518 		else if (reg->umin_value >= val)
13519 			return 0;
13520 		break;
13521 	case BPF_JSLT:
13522 		if (reg->smax_value < sval)
13523 			return 1;
13524 		else if (reg->smin_value >= sval)
13525 			return 0;
13526 		break;
13527 	case BPF_JGE:
13528 		if (reg->umin_value >= val)
13529 			return 1;
13530 		else if (reg->umax_value < val)
13531 			return 0;
13532 		break;
13533 	case BPF_JSGE:
13534 		if (reg->smin_value >= sval)
13535 			return 1;
13536 		else if (reg->smax_value < sval)
13537 			return 0;
13538 		break;
13539 	case BPF_JLE:
13540 		if (reg->umax_value <= val)
13541 			return 1;
13542 		else if (reg->umin_value > val)
13543 			return 0;
13544 		break;
13545 	case BPF_JSLE:
13546 		if (reg->smax_value <= sval)
13547 			return 1;
13548 		else if (reg->smin_value > sval)
13549 			return 0;
13550 		break;
13551 	}
13552 
13553 	return -1;
13554 }
13555 
13556 /* compute branch direction of the expression "if (reg opcode val) goto target;"
13557  * and return:
13558  *  1 - branch will be taken and "goto target" will be executed
13559  *  0 - branch will not be taken and fall-through to next insn
13560  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
13561  *      range [0,10]
13562  */
13563 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
13564 			   bool is_jmp32)
13565 {
13566 	if (__is_pointer_value(false, reg)) {
13567 		if (!reg_not_null(reg))
13568 			return -1;
13569 
13570 		/* If pointer is valid tests against zero will fail so we can
13571 		 * use this to direct branch taken.
13572 		 */
13573 		if (val != 0)
13574 			return -1;
13575 
13576 		switch (opcode) {
13577 		case BPF_JEQ:
13578 			return 0;
13579 		case BPF_JNE:
13580 			return 1;
13581 		default:
13582 			return -1;
13583 		}
13584 	}
13585 
13586 	if (is_jmp32)
13587 		return is_branch32_taken(reg, val, opcode);
13588 	return is_branch64_taken(reg, val, opcode);
13589 }
13590 
13591 static int flip_opcode(u32 opcode)
13592 {
13593 	/* How can we transform "a <op> b" into "b <op> a"? */
13594 	static const u8 opcode_flip[16] = {
13595 		/* these stay the same */
13596 		[BPF_JEQ  >> 4] = BPF_JEQ,
13597 		[BPF_JNE  >> 4] = BPF_JNE,
13598 		[BPF_JSET >> 4] = BPF_JSET,
13599 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
13600 		[BPF_JGE  >> 4] = BPF_JLE,
13601 		[BPF_JGT  >> 4] = BPF_JLT,
13602 		[BPF_JLE  >> 4] = BPF_JGE,
13603 		[BPF_JLT  >> 4] = BPF_JGT,
13604 		[BPF_JSGE >> 4] = BPF_JSLE,
13605 		[BPF_JSGT >> 4] = BPF_JSLT,
13606 		[BPF_JSLE >> 4] = BPF_JSGE,
13607 		[BPF_JSLT >> 4] = BPF_JSGT
13608 	};
13609 	return opcode_flip[opcode >> 4];
13610 }
13611 
13612 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
13613 				   struct bpf_reg_state *src_reg,
13614 				   u8 opcode)
13615 {
13616 	struct bpf_reg_state *pkt;
13617 
13618 	if (src_reg->type == PTR_TO_PACKET_END) {
13619 		pkt = dst_reg;
13620 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
13621 		pkt = src_reg;
13622 		opcode = flip_opcode(opcode);
13623 	} else {
13624 		return -1;
13625 	}
13626 
13627 	if (pkt->range >= 0)
13628 		return -1;
13629 
13630 	switch (opcode) {
13631 	case BPF_JLE:
13632 		/* pkt <= pkt_end */
13633 		fallthrough;
13634 	case BPF_JGT:
13635 		/* pkt > pkt_end */
13636 		if (pkt->range == BEYOND_PKT_END)
13637 			/* pkt has at last one extra byte beyond pkt_end */
13638 			return opcode == BPF_JGT;
13639 		break;
13640 	case BPF_JLT:
13641 		/* pkt < pkt_end */
13642 		fallthrough;
13643 	case BPF_JGE:
13644 		/* pkt >= pkt_end */
13645 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
13646 			return opcode == BPF_JGE;
13647 		break;
13648 	}
13649 	return -1;
13650 }
13651 
13652 /* Adjusts the register min/max values in the case that the dst_reg is the
13653  * variable register that we are working on, and src_reg is a constant or we're
13654  * simply doing a BPF_K check.
13655  * In JEQ/JNE cases we also adjust the var_off values.
13656  */
13657 static void reg_set_min_max(struct bpf_reg_state *true_reg,
13658 			    struct bpf_reg_state *false_reg,
13659 			    u64 val, u32 val32,
13660 			    u8 opcode, bool is_jmp32)
13661 {
13662 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
13663 	struct tnum false_64off = false_reg->var_off;
13664 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
13665 	struct tnum true_64off = true_reg->var_off;
13666 	s64 sval = (s64)val;
13667 	s32 sval32 = (s32)val32;
13668 
13669 	/* If the dst_reg is a pointer, we can't learn anything about its
13670 	 * variable offset from the compare (unless src_reg were a pointer into
13671 	 * the same object, but we don't bother with that.
13672 	 * Since false_reg and true_reg have the same type by construction, we
13673 	 * only need to check one of them for pointerness.
13674 	 */
13675 	if (__is_pointer_value(false, false_reg))
13676 		return;
13677 
13678 	switch (opcode) {
13679 	/* JEQ/JNE comparison doesn't change the register equivalence.
13680 	 *
13681 	 * r1 = r2;
13682 	 * if (r1 == 42) goto label;
13683 	 * ...
13684 	 * label: // here both r1 and r2 are known to be 42.
13685 	 *
13686 	 * Hence when marking register as known preserve it's ID.
13687 	 */
13688 	case BPF_JEQ:
13689 		if (is_jmp32) {
13690 			__mark_reg32_known(true_reg, val32);
13691 			true_32off = tnum_subreg(true_reg->var_off);
13692 		} else {
13693 			___mark_reg_known(true_reg, val);
13694 			true_64off = true_reg->var_off;
13695 		}
13696 		break;
13697 	case BPF_JNE:
13698 		if (is_jmp32) {
13699 			__mark_reg32_known(false_reg, val32);
13700 			false_32off = tnum_subreg(false_reg->var_off);
13701 		} else {
13702 			___mark_reg_known(false_reg, val);
13703 			false_64off = false_reg->var_off;
13704 		}
13705 		break;
13706 	case BPF_JSET:
13707 		if (is_jmp32) {
13708 			false_32off = tnum_and(false_32off, tnum_const(~val32));
13709 			if (is_power_of_2(val32))
13710 				true_32off = tnum_or(true_32off,
13711 						     tnum_const(val32));
13712 		} else {
13713 			false_64off = tnum_and(false_64off, tnum_const(~val));
13714 			if (is_power_of_2(val))
13715 				true_64off = tnum_or(true_64off,
13716 						     tnum_const(val));
13717 		}
13718 		break;
13719 	case BPF_JGE:
13720 	case BPF_JGT:
13721 	{
13722 		if (is_jmp32) {
13723 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
13724 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
13725 
13726 			false_reg->u32_max_value = min(false_reg->u32_max_value,
13727 						       false_umax);
13728 			true_reg->u32_min_value = max(true_reg->u32_min_value,
13729 						      true_umin);
13730 		} else {
13731 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
13732 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
13733 
13734 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
13735 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
13736 		}
13737 		break;
13738 	}
13739 	case BPF_JSGE:
13740 	case BPF_JSGT:
13741 	{
13742 		if (is_jmp32) {
13743 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
13744 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
13745 
13746 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
13747 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
13748 		} else {
13749 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
13750 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
13751 
13752 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
13753 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
13754 		}
13755 		break;
13756 	}
13757 	case BPF_JLE:
13758 	case BPF_JLT:
13759 	{
13760 		if (is_jmp32) {
13761 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
13762 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
13763 
13764 			false_reg->u32_min_value = max(false_reg->u32_min_value,
13765 						       false_umin);
13766 			true_reg->u32_max_value = min(true_reg->u32_max_value,
13767 						      true_umax);
13768 		} else {
13769 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
13770 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
13771 
13772 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
13773 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
13774 		}
13775 		break;
13776 	}
13777 	case BPF_JSLE:
13778 	case BPF_JSLT:
13779 	{
13780 		if (is_jmp32) {
13781 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
13782 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
13783 
13784 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
13785 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
13786 		} else {
13787 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
13788 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
13789 
13790 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
13791 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
13792 		}
13793 		break;
13794 	}
13795 	default:
13796 		return;
13797 	}
13798 
13799 	if (is_jmp32) {
13800 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
13801 					     tnum_subreg(false_32off));
13802 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
13803 					    tnum_subreg(true_32off));
13804 		__reg_combine_32_into_64(false_reg);
13805 		__reg_combine_32_into_64(true_reg);
13806 	} else {
13807 		false_reg->var_off = false_64off;
13808 		true_reg->var_off = true_64off;
13809 		__reg_combine_64_into_32(false_reg);
13810 		__reg_combine_64_into_32(true_reg);
13811 	}
13812 }
13813 
13814 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
13815  * the variable reg.
13816  */
13817 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
13818 				struct bpf_reg_state *false_reg,
13819 				u64 val, u32 val32,
13820 				u8 opcode, bool is_jmp32)
13821 {
13822 	opcode = flip_opcode(opcode);
13823 	/* This uses zero as "not present in table"; luckily the zero opcode,
13824 	 * BPF_JA, can't get here.
13825 	 */
13826 	if (opcode)
13827 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
13828 }
13829 
13830 /* Regs are known to be equal, so intersect their min/max/var_off */
13831 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
13832 				  struct bpf_reg_state *dst_reg)
13833 {
13834 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
13835 							dst_reg->umin_value);
13836 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
13837 							dst_reg->umax_value);
13838 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
13839 							dst_reg->smin_value);
13840 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
13841 							dst_reg->smax_value);
13842 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
13843 							     dst_reg->var_off);
13844 	reg_bounds_sync(src_reg);
13845 	reg_bounds_sync(dst_reg);
13846 }
13847 
13848 static void reg_combine_min_max(struct bpf_reg_state *true_src,
13849 				struct bpf_reg_state *true_dst,
13850 				struct bpf_reg_state *false_src,
13851 				struct bpf_reg_state *false_dst,
13852 				u8 opcode)
13853 {
13854 	switch (opcode) {
13855 	case BPF_JEQ:
13856 		__reg_combine_min_max(true_src, true_dst);
13857 		break;
13858 	case BPF_JNE:
13859 		__reg_combine_min_max(false_src, false_dst);
13860 		break;
13861 	}
13862 }
13863 
13864 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
13865 				 struct bpf_reg_state *reg, u32 id,
13866 				 bool is_null)
13867 {
13868 	if (type_may_be_null(reg->type) && reg->id == id &&
13869 	    (is_rcu_reg(reg) || !WARN_ON_ONCE(!reg->id))) {
13870 		/* Old offset (both fixed and variable parts) should have been
13871 		 * known-zero, because we don't allow pointer arithmetic on
13872 		 * pointers that might be NULL. If we see this happening, don't
13873 		 * convert the register.
13874 		 *
13875 		 * But in some cases, some helpers that return local kptrs
13876 		 * advance offset for the returned pointer. In those cases, it
13877 		 * is fine to expect to see reg->off.
13878 		 */
13879 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || !tnum_equals_const(reg->var_off, 0)))
13880 			return;
13881 		if (!(type_is_ptr_alloc_obj(reg->type) || type_is_non_owning_ref(reg->type)) &&
13882 		    WARN_ON_ONCE(reg->off))
13883 			return;
13884 
13885 		if (is_null) {
13886 			reg->type = SCALAR_VALUE;
13887 			/* We don't need id and ref_obj_id from this point
13888 			 * onwards anymore, thus we should better reset it,
13889 			 * so that state pruning has chances to take effect.
13890 			 */
13891 			reg->id = 0;
13892 			reg->ref_obj_id = 0;
13893 
13894 			return;
13895 		}
13896 
13897 		mark_ptr_not_null_reg(reg);
13898 
13899 		if (!reg_may_point_to_spin_lock(reg)) {
13900 			/* For not-NULL ptr, reg->ref_obj_id will be reset
13901 			 * in release_reference().
13902 			 *
13903 			 * reg->id is still used by spin_lock ptr. Other
13904 			 * than spin_lock ptr type, reg->id can be reset.
13905 			 */
13906 			reg->id = 0;
13907 		}
13908 	}
13909 }
13910 
13911 /* The logic is similar to find_good_pkt_pointers(), both could eventually
13912  * be folded together at some point.
13913  */
13914 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
13915 				  bool is_null)
13916 {
13917 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
13918 	struct bpf_reg_state *regs = state->regs, *reg;
13919 	u32 ref_obj_id = regs[regno].ref_obj_id;
13920 	u32 id = regs[regno].id;
13921 
13922 	if (ref_obj_id && ref_obj_id == id && is_null)
13923 		/* regs[regno] is in the " == NULL" branch.
13924 		 * No one could have freed the reference state before
13925 		 * doing the NULL check.
13926 		 */
13927 		WARN_ON_ONCE(release_reference_state(state, id));
13928 
13929 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
13930 		mark_ptr_or_null_reg(state, reg, id, is_null);
13931 	}));
13932 }
13933 
13934 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
13935 				   struct bpf_reg_state *dst_reg,
13936 				   struct bpf_reg_state *src_reg,
13937 				   struct bpf_verifier_state *this_branch,
13938 				   struct bpf_verifier_state *other_branch)
13939 {
13940 	if (BPF_SRC(insn->code) != BPF_X)
13941 		return false;
13942 
13943 	/* Pointers are always 64-bit. */
13944 	if (BPF_CLASS(insn->code) == BPF_JMP32)
13945 		return false;
13946 
13947 	switch (BPF_OP(insn->code)) {
13948 	case BPF_JGT:
13949 		if ((dst_reg->type == PTR_TO_PACKET &&
13950 		     src_reg->type == PTR_TO_PACKET_END) ||
13951 		    (dst_reg->type == PTR_TO_PACKET_META &&
13952 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13953 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
13954 			find_good_pkt_pointers(this_branch, dst_reg,
13955 					       dst_reg->type, false);
13956 			mark_pkt_end(other_branch, insn->dst_reg, true);
13957 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13958 			    src_reg->type == PTR_TO_PACKET) ||
13959 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13960 			    src_reg->type == PTR_TO_PACKET_META)) {
13961 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
13962 			find_good_pkt_pointers(other_branch, src_reg,
13963 					       src_reg->type, true);
13964 			mark_pkt_end(this_branch, insn->src_reg, false);
13965 		} else {
13966 			return false;
13967 		}
13968 		break;
13969 	case BPF_JLT:
13970 		if ((dst_reg->type == PTR_TO_PACKET &&
13971 		     src_reg->type == PTR_TO_PACKET_END) ||
13972 		    (dst_reg->type == PTR_TO_PACKET_META &&
13973 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13974 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
13975 			find_good_pkt_pointers(other_branch, dst_reg,
13976 					       dst_reg->type, true);
13977 			mark_pkt_end(this_branch, insn->dst_reg, false);
13978 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
13979 			    src_reg->type == PTR_TO_PACKET) ||
13980 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
13981 			    src_reg->type == PTR_TO_PACKET_META)) {
13982 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
13983 			find_good_pkt_pointers(this_branch, src_reg,
13984 					       src_reg->type, false);
13985 			mark_pkt_end(other_branch, insn->src_reg, true);
13986 		} else {
13987 			return false;
13988 		}
13989 		break;
13990 	case BPF_JGE:
13991 		if ((dst_reg->type == PTR_TO_PACKET &&
13992 		     src_reg->type == PTR_TO_PACKET_END) ||
13993 		    (dst_reg->type == PTR_TO_PACKET_META &&
13994 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
13995 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
13996 			find_good_pkt_pointers(this_branch, dst_reg,
13997 					       dst_reg->type, true);
13998 			mark_pkt_end(other_branch, insn->dst_reg, false);
13999 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14000 			    src_reg->type == PTR_TO_PACKET) ||
14001 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14002 			    src_reg->type == PTR_TO_PACKET_META)) {
14003 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
14004 			find_good_pkt_pointers(other_branch, src_reg,
14005 					       src_reg->type, false);
14006 			mark_pkt_end(this_branch, insn->src_reg, true);
14007 		} else {
14008 			return false;
14009 		}
14010 		break;
14011 	case BPF_JLE:
14012 		if ((dst_reg->type == PTR_TO_PACKET &&
14013 		     src_reg->type == PTR_TO_PACKET_END) ||
14014 		    (dst_reg->type == PTR_TO_PACKET_META &&
14015 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
14016 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
14017 			find_good_pkt_pointers(other_branch, dst_reg,
14018 					       dst_reg->type, false);
14019 			mark_pkt_end(this_branch, insn->dst_reg, true);
14020 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
14021 			    src_reg->type == PTR_TO_PACKET) ||
14022 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
14023 			    src_reg->type == PTR_TO_PACKET_META)) {
14024 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
14025 			find_good_pkt_pointers(this_branch, src_reg,
14026 					       src_reg->type, true);
14027 			mark_pkt_end(other_branch, insn->src_reg, false);
14028 		} else {
14029 			return false;
14030 		}
14031 		break;
14032 	default:
14033 		return false;
14034 	}
14035 
14036 	return true;
14037 }
14038 
14039 static void find_equal_scalars(struct bpf_verifier_state *vstate,
14040 			       struct bpf_reg_state *known_reg)
14041 {
14042 	struct bpf_func_state *state;
14043 	struct bpf_reg_state *reg;
14044 
14045 	bpf_for_each_reg_in_vstate(vstate, state, reg, ({
14046 		if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
14047 			copy_register_state(reg, known_reg);
14048 	}));
14049 }
14050 
14051 static int check_cond_jmp_op(struct bpf_verifier_env *env,
14052 			     struct bpf_insn *insn, int *insn_idx)
14053 {
14054 	struct bpf_verifier_state *this_branch = env->cur_state;
14055 	struct bpf_verifier_state *other_branch;
14056 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
14057 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
14058 	struct bpf_reg_state *eq_branch_regs;
14059 	u8 opcode = BPF_OP(insn->code);
14060 	bool is_jmp32;
14061 	int pred = -1;
14062 	int err;
14063 
14064 	/* Only conditional jumps are expected to reach here. */
14065 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
14066 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
14067 		return -EINVAL;
14068 	}
14069 
14070 	/* check src2 operand */
14071 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
14072 	if (err)
14073 		return err;
14074 
14075 	dst_reg = &regs[insn->dst_reg];
14076 	if (BPF_SRC(insn->code) == BPF_X) {
14077 		if (insn->imm != 0) {
14078 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14079 			return -EINVAL;
14080 		}
14081 
14082 		/* check src1 operand */
14083 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14084 		if (err)
14085 			return err;
14086 
14087 		src_reg = &regs[insn->src_reg];
14088 		if (!(reg_is_pkt_pointer_any(dst_reg) && reg_is_pkt_pointer_any(src_reg)) &&
14089 		    is_pointer_value(env, insn->src_reg)) {
14090 			verbose(env, "R%d pointer comparison prohibited\n",
14091 				insn->src_reg);
14092 			return -EACCES;
14093 		}
14094 	} else {
14095 		if (insn->src_reg != BPF_REG_0) {
14096 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
14097 			return -EINVAL;
14098 		}
14099 	}
14100 
14101 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
14102 
14103 	if (BPF_SRC(insn->code) == BPF_K) {
14104 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
14105 	} else if (src_reg->type == SCALAR_VALUE &&
14106 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
14107 		pred = is_branch_taken(dst_reg,
14108 				       tnum_subreg(src_reg->var_off).value,
14109 				       opcode,
14110 				       is_jmp32);
14111 	} else if (src_reg->type == SCALAR_VALUE &&
14112 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
14113 		pred = is_branch_taken(dst_reg,
14114 				       src_reg->var_off.value,
14115 				       opcode,
14116 				       is_jmp32);
14117 	} else if (dst_reg->type == SCALAR_VALUE &&
14118 		   is_jmp32 && tnum_is_const(tnum_subreg(dst_reg->var_off))) {
14119 		pred = is_branch_taken(src_reg,
14120 				       tnum_subreg(dst_reg->var_off).value,
14121 				       flip_opcode(opcode),
14122 				       is_jmp32);
14123 	} else if (dst_reg->type == SCALAR_VALUE &&
14124 		   !is_jmp32 && tnum_is_const(dst_reg->var_off)) {
14125 		pred = is_branch_taken(src_reg,
14126 				       dst_reg->var_off.value,
14127 				       flip_opcode(opcode),
14128 				       is_jmp32);
14129 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
14130 		   reg_is_pkt_pointer_any(src_reg) &&
14131 		   !is_jmp32) {
14132 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
14133 	}
14134 
14135 	if (pred >= 0) {
14136 		/* If we get here with a dst_reg pointer type it is because
14137 		 * above is_branch_taken() special cased the 0 comparison.
14138 		 */
14139 		if (!__is_pointer_value(false, dst_reg))
14140 			err = mark_chain_precision(env, insn->dst_reg);
14141 		if (BPF_SRC(insn->code) == BPF_X && !err &&
14142 		    !__is_pointer_value(false, src_reg))
14143 			err = mark_chain_precision(env, insn->src_reg);
14144 		if (err)
14145 			return err;
14146 	}
14147 
14148 	if (pred == 1) {
14149 		/* Only follow the goto, ignore fall-through. If needed, push
14150 		 * the fall-through branch for simulation under speculative
14151 		 * execution.
14152 		 */
14153 		if (!env->bypass_spec_v1 &&
14154 		    !sanitize_speculative_path(env, insn, *insn_idx + 1,
14155 					       *insn_idx))
14156 			return -EFAULT;
14157 		if (env->log.level & BPF_LOG_LEVEL)
14158 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14159 		*insn_idx += insn->off;
14160 		return 0;
14161 	} else if (pred == 0) {
14162 		/* Only follow the fall-through branch, since that's where the
14163 		 * program will go. If needed, push the goto branch for
14164 		 * simulation under speculative execution.
14165 		 */
14166 		if (!env->bypass_spec_v1 &&
14167 		    !sanitize_speculative_path(env, insn,
14168 					       *insn_idx + insn->off + 1,
14169 					       *insn_idx))
14170 			return -EFAULT;
14171 		if (env->log.level & BPF_LOG_LEVEL)
14172 			print_insn_state(env, this_branch->frame[this_branch->curframe]);
14173 		return 0;
14174 	}
14175 
14176 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
14177 				  false);
14178 	if (!other_branch)
14179 		return -EFAULT;
14180 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
14181 
14182 	/* detect if we are comparing against a constant value so we can adjust
14183 	 * our min/max values for our dst register.
14184 	 * this is only legit if both are scalars (or pointers to the same
14185 	 * object, I suppose, see the PTR_MAYBE_NULL related if block below),
14186 	 * because otherwise the different base pointers mean the offsets aren't
14187 	 * comparable.
14188 	 */
14189 	if (BPF_SRC(insn->code) == BPF_X) {
14190 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
14191 
14192 		if (dst_reg->type == SCALAR_VALUE &&
14193 		    src_reg->type == SCALAR_VALUE) {
14194 			if (tnum_is_const(src_reg->var_off) ||
14195 			    (is_jmp32 &&
14196 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
14197 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
14198 						dst_reg,
14199 						src_reg->var_off.value,
14200 						tnum_subreg(src_reg->var_off).value,
14201 						opcode, is_jmp32);
14202 			else if (tnum_is_const(dst_reg->var_off) ||
14203 				 (is_jmp32 &&
14204 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
14205 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
14206 						    src_reg,
14207 						    dst_reg->var_off.value,
14208 						    tnum_subreg(dst_reg->var_off).value,
14209 						    opcode, is_jmp32);
14210 			else if (!is_jmp32 &&
14211 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
14212 				/* Comparing for equality, we can combine knowledge */
14213 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
14214 						    &other_branch_regs[insn->dst_reg],
14215 						    src_reg, dst_reg, opcode);
14216 			if (src_reg->id &&
14217 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
14218 				find_equal_scalars(this_branch, src_reg);
14219 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
14220 			}
14221 
14222 		}
14223 	} else if (dst_reg->type == SCALAR_VALUE) {
14224 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
14225 					dst_reg, insn->imm, (u32)insn->imm,
14226 					opcode, is_jmp32);
14227 	}
14228 
14229 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
14230 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
14231 		find_equal_scalars(this_branch, dst_reg);
14232 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
14233 	}
14234 
14235 	/* if one pointer register is compared to another pointer
14236 	 * register check if PTR_MAYBE_NULL could be lifted.
14237 	 * E.g. register A - maybe null
14238 	 *      register B - not null
14239 	 * for JNE A, B, ... - A is not null in the false branch;
14240 	 * for JEQ A, B, ... - A is not null in the true branch.
14241 	 *
14242 	 * Since PTR_TO_BTF_ID points to a kernel struct that does
14243 	 * not need to be null checked by the BPF program, i.e.,
14244 	 * could be null even without PTR_MAYBE_NULL marking, so
14245 	 * only propagate nullness when neither reg is that type.
14246 	 */
14247 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_X &&
14248 	    __is_pointer_value(false, src_reg) && __is_pointer_value(false, dst_reg) &&
14249 	    type_may_be_null(src_reg->type) != type_may_be_null(dst_reg->type) &&
14250 	    base_type(src_reg->type) != PTR_TO_BTF_ID &&
14251 	    base_type(dst_reg->type) != PTR_TO_BTF_ID) {
14252 		eq_branch_regs = NULL;
14253 		switch (opcode) {
14254 		case BPF_JEQ:
14255 			eq_branch_regs = other_branch_regs;
14256 			break;
14257 		case BPF_JNE:
14258 			eq_branch_regs = regs;
14259 			break;
14260 		default:
14261 			/* do nothing */
14262 			break;
14263 		}
14264 		if (eq_branch_regs) {
14265 			if (type_may_be_null(src_reg->type))
14266 				mark_ptr_not_null_reg(&eq_branch_regs[insn->src_reg]);
14267 			else
14268 				mark_ptr_not_null_reg(&eq_branch_regs[insn->dst_reg]);
14269 		}
14270 	}
14271 
14272 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
14273 	 * NOTE: these optimizations below are related with pointer comparison
14274 	 *       which will never be JMP32.
14275 	 */
14276 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
14277 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
14278 	    type_may_be_null(dst_reg->type)) {
14279 		/* Mark all identical registers in each branch as either
14280 		 * safe or unknown depending R == 0 or R != 0 conditional.
14281 		 */
14282 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
14283 				      opcode == BPF_JNE);
14284 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
14285 				      opcode == BPF_JEQ);
14286 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
14287 					   this_branch, other_branch) &&
14288 		   is_pointer_value(env, insn->dst_reg)) {
14289 		verbose(env, "R%d pointer comparison prohibited\n",
14290 			insn->dst_reg);
14291 		return -EACCES;
14292 	}
14293 	if (env->log.level & BPF_LOG_LEVEL)
14294 		print_insn_state(env, this_branch->frame[this_branch->curframe]);
14295 	return 0;
14296 }
14297 
14298 /* verify BPF_LD_IMM64 instruction */
14299 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
14300 {
14301 	struct bpf_insn_aux_data *aux = cur_aux(env);
14302 	struct bpf_reg_state *regs = cur_regs(env);
14303 	struct bpf_reg_state *dst_reg;
14304 	struct bpf_map *map;
14305 	int err;
14306 
14307 	if (BPF_SIZE(insn->code) != BPF_DW) {
14308 		verbose(env, "invalid BPF_LD_IMM insn\n");
14309 		return -EINVAL;
14310 	}
14311 	if (insn->off != 0) {
14312 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
14313 		return -EINVAL;
14314 	}
14315 
14316 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
14317 	if (err)
14318 		return err;
14319 
14320 	dst_reg = &regs[insn->dst_reg];
14321 	if (insn->src_reg == 0) {
14322 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
14323 
14324 		dst_reg->type = SCALAR_VALUE;
14325 		__mark_reg_known(&regs[insn->dst_reg], imm);
14326 		return 0;
14327 	}
14328 
14329 	/* All special src_reg cases are listed below. From this point onwards
14330 	 * we either succeed and assign a corresponding dst_reg->type after
14331 	 * zeroing the offset, or fail and reject the program.
14332 	 */
14333 	mark_reg_known_zero(env, regs, insn->dst_reg);
14334 
14335 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
14336 		dst_reg->type = aux->btf_var.reg_type;
14337 		switch (base_type(dst_reg->type)) {
14338 		case PTR_TO_MEM:
14339 			dst_reg->mem_size = aux->btf_var.mem_size;
14340 			break;
14341 		case PTR_TO_BTF_ID:
14342 			dst_reg->btf = aux->btf_var.btf;
14343 			dst_reg->btf_id = aux->btf_var.btf_id;
14344 			break;
14345 		default:
14346 			verbose(env, "bpf verifier is misconfigured\n");
14347 			return -EFAULT;
14348 		}
14349 		return 0;
14350 	}
14351 
14352 	if (insn->src_reg == BPF_PSEUDO_FUNC) {
14353 		struct bpf_prog_aux *aux = env->prog->aux;
14354 		u32 subprogno = find_subprog(env,
14355 					     env->insn_idx + insn->imm + 1);
14356 
14357 		if (!aux->func_info) {
14358 			verbose(env, "missing btf func_info\n");
14359 			return -EINVAL;
14360 		}
14361 		if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
14362 			verbose(env, "callback function not static\n");
14363 			return -EINVAL;
14364 		}
14365 
14366 		dst_reg->type = PTR_TO_FUNC;
14367 		dst_reg->subprogno = subprogno;
14368 		return 0;
14369 	}
14370 
14371 	map = env->used_maps[aux->map_index];
14372 	dst_reg->map_ptr = map;
14373 
14374 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE ||
14375 	    insn->src_reg == BPF_PSEUDO_MAP_IDX_VALUE) {
14376 		dst_reg->type = PTR_TO_MAP_VALUE;
14377 		dst_reg->off = aux->map_off;
14378 		WARN_ON_ONCE(map->max_entries != 1);
14379 		/* We want reg->id to be same (0) as map_value is not distinct */
14380 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD ||
14381 		   insn->src_reg == BPF_PSEUDO_MAP_IDX) {
14382 		dst_reg->type = CONST_PTR_TO_MAP;
14383 	} else {
14384 		verbose(env, "bpf verifier is misconfigured\n");
14385 		return -EINVAL;
14386 	}
14387 
14388 	return 0;
14389 }
14390 
14391 static bool may_access_skb(enum bpf_prog_type type)
14392 {
14393 	switch (type) {
14394 	case BPF_PROG_TYPE_SOCKET_FILTER:
14395 	case BPF_PROG_TYPE_SCHED_CLS:
14396 	case BPF_PROG_TYPE_SCHED_ACT:
14397 		return true;
14398 	default:
14399 		return false;
14400 	}
14401 }
14402 
14403 /* verify safety of LD_ABS|LD_IND instructions:
14404  * - they can only appear in the programs where ctx == skb
14405  * - since they are wrappers of function calls, they scratch R1-R5 registers,
14406  *   preserve R6-R9, and store return value into R0
14407  *
14408  * Implicit input:
14409  *   ctx == skb == R6 == CTX
14410  *
14411  * Explicit input:
14412  *   SRC == any register
14413  *   IMM == 32-bit immediate
14414  *
14415  * Output:
14416  *   R0 - 8/16/32-bit skb data converted to cpu endianness
14417  */
14418 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
14419 {
14420 	struct bpf_reg_state *regs = cur_regs(env);
14421 	static const int ctx_reg = BPF_REG_6;
14422 	u8 mode = BPF_MODE(insn->code);
14423 	int i, err;
14424 
14425 	if (!may_access_skb(resolve_prog_type(env->prog))) {
14426 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
14427 		return -EINVAL;
14428 	}
14429 
14430 	if (!env->ops->gen_ld_abs) {
14431 		verbose(env, "bpf verifier is misconfigured\n");
14432 		return -EINVAL;
14433 	}
14434 
14435 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
14436 	    BPF_SIZE(insn->code) == BPF_DW ||
14437 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
14438 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
14439 		return -EINVAL;
14440 	}
14441 
14442 	/* check whether implicit source operand (register R6) is readable */
14443 	err = check_reg_arg(env, ctx_reg, SRC_OP);
14444 	if (err)
14445 		return err;
14446 
14447 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
14448 	 * gen_ld_abs() may terminate the program at runtime, leading to
14449 	 * reference leak.
14450 	 */
14451 	err = check_reference_leak(env);
14452 	if (err) {
14453 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
14454 		return err;
14455 	}
14456 
14457 	if (env->cur_state->active_lock.ptr) {
14458 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
14459 		return -EINVAL;
14460 	}
14461 
14462 	if (env->cur_state->active_rcu_lock) {
14463 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_rcu_read_lock-ed region\n");
14464 		return -EINVAL;
14465 	}
14466 
14467 	if (regs[ctx_reg].type != PTR_TO_CTX) {
14468 		verbose(env,
14469 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
14470 		return -EINVAL;
14471 	}
14472 
14473 	if (mode == BPF_IND) {
14474 		/* check explicit source operand */
14475 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
14476 		if (err)
14477 			return err;
14478 	}
14479 
14480 	err = check_ptr_off_reg(env, &regs[ctx_reg], ctx_reg);
14481 	if (err < 0)
14482 		return err;
14483 
14484 	/* reset caller saved regs to unreadable */
14485 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
14486 		mark_reg_not_init(env, regs, caller_saved[i]);
14487 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
14488 	}
14489 
14490 	/* mark destination R0 register as readable, since it contains
14491 	 * the value fetched from the packet.
14492 	 * Already marked as written above.
14493 	 */
14494 	mark_reg_unknown(env, regs, BPF_REG_0);
14495 	/* ld_abs load up to 32-bit skb data. */
14496 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
14497 	return 0;
14498 }
14499 
14500 static int check_return_code(struct bpf_verifier_env *env)
14501 {
14502 	struct tnum enforce_attach_type_range = tnum_unknown;
14503 	const struct bpf_prog *prog = env->prog;
14504 	struct bpf_reg_state *reg;
14505 	struct tnum range = tnum_range(0, 1), const_0 = tnum_const(0);
14506 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
14507 	int err;
14508 	struct bpf_func_state *frame = env->cur_state->frame[0];
14509 	const bool is_subprog = frame->subprogno;
14510 
14511 	/* LSM and struct_ops func-ptr's return type could be "void" */
14512 	if (!is_subprog) {
14513 		switch (prog_type) {
14514 		case BPF_PROG_TYPE_LSM:
14515 			if (prog->expected_attach_type == BPF_LSM_CGROUP)
14516 				/* See below, can be 0 or 0-1 depending on hook. */
14517 				break;
14518 			fallthrough;
14519 		case BPF_PROG_TYPE_STRUCT_OPS:
14520 			if (!prog->aux->attach_func_proto->type)
14521 				return 0;
14522 			break;
14523 		default:
14524 			break;
14525 		}
14526 	}
14527 
14528 	/* eBPF calling convention is such that R0 is used
14529 	 * to return the value from eBPF program.
14530 	 * Make sure that it's readable at this time
14531 	 * of bpf_exit, which means that program wrote
14532 	 * something into it earlier
14533 	 */
14534 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
14535 	if (err)
14536 		return err;
14537 
14538 	if (is_pointer_value(env, BPF_REG_0)) {
14539 		verbose(env, "R0 leaks addr as return value\n");
14540 		return -EACCES;
14541 	}
14542 
14543 	reg = cur_regs(env) + BPF_REG_0;
14544 
14545 	if (frame->in_async_callback_fn) {
14546 		/* enforce return zero from async callbacks like timer */
14547 		if (reg->type != SCALAR_VALUE) {
14548 			verbose(env, "In async callback the register R0 is not a known value (%s)\n",
14549 				reg_type_str(env, reg->type));
14550 			return -EINVAL;
14551 		}
14552 
14553 		if (!tnum_in(const_0, reg->var_off)) {
14554 			verbose_invalid_scalar(env, reg, &const_0, "async callback", "R0");
14555 			return -EINVAL;
14556 		}
14557 		return 0;
14558 	}
14559 
14560 	if (is_subprog) {
14561 		if (reg->type != SCALAR_VALUE) {
14562 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
14563 				reg_type_str(env, reg->type));
14564 			return -EINVAL;
14565 		}
14566 		return 0;
14567 	}
14568 
14569 	switch (prog_type) {
14570 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
14571 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
14572 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
14573 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
14574 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
14575 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
14576 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
14577 			range = tnum_range(1, 1);
14578 		if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
14579 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
14580 			range = tnum_range(0, 3);
14581 		break;
14582 	case BPF_PROG_TYPE_CGROUP_SKB:
14583 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
14584 			range = tnum_range(0, 3);
14585 			enforce_attach_type_range = tnum_range(2, 3);
14586 		}
14587 		break;
14588 	case BPF_PROG_TYPE_CGROUP_SOCK:
14589 	case BPF_PROG_TYPE_SOCK_OPS:
14590 	case BPF_PROG_TYPE_CGROUP_DEVICE:
14591 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
14592 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
14593 		break;
14594 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
14595 		if (!env->prog->aux->attach_btf_id)
14596 			return 0;
14597 		range = tnum_const(0);
14598 		break;
14599 	case BPF_PROG_TYPE_TRACING:
14600 		switch (env->prog->expected_attach_type) {
14601 		case BPF_TRACE_FENTRY:
14602 		case BPF_TRACE_FEXIT:
14603 			range = tnum_const(0);
14604 			break;
14605 		case BPF_TRACE_RAW_TP:
14606 		case BPF_MODIFY_RETURN:
14607 			return 0;
14608 		case BPF_TRACE_ITER:
14609 			break;
14610 		default:
14611 			return -ENOTSUPP;
14612 		}
14613 		break;
14614 	case BPF_PROG_TYPE_SK_LOOKUP:
14615 		range = tnum_range(SK_DROP, SK_PASS);
14616 		break;
14617 
14618 	case BPF_PROG_TYPE_LSM:
14619 		if (env->prog->expected_attach_type != BPF_LSM_CGROUP) {
14620 			/* Regular BPF_PROG_TYPE_LSM programs can return
14621 			 * any value.
14622 			 */
14623 			return 0;
14624 		}
14625 		if (!env->prog->aux->attach_func_proto->type) {
14626 			/* Make sure programs that attach to void
14627 			 * hooks don't try to modify return value.
14628 			 */
14629 			range = tnum_range(1, 1);
14630 		}
14631 		break;
14632 
14633 	case BPF_PROG_TYPE_NETFILTER:
14634 		range = tnum_range(NF_DROP, NF_ACCEPT);
14635 		break;
14636 	case BPF_PROG_TYPE_EXT:
14637 		/* freplace program can return anything as its return value
14638 		 * depends on the to-be-replaced kernel func or bpf program.
14639 		 */
14640 	default:
14641 		return 0;
14642 	}
14643 
14644 	if (reg->type != SCALAR_VALUE) {
14645 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
14646 			reg_type_str(env, reg->type));
14647 		return -EINVAL;
14648 	}
14649 
14650 	if (!tnum_in(range, reg->var_off)) {
14651 		verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
14652 		if (prog->expected_attach_type == BPF_LSM_CGROUP &&
14653 		    prog_type == BPF_PROG_TYPE_LSM &&
14654 		    !prog->aux->attach_func_proto->type)
14655 			verbose(env, "Note, BPF_LSM_CGROUP that attach to void LSM hooks can't modify return value!\n");
14656 		return -EINVAL;
14657 	}
14658 
14659 	if (!tnum_is_unknown(enforce_attach_type_range) &&
14660 	    tnum_in(enforce_attach_type_range, reg->var_off))
14661 		env->prog->enforce_expected_attach_type = 1;
14662 	return 0;
14663 }
14664 
14665 /* non-recursive DFS pseudo code
14666  * 1  procedure DFS-iterative(G,v):
14667  * 2      label v as discovered
14668  * 3      let S be a stack
14669  * 4      S.push(v)
14670  * 5      while S is not empty
14671  * 6            t <- S.peek()
14672  * 7            if t is what we're looking for:
14673  * 8                return t
14674  * 9            for all edges e in G.adjacentEdges(t) do
14675  * 10               if edge e is already labelled
14676  * 11                   continue with the next edge
14677  * 12               w <- G.adjacentVertex(t,e)
14678  * 13               if vertex w is not discovered and not explored
14679  * 14                   label e as tree-edge
14680  * 15                   label w as discovered
14681  * 16                   S.push(w)
14682  * 17                   continue at 5
14683  * 18               else if vertex w is discovered
14684  * 19                   label e as back-edge
14685  * 20               else
14686  * 21                   // vertex w is explored
14687  * 22                   label e as forward- or cross-edge
14688  * 23           label t as explored
14689  * 24           S.pop()
14690  *
14691  * convention:
14692  * 0x10 - discovered
14693  * 0x11 - discovered and fall-through edge labelled
14694  * 0x12 - discovered and fall-through and branch edges labelled
14695  * 0x20 - explored
14696  */
14697 
14698 enum {
14699 	DISCOVERED = 0x10,
14700 	EXPLORED = 0x20,
14701 	FALLTHROUGH = 1,
14702 	BRANCH = 2,
14703 };
14704 
14705 static u32 state_htab_size(struct bpf_verifier_env *env)
14706 {
14707 	return env->prog->len;
14708 }
14709 
14710 static struct bpf_verifier_state_list **explored_state(
14711 					struct bpf_verifier_env *env,
14712 					int idx)
14713 {
14714 	struct bpf_verifier_state *cur = env->cur_state;
14715 	struct bpf_func_state *state = cur->frame[cur->curframe];
14716 
14717 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
14718 }
14719 
14720 static void mark_prune_point(struct bpf_verifier_env *env, int idx)
14721 {
14722 	env->insn_aux_data[idx].prune_point = true;
14723 }
14724 
14725 static bool is_prune_point(struct bpf_verifier_env *env, int insn_idx)
14726 {
14727 	return env->insn_aux_data[insn_idx].prune_point;
14728 }
14729 
14730 static void mark_force_checkpoint(struct bpf_verifier_env *env, int idx)
14731 {
14732 	env->insn_aux_data[idx].force_checkpoint = true;
14733 }
14734 
14735 static bool is_force_checkpoint(struct bpf_verifier_env *env, int insn_idx)
14736 {
14737 	return env->insn_aux_data[insn_idx].force_checkpoint;
14738 }
14739 
14740 
14741 enum {
14742 	DONE_EXPLORING = 0,
14743 	KEEP_EXPLORING = 1,
14744 };
14745 
14746 /* t, w, e - match pseudo-code above:
14747  * t - index of current instruction
14748  * w - next instruction
14749  * e - edge
14750  */
14751 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
14752 {
14753 	int *insn_stack = env->cfg.insn_stack;
14754 	int *insn_state = env->cfg.insn_state;
14755 
14756 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
14757 		return DONE_EXPLORING;
14758 
14759 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
14760 		return DONE_EXPLORING;
14761 
14762 	if (w < 0 || w >= env->prog->len) {
14763 		verbose_linfo(env, t, "%d: ", t);
14764 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
14765 		return -EINVAL;
14766 	}
14767 
14768 	if (e == BRANCH) {
14769 		/* mark branch target for state pruning */
14770 		mark_prune_point(env, w);
14771 		mark_jmp_point(env, w);
14772 	}
14773 
14774 	if (insn_state[w] == 0) {
14775 		/* tree-edge */
14776 		insn_state[t] = DISCOVERED | e;
14777 		insn_state[w] = DISCOVERED;
14778 		if (env->cfg.cur_stack >= env->prog->len)
14779 			return -E2BIG;
14780 		insn_stack[env->cfg.cur_stack++] = w;
14781 		return KEEP_EXPLORING;
14782 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
14783 		if (env->bpf_capable)
14784 			return DONE_EXPLORING;
14785 		verbose_linfo(env, t, "%d: ", t);
14786 		verbose_linfo(env, w, "%d: ", w);
14787 		verbose(env, "back-edge from insn %d to %d\n", t, w);
14788 		return -EINVAL;
14789 	} else if (insn_state[w] == EXPLORED) {
14790 		/* forward- or cross-edge */
14791 		insn_state[t] = DISCOVERED | e;
14792 	} else {
14793 		verbose(env, "insn state internal bug\n");
14794 		return -EFAULT;
14795 	}
14796 	return DONE_EXPLORING;
14797 }
14798 
14799 static int visit_func_call_insn(int t, struct bpf_insn *insns,
14800 				struct bpf_verifier_env *env,
14801 				bool visit_callee)
14802 {
14803 	int ret, insn_sz;
14804 
14805 	insn_sz = bpf_is_ldimm64(&insns[t]) ? 2 : 1;
14806 	ret = push_insn(t, t + insn_sz, FALLTHROUGH, env);
14807 	if (ret)
14808 		return ret;
14809 
14810 	mark_prune_point(env, t + insn_sz);
14811 	/* when we exit from subprog, we need to record non-linear history */
14812 	mark_jmp_point(env, t + insn_sz);
14813 
14814 	if (visit_callee) {
14815 		mark_prune_point(env, t);
14816 		ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
14817 	}
14818 	return ret;
14819 }
14820 
14821 /* Visits the instruction at index t and returns one of the following:
14822  *  < 0 - an error occurred
14823  *  DONE_EXPLORING - the instruction was fully explored
14824  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
14825  */
14826 static int visit_insn(int t, struct bpf_verifier_env *env)
14827 {
14828 	struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
14829 	int ret, off, insn_sz;
14830 
14831 	if (bpf_pseudo_func(insn))
14832 		return visit_func_call_insn(t, insns, env, true);
14833 
14834 	/* All non-branch instructions have a single fall-through edge. */
14835 	if (BPF_CLASS(insn->code) != BPF_JMP &&
14836 	    BPF_CLASS(insn->code) != BPF_JMP32) {
14837 		insn_sz = bpf_is_ldimm64(insn) ? 2 : 1;
14838 		return push_insn(t, t + insn_sz, FALLTHROUGH, env);
14839 	}
14840 
14841 	switch (BPF_OP(insn->code)) {
14842 	case BPF_EXIT:
14843 		return DONE_EXPLORING;
14844 
14845 	case BPF_CALL:
14846 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_timer_set_callback)
14847 			/* Mark this call insn as a prune point to trigger
14848 			 * is_state_visited() check before call itself is
14849 			 * processed by __check_func_call(). Otherwise new
14850 			 * async state will be pushed for further exploration.
14851 			 */
14852 			mark_prune_point(env, t);
14853 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
14854 			struct bpf_kfunc_call_arg_meta meta;
14855 
14856 			ret = fetch_kfunc_meta(env, insn, &meta, NULL);
14857 			if (ret == 0 && is_iter_next_kfunc(&meta)) {
14858 				mark_prune_point(env, t);
14859 				/* Checking and saving state checkpoints at iter_next() call
14860 				 * is crucial for fast convergence of open-coded iterator loop
14861 				 * logic, so we need to force it. If we don't do that,
14862 				 * is_state_visited() might skip saving a checkpoint, causing
14863 				 * unnecessarily long sequence of not checkpointed
14864 				 * instructions and jumps, leading to exhaustion of jump
14865 				 * history buffer, and potentially other undesired outcomes.
14866 				 * It is expected that with correct open-coded iterators
14867 				 * convergence will happen quickly, so we don't run a risk of
14868 				 * exhausting memory.
14869 				 */
14870 				mark_force_checkpoint(env, t);
14871 			}
14872 		}
14873 		return visit_func_call_insn(t, insns, env, insn->src_reg == BPF_PSEUDO_CALL);
14874 
14875 	case BPF_JA:
14876 		if (BPF_SRC(insn->code) != BPF_K)
14877 			return -EINVAL;
14878 
14879 		if (BPF_CLASS(insn->code) == BPF_JMP)
14880 			off = insn->off;
14881 		else
14882 			off = insn->imm;
14883 
14884 		/* unconditional jump with single edge */
14885 		ret = push_insn(t, t + off + 1, FALLTHROUGH, env);
14886 		if (ret)
14887 			return ret;
14888 
14889 		mark_prune_point(env, t + off + 1);
14890 		mark_jmp_point(env, t + off + 1);
14891 
14892 		return ret;
14893 
14894 	default:
14895 		/* conditional jump with two edges */
14896 		mark_prune_point(env, t);
14897 
14898 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
14899 		if (ret)
14900 			return ret;
14901 
14902 		return push_insn(t, t + insn->off + 1, BRANCH, env);
14903 	}
14904 }
14905 
14906 /* non-recursive depth-first-search to detect loops in BPF program
14907  * loop == back-edge in directed graph
14908  */
14909 static int check_cfg(struct bpf_verifier_env *env)
14910 {
14911 	int insn_cnt = env->prog->len;
14912 	int *insn_stack, *insn_state;
14913 	int ret = 0;
14914 	int i;
14915 
14916 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14917 	if (!insn_state)
14918 		return -ENOMEM;
14919 
14920 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
14921 	if (!insn_stack) {
14922 		kvfree(insn_state);
14923 		return -ENOMEM;
14924 	}
14925 
14926 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
14927 	insn_stack[0] = 0; /* 0 is the first instruction */
14928 	env->cfg.cur_stack = 1;
14929 
14930 	while (env->cfg.cur_stack > 0) {
14931 		int t = insn_stack[env->cfg.cur_stack - 1];
14932 
14933 		ret = visit_insn(t, env);
14934 		switch (ret) {
14935 		case DONE_EXPLORING:
14936 			insn_state[t] = EXPLORED;
14937 			env->cfg.cur_stack--;
14938 			break;
14939 		case KEEP_EXPLORING:
14940 			break;
14941 		default:
14942 			if (ret > 0) {
14943 				verbose(env, "visit_insn internal bug\n");
14944 				ret = -EFAULT;
14945 			}
14946 			goto err_free;
14947 		}
14948 	}
14949 
14950 	if (env->cfg.cur_stack < 0) {
14951 		verbose(env, "pop stack internal bug\n");
14952 		ret = -EFAULT;
14953 		goto err_free;
14954 	}
14955 
14956 	for (i = 0; i < insn_cnt; i++) {
14957 		struct bpf_insn *insn = &env->prog->insnsi[i];
14958 
14959 		if (insn_state[i] != EXPLORED) {
14960 			verbose(env, "unreachable insn %d\n", i);
14961 			ret = -EINVAL;
14962 			goto err_free;
14963 		}
14964 		if (bpf_is_ldimm64(insn)) {
14965 			if (insn_state[i + 1] != 0) {
14966 				verbose(env, "jump into the middle of ldimm64 insn %d\n", i);
14967 				ret = -EINVAL;
14968 				goto err_free;
14969 			}
14970 			i++; /* skip second half of ldimm64 */
14971 		}
14972 	}
14973 	ret = 0; /* cfg looks good */
14974 
14975 err_free:
14976 	kvfree(insn_state);
14977 	kvfree(insn_stack);
14978 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
14979 	return ret;
14980 }
14981 
14982 static int check_abnormal_return(struct bpf_verifier_env *env)
14983 {
14984 	int i;
14985 
14986 	for (i = 1; i < env->subprog_cnt; i++) {
14987 		if (env->subprog_info[i].has_ld_abs) {
14988 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
14989 			return -EINVAL;
14990 		}
14991 		if (env->subprog_info[i].has_tail_call) {
14992 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
14993 			return -EINVAL;
14994 		}
14995 	}
14996 	return 0;
14997 }
14998 
14999 /* The minimum supported BTF func info size */
15000 #define MIN_BPF_FUNCINFO_SIZE	8
15001 #define MAX_FUNCINFO_REC_SIZE	252
15002 
15003 static int check_btf_func(struct bpf_verifier_env *env,
15004 			  const union bpf_attr *attr,
15005 			  bpfptr_t uattr)
15006 {
15007 	const struct btf_type *type, *func_proto, *ret_type;
15008 	u32 i, nfuncs, urec_size, min_size;
15009 	u32 krec_size = sizeof(struct bpf_func_info);
15010 	struct bpf_func_info *krecord;
15011 	struct bpf_func_info_aux *info_aux = NULL;
15012 	struct bpf_prog *prog;
15013 	const struct btf *btf;
15014 	bpfptr_t urecord;
15015 	u32 prev_offset = 0;
15016 	bool scalar_return;
15017 	int ret = -ENOMEM;
15018 
15019 	nfuncs = attr->func_info_cnt;
15020 	if (!nfuncs) {
15021 		if (check_abnormal_return(env))
15022 			return -EINVAL;
15023 		return 0;
15024 	}
15025 
15026 	if (nfuncs != env->subprog_cnt) {
15027 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
15028 		return -EINVAL;
15029 	}
15030 
15031 	urec_size = attr->func_info_rec_size;
15032 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
15033 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
15034 	    urec_size % sizeof(u32)) {
15035 		verbose(env, "invalid func info rec size %u\n", urec_size);
15036 		return -EINVAL;
15037 	}
15038 
15039 	prog = env->prog;
15040 	btf = prog->aux->btf;
15041 
15042 	urecord = make_bpfptr(attr->func_info, uattr.is_kernel);
15043 	min_size = min_t(u32, krec_size, urec_size);
15044 
15045 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
15046 	if (!krecord)
15047 		return -ENOMEM;
15048 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
15049 	if (!info_aux)
15050 		goto err_free;
15051 
15052 	for (i = 0; i < nfuncs; i++) {
15053 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
15054 		if (ret) {
15055 			if (ret == -E2BIG) {
15056 				verbose(env, "nonzero tailing record in func info");
15057 				/* set the size kernel expects so loader can zero
15058 				 * out the rest of the record.
15059 				 */
15060 				if (copy_to_bpfptr_offset(uattr,
15061 							  offsetof(union bpf_attr, func_info_rec_size),
15062 							  &min_size, sizeof(min_size)))
15063 					ret = -EFAULT;
15064 			}
15065 			goto err_free;
15066 		}
15067 
15068 		if (copy_from_bpfptr(&krecord[i], urecord, min_size)) {
15069 			ret = -EFAULT;
15070 			goto err_free;
15071 		}
15072 
15073 		/* check insn_off */
15074 		ret = -EINVAL;
15075 		if (i == 0) {
15076 			if (krecord[i].insn_off) {
15077 				verbose(env,
15078 					"nonzero insn_off %u for the first func info record",
15079 					krecord[i].insn_off);
15080 				goto err_free;
15081 			}
15082 		} else if (krecord[i].insn_off <= prev_offset) {
15083 			verbose(env,
15084 				"same or smaller insn offset (%u) than previous func info record (%u)",
15085 				krecord[i].insn_off, prev_offset);
15086 			goto err_free;
15087 		}
15088 
15089 		if (env->subprog_info[i].start != krecord[i].insn_off) {
15090 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
15091 			goto err_free;
15092 		}
15093 
15094 		/* check type_id */
15095 		type = btf_type_by_id(btf, krecord[i].type_id);
15096 		if (!type || !btf_type_is_func(type)) {
15097 			verbose(env, "invalid type id %d in func info",
15098 				krecord[i].type_id);
15099 			goto err_free;
15100 		}
15101 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
15102 
15103 		func_proto = btf_type_by_id(btf, type->type);
15104 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
15105 			/* btf_func_check() already verified it during BTF load */
15106 			goto err_free;
15107 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
15108 		scalar_return =
15109 			btf_type_is_small_int(ret_type) || btf_is_any_enum(ret_type);
15110 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
15111 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
15112 			goto err_free;
15113 		}
15114 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
15115 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
15116 			goto err_free;
15117 		}
15118 
15119 		prev_offset = krecord[i].insn_off;
15120 		bpfptr_add(&urecord, urec_size);
15121 	}
15122 
15123 	prog->aux->func_info = krecord;
15124 	prog->aux->func_info_cnt = nfuncs;
15125 	prog->aux->func_info_aux = info_aux;
15126 	return 0;
15127 
15128 err_free:
15129 	kvfree(krecord);
15130 	kfree(info_aux);
15131 	return ret;
15132 }
15133 
15134 static void adjust_btf_func(struct bpf_verifier_env *env)
15135 {
15136 	struct bpf_prog_aux *aux = env->prog->aux;
15137 	int i;
15138 
15139 	if (!aux->func_info)
15140 		return;
15141 
15142 	for (i = 0; i < env->subprog_cnt; i++)
15143 		aux->func_info[i].insn_off = env->subprog_info[i].start;
15144 }
15145 
15146 #define MIN_BPF_LINEINFO_SIZE	offsetofend(struct bpf_line_info, line_col)
15147 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
15148 
15149 static int check_btf_line(struct bpf_verifier_env *env,
15150 			  const union bpf_attr *attr,
15151 			  bpfptr_t uattr)
15152 {
15153 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
15154 	struct bpf_subprog_info *sub;
15155 	struct bpf_line_info *linfo;
15156 	struct bpf_prog *prog;
15157 	const struct btf *btf;
15158 	bpfptr_t ulinfo;
15159 	int err;
15160 
15161 	nr_linfo = attr->line_info_cnt;
15162 	if (!nr_linfo)
15163 		return 0;
15164 	if (nr_linfo > INT_MAX / sizeof(struct bpf_line_info))
15165 		return -EINVAL;
15166 
15167 	rec_size = attr->line_info_rec_size;
15168 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
15169 	    rec_size > MAX_LINEINFO_REC_SIZE ||
15170 	    rec_size & (sizeof(u32) - 1))
15171 		return -EINVAL;
15172 
15173 	/* Need to zero it in case the userspace may
15174 	 * pass in a smaller bpf_line_info object.
15175 	 */
15176 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
15177 			 GFP_KERNEL | __GFP_NOWARN);
15178 	if (!linfo)
15179 		return -ENOMEM;
15180 
15181 	prog = env->prog;
15182 	btf = prog->aux->btf;
15183 
15184 	s = 0;
15185 	sub = env->subprog_info;
15186 	ulinfo = make_bpfptr(attr->line_info, uattr.is_kernel);
15187 	expected_size = sizeof(struct bpf_line_info);
15188 	ncopy = min_t(u32, expected_size, rec_size);
15189 	for (i = 0; i < nr_linfo; i++) {
15190 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
15191 		if (err) {
15192 			if (err == -E2BIG) {
15193 				verbose(env, "nonzero tailing record in line_info");
15194 				if (copy_to_bpfptr_offset(uattr,
15195 							  offsetof(union bpf_attr, line_info_rec_size),
15196 							  &expected_size, sizeof(expected_size)))
15197 					err = -EFAULT;
15198 			}
15199 			goto err_free;
15200 		}
15201 
15202 		if (copy_from_bpfptr(&linfo[i], ulinfo, ncopy)) {
15203 			err = -EFAULT;
15204 			goto err_free;
15205 		}
15206 
15207 		/*
15208 		 * Check insn_off to ensure
15209 		 * 1) strictly increasing AND
15210 		 * 2) bounded by prog->len
15211 		 *
15212 		 * The linfo[0].insn_off == 0 check logically falls into
15213 		 * the later "missing bpf_line_info for func..." case
15214 		 * because the first linfo[0].insn_off must be the
15215 		 * first sub also and the first sub must have
15216 		 * subprog_info[0].start == 0.
15217 		 */
15218 		if ((i && linfo[i].insn_off <= prev_offset) ||
15219 		    linfo[i].insn_off >= prog->len) {
15220 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
15221 				i, linfo[i].insn_off, prev_offset,
15222 				prog->len);
15223 			err = -EINVAL;
15224 			goto err_free;
15225 		}
15226 
15227 		if (!prog->insnsi[linfo[i].insn_off].code) {
15228 			verbose(env,
15229 				"Invalid insn code at line_info[%u].insn_off\n",
15230 				i);
15231 			err = -EINVAL;
15232 			goto err_free;
15233 		}
15234 
15235 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
15236 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
15237 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
15238 			err = -EINVAL;
15239 			goto err_free;
15240 		}
15241 
15242 		if (s != env->subprog_cnt) {
15243 			if (linfo[i].insn_off == sub[s].start) {
15244 				sub[s].linfo_idx = i;
15245 				s++;
15246 			} else if (sub[s].start < linfo[i].insn_off) {
15247 				verbose(env, "missing bpf_line_info for func#%u\n", s);
15248 				err = -EINVAL;
15249 				goto err_free;
15250 			}
15251 		}
15252 
15253 		prev_offset = linfo[i].insn_off;
15254 		bpfptr_add(&ulinfo, rec_size);
15255 	}
15256 
15257 	if (s != env->subprog_cnt) {
15258 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
15259 			env->subprog_cnt - s, s);
15260 		err = -EINVAL;
15261 		goto err_free;
15262 	}
15263 
15264 	prog->aux->linfo = linfo;
15265 	prog->aux->nr_linfo = nr_linfo;
15266 
15267 	return 0;
15268 
15269 err_free:
15270 	kvfree(linfo);
15271 	return err;
15272 }
15273 
15274 #define MIN_CORE_RELO_SIZE	sizeof(struct bpf_core_relo)
15275 #define MAX_CORE_RELO_SIZE	MAX_FUNCINFO_REC_SIZE
15276 
15277 static int check_core_relo(struct bpf_verifier_env *env,
15278 			   const union bpf_attr *attr,
15279 			   bpfptr_t uattr)
15280 {
15281 	u32 i, nr_core_relo, ncopy, expected_size, rec_size;
15282 	struct bpf_core_relo core_relo = {};
15283 	struct bpf_prog *prog = env->prog;
15284 	const struct btf *btf = prog->aux->btf;
15285 	struct bpf_core_ctx ctx = {
15286 		.log = &env->log,
15287 		.btf = btf,
15288 	};
15289 	bpfptr_t u_core_relo;
15290 	int err;
15291 
15292 	nr_core_relo = attr->core_relo_cnt;
15293 	if (!nr_core_relo)
15294 		return 0;
15295 	if (nr_core_relo > INT_MAX / sizeof(struct bpf_core_relo))
15296 		return -EINVAL;
15297 
15298 	rec_size = attr->core_relo_rec_size;
15299 	if (rec_size < MIN_CORE_RELO_SIZE ||
15300 	    rec_size > MAX_CORE_RELO_SIZE ||
15301 	    rec_size % sizeof(u32))
15302 		return -EINVAL;
15303 
15304 	u_core_relo = make_bpfptr(attr->core_relos, uattr.is_kernel);
15305 	expected_size = sizeof(struct bpf_core_relo);
15306 	ncopy = min_t(u32, expected_size, rec_size);
15307 
15308 	/* Unlike func_info and line_info, copy and apply each CO-RE
15309 	 * relocation record one at a time.
15310 	 */
15311 	for (i = 0; i < nr_core_relo; i++) {
15312 		/* future proofing when sizeof(bpf_core_relo) changes */
15313 		err = bpf_check_uarg_tail_zero(u_core_relo, expected_size, rec_size);
15314 		if (err) {
15315 			if (err == -E2BIG) {
15316 				verbose(env, "nonzero tailing record in core_relo");
15317 				if (copy_to_bpfptr_offset(uattr,
15318 							  offsetof(union bpf_attr, core_relo_rec_size),
15319 							  &expected_size, sizeof(expected_size)))
15320 					err = -EFAULT;
15321 			}
15322 			break;
15323 		}
15324 
15325 		if (copy_from_bpfptr(&core_relo, u_core_relo, ncopy)) {
15326 			err = -EFAULT;
15327 			break;
15328 		}
15329 
15330 		if (core_relo.insn_off % 8 || core_relo.insn_off / 8 >= prog->len) {
15331 			verbose(env, "Invalid core_relo[%u].insn_off:%u prog->len:%u\n",
15332 				i, core_relo.insn_off, prog->len);
15333 			err = -EINVAL;
15334 			break;
15335 		}
15336 
15337 		err = bpf_core_apply(&ctx, &core_relo, i,
15338 				     &prog->insnsi[core_relo.insn_off / 8]);
15339 		if (err)
15340 			break;
15341 		bpfptr_add(&u_core_relo, rec_size);
15342 	}
15343 	return err;
15344 }
15345 
15346 static int check_btf_info(struct bpf_verifier_env *env,
15347 			  const union bpf_attr *attr,
15348 			  bpfptr_t uattr)
15349 {
15350 	struct btf *btf;
15351 	int err;
15352 
15353 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
15354 		if (check_abnormal_return(env))
15355 			return -EINVAL;
15356 		return 0;
15357 	}
15358 
15359 	btf = btf_get_by_fd(attr->prog_btf_fd);
15360 	if (IS_ERR(btf))
15361 		return PTR_ERR(btf);
15362 	if (btf_is_kernel(btf)) {
15363 		btf_put(btf);
15364 		return -EACCES;
15365 	}
15366 	env->prog->aux->btf = btf;
15367 
15368 	err = check_btf_func(env, attr, uattr);
15369 	if (err)
15370 		return err;
15371 
15372 	err = check_btf_line(env, attr, uattr);
15373 	if (err)
15374 		return err;
15375 
15376 	err = check_core_relo(env, attr, uattr);
15377 	if (err)
15378 		return err;
15379 
15380 	return 0;
15381 }
15382 
15383 /* check %cur's range satisfies %old's */
15384 static bool range_within(struct bpf_reg_state *old,
15385 			 struct bpf_reg_state *cur)
15386 {
15387 	return old->umin_value <= cur->umin_value &&
15388 	       old->umax_value >= cur->umax_value &&
15389 	       old->smin_value <= cur->smin_value &&
15390 	       old->smax_value >= cur->smax_value &&
15391 	       old->u32_min_value <= cur->u32_min_value &&
15392 	       old->u32_max_value >= cur->u32_max_value &&
15393 	       old->s32_min_value <= cur->s32_min_value &&
15394 	       old->s32_max_value >= cur->s32_max_value;
15395 }
15396 
15397 /* If in the old state two registers had the same id, then they need to have
15398  * the same id in the new state as well.  But that id could be different from
15399  * the old state, so we need to track the mapping from old to new ids.
15400  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
15401  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
15402  * regs with a different old id could still have new id 9, we don't care about
15403  * that.
15404  * So we look through our idmap to see if this old id has been seen before.  If
15405  * so, we require the new id to match; otherwise, we add the id pair to the map.
15406  */
15407 static bool check_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15408 {
15409 	struct bpf_id_pair *map = idmap->map;
15410 	unsigned int i;
15411 
15412 	/* either both IDs should be set or both should be zero */
15413 	if (!!old_id != !!cur_id)
15414 		return false;
15415 
15416 	if (old_id == 0) /* cur_id == 0 as well */
15417 		return true;
15418 
15419 	for (i = 0; i < BPF_ID_MAP_SIZE; i++) {
15420 		if (!map[i].old) {
15421 			/* Reached an empty slot; haven't seen this id before */
15422 			map[i].old = old_id;
15423 			map[i].cur = cur_id;
15424 			return true;
15425 		}
15426 		if (map[i].old == old_id)
15427 			return map[i].cur == cur_id;
15428 		if (map[i].cur == cur_id)
15429 			return false;
15430 	}
15431 	/* We ran out of idmap slots, which should be impossible */
15432 	WARN_ON_ONCE(1);
15433 	return false;
15434 }
15435 
15436 /* Similar to check_ids(), but allocate a unique temporary ID
15437  * for 'old_id' or 'cur_id' of zero.
15438  * This makes pairs like '0 vs unique ID', 'unique ID vs 0' valid.
15439  */
15440 static bool check_scalar_ids(u32 old_id, u32 cur_id, struct bpf_idmap *idmap)
15441 {
15442 	old_id = old_id ? old_id : ++idmap->tmp_id_gen;
15443 	cur_id = cur_id ? cur_id : ++idmap->tmp_id_gen;
15444 
15445 	return check_ids(old_id, cur_id, idmap);
15446 }
15447 
15448 static void clean_func_state(struct bpf_verifier_env *env,
15449 			     struct bpf_func_state *st)
15450 {
15451 	enum bpf_reg_liveness live;
15452 	int i, j;
15453 
15454 	for (i = 0; i < BPF_REG_FP; i++) {
15455 		live = st->regs[i].live;
15456 		/* liveness must not touch this register anymore */
15457 		st->regs[i].live |= REG_LIVE_DONE;
15458 		if (!(live & REG_LIVE_READ))
15459 			/* since the register is unused, clear its state
15460 			 * to make further comparison simpler
15461 			 */
15462 			__mark_reg_not_init(env, &st->regs[i]);
15463 	}
15464 
15465 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
15466 		live = st->stack[i].spilled_ptr.live;
15467 		/* liveness must not touch this stack slot anymore */
15468 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
15469 		if (!(live & REG_LIVE_READ)) {
15470 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
15471 			for (j = 0; j < BPF_REG_SIZE; j++)
15472 				st->stack[i].slot_type[j] = STACK_INVALID;
15473 		}
15474 	}
15475 }
15476 
15477 static void clean_verifier_state(struct bpf_verifier_env *env,
15478 				 struct bpf_verifier_state *st)
15479 {
15480 	int i;
15481 
15482 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
15483 		/* all regs in this state in all frames were already marked */
15484 		return;
15485 
15486 	for (i = 0; i <= st->curframe; i++)
15487 		clean_func_state(env, st->frame[i]);
15488 }
15489 
15490 /* the parentage chains form a tree.
15491  * the verifier states are added to state lists at given insn and
15492  * pushed into state stack for future exploration.
15493  * when the verifier reaches bpf_exit insn some of the verifer states
15494  * stored in the state lists have their final liveness state already,
15495  * but a lot of states will get revised from liveness point of view when
15496  * the verifier explores other branches.
15497  * Example:
15498  * 1: r0 = 1
15499  * 2: if r1 == 100 goto pc+1
15500  * 3: r0 = 2
15501  * 4: exit
15502  * when the verifier reaches exit insn the register r0 in the state list of
15503  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
15504  * of insn 2 and goes exploring further. At the insn 4 it will walk the
15505  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
15506  *
15507  * Since the verifier pushes the branch states as it sees them while exploring
15508  * the program the condition of walking the branch instruction for the second
15509  * time means that all states below this branch were already explored and
15510  * their final liveness marks are already propagated.
15511  * Hence when the verifier completes the search of state list in is_state_visited()
15512  * we can call this clean_live_states() function to mark all liveness states
15513  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
15514  * will not be used.
15515  * This function also clears the registers and stack for states that !READ
15516  * to simplify state merging.
15517  *
15518  * Important note here that walking the same branch instruction in the callee
15519  * doesn't meant that the states are DONE. The verifier has to compare
15520  * the callsites
15521  */
15522 static void clean_live_states(struct bpf_verifier_env *env, int insn,
15523 			      struct bpf_verifier_state *cur)
15524 {
15525 	struct bpf_verifier_state_list *sl;
15526 	int i;
15527 
15528 	sl = *explored_state(env, insn);
15529 	while (sl) {
15530 		if (sl->state.branches)
15531 			goto next;
15532 		if (sl->state.insn_idx != insn ||
15533 		    sl->state.curframe != cur->curframe)
15534 			goto next;
15535 		for (i = 0; i <= cur->curframe; i++)
15536 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
15537 				goto next;
15538 		clean_verifier_state(env, &sl->state);
15539 next:
15540 		sl = sl->next;
15541 	}
15542 }
15543 
15544 static bool regs_exact(const struct bpf_reg_state *rold,
15545 		       const struct bpf_reg_state *rcur,
15546 		       struct bpf_idmap *idmap)
15547 {
15548 	return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15549 	       check_ids(rold->id, rcur->id, idmap) &&
15550 	       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15551 }
15552 
15553 /* Returns true if (rold safe implies rcur safe) */
15554 static bool regsafe(struct bpf_verifier_env *env, struct bpf_reg_state *rold,
15555 		    struct bpf_reg_state *rcur, struct bpf_idmap *idmap)
15556 {
15557 	if (!(rold->live & REG_LIVE_READ))
15558 		/* explored state didn't use this */
15559 		return true;
15560 	if (rold->type == NOT_INIT)
15561 		/* explored state can't have used this */
15562 		return true;
15563 	if (rcur->type == NOT_INIT)
15564 		return false;
15565 
15566 	/* Enforce that register types have to match exactly, including their
15567 	 * modifiers (like PTR_MAYBE_NULL, MEM_RDONLY, etc), as a general
15568 	 * rule.
15569 	 *
15570 	 * One can make a point that using a pointer register as unbounded
15571 	 * SCALAR would be technically acceptable, but this could lead to
15572 	 * pointer leaks because scalars are allowed to leak while pointers
15573 	 * are not. We could make this safe in special cases if root is
15574 	 * calling us, but it's probably not worth the hassle.
15575 	 *
15576 	 * Also, register types that are *not* MAYBE_NULL could technically be
15577 	 * safe to use as their MAYBE_NULL variants (e.g., PTR_TO_MAP_VALUE
15578 	 * is safe to be used as PTR_TO_MAP_VALUE_OR_NULL, provided both point
15579 	 * to the same map).
15580 	 * However, if the old MAYBE_NULL register then got NULL checked,
15581 	 * doing so could have affected others with the same id, and we can't
15582 	 * check for that because we lost the id when we converted to
15583 	 * a non-MAYBE_NULL variant.
15584 	 * So, as a general rule we don't allow mixing MAYBE_NULL and
15585 	 * non-MAYBE_NULL registers as well.
15586 	 */
15587 	if (rold->type != rcur->type)
15588 		return false;
15589 
15590 	switch (base_type(rold->type)) {
15591 	case SCALAR_VALUE:
15592 		if (env->explore_alu_limits) {
15593 			/* explore_alu_limits disables tnum_in() and range_within()
15594 			 * logic and requires everything to be strict
15595 			 */
15596 			return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
15597 			       check_scalar_ids(rold->id, rcur->id, idmap);
15598 		}
15599 		if (!rold->precise)
15600 			return true;
15601 		/* Why check_ids() for scalar registers?
15602 		 *
15603 		 * Consider the following BPF code:
15604 		 *   1: r6 = ... unbound scalar, ID=a ...
15605 		 *   2: r7 = ... unbound scalar, ID=b ...
15606 		 *   3: if (r6 > r7) goto +1
15607 		 *   4: r6 = r7
15608 		 *   5: if (r6 > X) goto ...
15609 		 *   6: ... memory operation using r7 ...
15610 		 *
15611 		 * First verification path is [1-6]:
15612 		 * - at (4) same bpf_reg_state::id (b) would be assigned to r6 and r7;
15613 		 * - at (5) r6 would be marked <= X, find_equal_scalars() would also mark
15614 		 *   r7 <= X, because r6 and r7 share same id.
15615 		 * Next verification path is [1-4, 6].
15616 		 *
15617 		 * Instruction (6) would be reached in two states:
15618 		 *   I.  r6{.id=b}, r7{.id=b} via path 1-6;
15619 		 *   II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
15620 		 *
15621 		 * Use check_ids() to distinguish these states.
15622 		 * ---
15623 		 * Also verify that new value satisfies old value range knowledge.
15624 		 */
15625 		return range_within(rold, rcur) &&
15626 		       tnum_in(rold->var_off, rcur->var_off) &&
15627 		       check_scalar_ids(rold->id, rcur->id, idmap);
15628 	case PTR_TO_MAP_KEY:
15629 	case PTR_TO_MAP_VALUE:
15630 	case PTR_TO_MEM:
15631 	case PTR_TO_BUF:
15632 	case PTR_TO_TP_BUFFER:
15633 		/* If the new min/max/var_off satisfy the old ones and
15634 		 * everything else matches, we are OK.
15635 		 */
15636 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, var_off)) == 0 &&
15637 		       range_within(rold, rcur) &&
15638 		       tnum_in(rold->var_off, rcur->var_off) &&
15639 		       check_ids(rold->id, rcur->id, idmap) &&
15640 		       check_ids(rold->ref_obj_id, rcur->ref_obj_id, idmap);
15641 	case PTR_TO_PACKET_META:
15642 	case PTR_TO_PACKET:
15643 		/* We must have at least as much range as the old ptr
15644 		 * did, so that any accesses which were safe before are
15645 		 * still safe.  This is true even if old range < old off,
15646 		 * since someone could have accessed through (ptr - k), or
15647 		 * even done ptr -= k in a register, to get a safe access.
15648 		 */
15649 		if (rold->range > rcur->range)
15650 			return false;
15651 		/* If the offsets don't match, we can't trust our alignment;
15652 		 * nor can we be sure that we won't fall out of range.
15653 		 */
15654 		if (rold->off != rcur->off)
15655 			return false;
15656 		/* id relations must be preserved */
15657 		if (!check_ids(rold->id, rcur->id, idmap))
15658 			return false;
15659 		/* new val must satisfy old val knowledge */
15660 		return range_within(rold, rcur) &&
15661 		       tnum_in(rold->var_off, rcur->var_off);
15662 	case PTR_TO_STACK:
15663 		/* two stack pointers are equal only if they're pointing to
15664 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
15665 		 */
15666 		return regs_exact(rold, rcur, idmap) && rold->frameno == rcur->frameno;
15667 	default:
15668 		return regs_exact(rold, rcur, idmap);
15669 	}
15670 }
15671 
15672 static bool stacksafe(struct bpf_verifier_env *env, struct bpf_func_state *old,
15673 		      struct bpf_func_state *cur, struct bpf_idmap *idmap)
15674 {
15675 	int i, spi;
15676 
15677 	/* walk slots of the explored stack and ignore any additional
15678 	 * slots in the current stack, since explored(safe) state
15679 	 * didn't use them
15680 	 */
15681 	for (i = 0; i < old->allocated_stack; i++) {
15682 		struct bpf_reg_state *old_reg, *cur_reg;
15683 
15684 		spi = i / BPF_REG_SIZE;
15685 
15686 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
15687 			i += BPF_REG_SIZE - 1;
15688 			/* explored state didn't use this */
15689 			continue;
15690 		}
15691 
15692 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
15693 			continue;
15694 
15695 		if (env->allow_uninit_stack &&
15696 		    old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC)
15697 			continue;
15698 
15699 		/* explored stack has more populated slots than current stack
15700 		 * and these slots were used
15701 		 */
15702 		if (i >= cur->allocated_stack)
15703 			return false;
15704 
15705 		/* if old state was safe with misc data in the stack
15706 		 * it will be safe with zero-initialized stack.
15707 		 * The opposite is not true
15708 		 */
15709 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
15710 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
15711 			continue;
15712 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
15713 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
15714 			/* Ex: old explored (safe) state has STACK_SPILL in
15715 			 * this stack slot, but current has STACK_MISC ->
15716 			 * this verifier states are not equivalent,
15717 			 * return false to continue verification of this path
15718 			 */
15719 			return false;
15720 		if (i % BPF_REG_SIZE != BPF_REG_SIZE - 1)
15721 			continue;
15722 		/* Both old and cur are having same slot_type */
15723 		switch (old->stack[spi].slot_type[BPF_REG_SIZE - 1]) {
15724 		case STACK_SPILL:
15725 			/* when explored and current stack slot are both storing
15726 			 * spilled registers, check that stored pointers types
15727 			 * are the same as well.
15728 			 * Ex: explored safe path could have stored
15729 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
15730 			 * but current path has stored:
15731 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
15732 			 * such verifier states are not equivalent.
15733 			 * return false to continue verification of this path
15734 			 */
15735 			if (!regsafe(env, &old->stack[spi].spilled_ptr,
15736 				     &cur->stack[spi].spilled_ptr, idmap))
15737 				return false;
15738 			break;
15739 		case STACK_DYNPTR:
15740 			old_reg = &old->stack[spi].spilled_ptr;
15741 			cur_reg = &cur->stack[spi].spilled_ptr;
15742 			if (old_reg->dynptr.type != cur_reg->dynptr.type ||
15743 			    old_reg->dynptr.first_slot != cur_reg->dynptr.first_slot ||
15744 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15745 				return false;
15746 			break;
15747 		case STACK_ITER:
15748 			old_reg = &old->stack[spi].spilled_ptr;
15749 			cur_reg = &cur->stack[spi].spilled_ptr;
15750 			/* iter.depth is not compared between states as it
15751 			 * doesn't matter for correctness and would otherwise
15752 			 * prevent convergence; we maintain it only to prevent
15753 			 * infinite loop check triggering, see
15754 			 * iter_active_depths_differ()
15755 			 */
15756 			if (old_reg->iter.btf != cur_reg->iter.btf ||
15757 			    old_reg->iter.btf_id != cur_reg->iter.btf_id ||
15758 			    old_reg->iter.state != cur_reg->iter.state ||
15759 			    /* ignore {old_reg,cur_reg}->iter.depth, see above */
15760 			    !check_ids(old_reg->ref_obj_id, cur_reg->ref_obj_id, idmap))
15761 				return false;
15762 			break;
15763 		case STACK_MISC:
15764 		case STACK_ZERO:
15765 		case STACK_INVALID:
15766 			continue;
15767 		/* Ensure that new unhandled slot types return false by default */
15768 		default:
15769 			return false;
15770 		}
15771 	}
15772 	return true;
15773 }
15774 
15775 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur,
15776 		    struct bpf_idmap *idmap)
15777 {
15778 	int i;
15779 
15780 	if (old->acquired_refs != cur->acquired_refs)
15781 		return false;
15782 
15783 	for (i = 0; i < old->acquired_refs; i++) {
15784 		if (!check_ids(old->refs[i].id, cur->refs[i].id, idmap))
15785 			return false;
15786 	}
15787 
15788 	return true;
15789 }
15790 
15791 /* compare two verifier states
15792  *
15793  * all states stored in state_list are known to be valid, since
15794  * verifier reached 'bpf_exit' instruction through them
15795  *
15796  * this function is called when verifier exploring different branches of
15797  * execution popped from the state stack. If it sees an old state that has
15798  * more strict register state and more strict stack state then this execution
15799  * branch doesn't need to be explored further, since verifier already
15800  * concluded that more strict state leads to valid finish.
15801  *
15802  * Therefore two states are equivalent if register state is more conservative
15803  * and explored stack state is more conservative than the current one.
15804  * Example:
15805  *       explored                   current
15806  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
15807  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
15808  *
15809  * In other words if current stack state (one being explored) has more
15810  * valid slots than old one that already passed validation, it means
15811  * the verifier can stop exploring and conclude that current state is valid too
15812  *
15813  * Similarly with registers. If explored state has register type as invalid
15814  * whereas register type in current state is meaningful, it means that
15815  * the current state will reach 'bpf_exit' instruction safely
15816  */
15817 static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_state *old,
15818 			      struct bpf_func_state *cur)
15819 {
15820 	int i;
15821 
15822 	for (i = 0; i < MAX_BPF_REG; i++)
15823 		if (!regsafe(env, &old->regs[i], &cur->regs[i],
15824 			     &env->idmap_scratch))
15825 			return false;
15826 
15827 	if (!stacksafe(env, old, cur, &env->idmap_scratch))
15828 		return false;
15829 
15830 	if (!refsafe(old, cur, &env->idmap_scratch))
15831 		return false;
15832 
15833 	return true;
15834 }
15835 
15836 static bool states_equal(struct bpf_verifier_env *env,
15837 			 struct bpf_verifier_state *old,
15838 			 struct bpf_verifier_state *cur)
15839 {
15840 	int i;
15841 
15842 	if (old->curframe != cur->curframe)
15843 		return false;
15844 
15845 	env->idmap_scratch.tmp_id_gen = env->id_gen;
15846 	memset(&env->idmap_scratch.map, 0, sizeof(env->idmap_scratch.map));
15847 
15848 	/* Verification state from speculative execution simulation
15849 	 * must never prune a non-speculative execution one.
15850 	 */
15851 	if (old->speculative && !cur->speculative)
15852 		return false;
15853 
15854 	if (old->active_lock.ptr != cur->active_lock.ptr)
15855 		return false;
15856 
15857 	/* Old and cur active_lock's have to be either both present
15858 	 * or both absent.
15859 	 */
15860 	if (!!old->active_lock.id != !!cur->active_lock.id)
15861 		return false;
15862 
15863 	if (old->active_lock.id &&
15864 	    !check_ids(old->active_lock.id, cur->active_lock.id, &env->idmap_scratch))
15865 		return false;
15866 
15867 	if (old->active_rcu_lock != cur->active_rcu_lock)
15868 		return false;
15869 
15870 	/* for states to be equal callsites have to be the same
15871 	 * and all frame states need to be equivalent
15872 	 */
15873 	for (i = 0; i <= old->curframe; i++) {
15874 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
15875 			return false;
15876 		if (!func_states_equal(env, old->frame[i], cur->frame[i]))
15877 			return false;
15878 	}
15879 	return true;
15880 }
15881 
15882 /* Return 0 if no propagation happened. Return negative error code if error
15883  * happened. Otherwise, return the propagated bit.
15884  */
15885 static int propagate_liveness_reg(struct bpf_verifier_env *env,
15886 				  struct bpf_reg_state *reg,
15887 				  struct bpf_reg_state *parent_reg)
15888 {
15889 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
15890 	u8 flag = reg->live & REG_LIVE_READ;
15891 	int err;
15892 
15893 	/* When comes here, read flags of PARENT_REG or REG could be any of
15894 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
15895 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
15896 	 */
15897 	if (parent_flag == REG_LIVE_READ64 ||
15898 	    /* Or if there is no read flag from REG. */
15899 	    !flag ||
15900 	    /* Or if the read flag from REG is the same as PARENT_REG. */
15901 	    parent_flag == flag)
15902 		return 0;
15903 
15904 	err = mark_reg_read(env, reg, parent_reg, flag);
15905 	if (err)
15906 		return err;
15907 
15908 	return flag;
15909 }
15910 
15911 /* A write screens off any subsequent reads; but write marks come from the
15912  * straight-line code between a state and its parent.  When we arrive at an
15913  * equivalent state (jump target or such) we didn't arrive by the straight-line
15914  * code, so read marks in the state must propagate to the parent regardless
15915  * of the state's write marks. That's what 'parent == state->parent' comparison
15916  * in mark_reg_read() is for.
15917  */
15918 static int propagate_liveness(struct bpf_verifier_env *env,
15919 			      const struct bpf_verifier_state *vstate,
15920 			      struct bpf_verifier_state *vparent)
15921 {
15922 	struct bpf_reg_state *state_reg, *parent_reg;
15923 	struct bpf_func_state *state, *parent;
15924 	int i, frame, err = 0;
15925 
15926 	if (vparent->curframe != vstate->curframe) {
15927 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
15928 		     vparent->curframe, vstate->curframe);
15929 		return -EFAULT;
15930 	}
15931 	/* Propagate read liveness of registers... */
15932 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
15933 	for (frame = 0; frame <= vstate->curframe; frame++) {
15934 		parent = vparent->frame[frame];
15935 		state = vstate->frame[frame];
15936 		parent_reg = parent->regs;
15937 		state_reg = state->regs;
15938 		/* We don't need to worry about FP liveness, it's read-only */
15939 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
15940 			err = propagate_liveness_reg(env, &state_reg[i],
15941 						     &parent_reg[i]);
15942 			if (err < 0)
15943 				return err;
15944 			if (err == REG_LIVE_READ64)
15945 				mark_insn_zext(env, &parent_reg[i]);
15946 		}
15947 
15948 		/* Propagate stack slots. */
15949 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
15950 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
15951 			parent_reg = &parent->stack[i].spilled_ptr;
15952 			state_reg = &state->stack[i].spilled_ptr;
15953 			err = propagate_liveness_reg(env, state_reg,
15954 						     parent_reg);
15955 			if (err < 0)
15956 				return err;
15957 		}
15958 	}
15959 	return 0;
15960 }
15961 
15962 /* find precise scalars in the previous equivalent state and
15963  * propagate them into the current state
15964  */
15965 static int propagate_precision(struct bpf_verifier_env *env,
15966 			       const struct bpf_verifier_state *old)
15967 {
15968 	struct bpf_reg_state *state_reg;
15969 	struct bpf_func_state *state;
15970 	int i, err = 0, fr;
15971 	bool first;
15972 
15973 	for (fr = old->curframe; fr >= 0; fr--) {
15974 		state = old->frame[fr];
15975 		state_reg = state->regs;
15976 		first = true;
15977 		for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
15978 			if (state_reg->type != SCALAR_VALUE ||
15979 			    !state_reg->precise ||
15980 			    !(state_reg->live & REG_LIVE_READ))
15981 				continue;
15982 			if (env->log.level & BPF_LOG_LEVEL2) {
15983 				if (first)
15984 					verbose(env, "frame %d: propagating r%d", fr, i);
15985 				else
15986 					verbose(env, ",r%d", i);
15987 			}
15988 			bt_set_frame_reg(&env->bt, fr, i);
15989 			first = false;
15990 		}
15991 
15992 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
15993 			if (!is_spilled_reg(&state->stack[i]))
15994 				continue;
15995 			state_reg = &state->stack[i].spilled_ptr;
15996 			if (state_reg->type != SCALAR_VALUE ||
15997 			    !state_reg->precise ||
15998 			    !(state_reg->live & REG_LIVE_READ))
15999 				continue;
16000 			if (env->log.level & BPF_LOG_LEVEL2) {
16001 				if (first)
16002 					verbose(env, "frame %d: propagating fp%d",
16003 						fr, (-i - 1) * BPF_REG_SIZE);
16004 				else
16005 					verbose(env, ",fp%d", (-i - 1) * BPF_REG_SIZE);
16006 			}
16007 			bt_set_frame_slot(&env->bt, fr, i);
16008 			first = false;
16009 		}
16010 		if (!first)
16011 			verbose(env, "\n");
16012 	}
16013 
16014 	err = mark_chain_precision_batch(env);
16015 	if (err < 0)
16016 		return err;
16017 
16018 	return 0;
16019 }
16020 
16021 static bool states_maybe_looping(struct bpf_verifier_state *old,
16022 				 struct bpf_verifier_state *cur)
16023 {
16024 	struct bpf_func_state *fold, *fcur;
16025 	int i, fr = cur->curframe;
16026 
16027 	if (old->curframe != fr)
16028 		return false;
16029 
16030 	fold = old->frame[fr];
16031 	fcur = cur->frame[fr];
16032 	for (i = 0; i < MAX_BPF_REG; i++)
16033 		if (memcmp(&fold->regs[i], &fcur->regs[i],
16034 			   offsetof(struct bpf_reg_state, parent)))
16035 			return false;
16036 	return true;
16037 }
16038 
16039 static bool is_iter_next_insn(struct bpf_verifier_env *env, int insn_idx)
16040 {
16041 	return env->insn_aux_data[insn_idx].is_iter_next;
16042 }
16043 
16044 /* is_state_visited() handles iter_next() (see process_iter_next_call() for
16045  * terminology) calls specially: as opposed to bounded BPF loops, it *expects*
16046  * states to match, which otherwise would look like an infinite loop. So while
16047  * iter_next() calls are taken care of, we still need to be careful and
16048  * prevent erroneous and too eager declaration of "ininite loop", when
16049  * iterators are involved.
16050  *
16051  * Here's a situation in pseudo-BPF assembly form:
16052  *
16053  *   0: again:                          ; set up iter_next() call args
16054  *   1:   r1 = &it                      ; <CHECKPOINT HERE>
16055  *   2:   call bpf_iter_num_next        ; this is iter_next() call
16056  *   3:   if r0 == 0 goto done
16057  *   4:   ... something useful here ...
16058  *   5:   goto again                    ; another iteration
16059  *   6: done:
16060  *   7:   r1 = &it
16061  *   8:   call bpf_iter_num_destroy     ; clean up iter state
16062  *   9:   exit
16063  *
16064  * This is a typical loop. Let's assume that we have a prune point at 1:,
16065  * before we get to `call bpf_iter_num_next` (e.g., because of that `goto
16066  * again`, assuming other heuristics don't get in a way).
16067  *
16068  * When we first time come to 1:, let's say we have some state X. We proceed
16069  * to 2:, fork states, enqueue ACTIVE, validate NULL case successfully, exit.
16070  * Now we come back to validate that forked ACTIVE state. We proceed through
16071  * 3-5, come to goto, jump to 1:. Let's assume our state didn't change, so we
16072  * are converging. But the problem is that we don't know that yet, as this
16073  * convergence has to happen at iter_next() call site only. So if nothing is
16074  * done, at 1: verifier will use bounded loop logic and declare infinite
16075  * looping (and would be *technically* correct, if not for iterator's
16076  * "eventual sticky NULL" contract, see process_iter_next_call()). But we
16077  * don't want that. So what we do in process_iter_next_call() when we go on
16078  * another ACTIVE iteration, we bump slot->iter.depth, to mark that it's
16079  * a different iteration. So when we suspect an infinite loop, we additionally
16080  * check if any of the *ACTIVE* iterator states depths differ. If yes, we
16081  * pretend we are not looping and wait for next iter_next() call.
16082  *
16083  * This only applies to ACTIVE state. In DRAINED state we don't expect to
16084  * loop, because that would actually mean infinite loop, as DRAINED state is
16085  * "sticky", and so we'll keep returning into the same instruction with the
16086  * same state (at least in one of possible code paths).
16087  *
16088  * This approach allows to keep infinite loop heuristic even in the face of
16089  * active iterator. E.g., C snippet below is and will be detected as
16090  * inifintely looping:
16091  *
16092  *   struct bpf_iter_num it;
16093  *   int *p, x;
16094  *
16095  *   bpf_iter_num_new(&it, 0, 10);
16096  *   while ((p = bpf_iter_num_next(&t))) {
16097  *       x = p;
16098  *       while (x--) {} // <<-- infinite loop here
16099  *   }
16100  *
16101  */
16102 static bool iter_active_depths_differ(struct bpf_verifier_state *old, struct bpf_verifier_state *cur)
16103 {
16104 	struct bpf_reg_state *slot, *cur_slot;
16105 	struct bpf_func_state *state;
16106 	int i, fr;
16107 
16108 	for (fr = old->curframe; fr >= 0; fr--) {
16109 		state = old->frame[fr];
16110 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
16111 			if (state->stack[i].slot_type[0] != STACK_ITER)
16112 				continue;
16113 
16114 			slot = &state->stack[i].spilled_ptr;
16115 			if (slot->iter.state != BPF_ITER_STATE_ACTIVE)
16116 				continue;
16117 
16118 			cur_slot = &cur->frame[fr]->stack[i].spilled_ptr;
16119 			if (cur_slot->iter.depth != slot->iter.depth)
16120 				return true;
16121 		}
16122 	}
16123 	return false;
16124 }
16125 
16126 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
16127 {
16128 	struct bpf_verifier_state_list *new_sl;
16129 	struct bpf_verifier_state_list *sl, **pprev;
16130 	struct bpf_verifier_state *cur = env->cur_state, *new;
16131 	int i, j, err, states_cnt = 0;
16132 	bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
16133 	bool add_new_state = force_new_state;
16134 
16135 	/* bpf progs typically have pruning point every 4 instructions
16136 	 * http://vger.kernel.org/bpfconf2019.html#session-1
16137 	 * Do not add new state for future pruning if the verifier hasn't seen
16138 	 * at least 2 jumps and at least 8 instructions.
16139 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
16140 	 * In tests that amounts to up to 50% reduction into total verifier
16141 	 * memory consumption and 20% verifier time speedup.
16142 	 */
16143 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
16144 	    env->insn_processed - env->prev_insn_processed >= 8)
16145 		add_new_state = true;
16146 
16147 	pprev = explored_state(env, insn_idx);
16148 	sl = *pprev;
16149 
16150 	clean_live_states(env, insn_idx, cur);
16151 
16152 	while (sl) {
16153 		states_cnt++;
16154 		if (sl->state.insn_idx != insn_idx)
16155 			goto next;
16156 
16157 		if (sl->state.branches) {
16158 			struct bpf_func_state *frame = sl->state.frame[sl->state.curframe];
16159 
16160 			if (frame->in_async_callback_fn &&
16161 			    frame->async_entry_cnt != cur->frame[cur->curframe]->async_entry_cnt) {
16162 				/* Different async_entry_cnt means that the verifier is
16163 				 * processing another entry into async callback.
16164 				 * Seeing the same state is not an indication of infinite
16165 				 * loop or infinite recursion.
16166 				 * But finding the same state doesn't mean that it's safe
16167 				 * to stop processing the current state. The previous state
16168 				 * hasn't yet reached bpf_exit, since state.branches > 0.
16169 				 * Checking in_async_callback_fn alone is not enough either.
16170 				 * Since the verifier still needs to catch infinite loops
16171 				 * inside async callbacks.
16172 				 */
16173 				goto skip_inf_loop_check;
16174 			}
16175 			/* BPF open-coded iterators loop detection is special.
16176 			 * states_maybe_looping() logic is too simplistic in detecting
16177 			 * states that *might* be equivalent, because it doesn't know
16178 			 * about ID remapping, so don't even perform it.
16179 			 * See process_iter_next_call() and iter_active_depths_differ()
16180 			 * for overview of the logic. When current and one of parent
16181 			 * states are detected as equivalent, it's a good thing: we prove
16182 			 * convergence and can stop simulating further iterations.
16183 			 * It's safe to assume that iterator loop will finish, taking into
16184 			 * account iter_next() contract of eventually returning
16185 			 * sticky NULL result.
16186 			 */
16187 			if (is_iter_next_insn(env, insn_idx)) {
16188 				if (states_equal(env, &sl->state, cur)) {
16189 					struct bpf_func_state *cur_frame;
16190 					struct bpf_reg_state *iter_state, *iter_reg;
16191 					int spi;
16192 
16193 					cur_frame = cur->frame[cur->curframe];
16194 					/* btf_check_iter_kfuncs() enforces that
16195 					 * iter state pointer is always the first arg
16196 					 */
16197 					iter_reg = &cur_frame->regs[BPF_REG_1];
16198 					/* current state is valid due to states_equal(),
16199 					 * so we can assume valid iter and reg state,
16200 					 * no need for extra (re-)validations
16201 					 */
16202 					spi = __get_spi(iter_reg->off + iter_reg->var_off.value);
16203 					iter_state = &func(env, iter_reg)->stack[spi].spilled_ptr;
16204 					if (iter_state->iter.state == BPF_ITER_STATE_ACTIVE)
16205 						goto hit;
16206 				}
16207 				goto skip_inf_loop_check;
16208 			}
16209 			/* attempt to detect infinite loop to avoid unnecessary doomed work */
16210 			if (states_maybe_looping(&sl->state, cur) &&
16211 			    states_equal(env, &sl->state, cur) &&
16212 			    !iter_active_depths_differ(&sl->state, cur)) {
16213 				verbose_linfo(env, insn_idx, "; ");
16214 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
16215 				return -EINVAL;
16216 			}
16217 			/* if the verifier is processing a loop, avoid adding new state
16218 			 * too often, since different loop iterations have distinct
16219 			 * states and may not help future pruning.
16220 			 * This threshold shouldn't be too low to make sure that
16221 			 * a loop with large bound will be rejected quickly.
16222 			 * The most abusive loop will be:
16223 			 * r1 += 1
16224 			 * if r1 < 1000000 goto pc-2
16225 			 * 1M insn_procssed limit / 100 == 10k peak states.
16226 			 * This threshold shouldn't be too high either, since states
16227 			 * at the end of the loop are likely to be useful in pruning.
16228 			 */
16229 skip_inf_loop_check:
16230 			if (!force_new_state &&
16231 			    env->jmps_processed - env->prev_jmps_processed < 20 &&
16232 			    env->insn_processed - env->prev_insn_processed < 100)
16233 				add_new_state = false;
16234 			goto miss;
16235 		}
16236 		if (states_equal(env, &sl->state, cur)) {
16237 hit:
16238 			sl->hit_cnt++;
16239 			/* reached equivalent register/stack state,
16240 			 * prune the search.
16241 			 * Registers read by the continuation are read by us.
16242 			 * If we have any write marks in env->cur_state, they
16243 			 * will prevent corresponding reads in the continuation
16244 			 * from reaching our parent (an explored_state).  Our
16245 			 * own state will get the read marks recorded, but
16246 			 * they'll be immediately forgotten as we're pruning
16247 			 * this state and will pop a new one.
16248 			 */
16249 			err = propagate_liveness(env, &sl->state, cur);
16250 
16251 			/* if previous state reached the exit with precision and
16252 			 * current state is equivalent to it (except precsion marks)
16253 			 * the precision needs to be propagated back in
16254 			 * the current state.
16255 			 */
16256 			err = err ? : push_jmp_history(env, cur);
16257 			err = err ? : propagate_precision(env, &sl->state);
16258 			if (err)
16259 				return err;
16260 			return 1;
16261 		}
16262 miss:
16263 		/* when new state is not going to be added do not increase miss count.
16264 		 * Otherwise several loop iterations will remove the state
16265 		 * recorded earlier. The goal of these heuristics is to have
16266 		 * states from some iterations of the loop (some in the beginning
16267 		 * and some at the end) to help pruning.
16268 		 */
16269 		if (add_new_state)
16270 			sl->miss_cnt++;
16271 		/* heuristic to determine whether this state is beneficial
16272 		 * to keep checking from state equivalence point of view.
16273 		 * Higher numbers increase max_states_per_insn and verification time,
16274 		 * but do not meaningfully decrease insn_processed.
16275 		 */
16276 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
16277 			/* the state is unlikely to be useful. Remove it to
16278 			 * speed up verification
16279 			 */
16280 			*pprev = sl->next;
16281 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
16282 				u32 br = sl->state.branches;
16283 
16284 				WARN_ONCE(br,
16285 					  "BUG live_done but branches_to_explore %d\n",
16286 					  br);
16287 				free_verifier_state(&sl->state, false);
16288 				kfree(sl);
16289 				env->peak_states--;
16290 			} else {
16291 				/* cannot free this state, since parentage chain may
16292 				 * walk it later. Add it for free_list instead to
16293 				 * be freed at the end of verification
16294 				 */
16295 				sl->next = env->free_list;
16296 				env->free_list = sl;
16297 			}
16298 			sl = *pprev;
16299 			continue;
16300 		}
16301 next:
16302 		pprev = &sl->next;
16303 		sl = *pprev;
16304 	}
16305 
16306 	if (env->max_states_per_insn < states_cnt)
16307 		env->max_states_per_insn = states_cnt;
16308 
16309 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
16310 		return 0;
16311 
16312 	if (!add_new_state)
16313 		return 0;
16314 
16315 	/* There were no equivalent states, remember the current one.
16316 	 * Technically the current state is not proven to be safe yet,
16317 	 * but it will either reach outer most bpf_exit (which means it's safe)
16318 	 * or it will be rejected. When there are no loops the verifier won't be
16319 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
16320 	 * again on the way to bpf_exit.
16321 	 * When looping the sl->state.branches will be > 0 and this state
16322 	 * will not be considered for equivalence until branches == 0.
16323 	 */
16324 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
16325 	if (!new_sl)
16326 		return -ENOMEM;
16327 	env->total_states++;
16328 	env->peak_states++;
16329 	env->prev_jmps_processed = env->jmps_processed;
16330 	env->prev_insn_processed = env->insn_processed;
16331 
16332 	/* forget precise markings we inherited, see __mark_chain_precision */
16333 	if (env->bpf_capable)
16334 		mark_all_scalars_imprecise(env, cur);
16335 
16336 	/* add new state to the head of linked list */
16337 	new = &new_sl->state;
16338 	err = copy_verifier_state(new, cur);
16339 	if (err) {
16340 		free_verifier_state(new, false);
16341 		kfree(new_sl);
16342 		return err;
16343 	}
16344 	new->insn_idx = insn_idx;
16345 	WARN_ONCE(new->branches != 1,
16346 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
16347 
16348 	cur->parent = new;
16349 	cur->first_insn_idx = insn_idx;
16350 	clear_jmp_history(cur);
16351 	new_sl->next = *explored_state(env, insn_idx);
16352 	*explored_state(env, insn_idx) = new_sl;
16353 	/* connect new state to parentage chain. Current frame needs all
16354 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
16355 	 * to the stack implicitly by JITs) so in callers' frames connect just
16356 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
16357 	 * the state of the call instruction (with WRITTEN set), and r0 comes
16358 	 * from callee with its full parentage chain, anyway.
16359 	 */
16360 	/* clear write marks in current state: the writes we did are not writes
16361 	 * our child did, so they don't screen off its reads from us.
16362 	 * (There are no read marks in current state, because reads always mark
16363 	 * their parent and current state never has children yet.  Only
16364 	 * explored_states can get read marks.)
16365 	 */
16366 	for (j = 0; j <= cur->curframe; j++) {
16367 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
16368 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
16369 		for (i = 0; i < BPF_REG_FP; i++)
16370 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
16371 	}
16372 
16373 	/* all stack frames are accessible from callee, clear them all */
16374 	for (j = 0; j <= cur->curframe; j++) {
16375 		struct bpf_func_state *frame = cur->frame[j];
16376 		struct bpf_func_state *newframe = new->frame[j];
16377 
16378 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
16379 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
16380 			frame->stack[i].spilled_ptr.parent =
16381 						&newframe->stack[i].spilled_ptr;
16382 		}
16383 	}
16384 	return 0;
16385 }
16386 
16387 /* Return true if it's OK to have the same insn return a different type. */
16388 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
16389 {
16390 	switch (base_type(type)) {
16391 	case PTR_TO_CTX:
16392 	case PTR_TO_SOCKET:
16393 	case PTR_TO_SOCK_COMMON:
16394 	case PTR_TO_TCP_SOCK:
16395 	case PTR_TO_XDP_SOCK:
16396 	case PTR_TO_BTF_ID:
16397 		return false;
16398 	default:
16399 		return true;
16400 	}
16401 }
16402 
16403 /* If an instruction was previously used with particular pointer types, then we
16404  * need to be careful to avoid cases such as the below, where it may be ok
16405  * for one branch accessing the pointer, but not ok for the other branch:
16406  *
16407  * R1 = sock_ptr
16408  * goto X;
16409  * ...
16410  * R1 = some_other_valid_ptr;
16411  * goto X;
16412  * ...
16413  * R2 = *(u32 *)(R1 + 0);
16414  */
16415 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
16416 {
16417 	return src != prev && (!reg_type_mismatch_ok(src) ||
16418 			       !reg_type_mismatch_ok(prev));
16419 }
16420 
16421 static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type type,
16422 			     bool allow_trust_missmatch)
16423 {
16424 	enum bpf_reg_type *prev_type = &env->insn_aux_data[env->insn_idx].ptr_type;
16425 
16426 	if (*prev_type == NOT_INIT) {
16427 		/* Saw a valid insn
16428 		 * dst_reg = *(u32 *)(src_reg + off)
16429 		 * save type to validate intersecting paths
16430 		 */
16431 		*prev_type = type;
16432 	} else if (reg_type_mismatch(type, *prev_type)) {
16433 		/* Abuser program is trying to use the same insn
16434 		 * dst_reg = *(u32*) (src_reg + off)
16435 		 * with different pointer types:
16436 		 * src_reg == ctx in one branch and
16437 		 * src_reg == stack|map in some other branch.
16438 		 * Reject it.
16439 		 */
16440 		if (allow_trust_missmatch &&
16441 		    base_type(type) == PTR_TO_BTF_ID &&
16442 		    base_type(*prev_type) == PTR_TO_BTF_ID) {
16443 			/*
16444 			 * Have to support a use case when one path through
16445 			 * the program yields TRUSTED pointer while another
16446 			 * is UNTRUSTED. Fallback to UNTRUSTED to generate
16447 			 * BPF_PROBE_MEM/BPF_PROBE_MEMSX.
16448 			 */
16449 			*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
16450 		} else {
16451 			verbose(env, "same insn cannot be used with different pointers\n");
16452 			return -EINVAL;
16453 		}
16454 	}
16455 
16456 	return 0;
16457 }
16458 
16459 static int do_check(struct bpf_verifier_env *env)
16460 {
16461 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
16462 	struct bpf_verifier_state *state = env->cur_state;
16463 	struct bpf_insn *insns = env->prog->insnsi;
16464 	struct bpf_reg_state *regs;
16465 	int insn_cnt = env->prog->len;
16466 	bool do_print_state = false;
16467 	int prev_insn_idx = -1;
16468 
16469 	for (;;) {
16470 		struct bpf_insn *insn;
16471 		u8 class;
16472 		int err;
16473 
16474 		env->prev_insn_idx = prev_insn_idx;
16475 		if (env->insn_idx >= insn_cnt) {
16476 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
16477 				env->insn_idx, insn_cnt);
16478 			return -EFAULT;
16479 		}
16480 
16481 		insn = &insns[env->insn_idx];
16482 		class = BPF_CLASS(insn->code);
16483 
16484 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
16485 			verbose(env,
16486 				"BPF program is too large. Processed %d insn\n",
16487 				env->insn_processed);
16488 			return -E2BIG;
16489 		}
16490 
16491 		state->last_insn_idx = env->prev_insn_idx;
16492 
16493 		if (is_prune_point(env, env->insn_idx)) {
16494 			err = is_state_visited(env, env->insn_idx);
16495 			if (err < 0)
16496 				return err;
16497 			if (err == 1) {
16498 				/* found equivalent state, can prune the search */
16499 				if (env->log.level & BPF_LOG_LEVEL) {
16500 					if (do_print_state)
16501 						verbose(env, "\nfrom %d to %d%s: safe\n",
16502 							env->prev_insn_idx, env->insn_idx,
16503 							env->cur_state->speculative ?
16504 							" (speculative execution)" : "");
16505 					else
16506 						verbose(env, "%d: safe\n", env->insn_idx);
16507 				}
16508 				goto process_bpf_exit;
16509 			}
16510 		}
16511 
16512 		if (is_jmp_point(env, env->insn_idx)) {
16513 			err = push_jmp_history(env, state);
16514 			if (err)
16515 				return err;
16516 		}
16517 
16518 		if (signal_pending(current))
16519 			return -EAGAIN;
16520 
16521 		if (need_resched())
16522 			cond_resched();
16523 
16524 		if (env->log.level & BPF_LOG_LEVEL2 && do_print_state) {
16525 			verbose(env, "\nfrom %d to %d%s:",
16526 				env->prev_insn_idx, env->insn_idx,
16527 				env->cur_state->speculative ?
16528 				" (speculative execution)" : "");
16529 			print_verifier_state(env, state->frame[state->curframe], true);
16530 			do_print_state = false;
16531 		}
16532 
16533 		if (env->log.level & BPF_LOG_LEVEL) {
16534 			const struct bpf_insn_cbs cbs = {
16535 				.cb_call	= disasm_kfunc_name,
16536 				.cb_print	= verbose,
16537 				.private_data	= env,
16538 			};
16539 
16540 			if (verifier_state_scratched(env))
16541 				print_insn_state(env, state->frame[state->curframe]);
16542 
16543 			verbose_linfo(env, env->insn_idx, "; ");
16544 			env->prev_log_pos = env->log.end_pos;
16545 			verbose(env, "%d: ", env->insn_idx);
16546 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
16547 			env->prev_insn_print_pos = env->log.end_pos - env->prev_log_pos;
16548 			env->prev_log_pos = env->log.end_pos;
16549 		}
16550 
16551 		if (bpf_prog_is_offloaded(env->prog->aux)) {
16552 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
16553 							   env->prev_insn_idx);
16554 			if (err)
16555 				return err;
16556 		}
16557 
16558 		regs = cur_regs(env);
16559 		sanitize_mark_insn_seen(env);
16560 		prev_insn_idx = env->insn_idx;
16561 
16562 		if (class == BPF_ALU || class == BPF_ALU64) {
16563 			err = check_alu_op(env, insn);
16564 			if (err)
16565 				return err;
16566 
16567 		} else if (class == BPF_LDX) {
16568 			enum bpf_reg_type src_reg_type;
16569 
16570 			/* check for reserved fields is already done */
16571 
16572 			/* check src operand */
16573 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16574 			if (err)
16575 				return err;
16576 
16577 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
16578 			if (err)
16579 				return err;
16580 
16581 			src_reg_type = regs[insn->src_reg].type;
16582 
16583 			/* check that memory (src_reg + off) is readable,
16584 			 * the state of dst_reg will be updated by this func
16585 			 */
16586 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
16587 					       insn->off, BPF_SIZE(insn->code),
16588 					       BPF_READ, insn->dst_reg, false,
16589 					       BPF_MODE(insn->code) == BPF_MEMSX);
16590 			if (err)
16591 				return err;
16592 
16593 			err = save_aux_ptr_type(env, src_reg_type, true);
16594 			if (err)
16595 				return err;
16596 		} else if (class == BPF_STX) {
16597 			enum bpf_reg_type dst_reg_type;
16598 
16599 			if (BPF_MODE(insn->code) == BPF_ATOMIC) {
16600 				err = check_atomic(env, env->insn_idx, insn);
16601 				if (err)
16602 					return err;
16603 				env->insn_idx++;
16604 				continue;
16605 			}
16606 
16607 			if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
16608 				verbose(env, "BPF_STX uses reserved fields\n");
16609 				return -EINVAL;
16610 			}
16611 
16612 			/* check src1 operand */
16613 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
16614 			if (err)
16615 				return err;
16616 			/* check src2 operand */
16617 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16618 			if (err)
16619 				return err;
16620 
16621 			dst_reg_type = regs[insn->dst_reg].type;
16622 
16623 			/* check that memory (dst_reg + off) is writeable */
16624 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16625 					       insn->off, BPF_SIZE(insn->code),
16626 					       BPF_WRITE, insn->src_reg, false, false);
16627 			if (err)
16628 				return err;
16629 
16630 			err = save_aux_ptr_type(env, dst_reg_type, false);
16631 			if (err)
16632 				return err;
16633 		} else if (class == BPF_ST) {
16634 			enum bpf_reg_type dst_reg_type;
16635 
16636 			if (BPF_MODE(insn->code) != BPF_MEM ||
16637 			    insn->src_reg != BPF_REG_0) {
16638 				verbose(env, "BPF_ST uses reserved fields\n");
16639 				return -EINVAL;
16640 			}
16641 			/* check src operand */
16642 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
16643 			if (err)
16644 				return err;
16645 
16646 			dst_reg_type = regs[insn->dst_reg].type;
16647 
16648 			/* check that memory (dst_reg + off) is writeable */
16649 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
16650 					       insn->off, BPF_SIZE(insn->code),
16651 					       BPF_WRITE, -1, false, false);
16652 			if (err)
16653 				return err;
16654 
16655 			err = save_aux_ptr_type(env, dst_reg_type, false);
16656 			if (err)
16657 				return err;
16658 		} else if (class == BPF_JMP || class == BPF_JMP32) {
16659 			u8 opcode = BPF_OP(insn->code);
16660 
16661 			env->jmps_processed++;
16662 			if (opcode == BPF_CALL) {
16663 				if (BPF_SRC(insn->code) != BPF_K ||
16664 				    (insn->src_reg != BPF_PSEUDO_KFUNC_CALL
16665 				     && insn->off != 0) ||
16666 				    (insn->src_reg != BPF_REG_0 &&
16667 				     insn->src_reg != BPF_PSEUDO_CALL &&
16668 				     insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
16669 				    insn->dst_reg != BPF_REG_0 ||
16670 				    class == BPF_JMP32) {
16671 					verbose(env, "BPF_CALL uses reserved fields\n");
16672 					return -EINVAL;
16673 				}
16674 
16675 				if (env->cur_state->active_lock.ptr) {
16676 					if ((insn->src_reg == BPF_REG_0 && insn->imm != BPF_FUNC_spin_unlock) ||
16677 					    (insn->src_reg == BPF_PSEUDO_CALL) ||
16678 					    (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
16679 					     (insn->off != 0 || !is_bpf_graph_api_kfunc(insn->imm)))) {
16680 						verbose(env, "function calls are not allowed while holding a lock\n");
16681 						return -EINVAL;
16682 					}
16683 				}
16684 				if (insn->src_reg == BPF_PSEUDO_CALL)
16685 					err = check_func_call(env, insn, &env->insn_idx);
16686 				else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
16687 					err = check_kfunc_call(env, insn, &env->insn_idx);
16688 				else
16689 					err = check_helper_call(env, insn, &env->insn_idx);
16690 				if (err)
16691 					return err;
16692 
16693 				mark_reg_scratched(env, BPF_REG_0);
16694 			} else if (opcode == BPF_JA) {
16695 				if (BPF_SRC(insn->code) != BPF_K ||
16696 				    insn->src_reg != BPF_REG_0 ||
16697 				    insn->dst_reg != BPF_REG_0 ||
16698 				    (class == BPF_JMP && insn->imm != 0) ||
16699 				    (class == BPF_JMP32 && insn->off != 0)) {
16700 					verbose(env, "BPF_JA uses reserved fields\n");
16701 					return -EINVAL;
16702 				}
16703 
16704 				if (class == BPF_JMP)
16705 					env->insn_idx += insn->off + 1;
16706 				else
16707 					env->insn_idx += insn->imm + 1;
16708 				continue;
16709 
16710 			} else if (opcode == BPF_EXIT) {
16711 				if (BPF_SRC(insn->code) != BPF_K ||
16712 				    insn->imm != 0 ||
16713 				    insn->src_reg != BPF_REG_0 ||
16714 				    insn->dst_reg != BPF_REG_0 ||
16715 				    class == BPF_JMP32) {
16716 					verbose(env, "BPF_EXIT uses reserved fields\n");
16717 					return -EINVAL;
16718 				}
16719 
16720 				if (env->cur_state->active_lock.ptr &&
16721 				    !in_rbtree_lock_required_cb(env)) {
16722 					verbose(env, "bpf_spin_unlock is missing\n");
16723 					return -EINVAL;
16724 				}
16725 
16726 				if (env->cur_state->active_rcu_lock &&
16727 				    !in_rbtree_lock_required_cb(env)) {
16728 					verbose(env, "bpf_rcu_read_unlock is missing\n");
16729 					return -EINVAL;
16730 				}
16731 
16732 				/* We must do check_reference_leak here before
16733 				 * prepare_func_exit to handle the case when
16734 				 * state->curframe > 0, it may be a callback
16735 				 * function, for which reference_state must
16736 				 * match caller reference state when it exits.
16737 				 */
16738 				err = check_reference_leak(env);
16739 				if (err)
16740 					return err;
16741 
16742 				if (state->curframe) {
16743 					/* exit from nested function */
16744 					err = prepare_func_exit(env, &env->insn_idx);
16745 					if (err)
16746 						return err;
16747 					do_print_state = true;
16748 					continue;
16749 				}
16750 
16751 				err = check_return_code(env);
16752 				if (err)
16753 					return err;
16754 process_bpf_exit:
16755 				mark_verifier_state_scratched(env);
16756 				update_branch_counts(env, env->cur_state);
16757 				err = pop_stack(env, &prev_insn_idx,
16758 						&env->insn_idx, pop_log);
16759 				if (err < 0) {
16760 					if (err != -ENOENT)
16761 						return err;
16762 					break;
16763 				} else {
16764 					do_print_state = true;
16765 					continue;
16766 				}
16767 			} else {
16768 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
16769 				if (err)
16770 					return err;
16771 			}
16772 		} else if (class == BPF_LD) {
16773 			u8 mode = BPF_MODE(insn->code);
16774 
16775 			if (mode == BPF_ABS || mode == BPF_IND) {
16776 				err = check_ld_abs(env, insn);
16777 				if (err)
16778 					return err;
16779 
16780 			} else if (mode == BPF_IMM) {
16781 				err = check_ld_imm(env, insn);
16782 				if (err)
16783 					return err;
16784 
16785 				env->insn_idx++;
16786 				sanitize_mark_insn_seen(env);
16787 			} else {
16788 				verbose(env, "invalid BPF_LD mode\n");
16789 				return -EINVAL;
16790 			}
16791 		} else {
16792 			verbose(env, "unknown insn class %d\n", class);
16793 			return -EINVAL;
16794 		}
16795 
16796 		env->insn_idx++;
16797 	}
16798 
16799 	return 0;
16800 }
16801 
16802 static int find_btf_percpu_datasec(struct btf *btf)
16803 {
16804 	const struct btf_type *t;
16805 	const char *tname;
16806 	int i, n;
16807 
16808 	/*
16809 	 * Both vmlinux and module each have their own ".data..percpu"
16810 	 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
16811 	 * types to look at only module's own BTF types.
16812 	 */
16813 	n = btf_nr_types(btf);
16814 	if (btf_is_module(btf))
16815 		i = btf_nr_types(btf_vmlinux);
16816 	else
16817 		i = 1;
16818 
16819 	for(; i < n; i++) {
16820 		t = btf_type_by_id(btf, i);
16821 		if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
16822 			continue;
16823 
16824 		tname = btf_name_by_offset(btf, t->name_off);
16825 		if (!strcmp(tname, ".data..percpu"))
16826 			return i;
16827 	}
16828 
16829 	return -ENOENT;
16830 }
16831 
16832 /* replace pseudo btf_id with kernel symbol address */
16833 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
16834 			       struct bpf_insn *insn,
16835 			       struct bpf_insn_aux_data *aux)
16836 {
16837 	const struct btf_var_secinfo *vsi;
16838 	const struct btf_type *datasec;
16839 	struct btf_mod_pair *btf_mod;
16840 	const struct btf_type *t;
16841 	const char *sym_name;
16842 	bool percpu = false;
16843 	u32 type, id = insn->imm;
16844 	struct btf *btf;
16845 	s32 datasec_id;
16846 	u64 addr;
16847 	int i, btf_fd, err;
16848 
16849 	btf_fd = insn[1].imm;
16850 	if (btf_fd) {
16851 		btf = btf_get_by_fd(btf_fd);
16852 		if (IS_ERR(btf)) {
16853 			verbose(env, "invalid module BTF object FD specified.\n");
16854 			return -EINVAL;
16855 		}
16856 	} else {
16857 		if (!btf_vmlinux) {
16858 			verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
16859 			return -EINVAL;
16860 		}
16861 		btf = btf_vmlinux;
16862 		btf_get(btf);
16863 	}
16864 
16865 	t = btf_type_by_id(btf, id);
16866 	if (!t) {
16867 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
16868 		err = -ENOENT;
16869 		goto err_put;
16870 	}
16871 
16872 	if (!btf_type_is_var(t) && !btf_type_is_func(t)) {
16873 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR or KIND_FUNC\n", id);
16874 		err = -EINVAL;
16875 		goto err_put;
16876 	}
16877 
16878 	sym_name = btf_name_by_offset(btf, t->name_off);
16879 	addr = kallsyms_lookup_name(sym_name);
16880 	if (!addr) {
16881 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
16882 			sym_name);
16883 		err = -ENOENT;
16884 		goto err_put;
16885 	}
16886 	insn[0].imm = (u32)addr;
16887 	insn[1].imm = addr >> 32;
16888 
16889 	if (btf_type_is_func(t)) {
16890 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16891 		aux->btf_var.mem_size = 0;
16892 		goto check_btf;
16893 	}
16894 
16895 	datasec_id = find_btf_percpu_datasec(btf);
16896 	if (datasec_id > 0) {
16897 		datasec = btf_type_by_id(btf, datasec_id);
16898 		for_each_vsi(i, datasec, vsi) {
16899 			if (vsi->type == id) {
16900 				percpu = true;
16901 				break;
16902 			}
16903 		}
16904 	}
16905 
16906 	type = t->type;
16907 	t = btf_type_skip_modifiers(btf, type, NULL);
16908 	if (percpu) {
16909 		aux->btf_var.reg_type = PTR_TO_BTF_ID | MEM_PERCPU;
16910 		aux->btf_var.btf = btf;
16911 		aux->btf_var.btf_id = type;
16912 	} else if (!btf_type_is_struct(t)) {
16913 		const struct btf_type *ret;
16914 		const char *tname;
16915 		u32 tsize;
16916 
16917 		/* resolve the type size of ksym. */
16918 		ret = btf_resolve_size(btf, t, &tsize);
16919 		if (IS_ERR(ret)) {
16920 			tname = btf_name_by_offset(btf, t->name_off);
16921 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
16922 				tname, PTR_ERR(ret));
16923 			err = -EINVAL;
16924 			goto err_put;
16925 		}
16926 		aux->btf_var.reg_type = PTR_TO_MEM | MEM_RDONLY;
16927 		aux->btf_var.mem_size = tsize;
16928 	} else {
16929 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
16930 		aux->btf_var.btf = btf;
16931 		aux->btf_var.btf_id = type;
16932 	}
16933 check_btf:
16934 	/* check whether we recorded this BTF (and maybe module) already */
16935 	for (i = 0; i < env->used_btf_cnt; i++) {
16936 		if (env->used_btfs[i].btf == btf) {
16937 			btf_put(btf);
16938 			return 0;
16939 		}
16940 	}
16941 
16942 	if (env->used_btf_cnt >= MAX_USED_BTFS) {
16943 		err = -E2BIG;
16944 		goto err_put;
16945 	}
16946 
16947 	btf_mod = &env->used_btfs[env->used_btf_cnt];
16948 	btf_mod->btf = btf;
16949 	btf_mod->module = NULL;
16950 
16951 	/* if we reference variables from kernel module, bump its refcount */
16952 	if (btf_is_module(btf)) {
16953 		btf_mod->module = btf_try_get_module(btf);
16954 		if (!btf_mod->module) {
16955 			err = -ENXIO;
16956 			goto err_put;
16957 		}
16958 	}
16959 
16960 	env->used_btf_cnt++;
16961 
16962 	return 0;
16963 err_put:
16964 	btf_put(btf);
16965 	return err;
16966 }
16967 
16968 static bool is_tracing_prog_type(enum bpf_prog_type type)
16969 {
16970 	switch (type) {
16971 	case BPF_PROG_TYPE_KPROBE:
16972 	case BPF_PROG_TYPE_TRACEPOINT:
16973 	case BPF_PROG_TYPE_PERF_EVENT:
16974 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
16975 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
16976 		return true;
16977 	default:
16978 		return false;
16979 	}
16980 }
16981 
16982 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
16983 					struct bpf_map *map,
16984 					struct bpf_prog *prog)
16985 
16986 {
16987 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
16988 
16989 	if (btf_record_has_field(map->record, BPF_LIST_HEAD) ||
16990 	    btf_record_has_field(map->record, BPF_RB_ROOT)) {
16991 		if (is_tracing_prog_type(prog_type)) {
16992 			verbose(env, "tracing progs cannot use bpf_{list_head,rb_root} yet\n");
16993 			return -EINVAL;
16994 		}
16995 	}
16996 
16997 	if (btf_record_has_field(map->record, BPF_SPIN_LOCK)) {
16998 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
16999 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
17000 			return -EINVAL;
17001 		}
17002 
17003 		if (is_tracing_prog_type(prog_type)) {
17004 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
17005 			return -EINVAL;
17006 		}
17007 	}
17008 
17009 	if (btf_record_has_field(map->record, BPF_TIMER)) {
17010 		if (is_tracing_prog_type(prog_type)) {
17011 			verbose(env, "tracing progs cannot use bpf_timer yet\n");
17012 			return -EINVAL;
17013 		}
17014 	}
17015 
17016 	if ((bpf_prog_is_offloaded(prog->aux) || bpf_map_is_offloaded(map)) &&
17017 	    !bpf_offload_prog_map_match(prog, map)) {
17018 		verbose(env, "offload device mismatch between prog and map\n");
17019 		return -EINVAL;
17020 	}
17021 
17022 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
17023 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
17024 		return -EINVAL;
17025 	}
17026 
17027 	if (prog->aux->sleepable)
17028 		switch (map->map_type) {
17029 		case BPF_MAP_TYPE_HASH:
17030 		case BPF_MAP_TYPE_LRU_HASH:
17031 		case BPF_MAP_TYPE_ARRAY:
17032 		case BPF_MAP_TYPE_PERCPU_HASH:
17033 		case BPF_MAP_TYPE_PERCPU_ARRAY:
17034 		case BPF_MAP_TYPE_LRU_PERCPU_HASH:
17035 		case BPF_MAP_TYPE_ARRAY_OF_MAPS:
17036 		case BPF_MAP_TYPE_HASH_OF_MAPS:
17037 		case BPF_MAP_TYPE_RINGBUF:
17038 		case BPF_MAP_TYPE_USER_RINGBUF:
17039 		case BPF_MAP_TYPE_INODE_STORAGE:
17040 		case BPF_MAP_TYPE_SK_STORAGE:
17041 		case BPF_MAP_TYPE_TASK_STORAGE:
17042 		case BPF_MAP_TYPE_CGRP_STORAGE:
17043 			break;
17044 		default:
17045 			verbose(env,
17046 				"Sleepable programs can only use array, hash, ringbuf and local storage maps\n");
17047 			return -EINVAL;
17048 		}
17049 
17050 	return 0;
17051 }
17052 
17053 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
17054 {
17055 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
17056 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
17057 }
17058 
17059 /* find and rewrite pseudo imm in ld_imm64 instructions:
17060  *
17061  * 1. if it accesses map FD, replace it with actual map pointer.
17062  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
17063  *
17064  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
17065  */
17066 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
17067 {
17068 	struct bpf_insn *insn = env->prog->insnsi;
17069 	int insn_cnt = env->prog->len;
17070 	int i, j, err;
17071 
17072 	err = bpf_prog_calc_tag(env->prog);
17073 	if (err)
17074 		return err;
17075 
17076 	for (i = 0; i < insn_cnt; i++, insn++) {
17077 		if (BPF_CLASS(insn->code) == BPF_LDX &&
17078 		    ((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
17079 		    insn->imm != 0)) {
17080 			verbose(env, "BPF_LDX uses reserved fields\n");
17081 			return -EINVAL;
17082 		}
17083 
17084 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
17085 			struct bpf_insn_aux_data *aux;
17086 			struct bpf_map *map;
17087 			struct fd f;
17088 			u64 addr;
17089 			u32 fd;
17090 
17091 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
17092 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
17093 			    insn[1].off != 0) {
17094 				verbose(env, "invalid bpf_ld_imm64 insn\n");
17095 				return -EINVAL;
17096 			}
17097 
17098 			if (insn[0].src_reg == 0)
17099 				/* valid generic load 64-bit imm */
17100 				goto next_insn;
17101 
17102 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
17103 				aux = &env->insn_aux_data[i];
17104 				err = check_pseudo_btf_id(env, insn, aux);
17105 				if (err)
17106 					return err;
17107 				goto next_insn;
17108 			}
17109 
17110 			if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
17111 				aux = &env->insn_aux_data[i];
17112 				aux->ptr_type = PTR_TO_FUNC;
17113 				goto next_insn;
17114 			}
17115 
17116 			/* In final convert_pseudo_ld_imm64() step, this is
17117 			 * converted into regular 64-bit imm load insn.
17118 			 */
17119 			switch (insn[0].src_reg) {
17120 			case BPF_PSEUDO_MAP_VALUE:
17121 			case BPF_PSEUDO_MAP_IDX_VALUE:
17122 				break;
17123 			case BPF_PSEUDO_MAP_FD:
17124 			case BPF_PSEUDO_MAP_IDX:
17125 				if (insn[1].imm == 0)
17126 					break;
17127 				fallthrough;
17128 			default:
17129 				verbose(env, "unrecognized bpf_ld_imm64 insn\n");
17130 				return -EINVAL;
17131 			}
17132 
17133 			switch (insn[0].src_reg) {
17134 			case BPF_PSEUDO_MAP_IDX_VALUE:
17135 			case BPF_PSEUDO_MAP_IDX:
17136 				if (bpfptr_is_null(env->fd_array)) {
17137 					verbose(env, "fd_idx without fd_array is invalid\n");
17138 					return -EPROTO;
17139 				}
17140 				if (copy_from_bpfptr_offset(&fd, env->fd_array,
17141 							    insn[0].imm * sizeof(fd),
17142 							    sizeof(fd)))
17143 					return -EFAULT;
17144 				break;
17145 			default:
17146 				fd = insn[0].imm;
17147 				break;
17148 			}
17149 
17150 			f = fdget(fd);
17151 			map = __bpf_map_get(f);
17152 			if (IS_ERR(map)) {
17153 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
17154 					insn[0].imm);
17155 				return PTR_ERR(map);
17156 			}
17157 
17158 			err = check_map_prog_compatibility(env, map, env->prog);
17159 			if (err) {
17160 				fdput(f);
17161 				return err;
17162 			}
17163 
17164 			aux = &env->insn_aux_data[i];
17165 			if (insn[0].src_reg == BPF_PSEUDO_MAP_FD ||
17166 			    insn[0].src_reg == BPF_PSEUDO_MAP_IDX) {
17167 				addr = (unsigned long)map;
17168 			} else {
17169 				u32 off = insn[1].imm;
17170 
17171 				if (off >= BPF_MAX_VAR_OFF) {
17172 					verbose(env, "direct value offset of %u is not allowed\n", off);
17173 					fdput(f);
17174 					return -EINVAL;
17175 				}
17176 
17177 				if (!map->ops->map_direct_value_addr) {
17178 					verbose(env, "no direct value access support for this map type\n");
17179 					fdput(f);
17180 					return -EINVAL;
17181 				}
17182 
17183 				err = map->ops->map_direct_value_addr(map, &addr, off);
17184 				if (err) {
17185 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
17186 						map->value_size, off);
17187 					fdput(f);
17188 					return err;
17189 				}
17190 
17191 				aux->map_off = off;
17192 				addr += off;
17193 			}
17194 
17195 			insn[0].imm = (u32)addr;
17196 			insn[1].imm = addr >> 32;
17197 
17198 			/* check whether we recorded this map already */
17199 			for (j = 0; j < env->used_map_cnt; j++) {
17200 				if (env->used_maps[j] == map) {
17201 					aux->map_index = j;
17202 					fdput(f);
17203 					goto next_insn;
17204 				}
17205 			}
17206 
17207 			if (env->used_map_cnt >= MAX_USED_MAPS) {
17208 				fdput(f);
17209 				return -E2BIG;
17210 			}
17211 
17212 			/* hold the map. If the program is rejected by verifier,
17213 			 * the map will be released by release_maps() or it
17214 			 * will be used by the valid program until it's unloaded
17215 			 * and all maps are released in free_used_maps()
17216 			 */
17217 			bpf_map_inc(map);
17218 
17219 			aux->map_index = env->used_map_cnt;
17220 			env->used_maps[env->used_map_cnt++] = map;
17221 
17222 			if (bpf_map_is_cgroup_storage(map) &&
17223 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
17224 				verbose(env, "only one cgroup storage of each type is allowed\n");
17225 				fdput(f);
17226 				return -EBUSY;
17227 			}
17228 
17229 			fdput(f);
17230 next_insn:
17231 			insn++;
17232 			i++;
17233 			continue;
17234 		}
17235 
17236 		/* Basic sanity check before we invest more work here. */
17237 		if (!bpf_opcode_in_insntable(insn->code)) {
17238 			verbose(env, "unknown opcode %02x\n", insn->code);
17239 			return -EINVAL;
17240 		}
17241 	}
17242 
17243 	/* now all pseudo BPF_LD_IMM64 instructions load valid
17244 	 * 'struct bpf_map *' into a register instead of user map_fd.
17245 	 * These pointers will be used later by verifier to validate map access.
17246 	 */
17247 	return 0;
17248 }
17249 
17250 /* drop refcnt of maps used by the rejected program */
17251 static void release_maps(struct bpf_verifier_env *env)
17252 {
17253 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
17254 			     env->used_map_cnt);
17255 }
17256 
17257 /* drop refcnt of maps used by the rejected program */
17258 static void release_btfs(struct bpf_verifier_env *env)
17259 {
17260 	__bpf_free_used_btfs(env->prog->aux, env->used_btfs,
17261 			     env->used_btf_cnt);
17262 }
17263 
17264 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
17265 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
17266 {
17267 	struct bpf_insn *insn = env->prog->insnsi;
17268 	int insn_cnt = env->prog->len;
17269 	int i;
17270 
17271 	for (i = 0; i < insn_cnt; i++, insn++) {
17272 		if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
17273 			continue;
17274 		if (insn->src_reg == BPF_PSEUDO_FUNC)
17275 			continue;
17276 		insn->src_reg = 0;
17277 	}
17278 }
17279 
17280 /* single env->prog->insni[off] instruction was replaced with the range
17281  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
17282  * [0, off) and [off, end) to new locations, so the patched range stays zero
17283  */
17284 static void adjust_insn_aux_data(struct bpf_verifier_env *env,
17285 				 struct bpf_insn_aux_data *new_data,
17286 				 struct bpf_prog *new_prog, u32 off, u32 cnt)
17287 {
17288 	struct bpf_insn_aux_data *old_data = env->insn_aux_data;
17289 	struct bpf_insn *insn = new_prog->insnsi;
17290 	u32 old_seen = old_data[off].seen;
17291 	u32 prog_len;
17292 	int i;
17293 
17294 	/* aux info at OFF always needs adjustment, no matter fast path
17295 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
17296 	 * original insn at old prog.
17297 	 */
17298 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
17299 
17300 	if (cnt == 1)
17301 		return;
17302 	prog_len = new_prog->len;
17303 
17304 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
17305 	memcpy(new_data + off + cnt - 1, old_data + off,
17306 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
17307 	for (i = off; i < off + cnt - 1; i++) {
17308 		/* Expand insni[off]'s seen count to the patched range. */
17309 		new_data[i].seen = old_seen;
17310 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
17311 	}
17312 	env->insn_aux_data = new_data;
17313 	vfree(old_data);
17314 }
17315 
17316 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
17317 {
17318 	int i;
17319 
17320 	if (len == 1)
17321 		return;
17322 	/* NOTE: fake 'exit' subprog should be updated as well. */
17323 	for (i = 0; i <= env->subprog_cnt; i++) {
17324 		if (env->subprog_info[i].start <= off)
17325 			continue;
17326 		env->subprog_info[i].start += len - 1;
17327 	}
17328 }
17329 
17330 static void adjust_poke_descs(struct bpf_prog *prog, u32 off, u32 len)
17331 {
17332 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
17333 	int i, sz = prog->aux->size_poke_tab;
17334 	struct bpf_jit_poke_descriptor *desc;
17335 
17336 	for (i = 0; i < sz; i++) {
17337 		desc = &tab[i];
17338 		if (desc->insn_idx <= off)
17339 			continue;
17340 		desc->insn_idx += len - 1;
17341 	}
17342 }
17343 
17344 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
17345 					    const struct bpf_insn *patch, u32 len)
17346 {
17347 	struct bpf_prog *new_prog;
17348 	struct bpf_insn_aux_data *new_data = NULL;
17349 
17350 	if (len > 1) {
17351 		new_data = vzalloc(array_size(env->prog->len + len - 1,
17352 					      sizeof(struct bpf_insn_aux_data)));
17353 		if (!new_data)
17354 			return NULL;
17355 	}
17356 
17357 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
17358 	if (IS_ERR(new_prog)) {
17359 		if (PTR_ERR(new_prog) == -ERANGE)
17360 			verbose(env,
17361 				"insn %d cannot be patched due to 16-bit range\n",
17362 				env->insn_aux_data[off].orig_idx);
17363 		vfree(new_data);
17364 		return NULL;
17365 	}
17366 	adjust_insn_aux_data(env, new_data, new_prog, off, len);
17367 	adjust_subprog_starts(env, off, len);
17368 	adjust_poke_descs(new_prog, off, len);
17369 	return new_prog;
17370 }
17371 
17372 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
17373 					      u32 off, u32 cnt)
17374 {
17375 	int i, j;
17376 
17377 	/* find first prog starting at or after off (first to remove) */
17378 	for (i = 0; i < env->subprog_cnt; i++)
17379 		if (env->subprog_info[i].start >= off)
17380 			break;
17381 	/* find first prog starting at or after off + cnt (first to stay) */
17382 	for (j = i; j < env->subprog_cnt; j++)
17383 		if (env->subprog_info[j].start >= off + cnt)
17384 			break;
17385 	/* if j doesn't start exactly at off + cnt, we are just removing
17386 	 * the front of previous prog
17387 	 */
17388 	if (env->subprog_info[j].start != off + cnt)
17389 		j--;
17390 
17391 	if (j > i) {
17392 		struct bpf_prog_aux *aux = env->prog->aux;
17393 		int move;
17394 
17395 		/* move fake 'exit' subprog as well */
17396 		move = env->subprog_cnt + 1 - j;
17397 
17398 		memmove(env->subprog_info + i,
17399 			env->subprog_info + j,
17400 			sizeof(*env->subprog_info) * move);
17401 		env->subprog_cnt -= j - i;
17402 
17403 		/* remove func_info */
17404 		if (aux->func_info) {
17405 			move = aux->func_info_cnt - j;
17406 
17407 			memmove(aux->func_info + i,
17408 				aux->func_info + j,
17409 				sizeof(*aux->func_info) * move);
17410 			aux->func_info_cnt -= j - i;
17411 			/* func_info->insn_off is set after all code rewrites,
17412 			 * in adjust_btf_func() - no need to adjust
17413 			 */
17414 		}
17415 	} else {
17416 		/* convert i from "first prog to remove" to "first to adjust" */
17417 		if (env->subprog_info[i].start == off)
17418 			i++;
17419 	}
17420 
17421 	/* update fake 'exit' subprog as well */
17422 	for (; i <= env->subprog_cnt; i++)
17423 		env->subprog_info[i].start -= cnt;
17424 
17425 	return 0;
17426 }
17427 
17428 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
17429 				      u32 cnt)
17430 {
17431 	struct bpf_prog *prog = env->prog;
17432 	u32 i, l_off, l_cnt, nr_linfo;
17433 	struct bpf_line_info *linfo;
17434 
17435 	nr_linfo = prog->aux->nr_linfo;
17436 	if (!nr_linfo)
17437 		return 0;
17438 
17439 	linfo = prog->aux->linfo;
17440 
17441 	/* find first line info to remove, count lines to be removed */
17442 	for (i = 0; i < nr_linfo; i++)
17443 		if (linfo[i].insn_off >= off)
17444 			break;
17445 
17446 	l_off = i;
17447 	l_cnt = 0;
17448 	for (; i < nr_linfo; i++)
17449 		if (linfo[i].insn_off < off + cnt)
17450 			l_cnt++;
17451 		else
17452 			break;
17453 
17454 	/* First live insn doesn't match first live linfo, it needs to "inherit"
17455 	 * last removed linfo.  prog is already modified, so prog->len == off
17456 	 * means no live instructions after (tail of the program was removed).
17457 	 */
17458 	if (prog->len != off && l_cnt &&
17459 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
17460 		l_cnt--;
17461 		linfo[--i].insn_off = off + cnt;
17462 	}
17463 
17464 	/* remove the line info which refer to the removed instructions */
17465 	if (l_cnt) {
17466 		memmove(linfo + l_off, linfo + i,
17467 			sizeof(*linfo) * (nr_linfo - i));
17468 
17469 		prog->aux->nr_linfo -= l_cnt;
17470 		nr_linfo = prog->aux->nr_linfo;
17471 	}
17472 
17473 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
17474 	for (i = l_off; i < nr_linfo; i++)
17475 		linfo[i].insn_off -= cnt;
17476 
17477 	/* fix up all subprogs (incl. 'exit') which start >= off */
17478 	for (i = 0; i <= env->subprog_cnt; i++)
17479 		if (env->subprog_info[i].linfo_idx > l_off) {
17480 			/* program may have started in the removed region but
17481 			 * may not be fully removed
17482 			 */
17483 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
17484 				env->subprog_info[i].linfo_idx -= l_cnt;
17485 			else
17486 				env->subprog_info[i].linfo_idx = l_off;
17487 		}
17488 
17489 	return 0;
17490 }
17491 
17492 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
17493 {
17494 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17495 	unsigned int orig_prog_len = env->prog->len;
17496 	int err;
17497 
17498 	if (bpf_prog_is_offloaded(env->prog->aux))
17499 		bpf_prog_offload_remove_insns(env, off, cnt);
17500 
17501 	err = bpf_remove_insns(env->prog, off, cnt);
17502 	if (err)
17503 		return err;
17504 
17505 	err = adjust_subprog_starts_after_remove(env, off, cnt);
17506 	if (err)
17507 		return err;
17508 
17509 	err = bpf_adj_linfo_after_remove(env, off, cnt);
17510 	if (err)
17511 		return err;
17512 
17513 	memmove(aux_data + off,	aux_data + off + cnt,
17514 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
17515 
17516 	return 0;
17517 }
17518 
17519 /* The verifier does more data flow analysis than llvm and will not
17520  * explore branches that are dead at run time. Malicious programs can
17521  * have dead code too. Therefore replace all dead at-run-time code
17522  * with 'ja -1'.
17523  *
17524  * Just nops are not optimal, e.g. if they would sit at the end of the
17525  * program and through another bug we would manage to jump there, then
17526  * we'd execute beyond program memory otherwise. Returning exception
17527  * code also wouldn't work since we can have subprogs where the dead
17528  * code could be located.
17529  */
17530 static void sanitize_dead_code(struct bpf_verifier_env *env)
17531 {
17532 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17533 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
17534 	struct bpf_insn *insn = env->prog->insnsi;
17535 	const int insn_cnt = env->prog->len;
17536 	int i;
17537 
17538 	for (i = 0; i < insn_cnt; i++) {
17539 		if (aux_data[i].seen)
17540 			continue;
17541 		memcpy(insn + i, &trap, sizeof(trap));
17542 		aux_data[i].zext_dst = false;
17543 	}
17544 }
17545 
17546 static bool insn_is_cond_jump(u8 code)
17547 {
17548 	u8 op;
17549 
17550 	op = BPF_OP(code);
17551 	if (BPF_CLASS(code) == BPF_JMP32)
17552 		return op != BPF_JA;
17553 
17554 	if (BPF_CLASS(code) != BPF_JMP)
17555 		return false;
17556 
17557 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
17558 }
17559 
17560 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
17561 {
17562 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17563 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17564 	struct bpf_insn *insn = env->prog->insnsi;
17565 	const int insn_cnt = env->prog->len;
17566 	int i;
17567 
17568 	for (i = 0; i < insn_cnt; i++, insn++) {
17569 		if (!insn_is_cond_jump(insn->code))
17570 			continue;
17571 
17572 		if (!aux_data[i + 1].seen)
17573 			ja.off = insn->off;
17574 		else if (!aux_data[i + 1 + insn->off].seen)
17575 			ja.off = 0;
17576 		else
17577 			continue;
17578 
17579 		if (bpf_prog_is_offloaded(env->prog->aux))
17580 			bpf_prog_offload_replace_insn(env, i, &ja);
17581 
17582 		memcpy(insn, &ja, sizeof(ja));
17583 	}
17584 }
17585 
17586 static int opt_remove_dead_code(struct bpf_verifier_env *env)
17587 {
17588 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
17589 	int insn_cnt = env->prog->len;
17590 	int i, err;
17591 
17592 	for (i = 0; i < insn_cnt; i++) {
17593 		int j;
17594 
17595 		j = 0;
17596 		while (i + j < insn_cnt && !aux_data[i + j].seen)
17597 			j++;
17598 		if (!j)
17599 			continue;
17600 
17601 		err = verifier_remove_insns(env, i, j);
17602 		if (err)
17603 			return err;
17604 		insn_cnt = env->prog->len;
17605 	}
17606 
17607 	return 0;
17608 }
17609 
17610 static int opt_remove_nops(struct bpf_verifier_env *env)
17611 {
17612 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
17613 	struct bpf_insn *insn = env->prog->insnsi;
17614 	int insn_cnt = env->prog->len;
17615 	int i, err;
17616 
17617 	for (i = 0; i < insn_cnt; i++) {
17618 		if (memcmp(&insn[i], &ja, sizeof(ja)))
17619 			continue;
17620 
17621 		err = verifier_remove_insns(env, i, 1);
17622 		if (err)
17623 			return err;
17624 		insn_cnt--;
17625 		i--;
17626 	}
17627 
17628 	return 0;
17629 }
17630 
17631 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
17632 					 const union bpf_attr *attr)
17633 {
17634 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
17635 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
17636 	int i, patch_len, delta = 0, len = env->prog->len;
17637 	struct bpf_insn *insns = env->prog->insnsi;
17638 	struct bpf_prog *new_prog;
17639 	bool rnd_hi32;
17640 
17641 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
17642 	zext_patch[1] = BPF_ZEXT_REG(0);
17643 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
17644 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
17645 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
17646 	for (i = 0; i < len; i++) {
17647 		int adj_idx = i + delta;
17648 		struct bpf_insn insn;
17649 		int load_reg;
17650 
17651 		insn = insns[adj_idx];
17652 		load_reg = insn_def_regno(&insn);
17653 		if (!aux[adj_idx].zext_dst) {
17654 			u8 code, class;
17655 			u32 imm_rnd;
17656 
17657 			if (!rnd_hi32)
17658 				continue;
17659 
17660 			code = insn.code;
17661 			class = BPF_CLASS(code);
17662 			if (load_reg == -1)
17663 				continue;
17664 
17665 			/* NOTE: arg "reg" (the fourth one) is only used for
17666 			 *       BPF_STX + SRC_OP, so it is safe to pass NULL
17667 			 *       here.
17668 			 */
17669 			if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
17670 				if (class == BPF_LD &&
17671 				    BPF_MODE(code) == BPF_IMM)
17672 					i++;
17673 				continue;
17674 			}
17675 
17676 			/* ctx load could be transformed into wider load. */
17677 			if (class == BPF_LDX &&
17678 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
17679 				continue;
17680 
17681 			imm_rnd = get_random_u32();
17682 			rnd_hi32_patch[0] = insn;
17683 			rnd_hi32_patch[1].imm = imm_rnd;
17684 			rnd_hi32_patch[3].dst_reg = load_reg;
17685 			patch = rnd_hi32_patch;
17686 			patch_len = 4;
17687 			goto apply_patch_buffer;
17688 		}
17689 
17690 		/* Add in an zero-extend instruction if a) the JIT has requested
17691 		 * it or b) it's a CMPXCHG.
17692 		 *
17693 		 * The latter is because: BPF_CMPXCHG always loads a value into
17694 		 * R0, therefore always zero-extends. However some archs'
17695 		 * equivalent instruction only does this load when the
17696 		 * comparison is successful. This detail of CMPXCHG is
17697 		 * orthogonal to the general zero-extension behaviour of the
17698 		 * CPU, so it's treated independently of bpf_jit_needs_zext.
17699 		 */
17700 		if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
17701 			continue;
17702 
17703 		/* Zero-extension is done by the caller. */
17704 		if (bpf_pseudo_kfunc_call(&insn))
17705 			continue;
17706 
17707 		if (WARN_ON(load_reg == -1)) {
17708 			verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
17709 			return -EFAULT;
17710 		}
17711 
17712 		zext_patch[0] = insn;
17713 		zext_patch[1].dst_reg = load_reg;
17714 		zext_patch[1].src_reg = load_reg;
17715 		patch = zext_patch;
17716 		patch_len = 2;
17717 apply_patch_buffer:
17718 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
17719 		if (!new_prog)
17720 			return -ENOMEM;
17721 		env->prog = new_prog;
17722 		insns = new_prog->insnsi;
17723 		aux = env->insn_aux_data;
17724 		delta += patch_len - 1;
17725 	}
17726 
17727 	return 0;
17728 }
17729 
17730 /* convert load instructions that access fields of a context type into a
17731  * sequence of instructions that access fields of the underlying structure:
17732  *     struct __sk_buff    -> struct sk_buff
17733  *     struct bpf_sock_ops -> struct sock
17734  */
17735 static int convert_ctx_accesses(struct bpf_verifier_env *env)
17736 {
17737 	const struct bpf_verifier_ops *ops = env->ops;
17738 	int i, cnt, size, ctx_field_size, delta = 0;
17739 	const int insn_cnt = env->prog->len;
17740 	struct bpf_insn insn_buf[16], *insn;
17741 	u32 target_size, size_default, off;
17742 	struct bpf_prog *new_prog;
17743 	enum bpf_access_type type;
17744 	bool is_narrower_load;
17745 
17746 	if (ops->gen_prologue || env->seen_direct_write) {
17747 		if (!ops->gen_prologue) {
17748 			verbose(env, "bpf verifier is misconfigured\n");
17749 			return -EINVAL;
17750 		}
17751 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
17752 					env->prog);
17753 		if (cnt >= ARRAY_SIZE(insn_buf)) {
17754 			verbose(env, "bpf verifier is misconfigured\n");
17755 			return -EINVAL;
17756 		} else if (cnt) {
17757 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
17758 			if (!new_prog)
17759 				return -ENOMEM;
17760 
17761 			env->prog = new_prog;
17762 			delta += cnt - 1;
17763 		}
17764 	}
17765 
17766 	if (bpf_prog_is_offloaded(env->prog->aux))
17767 		return 0;
17768 
17769 	insn = env->prog->insnsi + delta;
17770 
17771 	for (i = 0; i < insn_cnt; i++, insn++) {
17772 		bpf_convert_ctx_access_t convert_ctx_access;
17773 		u8 mode;
17774 
17775 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
17776 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
17777 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
17778 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
17779 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
17780 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
17781 		    insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
17782 			type = BPF_READ;
17783 		} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
17784 			   insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
17785 			   insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
17786 			   insn->code == (BPF_STX | BPF_MEM | BPF_DW) ||
17787 			   insn->code == (BPF_ST | BPF_MEM | BPF_B) ||
17788 			   insn->code == (BPF_ST | BPF_MEM | BPF_H) ||
17789 			   insn->code == (BPF_ST | BPF_MEM | BPF_W) ||
17790 			   insn->code == (BPF_ST | BPF_MEM | BPF_DW)) {
17791 			type = BPF_WRITE;
17792 		} else {
17793 			continue;
17794 		}
17795 
17796 		if (type == BPF_WRITE &&
17797 		    env->insn_aux_data[i + delta].sanitize_stack_spill) {
17798 			struct bpf_insn patch[] = {
17799 				*insn,
17800 				BPF_ST_NOSPEC(),
17801 			};
17802 
17803 			cnt = ARRAY_SIZE(patch);
17804 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
17805 			if (!new_prog)
17806 				return -ENOMEM;
17807 
17808 			delta    += cnt - 1;
17809 			env->prog = new_prog;
17810 			insn      = new_prog->insnsi + i + delta;
17811 			continue;
17812 		}
17813 
17814 		switch ((int)env->insn_aux_data[i + delta].ptr_type) {
17815 		case PTR_TO_CTX:
17816 			if (!ops->convert_ctx_access)
17817 				continue;
17818 			convert_ctx_access = ops->convert_ctx_access;
17819 			break;
17820 		case PTR_TO_SOCKET:
17821 		case PTR_TO_SOCK_COMMON:
17822 			convert_ctx_access = bpf_sock_convert_ctx_access;
17823 			break;
17824 		case PTR_TO_TCP_SOCK:
17825 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
17826 			break;
17827 		case PTR_TO_XDP_SOCK:
17828 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
17829 			break;
17830 		case PTR_TO_BTF_ID:
17831 		case PTR_TO_BTF_ID | PTR_UNTRUSTED:
17832 		/* PTR_TO_BTF_ID | MEM_ALLOC always has a valid lifetime, unlike
17833 		 * PTR_TO_BTF_ID, and an active ref_obj_id, but the same cannot
17834 		 * be said once it is marked PTR_UNTRUSTED, hence we must handle
17835 		 * any faults for loads into such types. BPF_WRITE is disallowed
17836 		 * for this case.
17837 		 */
17838 		case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
17839 			if (type == BPF_READ) {
17840 				if (BPF_MODE(insn->code) == BPF_MEM)
17841 					insn->code = BPF_LDX | BPF_PROBE_MEM |
17842 						     BPF_SIZE((insn)->code);
17843 				else
17844 					insn->code = BPF_LDX | BPF_PROBE_MEMSX |
17845 						     BPF_SIZE((insn)->code);
17846 				env->prog->aux->num_exentries++;
17847 			}
17848 			continue;
17849 		default:
17850 			continue;
17851 		}
17852 
17853 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
17854 		size = BPF_LDST_BYTES(insn);
17855 		mode = BPF_MODE(insn->code);
17856 
17857 		/* If the read access is a narrower load of the field,
17858 		 * convert to a 4/8-byte load, to minimum program type specific
17859 		 * convert_ctx_access changes. If conversion is successful,
17860 		 * we will apply proper mask to the result.
17861 		 */
17862 		is_narrower_load = size < ctx_field_size;
17863 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
17864 		off = insn->off;
17865 		if (is_narrower_load) {
17866 			u8 size_code;
17867 
17868 			if (type == BPF_WRITE) {
17869 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
17870 				return -EINVAL;
17871 			}
17872 
17873 			size_code = BPF_H;
17874 			if (ctx_field_size == 4)
17875 				size_code = BPF_W;
17876 			else if (ctx_field_size == 8)
17877 				size_code = BPF_DW;
17878 
17879 			insn->off = off & ~(size_default - 1);
17880 			insn->code = BPF_LDX | BPF_MEM | size_code;
17881 		}
17882 
17883 		target_size = 0;
17884 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
17885 					 &target_size);
17886 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
17887 		    (ctx_field_size && !target_size)) {
17888 			verbose(env, "bpf verifier is misconfigured\n");
17889 			return -EINVAL;
17890 		}
17891 
17892 		if (is_narrower_load && size < target_size) {
17893 			u8 shift = bpf_ctx_narrow_access_offset(
17894 				off, size, size_default) * 8;
17895 			if (shift && cnt + 1 >= ARRAY_SIZE(insn_buf)) {
17896 				verbose(env, "bpf verifier narrow ctx load misconfigured\n");
17897 				return -EINVAL;
17898 			}
17899 			if (ctx_field_size <= 4) {
17900 				if (shift)
17901 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
17902 									insn->dst_reg,
17903 									shift);
17904 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17905 								(1 << size * 8) - 1);
17906 			} else {
17907 				if (shift)
17908 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
17909 									insn->dst_reg,
17910 									shift);
17911 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
17912 								(1ULL << size * 8) - 1);
17913 			}
17914 		}
17915 		if (mode == BPF_MEMSX)
17916 			insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
17917 						       insn->dst_reg, insn->dst_reg,
17918 						       size * 8, 0);
17919 
17920 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
17921 		if (!new_prog)
17922 			return -ENOMEM;
17923 
17924 		delta += cnt - 1;
17925 
17926 		/* keep walking new program and skip insns we just inserted */
17927 		env->prog = new_prog;
17928 		insn      = new_prog->insnsi + i + delta;
17929 	}
17930 
17931 	return 0;
17932 }
17933 
17934 static int jit_subprogs(struct bpf_verifier_env *env)
17935 {
17936 	struct bpf_prog *prog = env->prog, **func, *tmp;
17937 	int i, j, subprog_start, subprog_end = 0, len, subprog;
17938 	struct bpf_map *map_ptr;
17939 	struct bpf_insn *insn;
17940 	void *old_bpf_func;
17941 	int err, num_exentries;
17942 
17943 	if (env->subprog_cnt <= 1)
17944 		return 0;
17945 
17946 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
17947 		if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn))
17948 			continue;
17949 
17950 		/* Upon error here we cannot fall back to interpreter but
17951 		 * need a hard reject of the program. Thus -EFAULT is
17952 		 * propagated in any case.
17953 		 */
17954 		subprog = find_subprog(env, i + insn->imm + 1);
17955 		if (subprog < 0) {
17956 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
17957 				  i + insn->imm + 1);
17958 			return -EFAULT;
17959 		}
17960 		/* temporarily remember subprog id inside insn instead of
17961 		 * aux_data, since next loop will split up all insns into funcs
17962 		 */
17963 		insn->off = subprog;
17964 		/* remember original imm in case JIT fails and fallback
17965 		 * to interpreter will be needed
17966 		 */
17967 		env->insn_aux_data[i].call_imm = insn->imm;
17968 		/* point imm to __bpf_call_base+1 from JITs point of view */
17969 		insn->imm = 1;
17970 		if (bpf_pseudo_func(insn))
17971 			/* jit (e.g. x86_64) may emit fewer instructions
17972 			 * if it learns a u32 imm is the same as a u64 imm.
17973 			 * Force a non zero here.
17974 			 */
17975 			insn[1].imm = 1;
17976 	}
17977 
17978 	err = bpf_prog_alloc_jited_linfo(prog);
17979 	if (err)
17980 		goto out_undo_insn;
17981 
17982 	err = -ENOMEM;
17983 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
17984 	if (!func)
17985 		goto out_undo_insn;
17986 
17987 	for (i = 0; i < env->subprog_cnt; i++) {
17988 		subprog_start = subprog_end;
17989 		subprog_end = env->subprog_info[i + 1].start;
17990 
17991 		len = subprog_end - subprog_start;
17992 		/* bpf_prog_run() doesn't call subprogs directly,
17993 		 * hence main prog stats include the runtime of subprogs.
17994 		 * subprogs don't have IDs and not reachable via prog_get_next_id
17995 		 * func[i]->stats will never be accessed and stays NULL
17996 		 */
17997 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
17998 		if (!func[i])
17999 			goto out_free;
18000 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
18001 		       len * sizeof(struct bpf_insn));
18002 		func[i]->type = prog->type;
18003 		func[i]->len = len;
18004 		if (bpf_prog_calc_tag(func[i]))
18005 			goto out_free;
18006 		func[i]->is_func = 1;
18007 		func[i]->aux->func_idx = i;
18008 		/* Below members will be freed only at prog->aux */
18009 		func[i]->aux->btf = prog->aux->btf;
18010 		func[i]->aux->func_info = prog->aux->func_info;
18011 		func[i]->aux->func_info_cnt = prog->aux->func_info_cnt;
18012 		func[i]->aux->poke_tab = prog->aux->poke_tab;
18013 		func[i]->aux->size_poke_tab = prog->aux->size_poke_tab;
18014 
18015 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
18016 			struct bpf_jit_poke_descriptor *poke;
18017 
18018 			poke = &prog->aux->poke_tab[j];
18019 			if (poke->insn_idx < subprog_end &&
18020 			    poke->insn_idx >= subprog_start)
18021 				poke->aux = func[i]->aux;
18022 		}
18023 
18024 		func[i]->aux->name[0] = 'F';
18025 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
18026 		func[i]->jit_requested = 1;
18027 		func[i]->blinding_requested = prog->blinding_requested;
18028 		func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
18029 		func[i]->aux->kfunc_btf_tab = prog->aux->kfunc_btf_tab;
18030 		func[i]->aux->linfo = prog->aux->linfo;
18031 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
18032 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
18033 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
18034 		num_exentries = 0;
18035 		insn = func[i]->insnsi;
18036 		for (j = 0; j < func[i]->len; j++, insn++) {
18037 			if (BPF_CLASS(insn->code) == BPF_LDX &&
18038 			    (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
18039 			     BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
18040 				num_exentries++;
18041 		}
18042 		func[i]->aux->num_exentries = num_exentries;
18043 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
18044 		func[i] = bpf_int_jit_compile(func[i]);
18045 		if (!func[i]->jited) {
18046 			err = -ENOTSUPP;
18047 			goto out_free;
18048 		}
18049 		cond_resched();
18050 	}
18051 
18052 	/* at this point all bpf functions were successfully JITed
18053 	 * now populate all bpf_calls with correct addresses and
18054 	 * run last pass of JIT
18055 	 */
18056 	for (i = 0; i < env->subprog_cnt; i++) {
18057 		insn = func[i]->insnsi;
18058 		for (j = 0; j < func[i]->len; j++, insn++) {
18059 			if (bpf_pseudo_func(insn)) {
18060 				subprog = insn->off;
18061 				insn[0].imm = (u32)(long)func[subprog]->bpf_func;
18062 				insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
18063 				continue;
18064 			}
18065 			if (!bpf_pseudo_call(insn))
18066 				continue;
18067 			subprog = insn->off;
18068 			insn->imm = BPF_CALL_IMM(func[subprog]->bpf_func);
18069 		}
18070 
18071 		/* we use the aux data to keep a list of the start addresses
18072 		 * of the JITed images for each function in the program
18073 		 *
18074 		 * for some architectures, such as powerpc64, the imm field
18075 		 * might not be large enough to hold the offset of the start
18076 		 * address of the callee's JITed image from __bpf_call_base
18077 		 *
18078 		 * in such cases, we can lookup the start address of a callee
18079 		 * by using its subprog id, available from the off field of
18080 		 * the call instruction, as an index for this list
18081 		 */
18082 		func[i]->aux->func = func;
18083 		func[i]->aux->func_cnt = env->subprog_cnt;
18084 	}
18085 	for (i = 0; i < env->subprog_cnt; i++) {
18086 		old_bpf_func = func[i]->bpf_func;
18087 		tmp = bpf_int_jit_compile(func[i]);
18088 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
18089 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
18090 			err = -ENOTSUPP;
18091 			goto out_free;
18092 		}
18093 		cond_resched();
18094 	}
18095 
18096 	/* finally lock prog and jit images for all functions and
18097 	 * populate kallsysm. Begin at the first subprogram, since
18098 	 * bpf_prog_load will add the kallsyms for the main program.
18099 	 */
18100 	for (i = 1; i < env->subprog_cnt; i++) {
18101 		bpf_prog_lock_ro(func[i]);
18102 		bpf_prog_kallsyms_add(func[i]);
18103 	}
18104 
18105 	/* Last step: make now unused interpreter insns from main
18106 	 * prog consistent for later dump requests, so they can
18107 	 * later look the same as if they were interpreted only.
18108 	 */
18109 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18110 		if (bpf_pseudo_func(insn)) {
18111 			insn[0].imm = env->insn_aux_data[i].call_imm;
18112 			insn[1].imm = insn->off;
18113 			insn->off = 0;
18114 			continue;
18115 		}
18116 		if (!bpf_pseudo_call(insn))
18117 			continue;
18118 		insn->off = env->insn_aux_data[i].call_imm;
18119 		subprog = find_subprog(env, i + insn->off + 1);
18120 		insn->imm = subprog;
18121 	}
18122 
18123 	prog->jited = 1;
18124 	prog->bpf_func = func[0]->bpf_func;
18125 	prog->jited_len = func[0]->jited_len;
18126 	prog->aux->extable = func[0]->aux->extable;
18127 	prog->aux->num_exentries = func[0]->aux->num_exentries;
18128 	prog->aux->func = func;
18129 	prog->aux->func_cnt = env->subprog_cnt;
18130 	bpf_prog_jit_attempt_done(prog);
18131 	return 0;
18132 out_free:
18133 	/* We failed JIT'ing, so at this point we need to unregister poke
18134 	 * descriptors from subprogs, so that kernel is not attempting to
18135 	 * patch it anymore as we're freeing the subprog JIT memory.
18136 	 */
18137 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18138 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18139 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
18140 	}
18141 	/* At this point we're guaranteed that poke descriptors are not
18142 	 * live anymore. We can just unlink its descriptor table as it's
18143 	 * released with the main prog.
18144 	 */
18145 	for (i = 0; i < env->subprog_cnt; i++) {
18146 		if (!func[i])
18147 			continue;
18148 		func[i]->aux->poke_tab = NULL;
18149 		bpf_jit_free(func[i]);
18150 	}
18151 	kfree(func);
18152 out_undo_insn:
18153 	/* cleanup main prog to be interpreted */
18154 	prog->jit_requested = 0;
18155 	prog->blinding_requested = 0;
18156 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
18157 		if (!bpf_pseudo_call(insn))
18158 			continue;
18159 		insn->off = 0;
18160 		insn->imm = env->insn_aux_data[i].call_imm;
18161 	}
18162 	bpf_prog_jit_attempt_done(prog);
18163 	return err;
18164 }
18165 
18166 static int fixup_call_args(struct bpf_verifier_env *env)
18167 {
18168 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18169 	struct bpf_prog *prog = env->prog;
18170 	struct bpf_insn *insn = prog->insnsi;
18171 	bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
18172 	int i, depth;
18173 #endif
18174 	int err = 0;
18175 
18176 	if (env->prog->jit_requested &&
18177 	    !bpf_prog_is_offloaded(env->prog->aux)) {
18178 		err = jit_subprogs(env);
18179 		if (err == 0)
18180 			return 0;
18181 		if (err == -EFAULT)
18182 			return err;
18183 	}
18184 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
18185 	if (has_kfunc_call) {
18186 		verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
18187 		return -EINVAL;
18188 	}
18189 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
18190 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
18191 		 * have to be rejected, since interpreter doesn't support them yet.
18192 		 */
18193 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
18194 		return -EINVAL;
18195 	}
18196 	for (i = 0; i < prog->len; i++, insn++) {
18197 		if (bpf_pseudo_func(insn)) {
18198 			/* When JIT fails the progs with callback calls
18199 			 * have to be rejected, since interpreter doesn't support them yet.
18200 			 */
18201 			verbose(env, "callbacks are not allowed in non-JITed programs\n");
18202 			return -EINVAL;
18203 		}
18204 
18205 		if (!bpf_pseudo_call(insn))
18206 			continue;
18207 		depth = get_callee_stack_depth(env, insn, i);
18208 		if (depth < 0)
18209 			return depth;
18210 		bpf_patch_call_args(insn, depth);
18211 	}
18212 	err = 0;
18213 #endif
18214 	return err;
18215 }
18216 
18217 /* replace a generic kfunc with a specialized version if necessary */
18218 static void specialize_kfunc(struct bpf_verifier_env *env,
18219 			     u32 func_id, u16 offset, unsigned long *addr)
18220 {
18221 	struct bpf_prog *prog = env->prog;
18222 	bool seen_direct_write;
18223 	void *xdp_kfunc;
18224 	bool is_rdonly;
18225 
18226 	if (bpf_dev_bound_kfunc_id(func_id)) {
18227 		xdp_kfunc = bpf_dev_bound_resolve_kfunc(prog, func_id);
18228 		if (xdp_kfunc) {
18229 			*addr = (unsigned long)xdp_kfunc;
18230 			return;
18231 		}
18232 		/* fallback to default kfunc when not supported by netdev */
18233 	}
18234 
18235 	if (offset)
18236 		return;
18237 
18238 	if (func_id == special_kfunc_list[KF_bpf_dynptr_from_skb]) {
18239 		seen_direct_write = env->seen_direct_write;
18240 		is_rdonly = !may_access_direct_pkt_data(env, NULL, BPF_WRITE);
18241 
18242 		if (is_rdonly)
18243 			*addr = (unsigned long)bpf_dynptr_from_skb_rdonly;
18244 
18245 		/* restore env->seen_direct_write to its original value, since
18246 		 * may_access_direct_pkt_data mutates it
18247 		 */
18248 		env->seen_direct_write = seen_direct_write;
18249 	}
18250 }
18251 
18252 static void __fixup_collection_insert_kfunc(struct bpf_insn_aux_data *insn_aux,
18253 					    u16 struct_meta_reg,
18254 					    u16 node_offset_reg,
18255 					    struct bpf_insn *insn,
18256 					    struct bpf_insn *insn_buf,
18257 					    int *cnt)
18258 {
18259 	struct btf_struct_meta *kptr_struct_meta = insn_aux->kptr_struct_meta;
18260 	struct bpf_insn addr[2] = { BPF_LD_IMM64(struct_meta_reg, (long)kptr_struct_meta) };
18261 
18262 	insn_buf[0] = addr[0];
18263 	insn_buf[1] = addr[1];
18264 	insn_buf[2] = BPF_MOV64_IMM(node_offset_reg, insn_aux->insert_off);
18265 	insn_buf[3] = *insn;
18266 	*cnt = 4;
18267 }
18268 
18269 static int fixup_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
18270 			    struct bpf_insn *insn_buf, int insn_idx, int *cnt)
18271 {
18272 	const struct bpf_kfunc_desc *desc;
18273 
18274 	if (!insn->imm) {
18275 		verbose(env, "invalid kernel function call not eliminated in verifier pass\n");
18276 		return -EINVAL;
18277 	}
18278 
18279 	*cnt = 0;
18280 
18281 	/* insn->imm has the btf func_id. Replace it with an offset relative to
18282 	 * __bpf_call_base, unless the JIT needs to call functions that are
18283 	 * further than 32 bits away (bpf_jit_supports_far_kfunc_call()).
18284 	 */
18285 	desc = find_kfunc_desc(env->prog, insn->imm, insn->off);
18286 	if (!desc) {
18287 		verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
18288 			insn->imm);
18289 		return -EFAULT;
18290 	}
18291 
18292 	if (!bpf_jit_supports_far_kfunc_call())
18293 		insn->imm = BPF_CALL_IMM(desc->addr);
18294 	if (insn->off)
18295 		return 0;
18296 	if (desc->func_id == special_kfunc_list[KF_bpf_obj_new_impl]) {
18297 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18298 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18299 		u64 obj_new_size = env->insn_aux_data[insn_idx].obj_new_size;
18300 
18301 		insn_buf[0] = BPF_MOV64_IMM(BPF_REG_1, obj_new_size);
18302 		insn_buf[1] = addr[0];
18303 		insn_buf[2] = addr[1];
18304 		insn_buf[3] = *insn;
18305 		*cnt = 4;
18306 	} else if (desc->func_id == special_kfunc_list[KF_bpf_obj_drop_impl] ||
18307 		   desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl]) {
18308 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18309 		struct bpf_insn addr[2] = { BPF_LD_IMM64(BPF_REG_2, (long)kptr_struct_meta) };
18310 
18311 		if (desc->func_id == special_kfunc_list[KF_bpf_refcount_acquire_impl] &&
18312 		    !kptr_struct_meta) {
18313 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18314 				insn_idx);
18315 			return -EFAULT;
18316 		}
18317 
18318 		insn_buf[0] = addr[0];
18319 		insn_buf[1] = addr[1];
18320 		insn_buf[2] = *insn;
18321 		*cnt = 3;
18322 	} else if (desc->func_id == special_kfunc_list[KF_bpf_list_push_back_impl] ||
18323 		   desc->func_id == special_kfunc_list[KF_bpf_list_push_front_impl] ||
18324 		   desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18325 		struct btf_struct_meta *kptr_struct_meta = env->insn_aux_data[insn_idx].kptr_struct_meta;
18326 		int struct_meta_reg = BPF_REG_3;
18327 		int node_offset_reg = BPF_REG_4;
18328 
18329 		/* rbtree_add has extra 'less' arg, so args-to-fixup are in diff regs */
18330 		if (desc->func_id == special_kfunc_list[KF_bpf_rbtree_add_impl]) {
18331 			struct_meta_reg = BPF_REG_4;
18332 			node_offset_reg = BPF_REG_5;
18333 		}
18334 
18335 		if (!kptr_struct_meta) {
18336 			verbose(env, "verifier internal error: kptr_struct_meta expected at insn_idx %d\n",
18337 				insn_idx);
18338 			return -EFAULT;
18339 		}
18340 
18341 		__fixup_collection_insert_kfunc(&env->insn_aux_data[insn_idx], struct_meta_reg,
18342 						node_offset_reg, insn, insn_buf, cnt);
18343 	} else if (desc->func_id == special_kfunc_list[KF_bpf_cast_to_kern_ctx] ||
18344 		   desc->func_id == special_kfunc_list[KF_bpf_rdonly_cast]) {
18345 		insn_buf[0] = BPF_MOV64_REG(BPF_REG_0, BPF_REG_1);
18346 		*cnt = 1;
18347 	}
18348 	return 0;
18349 }
18350 
18351 /* Do various post-verification rewrites in a single program pass.
18352  * These rewrites simplify JIT and interpreter implementations.
18353  */
18354 static int do_misc_fixups(struct bpf_verifier_env *env)
18355 {
18356 	struct bpf_prog *prog = env->prog;
18357 	enum bpf_attach_type eatype = prog->expected_attach_type;
18358 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
18359 	struct bpf_insn *insn = prog->insnsi;
18360 	const struct bpf_func_proto *fn;
18361 	const int insn_cnt = prog->len;
18362 	const struct bpf_map_ops *ops;
18363 	struct bpf_insn_aux_data *aux;
18364 	struct bpf_insn insn_buf[16];
18365 	struct bpf_prog *new_prog;
18366 	struct bpf_map *map_ptr;
18367 	int i, ret, cnt, delta = 0;
18368 
18369 	for (i = 0; i < insn_cnt; i++, insn++) {
18370 		/* Make divide-by-zero exceptions impossible. */
18371 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
18372 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
18373 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
18374 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
18375 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
18376 			bool isdiv = BPF_OP(insn->code) == BPF_DIV;
18377 			struct bpf_insn *patchlet;
18378 			struct bpf_insn chk_and_div[] = {
18379 				/* [R,W]x div 0 -> 0 */
18380 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18381 					     BPF_JNE | BPF_K, insn->src_reg,
18382 					     0, 2, 0),
18383 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
18384 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18385 				*insn,
18386 			};
18387 			struct bpf_insn chk_and_mod[] = {
18388 				/* [R,W]x mod 0 -> [R,W]x */
18389 				BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
18390 					     BPF_JEQ | BPF_K, insn->src_reg,
18391 					     0, 1 + (is64 ? 0 : 1), 0),
18392 				*insn,
18393 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
18394 				BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
18395 			};
18396 
18397 			patchlet = isdiv ? chk_and_div : chk_and_mod;
18398 			cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
18399 				      ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
18400 
18401 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
18402 			if (!new_prog)
18403 				return -ENOMEM;
18404 
18405 			delta    += cnt - 1;
18406 			env->prog = prog = new_prog;
18407 			insn      = new_prog->insnsi + i + delta;
18408 			continue;
18409 		}
18410 
18411 		/* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
18412 		if (BPF_CLASS(insn->code) == BPF_LD &&
18413 		    (BPF_MODE(insn->code) == BPF_ABS ||
18414 		     BPF_MODE(insn->code) == BPF_IND)) {
18415 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
18416 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18417 				verbose(env, "bpf verifier is misconfigured\n");
18418 				return -EINVAL;
18419 			}
18420 
18421 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18422 			if (!new_prog)
18423 				return -ENOMEM;
18424 
18425 			delta    += cnt - 1;
18426 			env->prog = prog = new_prog;
18427 			insn      = new_prog->insnsi + i + delta;
18428 			continue;
18429 		}
18430 
18431 		/* Rewrite pointer arithmetic to mitigate speculation attacks. */
18432 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
18433 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
18434 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
18435 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
18436 			struct bpf_insn *patch = &insn_buf[0];
18437 			bool issrc, isneg, isimm;
18438 			u32 off_reg;
18439 
18440 			aux = &env->insn_aux_data[i + delta];
18441 			if (!aux->alu_state ||
18442 			    aux->alu_state == BPF_ALU_NON_POINTER)
18443 				continue;
18444 
18445 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
18446 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
18447 				BPF_ALU_SANITIZE_SRC;
18448 			isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
18449 
18450 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
18451 			if (isimm) {
18452 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18453 			} else {
18454 				if (isneg)
18455 					*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18456 				*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
18457 				*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
18458 				*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
18459 				*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
18460 				*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
18461 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
18462 			}
18463 			if (!issrc)
18464 				*patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
18465 			insn->src_reg = BPF_REG_AX;
18466 			if (isneg)
18467 				insn->code = insn->code == code_add ?
18468 					     code_sub : code_add;
18469 			*patch++ = *insn;
18470 			if (issrc && isneg && !isimm)
18471 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
18472 			cnt = patch - insn_buf;
18473 
18474 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18475 			if (!new_prog)
18476 				return -ENOMEM;
18477 
18478 			delta    += cnt - 1;
18479 			env->prog = prog = new_prog;
18480 			insn      = new_prog->insnsi + i + delta;
18481 			continue;
18482 		}
18483 
18484 		if (insn->code != (BPF_JMP | BPF_CALL))
18485 			continue;
18486 		if (insn->src_reg == BPF_PSEUDO_CALL)
18487 			continue;
18488 		if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
18489 			ret = fixup_kfunc_call(env, insn, insn_buf, i + delta, &cnt);
18490 			if (ret)
18491 				return ret;
18492 			if (cnt == 0)
18493 				continue;
18494 
18495 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18496 			if (!new_prog)
18497 				return -ENOMEM;
18498 
18499 			delta	 += cnt - 1;
18500 			env->prog = prog = new_prog;
18501 			insn	  = new_prog->insnsi + i + delta;
18502 			continue;
18503 		}
18504 
18505 		if (insn->imm == BPF_FUNC_get_route_realm)
18506 			prog->dst_needed = 1;
18507 		if (insn->imm == BPF_FUNC_get_prandom_u32)
18508 			bpf_user_rnd_init_once();
18509 		if (insn->imm == BPF_FUNC_override_return)
18510 			prog->kprobe_override = 1;
18511 		if (insn->imm == BPF_FUNC_tail_call) {
18512 			/* If we tail call into other programs, we
18513 			 * cannot make any assumptions since they can
18514 			 * be replaced dynamically during runtime in
18515 			 * the program array.
18516 			 */
18517 			prog->cb_access = 1;
18518 			if (!allow_tail_call_in_subprogs(env))
18519 				prog->aux->stack_depth = MAX_BPF_STACK;
18520 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
18521 
18522 			/* mark bpf_tail_call as different opcode to avoid
18523 			 * conditional branch in the interpreter for every normal
18524 			 * call and to prevent accidental JITing by JIT compiler
18525 			 * that doesn't support bpf_tail_call yet
18526 			 */
18527 			insn->imm = 0;
18528 			insn->code = BPF_JMP | BPF_TAIL_CALL;
18529 
18530 			aux = &env->insn_aux_data[i + delta];
18531 			if (env->bpf_capable && !prog->blinding_requested &&
18532 			    prog->jit_requested &&
18533 			    !bpf_map_key_poisoned(aux) &&
18534 			    !bpf_map_ptr_poisoned(aux) &&
18535 			    !bpf_map_ptr_unpriv(aux)) {
18536 				struct bpf_jit_poke_descriptor desc = {
18537 					.reason = BPF_POKE_REASON_TAIL_CALL,
18538 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
18539 					.tail_call.key = bpf_map_key_immediate(aux),
18540 					.insn_idx = i + delta,
18541 				};
18542 
18543 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
18544 				if (ret < 0) {
18545 					verbose(env, "adding tail call poke descriptor failed\n");
18546 					return ret;
18547 				}
18548 
18549 				insn->imm = ret + 1;
18550 				continue;
18551 			}
18552 
18553 			if (!bpf_map_ptr_unpriv(aux))
18554 				continue;
18555 
18556 			/* instead of changing every JIT dealing with tail_call
18557 			 * emit two extra insns:
18558 			 * if (index >= max_entries) goto out;
18559 			 * index &= array->index_mask;
18560 			 * to avoid out-of-bounds cpu speculation
18561 			 */
18562 			if (bpf_map_ptr_poisoned(aux)) {
18563 				verbose(env, "tail_call abusing map_ptr\n");
18564 				return -EINVAL;
18565 			}
18566 
18567 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18568 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
18569 						  map_ptr->max_entries, 2);
18570 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
18571 						    container_of(map_ptr,
18572 								 struct bpf_array,
18573 								 map)->index_mask);
18574 			insn_buf[2] = *insn;
18575 			cnt = 3;
18576 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18577 			if (!new_prog)
18578 				return -ENOMEM;
18579 
18580 			delta    += cnt - 1;
18581 			env->prog = prog = new_prog;
18582 			insn      = new_prog->insnsi + i + delta;
18583 			continue;
18584 		}
18585 
18586 		if (insn->imm == BPF_FUNC_timer_set_callback) {
18587 			/* The verifier will process callback_fn as many times as necessary
18588 			 * with different maps and the register states prepared by
18589 			 * set_timer_callback_state will be accurate.
18590 			 *
18591 			 * The following use case is valid:
18592 			 *   map1 is shared by prog1, prog2, prog3.
18593 			 *   prog1 calls bpf_timer_init for some map1 elements
18594 			 *   prog2 calls bpf_timer_set_callback for some map1 elements.
18595 			 *     Those that were not bpf_timer_init-ed will return -EINVAL.
18596 			 *   prog3 calls bpf_timer_start for some map1 elements.
18597 			 *     Those that were not both bpf_timer_init-ed and
18598 			 *     bpf_timer_set_callback-ed will return -EINVAL.
18599 			 */
18600 			struct bpf_insn ld_addrs[2] = {
18601 				BPF_LD_IMM64(BPF_REG_3, (long)prog->aux),
18602 			};
18603 
18604 			insn_buf[0] = ld_addrs[0];
18605 			insn_buf[1] = ld_addrs[1];
18606 			insn_buf[2] = *insn;
18607 			cnt = 3;
18608 
18609 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18610 			if (!new_prog)
18611 				return -ENOMEM;
18612 
18613 			delta    += cnt - 1;
18614 			env->prog = prog = new_prog;
18615 			insn      = new_prog->insnsi + i + delta;
18616 			goto patch_call_imm;
18617 		}
18618 
18619 		if (is_storage_get_function(insn->imm)) {
18620 			if (!env->prog->aux->sleepable ||
18621 			    env->insn_aux_data[i + delta].storage_get_func_atomic)
18622 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_ATOMIC);
18623 			else
18624 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_5, (__force __s32)GFP_KERNEL);
18625 			insn_buf[1] = *insn;
18626 			cnt = 2;
18627 
18628 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18629 			if (!new_prog)
18630 				return -ENOMEM;
18631 
18632 			delta += cnt - 1;
18633 			env->prog = prog = new_prog;
18634 			insn = new_prog->insnsi + i + delta;
18635 			goto patch_call_imm;
18636 		}
18637 
18638 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
18639 		 * and other inlining handlers are currently limited to 64 bit
18640 		 * only.
18641 		 */
18642 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18643 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
18644 		     insn->imm == BPF_FUNC_map_update_elem ||
18645 		     insn->imm == BPF_FUNC_map_delete_elem ||
18646 		     insn->imm == BPF_FUNC_map_push_elem   ||
18647 		     insn->imm == BPF_FUNC_map_pop_elem    ||
18648 		     insn->imm == BPF_FUNC_map_peek_elem   ||
18649 		     insn->imm == BPF_FUNC_redirect_map    ||
18650 		     insn->imm == BPF_FUNC_for_each_map_elem ||
18651 		     insn->imm == BPF_FUNC_map_lookup_percpu_elem)) {
18652 			aux = &env->insn_aux_data[i + delta];
18653 			if (bpf_map_ptr_poisoned(aux))
18654 				goto patch_call_imm;
18655 
18656 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
18657 			ops = map_ptr->ops;
18658 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
18659 			    ops->map_gen_lookup) {
18660 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
18661 				if (cnt == -EOPNOTSUPP)
18662 					goto patch_map_ops_generic;
18663 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
18664 					verbose(env, "bpf verifier is misconfigured\n");
18665 					return -EINVAL;
18666 				}
18667 
18668 				new_prog = bpf_patch_insn_data(env, i + delta,
18669 							       insn_buf, cnt);
18670 				if (!new_prog)
18671 					return -ENOMEM;
18672 
18673 				delta    += cnt - 1;
18674 				env->prog = prog = new_prog;
18675 				insn      = new_prog->insnsi + i + delta;
18676 				continue;
18677 			}
18678 
18679 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
18680 				     (void *(*)(struct bpf_map *map, void *key))NULL));
18681 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
18682 				     (long (*)(struct bpf_map *map, void *key))NULL));
18683 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
18684 				     (long (*)(struct bpf_map *map, void *key, void *value,
18685 					      u64 flags))NULL));
18686 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
18687 				     (long (*)(struct bpf_map *map, void *value,
18688 					      u64 flags))NULL));
18689 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
18690 				     (long (*)(struct bpf_map *map, void *value))NULL));
18691 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
18692 				     (long (*)(struct bpf_map *map, void *value))NULL));
18693 			BUILD_BUG_ON(!__same_type(ops->map_redirect,
18694 				     (long (*)(struct bpf_map *map, u64 index, u64 flags))NULL));
18695 			BUILD_BUG_ON(!__same_type(ops->map_for_each_callback,
18696 				     (long (*)(struct bpf_map *map,
18697 					      bpf_callback_t callback_fn,
18698 					      void *callback_ctx,
18699 					      u64 flags))NULL));
18700 			BUILD_BUG_ON(!__same_type(ops->map_lookup_percpu_elem,
18701 				     (void *(*)(struct bpf_map *map, void *key, u32 cpu))NULL));
18702 
18703 patch_map_ops_generic:
18704 			switch (insn->imm) {
18705 			case BPF_FUNC_map_lookup_elem:
18706 				insn->imm = BPF_CALL_IMM(ops->map_lookup_elem);
18707 				continue;
18708 			case BPF_FUNC_map_update_elem:
18709 				insn->imm = BPF_CALL_IMM(ops->map_update_elem);
18710 				continue;
18711 			case BPF_FUNC_map_delete_elem:
18712 				insn->imm = BPF_CALL_IMM(ops->map_delete_elem);
18713 				continue;
18714 			case BPF_FUNC_map_push_elem:
18715 				insn->imm = BPF_CALL_IMM(ops->map_push_elem);
18716 				continue;
18717 			case BPF_FUNC_map_pop_elem:
18718 				insn->imm = BPF_CALL_IMM(ops->map_pop_elem);
18719 				continue;
18720 			case BPF_FUNC_map_peek_elem:
18721 				insn->imm = BPF_CALL_IMM(ops->map_peek_elem);
18722 				continue;
18723 			case BPF_FUNC_redirect_map:
18724 				insn->imm = BPF_CALL_IMM(ops->map_redirect);
18725 				continue;
18726 			case BPF_FUNC_for_each_map_elem:
18727 				insn->imm = BPF_CALL_IMM(ops->map_for_each_callback);
18728 				continue;
18729 			case BPF_FUNC_map_lookup_percpu_elem:
18730 				insn->imm = BPF_CALL_IMM(ops->map_lookup_percpu_elem);
18731 				continue;
18732 			}
18733 
18734 			goto patch_call_imm;
18735 		}
18736 
18737 		/* Implement bpf_jiffies64 inline. */
18738 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
18739 		    insn->imm == BPF_FUNC_jiffies64) {
18740 			struct bpf_insn ld_jiffies_addr[2] = {
18741 				BPF_LD_IMM64(BPF_REG_0,
18742 					     (unsigned long)&jiffies),
18743 			};
18744 
18745 			insn_buf[0] = ld_jiffies_addr[0];
18746 			insn_buf[1] = ld_jiffies_addr[1];
18747 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
18748 						  BPF_REG_0, 0);
18749 			cnt = 3;
18750 
18751 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
18752 						       cnt);
18753 			if (!new_prog)
18754 				return -ENOMEM;
18755 
18756 			delta    += cnt - 1;
18757 			env->prog = prog = new_prog;
18758 			insn      = new_prog->insnsi + i + delta;
18759 			continue;
18760 		}
18761 
18762 		/* Implement bpf_get_func_arg inline. */
18763 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18764 		    insn->imm == BPF_FUNC_get_func_arg) {
18765 			/* Load nr_args from ctx - 8 */
18766 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18767 			insn_buf[1] = BPF_JMP32_REG(BPF_JGE, BPF_REG_2, BPF_REG_0, 6);
18768 			insn_buf[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_2, 3);
18769 			insn_buf[3] = BPF_ALU64_REG(BPF_ADD, BPF_REG_2, BPF_REG_1);
18770 			insn_buf[4] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_2, 0);
18771 			insn_buf[5] = BPF_STX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18772 			insn_buf[6] = BPF_MOV64_IMM(BPF_REG_0, 0);
18773 			insn_buf[7] = BPF_JMP_A(1);
18774 			insn_buf[8] = BPF_MOV64_IMM(BPF_REG_0, -EINVAL);
18775 			cnt = 9;
18776 
18777 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18778 			if (!new_prog)
18779 				return -ENOMEM;
18780 
18781 			delta    += cnt - 1;
18782 			env->prog = prog = new_prog;
18783 			insn      = new_prog->insnsi + i + delta;
18784 			continue;
18785 		}
18786 
18787 		/* Implement bpf_get_func_ret inline. */
18788 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18789 		    insn->imm == BPF_FUNC_get_func_ret) {
18790 			if (eatype == BPF_TRACE_FEXIT ||
18791 			    eatype == BPF_MODIFY_RETURN) {
18792 				/* Load nr_args from ctx - 8 */
18793 				insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18794 				insn_buf[1] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_0, 3);
18795 				insn_buf[2] = BPF_ALU64_REG(BPF_ADD, BPF_REG_0, BPF_REG_1);
18796 				insn_buf[3] = BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_0, 0);
18797 				insn_buf[4] = BPF_STX_MEM(BPF_DW, BPF_REG_2, BPF_REG_3, 0);
18798 				insn_buf[5] = BPF_MOV64_IMM(BPF_REG_0, 0);
18799 				cnt = 6;
18800 			} else {
18801 				insn_buf[0] = BPF_MOV64_IMM(BPF_REG_0, -EOPNOTSUPP);
18802 				cnt = 1;
18803 			}
18804 
18805 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
18806 			if (!new_prog)
18807 				return -ENOMEM;
18808 
18809 			delta    += cnt - 1;
18810 			env->prog = prog = new_prog;
18811 			insn      = new_prog->insnsi + i + delta;
18812 			continue;
18813 		}
18814 
18815 		/* Implement get_func_arg_cnt inline. */
18816 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18817 		    insn->imm == BPF_FUNC_get_func_arg_cnt) {
18818 			/* Load nr_args from ctx - 8 */
18819 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -8);
18820 
18821 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18822 			if (!new_prog)
18823 				return -ENOMEM;
18824 
18825 			env->prog = prog = new_prog;
18826 			insn      = new_prog->insnsi + i + delta;
18827 			continue;
18828 		}
18829 
18830 		/* Implement bpf_get_func_ip inline. */
18831 		if (prog_type == BPF_PROG_TYPE_TRACING &&
18832 		    insn->imm == BPF_FUNC_get_func_ip) {
18833 			/* Load IP address from ctx - 16 */
18834 			insn_buf[0] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, BPF_REG_1, -16);
18835 
18836 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 1);
18837 			if (!new_prog)
18838 				return -ENOMEM;
18839 
18840 			env->prog = prog = new_prog;
18841 			insn      = new_prog->insnsi + i + delta;
18842 			continue;
18843 		}
18844 
18845 patch_call_imm:
18846 		fn = env->ops->get_func_proto(insn->imm, env->prog);
18847 		/* all functions that have prototype and verifier allowed
18848 		 * programs to call them, must be real in-kernel functions
18849 		 */
18850 		if (!fn->func) {
18851 			verbose(env,
18852 				"kernel subsystem misconfigured func %s#%d\n",
18853 				func_id_name(insn->imm), insn->imm);
18854 			return -EFAULT;
18855 		}
18856 		insn->imm = fn->func - __bpf_call_base;
18857 	}
18858 
18859 	/* Since poke tab is now finalized, publish aux to tracker. */
18860 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
18861 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
18862 		if (!map_ptr->ops->map_poke_track ||
18863 		    !map_ptr->ops->map_poke_untrack ||
18864 		    !map_ptr->ops->map_poke_run) {
18865 			verbose(env, "bpf verifier is misconfigured\n");
18866 			return -EINVAL;
18867 		}
18868 
18869 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
18870 		if (ret < 0) {
18871 			verbose(env, "tracking tail call prog failed\n");
18872 			return ret;
18873 		}
18874 	}
18875 
18876 	sort_kfunc_descs_by_imm_off(env->prog);
18877 
18878 	return 0;
18879 }
18880 
18881 static struct bpf_prog *inline_bpf_loop(struct bpf_verifier_env *env,
18882 					int position,
18883 					s32 stack_base,
18884 					u32 callback_subprogno,
18885 					u32 *cnt)
18886 {
18887 	s32 r6_offset = stack_base + 0 * BPF_REG_SIZE;
18888 	s32 r7_offset = stack_base + 1 * BPF_REG_SIZE;
18889 	s32 r8_offset = stack_base + 2 * BPF_REG_SIZE;
18890 	int reg_loop_max = BPF_REG_6;
18891 	int reg_loop_cnt = BPF_REG_7;
18892 	int reg_loop_ctx = BPF_REG_8;
18893 
18894 	struct bpf_prog *new_prog;
18895 	u32 callback_start;
18896 	u32 call_insn_offset;
18897 	s32 callback_offset;
18898 
18899 	/* This represents an inlined version of bpf_iter.c:bpf_loop,
18900 	 * be careful to modify this code in sync.
18901 	 */
18902 	struct bpf_insn insn_buf[] = {
18903 		/* Return error and jump to the end of the patch if
18904 		 * expected number of iterations is too big.
18905 		 */
18906 		BPF_JMP_IMM(BPF_JLE, BPF_REG_1, BPF_MAX_LOOPS, 2),
18907 		BPF_MOV32_IMM(BPF_REG_0, -E2BIG),
18908 		BPF_JMP_IMM(BPF_JA, 0, 0, 16),
18909 		/* spill R6, R7, R8 to use these as loop vars */
18910 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_6, r6_offset),
18911 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_7, r7_offset),
18912 		BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_8, r8_offset),
18913 		/* initialize loop vars */
18914 		BPF_MOV64_REG(reg_loop_max, BPF_REG_1),
18915 		BPF_MOV32_IMM(reg_loop_cnt, 0),
18916 		BPF_MOV64_REG(reg_loop_ctx, BPF_REG_3),
18917 		/* loop header,
18918 		 * if reg_loop_cnt >= reg_loop_max skip the loop body
18919 		 */
18920 		BPF_JMP_REG(BPF_JGE, reg_loop_cnt, reg_loop_max, 5),
18921 		/* callback call,
18922 		 * correct callback offset would be set after patching
18923 		 */
18924 		BPF_MOV64_REG(BPF_REG_1, reg_loop_cnt),
18925 		BPF_MOV64_REG(BPF_REG_2, reg_loop_ctx),
18926 		BPF_CALL_REL(0),
18927 		/* increment loop counter */
18928 		BPF_ALU64_IMM(BPF_ADD, reg_loop_cnt, 1),
18929 		/* jump to loop header if callback returned 0 */
18930 		BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, -6),
18931 		/* return value of bpf_loop,
18932 		 * set R0 to the number of iterations
18933 		 */
18934 		BPF_MOV64_REG(BPF_REG_0, reg_loop_cnt),
18935 		/* restore original values of R6, R7, R8 */
18936 		BPF_LDX_MEM(BPF_DW, BPF_REG_6, BPF_REG_10, r6_offset),
18937 		BPF_LDX_MEM(BPF_DW, BPF_REG_7, BPF_REG_10, r7_offset),
18938 		BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_10, r8_offset),
18939 	};
18940 
18941 	*cnt = ARRAY_SIZE(insn_buf);
18942 	new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
18943 	if (!new_prog)
18944 		return new_prog;
18945 
18946 	/* callback start is known only after patching */
18947 	callback_start = env->subprog_info[callback_subprogno].start;
18948 	/* Note: insn_buf[12] is an offset of BPF_CALL_REL instruction */
18949 	call_insn_offset = position + 12;
18950 	callback_offset = callback_start - call_insn_offset - 1;
18951 	new_prog->insnsi[call_insn_offset].imm = callback_offset;
18952 
18953 	return new_prog;
18954 }
18955 
18956 static bool is_bpf_loop_call(struct bpf_insn *insn)
18957 {
18958 	return insn->code == (BPF_JMP | BPF_CALL) &&
18959 		insn->src_reg == 0 &&
18960 		insn->imm == BPF_FUNC_loop;
18961 }
18962 
18963 /* For all sub-programs in the program (including main) check
18964  * insn_aux_data to see if there are bpf_loop calls that require
18965  * inlining. If such calls are found the calls are replaced with a
18966  * sequence of instructions produced by `inline_bpf_loop` function and
18967  * subprog stack_depth is increased by the size of 3 registers.
18968  * This stack space is used to spill values of the R6, R7, R8.  These
18969  * registers are used to store the loop bound, counter and context
18970  * variables.
18971  */
18972 static int optimize_bpf_loop(struct bpf_verifier_env *env)
18973 {
18974 	struct bpf_subprog_info *subprogs = env->subprog_info;
18975 	int i, cur_subprog = 0, cnt, delta = 0;
18976 	struct bpf_insn *insn = env->prog->insnsi;
18977 	int insn_cnt = env->prog->len;
18978 	u16 stack_depth = subprogs[cur_subprog].stack_depth;
18979 	u16 stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
18980 	u16 stack_depth_extra = 0;
18981 
18982 	for (i = 0; i < insn_cnt; i++, insn++) {
18983 		struct bpf_loop_inline_state *inline_state =
18984 			&env->insn_aux_data[i + delta].loop_inline_state;
18985 
18986 		if (is_bpf_loop_call(insn) && inline_state->fit_for_inline) {
18987 			struct bpf_prog *new_prog;
18988 
18989 			stack_depth_extra = BPF_REG_SIZE * 3 + stack_depth_roundup;
18990 			new_prog = inline_bpf_loop(env,
18991 						   i + delta,
18992 						   -(stack_depth + stack_depth_extra),
18993 						   inline_state->callback_subprogno,
18994 						   &cnt);
18995 			if (!new_prog)
18996 				return -ENOMEM;
18997 
18998 			delta     += cnt - 1;
18999 			env->prog  = new_prog;
19000 			insn       = new_prog->insnsi + i + delta;
19001 		}
19002 
19003 		if (subprogs[cur_subprog + 1].start == i + delta + 1) {
19004 			subprogs[cur_subprog].stack_depth += stack_depth_extra;
19005 			cur_subprog++;
19006 			stack_depth = subprogs[cur_subprog].stack_depth;
19007 			stack_depth_roundup = round_up(stack_depth, 8) - stack_depth;
19008 			stack_depth_extra = 0;
19009 		}
19010 	}
19011 
19012 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19013 
19014 	return 0;
19015 }
19016 
19017 static void free_states(struct bpf_verifier_env *env)
19018 {
19019 	struct bpf_verifier_state_list *sl, *sln;
19020 	int i;
19021 
19022 	sl = env->free_list;
19023 	while (sl) {
19024 		sln = sl->next;
19025 		free_verifier_state(&sl->state, false);
19026 		kfree(sl);
19027 		sl = sln;
19028 	}
19029 	env->free_list = NULL;
19030 
19031 	if (!env->explored_states)
19032 		return;
19033 
19034 	for (i = 0; i < state_htab_size(env); i++) {
19035 		sl = env->explored_states[i];
19036 
19037 		while (sl) {
19038 			sln = sl->next;
19039 			free_verifier_state(&sl->state, false);
19040 			kfree(sl);
19041 			sl = sln;
19042 		}
19043 		env->explored_states[i] = NULL;
19044 	}
19045 }
19046 
19047 static int do_check_common(struct bpf_verifier_env *env, int subprog)
19048 {
19049 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
19050 	struct bpf_verifier_state *state;
19051 	struct bpf_reg_state *regs;
19052 	int ret, i;
19053 
19054 	env->prev_linfo = NULL;
19055 	env->pass_cnt++;
19056 
19057 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
19058 	if (!state)
19059 		return -ENOMEM;
19060 	state->curframe = 0;
19061 	state->speculative = false;
19062 	state->branches = 1;
19063 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
19064 	if (!state->frame[0]) {
19065 		kfree(state);
19066 		return -ENOMEM;
19067 	}
19068 	env->cur_state = state;
19069 	init_func_state(env, state->frame[0],
19070 			BPF_MAIN_FUNC /* callsite */,
19071 			0 /* frameno */,
19072 			subprog);
19073 	state->first_insn_idx = env->subprog_info[subprog].start;
19074 	state->last_insn_idx = -1;
19075 
19076 	regs = state->frame[state->curframe]->regs;
19077 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
19078 		ret = btf_prepare_func_args(env, subprog, regs);
19079 		if (ret)
19080 			goto out;
19081 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
19082 			if (regs[i].type == PTR_TO_CTX)
19083 				mark_reg_known_zero(env, regs, i);
19084 			else if (regs[i].type == SCALAR_VALUE)
19085 				mark_reg_unknown(env, regs, i);
19086 			else if (base_type(regs[i].type) == PTR_TO_MEM) {
19087 				const u32 mem_size = regs[i].mem_size;
19088 
19089 				mark_reg_known_zero(env, regs, i);
19090 				regs[i].mem_size = mem_size;
19091 				regs[i].id = ++env->id_gen;
19092 			}
19093 		}
19094 	} else {
19095 		/* 1st arg to a function */
19096 		regs[BPF_REG_1].type = PTR_TO_CTX;
19097 		mark_reg_known_zero(env, regs, BPF_REG_1);
19098 		ret = btf_check_subprog_arg_match(env, subprog, regs);
19099 		if (ret == -EFAULT)
19100 			/* unlikely verifier bug. abort.
19101 			 * ret == 0 and ret < 0 are sadly acceptable for
19102 			 * main() function due to backward compatibility.
19103 			 * Like socket filter program may be written as:
19104 			 * int bpf_prog(struct pt_regs *ctx)
19105 			 * and never dereference that ctx in the program.
19106 			 * 'struct pt_regs' is a type mismatch for socket
19107 			 * filter that should be using 'struct __sk_buff'.
19108 			 */
19109 			goto out;
19110 	}
19111 
19112 	ret = do_check(env);
19113 out:
19114 	/* check for NULL is necessary, since cur_state can be freed inside
19115 	 * do_check() under memory pressure.
19116 	 */
19117 	if (env->cur_state) {
19118 		free_verifier_state(env->cur_state, true);
19119 		env->cur_state = NULL;
19120 	}
19121 	while (!pop_stack(env, NULL, NULL, false));
19122 	if (!ret && pop_log)
19123 		bpf_vlog_reset(&env->log, 0);
19124 	free_states(env);
19125 	return ret;
19126 }
19127 
19128 /* Verify all global functions in a BPF program one by one based on their BTF.
19129  * All global functions must pass verification. Otherwise the whole program is rejected.
19130  * Consider:
19131  * int bar(int);
19132  * int foo(int f)
19133  * {
19134  *    return bar(f);
19135  * }
19136  * int bar(int b)
19137  * {
19138  *    ...
19139  * }
19140  * foo() will be verified first for R1=any_scalar_value. During verification it
19141  * will be assumed that bar() already verified successfully and call to bar()
19142  * from foo() will be checked for type match only. Later bar() will be verified
19143  * independently to check that it's safe for R1=any_scalar_value.
19144  */
19145 static int do_check_subprogs(struct bpf_verifier_env *env)
19146 {
19147 	struct bpf_prog_aux *aux = env->prog->aux;
19148 	int i, ret;
19149 
19150 	if (!aux->func_info)
19151 		return 0;
19152 
19153 	for (i = 1; i < env->subprog_cnt; i++) {
19154 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
19155 			continue;
19156 		env->insn_idx = env->subprog_info[i].start;
19157 		WARN_ON_ONCE(env->insn_idx == 0);
19158 		ret = do_check_common(env, i);
19159 		if (ret) {
19160 			return ret;
19161 		} else if (env->log.level & BPF_LOG_LEVEL) {
19162 			verbose(env,
19163 				"Func#%d is safe for any args that match its prototype\n",
19164 				i);
19165 		}
19166 	}
19167 	return 0;
19168 }
19169 
19170 static int do_check_main(struct bpf_verifier_env *env)
19171 {
19172 	int ret;
19173 
19174 	env->insn_idx = 0;
19175 	ret = do_check_common(env, 0);
19176 	if (!ret)
19177 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
19178 	return ret;
19179 }
19180 
19181 
19182 static void print_verification_stats(struct bpf_verifier_env *env)
19183 {
19184 	int i;
19185 
19186 	if (env->log.level & BPF_LOG_STATS) {
19187 		verbose(env, "verification time %lld usec\n",
19188 			div_u64(env->verification_time, 1000));
19189 		verbose(env, "stack depth ");
19190 		for (i = 0; i < env->subprog_cnt; i++) {
19191 			u32 depth = env->subprog_info[i].stack_depth;
19192 
19193 			verbose(env, "%d", depth);
19194 			if (i + 1 < env->subprog_cnt)
19195 				verbose(env, "+");
19196 		}
19197 		verbose(env, "\n");
19198 	}
19199 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
19200 		"total_states %d peak_states %d mark_read %d\n",
19201 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
19202 		env->max_states_per_insn, env->total_states,
19203 		env->peak_states, env->longest_mark_read_walk);
19204 }
19205 
19206 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
19207 {
19208 	const struct btf_type *t, *func_proto;
19209 	const struct bpf_struct_ops *st_ops;
19210 	const struct btf_member *member;
19211 	struct bpf_prog *prog = env->prog;
19212 	u32 btf_id, member_idx;
19213 	const char *mname;
19214 
19215 	if (!prog->gpl_compatible) {
19216 		verbose(env, "struct ops programs must have a GPL compatible license\n");
19217 		return -EINVAL;
19218 	}
19219 
19220 	btf_id = prog->aux->attach_btf_id;
19221 	st_ops = bpf_struct_ops_find(btf_id);
19222 	if (!st_ops) {
19223 		verbose(env, "attach_btf_id %u is not a supported struct\n",
19224 			btf_id);
19225 		return -ENOTSUPP;
19226 	}
19227 
19228 	t = st_ops->type;
19229 	member_idx = prog->expected_attach_type;
19230 	if (member_idx >= btf_type_vlen(t)) {
19231 		verbose(env, "attach to invalid member idx %u of struct %s\n",
19232 			member_idx, st_ops->name);
19233 		return -EINVAL;
19234 	}
19235 
19236 	member = &btf_type_member(t)[member_idx];
19237 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
19238 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
19239 					       NULL);
19240 	if (!func_proto) {
19241 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
19242 			mname, member_idx, st_ops->name);
19243 		return -EINVAL;
19244 	}
19245 
19246 	if (st_ops->check_member) {
19247 		int err = st_ops->check_member(t, member, prog);
19248 
19249 		if (err) {
19250 			verbose(env, "attach to unsupported member %s of struct %s\n",
19251 				mname, st_ops->name);
19252 			return err;
19253 		}
19254 	}
19255 
19256 	prog->aux->attach_func_proto = func_proto;
19257 	prog->aux->attach_func_name = mname;
19258 	env->ops = st_ops->verifier_ops;
19259 
19260 	return 0;
19261 }
19262 #define SECURITY_PREFIX "security_"
19263 
19264 static int check_attach_modify_return(unsigned long addr, const char *func_name)
19265 {
19266 	if (within_error_injection_list(addr) ||
19267 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
19268 		return 0;
19269 
19270 	return -EINVAL;
19271 }
19272 
19273 /* list of non-sleepable functions that are otherwise on
19274  * ALLOW_ERROR_INJECTION list
19275  */
19276 BTF_SET_START(btf_non_sleepable_error_inject)
19277 /* Three functions below can be called from sleepable and non-sleepable context.
19278  * Assume non-sleepable from bpf safety point of view.
19279  */
19280 BTF_ID(func, __filemap_add_folio)
19281 BTF_ID(func, should_fail_alloc_page)
19282 BTF_ID(func, should_failslab)
19283 BTF_SET_END(btf_non_sleepable_error_inject)
19284 
19285 static int check_non_sleepable_error_inject(u32 btf_id)
19286 {
19287 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
19288 }
19289 
19290 int bpf_check_attach_target(struct bpf_verifier_log *log,
19291 			    const struct bpf_prog *prog,
19292 			    const struct bpf_prog *tgt_prog,
19293 			    u32 btf_id,
19294 			    struct bpf_attach_target_info *tgt_info)
19295 {
19296 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
19297 	const char prefix[] = "btf_trace_";
19298 	int ret = 0, subprog = -1, i;
19299 	const struct btf_type *t;
19300 	bool conservative = true;
19301 	const char *tname;
19302 	struct btf *btf;
19303 	long addr = 0;
19304 	struct module *mod = NULL;
19305 
19306 	if (!btf_id) {
19307 		bpf_log(log, "Tracing programs must provide btf_id\n");
19308 		return -EINVAL;
19309 	}
19310 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
19311 	if (!btf) {
19312 		bpf_log(log,
19313 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
19314 		return -EINVAL;
19315 	}
19316 	t = btf_type_by_id(btf, btf_id);
19317 	if (!t) {
19318 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
19319 		return -EINVAL;
19320 	}
19321 	tname = btf_name_by_offset(btf, t->name_off);
19322 	if (!tname) {
19323 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
19324 		return -EINVAL;
19325 	}
19326 	if (tgt_prog) {
19327 		struct bpf_prog_aux *aux = tgt_prog->aux;
19328 
19329 		if (bpf_prog_is_dev_bound(prog->aux) &&
19330 		    !bpf_prog_dev_bound_match(prog, tgt_prog)) {
19331 			bpf_log(log, "Target program bound device mismatch");
19332 			return -EINVAL;
19333 		}
19334 
19335 		for (i = 0; i < aux->func_info_cnt; i++)
19336 			if (aux->func_info[i].type_id == btf_id) {
19337 				subprog = i;
19338 				break;
19339 			}
19340 		if (subprog == -1) {
19341 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
19342 			return -EINVAL;
19343 		}
19344 		conservative = aux->func_info_aux[subprog].unreliable;
19345 		if (prog_extension) {
19346 			if (conservative) {
19347 				bpf_log(log,
19348 					"Cannot replace static functions\n");
19349 				return -EINVAL;
19350 			}
19351 			if (!prog->jit_requested) {
19352 				bpf_log(log,
19353 					"Extension programs should be JITed\n");
19354 				return -EINVAL;
19355 			}
19356 		}
19357 		if (!tgt_prog->jited) {
19358 			bpf_log(log, "Can attach to only JITed progs\n");
19359 			return -EINVAL;
19360 		}
19361 		if (tgt_prog->type == prog->type) {
19362 			/* Cannot fentry/fexit another fentry/fexit program.
19363 			 * Cannot attach program extension to another extension.
19364 			 * It's ok to attach fentry/fexit to extension program.
19365 			 */
19366 			bpf_log(log, "Cannot recursively attach\n");
19367 			return -EINVAL;
19368 		}
19369 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
19370 		    prog_extension &&
19371 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
19372 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
19373 			/* Program extensions can extend all program types
19374 			 * except fentry/fexit. The reason is the following.
19375 			 * The fentry/fexit programs are used for performance
19376 			 * analysis, stats and can be attached to any program
19377 			 * type except themselves. When extension program is
19378 			 * replacing XDP function it is necessary to allow
19379 			 * performance analysis of all functions. Both original
19380 			 * XDP program and its program extension. Hence
19381 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
19382 			 * allowed. If extending of fentry/fexit was allowed it
19383 			 * would be possible to create long call chain
19384 			 * fentry->extension->fentry->extension beyond
19385 			 * reasonable stack size. Hence extending fentry is not
19386 			 * allowed.
19387 			 */
19388 			bpf_log(log, "Cannot extend fentry/fexit\n");
19389 			return -EINVAL;
19390 		}
19391 	} else {
19392 		if (prog_extension) {
19393 			bpf_log(log, "Cannot replace kernel functions\n");
19394 			return -EINVAL;
19395 		}
19396 	}
19397 
19398 	switch (prog->expected_attach_type) {
19399 	case BPF_TRACE_RAW_TP:
19400 		if (tgt_prog) {
19401 			bpf_log(log,
19402 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
19403 			return -EINVAL;
19404 		}
19405 		if (!btf_type_is_typedef(t)) {
19406 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
19407 				btf_id);
19408 			return -EINVAL;
19409 		}
19410 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
19411 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
19412 				btf_id, tname);
19413 			return -EINVAL;
19414 		}
19415 		tname += sizeof(prefix) - 1;
19416 		t = btf_type_by_id(btf, t->type);
19417 		if (!btf_type_is_ptr(t))
19418 			/* should never happen in valid vmlinux build */
19419 			return -EINVAL;
19420 		t = btf_type_by_id(btf, t->type);
19421 		if (!btf_type_is_func_proto(t))
19422 			/* should never happen in valid vmlinux build */
19423 			return -EINVAL;
19424 
19425 		break;
19426 	case BPF_TRACE_ITER:
19427 		if (!btf_type_is_func(t)) {
19428 			bpf_log(log, "attach_btf_id %u is not a function\n",
19429 				btf_id);
19430 			return -EINVAL;
19431 		}
19432 		t = btf_type_by_id(btf, t->type);
19433 		if (!btf_type_is_func_proto(t))
19434 			return -EINVAL;
19435 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19436 		if (ret)
19437 			return ret;
19438 		break;
19439 	default:
19440 		if (!prog_extension)
19441 			return -EINVAL;
19442 		fallthrough;
19443 	case BPF_MODIFY_RETURN:
19444 	case BPF_LSM_MAC:
19445 	case BPF_LSM_CGROUP:
19446 	case BPF_TRACE_FENTRY:
19447 	case BPF_TRACE_FEXIT:
19448 		if (!btf_type_is_func(t)) {
19449 			bpf_log(log, "attach_btf_id %u is not a function\n",
19450 				btf_id);
19451 			return -EINVAL;
19452 		}
19453 		if (prog_extension &&
19454 		    btf_check_type_match(log, prog, btf, t))
19455 			return -EINVAL;
19456 		t = btf_type_by_id(btf, t->type);
19457 		if (!btf_type_is_func_proto(t))
19458 			return -EINVAL;
19459 
19460 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
19461 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
19462 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
19463 			return -EINVAL;
19464 
19465 		if (tgt_prog && conservative)
19466 			t = NULL;
19467 
19468 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
19469 		if (ret < 0)
19470 			return ret;
19471 
19472 		if (tgt_prog) {
19473 			if (subprog == 0)
19474 				addr = (long) tgt_prog->bpf_func;
19475 			else
19476 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
19477 		} else {
19478 			if (btf_is_module(btf)) {
19479 				mod = btf_try_get_module(btf);
19480 				if (mod)
19481 					addr = find_kallsyms_symbol_value(mod, tname);
19482 				else
19483 					addr = 0;
19484 			} else {
19485 				addr = kallsyms_lookup_name(tname);
19486 			}
19487 			if (!addr) {
19488 				module_put(mod);
19489 				bpf_log(log,
19490 					"The address of function %s cannot be found\n",
19491 					tname);
19492 				return -ENOENT;
19493 			}
19494 		}
19495 
19496 		if (prog->aux->sleepable) {
19497 			ret = -EINVAL;
19498 			switch (prog->type) {
19499 			case BPF_PROG_TYPE_TRACING:
19500 
19501 				/* fentry/fexit/fmod_ret progs can be sleepable if they are
19502 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
19503 				 */
19504 				if (!check_non_sleepable_error_inject(btf_id) &&
19505 				    within_error_injection_list(addr))
19506 					ret = 0;
19507 				/* fentry/fexit/fmod_ret progs can also be sleepable if they are
19508 				 * in the fmodret id set with the KF_SLEEPABLE flag.
19509 				 */
19510 				else {
19511 					u32 *flags = btf_kfunc_is_modify_return(btf, btf_id,
19512 										prog);
19513 
19514 					if (flags && (*flags & KF_SLEEPABLE))
19515 						ret = 0;
19516 				}
19517 				break;
19518 			case BPF_PROG_TYPE_LSM:
19519 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
19520 				 * Only some of them are sleepable.
19521 				 */
19522 				if (bpf_lsm_is_sleepable_hook(btf_id))
19523 					ret = 0;
19524 				break;
19525 			default:
19526 				break;
19527 			}
19528 			if (ret) {
19529 				module_put(mod);
19530 				bpf_log(log, "%s is not sleepable\n", tname);
19531 				return ret;
19532 			}
19533 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
19534 			if (tgt_prog) {
19535 				module_put(mod);
19536 				bpf_log(log, "can't modify return codes of BPF programs\n");
19537 				return -EINVAL;
19538 			}
19539 			ret = -EINVAL;
19540 			if (btf_kfunc_is_modify_return(btf, btf_id, prog) ||
19541 			    !check_attach_modify_return(addr, tname))
19542 				ret = 0;
19543 			if (ret) {
19544 				module_put(mod);
19545 				bpf_log(log, "%s() is not modifiable\n", tname);
19546 				return ret;
19547 			}
19548 		}
19549 
19550 		break;
19551 	}
19552 	tgt_info->tgt_addr = addr;
19553 	tgt_info->tgt_name = tname;
19554 	tgt_info->tgt_type = t;
19555 	tgt_info->tgt_mod = mod;
19556 	return 0;
19557 }
19558 
19559 BTF_SET_START(btf_id_deny)
19560 BTF_ID_UNUSED
19561 #ifdef CONFIG_SMP
19562 BTF_ID(func, migrate_disable)
19563 BTF_ID(func, migrate_enable)
19564 #endif
19565 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
19566 BTF_ID(func, rcu_read_unlock_strict)
19567 #endif
19568 #if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
19569 BTF_ID(func, preempt_count_add)
19570 BTF_ID(func, preempt_count_sub)
19571 #endif
19572 #ifdef CONFIG_PREEMPT_RCU
19573 BTF_ID(func, __rcu_read_lock)
19574 BTF_ID(func, __rcu_read_unlock)
19575 #endif
19576 BTF_SET_END(btf_id_deny)
19577 
19578 static bool can_be_sleepable(struct bpf_prog *prog)
19579 {
19580 	if (prog->type == BPF_PROG_TYPE_TRACING) {
19581 		switch (prog->expected_attach_type) {
19582 		case BPF_TRACE_FENTRY:
19583 		case BPF_TRACE_FEXIT:
19584 		case BPF_MODIFY_RETURN:
19585 		case BPF_TRACE_ITER:
19586 			return true;
19587 		default:
19588 			return false;
19589 		}
19590 	}
19591 	return prog->type == BPF_PROG_TYPE_LSM ||
19592 	       prog->type == BPF_PROG_TYPE_KPROBE /* only for uprobes */ ||
19593 	       prog->type == BPF_PROG_TYPE_STRUCT_OPS;
19594 }
19595 
19596 static int check_attach_btf_id(struct bpf_verifier_env *env)
19597 {
19598 	struct bpf_prog *prog = env->prog;
19599 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
19600 	struct bpf_attach_target_info tgt_info = {};
19601 	u32 btf_id = prog->aux->attach_btf_id;
19602 	struct bpf_trampoline *tr;
19603 	int ret;
19604 	u64 key;
19605 
19606 	if (prog->type == BPF_PROG_TYPE_SYSCALL) {
19607 		if (prog->aux->sleepable)
19608 			/* attach_btf_id checked to be zero already */
19609 			return 0;
19610 		verbose(env, "Syscall programs can only be sleepable\n");
19611 		return -EINVAL;
19612 	}
19613 
19614 	if (prog->aux->sleepable && !can_be_sleepable(prog)) {
19615 		verbose(env, "Only fentry/fexit/fmod_ret, lsm, iter, uprobe, and struct_ops programs can be sleepable\n");
19616 		return -EINVAL;
19617 	}
19618 
19619 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
19620 		return check_struct_ops_btf_id(env);
19621 
19622 	if (prog->type != BPF_PROG_TYPE_TRACING &&
19623 	    prog->type != BPF_PROG_TYPE_LSM &&
19624 	    prog->type != BPF_PROG_TYPE_EXT)
19625 		return 0;
19626 
19627 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
19628 	if (ret)
19629 		return ret;
19630 
19631 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
19632 		/* to make freplace equivalent to their targets, they need to
19633 		 * inherit env->ops and expected_attach_type for the rest of the
19634 		 * verification
19635 		 */
19636 		env->ops = bpf_verifier_ops[tgt_prog->type];
19637 		prog->expected_attach_type = tgt_prog->expected_attach_type;
19638 	}
19639 
19640 	/* store info about the attachment target that will be used later */
19641 	prog->aux->attach_func_proto = tgt_info.tgt_type;
19642 	prog->aux->attach_func_name = tgt_info.tgt_name;
19643 	prog->aux->mod = tgt_info.tgt_mod;
19644 
19645 	if (tgt_prog) {
19646 		prog->aux->saved_dst_prog_type = tgt_prog->type;
19647 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
19648 	}
19649 
19650 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
19651 		prog->aux->attach_btf_trace = true;
19652 		return 0;
19653 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
19654 		if (!bpf_iter_prog_supported(prog))
19655 			return -EINVAL;
19656 		return 0;
19657 	}
19658 
19659 	if (prog->type == BPF_PROG_TYPE_LSM) {
19660 		ret = bpf_lsm_verify_prog(&env->log, prog);
19661 		if (ret < 0)
19662 			return ret;
19663 	} else if (prog->type == BPF_PROG_TYPE_TRACING &&
19664 		   btf_id_set_contains(&btf_id_deny, btf_id)) {
19665 		return -EINVAL;
19666 	}
19667 
19668 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
19669 	tr = bpf_trampoline_get(key, &tgt_info);
19670 	if (!tr)
19671 		return -ENOMEM;
19672 
19673 	if (tgt_prog && tgt_prog->aux->tail_call_reachable)
19674 		tr->flags = BPF_TRAMP_F_TAIL_CALL_CTX;
19675 
19676 	prog->aux->dst_trampoline = tr;
19677 	return 0;
19678 }
19679 
19680 struct btf *bpf_get_btf_vmlinux(void)
19681 {
19682 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
19683 		mutex_lock(&bpf_verifier_lock);
19684 		if (!btf_vmlinux)
19685 			btf_vmlinux = btf_parse_vmlinux();
19686 		mutex_unlock(&bpf_verifier_lock);
19687 	}
19688 	return btf_vmlinux;
19689 }
19690 
19691 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, bpfptr_t uattr, __u32 uattr_size)
19692 {
19693 	u64 start_time = ktime_get_ns();
19694 	struct bpf_verifier_env *env;
19695 	int i, len, ret = -EINVAL, err;
19696 	u32 log_true_size;
19697 	bool is_priv;
19698 
19699 	/* no program is valid */
19700 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
19701 		return -EINVAL;
19702 
19703 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
19704 	 * allocate/free it every time bpf_check() is called
19705 	 */
19706 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
19707 	if (!env)
19708 		return -ENOMEM;
19709 
19710 	env->bt.env = env;
19711 
19712 	len = (*prog)->len;
19713 	env->insn_aux_data =
19714 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
19715 	ret = -ENOMEM;
19716 	if (!env->insn_aux_data)
19717 		goto err_free_env;
19718 	for (i = 0; i < len; i++)
19719 		env->insn_aux_data[i].orig_idx = i;
19720 	env->prog = *prog;
19721 	env->ops = bpf_verifier_ops[env->prog->type];
19722 	env->fd_array = make_bpfptr(attr->fd_array, uattr.is_kernel);
19723 	is_priv = bpf_capable();
19724 
19725 	bpf_get_btf_vmlinux();
19726 
19727 	/* grab the mutex to protect few globals used by verifier */
19728 	if (!is_priv)
19729 		mutex_lock(&bpf_verifier_lock);
19730 
19731 	/* user could have requested verbose verifier output
19732 	 * and supplied buffer to store the verification trace
19733 	 */
19734 	ret = bpf_vlog_init(&env->log, attr->log_level,
19735 			    (char __user *) (unsigned long) attr->log_buf,
19736 			    attr->log_size);
19737 	if (ret)
19738 		goto err_unlock;
19739 
19740 	mark_verifier_state_clean(env);
19741 
19742 	if (IS_ERR(btf_vmlinux)) {
19743 		/* Either gcc or pahole or kernel are broken. */
19744 		verbose(env, "in-kernel BTF is malformed\n");
19745 		ret = PTR_ERR(btf_vmlinux);
19746 		goto skip_full_check;
19747 	}
19748 
19749 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
19750 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
19751 		env->strict_alignment = true;
19752 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
19753 		env->strict_alignment = false;
19754 
19755 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
19756 	env->allow_uninit_stack = bpf_allow_uninit_stack();
19757 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
19758 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
19759 	env->bpf_capable = bpf_capable();
19760 
19761 	if (is_priv)
19762 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
19763 
19764 	env->explored_states = kvcalloc(state_htab_size(env),
19765 				       sizeof(struct bpf_verifier_state_list *),
19766 				       GFP_USER);
19767 	ret = -ENOMEM;
19768 	if (!env->explored_states)
19769 		goto skip_full_check;
19770 
19771 	ret = add_subprog_and_kfunc(env);
19772 	if (ret < 0)
19773 		goto skip_full_check;
19774 
19775 	ret = check_subprogs(env);
19776 	if (ret < 0)
19777 		goto skip_full_check;
19778 
19779 	ret = check_btf_info(env, attr, uattr);
19780 	if (ret < 0)
19781 		goto skip_full_check;
19782 
19783 	ret = check_attach_btf_id(env);
19784 	if (ret)
19785 		goto skip_full_check;
19786 
19787 	ret = resolve_pseudo_ldimm64(env);
19788 	if (ret < 0)
19789 		goto skip_full_check;
19790 
19791 	if (bpf_prog_is_offloaded(env->prog->aux)) {
19792 		ret = bpf_prog_offload_verifier_prep(env->prog);
19793 		if (ret)
19794 			goto skip_full_check;
19795 	}
19796 
19797 	ret = check_cfg(env);
19798 	if (ret < 0)
19799 		goto skip_full_check;
19800 
19801 	ret = do_check_subprogs(env);
19802 	ret = ret ?: do_check_main(env);
19803 
19804 	if (ret == 0 && bpf_prog_is_offloaded(env->prog->aux))
19805 		ret = bpf_prog_offload_finalize(env);
19806 
19807 skip_full_check:
19808 	kvfree(env->explored_states);
19809 
19810 	if (ret == 0)
19811 		ret = check_max_stack_depth(env);
19812 
19813 	/* instruction rewrites happen after this point */
19814 	if (ret == 0)
19815 		ret = optimize_bpf_loop(env);
19816 
19817 	if (is_priv) {
19818 		if (ret == 0)
19819 			opt_hard_wire_dead_code_branches(env);
19820 		if (ret == 0)
19821 			ret = opt_remove_dead_code(env);
19822 		if (ret == 0)
19823 			ret = opt_remove_nops(env);
19824 	} else {
19825 		if (ret == 0)
19826 			sanitize_dead_code(env);
19827 	}
19828 
19829 	if (ret == 0)
19830 		/* program is valid, convert *(u32*)(ctx + off) accesses */
19831 		ret = convert_ctx_accesses(env);
19832 
19833 	if (ret == 0)
19834 		ret = do_misc_fixups(env);
19835 
19836 	/* do 32-bit optimization after insn patching has done so those patched
19837 	 * insns could be handled correctly.
19838 	 */
19839 	if (ret == 0 && !bpf_prog_is_offloaded(env->prog->aux)) {
19840 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
19841 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
19842 								     : false;
19843 	}
19844 
19845 	if (ret == 0)
19846 		ret = fixup_call_args(env);
19847 
19848 	env->verification_time = ktime_get_ns() - start_time;
19849 	print_verification_stats(env);
19850 	env->prog->aux->verified_insns = env->insn_processed;
19851 
19852 	/* preserve original error even if log finalization is successful */
19853 	err = bpf_vlog_finalize(&env->log, &log_true_size);
19854 	if (err)
19855 		ret = err;
19856 
19857 	if (uattr_size >= offsetofend(union bpf_attr, log_true_size) &&
19858 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, log_true_size),
19859 				  &log_true_size, sizeof(log_true_size))) {
19860 		ret = -EFAULT;
19861 		goto err_release_maps;
19862 	}
19863 
19864 	if (ret)
19865 		goto err_release_maps;
19866 
19867 	if (env->used_map_cnt) {
19868 		/* if program passed verifier, update used_maps in bpf_prog_info */
19869 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
19870 							  sizeof(env->used_maps[0]),
19871 							  GFP_KERNEL);
19872 
19873 		if (!env->prog->aux->used_maps) {
19874 			ret = -ENOMEM;
19875 			goto err_release_maps;
19876 		}
19877 
19878 		memcpy(env->prog->aux->used_maps, env->used_maps,
19879 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
19880 		env->prog->aux->used_map_cnt = env->used_map_cnt;
19881 	}
19882 	if (env->used_btf_cnt) {
19883 		/* if program passed verifier, update used_btfs in bpf_prog_aux */
19884 		env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
19885 							  sizeof(env->used_btfs[0]),
19886 							  GFP_KERNEL);
19887 		if (!env->prog->aux->used_btfs) {
19888 			ret = -ENOMEM;
19889 			goto err_release_maps;
19890 		}
19891 
19892 		memcpy(env->prog->aux->used_btfs, env->used_btfs,
19893 		       sizeof(env->used_btfs[0]) * env->used_btf_cnt);
19894 		env->prog->aux->used_btf_cnt = env->used_btf_cnt;
19895 	}
19896 	if (env->used_map_cnt || env->used_btf_cnt) {
19897 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
19898 		 * bpf_ld_imm64 instructions
19899 		 */
19900 		convert_pseudo_ld_imm64(env);
19901 	}
19902 
19903 	adjust_btf_func(env);
19904 
19905 err_release_maps:
19906 	if (!env->prog->aux->used_maps)
19907 		/* if we didn't copy map pointers into bpf_prog_info, release
19908 		 * them now. Otherwise free_used_maps() will release them.
19909 		 */
19910 		release_maps(env);
19911 	if (!env->prog->aux->used_btfs)
19912 		release_btfs(env);
19913 
19914 	/* extension progs temporarily inherit the attach_type of their targets
19915 	   for verification purposes, so set it back to zero before returning
19916 	 */
19917 	if (env->prog->type == BPF_PROG_TYPE_EXT)
19918 		env->prog->expected_attach_type = 0;
19919 
19920 	*prog = env->prog;
19921 err_unlock:
19922 	if (!is_priv)
19923 		mutex_unlock(&bpf_verifier_lock);
19924 	vfree(env->insn_aux_data);
19925 err_free_env:
19926 	kfree(env);
19927 	return ret;
19928 }
19929