xref: /openbmc/linux/kernel/bpf/verifier.c (revision 7e60e389)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5  */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25 
26 #include "disasm.h"
27 
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 	[_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38 
39 /* bpf_check() is a static code analyzer that walks eBPF program
40  * instruction by instruction and updates register/stack state.
41  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42  *
43  * The first pass is depth-first-search to check that the program is a DAG.
44  * It rejects the following programs:
45  * - larger than BPF_MAXINSNS insns
46  * - if loop is present (detected via back-edge)
47  * - unreachable insns exist (shouldn't be a forest. program = one function)
48  * - out of bounds or malformed jumps
49  * The second pass is all possible path descent from the 1st insn.
50  * Since it's analyzing all pathes through the program, the length of the
51  * analysis is limited to 64k insn, which may be hit even if total number of
52  * insn is less then 4K, but there are too many branches that change stack/regs.
53  * Number of 'branches to be analyzed' is limited to 1k
54  *
55  * On entry to each instruction, each register has a type, and the instruction
56  * changes the types of the registers depending on instruction semantics.
57  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58  * copied to R1.
59  *
60  * All registers are 64-bit.
61  * R0 - return register
62  * R1-R5 argument passing registers
63  * R6-R9 callee saved registers
64  * R10 - frame pointer read-only
65  *
66  * At the start of BPF program the register R1 contains a pointer to bpf_context
67  * and has type PTR_TO_CTX.
68  *
69  * Verifier tracks arithmetic operations on pointers in case:
70  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72  * 1st insn copies R10 (which has FRAME_PTR) type into R1
73  * and 2nd arithmetic instruction is pattern matched to recognize
74  * that it wants to construct a pointer to some element within stack.
75  * So after 2nd insn, the register R1 has type PTR_TO_STACK
76  * (and -20 constant is saved for further stack bounds checking).
77  * Meaning that this reg is a pointer to stack plus known immediate constant.
78  *
79  * Most of the time the registers have SCALAR_VALUE type, which
80  * means the register has some value, but it's not a valid pointer.
81  * (like pointer plus pointer becomes SCALAR_VALUE type)
82  *
83  * When verifier sees load or store instructions the type of base register
84  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85  * four pointer types recognized by check_mem_access() function.
86  *
87  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88  * and the range of [ptr, ptr + map's value_size) is accessible.
89  *
90  * registers used to pass values to function calls are checked against
91  * function argument constraints.
92  *
93  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94  * It means that the register type passed to this function must be
95  * PTR_TO_STACK and it will be used inside the function as
96  * 'pointer to map element key'
97  *
98  * For example the argument constraints for bpf_map_lookup_elem():
99  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100  *   .arg1_type = ARG_CONST_MAP_PTR,
101  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
102  *
103  * ret_type says that this function returns 'pointer to map elem value or null'
104  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105  * 2nd argument should be a pointer to stack, which will be used inside
106  * the helper function as a pointer to map element key.
107  *
108  * On the kernel side the helper function looks like:
109  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110  * {
111  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112  *    void *key = (void *) (unsigned long) r2;
113  *    void *value;
114  *
115  *    here kernel can access 'key' and 'map' pointers safely, knowing that
116  *    [key, key + map->key_size) bytes are valid and were initialized on
117  *    the stack of eBPF program.
118  * }
119  *
120  * Corresponding eBPF program may look like:
121  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
122  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
124  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125  * here verifier looks at prototype of map_lookup_elem() and sees:
126  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128  *
129  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131  * and were initialized prior to this call.
132  * If it's ok, then verifier allows this BPF_CALL insn and looks at
133  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135  * returns ether pointer to map value or NULL.
136  *
137  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138  * insn, the register holding that pointer in the true branch changes state to
139  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140  * branch. See check_cond_jmp_op().
141  *
142  * After the call R0 is set to return type of the function and registers R1-R5
143  * are set to NOT_INIT to indicate that they are no longer readable.
144  *
145  * The following reference types represent a potential reference to a kernel
146  * resource which, after first being allocated, must be checked and freed by
147  * the BPF program:
148  * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149  *
150  * When the verifier sees a helper call return a reference type, it allocates a
151  * pointer id for the reference and stores it in the current function state.
152  * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153  * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154  * passes through a NULL-check conditional. For the branch wherein the state is
155  * changed to CONST_IMM, the verifier releases the reference.
156  *
157  * For each helper function that allocates a reference, such as
158  * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159  * bpf_sk_release(). When a reference type passes into the release function,
160  * the verifier also releases the reference. If any unchecked or unreleased
161  * reference remains at the end of the program, the verifier rejects it.
162  */
163 
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 	/* verifer state is 'st'
167 	 * before processing instruction 'insn_idx'
168 	 * and after processing instruction 'prev_insn_idx'
169 	 */
170 	struct bpf_verifier_state st;
171 	int insn_idx;
172 	int prev_insn_idx;
173 	struct bpf_verifier_stack_elem *next;
174 	/* length of verifier log at the time this state was pushed on stack */
175 	u32 log_pos;
176 };
177 
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ	8192
179 #define BPF_COMPLEXITY_LIMIT_STATES	64
180 
181 #define BPF_MAP_KEY_POISON	(1ULL << 63)
182 #define BPF_MAP_KEY_SEEN	(1ULL << 62)
183 
184 #define BPF_MAP_PTR_UNPRIV	1UL
185 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
186 					  POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188 
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 	return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193 
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 	return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198 
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 			      const struct bpf_map *map, bool unpriv)
201 {
202 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 	unpriv |= bpf_map_ptr_unpriv(aux);
204 	aux->map_ptr_state = (unsigned long)map |
205 			     (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207 
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 	return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212 
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 	return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217 
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 	return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222 
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 	bool poisoned = bpf_map_key_poisoned(aux);
226 
227 	aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 			     (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230 
231 struct bpf_call_arg_meta {
232 	struct bpf_map *map_ptr;
233 	bool raw_mode;
234 	bool pkt_access;
235 	int regno;
236 	int access_size;
237 	int mem_size;
238 	u64 msize_max_value;
239 	int ref_obj_id;
240 	int func_id;
241 	struct btf *btf;
242 	u32 btf_id;
243 	struct btf *ret_btf;
244 	u32 ret_btf_id;
245 };
246 
247 struct btf *btf_vmlinux;
248 
249 static DEFINE_MUTEX(bpf_verifier_lock);
250 
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253 {
254 	const struct bpf_line_info *linfo;
255 	const struct bpf_prog *prog;
256 	u32 i, nr_linfo;
257 
258 	prog = env->prog;
259 	nr_linfo = prog->aux->nr_linfo;
260 
261 	if (!nr_linfo || insn_off >= prog->len)
262 		return NULL;
263 
264 	linfo = prog->aux->linfo;
265 	for (i = 1; i < nr_linfo; i++)
266 		if (insn_off < linfo[i].insn_off)
267 			break;
268 
269 	return &linfo[i - 1];
270 }
271 
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 		       va_list args)
274 {
275 	unsigned int n;
276 
277 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
278 
279 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 		  "verifier log line truncated - local buffer too short\n");
281 
282 	n = min(log->len_total - log->len_used - 1, n);
283 	log->kbuf[n] = '\0';
284 
285 	if (log->level == BPF_LOG_KERNEL) {
286 		pr_err("BPF:%s\n", log->kbuf);
287 		return;
288 	}
289 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 		log->len_used += n;
291 	else
292 		log->ubuf = NULL;
293 }
294 
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296 {
297 	char zero = 0;
298 
299 	if (!bpf_verifier_log_needed(log))
300 		return;
301 
302 	log->len_used = new_pos;
303 	if (put_user(zero, log->ubuf + new_pos))
304 		log->ubuf = NULL;
305 }
306 
307 /* log_level controls verbosity level of eBPF verifier.
308  * bpf_verifier_log_write() is used to dump the verification trace to the log,
309  * so the user can figure out what's wrong with the program
310  */
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 					   const char *fmt, ...)
313 {
314 	va_list args;
315 
316 	if (!bpf_verifier_log_needed(&env->log))
317 		return;
318 
319 	va_start(args, fmt);
320 	bpf_verifier_vlog(&env->log, fmt, args);
321 	va_end(args);
322 }
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324 
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326 {
327 	struct bpf_verifier_env *env = private_data;
328 	va_list args;
329 
330 	if (!bpf_verifier_log_needed(&env->log))
331 		return;
332 
333 	va_start(args, fmt);
334 	bpf_verifier_vlog(&env->log, fmt, args);
335 	va_end(args);
336 }
337 
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 			    const char *fmt, ...)
340 {
341 	va_list args;
342 
343 	if (!bpf_verifier_log_needed(log))
344 		return;
345 
346 	va_start(args, fmt);
347 	bpf_verifier_vlog(log, fmt, args);
348 	va_end(args);
349 }
350 
351 static const char *ltrim(const char *s)
352 {
353 	while (isspace(*s))
354 		s++;
355 
356 	return s;
357 }
358 
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 					 u32 insn_off,
361 					 const char *prefix_fmt, ...)
362 {
363 	const struct bpf_line_info *linfo;
364 
365 	if (!bpf_verifier_log_needed(&env->log))
366 		return;
367 
368 	linfo = find_linfo(env, insn_off);
369 	if (!linfo || linfo == env->prev_linfo)
370 		return;
371 
372 	if (prefix_fmt) {
373 		va_list args;
374 
375 		va_start(args, prefix_fmt);
376 		bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 		va_end(args);
378 	}
379 
380 	verbose(env, "%s\n",
381 		ltrim(btf_name_by_offset(env->prog->aux->btf,
382 					 linfo->line_off)));
383 
384 	env->prev_linfo = linfo;
385 }
386 
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
388 {
389 	return type == PTR_TO_PACKET ||
390 	       type == PTR_TO_PACKET_META;
391 }
392 
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
394 {
395 	return type == PTR_TO_SOCKET ||
396 		type == PTR_TO_SOCK_COMMON ||
397 		type == PTR_TO_TCP_SOCK ||
398 		type == PTR_TO_XDP_SOCK;
399 }
400 
401 static bool reg_type_not_null(enum bpf_reg_type type)
402 {
403 	return type == PTR_TO_SOCKET ||
404 		type == PTR_TO_TCP_SOCK ||
405 		type == PTR_TO_MAP_VALUE ||
406 		type == PTR_TO_SOCK_COMMON;
407 }
408 
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
410 {
411 	return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 	       type == PTR_TO_SOCKET_OR_NULL ||
413 	       type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 	       type == PTR_TO_TCP_SOCK_OR_NULL ||
415 	       type == PTR_TO_BTF_ID_OR_NULL ||
416 	       type == PTR_TO_MEM_OR_NULL ||
417 	       type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 	       type == PTR_TO_RDWR_BUF_OR_NULL;
419 }
420 
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 	return reg->type == PTR_TO_MAP_VALUE &&
424 		map_value_has_spin_lock(reg->map_ptr);
425 }
426 
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428 {
429 	return type == PTR_TO_SOCKET ||
430 		type == PTR_TO_SOCKET_OR_NULL ||
431 		type == PTR_TO_TCP_SOCK ||
432 		type == PTR_TO_TCP_SOCK_OR_NULL ||
433 		type == PTR_TO_MEM ||
434 		type == PTR_TO_MEM_OR_NULL;
435 }
436 
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
438 {
439 	return type == ARG_PTR_TO_SOCK_COMMON;
440 }
441 
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
443 {
444 	return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 	       type == ARG_PTR_TO_MEM_OR_NULL ||
446 	       type == ARG_PTR_TO_CTX_OR_NULL ||
447 	       type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 	       type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449 }
450 
451 /* Determine whether the function releases some resources allocated by another
452  * function call. The first reference type argument will be assumed to be
453  * released by release_reference().
454  */
455 static bool is_release_function(enum bpf_func_id func_id)
456 {
457 	return func_id == BPF_FUNC_sk_release ||
458 	       func_id == BPF_FUNC_ringbuf_submit ||
459 	       func_id == BPF_FUNC_ringbuf_discard;
460 }
461 
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
463 {
464 	return func_id == BPF_FUNC_sk_lookup_tcp ||
465 		func_id == BPF_FUNC_sk_lookup_udp ||
466 		func_id == BPF_FUNC_skc_lookup_tcp ||
467 		func_id == BPF_FUNC_map_lookup_elem ||
468 	        func_id == BPF_FUNC_ringbuf_reserve;
469 }
470 
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 				const struct bpf_map *map)
473 {
474 	enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475 
476 	if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 	    func_id == BPF_FUNC_sk_lookup_udp ||
478 	    func_id == BPF_FUNC_skc_lookup_tcp ||
479 	    func_id == BPF_FUNC_ringbuf_reserve)
480 		return true;
481 
482 	if (func_id == BPF_FUNC_map_lookup_elem &&
483 	    (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 	     map_type == BPF_MAP_TYPE_SOCKHASH))
485 		return true;
486 
487 	return false;
488 }
489 
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
491 {
492 	return func_id == BPF_FUNC_tcp_sock ||
493 		func_id == BPF_FUNC_sk_fullsock ||
494 		func_id == BPF_FUNC_skc_to_tcp_sock ||
495 		func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 		func_id == BPF_FUNC_skc_to_udp6_sock ||
497 		func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 		func_id == BPF_FUNC_skc_to_tcp_request_sock;
499 }
500 
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 	[NOT_INIT]		= "?",
504 	[SCALAR_VALUE]		= "inv",
505 	[PTR_TO_CTX]		= "ctx",
506 	[CONST_PTR_TO_MAP]	= "map_ptr",
507 	[PTR_TO_MAP_VALUE]	= "map_value",
508 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 	[PTR_TO_STACK]		= "fp",
510 	[PTR_TO_PACKET]		= "pkt",
511 	[PTR_TO_PACKET_META]	= "pkt_meta",
512 	[PTR_TO_PACKET_END]	= "pkt_end",
513 	[PTR_TO_FLOW_KEYS]	= "flow_keys",
514 	[PTR_TO_SOCKET]		= "sock",
515 	[PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 	[PTR_TO_SOCK_COMMON]	= "sock_common",
517 	[PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 	[PTR_TO_TCP_SOCK]	= "tcp_sock",
519 	[PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 	[PTR_TO_TP_BUFFER]	= "tp_buffer",
521 	[PTR_TO_XDP_SOCK]	= "xdp_sock",
522 	[PTR_TO_BTF_ID]		= "ptr_",
523 	[PTR_TO_BTF_ID_OR_NULL]	= "ptr_or_null_",
524 	[PTR_TO_PERCPU_BTF_ID]	= "percpu_ptr_",
525 	[PTR_TO_MEM]		= "mem",
526 	[PTR_TO_MEM_OR_NULL]	= "mem_or_null",
527 	[PTR_TO_RDONLY_BUF]	= "rdonly_buf",
528 	[PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 	[PTR_TO_RDWR_BUF]	= "rdwr_buf",
530 	[PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
531 };
532 
533 static char slot_type_char[] = {
534 	[STACK_INVALID]	= '?',
535 	[STACK_SPILL]	= 'r',
536 	[STACK_MISC]	= 'm',
537 	[STACK_ZERO]	= '0',
538 };
539 
540 static void print_liveness(struct bpf_verifier_env *env,
541 			   enum bpf_reg_liveness live)
542 {
543 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 	    verbose(env, "_");
545 	if (live & REG_LIVE_READ)
546 		verbose(env, "r");
547 	if (live & REG_LIVE_WRITTEN)
548 		verbose(env, "w");
549 	if (live & REG_LIVE_DONE)
550 		verbose(env, "D");
551 }
552 
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 				   const struct bpf_reg_state *reg)
555 {
556 	struct bpf_verifier_state *cur = env->cur_state;
557 
558 	return cur->frame[reg->frameno];
559 }
560 
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
562 {
563 	return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
564 }
565 
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 				 const struct bpf_func_state *state)
568 {
569 	const struct bpf_reg_state *reg;
570 	enum bpf_reg_type t;
571 	int i;
572 
573 	if (state->frameno)
574 		verbose(env, " frame%d:", state->frameno);
575 	for (i = 0; i < MAX_BPF_REG; i++) {
576 		reg = &state->regs[i];
577 		t = reg->type;
578 		if (t == NOT_INIT)
579 			continue;
580 		verbose(env, " R%d", i);
581 		print_liveness(env, reg->live);
582 		verbose(env, "=%s", reg_type_str[t]);
583 		if (t == SCALAR_VALUE && reg->precise)
584 			verbose(env, "P");
585 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 		    tnum_is_const(reg->var_off)) {
587 			/* reg->off should be 0 for SCALAR_VALUE */
588 			verbose(env, "%lld", reg->var_off.value + reg->off);
589 		} else {
590 			if (t == PTR_TO_BTF_ID ||
591 			    t == PTR_TO_BTF_ID_OR_NULL ||
592 			    t == PTR_TO_PERCPU_BTF_ID)
593 				verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 			verbose(env, "(id=%d", reg->id);
595 			if (reg_type_may_be_refcounted_or_null(t))
596 				verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 			if (t != SCALAR_VALUE)
598 				verbose(env, ",off=%d", reg->off);
599 			if (type_is_pkt_pointer(t))
600 				verbose(env, ",r=%d", reg->range);
601 			else if (t == CONST_PTR_TO_MAP ||
602 				 t == PTR_TO_MAP_VALUE ||
603 				 t == PTR_TO_MAP_VALUE_OR_NULL)
604 				verbose(env, ",ks=%d,vs=%d",
605 					reg->map_ptr->key_size,
606 					reg->map_ptr->value_size);
607 			if (tnum_is_const(reg->var_off)) {
608 				/* Typically an immediate SCALAR_VALUE, but
609 				 * could be a pointer whose offset is too big
610 				 * for reg->off
611 				 */
612 				verbose(env, ",imm=%llx", reg->var_off.value);
613 			} else {
614 				if (reg->smin_value != reg->umin_value &&
615 				    reg->smin_value != S64_MIN)
616 					verbose(env, ",smin_value=%lld",
617 						(long long)reg->smin_value);
618 				if (reg->smax_value != reg->umax_value &&
619 				    reg->smax_value != S64_MAX)
620 					verbose(env, ",smax_value=%lld",
621 						(long long)reg->smax_value);
622 				if (reg->umin_value != 0)
623 					verbose(env, ",umin_value=%llu",
624 						(unsigned long long)reg->umin_value);
625 				if (reg->umax_value != U64_MAX)
626 					verbose(env, ",umax_value=%llu",
627 						(unsigned long long)reg->umax_value);
628 				if (!tnum_is_unknown(reg->var_off)) {
629 					char tn_buf[48];
630 
631 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 					verbose(env, ",var_off=%s", tn_buf);
633 				}
634 				if (reg->s32_min_value != reg->smin_value &&
635 				    reg->s32_min_value != S32_MIN)
636 					verbose(env, ",s32_min_value=%d",
637 						(int)(reg->s32_min_value));
638 				if (reg->s32_max_value != reg->smax_value &&
639 				    reg->s32_max_value != S32_MAX)
640 					verbose(env, ",s32_max_value=%d",
641 						(int)(reg->s32_max_value));
642 				if (reg->u32_min_value != reg->umin_value &&
643 				    reg->u32_min_value != U32_MIN)
644 					verbose(env, ",u32_min_value=%d",
645 						(int)(reg->u32_min_value));
646 				if (reg->u32_max_value != reg->umax_value &&
647 				    reg->u32_max_value != U32_MAX)
648 					verbose(env, ",u32_max_value=%d",
649 						(int)(reg->u32_max_value));
650 			}
651 			verbose(env, ")");
652 		}
653 	}
654 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 		char types_buf[BPF_REG_SIZE + 1];
656 		bool valid = false;
657 		int j;
658 
659 		for (j = 0; j < BPF_REG_SIZE; j++) {
660 			if (state->stack[i].slot_type[j] != STACK_INVALID)
661 				valid = true;
662 			types_buf[j] = slot_type_char[
663 					state->stack[i].slot_type[j]];
664 		}
665 		types_buf[BPF_REG_SIZE] = 0;
666 		if (!valid)
667 			continue;
668 		verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 		print_liveness(env, state->stack[i].spilled_ptr.live);
670 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 			reg = &state->stack[i].spilled_ptr;
672 			t = reg->type;
673 			verbose(env, "=%s", reg_type_str[t]);
674 			if (t == SCALAR_VALUE && reg->precise)
675 				verbose(env, "P");
676 			if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 				verbose(env, "%lld", reg->var_off.value + reg->off);
678 		} else {
679 			verbose(env, "=%s", types_buf);
680 		}
681 	}
682 	if (state->acquired_refs && state->refs[0].id) {
683 		verbose(env, " refs=%d", state->refs[0].id);
684 		for (i = 1; i < state->acquired_refs; i++)
685 			if (state->refs[i].id)
686 				verbose(env, ",%d", state->refs[i].id);
687 	}
688 	verbose(env, "\n");
689 }
690 
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE)				\
692 static int copy_##NAME##_state(struct bpf_func_state *dst,		\
693 			       const struct bpf_func_state *src)	\
694 {									\
695 	if (!src->FIELD)						\
696 		return 0;						\
697 	if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) {			\
698 		/* internal bug, make state invalid to reject the program */ \
699 		memset(dst, 0, sizeof(*dst));				\
700 		return -EFAULT;						\
701 	}								\
702 	memcpy(dst->FIELD, src->FIELD,					\
703 	       sizeof(*src->FIELD) * (src->COUNT / SIZE));		\
704 	return 0;							\
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711 
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE)			\
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 				  bool copy_old)			\
715 {									\
716 	u32 old_size = state->COUNT;					\
717 	struct bpf_##NAME##_state *new_##FIELD;				\
718 	int slot = size / SIZE;						\
719 									\
720 	if (size <= old_size || !size) {				\
721 		if (copy_old)						\
722 			return 0;					\
723 		state->COUNT = slot * SIZE;				\
724 		if (!size && old_size) {				\
725 			kfree(state->FIELD);				\
726 			state->FIELD = NULL;				\
727 		}							\
728 		return 0;						\
729 	}								\
730 	new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 				    GFP_KERNEL);			\
732 	if (!new_##FIELD)						\
733 		return -ENOMEM;						\
734 	if (copy_old) {							\
735 		if (state->FIELD)					\
736 			memcpy(new_##FIELD, state->FIELD,		\
737 			       sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 		memset(new_##FIELD + old_size / SIZE, 0,		\
739 		       sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 	}								\
741 	state->COUNT = slot * SIZE;					\
742 	kfree(state->FIELD);						\
743 	state->FIELD = new_##FIELD;					\
744 	return 0;							\
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751 
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753  * make it consume minimal amount of memory. check_stack_write() access from
754  * the program calls into realloc_func_state() to grow the stack size.
755  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756  * which realloc_stack_state() copies over. It points to previous
757  * bpf_verifier_state which is never reallocated.
758  */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 			      int refs_size, bool copy_old)
761 {
762 	int err = realloc_reference_state(state, refs_size, copy_old);
763 	if (err)
764 		return err;
765 	return realloc_stack_state(state, stack_size, copy_old);
766 }
767 
768 /* Acquire a pointer id from the env and update the state->refs to include
769  * this new pointer reference.
770  * On success, returns a valid pointer id to associate with the register
771  * On failure, returns a negative errno.
772  */
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 	struct bpf_func_state *state = cur_func(env);
776 	int new_ofs = state->acquired_refs;
777 	int id, err;
778 
779 	err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 	if (err)
781 		return err;
782 	id = ++env->id_gen;
783 	state->refs[new_ofs].id = id;
784 	state->refs[new_ofs].insn_idx = insn_idx;
785 
786 	return id;
787 }
788 
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 	int i, last_idx;
793 
794 	last_idx = state->acquired_refs - 1;
795 	for (i = 0; i < state->acquired_refs; i++) {
796 		if (state->refs[i].id == ptr_id) {
797 			if (last_idx && i != last_idx)
798 				memcpy(&state->refs[i], &state->refs[last_idx],
799 				       sizeof(*state->refs));
800 			memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 			state->acquired_refs--;
802 			return 0;
803 		}
804 	}
805 	return -EINVAL;
806 }
807 
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 				    struct bpf_func_state *src)
810 {
811 	int err = realloc_reference_state(dst, src->acquired_refs, false);
812 	if (err)
813 		return err;
814 	err = copy_reference_state(dst, src);
815 	if (err)
816 		return err;
817 	return 0;
818 }
819 
820 static void free_func_state(struct bpf_func_state *state)
821 {
822 	if (!state)
823 		return;
824 	kfree(state->refs);
825 	kfree(state->stack);
826 	kfree(state);
827 }
828 
829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 	kfree(state->jmp_history);
832 	state->jmp_history = NULL;
833 	state->jmp_history_cnt = 0;
834 }
835 
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 				bool free_self)
838 {
839 	int i;
840 
841 	for (i = 0; i <= state->curframe; i++) {
842 		free_func_state(state->frame[i]);
843 		state->frame[i] = NULL;
844 	}
845 	clear_jmp_history(state);
846 	if (free_self)
847 		kfree(state);
848 }
849 
850 /* copy verifier state from src to dst growing dst stack space
851  * when necessary to accommodate larger src stack
852  */
853 static int copy_func_state(struct bpf_func_state *dst,
854 			   const struct bpf_func_state *src)
855 {
856 	int err;
857 
858 	err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 				 false);
860 	if (err)
861 		return err;
862 	memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 	err = copy_reference_state(dst, src);
864 	if (err)
865 		return err;
866 	return copy_stack_state(dst, src);
867 }
868 
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 			       const struct bpf_verifier_state *src)
871 {
872 	struct bpf_func_state *dst;
873 	u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 	int i, err;
875 
876 	if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 		kfree(dst_state->jmp_history);
878 		dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 		if (!dst_state->jmp_history)
880 			return -ENOMEM;
881 	}
882 	memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 	dst_state->jmp_history_cnt = src->jmp_history_cnt;
884 
885 	/* if dst has more stack frames then src frame, free them */
886 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 		free_func_state(dst_state->frame[i]);
888 		dst_state->frame[i] = NULL;
889 	}
890 	dst_state->speculative = src->speculative;
891 	dst_state->curframe = src->curframe;
892 	dst_state->active_spin_lock = src->active_spin_lock;
893 	dst_state->branches = src->branches;
894 	dst_state->parent = src->parent;
895 	dst_state->first_insn_idx = src->first_insn_idx;
896 	dst_state->last_insn_idx = src->last_insn_idx;
897 	for (i = 0; i <= src->curframe; i++) {
898 		dst = dst_state->frame[i];
899 		if (!dst) {
900 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 			if (!dst)
902 				return -ENOMEM;
903 			dst_state->frame[i] = dst;
904 		}
905 		err = copy_func_state(dst, src->frame[i]);
906 		if (err)
907 			return err;
908 	}
909 	return 0;
910 }
911 
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 	while (st) {
915 		u32 br = --st->branches;
916 
917 		/* WARN_ON(br > 1) technically makes sense here,
918 		 * but see comment in push_stack(), hence:
919 		 */
920 		WARN_ONCE((int)br < 0,
921 			  "BUG update_branch_counts:branches_to_explore=%d\n",
922 			  br);
923 		if (br)
924 			break;
925 		st = st->parent;
926 	}
927 }
928 
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 		     int *insn_idx, bool pop_log)
931 {
932 	struct bpf_verifier_state *cur = env->cur_state;
933 	struct bpf_verifier_stack_elem *elem, *head = env->head;
934 	int err;
935 
936 	if (env->head == NULL)
937 		return -ENOENT;
938 
939 	if (cur) {
940 		err = copy_verifier_state(cur, &head->st);
941 		if (err)
942 			return err;
943 	}
944 	if (pop_log)
945 		bpf_vlog_reset(&env->log, head->log_pos);
946 	if (insn_idx)
947 		*insn_idx = head->insn_idx;
948 	if (prev_insn_idx)
949 		*prev_insn_idx = head->prev_insn_idx;
950 	elem = head->next;
951 	free_verifier_state(&head->st, false);
952 	kfree(head);
953 	env->head = elem;
954 	env->stack_size--;
955 	return 0;
956 }
957 
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 					     int insn_idx, int prev_insn_idx,
960 					     bool speculative)
961 {
962 	struct bpf_verifier_state *cur = env->cur_state;
963 	struct bpf_verifier_stack_elem *elem;
964 	int err;
965 
966 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 	if (!elem)
968 		goto err;
969 
970 	elem->insn_idx = insn_idx;
971 	elem->prev_insn_idx = prev_insn_idx;
972 	elem->next = env->head;
973 	elem->log_pos = env->log.len_used;
974 	env->head = elem;
975 	env->stack_size++;
976 	err = copy_verifier_state(&elem->st, cur);
977 	if (err)
978 		goto err;
979 	elem->st.speculative |= speculative;
980 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 		verbose(env, "The sequence of %d jumps is too complex.\n",
982 			env->stack_size);
983 		goto err;
984 	}
985 	if (elem->st.parent) {
986 		++elem->st.parent->branches;
987 		/* WARN_ON(branches > 2) technically makes sense here,
988 		 * but
989 		 * 1. speculative states will bump 'branches' for non-branch
990 		 * instructions
991 		 * 2. is_state_visited() heuristics may decide not to create
992 		 * a new state for a sequence of branches and all such current
993 		 * and cloned states will be pointing to a single parent state
994 		 * which might have large 'branches' count.
995 		 */
996 	}
997 	return &elem->st;
998 err:
999 	free_verifier_state(env->cur_state, true);
1000 	env->cur_state = NULL;
1001 	/* pop all elements and return */
1002 	while (!pop_stack(env, NULL, NULL, false));
1003 	return NULL;
1004 }
1005 
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010 
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 				struct bpf_reg_state *reg);
1013 
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 	reg->var_off = tnum_const(imm);
1018 	reg->smin_value = (s64)imm;
1019 	reg->smax_value = (s64)imm;
1020 	reg->umin_value = imm;
1021 	reg->umax_value = imm;
1022 
1023 	reg->s32_min_value = (s32)imm;
1024 	reg->s32_max_value = (s32)imm;
1025 	reg->u32_min_value = (u32)imm;
1026 	reg->u32_max_value = (u32)imm;
1027 }
1028 
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030  * known to have the value @imm.
1031  */
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 	/* Clear id, off, and union(map_ptr, range) */
1035 	memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 	       offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 	___mark_reg_known(reg, imm);
1038 }
1039 
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 	reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 	reg->s32_min_value = (s32)imm;
1044 	reg->s32_max_value = (s32)imm;
1045 	reg->u32_min_value = (u32)imm;
1046 	reg->u32_max_value = (u32)imm;
1047 }
1048 
1049 /* Mark the 'variable offset' part of a register as zero.  This should be
1050  * used only on registers holding a pointer type.
1051  */
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 	__mark_reg_known(reg, 0);
1055 }
1056 
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 	__mark_reg_known(reg, 0);
1060 	reg->type = SCALAR_VALUE;
1061 }
1062 
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 				struct bpf_reg_state *regs, u32 regno)
1065 {
1066 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 		/* Something bad happened, let's kill all regs */
1069 		for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 			__mark_reg_not_init(env, regs + regno);
1071 		return;
1072 	}
1073 	__mark_reg_known_zero(regs + regno);
1074 }
1075 
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 	return type_is_pkt_pointer(reg->type);
1079 }
1080 
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 	return reg_is_pkt_pointer(reg) ||
1084 	       reg->type == PTR_TO_PACKET_END;
1085 }
1086 
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 				    enum bpf_reg_type which)
1090 {
1091 	/* The register can already have a range from prior markings.
1092 	 * This is fine as long as it hasn't been advanced from its
1093 	 * origin.
1094 	 */
1095 	return reg->type == which &&
1096 	       reg->id == 0 &&
1097 	       reg->off == 0 &&
1098 	       tnum_equals_const(reg->var_off, 0);
1099 }
1100 
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 	reg->smin_value = S64_MIN;
1105 	reg->smax_value = S64_MAX;
1106 	reg->umin_value = 0;
1107 	reg->umax_value = U64_MAX;
1108 
1109 	reg->s32_min_value = S32_MIN;
1110 	reg->s32_max_value = S32_MAX;
1111 	reg->u32_min_value = 0;
1112 	reg->u32_max_value = U32_MAX;
1113 }
1114 
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 	reg->smin_value = S64_MIN;
1118 	reg->smax_value = S64_MAX;
1119 	reg->umin_value = 0;
1120 	reg->umax_value = U64_MAX;
1121 }
1122 
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 	reg->s32_min_value = S32_MIN;
1126 	reg->s32_max_value = S32_MAX;
1127 	reg->u32_min_value = 0;
1128 	reg->u32_max_value = U32_MAX;
1129 }
1130 
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 	struct tnum var32_off = tnum_subreg(reg->var_off);
1134 
1135 	/* min signed is max(sign bit) | min(other bits) */
1136 	reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 			var32_off.value | (var32_off.mask & S32_MIN));
1138 	/* max signed is min(sign bit) | max(other bits) */
1139 	reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 			var32_off.value | (var32_off.mask & S32_MAX));
1141 	reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 	reg->u32_max_value = min(reg->u32_max_value,
1143 				 (u32)(var32_off.value | var32_off.mask));
1144 }
1145 
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 	/* min signed is max(sign bit) | min(other bits) */
1149 	reg->smin_value = max_t(s64, reg->smin_value,
1150 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 	/* max signed is min(sign bit) | max(other bits) */
1152 	reg->smax_value = min_t(s64, reg->smax_value,
1153 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 	reg->umax_value = min(reg->umax_value,
1156 			      reg->var_off.value | reg->var_off.mask);
1157 }
1158 
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 	__update_reg32_bounds(reg);
1162 	__update_reg64_bounds(reg);
1163 }
1164 
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 	/* Learn sign from signed bounds.
1169 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 	 * are the same, so combine.  This works even in the negative case, e.g.
1171 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 	 */
1173 	if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 		reg->s32_min_value = reg->u32_min_value =
1175 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 		reg->s32_max_value = reg->u32_max_value =
1177 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 		return;
1179 	}
1180 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1181 	 * boundary, so we must be careful.
1182 	 */
1183 	if ((s32)reg->u32_max_value >= 0) {
1184 		/* Positive.  We can't learn anything from the smin, but smax
1185 		 * is positive, hence safe.
1186 		 */
1187 		reg->s32_min_value = reg->u32_min_value;
1188 		reg->s32_max_value = reg->u32_max_value =
1189 			min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 	} else if ((s32)reg->u32_min_value < 0) {
1191 		/* Negative.  We can't learn anything from the smax, but smin
1192 		 * is negative, hence safe.
1193 		 */
1194 		reg->s32_min_value = reg->u32_min_value =
1195 			max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 		reg->s32_max_value = reg->u32_max_value;
1197 	}
1198 }
1199 
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 	/* Learn sign from signed bounds.
1203 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 	 * are the same, so combine.  This works even in the negative case, e.g.
1205 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 	 */
1207 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 							  reg->umin_value);
1210 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 							  reg->umax_value);
1212 		return;
1213 	}
1214 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
1215 	 * boundary, so we must be careful.
1216 	 */
1217 	if ((s64)reg->umax_value >= 0) {
1218 		/* Positive.  We can't learn anything from the smin, but smax
1219 		 * is positive, hence safe.
1220 		 */
1221 		reg->smin_value = reg->umin_value;
1222 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 							  reg->umax_value);
1224 	} else if ((s64)reg->umin_value < 0) {
1225 		/* Negative.  We can't learn anything from the smax, but smin
1226 		 * is negative, hence safe.
1227 		 */
1228 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 							  reg->umin_value);
1230 		reg->smax_value = reg->umax_value;
1231 	}
1232 }
1233 
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 	__reg32_deduce_bounds(reg);
1237 	__reg64_deduce_bounds(reg);
1238 }
1239 
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 	struct tnum var64_off = tnum_intersect(reg->var_off,
1244 					       tnum_range(reg->umin_value,
1245 							  reg->umax_value));
1246 	struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 						tnum_range(reg->u32_min_value,
1248 							   reg->u32_max_value));
1249 
1250 	reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252 
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1254 {
1255 	reg->umin_value = reg->u32_min_value;
1256 	reg->umax_value = reg->u32_max_value;
1257 	/* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 	 * but must be positive otherwise set to worse case bounds
1259 	 * and refine later from tnum.
1260 	 */
1261 	if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 		reg->smax_value = reg->s32_max_value;
1263 	else
1264 		reg->smax_value = U32_MAX;
1265 	if (reg->s32_min_value >= 0)
1266 		reg->smin_value = reg->s32_min_value;
1267 	else
1268 		reg->smin_value = 0;
1269 }
1270 
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272 {
1273 	/* special case when 64-bit register has upper 32-bit register
1274 	 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 	 * allowing us to use 32-bit bounds directly,
1276 	 */
1277 	if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 		__reg_assign_32_into_64(reg);
1279 	} else {
1280 		/* Otherwise the best we can do is push lower 32bit known and
1281 		 * unknown bits into register (var_off set from jmp logic)
1282 		 * then learn as much as possible from the 64-bit tnum
1283 		 * known and unknown bits. The previous smin/smax bounds are
1284 		 * invalid here because of jmp32 compare so mark them unknown
1285 		 * so they do not impact tnum bounds calculation.
1286 		 */
1287 		__mark_reg64_unbounded(reg);
1288 		__update_reg_bounds(reg);
1289 	}
1290 
1291 	/* Intersecting with the old var_off might have improved our bounds
1292 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 	 */
1295 	__reg_deduce_bounds(reg);
1296 	__reg_bound_offset(reg);
1297 	__update_reg_bounds(reg);
1298 }
1299 
1300 static bool __reg64_bound_s32(s64 a)
1301 {
1302 	return a > S32_MIN && a < S32_MAX;
1303 }
1304 
1305 static bool __reg64_bound_u32(u64 a)
1306 {
1307 	if (a > U32_MIN && a < U32_MAX)
1308 		return true;
1309 	return false;
1310 }
1311 
1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313 {
1314 	__mark_reg32_unbounded(reg);
1315 
1316 	if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1317 		reg->s32_min_value = (s32)reg->smin_value;
1318 		reg->s32_max_value = (s32)reg->smax_value;
1319 	}
1320 	if (__reg64_bound_u32(reg->umin_value))
1321 		reg->u32_min_value = (u32)reg->umin_value;
1322 	if (__reg64_bound_u32(reg->umax_value))
1323 		reg->u32_max_value = (u32)reg->umax_value;
1324 
1325 	/* Intersecting with the old var_off might have improved our bounds
1326 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 	 */
1329 	__reg_deduce_bounds(reg);
1330 	__reg_bound_offset(reg);
1331 	__update_reg_bounds(reg);
1332 }
1333 
1334 /* Mark a register as having a completely unknown (scalar) value. */
1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 			       struct bpf_reg_state *reg)
1337 {
1338 	/*
1339 	 * Clear type, id, off, and union(map_ptr, range) and
1340 	 * padding between 'type' and union
1341 	 */
1342 	memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1343 	reg->type = SCALAR_VALUE;
1344 	reg->var_off = tnum_unknown;
1345 	reg->frameno = 0;
1346 	reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1347 	__mark_reg_unbounded(reg);
1348 }
1349 
1350 static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 			     struct bpf_reg_state *regs, u32 regno)
1352 {
1353 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1354 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1355 		/* Something bad happened, let's kill all regs except FP */
1356 		for (regno = 0; regno < BPF_REG_FP; regno++)
1357 			__mark_reg_not_init(env, regs + regno);
1358 		return;
1359 	}
1360 	__mark_reg_unknown(env, regs + regno);
1361 }
1362 
1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 				struct bpf_reg_state *reg)
1365 {
1366 	__mark_reg_unknown(env, reg);
1367 	reg->type = NOT_INIT;
1368 }
1369 
1370 static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 			      struct bpf_reg_state *regs, u32 regno)
1372 {
1373 	if (WARN_ON(regno >= MAX_BPF_REG)) {
1374 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1375 		/* Something bad happened, let's kill all regs except FP */
1376 		for (regno = 0; regno < BPF_REG_FP; regno++)
1377 			__mark_reg_not_init(env, regs + regno);
1378 		return;
1379 	}
1380 	__mark_reg_not_init(env, regs + regno);
1381 }
1382 
1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 			    struct bpf_reg_state *regs, u32 regno,
1385 			    enum bpf_reg_type reg_type,
1386 			    struct btf *btf, u32 btf_id)
1387 {
1388 	if (reg_type == SCALAR_VALUE) {
1389 		mark_reg_unknown(env, regs, regno);
1390 		return;
1391 	}
1392 	mark_reg_known_zero(env, regs, regno);
1393 	regs[regno].type = PTR_TO_BTF_ID;
1394 	regs[regno].btf = btf;
1395 	regs[regno].btf_id = btf_id;
1396 }
1397 
1398 #define DEF_NOT_SUBREG	(0)
1399 static void init_reg_state(struct bpf_verifier_env *env,
1400 			   struct bpf_func_state *state)
1401 {
1402 	struct bpf_reg_state *regs = state->regs;
1403 	int i;
1404 
1405 	for (i = 0; i < MAX_BPF_REG; i++) {
1406 		mark_reg_not_init(env, regs, i);
1407 		regs[i].live = REG_LIVE_NONE;
1408 		regs[i].parent = NULL;
1409 		regs[i].subreg_def = DEF_NOT_SUBREG;
1410 	}
1411 
1412 	/* frame pointer */
1413 	regs[BPF_REG_FP].type = PTR_TO_STACK;
1414 	mark_reg_known_zero(env, regs, BPF_REG_FP);
1415 	regs[BPF_REG_FP].frameno = state->frameno;
1416 }
1417 
1418 #define BPF_MAIN_FUNC (-1)
1419 static void init_func_state(struct bpf_verifier_env *env,
1420 			    struct bpf_func_state *state,
1421 			    int callsite, int frameno, int subprogno)
1422 {
1423 	state->callsite = callsite;
1424 	state->frameno = frameno;
1425 	state->subprogno = subprogno;
1426 	init_reg_state(env, state);
1427 }
1428 
1429 enum reg_arg_type {
1430 	SRC_OP,		/* register is used as source operand */
1431 	DST_OP,		/* register is used as destination operand */
1432 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
1433 };
1434 
1435 static int cmp_subprogs(const void *a, const void *b)
1436 {
1437 	return ((struct bpf_subprog_info *)a)->start -
1438 	       ((struct bpf_subprog_info *)b)->start;
1439 }
1440 
1441 static int find_subprog(struct bpf_verifier_env *env, int off)
1442 {
1443 	struct bpf_subprog_info *p;
1444 
1445 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 		    sizeof(env->subprog_info[0]), cmp_subprogs);
1447 	if (!p)
1448 		return -ENOENT;
1449 	return p - env->subprog_info;
1450 
1451 }
1452 
1453 static int add_subprog(struct bpf_verifier_env *env, int off)
1454 {
1455 	int insn_cnt = env->prog->len;
1456 	int ret;
1457 
1458 	if (off >= insn_cnt || off < 0) {
1459 		verbose(env, "call to invalid destination\n");
1460 		return -EINVAL;
1461 	}
1462 	ret = find_subprog(env, off);
1463 	if (ret >= 0)
1464 		return 0;
1465 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1466 		verbose(env, "too many subprograms\n");
1467 		return -E2BIG;
1468 	}
1469 	env->subprog_info[env->subprog_cnt++].start = off;
1470 	sort(env->subprog_info, env->subprog_cnt,
1471 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1472 	return 0;
1473 }
1474 
1475 static int check_subprogs(struct bpf_verifier_env *env)
1476 {
1477 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1478 	struct bpf_subprog_info *subprog = env->subprog_info;
1479 	struct bpf_insn *insn = env->prog->insnsi;
1480 	int insn_cnt = env->prog->len;
1481 
1482 	/* Add entry function. */
1483 	ret = add_subprog(env, 0);
1484 	if (ret < 0)
1485 		return ret;
1486 
1487 	/* determine subprog starts. The end is one before the next starts */
1488 	for (i = 0; i < insn_cnt; i++) {
1489 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 			continue;
1491 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 			continue;
1493 		if (!env->bpf_capable) {
1494 			verbose(env,
1495 				"function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1496 			return -EPERM;
1497 		}
1498 		ret = add_subprog(env, i + insn[i].imm + 1);
1499 		if (ret < 0)
1500 			return ret;
1501 	}
1502 
1503 	/* Add a fake 'exit' subprog which could simplify subprog iteration
1504 	 * logic. 'subprog_cnt' should not be increased.
1505 	 */
1506 	subprog[env->subprog_cnt].start = insn_cnt;
1507 
1508 	if (env->log.level & BPF_LOG_LEVEL2)
1509 		for (i = 0; i < env->subprog_cnt; i++)
1510 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
1511 
1512 	/* now check that all jumps are within the same subprog */
1513 	subprog_start = subprog[cur_subprog].start;
1514 	subprog_end = subprog[cur_subprog + 1].start;
1515 	for (i = 0; i < insn_cnt; i++) {
1516 		u8 code = insn[i].code;
1517 
1518 		if (code == (BPF_JMP | BPF_CALL) &&
1519 		    insn[i].imm == BPF_FUNC_tail_call &&
1520 		    insn[i].src_reg != BPF_PSEUDO_CALL)
1521 			subprog[cur_subprog].has_tail_call = true;
1522 		if (BPF_CLASS(code) == BPF_LD &&
1523 		    (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 			subprog[cur_subprog].has_ld_abs = true;
1525 		if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1526 			goto next;
1527 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 			goto next;
1529 		off = i + insn[i].off + 1;
1530 		if (off < subprog_start || off >= subprog_end) {
1531 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 			return -EINVAL;
1533 		}
1534 next:
1535 		if (i == subprog_end - 1) {
1536 			/* to avoid fall-through from one subprog into another
1537 			 * the last insn of the subprog should be either exit
1538 			 * or unconditional jump back
1539 			 */
1540 			if (code != (BPF_JMP | BPF_EXIT) &&
1541 			    code != (BPF_JMP | BPF_JA)) {
1542 				verbose(env, "last insn is not an exit or jmp\n");
1543 				return -EINVAL;
1544 			}
1545 			subprog_start = subprog_end;
1546 			cur_subprog++;
1547 			if (cur_subprog < env->subprog_cnt)
1548 				subprog_end = subprog[cur_subprog + 1].start;
1549 		}
1550 	}
1551 	return 0;
1552 }
1553 
1554 /* Parentage chain of this register (or stack slot) should take care of all
1555  * issues like callee-saved registers, stack slot allocation time, etc.
1556  */
1557 static int mark_reg_read(struct bpf_verifier_env *env,
1558 			 const struct bpf_reg_state *state,
1559 			 struct bpf_reg_state *parent, u8 flag)
1560 {
1561 	bool writes = parent == state->parent; /* Observe write marks */
1562 	int cnt = 0;
1563 
1564 	while (parent) {
1565 		/* if read wasn't screened by an earlier write ... */
1566 		if (writes && state->live & REG_LIVE_WRITTEN)
1567 			break;
1568 		if (parent->live & REG_LIVE_DONE) {
1569 			verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 				reg_type_str[parent->type],
1571 				parent->var_off.value, parent->off);
1572 			return -EFAULT;
1573 		}
1574 		/* The first condition is more likely to be true than the
1575 		 * second, checked it first.
1576 		 */
1577 		if ((parent->live & REG_LIVE_READ) == flag ||
1578 		    parent->live & REG_LIVE_READ64)
1579 			/* The parentage chain never changes and
1580 			 * this parent was already marked as LIVE_READ.
1581 			 * There is no need to keep walking the chain again and
1582 			 * keep re-marking all parents as LIVE_READ.
1583 			 * This case happens when the same register is read
1584 			 * multiple times without writes into it in-between.
1585 			 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 			 * then no need to set the weak REG_LIVE_READ32.
1587 			 */
1588 			break;
1589 		/* ... then we depend on parent's value */
1590 		parent->live |= flag;
1591 		/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 		if (flag == REG_LIVE_READ64)
1593 			parent->live &= ~REG_LIVE_READ32;
1594 		state = parent;
1595 		parent = state->parent;
1596 		writes = true;
1597 		cnt++;
1598 	}
1599 
1600 	if (env->longest_mark_read_walk < cnt)
1601 		env->longest_mark_read_walk = cnt;
1602 	return 0;
1603 }
1604 
1605 /* This function is supposed to be used by the following 32-bit optimization
1606  * code only. It returns TRUE if the source or destination register operates
1607  * on 64-bit, otherwise return FALSE.
1608  */
1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 		     u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611 {
1612 	u8 code, class, op;
1613 
1614 	code = insn->code;
1615 	class = BPF_CLASS(code);
1616 	op = BPF_OP(code);
1617 	if (class == BPF_JMP) {
1618 		/* BPF_EXIT for "main" will reach here. Return TRUE
1619 		 * conservatively.
1620 		 */
1621 		if (op == BPF_EXIT)
1622 			return true;
1623 		if (op == BPF_CALL) {
1624 			/* BPF to BPF call will reach here because of marking
1625 			 * caller saved clobber with DST_OP_NO_MARK for which we
1626 			 * don't care the register def because they are anyway
1627 			 * marked as NOT_INIT already.
1628 			 */
1629 			if (insn->src_reg == BPF_PSEUDO_CALL)
1630 				return false;
1631 			/* Helper call will reach here because of arg type
1632 			 * check, conservatively return TRUE.
1633 			 */
1634 			if (t == SRC_OP)
1635 				return true;
1636 
1637 			return false;
1638 		}
1639 	}
1640 
1641 	if (class == BPF_ALU64 || class == BPF_JMP ||
1642 	    /* BPF_END always use BPF_ALU class. */
1643 	    (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 		return true;
1645 
1646 	if (class == BPF_ALU || class == BPF_JMP32)
1647 		return false;
1648 
1649 	if (class == BPF_LDX) {
1650 		if (t != SRC_OP)
1651 			return BPF_SIZE(code) == BPF_DW;
1652 		/* LDX source must be ptr. */
1653 		return true;
1654 	}
1655 
1656 	if (class == BPF_STX) {
1657 		if (reg->type != SCALAR_VALUE)
1658 			return true;
1659 		return BPF_SIZE(code) == BPF_DW;
1660 	}
1661 
1662 	if (class == BPF_LD) {
1663 		u8 mode = BPF_MODE(code);
1664 
1665 		/* LD_IMM64 */
1666 		if (mode == BPF_IMM)
1667 			return true;
1668 
1669 		/* Both LD_IND and LD_ABS return 32-bit data. */
1670 		if (t != SRC_OP)
1671 			return  false;
1672 
1673 		/* Implicit ctx ptr. */
1674 		if (regno == BPF_REG_6)
1675 			return true;
1676 
1677 		/* Explicit source could be any width. */
1678 		return true;
1679 	}
1680 
1681 	if (class == BPF_ST)
1682 		/* The only source register for BPF_ST is a ptr. */
1683 		return true;
1684 
1685 	/* Conservatively return true at default. */
1686 	return true;
1687 }
1688 
1689 /* Return TRUE if INSN doesn't have explicit value define. */
1690 static bool insn_no_def(struct bpf_insn *insn)
1691 {
1692 	u8 class = BPF_CLASS(insn->code);
1693 
1694 	return (class == BPF_JMP || class == BPF_JMP32 ||
1695 		class == BPF_STX || class == BPF_ST);
1696 }
1697 
1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700 {
1701 	if (insn_no_def(insn))
1702 		return false;
1703 
1704 	return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705 }
1706 
1707 static void mark_insn_zext(struct bpf_verifier_env *env,
1708 			   struct bpf_reg_state *reg)
1709 {
1710 	s32 def_idx = reg->subreg_def;
1711 
1712 	if (def_idx == DEF_NOT_SUBREG)
1713 		return;
1714 
1715 	env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 	/* The dst will be zero extended, so won't be sub-register anymore. */
1717 	reg->subreg_def = DEF_NOT_SUBREG;
1718 }
1719 
1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1721 			 enum reg_arg_type t)
1722 {
1723 	struct bpf_verifier_state *vstate = env->cur_state;
1724 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1725 	struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1726 	struct bpf_reg_state *reg, *regs = state->regs;
1727 	bool rw64;
1728 
1729 	if (regno >= MAX_BPF_REG) {
1730 		verbose(env, "R%d is invalid\n", regno);
1731 		return -EINVAL;
1732 	}
1733 
1734 	reg = &regs[regno];
1735 	rw64 = is_reg64(env, insn, regno, reg, t);
1736 	if (t == SRC_OP) {
1737 		/* check whether register used as source operand can be read */
1738 		if (reg->type == NOT_INIT) {
1739 			verbose(env, "R%d !read_ok\n", regno);
1740 			return -EACCES;
1741 		}
1742 		/* We don't need to worry about FP liveness because it's read-only */
1743 		if (regno == BPF_REG_FP)
1744 			return 0;
1745 
1746 		if (rw64)
1747 			mark_insn_zext(env, reg);
1748 
1749 		return mark_reg_read(env, reg, reg->parent,
1750 				     rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1751 	} else {
1752 		/* check whether register used as dest operand can be written to */
1753 		if (regno == BPF_REG_FP) {
1754 			verbose(env, "frame pointer is read only\n");
1755 			return -EACCES;
1756 		}
1757 		reg->live |= REG_LIVE_WRITTEN;
1758 		reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1759 		if (t == DST_OP)
1760 			mark_reg_unknown(env, regs, regno);
1761 	}
1762 	return 0;
1763 }
1764 
1765 /* for any branch, call, exit record the history of jmps in the given state */
1766 static int push_jmp_history(struct bpf_verifier_env *env,
1767 			    struct bpf_verifier_state *cur)
1768 {
1769 	u32 cnt = cur->jmp_history_cnt;
1770 	struct bpf_idx_pair *p;
1771 
1772 	cnt++;
1773 	p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 	if (!p)
1775 		return -ENOMEM;
1776 	p[cnt - 1].idx = env->insn_idx;
1777 	p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 	cur->jmp_history = p;
1779 	cur->jmp_history_cnt = cnt;
1780 	return 0;
1781 }
1782 
1783 /* Backtrack one insn at a time. If idx is not at the top of recorded
1784  * history then previous instruction came from straight line execution.
1785  */
1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 			     u32 *history)
1788 {
1789 	u32 cnt = *history;
1790 
1791 	if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 		i = st->jmp_history[cnt - 1].prev_idx;
1793 		(*history)--;
1794 	} else {
1795 		i--;
1796 	}
1797 	return i;
1798 }
1799 
1800 /* For given verifier state backtrack_insn() is called from the last insn to
1801  * the first insn. Its purpose is to compute a bitmask of registers and
1802  * stack slots that needs precision in the parent verifier state.
1803  */
1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 			  u32 *reg_mask, u64 *stack_mask)
1806 {
1807 	const struct bpf_insn_cbs cbs = {
1808 		.cb_print	= verbose,
1809 		.private_data	= env,
1810 	};
1811 	struct bpf_insn *insn = env->prog->insnsi + idx;
1812 	u8 class = BPF_CLASS(insn->code);
1813 	u8 opcode = BPF_OP(insn->code);
1814 	u8 mode = BPF_MODE(insn->code);
1815 	u32 dreg = 1u << insn->dst_reg;
1816 	u32 sreg = 1u << insn->src_reg;
1817 	u32 spi;
1818 
1819 	if (insn->code == 0)
1820 		return 0;
1821 	if (env->log.level & BPF_LOG_LEVEL) {
1822 		verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 		verbose(env, "%d: ", idx);
1824 		print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 	}
1826 
1827 	if (class == BPF_ALU || class == BPF_ALU64) {
1828 		if (!(*reg_mask & dreg))
1829 			return 0;
1830 		if (opcode == BPF_MOV) {
1831 			if (BPF_SRC(insn->code) == BPF_X) {
1832 				/* dreg = sreg
1833 				 * dreg needs precision after this insn
1834 				 * sreg needs precision before this insn
1835 				 */
1836 				*reg_mask &= ~dreg;
1837 				*reg_mask |= sreg;
1838 			} else {
1839 				/* dreg = K
1840 				 * dreg needs precision after this insn.
1841 				 * Corresponding register is already marked
1842 				 * as precise=true in this verifier state.
1843 				 * No further markings in parent are necessary
1844 				 */
1845 				*reg_mask &= ~dreg;
1846 			}
1847 		} else {
1848 			if (BPF_SRC(insn->code) == BPF_X) {
1849 				/* dreg += sreg
1850 				 * both dreg and sreg need precision
1851 				 * before this insn
1852 				 */
1853 				*reg_mask |= sreg;
1854 			} /* else dreg += K
1855 			   * dreg still needs precision before this insn
1856 			   */
1857 		}
1858 	} else if (class == BPF_LDX) {
1859 		if (!(*reg_mask & dreg))
1860 			return 0;
1861 		*reg_mask &= ~dreg;
1862 
1863 		/* scalars can only be spilled into stack w/o losing precision.
1864 		 * Load from any other memory can be zero extended.
1865 		 * The desire to keep that precision is already indicated
1866 		 * by 'precise' mark in corresponding register of this state.
1867 		 * No further tracking necessary.
1868 		 */
1869 		if (insn->src_reg != BPF_REG_FP)
1870 			return 0;
1871 		if (BPF_SIZE(insn->code) != BPF_DW)
1872 			return 0;
1873 
1874 		/* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 		 * that [fp - off] slot contains scalar that needs to be
1876 		 * tracked with precision
1877 		 */
1878 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 		if (spi >= 64) {
1880 			verbose(env, "BUG spi %d\n", spi);
1881 			WARN_ONCE(1, "verifier backtracking bug");
1882 			return -EFAULT;
1883 		}
1884 		*stack_mask |= 1ull << spi;
1885 	} else if (class == BPF_STX || class == BPF_ST) {
1886 		if (*reg_mask & dreg)
1887 			/* stx & st shouldn't be using _scalar_ dst_reg
1888 			 * to access memory. It means backtracking
1889 			 * encountered a case of pointer subtraction.
1890 			 */
1891 			return -ENOTSUPP;
1892 		/* scalars can only be spilled into stack */
1893 		if (insn->dst_reg != BPF_REG_FP)
1894 			return 0;
1895 		if (BPF_SIZE(insn->code) != BPF_DW)
1896 			return 0;
1897 		spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 		if (spi >= 64) {
1899 			verbose(env, "BUG spi %d\n", spi);
1900 			WARN_ONCE(1, "verifier backtracking bug");
1901 			return -EFAULT;
1902 		}
1903 		if (!(*stack_mask & (1ull << spi)))
1904 			return 0;
1905 		*stack_mask &= ~(1ull << spi);
1906 		if (class == BPF_STX)
1907 			*reg_mask |= sreg;
1908 	} else if (class == BPF_JMP || class == BPF_JMP32) {
1909 		if (opcode == BPF_CALL) {
1910 			if (insn->src_reg == BPF_PSEUDO_CALL)
1911 				return -ENOTSUPP;
1912 			/* regular helper call sets R0 */
1913 			*reg_mask &= ~1;
1914 			if (*reg_mask & 0x3f) {
1915 				/* if backtracing was looking for registers R1-R5
1916 				 * they should have been found already.
1917 				 */
1918 				verbose(env, "BUG regs %x\n", *reg_mask);
1919 				WARN_ONCE(1, "verifier backtracking bug");
1920 				return -EFAULT;
1921 			}
1922 		} else if (opcode == BPF_EXIT) {
1923 			return -ENOTSUPP;
1924 		}
1925 	} else if (class == BPF_LD) {
1926 		if (!(*reg_mask & dreg))
1927 			return 0;
1928 		*reg_mask &= ~dreg;
1929 		/* It's ld_imm64 or ld_abs or ld_ind.
1930 		 * For ld_imm64 no further tracking of precision
1931 		 * into parent is necessary
1932 		 */
1933 		if (mode == BPF_IND || mode == BPF_ABS)
1934 			/* to be analyzed */
1935 			return -ENOTSUPP;
1936 	}
1937 	return 0;
1938 }
1939 
1940 /* the scalar precision tracking algorithm:
1941  * . at the start all registers have precise=false.
1942  * . scalar ranges are tracked as normal through alu and jmp insns.
1943  * . once precise value of the scalar register is used in:
1944  *   .  ptr + scalar alu
1945  *   . if (scalar cond K|scalar)
1946  *   .  helper_call(.., scalar, ...) where ARG_CONST is expected
1947  *   backtrack through the verifier states and mark all registers and
1948  *   stack slots with spilled constants that these scalar regisers
1949  *   should be precise.
1950  * . during state pruning two registers (or spilled stack slots)
1951  *   are equivalent if both are not precise.
1952  *
1953  * Note the verifier cannot simply walk register parentage chain,
1954  * since many different registers and stack slots could have been
1955  * used to compute single precise scalar.
1956  *
1957  * The approach of starting with precise=true for all registers and then
1958  * backtrack to mark a register as not precise when the verifier detects
1959  * that program doesn't care about specific value (e.g., when helper
1960  * takes register as ARG_ANYTHING parameter) is not safe.
1961  *
1962  * It's ok to walk single parentage chain of the verifier states.
1963  * It's possible that this backtracking will go all the way till 1st insn.
1964  * All other branches will be explored for needing precision later.
1965  *
1966  * The backtracking needs to deal with cases like:
1967  *   R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968  * r9 -= r8
1969  * r5 = r9
1970  * if r5 > 0x79f goto pc+7
1971  *    R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972  * r5 += 1
1973  * ...
1974  * call bpf_perf_event_output#25
1975  *   where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976  *
1977  * and this case:
1978  * r6 = 1
1979  * call foo // uses callee's r6 inside to compute r0
1980  * r0 += r6
1981  * if r0 == 0 goto
1982  *
1983  * to track above reg_mask/stack_mask needs to be independent for each frame.
1984  *
1985  * Also if parent's curframe > frame where backtracking started,
1986  * the verifier need to mark registers in both frames, otherwise callees
1987  * may incorrectly prune callers. This is similar to
1988  * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989  *
1990  * For now backtracking falls back into conservative marking.
1991  */
1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 				     struct bpf_verifier_state *st)
1994 {
1995 	struct bpf_func_state *func;
1996 	struct bpf_reg_state *reg;
1997 	int i, j;
1998 
1999 	/* big hammer: mark all scalars precise in this path.
2000 	 * pop_stack may still get !precise scalars.
2001 	 */
2002 	for (; st; st = st->parent)
2003 		for (i = 0; i <= st->curframe; i++) {
2004 			func = st->frame[i];
2005 			for (j = 0; j < BPF_REG_FP; j++) {
2006 				reg = &func->regs[j];
2007 				if (reg->type != SCALAR_VALUE)
2008 					continue;
2009 				reg->precise = true;
2010 			}
2011 			for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 				if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 					continue;
2014 				reg = &func->stack[j].spilled_ptr;
2015 				if (reg->type != SCALAR_VALUE)
2016 					continue;
2017 				reg->precise = true;
2018 			}
2019 		}
2020 }
2021 
2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 				  int spi)
2024 {
2025 	struct bpf_verifier_state *st = env->cur_state;
2026 	int first_idx = st->first_insn_idx;
2027 	int last_idx = env->insn_idx;
2028 	struct bpf_func_state *func;
2029 	struct bpf_reg_state *reg;
2030 	u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 	u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2032 	bool skip_first = true;
2033 	bool new_marks = false;
2034 	int i, err;
2035 
2036 	if (!env->bpf_capable)
2037 		return 0;
2038 
2039 	func = st->frame[st->curframe];
2040 	if (regno >= 0) {
2041 		reg = &func->regs[regno];
2042 		if (reg->type != SCALAR_VALUE) {
2043 			WARN_ONCE(1, "backtracing misuse");
2044 			return -EFAULT;
2045 		}
2046 		if (!reg->precise)
2047 			new_marks = true;
2048 		else
2049 			reg_mask = 0;
2050 		reg->precise = true;
2051 	}
2052 
2053 	while (spi >= 0) {
2054 		if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 			stack_mask = 0;
2056 			break;
2057 		}
2058 		reg = &func->stack[spi].spilled_ptr;
2059 		if (reg->type != SCALAR_VALUE) {
2060 			stack_mask = 0;
2061 			break;
2062 		}
2063 		if (!reg->precise)
2064 			new_marks = true;
2065 		else
2066 			stack_mask = 0;
2067 		reg->precise = true;
2068 		break;
2069 	}
2070 
2071 	if (!new_marks)
2072 		return 0;
2073 	if (!reg_mask && !stack_mask)
2074 		return 0;
2075 	for (;;) {
2076 		DECLARE_BITMAP(mask, 64);
2077 		u32 history = st->jmp_history_cnt;
2078 
2079 		if (env->log.level & BPF_LOG_LEVEL)
2080 			verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 		for (i = last_idx;;) {
2082 			if (skip_first) {
2083 				err = 0;
2084 				skip_first = false;
2085 			} else {
2086 				err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 			}
2088 			if (err == -ENOTSUPP) {
2089 				mark_all_scalars_precise(env, st);
2090 				return 0;
2091 			} else if (err) {
2092 				return err;
2093 			}
2094 			if (!reg_mask && !stack_mask)
2095 				/* Found assignment(s) into tracked register in this state.
2096 				 * Since this state is already marked, just return.
2097 				 * Nothing to be tracked further in the parent state.
2098 				 */
2099 				return 0;
2100 			if (i == first_idx)
2101 				break;
2102 			i = get_prev_insn_idx(st, i, &history);
2103 			if (i >= env->prog->len) {
2104 				/* This can happen if backtracking reached insn 0
2105 				 * and there are still reg_mask or stack_mask
2106 				 * to backtrack.
2107 				 * It means the backtracking missed the spot where
2108 				 * particular register was initialized with a constant.
2109 				 */
2110 				verbose(env, "BUG backtracking idx %d\n", i);
2111 				WARN_ONCE(1, "verifier backtracking bug");
2112 				return -EFAULT;
2113 			}
2114 		}
2115 		st = st->parent;
2116 		if (!st)
2117 			break;
2118 
2119 		new_marks = false;
2120 		func = st->frame[st->curframe];
2121 		bitmap_from_u64(mask, reg_mask);
2122 		for_each_set_bit(i, mask, 32) {
2123 			reg = &func->regs[i];
2124 			if (reg->type != SCALAR_VALUE) {
2125 				reg_mask &= ~(1u << i);
2126 				continue;
2127 			}
2128 			if (!reg->precise)
2129 				new_marks = true;
2130 			reg->precise = true;
2131 		}
2132 
2133 		bitmap_from_u64(mask, stack_mask);
2134 		for_each_set_bit(i, mask, 64) {
2135 			if (i >= func->allocated_stack / BPF_REG_SIZE) {
2136 				/* the sequence of instructions:
2137 				 * 2: (bf) r3 = r10
2138 				 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 				 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 				 * doesn't contain jmps. It's backtracked
2141 				 * as a single block.
2142 				 * During backtracking insn 3 is not recognized as
2143 				 * stack access, so at the end of backtracking
2144 				 * stack slot fp-8 is still marked in stack_mask.
2145 				 * However the parent state may not have accessed
2146 				 * fp-8 and it's "unallocated" stack space.
2147 				 * In such case fallback to conservative.
2148 				 */
2149 				mark_all_scalars_precise(env, st);
2150 				return 0;
2151 			}
2152 
2153 			if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 				stack_mask &= ~(1ull << i);
2155 				continue;
2156 			}
2157 			reg = &func->stack[i].spilled_ptr;
2158 			if (reg->type != SCALAR_VALUE) {
2159 				stack_mask &= ~(1ull << i);
2160 				continue;
2161 			}
2162 			if (!reg->precise)
2163 				new_marks = true;
2164 			reg->precise = true;
2165 		}
2166 		if (env->log.level & BPF_LOG_LEVEL) {
2167 			print_verifier_state(env, func);
2168 			verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 				new_marks ? "didn't have" : "already had",
2170 				reg_mask, stack_mask);
2171 		}
2172 
2173 		if (!reg_mask && !stack_mask)
2174 			break;
2175 		if (!new_marks)
2176 			break;
2177 
2178 		last_idx = st->last_insn_idx;
2179 		first_idx = st->first_insn_idx;
2180 	}
2181 	return 0;
2182 }
2183 
2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185 {
2186 	return __mark_chain_precision(env, regno, -1);
2187 }
2188 
2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190 {
2191 	return __mark_chain_precision(env, -1, spi);
2192 }
2193 
2194 static bool is_spillable_regtype(enum bpf_reg_type type)
2195 {
2196 	switch (type) {
2197 	case PTR_TO_MAP_VALUE:
2198 	case PTR_TO_MAP_VALUE_OR_NULL:
2199 	case PTR_TO_STACK:
2200 	case PTR_TO_CTX:
2201 	case PTR_TO_PACKET:
2202 	case PTR_TO_PACKET_META:
2203 	case PTR_TO_PACKET_END:
2204 	case PTR_TO_FLOW_KEYS:
2205 	case CONST_PTR_TO_MAP:
2206 	case PTR_TO_SOCKET:
2207 	case PTR_TO_SOCKET_OR_NULL:
2208 	case PTR_TO_SOCK_COMMON:
2209 	case PTR_TO_SOCK_COMMON_OR_NULL:
2210 	case PTR_TO_TCP_SOCK:
2211 	case PTR_TO_TCP_SOCK_OR_NULL:
2212 	case PTR_TO_XDP_SOCK:
2213 	case PTR_TO_BTF_ID:
2214 	case PTR_TO_BTF_ID_OR_NULL:
2215 	case PTR_TO_RDONLY_BUF:
2216 	case PTR_TO_RDONLY_BUF_OR_NULL:
2217 	case PTR_TO_RDWR_BUF:
2218 	case PTR_TO_RDWR_BUF_OR_NULL:
2219 	case PTR_TO_PERCPU_BTF_ID:
2220 		return true;
2221 	default:
2222 		return false;
2223 	}
2224 }
2225 
2226 /* Does this register contain a constant zero? */
2227 static bool register_is_null(struct bpf_reg_state *reg)
2228 {
2229 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2230 }
2231 
2232 static bool register_is_const(struct bpf_reg_state *reg)
2233 {
2234 	return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2235 }
2236 
2237 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2238 {
2239 	return tnum_is_unknown(reg->var_off) &&
2240 	       reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2241 	       reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2242 	       reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2243 	       reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2244 }
2245 
2246 static bool register_is_bounded(struct bpf_reg_state *reg)
2247 {
2248 	return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2249 }
2250 
2251 static bool __is_pointer_value(bool allow_ptr_leaks,
2252 			       const struct bpf_reg_state *reg)
2253 {
2254 	if (allow_ptr_leaks)
2255 		return false;
2256 
2257 	return reg->type != SCALAR_VALUE;
2258 }
2259 
2260 static void save_register_state(struct bpf_func_state *state,
2261 				int spi, struct bpf_reg_state *reg)
2262 {
2263 	int i;
2264 
2265 	state->stack[spi].spilled_ptr = *reg;
2266 	state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2267 
2268 	for (i = 0; i < BPF_REG_SIZE; i++)
2269 		state->stack[spi].slot_type[i] = STACK_SPILL;
2270 }
2271 
2272 /* check_stack_read/write functions track spill/fill of registers,
2273  * stack boundary and alignment are checked in check_mem_access()
2274  */
2275 static int check_stack_write(struct bpf_verifier_env *env,
2276 			     struct bpf_func_state *state, /* func where register points to */
2277 			     int off, int size, int value_regno, int insn_idx)
2278 {
2279 	struct bpf_func_state *cur; /* state of the current function */
2280 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2281 	u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2282 	struct bpf_reg_state *reg = NULL;
2283 
2284 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2285 				 state->acquired_refs, true);
2286 	if (err)
2287 		return err;
2288 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2289 	 * so it's aligned access and [off, off + size) are within stack limits
2290 	 */
2291 	if (!env->allow_ptr_leaks &&
2292 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
2293 	    size != BPF_REG_SIZE) {
2294 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
2295 		return -EACCES;
2296 	}
2297 
2298 	cur = env->cur_state->frame[env->cur_state->curframe];
2299 	if (value_regno >= 0)
2300 		reg = &cur->regs[value_regno];
2301 
2302 	if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2303 	    !register_is_null(reg) && env->bpf_capable) {
2304 		if (dst_reg != BPF_REG_FP) {
2305 			/* The backtracking logic can only recognize explicit
2306 			 * stack slot address like [fp - 8]. Other spill of
2307 			 * scalar via different register has to be conervative.
2308 			 * Backtrack from here and mark all registers as precise
2309 			 * that contributed into 'reg' being a constant.
2310 			 */
2311 			err = mark_chain_precision(env, value_regno);
2312 			if (err)
2313 				return err;
2314 		}
2315 		save_register_state(state, spi, reg);
2316 	} else if (reg && is_spillable_regtype(reg->type)) {
2317 		/* register containing pointer is being spilled into stack */
2318 		if (size != BPF_REG_SIZE) {
2319 			verbose_linfo(env, insn_idx, "; ");
2320 			verbose(env, "invalid size of register spill\n");
2321 			return -EACCES;
2322 		}
2323 
2324 		if (state != cur && reg->type == PTR_TO_STACK) {
2325 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2326 			return -EINVAL;
2327 		}
2328 
2329 		if (!env->bypass_spec_v4) {
2330 			bool sanitize = false;
2331 
2332 			if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2333 			    register_is_const(&state->stack[spi].spilled_ptr))
2334 				sanitize = true;
2335 			for (i = 0; i < BPF_REG_SIZE; i++)
2336 				if (state->stack[spi].slot_type[i] == STACK_MISC) {
2337 					sanitize = true;
2338 					break;
2339 				}
2340 			if (sanitize) {
2341 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2342 				int soff = (-spi - 1) * BPF_REG_SIZE;
2343 
2344 				/* detected reuse of integer stack slot with a pointer
2345 				 * which means either llvm is reusing stack slot or
2346 				 * an attacker is trying to exploit CVE-2018-3639
2347 				 * (speculative store bypass)
2348 				 * Have to sanitize that slot with preemptive
2349 				 * store of zero.
2350 				 */
2351 				if (*poff && *poff != soff) {
2352 					/* disallow programs where single insn stores
2353 					 * into two different stack slots, since verifier
2354 					 * cannot sanitize them
2355 					 */
2356 					verbose(env,
2357 						"insn %d cannot access two stack slots fp%d and fp%d",
2358 						insn_idx, *poff, soff);
2359 					return -EINVAL;
2360 				}
2361 				*poff = soff;
2362 			}
2363 		}
2364 		save_register_state(state, spi, reg);
2365 	} else {
2366 		u8 type = STACK_MISC;
2367 
2368 		/* regular write of data into stack destroys any spilled ptr */
2369 		state->stack[spi].spilled_ptr.type = NOT_INIT;
2370 		/* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2371 		if (state->stack[spi].slot_type[0] == STACK_SPILL)
2372 			for (i = 0; i < BPF_REG_SIZE; i++)
2373 				state->stack[spi].slot_type[i] = STACK_MISC;
2374 
2375 		/* only mark the slot as written if all 8 bytes were written
2376 		 * otherwise read propagation may incorrectly stop too soon
2377 		 * when stack slots are partially written.
2378 		 * This heuristic means that read propagation will be
2379 		 * conservative, since it will add reg_live_read marks
2380 		 * to stack slots all the way to first state when programs
2381 		 * writes+reads less than 8 bytes
2382 		 */
2383 		if (size == BPF_REG_SIZE)
2384 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2385 
2386 		/* when we zero initialize stack slots mark them as such */
2387 		if (reg && register_is_null(reg)) {
2388 			/* backtracking doesn't work for STACK_ZERO yet. */
2389 			err = mark_chain_precision(env, value_regno);
2390 			if (err)
2391 				return err;
2392 			type = STACK_ZERO;
2393 		}
2394 
2395 		/* Mark slots affected by this stack write. */
2396 		for (i = 0; i < size; i++)
2397 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2398 				type;
2399 	}
2400 	return 0;
2401 }
2402 
2403 static int check_stack_read(struct bpf_verifier_env *env,
2404 			    struct bpf_func_state *reg_state /* func where register points to */,
2405 			    int off, int size, int value_regno)
2406 {
2407 	struct bpf_verifier_state *vstate = env->cur_state;
2408 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2409 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2410 	struct bpf_reg_state *reg;
2411 	u8 *stype;
2412 
2413 	if (reg_state->allocated_stack <= slot) {
2414 		verbose(env, "invalid read from stack off %d+0 size %d\n",
2415 			off, size);
2416 		return -EACCES;
2417 	}
2418 	stype = reg_state->stack[spi].slot_type;
2419 	reg = &reg_state->stack[spi].spilled_ptr;
2420 
2421 	if (stype[0] == STACK_SPILL) {
2422 		if (size != BPF_REG_SIZE) {
2423 			if (reg->type != SCALAR_VALUE) {
2424 				verbose_linfo(env, env->insn_idx, "; ");
2425 				verbose(env, "invalid size of register fill\n");
2426 				return -EACCES;
2427 			}
2428 			if (value_regno >= 0) {
2429 				mark_reg_unknown(env, state->regs, value_regno);
2430 				state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2431 			}
2432 			mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2433 			return 0;
2434 		}
2435 		for (i = 1; i < BPF_REG_SIZE; i++) {
2436 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2437 				verbose(env, "corrupted spill memory\n");
2438 				return -EACCES;
2439 			}
2440 		}
2441 
2442 		if (value_regno >= 0) {
2443 			/* restore register state from stack */
2444 			state->regs[value_regno] = *reg;
2445 			/* mark reg as written since spilled pointer state likely
2446 			 * has its liveness marks cleared by is_state_visited()
2447 			 * which resets stack/reg liveness for state transitions
2448 			 */
2449 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2450 		} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2451 			/* If value_regno==-1, the caller is asking us whether
2452 			 * it is acceptable to use this value as a SCALAR_VALUE
2453 			 * (e.g. for XADD).
2454 			 * We must not allow unprivileged callers to do that
2455 			 * with spilled pointers.
2456 			 */
2457 			verbose(env, "leaking pointer from stack off %d\n",
2458 				off);
2459 			return -EACCES;
2460 		}
2461 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2462 	} else {
2463 		int zeros = 0;
2464 
2465 		for (i = 0; i < size; i++) {
2466 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2467 				continue;
2468 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2469 				zeros++;
2470 				continue;
2471 			}
2472 			verbose(env, "invalid read from stack off %d+%d size %d\n",
2473 				off, i, size);
2474 			return -EACCES;
2475 		}
2476 		mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2477 		if (value_regno >= 0) {
2478 			if (zeros == size) {
2479 				/* any size read into register is zero extended,
2480 				 * so the whole register == const_zero
2481 				 */
2482 				__mark_reg_const_zero(&state->regs[value_regno]);
2483 				/* backtracking doesn't support STACK_ZERO yet,
2484 				 * so mark it precise here, so that later
2485 				 * backtracking can stop here.
2486 				 * Backtracking may not need this if this register
2487 				 * doesn't participate in pointer adjustment.
2488 				 * Forward propagation of precise flag is not
2489 				 * necessary either. This mark is only to stop
2490 				 * backtracking. Any register that contributed
2491 				 * to const 0 was marked precise before spill.
2492 				 */
2493 				state->regs[value_regno].precise = true;
2494 			} else {
2495 				/* have read misc data from the stack */
2496 				mark_reg_unknown(env, state->regs, value_regno);
2497 			}
2498 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2499 		}
2500 	}
2501 	return 0;
2502 }
2503 
2504 static int check_stack_access(struct bpf_verifier_env *env,
2505 			      const struct bpf_reg_state *reg,
2506 			      int off, int size)
2507 {
2508 	/* Stack accesses must be at a fixed offset, so that we
2509 	 * can determine what type of data were returned. See
2510 	 * check_stack_read().
2511 	 */
2512 	if (!tnum_is_const(reg->var_off)) {
2513 		char tn_buf[48];
2514 
2515 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2516 		verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2517 			tn_buf, off, size);
2518 		return -EACCES;
2519 	}
2520 
2521 	if (off >= 0 || off < -MAX_BPF_STACK) {
2522 		verbose(env, "invalid stack off=%d size=%d\n", off, size);
2523 		return -EACCES;
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2530 				 int off, int size, enum bpf_access_type type)
2531 {
2532 	struct bpf_reg_state *regs = cur_regs(env);
2533 	struct bpf_map *map = regs[regno].map_ptr;
2534 	u32 cap = bpf_map_flags_to_cap(map);
2535 
2536 	if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2537 		verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2538 			map->value_size, off, size);
2539 		return -EACCES;
2540 	}
2541 
2542 	if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2543 		verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2544 			map->value_size, off, size);
2545 		return -EACCES;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2552 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2553 			      int off, int size, u32 mem_size,
2554 			      bool zero_size_allowed)
2555 {
2556 	bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2557 	struct bpf_reg_state *reg;
2558 
2559 	if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2560 		return 0;
2561 
2562 	reg = &cur_regs(env)[regno];
2563 	switch (reg->type) {
2564 	case PTR_TO_MAP_VALUE:
2565 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2566 			mem_size, off, size);
2567 		break;
2568 	case PTR_TO_PACKET:
2569 	case PTR_TO_PACKET_META:
2570 	case PTR_TO_PACKET_END:
2571 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2572 			off, size, regno, reg->id, off, mem_size);
2573 		break;
2574 	case PTR_TO_MEM:
2575 	default:
2576 		verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2577 			mem_size, off, size);
2578 	}
2579 
2580 	return -EACCES;
2581 }
2582 
2583 /* check read/write into a memory region with possible variable offset */
2584 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2585 				   int off, int size, u32 mem_size,
2586 				   bool zero_size_allowed)
2587 {
2588 	struct bpf_verifier_state *vstate = env->cur_state;
2589 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2590 	struct bpf_reg_state *reg = &state->regs[regno];
2591 	int err;
2592 
2593 	/* We may have adjusted the register pointing to memory region, so we
2594 	 * need to try adding each of min_value and max_value to off
2595 	 * to make sure our theoretical access will be safe.
2596 	 */
2597 	if (env->log.level & BPF_LOG_LEVEL)
2598 		print_verifier_state(env, state);
2599 
2600 	/* The minimum value is only important with signed
2601 	 * comparisons where we can't assume the floor of a
2602 	 * value is 0.  If we are using signed variables for our
2603 	 * index'es we need to make sure that whatever we use
2604 	 * will have a set floor within our range.
2605 	 */
2606 	if (reg->smin_value < 0 &&
2607 	    (reg->smin_value == S64_MIN ||
2608 	     (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2609 	      reg->smin_value + off < 0)) {
2610 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2611 			regno);
2612 		return -EACCES;
2613 	}
2614 	err = __check_mem_access(env, regno, reg->smin_value + off, size,
2615 				 mem_size, zero_size_allowed);
2616 	if (err) {
2617 		verbose(env, "R%d min value is outside of the allowed memory range\n",
2618 			regno);
2619 		return err;
2620 	}
2621 
2622 	/* If we haven't set a max value then we need to bail since we can't be
2623 	 * sure we won't do bad things.
2624 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
2625 	 */
2626 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2627 		verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2628 			regno);
2629 		return -EACCES;
2630 	}
2631 	err = __check_mem_access(env, regno, reg->umax_value + off, size,
2632 				 mem_size, zero_size_allowed);
2633 	if (err) {
2634 		verbose(env, "R%d max value is outside of the allowed memory range\n",
2635 			regno);
2636 		return err;
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 /* check read/write into a map element with possible variable offset */
2643 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2644 			    int off, int size, bool zero_size_allowed)
2645 {
2646 	struct bpf_verifier_state *vstate = env->cur_state;
2647 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2648 	struct bpf_reg_state *reg = &state->regs[regno];
2649 	struct bpf_map *map = reg->map_ptr;
2650 	int err;
2651 
2652 	err = check_mem_region_access(env, regno, off, size, map->value_size,
2653 				      zero_size_allowed);
2654 	if (err)
2655 		return err;
2656 
2657 	if (map_value_has_spin_lock(map)) {
2658 		u32 lock = map->spin_lock_off;
2659 
2660 		/* if any part of struct bpf_spin_lock can be touched by
2661 		 * load/store reject this program.
2662 		 * To check that [x1, x2) overlaps with [y1, y2)
2663 		 * it is sufficient to check x1 < y2 && y1 < x2.
2664 		 */
2665 		if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2666 		     lock < reg->umax_value + off + size) {
2667 			verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2668 			return -EACCES;
2669 		}
2670 	}
2671 	return err;
2672 }
2673 
2674 #define MAX_PACKET_OFF 0xffff
2675 
2676 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2677 {
2678 	return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2679 }
2680 
2681 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2682 				       const struct bpf_call_arg_meta *meta,
2683 				       enum bpf_access_type t)
2684 {
2685 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2686 
2687 	switch (prog_type) {
2688 	/* Program types only with direct read access go here! */
2689 	case BPF_PROG_TYPE_LWT_IN:
2690 	case BPF_PROG_TYPE_LWT_OUT:
2691 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2692 	case BPF_PROG_TYPE_SK_REUSEPORT:
2693 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
2694 	case BPF_PROG_TYPE_CGROUP_SKB:
2695 		if (t == BPF_WRITE)
2696 			return false;
2697 		fallthrough;
2698 
2699 	/* Program types with direct read + write access go here! */
2700 	case BPF_PROG_TYPE_SCHED_CLS:
2701 	case BPF_PROG_TYPE_SCHED_ACT:
2702 	case BPF_PROG_TYPE_XDP:
2703 	case BPF_PROG_TYPE_LWT_XMIT:
2704 	case BPF_PROG_TYPE_SK_SKB:
2705 	case BPF_PROG_TYPE_SK_MSG:
2706 		if (meta)
2707 			return meta->pkt_access;
2708 
2709 		env->seen_direct_write = true;
2710 		return true;
2711 
2712 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2713 		if (t == BPF_WRITE)
2714 			env->seen_direct_write = true;
2715 
2716 		return true;
2717 
2718 	default:
2719 		return false;
2720 	}
2721 }
2722 
2723 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2724 			       int size, bool zero_size_allowed)
2725 {
2726 	struct bpf_reg_state *regs = cur_regs(env);
2727 	struct bpf_reg_state *reg = &regs[regno];
2728 	int err;
2729 
2730 	/* We may have added a variable offset to the packet pointer; but any
2731 	 * reg->range we have comes after that.  We are only checking the fixed
2732 	 * offset.
2733 	 */
2734 
2735 	/* We don't allow negative numbers, because we aren't tracking enough
2736 	 * detail to prove they're safe.
2737 	 */
2738 	if (reg->smin_value < 0) {
2739 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2740 			regno);
2741 		return -EACCES;
2742 	}
2743 
2744 	err = reg->range < 0 ? -EINVAL :
2745 	      __check_mem_access(env, regno, off, size, reg->range,
2746 				 zero_size_allowed);
2747 	if (err) {
2748 		verbose(env, "R%d offset is outside of the packet\n", regno);
2749 		return err;
2750 	}
2751 
2752 	/* __check_mem_access has made sure "off + size - 1" is within u16.
2753 	 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2754 	 * otherwise find_good_pkt_pointers would have refused to set range info
2755 	 * that __check_mem_access would have rejected this pkt access.
2756 	 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2757 	 */
2758 	env->prog->aux->max_pkt_offset =
2759 		max_t(u32, env->prog->aux->max_pkt_offset,
2760 		      off + reg->umax_value + size - 1);
2761 
2762 	return err;
2763 }
2764 
2765 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
2766 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2767 			    enum bpf_access_type t, enum bpf_reg_type *reg_type,
2768 			    struct btf **btf, u32 *btf_id)
2769 {
2770 	struct bpf_insn_access_aux info = {
2771 		.reg_type = *reg_type,
2772 		.log = &env->log,
2773 	};
2774 
2775 	if (env->ops->is_valid_access &&
2776 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2777 		/* A non zero info.ctx_field_size indicates that this field is a
2778 		 * candidate for later verifier transformation to load the whole
2779 		 * field and then apply a mask when accessed with a narrower
2780 		 * access than actual ctx access size. A zero info.ctx_field_size
2781 		 * will only allow for whole field access and rejects any other
2782 		 * type of narrower access.
2783 		 */
2784 		*reg_type = info.reg_type;
2785 
2786 		if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2787 			*btf = info.btf;
2788 			*btf_id = info.btf_id;
2789 		} else {
2790 			env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2791 		}
2792 		/* remember the offset of last byte accessed in ctx */
2793 		if (env->prog->aux->max_ctx_offset < off + size)
2794 			env->prog->aux->max_ctx_offset = off + size;
2795 		return 0;
2796 	}
2797 
2798 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2799 	return -EACCES;
2800 }
2801 
2802 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2803 				  int size)
2804 {
2805 	if (size < 0 || off < 0 ||
2806 	    (u64)off + size > sizeof(struct bpf_flow_keys)) {
2807 		verbose(env, "invalid access to flow keys off=%d size=%d\n",
2808 			off, size);
2809 		return -EACCES;
2810 	}
2811 	return 0;
2812 }
2813 
2814 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2815 			     u32 regno, int off, int size,
2816 			     enum bpf_access_type t)
2817 {
2818 	struct bpf_reg_state *regs = cur_regs(env);
2819 	struct bpf_reg_state *reg = &regs[regno];
2820 	struct bpf_insn_access_aux info = {};
2821 	bool valid;
2822 
2823 	if (reg->smin_value < 0) {
2824 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2825 			regno);
2826 		return -EACCES;
2827 	}
2828 
2829 	switch (reg->type) {
2830 	case PTR_TO_SOCK_COMMON:
2831 		valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2832 		break;
2833 	case PTR_TO_SOCKET:
2834 		valid = bpf_sock_is_valid_access(off, size, t, &info);
2835 		break;
2836 	case PTR_TO_TCP_SOCK:
2837 		valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2838 		break;
2839 	case PTR_TO_XDP_SOCK:
2840 		valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2841 		break;
2842 	default:
2843 		valid = false;
2844 	}
2845 
2846 
2847 	if (valid) {
2848 		env->insn_aux_data[insn_idx].ctx_field_size =
2849 			info.ctx_field_size;
2850 		return 0;
2851 	}
2852 
2853 	verbose(env, "R%d invalid %s access off=%d size=%d\n",
2854 		regno, reg_type_str[reg->type], off, size);
2855 
2856 	return -EACCES;
2857 }
2858 
2859 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2860 {
2861 	return cur_regs(env) + regno;
2862 }
2863 
2864 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2865 {
2866 	return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2867 }
2868 
2869 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2870 {
2871 	const struct bpf_reg_state *reg = reg_state(env, regno);
2872 
2873 	return reg->type == PTR_TO_CTX;
2874 }
2875 
2876 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2877 {
2878 	const struct bpf_reg_state *reg = reg_state(env, regno);
2879 
2880 	return type_is_sk_pointer(reg->type);
2881 }
2882 
2883 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2884 {
2885 	const struct bpf_reg_state *reg = reg_state(env, regno);
2886 
2887 	return type_is_pkt_pointer(reg->type);
2888 }
2889 
2890 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2891 {
2892 	const struct bpf_reg_state *reg = reg_state(env, regno);
2893 
2894 	/* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2895 	return reg->type == PTR_TO_FLOW_KEYS;
2896 }
2897 
2898 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2899 				   const struct bpf_reg_state *reg,
2900 				   int off, int size, bool strict)
2901 {
2902 	struct tnum reg_off;
2903 	int ip_align;
2904 
2905 	/* Byte size accesses are always allowed. */
2906 	if (!strict || size == 1)
2907 		return 0;
2908 
2909 	/* For platforms that do not have a Kconfig enabling
2910 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2911 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
2912 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2913 	 * to this code only in strict mode where we want to emulate
2914 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
2915 	 * unconditional IP align value of '2'.
2916 	 */
2917 	ip_align = 2;
2918 
2919 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2920 	if (!tnum_is_aligned(reg_off, size)) {
2921 		char tn_buf[48];
2922 
2923 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2924 		verbose(env,
2925 			"misaligned packet access off %d+%s+%d+%d size %d\n",
2926 			ip_align, tn_buf, reg->off, off, size);
2927 		return -EACCES;
2928 	}
2929 
2930 	return 0;
2931 }
2932 
2933 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2934 				       const struct bpf_reg_state *reg,
2935 				       const char *pointer_desc,
2936 				       int off, int size, bool strict)
2937 {
2938 	struct tnum reg_off;
2939 
2940 	/* Byte size accesses are always allowed. */
2941 	if (!strict || size == 1)
2942 		return 0;
2943 
2944 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2945 	if (!tnum_is_aligned(reg_off, size)) {
2946 		char tn_buf[48];
2947 
2948 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2949 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2950 			pointer_desc, tn_buf, reg->off, off, size);
2951 		return -EACCES;
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 static int check_ptr_alignment(struct bpf_verifier_env *env,
2958 			       const struct bpf_reg_state *reg, int off,
2959 			       int size, bool strict_alignment_once)
2960 {
2961 	bool strict = env->strict_alignment || strict_alignment_once;
2962 	const char *pointer_desc = "";
2963 
2964 	switch (reg->type) {
2965 	case PTR_TO_PACKET:
2966 	case PTR_TO_PACKET_META:
2967 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
2968 		 * right in front, treat it the very same way.
2969 		 */
2970 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
2971 	case PTR_TO_FLOW_KEYS:
2972 		pointer_desc = "flow keys ";
2973 		break;
2974 	case PTR_TO_MAP_VALUE:
2975 		pointer_desc = "value ";
2976 		break;
2977 	case PTR_TO_CTX:
2978 		pointer_desc = "context ";
2979 		break;
2980 	case PTR_TO_STACK:
2981 		pointer_desc = "stack ";
2982 		/* The stack spill tracking logic in check_stack_write()
2983 		 * and check_stack_read() relies on stack accesses being
2984 		 * aligned.
2985 		 */
2986 		strict = true;
2987 		break;
2988 	case PTR_TO_SOCKET:
2989 		pointer_desc = "sock ";
2990 		break;
2991 	case PTR_TO_SOCK_COMMON:
2992 		pointer_desc = "sock_common ";
2993 		break;
2994 	case PTR_TO_TCP_SOCK:
2995 		pointer_desc = "tcp_sock ";
2996 		break;
2997 	case PTR_TO_XDP_SOCK:
2998 		pointer_desc = "xdp_sock ";
2999 		break;
3000 	default:
3001 		break;
3002 	}
3003 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3004 					   strict);
3005 }
3006 
3007 static int update_stack_depth(struct bpf_verifier_env *env,
3008 			      const struct bpf_func_state *func,
3009 			      int off)
3010 {
3011 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
3012 
3013 	if (stack >= -off)
3014 		return 0;
3015 
3016 	/* update known max for given subprogram */
3017 	env->subprog_info[func->subprogno].stack_depth = -off;
3018 	return 0;
3019 }
3020 
3021 /* starting from main bpf function walk all instructions of the function
3022  * and recursively walk all callees that given function can call.
3023  * Ignore jump and exit insns.
3024  * Since recursion is prevented by check_cfg() this algorithm
3025  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3026  */
3027 static int check_max_stack_depth(struct bpf_verifier_env *env)
3028 {
3029 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3030 	struct bpf_subprog_info *subprog = env->subprog_info;
3031 	struct bpf_insn *insn = env->prog->insnsi;
3032 	bool tail_call_reachable = false;
3033 	int ret_insn[MAX_CALL_FRAMES];
3034 	int ret_prog[MAX_CALL_FRAMES];
3035 	int j;
3036 
3037 process_func:
3038 	/* protect against potential stack overflow that might happen when
3039 	 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3040 	 * depth for such case down to 256 so that the worst case scenario
3041 	 * would result in 8k stack size (32 which is tailcall limit * 256 =
3042 	 * 8k).
3043 	 *
3044 	 * To get the idea what might happen, see an example:
3045 	 * func1 -> sub rsp, 128
3046 	 *  subfunc1 -> sub rsp, 256
3047 	 *  tailcall1 -> add rsp, 256
3048 	 *   func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3049 	 *   subfunc2 -> sub rsp, 64
3050 	 *   subfunc22 -> sub rsp, 128
3051 	 *   tailcall2 -> add rsp, 128
3052 	 *    func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3053 	 *
3054 	 * tailcall will unwind the current stack frame but it will not get rid
3055 	 * of caller's stack as shown on the example above.
3056 	 */
3057 	if (idx && subprog[idx].has_tail_call && depth >= 256) {
3058 		verbose(env,
3059 			"tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3060 			depth);
3061 		return -EACCES;
3062 	}
3063 	/* round up to 32-bytes, since this is granularity
3064 	 * of interpreter stack size
3065 	 */
3066 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3067 	if (depth > MAX_BPF_STACK) {
3068 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
3069 			frame + 1, depth);
3070 		return -EACCES;
3071 	}
3072 continue_func:
3073 	subprog_end = subprog[idx + 1].start;
3074 	for (; i < subprog_end; i++) {
3075 		if (insn[i].code != (BPF_JMP | BPF_CALL))
3076 			continue;
3077 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
3078 			continue;
3079 		/* remember insn and function to return to */
3080 		ret_insn[frame] = i + 1;
3081 		ret_prog[frame] = idx;
3082 
3083 		/* find the callee */
3084 		i = i + insn[i].imm + 1;
3085 		idx = find_subprog(env, i);
3086 		if (idx < 0) {
3087 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3088 				  i);
3089 			return -EFAULT;
3090 		}
3091 
3092 		if (subprog[idx].has_tail_call)
3093 			tail_call_reachable = true;
3094 
3095 		frame++;
3096 		if (frame >= MAX_CALL_FRAMES) {
3097 			verbose(env, "the call stack of %d frames is too deep !\n",
3098 				frame);
3099 			return -E2BIG;
3100 		}
3101 		goto process_func;
3102 	}
3103 	/* if tail call got detected across bpf2bpf calls then mark each of the
3104 	 * currently present subprog frames as tail call reachable subprogs;
3105 	 * this info will be utilized by JIT so that we will be preserving the
3106 	 * tail call counter throughout bpf2bpf calls combined with tailcalls
3107 	 */
3108 	if (tail_call_reachable)
3109 		for (j = 0; j < frame; j++)
3110 			subprog[ret_prog[j]].tail_call_reachable = true;
3111 
3112 	/* end of for() loop means the last insn of the 'subprog'
3113 	 * was reached. Doesn't matter whether it was JA or EXIT
3114 	 */
3115 	if (frame == 0)
3116 		return 0;
3117 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3118 	frame--;
3119 	i = ret_insn[frame];
3120 	idx = ret_prog[frame];
3121 	goto continue_func;
3122 }
3123 
3124 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3125 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3126 				  const struct bpf_insn *insn, int idx)
3127 {
3128 	int start = idx + insn->imm + 1, subprog;
3129 
3130 	subprog = find_subprog(env, start);
3131 	if (subprog < 0) {
3132 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3133 			  start);
3134 		return -EFAULT;
3135 	}
3136 	return env->subprog_info[subprog].stack_depth;
3137 }
3138 #endif
3139 
3140 int check_ctx_reg(struct bpf_verifier_env *env,
3141 		  const struct bpf_reg_state *reg, int regno)
3142 {
3143 	/* Access to ctx or passing it to a helper is only allowed in
3144 	 * its original, unmodified form.
3145 	 */
3146 
3147 	if (reg->off) {
3148 		verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3149 			regno, reg->off);
3150 		return -EACCES;
3151 	}
3152 
3153 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3154 		char tn_buf[48];
3155 
3156 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3157 		verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3158 		return -EACCES;
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 static int __check_buffer_access(struct bpf_verifier_env *env,
3165 				 const char *buf_info,
3166 				 const struct bpf_reg_state *reg,
3167 				 int regno, int off, int size)
3168 {
3169 	if (off < 0) {
3170 		verbose(env,
3171 			"R%d invalid %s buffer access: off=%d, size=%d\n",
3172 			regno, buf_info, off, size);
3173 		return -EACCES;
3174 	}
3175 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3176 		char tn_buf[48];
3177 
3178 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 		verbose(env,
3180 			"R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3181 			regno, off, tn_buf);
3182 		return -EACCES;
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3189 				  const struct bpf_reg_state *reg,
3190 				  int regno, int off, int size)
3191 {
3192 	int err;
3193 
3194 	err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3195 	if (err)
3196 		return err;
3197 
3198 	if (off + size > env->prog->aux->max_tp_access)
3199 		env->prog->aux->max_tp_access = off + size;
3200 
3201 	return 0;
3202 }
3203 
3204 static int check_buffer_access(struct bpf_verifier_env *env,
3205 			       const struct bpf_reg_state *reg,
3206 			       int regno, int off, int size,
3207 			       bool zero_size_allowed,
3208 			       const char *buf_info,
3209 			       u32 *max_access)
3210 {
3211 	int err;
3212 
3213 	err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3214 	if (err)
3215 		return err;
3216 
3217 	if (off + size > *max_access)
3218 		*max_access = off + size;
3219 
3220 	return 0;
3221 }
3222 
3223 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3224 static void zext_32_to_64(struct bpf_reg_state *reg)
3225 {
3226 	reg->var_off = tnum_subreg(reg->var_off);
3227 	__reg_assign_32_into_64(reg);
3228 }
3229 
3230 /* truncate register to smaller size (in bytes)
3231  * must be called with size < BPF_REG_SIZE
3232  */
3233 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3234 {
3235 	u64 mask;
3236 
3237 	/* clear high bits in bit representation */
3238 	reg->var_off = tnum_cast(reg->var_off, size);
3239 
3240 	/* fix arithmetic bounds */
3241 	mask = ((u64)1 << (size * 8)) - 1;
3242 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3243 		reg->umin_value &= mask;
3244 		reg->umax_value &= mask;
3245 	} else {
3246 		reg->umin_value = 0;
3247 		reg->umax_value = mask;
3248 	}
3249 	reg->smin_value = reg->umin_value;
3250 	reg->smax_value = reg->umax_value;
3251 
3252 	/* If size is smaller than 32bit register the 32bit register
3253 	 * values are also truncated so we push 64-bit bounds into
3254 	 * 32-bit bounds. Above were truncated < 32-bits already.
3255 	 */
3256 	if (size >= 4)
3257 		return;
3258 	__reg_combine_64_into_32(reg);
3259 }
3260 
3261 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3262 {
3263 	return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3264 }
3265 
3266 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3267 {
3268 	void *ptr;
3269 	u64 addr;
3270 	int err;
3271 
3272 	err = map->ops->map_direct_value_addr(map, &addr, off);
3273 	if (err)
3274 		return err;
3275 	ptr = (void *)(long)addr + off;
3276 
3277 	switch (size) {
3278 	case sizeof(u8):
3279 		*val = (u64)*(u8 *)ptr;
3280 		break;
3281 	case sizeof(u16):
3282 		*val = (u64)*(u16 *)ptr;
3283 		break;
3284 	case sizeof(u32):
3285 		*val = (u64)*(u32 *)ptr;
3286 		break;
3287 	case sizeof(u64):
3288 		*val = *(u64 *)ptr;
3289 		break;
3290 	default:
3291 		return -EINVAL;
3292 	}
3293 	return 0;
3294 }
3295 
3296 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3297 				   struct bpf_reg_state *regs,
3298 				   int regno, int off, int size,
3299 				   enum bpf_access_type atype,
3300 				   int value_regno)
3301 {
3302 	struct bpf_reg_state *reg = regs + regno;
3303 	const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3304 	const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3305 	u32 btf_id;
3306 	int ret;
3307 
3308 	if (off < 0) {
3309 		verbose(env,
3310 			"R%d is ptr_%s invalid negative access: off=%d\n",
3311 			regno, tname, off);
3312 		return -EACCES;
3313 	}
3314 	if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3315 		char tn_buf[48];
3316 
3317 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3318 		verbose(env,
3319 			"R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3320 			regno, tname, off, tn_buf);
3321 		return -EACCES;
3322 	}
3323 
3324 	if (env->ops->btf_struct_access) {
3325 		ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3326 						  off, size, atype, &btf_id);
3327 	} else {
3328 		if (atype != BPF_READ) {
3329 			verbose(env, "only read is supported\n");
3330 			return -EACCES;
3331 		}
3332 
3333 		ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3334 					atype, &btf_id);
3335 	}
3336 
3337 	if (ret < 0)
3338 		return ret;
3339 
3340 	if (atype == BPF_READ && value_regno >= 0)
3341 		mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3342 
3343 	return 0;
3344 }
3345 
3346 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3347 				   struct bpf_reg_state *regs,
3348 				   int regno, int off, int size,
3349 				   enum bpf_access_type atype,
3350 				   int value_regno)
3351 {
3352 	struct bpf_reg_state *reg = regs + regno;
3353 	struct bpf_map *map = reg->map_ptr;
3354 	const struct btf_type *t;
3355 	const char *tname;
3356 	u32 btf_id;
3357 	int ret;
3358 
3359 	if (!btf_vmlinux) {
3360 		verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3361 		return -ENOTSUPP;
3362 	}
3363 
3364 	if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3365 		verbose(env, "map_ptr access not supported for map type %d\n",
3366 			map->map_type);
3367 		return -ENOTSUPP;
3368 	}
3369 
3370 	t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3371 	tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3372 
3373 	if (!env->allow_ptr_to_map_access) {
3374 		verbose(env,
3375 			"%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3376 			tname);
3377 		return -EPERM;
3378 	}
3379 
3380 	if (off < 0) {
3381 		verbose(env, "R%d is %s invalid negative access: off=%d\n",
3382 			regno, tname, off);
3383 		return -EACCES;
3384 	}
3385 
3386 	if (atype != BPF_READ) {
3387 		verbose(env, "only read from %s is supported\n", tname);
3388 		return -EACCES;
3389 	}
3390 
3391 	ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3392 	if (ret < 0)
3393 		return ret;
3394 
3395 	if (value_regno >= 0)
3396 		mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3397 
3398 	return 0;
3399 }
3400 
3401 
3402 /* check whether memory at (regno + off) is accessible for t = (read | write)
3403  * if t==write, value_regno is a register which value is stored into memory
3404  * if t==read, value_regno is a register which will receive the value from memory
3405  * if t==write && value_regno==-1, some unknown value is stored into memory
3406  * if t==read && value_regno==-1, don't care what we read from memory
3407  */
3408 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3409 			    int off, int bpf_size, enum bpf_access_type t,
3410 			    int value_regno, bool strict_alignment_once)
3411 {
3412 	struct bpf_reg_state *regs = cur_regs(env);
3413 	struct bpf_reg_state *reg = regs + regno;
3414 	struct bpf_func_state *state;
3415 	int size, err = 0;
3416 
3417 	size = bpf_size_to_bytes(bpf_size);
3418 	if (size < 0)
3419 		return size;
3420 
3421 	/* alignment checks will add in reg->off themselves */
3422 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3423 	if (err)
3424 		return err;
3425 
3426 	/* for access checks, reg->off is just part of off */
3427 	off += reg->off;
3428 
3429 	if (reg->type == PTR_TO_MAP_VALUE) {
3430 		if (t == BPF_WRITE && value_regno >= 0 &&
3431 		    is_pointer_value(env, value_regno)) {
3432 			verbose(env, "R%d leaks addr into map\n", value_regno);
3433 			return -EACCES;
3434 		}
3435 		err = check_map_access_type(env, regno, off, size, t);
3436 		if (err)
3437 			return err;
3438 		err = check_map_access(env, regno, off, size, false);
3439 		if (!err && t == BPF_READ && value_regno >= 0) {
3440 			struct bpf_map *map = reg->map_ptr;
3441 
3442 			/* if map is read-only, track its contents as scalars */
3443 			if (tnum_is_const(reg->var_off) &&
3444 			    bpf_map_is_rdonly(map) &&
3445 			    map->ops->map_direct_value_addr) {
3446 				int map_off = off + reg->var_off.value;
3447 				u64 val = 0;
3448 
3449 				err = bpf_map_direct_read(map, map_off, size,
3450 							  &val);
3451 				if (err)
3452 					return err;
3453 
3454 				regs[value_regno].type = SCALAR_VALUE;
3455 				__mark_reg_known(&regs[value_regno], val);
3456 			} else {
3457 				mark_reg_unknown(env, regs, value_regno);
3458 			}
3459 		}
3460 	} else if (reg->type == PTR_TO_MEM) {
3461 		if (t == BPF_WRITE && value_regno >= 0 &&
3462 		    is_pointer_value(env, value_regno)) {
3463 			verbose(env, "R%d leaks addr into mem\n", value_regno);
3464 			return -EACCES;
3465 		}
3466 		err = check_mem_region_access(env, regno, off, size,
3467 					      reg->mem_size, false);
3468 		if (!err && t == BPF_READ && value_regno >= 0)
3469 			mark_reg_unknown(env, regs, value_regno);
3470 	} else if (reg->type == PTR_TO_CTX) {
3471 		enum bpf_reg_type reg_type = SCALAR_VALUE;
3472 		struct btf *btf = NULL;
3473 		u32 btf_id = 0;
3474 
3475 		if (t == BPF_WRITE && value_regno >= 0 &&
3476 		    is_pointer_value(env, value_regno)) {
3477 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
3478 			return -EACCES;
3479 		}
3480 
3481 		err = check_ctx_reg(env, reg, regno);
3482 		if (err < 0)
3483 			return err;
3484 
3485 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3486 		if (err)
3487 			verbose_linfo(env, insn_idx, "; ");
3488 		if (!err && t == BPF_READ && value_regno >= 0) {
3489 			/* ctx access returns either a scalar, or a
3490 			 * PTR_TO_PACKET[_META,_END]. In the latter
3491 			 * case, we know the offset is zero.
3492 			 */
3493 			if (reg_type == SCALAR_VALUE) {
3494 				mark_reg_unknown(env, regs, value_regno);
3495 			} else {
3496 				mark_reg_known_zero(env, regs,
3497 						    value_regno);
3498 				if (reg_type_may_be_null(reg_type))
3499 					regs[value_regno].id = ++env->id_gen;
3500 				/* A load of ctx field could have different
3501 				 * actual load size with the one encoded in the
3502 				 * insn. When the dst is PTR, it is for sure not
3503 				 * a sub-register.
3504 				 */
3505 				regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3506 				if (reg_type == PTR_TO_BTF_ID ||
3507 				    reg_type == PTR_TO_BTF_ID_OR_NULL) {
3508 					regs[value_regno].btf = btf;
3509 					regs[value_regno].btf_id = btf_id;
3510 				}
3511 			}
3512 			regs[value_regno].type = reg_type;
3513 		}
3514 
3515 	} else if (reg->type == PTR_TO_STACK) {
3516 		off += reg->var_off.value;
3517 		err = check_stack_access(env, reg, off, size);
3518 		if (err)
3519 			return err;
3520 
3521 		state = func(env, reg);
3522 		err = update_stack_depth(env, state, off);
3523 		if (err)
3524 			return err;
3525 
3526 		if (t == BPF_WRITE)
3527 			err = check_stack_write(env, state, off, size,
3528 						value_regno, insn_idx);
3529 		else
3530 			err = check_stack_read(env, state, off, size,
3531 					       value_regno);
3532 	} else if (reg_is_pkt_pointer(reg)) {
3533 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3534 			verbose(env, "cannot write into packet\n");
3535 			return -EACCES;
3536 		}
3537 		if (t == BPF_WRITE && value_regno >= 0 &&
3538 		    is_pointer_value(env, value_regno)) {
3539 			verbose(env, "R%d leaks addr into packet\n",
3540 				value_regno);
3541 			return -EACCES;
3542 		}
3543 		err = check_packet_access(env, regno, off, size, false);
3544 		if (!err && t == BPF_READ && value_regno >= 0)
3545 			mark_reg_unknown(env, regs, value_regno);
3546 	} else if (reg->type == PTR_TO_FLOW_KEYS) {
3547 		if (t == BPF_WRITE && value_regno >= 0 &&
3548 		    is_pointer_value(env, value_regno)) {
3549 			verbose(env, "R%d leaks addr into flow keys\n",
3550 				value_regno);
3551 			return -EACCES;
3552 		}
3553 
3554 		err = check_flow_keys_access(env, off, size);
3555 		if (!err && t == BPF_READ && value_regno >= 0)
3556 			mark_reg_unknown(env, regs, value_regno);
3557 	} else if (type_is_sk_pointer(reg->type)) {
3558 		if (t == BPF_WRITE) {
3559 			verbose(env, "R%d cannot write into %s\n",
3560 				regno, reg_type_str[reg->type]);
3561 			return -EACCES;
3562 		}
3563 		err = check_sock_access(env, insn_idx, regno, off, size, t);
3564 		if (!err && value_regno >= 0)
3565 			mark_reg_unknown(env, regs, value_regno);
3566 	} else if (reg->type == PTR_TO_TP_BUFFER) {
3567 		err = check_tp_buffer_access(env, reg, regno, off, size);
3568 		if (!err && t == BPF_READ && value_regno >= 0)
3569 			mark_reg_unknown(env, regs, value_regno);
3570 	} else if (reg->type == PTR_TO_BTF_ID) {
3571 		err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3572 					      value_regno);
3573 	} else if (reg->type == CONST_PTR_TO_MAP) {
3574 		err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3575 					      value_regno);
3576 	} else if (reg->type == PTR_TO_RDONLY_BUF) {
3577 		if (t == BPF_WRITE) {
3578 			verbose(env, "R%d cannot write into %s\n",
3579 				regno, reg_type_str[reg->type]);
3580 			return -EACCES;
3581 		}
3582 		err = check_buffer_access(env, reg, regno, off, size, false,
3583 					  "rdonly",
3584 					  &env->prog->aux->max_rdonly_access);
3585 		if (!err && value_regno >= 0)
3586 			mark_reg_unknown(env, regs, value_regno);
3587 	} else if (reg->type == PTR_TO_RDWR_BUF) {
3588 		err = check_buffer_access(env, reg, regno, off, size, false,
3589 					  "rdwr",
3590 					  &env->prog->aux->max_rdwr_access);
3591 		if (!err && t == BPF_READ && value_regno >= 0)
3592 			mark_reg_unknown(env, regs, value_regno);
3593 	} else {
3594 		verbose(env, "R%d invalid mem access '%s'\n", regno,
3595 			reg_type_str[reg->type]);
3596 		return -EACCES;
3597 	}
3598 
3599 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3600 	    regs[value_regno].type == SCALAR_VALUE) {
3601 		/* b/h/w load zero-extends, mark upper bits as known 0 */
3602 		coerce_reg_to_size(&regs[value_regno], size);
3603 	}
3604 	return err;
3605 }
3606 
3607 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3608 {
3609 	int err;
3610 
3611 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3612 	    insn->imm != 0) {
3613 		verbose(env, "BPF_XADD uses reserved fields\n");
3614 		return -EINVAL;
3615 	}
3616 
3617 	/* check src1 operand */
3618 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
3619 	if (err)
3620 		return err;
3621 
3622 	/* check src2 operand */
3623 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3624 	if (err)
3625 		return err;
3626 
3627 	if (is_pointer_value(env, insn->src_reg)) {
3628 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3629 		return -EACCES;
3630 	}
3631 
3632 	if (is_ctx_reg(env, insn->dst_reg) ||
3633 	    is_pkt_reg(env, insn->dst_reg) ||
3634 	    is_flow_key_reg(env, insn->dst_reg) ||
3635 	    is_sk_reg(env, insn->dst_reg)) {
3636 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3637 			insn->dst_reg,
3638 			reg_type_str[reg_state(env, insn->dst_reg)->type]);
3639 		return -EACCES;
3640 	}
3641 
3642 	/* check whether atomic_add can read the memory */
3643 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3644 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
3645 	if (err)
3646 		return err;
3647 
3648 	/* check whether atomic_add can write into the same memory */
3649 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3650 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3651 }
3652 
3653 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3654 				  int off, int access_size,
3655 				  bool zero_size_allowed)
3656 {
3657 	struct bpf_reg_state *reg = reg_state(env, regno);
3658 
3659 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3660 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3661 		if (tnum_is_const(reg->var_off)) {
3662 			verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3663 				regno, off, access_size);
3664 		} else {
3665 			char tn_buf[48];
3666 
3667 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3668 			verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3669 				regno, tn_buf, access_size);
3670 		}
3671 		return -EACCES;
3672 	}
3673 	return 0;
3674 }
3675 
3676 /* when register 'regno' is passed into function that will read 'access_size'
3677  * bytes from that pointer, make sure that it's within stack boundary
3678  * and all elements of stack are initialized.
3679  * Unlike most pointer bounds-checking functions, this one doesn't take an
3680  * 'off' argument, so it has to add in reg->off itself.
3681  */
3682 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3683 				int access_size, bool zero_size_allowed,
3684 				struct bpf_call_arg_meta *meta)
3685 {
3686 	struct bpf_reg_state *reg = reg_state(env, regno);
3687 	struct bpf_func_state *state = func(env, reg);
3688 	int err, min_off, max_off, i, j, slot, spi;
3689 
3690 	if (tnum_is_const(reg->var_off)) {
3691 		min_off = max_off = reg->var_off.value + reg->off;
3692 		err = __check_stack_boundary(env, regno, min_off, access_size,
3693 					     zero_size_allowed);
3694 		if (err)
3695 			return err;
3696 	} else {
3697 		/* Variable offset is prohibited for unprivileged mode for
3698 		 * simplicity since it requires corresponding support in
3699 		 * Spectre masking for stack ALU.
3700 		 * See also retrieve_ptr_limit().
3701 		 */
3702 		if (!env->bypass_spec_v1) {
3703 			char tn_buf[48];
3704 
3705 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3706 			verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3707 				regno, tn_buf);
3708 			return -EACCES;
3709 		}
3710 		/* Only initialized buffer on stack is allowed to be accessed
3711 		 * with variable offset. With uninitialized buffer it's hard to
3712 		 * guarantee that whole memory is marked as initialized on
3713 		 * helper return since specific bounds are unknown what may
3714 		 * cause uninitialized stack leaking.
3715 		 */
3716 		if (meta && meta->raw_mode)
3717 			meta = NULL;
3718 
3719 		if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3720 		    reg->smax_value <= -BPF_MAX_VAR_OFF) {
3721 			verbose(env, "R%d unbounded indirect variable offset stack access\n",
3722 				regno);
3723 			return -EACCES;
3724 		}
3725 		min_off = reg->smin_value + reg->off;
3726 		max_off = reg->smax_value + reg->off;
3727 		err = __check_stack_boundary(env, regno, min_off, access_size,
3728 					     zero_size_allowed);
3729 		if (err) {
3730 			verbose(env, "R%d min value is outside of stack bound\n",
3731 				regno);
3732 			return err;
3733 		}
3734 		err = __check_stack_boundary(env, regno, max_off, access_size,
3735 					     zero_size_allowed);
3736 		if (err) {
3737 			verbose(env, "R%d max value is outside of stack bound\n",
3738 				regno);
3739 			return err;
3740 		}
3741 	}
3742 
3743 	if (meta && meta->raw_mode) {
3744 		meta->access_size = access_size;
3745 		meta->regno = regno;
3746 		return 0;
3747 	}
3748 
3749 	for (i = min_off; i < max_off + access_size; i++) {
3750 		u8 *stype;
3751 
3752 		slot = -i - 1;
3753 		spi = slot / BPF_REG_SIZE;
3754 		if (state->allocated_stack <= slot)
3755 			goto err;
3756 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3757 		if (*stype == STACK_MISC)
3758 			goto mark;
3759 		if (*stype == STACK_ZERO) {
3760 			/* helper can write anything into the stack */
3761 			*stype = STACK_MISC;
3762 			goto mark;
3763 		}
3764 
3765 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3766 		    state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3767 			goto mark;
3768 
3769 		if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3770 		    (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3771 		     env->allow_ptr_leaks)) {
3772 			__mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3773 			for (j = 0; j < BPF_REG_SIZE; j++)
3774 				state->stack[spi].slot_type[j] = STACK_MISC;
3775 			goto mark;
3776 		}
3777 
3778 err:
3779 		if (tnum_is_const(reg->var_off)) {
3780 			verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3781 				min_off, i - min_off, access_size);
3782 		} else {
3783 			char tn_buf[48];
3784 
3785 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3786 			verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3787 				tn_buf, i - min_off, access_size);
3788 		}
3789 		return -EACCES;
3790 mark:
3791 		/* reading any byte out of 8-byte 'spill_slot' will cause
3792 		 * the whole slot to be marked as 'read'
3793 		 */
3794 		mark_reg_read(env, &state->stack[spi].spilled_ptr,
3795 			      state->stack[spi].spilled_ptr.parent,
3796 			      REG_LIVE_READ64);
3797 	}
3798 	return update_stack_depth(env, state, min_off);
3799 }
3800 
3801 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3802 				   int access_size, bool zero_size_allowed,
3803 				   struct bpf_call_arg_meta *meta)
3804 {
3805 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3806 
3807 	switch (reg->type) {
3808 	case PTR_TO_PACKET:
3809 	case PTR_TO_PACKET_META:
3810 		return check_packet_access(env, regno, reg->off, access_size,
3811 					   zero_size_allowed);
3812 	case PTR_TO_MAP_VALUE:
3813 		if (check_map_access_type(env, regno, reg->off, access_size,
3814 					  meta && meta->raw_mode ? BPF_WRITE :
3815 					  BPF_READ))
3816 			return -EACCES;
3817 		return check_map_access(env, regno, reg->off, access_size,
3818 					zero_size_allowed);
3819 	case PTR_TO_MEM:
3820 		return check_mem_region_access(env, regno, reg->off,
3821 					       access_size, reg->mem_size,
3822 					       zero_size_allowed);
3823 	case PTR_TO_RDONLY_BUF:
3824 		if (meta && meta->raw_mode)
3825 			return -EACCES;
3826 		return check_buffer_access(env, reg, regno, reg->off,
3827 					   access_size, zero_size_allowed,
3828 					   "rdonly",
3829 					   &env->prog->aux->max_rdonly_access);
3830 	case PTR_TO_RDWR_BUF:
3831 		return check_buffer_access(env, reg, regno, reg->off,
3832 					   access_size, zero_size_allowed,
3833 					   "rdwr",
3834 					   &env->prog->aux->max_rdwr_access);
3835 	case PTR_TO_STACK:
3836 		return check_stack_boundary(env, regno, access_size,
3837 					    zero_size_allowed, meta);
3838 	default: /* scalar_value or invalid ptr */
3839 		/* Allow zero-byte read from NULL, regardless of pointer type */
3840 		if (zero_size_allowed && access_size == 0 &&
3841 		    register_is_null(reg))
3842 			return 0;
3843 
3844 		verbose(env, "R%d type=%s expected=%s\n", regno,
3845 			reg_type_str[reg->type],
3846 			reg_type_str[PTR_TO_STACK]);
3847 		return -EACCES;
3848 	}
3849 }
3850 
3851 /* Implementation details:
3852  * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3853  * Two bpf_map_lookups (even with the same key) will have different reg->id.
3854  * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3855  * value_or_null->value transition, since the verifier only cares about
3856  * the range of access to valid map value pointer and doesn't care about actual
3857  * address of the map element.
3858  * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3859  * reg->id > 0 after value_or_null->value transition. By doing so
3860  * two bpf_map_lookups will be considered two different pointers that
3861  * point to different bpf_spin_locks.
3862  * The verifier allows taking only one bpf_spin_lock at a time to avoid
3863  * dead-locks.
3864  * Since only one bpf_spin_lock is allowed the checks are simpler than
3865  * reg_is_refcounted() logic. The verifier needs to remember only
3866  * one spin_lock instead of array of acquired_refs.
3867  * cur_state->active_spin_lock remembers which map value element got locked
3868  * and clears it after bpf_spin_unlock.
3869  */
3870 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3871 			     bool is_lock)
3872 {
3873 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3874 	struct bpf_verifier_state *cur = env->cur_state;
3875 	bool is_const = tnum_is_const(reg->var_off);
3876 	struct bpf_map *map = reg->map_ptr;
3877 	u64 val = reg->var_off.value;
3878 
3879 	if (!is_const) {
3880 		verbose(env,
3881 			"R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3882 			regno);
3883 		return -EINVAL;
3884 	}
3885 	if (!map->btf) {
3886 		verbose(env,
3887 			"map '%s' has to have BTF in order to use bpf_spin_lock\n",
3888 			map->name);
3889 		return -EINVAL;
3890 	}
3891 	if (!map_value_has_spin_lock(map)) {
3892 		if (map->spin_lock_off == -E2BIG)
3893 			verbose(env,
3894 				"map '%s' has more than one 'struct bpf_spin_lock'\n",
3895 				map->name);
3896 		else if (map->spin_lock_off == -ENOENT)
3897 			verbose(env,
3898 				"map '%s' doesn't have 'struct bpf_spin_lock'\n",
3899 				map->name);
3900 		else
3901 			verbose(env,
3902 				"map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3903 				map->name);
3904 		return -EINVAL;
3905 	}
3906 	if (map->spin_lock_off != val + reg->off) {
3907 		verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3908 			val + reg->off);
3909 		return -EINVAL;
3910 	}
3911 	if (is_lock) {
3912 		if (cur->active_spin_lock) {
3913 			verbose(env,
3914 				"Locking two bpf_spin_locks are not allowed\n");
3915 			return -EINVAL;
3916 		}
3917 		cur->active_spin_lock = reg->id;
3918 	} else {
3919 		if (!cur->active_spin_lock) {
3920 			verbose(env, "bpf_spin_unlock without taking a lock\n");
3921 			return -EINVAL;
3922 		}
3923 		if (cur->active_spin_lock != reg->id) {
3924 			verbose(env, "bpf_spin_unlock of different lock\n");
3925 			return -EINVAL;
3926 		}
3927 		cur->active_spin_lock = 0;
3928 	}
3929 	return 0;
3930 }
3931 
3932 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3933 {
3934 	return type == ARG_PTR_TO_MEM ||
3935 	       type == ARG_PTR_TO_MEM_OR_NULL ||
3936 	       type == ARG_PTR_TO_UNINIT_MEM;
3937 }
3938 
3939 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3940 {
3941 	return type == ARG_CONST_SIZE ||
3942 	       type == ARG_CONST_SIZE_OR_ZERO;
3943 }
3944 
3945 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3946 {
3947 	return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3948 }
3949 
3950 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3951 {
3952 	return type == ARG_PTR_TO_INT ||
3953 	       type == ARG_PTR_TO_LONG;
3954 }
3955 
3956 static int int_ptr_type_to_size(enum bpf_arg_type type)
3957 {
3958 	if (type == ARG_PTR_TO_INT)
3959 		return sizeof(u32);
3960 	else if (type == ARG_PTR_TO_LONG)
3961 		return sizeof(u64);
3962 
3963 	return -EINVAL;
3964 }
3965 
3966 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3967 				 const struct bpf_call_arg_meta *meta,
3968 				 enum bpf_arg_type *arg_type)
3969 {
3970 	if (!meta->map_ptr) {
3971 		/* kernel subsystem misconfigured verifier */
3972 		verbose(env, "invalid map_ptr to access map->type\n");
3973 		return -EACCES;
3974 	}
3975 
3976 	switch (meta->map_ptr->map_type) {
3977 	case BPF_MAP_TYPE_SOCKMAP:
3978 	case BPF_MAP_TYPE_SOCKHASH:
3979 		if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3980 			*arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3981 		} else {
3982 			verbose(env, "invalid arg_type for sockmap/sockhash\n");
3983 			return -EINVAL;
3984 		}
3985 		break;
3986 
3987 	default:
3988 		break;
3989 	}
3990 	return 0;
3991 }
3992 
3993 struct bpf_reg_types {
3994 	const enum bpf_reg_type types[10];
3995 	u32 *btf_id;
3996 };
3997 
3998 static const struct bpf_reg_types map_key_value_types = {
3999 	.types = {
4000 		PTR_TO_STACK,
4001 		PTR_TO_PACKET,
4002 		PTR_TO_PACKET_META,
4003 		PTR_TO_MAP_VALUE,
4004 	},
4005 };
4006 
4007 static const struct bpf_reg_types sock_types = {
4008 	.types = {
4009 		PTR_TO_SOCK_COMMON,
4010 		PTR_TO_SOCKET,
4011 		PTR_TO_TCP_SOCK,
4012 		PTR_TO_XDP_SOCK,
4013 	},
4014 };
4015 
4016 #ifdef CONFIG_NET
4017 static const struct bpf_reg_types btf_id_sock_common_types = {
4018 	.types = {
4019 		PTR_TO_SOCK_COMMON,
4020 		PTR_TO_SOCKET,
4021 		PTR_TO_TCP_SOCK,
4022 		PTR_TO_XDP_SOCK,
4023 		PTR_TO_BTF_ID,
4024 	},
4025 	.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4026 };
4027 #endif
4028 
4029 static const struct bpf_reg_types mem_types = {
4030 	.types = {
4031 		PTR_TO_STACK,
4032 		PTR_TO_PACKET,
4033 		PTR_TO_PACKET_META,
4034 		PTR_TO_MAP_VALUE,
4035 		PTR_TO_MEM,
4036 		PTR_TO_RDONLY_BUF,
4037 		PTR_TO_RDWR_BUF,
4038 	},
4039 };
4040 
4041 static const struct bpf_reg_types int_ptr_types = {
4042 	.types = {
4043 		PTR_TO_STACK,
4044 		PTR_TO_PACKET,
4045 		PTR_TO_PACKET_META,
4046 		PTR_TO_MAP_VALUE,
4047 	},
4048 };
4049 
4050 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4051 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4052 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4053 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4054 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4055 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4056 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4057 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4058 
4059 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4060 	[ARG_PTR_TO_MAP_KEY]		= &map_key_value_types,
4061 	[ARG_PTR_TO_MAP_VALUE]		= &map_key_value_types,
4062 	[ARG_PTR_TO_UNINIT_MAP_VALUE]	= &map_key_value_types,
4063 	[ARG_PTR_TO_MAP_VALUE_OR_NULL]	= &map_key_value_types,
4064 	[ARG_CONST_SIZE]		= &scalar_types,
4065 	[ARG_CONST_SIZE_OR_ZERO]	= &scalar_types,
4066 	[ARG_CONST_ALLOC_SIZE_OR_ZERO]	= &scalar_types,
4067 	[ARG_CONST_MAP_PTR]		= &const_map_ptr_types,
4068 	[ARG_PTR_TO_CTX]		= &context_types,
4069 	[ARG_PTR_TO_CTX_OR_NULL]	= &context_types,
4070 	[ARG_PTR_TO_SOCK_COMMON]	= &sock_types,
4071 #ifdef CONFIG_NET
4072 	[ARG_PTR_TO_BTF_ID_SOCK_COMMON]	= &btf_id_sock_common_types,
4073 #endif
4074 	[ARG_PTR_TO_SOCKET]		= &fullsock_types,
4075 	[ARG_PTR_TO_SOCKET_OR_NULL]	= &fullsock_types,
4076 	[ARG_PTR_TO_BTF_ID]		= &btf_ptr_types,
4077 	[ARG_PTR_TO_SPIN_LOCK]		= &spin_lock_types,
4078 	[ARG_PTR_TO_MEM]		= &mem_types,
4079 	[ARG_PTR_TO_MEM_OR_NULL]	= &mem_types,
4080 	[ARG_PTR_TO_UNINIT_MEM]		= &mem_types,
4081 	[ARG_PTR_TO_ALLOC_MEM]		= &alloc_mem_types,
4082 	[ARG_PTR_TO_ALLOC_MEM_OR_NULL]	= &alloc_mem_types,
4083 	[ARG_PTR_TO_INT]		= &int_ptr_types,
4084 	[ARG_PTR_TO_LONG]		= &int_ptr_types,
4085 	[ARG_PTR_TO_PERCPU_BTF_ID]	= &percpu_btf_ptr_types,
4086 };
4087 
4088 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4089 			  enum bpf_arg_type arg_type,
4090 			  const u32 *arg_btf_id)
4091 {
4092 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4093 	enum bpf_reg_type expected, type = reg->type;
4094 	const struct bpf_reg_types *compatible;
4095 	int i, j;
4096 
4097 	compatible = compatible_reg_types[arg_type];
4098 	if (!compatible) {
4099 		verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4100 		return -EFAULT;
4101 	}
4102 
4103 	for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4104 		expected = compatible->types[i];
4105 		if (expected == NOT_INIT)
4106 			break;
4107 
4108 		if (type == expected)
4109 			goto found;
4110 	}
4111 
4112 	verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4113 	for (j = 0; j + 1 < i; j++)
4114 		verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4115 	verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4116 	return -EACCES;
4117 
4118 found:
4119 	if (type == PTR_TO_BTF_ID) {
4120 		if (!arg_btf_id) {
4121 			if (!compatible->btf_id) {
4122 				verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4123 				return -EFAULT;
4124 			}
4125 			arg_btf_id = compatible->btf_id;
4126 		}
4127 
4128 		if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4129 					  btf_vmlinux, *arg_btf_id)) {
4130 			verbose(env, "R%d is of type %s but %s is expected\n",
4131 				regno, kernel_type_name(reg->btf, reg->btf_id),
4132 				kernel_type_name(btf_vmlinux, *arg_btf_id));
4133 			return -EACCES;
4134 		}
4135 
4136 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4137 			verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4138 				regno);
4139 			return -EACCES;
4140 		}
4141 	}
4142 
4143 	return 0;
4144 }
4145 
4146 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4147 			  struct bpf_call_arg_meta *meta,
4148 			  const struct bpf_func_proto *fn)
4149 {
4150 	u32 regno = BPF_REG_1 + arg;
4151 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4152 	enum bpf_arg_type arg_type = fn->arg_type[arg];
4153 	enum bpf_reg_type type = reg->type;
4154 	int err = 0;
4155 
4156 	if (arg_type == ARG_DONTCARE)
4157 		return 0;
4158 
4159 	err = check_reg_arg(env, regno, SRC_OP);
4160 	if (err)
4161 		return err;
4162 
4163 	if (arg_type == ARG_ANYTHING) {
4164 		if (is_pointer_value(env, regno)) {
4165 			verbose(env, "R%d leaks addr into helper function\n",
4166 				regno);
4167 			return -EACCES;
4168 		}
4169 		return 0;
4170 	}
4171 
4172 	if (type_is_pkt_pointer(type) &&
4173 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4174 		verbose(env, "helper access to the packet is not allowed\n");
4175 		return -EACCES;
4176 	}
4177 
4178 	if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4179 	    arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4180 	    arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4181 		err = resolve_map_arg_type(env, meta, &arg_type);
4182 		if (err)
4183 			return err;
4184 	}
4185 
4186 	if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4187 		/* A NULL register has a SCALAR_VALUE type, so skip
4188 		 * type checking.
4189 		 */
4190 		goto skip_type_check;
4191 
4192 	err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4193 	if (err)
4194 		return err;
4195 
4196 	if (type == PTR_TO_CTX) {
4197 		err = check_ctx_reg(env, reg, regno);
4198 		if (err < 0)
4199 			return err;
4200 	}
4201 
4202 skip_type_check:
4203 	if (reg->ref_obj_id) {
4204 		if (meta->ref_obj_id) {
4205 			verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4206 				regno, reg->ref_obj_id,
4207 				meta->ref_obj_id);
4208 			return -EFAULT;
4209 		}
4210 		meta->ref_obj_id = reg->ref_obj_id;
4211 	}
4212 
4213 	if (arg_type == ARG_CONST_MAP_PTR) {
4214 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4215 		meta->map_ptr = reg->map_ptr;
4216 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4217 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
4218 		 * check that [key, key + map->key_size) are within
4219 		 * stack limits and initialized
4220 		 */
4221 		if (!meta->map_ptr) {
4222 			/* in function declaration map_ptr must come before
4223 			 * map_key, so that it's verified and known before
4224 			 * we have to check map_key here. Otherwise it means
4225 			 * that kernel subsystem misconfigured verifier
4226 			 */
4227 			verbose(env, "invalid map_ptr to access map->key\n");
4228 			return -EACCES;
4229 		}
4230 		err = check_helper_mem_access(env, regno,
4231 					      meta->map_ptr->key_size, false,
4232 					      NULL);
4233 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4234 		   (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4235 		    !register_is_null(reg)) ||
4236 		   arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4237 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
4238 		 * check [value, value + map->value_size) validity
4239 		 */
4240 		if (!meta->map_ptr) {
4241 			/* kernel subsystem misconfigured verifier */
4242 			verbose(env, "invalid map_ptr to access map->value\n");
4243 			return -EACCES;
4244 		}
4245 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4246 		err = check_helper_mem_access(env, regno,
4247 					      meta->map_ptr->value_size, false,
4248 					      meta);
4249 	} else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4250 		if (!reg->btf_id) {
4251 			verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4252 			return -EACCES;
4253 		}
4254 		meta->ret_btf = reg->btf;
4255 		meta->ret_btf_id = reg->btf_id;
4256 	} else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4257 		if (meta->func_id == BPF_FUNC_spin_lock) {
4258 			if (process_spin_lock(env, regno, true))
4259 				return -EACCES;
4260 		} else if (meta->func_id == BPF_FUNC_spin_unlock) {
4261 			if (process_spin_lock(env, regno, false))
4262 				return -EACCES;
4263 		} else {
4264 			verbose(env, "verifier internal error\n");
4265 			return -EFAULT;
4266 		}
4267 	} else if (arg_type_is_mem_ptr(arg_type)) {
4268 		/* The access to this pointer is only checked when we hit the
4269 		 * next is_mem_size argument below.
4270 		 */
4271 		meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4272 	} else if (arg_type_is_mem_size(arg_type)) {
4273 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4274 
4275 		/* This is used to refine r0 return value bounds for helpers
4276 		 * that enforce this value as an upper bound on return values.
4277 		 * See do_refine_retval_range() for helpers that can refine
4278 		 * the return value. C type of helper is u32 so we pull register
4279 		 * bound from umax_value however, if negative verifier errors
4280 		 * out. Only upper bounds can be learned because retval is an
4281 		 * int type and negative retvals are allowed.
4282 		 */
4283 		meta->msize_max_value = reg->umax_value;
4284 
4285 		/* The register is SCALAR_VALUE; the access check
4286 		 * happens using its boundaries.
4287 		 */
4288 		if (!tnum_is_const(reg->var_off))
4289 			/* For unprivileged variable accesses, disable raw
4290 			 * mode so that the program is required to
4291 			 * initialize all the memory that the helper could
4292 			 * just partially fill up.
4293 			 */
4294 			meta = NULL;
4295 
4296 		if (reg->smin_value < 0) {
4297 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4298 				regno);
4299 			return -EACCES;
4300 		}
4301 
4302 		if (reg->umin_value == 0) {
4303 			err = check_helper_mem_access(env, regno - 1, 0,
4304 						      zero_size_allowed,
4305 						      meta);
4306 			if (err)
4307 				return err;
4308 		}
4309 
4310 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4311 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4312 				regno);
4313 			return -EACCES;
4314 		}
4315 		err = check_helper_mem_access(env, regno - 1,
4316 					      reg->umax_value,
4317 					      zero_size_allowed, meta);
4318 		if (!err)
4319 			err = mark_chain_precision(env, regno);
4320 	} else if (arg_type_is_alloc_size(arg_type)) {
4321 		if (!tnum_is_const(reg->var_off)) {
4322 			verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4323 				regno);
4324 			return -EACCES;
4325 		}
4326 		meta->mem_size = reg->var_off.value;
4327 	} else if (arg_type_is_int_ptr(arg_type)) {
4328 		int size = int_ptr_type_to_size(arg_type);
4329 
4330 		err = check_helper_mem_access(env, regno, size, false, meta);
4331 		if (err)
4332 			return err;
4333 		err = check_ptr_alignment(env, reg, 0, size, true);
4334 	}
4335 
4336 	return err;
4337 }
4338 
4339 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4340 {
4341 	enum bpf_attach_type eatype = env->prog->expected_attach_type;
4342 	enum bpf_prog_type type = resolve_prog_type(env->prog);
4343 
4344 	if (func_id != BPF_FUNC_map_update_elem)
4345 		return false;
4346 
4347 	/* It's not possible to get access to a locked struct sock in these
4348 	 * contexts, so updating is safe.
4349 	 */
4350 	switch (type) {
4351 	case BPF_PROG_TYPE_TRACING:
4352 		if (eatype == BPF_TRACE_ITER)
4353 			return true;
4354 		break;
4355 	case BPF_PROG_TYPE_SOCKET_FILTER:
4356 	case BPF_PROG_TYPE_SCHED_CLS:
4357 	case BPF_PROG_TYPE_SCHED_ACT:
4358 	case BPF_PROG_TYPE_XDP:
4359 	case BPF_PROG_TYPE_SK_REUSEPORT:
4360 	case BPF_PROG_TYPE_FLOW_DISSECTOR:
4361 	case BPF_PROG_TYPE_SK_LOOKUP:
4362 		return true;
4363 	default:
4364 		break;
4365 	}
4366 
4367 	verbose(env, "cannot update sockmap in this context\n");
4368 	return false;
4369 }
4370 
4371 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4372 {
4373 	return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4374 }
4375 
4376 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4377 					struct bpf_map *map, int func_id)
4378 {
4379 	if (!map)
4380 		return 0;
4381 
4382 	/* We need a two way check, first is from map perspective ... */
4383 	switch (map->map_type) {
4384 	case BPF_MAP_TYPE_PROG_ARRAY:
4385 		if (func_id != BPF_FUNC_tail_call)
4386 			goto error;
4387 		break;
4388 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4389 		if (func_id != BPF_FUNC_perf_event_read &&
4390 		    func_id != BPF_FUNC_perf_event_output &&
4391 		    func_id != BPF_FUNC_skb_output &&
4392 		    func_id != BPF_FUNC_perf_event_read_value &&
4393 		    func_id != BPF_FUNC_xdp_output)
4394 			goto error;
4395 		break;
4396 	case BPF_MAP_TYPE_RINGBUF:
4397 		if (func_id != BPF_FUNC_ringbuf_output &&
4398 		    func_id != BPF_FUNC_ringbuf_reserve &&
4399 		    func_id != BPF_FUNC_ringbuf_submit &&
4400 		    func_id != BPF_FUNC_ringbuf_discard &&
4401 		    func_id != BPF_FUNC_ringbuf_query)
4402 			goto error;
4403 		break;
4404 	case BPF_MAP_TYPE_STACK_TRACE:
4405 		if (func_id != BPF_FUNC_get_stackid)
4406 			goto error;
4407 		break;
4408 	case BPF_MAP_TYPE_CGROUP_ARRAY:
4409 		if (func_id != BPF_FUNC_skb_under_cgroup &&
4410 		    func_id != BPF_FUNC_current_task_under_cgroup)
4411 			goto error;
4412 		break;
4413 	case BPF_MAP_TYPE_CGROUP_STORAGE:
4414 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4415 		if (func_id != BPF_FUNC_get_local_storage)
4416 			goto error;
4417 		break;
4418 	case BPF_MAP_TYPE_DEVMAP:
4419 	case BPF_MAP_TYPE_DEVMAP_HASH:
4420 		if (func_id != BPF_FUNC_redirect_map &&
4421 		    func_id != BPF_FUNC_map_lookup_elem)
4422 			goto error;
4423 		break;
4424 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
4425 	 * appear.
4426 	 */
4427 	case BPF_MAP_TYPE_CPUMAP:
4428 		if (func_id != BPF_FUNC_redirect_map)
4429 			goto error;
4430 		break;
4431 	case BPF_MAP_TYPE_XSKMAP:
4432 		if (func_id != BPF_FUNC_redirect_map &&
4433 		    func_id != BPF_FUNC_map_lookup_elem)
4434 			goto error;
4435 		break;
4436 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4437 	case BPF_MAP_TYPE_HASH_OF_MAPS:
4438 		if (func_id != BPF_FUNC_map_lookup_elem)
4439 			goto error;
4440 		break;
4441 	case BPF_MAP_TYPE_SOCKMAP:
4442 		if (func_id != BPF_FUNC_sk_redirect_map &&
4443 		    func_id != BPF_FUNC_sock_map_update &&
4444 		    func_id != BPF_FUNC_map_delete_elem &&
4445 		    func_id != BPF_FUNC_msg_redirect_map &&
4446 		    func_id != BPF_FUNC_sk_select_reuseport &&
4447 		    func_id != BPF_FUNC_map_lookup_elem &&
4448 		    !may_update_sockmap(env, func_id))
4449 			goto error;
4450 		break;
4451 	case BPF_MAP_TYPE_SOCKHASH:
4452 		if (func_id != BPF_FUNC_sk_redirect_hash &&
4453 		    func_id != BPF_FUNC_sock_hash_update &&
4454 		    func_id != BPF_FUNC_map_delete_elem &&
4455 		    func_id != BPF_FUNC_msg_redirect_hash &&
4456 		    func_id != BPF_FUNC_sk_select_reuseport &&
4457 		    func_id != BPF_FUNC_map_lookup_elem &&
4458 		    !may_update_sockmap(env, func_id))
4459 			goto error;
4460 		break;
4461 	case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4462 		if (func_id != BPF_FUNC_sk_select_reuseport)
4463 			goto error;
4464 		break;
4465 	case BPF_MAP_TYPE_QUEUE:
4466 	case BPF_MAP_TYPE_STACK:
4467 		if (func_id != BPF_FUNC_map_peek_elem &&
4468 		    func_id != BPF_FUNC_map_pop_elem &&
4469 		    func_id != BPF_FUNC_map_push_elem)
4470 			goto error;
4471 		break;
4472 	case BPF_MAP_TYPE_SK_STORAGE:
4473 		if (func_id != BPF_FUNC_sk_storage_get &&
4474 		    func_id != BPF_FUNC_sk_storage_delete)
4475 			goto error;
4476 		break;
4477 	case BPF_MAP_TYPE_INODE_STORAGE:
4478 		if (func_id != BPF_FUNC_inode_storage_get &&
4479 		    func_id != BPF_FUNC_inode_storage_delete)
4480 			goto error;
4481 		break;
4482 	case BPF_MAP_TYPE_TASK_STORAGE:
4483 		if (func_id != BPF_FUNC_task_storage_get &&
4484 		    func_id != BPF_FUNC_task_storage_delete)
4485 			goto error;
4486 		break;
4487 	default:
4488 		break;
4489 	}
4490 
4491 	/* ... and second from the function itself. */
4492 	switch (func_id) {
4493 	case BPF_FUNC_tail_call:
4494 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4495 			goto error;
4496 		if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4497 			verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4498 			return -EINVAL;
4499 		}
4500 		break;
4501 	case BPF_FUNC_perf_event_read:
4502 	case BPF_FUNC_perf_event_output:
4503 	case BPF_FUNC_perf_event_read_value:
4504 	case BPF_FUNC_skb_output:
4505 	case BPF_FUNC_xdp_output:
4506 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4507 			goto error;
4508 		break;
4509 	case BPF_FUNC_get_stackid:
4510 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4511 			goto error;
4512 		break;
4513 	case BPF_FUNC_current_task_under_cgroup:
4514 	case BPF_FUNC_skb_under_cgroup:
4515 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4516 			goto error;
4517 		break;
4518 	case BPF_FUNC_redirect_map:
4519 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4520 		    map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4521 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
4522 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
4523 			goto error;
4524 		break;
4525 	case BPF_FUNC_sk_redirect_map:
4526 	case BPF_FUNC_msg_redirect_map:
4527 	case BPF_FUNC_sock_map_update:
4528 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4529 			goto error;
4530 		break;
4531 	case BPF_FUNC_sk_redirect_hash:
4532 	case BPF_FUNC_msg_redirect_hash:
4533 	case BPF_FUNC_sock_hash_update:
4534 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4535 			goto error;
4536 		break;
4537 	case BPF_FUNC_get_local_storage:
4538 		if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4539 		    map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4540 			goto error;
4541 		break;
4542 	case BPF_FUNC_sk_select_reuseport:
4543 		if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4544 		    map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4545 		    map->map_type != BPF_MAP_TYPE_SOCKHASH)
4546 			goto error;
4547 		break;
4548 	case BPF_FUNC_map_peek_elem:
4549 	case BPF_FUNC_map_pop_elem:
4550 	case BPF_FUNC_map_push_elem:
4551 		if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4552 		    map->map_type != BPF_MAP_TYPE_STACK)
4553 			goto error;
4554 		break;
4555 	case BPF_FUNC_sk_storage_get:
4556 	case BPF_FUNC_sk_storage_delete:
4557 		if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4558 			goto error;
4559 		break;
4560 	case BPF_FUNC_inode_storage_get:
4561 	case BPF_FUNC_inode_storage_delete:
4562 		if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4563 			goto error;
4564 		break;
4565 	case BPF_FUNC_task_storage_get:
4566 	case BPF_FUNC_task_storage_delete:
4567 		if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4568 			goto error;
4569 		break;
4570 	default:
4571 		break;
4572 	}
4573 
4574 	return 0;
4575 error:
4576 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
4577 		map->map_type, func_id_name(func_id), func_id);
4578 	return -EINVAL;
4579 }
4580 
4581 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4582 {
4583 	int count = 0;
4584 
4585 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4586 		count++;
4587 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4588 		count++;
4589 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4590 		count++;
4591 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4592 		count++;
4593 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4594 		count++;
4595 
4596 	/* We only support one arg being in raw mode at the moment,
4597 	 * which is sufficient for the helper functions we have
4598 	 * right now.
4599 	 */
4600 	return count <= 1;
4601 }
4602 
4603 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4604 				    enum bpf_arg_type arg_next)
4605 {
4606 	return (arg_type_is_mem_ptr(arg_curr) &&
4607 	        !arg_type_is_mem_size(arg_next)) ||
4608 	       (!arg_type_is_mem_ptr(arg_curr) &&
4609 		arg_type_is_mem_size(arg_next));
4610 }
4611 
4612 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4613 {
4614 	/* bpf_xxx(..., buf, len) call will access 'len'
4615 	 * bytes from memory 'buf'. Both arg types need
4616 	 * to be paired, so make sure there's no buggy
4617 	 * helper function specification.
4618 	 */
4619 	if (arg_type_is_mem_size(fn->arg1_type) ||
4620 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
4621 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4622 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4623 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4624 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4625 		return false;
4626 
4627 	return true;
4628 }
4629 
4630 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4631 {
4632 	int count = 0;
4633 
4634 	if (arg_type_may_be_refcounted(fn->arg1_type))
4635 		count++;
4636 	if (arg_type_may_be_refcounted(fn->arg2_type))
4637 		count++;
4638 	if (arg_type_may_be_refcounted(fn->arg3_type))
4639 		count++;
4640 	if (arg_type_may_be_refcounted(fn->arg4_type))
4641 		count++;
4642 	if (arg_type_may_be_refcounted(fn->arg5_type))
4643 		count++;
4644 
4645 	/* A reference acquiring function cannot acquire
4646 	 * another refcounted ptr.
4647 	 */
4648 	if (may_be_acquire_function(func_id) && count)
4649 		return false;
4650 
4651 	/* We only support one arg being unreferenced at the moment,
4652 	 * which is sufficient for the helper functions we have right now.
4653 	 */
4654 	return count <= 1;
4655 }
4656 
4657 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4658 {
4659 	int i;
4660 
4661 	for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4662 		if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4663 			return false;
4664 
4665 		if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4666 			return false;
4667 	}
4668 
4669 	return true;
4670 }
4671 
4672 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4673 {
4674 	return check_raw_mode_ok(fn) &&
4675 	       check_arg_pair_ok(fn) &&
4676 	       check_btf_id_ok(fn) &&
4677 	       check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4678 }
4679 
4680 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4681  * are now invalid, so turn them into unknown SCALAR_VALUE.
4682  */
4683 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4684 				     struct bpf_func_state *state)
4685 {
4686 	struct bpf_reg_state *regs = state->regs, *reg;
4687 	int i;
4688 
4689 	for (i = 0; i < MAX_BPF_REG; i++)
4690 		if (reg_is_pkt_pointer_any(&regs[i]))
4691 			mark_reg_unknown(env, regs, i);
4692 
4693 	bpf_for_each_spilled_reg(i, state, reg) {
4694 		if (!reg)
4695 			continue;
4696 		if (reg_is_pkt_pointer_any(reg))
4697 			__mark_reg_unknown(env, reg);
4698 	}
4699 }
4700 
4701 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4702 {
4703 	struct bpf_verifier_state *vstate = env->cur_state;
4704 	int i;
4705 
4706 	for (i = 0; i <= vstate->curframe; i++)
4707 		__clear_all_pkt_pointers(env, vstate->frame[i]);
4708 }
4709 
4710 enum {
4711 	AT_PKT_END = -1,
4712 	BEYOND_PKT_END = -2,
4713 };
4714 
4715 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4716 {
4717 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
4718 	struct bpf_reg_state *reg = &state->regs[regn];
4719 
4720 	if (reg->type != PTR_TO_PACKET)
4721 		/* PTR_TO_PACKET_META is not supported yet */
4722 		return;
4723 
4724 	/* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4725 	 * How far beyond pkt_end it goes is unknown.
4726 	 * if (!range_open) it's the case of pkt >= pkt_end
4727 	 * if (range_open) it's the case of pkt > pkt_end
4728 	 * hence this pointer is at least 1 byte bigger than pkt_end
4729 	 */
4730 	if (range_open)
4731 		reg->range = BEYOND_PKT_END;
4732 	else
4733 		reg->range = AT_PKT_END;
4734 }
4735 
4736 static void release_reg_references(struct bpf_verifier_env *env,
4737 				   struct bpf_func_state *state,
4738 				   int ref_obj_id)
4739 {
4740 	struct bpf_reg_state *regs = state->regs, *reg;
4741 	int i;
4742 
4743 	for (i = 0; i < MAX_BPF_REG; i++)
4744 		if (regs[i].ref_obj_id == ref_obj_id)
4745 			mark_reg_unknown(env, regs, i);
4746 
4747 	bpf_for_each_spilled_reg(i, state, reg) {
4748 		if (!reg)
4749 			continue;
4750 		if (reg->ref_obj_id == ref_obj_id)
4751 			__mark_reg_unknown(env, reg);
4752 	}
4753 }
4754 
4755 /* The pointer with the specified id has released its reference to kernel
4756  * resources. Identify all copies of the same pointer and clear the reference.
4757  */
4758 static int release_reference(struct bpf_verifier_env *env,
4759 			     int ref_obj_id)
4760 {
4761 	struct bpf_verifier_state *vstate = env->cur_state;
4762 	int err;
4763 	int i;
4764 
4765 	err = release_reference_state(cur_func(env), ref_obj_id);
4766 	if (err)
4767 		return err;
4768 
4769 	for (i = 0; i <= vstate->curframe; i++)
4770 		release_reg_references(env, vstate->frame[i], ref_obj_id);
4771 
4772 	return 0;
4773 }
4774 
4775 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4776 				    struct bpf_reg_state *regs)
4777 {
4778 	int i;
4779 
4780 	/* after the call registers r0 - r5 were scratched */
4781 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4782 		mark_reg_not_init(env, regs, caller_saved[i]);
4783 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4784 	}
4785 }
4786 
4787 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4788 			   int *insn_idx)
4789 {
4790 	struct bpf_verifier_state *state = env->cur_state;
4791 	struct bpf_func_info_aux *func_info_aux;
4792 	struct bpf_func_state *caller, *callee;
4793 	int i, err, subprog, target_insn;
4794 	bool is_global = false;
4795 
4796 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4797 		verbose(env, "the call stack of %d frames is too deep\n",
4798 			state->curframe + 2);
4799 		return -E2BIG;
4800 	}
4801 
4802 	target_insn = *insn_idx + insn->imm;
4803 	subprog = find_subprog(env, target_insn + 1);
4804 	if (subprog < 0) {
4805 		verbose(env, "verifier bug. No program starts at insn %d\n",
4806 			target_insn + 1);
4807 		return -EFAULT;
4808 	}
4809 
4810 	caller = state->frame[state->curframe];
4811 	if (state->frame[state->curframe + 1]) {
4812 		verbose(env, "verifier bug. Frame %d already allocated\n",
4813 			state->curframe + 1);
4814 		return -EFAULT;
4815 	}
4816 
4817 	func_info_aux = env->prog->aux->func_info_aux;
4818 	if (func_info_aux)
4819 		is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4820 	err = btf_check_func_arg_match(env, subprog, caller->regs);
4821 	if (err == -EFAULT)
4822 		return err;
4823 	if (is_global) {
4824 		if (err) {
4825 			verbose(env, "Caller passes invalid args into func#%d\n",
4826 				subprog);
4827 			return err;
4828 		} else {
4829 			if (env->log.level & BPF_LOG_LEVEL)
4830 				verbose(env,
4831 					"Func#%d is global and valid. Skipping.\n",
4832 					subprog);
4833 			clear_caller_saved_regs(env, caller->regs);
4834 
4835 			/* All global functions return SCALAR_VALUE */
4836 			mark_reg_unknown(env, caller->regs, BPF_REG_0);
4837 
4838 			/* continue with next insn after call */
4839 			return 0;
4840 		}
4841 	}
4842 
4843 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4844 	if (!callee)
4845 		return -ENOMEM;
4846 	state->frame[state->curframe + 1] = callee;
4847 
4848 	/* callee cannot access r0, r6 - r9 for reading and has to write
4849 	 * into its own stack before reading from it.
4850 	 * callee can read/write into caller's stack
4851 	 */
4852 	init_func_state(env, callee,
4853 			/* remember the callsite, it will be used by bpf_exit */
4854 			*insn_idx /* callsite */,
4855 			state->curframe + 1 /* frameno within this callchain */,
4856 			subprog /* subprog number within this prog */);
4857 
4858 	/* Transfer references to the callee */
4859 	err = transfer_reference_state(callee, caller);
4860 	if (err)
4861 		return err;
4862 
4863 	/* copy r1 - r5 args that callee can access.  The copy includes parent
4864 	 * pointers, which connects us up to the liveness chain
4865 	 */
4866 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4867 		callee->regs[i] = caller->regs[i];
4868 
4869 	clear_caller_saved_regs(env, caller->regs);
4870 
4871 	/* only increment it after check_reg_arg() finished */
4872 	state->curframe++;
4873 
4874 	/* and go analyze first insn of the callee */
4875 	*insn_idx = target_insn;
4876 
4877 	if (env->log.level & BPF_LOG_LEVEL) {
4878 		verbose(env, "caller:\n");
4879 		print_verifier_state(env, caller);
4880 		verbose(env, "callee:\n");
4881 		print_verifier_state(env, callee);
4882 	}
4883 	return 0;
4884 }
4885 
4886 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4887 {
4888 	struct bpf_verifier_state *state = env->cur_state;
4889 	struct bpf_func_state *caller, *callee;
4890 	struct bpf_reg_state *r0;
4891 	int err;
4892 
4893 	callee = state->frame[state->curframe];
4894 	r0 = &callee->regs[BPF_REG_0];
4895 	if (r0->type == PTR_TO_STACK) {
4896 		/* technically it's ok to return caller's stack pointer
4897 		 * (or caller's caller's pointer) back to the caller,
4898 		 * since these pointers are valid. Only current stack
4899 		 * pointer will be invalid as soon as function exits,
4900 		 * but let's be conservative
4901 		 */
4902 		verbose(env, "cannot return stack pointer to the caller\n");
4903 		return -EINVAL;
4904 	}
4905 
4906 	state->curframe--;
4907 	caller = state->frame[state->curframe];
4908 	/* return to the caller whatever r0 had in the callee */
4909 	caller->regs[BPF_REG_0] = *r0;
4910 
4911 	/* Transfer references to the caller */
4912 	err = transfer_reference_state(caller, callee);
4913 	if (err)
4914 		return err;
4915 
4916 	*insn_idx = callee->callsite + 1;
4917 	if (env->log.level & BPF_LOG_LEVEL) {
4918 		verbose(env, "returning from callee:\n");
4919 		print_verifier_state(env, callee);
4920 		verbose(env, "to caller at %d:\n", *insn_idx);
4921 		print_verifier_state(env, caller);
4922 	}
4923 	/* clear everything in the callee */
4924 	free_func_state(callee);
4925 	state->frame[state->curframe + 1] = NULL;
4926 	return 0;
4927 }
4928 
4929 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4930 				   int func_id,
4931 				   struct bpf_call_arg_meta *meta)
4932 {
4933 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4934 
4935 	if (ret_type != RET_INTEGER ||
4936 	    (func_id != BPF_FUNC_get_stack &&
4937 	     func_id != BPF_FUNC_probe_read_str &&
4938 	     func_id != BPF_FUNC_probe_read_kernel_str &&
4939 	     func_id != BPF_FUNC_probe_read_user_str))
4940 		return;
4941 
4942 	ret_reg->smax_value = meta->msize_max_value;
4943 	ret_reg->s32_max_value = meta->msize_max_value;
4944 	ret_reg->smin_value = -MAX_ERRNO;
4945 	ret_reg->s32_min_value = -MAX_ERRNO;
4946 	__reg_deduce_bounds(ret_reg);
4947 	__reg_bound_offset(ret_reg);
4948 	__update_reg_bounds(ret_reg);
4949 }
4950 
4951 static int
4952 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4953 		int func_id, int insn_idx)
4954 {
4955 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4956 	struct bpf_map *map = meta->map_ptr;
4957 
4958 	if (func_id != BPF_FUNC_tail_call &&
4959 	    func_id != BPF_FUNC_map_lookup_elem &&
4960 	    func_id != BPF_FUNC_map_update_elem &&
4961 	    func_id != BPF_FUNC_map_delete_elem &&
4962 	    func_id != BPF_FUNC_map_push_elem &&
4963 	    func_id != BPF_FUNC_map_pop_elem &&
4964 	    func_id != BPF_FUNC_map_peek_elem)
4965 		return 0;
4966 
4967 	if (map == NULL) {
4968 		verbose(env, "kernel subsystem misconfigured verifier\n");
4969 		return -EINVAL;
4970 	}
4971 
4972 	/* In case of read-only, some additional restrictions
4973 	 * need to be applied in order to prevent altering the
4974 	 * state of the map from program side.
4975 	 */
4976 	if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4977 	    (func_id == BPF_FUNC_map_delete_elem ||
4978 	     func_id == BPF_FUNC_map_update_elem ||
4979 	     func_id == BPF_FUNC_map_push_elem ||
4980 	     func_id == BPF_FUNC_map_pop_elem)) {
4981 		verbose(env, "write into map forbidden\n");
4982 		return -EACCES;
4983 	}
4984 
4985 	if (!BPF_MAP_PTR(aux->map_ptr_state))
4986 		bpf_map_ptr_store(aux, meta->map_ptr,
4987 				  !meta->map_ptr->bypass_spec_v1);
4988 	else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4989 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4990 				  !meta->map_ptr->bypass_spec_v1);
4991 	return 0;
4992 }
4993 
4994 static int
4995 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4996 		int func_id, int insn_idx)
4997 {
4998 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4999 	struct bpf_reg_state *regs = cur_regs(env), *reg;
5000 	struct bpf_map *map = meta->map_ptr;
5001 	struct tnum range;
5002 	u64 val;
5003 	int err;
5004 
5005 	if (func_id != BPF_FUNC_tail_call)
5006 		return 0;
5007 	if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5008 		verbose(env, "kernel subsystem misconfigured verifier\n");
5009 		return -EINVAL;
5010 	}
5011 
5012 	range = tnum_range(0, map->max_entries - 1);
5013 	reg = &regs[BPF_REG_3];
5014 
5015 	if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5016 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5017 		return 0;
5018 	}
5019 
5020 	err = mark_chain_precision(env, BPF_REG_3);
5021 	if (err)
5022 		return err;
5023 
5024 	val = reg->var_off.value;
5025 	if (bpf_map_key_unseen(aux))
5026 		bpf_map_key_store(aux, val);
5027 	else if (!bpf_map_key_poisoned(aux) &&
5028 		  bpf_map_key_immediate(aux) != val)
5029 		bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5030 	return 0;
5031 }
5032 
5033 static int check_reference_leak(struct bpf_verifier_env *env)
5034 {
5035 	struct bpf_func_state *state = cur_func(env);
5036 	int i;
5037 
5038 	for (i = 0; i < state->acquired_refs; i++) {
5039 		verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5040 			state->refs[i].id, state->refs[i].insn_idx);
5041 	}
5042 	return state->acquired_refs ? -EINVAL : 0;
5043 }
5044 
5045 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5046 {
5047 	const struct bpf_func_proto *fn = NULL;
5048 	struct bpf_reg_state *regs;
5049 	struct bpf_call_arg_meta meta;
5050 	bool changes_data;
5051 	int i, err;
5052 
5053 	/* find function prototype */
5054 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5055 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5056 			func_id);
5057 		return -EINVAL;
5058 	}
5059 
5060 	if (env->ops->get_func_proto)
5061 		fn = env->ops->get_func_proto(func_id, env->prog);
5062 	if (!fn) {
5063 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5064 			func_id);
5065 		return -EINVAL;
5066 	}
5067 
5068 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
5069 	if (!env->prog->gpl_compatible && fn->gpl_only) {
5070 		verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5071 		return -EINVAL;
5072 	}
5073 
5074 	if (fn->allowed && !fn->allowed(env->prog)) {
5075 		verbose(env, "helper call is not allowed in probe\n");
5076 		return -EINVAL;
5077 	}
5078 
5079 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
5080 	changes_data = bpf_helper_changes_pkt_data(fn->func);
5081 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5082 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5083 			func_id_name(func_id), func_id);
5084 		return -EINVAL;
5085 	}
5086 
5087 	memset(&meta, 0, sizeof(meta));
5088 	meta.pkt_access = fn->pkt_access;
5089 
5090 	err = check_func_proto(fn, func_id);
5091 	if (err) {
5092 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5093 			func_id_name(func_id), func_id);
5094 		return err;
5095 	}
5096 
5097 	meta.func_id = func_id;
5098 	/* check args */
5099 	for (i = 0; i < 5; i++) {
5100 		err = check_func_arg(env, i, &meta, fn);
5101 		if (err)
5102 			return err;
5103 	}
5104 
5105 	err = record_func_map(env, &meta, func_id, insn_idx);
5106 	if (err)
5107 		return err;
5108 
5109 	err = record_func_key(env, &meta, func_id, insn_idx);
5110 	if (err)
5111 		return err;
5112 
5113 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
5114 	 * is inferred from register state.
5115 	 */
5116 	for (i = 0; i < meta.access_size; i++) {
5117 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5118 				       BPF_WRITE, -1, false);
5119 		if (err)
5120 			return err;
5121 	}
5122 
5123 	if (func_id == BPF_FUNC_tail_call) {
5124 		err = check_reference_leak(env);
5125 		if (err) {
5126 			verbose(env, "tail_call would lead to reference leak\n");
5127 			return err;
5128 		}
5129 	} else if (is_release_function(func_id)) {
5130 		err = release_reference(env, meta.ref_obj_id);
5131 		if (err) {
5132 			verbose(env, "func %s#%d reference has not been acquired before\n",
5133 				func_id_name(func_id), func_id);
5134 			return err;
5135 		}
5136 	}
5137 
5138 	regs = cur_regs(env);
5139 
5140 	/* check that flags argument in get_local_storage(map, flags) is 0,
5141 	 * this is required because get_local_storage() can't return an error.
5142 	 */
5143 	if (func_id == BPF_FUNC_get_local_storage &&
5144 	    !register_is_null(&regs[BPF_REG_2])) {
5145 		verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5146 		return -EINVAL;
5147 	}
5148 
5149 	/* reset caller saved regs */
5150 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
5151 		mark_reg_not_init(env, regs, caller_saved[i]);
5152 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5153 	}
5154 
5155 	/* helper call returns 64-bit value. */
5156 	regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5157 
5158 	/* update return register (already marked as written above) */
5159 	if (fn->ret_type == RET_INTEGER) {
5160 		/* sets type to SCALAR_VALUE */
5161 		mark_reg_unknown(env, regs, BPF_REG_0);
5162 	} else if (fn->ret_type == RET_VOID) {
5163 		regs[BPF_REG_0].type = NOT_INIT;
5164 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5165 		   fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5166 		/* There is no offset yet applied, variable or fixed */
5167 		mark_reg_known_zero(env, regs, BPF_REG_0);
5168 		/* remember map_ptr, so that check_map_access()
5169 		 * can check 'value_size' boundary of memory access
5170 		 * to map element returned from bpf_map_lookup_elem()
5171 		 */
5172 		if (meta.map_ptr == NULL) {
5173 			verbose(env,
5174 				"kernel subsystem misconfigured verifier\n");
5175 			return -EINVAL;
5176 		}
5177 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
5178 		if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5179 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5180 			if (map_value_has_spin_lock(meta.map_ptr))
5181 				regs[BPF_REG_0].id = ++env->id_gen;
5182 		} else {
5183 			regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5184 		}
5185 	} else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5186 		mark_reg_known_zero(env, regs, BPF_REG_0);
5187 		regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5188 	} else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5189 		mark_reg_known_zero(env, regs, BPF_REG_0);
5190 		regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5191 	} else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5192 		mark_reg_known_zero(env, regs, BPF_REG_0);
5193 		regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5194 	} else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5195 		mark_reg_known_zero(env, regs, BPF_REG_0);
5196 		regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5197 		regs[BPF_REG_0].mem_size = meta.mem_size;
5198 	} else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5199 		   fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5200 		const struct btf_type *t;
5201 
5202 		mark_reg_known_zero(env, regs, BPF_REG_0);
5203 		t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5204 		if (!btf_type_is_struct(t)) {
5205 			u32 tsize;
5206 			const struct btf_type *ret;
5207 			const char *tname;
5208 
5209 			/* resolve the type size of ksym. */
5210 			ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5211 			if (IS_ERR(ret)) {
5212 				tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5213 				verbose(env, "unable to resolve the size of type '%s': %ld\n",
5214 					tname, PTR_ERR(ret));
5215 				return -EINVAL;
5216 			}
5217 			regs[BPF_REG_0].type =
5218 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5219 				PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5220 			regs[BPF_REG_0].mem_size = tsize;
5221 		} else {
5222 			regs[BPF_REG_0].type =
5223 				fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5224 				PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5225 			regs[BPF_REG_0].btf = meta.ret_btf;
5226 			regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5227 		}
5228 	} else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5229 		   fn->ret_type == RET_PTR_TO_BTF_ID) {
5230 		int ret_btf_id;
5231 
5232 		mark_reg_known_zero(env, regs, BPF_REG_0);
5233 		regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5234 						     PTR_TO_BTF_ID :
5235 						     PTR_TO_BTF_ID_OR_NULL;
5236 		ret_btf_id = *fn->ret_btf_id;
5237 		if (ret_btf_id == 0) {
5238 			verbose(env, "invalid return type %d of func %s#%d\n",
5239 				fn->ret_type, func_id_name(func_id), func_id);
5240 			return -EINVAL;
5241 		}
5242 		/* current BPF helper definitions are only coming from
5243 		 * built-in code with type IDs from  vmlinux BTF
5244 		 */
5245 		regs[BPF_REG_0].btf = btf_vmlinux;
5246 		regs[BPF_REG_0].btf_id = ret_btf_id;
5247 	} else {
5248 		verbose(env, "unknown return type %d of func %s#%d\n",
5249 			fn->ret_type, func_id_name(func_id), func_id);
5250 		return -EINVAL;
5251 	}
5252 
5253 	if (reg_type_may_be_null(regs[BPF_REG_0].type))
5254 		regs[BPF_REG_0].id = ++env->id_gen;
5255 
5256 	if (is_ptr_cast_function(func_id)) {
5257 		/* For release_reference() */
5258 		regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5259 	} else if (is_acquire_function(func_id, meta.map_ptr)) {
5260 		int id = acquire_reference_state(env, insn_idx);
5261 
5262 		if (id < 0)
5263 			return id;
5264 		/* For mark_ptr_or_null_reg() */
5265 		regs[BPF_REG_0].id = id;
5266 		/* For release_reference() */
5267 		regs[BPF_REG_0].ref_obj_id = id;
5268 	}
5269 
5270 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5271 
5272 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5273 	if (err)
5274 		return err;
5275 
5276 	if ((func_id == BPF_FUNC_get_stack ||
5277 	     func_id == BPF_FUNC_get_task_stack) &&
5278 	    !env->prog->has_callchain_buf) {
5279 		const char *err_str;
5280 
5281 #ifdef CONFIG_PERF_EVENTS
5282 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
5283 		err_str = "cannot get callchain buffer for func %s#%d\n";
5284 #else
5285 		err = -ENOTSUPP;
5286 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5287 #endif
5288 		if (err) {
5289 			verbose(env, err_str, func_id_name(func_id), func_id);
5290 			return err;
5291 		}
5292 
5293 		env->prog->has_callchain_buf = true;
5294 	}
5295 
5296 	if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5297 		env->prog->call_get_stack = true;
5298 
5299 	if (changes_data)
5300 		clear_all_pkt_pointers(env);
5301 	return 0;
5302 }
5303 
5304 static bool signed_add_overflows(s64 a, s64 b)
5305 {
5306 	/* Do the add in u64, where overflow is well-defined */
5307 	s64 res = (s64)((u64)a + (u64)b);
5308 
5309 	if (b < 0)
5310 		return res > a;
5311 	return res < a;
5312 }
5313 
5314 static bool signed_add32_overflows(s64 a, s64 b)
5315 {
5316 	/* Do the add in u32, where overflow is well-defined */
5317 	s32 res = (s32)((u32)a + (u32)b);
5318 
5319 	if (b < 0)
5320 		return res > a;
5321 	return res < a;
5322 }
5323 
5324 static bool signed_sub_overflows(s32 a, s32 b)
5325 {
5326 	/* Do the sub in u64, where overflow is well-defined */
5327 	s64 res = (s64)((u64)a - (u64)b);
5328 
5329 	if (b < 0)
5330 		return res < a;
5331 	return res > a;
5332 }
5333 
5334 static bool signed_sub32_overflows(s32 a, s32 b)
5335 {
5336 	/* Do the sub in u64, where overflow is well-defined */
5337 	s32 res = (s32)((u32)a - (u32)b);
5338 
5339 	if (b < 0)
5340 		return res < a;
5341 	return res > a;
5342 }
5343 
5344 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5345 				  const struct bpf_reg_state *reg,
5346 				  enum bpf_reg_type type)
5347 {
5348 	bool known = tnum_is_const(reg->var_off);
5349 	s64 val = reg->var_off.value;
5350 	s64 smin = reg->smin_value;
5351 
5352 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5353 		verbose(env, "math between %s pointer and %lld is not allowed\n",
5354 			reg_type_str[type], val);
5355 		return false;
5356 	}
5357 
5358 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5359 		verbose(env, "%s pointer offset %d is not allowed\n",
5360 			reg_type_str[type], reg->off);
5361 		return false;
5362 	}
5363 
5364 	if (smin == S64_MIN) {
5365 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5366 			reg_type_str[type]);
5367 		return false;
5368 	}
5369 
5370 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5371 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
5372 			smin, reg_type_str[type]);
5373 		return false;
5374 	}
5375 
5376 	return true;
5377 }
5378 
5379 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5380 {
5381 	return &env->insn_aux_data[env->insn_idx];
5382 }
5383 
5384 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5385 			      u32 *ptr_limit, u8 opcode, bool off_is_neg)
5386 {
5387 	bool mask_to_left = (opcode == BPF_ADD &&  off_is_neg) ||
5388 			    (opcode == BPF_SUB && !off_is_neg);
5389 	u32 off;
5390 
5391 	switch (ptr_reg->type) {
5392 	case PTR_TO_STACK:
5393 		/* Indirect variable offset stack access is prohibited in
5394 		 * unprivileged mode so it's not handled here.
5395 		 */
5396 		off = ptr_reg->off + ptr_reg->var_off.value;
5397 		if (mask_to_left)
5398 			*ptr_limit = MAX_BPF_STACK + off;
5399 		else
5400 			*ptr_limit = -off;
5401 		return 0;
5402 	case PTR_TO_MAP_VALUE:
5403 		if (mask_to_left) {
5404 			*ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5405 		} else {
5406 			off = ptr_reg->smin_value + ptr_reg->off;
5407 			*ptr_limit = ptr_reg->map_ptr->value_size - off;
5408 		}
5409 		return 0;
5410 	default:
5411 		return -EINVAL;
5412 	}
5413 }
5414 
5415 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5416 				    const struct bpf_insn *insn)
5417 {
5418 	return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5419 }
5420 
5421 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5422 				       u32 alu_state, u32 alu_limit)
5423 {
5424 	/* If we arrived here from different branches with different
5425 	 * state or limits to sanitize, then this won't work.
5426 	 */
5427 	if (aux->alu_state &&
5428 	    (aux->alu_state != alu_state ||
5429 	     aux->alu_limit != alu_limit))
5430 		return -EACCES;
5431 
5432 	/* Corresponding fixup done in fixup_bpf_calls(). */
5433 	aux->alu_state = alu_state;
5434 	aux->alu_limit = alu_limit;
5435 	return 0;
5436 }
5437 
5438 static int sanitize_val_alu(struct bpf_verifier_env *env,
5439 			    struct bpf_insn *insn)
5440 {
5441 	struct bpf_insn_aux_data *aux = cur_aux(env);
5442 
5443 	if (can_skip_alu_sanitation(env, insn))
5444 		return 0;
5445 
5446 	return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5447 }
5448 
5449 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5450 			    struct bpf_insn *insn,
5451 			    const struct bpf_reg_state *ptr_reg,
5452 			    struct bpf_reg_state *dst_reg,
5453 			    bool off_is_neg)
5454 {
5455 	struct bpf_verifier_state *vstate = env->cur_state;
5456 	struct bpf_insn_aux_data *aux = cur_aux(env);
5457 	bool ptr_is_dst_reg = ptr_reg == dst_reg;
5458 	u8 opcode = BPF_OP(insn->code);
5459 	u32 alu_state, alu_limit;
5460 	struct bpf_reg_state tmp;
5461 	bool ret;
5462 
5463 	if (can_skip_alu_sanitation(env, insn))
5464 		return 0;
5465 
5466 	/* We already marked aux for masking from non-speculative
5467 	 * paths, thus we got here in the first place. We only care
5468 	 * to explore bad access from here.
5469 	 */
5470 	if (vstate->speculative)
5471 		goto do_sim;
5472 
5473 	alu_state  = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5474 	alu_state |= ptr_is_dst_reg ?
5475 		     BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5476 
5477 	if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5478 		return 0;
5479 	if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5480 		return -EACCES;
5481 do_sim:
5482 	/* Simulate and find potential out-of-bounds access under
5483 	 * speculative execution from truncation as a result of
5484 	 * masking when off was not within expected range. If off
5485 	 * sits in dst, then we temporarily need to move ptr there
5486 	 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5487 	 * for cases where we use K-based arithmetic in one direction
5488 	 * and truncated reg-based in the other in order to explore
5489 	 * bad access.
5490 	 */
5491 	if (!ptr_is_dst_reg) {
5492 		tmp = *dst_reg;
5493 		*dst_reg = *ptr_reg;
5494 	}
5495 	ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5496 	if (!ptr_is_dst_reg && ret)
5497 		*dst_reg = tmp;
5498 	return !ret ? -EFAULT : 0;
5499 }
5500 
5501 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5502  * Caller should also handle BPF_MOV case separately.
5503  * If we return -EACCES, caller may want to try again treating pointer as a
5504  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
5505  */
5506 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5507 				   struct bpf_insn *insn,
5508 				   const struct bpf_reg_state *ptr_reg,
5509 				   const struct bpf_reg_state *off_reg)
5510 {
5511 	struct bpf_verifier_state *vstate = env->cur_state;
5512 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
5513 	struct bpf_reg_state *regs = state->regs, *dst_reg;
5514 	bool known = tnum_is_const(off_reg->var_off);
5515 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5516 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5517 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5518 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5519 	u32 dst = insn->dst_reg, src = insn->src_reg;
5520 	u8 opcode = BPF_OP(insn->code);
5521 	int ret;
5522 
5523 	dst_reg = &regs[dst];
5524 
5525 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5526 	    smin_val > smax_val || umin_val > umax_val) {
5527 		/* Taint dst register if offset had invalid bounds derived from
5528 		 * e.g. dead branches.
5529 		 */
5530 		__mark_reg_unknown(env, dst_reg);
5531 		return 0;
5532 	}
5533 
5534 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
5535 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
5536 		if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5537 			__mark_reg_unknown(env, dst_reg);
5538 			return 0;
5539 		}
5540 
5541 		verbose(env,
5542 			"R%d 32-bit pointer arithmetic prohibited\n",
5543 			dst);
5544 		return -EACCES;
5545 	}
5546 
5547 	switch (ptr_reg->type) {
5548 	case PTR_TO_MAP_VALUE_OR_NULL:
5549 		verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5550 			dst, reg_type_str[ptr_reg->type]);
5551 		return -EACCES;
5552 	case CONST_PTR_TO_MAP:
5553 		/* smin_val represents the known value */
5554 		if (known && smin_val == 0 && opcode == BPF_ADD)
5555 			break;
5556 		fallthrough;
5557 	case PTR_TO_PACKET_END:
5558 	case PTR_TO_SOCKET:
5559 	case PTR_TO_SOCKET_OR_NULL:
5560 	case PTR_TO_SOCK_COMMON:
5561 	case PTR_TO_SOCK_COMMON_OR_NULL:
5562 	case PTR_TO_TCP_SOCK:
5563 	case PTR_TO_TCP_SOCK_OR_NULL:
5564 	case PTR_TO_XDP_SOCK:
5565 		verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5566 			dst, reg_type_str[ptr_reg->type]);
5567 		return -EACCES;
5568 	case PTR_TO_MAP_VALUE:
5569 		if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5570 			verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5571 				off_reg == dst_reg ? dst : src);
5572 			return -EACCES;
5573 		}
5574 		fallthrough;
5575 	default:
5576 		break;
5577 	}
5578 
5579 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5580 	 * The id may be overwritten later if we create a new variable offset.
5581 	 */
5582 	dst_reg->type = ptr_reg->type;
5583 	dst_reg->id = ptr_reg->id;
5584 
5585 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5586 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5587 		return -EINVAL;
5588 
5589 	/* pointer types do not carry 32-bit bounds at the moment. */
5590 	__mark_reg32_unbounded(dst_reg);
5591 
5592 	switch (opcode) {
5593 	case BPF_ADD:
5594 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5595 		if (ret < 0) {
5596 			verbose(env, "R%d tried to add from different maps or paths\n", dst);
5597 			return ret;
5598 		}
5599 		/* We can take a fixed offset as long as it doesn't overflow
5600 		 * the s32 'off' field
5601 		 */
5602 		if (known && (ptr_reg->off + smin_val ==
5603 			      (s64)(s32)(ptr_reg->off + smin_val))) {
5604 			/* pointer += K.  Accumulate it into fixed offset */
5605 			dst_reg->smin_value = smin_ptr;
5606 			dst_reg->smax_value = smax_ptr;
5607 			dst_reg->umin_value = umin_ptr;
5608 			dst_reg->umax_value = umax_ptr;
5609 			dst_reg->var_off = ptr_reg->var_off;
5610 			dst_reg->off = ptr_reg->off + smin_val;
5611 			dst_reg->raw = ptr_reg->raw;
5612 			break;
5613 		}
5614 		/* A new variable offset is created.  Note that off_reg->off
5615 		 * == 0, since it's a scalar.
5616 		 * dst_reg gets the pointer type and since some positive
5617 		 * integer value was added to the pointer, give it a new 'id'
5618 		 * if it's a PTR_TO_PACKET.
5619 		 * this creates a new 'base' pointer, off_reg (variable) gets
5620 		 * added into the variable offset, and we copy the fixed offset
5621 		 * from ptr_reg.
5622 		 */
5623 		if (signed_add_overflows(smin_ptr, smin_val) ||
5624 		    signed_add_overflows(smax_ptr, smax_val)) {
5625 			dst_reg->smin_value = S64_MIN;
5626 			dst_reg->smax_value = S64_MAX;
5627 		} else {
5628 			dst_reg->smin_value = smin_ptr + smin_val;
5629 			dst_reg->smax_value = smax_ptr + smax_val;
5630 		}
5631 		if (umin_ptr + umin_val < umin_ptr ||
5632 		    umax_ptr + umax_val < umax_ptr) {
5633 			dst_reg->umin_value = 0;
5634 			dst_reg->umax_value = U64_MAX;
5635 		} else {
5636 			dst_reg->umin_value = umin_ptr + umin_val;
5637 			dst_reg->umax_value = umax_ptr + umax_val;
5638 		}
5639 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5640 		dst_reg->off = ptr_reg->off;
5641 		dst_reg->raw = ptr_reg->raw;
5642 		if (reg_is_pkt_pointer(ptr_reg)) {
5643 			dst_reg->id = ++env->id_gen;
5644 			/* something was added to pkt_ptr, set range to zero */
5645 			memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5646 		}
5647 		break;
5648 	case BPF_SUB:
5649 		ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5650 		if (ret < 0) {
5651 			verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5652 			return ret;
5653 		}
5654 		if (dst_reg == off_reg) {
5655 			/* scalar -= pointer.  Creates an unknown scalar */
5656 			verbose(env, "R%d tried to subtract pointer from scalar\n",
5657 				dst);
5658 			return -EACCES;
5659 		}
5660 		/* We don't allow subtraction from FP, because (according to
5661 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
5662 		 * be able to deal with it.
5663 		 */
5664 		if (ptr_reg->type == PTR_TO_STACK) {
5665 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
5666 				dst);
5667 			return -EACCES;
5668 		}
5669 		if (known && (ptr_reg->off - smin_val ==
5670 			      (s64)(s32)(ptr_reg->off - smin_val))) {
5671 			/* pointer -= K.  Subtract it from fixed offset */
5672 			dst_reg->smin_value = smin_ptr;
5673 			dst_reg->smax_value = smax_ptr;
5674 			dst_reg->umin_value = umin_ptr;
5675 			dst_reg->umax_value = umax_ptr;
5676 			dst_reg->var_off = ptr_reg->var_off;
5677 			dst_reg->id = ptr_reg->id;
5678 			dst_reg->off = ptr_reg->off - smin_val;
5679 			dst_reg->raw = ptr_reg->raw;
5680 			break;
5681 		}
5682 		/* A new variable offset is created.  If the subtrahend is known
5683 		 * nonnegative, then any reg->range we had before is still good.
5684 		 */
5685 		if (signed_sub_overflows(smin_ptr, smax_val) ||
5686 		    signed_sub_overflows(smax_ptr, smin_val)) {
5687 			/* Overflow possible, we know nothing */
5688 			dst_reg->smin_value = S64_MIN;
5689 			dst_reg->smax_value = S64_MAX;
5690 		} else {
5691 			dst_reg->smin_value = smin_ptr - smax_val;
5692 			dst_reg->smax_value = smax_ptr - smin_val;
5693 		}
5694 		if (umin_ptr < umax_val) {
5695 			/* Overflow possible, we know nothing */
5696 			dst_reg->umin_value = 0;
5697 			dst_reg->umax_value = U64_MAX;
5698 		} else {
5699 			/* Cannot overflow (as long as bounds are consistent) */
5700 			dst_reg->umin_value = umin_ptr - umax_val;
5701 			dst_reg->umax_value = umax_ptr - umin_val;
5702 		}
5703 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5704 		dst_reg->off = ptr_reg->off;
5705 		dst_reg->raw = ptr_reg->raw;
5706 		if (reg_is_pkt_pointer(ptr_reg)) {
5707 			dst_reg->id = ++env->id_gen;
5708 			/* something was added to pkt_ptr, set range to zero */
5709 			if (smin_val < 0)
5710 				memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5711 		}
5712 		break;
5713 	case BPF_AND:
5714 	case BPF_OR:
5715 	case BPF_XOR:
5716 		/* bitwise ops on pointers are troublesome, prohibit. */
5717 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5718 			dst, bpf_alu_string[opcode >> 4]);
5719 		return -EACCES;
5720 	default:
5721 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
5722 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5723 			dst, bpf_alu_string[opcode >> 4]);
5724 		return -EACCES;
5725 	}
5726 
5727 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5728 		return -EINVAL;
5729 
5730 	__update_reg_bounds(dst_reg);
5731 	__reg_deduce_bounds(dst_reg);
5732 	__reg_bound_offset(dst_reg);
5733 
5734 	/* For unprivileged we require that resulting offset must be in bounds
5735 	 * in order to be able to sanitize access later on.
5736 	 */
5737 	if (!env->bypass_spec_v1) {
5738 		if (dst_reg->type == PTR_TO_MAP_VALUE &&
5739 		    check_map_access(env, dst, dst_reg->off, 1, false)) {
5740 			verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5741 				"prohibited for !root\n", dst);
5742 			return -EACCES;
5743 		} else if (dst_reg->type == PTR_TO_STACK &&
5744 			   check_stack_access(env, dst_reg, dst_reg->off +
5745 					      dst_reg->var_off.value, 1)) {
5746 			verbose(env, "R%d stack pointer arithmetic goes out of range, "
5747 				"prohibited for !root\n", dst);
5748 			return -EACCES;
5749 		}
5750 	}
5751 
5752 	return 0;
5753 }
5754 
5755 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5756 				 struct bpf_reg_state *src_reg)
5757 {
5758 	s32 smin_val = src_reg->s32_min_value;
5759 	s32 smax_val = src_reg->s32_max_value;
5760 	u32 umin_val = src_reg->u32_min_value;
5761 	u32 umax_val = src_reg->u32_max_value;
5762 
5763 	if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5764 	    signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5765 		dst_reg->s32_min_value = S32_MIN;
5766 		dst_reg->s32_max_value = S32_MAX;
5767 	} else {
5768 		dst_reg->s32_min_value += smin_val;
5769 		dst_reg->s32_max_value += smax_val;
5770 	}
5771 	if (dst_reg->u32_min_value + umin_val < umin_val ||
5772 	    dst_reg->u32_max_value + umax_val < umax_val) {
5773 		dst_reg->u32_min_value = 0;
5774 		dst_reg->u32_max_value = U32_MAX;
5775 	} else {
5776 		dst_reg->u32_min_value += umin_val;
5777 		dst_reg->u32_max_value += umax_val;
5778 	}
5779 }
5780 
5781 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5782 			       struct bpf_reg_state *src_reg)
5783 {
5784 	s64 smin_val = src_reg->smin_value;
5785 	s64 smax_val = src_reg->smax_value;
5786 	u64 umin_val = src_reg->umin_value;
5787 	u64 umax_val = src_reg->umax_value;
5788 
5789 	if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5790 	    signed_add_overflows(dst_reg->smax_value, smax_val)) {
5791 		dst_reg->smin_value = S64_MIN;
5792 		dst_reg->smax_value = S64_MAX;
5793 	} else {
5794 		dst_reg->smin_value += smin_val;
5795 		dst_reg->smax_value += smax_val;
5796 	}
5797 	if (dst_reg->umin_value + umin_val < umin_val ||
5798 	    dst_reg->umax_value + umax_val < umax_val) {
5799 		dst_reg->umin_value = 0;
5800 		dst_reg->umax_value = U64_MAX;
5801 	} else {
5802 		dst_reg->umin_value += umin_val;
5803 		dst_reg->umax_value += umax_val;
5804 	}
5805 }
5806 
5807 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5808 				 struct bpf_reg_state *src_reg)
5809 {
5810 	s32 smin_val = src_reg->s32_min_value;
5811 	s32 smax_val = src_reg->s32_max_value;
5812 	u32 umin_val = src_reg->u32_min_value;
5813 	u32 umax_val = src_reg->u32_max_value;
5814 
5815 	if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5816 	    signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5817 		/* Overflow possible, we know nothing */
5818 		dst_reg->s32_min_value = S32_MIN;
5819 		dst_reg->s32_max_value = S32_MAX;
5820 	} else {
5821 		dst_reg->s32_min_value -= smax_val;
5822 		dst_reg->s32_max_value -= smin_val;
5823 	}
5824 	if (dst_reg->u32_min_value < umax_val) {
5825 		/* Overflow possible, we know nothing */
5826 		dst_reg->u32_min_value = 0;
5827 		dst_reg->u32_max_value = U32_MAX;
5828 	} else {
5829 		/* Cannot overflow (as long as bounds are consistent) */
5830 		dst_reg->u32_min_value -= umax_val;
5831 		dst_reg->u32_max_value -= umin_val;
5832 	}
5833 }
5834 
5835 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5836 			       struct bpf_reg_state *src_reg)
5837 {
5838 	s64 smin_val = src_reg->smin_value;
5839 	s64 smax_val = src_reg->smax_value;
5840 	u64 umin_val = src_reg->umin_value;
5841 	u64 umax_val = src_reg->umax_value;
5842 
5843 	if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5844 	    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5845 		/* Overflow possible, we know nothing */
5846 		dst_reg->smin_value = S64_MIN;
5847 		dst_reg->smax_value = S64_MAX;
5848 	} else {
5849 		dst_reg->smin_value -= smax_val;
5850 		dst_reg->smax_value -= smin_val;
5851 	}
5852 	if (dst_reg->umin_value < umax_val) {
5853 		/* Overflow possible, we know nothing */
5854 		dst_reg->umin_value = 0;
5855 		dst_reg->umax_value = U64_MAX;
5856 	} else {
5857 		/* Cannot overflow (as long as bounds are consistent) */
5858 		dst_reg->umin_value -= umax_val;
5859 		dst_reg->umax_value -= umin_val;
5860 	}
5861 }
5862 
5863 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5864 				 struct bpf_reg_state *src_reg)
5865 {
5866 	s32 smin_val = src_reg->s32_min_value;
5867 	u32 umin_val = src_reg->u32_min_value;
5868 	u32 umax_val = src_reg->u32_max_value;
5869 
5870 	if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5871 		/* Ain't nobody got time to multiply that sign */
5872 		__mark_reg32_unbounded(dst_reg);
5873 		return;
5874 	}
5875 	/* Both values are positive, so we can work with unsigned and
5876 	 * copy the result to signed (unless it exceeds S32_MAX).
5877 	 */
5878 	if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5879 		/* Potential overflow, we know nothing */
5880 		__mark_reg32_unbounded(dst_reg);
5881 		return;
5882 	}
5883 	dst_reg->u32_min_value *= umin_val;
5884 	dst_reg->u32_max_value *= umax_val;
5885 	if (dst_reg->u32_max_value > S32_MAX) {
5886 		/* Overflow possible, we know nothing */
5887 		dst_reg->s32_min_value = S32_MIN;
5888 		dst_reg->s32_max_value = S32_MAX;
5889 	} else {
5890 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5891 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5892 	}
5893 }
5894 
5895 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5896 			       struct bpf_reg_state *src_reg)
5897 {
5898 	s64 smin_val = src_reg->smin_value;
5899 	u64 umin_val = src_reg->umin_value;
5900 	u64 umax_val = src_reg->umax_value;
5901 
5902 	if (smin_val < 0 || dst_reg->smin_value < 0) {
5903 		/* Ain't nobody got time to multiply that sign */
5904 		__mark_reg64_unbounded(dst_reg);
5905 		return;
5906 	}
5907 	/* Both values are positive, so we can work with unsigned and
5908 	 * copy the result to signed (unless it exceeds S64_MAX).
5909 	 */
5910 	if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5911 		/* Potential overflow, we know nothing */
5912 		__mark_reg64_unbounded(dst_reg);
5913 		return;
5914 	}
5915 	dst_reg->umin_value *= umin_val;
5916 	dst_reg->umax_value *= umax_val;
5917 	if (dst_reg->umax_value > S64_MAX) {
5918 		/* Overflow possible, we know nothing */
5919 		dst_reg->smin_value = S64_MIN;
5920 		dst_reg->smax_value = S64_MAX;
5921 	} else {
5922 		dst_reg->smin_value = dst_reg->umin_value;
5923 		dst_reg->smax_value = dst_reg->umax_value;
5924 	}
5925 }
5926 
5927 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5928 				 struct bpf_reg_state *src_reg)
5929 {
5930 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
5931 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5932 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5933 	s32 smin_val = src_reg->s32_min_value;
5934 	u32 umax_val = src_reg->u32_max_value;
5935 
5936 	/* Assuming scalar64_min_max_and will be called so its safe
5937 	 * to skip updating register for known 32-bit case.
5938 	 */
5939 	if (src_known && dst_known)
5940 		return;
5941 
5942 	/* We get our minimum from the var_off, since that's inherently
5943 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5944 	 */
5945 	dst_reg->u32_min_value = var32_off.value;
5946 	dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5947 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5948 		/* Lose signed bounds when ANDing negative numbers,
5949 		 * ain't nobody got time for that.
5950 		 */
5951 		dst_reg->s32_min_value = S32_MIN;
5952 		dst_reg->s32_max_value = S32_MAX;
5953 	} else {
5954 		/* ANDing two positives gives a positive, so safe to
5955 		 * cast result into s64.
5956 		 */
5957 		dst_reg->s32_min_value = dst_reg->u32_min_value;
5958 		dst_reg->s32_max_value = dst_reg->u32_max_value;
5959 	}
5960 
5961 }
5962 
5963 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5964 			       struct bpf_reg_state *src_reg)
5965 {
5966 	bool src_known = tnum_is_const(src_reg->var_off);
5967 	bool dst_known = tnum_is_const(dst_reg->var_off);
5968 	s64 smin_val = src_reg->smin_value;
5969 	u64 umax_val = src_reg->umax_value;
5970 
5971 	if (src_known && dst_known) {
5972 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
5973 		return;
5974 	}
5975 
5976 	/* We get our minimum from the var_off, since that's inherently
5977 	 * bitwise.  Our maximum is the minimum of the operands' maxima.
5978 	 */
5979 	dst_reg->umin_value = dst_reg->var_off.value;
5980 	dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5981 	if (dst_reg->smin_value < 0 || smin_val < 0) {
5982 		/* Lose signed bounds when ANDing negative numbers,
5983 		 * ain't nobody got time for that.
5984 		 */
5985 		dst_reg->smin_value = S64_MIN;
5986 		dst_reg->smax_value = S64_MAX;
5987 	} else {
5988 		/* ANDing two positives gives a positive, so safe to
5989 		 * cast result into s64.
5990 		 */
5991 		dst_reg->smin_value = dst_reg->umin_value;
5992 		dst_reg->smax_value = dst_reg->umax_value;
5993 	}
5994 	/* We may learn something more from the var_off */
5995 	__update_reg_bounds(dst_reg);
5996 }
5997 
5998 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
5999 				struct bpf_reg_state *src_reg)
6000 {
6001 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6002 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6003 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6004 	s32 smin_val = src_reg->s32_min_value;
6005 	u32 umin_val = src_reg->u32_min_value;
6006 
6007 	/* Assuming scalar64_min_max_or will be called so it is safe
6008 	 * to skip updating register for known case.
6009 	 */
6010 	if (src_known && dst_known)
6011 		return;
6012 
6013 	/* We get our maximum from the var_off, and our minimum is the
6014 	 * maximum of the operands' minima
6015 	 */
6016 	dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6017 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6018 	if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6019 		/* Lose signed bounds when ORing negative numbers,
6020 		 * ain't nobody got time for that.
6021 		 */
6022 		dst_reg->s32_min_value = S32_MIN;
6023 		dst_reg->s32_max_value = S32_MAX;
6024 	} else {
6025 		/* ORing two positives gives a positive, so safe to
6026 		 * cast result into s64.
6027 		 */
6028 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6029 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6030 	}
6031 }
6032 
6033 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6034 			      struct bpf_reg_state *src_reg)
6035 {
6036 	bool src_known = tnum_is_const(src_reg->var_off);
6037 	bool dst_known = tnum_is_const(dst_reg->var_off);
6038 	s64 smin_val = src_reg->smin_value;
6039 	u64 umin_val = src_reg->umin_value;
6040 
6041 	if (src_known && dst_known) {
6042 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6043 		return;
6044 	}
6045 
6046 	/* We get our maximum from the var_off, and our minimum is the
6047 	 * maximum of the operands' minima
6048 	 */
6049 	dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6050 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6051 	if (dst_reg->smin_value < 0 || smin_val < 0) {
6052 		/* Lose signed bounds when ORing negative numbers,
6053 		 * ain't nobody got time for that.
6054 		 */
6055 		dst_reg->smin_value = S64_MIN;
6056 		dst_reg->smax_value = S64_MAX;
6057 	} else {
6058 		/* ORing two positives gives a positive, so safe to
6059 		 * cast result into s64.
6060 		 */
6061 		dst_reg->smin_value = dst_reg->umin_value;
6062 		dst_reg->smax_value = dst_reg->umax_value;
6063 	}
6064 	/* We may learn something more from the var_off */
6065 	__update_reg_bounds(dst_reg);
6066 }
6067 
6068 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6069 				 struct bpf_reg_state *src_reg)
6070 {
6071 	bool src_known = tnum_subreg_is_const(src_reg->var_off);
6072 	bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6073 	struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6074 	s32 smin_val = src_reg->s32_min_value;
6075 
6076 	/* Assuming scalar64_min_max_xor will be called so it is safe
6077 	 * to skip updating register for known case.
6078 	 */
6079 	if (src_known && dst_known)
6080 		return;
6081 
6082 	/* We get both minimum and maximum from the var32_off. */
6083 	dst_reg->u32_min_value = var32_off.value;
6084 	dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6085 
6086 	if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6087 		/* XORing two positive sign numbers gives a positive,
6088 		 * so safe to cast u32 result into s32.
6089 		 */
6090 		dst_reg->s32_min_value = dst_reg->u32_min_value;
6091 		dst_reg->s32_max_value = dst_reg->u32_max_value;
6092 	} else {
6093 		dst_reg->s32_min_value = S32_MIN;
6094 		dst_reg->s32_max_value = S32_MAX;
6095 	}
6096 }
6097 
6098 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6099 			       struct bpf_reg_state *src_reg)
6100 {
6101 	bool src_known = tnum_is_const(src_reg->var_off);
6102 	bool dst_known = tnum_is_const(dst_reg->var_off);
6103 	s64 smin_val = src_reg->smin_value;
6104 
6105 	if (src_known && dst_known) {
6106 		/* dst_reg->var_off.value has been updated earlier */
6107 		__mark_reg_known(dst_reg, dst_reg->var_off.value);
6108 		return;
6109 	}
6110 
6111 	/* We get both minimum and maximum from the var_off. */
6112 	dst_reg->umin_value = dst_reg->var_off.value;
6113 	dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6114 
6115 	if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6116 		/* XORing two positive sign numbers gives a positive,
6117 		 * so safe to cast u64 result into s64.
6118 		 */
6119 		dst_reg->smin_value = dst_reg->umin_value;
6120 		dst_reg->smax_value = dst_reg->umax_value;
6121 	} else {
6122 		dst_reg->smin_value = S64_MIN;
6123 		dst_reg->smax_value = S64_MAX;
6124 	}
6125 
6126 	__update_reg_bounds(dst_reg);
6127 }
6128 
6129 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6130 				   u64 umin_val, u64 umax_val)
6131 {
6132 	/* We lose all sign bit information (except what we can pick
6133 	 * up from var_off)
6134 	 */
6135 	dst_reg->s32_min_value = S32_MIN;
6136 	dst_reg->s32_max_value = S32_MAX;
6137 	/* If we might shift our top bit out, then we know nothing */
6138 	if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6139 		dst_reg->u32_min_value = 0;
6140 		dst_reg->u32_max_value = U32_MAX;
6141 	} else {
6142 		dst_reg->u32_min_value <<= umin_val;
6143 		dst_reg->u32_max_value <<= umax_val;
6144 	}
6145 }
6146 
6147 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6148 				 struct bpf_reg_state *src_reg)
6149 {
6150 	u32 umax_val = src_reg->u32_max_value;
6151 	u32 umin_val = src_reg->u32_min_value;
6152 	/* u32 alu operation will zext upper bits */
6153 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6154 
6155 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6156 	dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6157 	/* Not required but being careful mark reg64 bounds as unknown so
6158 	 * that we are forced to pick them up from tnum and zext later and
6159 	 * if some path skips this step we are still safe.
6160 	 */
6161 	__mark_reg64_unbounded(dst_reg);
6162 	__update_reg32_bounds(dst_reg);
6163 }
6164 
6165 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6166 				   u64 umin_val, u64 umax_val)
6167 {
6168 	/* Special case <<32 because it is a common compiler pattern to sign
6169 	 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6170 	 * positive we know this shift will also be positive so we can track
6171 	 * bounds correctly. Otherwise we lose all sign bit information except
6172 	 * what we can pick up from var_off. Perhaps we can generalize this
6173 	 * later to shifts of any length.
6174 	 */
6175 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6176 		dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6177 	else
6178 		dst_reg->smax_value = S64_MAX;
6179 
6180 	if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6181 		dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6182 	else
6183 		dst_reg->smin_value = S64_MIN;
6184 
6185 	/* If we might shift our top bit out, then we know nothing */
6186 	if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6187 		dst_reg->umin_value = 0;
6188 		dst_reg->umax_value = U64_MAX;
6189 	} else {
6190 		dst_reg->umin_value <<= umin_val;
6191 		dst_reg->umax_value <<= umax_val;
6192 	}
6193 }
6194 
6195 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6196 			       struct bpf_reg_state *src_reg)
6197 {
6198 	u64 umax_val = src_reg->umax_value;
6199 	u64 umin_val = src_reg->umin_value;
6200 
6201 	/* scalar64 calc uses 32bit unshifted bounds so must be called first */
6202 	__scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6203 	__scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6204 
6205 	dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6206 	/* We may learn something more from the var_off */
6207 	__update_reg_bounds(dst_reg);
6208 }
6209 
6210 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6211 				 struct bpf_reg_state *src_reg)
6212 {
6213 	struct tnum subreg = tnum_subreg(dst_reg->var_off);
6214 	u32 umax_val = src_reg->u32_max_value;
6215 	u32 umin_val = src_reg->u32_min_value;
6216 
6217 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6218 	 * be negative, then either:
6219 	 * 1) src_reg might be zero, so the sign bit of the result is
6220 	 *    unknown, so we lose our signed bounds
6221 	 * 2) it's known negative, thus the unsigned bounds capture the
6222 	 *    signed bounds
6223 	 * 3) the signed bounds cross zero, so they tell us nothing
6224 	 *    about the result
6225 	 * If the value in dst_reg is known nonnegative, then again the
6226 	 * unsigned bounts capture the signed bounds.
6227 	 * Thus, in all cases it suffices to blow away our signed bounds
6228 	 * and rely on inferring new ones from the unsigned bounds and
6229 	 * var_off of the result.
6230 	 */
6231 	dst_reg->s32_min_value = S32_MIN;
6232 	dst_reg->s32_max_value = S32_MAX;
6233 
6234 	dst_reg->var_off = tnum_rshift(subreg, umin_val);
6235 	dst_reg->u32_min_value >>= umax_val;
6236 	dst_reg->u32_max_value >>= umin_val;
6237 
6238 	__mark_reg64_unbounded(dst_reg);
6239 	__update_reg32_bounds(dst_reg);
6240 }
6241 
6242 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6243 			       struct bpf_reg_state *src_reg)
6244 {
6245 	u64 umax_val = src_reg->umax_value;
6246 	u64 umin_val = src_reg->umin_value;
6247 
6248 	/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
6249 	 * be negative, then either:
6250 	 * 1) src_reg might be zero, so the sign bit of the result is
6251 	 *    unknown, so we lose our signed bounds
6252 	 * 2) it's known negative, thus the unsigned bounds capture the
6253 	 *    signed bounds
6254 	 * 3) the signed bounds cross zero, so they tell us nothing
6255 	 *    about the result
6256 	 * If the value in dst_reg is known nonnegative, then again the
6257 	 * unsigned bounts capture the signed bounds.
6258 	 * Thus, in all cases it suffices to blow away our signed bounds
6259 	 * and rely on inferring new ones from the unsigned bounds and
6260 	 * var_off of the result.
6261 	 */
6262 	dst_reg->smin_value = S64_MIN;
6263 	dst_reg->smax_value = S64_MAX;
6264 	dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6265 	dst_reg->umin_value >>= umax_val;
6266 	dst_reg->umax_value >>= umin_val;
6267 
6268 	/* Its not easy to operate on alu32 bounds here because it depends
6269 	 * on bits being shifted in. Take easy way out and mark unbounded
6270 	 * so we can recalculate later from tnum.
6271 	 */
6272 	__mark_reg32_unbounded(dst_reg);
6273 	__update_reg_bounds(dst_reg);
6274 }
6275 
6276 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6277 				  struct bpf_reg_state *src_reg)
6278 {
6279 	u64 umin_val = src_reg->u32_min_value;
6280 
6281 	/* Upon reaching here, src_known is true and
6282 	 * umax_val is equal to umin_val.
6283 	 */
6284 	dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6285 	dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6286 
6287 	dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6288 
6289 	/* blow away the dst_reg umin_value/umax_value and rely on
6290 	 * dst_reg var_off to refine the result.
6291 	 */
6292 	dst_reg->u32_min_value = 0;
6293 	dst_reg->u32_max_value = U32_MAX;
6294 
6295 	__mark_reg64_unbounded(dst_reg);
6296 	__update_reg32_bounds(dst_reg);
6297 }
6298 
6299 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6300 				struct bpf_reg_state *src_reg)
6301 {
6302 	u64 umin_val = src_reg->umin_value;
6303 
6304 	/* Upon reaching here, src_known is true and umax_val is equal
6305 	 * to umin_val.
6306 	 */
6307 	dst_reg->smin_value >>= umin_val;
6308 	dst_reg->smax_value >>= umin_val;
6309 
6310 	dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6311 
6312 	/* blow away the dst_reg umin_value/umax_value and rely on
6313 	 * dst_reg var_off to refine the result.
6314 	 */
6315 	dst_reg->umin_value = 0;
6316 	dst_reg->umax_value = U64_MAX;
6317 
6318 	/* Its not easy to operate on alu32 bounds here because it depends
6319 	 * on bits being shifted in from upper 32-bits. Take easy way out
6320 	 * and mark unbounded so we can recalculate later from tnum.
6321 	 */
6322 	__mark_reg32_unbounded(dst_reg);
6323 	__update_reg_bounds(dst_reg);
6324 }
6325 
6326 /* WARNING: This function does calculations on 64-bit values, but the actual
6327  * execution may occur on 32-bit values. Therefore, things like bitshifts
6328  * need extra checks in the 32-bit case.
6329  */
6330 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6331 				      struct bpf_insn *insn,
6332 				      struct bpf_reg_state *dst_reg,
6333 				      struct bpf_reg_state src_reg)
6334 {
6335 	struct bpf_reg_state *regs = cur_regs(env);
6336 	u8 opcode = BPF_OP(insn->code);
6337 	bool src_known;
6338 	s64 smin_val, smax_val;
6339 	u64 umin_val, umax_val;
6340 	s32 s32_min_val, s32_max_val;
6341 	u32 u32_min_val, u32_max_val;
6342 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6343 	u32 dst = insn->dst_reg;
6344 	int ret;
6345 	bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6346 
6347 	smin_val = src_reg.smin_value;
6348 	smax_val = src_reg.smax_value;
6349 	umin_val = src_reg.umin_value;
6350 	umax_val = src_reg.umax_value;
6351 
6352 	s32_min_val = src_reg.s32_min_value;
6353 	s32_max_val = src_reg.s32_max_value;
6354 	u32_min_val = src_reg.u32_min_value;
6355 	u32_max_val = src_reg.u32_max_value;
6356 
6357 	if (alu32) {
6358 		src_known = tnum_subreg_is_const(src_reg.var_off);
6359 		if ((src_known &&
6360 		     (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6361 		    s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6362 			/* Taint dst register if offset had invalid bounds
6363 			 * derived from e.g. dead branches.
6364 			 */
6365 			__mark_reg_unknown(env, dst_reg);
6366 			return 0;
6367 		}
6368 	} else {
6369 		src_known = tnum_is_const(src_reg.var_off);
6370 		if ((src_known &&
6371 		     (smin_val != smax_val || umin_val != umax_val)) ||
6372 		    smin_val > smax_val || umin_val > umax_val) {
6373 			/* Taint dst register if offset had invalid bounds
6374 			 * derived from e.g. dead branches.
6375 			 */
6376 			__mark_reg_unknown(env, dst_reg);
6377 			return 0;
6378 		}
6379 	}
6380 
6381 	if (!src_known &&
6382 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6383 		__mark_reg_unknown(env, dst_reg);
6384 		return 0;
6385 	}
6386 
6387 	/* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6388 	 * There are two classes of instructions: The first class we track both
6389 	 * alu32 and alu64 sign/unsigned bounds independently this provides the
6390 	 * greatest amount of precision when alu operations are mixed with jmp32
6391 	 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6392 	 * and BPF_OR. This is possible because these ops have fairly easy to
6393 	 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6394 	 * See alu32 verifier tests for examples. The second class of
6395 	 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6396 	 * with regards to tracking sign/unsigned bounds because the bits may
6397 	 * cross subreg boundaries in the alu64 case. When this happens we mark
6398 	 * the reg unbounded in the subreg bound space and use the resulting
6399 	 * tnum to calculate an approximation of the sign/unsigned bounds.
6400 	 */
6401 	switch (opcode) {
6402 	case BPF_ADD:
6403 		ret = sanitize_val_alu(env, insn);
6404 		if (ret < 0) {
6405 			verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6406 			return ret;
6407 		}
6408 		scalar32_min_max_add(dst_reg, &src_reg);
6409 		scalar_min_max_add(dst_reg, &src_reg);
6410 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6411 		break;
6412 	case BPF_SUB:
6413 		ret = sanitize_val_alu(env, insn);
6414 		if (ret < 0) {
6415 			verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6416 			return ret;
6417 		}
6418 		scalar32_min_max_sub(dst_reg, &src_reg);
6419 		scalar_min_max_sub(dst_reg, &src_reg);
6420 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6421 		break;
6422 	case BPF_MUL:
6423 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6424 		scalar32_min_max_mul(dst_reg, &src_reg);
6425 		scalar_min_max_mul(dst_reg, &src_reg);
6426 		break;
6427 	case BPF_AND:
6428 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6429 		scalar32_min_max_and(dst_reg, &src_reg);
6430 		scalar_min_max_and(dst_reg, &src_reg);
6431 		break;
6432 	case BPF_OR:
6433 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6434 		scalar32_min_max_or(dst_reg, &src_reg);
6435 		scalar_min_max_or(dst_reg, &src_reg);
6436 		break;
6437 	case BPF_XOR:
6438 		dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6439 		scalar32_min_max_xor(dst_reg, &src_reg);
6440 		scalar_min_max_xor(dst_reg, &src_reg);
6441 		break;
6442 	case BPF_LSH:
6443 		if (umax_val >= insn_bitness) {
6444 			/* Shifts greater than 31 or 63 are undefined.
6445 			 * This includes shifts by a negative number.
6446 			 */
6447 			mark_reg_unknown(env, regs, insn->dst_reg);
6448 			break;
6449 		}
6450 		if (alu32)
6451 			scalar32_min_max_lsh(dst_reg, &src_reg);
6452 		else
6453 			scalar_min_max_lsh(dst_reg, &src_reg);
6454 		break;
6455 	case BPF_RSH:
6456 		if (umax_val >= insn_bitness) {
6457 			/* Shifts greater than 31 or 63 are undefined.
6458 			 * This includes shifts by a negative number.
6459 			 */
6460 			mark_reg_unknown(env, regs, insn->dst_reg);
6461 			break;
6462 		}
6463 		if (alu32)
6464 			scalar32_min_max_rsh(dst_reg, &src_reg);
6465 		else
6466 			scalar_min_max_rsh(dst_reg, &src_reg);
6467 		break;
6468 	case BPF_ARSH:
6469 		if (umax_val >= insn_bitness) {
6470 			/* Shifts greater than 31 or 63 are undefined.
6471 			 * This includes shifts by a negative number.
6472 			 */
6473 			mark_reg_unknown(env, regs, insn->dst_reg);
6474 			break;
6475 		}
6476 		if (alu32)
6477 			scalar32_min_max_arsh(dst_reg, &src_reg);
6478 		else
6479 			scalar_min_max_arsh(dst_reg, &src_reg);
6480 		break;
6481 	default:
6482 		mark_reg_unknown(env, regs, insn->dst_reg);
6483 		break;
6484 	}
6485 
6486 	/* ALU32 ops are zero extended into 64bit register */
6487 	if (alu32)
6488 		zext_32_to_64(dst_reg);
6489 
6490 	__update_reg_bounds(dst_reg);
6491 	__reg_deduce_bounds(dst_reg);
6492 	__reg_bound_offset(dst_reg);
6493 	return 0;
6494 }
6495 
6496 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6497  * and var_off.
6498  */
6499 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6500 				   struct bpf_insn *insn)
6501 {
6502 	struct bpf_verifier_state *vstate = env->cur_state;
6503 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
6504 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6505 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6506 	u8 opcode = BPF_OP(insn->code);
6507 	int err;
6508 
6509 	dst_reg = &regs[insn->dst_reg];
6510 	src_reg = NULL;
6511 	if (dst_reg->type != SCALAR_VALUE)
6512 		ptr_reg = dst_reg;
6513 	else
6514 		/* Make sure ID is cleared otherwise dst_reg min/max could be
6515 		 * incorrectly propagated into other registers by find_equal_scalars()
6516 		 */
6517 		dst_reg->id = 0;
6518 	if (BPF_SRC(insn->code) == BPF_X) {
6519 		src_reg = &regs[insn->src_reg];
6520 		if (src_reg->type != SCALAR_VALUE) {
6521 			if (dst_reg->type != SCALAR_VALUE) {
6522 				/* Combining two pointers by any ALU op yields
6523 				 * an arbitrary scalar. Disallow all math except
6524 				 * pointer subtraction
6525 				 */
6526 				if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6527 					mark_reg_unknown(env, regs, insn->dst_reg);
6528 					return 0;
6529 				}
6530 				verbose(env, "R%d pointer %s pointer prohibited\n",
6531 					insn->dst_reg,
6532 					bpf_alu_string[opcode >> 4]);
6533 				return -EACCES;
6534 			} else {
6535 				/* scalar += pointer
6536 				 * This is legal, but we have to reverse our
6537 				 * src/dest handling in computing the range
6538 				 */
6539 				err = mark_chain_precision(env, insn->dst_reg);
6540 				if (err)
6541 					return err;
6542 				return adjust_ptr_min_max_vals(env, insn,
6543 							       src_reg, dst_reg);
6544 			}
6545 		} else if (ptr_reg) {
6546 			/* pointer += scalar */
6547 			err = mark_chain_precision(env, insn->src_reg);
6548 			if (err)
6549 				return err;
6550 			return adjust_ptr_min_max_vals(env, insn,
6551 						       dst_reg, src_reg);
6552 		}
6553 	} else {
6554 		/* Pretend the src is a reg with a known value, since we only
6555 		 * need to be able to read from this state.
6556 		 */
6557 		off_reg.type = SCALAR_VALUE;
6558 		__mark_reg_known(&off_reg, insn->imm);
6559 		src_reg = &off_reg;
6560 		if (ptr_reg) /* pointer += K */
6561 			return adjust_ptr_min_max_vals(env, insn,
6562 						       ptr_reg, src_reg);
6563 	}
6564 
6565 	/* Got here implies adding two SCALAR_VALUEs */
6566 	if (WARN_ON_ONCE(ptr_reg)) {
6567 		print_verifier_state(env, state);
6568 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
6569 		return -EINVAL;
6570 	}
6571 	if (WARN_ON(!src_reg)) {
6572 		print_verifier_state(env, state);
6573 		verbose(env, "verifier internal error: no src_reg\n");
6574 		return -EINVAL;
6575 	}
6576 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6577 }
6578 
6579 /* check validity of 32-bit and 64-bit arithmetic operations */
6580 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6581 {
6582 	struct bpf_reg_state *regs = cur_regs(env);
6583 	u8 opcode = BPF_OP(insn->code);
6584 	int err;
6585 
6586 	if (opcode == BPF_END || opcode == BPF_NEG) {
6587 		if (opcode == BPF_NEG) {
6588 			if (BPF_SRC(insn->code) != 0 ||
6589 			    insn->src_reg != BPF_REG_0 ||
6590 			    insn->off != 0 || insn->imm != 0) {
6591 				verbose(env, "BPF_NEG uses reserved fields\n");
6592 				return -EINVAL;
6593 			}
6594 		} else {
6595 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6596 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6597 			    BPF_CLASS(insn->code) == BPF_ALU64) {
6598 				verbose(env, "BPF_END uses reserved fields\n");
6599 				return -EINVAL;
6600 			}
6601 		}
6602 
6603 		/* check src operand */
6604 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6605 		if (err)
6606 			return err;
6607 
6608 		if (is_pointer_value(env, insn->dst_reg)) {
6609 			verbose(env, "R%d pointer arithmetic prohibited\n",
6610 				insn->dst_reg);
6611 			return -EACCES;
6612 		}
6613 
6614 		/* check dest operand */
6615 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
6616 		if (err)
6617 			return err;
6618 
6619 	} else if (opcode == BPF_MOV) {
6620 
6621 		if (BPF_SRC(insn->code) == BPF_X) {
6622 			if (insn->imm != 0 || insn->off != 0) {
6623 				verbose(env, "BPF_MOV uses reserved fields\n");
6624 				return -EINVAL;
6625 			}
6626 
6627 			/* check src operand */
6628 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6629 			if (err)
6630 				return err;
6631 		} else {
6632 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6633 				verbose(env, "BPF_MOV uses reserved fields\n");
6634 				return -EINVAL;
6635 			}
6636 		}
6637 
6638 		/* check dest operand, mark as required later */
6639 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6640 		if (err)
6641 			return err;
6642 
6643 		if (BPF_SRC(insn->code) == BPF_X) {
6644 			struct bpf_reg_state *src_reg = regs + insn->src_reg;
6645 			struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6646 
6647 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6648 				/* case: R1 = R2
6649 				 * copy register state to dest reg
6650 				 */
6651 				if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6652 					/* Assign src and dst registers the same ID
6653 					 * that will be used by find_equal_scalars()
6654 					 * to propagate min/max range.
6655 					 */
6656 					src_reg->id = ++env->id_gen;
6657 				*dst_reg = *src_reg;
6658 				dst_reg->live |= REG_LIVE_WRITTEN;
6659 				dst_reg->subreg_def = DEF_NOT_SUBREG;
6660 			} else {
6661 				/* R1 = (u32) R2 */
6662 				if (is_pointer_value(env, insn->src_reg)) {
6663 					verbose(env,
6664 						"R%d partial copy of pointer\n",
6665 						insn->src_reg);
6666 					return -EACCES;
6667 				} else if (src_reg->type == SCALAR_VALUE) {
6668 					*dst_reg = *src_reg;
6669 					/* Make sure ID is cleared otherwise
6670 					 * dst_reg min/max could be incorrectly
6671 					 * propagated into src_reg by find_equal_scalars()
6672 					 */
6673 					dst_reg->id = 0;
6674 					dst_reg->live |= REG_LIVE_WRITTEN;
6675 					dst_reg->subreg_def = env->insn_idx + 1;
6676 				} else {
6677 					mark_reg_unknown(env, regs,
6678 							 insn->dst_reg);
6679 				}
6680 				zext_32_to_64(dst_reg);
6681 			}
6682 		} else {
6683 			/* case: R = imm
6684 			 * remember the value we stored into this reg
6685 			 */
6686 			/* clear any state __mark_reg_known doesn't set */
6687 			mark_reg_unknown(env, regs, insn->dst_reg);
6688 			regs[insn->dst_reg].type = SCALAR_VALUE;
6689 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
6690 				__mark_reg_known(regs + insn->dst_reg,
6691 						 insn->imm);
6692 			} else {
6693 				__mark_reg_known(regs + insn->dst_reg,
6694 						 (u32)insn->imm);
6695 			}
6696 		}
6697 
6698 	} else if (opcode > BPF_END) {
6699 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6700 		return -EINVAL;
6701 
6702 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
6703 
6704 		if (BPF_SRC(insn->code) == BPF_X) {
6705 			if (insn->imm != 0 || insn->off != 0) {
6706 				verbose(env, "BPF_ALU uses reserved fields\n");
6707 				return -EINVAL;
6708 			}
6709 			/* check src1 operand */
6710 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
6711 			if (err)
6712 				return err;
6713 		} else {
6714 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6715 				verbose(env, "BPF_ALU uses reserved fields\n");
6716 				return -EINVAL;
6717 			}
6718 		}
6719 
6720 		/* check src2 operand */
6721 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6722 		if (err)
6723 			return err;
6724 
6725 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6726 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6727 			verbose(env, "div by zero\n");
6728 			return -EINVAL;
6729 		}
6730 
6731 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6732 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6733 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6734 
6735 			if (insn->imm < 0 || insn->imm >= size) {
6736 				verbose(env, "invalid shift %d\n", insn->imm);
6737 				return -EINVAL;
6738 			}
6739 		}
6740 
6741 		/* check dest operand */
6742 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6743 		if (err)
6744 			return err;
6745 
6746 		return adjust_reg_min_max_vals(env, insn);
6747 	}
6748 
6749 	return 0;
6750 }
6751 
6752 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6753 				     struct bpf_reg_state *dst_reg,
6754 				     enum bpf_reg_type type, int new_range)
6755 {
6756 	struct bpf_reg_state *reg;
6757 	int i;
6758 
6759 	for (i = 0; i < MAX_BPF_REG; i++) {
6760 		reg = &state->regs[i];
6761 		if (reg->type == type && reg->id == dst_reg->id)
6762 			/* keep the maximum range already checked */
6763 			reg->range = max(reg->range, new_range);
6764 	}
6765 
6766 	bpf_for_each_spilled_reg(i, state, reg) {
6767 		if (!reg)
6768 			continue;
6769 		if (reg->type == type && reg->id == dst_reg->id)
6770 			reg->range = max(reg->range, new_range);
6771 	}
6772 }
6773 
6774 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6775 				   struct bpf_reg_state *dst_reg,
6776 				   enum bpf_reg_type type,
6777 				   bool range_right_open)
6778 {
6779 	int new_range, i;
6780 
6781 	if (dst_reg->off < 0 ||
6782 	    (dst_reg->off == 0 && range_right_open))
6783 		/* This doesn't give us any range */
6784 		return;
6785 
6786 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
6787 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6788 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
6789 		 * than pkt_end, but that's because it's also less than pkt.
6790 		 */
6791 		return;
6792 
6793 	new_range = dst_reg->off;
6794 	if (range_right_open)
6795 		new_range--;
6796 
6797 	/* Examples for register markings:
6798 	 *
6799 	 * pkt_data in dst register:
6800 	 *
6801 	 *   r2 = r3;
6802 	 *   r2 += 8;
6803 	 *   if (r2 > pkt_end) goto <handle exception>
6804 	 *   <access okay>
6805 	 *
6806 	 *   r2 = r3;
6807 	 *   r2 += 8;
6808 	 *   if (r2 < pkt_end) goto <access okay>
6809 	 *   <handle exception>
6810 	 *
6811 	 *   Where:
6812 	 *     r2 == dst_reg, pkt_end == src_reg
6813 	 *     r2=pkt(id=n,off=8,r=0)
6814 	 *     r3=pkt(id=n,off=0,r=0)
6815 	 *
6816 	 * pkt_data in src register:
6817 	 *
6818 	 *   r2 = r3;
6819 	 *   r2 += 8;
6820 	 *   if (pkt_end >= r2) goto <access okay>
6821 	 *   <handle exception>
6822 	 *
6823 	 *   r2 = r3;
6824 	 *   r2 += 8;
6825 	 *   if (pkt_end <= r2) goto <handle exception>
6826 	 *   <access okay>
6827 	 *
6828 	 *   Where:
6829 	 *     pkt_end == dst_reg, r2 == src_reg
6830 	 *     r2=pkt(id=n,off=8,r=0)
6831 	 *     r3=pkt(id=n,off=0,r=0)
6832 	 *
6833 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6834 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6835 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
6836 	 * the check.
6837 	 */
6838 
6839 	/* If our ids match, then we must have the same max_value.  And we
6840 	 * don't care about the other reg's fixed offset, since if it's too big
6841 	 * the range won't allow anything.
6842 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6843 	 */
6844 	for (i = 0; i <= vstate->curframe; i++)
6845 		__find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6846 					 new_range);
6847 }
6848 
6849 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6850 {
6851 	struct tnum subreg = tnum_subreg(reg->var_off);
6852 	s32 sval = (s32)val;
6853 
6854 	switch (opcode) {
6855 	case BPF_JEQ:
6856 		if (tnum_is_const(subreg))
6857 			return !!tnum_equals_const(subreg, val);
6858 		break;
6859 	case BPF_JNE:
6860 		if (tnum_is_const(subreg))
6861 			return !tnum_equals_const(subreg, val);
6862 		break;
6863 	case BPF_JSET:
6864 		if ((~subreg.mask & subreg.value) & val)
6865 			return 1;
6866 		if (!((subreg.mask | subreg.value) & val))
6867 			return 0;
6868 		break;
6869 	case BPF_JGT:
6870 		if (reg->u32_min_value > val)
6871 			return 1;
6872 		else if (reg->u32_max_value <= val)
6873 			return 0;
6874 		break;
6875 	case BPF_JSGT:
6876 		if (reg->s32_min_value > sval)
6877 			return 1;
6878 		else if (reg->s32_max_value < sval)
6879 			return 0;
6880 		break;
6881 	case BPF_JLT:
6882 		if (reg->u32_max_value < val)
6883 			return 1;
6884 		else if (reg->u32_min_value >= val)
6885 			return 0;
6886 		break;
6887 	case BPF_JSLT:
6888 		if (reg->s32_max_value < sval)
6889 			return 1;
6890 		else if (reg->s32_min_value >= sval)
6891 			return 0;
6892 		break;
6893 	case BPF_JGE:
6894 		if (reg->u32_min_value >= val)
6895 			return 1;
6896 		else if (reg->u32_max_value < val)
6897 			return 0;
6898 		break;
6899 	case BPF_JSGE:
6900 		if (reg->s32_min_value >= sval)
6901 			return 1;
6902 		else if (reg->s32_max_value < sval)
6903 			return 0;
6904 		break;
6905 	case BPF_JLE:
6906 		if (reg->u32_max_value <= val)
6907 			return 1;
6908 		else if (reg->u32_min_value > val)
6909 			return 0;
6910 		break;
6911 	case BPF_JSLE:
6912 		if (reg->s32_max_value <= sval)
6913 			return 1;
6914 		else if (reg->s32_min_value > sval)
6915 			return 0;
6916 		break;
6917 	}
6918 
6919 	return -1;
6920 }
6921 
6922 
6923 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6924 {
6925 	s64 sval = (s64)val;
6926 
6927 	switch (opcode) {
6928 	case BPF_JEQ:
6929 		if (tnum_is_const(reg->var_off))
6930 			return !!tnum_equals_const(reg->var_off, val);
6931 		break;
6932 	case BPF_JNE:
6933 		if (tnum_is_const(reg->var_off))
6934 			return !tnum_equals_const(reg->var_off, val);
6935 		break;
6936 	case BPF_JSET:
6937 		if ((~reg->var_off.mask & reg->var_off.value) & val)
6938 			return 1;
6939 		if (!((reg->var_off.mask | reg->var_off.value) & val))
6940 			return 0;
6941 		break;
6942 	case BPF_JGT:
6943 		if (reg->umin_value > val)
6944 			return 1;
6945 		else if (reg->umax_value <= val)
6946 			return 0;
6947 		break;
6948 	case BPF_JSGT:
6949 		if (reg->smin_value > sval)
6950 			return 1;
6951 		else if (reg->smax_value < sval)
6952 			return 0;
6953 		break;
6954 	case BPF_JLT:
6955 		if (reg->umax_value < val)
6956 			return 1;
6957 		else if (reg->umin_value >= val)
6958 			return 0;
6959 		break;
6960 	case BPF_JSLT:
6961 		if (reg->smax_value < sval)
6962 			return 1;
6963 		else if (reg->smin_value >= sval)
6964 			return 0;
6965 		break;
6966 	case BPF_JGE:
6967 		if (reg->umin_value >= val)
6968 			return 1;
6969 		else if (reg->umax_value < val)
6970 			return 0;
6971 		break;
6972 	case BPF_JSGE:
6973 		if (reg->smin_value >= sval)
6974 			return 1;
6975 		else if (reg->smax_value < sval)
6976 			return 0;
6977 		break;
6978 	case BPF_JLE:
6979 		if (reg->umax_value <= val)
6980 			return 1;
6981 		else if (reg->umin_value > val)
6982 			return 0;
6983 		break;
6984 	case BPF_JSLE:
6985 		if (reg->smax_value <= sval)
6986 			return 1;
6987 		else if (reg->smin_value > sval)
6988 			return 0;
6989 		break;
6990 	}
6991 
6992 	return -1;
6993 }
6994 
6995 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6996  * and return:
6997  *  1 - branch will be taken and "goto target" will be executed
6998  *  0 - branch will not be taken and fall-through to next insn
6999  * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7000  *      range [0,10]
7001  */
7002 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7003 			   bool is_jmp32)
7004 {
7005 	if (__is_pointer_value(false, reg)) {
7006 		if (!reg_type_not_null(reg->type))
7007 			return -1;
7008 
7009 		/* If pointer is valid tests against zero will fail so we can
7010 		 * use this to direct branch taken.
7011 		 */
7012 		if (val != 0)
7013 			return -1;
7014 
7015 		switch (opcode) {
7016 		case BPF_JEQ:
7017 			return 0;
7018 		case BPF_JNE:
7019 			return 1;
7020 		default:
7021 			return -1;
7022 		}
7023 	}
7024 
7025 	if (is_jmp32)
7026 		return is_branch32_taken(reg, val, opcode);
7027 	return is_branch64_taken(reg, val, opcode);
7028 }
7029 
7030 static int flip_opcode(u32 opcode)
7031 {
7032 	/* How can we transform "a <op> b" into "b <op> a"? */
7033 	static const u8 opcode_flip[16] = {
7034 		/* these stay the same */
7035 		[BPF_JEQ  >> 4] = BPF_JEQ,
7036 		[BPF_JNE  >> 4] = BPF_JNE,
7037 		[BPF_JSET >> 4] = BPF_JSET,
7038 		/* these swap "lesser" and "greater" (L and G in the opcodes) */
7039 		[BPF_JGE  >> 4] = BPF_JLE,
7040 		[BPF_JGT  >> 4] = BPF_JLT,
7041 		[BPF_JLE  >> 4] = BPF_JGE,
7042 		[BPF_JLT  >> 4] = BPF_JGT,
7043 		[BPF_JSGE >> 4] = BPF_JSLE,
7044 		[BPF_JSGT >> 4] = BPF_JSLT,
7045 		[BPF_JSLE >> 4] = BPF_JSGE,
7046 		[BPF_JSLT >> 4] = BPF_JSGT
7047 	};
7048 	return opcode_flip[opcode >> 4];
7049 }
7050 
7051 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7052 				   struct bpf_reg_state *src_reg,
7053 				   u8 opcode)
7054 {
7055 	struct bpf_reg_state *pkt;
7056 
7057 	if (src_reg->type == PTR_TO_PACKET_END) {
7058 		pkt = dst_reg;
7059 	} else if (dst_reg->type == PTR_TO_PACKET_END) {
7060 		pkt = src_reg;
7061 		opcode = flip_opcode(opcode);
7062 	} else {
7063 		return -1;
7064 	}
7065 
7066 	if (pkt->range >= 0)
7067 		return -1;
7068 
7069 	switch (opcode) {
7070 	case BPF_JLE:
7071 		/* pkt <= pkt_end */
7072 		fallthrough;
7073 	case BPF_JGT:
7074 		/* pkt > pkt_end */
7075 		if (pkt->range == BEYOND_PKT_END)
7076 			/* pkt has at last one extra byte beyond pkt_end */
7077 			return opcode == BPF_JGT;
7078 		break;
7079 	case BPF_JLT:
7080 		/* pkt < pkt_end */
7081 		fallthrough;
7082 	case BPF_JGE:
7083 		/* pkt >= pkt_end */
7084 		if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7085 			return opcode == BPF_JGE;
7086 		break;
7087 	}
7088 	return -1;
7089 }
7090 
7091 /* Adjusts the register min/max values in the case that the dst_reg is the
7092  * variable register that we are working on, and src_reg is a constant or we're
7093  * simply doing a BPF_K check.
7094  * In JEQ/JNE cases we also adjust the var_off values.
7095  */
7096 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7097 			    struct bpf_reg_state *false_reg,
7098 			    u64 val, u32 val32,
7099 			    u8 opcode, bool is_jmp32)
7100 {
7101 	struct tnum false_32off = tnum_subreg(false_reg->var_off);
7102 	struct tnum false_64off = false_reg->var_off;
7103 	struct tnum true_32off = tnum_subreg(true_reg->var_off);
7104 	struct tnum true_64off = true_reg->var_off;
7105 	s64 sval = (s64)val;
7106 	s32 sval32 = (s32)val32;
7107 
7108 	/* If the dst_reg is a pointer, we can't learn anything about its
7109 	 * variable offset from the compare (unless src_reg were a pointer into
7110 	 * the same object, but we don't bother with that.
7111 	 * Since false_reg and true_reg have the same type by construction, we
7112 	 * only need to check one of them for pointerness.
7113 	 */
7114 	if (__is_pointer_value(false, false_reg))
7115 		return;
7116 
7117 	switch (opcode) {
7118 	case BPF_JEQ:
7119 	case BPF_JNE:
7120 	{
7121 		struct bpf_reg_state *reg =
7122 			opcode == BPF_JEQ ? true_reg : false_reg;
7123 
7124 		/* JEQ/JNE comparison doesn't change the register equivalence.
7125 		 * r1 = r2;
7126 		 * if (r1 == 42) goto label;
7127 		 * ...
7128 		 * label: // here both r1 and r2 are known to be 42.
7129 		 *
7130 		 * Hence when marking register as known preserve it's ID.
7131 		 */
7132 		if (is_jmp32)
7133 			__mark_reg32_known(reg, val32);
7134 		else
7135 			___mark_reg_known(reg, val);
7136 		break;
7137 	}
7138 	case BPF_JSET:
7139 		if (is_jmp32) {
7140 			false_32off = tnum_and(false_32off, tnum_const(~val32));
7141 			if (is_power_of_2(val32))
7142 				true_32off = tnum_or(true_32off,
7143 						     tnum_const(val32));
7144 		} else {
7145 			false_64off = tnum_and(false_64off, tnum_const(~val));
7146 			if (is_power_of_2(val))
7147 				true_64off = tnum_or(true_64off,
7148 						     tnum_const(val));
7149 		}
7150 		break;
7151 	case BPF_JGE:
7152 	case BPF_JGT:
7153 	{
7154 		if (is_jmp32) {
7155 			u32 false_umax = opcode == BPF_JGT ? val32  : val32 - 1;
7156 			u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7157 
7158 			false_reg->u32_max_value = min(false_reg->u32_max_value,
7159 						       false_umax);
7160 			true_reg->u32_min_value = max(true_reg->u32_min_value,
7161 						      true_umin);
7162 		} else {
7163 			u64 false_umax = opcode == BPF_JGT ? val    : val - 1;
7164 			u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7165 
7166 			false_reg->umax_value = min(false_reg->umax_value, false_umax);
7167 			true_reg->umin_value = max(true_reg->umin_value, true_umin);
7168 		}
7169 		break;
7170 	}
7171 	case BPF_JSGE:
7172 	case BPF_JSGT:
7173 	{
7174 		if (is_jmp32) {
7175 			s32 false_smax = opcode == BPF_JSGT ? sval32    : sval32 - 1;
7176 			s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7177 
7178 			false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7179 			true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7180 		} else {
7181 			s64 false_smax = opcode == BPF_JSGT ? sval    : sval - 1;
7182 			s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7183 
7184 			false_reg->smax_value = min(false_reg->smax_value, false_smax);
7185 			true_reg->smin_value = max(true_reg->smin_value, true_smin);
7186 		}
7187 		break;
7188 	}
7189 	case BPF_JLE:
7190 	case BPF_JLT:
7191 	{
7192 		if (is_jmp32) {
7193 			u32 false_umin = opcode == BPF_JLT ? val32  : val32 + 1;
7194 			u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7195 
7196 			false_reg->u32_min_value = max(false_reg->u32_min_value,
7197 						       false_umin);
7198 			true_reg->u32_max_value = min(true_reg->u32_max_value,
7199 						      true_umax);
7200 		} else {
7201 			u64 false_umin = opcode == BPF_JLT ? val    : val + 1;
7202 			u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7203 
7204 			false_reg->umin_value = max(false_reg->umin_value, false_umin);
7205 			true_reg->umax_value = min(true_reg->umax_value, true_umax);
7206 		}
7207 		break;
7208 	}
7209 	case BPF_JSLE:
7210 	case BPF_JSLT:
7211 	{
7212 		if (is_jmp32) {
7213 			s32 false_smin = opcode == BPF_JSLT ? sval32    : sval32 + 1;
7214 			s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7215 
7216 			false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7217 			true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7218 		} else {
7219 			s64 false_smin = opcode == BPF_JSLT ? sval    : sval + 1;
7220 			s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7221 
7222 			false_reg->smin_value = max(false_reg->smin_value, false_smin);
7223 			true_reg->smax_value = min(true_reg->smax_value, true_smax);
7224 		}
7225 		break;
7226 	}
7227 	default:
7228 		return;
7229 	}
7230 
7231 	if (is_jmp32) {
7232 		false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7233 					     tnum_subreg(false_32off));
7234 		true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7235 					    tnum_subreg(true_32off));
7236 		__reg_combine_32_into_64(false_reg);
7237 		__reg_combine_32_into_64(true_reg);
7238 	} else {
7239 		false_reg->var_off = false_64off;
7240 		true_reg->var_off = true_64off;
7241 		__reg_combine_64_into_32(false_reg);
7242 		__reg_combine_64_into_32(true_reg);
7243 	}
7244 }
7245 
7246 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7247  * the variable reg.
7248  */
7249 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7250 				struct bpf_reg_state *false_reg,
7251 				u64 val, u32 val32,
7252 				u8 opcode, bool is_jmp32)
7253 {
7254 	opcode = flip_opcode(opcode);
7255 	/* This uses zero as "not present in table"; luckily the zero opcode,
7256 	 * BPF_JA, can't get here.
7257 	 */
7258 	if (opcode)
7259 		reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7260 }
7261 
7262 /* Regs are known to be equal, so intersect their min/max/var_off */
7263 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7264 				  struct bpf_reg_state *dst_reg)
7265 {
7266 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7267 							dst_reg->umin_value);
7268 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7269 							dst_reg->umax_value);
7270 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7271 							dst_reg->smin_value);
7272 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7273 							dst_reg->smax_value);
7274 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7275 							     dst_reg->var_off);
7276 	/* We might have learned new bounds from the var_off. */
7277 	__update_reg_bounds(src_reg);
7278 	__update_reg_bounds(dst_reg);
7279 	/* We might have learned something about the sign bit. */
7280 	__reg_deduce_bounds(src_reg);
7281 	__reg_deduce_bounds(dst_reg);
7282 	/* We might have learned some bits from the bounds. */
7283 	__reg_bound_offset(src_reg);
7284 	__reg_bound_offset(dst_reg);
7285 	/* Intersecting with the old var_off might have improved our bounds
7286 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7287 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
7288 	 */
7289 	__update_reg_bounds(src_reg);
7290 	__update_reg_bounds(dst_reg);
7291 }
7292 
7293 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7294 				struct bpf_reg_state *true_dst,
7295 				struct bpf_reg_state *false_src,
7296 				struct bpf_reg_state *false_dst,
7297 				u8 opcode)
7298 {
7299 	switch (opcode) {
7300 	case BPF_JEQ:
7301 		__reg_combine_min_max(true_src, true_dst);
7302 		break;
7303 	case BPF_JNE:
7304 		__reg_combine_min_max(false_src, false_dst);
7305 		break;
7306 	}
7307 }
7308 
7309 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7310 				 struct bpf_reg_state *reg, u32 id,
7311 				 bool is_null)
7312 {
7313 	if (reg_type_may_be_null(reg->type) && reg->id == id &&
7314 	    !WARN_ON_ONCE(!reg->id)) {
7315 		/* Old offset (both fixed and variable parts) should
7316 		 * have been known-zero, because we don't allow pointer
7317 		 * arithmetic on pointers that might be NULL.
7318 		 */
7319 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7320 				 !tnum_equals_const(reg->var_off, 0) ||
7321 				 reg->off)) {
7322 			__mark_reg_known_zero(reg);
7323 			reg->off = 0;
7324 		}
7325 		if (is_null) {
7326 			reg->type = SCALAR_VALUE;
7327 		} else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7328 			const struct bpf_map *map = reg->map_ptr;
7329 
7330 			if (map->inner_map_meta) {
7331 				reg->type = CONST_PTR_TO_MAP;
7332 				reg->map_ptr = map->inner_map_meta;
7333 			} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7334 				reg->type = PTR_TO_XDP_SOCK;
7335 			} else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7336 				   map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7337 				reg->type = PTR_TO_SOCKET;
7338 			} else {
7339 				reg->type = PTR_TO_MAP_VALUE;
7340 			}
7341 		} else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7342 			reg->type = PTR_TO_SOCKET;
7343 		} else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7344 			reg->type = PTR_TO_SOCK_COMMON;
7345 		} else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7346 			reg->type = PTR_TO_TCP_SOCK;
7347 		} else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7348 			reg->type = PTR_TO_BTF_ID;
7349 		} else if (reg->type == PTR_TO_MEM_OR_NULL) {
7350 			reg->type = PTR_TO_MEM;
7351 		} else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7352 			reg->type = PTR_TO_RDONLY_BUF;
7353 		} else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7354 			reg->type = PTR_TO_RDWR_BUF;
7355 		}
7356 		if (is_null) {
7357 			/* We don't need id and ref_obj_id from this point
7358 			 * onwards anymore, thus we should better reset it,
7359 			 * so that state pruning has chances to take effect.
7360 			 */
7361 			reg->id = 0;
7362 			reg->ref_obj_id = 0;
7363 		} else if (!reg_may_point_to_spin_lock(reg)) {
7364 			/* For not-NULL ptr, reg->ref_obj_id will be reset
7365 			 * in release_reg_references().
7366 			 *
7367 			 * reg->id is still used by spin_lock ptr. Other
7368 			 * than spin_lock ptr type, reg->id can be reset.
7369 			 */
7370 			reg->id = 0;
7371 		}
7372 	}
7373 }
7374 
7375 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7376 				    bool is_null)
7377 {
7378 	struct bpf_reg_state *reg;
7379 	int i;
7380 
7381 	for (i = 0; i < MAX_BPF_REG; i++)
7382 		mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7383 
7384 	bpf_for_each_spilled_reg(i, state, reg) {
7385 		if (!reg)
7386 			continue;
7387 		mark_ptr_or_null_reg(state, reg, id, is_null);
7388 	}
7389 }
7390 
7391 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7392  * be folded together at some point.
7393  */
7394 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7395 				  bool is_null)
7396 {
7397 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
7398 	struct bpf_reg_state *regs = state->regs;
7399 	u32 ref_obj_id = regs[regno].ref_obj_id;
7400 	u32 id = regs[regno].id;
7401 	int i;
7402 
7403 	if (ref_obj_id && ref_obj_id == id && is_null)
7404 		/* regs[regno] is in the " == NULL" branch.
7405 		 * No one could have freed the reference state before
7406 		 * doing the NULL check.
7407 		 */
7408 		WARN_ON_ONCE(release_reference_state(state, id));
7409 
7410 	for (i = 0; i <= vstate->curframe; i++)
7411 		__mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7412 }
7413 
7414 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7415 				   struct bpf_reg_state *dst_reg,
7416 				   struct bpf_reg_state *src_reg,
7417 				   struct bpf_verifier_state *this_branch,
7418 				   struct bpf_verifier_state *other_branch)
7419 {
7420 	if (BPF_SRC(insn->code) != BPF_X)
7421 		return false;
7422 
7423 	/* Pointers are always 64-bit. */
7424 	if (BPF_CLASS(insn->code) == BPF_JMP32)
7425 		return false;
7426 
7427 	switch (BPF_OP(insn->code)) {
7428 	case BPF_JGT:
7429 		if ((dst_reg->type == PTR_TO_PACKET &&
7430 		     src_reg->type == PTR_TO_PACKET_END) ||
7431 		    (dst_reg->type == PTR_TO_PACKET_META &&
7432 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7433 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7434 			find_good_pkt_pointers(this_branch, dst_reg,
7435 					       dst_reg->type, false);
7436 			mark_pkt_end(other_branch, insn->dst_reg, true);
7437 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7438 			    src_reg->type == PTR_TO_PACKET) ||
7439 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7440 			    src_reg->type == PTR_TO_PACKET_META)) {
7441 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
7442 			find_good_pkt_pointers(other_branch, src_reg,
7443 					       src_reg->type, true);
7444 			mark_pkt_end(this_branch, insn->src_reg, false);
7445 		} else {
7446 			return false;
7447 		}
7448 		break;
7449 	case BPF_JLT:
7450 		if ((dst_reg->type == PTR_TO_PACKET &&
7451 		     src_reg->type == PTR_TO_PACKET_END) ||
7452 		    (dst_reg->type == PTR_TO_PACKET_META &&
7453 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7454 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7455 			find_good_pkt_pointers(other_branch, dst_reg,
7456 					       dst_reg->type, true);
7457 			mark_pkt_end(this_branch, insn->dst_reg, false);
7458 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7459 			    src_reg->type == PTR_TO_PACKET) ||
7460 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7461 			    src_reg->type == PTR_TO_PACKET_META)) {
7462 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
7463 			find_good_pkt_pointers(this_branch, src_reg,
7464 					       src_reg->type, false);
7465 			mark_pkt_end(other_branch, insn->src_reg, true);
7466 		} else {
7467 			return false;
7468 		}
7469 		break;
7470 	case BPF_JGE:
7471 		if ((dst_reg->type == PTR_TO_PACKET &&
7472 		     src_reg->type == PTR_TO_PACKET_END) ||
7473 		    (dst_reg->type == PTR_TO_PACKET_META &&
7474 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7475 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7476 			find_good_pkt_pointers(this_branch, dst_reg,
7477 					       dst_reg->type, true);
7478 			mark_pkt_end(other_branch, insn->dst_reg, false);
7479 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7480 			    src_reg->type == PTR_TO_PACKET) ||
7481 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7482 			    src_reg->type == PTR_TO_PACKET_META)) {
7483 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7484 			find_good_pkt_pointers(other_branch, src_reg,
7485 					       src_reg->type, false);
7486 			mark_pkt_end(this_branch, insn->src_reg, true);
7487 		} else {
7488 			return false;
7489 		}
7490 		break;
7491 	case BPF_JLE:
7492 		if ((dst_reg->type == PTR_TO_PACKET &&
7493 		     src_reg->type == PTR_TO_PACKET_END) ||
7494 		    (dst_reg->type == PTR_TO_PACKET_META &&
7495 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7496 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7497 			find_good_pkt_pointers(other_branch, dst_reg,
7498 					       dst_reg->type, false);
7499 			mark_pkt_end(this_branch, insn->dst_reg, true);
7500 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
7501 			    src_reg->type == PTR_TO_PACKET) ||
7502 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7503 			    src_reg->type == PTR_TO_PACKET_META)) {
7504 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7505 			find_good_pkt_pointers(this_branch, src_reg,
7506 					       src_reg->type, true);
7507 			mark_pkt_end(other_branch, insn->src_reg, false);
7508 		} else {
7509 			return false;
7510 		}
7511 		break;
7512 	default:
7513 		return false;
7514 	}
7515 
7516 	return true;
7517 }
7518 
7519 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7520 			       struct bpf_reg_state *known_reg)
7521 {
7522 	struct bpf_func_state *state;
7523 	struct bpf_reg_state *reg;
7524 	int i, j;
7525 
7526 	for (i = 0; i <= vstate->curframe; i++) {
7527 		state = vstate->frame[i];
7528 		for (j = 0; j < MAX_BPF_REG; j++) {
7529 			reg = &state->regs[j];
7530 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7531 				*reg = *known_reg;
7532 		}
7533 
7534 		bpf_for_each_spilled_reg(j, state, reg) {
7535 			if (!reg)
7536 				continue;
7537 			if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7538 				*reg = *known_reg;
7539 		}
7540 	}
7541 }
7542 
7543 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7544 			     struct bpf_insn *insn, int *insn_idx)
7545 {
7546 	struct bpf_verifier_state *this_branch = env->cur_state;
7547 	struct bpf_verifier_state *other_branch;
7548 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7549 	struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7550 	u8 opcode = BPF_OP(insn->code);
7551 	bool is_jmp32;
7552 	int pred = -1;
7553 	int err;
7554 
7555 	/* Only conditional jumps are expected to reach here. */
7556 	if (opcode == BPF_JA || opcode > BPF_JSLE) {
7557 		verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7558 		return -EINVAL;
7559 	}
7560 
7561 	if (BPF_SRC(insn->code) == BPF_X) {
7562 		if (insn->imm != 0) {
7563 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7564 			return -EINVAL;
7565 		}
7566 
7567 		/* check src1 operand */
7568 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7569 		if (err)
7570 			return err;
7571 
7572 		if (is_pointer_value(env, insn->src_reg)) {
7573 			verbose(env, "R%d pointer comparison prohibited\n",
7574 				insn->src_reg);
7575 			return -EACCES;
7576 		}
7577 		src_reg = &regs[insn->src_reg];
7578 	} else {
7579 		if (insn->src_reg != BPF_REG_0) {
7580 			verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7581 			return -EINVAL;
7582 		}
7583 	}
7584 
7585 	/* check src2 operand */
7586 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7587 	if (err)
7588 		return err;
7589 
7590 	dst_reg = &regs[insn->dst_reg];
7591 	is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7592 
7593 	if (BPF_SRC(insn->code) == BPF_K) {
7594 		pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7595 	} else if (src_reg->type == SCALAR_VALUE &&
7596 		   is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7597 		pred = is_branch_taken(dst_reg,
7598 				       tnum_subreg(src_reg->var_off).value,
7599 				       opcode,
7600 				       is_jmp32);
7601 	} else if (src_reg->type == SCALAR_VALUE &&
7602 		   !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7603 		pred = is_branch_taken(dst_reg,
7604 				       src_reg->var_off.value,
7605 				       opcode,
7606 				       is_jmp32);
7607 	} else if (reg_is_pkt_pointer_any(dst_reg) &&
7608 		   reg_is_pkt_pointer_any(src_reg) &&
7609 		   !is_jmp32) {
7610 		pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
7611 	}
7612 
7613 	if (pred >= 0) {
7614 		/* If we get here with a dst_reg pointer type it is because
7615 		 * above is_branch_taken() special cased the 0 comparison.
7616 		 */
7617 		if (!__is_pointer_value(false, dst_reg))
7618 			err = mark_chain_precision(env, insn->dst_reg);
7619 		if (BPF_SRC(insn->code) == BPF_X && !err &&
7620 		    !__is_pointer_value(false, src_reg))
7621 			err = mark_chain_precision(env, insn->src_reg);
7622 		if (err)
7623 			return err;
7624 	}
7625 	if (pred == 1) {
7626 		/* only follow the goto, ignore fall-through */
7627 		*insn_idx += insn->off;
7628 		return 0;
7629 	} else if (pred == 0) {
7630 		/* only follow fall-through branch, since
7631 		 * that's where the program will go
7632 		 */
7633 		return 0;
7634 	}
7635 
7636 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7637 				  false);
7638 	if (!other_branch)
7639 		return -EFAULT;
7640 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7641 
7642 	/* detect if we are comparing against a constant value so we can adjust
7643 	 * our min/max values for our dst register.
7644 	 * this is only legit if both are scalars (or pointers to the same
7645 	 * object, I suppose, but we don't support that right now), because
7646 	 * otherwise the different base pointers mean the offsets aren't
7647 	 * comparable.
7648 	 */
7649 	if (BPF_SRC(insn->code) == BPF_X) {
7650 		struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7651 
7652 		if (dst_reg->type == SCALAR_VALUE &&
7653 		    src_reg->type == SCALAR_VALUE) {
7654 			if (tnum_is_const(src_reg->var_off) ||
7655 			    (is_jmp32 &&
7656 			     tnum_is_const(tnum_subreg(src_reg->var_off))))
7657 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
7658 						dst_reg,
7659 						src_reg->var_off.value,
7660 						tnum_subreg(src_reg->var_off).value,
7661 						opcode, is_jmp32);
7662 			else if (tnum_is_const(dst_reg->var_off) ||
7663 				 (is_jmp32 &&
7664 				  tnum_is_const(tnum_subreg(dst_reg->var_off))))
7665 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7666 						    src_reg,
7667 						    dst_reg->var_off.value,
7668 						    tnum_subreg(dst_reg->var_off).value,
7669 						    opcode, is_jmp32);
7670 			else if (!is_jmp32 &&
7671 				 (opcode == BPF_JEQ || opcode == BPF_JNE))
7672 				/* Comparing for equality, we can combine knowledge */
7673 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
7674 						    &other_branch_regs[insn->dst_reg],
7675 						    src_reg, dst_reg, opcode);
7676 			if (src_reg->id &&
7677 			    !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7678 				find_equal_scalars(this_branch, src_reg);
7679 				find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7680 			}
7681 
7682 		}
7683 	} else if (dst_reg->type == SCALAR_VALUE) {
7684 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
7685 					dst_reg, insn->imm, (u32)insn->imm,
7686 					opcode, is_jmp32);
7687 	}
7688 
7689 	if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7690 	    !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7691 		find_equal_scalars(this_branch, dst_reg);
7692 		find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7693 	}
7694 
7695 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7696 	 * NOTE: these optimizations below are related with pointer comparison
7697 	 *       which will never be JMP32.
7698 	 */
7699 	if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7700 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7701 	    reg_type_may_be_null(dst_reg->type)) {
7702 		/* Mark all identical registers in each branch as either
7703 		 * safe or unknown depending R == 0 or R != 0 conditional.
7704 		 */
7705 		mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7706 				      opcode == BPF_JNE);
7707 		mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7708 				      opcode == BPF_JEQ);
7709 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7710 					   this_branch, other_branch) &&
7711 		   is_pointer_value(env, insn->dst_reg)) {
7712 		verbose(env, "R%d pointer comparison prohibited\n",
7713 			insn->dst_reg);
7714 		return -EACCES;
7715 	}
7716 	if (env->log.level & BPF_LOG_LEVEL)
7717 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7718 	return 0;
7719 }
7720 
7721 /* verify BPF_LD_IMM64 instruction */
7722 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7723 {
7724 	struct bpf_insn_aux_data *aux = cur_aux(env);
7725 	struct bpf_reg_state *regs = cur_regs(env);
7726 	struct bpf_reg_state *dst_reg;
7727 	struct bpf_map *map;
7728 	int err;
7729 
7730 	if (BPF_SIZE(insn->code) != BPF_DW) {
7731 		verbose(env, "invalid BPF_LD_IMM insn\n");
7732 		return -EINVAL;
7733 	}
7734 	if (insn->off != 0) {
7735 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7736 		return -EINVAL;
7737 	}
7738 
7739 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
7740 	if (err)
7741 		return err;
7742 
7743 	dst_reg = &regs[insn->dst_reg];
7744 	if (insn->src_reg == 0) {
7745 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7746 
7747 		dst_reg->type = SCALAR_VALUE;
7748 		__mark_reg_known(&regs[insn->dst_reg], imm);
7749 		return 0;
7750 	}
7751 
7752 	if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7753 		mark_reg_known_zero(env, regs, insn->dst_reg);
7754 
7755 		dst_reg->type = aux->btf_var.reg_type;
7756 		switch (dst_reg->type) {
7757 		case PTR_TO_MEM:
7758 			dst_reg->mem_size = aux->btf_var.mem_size;
7759 			break;
7760 		case PTR_TO_BTF_ID:
7761 		case PTR_TO_PERCPU_BTF_ID:
7762 			dst_reg->btf = aux->btf_var.btf;
7763 			dst_reg->btf_id = aux->btf_var.btf_id;
7764 			break;
7765 		default:
7766 			verbose(env, "bpf verifier is misconfigured\n");
7767 			return -EFAULT;
7768 		}
7769 		return 0;
7770 	}
7771 
7772 	map = env->used_maps[aux->map_index];
7773 	mark_reg_known_zero(env, regs, insn->dst_reg);
7774 	dst_reg->map_ptr = map;
7775 
7776 	if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7777 		dst_reg->type = PTR_TO_MAP_VALUE;
7778 		dst_reg->off = aux->map_off;
7779 		if (map_value_has_spin_lock(map))
7780 			dst_reg->id = ++env->id_gen;
7781 	} else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7782 		dst_reg->type = CONST_PTR_TO_MAP;
7783 	} else {
7784 		verbose(env, "bpf verifier is misconfigured\n");
7785 		return -EINVAL;
7786 	}
7787 
7788 	return 0;
7789 }
7790 
7791 static bool may_access_skb(enum bpf_prog_type type)
7792 {
7793 	switch (type) {
7794 	case BPF_PROG_TYPE_SOCKET_FILTER:
7795 	case BPF_PROG_TYPE_SCHED_CLS:
7796 	case BPF_PROG_TYPE_SCHED_ACT:
7797 		return true;
7798 	default:
7799 		return false;
7800 	}
7801 }
7802 
7803 /* verify safety of LD_ABS|LD_IND instructions:
7804  * - they can only appear in the programs where ctx == skb
7805  * - since they are wrappers of function calls, they scratch R1-R5 registers,
7806  *   preserve R6-R9, and store return value into R0
7807  *
7808  * Implicit input:
7809  *   ctx == skb == R6 == CTX
7810  *
7811  * Explicit input:
7812  *   SRC == any register
7813  *   IMM == 32-bit immediate
7814  *
7815  * Output:
7816  *   R0 - 8/16/32-bit skb data converted to cpu endianness
7817  */
7818 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7819 {
7820 	struct bpf_reg_state *regs = cur_regs(env);
7821 	static const int ctx_reg = BPF_REG_6;
7822 	u8 mode = BPF_MODE(insn->code);
7823 	int i, err;
7824 
7825 	if (!may_access_skb(resolve_prog_type(env->prog))) {
7826 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7827 		return -EINVAL;
7828 	}
7829 
7830 	if (!env->ops->gen_ld_abs) {
7831 		verbose(env, "bpf verifier is misconfigured\n");
7832 		return -EINVAL;
7833 	}
7834 
7835 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7836 	    BPF_SIZE(insn->code) == BPF_DW ||
7837 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7838 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7839 		return -EINVAL;
7840 	}
7841 
7842 	/* check whether implicit source operand (register R6) is readable */
7843 	err = check_reg_arg(env, ctx_reg, SRC_OP);
7844 	if (err)
7845 		return err;
7846 
7847 	/* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7848 	 * gen_ld_abs() may terminate the program at runtime, leading to
7849 	 * reference leak.
7850 	 */
7851 	err = check_reference_leak(env);
7852 	if (err) {
7853 		verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7854 		return err;
7855 	}
7856 
7857 	if (env->cur_state->active_spin_lock) {
7858 		verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7859 		return -EINVAL;
7860 	}
7861 
7862 	if (regs[ctx_reg].type != PTR_TO_CTX) {
7863 		verbose(env,
7864 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7865 		return -EINVAL;
7866 	}
7867 
7868 	if (mode == BPF_IND) {
7869 		/* check explicit source operand */
7870 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
7871 		if (err)
7872 			return err;
7873 	}
7874 
7875 	err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7876 	if (err < 0)
7877 		return err;
7878 
7879 	/* reset caller saved regs to unreadable */
7880 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
7881 		mark_reg_not_init(env, regs, caller_saved[i]);
7882 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7883 	}
7884 
7885 	/* mark destination R0 register as readable, since it contains
7886 	 * the value fetched from the packet.
7887 	 * Already marked as written above.
7888 	 */
7889 	mark_reg_unknown(env, regs, BPF_REG_0);
7890 	/* ld_abs load up to 32-bit skb data. */
7891 	regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7892 	return 0;
7893 }
7894 
7895 static int check_return_code(struct bpf_verifier_env *env)
7896 {
7897 	struct tnum enforce_attach_type_range = tnum_unknown;
7898 	const struct bpf_prog *prog = env->prog;
7899 	struct bpf_reg_state *reg;
7900 	struct tnum range = tnum_range(0, 1);
7901 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7902 	int err;
7903 	const bool is_subprog = env->cur_state->frame[0]->subprogno;
7904 
7905 	/* LSM and struct_ops func-ptr's return type could be "void" */
7906 	if (!is_subprog &&
7907 	    (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7908 	     prog_type == BPF_PROG_TYPE_LSM) &&
7909 	    !prog->aux->attach_func_proto->type)
7910 		return 0;
7911 
7912 	/* eBPF calling convetion is such that R0 is used
7913 	 * to return the value from eBPF program.
7914 	 * Make sure that it's readable at this time
7915 	 * of bpf_exit, which means that program wrote
7916 	 * something into it earlier
7917 	 */
7918 	err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7919 	if (err)
7920 		return err;
7921 
7922 	if (is_pointer_value(env, BPF_REG_0)) {
7923 		verbose(env, "R0 leaks addr as return value\n");
7924 		return -EACCES;
7925 	}
7926 
7927 	reg = cur_regs(env) + BPF_REG_0;
7928 	if (is_subprog) {
7929 		if (reg->type != SCALAR_VALUE) {
7930 			verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7931 				reg_type_str[reg->type]);
7932 			return -EINVAL;
7933 		}
7934 		return 0;
7935 	}
7936 
7937 	switch (prog_type) {
7938 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7939 		if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7940 		    env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7941 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7942 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7943 		    env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7944 		    env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7945 			range = tnum_range(1, 1);
7946 		break;
7947 	case BPF_PROG_TYPE_CGROUP_SKB:
7948 		if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7949 			range = tnum_range(0, 3);
7950 			enforce_attach_type_range = tnum_range(2, 3);
7951 		}
7952 		break;
7953 	case BPF_PROG_TYPE_CGROUP_SOCK:
7954 	case BPF_PROG_TYPE_SOCK_OPS:
7955 	case BPF_PROG_TYPE_CGROUP_DEVICE:
7956 	case BPF_PROG_TYPE_CGROUP_SYSCTL:
7957 	case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7958 		break;
7959 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
7960 		if (!env->prog->aux->attach_btf_id)
7961 			return 0;
7962 		range = tnum_const(0);
7963 		break;
7964 	case BPF_PROG_TYPE_TRACING:
7965 		switch (env->prog->expected_attach_type) {
7966 		case BPF_TRACE_FENTRY:
7967 		case BPF_TRACE_FEXIT:
7968 			range = tnum_const(0);
7969 			break;
7970 		case BPF_TRACE_RAW_TP:
7971 		case BPF_MODIFY_RETURN:
7972 			return 0;
7973 		case BPF_TRACE_ITER:
7974 			break;
7975 		default:
7976 			return -ENOTSUPP;
7977 		}
7978 		break;
7979 	case BPF_PROG_TYPE_SK_LOOKUP:
7980 		range = tnum_range(SK_DROP, SK_PASS);
7981 		break;
7982 	case BPF_PROG_TYPE_EXT:
7983 		/* freplace program can return anything as its return value
7984 		 * depends on the to-be-replaced kernel func or bpf program.
7985 		 */
7986 	default:
7987 		return 0;
7988 	}
7989 
7990 	if (reg->type != SCALAR_VALUE) {
7991 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7992 			reg_type_str[reg->type]);
7993 		return -EINVAL;
7994 	}
7995 
7996 	if (!tnum_in(range, reg->var_off)) {
7997 		char tn_buf[48];
7998 
7999 		verbose(env, "At program exit the register R0 ");
8000 		if (!tnum_is_unknown(reg->var_off)) {
8001 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8002 			verbose(env, "has value %s", tn_buf);
8003 		} else {
8004 			verbose(env, "has unknown scalar value");
8005 		}
8006 		tnum_strn(tn_buf, sizeof(tn_buf), range);
8007 		verbose(env, " should have been in %s\n", tn_buf);
8008 		return -EINVAL;
8009 	}
8010 
8011 	if (!tnum_is_unknown(enforce_attach_type_range) &&
8012 	    tnum_in(enforce_attach_type_range, reg->var_off))
8013 		env->prog->enforce_expected_attach_type = 1;
8014 	return 0;
8015 }
8016 
8017 /* non-recursive DFS pseudo code
8018  * 1  procedure DFS-iterative(G,v):
8019  * 2      label v as discovered
8020  * 3      let S be a stack
8021  * 4      S.push(v)
8022  * 5      while S is not empty
8023  * 6            t <- S.pop()
8024  * 7            if t is what we're looking for:
8025  * 8                return t
8026  * 9            for all edges e in G.adjacentEdges(t) do
8027  * 10               if edge e is already labelled
8028  * 11                   continue with the next edge
8029  * 12               w <- G.adjacentVertex(t,e)
8030  * 13               if vertex w is not discovered and not explored
8031  * 14                   label e as tree-edge
8032  * 15                   label w as discovered
8033  * 16                   S.push(w)
8034  * 17                   continue at 5
8035  * 18               else if vertex w is discovered
8036  * 19                   label e as back-edge
8037  * 20               else
8038  * 21                   // vertex w is explored
8039  * 22                   label e as forward- or cross-edge
8040  * 23           label t as explored
8041  * 24           S.pop()
8042  *
8043  * convention:
8044  * 0x10 - discovered
8045  * 0x11 - discovered and fall-through edge labelled
8046  * 0x12 - discovered and fall-through and branch edges labelled
8047  * 0x20 - explored
8048  */
8049 
8050 enum {
8051 	DISCOVERED = 0x10,
8052 	EXPLORED = 0x20,
8053 	FALLTHROUGH = 1,
8054 	BRANCH = 2,
8055 };
8056 
8057 static u32 state_htab_size(struct bpf_verifier_env *env)
8058 {
8059 	return env->prog->len;
8060 }
8061 
8062 static struct bpf_verifier_state_list **explored_state(
8063 					struct bpf_verifier_env *env,
8064 					int idx)
8065 {
8066 	struct bpf_verifier_state *cur = env->cur_state;
8067 	struct bpf_func_state *state = cur->frame[cur->curframe];
8068 
8069 	return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8070 }
8071 
8072 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8073 {
8074 	env->insn_aux_data[idx].prune_point = true;
8075 }
8076 
8077 enum {
8078 	DONE_EXPLORING = 0,
8079 	KEEP_EXPLORING = 1,
8080 };
8081 
8082 /* t, w, e - match pseudo-code above:
8083  * t - index of current instruction
8084  * w - next instruction
8085  * e - edge
8086  */
8087 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8088 		     bool loop_ok)
8089 {
8090 	int *insn_stack = env->cfg.insn_stack;
8091 	int *insn_state = env->cfg.insn_state;
8092 
8093 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8094 		return DONE_EXPLORING;
8095 
8096 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8097 		return DONE_EXPLORING;
8098 
8099 	if (w < 0 || w >= env->prog->len) {
8100 		verbose_linfo(env, t, "%d: ", t);
8101 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
8102 		return -EINVAL;
8103 	}
8104 
8105 	if (e == BRANCH)
8106 		/* mark branch target for state pruning */
8107 		init_explored_state(env, w);
8108 
8109 	if (insn_state[w] == 0) {
8110 		/* tree-edge */
8111 		insn_state[t] = DISCOVERED | e;
8112 		insn_state[w] = DISCOVERED;
8113 		if (env->cfg.cur_stack >= env->prog->len)
8114 			return -E2BIG;
8115 		insn_stack[env->cfg.cur_stack++] = w;
8116 		return KEEP_EXPLORING;
8117 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8118 		if (loop_ok && env->bpf_capable)
8119 			return DONE_EXPLORING;
8120 		verbose_linfo(env, t, "%d: ", t);
8121 		verbose_linfo(env, w, "%d: ", w);
8122 		verbose(env, "back-edge from insn %d to %d\n", t, w);
8123 		return -EINVAL;
8124 	} else if (insn_state[w] == EXPLORED) {
8125 		/* forward- or cross-edge */
8126 		insn_state[t] = DISCOVERED | e;
8127 	} else {
8128 		verbose(env, "insn state internal bug\n");
8129 		return -EFAULT;
8130 	}
8131 	return DONE_EXPLORING;
8132 }
8133 
8134 /* Visits the instruction at index t and returns one of the following:
8135  *  < 0 - an error occurred
8136  *  DONE_EXPLORING - the instruction was fully explored
8137  *  KEEP_EXPLORING - there is still work to be done before it is fully explored
8138  */
8139 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8140 {
8141 	struct bpf_insn *insns = env->prog->insnsi;
8142 	int ret;
8143 
8144 	/* All non-branch instructions have a single fall-through edge. */
8145 	if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8146 	    BPF_CLASS(insns[t].code) != BPF_JMP32)
8147 		return push_insn(t, t + 1, FALLTHROUGH, env, false);
8148 
8149 	switch (BPF_OP(insns[t].code)) {
8150 	case BPF_EXIT:
8151 		return DONE_EXPLORING;
8152 
8153 	case BPF_CALL:
8154 		ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8155 		if (ret)
8156 			return ret;
8157 
8158 		if (t + 1 < insn_cnt)
8159 			init_explored_state(env, t + 1);
8160 		if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8161 			init_explored_state(env, t);
8162 			ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8163 					env, false);
8164 		}
8165 		return ret;
8166 
8167 	case BPF_JA:
8168 		if (BPF_SRC(insns[t].code) != BPF_K)
8169 			return -EINVAL;
8170 
8171 		/* unconditional jump with single edge */
8172 		ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8173 				true);
8174 		if (ret)
8175 			return ret;
8176 
8177 		/* unconditional jmp is not a good pruning point,
8178 		 * but it's marked, since backtracking needs
8179 		 * to record jmp history in is_state_visited().
8180 		 */
8181 		init_explored_state(env, t + insns[t].off + 1);
8182 		/* tell verifier to check for equivalent states
8183 		 * after every call and jump
8184 		 */
8185 		if (t + 1 < insn_cnt)
8186 			init_explored_state(env, t + 1);
8187 
8188 		return ret;
8189 
8190 	default:
8191 		/* conditional jump with two edges */
8192 		init_explored_state(env, t);
8193 		ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8194 		if (ret)
8195 			return ret;
8196 
8197 		return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8198 	}
8199 }
8200 
8201 /* non-recursive depth-first-search to detect loops in BPF program
8202  * loop == back-edge in directed graph
8203  */
8204 static int check_cfg(struct bpf_verifier_env *env)
8205 {
8206 	int insn_cnt = env->prog->len;
8207 	int *insn_stack, *insn_state;
8208 	int ret = 0;
8209 	int i;
8210 
8211 	insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8212 	if (!insn_state)
8213 		return -ENOMEM;
8214 
8215 	insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8216 	if (!insn_stack) {
8217 		kvfree(insn_state);
8218 		return -ENOMEM;
8219 	}
8220 
8221 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8222 	insn_stack[0] = 0; /* 0 is the first instruction */
8223 	env->cfg.cur_stack = 1;
8224 
8225 	while (env->cfg.cur_stack > 0) {
8226 		int t = insn_stack[env->cfg.cur_stack - 1];
8227 
8228 		ret = visit_insn(t, insn_cnt, env);
8229 		switch (ret) {
8230 		case DONE_EXPLORING:
8231 			insn_state[t] = EXPLORED;
8232 			env->cfg.cur_stack--;
8233 			break;
8234 		case KEEP_EXPLORING:
8235 			break;
8236 		default:
8237 			if (ret > 0) {
8238 				verbose(env, "visit_insn internal bug\n");
8239 				ret = -EFAULT;
8240 			}
8241 			goto err_free;
8242 		}
8243 	}
8244 
8245 	if (env->cfg.cur_stack < 0) {
8246 		verbose(env, "pop stack internal bug\n");
8247 		ret = -EFAULT;
8248 		goto err_free;
8249 	}
8250 
8251 	for (i = 0; i < insn_cnt; i++) {
8252 		if (insn_state[i] != EXPLORED) {
8253 			verbose(env, "unreachable insn %d\n", i);
8254 			ret = -EINVAL;
8255 			goto err_free;
8256 		}
8257 	}
8258 	ret = 0; /* cfg looks good */
8259 
8260 err_free:
8261 	kvfree(insn_state);
8262 	kvfree(insn_stack);
8263 	env->cfg.insn_state = env->cfg.insn_stack = NULL;
8264 	return ret;
8265 }
8266 
8267 static int check_abnormal_return(struct bpf_verifier_env *env)
8268 {
8269 	int i;
8270 
8271 	for (i = 1; i < env->subprog_cnt; i++) {
8272 		if (env->subprog_info[i].has_ld_abs) {
8273 			verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8274 			return -EINVAL;
8275 		}
8276 		if (env->subprog_info[i].has_tail_call) {
8277 			verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8278 			return -EINVAL;
8279 		}
8280 	}
8281 	return 0;
8282 }
8283 
8284 /* The minimum supported BTF func info size */
8285 #define MIN_BPF_FUNCINFO_SIZE	8
8286 #define MAX_FUNCINFO_REC_SIZE	252
8287 
8288 static int check_btf_func(struct bpf_verifier_env *env,
8289 			  const union bpf_attr *attr,
8290 			  union bpf_attr __user *uattr)
8291 {
8292 	const struct btf_type *type, *func_proto, *ret_type;
8293 	u32 i, nfuncs, urec_size, min_size;
8294 	u32 krec_size = sizeof(struct bpf_func_info);
8295 	struct bpf_func_info *krecord;
8296 	struct bpf_func_info_aux *info_aux = NULL;
8297 	struct bpf_prog *prog;
8298 	const struct btf *btf;
8299 	void __user *urecord;
8300 	u32 prev_offset = 0;
8301 	bool scalar_return;
8302 	int ret = -ENOMEM;
8303 
8304 	nfuncs = attr->func_info_cnt;
8305 	if (!nfuncs) {
8306 		if (check_abnormal_return(env))
8307 			return -EINVAL;
8308 		return 0;
8309 	}
8310 
8311 	if (nfuncs != env->subprog_cnt) {
8312 		verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8313 		return -EINVAL;
8314 	}
8315 
8316 	urec_size = attr->func_info_rec_size;
8317 	if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8318 	    urec_size > MAX_FUNCINFO_REC_SIZE ||
8319 	    urec_size % sizeof(u32)) {
8320 		verbose(env, "invalid func info rec size %u\n", urec_size);
8321 		return -EINVAL;
8322 	}
8323 
8324 	prog = env->prog;
8325 	btf = prog->aux->btf;
8326 
8327 	urecord = u64_to_user_ptr(attr->func_info);
8328 	min_size = min_t(u32, krec_size, urec_size);
8329 
8330 	krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8331 	if (!krecord)
8332 		return -ENOMEM;
8333 	info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8334 	if (!info_aux)
8335 		goto err_free;
8336 
8337 	for (i = 0; i < nfuncs; i++) {
8338 		ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8339 		if (ret) {
8340 			if (ret == -E2BIG) {
8341 				verbose(env, "nonzero tailing record in func info");
8342 				/* set the size kernel expects so loader can zero
8343 				 * out the rest of the record.
8344 				 */
8345 				if (put_user(min_size, &uattr->func_info_rec_size))
8346 					ret = -EFAULT;
8347 			}
8348 			goto err_free;
8349 		}
8350 
8351 		if (copy_from_user(&krecord[i], urecord, min_size)) {
8352 			ret = -EFAULT;
8353 			goto err_free;
8354 		}
8355 
8356 		/* check insn_off */
8357 		ret = -EINVAL;
8358 		if (i == 0) {
8359 			if (krecord[i].insn_off) {
8360 				verbose(env,
8361 					"nonzero insn_off %u for the first func info record",
8362 					krecord[i].insn_off);
8363 				goto err_free;
8364 			}
8365 		} else if (krecord[i].insn_off <= prev_offset) {
8366 			verbose(env,
8367 				"same or smaller insn offset (%u) than previous func info record (%u)",
8368 				krecord[i].insn_off, prev_offset);
8369 			goto err_free;
8370 		}
8371 
8372 		if (env->subprog_info[i].start != krecord[i].insn_off) {
8373 			verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8374 			goto err_free;
8375 		}
8376 
8377 		/* check type_id */
8378 		type = btf_type_by_id(btf, krecord[i].type_id);
8379 		if (!type || !btf_type_is_func(type)) {
8380 			verbose(env, "invalid type id %d in func info",
8381 				krecord[i].type_id);
8382 			goto err_free;
8383 		}
8384 		info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8385 
8386 		func_proto = btf_type_by_id(btf, type->type);
8387 		if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8388 			/* btf_func_check() already verified it during BTF load */
8389 			goto err_free;
8390 		ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8391 		scalar_return =
8392 			btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8393 		if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8394 			verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8395 			goto err_free;
8396 		}
8397 		if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8398 			verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8399 			goto err_free;
8400 		}
8401 
8402 		prev_offset = krecord[i].insn_off;
8403 		urecord += urec_size;
8404 	}
8405 
8406 	prog->aux->func_info = krecord;
8407 	prog->aux->func_info_cnt = nfuncs;
8408 	prog->aux->func_info_aux = info_aux;
8409 	return 0;
8410 
8411 err_free:
8412 	kvfree(krecord);
8413 	kfree(info_aux);
8414 	return ret;
8415 }
8416 
8417 static void adjust_btf_func(struct bpf_verifier_env *env)
8418 {
8419 	struct bpf_prog_aux *aux = env->prog->aux;
8420 	int i;
8421 
8422 	if (!aux->func_info)
8423 		return;
8424 
8425 	for (i = 0; i < env->subprog_cnt; i++)
8426 		aux->func_info[i].insn_off = env->subprog_info[i].start;
8427 }
8428 
8429 #define MIN_BPF_LINEINFO_SIZE	(offsetof(struct bpf_line_info, line_col) + \
8430 		sizeof(((struct bpf_line_info *)(0))->line_col))
8431 #define MAX_LINEINFO_REC_SIZE	MAX_FUNCINFO_REC_SIZE
8432 
8433 static int check_btf_line(struct bpf_verifier_env *env,
8434 			  const union bpf_attr *attr,
8435 			  union bpf_attr __user *uattr)
8436 {
8437 	u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8438 	struct bpf_subprog_info *sub;
8439 	struct bpf_line_info *linfo;
8440 	struct bpf_prog *prog;
8441 	const struct btf *btf;
8442 	void __user *ulinfo;
8443 	int err;
8444 
8445 	nr_linfo = attr->line_info_cnt;
8446 	if (!nr_linfo)
8447 		return 0;
8448 
8449 	rec_size = attr->line_info_rec_size;
8450 	if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8451 	    rec_size > MAX_LINEINFO_REC_SIZE ||
8452 	    rec_size & (sizeof(u32) - 1))
8453 		return -EINVAL;
8454 
8455 	/* Need to zero it in case the userspace may
8456 	 * pass in a smaller bpf_line_info object.
8457 	 */
8458 	linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8459 			 GFP_KERNEL | __GFP_NOWARN);
8460 	if (!linfo)
8461 		return -ENOMEM;
8462 
8463 	prog = env->prog;
8464 	btf = prog->aux->btf;
8465 
8466 	s = 0;
8467 	sub = env->subprog_info;
8468 	ulinfo = u64_to_user_ptr(attr->line_info);
8469 	expected_size = sizeof(struct bpf_line_info);
8470 	ncopy = min_t(u32, expected_size, rec_size);
8471 	for (i = 0; i < nr_linfo; i++) {
8472 		err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8473 		if (err) {
8474 			if (err == -E2BIG) {
8475 				verbose(env, "nonzero tailing record in line_info");
8476 				if (put_user(expected_size,
8477 					     &uattr->line_info_rec_size))
8478 					err = -EFAULT;
8479 			}
8480 			goto err_free;
8481 		}
8482 
8483 		if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8484 			err = -EFAULT;
8485 			goto err_free;
8486 		}
8487 
8488 		/*
8489 		 * Check insn_off to ensure
8490 		 * 1) strictly increasing AND
8491 		 * 2) bounded by prog->len
8492 		 *
8493 		 * The linfo[0].insn_off == 0 check logically falls into
8494 		 * the later "missing bpf_line_info for func..." case
8495 		 * because the first linfo[0].insn_off must be the
8496 		 * first sub also and the first sub must have
8497 		 * subprog_info[0].start == 0.
8498 		 */
8499 		if ((i && linfo[i].insn_off <= prev_offset) ||
8500 		    linfo[i].insn_off >= prog->len) {
8501 			verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8502 				i, linfo[i].insn_off, prev_offset,
8503 				prog->len);
8504 			err = -EINVAL;
8505 			goto err_free;
8506 		}
8507 
8508 		if (!prog->insnsi[linfo[i].insn_off].code) {
8509 			verbose(env,
8510 				"Invalid insn code at line_info[%u].insn_off\n",
8511 				i);
8512 			err = -EINVAL;
8513 			goto err_free;
8514 		}
8515 
8516 		if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8517 		    !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8518 			verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8519 			err = -EINVAL;
8520 			goto err_free;
8521 		}
8522 
8523 		if (s != env->subprog_cnt) {
8524 			if (linfo[i].insn_off == sub[s].start) {
8525 				sub[s].linfo_idx = i;
8526 				s++;
8527 			} else if (sub[s].start < linfo[i].insn_off) {
8528 				verbose(env, "missing bpf_line_info for func#%u\n", s);
8529 				err = -EINVAL;
8530 				goto err_free;
8531 			}
8532 		}
8533 
8534 		prev_offset = linfo[i].insn_off;
8535 		ulinfo += rec_size;
8536 	}
8537 
8538 	if (s != env->subprog_cnt) {
8539 		verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8540 			env->subprog_cnt - s, s);
8541 		err = -EINVAL;
8542 		goto err_free;
8543 	}
8544 
8545 	prog->aux->linfo = linfo;
8546 	prog->aux->nr_linfo = nr_linfo;
8547 
8548 	return 0;
8549 
8550 err_free:
8551 	kvfree(linfo);
8552 	return err;
8553 }
8554 
8555 static int check_btf_info(struct bpf_verifier_env *env,
8556 			  const union bpf_attr *attr,
8557 			  union bpf_attr __user *uattr)
8558 {
8559 	struct btf *btf;
8560 	int err;
8561 
8562 	if (!attr->func_info_cnt && !attr->line_info_cnt) {
8563 		if (check_abnormal_return(env))
8564 			return -EINVAL;
8565 		return 0;
8566 	}
8567 
8568 	btf = btf_get_by_fd(attr->prog_btf_fd);
8569 	if (IS_ERR(btf))
8570 		return PTR_ERR(btf);
8571 	env->prog->aux->btf = btf;
8572 
8573 	err = check_btf_func(env, attr, uattr);
8574 	if (err)
8575 		return err;
8576 
8577 	err = check_btf_line(env, attr, uattr);
8578 	if (err)
8579 		return err;
8580 
8581 	return 0;
8582 }
8583 
8584 /* check %cur's range satisfies %old's */
8585 static bool range_within(struct bpf_reg_state *old,
8586 			 struct bpf_reg_state *cur)
8587 {
8588 	return old->umin_value <= cur->umin_value &&
8589 	       old->umax_value >= cur->umax_value &&
8590 	       old->smin_value <= cur->smin_value &&
8591 	       old->smax_value >= cur->smax_value;
8592 }
8593 
8594 /* Maximum number of register states that can exist at once */
8595 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8596 struct idpair {
8597 	u32 old;
8598 	u32 cur;
8599 };
8600 
8601 /* If in the old state two registers had the same id, then they need to have
8602  * the same id in the new state as well.  But that id could be different from
8603  * the old state, so we need to track the mapping from old to new ids.
8604  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8605  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
8606  * regs with a different old id could still have new id 9, we don't care about
8607  * that.
8608  * So we look through our idmap to see if this old id has been seen before.  If
8609  * so, we require the new id to match; otherwise, we add the id pair to the map.
8610  */
8611 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8612 {
8613 	unsigned int i;
8614 
8615 	for (i = 0; i < ID_MAP_SIZE; i++) {
8616 		if (!idmap[i].old) {
8617 			/* Reached an empty slot; haven't seen this id before */
8618 			idmap[i].old = old_id;
8619 			idmap[i].cur = cur_id;
8620 			return true;
8621 		}
8622 		if (idmap[i].old == old_id)
8623 			return idmap[i].cur == cur_id;
8624 	}
8625 	/* We ran out of idmap slots, which should be impossible */
8626 	WARN_ON_ONCE(1);
8627 	return false;
8628 }
8629 
8630 static void clean_func_state(struct bpf_verifier_env *env,
8631 			     struct bpf_func_state *st)
8632 {
8633 	enum bpf_reg_liveness live;
8634 	int i, j;
8635 
8636 	for (i = 0; i < BPF_REG_FP; i++) {
8637 		live = st->regs[i].live;
8638 		/* liveness must not touch this register anymore */
8639 		st->regs[i].live |= REG_LIVE_DONE;
8640 		if (!(live & REG_LIVE_READ))
8641 			/* since the register is unused, clear its state
8642 			 * to make further comparison simpler
8643 			 */
8644 			__mark_reg_not_init(env, &st->regs[i]);
8645 	}
8646 
8647 	for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8648 		live = st->stack[i].spilled_ptr.live;
8649 		/* liveness must not touch this stack slot anymore */
8650 		st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8651 		if (!(live & REG_LIVE_READ)) {
8652 			__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8653 			for (j = 0; j < BPF_REG_SIZE; j++)
8654 				st->stack[i].slot_type[j] = STACK_INVALID;
8655 		}
8656 	}
8657 }
8658 
8659 static void clean_verifier_state(struct bpf_verifier_env *env,
8660 				 struct bpf_verifier_state *st)
8661 {
8662 	int i;
8663 
8664 	if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8665 		/* all regs in this state in all frames were already marked */
8666 		return;
8667 
8668 	for (i = 0; i <= st->curframe; i++)
8669 		clean_func_state(env, st->frame[i]);
8670 }
8671 
8672 /* the parentage chains form a tree.
8673  * the verifier states are added to state lists at given insn and
8674  * pushed into state stack for future exploration.
8675  * when the verifier reaches bpf_exit insn some of the verifer states
8676  * stored in the state lists have their final liveness state already,
8677  * but a lot of states will get revised from liveness point of view when
8678  * the verifier explores other branches.
8679  * Example:
8680  * 1: r0 = 1
8681  * 2: if r1 == 100 goto pc+1
8682  * 3: r0 = 2
8683  * 4: exit
8684  * when the verifier reaches exit insn the register r0 in the state list of
8685  * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8686  * of insn 2 and goes exploring further. At the insn 4 it will walk the
8687  * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8688  *
8689  * Since the verifier pushes the branch states as it sees them while exploring
8690  * the program the condition of walking the branch instruction for the second
8691  * time means that all states below this branch were already explored and
8692  * their final liveness markes are already propagated.
8693  * Hence when the verifier completes the search of state list in is_state_visited()
8694  * we can call this clean_live_states() function to mark all liveness states
8695  * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8696  * will not be used.
8697  * This function also clears the registers and stack for states that !READ
8698  * to simplify state merging.
8699  *
8700  * Important note here that walking the same branch instruction in the callee
8701  * doesn't meant that the states are DONE. The verifier has to compare
8702  * the callsites
8703  */
8704 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8705 			      struct bpf_verifier_state *cur)
8706 {
8707 	struct bpf_verifier_state_list *sl;
8708 	int i;
8709 
8710 	sl = *explored_state(env, insn);
8711 	while (sl) {
8712 		if (sl->state.branches)
8713 			goto next;
8714 		if (sl->state.insn_idx != insn ||
8715 		    sl->state.curframe != cur->curframe)
8716 			goto next;
8717 		for (i = 0; i <= cur->curframe; i++)
8718 			if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8719 				goto next;
8720 		clean_verifier_state(env, &sl->state);
8721 next:
8722 		sl = sl->next;
8723 	}
8724 }
8725 
8726 /* Returns true if (rold safe implies rcur safe) */
8727 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8728 		    struct idpair *idmap)
8729 {
8730 	bool equal;
8731 
8732 	if (!(rold->live & REG_LIVE_READ))
8733 		/* explored state didn't use this */
8734 		return true;
8735 
8736 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8737 
8738 	if (rold->type == PTR_TO_STACK)
8739 		/* two stack pointers are equal only if they're pointing to
8740 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
8741 		 */
8742 		return equal && rold->frameno == rcur->frameno;
8743 
8744 	if (equal)
8745 		return true;
8746 
8747 	if (rold->type == NOT_INIT)
8748 		/* explored state can't have used this */
8749 		return true;
8750 	if (rcur->type == NOT_INIT)
8751 		return false;
8752 	switch (rold->type) {
8753 	case SCALAR_VALUE:
8754 		if (rcur->type == SCALAR_VALUE) {
8755 			if (!rold->precise && !rcur->precise)
8756 				return true;
8757 			/* new val must satisfy old val knowledge */
8758 			return range_within(rold, rcur) &&
8759 			       tnum_in(rold->var_off, rcur->var_off);
8760 		} else {
8761 			/* We're trying to use a pointer in place of a scalar.
8762 			 * Even if the scalar was unbounded, this could lead to
8763 			 * pointer leaks because scalars are allowed to leak
8764 			 * while pointers are not. We could make this safe in
8765 			 * special cases if root is calling us, but it's
8766 			 * probably not worth the hassle.
8767 			 */
8768 			return false;
8769 		}
8770 	case PTR_TO_MAP_VALUE:
8771 		/* If the new min/max/var_off satisfy the old ones and
8772 		 * everything else matches, we are OK.
8773 		 * 'id' is not compared, since it's only used for maps with
8774 		 * bpf_spin_lock inside map element and in such cases if
8775 		 * the rest of the prog is valid for one map element then
8776 		 * it's valid for all map elements regardless of the key
8777 		 * used in bpf_map_lookup()
8778 		 */
8779 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8780 		       range_within(rold, rcur) &&
8781 		       tnum_in(rold->var_off, rcur->var_off);
8782 	case PTR_TO_MAP_VALUE_OR_NULL:
8783 		/* a PTR_TO_MAP_VALUE could be safe to use as a
8784 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8785 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8786 		 * checked, doing so could have affected others with the same
8787 		 * id, and we can't check for that because we lost the id when
8788 		 * we converted to a PTR_TO_MAP_VALUE.
8789 		 */
8790 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8791 			return false;
8792 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8793 			return false;
8794 		/* Check our ids match any regs they're supposed to */
8795 		return check_ids(rold->id, rcur->id, idmap);
8796 	case PTR_TO_PACKET_META:
8797 	case PTR_TO_PACKET:
8798 		if (rcur->type != rold->type)
8799 			return false;
8800 		/* We must have at least as much range as the old ptr
8801 		 * did, so that any accesses which were safe before are
8802 		 * still safe.  This is true even if old range < old off,
8803 		 * since someone could have accessed through (ptr - k), or
8804 		 * even done ptr -= k in a register, to get a safe access.
8805 		 */
8806 		if (rold->range > rcur->range)
8807 			return false;
8808 		/* If the offsets don't match, we can't trust our alignment;
8809 		 * nor can we be sure that we won't fall out of range.
8810 		 */
8811 		if (rold->off != rcur->off)
8812 			return false;
8813 		/* id relations must be preserved */
8814 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8815 			return false;
8816 		/* new val must satisfy old val knowledge */
8817 		return range_within(rold, rcur) &&
8818 		       tnum_in(rold->var_off, rcur->var_off);
8819 	case PTR_TO_CTX:
8820 	case CONST_PTR_TO_MAP:
8821 	case PTR_TO_PACKET_END:
8822 	case PTR_TO_FLOW_KEYS:
8823 	case PTR_TO_SOCKET:
8824 	case PTR_TO_SOCKET_OR_NULL:
8825 	case PTR_TO_SOCK_COMMON:
8826 	case PTR_TO_SOCK_COMMON_OR_NULL:
8827 	case PTR_TO_TCP_SOCK:
8828 	case PTR_TO_TCP_SOCK_OR_NULL:
8829 	case PTR_TO_XDP_SOCK:
8830 		/* Only valid matches are exact, which memcmp() above
8831 		 * would have accepted
8832 		 */
8833 	default:
8834 		/* Don't know what's going on, just say it's not safe */
8835 		return false;
8836 	}
8837 
8838 	/* Shouldn't get here; if we do, say it's not safe */
8839 	WARN_ON_ONCE(1);
8840 	return false;
8841 }
8842 
8843 static bool stacksafe(struct bpf_func_state *old,
8844 		      struct bpf_func_state *cur,
8845 		      struct idpair *idmap)
8846 {
8847 	int i, spi;
8848 
8849 	/* walk slots of the explored stack and ignore any additional
8850 	 * slots in the current stack, since explored(safe) state
8851 	 * didn't use them
8852 	 */
8853 	for (i = 0; i < old->allocated_stack; i++) {
8854 		spi = i / BPF_REG_SIZE;
8855 
8856 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8857 			i += BPF_REG_SIZE - 1;
8858 			/* explored state didn't use this */
8859 			continue;
8860 		}
8861 
8862 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8863 			continue;
8864 
8865 		/* explored stack has more populated slots than current stack
8866 		 * and these slots were used
8867 		 */
8868 		if (i >= cur->allocated_stack)
8869 			return false;
8870 
8871 		/* if old state was safe with misc data in the stack
8872 		 * it will be safe with zero-initialized stack.
8873 		 * The opposite is not true
8874 		 */
8875 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8876 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8877 			continue;
8878 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8879 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8880 			/* Ex: old explored (safe) state has STACK_SPILL in
8881 			 * this stack slot, but current has STACK_MISC ->
8882 			 * this verifier states are not equivalent,
8883 			 * return false to continue verification of this path
8884 			 */
8885 			return false;
8886 		if (i % BPF_REG_SIZE)
8887 			continue;
8888 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
8889 			continue;
8890 		if (!regsafe(&old->stack[spi].spilled_ptr,
8891 			     &cur->stack[spi].spilled_ptr,
8892 			     idmap))
8893 			/* when explored and current stack slot are both storing
8894 			 * spilled registers, check that stored pointers types
8895 			 * are the same as well.
8896 			 * Ex: explored safe path could have stored
8897 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8898 			 * but current path has stored:
8899 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8900 			 * such verifier states are not equivalent.
8901 			 * return false to continue verification of this path
8902 			 */
8903 			return false;
8904 	}
8905 	return true;
8906 }
8907 
8908 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8909 {
8910 	if (old->acquired_refs != cur->acquired_refs)
8911 		return false;
8912 	return !memcmp(old->refs, cur->refs,
8913 		       sizeof(*old->refs) * old->acquired_refs);
8914 }
8915 
8916 /* compare two verifier states
8917  *
8918  * all states stored in state_list are known to be valid, since
8919  * verifier reached 'bpf_exit' instruction through them
8920  *
8921  * this function is called when verifier exploring different branches of
8922  * execution popped from the state stack. If it sees an old state that has
8923  * more strict register state and more strict stack state then this execution
8924  * branch doesn't need to be explored further, since verifier already
8925  * concluded that more strict state leads to valid finish.
8926  *
8927  * Therefore two states are equivalent if register state is more conservative
8928  * and explored stack state is more conservative than the current one.
8929  * Example:
8930  *       explored                   current
8931  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8932  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8933  *
8934  * In other words if current stack state (one being explored) has more
8935  * valid slots than old one that already passed validation, it means
8936  * the verifier can stop exploring and conclude that current state is valid too
8937  *
8938  * Similarly with registers. If explored state has register type as invalid
8939  * whereas register type in current state is meaningful, it means that
8940  * the current state will reach 'bpf_exit' instruction safely
8941  */
8942 static bool func_states_equal(struct bpf_func_state *old,
8943 			      struct bpf_func_state *cur)
8944 {
8945 	struct idpair *idmap;
8946 	bool ret = false;
8947 	int i;
8948 
8949 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8950 	/* If we failed to allocate the idmap, just say it's not safe */
8951 	if (!idmap)
8952 		return false;
8953 
8954 	for (i = 0; i < MAX_BPF_REG; i++) {
8955 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8956 			goto out_free;
8957 	}
8958 
8959 	if (!stacksafe(old, cur, idmap))
8960 		goto out_free;
8961 
8962 	if (!refsafe(old, cur))
8963 		goto out_free;
8964 	ret = true;
8965 out_free:
8966 	kfree(idmap);
8967 	return ret;
8968 }
8969 
8970 static bool states_equal(struct bpf_verifier_env *env,
8971 			 struct bpf_verifier_state *old,
8972 			 struct bpf_verifier_state *cur)
8973 {
8974 	int i;
8975 
8976 	if (old->curframe != cur->curframe)
8977 		return false;
8978 
8979 	/* Verification state from speculative execution simulation
8980 	 * must never prune a non-speculative execution one.
8981 	 */
8982 	if (old->speculative && !cur->speculative)
8983 		return false;
8984 
8985 	if (old->active_spin_lock != cur->active_spin_lock)
8986 		return false;
8987 
8988 	/* for states to be equal callsites have to be the same
8989 	 * and all frame states need to be equivalent
8990 	 */
8991 	for (i = 0; i <= old->curframe; i++) {
8992 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
8993 			return false;
8994 		if (!func_states_equal(old->frame[i], cur->frame[i]))
8995 			return false;
8996 	}
8997 	return true;
8998 }
8999 
9000 /* Return 0 if no propagation happened. Return negative error code if error
9001  * happened. Otherwise, return the propagated bit.
9002  */
9003 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9004 				  struct bpf_reg_state *reg,
9005 				  struct bpf_reg_state *parent_reg)
9006 {
9007 	u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9008 	u8 flag = reg->live & REG_LIVE_READ;
9009 	int err;
9010 
9011 	/* When comes here, read flags of PARENT_REG or REG could be any of
9012 	 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9013 	 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9014 	 */
9015 	if (parent_flag == REG_LIVE_READ64 ||
9016 	    /* Or if there is no read flag from REG. */
9017 	    !flag ||
9018 	    /* Or if the read flag from REG is the same as PARENT_REG. */
9019 	    parent_flag == flag)
9020 		return 0;
9021 
9022 	err = mark_reg_read(env, reg, parent_reg, flag);
9023 	if (err)
9024 		return err;
9025 
9026 	return flag;
9027 }
9028 
9029 /* A write screens off any subsequent reads; but write marks come from the
9030  * straight-line code between a state and its parent.  When we arrive at an
9031  * equivalent state (jump target or such) we didn't arrive by the straight-line
9032  * code, so read marks in the state must propagate to the parent regardless
9033  * of the state's write marks. That's what 'parent == state->parent' comparison
9034  * in mark_reg_read() is for.
9035  */
9036 static int propagate_liveness(struct bpf_verifier_env *env,
9037 			      const struct bpf_verifier_state *vstate,
9038 			      struct bpf_verifier_state *vparent)
9039 {
9040 	struct bpf_reg_state *state_reg, *parent_reg;
9041 	struct bpf_func_state *state, *parent;
9042 	int i, frame, err = 0;
9043 
9044 	if (vparent->curframe != vstate->curframe) {
9045 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
9046 		     vparent->curframe, vstate->curframe);
9047 		return -EFAULT;
9048 	}
9049 	/* Propagate read liveness of registers... */
9050 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9051 	for (frame = 0; frame <= vstate->curframe; frame++) {
9052 		parent = vparent->frame[frame];
9053 		state = vstate->frame[frame];
9054 		parent_reg = parent->regs;
9055 		state_reg = state->regs;
9056 		/* We don't need to worry about FP liveness, it's read-only */
9057 		for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9058 			err = propagate_liveness_reg(env, &state_reg[i],
9059 						     &parent_reg[i]);
9060 			if (err < 0)
9061 				return err;
9062 			if (err == REG_LIVE_READ64)
9063 				mark_insn_zext(env, &parent_reg[i]);
9064 		}
9065 
9066 		/* Propagate stack slots. */
9067 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9068 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9069 			parent_reg = &parent->stack[i].spilled_ptr;
9070 			state_reg = &state->stack[i].spilled_ptr;
9071 			err = propagate_liveness_reg(env, state_reg,
9072 						     parent_reg);
9073 			if (err < 0)
9074 				return err;
9075 		}
9076 	}
9077 	return 0;
9078 }
9079 
9080 /* find precise scalars in the previous equivalent state and
9081  * propagate them into the current state
9082  */
9083 static int propagate_precision(struct bpf_verifier_env *env,
9084 			       const struct bpf_verifier_state *old)
9085 {
9086 	struct bpf_reg_state *state_reg;
9087 	struct bpf_func_state *state;
9088 	int i, err = 0;
9089 
9090 	state = old->frame[old->curframe];
9091 	state_reg = state->regs;
9092 	for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9093 		if (state_reg->type != SCALAR_VALUE ||
9094 		    !state_reg->precise)
9095 			continue;
9096 		if (env->log.level & BPF_LOG_LEVEL2)
9097 			verbose(env, "propagating r%d\n", i);
9098 		err = mark_chain_precision(env, i);
9099 		if (err < 0)
9100 			return err;
9101 	}
9102 
9103 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9104 		if (state->stack[i].slot_type[0] != STACK_SPILL)
9105 			continue;
9106 		state_reg = &state->stack[i].spilled_ptr;
9107 		if (state_reg->type != SCALAR_VALUE ||
9108 		    !state_reg->precise)
9109 			continue;
9110 		if (env->log.level & BPF_LOG_LEVEL2)
9111 			verbose(env, "propagating fp%d\n",
9112 				(-i - 1) * BPF_REG_SIZE);
9113 		err = mark_chain_precision_stack(env, i);
9114 		if (err < 0)
9115 			return err;
9116 	}
9117 	return 0;
9118 }
9119 
9120 static bool states_maybe_looping(struct bpf_verifier_state *old,
9121 				 struct bpf_verifier_state *cur)
9122 {
9123 	struct bpf_func_state *fold, *fcur;
9124 	int i, fr = cur->curframe;
9125 
9126 	if (old->curframe != fr)
9127 		return false;
9128 
9129 	fold = old->frame[fr];
9130 	fcur = cur->frame[fr];
9131 	for (i = 0; i < MAX_BPF_REG; i++)
9132 		if (memcmp(&fold->regs[i], &fcur->regs[i],
9133 			   offsetof(struct bpf_reg_state, parent)))
9134 			return false;
9135 	return true;
9136 }
9137 
9138 
9139 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9140 {
9141 	struct bpf_verifier_state_list *new_sl;
9142 	struct bpf_verifier_state_list *sl, **pprev;
9143 	struct bpf_verifier_state *cur = env->cur_state, *new;
9144 	int i, j, err, states_cnt = 0;
9145 	bool add_new_state = env->test_state_freq ? true : false;
9146 
9147 	cur->last_insn_idx = env->prev_insn_idx;
9148 	if (!env->insn_aux_data[insn_idx].prune_point)
9149 		/* this 'insn_idx' instruction wasn't marked, so we will not
9150 		 * be doing state search here
9151 		 */
9152 		return 0;
9153 
9154 	/* bpf progs typically have pruning point every 4 instructions
9155 	 * http://vger.kernel.org/bpfconf2019.html#session-1
9156 	 * Do not add new state for future pruning if the verifier hasn't seen
9157 	 * at least 2 jumps and at least 8 instructions.
9158 	 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9159 	 * In tests that amounts to up to 50% reduction into total verifier
9160 	 * memory consumption and 20% verifier time speedup.
9161 	 */
9162 	if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9163 	    env->insn_processed - env->prev_insn_processed >= 8)
9164 		add_new_state = true;
9165 
9166 	pprev = explored_state(env, insn_idx);
9167 	sl = *pprev;
9168 
9169 	clean_live_states(env, insn_idx, cur);
9170 
9171 	while (sl) {
9172 		states_cnt++;
9173 		if (sl->state.insn_idx != insn_idx)
9174 			goto next;
9175 		if (sl->state.branches) {
9176 			if (states_maybe_looping(&sl->state, cur) &&
9177 			    states_equal(env, &sl->state, cur)) {
9178 				verbose_linfo(env, insn_idx, "; ");
9179 				verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9180 				return -EINVAL;
9181 			}
9182 			/* if the verifier is processing a loop, avoid adding new state
9183 			 * too often, since different loop iterations have distinct
9184 			 * states and may not help future pruning.
9185 			 * This threshold shouldn't be too low to make sure that
9186 			 * a loop with large bound will be rejected quickly.
9187 			 * The most abusive loop will be:
9188 			 * r1 += 1
9189 			 * if r1 < 1000000 goto pc-2
9190 			 * 1M insn_procssed limit / 100 == 10k peak states.
9191 			 * This threshold shouldn't be too high either, since states
9192 			 * at the end of the loop are likely to be useful in pruning.
9193 			 */
9194 			if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9195 			    env->insn_processed - env->prev_insn_processed < 100)
9196 				add_new_state = false;
9197 			goto miss;
9198 		}
9199 		if (states_equal(env, &sl->state, cur)) {
9200 			sl->hit_cnt++;
9201 			/* reached equivalent register/stack state,
9202 			 * prune the search.
9203 			 * Registers read by the continuation are read by us.
9204 			 * If we have any write marks in env->cur_state, they
9205 			 * will prevent corresponding reads in the continuation
9206 			 * from reaching our parent (an explored_state).  Our
9207 			 * own state will get the read marks recorded, but
9208 			 * they'll be immediately forgotten as we're pruning
9209 			 * this state and will pop a new one.
9210 			 */
9211 			err = propagate_liveness(env, &sl->state, cur);
9212 
9213 			/* if previous state reached the exit with precision and
9214 			 * current state is equivalent to it (except precsion marks)
9215 			 * the precision needs to be propagated back in
9216 			 * the current state.
9217 			 */
9218 			err = err ? : push_jmp_history(env, cur);
9219 			err = err ? : propagate_precision(env, &sl->state);
9220 			if (err)
9221 				return err;
9222 			return 1;
9223 		}
9224 miss:
9225 		/* when new state is not going to be added do not increase miss count.
9226 		 * Otherwise several loop iterations will remove the state
9227 		 * recorded earlier. The goal of these heuristics is to have
9228 		 * states from some iterations of the loop (some in the beginning
9229 		 * and some at the end) to help pruning.
9230 		 */
9231 		if (add_new_state)
9232 			sl->miss_cnt++;
9233 		/* heuristic to determine whether this state is beneficial
9234 		 * to keep checking from state equivalence point of view.
9235 		 * Higher numbers increase max_states_per_insn and verification time,
9236 		 * but do not meaningfully decrease insn_processed.
9237 		 */
9238 		if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9239 			/* the state is unlikely to be useful. Remove it to
9240 			 * speed up verification
9241 			 */
9242 			*pprev = sl->next;
9243 			if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9244 				u32 br = sl->state.branches;
9245 
9246 				WARN_ONCE(br,
9247 					  "BUG live_done but branches_to_explore %d\n",
9248 					  br);
9249 				free_verifier_state(&sl->state, false);
9250 				kfree(sl);
9251 				env->peak_states--;
9252 			} else {
9253 				/* cannot free this state, since parentage chain may
9254 				 * walk it later. Add it for free_list instead to
9255 				 * be freed at the end of verification
9256 				 */
9257 				sl->next = env->free_list;
9258 				env->free_list = sl;
9259 			}
9260 			sl = *pprev;
9261 			continue;
9262 		}
9263 next:
9264 		pprev = &sl->next;
9265 		sl = *pprev;
9266 	}
9267 
9268 	if (env->max_states_per_insn < states_cnt)
9269 		env->max_states_per_insn = states_cnt;
9270 
9271 	if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9272 		return push_jmp_history(env, cur);
9273 
9274 	if (!add_new_state)
9275 		return push_jmp_history(env, cur);
9276 
9277 	/* There were no equivalent states, remember the current one.
9278 	 * Technically the current state is not proven to be safe yet,
9279 	 * but it will either reach outer most bpf_exit (which means it's safe)
9280 	 * or it will be rejected. When there are no loops the verifier won't be
9281 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9282 	 * again on the way to bpf_exit.
9283 	 * When looping the sl->state.branches will be > 0 and this state
9284 	 * will not be considered for equivalence until branches == 0.
9285 	 */
9286 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9287 	if (!new_sl)
9288 		return -ENOMEM;
9289 	env->total_states++;
9290 	env->peak_states++;
9291 	env->prev_jmps_processed = env->jmps_processed;
9292 	env->prev_insn_processed = env->insn_processed;
9293 
9294 	/* add new state to the head of linked list */
9295 	new = &new_sl->state;
9296 	err = copy_verifier_state(new, cur);
9297 	if (err) {
9298 		free_verifier_state(new, false);
9299 		kfree(new_sl);
9300 		return err;
9301 	}
9302 	new->insn_idx = insn_idx;
9303 	WARN_ONCE(new->branches != 1,
9304 		  "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9305 
9306 	cur->parent = new;
9307 	cur->first_insn_idx = insn_idx;
9308 	clear_jmp_history(cur);
9309 	new_sl->next = *explored_state(env, insn_idx);
9310 	*explored_state(env, insn_idx) = new_sl;
9311 	/* connect new state to parentage chain. Current frame needs all
9312 	 * registers connected. Only r6 - r9 of the callers are alive (pushed
9313 	 * to the stack implicitly by JITs) so in callers' frames connect just
9314 	 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9315 	 * the state of the call instruction (with WRITTEN set), and r0 comes
9316 	 * from callee with its full parentage chain, anyway.
9317 	 */
9318 	/* clear write marks in current state: the writes we did are not writes
9319 	 * our child did, so they don't screen off its reads from us.
9320 	 * (There are no read marks in current state, because reads always mark
9321 	 * their parent and current state never has children yet.  Only
9322 	 * explored_states can get read marks.)
9323 	 */
9324 	for (j = 0; j <= cur->curframe; j++) {
9325 		for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9326 			cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9327 		for (i = 0; i < BPF_REG_FP; i++)
9328 			cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9329 	}
9330 
9331 	/* all stack frames are accessible from callee, clear them all */
9332 	for (j = 0; j <= cur->curframe; j++) {
9333 		struct bpf_func_state *frame = cur->frame[j];
9334 		struct bpf_func_state *newframe = new->frame[j];
9335 
9336 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9337 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9338 			frame->stack[i].spilled_ptr.parent =
9339 						&newframe->stack[i].spilled_ptr;
9340 		}
9341 	}
9342 	return 0;
9343 }
9344 
9345 /* Return true if it's OK to have the same insn return a different type. */
9346 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9347 {
9348 	switch (type) {
9349 	case PTR_TO_CTX:
9350 	case PTR_TO_SOCKET:
9351 	case PTR_TO_SOCKET_OR_NULL:
9352 	case PTR_TO_SOCK_COMMON:
9353 	case PTR_TO_SOCK_COMMON_OR_NULL:
9354 	case PTR_TO_TCP_SOCK:
9355 	case PTR_TO_TCP_SOCK_OR_NULL:
9356 	case PTR_TO_XDP_SOCK:
9357 	case PTR_TO_BTF_ID:
9358 	case PTR_TO_BTF_ID_OR_NULL:
9359 		return false;
9360 	default:
9361 		return true;
9362 	}
9363 }
9364 
9365 /* If an instruction was previously used with particular pointer types, then we
9366  * need to be careful to avoid cases such as the below, where it may be ok
9367  * for one branch accessing the pointer, but not ok for the other branch:
9368  *
9369  * R1 = sock_ptr
9370  * goto X;
9371  * ...
9372  * R1 = some_other_valid_ptr;
9373  * goto X;
9374  * ...
9375  * R2 = *(u32 *)(R1 + 0);
9376  */
9377 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9378 {
9379 	return src != prev && (!reg_type_mismatch_ok(src) ||
9380 			       !reg_type_mismatch_ok(prev));
9381 }
9382 
9383 static int do_check(struct bpf_verifier_env *env)
9384 {
9385 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9386 	struct bpf_verifier_state *state = env->cur_state;
9387 	struct bpf_insn *insns = env->prog->insnsi;
9388 	struct bpf_reg_state *regs;
9389 	int insn_cnt = env->prog->len;
9390 	bool do_print_state = false;
9391 	int prev_insn_idx = -1;
9392 
9393 	for (;;) {
9394 		struct bpf_insn *insn;
9395 		u8 class;
9396 		int err;
9397 
9398 		env->prev_insn_idx = prev_insn_idx;
9399 		if (env->insn_idx >= insn_cnt) {
9400 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
9401 				env->insn_idx, insn_cnt);
9402 			return -EFAULT;
9403 		}
9404 
9405 		insn = &insns[env->insn_idx];
9406 		class = BPF_CLASS(insn->code);
9407 
9408 		if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9409 			verbose(env,
9410 				"BPF program is too large. Processed %d insn\n",
9411 				env->insn_processed);
9412 			return -E2BIG;
9413 		}
9414 
9415 		err = is_state_visited(env, env->insn_idx);
9416 		if (err < 0)
9417 			return err;
9418 		if (err == 1) {
9419 			/* found equivalent state, can prune the search */
9420 			if (env->log.level & BPF_LOG_LEVEL) {
9421 				if (do_print_state)
9422 					verbose(env, "\nfrom %d to %d%s: safe\n",
9423 						env->prev_insn_idx, env->insn_idx,
9424 						env->cur_state->speculative ?
9425 						" (speculative execution)" : "");
9426 				else
9427 					verbose(env, "%d: safe\n", env->insn_idx);
9428 			}
9429 			goto process_bpf_exit;
9430 		}
9431 
9432 		if (signal_pending(current))
9433 			return -EAGAIN;
9434 
9435 		if (need_resched())
9436 			cond_resched();
9437 
9438 		if (env->log.level & BPF_LOG_LEVEL2 ||
9439 		    (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9440 			if (env->log.level & BPF_LOG_LEVEL2)
9441 				verbose(env, "%d:", env->insn_idx);
9442 			else
9443 				verbose(env, "\nfrom %d to %d%s:",
9444 					env->prev_insn_idx, env->insn_idx,
9445 					env->cur_state->speculative ?
9446 					" (speculative execution)" : "");
9447 			print_verifier_state(env, state->frame[state->curframe]);
9448 			do_print_state = false;
9449 		}
9450 
9451 		if (env->log.level & BPF_LOG_LEVEL) {
9452 			const struct bpf_insn_cbs cbs = {
9453 				.cb_print	= verbose,
9454 				.private_data	= env,
9455 			};
9456 
9457 			verbose_linfo(env, env->insn_idx, "; ");
9458 			verbose(env, "%d: ", env->insn_idx);
9459 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9460 		}
9461 
9462 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
9463 			err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9464 							   env->prev_insn_idx);
9465 			if (err)
9466 				return err;
9467 		}
9468 
9469 		regs = cur_regs(env);
9470 		env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9471 		prev_insn_idx = env->insn_idx;
9472 
9473 		if (class == BPF_ALU || class == BPF_ALU64) {
9474 			err = check_alu_op(env, insn);
9475 			if (err)
9476 				return err;
9477 
9478 		} else if (class == BPF_LDX) {
9479 			enum bpf_reg_type *prev_src_type, src_reg_type;
9480 
9481 			/* check for reserved fields is already done */
9482 
9483 			/* check src operand */
9484 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9485 			if (err)
9486 				return err;
9487 
9488 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9489 			if (err)
9490 				return err;
9491 
9492 			src_reg_type = regs[insn->src_reg].type;
9493 
9494 			/* check that memory (src_reg + off) is readable,
9495 			 * the state of dst_reg will be updated by this func
9496 			 */
9497 			err = check_mem_access(env, env->insn_idx, insn->src_reg,
9498 					       insn->off, BPF_SIZE(insn->code),
9499 					       BPF_READ, insn->dst_reg, false);
9500 			if (err)
9501 				return err;
9502 
9503 			prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9504 
9505 			if (*prev_src_type == NOT_INIT) {
9506 				/* saw a valid insn
9507 				 * dst_reg = *(u32 *)(src_reg + off)
9508 				 * save type to validate intersecting paths
9509 				 */
9510 				*prev_src_type = src_reg_type;
9511 
9512 			} else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9513 				/* ABuser program is trying to use the same insn
9514 				 * dst_reg = *(u32*) (src_reg + off)
9515 				 * with different pointer types:
9516 				 * src_reg == ctx in one branch and
9517 				 * src_reg == stack|map in some other branch.
9518 				 * Reject it.
9519 				 */
9520 				verbose(env, "same insn cannot be used with different pointers\n");
9521 				return -EINVAL;
9522 			}
9523 
9524 		} else if (class == BPF_STX) {
9525 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
9526 
9527 			if (BPF_MODE(insn->code) == BPF_XADD) {
9528 				err = check_xadd(env, env->insn_idx, insn);
9529 				if (err)
9530 					return err;
9531 				env->insn_idx++;
9532 				continue;
9533 			}
9534 
9535 			/* check src1 operand */
9536 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
9537 			if (err)
9538 				return err;
9539 			/* check src2 operand */
9540 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9541 			if (err)
9542 				return err;
9543 
9544 			dst_reg_type = regs[insn->dst_reg].type;
9545 
9546 			/* check that memory (dst_reg + off) is writeable */
9547 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9548 					       insn->off, BPF_SIZE(insn->code),
9549 					       BPF_WRITE, insn->src_reg, false);
9550 			if (err)
9551 				return err;
9552 
9553 			prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9554 
9555 			if (*prev_dst_type == NOT_INIT) {
9556 				*prev_dst_type = dst_reg_type;
9557 			} else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9558 				verbose(env, "same insn cannot be used with different pointers\n");
9559 				return -EINVAL;
9560 			}
9561 
9562 		} else if (class == BPF_ST) {
9563 			if (BPF_MODE(insn->code) != BPF_MEM ||
9564 			    insn->src_reg != BPF_REG_0) {
9565 				verbose(env, "BPF_ST uses reserved fields\n");
9566 				return -EINVAL;
9567 			}
9568 			/* check src operand */
9569 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9570 			if (err)
9571 				return err;
9572 
9573 			if (is_ctx_reg(env, insn->dst_reg)) {
9574 				verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9575 					insn->dst_reg,
9576 					reg_type_str[reg_state(env, insn->dst_reg)->type]);
9577 				return -EACCES;
9578 			}
9579 
9580 			/* check that memory (dst_reg + off) is writeable */
9581 			err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9582 					       insn->off, BPF_SIZE(insn->code),
9583 					       BPF_WRITE, -1, false);
9584 			if (err)
9585 				return err;
9586 
9587 		} else if (class == BPF_JMP || class == BPF_JMP32) {
9588 			u8 opcode = BPF_OP(insn->code);
9589 
9590 			env->jmps_processed++;
9591 			if (opcode == BPF_CALL) {
9592 				if (BPF_SRC(insn->code) != BPF_K ||
9593 				    insn->off != 0 ||
9594 				    (insn->src_reg != BPF_REG_0 &&
9595 				     insn->src_reg != BPF_PSEUDO_CALL) ||
9596 				    insn->dst_reg != BPF_REG_0 ||
9597 				    class == BPF_JMP32) {
9598 					verbose(env, "BPF_CALL uses reserved fields\n");
9599 					return -EINVAL;
9600 				}
9601 
9602 				if (env->cur_state->active_spin_lock &&
9603 				    (insn->src_reg == BPF_PSEUDO_CALL ||
9604 				     insn->imm != BPF_FUNC_spin_unlock)) {
9605 					verbose(env, "function calls are not allowed while holding a lock\n");
9606 					return -EINVAL;
9607 				}
9608 				if (insn->src_reg == BPF_PSEUDO_CALL)
9609 					err = check_func_call(env, insn, &env->insn_idx);
9610 				else
9611 					err = check_helper_call(env, insn->imm, env->insn_idx);
9612 				if (err)
9613 					return err;
9614 
9615 			} else if (opcode == BPF_JA) {
9616 				if (BPF_SRC(insn->code) != BPF_K ||
9617 				    insn->imm != 0 ||
9618 				    insn->src_reg != BPF_REG_0 ||
9619 				    insn->dst_reg != BPF_REG_0 ||
9620 				    class == BPF_JMP32) {
9621 					verbose(env, "BPF_JA uses reserved fields\n");
9622 					return -EINVAL;
9623 				}
9624 
9625 				env->insn_idx += insn->off + 1;
9626 				continue;
9627 
9628 			} else if (opcode == BPF_EXIT) {
9629 				if (BPF_SRC(insn->code) != BPF_K ||
9630 				    insn->imm != 0 ||
9631 				    insn->src_reg != BPF_REG_0 ||
9632 				    insn->dst_reg != BPF_REG_0 ||
9633 				    class == BPF_JMP32) {
9634 					verbose(env, "BPF_EXIT uses reserved fields\n");
9635 					return -EINVAL;
9636 				}
9637 
9638 				if (env->cur_state->active_spin_lock) {
9639 					verbose(env, "bpf_spin_unlock is missing\n");
9640 					return -EINVAL;
9641 				}
9642 
9643 				if (state->curframe) {
9644 					/* exit from nested function */
9645 					err = prepare_func_exit(env, &env->insn_idx);
9646 					if (err)
9647 						return err;
9648 					do_print_state = true;
9649 					continue;
9650 				}
9651 
9652 				err = check_reference_leak(env);
9653 				if (err)
9654 					return err;
9655 
9656 				err = check_return_code(env);
9657 				if (err)
9658 					return err;
9659 process_bpf_exit:
9660 				update_branch_counts(env, env->cur_state);
9661 				err = pop_stack(env, &prev_insn_idx,
9662 						&env->insn_idx, pop_log);
9663 				if (err < 0) {
9664 					if (err != -ENOENT)
9665 						return err;
9666 					break;
9667 				} else {
9668 					do_print_state = true;
9669 					continue;
9670 				}
9671 			} else {
9672 				err = check_cond_jmp_op(env, insn, &env->insn_idx);
9673 				if (err)
9674 					return err;
9675 			}
9676 		} else if (class == BPF_LD) {
9677 			u8 mode = BPF_MODE(insn->code);
9678 
9679 			if (mode == BPF_ABS || mode == BPF_IND) {
9680 				err = check_ld_abs(env, insn);
9681 				if (err)
9682 					return err;
9683 
9684 			} else if (mode == BPF_IMM) {
9685 				err = check_ld_imm(env, insn);
9686 				if (err)
9687 					return err;
9688 
9689 				env->insn_idx++;
9690 				env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9691 			} else {
9692 				verbose(env, "invalid BPF_LD mode\n");
9693 				return -EINVAL;
9694 			}
9695 		} else {
9696 			verbose(env, "unknown insn class %d\n", class);
9697 			return -EINVAL;
9698 		}
9699 
9700 		env->insn_idx++;
9701 	}
9702 
9703 	return 0;
9704 }
9705 
9706 /* replace pseudo btf_id with kernel symbol address */
9707 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9708 			       struct bpf_insn *insn,
9709 			       struct bpf_insn_aux_data *aux)
9710 {
9711 	const struct btf_var_secinfo *vsi;
9712 	const struct btf_type *datasec;
9713 	const struct btf_type *t;
9714 	const char *sym_name;
9715 	bool percpu = false;
9716 	u32 type, id = insn->imm;
9717 	s32 datasec_id;
9718 	u64 addr;
9719 	int i;
9720 
9721 	if (!btf_vmlinux) {
9722 		verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9723 		return -EINVAL;
9724 	}
9725 
9726 	if (insn[1].imm != 0) {
9727 		verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9728 		return -EINVAL;
9729 	}
9730 
9731 	t = btf_type_by_id(btf_vmlinux, id);
9732 	if (!t) {
9733 		verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9734 		return -ENOENT;
9735 	}
9736 
9737 	if (!btf_type_is_var(t)) {
9738 		verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9739 			id);
9740 		return -EINVAL;
9741 	}
9742 
9743 	sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9744 	addr = kallsyms_lookup_name(sym_name);
9745 	if (!addr) {
9746 		verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9747 			sym_name);
9748 		return -ENOENT;
9749 	}
9750 
9751 	datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9752 					   BTF_KIND_DATASEC);
9753 	if (datasec_id > 0) {
9754 		datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9755 		for_each_vsi(i, datasec, vsi) {
9756 			if (vsi->type == id) {
9757 				percpu = true;
9758 				break;
9759 			}
9760 		}
9761 	}
9762 
9763 	insn[0].imm = (u32)addr;
9764 	insn[1].imm = addr >> 32;
9765 
9766 	type = t->type;
9767 	t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9768 	if (percpu) {
9769 		aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9770 		aux->btf_var.btf = btf_vmlinux;
9771 		aux->btf_var.btf_id = type;
9772 	} else if (!btf_type_is_struct(t)) {
9773 		const struct btf_type *ret;
9774 		const char *tname;
9775 		u32 tsize;
9776 
9777 		/* resolve the type size of ksym. */
9778 		ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9779 		if (IS_ERR(ret)) {
9780 			tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9781 			verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9782 				tname, PTR_ERR(ret));
9783 			return -EINVAL;
9784 		}
9785 		aux->btf_var.reg_type = PTR_TO_MEM;
9786 		aux->btf_var.mem_size = tsize;
9787 	} else {
9788 		aux->btf_var.reg_type = PTR_TO_BTF_ID;
9789 		aux->btf_var.btf = btf_vmlinux;
9790 		aux->btf_var.btf_id = type;
9791 	}
9792 	return 0;
9793 }
9794 
9795 static int check_map_prealloc(struct bpf_map *map)
9796 {
9797 	return (map->map_type != BPF_MAP_TYPE_HASH &&
9798 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9799 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9800 		!(map->map_flags & BPF_F_NO_PREALLOC);
9801 }
9802 
9803 static bool is_tracing_prog_type(enum bpf_prog_type type)
9804 {
9805 	switch (type) {
9806 	case BPF_PROG_TYPE_KPROBE:
9807 	case BPF_PROG_TYPE_TRACEPOINT:
9808 	case BPF_PROG_TYPE_PERF_EVENT:
9809 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
9810 		return true;
9811 	default:
9812 		return false;
9813 	}
9814 }
9815 
9816 static bool is_preallocated_map(struct bpf_map *map)
9817 {
9818 	if (!check_map_prealloc(map))
9819 		return false;
9820 	if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9821 		return false;
9822 	return true;
9823 }
9824 
9825 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9826 					struct bpf_map *map,
9827 					struct bpf_prog *prog)
9828 
9829 {
9830 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
9831 	/*
9832 	 * Validate that trace type programs use preallocated hash maps.
9833 	 *
9834 	 * For programs attached to PERF events this is mandatory as the
9835 	 * perf NMI can hit any arbitrary code sequence.
9836 	 *
9837 	 * All other trace types using preallocated hash maps are unsafe as
9838 	 * well because tracepoint or kprobes can be inside locked regions
9839 	 * of the memory allocator or at a place where a recursion into the
9840 	 * memory allocator would see inconsistent state.
9841 	 *
9842 	 * On RT enabled kernels run-time allocation of all trace type
9843 	 * programs is strictly prohibited due to lock type constraints. On
9844 	 * !RT kernels it is allowed for backwards compatibility reasons for
9845 	 * now, but warnings are emitted so developers are made aware of
9846 	 * the unsafety and can fix their programs before this is enforced.
9847 	 */
9848 	if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9849 		if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9850 			verbose(env, "perf_event programs can only use preallocated hash map\n");
9851 			return -EINVAL;
9852 		}
9853 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9854 			verbose(env, "trace type programs can only use preallocated hash map\n");
9855 			return -EINVAL;
9856 		}
9857 		WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9858 		verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9859 	}
9860 
9861 	if (map_value_has_spin_lock(map)) {
9862 		if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9863 			verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9864 			return -EINVAL;
9865 		}
9866 
9867 		if (is_tracing_prog_type(prog_type)) {
9868 			verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9869 			return -EINVAL;
9870 		}
9871 
9872 		if (prog->aux->sleepable) {
9873 			verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9874 			return -EINVAL;
9875 		}
9876 	}
9877 
9878 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9879 	    !bpf_offload_prog_map_match(prog, map)) {
9880 		verbose(env, "offload device mismatch between prog and map\n");
9881 		return -EINVAL;
9882 	}
9883 
9884 	if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9885 		verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9886 		return -EINVAL;
9887 	}
9888 
9889 	if (prog->aux->sleepable)
9890 		switch (map->map_type) {
9891 		case BPF_MAP_TYPE_HASH:
9892 		case BPF_MAP_TYPE_LRU_HASH:
9893 		case BPF_MAP_TYPE_ARRAY:
9894 			if (!is_preallocated_map(map)) {
9895 				verbose(env,
9896 					"Sleepable programs can only use preallocated hash maps\n");
9897 				return -EINVAL;
9898 			}
9899 			break;
9900 		default:
9901 			verbose(env,
9902 				"Sleepable programs can only use array and hash maps\n");
9903 			return -EINVAL;
9904 		}
9905 
9906 	return 0;
9907 }
9908 
9909 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9910 {
9911 	return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9912 		map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9913 }
9914 
9915 /* find and rewrite pseudo imm in ld_imm64 instructions:
9916  *
9917  * 1. if it accesses map FD, replace it with actual map pointer.
9918  * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9919  *
9920  * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9921  */
9922 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9923 {
9924 	struct bpf_insn *insn = env->prog->insnsi;
9925 	int insn_cnt = env->prog->len;
9926 	int i, j, err;
9927 
9928 	err = bpf_prog_calc_tag(env->prog);
9929 	if (err)
9930 		return err;
9931 
9932 	for (i = 0; i < insn_cnt; i++, insn++) {
9933 		if (BPF_CLASS(insn->code) == BPF_LDX &&
9934 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9935 			verbose(env, "BPF_LDX uses reserved fields\n");
9936 			return -EINVAL;
9937 		}
9938 
9939 		if (BPF_CLASS(insn->code) == BPF_STX &&
9940 		    ((BPF_MODE(insn->code) != BPF_MEM &&
9941 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9942 			verbose(env, "BPF_STX uses reserved fields\n");
9943 			return -EINVAL;
9944 		}
9945 
9946 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9947 			struct bpf_insn_aux_data *aux;
9948 			struct bpf_map *map;
9949 			struct fd f;
9950 			u64 addr;
9951 
9952 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
9953 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9954 			    insn[1].off != 0) {
9955 				verbose(env, "invalid bpf_ld_imm64 insn\n");
9956 				return -EINVAL;
9957 			}
9958 
9959 			if (insn[0].src_reg == 0)
9960 				/* valid generic load 64-bit imm */
9961 				goto next_insn;
9962 
9963 			if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9964 				aux = &env->insn_aux_data[i];
9965 				err = check_pseudo_btf_id(env, insn, aux);
9966 				if (err)
9967 					return err;
9968 				goto next_insn;
9969 			}
9970 
9971 			/* In final convert_pseudo_ld_imm64() step, this is
9972 			 * converted into regular 64-bit imm load insn.
9973 			 */
9974 			if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9975 			     insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9976 			    (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9977 			     insn[1].imm != 0)) {
9978 				verbose(env,
9979 					"unrecognized bpf_ld_imm64 insn\n");
9980 				return -EINVAL;
9981 			}
9982 
9983 			f = fdget(insn[0].imm);
9984 			map = __bpf_map_get(f);
9985 			if (IS_ERR(map)) {
9986 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
9987 					insn[0].imm);
9988 				return PTR_ERR(map);
9989 			}
9990 
9991 			err = check_map_prog_compatibility(env, map, env->prog);
9992 			if (err) {
9993 				fdput(f);
9994 				return err;
9995 			}
9996 
9997 			aux = &env->insn_aux_data[i];
9998 			if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
9999 				addr = (unsigned long)map;
10000 			} else {
10001 				u32 off = insn[1].imm;
10002 
10003 				if (off >= BPF_MAX_VAR_OFF) {
10004 					verbose(env, "direct value offset of %u is not allowed\n", off);
10005 					fdput(f);
10006 					return -EINVAL;
10007 				}
10008 
10009 				if (!map->ops->map_direct_value_addr) {
10010 					verbose(env, "no direct value access support for this map type\n");
10011 					fdput(f);
10012 					return -EINVAL;
10013 				}
10014 
10015 				err = map->ops->map_direct_value_addr(map, &addr, off);
10016 				if (err) {
10017 					verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10018 						map->value_size, off);
10019 					fdput(f);
10020 					return err;
10021 				}
10022 
10023 				aux->map_off = off;
10024 				addr += off;
10025 			}
10026 
10027 			insn[0].imm = (u32)addr;
10028 			insn[1].imm = addr >> 32;
10029 
10030 			/* check whether we recorded this map already */
10031 			for (j = 0; j < env->used_map_cnt; j++) {
10032 				if (env->used_maps[j] == map) {
10033 					aux->map_index = j;
10034 					fdput(f);
10035 					goto next_insn;
10036 				}
10037 			}
10038 
10039 			if (env->used_map_cnt >= MAX_USED_MAPS) {
10040 				fdput(f);
10041 				return -E2BIG;
10042 			}
10043 
10044 			/* hold the map. If the program is rejected by verifier,
10045 			 * the map will be released by release_maps() or it
10046 			 * will be used by the valid program until it's unloaded
10047 			 * and all maps are released in free_used_maps()
10048 			 */
10049 			bpf_map_inc(map);
10050 
10051 			aux->map_index = env->used_map_cnt;
10052 			env->used_maps[env->used_map_cnt++] = map;
10053 
10054 			if (bpf_map_is_cgroup_storage(map) &&
10055 			    bpf_cgroup_storage_assign(env->prog->aux, map)) {
10056 				verbose(env, "only one cgroup storage of each type is allowed\n");
10057 				fdput(f);
10058 				return -EBUSY;
10059 			}
10060 
10061 			fdput(f);
10062 next_insn:
10063 			insn++;
10064 			i++;
10065 			continue;
10066 		}
10067 
10068 		/* Basic sanity check before we invest more work here. */
10069 		if (!bpf_opcode_in_insntable(insn->code)) {
10070 			verbose(env, "unknown opcode %02x\n", insn->code);
10071 			return -EINVAL;
10072 		}
10073 	}
10074 
10075 	/* now all pseudo BPF_LD_IMM64 instructions load valid
10076 	 * 'struct bpf_map *' into a register instead of user map_fd.
10077 	 * These pointers will be used later by verifier to validate map access.
10078 	 */
10079 	return 0;
10080 }
10081 
10082 /* drop refcnt of maps used by the rejected program */
10083 static void release_maps(struct bpf_verifier_env *env)
10084 {
10085 	__bpf_free_used_maps(env->prog->aux, env->used_maps,
10086 			     env->used_map_cnt);
10087 }
10088 
10089 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10090 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10091 {
10092 	struct bpf_insn *insn = env->prog->insnsi;
10093 	int insn_cnt = env->prog->len;
10094 	int i;
10095 
10096 	for (i = 0; i < insn_cnt; i++, insn++)
10097 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10098 			insn->src_reg = 0;
10099 }
10100 
10101 /* single env->prog->insni[off] instruction was replaced with the range
10102  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
10103  * [0, off) and [off, end) to new locations, so the patched range stays zero
10104  */
10105 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10106 				struct bpf_prog *new_prog, u32 off, u32 cnt)
10107 {
10108 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10109 	struct bpf_insn *insn = new_prog->insnsi;
10110 	u32 prog_len;
10111 	int i;
10112 
10113 	/* aux info at OFF always needs adjustment, no matter fast path
10114 	 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10115 	 * original insn at old prog.
10116 	 */
10117 	old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10118 
10119 	if (cnt == 1)
10120 		return 0;
10121 	prog_len = new_prog->len;
10122 	new_data = vzalloc(array_size(prog_len,
10123 				      sizeof(struct bpf_insn_aux_data)));
10124 	if (!new_data)
10125 		return -ENOMEM;
10126 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10127 	memcpy(new_data + off + cnt - 1, old_data + off,
10128 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10129 	for (i = off; i < off + cnt - 1; i++) {
10130 		new_data[i].seen = env->pass_cnt;
10131 		new_data[i].zext_dst = insn_has_def32(env, insn + i);
10132 	}
10133 	env->insn_aux_data = new_data;
10134 	vfree(old_data);
10135 	return 0;
10136 }
10137 
10138 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10139 {
10140 	int i;
10141 
10142 	if (len == 1)
10143 		return;
10144 	/* NOTE: fake 'exit' subprog should be updated as well. */
10145 	for (i = 0; i <= env->subprog_cnt; i++) {
10146 		if (env->subprog_info[i].start <= off)
10147 			continue;
10148 		env->subprog_info[i].start += len - 1;
10149 	}
10150 }
10151 
10152 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10153 {
10154 	struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10155 	int i, sz = prog->aux->size_poke_tab;
10156 	struct bpf_jit_poke_descriptor *desc;
10157 
10158 	for (i = 0; i < sz; i++) {
10159 		desc = &tab[i];
10160 		desc->insn_idx += len - 1;
10161 	}
10162 }
10163 
10164 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10165 					    const struct bpf_insn *patch, u32 len)
10166 {
10167 	struct bpf_prog *new_prog;
10168 
10169 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10170 	if (IS_ERR(new_prog)) {
10171 		if (PTR_ERR(new_prog) == -ERANGE)
10172 			verbose(env,
10173 				"insn %d cannot be patched due to 16-bit range\n",
10174 				env->insn_aux_data[off].orig_idx);
10175 		return NULL;
10176 	}
10177 	if (adjust_insn_aux_data(env, new_prog, off, len))
10178 		return NULL;
10179 	adjust_subprog_starts(env, off, len);
10180 	adjust_poke_descs(new_prog, len);
10181 	return new_prog;
10182 }
10183 
10184 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10185 					      u32 off, u32 cnt)
10186 {
10187 	int i, j;
10188 
10189 	/* find first prog starting at or after off (first to remove) */
10190 	for (i = 0; i < env->subprog_cnt; i++)
10191 		if (env->subprog_info[i].start >= off)
10192 			break;
10193 	/* find first prog starting at or after off + cnt (first to stay) */
10194 	for (j = i; j < env->subprog_cnt; j++)
10195 		if (env->subprog_info[j].start >= off + cnt)
10196 			break;
10197 	/* if j doesn't start exactly at off + cnt, we are just removing
10198 	 * the front of previous prog
10199 	 */
10200 	if (env->subprog_info[j].start != off + cnt)
10201 		j--;
10202 
10203 	if (j > i) {
10204 		struct bpf_prog_aux *aux = env->prog->aux;
10205 		int move;
10206 
10207 		/* move fake 'exit' subprog as well */
10208 		move = env->subprog_cnt + 1 - j;
10209 
10210 		memmove(env->subprog_info + i,
10211 			env->subprog_info + j,
10212 			sizeof(*env->subprog_info) * move);
10213 		env->subprog_cnt -= j - i;
10214 
10215 		/* remove func_info */
10216 		if (aux->func_info) {
10217 			move = aux->func_info_cnt - j;
10218 
10219 			memmove(aux->func_info + i,
10220 				aux->func_info + j,
10221 				sizeof(*aux->func_info) * move);
10222 			aux->func_info_cnt -= j - i;
10223 			/* func_info->insn_off is set after all code rewrites,
10224 			 * in adjust_btf_func() - no need to adjust
10225 			 */
10226 		}
10227 	} else {
10228 		/* convert i from "first prog to remove" to "first to adjust" */
10229 		if (env->subprog_info[i].start == off)
10230 			i++;
10231 	}
10232 
10233 	/* update fake 'exit' subprog as well */
10234 	for (; i <= env->subprog_cnt; i++)
10235 		env->subprog_info[i].start -= cnt;
10236 
10237 	return 0;
10238 }
10239 
10240 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10241 				      u32 cnt)
10242 {
10243 	struct bpf_prog *prog = env->prog;
10244 	u32 i, l_off, l_cnt, nr_linfo;
10245 	struct bpf_line_info *linfo;
10246 
10247 	nr_linfo = prog->aux->nr_linfo;
10248 	if (!nr_linfo)
10249 		return 0;
10250 
10251 	linfo = prog->aux->linfo;
10252 
10253 	/* find first line info to remove, count lines to be removed */
10254 	for (i = 0; i < nr_linfo; i++)
10255 		if (linfo[i].insn_off >= off)
10256 			break;
10257 
10258 	l_off = i;
10259 	l_cnt = 0;
10260 	for (; i < nr_linfo; i++)
10261 		if (linfo[i].insn_off < off + cnt)
10262 			l_cnt++;
10263 		else
10264 			break;
10265 
10266 	/* First live insn doesn't match first live linfo, it needs to "inherit"
10267 	 * last removed linfo.  prog is already modified, so prog->len == off
10268 	 * means no live instructions after (tail of the program was removed).
10269 	 */
10270 	if (prog->len != off && l_cnt &&
10271 	    (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10272 		l_cnt--;
10273 		linfo[--i].insn_off = off + cnt;
10274 	}
10275 
10276 	/* remove the line info which refer to the removed instructions */
10277 	if (l_cnt) {
10278 		memmove(linfo + l_off, linfo + i,
10279 			sizeof(*linfo) * (nr_linfo - i));
10280 
10281 		prog->aux->nr_linfo -= l_cnt;
10282 		nr_linfo = prog->aux->nr_linfo;
10283 	}
10284 
10285 	/* pull all linfo[i].insn_off >= off + cnt in by cnt */
10286 	for (i = l_off; i < nr_linfo; i++)
10287 		linfo[i].insn_off -= cnt;
10288 
10289 	/* fix up all subprogs (incl. 'exit') which start >= off */
10290 	for (i = 0; i <= env->subprog_cnt; i++)
10291 		if (env->subprog_info[i].linfo_idx > l_off) {
10292 			/* program may have started in the removed region but
10293 			 * may not be fully removed
10294 			 */
10295 			if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10296 				env->subprog_info[i].linfo_idx -= l_cnt;
10297 			else
10298 				env->subprog_info[i].linfo_idx = l_off;
10299 		}
10300 
10301 	return 0;
10302 }
10303 
10304 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10305 {
10306 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10307 	unsigned int orig_prog_len = env->prog->len;
10308 	int err;
10309 
10310 	if (bpf_prog_is_dev_bound(env->prog->aux))
10311 		bpf_prog_offload_remove_insns(env, off, cnt);
10312 
10313 	err = bpf_remove_insns(env->prog, off, cnt);
10314 	if (err)
10315 		return err;
10316 
10317 	err = adjust_subprog_starts_after_remove(env, off, cnt);
10318 	if (err)
10319 		return err;
10320 
10321 	err = bpf_adj_linfo_after_remove(env, off, cnt);
10322 	if (err)
10323 		return err;
10324 
10325 	memmove(aux_data + off,	aux_data + off + cnt,
10326 		sizeof(*aux_data) * (orig_prog_len - off - cnt));
10327 
10328 	return 0;
10329 }
10330 
10331 /* The verifier does more data flow analysis than llvm and will not
10332  * explore branches that are dead at run time. Malicious programs can
10333  * have dead code too. Therefore replace all dead at-run-time code
10334  * with 'ja -1'.
10335  *
10336  * Just nops are not optimal, e.g. if they would sit at the end of the
10337  * program and through another bug we would manage to jump there, then
10338  * we'd execute beyond program memory otherwise. Returning exception
10339  * code also wouldn't work since we can have subprogs where the dead
10340  * code could be located.
10341  */
10342 static void sanitize_dead_code(struct bpf_verifier_env *env)
10343 {
10344 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10345 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10346 	struct bpf_insn *insn = env->prog->insnsi;
10347 	const int insn_cnt = env->prog->len;
10348 	int i;
10349 
10350 	for (i = 0; i < insn_cnt; i++) {
10351 		if (aux_data[i].seen)
10352 			continue;
10353 		memcpy(insn + i, &trap, sizeof(trap));
10354 	}
10355 }
10356 
10357 static bool insn_is_cond_jump(u8 code)
10358 {
10359 	u8 op;
10360 
10361 	if (BPF_CLASS(code) == BPF_JMP32)
10362 		return true;
10363 
10364 	if (BPF_CLASS(code) != BPF_JMP)
10365 		return false;
10366 
10367 	op = BPF_OP(code);
10368 	return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10369 }
10370 
10371 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10372 {
10373 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10374 	struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10375 	struct bpf_insn *insn = env->prog->insnsi;
10376 	const int insn_cnt = env->prog->len;
10377 	int i;
10378 
10379 	for (i = 0; i < insn_cnt; i++, insn++) {
10380 		if (!insn_is_cond_jump(insn->code))
10381 			continue;
10382 
10383 		if (!aux_data[i + 1].seen)
10384 			ja.off = insn->off;
10385 		else if (!aux_data[i + 1 + insn->off].seen)
10386 			ja.off = 0;
10387 		else
10388 			continue;
10389 
10390 		if (bpf_prog_is_dev_bound(env->prog->aux))
10391 			bpf_prog_offload_replace_insn(env, i, &ja);
10392 
10393 		memcpy(insn, &ja, sizeof(ja));
10394 	}
10395 }
10396 
10397 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10398 {
10399 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10400 	int insn_cnt = env->prog->len;
10401 	int i, err;
10402 
10403 	for (i = 0; i < insn_cnt; i++) {
10404 		int j;
10405 
10406 		j = 0;
10407 		while (i + j < insn_cnt && !aux_data[i + j].seen)
10408 			j++;
10409 		if (!j)
10410 			continue;
10411 
10412 		err = verifier_remove_insns(env, i, j);
10413 		if (err)
10414 			return err;
10415 		insn_cnt = env->prog->len;
10416 	}
10417 
10418 	return 0;
10419 }
10420 
10421 static int opt_remove_nops(struct bpf_verifier_env *env)
10422 {
10423 	const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10424 	struct bpf_insn *insn = env->prog->insnsi;
10425 	int insn_cnt = env->prog->len;
10426 	int i, err;
10427 
10428 	for (i = 0; i < insn_cnt; i++) {
10429 		if (memcmp(&insn[i], &ja, sizeof(ja)))
10430 			continue;
10431 
10432 		err = verifier_remove_insns(env, i, 1);
10433 		if (err)
10434 			return err;
10435 		insn_cnt--;
10436 		i--;
10437 	}
10438 
10439 	return 0;
10440 }
10441 
10442 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10443 					 const union bpf_attr *attr)
10444 {
10445 	struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10446 	struct bpf_insn_aux_data *aux = env->insn_aux_data;
10447 	int i, patch_len, delta = 0, len = env->prog->len;
10448 	struct bpf_insn *insns = env->prog->insnsi;
10449 	struct bpf_prog *new_prog;
10450 	bool rnd_hi32;
10451 
10452 	rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10453 	zext_patch[1] = BPF_ZEXT_REG(0);
10454 	rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10455 	rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10456 	rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10457 	for (i = 0; i < len; i++) {
10458 		int adj_idx = i + delta;
10459 		struct bpf_insn insn;
10460 
10461 		insn = insns[adj_idx];
10462 		if (!aux[adj_idx].zext_dst) {
10463 			u8 code, class;
10464 			u32 imm_rnd;
10465 
10466 			if (!rnd_hi32)
10467 				continue;
10468 
10469 			code = insn.code;
10470 			class = BPF_CLASS(code);
10471 			if (insn_no_def(&insn))
10472 				continue;
10473 
10474 			/* NOTE: arg "reg" (the fourth one) is only used for
10475 			 *       BPF_STX which has been ruled out in above
10476 			 *       check, it is safe to pass NULL here.
10477 			 */
10478 			if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10479 				if (class == BPF_LD &&
10480 				    BPF_MODE(code) == BPF_IMM)
10481 					i++;
10482 				continue;
10483 			}
10484 
10485 			/* ctx load could be transformed into wider load. */
10486 			if (class == BPF_LDX &&
10487 			    aux[adj_idx].ptr_type == PTR_TO_CTX)
10488 				continue;
10489 
10490 			imm_rnd = get_random_int();
10491 			rnd_hi32_patch[0] = insn;
10492 			rnd_hi32_patch[1].imm = imm_rnd;
10493 			rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10494 			patch = rnd_hi32_patch;
10495 			patch_len = 4;
10496 			goto apply_patch_buffer;
10497 		}
10498 
10499 		if (!bpf_jit_needs_zext())
10500 			continue;
10501 
10502 		zext_patch[0] = insn;
10503 		zext_patch[1].dst_reg = insn.dst_reg;
10504 		zext_patch[1].src_reg = insn.dst_reg;
10505 		patch = zext_patch;
10506 		patch_len = 2;
10507 apply_patch_buffer:
10508 		new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10509 		if (!new_prog)
10510 			return -ENOMEM;
10511 		env->prog = new_prog;
10512 		insns = new_prog->insnsi;
10513 		aux = env->insn_aux_data;
10514 		delta += patch_len - 1;
10515 	}
10516 
10517 	return 0;
10518 }
10519 
10520 /* convert load instructions that access fields of a context type into a
10521  * sequence of instructions that access fields of the underlying structure:
10522  *     struct __sk_buff    -> struct sk_buff
10523  *     struct bpf_sock_ops -> struct sock
10524  */
10525 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10526 {
10527 	const struct bpf_verifier_ops *ops = env->ops;
10528 	int i, cnt, size, ctx_field_size, delta = 0;
10529 	const int insn_cnt = env->prog->len;
10530 	struct bpf_insn insn_buf[16], *insn;
10531 	u32 target_size, size_default, off;
10532 	struct bpf_prog *new_prog;
10533 	enum bpf_access_type type;
10534 	bool is_narrower_load;
10535 
10536 	if (ops->gen_prologue || env->seen_direct_write) {
10537 		if (!ops->gen_prologue) {
10538 			verbose(env, "bpf verifier is misconfigured\n");
10539 			return -EINVAL;
10540 		}
10541 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10542 					env->prog);
10543 		if (cnt >= ARRAY_SIZE(insn_buf)) {
10544 			verbose(env, "bpf verifier is misconfigured\n");
10545 			return -EINVAL;
10546 		} else if (cnt) {
10547 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10548 			if (!new_prog)
10549 				return -ENOMEM;
10550 
10551 			env->prog = new_prog;
10552 			delta += cnt - 1;
10553 		}
10554 	}
10555 
10556 	if (bpf_prog_is_dev_bound(env->prog->aux))
10557 		return 0;
10558 
10559 	insn = env->prog->insnsi + delta;
10560 
10561 	for (i = 0; i < insn_cnt; i++, insn++) {
10562 		bpf_convert_ctx_access_t convert_ctx_access;
10563 
10564 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10565 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10566 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10567 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10568 			type = BPF_READ;
10569 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10570 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10571 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10572 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10573 			type = BPF_WRITE;
10574 		else
10575 			continue;
10576 
10577 		if (type == BPF_WRITE &&
10578 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
10579 			struct bpf_insn patch[] = {
10580 				/* Sanitize suspicious stack slot with zero.
10581 				 * There are no memory dependencies for this store,
10582 				 * since it's only using frame pointer and immediate
10583 				 * constant of zero
10584 				 */
10585 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10586 					   env->insn_aux_data[i + delta].sanitize_stack_off,
10587 					   0),
10588 				/* the original STX instruction will immediately
10589 				 * overwrite the same stack slot with appropriate value
10590 				 */
10591 				*insn,
10592 			};
10593 
10594 			cnt = ARRAY_SIZE(patch);
10595 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10596 			if (!new_prog)
10597 				return -ENOMEM;
10598 
10599 			delta    += cnt - 1;
10600 			env->prog = new_prog;
10601 			insn      = new_prog->insnsi + i + delta;
10602 			continue;
10603 		}
10604 
10605 		switch (env->insn_aux_data[i + delta].ptr_type) {
10606 		case PTR_TO_CTX:
10607 			if (!ops->convert_ctx_access)
10608 				continue;
10609 			convert_ctx_access = ops->convert_ctx_access;
10610 			break;
10611 		case PTR_TO_SOCKET:
10612 		case PTR_TO_SOCK_COMMON:
10613 			convert_ctx_access = bpf_sock_convert_ctx_access;
10614 			break;
10615 		case PTR_TO_TCP_SOCK:
10616 			convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10617 			break;
10618 		case PTR_TO_XDP_SOCK:
10619 			convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10620 			break;
10621 		case PTR_TO_BTF_ID:
10622 			if (type == BPF_READ) {
10623 				insn->code = BPF_LDX | BPF_PROBE_MEM |
10624 					BPF_SIZE((insn)->code);
10625 				env->prog->aux->num_exentries++;
10626 			} else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10627 				verbose(env, "Writes through BTF pointers are not allowed\n");
10628 				return -EINVAL;
10629 			}
10630 			continue;
10631 		default:
10632 			continue;
10633 		}
10634 
10635 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10636 		size = BPF_LDST_BYTES(insn);
10637 
10638 		/* If the read access is a narrower load of the field,
10639 		 * convert to a 4/8-byte load, to minimum program type specific
10640 		 * convert_ctx_access changes. If conversion is successful,
10641 		 * we will apply proper mask to the result.
10642 		 */
10643 		is_narrower_load = size < ctx_field_size;
10644 		size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10645 		off = insn->off;
10646 		if (is_narrower_load) {
10647 			u8 size_code;
10648 
10649 			if (type == BPF_WRITE) {
10650 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10651 				return -EINVAL;
10652 			}
10653 
10654 			size_code = BPF_H;
10655 			if (ctx_field_size == 4)
10656 				size_code = BPF_W;
10657 			else if (ctx_field_size == 8)
10658 				size_code = BPF_DW;
10659 
10660 			insn->off = off & ~(size_default - 1);
10661 			insn->code = BPF_LDX | BPF_MEM | size_code;
10662 		}
10663 
10664 		target_size = 0;
10665 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10666 					 &target_size);
10667 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10668 		    (ctx_field_size && !target_size)) {
10669 			verbose(env, "bpf verifier is misconfigured\n");
10670 			return -EINVAL;
10671 		}
10672 
10673 		if (is_narrower_load && size < target_size) {
10674 			u8 shift = bpf_ctx_narrow_access_offset(
10675 				off, size, size_default) * 8;
10676 			if (ctx_field_size <= 4) {
10677 				if (shift)
10678 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10679 									insn->dst_reg,
10680 									shift);
10681 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10682 								(1 << size * 8) - 1);
10683 			} else {
10684 				if (shift)
10685 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10686 									insn->dst_reg,
10687 									shift);
10688 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10689 								(1ULL << size * 8) - 1);
10690 			}
10691 		}
10692 
10693 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10694 		if (!new_prog)
10695 			return -ENOMEM;
10696 
10697 		delta += cnt - 1;
10698 
10699 		/* keep walking new program and skip insns we just inserted */
10700 		env->prog = new_prog;
10701 		insn      = new_prog->insnsi + i + delta;
10702 	}
10703 
10704 	return 0;
10705 }
10706 
10707 static int jit_subprogs(struct bpf_verifier_env *env)
10708 {
10709 	struct bpf_prog *prog = env->prog, **func, *tmp;
10710 	int i, j, subprog_start, subprog_end = 0, len, subprog;
10711 	struct bpf_map *map_ptr;
10712 	struct bpf_insn *insn;
10713 	void *old_bpf_func;
10714 	int err, num_exentries;
10715 
10716 	if (env->subprog_cnt <= 1)
10717 		return 0;
10718 
10719 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10720 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10721 		    insn->src_reg != BPF_PSEUDO_CALL)
10722 			continue;
10723 		/* Upon error here we cannot fall back to interpreter but
10724 		 * need a hard reject of the program. Thus -EFAULT is
10725 		 * propagated in any case.
10726 		 */
10727 		subprog = find_subprog(env, i + insn->imm + 1);
10728 		if (subprog < 0) {
10729 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10730 				  i + insn->imm + 1);
10731 			return -EFAULT;
10732 		}
10733 		/* temporarily remember subprog id inside insn instead of
10734 		 * aux_data, since next loop will split up all insns into funcs
10735 		 */
10736 		insn->off = subprog;
10737 		/* remember original imm in case JIT fails and fallback
10738 		 * to interpreter will be needed
10739 		 */
10740 		env->insn_aux_data[i].call_imm = insn->imm;
10741 		/* point imm to __bpf_call_base+1 from JITs point of view */
10742 		insn->imm = 1;
10743 	}
10744 
10745 	err = bpf_prog_alloc_jited_linfo(prog);
10746 	if (err)
10747 		goto out_undo_insn;
10748 
10749 	err = -ENOMEM;
10750 	func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10751 	if (!func)
10752 		goto out_undo_insn;
10753 
10754 	for (i = 0; i < env->subprog_cnt; i++) {
10755 		subprog_start = subprog_end;
10756 		subprog_end = env->subprog_info[i + 1].start;
10757 
10758 		len = subprog_end - subprog_start;
10759 		/* BPF_PROG_RUN doesn't call subprogs directly,
10760 		 * hence main prog stats include the runtime of subprogs.
10761 		 * subprogs don't have IDs and not reachable via prog_get_next_id
10762 		 * func[i]->aux->stats will never be accessed and stays NULL
10763 		 */
10764 		func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10765 		if (!func[i])
10766 			goto out_free;
10767 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10768 		       len * sizeof(struct bpf_insn));
10769 		func[i]->type = prog->type;
10770 		func[i]->len = len;
10771 		if (bpf_prog_calc_tag(func[i]))
10772 			goto out_free;
10773 		func[i]->is_func = 1;
10774 		func[i]->aux->func_idx = i;
10775 		/* the btf and func_info will be freed only at prog->aux */
10776 		func[i]->aux->btf = prog->aux->btf;
10777 		func[i]->aux->func_info = prog->aux->func_info;
10778 
10779 		for (j = 0; j < prog->aux->size_poke_tab; j++) {
10780 			u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10781 			int ret;
10782 
10783 			if (!(insn_idx >= subprog_start &&
10784 			      insn_idx <= subprog_end))
10785 				continue;
10786 
10787 			ret = bpf_jit_add_poke_descriptor(func[i],
10788 							  &prog->aux->poke_tab[j]);
10789 			if (ret < 0) {
10790 				verbose(env, "adding tail call poke descriptor failed\n");
10791 				goto out_free;
10792 			}
10793 
10794 			func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10795 
10796 			map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10797 			ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10798 			if (ret < 0) {
10799 				verbose(env, "tracking tail call prog failed\n");
10800 				goto out_free;
10801 			}
10802 		}
10803 
10804 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
10805 		 * Long term would need debug info to populate names
10806 		 */
10807 		func[i]->aux->name[0] = 'F';
10808 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10809 		func[i]->jit_requested = 1;
10810 		func[i]->aux->linfo = prog->aux->linfo;
10811 		func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10812 		func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10813 		func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10814 		num_exentries = 0;
10815 		insn = func[i]->insnsi;
10816 		for (j = 0; j < func[i]->len; j++, insn++) {
10817 			if (BPF_CLASS(insn->code) == BPF_LDX &&
10818 			    BPF_MODE(insn->code) == BPF_PROBE_MEM)
10819 				num_exentries++;
10820 		}
10821 		func[i]->aux->num_exentries = num_exentries;
10822 		func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10823 		func[i] = bpf_int_jit_compile(func[i]);
10824 		if (!func[i]->jited) {
10825 			err = -ENOTSUPP;
10826 			goto out_free;
10827 		}
10828 		cond_resched();
10829 	}
10830 
10831 	/* Untrack main program's aux structs so that during map_poke_run()
10832 	 * we will not stumble upon the unfilled poke descriptors; each
10833 	 * of the main program's poke descs got distributed across subprogs
10834 	 * and got tracked onto map, so we are sure that none of them will
10835 	 * be missed after the operation below
10836 	 */
10837 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
10838 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
10839 
10840 		map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10841 	}
10842 
10843 	/* at this point all bpf functions were successfully JITed
10844 	 * now populate all bpf_calls with correct addresses and
10845 	 * run last pass of JIT
10846 	 */
10847 	for (i = 0; i < env->subprog_cnt; i++) {
10848 		insn = func[i]->insnsi;
10849 		for (j = 0; j < func[i]->len; j++, insn++) {
10850 			if (insn->code != (BPF_JMP | BPF_CALL) ||
10851 			    insn->src_reg != BPF_PSEUDO_CALL)
10852 				continue;
10853 			subprog = insn->off;
10854 			insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10855 				    __bpf_call_base;
10856 		}
10857 
10858 		/* we use the aux data to keep a list of the start addresses
10859 		 * of the JITed images for each function in the program
10860 		 *
10861 		 * for some architectures, such as powerpc64, the imm field
10862 		 * might not be large enough to hold the offset of the start
10863 		 * address of the callee's JITed image from __bpf_call_base
10864 		 *
10865 		 * in such cases, we can lookup the start address of a callee
10866 		 * by using its subprog id, available from the off field of
10867 		 * the call instruction, as an index for this list
10868 		 */
10869 		func[i]->aux->func = func;
10870 		func[i]->aux->func_cnt = env->subprog_cnt;
10871 	}
10872 	for (i = 0; i < env->subprog_cnt; i++) {
10873 		old_bpf_func = func[i]->bpf_func;
10874 		tmp = bpf_int_jit_compile(func[i]);
10875 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10876 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10877 			err = -ENOTSUPP;
10878 			goto out_free;
10879 		}
10880 		cond_resched();
10881 	}
10882 
10883 	/* finally lock prog and jit images for all functions and
10884 	 * populate kallsysm
10885 	 */
10886 	for (i = 0; i < env->subprog_cnt; i++) {
10887 		bpf_prog_lock_ro(func[i]);
10888 		bpf_prog_kallsyms_add(func[i]);
10889 	}
10890 
10891 	/* Last step: make now unused interpreter insns from main
10892 	 * prog consistent for later dump requests, so they can
10893 	 * later look the same as if they were interpreted only.
10894 	 */
10895 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10896 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10897 		    insn->src_reg != BPF_PSEUDO_CALL)
10898 			continue;
10899 		insn->off = env->insn_aux_data[i].call_imm;
10900 		subprog = find_subprog(env, i + insn->off + 1);
10901 		insn->imm = subprog;
10902 	}
10903 
10904 	prog->jited = 1;
10905 	prog->bpf_func = func[0]->bpf_func;
10906 	prog->aux->func = func;
10907 	prog->aux->func_cnt = env->subprog_cnt;
10908 	bpf_prog_free_unused_jited_linfo(prog);
10909 	return 0;
10910 out_free:
10911 	for (i = 0; i < env->subprog_cnt; i++) {
10912 		if (!func[i])
10913 			continue;
10914 
10915 		for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10916 			map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10917 			map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10918 		}
10919 		bpf_jit_free(func[i]);
10920 	}
10921 	kfree(func);
10922 out_undo_insn:
10923 	/* cleanup main prog to be interpreted */
10924 	prog->jit_requested = 0;
10925 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10926 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10927 		    insn->src_reg != BPF_PSEUDO_CALL)
10928 			continue;
10929 		insn->off = 0;
10930 		insn->imm = env->insn_aux_data[i].call_imm;
10931 	}
10932 	bpf_prog_free_jited_linfo(prog);
10933 	return err;
10934 }
10935 
10936 static int fixup_call_args(struct bpf_verifier_env *env)
10937 {
10938 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10939 	struct bpf_prog *prog = env->prog;
10940 	struct bpf_insn *insn = prog->insnsi;
10941 	int i, depth;
10942 #endif
10943 	int err = 0;
10944 
10945 	if (env->prog->jit_requested &&
10946 	    !bpf_prog_is_dev_bound(env->prog->aux)) {
10947 		err = jit_subprogs(env);
10948 		if (err == 0)
10949 			return 0;
10950 		if (err == -EFAULT)
10951 			return err;
10952 	}
10953 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10954 	if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10955 		/* When JIT fails the progs with bpf2bpf calls and tail_calls
10956 		 * have to be rejected, since interpreter doesn't support them yet.
10957 		 */
10958 		verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10959 		return -EINVAL;
10960 	}
10961 	for (i = 0; i < prog->len; i++, insn++) {
10962 		if (insn->code != (BPF_JMP | BPF_CALL) ||
10963 		    insn->src_reg != BPF_PSEUDO_CALL)
10964 			continue;
10965 		depth = get_callee_stack_depth(env, insn, i);
10966 		if (depth < 0)
10967 			return depth;
10968 		bpf_patch_call_args(insn, depth);
10969 	}
10970 	err = 0;
10971 #endif
10972 	return err;
10973 }
10974 
10975 /* fixup insn->imm field of bpf_call instructions
10976  * and inline eligible helpers as explicit sequence of BPF instructions
10977  *
10978  * this function is called after eBPF program passed verification
10979  */
10980 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10981 {
10982 	struct bpf_prog *prog = env->prog;
10983 	bool expect_blinding = bpf_jit_blinding_enabled(prog);
10984 	struct bpf_insn *insn = prog->insnsi;
10985 	const struct bpf_func_proto *fn;
10986 	const int insn_cnt = prog->len;
10987 	const struct bpf_map_ops *ops;
10988 	struct bpf_insn_aux_data *aux;
10989 	struct bpf_insn insn_buf[16];
10990 	struct bpf_prog *new_prog;
10991 	struct bpf_map *map_ptr;
10992 	int i, ret, cnt, delta = 0;
10993 
10994 	for (i = 0; i < insn_cnt; i++, insn++) {
10995 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
10996 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
10997 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
10998 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
10999 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11000 			struct bpf_insn mask_and_div[] = {
11001 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11002 				/* Rx div 0 -> 0 */
11003 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
11004 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11005 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11006 				*insn,
11007 			};
11008 			struct bpf_insn mask_and_mod[] = {
11009 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
11010 				/* Rx mod 0 -> Rx */
11011 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
11012 				*insn,
11013 			};
11014 			struct bpf_insn *patchlet;
11015 
11016 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11017 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11018 				patchlet = mask_and_div + (is64 ? 1 : 0);
11019 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
11020 			} else {
11021 				patchlet = mask_and_mod + (is64 ? 1 : 0);
11022 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
11023 			}
11024 
11025 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11026 			if (!new_prog)
11027 				return -ENOMEM;
11028 
11029 			delta    += cnt - 1;
11030 			env->prog = prog = new_prog;
11031 			insn      = new_prog->insnsi + i + delta;
11032 			continue;
11033 		}
11034 
11035 		if (BPF_CLASS(insn->code) == BPF_LD &&
11036 		    (BPF_MODE(insn->code) == BPF_ABS ||
11037 		     BPF_MODE(insn->code) == BPF_IND)) {
11038 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
11039 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11040 				verbose(env, "bpf verifier is misconfigured\n");
11041 				return -EINVAL;
11042 			}
11043 
11044 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11045 			if (!new_prog)
11046 				return -ENOMEM;
11047 
11048 			delta    += cnt - 1;
11049 			env->prog = prog = new_prog;
11050 			insn      = new_prog->insnsi + i + delta;
11051 			continue;
11052 		}
11053 
11054 		if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11055 		    insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11056 			const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11057 			const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11058 			struct bpf_insn insn_buf[16];
11059 			struct bpf_insn *patch = &insn_buf[0];
11060 			bool issrc, isneg;
11061 			u32 off_reg;
11062 
11063 			aux = &env->insn_aux_data[i + delta];
11064 			if (!aux->alu_state ||
11065 			    aux->alu_state == BPF_ALU_NON_POINTER)
11066 				continue;
11067 
11068 			isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11069 			issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11070 				BPF_ALU_SANITIZE_SRC;
11071 
11072 			off_reg = issrc ? insn->src_reg : insn->dst_reg;
11073 			if (isneg)
11074 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11075 			*patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11076 			*patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11077 			*patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11078 			*patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11079 			*patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11080 			if (issrc) {
11081 				*patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11082 							 off_reg);
11083 				insn->src_reg = BPF_REG_AX;
11084 			} else {
11085 				*patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11086 							 BPF_REG_AX);
11087 			}
11088 			if (isneg)
11089 				insn->code = insn->code == code_add ?
11090 					     code_sub : code_add;
11091 			*patch++ = *insn;
11092 			if (issrc && isneg)
11093 				*patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11094 			cnt = patch - insn_buf;
11095 
11096 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11097 			if (!new_prog)
11098 				return -ENOMEM;
11099 
11100 			delta    += cnt - 1;
11101 			env->prog = prog = new_prog;
11102 			insn      = new_prog->insnsi + i + delta;
11103 			continue;
11104 		}
11105 
11106 		if (insn->code != (BPF_JMP | BPF_CALL))
11107 			continue;
11108 		if (insn->src_reg == BPF_PSEUDO_CALL)
11109 			continue;
11110 
11111 		if (insn->imm == BPF_FUNC_get_route_realm)
11112 			prog->dst_needed = 1;
11113 		if (insn->imm == BPF_FUNC_get_prandom_u32)
11114 			bpf_user_rnd_init_once();
11115 		if (insn->imm == BPF_FUNC_override_return)
11116 			prog->kprobe_override = 1;
11117 		if (insn->imm == BPF_FUNC_tail_call) {
11118 			/* If we tail call into other programs, we
11119 			 * cannot make any assumptions since they can
11120 			 * be replaced dynamically during runtime in
11121 			 * the program array.
11122 			 */
11123 			prog->cb_access = 1;
11124 			if (!allow_tail_call_in_subprogs(env))
11125 				prog->aux->stack_depth = MAX_BPF_STACK;
11126 			prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11127 
11128 			/* mark bpf_tail_call as different opcode to avoid
11129 			 * conditional branch in the interpeter for every normal
11130 			 * call and to prevent accidental JITing by JIT compiler
11131 			 * that doesn't support bpf_tail_call yet
11132 			 */
11133 			insn->imm = 0;
11134 			insn->code = BPF_JMP | BPF_TAIL_CALL;
11135 
11136 			aux = &env->insn_aux_data[i + delta];
11137 			if (env->bpf_capable && !expect_blinding &&
11138 			    prog->jit_requested &&
11139 			    !bpf_map_key_poisoned(aux) &&
11140 			    !bpf_map_ptr_poisoned(aux) &&
11141 			    !bpf_map_ptr_unpriv(aux)) {
11142 				struct bpf_jit_poke_descriptor desc = {
11143 					.reason = BPF_POKE_REASON_TAIL_CALL,
11144 					.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11145 					.tail_call.key = bpf_map_key_immediate(aux),
11146 					.insn_idx = i + delta,
11147 				};
11148 
11149 				ret = bpf_jit_add_poke_descriptor(prog, &desc);
11150 				if (ret < 0) {
11151 					verbose(env, "adding tail call poke descriptor failed\n");
11152 					return ret;
11153 				}
11154 
11155 				insn->imm = ret + 1;
11156 				continue;
11157 			}
11158 
11159 			if (!bpf_map_ptr_unpriv(aux))
11160 				continue;
11161 
11162 			/* instead of changing every JIT dealing with tail_call
11163 			 * emit two extra insns:
11164 			 * if (index >= max_entries) goto out;
11165 			 * index &= array->index_mask;
11166 			 * to avoid out-of-bounds cpu speculation
11167 			 */
11168 			if (bpf_map_ptr_poisoned(aux)) {
11169 				verbose(env, "tail_call abusing map_ptr\n");
11170 				return -EINVAL;
11171 			}
11172 
11173 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11174 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11175 						  map_ptr->max_entries, 2);
11176 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11177 						    container_of(map_ptr,
11178 								 struct bpf_array,
11179 								 map)->index_mask);
11180 			insn_buf[2] = *insn;
11181 			cnt = 3;
11182 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11183 			if (!new_prog)
11184 				return -ENOMEM;
11185 
11186 			delta    += cnt - 1;
11187 			env->prog = prog = new_prog;
11188 			insn      = new_prog->insnsi + i + delta;
11189 			continue;
11190 		}
11191 
11192 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11193 		 * and other inlining handlers are currently limited to 64 bit
11194 		 * only.
11195 		 */
11196 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11197 		    (insn->imm == BPF_FUNC_map_lookup_elem ||
11198 		     insn->imm == BPF_FUNC_map_update_elem ||
11199 		     insn->imm == BPF_FUNC_map_delete_elem ||
11200 		     insn->imm == BPF_FUNC_map_push_elem   ||
11201 		     insn->imm == BPF_FUNC_map_pop_elem    ||
11202 		     insn->imm == BPF_FUNC_map_peek_elem)) {
11203 			aux = &env->insn_aux_data[i + delta];
11204 			if (bpf_map_ptr_poisoned(aux))
11205 				goto patch_call_imm;
11206 
11207 			map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11208 			ops = map_ptr->ops;
11209 			if (insn->imm == BPF_FUNC_map_lookup_elem &&
11210 			    ops->map_gen_lookup) {
11211 				cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11212 				if (cnt == -EOPNOTSUPP)
11213 					goto patch_map_ops_generic;
11214 				if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11215 					verbose(env, "bpf verifier is misconfigured\n");
11216 					return -EINVAL;
11217 				}
11218 
11219 				new_prog = bpf_patch_insn_data(env, i + delta,
11220 							       insn_buf, cnt);
11221 				if (!new_prog)
11222 					return -ENOMEM;
11223 
11224 				delta    += cnt - 1;
11225 				env->prog = prog = new_prog;
11226 				insn      = new_prog->insnsi + i + delta;
11227 				continue;
11228 			}
11229 
11230 			BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11231 				     (void *(*)(struct bpf_map *map, void *key))NULL));
11232 			BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11233 				     (int (*)(struct bpf_map *map, void *key))NULL));
11234 			BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11235 				     (int (*)(struct bpf_map *map, void *key, void *value,
11236 					      u64 flags))NULL));
11237 			BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11238 				     (int (*)(struct bpf_map *map, void *value,
11239 					      u64 flags))NULL));
11240 			BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11241 				     (int (*)(struct bpf_map *map, void *value))NULL));
11242 			BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11243 				     (int (*)(struct bpf_map *map, void *value))NULL));
11244 patch_map_ops_generic:
11245 			switch (insn->imm) {
11246 			case BPF_FUNC_map_lookup_elem:
11247 				insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11248 					    __bpf_call_base;
11249 				continue;
11250 			case BPF_FUNC_map_update_elem:
11251 				insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11252 					    __bpf_call_base;
11253 				continue;
11254 			case BPF_FUNC_map_delete_elem:
11255 				insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11256 					    __bpf_call_base;
11257 				continue;
11258 			case BPF_FUNC_map_push_elem:
11259 				insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11260 					    __bpf_call_base;
11261 				continue;
11262 			case BPF_FUNC_map_pop_elem:
11263 				insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11264 					    __bpf_call_base;
11265 				continue;
11266 			case BPF_FUNC_map_peek_elem:
11267 				insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11268 					    __bpf_call_base;
11269 				continue;
11270 			}
11271 
11272 			goto patch_call_imm;
11273 		}
11274 
11275 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
11276 		    insn->imm == BPF_FUNC_jiffies64) {
11277 			struct bpf_insn ld_jiffies_addr[2] = {
11278 				BPF_LD_IMM64(BPF_REG_0,
11279 					     (unsigned long)&jiffies),
11280 			};
11281 
11282 			insn_buf[0] = ld_jiffies_addr[0];
11283 			insn_buf[1] = ld_jiffies_addr[1];
11284 			insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11285 						  BPF_REG_0, 0);
11286 			cnt = 3;
11287 
11288 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11289 						       cnt);
11290 			if (!new_prog)
11291 				return -ENOMEM;
11292 
11293 			delta    += cnt - 1;
11294 			env->prog = prog = new_prog;
11295 			insn      = new_prog->insnsi + i + delta;
11296 			continue;
11297 		}
11298 
11299 patch_call_imm:
11300 		fn = env->ops->get_func_proto(insn->imm, env->prog);
11301 		/* all functions that have prototype and verifier allowed
11302 		 * programs to call them, must be real in-kernel functions
11303 		 */
11304 		if (!fn->func) {
11305 			verbose(env,
11306 				"kernel subsystem misconfigured func %s#%d\n",
11307 				func_id_name(insn->imm), insn->imm);
11308 			return -EFAULT;
11309 		}
11310 		insn->imm = fn->func - __bpf_call_base;
11311 	}
11312 
11313 	/* Since poke tab is now finalized, publish aux to tracker. */
11314 	for (i = 0; i < prog->aux->size_poke_tab; i++) {
11315 		map_ptr = prog->aux->poke_tab[i].tail_call.map;
11316 		if (!map_ptr->ops->map_poke_track ||
11317 		    !map_ptr->ops->map_poke_untrack ||
11318 		    !map_ptr->ops->map_poke_run) {
11319 			verbose(env, "bpf verifier is misconfigured\n");
11320 			return -EINVAL;
11321 		}
11322 
11323 		ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11324 		if (ret < 0) {
11325 			verbose(env, "tracking tail call prog failed\n");
11326 			return ret;
11327 		}
11328 	}
11329 
11330 	return 0;
11331 }
11332 
11333 static void free_states(struct bpf_verifier_env *env)
11334 {
11335 	struct bpf_verifier_state_list *sl, *sln;
11336 	int i;
11337 
11338 	sl = env->free_list;
11339 	while (sl) {
11340 		sln = sl->next;
11341 		free_verifier_state(&sl->state, false);
11342 		kfree(sl);
11343 		sl = sln;
11344 	}
11345 	env->free_list = NULL;
11346 
11347 	if (!env->explored_states)
11348 		return;
11349 
11350 	for (i = 0; i < state_htab_size(env); i++) {
11351 		sl = env->explored_states[i];
11352 
11353 		while (sl) {
11354 			sln = sl->next;
11355 			free_verifier_state(&sl->state, false);
11356 			kfree(sl);
11357 			sl = sln;
11358 		}
11359 		env->explored_states[i] = NULL;
11360 	}
11361 }
11362 
11363 /* The verifier is using insn_aux_data[] to store temporary data during
11364  * verification and to store information for passes that run after the
11365  * verification like dead code sanitization. do_check_common() for subprogram N
11366  * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11367  * temporary data after do_check_common() finds that subprogram N cannot be
11368  * verified independently. pass_cnt counts the number of times
11369  * do_check_common() was run and insn->aux->seen tells the pass number
11370  * insn_aux_data was touched. These variables are compared to clear temporary
11371  * data from failed pass. For testing and experiments do_check_common() can be
11372  * run multiple times even when prior attempt to verify is unsuccessful.
11373  */
11374 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11375 {
11376 	struct bpf_insn *insn = env->prog->insnsi;
11377 	struct bpf_insn_aux_data *aux;
11378 	int i, class;
11379 
11380 	for (i = 0; i < env->prog->len; i++) {
11381 		class = BPF_CLASS(insn[i].code);
11382 		if (class != BPF_LDX && class != BPF_STX)
11383 			continue;
11384 		aux = &env->insn_aux_data[i];
11385 		if (aux->seen != env->pass_cnt)
11386 			continue;
11387 		memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11388 	}
11389 }
11390 
11391 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11392 {
11393 	bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11394 	struct bpf_verifier_state *state;
11395 	struct bpf_reg_state *regs;
11396 	int ret, i;
11397 
11398 	env->prev_linfo = NULL;
11399 	env->pass_cnt++;
11400 
11401 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11402 	if (!state)
11403 		return -ENOMEM;
11404 	state->curframe = 0;
11405 	state->speculative = false;
11406 	state->branches = 1;
11407 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11408 	if (!state->frame[0]) {
11409 		kfree(state);
11410 		return -ENOMEM;
11411 	}
11412 	env->cur_state = state;
11413 	init_func_state(env, state->frame[0],
11414 			BPF_MAIN_FUNC /* callsite */,
11415 			0 /* frameno */,
11416 			subprog);
11417 
11418 	regs = state->frame[state->curframe]->regs;
11419 	if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11420 		ret = btf_prepare_func_args(env, subprog, regs);
11421 		if (ret)
11422 			goto out;
11423 		for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11424 			if (regs[i].type == PTR_TO_CTX)
11425 				mark_reg_known_zero(env, regs, i);
11426 			else if (regs[i].type == SCALAR_VALUE)
11427 				mark_reg_unknown(env, regs, i);
11428 		}
11429 	} else {
11430 		/* 1st arg to a function */
11431 		regs[BPF_REG_1].type = PTR_TO_CTX;
11432 		mark_reg_known_zero(env, regs, BPF_REG_1);
11433 		ret = btf_check_func_arg_match(env, subprog, regs);
11434 		if (ret == -EFAULT)
11435 			/* unlikely verifier bug. abort.
11436 			 * ret == 0 and ret < 0 are sadly acceptable for
11437 			 * main() function due to backward compatibility.
11438 			 * Like socket filter program may be written as:
11439 			 * int bpf_prog(struct pt_regs *ctx)
11440 			 * and never dereference that ctx in the program.
11441 			 * 'struct pt_regs' is a type mismatch for socket
11442 			 * filter that should be using 'struct __sk_buff'.
11443 			 */
11444 			goto out;
11445 	}
11446 
11447 	ret = do_check(env);
11448 out:
11449 	/* check for NULL is necessary, since cur_state can be freed inside
11450 	 * do_check() under memory pressure.
11451 	 */
11452 	if (env->cur_state) {
11453 		free_verifier_state(env->cur_state, true);
11454 		env->cur_state = NULL;
11455 	}
11456 	while (!pop_stack(env, NULL, NULL, false));
11457 	if (!ret && pop_log)
11458 		bpf_vlog_reset(&env->log, 0);
11459 	free_states(env);
11460 	if (ret)
11461 		/* clean aux data in case subprog was rejected */
11462 		sanitize_insn_aux_data(env);
11463 	return ret;
11464 }
11465 
11466 /* Verify all global functions in a BPF program one by one based on their BTF.
11467  * All global functions must pass verification. Otherwise the whole program is rejected.
11468  * Consider:
11469  * int bar(int);
11470  * int foo(int f)
11471  * {
11472  *    return bar(f);
11473  * }
11474  * int bar(int b)
11475  * {
11476  *    ...
11477  * }
11478  * foo() will be verified first for R1=any_scalar_value. During verification it
11479  * will be assumed that bar() already verified successfully and call to bar()
11480  * from foo() will be checked for type match only. Later bar() will be verified
11481  * independently to check that it's safe for R1=any_scalar_value.
11482  */
11483 static int do_check_subprogs(struct bpf_verifier_env *env)
11484 {
11485 	struct bpf_prog_aux *aux = env->prog->aux;
11486 	int i, ret;
11487 
11488 	if (!aux->func_info)
11489 		return 0;
11490 
11491 	for (i = 1; i < env->subprog_cnt; i++) {
11492 		if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11493 			continue;
11494 		env->insn_idx = env->subprog_info[i].start;
11495 		WARN_ON_ONCE(env->insn_idx == 0);
11496 		ret = do_check_common(env, i);
11497 		if (ret) {
11498 			return ret;
11499 		} else if (env->log.level & BPF_LOG_LEVEL) {
11500 			verbose(env,
11501 				"Func#%d is safe for any args that match its prototype\n",
11502 				i);
11503 		}
11504 	}
11505 	return 0;
11506 }
11507 
11508 static int do_check_main(struct bpf_verifier_env *env)
11509 {
11510 	int ret;
11511 
11512 	env->insn_idx = 0;
11513 	ret = do_check_common(env, 0);
11514 	if (!ret)
11515 		env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11516 	return ret;
11517 }
11518 
11519 
11520 static void print_verification_stats(struct bpf_verifier_env *env)
11521 {
11522 	int i;
11523 
11524 	if (env->log.level & BPF_LOG_STATS) {
11525 		verbose(env, "verification time %lld usec\n",
11526 			div_u64(env->verification_time, 1000));
11527 		verbose(env, "stack depth ");
11528 		for (i = 0; i < env->subprog_cnt; i++) {
11529 			u32 depth = env->subprog_info[i].stack_depth;
11530 
11531 			verbose(env, "%d", depth);
11532 			if (i + 1 < env->subprog_cnt)
11533 				verbose(env, "+");
11534 		}
11535 		verbose(env, "\n");
11536 	}
11537 	verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11538 		"total_states %d peak_states %d mark_read %d\n",
11539 		env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11540 		env->max_states_per_insn, env->total_states,
11541 		env->peak_states, env->longest_mark_read_walk);
11542 }
11543 
11544 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11545 {
11546 	const struct btf_type *t, *func_proto;
11547 	const struct bpf_struct_ops *st_ops;
11548 	const struct btf_member *member;
11549 	struct bpf_prog *prog = env->prog;
11550 	u32 btf_id, member_idx;
11551 	const char *mname;
11552 
11553 	btf_id = prog->aux->attach_btf_id;
11554 	st_ops = bpf_struct_ops_find(btf_id);
11555 	if (!st_ops) {
11556 		verbose(env, "attach_btf_id %u is not a supported struct\n",
11557 			btf_id);
11558 		return -ENOTSUPP;
11559 	}
11560 
11561 	t = st_ops->type;
11562 	member_idx = prog->expected_attach_type;
11563 	if (member_idx >= btf_type_vlen(t)) {
11564 		verbose(env, "attach to invalid member idx %u of struct %s\n",
11565 			member_idx, st_ops->name);
11566 		return -EINVAL;
11567 	}
11568 
11569 	member = &btf_type_member(t)[member_idx];
11570 	mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11571 	func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11572 					       NULL);
11573 	if (!func_proto) {
11574 		verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11575 			mname, member_idx, st_ops->name);
11576 		return -EINVAL;
11577 	}
11578 
11579 	if (st_ops->check_member) {
11580 		int err = st_ops->check_member(t, member);
11581 
11582 		if (err) {
11583 			verbose(env, "attach to unsupported member %s of struct %s\n",
11584 				mname, st_ops->name);
11585 			return err;
11586 		}
11587 	}
11588 
11589 	prog->aux->attach_func_proto = func_proto;
11590 	prog->aux->attach_func_name = mname;
11591 	env->ops = st_ops->verifier_ops;
11592 
11593 	return 0;
11594 }
11595 #define SECURITY_PREFIX "security_"
11596 
11597 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11598 {
11599 	if (within_error_injection_list(addr) ||
11600 	    !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11601 		return 0;
11602 
11603 	return -EINVAL;
11604 }
11605 
11606 /* list of non-sleepable functions that are otherwise on
11607  * ALLOW_ERROR_INJECTION list
11608  */
11609 BTF_SET_START(btf_non_sleepable_error_inject)
11610 /* Three functions below can be called from sleepable and non-sleepable context.
11611  * Assume non-sleepable from bpf safety point of view.
11612  */
11613 BTF_ID(func, __add_to_page_cache_locked)
11614 BTF_ID(func, should_fail_alloc_page)
11615 BTF_ID(func, should_failslab)
11616 BTF_SET_END(btf_non_sleepable_error_inject)
11617 
11618 static int check_non_sleepable_error_inject(u32 btf_id)
11619 {
11620 	return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11621 }
11622 
11623 int bpf_check_attach_target(struct bpf_verifier_log *log,
11624 			    const struct bpf_prog *prog,
11625 			    const struct bpf_prog *tgt_prog,
11626 			    u32 btf_id,
11627 			    struct bpf_attach_target_info *tgt_info)
11628 {
11629 	bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11630 	const char prefix[] = "btf_trace_";
11631 	int ret = 0, subprog = -1, i;
11632 	const struct btf_type *t;
11633 	bool conservative = true;
11634 	const char *tname;
11635 	struct btf *btf;
11636 	long addr = 0;
11637 
11638 	if (!btf_id) {
11639 		bpf_log(log, "Tracing programs must provide btf_id\n");
11640 		return -EINVAL;
11641 	}
11642 	btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
11643 	if (!btf) {
11644 		bpf_log(log,
11645 			"FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11646 		return -EINVAL;
11647 	}
11648 	t = btf_type_by_id(btf, btf_id);
11649 	if (!t) {
11650 		bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11651 		return -EINVAL;
11652 	}
11653 	tname = btf_name_by_offset(btf, t->name_off);
11654 	if (!tname) {
11655 		bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11656 		return -EINVAL;
11657 	}
11658 	if (tgt_prog) {
11659 		struct bpf_prog_aux *aux = tgt_prog->aux;
11660 
11661 		for (i = 0; i < aux->func_info_cnt; i++)
11662 			if (aux->func_info[i].type_id == btf_id) {
11663 				subprog = i;
11664 				break;
11665 			}
11666 		if (subprog == -1) {
11667 			bpf_log(log, "Subprog %s doesn't exist\n", tname);
11668 			return -EINVAL;
11669 		}
11670 		conservative = aux->func_info_aux[subprog].unreliable;
11671 		if (prog_extension) {
11672 			if (conservative) {
11673 				bpf_log(log,
11674 					"Cannot replace static functions\n");
11675 				return -EINVAL;
11676 			}
11677 			if (!prog->jit_requested) {
11678 				bpf_log(log,
11679 					"Extension programs should be JITed\n");
11680 				return -EINVAL;
11681 			}
11682 		}
11683 		if (!tgt_prog->jited) {
11684 			bpf_log(log, "Can attach to only JITed progs\n");
11685 			return -EINVAL;
11686 		}
11687 		if (tgt_prog->type == prog->type) {
11688 			/* Cannot fentry/fexit another fentry/fexit program.
11689 			 * Cannot attach program extension to another extension.
11690 			 * It's ok to attach fentry/fexit to extension program.
11691 			 */
11692 			bpf_log(log, "Cannot recursively attach\n");
11693 			return -EINVAL;
11694 		}
11695 		if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11696 		    prog_extension &&
11697 		    (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11698 		     tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11699 			/* Program extensions can extend all program types
11700 			 * except fentry/fexit. The reason is the following.
11701 			 * The fentry/fexit programs are used for performance
11702 			 * analysis, stats and can be attached to any program
11703 			 * type except themselves. When extension program is
11704 			 * replacing XDP function it is necessary to allow
11705 			 * performance analysis of all functions. Both original
11706 			 * XDP program and its program extension. Hence
11707 			 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11708 			 * allowed. If extending of fentry/fexit was allowed it
11709 			 * would be possible to create long call chain
11710 			 * fentry->extension->fentry->extension beyond
11711 			 * reasonable stack size. Hence extending fentry is not
11712 			 * allowed.
11713 			 */
11714 			bpf_log(log, "Cannot extend fentry/fexit\n");
11715 			return -EINVAL;
11716 		}
11717 	} else {
11718 		if (prog_extension) {
11719 			bpf_log(log, "Cannot replace kernel functions\n");
11720 			return -EINVAL;
11721 		}
11722 	}
11723 
11724 	switch (prog->expected_attach_type) {
11725 	case BPF_TRACE_RAW_TP:
11726 		if (tgt_prog) {
11727 			bpf_log(log,
11728 				"Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11729 			return -EINVAL;
11730 		}
11731 		if (!btf_type_is_typedef(t)) {
11732 			bpf_log(log, "attach_btf_id %u is not a typedef\n",
11733 				btf_id);
11734 			return -EINVAL;
11735 		}
11736 		if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11737 			bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11738 				btf_id, tname);
11739 			return -EINVAL;
11740 		}
11741 		tname += sizeof(prefix) - 1;
11742 		t = btf_type_by_id(btf, t->type);
11743 		if (!btf_type_is_ptr(t))
11744 			/* should never happen in valid vmlinux build */
11745 			return -EINVAL;
11746 		t = btf_type_by_id(btf, t->type);
11747 		if (!btf_type_is_func_proto(t))
11748 			/* should never happen in valid vmlinux build */
11749 			return -EINVAL;
11750 
11751 		break;
11752 	case BPF_TRACE_ITER:
11753 		if (!btf_type_is_func(t)) {
11754 			bpf_log(log, "attach_btf_id %u is not a function\n",
11755 				btf_id);
11756 			return -EINVAL;
11757 		}
11758 		t = btf_type_by_id(btf, t->type);
11759 		if (!btf_type_is_func_proto(t))
11760 			return -EINVAL;
11761 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11762 		if (ret)
11763 			return ret;
11764 		break;
11765 	default:
11766 		if (!prog_extension)
11767 			return -EINVAL;
11768 		fallthrough;
11769 	case BPF_MODIFY_RETURN:
11770 	case BPF_LSM_MAC:
11771 	case BPF_TRACE_FENTRY:
11772 	case BPF_TRACE_FEXIT:
11773 		if (!btf_type_is_func(t)) {
11774 			bpf_log(log, "attach_btf_id %u is not a function\n",
11775 				btf_id);
11776 			return -EINVAL;
11777 		}
11778 		if (prog_extension &&
11779 		    btf_check_type_match(log, prog, btf, t))
11780 			return -EINVAL;
11781 		t = btf_type_by_id(btf, t->type);
11782 		if (!btf_type_is_func_proto(t))
11783 			return -EINVAL;
11784 
11785 		if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11786 		    (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11787 		     prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11788 			return -EINVAL;
11789 
11790 		if (tgt_prog && conservative)
11791 			t = NULL;
11792 
11793 		ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11794 		if (ret < 0)
11795 			return ret;
11796 
11797 		if (tgt_prog) {
11798 			if (subprog == 0)
11799 				addr = (long) tgt_prog->bpf_func;
11800 			else
11801 				addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11802 		} else {
11803 			addr = kallsyms_lookup_name(tname);
11804 			if (!addr) {
11805 				bpf_log(log,
11806 					"The address of function %s cannot be found\n",
11807 					tname);
11808 				return -ENOENT;
11809 			}
11810 		}
11811 
11812 		if (prog->aux->sleepable) {
11813 			ret = -EINVAL;
11814 			switch (prog->type) {
11815 			case BPF_PROG_TYPE_TRACING:
11816 				/* fentry/fexit/fmod_ret progs can be sleepable only if they are
11817 				 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11818 				 */
11819 				if (!check_non_sleepable_error_inject(btf_id) &&
11820 				    within_error_injection_list(addr))
11821 					ret = 0;
11822 				break;
11823 			case BPF_PROG_TYPE_LSM:
11824 				/* LSM progs check that they are attached to bpf_lsm_*() funcs.
11825 				 * Only some of them are sleepable.
11826 				 */
11827 				if (bpf_lsm_is_sleepable_hook(btf_id))
11828 					ret = 0;
11829 				break;
11830 			default:
11831 				break;
11832 			}
11833 			if (ret) {
11834 				bpf_log(log, "%s is not sleepable\n", tname);
11835 				return ret;
11836 			}
11837 		} else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11838 			if (tgt_prog) {
11839 				bpf_log(log, "can't modify return codes of BPF programs\n");
11840 				return -EINVAL;
11841 			}
11842 			ret = check_attach_modify_return(addr, tname);
11843 			if (ret) {
11844 				bpf_log(log, "%s() is not modifiable\n", tname);
11845 				return ret;
11846 			}
11847 		}
11848 
11849 		break;
11850 	}
11851 	tgt_info->tgt_addr = addr;
11852 	tgt_info->tgt_name = tname;
11853 	tgt_info->tgt_type = t;
11854 	return 0;
11855 }
11856 
11857 static int check_attach_btf_id(struct bpf_verifier_env *env)
11858 {
11859 	struct bpf_prog *prog = env->prog;
11860 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11861 	struct bpf_attach_target_info tgt_info = {};
11862 	u32 btf_id = prog->aux->attach_btf_id;
11863 	struct bpf_trampoline *tr;
11864 	int ret;
11865 	u64 key;
11866 
11867 	if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11868 	    prog->type != BPF_PROG_TYPE_LSM) {
11869 		verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11870 		return -EINVAL;
11871 	}
11872 
11873 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11874 		return check_struct_ops_btf_id(env);
11875 
11876 	if (prog->type != BPF_PROG_TYPE_TRACING &&
11877 	    prog->type != BPF_PROG_TYPE_LSM &&
11878 	    prog->type != BPF_PROG_TYPE_EXT)
11879 		return 0;
11880 
11881 	ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11882 	if (ret)
11883 		return ret;
11884 
11885 	if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11886 		/* to make freplace equivalent to their targets, they need to
11887 		 * inherit env->ops and expected_attach_type for the rest of the
11888 		 * verification
11889 		 */
11890 		env->ops = bpf_verifier_ops[tgt_prog->type];
11891 		prog->expected_attach_type = tgt_prog->expected_attach_type;
11892 	}
11893 
11894 	/* store info about the attachment target that will be used later */
11895 	prog->aux->attach_func_proto = tgt_info.tgt_type;
11896 	prog->aux->attach_func_name = tgt_info.tgt_name;
11897 
11898 	if (tgt_prog) {
11899 		prog->aux->saved_dst_prog_type = tgt_prog->type;
11900 		prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11901 	}
11902 
11903 	if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11904 		prog->aux->attach_btf_trace = true;
11905 		return 0;
11906 	} else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11907 		if (!bpf_iter_prog_supported(prog))
11908 			return -EINVAL;
11909 		return 0;
11910 	}
11911 
11912 	if (prog->type == BPF_PROG_TYPE_LSM) {
11913 		ret = bpf_lsm_verify_prog(&env->log, prog);
11914 		if (ret < 0)
11915 			return ret;
11916 	}
11917 
11918 	key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
11919 	tr = bpf_trampoline_get(key, &tgt_info);
11920 	if (!tr)
11921 		return -ENOMEM;
11922 
11923 	prog->aux->dst_trampoline = tr;
11924 	return 0;
11925 }
11926 
11927 struct btf *bpf_get_btf_vmlinux(void)
11928 {
11929 	if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11930 		mutex_lock(&bpf_verifier_lock);
11931 		if (!btf_vmlinux)
11932 			btf_vmlinux = btf_parse_vmlinux();
11933 		mutex_unlock(&bpf_verifier_lock);
11934 	}
11935 	return btf_vmlinux;
11936 }
11937 
11938 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11939 	      union bpf_attr __user *uattr)
11940 {
11941 	u64 start_time = ktime_get_ns();
11942 	struct bpf_verifier_env *env;
11943 	struct bpf_verifier_log *log;
11944 	int i, len, ret = -EINVAL;
11945 	bool is_priv;
11946 
11947 	/* no program is valid */
11948 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11949 		return -EINVAL;
11950 
11951 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
11952 	 * allocate/free it every time bpf_check() is called
11953 	 */
11954 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11955 	if (!env)
11956 		return -ENOMEM;
11957 	log = &env->log;
11958 
11959 	len = (*prog)->len;
11960 	env->insn_aux_data =
11961 		vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11962 	ret = -ENOMEM;
11963 	if (!env->insn_aux_data)
11964 		goto err_free_env;
11965 	for (i = 0; i < len; i++)
11966 		env->insn_aux_data[i].orig_idx = i;
11967 	env->prog = *prog;
11968 	env->ops = bpf_verifier_ops[env->prog->type];
11969 	is_priv = bpf_capable();
11970 
11971 	bpf_get_btf_vmlinux();
11972 
11973 	/* grab the mutex to protect few globals used by verifier */
11974 	if (!is_priv)
11975 		mutex_lock(&bpf_verifier_lock);
11976 
11977 	if (attr->log_level || attr->log_buf || attr->log_size) {
11978 		/* user requested verbose verifier output
11979 		 * and supplied buffer to store the verification trace
11980 		 */
11981 		log->level = attr->log_level;
11982 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11983 		log->len_total = attr->log_size;
11984 
11985 		ret = -EINVAL;
11986 		/* log attributes have to be sane */
11987 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11988 		    !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11989 			goto err_unlock;
11990 	}
11991 
11992 	if (IS_ERR(btf_vmlinux)) {
11993 		/* Either gcc or pahole or kernel are broken. */
11994 		verbose(env, "in-kernel BTF is malformed\n");
11995 		ret = PTR_ERR(btf_vmlinux);
11996 		goto skip_full_check;
11997 	}
11998 
11999 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12000 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12001 		env->strict_alignment = true;
12002 	if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12003 		env->strict_alignment = false;
12004 
12005 	env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12006 	env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12007 	env->bypass_spec_v1 = bpf_bypass_spec_v1();
12008 	env->bypass_spec_v4 = bpf_bypass_spec_v4();
12009 	env->bpf_capable = bpf_capable();
12010 
12011 	if (is_priv)
12012 		env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12013 
12014 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
12015 		ret = bpf_prog_offload_verifier_prep(env->prog);
12016 		if (ret)
12017 			goto skip_full_check;
12018 	}
12019 
12020 	env->explored_states = kvcalloc(state_htab_size(env),
12021 				       sizeof(struct bpf_verifier_state_list *),
12022 				       GFP_USER);
12023 	ret = -ENOMEM;
12024 	if (!env->explored_states)
12025 		goto skip_full_check;
12026 
12027 	ret = check_subprogs(env);
12028 	if (ret < 0)
12029 		goto skip_full_check;
12030 
12031 	ret = check_btf_info(env, attr, uattr);
12032 	if (ret < 0)
12033 		goto skip_full_check;
12034 
12035 	ret = check_attach_btf_id(env);
12036 	if (ret)
12037 		goto skip_full_check;
12038 
12039 	ret = resolve_pseudo_ldimm64(env);
12040 	if (ret < 0)
12041 		goto skip_full_check;
12042 
12043 	ret = check_cfg(env);
12044 	if (ret < 0)
12045 		goto skip_full_check;
12046 
12047 	ret = do_check_subprogs(env);
12048 	ret = ret ?: do_check_main(env);
12049 
12050 	if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12051 		ret = bpf_prog_offload_finalize(env);
12052 
12053 skip_full_check:
12054 	kvfree(env->explored_states);
12055 
12056 	if (ret == 0)
12057 		ret = check_max_stack_depth(env);
12058 
12059 	/* instruction rewrites happen after this point */
12060 	if (is_priv) {
12061 		if (ret == 0)
12062 			opt_hard_wire_dead_code_branches(env);
12063 		if (ret == 0)
12064 			ret = opt_remove_dead_code(env);
12065 		if (ret == 0)
12066 			ret = opt_remove_nops(env);
12067 	} else {
12068 		if (ret == 0)
12069 			sanitize_dead_code(env);
12070 	}
12071 
12072 	if (ret == 0)
12073 		/* program is valid, convert *(u32*)(ctx + off) accesses */
12074 		ret = convert_ctx_accesses(env);
12075 
12076 	if (ret == 0)
12077 		ret = fixup_bpf_calls(env);
12078 
12079 	/* do 32-bit optimization after insn patching has done so those patched
12080 	 * insns could be handled correctly.
12081 	 */
12082 	if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12083 		ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12084 		env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12085 								     : false;
12086 	}
12087 
12088 	if (ret == 0)
12089 		ret = fixup_call_args(env);
12090 
12091 	env->verification_time = ktime_get_ns() - start_time;
12092 	print_verification_stats(env);
12093 
12094 	if (log->level && bpf_verifier_log_full(log))
12095 		ret = -ENOSPC;
12096 	if (log->level && !log->ubuf) {
12097 		ret = -EFAULT;
12098 		goto err_release_maps;
12099 	}
12100 
12101 	if (ret == 0 && env->used_map_cnt) {
12102 		/* if program passed verifier, update used_maps in bpf_prog_info */
12103 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12104 							  sizeof(env->used_maps[0]),
12105 							  GFP_KERNEL);
12106 
12107 		if (!env->prog->aux->used_maps) {
12108 			ret = -ENOMEM;
12109 			goto err_release_maps;
12110 		}
12111 
12112 		memcpy(env->prog->aux->used_maps, env->used_maps,
12113 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
12114 		env->prog->aux->used_map_cnt = env->used_map_cnt;
12115 
12116 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
12117 		 * bpf_ld_imm64 instructions
12118 		 */
12119 		convert_pseudo_ld_imm64(env);
12120 	}
12121 
12122 	if (ret == 0)
12123 		adjust_btf_func(env);
12124 
12125 err_release_maps:
12126 	if (!env->prog->aux->used_maps)
12127 		/* if we didn't copy map pointers into bpf_prog_info, release
12128 		 * them now. Otherwise free_used_maps() will release them.
12129 		 */
12130 		release_maps(env);
12131 
12132 	/* extension progs temporarily inherit the attach_type of their targets
12133 	   for verification purposes, so set it back to zero before returning
12134 	 */
12135 	if (env->prog->type == BPF_PROG_TYPE_EXT)
12136 		env->prog->expected_attach_type = 0;
12137 
12138 	*prog = env->prog;
12139 err_unlock:
12140 	if (!is_priv)
12141 		mutex_unlock(&bpf_verifier_lock);
12142 	vfree(env->insn_aux_data);
12143 err_free_env:
12144 	kfree(env);
12145 	return ret;
12146 }
12147