1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016 Facebook 4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 5 */ 6 #include <uapi/linux/btf.h> 7 #include <linux/kernel.h> 8 #include <linux/types.h> 9 #include <linux/slab.h> 10 #include <linux/bpf.h> 11 #include <linux/btf.h> 12 #include <linux/bpf_verifier.h> 13 #include <linux/filter.h> 14 #include <net/netlink.h> 15 #include <linux/file.h> 16 #include <linux/vmalloc.h> 17 #include <linux/stringify.h> 18 #include <linux/bsearch.h> 19 #include <linux/sort.h> 20 #include <linux/perf_event.h> 21 #include <linux/ctype.h> 22 #include <linux/error-injection.h> 23 #include <linux/bpf_lsm.h> 24 #include <linux/btf_ids.h> 25 26 #include "disasm.h" 27 28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = { 29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 30 [_id] = & _name ## _verifier_ops, 31 #define BPF_MAP_TYPE(_id, _ops) 32 #define BPF_LINK_TYPE(_id, _name) 33 #include <linux/bpf_types.h> 34 #undef BPF_PROG_TYPE 35 #undef BPF_MAP_TYPE 36 #undef BPF_LINK_TYPE 37 }; 38 39 /* bpf_check() is a static code analyzer that walks eBPF program 40 * instruction by instruction and updates register/stack state. 41 * All paths of conditional branches are analyzed until 'bpf_exit' insn. 42 * 43 * The first pass is depth-first-search to check that the program is a DAG. 44 * It rejects the following programs: 45 * - larger than BPF_MAXINSNS insns 46 * - if loop is present (detected via back-edge) 47 * - unreachable insns exist (shouldn't be a forest. program = one function) 48 * - out of bounds or malformed jumps 49 * The second pass is all possible path descent from the 1st insn. 50 * Since it's analyzing all pathes through the program, the length of the 51 * analysis is limited to 64k insn, which may be hit even if total number of 52 * insn is less then 4K, but there are too many branches that change stack/regs. 53 * Number of 'branches to be analyzed' is limited to 1k 54 * 55 * On entry to each instruction, each register has a type, and the instruction 56 * changes the types of the registers depending on instruction semantics. 57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is 58 * copied to R1. 59 * 60 * All registers are 64-bit. 61 * R0 - return register 62 * R1-R5 argument passing registers 63 * R6-R9 callee saved registers 64 * R10 - frame pointer read-only 65 * 66 * At the start of BPF program the register R1 contains a pointer to bpf_context 67 * and has type PTR_TO_CTX. 68 * 69 * Verifier tracks arithmetic operations on pointers in case: 70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), 71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), 72 * 1st insn copies R10 (which has FRAME_PTR) type into R1 73 * and 2nd arithmetic instruction is pattern matched to recognize 74 * that it wants to construct a pointer to some element within stack. 75 * So after 2nd insn, the register R1 has type PTR_TO_STACK 76 * (and -20 constant is saved for further stack bounds checking). 77 * Meaning that this reg is a pointer to stack plus known immediate constant. 78 * 79 * Most of the time the registers have SCALAR_VALUE type, which 80 * means the register has some value, but it's not a valid pointer. 81 * (like pointer plus pointer becomes SCALAR_VALUE type) 82 * 83 * When verifier sees load or store instructions the type of base register 84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are 85 * four pointer types recognized by check_mem_access() function. 86 * 87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' 88 * and the range of [ptr, ptr + map's value_size) is accessible. 89 * 90 * registers used to pass values to function calls are checked against 91 * function argument constraints. 92 * 93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints. 94 * It means that the register type passed to this function must be 95 * PTR_TO_STACK and it will be used inside the function as 96 * 'pointer to map element key' 97 * 98 * For example the argument constraints for bpf_map_lookup_elem(): 99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, 100 * .arg1_type = ARG_CONST_MAP_PTR, 101 * .arg2_type = ARG_PTR_TO_MAP_KEY, 102 * 103 * ret_type says that this function returns 'pointer to map elem value or null' 104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and 105 * 2nd argument should be a pointer to stack, which will be used inside 106 * the helper function as a pointer to map element key. 107 * 108 * On the kernel side the helper function looks like: 109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) 110 * { 111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; 112 * void *key = (void *) (unsigned long) r2; 113 * void *value; 114 * 115 * here kernel can access 'key' and 'map' pointers safely, knowing that 116 * [key, key + map->key_size) bytes are valid and were initialized on 117 * the stack of eBPF program. 118 * } 119 * 120 * Corresponding eBPF program may look like: 121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR 122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK 123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP 124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), 125 * here verifier looks at prototype of map_lookup_elem() and sees: 126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, 127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes 128 * 129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, 130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits 131 * and were initialized prior to this call. 132 * If it's ok, then verifier allows this BPF_CALL insn and looks at 133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets 134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function 135 * returns ether pointer to map value or NULL. 136 * 137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' 138 * insn, the register holding that pointer in the true branch changes state to 139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false 140 * branch. See check_cond_jmp_op(). 141 * 142 * After the call R0 is set to return type of the function and registers R1-R5 143 * are set to NOT_INIT to indicate that they are no longer readable. 144 * 145 * The following reference types represent a potential reference to a kernel 146 * resource which, after first being allocated, must be checked and freed by 147 * the BPF program: 148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET 149 * 150 * When the verifier sees a helper call return a reference type, it allocates a 151 * pointer id for the reference and stores it in the current function state. 152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into 153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type 154 * passes through a NULL-check conditional. For the branch wherein the state is 155 * changed to CONST_IMM, the verifier releases the reference. 156 * 157 * For each helper function that allocates a reference, such as 158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as 159 * bpf_sk_release(). When a reference type passes into the release function, 160 * the verifier also releases the reference. If any unchecked or unreleased 161 * reference remains at the end of the program, the verifier rejects it. 162 */ 163 164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */ 165 struct bpf_verifier_stack_elem { 166 /* verifer state is 'st' 167 * before processing instruction 'insn_idx' 168 * and after processing instruction 'prev_insn_idx' 169 */ 170 struct bpf_verifier_state st; 171 int insn_idx; 172 int prev_insn_idx; 173 struct bpf_verifier_stack_elem *next; 174 /* length of verifier log at the time this state was pushed on stack */ 175 u32 log_pos; 176 }; 177 178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192 179 #define BPF_COMPLEXITY_LIMIT_STATES 64 180 181 #define BPF_MAP_KEY_POISON (1ULL << 63) 182 #define BPF_MAP_KEY_SEEN (1ULL << 62) 183 184 #define BPF_MAP_PTR_UNPRIV 1UL 185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \ 186 POISON_POINTER_DELTA)) 187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV)) 188 189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux) 190 { 191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON; 192 } 193 194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux) 195 { 196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV; 197 } 198 199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux, 200 const struct bpf_map *map, bool unpriv) 201 { 202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV); 203 unpriv |= bpf_map_ptr_unpriv(aux); 204 aux->map_ptr_state = (unsigned long)map | 205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL); 206 } 207 208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux) 209 { 210 return aux->map_key_state & BPF_MAP_KEY_POISON; 211 } 212 213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux) 214 { 215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN); 216 } 217 218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux) 219 { 220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON); 221 } 222 223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state) 224 { 225 bool poisoned = bpf_map_key_poisoned(aux); 226 227 aux->map_key_state = state | BPF_MAP_KEY_SEEN | 228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL); 229 } 230 231 struct bpf_call_arg_meta { 232 struct bpf_map *map_ptr; 233 bool raw_mode; 234 bool pkt_access; 235 int regno; 236 int access_size; 237 int mem_size; 238 u64 msize_max_value; 239 int ref_obj_id; 240 int func_id; 241 struct btf *btf; 242 u32 btf_id; 243 struct btf *ret_btf; 244 u32 ret_btf_id; 245 }; 246 247 struct btf *btf_vmlinux; 248 249 static DEFINE_MUTEX(bpf_verifier_lock); 250 251 static const struct bpf_line_info * 252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off) 253 { 254 const struct bpf_line_info *linfo; 255 const struct bpf_prog *prog; 256 u32 i, nr_linfo; 257 258 prog = env->prog; 259 nr_linfo = prog->aux->nr_linfo; 260 261 if (!nr_linfo || insn_off >= prog->len) 262 return NULL; 263 264 linfo = prog->aux->linfo; 265 for (i = 1; i < nr_linfo; i++) 266 if (insn_off < linfo[i].insn_off) 267 break; 268 269 return &linfo[i - 1]; 270 } 271 272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt, 273 va_list args) 274 { 275 unsigned int n; 276 277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); 278 279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, 280 "verifier log line truncated - local buffer too short\n"); 281 282 n = min(log->len_total - log->len_used - 1, n); 283 log->kbuf[n] = '\0'; 284 285 if (log->level == BPF_LOG_KERNEL) { 286 pr_err("BPF:%s\n", log->kbuf); 287 return; 288 } 289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) 290 log->len_used += n; 291 else 292 log->ubuf = NULL; 293 } 294 295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos) 296 { 297 char zero = 0; 298 299 if (!bpf_verifier_log_needed(log)) 300 return; 301 302 log->len_used = new_pos; 303 if (put_user(zero, log->ubuf + new_pos)) 304 log->ubuf = NULL; 305 } 306 307 /* log_level controls verbosity level of eBPF verifier. 308 * bpf_verifier_log_write() is used to dump the verification trace to the log, 309 * so the user can figure out what's wrong with the program 310 */ 311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 312 const char *fmt, ...) 313 { 314 va_list args; 315 316 if (!bpf_verifier_log_needed(&env->log)) 317 return; 318 319 va_start(args, fmt); 320 bpf_verifier_vlog(&env->log, fmt, args); 321 va_end(args); 322 } 323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write); 324 325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...) 326 { 327 struct bpf_verifier_env *env = private_data; 328 va_list args; 329 330 if (!bpf_verifier_log_needed(&env->log)) 331 return; 332 333 va_start(args, fmt); 334 bpf_verifier_vlog(&env->log, fmt, args); 335 va_end(args); 336 } 337 338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 339 const char *fmt, ...) 340 { 341 va_list args; 342 343 if (!bpf_verifier_log_needed(log)) 344 return; 345 346 va_start(args, fmt); 347 bpf_verifier_vlog(log, fmt, args); 348 va_end(args); 349 } 350 351 static const char *ltrim(const char *s) 352 { 353 while (isspace(*s)) 354 s++; 355 356 return s; 357 } 358 359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env, 360 u32 insn_off, 361 const char *prefix_fmt, ...) 362 { 363 const struct bpf_line_info *linfo; 364 365 if (!bpf_verifier_log_needed(&env->log)) 366 return; 367 368 linfo = find_linfo(env, insn_off); 369 if (!linfo || linfo == env->prev_linfo) 370 return; 371 372 if (prefix_fmt) { 373 va_list args; 374 375 va_start(args, prefix_fmt); 376 bpf_verifier_vlog(&env->log, prefix_fmt, args); 377 va_end(args); 378 } 379 380 verbose(env, "%s\n", 381 ltrim(btf_name_by_offset(env->prog->aux->btf, 382 linfo->line_off))); 383 384 env->prev_linfo = linfo; 385 } 386 387 static bool type_is_pkt_pointer(enum bpf_reg_type type) 388 { 389 return type == PTR_TO_PACKET || 390 type == PTR_TO_PACKET_META; 391 } 392 393 static bool type_is_sk_pointer(enum bpf_reg_type type) 394 { 395 return type == PTR_TO_SOCKET || 396 type == PTR_TO_SOCK_COMMON || 397 type == PTR_TO_TCP_SOCK || 398 type == PTR_TO_XDP_SOCK; 399 } 400 401 static bool reg_type_not_null(enum bpf_reg_type type) 402 { 403 return type == PTR_TO_SOCKET || 404 type == PTR_TO_TCP_SOCK || 405 type == PTR_TO_MAP_VALUE || 406 type == PTR_TO_SOCK_COMMON; 407 } 408 409 static bool reg_type_may_be_null(enum bpf_reg_type type) 410 { 411 return type == PTR_TO_MAP_VALUE_OR_NULL || 412 type == PTR_TO_SOCKET_OR_NULL || 413 type == PTR_TO_SOCK_COMMON_OR_NULL || 414 type == PTR_TO_TCP_SOCK_OR_NULL || 415 type == PTR_TO_BTF_ID_OR_NULL || 416 type == PTR_TO_MEM_OR_NULL || 417 type == PTR_TO_RDONLY_BUF_OR_NULL || 418 type == PTR_TO_RDWR_BUF_OR_NULL; 419 } 420 421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg) 422 { 423 return reg->type == PTR_TO_MAP_VALUE && 424 map_value_has_spin_lock(reg->map_ptr); 425 } 426 427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type) 428 { 429 return type == PTR_TO_SOCKET || 430 type == PTR_TO_SOCKET_OR_NULL || 431 type == PTR_TO_TCP_SOCK || 432 type == PTR_TO_TCP_SOCK_OR_NULL || 433 type == PTR_TO_MEM || 434 type == PTR_TO_MEM_OR_NULL; 435 } 436 437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type) 438 { 439 return type == ARG_PTR_TO_SOCK_COMMON; 440 } 441 442 static bool arg_type_may_be_null(enum bpf_arg_type type) 443 { 444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL || 445 type == ARG_PTR_TO_MEM_OR_NULL || 446 type == ARG_PTR_TO_CTX_OR_NULL || 447 type == ARG_PTR_TO_SOCKET_OR_NULL || 448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL; 449 } 450 451 /* Determine whether the function releases some resources allocated by another 452 * function call. The first reference type argument will be assumed to be 453 * released by release_reference(). 454 */ 455 static bool is_release_function(enum bpf_func_id func_id) 456 { 457 return func_id == BPF_FUNC_sk_release || 458 func_id == BPF_FUNC_ringbuf_submit || 459 func_id == BPF_FUNC_ringbuf_discard; 460 } 461 462 static bool may_be_acquire_function(enum bpf_func_id func_id) 463 { 464 return func_id == BPF_FUNC_sk_lookup_tcp || 465 func_id == BPF_FUNC_sk_lookup_udp || 466 func_id == BPF_FUNC_skc_lookup_tcp || 467 func_id == BPF_FUNC_map_lookup_elem || 468 func_id == BPF_FUNC_ringbuf_reserve; 469 } 470 471 static bool is_acquire_function(enum bpf_func_id func_id, 472 const struct bpf_map *map) 473 { 474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC; 475 476 if (func_id == BPF_FUNC_sk_lookup_tcp || 477 func_id == BPF_FUNC_sk_lookup_udp || 478 func_id == BPF_FUNC_skc_lookup_tcp || 479 func_id == BPF_FUNC_ringbuf_reserve) 480 return true; 481 482 if (func_id == BPF_FUNC_map_lookup_elem && 483 (map_type == BPF_MAP_TYPE_SOCKMAP || 484 map_type == BPF_MAP_TYPE_SOCKHASH)) 485 return true; 486 487 return false; 488 } 489 490 static bool is_ptr_cast_function(enum bpf_func_id func_id) 491 { 492 return func_id == BPF_FUNC_tcp_sock || 493 func_id == BPF_FUNC_sk_fullsock || 494 func_id == BPF_FUNC_skc_to_tcp_sock || 495 func_id == BPF_FUNC_skc_to_tcp6_sock || 496 func_id == BPF_FUNC_skc_to_udp6_sock || 497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock || 498 func_id == BPF_FUNC_skc_to_tcp_request_sock; 499 } 500 501 /* string representation of 'enum bpf_reg_type' */ 502 static const char * const reg_type_str[] = { 503 [NOT_INIT] = "?", 504 [SCALAR_VALUE] = "inv", 505 [PTR_TO_CTX] = "ctx", 506 [CONST_PTR_TO_MAP] = "map_ptr", 507 [PTR_TO_MAP_VALUE] = "map_value", 508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", 509 [PTR_TO_STACK] = "fp", 510 [PTR_TO_PACKET] = "pkt", 511 [PTR_TO_PACKET_META] = "pkt_meta", 512 [PTR_TO_PACKET_END] = "pkt_end", 513 [PTR_TO_FLOW_KEYS] = "flow_keys", 514 [PTR_TO_SOCKET] = "sock", 515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null", 516 [PTR_TO_SOCK_COMMON] = "sock_common", 517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null", 518 [PTR_TO_TCP_SOCK] = "tcp_sock", 519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null", 520 [PTR_TO_TP_BUFFER] = "tp_buffer", 521 [PTR_TO_XDP_SOCK] = "xdp_sock", 522 [PTR_TO_BTF_ID] = "ptr_", 523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_", 524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_", 525 [PTR_TO_MEM] = "mem", 526 [PTR_TO_MEM_OR_NULL] = "mem_or_null", 527 [PTR_TO_RDONLY_BUF] = "rdonly_buf", 528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null", 529 [PTR_TO_RDWR_BUF] = "rdwr_buf", 530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null", 531 }; 532 533 static char slot_type_char[] = { 534 [STACK_INVALID] = '?', 535 [STACK_SPILL] = 'r', 536 [STACK_MISC] = 'm', 537 [STACK_ZERO] = '0', 538 }; 539 540 static void print_liveness(struct bpf_verifier_env *env, 541 enum bpf_reg_liveness live) 542 { 543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE)) 544 verbose(env, "_"); 545 if (live & REG_LIVE_READ) 546 verbose(env, "r"); 547 if (live & REG_LIVE_WRITTEN) 548 verbose(env, "w"); 549 if (live & REG_LIVE_DONE) 550 verbose(env, "D"); 551 } 552 553 static struct bpf_func_state *func(struct bpf_verifier_env *env, 554 const struct bpf_reg_state *reg) 555 { 556 struct bpf_verifier_state *cur = env->cur_state; 557 558 return cur->frame[reg->frameno]; 559 } 560 561 static const char *kernel_type_name(const struct btf* btf, u32 id) 562 { 563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off); 564 } 565 566 static void print_verifier_state(struct bpf_verifier_env *env, 567 const struct bpf_func_state *state) 568 { 569 const struct bpf_reg_state *reg; 570 enum bpf_reg_type t; 571 int i; 572 573 if (state->frameno) 574 verbose(env, " frame%d:", state->frameno); 575 for (i = 0; i < MAX_BPF_REG; i++) { 576 reg = &state->regs[i]; 577 t = reg->type; 578 if (t == NOT_INIT) 579 continue; 580 verbose(env, " R%d", i); 581 print_liveness(env, reg->live); 582 verbose(env, "=%s", reg_type_str[t]); 583 if (t == SCALAR_VALUE && reg->precise) 584 verbose(env, "P"); 585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && 586 tnum_is_const(reg->var_off)) { 587 /* reg->off should be 0 for SCALAR_VALUE */ 588 verbose(env, "%lld", reg->var_off.value + reg->off); 589 } else { 590 if (t == PTR_TO_BTF_ID || 591 t == PTR_TO_BTF_ID_OR_NULL || 592 t == PTR_TO_PERCPU_BTF_ID) 593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id)); 594 verbose(env, "(id=%d", reg->id); 595 if (reg_type_may_be_refcounted_or_null(t)) 596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id); 597 if (t != SCALAR_VALUE) 598 verbose(env, ",off=%d", reg->off); 599 if (type_is_pkt_pointer(t)) 600 verbose(env, ",r=%d", reg->range); 601 else if (t == CONST_PTR_TO_MAP || 602 t == PTR_TO_MAP_VALUE || 603 t == PTR_TO_MAP_VALUE_OR_NULL) 604 verbose(env, ",ks=%d,vs=%d", 605 reg->map_ptr->key_size, 606 reg->map_ptr->value_size); 607 if (tnum_is_const(reg->var_off)) { 608 /* Typically an immediate SCALAR_VALUE, but 609 * could be a pointer whose offset is too big 610 * for reg->off 611 */ 612 verbose(env, ",imm=%llx", reg->var_off.value); 613 } else { 614 if (reg->smin_value != reg->umin_value && 615 reg->smin_value != S64_MIN) 616 verbose(env, ",smin_value=%lld", 617 (long long)reg->smin_value); 618 if (reg->smax_value != reg->umax_value && 619 reg->smax_value != S64_MAX) 620 verbose(env, ",smax_value=%lld", 621 (long long)reg->smax_value); 622 if (reg->umin_value != 0) 623 verbose(env, ",umin_value=%llu", 624 (unsigned long long)reg->umin_value); 625 if (reg->umax_value != U64_MAX) 626 verbose(env, ",umax_value=%llu", 627 (unsigned long long)reg->umax_value); 628 if (!tnum_is_unknown(reg->var_off)) { 629 char tn_buf[48]; 630 631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 632 verbose(env, ",var_off=%s", tn_buf); 633 } 634 if (reg->s32_min_value != reg->smin_value && 635 reg->s32_min_value != S32_MIN) 636 verbose(env, ",s32_min_value=%d", 637 (int)(reg->s32_min_value)); 638 if (reg->s32_max_value != reg->smax_value && 639 reg->s32_max_value != S32_MAX) 640 verbose(env, ",s32_max_value=%d", 641 (int)(reg->s32_max_value)); 642 if (reg->u32_min_value != reg->umin_value && 643 reg->u32_min_value != U32_MIN) 644 verbose(env, ",u32_min_value=%d", 645 (int)(reg->u32_min_value)); 646 if (reg->u32_max_value != reg->umax_value && 647 reg->u32_max_value != U32_MAX) 648 verbose(env, ",u32_max_value=%d", 649 (int)(reg->u32_max_value)); 650 } 651 verbose(env, ")"); 652 } 653 } 654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 655 char types_buf[BPF_REG_SIZE + 1]; 656 bool valid = false; 657 int j; 658 659 for (j = 0; j < BPF_REG_SIZE; j++) { 660 if (state->stack[i].slot_type[j] != STACK_INVALID) 661 valid = true; 662 types_buf[j] = slot_type_char[ 663 state->stack[i].slot_type[j]]; 664 } 665 types_buf[BPF_REG_SIZE] = 0; 666 if (!valid) 667 continue; 668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE); 669 print_liveness(env, state->stack[i].spilled_ptr.live); 670 if (state->stack[i].slot_type[0] == STACK_SPILL) { 671 reg = &state->stack[i].spilled_ptr; 672 t = reg->type; 673 verbose(env, "=%s", reg_type_str[t]); 674 if (t == SCALAR_VALUE && reg->precise) 675 verbose(env, "P"); 676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off)) 677 verbose(env, "%lld", reg->var_off.value + reg->off); 678 } else { 679 verbose(env, "=%s", types_buf); 680 } 681 } 682 if (state->acquired_refs && state->refs[0].id) { 683 verbose(env, " refs=%d", state->refs[0].id); 684 for (i = 1; i < state->acquired_refs; i++) 685 if (state->refs[i].id) 686 verbose(env, ",%d", state->refs[i].id); 687 } 688 verbose(env, "\n"); 689 } 690 691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 692 static int copy_##NAME##_state(struct bpf_func_state *dst, \ 693 const struct bpf_func_state *src) \ 694 { \ 695 if (!src->FIELD) \ 696 return 0; \ 697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \ 698 /* internal bug, make state invalid to reject the program */ \ 699 memset(dst, 0, sizeof(*dst)); \ 700 return -EFAULT; \ 701 } \ 702 memcpy(dst->FIELD, src->FIELD, \ 703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \ 704 return 0; \ 705 } 706 /* copy_reference_state() */ 707 COPY_STATE_FN(reference, acquired_refs, refs, 1) 708 /* copy_stack_state() */ 709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 710 #undef COPY_STATE_FN 711 712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \ 713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \ 714 bool copy_old) \ 715 { \ 716 u32 old_size = state->COUNT; \ 717 struct bpf_##NAME##_state *new_##FIELD; \ 718 int slot = size / SIZE; \ 719 \ 720 if (size <= old_size || !size) { \ 721 if (copy_old) \ 722 return 0; \ 723 state->COUNT = slot * SIZE; \ 724 if (!size && old_size) { \ 725 kfree(state->FIELD); \ 726 state->FIELD = NULL; \ 727 } \ 728 return 0; \ 729 } \ 730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \ 731 GFP_KERNEL); \ 732 if (!new_##FIELD) \ 733 return -ENOMEM; \ 734 if (copy_old) { \ 735 if (state->FIELD) \ 736 memcpy(new_##FIELD, state->FIELD, \ 737 sizeof(*new_##FIELD) * (old_size / SIZE)); \ 738 memset(new_##FIELD + old_size / SIZE, 0, \ 739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \ 740 } \ 741 state->COUNT = slot * SIZE; \ 742 kfree(state->FIELD); \ 743 state->FIELD = new_##FIELD; \ 744 return 0; \ 745 } 746 /* realloc_reference_state() */ 747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1) 748 /* realloc_stack_state() */ 749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE) 750 #undef REALLOC_STATE_FN 751 752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to 753 * make it consume minimal amount of memory. check_stack_write() access from 754 * the program calls into realloc_func_state() to grow the stack size. 755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state 756 * which realloc_stack_state() copies over. It points to previous 757 * bpf_verifier_state which is never reallocated. 758 */ 759 static int realloc_func_state(struct bpf_func_state *state, int stack_size, 760 int refs_size, bool copy_old) 761 { 762 int err = realloc_reference_state(state, refs_size, copy_old); 763 if (err) 764 return err; 765 return realloc_stack_state(state, stack_size, copy_old); 766 } 767 768 /* Acquire a pointer id from the env and update the state->refs to include 769 * this new pointer reference. 770 * On success, returns a valid pointer id to associate with the register 771 * On failure, returns a negative errno. 772 */ 773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx) 774 { 775 struct bpf_func_state *state = cur_func(env); 776 int new_ofs = state->acquired_refs; 777 int id, err; 778 779 err = realloc_reference_state(state, state->acquired_refs + 1, true); 780 if (err) 781 return err; 782 id = ++env->id_gen; 783 state->refs[new_ofs].id = id; 784 state->refs[new_ofs].insn_idx = insn_idx; 785 786 return id; 787 } 788 789 /* release function corresponding to acquire_reference_state(). Idempotent. */ 790 static int release_reference_state(struct bpf_func_state *state, int ptr_id) 791 { 792 int i, last_idx; 793 794 last_idx = state->acquired_refs - 1; 795 for (i = 0; i < state->acquired_refs; i++) { 796 if (state->refs[i].id == ptr_id) { 797 if (last_idx && i != last_idx) 798 memcpy(&state->refs[i], &state->refs[last_idx], 799 sizeof(*state->refs)); 800 memset(&state->refs[last_idx], 0, sizeof(*state->refs)); 801 state->acquired_refs--; 802 return 0; 803 } 804 } 805 return -EINVAL; 806 } 807 808 static int transfer_reference_state(struct bpf_func_state *dst, 809 struct bpf_func_state *src) 810 { 811 int err = realloc_reference_state(dst, src->acquired_refs, false); 812 if (err) 813 return err; 814 err = copy_reference_state(dst, src); 815 if (err) 816 return err; 817 return 0; 818 } 819 820 static void free_func_state(struct bpf_func_state *state) 821 { 822 if (!state) 823 return; 824 kfree(state->refs); 825 kfree(state->stack); 826 kfree(state); 827 } 828 829 static void clear_jmp_history(struct bpf_verifier_state *state) 830 { 831 kfree(state->jmp_history); 832 state->jmp_history = NULL; 833 state->jmp_history_cnt = 0; 834 } 835 836 static void free_verifier_state(struct bpf_verifier_state *state, 837 bool free_self) 838 { 839 int i; 840 841 for (i = 0; i <= state->curframe; i++) { 842 free_func_state(state->frame[i]); 843 state->frame[i] = NULL; 844 } 845 clear_jmp_history(state); 846 if (free_self) 847 kfree(state); 848 } 849 850 /* copy verifier state from src to dst growing dst stack space 851 * when necessary to accommodate larger src stack 852 */ 853 static int copy_func_state(struct bpf_func_state *dst, 854 const struct bpf_func_state *src) 855 { 856 int err; 857 858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs, 859 false); 860 if (err) 861 return err; 862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs)); 863 err = copy_reference_state(dst, src); 864 if (err) 865 return err; 866 return copy_stack_state(dst, src); 867 } 868 869 static int copy_verifier_state(struct bpf_verifier_state *dst_state, 870 const struct bpf_verifier_state *src) 871 { 872 struct bpf_func_state *dst; 873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt; 874 int i, err; 875 876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) { 877 kfree(dst_state->jmp_history); 878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER); 879 if (!dst_state->jmp_history) 880 return -ENOMEM; 881 } 882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz); 883 dst_state->jmp_history_cnt = src->jmp_history_cnt; 884 885 /* if dst has more stack frames then src frame, free them */ 886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) { 887 free_func_state(dst_state->frame[i]); 888 dst_state->frame[i] = NULL; 889 } 890 dst_state->speculative = src->speculative; 891 dst_state->curframe = src->curframe; 892 dst_state->active_spin_lock = src->active_spin_lock; 893 dst_state->branches = src->branches; 894 dst_state->parent = src->parent; 895 dst_state->first_insn_idx = src->first_insn_idx; 896 dst_state->last_insn_idx = src->last_insn_idx; 897 for (i = 0; i <= src->curframe; i++) { 898 dst = dst_state->frame[i]; 899 if (!dst) { 900 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 901 if (!dst) 902 return -ENOMEM; 903 dst_state->frame[i] = dst; 904 } 905 err = copy_func_state(dst, src->frame[i]); 906 if (err) 907 return err; 908 } 909 return 0; 910 } 911 912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st) 913 { 914 while (st) { 915 u32 br = --st->branches; 916 917 /* WARN_ON(br > 1) technically makes sense here, 918 * but see comment in push_stack(), hence: 919 */ 920 WARN_ONCE((int)br < 0, 921 "BUG update_branch_counts:branches_to_explore=%d\n", 922 br); 923 if (br) 924 break; 925 st = st->parent; 926 } 927 } 928 929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, 930 int *insn_idx, bool pop_log) 931 { 932 struct bpf_verifier_state *cur = env->cur_state; 933 struct bpf_verifier_stack_elem *elem, *head = env->head; 934 int err; 935 936 if (env->head == NULL) 937 return -ENOENT; 938 939 if (cur) { 940 err = copy_verifier_state(cur, &head->st); 941 if (err) 942 return err; 943 } 944 if (pop_log) 945 bpf_vlog_reset(&env->log, head->log_pos); 946 if (insn_idx) 947 *insn_idx = head->insn_idx; 948 if (prev_insn_idx) 949 *prev_insn_idx = head->prev_insn_idx; 950 elem = head->next; 951 free_verifier_state(&head->st, false); 952 kfree(head); 953 env->head = elem; 954 env->stack_size--; 955 return 0; 956 } 957 958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, 959 int insn_idx, int prev_insn_idx, 960 bool speculative) 961 { 962 struct bpf_verifier_state *cur = env->cur_state; 963 struct bpf_verifier_stack_elem *elem; 964 int err; 965 966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); 967 if (!elem) 968 goto err; 969 970 elem->insn_idx = insn_idx; 971 elem->prev_insn_idx = prev_insn_idx; 972 elem->next = env->head; 973 elem->log_pos = env->log.len_used; 974 env->head = elem; 975 env->stack_size++; 976 err = copy_verifier_state(&elem->st, cur); 977 if (err) 978 goto err; 979 elem->st.speculative |= speculative; 980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) { 981 verbose(env, "The sequence of %d jumps is too complex.\n", 982 env->stack_size); 983 goto err; 984 } 985 if (elem->st.parent) { 986 ++elem->st.parent->branches; 987 /* WARN_ON(branches > 2) technically makes sense here, 988 * but 989 * 1. speculative states will bump 'branches' for non-branch 990 * instructions 991 * 2. is_state_visited() heuristics may decide not to create 992 * a new state for a sequence of branches and all such current 993 * and cloned states will be pointing to a single parent state 994 * which might have large 'branches' count. 995 */ 996 } 997 return &elem->st; 998 err: 999 free_verifier_state(env->cur_state, true); 1000 env->cur_state = NULL; 1001 /* pop all elements and return */ 1002 while (!pop_stack(env, NULL, NULL, false)); 1003 return NULL; 1004 } 1005 1006 #define CALLER_SAVED_REGS 6 1007 static const int caller_saved[CALLER_SAVED_REGS] = { 1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 1009 }; 1010 1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1012 struct bpf_reg_state *reg); 1013 1014 /* This helper doesn't clear reg->id */ 1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1016 { 1017 reg->var_off = tnum_const(imm); 1018 reg->smin_value = (s64)imm; 1019 reg->smax_value = (s64)imm; 1020 reg->umin_value = imm; 1021 reg->umax_value = imm; 1022 1023 reg->s32_min_value = (s32)imm; 1024 reg->s32_max_value = (s32)imm; 1025 reg->u32_min_value = (u32)imm; 1026 reg->u32_max_value = (u32)imm; 1027 } 1028 1029 /* Mark the unknown part of a register (variable offset or scalar value) as 1030 * known to have the value @imm. 1031 */ 1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) 1033 { 1034 /* Clear id, off, and union(map_ptr, range) */ 1035 memset(((u8 *)reg) + sizeof(reg->type), 0, 1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type)); 1037 ___mark_reg_known(reg, imm); 1038 } 1039 1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm) 1041 { 1042 reg->var_off = tnum_const_subreg(reg->var_off, imm); 1043 reg->s32_min_value = (s32)imm; 1044 reg->s32_max_value = (s32)imm; 1045 reg->u32_min_value = (u32)imm; 1046 reg->u32_max_value = (u32)imm; 1047 } 1048 1049 /* Mark the 'variable offset' part of a register as zero. This should be 1050 * used only on registers holding a pointer type. 1051 */ 1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg) 1053 { 1054 __mark_reg_known(reg, 0); 1055 } 1056 1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg) 1058 { 1059 __mark_reg_known(reg, 0); 1060 reg->type = SCALAR_VALUE; 1061 } 1062 1063 static void mark_reg_known_zero(struct bpf_verifier_env *env, 1064 struct bpf_reg_state *regs, u32 regno) 1065 { 1066 if (WARN_ON(regno >= MAX_BPF_REG)) { 1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno); 1068 /* Something bad happened, let's kill all regs */ 1069 for (regno = 0; regno < MAX_BPF_REG; regno++) 1070 __mark_reg_not_init(env, regs + regno); 1071 return; 1072 } 1073 __mark_reg_known_zero(regs + regno); 1074 } 1075 1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg) 1077 { 1078 return type_is_pkt_pointer(reg->type); 1079 } 1080 1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg) 1082 { 1083 return reg_is_pkt_pointer(reg) || 1084 reg->type == PTR_TO_PACKET_END; 1085 } 1086 1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */ 1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg, 1089 enum bpf_reg_type which) 1090 { 1091 /* The register can already have a range from prior markings. 1092 * This is fine as long as it hasn't been advanced from its 1093 * origin. 1094 */ 1095 return reg->type == which && 1096 reg->id == 0 && 1097 reg->off == 0 && 1098 tnum_equals_const(reg->var_off, 0); 1099 } 1100 1101 /* Reset the min/max bounds of a register */ 1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg) 1103 { 1104 reg->smin_value = S64_MIN; 1105 reg->smax_value = S64_MAX; 1106 reg->umin_value = 0; 1107 reg->umax_value = U64_MAX; 1108 1109 reg->s32_min_value = S32_MIN; 1110 reg->s32_max_value = S32_MAX; 1111 reg->u32_min_value = 0; 1112 reg->u32_max_value = U32_MAX; 1113 } 1114 1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg) 1116 { 1117 reg->smin_value = S64_MIN; 1118 reg->smax_value = S64_MAX; 1119 reg->umin_value = 0; 1120 reg->umax_value = U64_MAX; 1121 } 1122 1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg) 1124 { 1125 reg->s32_min_value = S32_MIN; 1126 reg->s32_max_value = S32_MAX; 1127 reg->u32_min_value = 0; 1128 reg->u32_max_value = U32_MAX; 1129 } 1130 1131 static void __update_reg32_bounds(struct bpf_reg_state *reg) 1132 { 1133 struct tnum var32_off = tnum_subreg(reg->var_off); 1134 1135 /* min signed is max(sign bit) | min(other bits) */ 1136 reg->s32_min_value = max_t(s32, reg->s32_min_value, 1137 var32_off.value | (var32_off.mask & S32_MIN)); 1138 /* max signed is min(sign bit) | max(other bits) */ 1139 reg->s32_max_value = min_t(s32, reg->s32_max_value, 1140 var32_off.value | (var32_off.mask & S32_MAX)); 1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value); 1142 reg->u32_max_value = min(reg->u32_max_value, 1143 (u32)(var32_off.value | var32_off.mask)); 1144 } 1145 1146 static void __update_reg64_bounds(struct bpf_reg_state *reg) 1147 { 1148 /* min signed is max(sign bit) | min(other bits) */ 1149 reg->smin_value = max_t(s64, reg->smin_value, 1150 reg->var_off.value | (reg->var_off.mask & S64_MIN)); 1151 /* max signed is min(sign bit) | max(other bits) */ 1152 reg->smax_value = min_t(s64, reg->smax_value, 1153 reg->var_off.value | (reg->var_off.mask & S64_MAX)); 1154 reg->umin_value = max(reg->umin_value, reg->var_off.value); 1155 reg->umax_value = min(reg->umax_value, 1156 reg->var_off.value | reg->var_off.mask); 1157 } 1158 1159 static void __update_reg_bounds(struct bpf_reg_state *reg) 1160 { 1161 __update_reg32_bounds(reg); 1162 __update_reg64_bounds(reg); 1163 } 1164 1165 /* Uses signed min/max values to inform unsigned, and vice-versa */ 1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg) 1167 { 1168 /* Learn sign from signed bounds. 1169 * If we cannot cross the sign boundary, then signed and unsigned bounds 1170 * are the same, so combine. This works even in the negative case, e.g. 1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1172 */ 1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) { 1174 reg->s32_min_value = reg->u32_min_value = 1175 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1176 reg->s32_max_value = reg->u32_max_value = 1177 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1178 return; 1179 } 1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1181 * boundary, so we must be careful. 1182 */ 1183 if ((s32)reg->u32_max_value >= 0) { 1184 /* Positive. We can't learn anything from the smin, but smax 1185 * is positive, hence safe. 1186 */ 1187 reg->s32_min_value = reg->u32_min_value; 1188 reg->s32_max_value = reg->u32_max_value = 1189 min_t(u32, reg->s32_max_value, reg->u32_max_value); 1190 } else if ((s32)reg->u32_min_value < 0) { 1191 /* Negative. We can't learn anything from the smax, but smin 1192 * is negative, hence safe. 1193 */ 1194 reg->s32_min_value = reg->u32_min_value = 1195 max_t(u32, reg->s32_min_value, reg->u32_min_value); 1196 reg->s32_max_value = reg->u32_max_value; 1197 } 1198 } 1199 1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg) 1201 { 1202 /* Learn sign from signed bounds. 1203 * If we cannot cross the sign boundary, then signed and unsigned bounds 1204 * are the same, so combine. This works even in the negative case, e.g. 1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. 1206 */ 1207 if (reg->smin_value >= 0 || reg->smax_value < 0) { 1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1209 reg->umin_value); 1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1211 reg->umax_value); 1212 return; 1213 } 1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign 1215 * boundary, so we must be careful. 1216 */ 1217 if ((s64)reg->umax_value >= 0) { 1218 /* Positive. We can't learn anything from the smin, but smax 1219 * is positive, hence safe. 1220 */ 1221 reg->smin_value = reg->umin_value; 1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, 1223 reg->umax_value); 1224 } else if ((s64)reg->umin_value < 0) { 1225 /* Negative. We can't learn anything from the smax, but smin 1226 * is negative, hence safe. 1227 */ 1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, 1229 reg->umin_value); 1230 reg->smax_value = reg->umax_value; 1231 } 1232 } 1233 1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg) 1235 { 1236 __reg32_deduce_bounds(reg); 1237 __reg64_deduce_bounds(reg); 1238 } 1239 1240 /* Attempts to improve var_off based on unsigned min/max information */ 1241 static void __reg_bound_offset(struct bpf_reg_state *reg) 1242 { 1243 struct tnum var64_off = tnum_intersect(reg->var_off, 1244 tnum_range(reg->umin_value, 1245 reg->umax_value)); 1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off), 1247 tnum_range(reg->u32_min_value, 1248 reg->u32_max_value)); 1249 1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off); 1251 } 1252 1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg) 1254 { 1255 reg->umin_value = reg->u32_min_value; 1256 reg->umax_value = reg->u32_max_value; 1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds 1258 * but must be positive otherwise set to worse case bounds 1259 * and refine later from tnum. 1260 */ 1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0) 1262 reg->smax_value = reg->s32_max_value; 1263 else 1264 reg->smax_value = U32_MAX; 1265 if (reg->s32_min_value >= 0) 1266 reg->smin_value = reg->s32_min_value; 1267 else 1268 reg->smin_value = 0; 1269 } 1270 1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg) 1272 { 1273 /* special case when 64-bit register has upper 32-bit register 1274 * zeroed. Typically happens after zext or <<32, >>32 sequence 1275 * allowing us to use 32-bit bounds directly, 1276 */ 1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) { 1278 __reg_assign_32_into_64(reg); 1279 } else { 1280 /* Otherwise the best we can do is push lower 32bit known and 1281 * unknown bits into register (var_off set from jmp logic) 1282 * then learn as much as possible from the 64-bit tnum 1283 * known and unknown bits. The previous smin/smax bounds are 1284 * invalid here because of jmp32 compare so mark them unknown 1285 * so they do not impact tnum bounds calculation. 1286 */ 1287 __mark_reg64_unbounded(reg); 1288 __update_reg_bounds(reg); 1289 } 1290 1291 /* Intersecting with the old var_off might have improved our bounds 1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1293 * then new var_off is (0; 0x7f...fc) which improves our umax. 1294 */ 1295 __reg_deduce_bounds(reg); 1296 __reg_bound_offset(reg); 1297 __update_reg_bounds(reg); 1298 } 1299 1300 static bool __reg64_bound_s32(s64 a) 1301 { 1302 return a > S32_MIN && a < S32_MAX; 1303 } 1304 1305 static bool __reg64_bound_u32(u64 a) 1306 { 1307 if (a > U32_MIN && a < U32_MAX) 1308 return true; 1309 return false; 1310 } 1311 1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg) 1313 { 1314 __mark_reg32_unbounded(reg); 1315 1316 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) { 1317 reg->s32_min_value = (s32)reg->smin_value; 1318 reg->s32_max_value = (s32)reg->smax_value; 1319 } 1320 if (__reg64_bound_u32(reg->umin_value)) 1321 reg->u32_min_value = (u32)reg->umin_value; 1322 if (__reg64_bound_u32(reg->umax_value)) 1323 reg->u32_max_value = (u32)reg->umax_value; 1324 1325 /* Intersecting with the old var_off might have improved our bounds 1326 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 1327 * then new var_off is (0; 0x7f...fc) which improves our umax. 1328 */ 1329 __reg_deduce_bounds(reg); 1330 __reg_bound_offset(reg); 1331 __update_reg_bounds(reg); 1332 } 1333 1334 /* Mark a register as having a completely unknown (scalar) value. */ 1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env, 1336 struct bpf_reg_state *reg) 1337 { 1338 /* 1339 * Clear type, id, off, and union(map_ptr, range) and 1340 * padding between 'type' and union 1341 */ 1342 memset(reg, 0, offsetof(struct bpf_reg_state, var_off)); 1343 reg->type = SCALAR_VALUE; 1344 reg->var_off = tnum_unknown; 1345 reg->frameno = 0; 1346 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable; 1347 __mark_reg_unbounded(reg); 1348 } 1349 1350 static void mark_reg_unknown(struct bpf_verifier_env *env, 1351 struct bpf_reg_state *regs, u32 regno) 1352 { 1353 if (WARN_ON(regno >= MAX_BPF_REG)) { 1354 verbose(env, "mark_reg_unknown(regs, %u)\n", regno); 1355 /* Something bad happened, let's kill all regs except FP */ 1356 for (regno = 0; regno < BPF_REG_FP; regno++) 1357 __mark_reg_not_init(env, regs + regno); 1358 return; 1359 } 1360 __mark_reg_unknown(env, regs + regno); 1361 } 1362 1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env, 1364 struct bpf_reg_state *reg) 1365 { 1366 __mark_reg_unknown(env, reg); 1367 reg->type = NOT_INIT; 1368 } 1369 1370 static void mark_reg_not_init(struct bpf_verifier_env *env, 1371 struct bpf_reg_state *regs, u32 regno) 1372 { 1373 if (WARN_ON(regno >= MAX_BPF_REG)) { 1374 verbose(env, "mark_reg_not_init(regs, %u)\n", regno); 1375 /* Something bad happened, let's kill all regs except FP */ 1376 for (regno = 0; regno < BPF_REG_FP; regno++) 1377 __mark_reg_not_init(env, regs + regno); 1378 return; 1379 } 1380 __mark_reg_not_init(env, regs + regno); 1381 } 1382 1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env, 1384 struct bpf_reg_state *regs, u32 regno, 1385 enum bpf_reg_type reg_type, 1386 struct btf *btf, u32 btf_id) 1387 { 1388 if (reg_type == SCALAR_VALUE) { 1389 mark_reg_unknown(env, regs, regno); 1390 return; 1391 } 1392 mark_reg_known_zero(env, regs, regno); 1393 regs[regno].type = PTR_TO_BTF_ID; 1394 regs[regno].btf = btf; 1395 regs[regno].btf_id = btf_id; 1396 } 1397 1398 #define DEF_NOT_SUBREG (0) 1399 static void init_reg_state(struct bpf_verifier_env *env, 1400 struct bpf_func_state *state) 1401 { 1402 struct bpf_reg_state *regs = state->regs; 1403 int i; 1404 1405 for (i = 0; i < MAX_BPF_REG; i++) { 1406 mark_reg_not_init(env, regs, i); 1407 regs[i].live = REG_LIVE_NONE; 1408 regs[i].parent = NULL; 1409 regs[i].subreg_def = DEF_NOT_SUBREG; 1410 } 1411 1412 /* frame pointer */ 1413 regs[BPF_REG_FP].type = PTR_TO_STACK; 1414 mark_reg_known_zero(env, regs, BPF_REG_FP); 1415 regs[BPF_REG_FP].frameno = state->frameno; 1416 } 1417 1418 #define BPF_MAIN_FUNC (-1) 1419 static void init_func_state(struct bpf_verifier_env *env, 1420 struct bpf_func_state *state, 1421 int callsite, int frameno, int subprogno) 1422 { 1423 state->callsite = callsite; 1424 state->frameno = frameno; 1425 state->subprogno = subprogno; 1426 init_reg_state(env, state); 1427 } 1428 1429 enum reg_arg_type { 1430 SRC_OP, /* register is used as source operand */ 1431 DST_OP, /* register is used as destination operand */ 1432 DST_OP_NO_MARK /* same as above, check only, don't mark */ 1433 }; 1434 1435 static int cmp_subprogs(const void *a, const void *b) 1436 { 1437 return ((struct bpf_subprog_info *)a)->start - 1438 ((struct bpf_subprog_info *)b)->start; 1439 } 1440 1441 static int find_subprog(struct bpf_verifier_env *env, int off) 1442 { 1443 struct bpf_subprog_info *p; 1444 1445 p = bsearch(&off, env->subprog_info, env->subprog_cnt, 1446 sizeof(env->subprog_info[0]), cmp_subprogs); 1447 if (!p) 1448 return -ENOENT; 1449 return p - env->subprog_info; 1450 1451 } 1452 1453 static int add_subprog(struct bpf_verifier_env *env, int off) 1454 { 1455 int insn_cnt = env->prog->len; 1456 int ret; 1457 1458 if (off >= insn_cnt || off < 0) { 1459 verbose(env, "call to invalid destination\n"); 1460 return -EINVAL; 1461 } 1462 ret = find_subprog(env, off); 1463 if (ret >= 0) 1464 return 0; 1465 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) { 1466 verbose(env, "too many subprograms\n"); 1467 return -E2BIG; 1468 } 1469 env->subprog_info[env->subprog_cnt++].start = off; 1470 sort(env->subprog_info, env->subprog_cnt, 1471 sizeof(env->subprog_info[0]), cmp_subprogs, NULL); 1472 return 0; 1473 } 1474 1475 static int check_subprogs(struct bpf_verifier_env *env) 1476 { 1477 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0; 1478 struct bpf_subprog_info *subprog = env->subprog_info; 1479 struct bpf_insn *insn = env->prog->insnsi; 1480 int insn_cnt = env->prog->len; 1481 1482 /* Add entry function. */ 1483 ret = add_subprog(env, 0); 1484 if (ret < 0) 1485 return ret; 1486 1487 /* determine subprog starts. The end is one before the next starts */ 1488 for (i = 0; i < insn_cnt; i++) { 1489 if (insn[i].code != (BPF_JMP | BPF_CALL)) 1490 continue; 1491 if (insn[i].src_reg != BPF_PSEUDO_CALL) 1492 continue; 1493 if (!env->bpf_capable) { 1494 verbose(env, 1495 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n"); 1496 return -EPERM; 1497 } 1498 ret = add_subprog(env, i + insn[i].imm + 1); 1499 if (ret < 0) 1500 return ret; 1501 } 1502 1503 /* Add a fake 'exit' subprog which could simplify subprog iteration 1504 * logic. 'subprog_cnt' should not be increased. 1505 */ 1506 subprog[env->subprog_cnt].start = insn_cnt; 1507 1508 if (env->log.level & BPF_LOG_LEVEL2) 1509 for (i = 0; i < env->subprog_cnt; i++) 1510 verbose(env, "func#%d @%d\n", i, subprog[i].start); 1511 1512 /* now check that all jumps are within the same subprog */ 1513 subprog_start = subprog[cur_subprog].start; 1514 subprog_end = subprog[cur_subprog + 1].start; 1515 for (i = 0; i < insn_cnt; i++) { 1516 u8 code = insn[i].code; 1517 1518 if (code == (BPF_JMP | BPF_CALL) && 1519 insn[i].imm == BPF_FUNC_tail_call && 1520 insn[i].src_reg != BPF_PSEUDO_CALL) 1521 subprog[cur_subprog].has_tail_call = true; 1522 if (BPF_CLASS(code) == BPF_LD && 1523 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND)) 1524 subprog[cur_subprog].has_ld_abs = true; 1525 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32) 1526 goto next; 1527 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL) 1528 goto next; 1529 off = i + insn[i].off + 1; 1530 if (off < subprog_start || off >= subprog_end) { 1531 verbose(env, "jump out of range from insn %d to %d\n", i, off); 1532 return -EINVAL; 1533 } 1534 next: 1535 if (i == subprog_end - 1) { 1536 /* to avoid fall-through from one subprog into another 1537 * the last insn of the subprog should be either exit 1538 * or unconditional jump back 1539 */ 1540 if (code != (BPF_JMP | BPF_EXIT) && 1541 code != (BPF_JMP | BPF_JA)) { 1542 verbose(env, "last insn is not an exit or jmp\n"); 1543 return -EINVAL; 1544 } 1545 subprog_start = subprog_end; 1546 cur_subprog++; 1547 if (cur_subprog < env->subprog_cnt) 1548 subprog_end = subprog[cur_subprog + 1].start; 1549 } 1550 } 1551 return 0; 1552 } 1553 1554 /* Parentage chain of this register (or stack slot) should take care of all 1555 * issues like callee-saved registers, stack slot allocation time, etc. 1556 */ 1557 static int mark_reg_read(struct bpf_verifier_env *env, 1558 const struct bpf_reg_state *state, 1559 struct bpf_reg_state *parent, u8 flag) 1560 { 1561 bool writes = parent == state->parent; /* Observe write marks */ 1562 int cnt = 0; 1563 1564 while (parent) { 1565 /* if read wasn't screened by an earlier write ... */ 1566 if (writes && state->live & REG_LIVE_WRITTEN) 1567 break; 1568 if (parent->live & REG_LIVE_DONE) { 1569 verbose(env, "verifier BUG type %s var_off %lld off %d\n", 1570 reg_type_str[parent->type], 1571 parent->var_off.value, parent->off); 1572 return -EFAULT; 1573 } 1574 /* The first condition is more likely to be true than the 1575 * second, checked it first. 1576 */ 1577 if ((parent->live & REG_LIVE_READ) == flag || 1578 parent->live & REG_LIVE_READ64) 1579 /* The parentage chain never changes and 1580 * this parent was already marked as LIVE_READ. 1581 * There is no need to keep walking the chain again and 1582 * keep re-marking all parents as LIVE_READ. 1583 * This case happens when the same register is read 1584 * multiple times without writes into it in-between. 1585 * Also, if parent has the stronger REG_LIVE_READ64 set, 1586 * then no need to set the weak REG_LIVE_READ32. 1587 */ 1588 break; 1589 /* ... then we depend on parent's value */ 1590 parent->live |= flag; 1591 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */ 1592 if (flag == REG_LIVE_READ64) 1593 parent->live &= ~REG_LIVE_READ32; 1594 state = parent; 1595 parent = state->parent; 1596 writes = true; 1597 cnt++; 1598 } 1599 1600 if (env->longest_mark_read_walk < cnt) 1601 env->longest_mark_read_walk = cnt; 1602 return 0; 1603 } 1604 1605 /* This function is supposed to be used by the following 32-bit optimization 1606 * code only. It returns TRUE if the source or destination register operates 1607 * on 64-bit, otherwise return FALSE. 1608 */ 1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn, 1610 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t) 1611 { 1612 u8 code, class, op; 1613 1614 code = insn->code; 1615 class = BPF_CLASS(code); 1616 op = BPF_OP(code); 1617 if (class == BPF_JMP) { 1618 /* BPF_EXIT for "main" will reach here. Return TRUE 1619 * conservatively. 1620 */ 1621 if (op == BPF_EXIT) 1622 return true; 1623 if (op == BPF_CALL) { 1624 /* BPF to BPF call will reach here because of marking 1625 * caller saved clobber with DST_OP_NO_MARK for which we 1626 * don't care the register def because they are anyway 1627 * marked as NOT_INIT already. 1628 */ 1629 if (insn->src_reg == BPF_PSEUDO_CALL) 1630 return false; 1631 /* Helper call will reach here because of arg type 1632 * check, conservatively return TRUE. 1633 */ 1634 if (t == SRC_OP) 1635 return true; 1636 1637 return false; 1638 } 1639 } 1640 1641 if (class == BPF_ALU64 || class == BPF_JMP || 1642 /* BPF_END always use BPF_ALU class. */ 1643 (class == BPF_ALU && op == BPF_END && insn->imm == 64)) 1644 return true; 1645 1646 if (class == BPF_ALU || class == BPF_JMP32) 1647 return false; 1648 1649 if (class == BPF_LDX) { 1650 if (t != SRC_OP) 1651 return BPF_SIZE(code) == BPF_DW; 1652 /* LDX source must be ptr. */ 1653 return true; 1654 } 1655 1656 if (class == BPF_STX) { 1657 if (reg->type != SCALAR_VALUE) 1658 return true; 1659 return BPF_SIZE(code) == BPF_DW; 1660 } 1661 1662 if (class == BPF_LD) { 1663 u8 mode = BPF_MODE(code); 1664 1665 /* LD_IMM64 */ 1666 if (mode == BPF_IMM) 1667 return true; 1668 1669 /* Both LD_IND and LD_ABS return 32-bit data. */ 1670 if (t != SRC_OP) 1671 return false; 1672 1673 /* Implicit ctx ptr. */ 1674 if (regno == BPF_REG_6) 1675 return true; 1676 1677 /* Explicit source could be any width. */ 1678 return true; 1679 } 1680 1681 if (class == BPF_ST) 1682 /* The only source register for BPF_ST is a ptr. */ 1683 return true; 1684 1685 /* Conservatively return true at default. */ 1686 return true; 1687 } 1688 1689 /* Return TRUE if INSN doesn't have explicit value define. */ 1690 static bool insn_no_def(struct bpf_insn *insn) 1691 { 1692 u8 class = BPF_CLASS(insn->code); 1693 1694 return (class == BPF_JMP || class == BPF_JMP32 || 1695 class == BPF_STX || class == BPF_ST); 1696 } 1697 1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */ 1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn) 1700 { 1701 if (insn_no_def(insn)) 1702 return false; 1703 1704 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP); 1705 } 1706 1707 static void mark_insn_zext(struct bpf_verifier_env *env, 1708 struct bpf_reg_state *reg) 1709 { 1710 s32 def_idx = reg->subreg_def; 1711 1712 if (def_idx == DEF_NOT_SUBREG) 1713 return; 1714 1715 env->insn_aux_data[def_idx - 1].zext_dst = true; 1716 /* The dst will be zero extended, so won't be sub-register anymore. */ 1717 reg->subreg_def = DEF_NOT_SUBREG; 1718 } 1719 1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, 1721 enum reg_arg_type t) 1722 { 1723 struct bpf_verifier_state *vstate = env->cur_state; 1724 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 1725 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx; 1726 struct bpf_reg_state *reg, *regs = state->regs; 1727 bool rw64; 1728 1729 if (regno >= MAX_BPF_REG) { 1730 verbose(env, "R%d is invalid\n", regno); 1731 return -EINVAL; 1732 } 1733 1734 reg = ®s[regno]; 1735 rw64 = is_reg64(env, insn, regno, reg, t); 1736 if (t == SRC_OP) { 1737 /* check whether register used as source operand can be read */ 1738 if (reg->type == NOT_INIT) { 1739 verbose(env, "R%d !read_ok\n", regno); 1740 return -EACCES; 1741 } 1742 /* We don't need to worry about FP liveness because it's read-only */ 1743 if (regno == BPF_REG_FP) 1744 return 0; 1745 1746 if (rw64) 1747 mark_insn_zext(env, reg); 1748 1749 return mark_reg_read(env, reg, reg->parent, 1750 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32); 1751 } else { 1752 /* check whether register used as dest operand can be written to */ 1753 if (regno == BPF_REG_FP) { 1754 verbose(env, "frame pointer is read only\n"); 1755 return -EACCES; 1756 } 1757 reg->live |= REG_LIVE_WRITTEN; 1758 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1; 1759 if (t == DST_OP) 1760 mark_reg_unknown(env, regs, regno); 1761 } 1762 return 0; 1763 } 1764 1765 /* for any branch, call, exit record the history of jmps in the given state */ 1766 static int push_jmp_history(struct bpf_verifier_env *env, 1767 struct bpf_verifier_state *cur) 1768 { 1769 u32 cnt = cur->jmp_history_cnt; 1770 struct bpf_idx_pair *p; 1771 1772 cnt++; 1773 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER); 1774 if (!p) 1775 return -ENOMEM; 1776 p[cnt - 1].idx = env->insn_idx; 1777 p[cnt - 1].prev_idx = env->prev_insn_idx; 1778 cur->jmp_history = p; 1779 cur->jmp_history_cnt = cnt; 1780 return 0; 1781 } 1782 1783 /* Backtrack one insn at a time. If idx is not at the top of recorded 1784 * history then previous instruction came from straight line execution. 1785 */ 1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i, 1787 u32 *history) 1788 { 1789 u32 cnt = *history; 1790 1791 if (cnt && st->jmp_history[cnt - 1].idx == i) { 1792 i = st->jmp_history[cnt - 1].prev_idx; 1793 (*history)--; 1794 } else { 1795 i--; 1796 } 1797 return i; 1798 } 1799 1800 /* For given verifier state backtrack_insn() is called from the last insn to 1801 * the first insn. Its purpose is to compute a bitmask of registers and 1802 * stack slots that needs precision in the parent verifier state. 1803 */ 1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx, 1805 u32 *reg_mask, u64 *stack_mask) 1806 { 1807 const struct bpf_insn_cbs cbs = { 1808 .cb_print = verbose, 1809 .private_data = env, 1810 }; 1811 struct bpf_insn *insn = env->prog->insnsi + idx; 1812 u8 class = BPF_CLASS(insn->code); 1813 u8 opcode = BPF_OP(insn->code); 1814 u8 mode = BPF_MODE(insn->code); 1815 u32 dreg = 1u << insn->dst_reg; 1816 u32 sreg = 1u << insn->src_reg; 1817 u32 spi; 1818 1819 if (insn->code == 0) 1820 return 0; 1821 if (env->log.level & BPF_LOG_LEVEL) { 1822 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask); 1823 verbose(env, "%d: ", idx); 1824 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 1825 } 1826 1827 if (class == BPF_ALU || class == BPF_ALU64) { 1828 if (!(*reg_mask & dreg)) 1829 return 0; 1830 if (opcode == BPF_MOV) { 1831 if (BPF_SRC(insn->code) == BPF_X) { 1832 /* dreg = sreg 1833 * dreg needs precision after this insn 1834 * sreg needs precision before this insn 1835 */ 1836 *reg_mask &= ~dreg; 1837 *reg_mask |= sreg; 1838 } else { 1839 /* dreg = K 1840 * dreg needs precision after this insn. 1841 * Corresponding register is already marked 1842 * as precise=true in this verifier state. 1843 * No further markings in parent are necessary 1844 */ 1845 *reg_mask &= ~dreg; 1846 } 1847 } else { 1848 if (BPF_SRC(insn->code) == BPF_X) { 1849 /* dreg += sreg 1850 * both dreg and sreg need precision 1851 * before this insn 1852 */ 1853 *reg_mask |= sreg; 1854 } /* else dreg += K 1855 * dreg still needs precision before this insn 1856 */ 1857 } 1858 } else if (class == BPF_LDX) { 1859 if (!(*reg_mask & dreg)) 1860 return 0; 1861 *reg_mask &= ~dreg; 1862 1863 /* scalars can only be spilled into stack w/o losing precision. 1864 * Load from any other memory can be zero extended. 1865 * The desire to keep that precision is already indicated 1866 * by 'precise' mark in corresponding register of this state. 1867 * No further tracking necessary. 1868 */ 1869 if (insn->src_reg != BPF_REG_FP) 1870 return 0; 1871 if (BPF_SIZE(insn->code) != BPF_DW) 1872 return 0; 1873 1874 /* dreg = *(u64 *)[fp - off] was a fill from the stack. 1875 * that [fp - off] slot contains scalar that needs to be 1876 * tracked with precision 1877 */ 1878 spi = (-insn->off - 1) / BPF_REG_SIZE; 1879 if (spi >= 64) { 1880 verbose(env, "BUG spi %d\n", spi); 1881 WARN_ONCE(1, "verifier backtracking bug"); 1882 return -EFAULT; 1883 } 1884 *stack_mask |= 1ull << spi; 1885 } else if (class == BPF_STX || class == BPF_ST) { 1886 if (*reg_mask & dreg) 1887 /* stx & st shouldn't be using _scalar_ dst_reg 1888 * to access memory. It means backtracking 1889 * encountered a case of pointer subtraction. 1890 */ 1891 return -ENOTSUPP; 1892 /* scalars can only be spilled into stack */ 1893 if (insn->dst_reg != BPF_REG_FP) 1894 return 0; 1895 if (BPF_SIZE(insn->code) != BPF_DW) 1896 return 0; 1897 spi = (-insn->off - 1) / BPF_REG_SIZE; 1898 if (spi >= 64) { 1899 verbose(env, "BUG spi %d\n", spi); 1900 WARN_ONCE(1, "verifier backtracking bug"); 1901 return -EFAULT; 1902 } 1903 if (!(*stack_mask & (1ull << spi))) 1904 return 0; 1905 *stack_mask &= ~(1ull << spi); 1906 if (class == BPF_STX) 1907 *reg_mask |= sreg; 1908 } else if (class == BPF_JMP || class == BPF_JMP32) { 1909 if (opcode == BPF_CALL) { 1910 if (insn->src_reg == BPF_PSEUDO_CALL) 1911 return -ENOTSUPP; 1912 /* regular helper call sets R0 */ 1913 *reg_mask &= ~1; 1914 if (*reg_mask & 0x3f) { 1915 /* if backtracing was looking for registers R1-R5 1916 * they should have been found already. 1917 */ 1918 verbose(env, "BUG regs %x\n", *reg_mask); 1919 WARN_ONCE(1, "verifier backtracking bug"); 1920 return -EFAULT; 1921 } 1922 } else if (opcode == BPF_EXIT) { 1923 return -ENOTSUPP; 1924 } 1925 } else if (class == BPF_LD) { 1926 if (!(*reg_mask & dreg)) 1927 return 0; 1928 *reg_mask &= ~dreg; 1929 /* It's ld_imm64 or ld_abs or ld_ind. 1930 * For ld_imm64 no further tracking of precision 1931 * into parent is necessary 1932 */ 1933 if (mode == BPF_IND || mode == BPF_ABS) 1934 /* to be analyzed */ 1935 return -ENOTSUPP; 1936 } 1937 return 0; 1938 } 1939 1940 /* the scalar precision tracking algorithm: 1941 * . at the start all registers have precise=false. 1942 * . scalar ranges are tracked as normal through alu and jmp insns. 1943 * . once precise value of the scalar register is used in: 1944 * . ptr + scalar alu 1945 * . if (scalar cond K|scalar) 1946 * . helper_call(.., scalar, ...) where ARG_CONST is expected 1947 * backtrack through the verifier states and mark all registers and 1948 * stack slots with spilled constants that these scalar regisers 1949 * should be precise. 1950 * . during state pruning two registers (or spilled stack slots) 1951 * are equivalent if both are not precise. 1952 * 1953 * Note the verifier cannot simply walk register parentage chain, 1954 * since many different registers and stack slots could have been 1955 * used to compute single precise scalar. 1956 * 1957 * The approach of starting with precise=true for all registers and then 1958 * backtrack to mark a register as not precise when the verifier detects 1959 * that program doesn't care about specific value (e.g., when helper 1960 * takes register as ARG_ANYTHING parameter) is not safe. 1961 * 1962 * It's ok to walk single parentage chain of the verifier states. 1963 * It's possible that this backtracking will go all the way till 1st insn. 1964 * All other branches will be explored for needing precision later. 1965 * 1966 * The backtracking needs to deal with cases like: 1967 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0) 1968 * r9 -= r8 1969 * r5 = r9 1970 * if r5 > 0x79f goto pc+7 1971 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff)) 1972 * r5 += 1 1973 * ... 1974 * call bpf_perf_event_output#25 1975 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO 1976 * 1977 * and this case: 1978 * r6 = 1 1979 * call foo // uses callee's r6 inside to compute r0 1980 * r0 += r6 1981 * if r0 == 0 goto 1982 * 1983 * to track above reg_mask/stack_mask needs to be independent for each frame. 1984 * 1985 * Also if parent's curframe > frame where backtracking started, 1986 * the verifier need to mark registers in both frames, otherwise callees 1987 * may incorrectly prune callers. This is similar to 1988 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences") 1989 * 1990 * For now backtracking falls back into conservative marking. 1991 */ 1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env, 1993 struct bpf_verifier_state *st) 1994 { 1995 struct bpf_func_state *func; 1996 struct bpf_reg_state *reg; 1997 int i, j; 1998 1999 /* big hammer: mark all scalars precise in this path. 2000 * pop_stack may still get !precise scalars. 2001 */ 2002 for (; st; st = st->parent) 2003 for (i = 0; i <= st->curframe; i++) { 2004 func = st->frame[i]; 2005 for (j = 0; j < BPF_REG_FP; j++) { 2006 reg = &func->regs[j]; 2007 if (reg->type != SCALAR_VALUE) 2008 continue; 2009 reg->precise = true; 2010 } 2011 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) { 2012 if (func->stack[j].slot_type[0] != STACK_SPILL) 2013 continue; 2014 reg = &func->stack[j].spilled_ptr; 2015 if (reg->type != SCALAR_VALUE) 2016 continue; 2017 reg->precise = true; 2018 } 2019 } 2020 } 2021 2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno, 2023 int spi) 2024 { 2025 struct bpf_verifier_state *st = env->cur_state; 2026 int first_idx = st->first_insn_idx; 2027 int last_idx = env->insn_idx; 2028 struct bpf_func_state *func; 2029 struct bpf_reg_state *reg; 2030 u32 reg_mask = regno >= 0 ? 1u << regno : 0; 2031 u64 stack_mask = spi >= 0 ? 1ull << spi : 0; 2032 bool skip_first = true; 2033 bool new_marks = false; 2034 int i, err; 2035 2036 if (!env->bpf_capable) 2037 return 0; 2038 2039 func = st->frame[st->curframe]; 2040 if (regno >= 0) { 2041 reg = &func->regs[regno]; 2042 if (reg->type != SCALAR_VALUE) { 2043 WARN_ONCE(1, "backtracing misuse"); 2044 return -EFAULT; 2045 } 2046 if (!reg->precise) 2047 new_marks = true; 2048 else 2049 reg_mask = 0; 2050 reg->precise = true; 2051 } 2052 2053 while (spi >= 0) { 2054 if (func->stack[spi].slot_type[0] != STACK_SPILL) { 2055 stack_mask = 0; 2056 break; 2057 } 2058 reg = &func->stack[spi].spilled_ptr; 2059 if (reg->type != SCALAR_VALUE) { 2060 stack_mask = 0; 2061 break; 2062 } 2063 if (!reg->precise) 2064 new_marks = true; 2065 else 2066 stack_mask = 0; 2067 reg->precise = true; 2068 break; 2069 } 2070 2071 if (!new_marks) 2072 return 0; 2073 if (!reg_mask && !stack_mask) 2074 return 0; 2075 for (;;) { 2076 DECLARE_BITMAP(mask, 64); 2077 u32 history = st->jmp_history_cnt; 2078 2079 if (env->log.level & BPF_LOG_LEVEL) 2080 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx); 2081 for (i = last_idx;;) { 2082 if (skip_first) { 2083 err = 0; 2084 skip_first = false; 2085 } else { 2086 err = backtrack_insn(env, i, ®_mask, &stack_mask); 2087 } 2088 if (err == -ENOTSUPP) { 2089 mark_all_scalars_precise(env, st); 2090 return 0; 2091 } else if (err) { 2092 return err; 2093 } 2094 if (!reg_mask && !stack_mask) 2095 /* Found assignment(s) into tracked register in this state. 2096 * Since this state is already marked, just return. 2097 * Nothing to be tracked further in the parent state. 2098 */ 2099 return 0; 2100 if (i == first_idx) 2101 break; 2102 i = get_prev_insn_idx(st, i, &history); 2103 if (i >= env->prog->len) { 2104 /* This can happen if backtracking reached insn 0 2105 * and there are still reg_mask or stack_mask 2106 * to backtrack. 2107 * It means the backtracking missed the spot where 2108 * particular register was initialized with a constant. 2109 */ 2110 verbose(env, "BUG backtracking idx %d\n", i); 2111 WARN_ONCE(1, "verifier backtracking bug"); 2112 return -EFAULT; 2113 } 2114 } 2115 st = st->parent; 2116 if (!st) 2117 break; 2118 2119 new_marks = false; 2120 func = st->frame[st->curframe]; 2121 bitmap_from_u64(mask, reg_mask); 2122 for_each_set_bit(i, mask, 32) { 2123 reg = &func->regs[i]; 2124 if (reg->type != SCALAR_VALUE) { 2125 reg_mask &= ~(1u << i); 2126 continue; 2127 } 2128 if (!reg->precise) 2129 new_marks = true; 2130 reg->precise = true; 2131 } 2132 2133 bitmap_from_u64(mask, stack_mask); 2134 for_each_set_bit(i, mask, 64) { 2135 if (i >= func->allocated_stack / BPF_REG_SIZE) { 2136 /* the sequence of instructions: 2137 * 2: (bf) r3 = r10 2138 * 3: (7b) *(u64 *)(r3 -8) = r0 2139 * 4: (79) r4 = *(u64 *)(r10 -8) 2140 * doesn't contain jmps. It's backtracked 2141 * as a single block. 2142 * During backtracking insn 3 is not recognized as 2143 * stack access, so at the end of backtracking 2144 * stack slot fp-8 is still marked in stack_mask. 2145 * However the parent state may not have accessed 2146 * fp-8 and it's "unallocated" stack space. 2147 * In such case fallback to conservative. 2148 */ 2149 mark_all_scalars_precise(env, st); 2150 return 0; 2151 } 2152 2153 if (func->stack[i].slot_type[0] != STACK_SPILL) { 2154 stack_mask &= ~(1ull << i); 2155 continue; 2156 } 2157 reg = &func->stack[i].spilled_ptr; 2158 if (reg->type != SCALAR_VALUE) { 2159 stack_mask &= ~(1ull << i); 2160 continue; 2161 } 2162 if (!reg->precise) 2163 new_marks = true; 2164 reg->precise = true; 2165 } 2166 if (env->log.level & BPF_LOG_LEVEL) { 2167 print_verifier_state(env, func); 2168 verbose(env, "parent %s regs=%x stack=%llx marks\n", 2169 new_marks ? "didn't have" : "already had", 2170 reg_mask, stack_mask); 2171 } 2172 2173 if (!reg_mask && !stack_mask) 2174 break; 2175 if (!new_marks) 2176 break; 2177 2178 last_idx = st->last_insn_idx; 2179 first_idx = st->first_insn_idx; 2180 } 2181 return 0; 2182 } 2183 2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno) 2185 { 2186 return __mark_chain_precision(env, regno, -1); 2187 } 2188 2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi) 2190 { 2191 return __mark_chain_precision(env, -1, spi); 2192 } 2193 2194 static bool is_spillable_regtype(enum bpf_reg_type type) 2195 { 2196 switch (type) { 2197 case PTR_TO_MAP_VALUE: 2198 case PTR_TO_MAP_VALUE_OR_NULL: 2199 case PTR_TO_STACK: 2200 case PTR_TO_CTX: 2201 case PTR_TO_PACKET: 2202 case PTR_TO_PACKET_META: 2203 case PTR_TO_PACKET_END: 2204 case PTR_TO_FLOW_KEYS: 2205 case CONST_PTR_TO_MAP: 2206 case PTR_TO_SOCKET: 2207 case PTR_TO_SOCKET_OR_NULL: 2208 case PTR_TO_SOCK_COMMON: 2209 case PTR_TO_SOCK_COMMON_OR_NULL: 2210 case PTR_TO_TCP_SOCK: 2211 case PTR_TO_TCP_SOCK_OR_NULL: 2212 case PTR_TO_XDP_SOCK: 2213 case PTR_TO_BTF_ID: 2214 case PTR_TO_BTF_ID_OR_NULL: 2215 case PTR_TO_RDONLY_BUF: 2216 case PTR_TO_RDONLY_BUF_OR_NULL: 2217 case PTR_TO_RDWR_BUF: 2218 case PTR_TO_RDWR_BUF_OR_NULL: 2219 case PTR_TO_PERCPU_BTF_ID: 2220 return true; 2221 default: 2222 return false; 2223 } 2224 } 2225 2226 /* Does this register contain a constant zero? */ 2227 static bool register_is_null(struct bpf_reg_state *reg) 2228 { 2229 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0); 2230 } 2231 2232 static bool register_is_const(struct bpf_reg_state *reg) 2233 { 2234 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off); 2235 } 2236 2237 static bool __is_scalar_unbounded(struct bpf_reg_state *reg) 2238 { 2239 return tnum_is_unknown(reg->var_off) && 2240 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX && 2241 reg->umin_value == 0 && reg->umax_value == U64_MAX && 2242 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX && 2243 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX; 2244 } 2245 2246 static bool register_is_bounded(struct bpf_reg_state *reg) 2247 { 2248 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg); 2249 } 2250 2251 static bool __is_pointer_value(bool allow_ptr_leaks, 2252 const struct bpf_reg_state *reg) 2253 { 2254 if (allow_ptr_leaks) 2255 return false; 2256 2257 return reg->type != SCALAR_VALUE; 2258 } 2259 2260 static void save_register_state(struct bpf_func_state *state, 2261 int spi, struct bpf_reg_state *reg) 2262 { 2263 int i; 2264 2265 state->stack[spi].spilled_ptr = *reg; 2266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2267 2268 for (i = 0; i < BPF_REG_SIZE; i++) 2269 state->stack[spi].slot_type[i] = STACK_SPILL; 2270 } 2271 2272 /* check_stack_read/write functions track spill/fill of registers, 2273 * stack boundary and alignment are checked in check_mem_access() 2274 */ 2275 static int check_stack_write(struct bpf_verifier_env *env, 2276 struct bpf_func_state *state, /* func where register points to */ 2277 int off, int size, int value_regno, int insn_idx) 2278 { 2279 struct bpf_func_state *cur; /* state of the current function */ 2280 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; 2281 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg; 2282 struct bpf_reg_state *reg = NULL; 2283 2284 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE), 2285 state->acquired_refs, true); 2286 if (err) 2287 return err; 2288 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, 2289 * so it's aligned access and [off, off + size) are within stack limits 2290 */ 2291 if (!env->allow_ptr_leaks && 2292 state->stack[spi].slot_type[0] == STACK_SPILL && 2293 size != BPF_REG_SIZE) { 2294 verbose(env, "attempt to corrupt spilled pointer on stack\n"); 2295 return -EACCES; 2296 } 2297 2298 cur = env->cur_state->frame[env->cur_state->curframe]; 2299 if (value_regno >= 0) 2300 reg = &cur->regs[value_regno]; 2301 2302 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) && 2303 !register_is_null(reg) && env->bpf_capable) { 2304 if (dst_reg != BPF_REG_FP) { 2305 /* The backtracking logic can only recognize explicit 2306 * stack slot address like [fp - 8]. Other spill of 2307 * scalar via different register has to be conervative. 2308 * Backtrack from here and mark all registers as precise 2309 * that contributed into 'reg' being a constant. 2310 */ 2311 err = mark_chain_precision(env, value_regno); 2312 if (err) 2313 return err; 2314 } 2315 save_register_state(state, spi, reg); 2316 } else if (reg && is_spillable_regtype(reg->type)) { 2317 /* register containing pointer is being spilled into stack */ 2318 if (size != BPF_REG_SIZE) { 2319 verbose_linfo(env, insn_idx, "; "); 2320 verbose(env, "invalid size of register spill\n"); 2321 return -EACCES; 2322 } 2323 2324 if (state != cur && reg->type == PTR_TO_STACK) { 2325 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n"); 2326 return -EINVAL; 2327 } 2328 2329 if (!env->bypass_spec_v4) { 2330 bool sanitize = false; 2331 2332 if (state->stack[spi].slot_type[0] == STACK_SPILL && 2333 register_is_const(&state->stack[spi].spilled_ptr)) 2334 sanitize = true; 2335 for (i = 0; i < BPF_REG_SIZE; i++) 2336 if (state->stack[spi].slot_type[i] == STACK_MISC) { 2337 sanitize = true; 2338 break; 2339 } 2340 if (sanitize) { 2341 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; 2342 int soff = (-spi - 1) * BPF_REG_SIZE; 2343 2344 /* detected reuse of integer stack slot with a pointer 2345 * which means either llvm is reusing stack slot or 2346 * an attacker is trying to exploit CVE-2018-3639 2347 * (speculative store bypass) 2348 * Have to sanitize that slot with preemptive 2349 * store of zero. 2350 */ 2351 if (*poff && *poff != soff) { 2352 /* disallow programs where single insn stores 2353 * into two different stack slots, since verifier 2354 * cannot sanitize them 2355 */ 2356 verbose(env, 2357 "insn %d cannot access two stack slots fp%d and fp%d", 2358 insn_idx, *poff, soff); 2359 return -EINVAL; 2360 } 2361 *poff = soff; 2362 } 2363 } 2364 save_register_state(state, spi, reg); 2365 } else { 2366 u8 type = STACK_MISC; 2367 2368 /* regular write of data into stack destroys any spilled ptr */ 2369 state->stack[spi].spilled_ptr.type = NOT_INIT; 2370 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */ 2371 if (state->stack[spi].slot_type[0] == STACK_SPILL) 2372 for (i = 0; i < BPF_REG_SIZE; i++) 2373 state->stack[spi].slot_type[i] = STACK_MISC; 2374 2375 /* only mark the slot as written if all 8 bytes were written 2376 * otherwise read propagation may incorrectly stop too soon 2377 * when stack slots are partially written. 2378 * This heuristic means that read propagation will be 2379 * conservative, since it will add reg_live_read marks 2380 * to stack slots all the way to first state when programs 2381 * writes+reads less than 8 bytes 2382 */ 2383 if (size == BPF_REG_SIZE) 2384 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; 2385 2386 /* when we zero initialize stack slots mark them as such */ 2387 if (reg && register_is_null(reg)) { 2388 /* backtracking doesn't work for STACK_ZERO yet. */ 2389 err = mark_chain_precision(env, value_regno); 2390 if (err) 2391 return err; 2392 type = STACK_ZERO; 2393 } 2394 2395 /* Mark slots affected by this stack write. */ 2396 for (i = 0; i < size; i++) 2397 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = 2398 type; 2399 } 2400 return 0; 2401 } 2402 2403 static int check_stack_read(struct bpf_verifier_env *env, 2404 struct bpf_func_state *reg_state /* func where register points to */, 2405 int off, int size, int value_regno) 2406 { 2407 struct bpf_verifier_state *vstate = env->cur_state; 2408 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2409 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; 2410 struct bpf_reg_state *reg; 2411 u8 *stype; 2412 2413 if (reg_state->allocated_stack <= slot) { 2414 verbose(env, "invalid read from stack off %d+0 size %d\n", 2415 off, size); 2416 return -EACCES; 2417 } 2418 stype = reg_state->stack[spi].slot_type; 2419 reg = ®_state->stack[spi].spilled_ptr; 2420 2421 if (stype[0] == STACK_SPILL) { 2422 if (size != BPF_REG_SIZE) { 2423 if (reg->type != SCALAR_VALUE) { 2424 verbose_linfo(env, env->insn_idx, "; "); 2425 verbose(env, "invalid size of register fill\n"); 2426 return -EACCES; 2427 } 2428 if (value_regno >= 0) { 2429 mark_reg_unknown(env, state->regs, value_regno); 2430 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2431 } 2432 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2433 return 0; 2434 } 2435 for (i = 1; i < BPF_REG_SIZE; i++) { 2436 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { 2437 verbose(env, "corrupted spill memory\n"); 2438 return -EACCES; 2439 } 2440 } 2441 2442 if (value_regno >= 0) { 2443 /* restore register state from stack */ 2444 state->regs[value_regno] = *reg; 2445 /* mark reg as written since spilled pointer state likely 2446 * has its liveness marks cleared by is_state_visited() 2447 * which resets stack/reg liveness for state transitions 2448 */ 2449 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2450 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) { 2451 /* If value_regno==-1, the caller is asking us whether 2452 * it is acceptable to use this value as a SCALAR_VALUE 2453 * (e.g. for XADD). 2454 * We must not allow unprivileged callers to do that 2455 * with spilled pointers. 2456 */ 2457 verbose(env, "leaking pointer from stack off %d\n", 2458 off); 2459 return -EACCES; 2460 } 2461 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2462 } else { 2463 int zeros = 0; 2464 2465 for (i = 0; i < size; i++) { 2466 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC) 2467 continue; 2468 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) { 2469 zeros++; 2470 continue; 2471 } 2472 verbose(env, "invalid read from stack off %d+%d size %d\n", 2473 off, i, size); 2474 return -EACCES; 2475 } 2476 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64); 2477 if (value_regno >= 0) { 2478 if (zeros == size) { 2479 /* any size read into register is zero extended, 2480 * so the whole register == const_zero 2481 */ 2482 __mark_reg_const_zero(&state->regs[value_regno]); 2483 /* backtracking doesn't support STACK_ZERO yet, 2484 * so mark it precise here, so that later 2485 * backtracking can stop here. 2486 * Backtracking may not need this if this register 2487 * doesn't participate in pointer adjustment. 2488 * Forward propagation of precise flag is not 2489 * necessary either. This mark is only to stop 2490 * backtracking. Any register that contributed 2491 * to const 0 was marked precise before spill. 2492 */ 2493 state->regs[value_regno].precise = true; 2494 } else { 2495 /* have read misc data from the stack */ 2496 mark_reg_unknown(env, state->regs, value_regno); 2497 } 2498 state->regs[value_regno].live |= REG_LIVE_WRITTEN; 2499 } 2500 } 2501 return 0; 2502 } 2503 2504 static int check_stack_access(struct bpf_verifier_env *env, 2505 const struct bpf_reg_state *reg, 2506 int off, int size) 2507 { 2508 /* Stack accesses must be at a fixed offset, so that we 2509 * can determine what type of data were returned. See 2510 * check_stack_read(). 2511 */ 2512 if (!tnum_is_const(reg->var_off)) { 2513 char tn_buf[48]; 2514 2515 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2516 verbose(env, "variable stack access var_off=%s off=%d size=%d\n", 2517 tn_buf, off, size); 2518 return -EACCES; 2519 } 2520 2521 if (off >= 0 || off < -MAX_BPF_STACK) { 2522 verbose(env, "invalid stack off=%d size=%d\n", off, size); 2523 return -EACCES; 2524 } 2525 2526 return 0; 2527 } 2528 2529 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno, 2530 int off, int size, enum bpf_access_type type) 2531 { 2532 struct bpf_reg_state *regs = cur_regs(env); 2533 struct bpf_map *map = regs[regno].map_ptr; 2534 u32 cap = bpf_map_flags_to_cap(map); 2535 2536 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) { 2537 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n", 2538 map->value_size, off, size); 2539 return -EACCES; 2540 } 2541 2542 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) { 2543 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n", 2544 map->value_size, off, size); 2545 return -EACCES; 2546 } 2547 2548 return 0; 2549 } 2550 2551 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */ 2552 static int __check_mem_access(struct bpf_verifier_env *env, int regno, 2553 int off, int size, u32 mem_size, 2554 bool zero_size_allowed) 2555 { 2556 bool size_ok = size > 0 || (size == 0 && zero_size_allowed); 2557 struct bpf_reg_state *reg; 2558 2559 if (off >= 0 && size_ok && (u64)off + size <= mem_size) 2560 return 0; 2561 2562 reg = &cur_regs(env)[regno]; 2563 switch (reg->type) { 2564 case PTR_TO_MAP_VALUE: 2565 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n", 2566 mem_size, off, size); 2567 break; 2568 case PTR_TO_PACKET: 2569 case PTR_TO_PACKET_META: 2570 case PTR_TO_PACKET_END: 2571 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", 2572 off, size, regno, reg->id, off, mem_size); 2573 break; 2574 case PTR_TO_MEM: 2575 default: 2576 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n", 2577 mem_size, off, size); 2578 } 2579 2580 return -EACCES; 2581 } 2582 2583 /* check read/write into a memory region with possible variable offset */ 2584 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno, 2585 int off, int size, u32 mem_size, 2586 bool zero_size_allowed) 2587 { 2588 struct bpf_verifier_state *vstate = env->cur_state; 2589 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2590 struct bpf_reg_state *reg = &state->regs[regno]; 2591 int err; 2592 2593 /* We may have adjusted the register pointing to memory region, so we 2594 * need to try adding each of min_value and max_value to off 2595 * to make sure our theoretical access will be safe. 2596 */ 2597 if (env->log.level & BPF_LOG_LEVEL) 2598 print_verifier_state(env, state); 2599 2600 /* The minimum value is only important with signed 2601 * comparisons where we can't assume the floor of a 2602 * value is 0. If we are using signed variables for our 2603 * index'es we need to make sure that whatever we use 2604 * will have a set floor within our range. 2605 */ 2606 if (reg->smin_value < 0 && 2607 (reg->smin_value == S64_MIN || 2608 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || 2609 reg->smin_value + off < 0)) { 2610 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2611 regno); 2612 return -EACCES; 2613 } 2614 err = __check_mem_access(env, regno, reg->smin_value + off, size, 2615 mem_size, zero_size_allowed); 2616 if (err) { 2617 verbose(env, "R%d min value is outside of the allowed memory range\n", 2618 regno); 2619 return err; 2620 } 2621 2622 /* If we haven't set a max value then we need to bail since we can't be 2623 * sure we won't do bad things. 2624 * If reg->umax_value + off could overflow, treat that as unbounded too. 2625 */ 2626 if (reg->umax_value >= BPF_MAX_VAR_OFF) { 2627 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n", 2628 regno); 2629 return -EACCES; 2630 } 2631 err = __check_mem_access(env, regno, reg->umax_value + off, size, 2632 mem_size, zero_size_allowed); 2633 if (err) { 2634 verbose(env, "R%d max value is outside of the allowed memory range\n", 2635 regno); 2636 return err; 2637 } 2638 2639 return 0; 2640 } 2641 2642 /* check read/write into a map element with possible variable offset */ 2643 static int check_map_access(struct bpf_verifier_env *env, u32 regno, 2644 int off, int size, bool zero_size_allowed) 2645 { 2646 struct bpf_verifier_state *vstate = env->cur_state; 2647 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 2648 struct bpf_reg_state *reg = &state->regs[regno]; 2649 struct bpf_map *map = reg->map_ptr; 2650 int err; 2651 2652 err = check_mem_region_access(env, regno, off, size, map->value_size, 2653 zero_size_allowed); 2654 if (err) 2655 return err; 2656 2657 if (map_value_has_spin_lock(map)) { 2658 u32 lock = map->spin_lock_off; 2659 2660 /* if any part of struct bpf_spin_lock can be touched by 2661 * load/store reject this program. 2662 * To check that [x1, x2) overlaps with [y1, y2) 2663 * it is sufficient to check x1 < y2 && y1 < x2. 2664 */ 2665 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) && 2666 lock < reg->umax_value + off + size) { 2667 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n"); 2668 return -EACCES; 2669 } 2670 } 2671 return err; 2672 } 2673 2674 #define MAX_PACKET_OFF 0xffff 2675 2676 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 2677 { 2678 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type; 2679 } 2680 2681 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, 2682 const struct bpf_call_arg_meta *meta, 2683 enum bpf_access_type t) 2684 { 2685 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 2686 2687 switch (prog_type) { 2688 /* Program types only with direct read access go here! */ 2689 case BPF_PROG_TYPE_LWT_IN: 2690 case BPF_PROG_TYPE_LWT_OUT: 2691 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 2692 case BPF_PROG_TYPE_SK_REUSEPORT: 2693 case BPF_PROG_TYPE_FLOW_DISSECTOR: 2694 case BPF_PROG_TYPE_CGROUP_SKB: 2695 if (t == BPF_WRITE) 2696 return false; 2697 fallthrough; 2698 2699 /* Program types with direct read + write access go here! */ 2700 case BPF_PROG_TYPE_SCHED_CLS: 2701 case BPF_PROG_TYPE_SCHED_ACT: 2702 case BPF_PROG_TYPE_XDP: 2703 case BPF_PROG_TYPE_LWT_XMIT: 2704 case BPF_PROG_TYPE_SK_SKB: 2705 case BPF_PROG_TYPE_SK_MSG: 2706 if (meta) 2707 return meta->pkt_access; 2708 2709 env->seen_direct_write = true; 2710 return true; 2711 2712 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 2713 if (t == BPF_WRITE) 2714 env->seen_direct_write = true; 2715 2716 return true; 2717 2718 default: 2719 return false; 2720 } 2721 } 2722 2723 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, 2724 int size, bool zero_size_allowed) 2725 { 2726 struct bpf_reg_state *regs = cur_regs(env); 2727 struct bpf_reg_state *reg = ®s[regno]; 2728 int err; 2729 2730 /* We may have added a variable offset to the packet pointer; but any 2731 * reg->range we have comes after that. We are only checking the fixed 2732 * offset. 2733 */ 2734 2735 /* We don't allow negative numbers, because we aren't tracking enough 2736 * detail to prove they're safe. 2737 */ 2738 if (reg->smin_value < 0) { 2739 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2740 regno); 2741 return -EACCES; 2742 } 2743 2744 err = reg->range < 0 ? -EINVAL : 2745 __check_mem_access(env, regno, off, size, reg->range, 2746 zero_size_allowed); 2747 if (err) { 2748 verbose(env, "R%d offset is outside of the packet\n", regno); 2749 return err; 2750 } 2751 2752 /* __check_mem_access has made sure "off + size - 1" is within u16. 2753 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff, 2754 * otherwise find_good_pkt_pointers would have refused to set range info 2755 * that __check_mem_access would have rejected this pkt access. 2756 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32. 2757 */ 2758 env->prog->aux->max_pkt_offset = 2759 max_t(u32, env->prog->aux->max_pkt_offset, 2760 off + reg->umax_value + size - 1); 2761 2762 return err; 2763 } 2764 2765 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ 2766 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, 2767 enum bpf_access_type t, enum bpf_reg_type *reg_type, 2768 struct btf **btf, u32 *btf_id) 2769 { 2770 struct bpf_insn_access_aux info = { 2771 .reg_type = *reg_type, 2772 .log = &env->log, 2773 }; 2774 2775 if (env->ops->is_valid_access && 2776 env->ops->is_valid_access(off, size, t, env->prog, &info)) { 2777 /* A non zero info.ctx_field_size indicates that this field is a 2778 * candidate for later verifier transformation to load the whole 2779 * field and then apply a mask when accessed with a narrower 2780 * access than actual ctx access size. A zero info.ctx_field_size 2781 * will only allow for whole field access and rejects any other 2782 * type of narrower access. 2783 */ 2784 *reg_type = info.reg_type; 2785 2786 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) { 2787 *btf = info.btf; 2788 *btf_id = info.btf_id; 2789 } else { 2790 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; 2791 } 2792 /* remember the offset of last byte accessed in ctx */ 2793 if (env->prog->aux->max_ctx_offset < off + size) 2794 env->prog->aux->max_ctx_offset = off + size; 2795 return 0; 2796 } 2797 2798 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size); 2799 return -EACCES; 2800 } 2801 2802 static int check_flow_keys_access(struct bpf_verifier_env *env, int off, 2803 int size) 2804 { 2805 if (size < 0 || off < 0 || 2806 (u64)off + size > sizeof(struct bpf_flow_keys)) { 2807 verbose(env, "invalid access to flow keys off=%d size=%d\n", 2808 off, size); 2809 return -EACCES; 2810 } 2811 return 0; 2812 } 2813 2814 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx, 2815 u32 regno, int off, int size, 2816 enum bpf_access_type t) 2817 { 2818 struct bpf_reg_state *regs = cur_regs(env); 2819 struct bpf_reg_state *reg = ®s[regno]; 2820 struct bpf_insn_access_aux info = {}; 2821 bool valid; 2822 2823 if (reg->smin_value < 0) { 2824 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", 2825 regno); 2826 return -EACCES; 2827 } 2828 2829 switch (reg->type) { 2830 case PTR_TO_SOCK_COMMON: 2831 valid = bpf_sock_common_is_valid_access(off, size, t, &info); 2832 break; 2833 case PTR_TO_SOCKET: 2834 valid = bpf_sock_is_valid_access(off, size, t, &info); 2835 break; 2836 case PTR_TO_TCP_SOCK: 2837 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info); 2838 break; 2839 case PTR_TO_XDP_SOCK: 2840 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info); 2841 break; 2842 default: 2843 valid = false; 2844 } 2845 2846 2847 if (valid) { 2848 env->insn_aux_data[insn_idx].ctx_field_size = 2849 info.ctx_field_size; 2850 return 0; 2851 } 2852 2853 verbose(env, "R%d invalid %s access off=%d size=%d\n", 2854 regno, reg_type_str[reg->type], off, size); 2855 2856 return -EACCES; 2857 } 2858 2859 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno) 2860 { 2861 return cur_regs(env) + regno; 2862 } 2863 2864 static bool is_pointer_value(struct bpf_verifier_env *env, int regno) 2865 { 2866 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno)); 2867 } 2868 2869 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) 2870 { 2871 const struct bpf_reg_state *reg = reg_state(env, regno); 2872 2873 return reg->type == PTR_TO_CTX; 2874 } 2875 2876 static bool is_sk_reg(struct bpf_verifier_env *env, int regno) 2877 { 2878 const struct bpf_reg_state *reg = reg_state(env, regno); 2879 2880 return type_is_sk_pointer(reg->type); 2881 } 2882 2883 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) 2884 { 2885 const struct bpf_reg_state *reg = reg_state(env, regno); 2886 2887 return type_is_pkt_pointer(reg->type); 2888 } 2889 2890 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno) 2891 { 2892 const struct bpf_reg_state *reg = reg_state(env, regno); 2893 2894 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */ 2895 return reg->type == PTR_TO_FLOW_KEYS; 2896 } 2897 2898 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env, 2899 const struct bpf_reg_state *reg, 2900 int off, int size, bool strict) 2901 { 2902 struct tnum reg_off; 2903 int ip_align; 2904 2905 /* Byte size accesses are always allowed. */ 2906 if (!strict || size == 1) 2907 return 0; 2908 2909 /* For platforms that do not have a Kconfig enabling 2910 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of 2911 * NET_IP_ALIGN is universally set to '2'. And on platforms 2912 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get 2913 * to this code only in strict mode where we want to emulate 2914 * the NET_IP_ALIGN==2 checking. Therefore use an 2915 * unconditional IP align value of '2'. 2916 */ 2917 ip_align = 2; 2918 2919 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); 2920 if (!tnum_is_aligned(reg_off, size)) { 2921 char tn_buf[48]; 2922 2923 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2924 verbose(env, 2925 "misaligned packet access off %d+%s+%d+%d size %d\n", 2926 ip_align, tn_buf, reg->off, off, size); 2927 return -EACCES; 2928 } 2929 2930 return 0; 2931 } 2932 2933 static int check_generic_ptr_alignment(struct bpf_verifier_env *env, 2934 const struct bpf_reg_state *reg, 2935 const char *pointer_desc, 2936 int off, int size, bool strict) 2937 { 2938 struct tnum reg_off; 2939 2940 /* Byte size accesses are always allowed. */ 2941 if (!strict || size == 1) 2942 return 0; 2943 2944 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); 2945 if (!tnum_is_aligned(reg_off, size)) { 2946 char tn_buf[48]; 2947 2948 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 2949 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n", 2950 pointer_desc, tn_buf, reg->off, off, size); 2951 return -EACCES; 2952 } 2953 2954 return 0; 2955 } 2956 2957 static int check_ptr_alignment(struct bpf_verifier_env *env, 2958 const struct bpf_reg_state *reg, int off, 2959 int size, bool strict_alignment_once) 2960 { 2961 bool strict = env->strict_alignment || strict_alignment_once; 2962 const char *pointer_desc = ""; 2963 2964 switch (reg->type) { 2965 case PTR_TO_PACKET: 2966 case PTR_TO_PACKET_META: 2967 /* Special case, because of NET_IP_ALIGN. Given metadata sits 2968 * right in front, treat it the very same way. 2969 */ 2970 return check_pkt_ptr_alignment(env, reg, off, size, strict); 2971 case PTR_TO_FLOW_KEYS: 2972 pointer_desc = "flow keys "; 2973 break; 2974 case PTR_TO_MAP_VALUE: 2975 pointer_desc = "value "; 2976 break; 2977 case PTR_TO_CTX: 2978 pointer_desc = "context "; 2979 break; 2980 case PTR_TO_STACK: 2981 pointer_desc = "stack "; 2982 /* The stack spill tracking logic in check_stack_write() 2983 * and check_stack_read() relies on stack accesses being 2984 * aligned. 2985 */ 2986 strict = true; 2987 break; 2988 case PTR_TO_SOCKET: 2989 pointer_desc = "sock "; 2990 break; 2991 case PTR_TO_SOCK_COMMON: 2992 pointer_desc = "sock_common "; 2993 break; 2994 case PTR_TO_TCP_SOCK: 2995 pointer_desc = "tcp_sock "; 2996 break; 2997 case PTR_TO_XDP_SOCK: 2998 pointer_desc = "xdp_sock "; 2999 break; 3000 default: 3001 break; 3002 } 3003 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size, 3004 strict); 3005 } 3006 3007 static int update_stack_depth(struct bpf_verifier_env *env, 3008 const struct bpf_func_state *func, 3009 int off) 3010 { 3011 u16 stack = env->subprog_info[func->subprogno].stack_depth; 3012 3013 if (stack >= -off) 3014 return 0; 3015 3016 /* update known max for given subprogram */ 3017 env->subprog_info[func->subprogno].stack_depth = -off; 3018 return 0; 3019 } 3020 3021 /* starting from main bpf function walk all instructions of the function 3022 * and recursively walk all callees that given function can call. 3023 * Ignore jump and exit insns. 3024 * Since recursion is prevented by check_cfg() this algorithm 3025 * only needs a local stack of MAX_CALL_FRAMES to remember callsites 3026 */ 3027 static int check_max_stack_depth(struct bpf_verifier_env *env) 3028 { 3029 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end; 3030 struct bpf_subprog_info *subprog = env->subprog_info; 3031 struct bpf_insn *insn = env->prog->insnsi; 3032 bool tail_call_reachable = false; 3033 int ret_insn[MAX_CALL_FRAMES]; 3034 int ret_prog[MAX_CALL_FRAMES]; 3035 int j; 3036 3037 process_func: 3038 /* protect against potential stack overflow that might happen when 3039 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack 3040 * depth for such case down to 256 so that the worst case scenario 3041 * would result in 8k stack size (32 which is tailcall limit * 256 = 3042 * 8k). 3043 * 3044 * To get the idea what might happen, see an example: 3045 * func1 -> sub rsp, 128 3046 * subfunc1 -> sub rsp, 256 3047 * tailcall1 -> add rsp, 256 3048 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320) 3049 * subfunc2 -> sub rsp, 64 3050 * subfunc22 -> sub rsp, 128 3051 * tailcall2 -> add rsp, 128 3052 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416) 3053 * 3054 * tailcall will unwind the current stack frame but it will not get rid 3055 * of caller's stack as shown on the example above. 3056 */ 3057 if (idx && subprog[idx].has_tail_call && depth >= 256) { 3058 verbose(env, 3059 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n", 3060 depth); 3061 return -EACCES; 3062 } 3063 /* round up to 32-bytes, since this is granularity 3064 * of interpreter stack size 3065 */ 3066 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3067 if (depth > MAX_BPF_STACK) { 3068 verbose(env, "combined stack size of %d calls is %d. Too large\n", 3069 frame + 1, depth); 3070 return -EACCES; 3071 } 3072 continue_func: 3073 subprog_end = subprog[idx + 1].start; 3074 for (; i < subprog_end; i++) { 3075 if (insn[i].code != (BPF_JMP | BPF_CALL)) 3076 continue; 3077 if (insn[i].src_reg != BPF_PSEUDO_CALL) 3078 continue; 3079 /* remember insn and function to return to */ 3080 ret_insn[frame] = i + 1; 3081 ret_prog[frame] = idx; 3082 3083 /* find the callee */ 3084 i = i + insn[i].imm + 1; 3085 idx = find_subprog(env, i); 3086 if (idx < 0) { 3087 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3088 i); 3089 return -EFAULT; 3090 } 3091 3092 if (subprog[idx].has_tail_call) 3093 tail_call_reachable = true; 3094 3095 frame++; 3096 if (frame >= MAX_CALL_FRAMES) { 3097 verbose(env, "the call stack of %d frames is too deep !\n", 3098 frame); 3099 return -E2BIG; 3100 } 3101 goto process_func; 3102 } 3103 /* if tail call got detected across bpf2bpf calls then mark each of the 3104 * currently present subprog frames as tail call reachable subprogs; 3105 * this info will be utilized by JIT so that we will be preserving the 3106 * tail call counter throughout bpf2bpf calls combined with tailcalls 3107 */ 3108 if (tail_call_reachable) 3109 for (j = 0; j < frame; j++) 3110 subprog[ret_prog[j]].tail_call_reachable = true; 3111 3112 /* end of for() loop means the last insn of the 'subprog' 3113 * was reached. Doesn't matter whether it was JA or EXIT 3114 */ 3115 if (frame == 0) 3116 return 0; 3117 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32); 3118 frame--; 3119 i = ret_insn[frame]; 3120 idx = ret_prog[frame]; 3121 goto continue_func; 3122 } 3123 3124 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 3125 static int get_callee_stack_depth(struct bpf_verifier_env *env, 3126 const struct bpf_insn *insn, int idx) 3127 { 3128 int start = idx + insn->imm + 1, subprog; 3129 3130 subprog = find_subprog(env, start); 3131 if (subprog < 0) { 3132 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 3133 start); 3134 return -EFAULT; 3135 } 3136 return env->subprog_info[subprog].stack_depth; 3137 } 3138 #endif 3139 3140 int check_ctx_reg(struct bpf_verifier_env *env, 3141 const struct bpf_reg_state *reg, int regno) 3142 { 3143 /* Access to ctx or passing it to a helper is only allowed in 3144 * its original, unmodified form. 3145 */ 3146 3147 if (reg->off) { 3148 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n", 3149 regno, reg->off); 3150 return -EACCES; 3151 } 3152 3153 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3154 char tn_buf[48]; 3155 3156 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3157 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf); 3158 return -EACCES; 3159 } 3160 3161 return 0; 3162 } 3163 3164 static int __check_buffer_access(struct bpf_verifier_env *env, 3165 const char *buf_info, 3166 const struct bpf_reg_state *reg, 3167 int regno, int off, int size) 3168 { 3169 if (off < 0) { 3170 verbose(env, 3171 "R%d invalid %s buffer access: off=%d, size=%d\n", 3172 regno, buf_info, off, size); 3173 return -EACCES; 3174 } 3175 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3176 char tn_buf[48]; 3177 3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3179 verbose(env, 3180 "R%d invalid variable buffer offset: off=%d, var_off=%s\n", 3181 regno, off, tn_buf); 3182 return -EACCES; 3183 } 3184 3185 return 0; 3186 } 3187 3188 static int check_tp_buffer_access(struct bpf_verifier_env *env, 3189 const struct bpf_reg_state *reg, 3190 int regno, int off, int size) 3191 { 3192 int err; 3193 3194 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size); 3195 if (err) 3196 return err; 3197 3198 if (off + size > env->prog->aux->max_tp_access) 3199 env->prog->aux->max_tp_access = off + size; 3200 3201 return 0; 3202 } 3203 3204 static int check_buffer_access(struct bpf_verifier_env *env, 3205 const struct bpf_reg_state *reg, 3206 int regno, int off, int size, 3207 bool zero_size_allowed, 3208 const char *buf_info, 3209 u32 *max_access) 3210 { 3211 int err; 3212 3213 err = __check_buffer_access(env, buf_info, reg, regno, off, size); 3214 if (err) 3215 return err; 3216 3217 if (off + size > *max_access) 3218 *max_access = off + size; 3219 3220 return 0; 3221 } 3222 3223 /* BPF architecture zero extends alu32 ops into 64-bit registesr */ 3224 static void zext_32_to_64(struct bpf_reg_state *reg) 3225 { 3226 reg->var_off = tnum_subreg(reg->var_off); 3227 __reg_assign_32_into_64(reg); 3228 } 3229 3230 /* truncate register to smaller size (in bytes) 3231 * must be called with size < BPF_REG_SIZE 3232 */ 3233 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) 3234 { 3235 u64 mask; 3236 3237 /* clear high bits in bit representation */ 3238 reg->var_off = tnum_cast(reg->var_off, size); 3239 3240 /* fix arithmetic bounds */ 3241 mask = ((u64)1 << (size * 8)) - 1; 3242 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { 3243 reg->umin_value &= mask; 3244 reg->umax_value &= mask; 3245 } else { 3246 reg->umin_value = 0; 3247 reg->umax_value = mask; 3248 } 3249 reg->smin_value = reg->umin_value; 3250 reg->smax_value = reg->umax_value; 3251 3252 /* If size is smaller than 32bit register the 32bit register 3253 * values are also truncated so we push 64-bit bounds into 3254 * 32-bit bounds. Above were truncated < 32-bits already. 3255 */ 3256 if (size >= 4) 3257 return; 3258 __reg_combine_64_into_32(reg); 3259 } 3260 3261 static bool bpf_map_is_rdonly(const struct bpf_map *map) 3262 { 3263 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen; 3264 } 3265 3266 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val) 3267 { 3268 void *ptr; 3269 u64 addr; 3270 int err; 3271 3272 err = map->ops->map_direct_value_addr(map, &addr, off); 3273 if (err) 3274 return err; 3275 ptr = (void *)(long)addr + off; 3276 3277 switch (size) { 3278 case sizeof(u8): 3279 *val = (u64)*(u8 *)ptr; 3280 break; 3281 case sizeof(u16): 3282 *val = (u64)*(u16 *)ptr; 3283 break; 3284 case sizeof(u32): 3285 *val = (u64)*(u32 *)ptr; 3286 break; 3287 case sizeof(u64): 3288 *val = *(u64 *)ptr; 3289 break; 3290 default: 3291 return -EINVAL; 3292 } 3293 return 0; 3294 } 3295 3296 static int check_ptr_to_btf_access(struct bpf_verifier_env *env, 3297 struct bpf_reg_state *regs, 3298 int regno, int off, int size, 3299 enum bpf_access_type atype, 3300 int value_regno) 3301 { 3302 struct bpf_reg_state *reg = regs + regno; 3303 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id); 3304 const char *tname = btf_name_by_offset(reg->btf, t->name_off); 3305 u32 btf_id; 3306 int ret; 3307 3308 if (off < 0) { 3309 verbose(env, 3310 "R%d is ptr_%s invalid negative access: off=%d\n", 3311 regno, tname, off); 3312 return -EACCES; 3313 } 3314 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 3315 char tn_buf[48]; 3316 3317 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3318 verbose(env, 3319 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n", 3320 regno, tname, off, tn_buf); 3321 return -EACCES; 3322 } 3323 3324 if (env->ops->btf_struct_access) { 3325 ret = env->ops->btf_struct_access(&env->log, reg->btf, t, 3326 off, size, atype, &btf_id); 3327 } else { 3328 if (atype != BPF_READ) { 3329 verbose(env, "only read is supported\n"); 3330 return -EACCES; 3331 } 3332 3333 ret = btf_struct_access(&env->log, reg->btf, t, off, size, 3334 atype, &btf_id); 3335 } 3336 3337 if (ret < 0) 3338 return ret; 3339 3340 if (atype == BPF_READ && value_regno >= 0) 3341 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id); 3342 3343 return 0; 3344 } 3345 3346 static int check_ptr_to_map_access(struct bpf_verifier_env *env, 3347 struct bpf_reg_state *regs, 3348 int regno, int off, int size, 3349 enum bpf_access_type atype, 3350 int value_regno) 3351 { 3352 struct bpf_reg_state *reg = regs + regno; 3353 struct bpf_map *map = reg->map_ptr; 3354 const struct btf_type *t; 3355 const char *tname; 3356 u32 btf_id; 3357 int ret; 3358 3359 if (!btf_vmlinux) { 3360 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n"); 3361 return -ENOTSUPP; 3362 } 3363 3364 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) { 3365 verbose(env, "map_ptr access not supported for map type %d\n", 3366 map->map_type); 3367 return -ENOTSUPP; 3368 } 3369 3370 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id); 3371 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 3372 3373 if (!env->allow_ptr_to_map_access) { 3374 verbose(env, 3375 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n", 3376 tname); 3377 return -EPERM; 3378 } 3379 3380 if (off < 0) { 3381 verbose(env, "R%d is %s invalid negative access: off=%d\n", 3382 regno, tname, off); 3383 return -EACCES; 3384 } 3385 3386 if (atype != BPF_READ) { 3387 verbose(env, "only read from %s is supported\n", tname); 3388 return -EACCES; 3389 } 3390 3391 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id); 3392 if (ret < 0) 3393 return ret; 3394 3395 if (value_regno >= 0) 3396 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id); 3397 3398 return 0; 3399 } 3400 3401 3402 /* check whether memory at (regno + off) is accessible for t = (read | write) 3403 * if t==write, value_regno is a register which value is stored into memory 3404 * if t==read, value_regno is a register which will receive the value from memory 3405 * if t==write && value_regno==-1, some unknown value is stored into memory 3406 * if t==read && value_regno==-1, don't care what we read from memory 3407 */ 3408 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, 3409 int off, int bpf_size, enum bpf_access_type t, 3410 int value_regno, bool strict_alignment_once) 3411 { 3412 struct bpf_reg_state *regs = cur_regs(env); 3413 struct bpf_reg_state *reg = regs + regno; 3414 struct bpf_func_state *state; 3415 int size, err = 0; 3416 3417 size = bpf_size_to_bytes(bpf_size); 3418 if (size < 0) 3419 return size; 3420 3421 /* alignment checks will add in reg->off themselves */ 3422 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); 3423 if (err) 3424 return err; 3425 3426 /* for access checks, reg->off is just part of off */ 3427 off += reg->off; 3428 3429 if (reg->type == PTR_TO_MAP_VALUE) { 3430 if (t == BPF_WRITE && value_regno >= 0 && 3431 is_pointer_value(env, value_regno)) { 3432 verbose(env, "R%d leaks addr into map\n", value_regno); 3433 return -EACCES; 3434 } 3435 err = check_map_access_type(env, regno, off, size, t); 3436 if (err) 3437 return err; 3438 err = check_map_access(env, regno, off, size, false); 3439 if (!err && t == BPF_READ && value_regno >= 0) { 3440 struct bpf_map *map = reg->map_ptr; 3441 3442 /* if map is read-only, track its contents as scalars */ 3443 if (tnum_is_const(reg->var_off) && 3444 bpf_map_is_rdonly(map) && 3445 map->ops->map_direct_value_addr) { 3446 int map_off = off + reg->var_off.value; 3447 u64 val = 0; 3448 3449 err = bpf_map_direct_read(map, map_off, size, 3450 &val); 3451 if (err) 3452 return err; 3453 3454 regs[value_regno].type = SCALAR_VALUE; 3455 __mark_reg_known(®s[value_regno], val); 3456 } else { 3457 mark_reg_unknown(env, regs, value_regno); 3458 } 3459 } 3460 } else if (reg->type == PTR_TO_MEM) { 3461 if (t == BPF_WRITE && value_regno >= 0 && 3462 is_pointer_value(env, value_regno)) { 3463 verbose(env, "R%d leaks addr into mem\n", value_regno); 3464 return -EACCES; 3465 } 3466 err = check_mem_region_access(env, regno, off, size, 3467 reg->mem_size, false); 3468 if (!err && t == BPF_READ && value_regno >= 0) 3469 mark_reg_unknown(env, regs, value_regno); 3470 } else if (reg->type == PTR_TO_CTX) { 3471 enum bpf_reg_type reg_type = SCALAR_VALUE; 3472 struct btf *btf = NULL; 3473 u32 btf_id = 0; 3474 3475 if (t == BPF_WRITE && value_regno >= 0 && 3476 is_pointer_value(env, value_regno)) { 3477 verbose(env, "R%d leaks addr into ctx\n", value_regno); 3478 return -EACCES; 3479 } 3480 3481 err = check_ctx_reg(env, reg, regno); 3482 if (err < 0) 3483 return err; 3484 3485 err = check_ctx_access(env, insn_idx, off, size, t, ®_type, &btf, &btf_id); 3486 if (err) 3487 verbose_linfo(env, insn_idx, "; "); 3488 if (!err && t == BPF_READ && value_regno >= 0) { 3489 /* ctx access returns either a scalar, or a 3490 * PTR_TO_PACKET[_META,_END]. In the latter 3491 * case, we know the offset is zero. 3492 */ 3493 if (reg_type == SCALAR_VALUE) { 3494 mark_reg_unknown(env, regs, value_regno); 3495 } else { 3496 mark_reg_known_zero(env, regs, 3497 value_regno); 3498 if (reg_type_may_be_null(reg_type)) 3499 regs[value_regno].id = ++env->id_gen; 3500 /* A load of ctx field could have different 3501 * actual load size with the one encoded in the 3502 * insn. When the dst is PTR, it is for sure not 3503 * a sub-register. 3504 */ 3505 regs[value_regno].subreg_def = DEF_NOT_SUBREG; 3506 if (reg_type == PTR_TO_BTF_ID || 3507 reg_type == PTR_TO_BTF_ID_OR_NULL) { 3508 regs[value_regno].btf = btf; 3509 regs[value_regno].btf_id = btf_id; 3510 } 3511 } 3512 regs[value_regno].type = reg_type; 3513 } 3514 3515 } else if (reg->type == PTR_TO_STACK) { 3516 off += reg->var_off.value; 3517 err = check_stack_access(env, reg, off, size); 3518 if (err) 3519 return err; 3520 3521 state = func(env, reg); 3522 err = update_stack_depth(env, state, off); 3523 if (err) 3524 return err; 3525 3526 if (t == BPF_WRITE) 3527 err = check_stack_write(env, state, off, size, 3528 value_regno, insn_idx); 3529 else 3530 err = check_stack_read(env, state, off, size, 3531 value_regno); 3532 } else if (reg_is_pkt_pointer(reg)) { 3533 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { 3534 verbose(env, "cannot write into packet\n"); 3535 return -EACCES; 3536 } 3537 if (t == BPF_WRITE && value_regno >= 0 && 3538 is_pointer_value(env, value_regno)) { 3539 verbose(env, "R%d leaks addr into packet\n", 3540 value_regno); 3541 return -EACCES; 3542 } 3543 err = check_packet_access(env, regno, off, size, false); 3544 if (!err && t == BPF_READ && value_regno >= 0) 3545 mark_reg_unknown(env, regs, value_regno); 3546 } else if (reg->type == PTR_TO_FLOW_KEYS) { 3547 if (t == BPF_WRITE && value_regno >= 0 && 3548 is_pointer_value(env, value_regno)) { 3549 verbose(env, "R%d leaks addr into flow keys\n", 3550 value_regno); 3551 return -EACCES; 3552 } 3553 3554 err = check_flow_keys_access(env, off, size); 3555 if (!err && t == BPF_READ && value_regno >= 0) 3556 mark_reg_unknown(env, regs, value_regno); 3557 } else if (type_is_sk_pointer(reg->type)) { 3558 if (t == BPF_WRITE) { 3559 verbose(env, "R%d cannot write into %s\n", 3560 regno, reg_type_str[reg->type]); 3561 return -EACCES; 3562 } 3563 err = check_sock_access(env, insn_idx, regno, off, size, t); 3564 if (!err && value_regno >= 0) 3565 mark_reg_unknown(env, regs, value_regno); 3566 } else if (reg->type == PTR_TO_TP_BUFFER) { 3567 err = check_tp_buffer_access(env, reg, regno, off, size); 3568 if (!err && t == BPF_READ && value_regno >= 0) 3569 mark_reg_unknown(env, regs, value_regno); 3570 } else if (reg->type == PTR_TO_BTF_ID) { 3571 err = check_ptr_to_btf_access(env, regs, regno, off, size, t, 3572 value_regno); 3573 } else if (reg->type == CONST_PTR_TO_MAP) { 3574 err = check_ptr_to_map_access(env, regs, regno, off, size, t, 3575 value_regno); 3576 } else if (reg->type == PTR_TO_RDONLY_BUF) { 3577 if (t == BPF_WRITE) { 3578 verbose(env, "R%d cannot write into %s\n", 3579 regno, reg_type_str[reg->type]); 3580 return -EACCES; 3581 } 3582 err = check_buffer_access(env, reg, regno, off, size, false, 3583 "rdonly", 3584 &env->prog->aux->max_rdonly_access); 3585 if (!err && value_regno >= 0) 3586 mark_reg_unknown(env, regs, value_regno); 3587 } else if (reg->type == PTR_TO_RDWR_BUF) { 3588 err = check_buffer_access(env, reg, regno, off, size, false, 3589 "rdwr", 3590 &env->prog->aux->max_rdwr_access); 3591 if (!err && t == BPF_READ && value_regno >= 0) 3592 mark_reg_unknown(env, regs, value_regno); 3593 } else { 3594 verbose(env, "R%d invalid mem access '%s'\n", regno, 3595 reg_type_str[reg->type]); 3596 return -EACCES; 3597 } 3598 3599 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && 3600 regs[value_regno].type == SCALAR_VALUE) { 3601 /* b/h/w load zero-extends, mark upper bits as known 0 */ 3602 coerce_reg_to_size(®s[value_regno], size); 3603 } 3604 return err; 3605 } 3606 3607 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) 3608 { 3609 int err; 3610 3611 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || 3612 insn->imm != 0) { 3613 verbose(env, "BPF_XADD uses reserved fields\n"); 3614 return -EINVAL; 3615 } 3616 3617 /* check src1 operand */ 3618 err = check_reg_arg(env, insn->src_reg, SRC_OP); 3619 if (err) 3620 return err; 3621 3622 /* check src2 operand */ 3623 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 3624 if (err) 3625 return err; 3626 3627 if (is_pointer_value(env, insn->src_reg)) { 3628 verbose(env, "R%d leaks addr into mem\n", insn->src_reg); 3629 return -EACCES; 3630 } 3631 3632 if (is_ctx_reg(env, insn->dst_reg) || 3633 is_pkt_reg(env, insn->dst_reg) || 3634 is_flow_key_reg(env, insn->dst_reg) || 3635 is_sk_reg(env, insn->dst_reg)) { 3636 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n", 3637 insn->dst_reg, 3638 reg_type_str[reg_state(env, insn->dst_reg)->type]); 3639 return -EACCES; 3640 } 3641 3642 /* check whether atomic_add can read the memory */ 3643 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3644 BPF_SIZE(insn->code), BPF_READ, -1, true); 3645 if (err) 3646 return err; 3647 3648 /* check whether atomic_add can write into the same memory */ 3649 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, 3650 BPF_SIZE(insn->code), BPF_WRITE, -1, true); 3651 } 3652 3653 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno, 3654 int off, int access_size, 3655 bool zero_size_allowed) 3656 { 3657 struct bpf_reg_state *reg = reg_state(env, regno); 3658 3659 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || 3660 access_size < 0 || (access_size == 0 && !zero_size_allowed)) { 3661 if (tnum_is_const(reg->var_off)) { 3662 verbose(env, "invalid stack type R%d off=%d access_size=%d\n", 3663 regno, off, access_size); 3664 } else { 3665 char tn_buf[48]; 3666 3667 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3668 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n", 3669 regno, tn_buf, access_size); 3670 } 3671 return -EACCES; 3672 } 3673 return 0; 3674 } 3675 3676 /* when register 'regno' is passed into function that will read 'access_size' 3677 * bytes from that pointer, make sure that it's within stack boundary 3678 * and all elements of stack are initialized. 3679 * Unlike most pointer bounds-checking functions, this one doesn't take an 3680 * 'off' argument, so it has to add in reg->off itself. 3681 */ 3682 static int check_stack_boundary(struct bpf_verifier_env *env, int regno, 3683 int access_size, bool zero_size_allowed, 3684 struct bpf_call_arg_meta *meta) 3685 { 3686 struct bpf_reg_state *reg = reg_state(env, regno); 3687 struct bpf_func_state *state = func(env, reg); 3688 int err, min_off, max_off, i, j, slot, spi; 3689 3690 if (tnum_is_const(reg->var_off)) { 3691 min_off = max_off = reg->var_off.value + reg->off; 3692 err = __check_stack_boundary(env, regno, min_off, access_size, 3693 zero_size_allowed); 3694 if (err) 3695 return err; 3696 } else { 3697 /* Variable offset is prohibited for unprivileged mode for 3698 * simplicity since it requires corresponding support in 3699 * Spectre masking for stack ALU. 3700 * See also retrieve_ptr_limit(). 3701 */ 3702 if (!env->bypass_spec_v1) { 3703 char tn_buf[48]; 3704 3705 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3706 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n", 3707 regno, tn_buf); 3708 return -EACCES; 3709 } 3710 /* Only initialized buffer on stack is allowed to be accessed 3711 * with variable offset. With uninitialized buffer it's hard to 3712 * guarantee that whole memory is marked as initialized on 3713 * helper return since specific bounds are unknown what may 3714 * cause uninitialized stack leaking. 3715 */ 3716 if (meta && meta->raw_mode) 3717 meta = NULL; 3718 3719 if (reg->smax_value >= BPF_MAX_VAR_OFF || 3720 reg->smax_value <= -BPF_MAX_VAR_OFF) { 3721 verbose(env, "R%d unbounded indirect variable offset stack access\n", 3722 regno); 3723 return -EACCES; 3724 } 3725 min_off = reg->smin_value + reg->off; 3726 max_off = reg->smax_value + reg->off; 3727 err = __check_stack_boundary(env, regno, min_off, access_size, 3728 zero_size_allowed); 3729 if (err) { 3730 verbose(env, "R%d min value is outside of stack bound\n", 3731 regno); 3732 return err; 3733 } 3734 err = __check_stack_boundary(env, regno, max_off, access_size, 3735 zero_size_allowed); 3736 if (err) { 3737 verbose(env, "R%d max value is outside of stack bound\n", 3738 regno); 3739 return err; 3740 } 3741 } 3742 3743 if (meta && meta->raw_mode) { 3744 meta->access_size = access_size; 3745 meta->regno = regno; 3746 return 0; 3747 } 3748 3749 for (i = min_off; i < max_off + access_size; i++) { 3750 u8 *stype; 3751 3752 slot = -i - 1; 3753 spi = slot / BPF_REG_SIZE; 3754 if (state->allocated_stack <= slot) 3755 goto err; 3756 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE]; 3757 if (*stype == STACK_MISC) 3758 goto mark; 3759 if (*stype == STACK_ZERO) { 3760 /* helper can write anything into the stack */ 3761 *stype = STACK_MISC; 3762 goto mark; 3763 } 3764 3765 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3766 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID) 3767 goto mark; 3768 3769 if (state->stack[spi].slot_type[0] == STACK_SPILL && 3770 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE || 3771 env->allow_ptr_leaks)) { 3772 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr); 3773 for (j = 0; j < BPF_REG_SIZE; j++) 3774 state->stack[spi].slot_type[j] = STACK_MISC; 3775 goto mark; 3776 } 3777 3778 err: 3779 if (tnum_is_const(reg->var_off)) { 3780 verbose(env, "invalid indirect read from stack off %d+%d size %d\n", 3781 min_off, i - min_off, access_size); 3782 } else { 3783 char tn_buf[48]; 3784 3785 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 3786 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n", 3787 tn_buf, i - min_off, access_size); 3788 } 3789 return -EACCES; 3790 mark: 3791 /* reading any byte out of 8-byte 'spill_slot' will cause 3792 * the whole slot to be marked as 'read' 3793 */ 3794 mark_reg_read(env, &state->stack[spi].spilled_ptr, 3795 state->stack[spi].spilled_ptr.parent, 3796 REG_LIVE_READ64); 3797 } 3798 return update_stack_depth(env, state, min_off); 3799 } 3800 3801 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, 3802 int access_size, bool zero_size_allowed, 3803 struct bpf_call_arg_meta *meta) 3804 { 3805 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3806 3807 switch (reg->type) { 3808 case PTR_TO_PACKET: 3809 case PTR_TO_PACKET_META: 3810 return check_packet_access(env, regno, reg->off, access_size, 3811 zero_size_allowed); 3812 case PTR_TO_MAP_VALUE: 3813 if (check_map_access_type(env, regno, reg->off, access_size, 3814 meta && meta->raw_mode ? BPF_WRITE : 3815 BPF_READ)) 3816 return -EACCES; 3817 return check_map_access(env, regno, reg->off, access_size, 3818 zero_size_allowed); 3819 case PTR_TO_MEM: 3820 return check_mem_region_access(env, regno, reg->off, 3821 access_size, reg->mem_size, 3822 zero_size_allowed); 3823 case PTR_TO_RDONLY_BUF: 3824 if (meta && meta->raw_mode) 3825 return -EACCES; 3826 return check_buffer_access(env, reg, regno, reg->off, 3827 access_size, zero_size_allowed, 3828 "rdonly", 3829 &env->prog->aux->max_rdonly_access); 3830 case PTR_TO_RDWR_BUF: 3831 return check_buffer_access(env, reg, regno, reg->off, 3832 access_size, zero_size_allowed, 3833 "rdwr", 3834 &env->prog->aux->max_rdwr_access); 3835 case PTR_TO_STACK: 3836 return check_stack_boundary(env, regno, access_size, 3837 zero_size_allowed, meta); 3838 default: /* scalar_value or invalid ptr */ 3839 /* Allow zero-byte read from NULL, regardless of pointer type */ 3840 if (zero_size_allowed && access_size == 0 && 3841 register_is_null(reg)) 3842 return 0; 3843 3844 verbose(env, "R%d type=%s expected=%s\n", regno, 3845 reg_type_str[reg->type], 3846 reg_type_str[PTR_TO_STACK]); 3847 return -EACCES; 3848 } 3849 } 3850 3851 /* Implementation details: 3852 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL 3853 * Two bpf_map_lookups (even with the same key) will have different reg->id. 3854 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after 3855 * value_or_null->value transition, since the verifier only cares about 3856 * the range of access to valid map value pointer and doesn't care about actual 3857 * address of the map element. 3858 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps 3859 * reg->id > 0 after value_or_null->value transition. By doing so 3860 * two bpf_map_lookups will be considered two different pointers that 3861 * point to different bpf_spin_locks. 3862 * The verifier allows taking only one bpf_spin_lock at a time to avoid 3863 * dead-locks. 3864 * Since only one bpf_spin_lock is allowed the checks are simpler than 3865 * reg_is_refcounted() logic. The verifier needs to remember only 3866 * one spin_lock instead of array of acquired_refs. 3867 * cur_state->active_spin_lock remembers which map value element got locked 3868 * and clears it after bpf_spin_unlock. 3869 */ 3870 static int process_spin_lock(struct bpf_verifier_env *env, int regno, 3871 bool is_lock) 3872 { 3873 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 3874 struct bpf_verifier_state *cur = env->cur_state; 3875 bool is_const = tnum_is_const(reg->var_off); 3876 struct bpf_map *map = reg->map_ptr; 3877 u64 val = reg->var_off.value; 3878 3879 if (!is_const) { 3880 verbose(env, 3881 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n", 3882 regno); 3883 return -EINVAL; 3884 } 3885 if (!map->btf) { 3886 verbose(env, 3887 "map '%s' has to have BTF in order to use bpf_spin_lock\n", 3888 map->name); 3889 return -EINVAL; 3890 } 3891 if (!map_value_has_spin_lock(map)) { 3892 if (map->spin_lock_off == -E2BIG) 3893 verbose(env, 3894 "map '%s' has more than one 'struct bpf_spin_lock'\n", 3895 map->name); 3896 else if (map->spin_lock_off == -ENOENT) 3897 verbose(env, 3898 "map '%s' doesn't have 'struct bpf_spin_lock'\n", 3899 map->name); 3900 else 3901 verbose(env, 3902 "map '%s' is not a struct type or bpf_spin_lock is mangled\n", 3903 map->name); 3904 return -EINVAL; 3905 } 3906 if (map->spin_lock_off != val + reg->off) { 3907 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n", 3908 val + reg->off); 3909 return -EINVAL; 3910 } 3911 if (is_lock) { 3912 if (cur->active_spin_lock) { 3913 verbose(env, 3914 "Locking two bpf_spin_locks are not allowed\n"); 3915 return -EINVAL; 3916 } 3917 cur->active_spin_lock = reg->id; 3918 } else { 3919 if (!cur->active_spin_lock) { 3920 verbose(env, "bpf_spin_unlock without taking a lock\n"); 3921 return -EINVAL; 3922 } 3923 if (cur->active_spin_lock != reg->id) { 3924 verbose(env, "bpf_spin_unlock of different lock\n"); 3925 return -EINVAL; 3926 } 3927 cur->active_spin_lock = 0; 3928 } 3929 return 0; 3930 } 3931 3932 static bool arg_type_is_mem_ptr(enum bpf_arg_type type) 3933 { 3934 return type == ARG_PTR_TO_MEM || 3935 type == ARG_PTR_TO_MEM_OR_NULL || 3936 type == ARG_PTR_TO_UNINIT_MEM; 3937 } 3938 3939 static bool arg_type_is_mem_size(enum bpf_arg_type type) 3940 { 3941 return type == ARG_CONST_SIZE || 3942 type == ARG_CONST_SIZE_OR_ZERO; 3943 } 3944 3945 static bool arg_type_is_alloc_size(enum bpf_arg_type type) 3946 { 3947 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO; 3948 } 3949 3950 static bool arg_type_is_int_ptr(enum bpf_arg_type type) 3951 { 3952 return type == ARG_PTR_TO_INT || 3953 type == ARG_PTR_TO_LONG; 3954 } 3955 3956 static int int_ptr_type_to_size(enum bpf_arg_type type) 3957 { 3958 if (type == ARG_PTR_TO_INT) 3959 return sizeof(u32); 3960 else if (type == ARG_PTR_TO_LONG) 3961 return sizeof(u64); 3962 3963 return -EINVAL; 3964 } 3965 3966 static int resolve_map_arg_type(struct bpf_verifier_env *env, 3967 const struct bpf_call_arg_meta *meta, 3968 enum bpf_arg_type *arg_type) 3969 { 3970 if (!meta->map_ptr) { 3971 /* kernel subsystem misconfigured verifier */ 3972 verbose(env, "invalid map_ptr to access map->type\n"); 3973 return -EACCES; 3974 } 3975 3976 switch (meta->map_ptr->map_type) { 3977 case BPF_MAP_TYPE_SOCKMAP: 3978 case BPF_MAP_TYPE_SOCKHASH: 3979 if (*arg_type == ARG_PTR_TO_MAP_VALUE) { 3980 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON; 3981 } else { 3982 verbose(env, "invalid arg_type for sockmap/sockhash\n"); 3983 return -EINVAL; 3984 } 3985 break; 3986 3987 default: 3988 break; 3989 } 3990 return 0; 3991 } 3992 3993 struct bpf_reg_types { 3994 const enum bpf_reg_type types[10]; 3995 u32 *btf_id; 3996 }; 3997 3998 static const struct bpf_reg_types map_key_value_types = { 3999 .types = { 4000 PTR_TO_STACK, 4001 PTR_TO_PACKET, 4002 PTR_TO_PACKET_META, 4003 PTR_TO_MAP_VALUE, 4004 }, 4005 }; 4006 4007 static const struct bpf_reg_types sock_types = { 4008 .types = { 4009 PTR_TO_SOCK_COMMON, 4010 PTR_TO_SOCKET, 4011 PTR_TO_TCP_SOCK, 4012 PTR_TO_XDP_SOCK, 4013 }, 4014 }; 4015 4016 #ifdef CONFIG_NET 4017 static const struct bpf_reg_types btf_id_sock_common_types = { 4018 .types = { 4019 PTR_TO_SOCK_COMMON, 4020 PTR_TO_SOCKET, 4021 PTR_TO_TCP_SOCK, 4022 PTR_TO_XDP_SOCK, 4023 PTR_TO_BTF_ID, 4024 }, 4025 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 4026 }; 4027 #endif 4028 4029 static const struct bpf_reg_types mem_types = { 4030 .types = { 4031 PTR_TO_STACK, 4032 PTR_TO_PACKET, 4033 PTR_TO_PACKET_META, 4034 PTR_TO_MAP_VALUE, 4035 PTR_TO_MEM, 4036 PTR_TO_RDONLY_BUF, 4037 PTR_TO_RDWR_BUF, 4038 }, 4039 }; 4040 4041 static const struct bpf_reg_types int_ptr_types = { 4042 .types = { 4043 PTR_TO_STACK, 4044 PTR_TO_PACKET, 4045 PTR_TO_PACKET_META, 4046 PTR_TO_MAP_VALUE, 4047 }, 4048 }; 4049 4050 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } }; 4051 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } }; 4052 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } }; 4053 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } }; 4054 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } }; 4055 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } }; 4056 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } }; 4057 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } }; 4058 4059 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = { 4060 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types, 4061 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types, 4062 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types, 4063 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types, 4064 [ARG_CONST_SIZE] = &scalar_types, 4065 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types, 4066 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types, 4067 [ARG_CONST_MAP_PTR] = &const_map_ptr_types, 4068 [ARG_PTR_TO_CTX] = &context_types, 4069 [ARG_PTR_TO_CTX_OR_NULL] = &context_types, 4070 [ARG_PTR_TO_SOCK_COMMON] = &sock_types, 4071 #ifdef CONFIG_NET 4072 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types, 4073 #endif 4074 [ARG_PTR_TO_SOCKET] = &fullsock_types, 4075 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types, 4076 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types, 4077 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types, 4078 [ARG_PTR_TO_MEM] = &mem_types, 4079 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types, 4080 [ARG_PTR_TO_UNINIT_MEM] = &mem_types, 4081 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types, 4082 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types, 4083 [ARG_PTR_TO_INT] = &int_ptr_types, 4084 [ARG_PTR_TO_LONG] = &int_ptr_types, 4085 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types, 4086 }; 4087 4088 static int check_reg_type(struct bpf_verifier_env *env, u32 regno, 4089 enum bpf_arg_type arg_type, 4090 const u32 *arg_btf_id) 4091 { 4092 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4093 enum bpf_reg_type expected, type = reg->type; 4094 const struct bpf_reg_types *compatible; 4095 int i, j; 4096 4097 compatible = compatible_reg_types[arg_type]; 4098 if (!compatible) { 4099 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type); 4100 return -EFAULT; 4101 } 4102 4103 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) { 4104 expected = compatible->types[i]; 4105 if (expected == NOT_INIT) 4106 break; 4107 4108 if (type == expected) 4109 goto found; 4110 } 4111 4112 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]); 4113 for (j = 0; j + 1 < i; j++) 4114 verbose(env, "%s, ", reg_type_str[compatible->types[j]]); 4115 verbose(env, "%s\n", reg_type_str[compatible->types[j]]); 4116 return -EACCES; 4117 4118 found: 4119 if (type == PTR_TO_BTF_ID) { 4120 if (!arg_btf_id) { 4121 if (!compatible->btf_id) { 4122 verbose(env, "verifier internal error: missing arg compatible BTF ID\n"); 4123 return -EFAULT; 4124 } 4125 arg_btf_id = compatible->btf_id; 4126 } 4127 4128 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off, 4129 btf_vmlinux, *arg_btf_id)) { 4130 verbose(env, "R%d is of type %s but %s is expected\n", 4131 regno, kernel_type_name(reg->btf, reg->btf_id), 4132 kernel_type_name(btf_vmlinux, *arg_btf_id)); 4133 return -EACCES; 4134 } 4135 4136 if (!tnum_is_const(reg->var_off) || reg->var_off.value) { 4137 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n", 4138 regno); 4139 return -EACCES; 4140 } 4141 } 4142 4143 return 0; 4144 } 4145 4146 static int check_func_arg(struct bpf_verifier_env *env, u32 arg, 4147 struct bpf_call_arg_meta *meta, 4148 const struct bpf_func_proto *fn) 4149 { 4150 u32 regno = BPF_REG_1 + arg; 4151 struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; 4152 enum bpf_arg_type arg_type = fn->arg_type[arg]; 4153 enum bpf_reg_type type = reg->type; 4154 int err = 0; 4155 4156 if (arg_type == ARG_DONTCARE) 4157 return 0; 4158 4159 err = check_reg_arg(env, regno, SRC_OP); 4160 if (err) 4161 return err; 4162 4163 if (arg_type == ARG_ANYTHING) { 4164 if (is_pointer_value(env, regno)) { 4165 verbose(env, "R%d leaks addr into helper function\n", 4166 regno); 4167 return -EACCES; 4168 } 4169 return 0; 4170 } 4171 4172 if (type_is_pkt_pointer(type) && 4173 !may_access_direct_pkt_data(env, meta, BPF_READ)) { 4174 verbose(env, "helper access to the packet is not allowed\n"); 4175 return -EACCES; 4176 } 4177 4178 if (arg_type == ARG_PTR_TO_MAP_VALUE || 4179 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE || 4180 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) { 4181 err = resolve_map_arg_type(env, meta, &arg_type); 4182 if (err) 4183 return err; 4184 } 4185 4186 if (register_is_null(reg) && arg_type_may_be_null(arg_type)) 4187 /* A NULL register has a SCALAR_VALUE type, so skip 4188 * type checking. 4189 */ 4190 goto skip_type_check; 4191 4192 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]); 4193 if (err) 4194 return err; 4195 4196 if (type == PTR_TO_CTX) { 4197 err = check_ctx_reg(env, reg, regno); 4198 if (err < 0) 4199 return err; 4200 } 4201 4202 skip_type_check: 4203 if (reg->ref_obj_id) { 4204 if (meta->ref_obj_id) { 4205 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 4206 regno, reg->ref_obj_id, 4207 meta->ref_obj_id); 4208 return -EFAULT; 4209 } 4210 meta->ref_obj_id = reg->ref_obj_id; 4211 } 4212 4213 if (arg_type == ARG_CONST_MAP_PTR) { 4214 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ 4215 meta->map_ptr = reg->map_ptr; 4216 } else if (arg_type == ARG_PTR_TO_MAP_KEY) { 4217 /* bpf_map_xxx(..., map_ptr, ..., key) call: 4218 * check that [key, key + map->key_size) are within 4219 * stack limits and initialized 4220 */ 4221 if (!meta->map_ptr) { 4222 /* in function declaration map_ptr must come before 4223 * map_key, so that it's verified and known before 4224 * we have to check map_key here. Otherwise it means 4225 * that kernel subsystem misconfigured verifier 4226 */ 4227 verbose(env, "invalid map_ptr to access map->key\n"); 4228 return -EACCES; 4229 } 4230 err = check_helper_mem_access(env, regno, 4231 meta->map_ptr->key_size, false, 4232 NULL); 4233 } else if (arg_type == ARG_PTR_TO_MAP_VALUE || 4234 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL && 4235 !register_is_null(reg)) || 4236 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) { 4237 /* bpf_map_xxx(..., map_ptr, ..., value) call: 4238 * check [value, value + map->value_size) validity 4239 */ 4240 if (!meta->map_ptr) { 4241 /* kernel subsystem misconfigured verifier */ 4242 verbose(env, "invalid map_ptr to access map->value\n"); 4243 return -EACCES; 4244 } 4245 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE); 4246 err = check_helper_mem_access(env, regno, 4247 meta->map_ptr->value_size, false, 4248 meta); 4249 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) { 4250 if (!reg->btf_id) { 4251 verbose(env, "Helper has invalid btf_id in R%d\n", regno); 4252 return -EACCES; 4253 } 4254 meta->ret_btf = reg->btf; 4255 meta->ret_btf_id = reg->btf_id; 4256 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) { 4257 if (meta->func_id == BPF_FUNC_spin_lock) { 4258 if (process_spin_lock(env, regno, true)) 4259 return -EACCES; 4260 } else if (meta->func_id == BPF_FUNC_spin_unlock) { 4261 if (process_spin_lock(env, regno, false)) 4262 return -EACCES; 4263 } else { 4264 verbose(env, "verifier internal error\n"); 4265 return -EFAULT; 4266 } 4267 } else if (arg_type_is_mem_ptr(arg_type)) { 4268 /* The access to this pointer is only checked when we hit the 4269 * next is_mem_size argument below. 4270 */ 4271 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM); 4272 } else if (arg_type_is_mem_size(arg_type)) { 4273 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); 4274 4275 /* This is used to refine r0 return value bounds for helpers 4276 * that enforce this value as an upper bound on return values. 4277 * See do_refine_retval_range() for helpers that can refine 4278 * the return value. C type of helper is u32 so we pull register 4279 * bound from umax_value however, if negative verifier errors 4280 * out. Only upper bounds can be learned because retval is an 4281 * int type and negative retvals are allowed. 4282 */ 4283 meta->msize_max_value = reg->umax_value; 4284 4285 /* The register is SCALAR_VALUE; the access check 4286 * happens using its boundaries. 4287 */ 4288 if (!tnum_is_const(reg->var_off)) 4289 /* For unprivileged variable accesses, disable raw 4290 * mode so that the program is required to 4291 * initialize all the memory that the helper could 4292 * just partially fill up. 4293 */ 4294 meta = NULL; 4295 4296 if (reg->smin_value < 0) { 4297 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n", 4298 regno); 4299 return -EACCES; 4300 } 4301 4302 if (reg->umin_value == 0) { 4303 err = check_helper_mem_access(env, regno - 1, 0, 4304 zero_size_allowed, 4305 meta); 4306 if (err) 4307 return err; 4308 } 4309 4310 if (reg->umax_value >= BPF_MAX_VAR_SIZ) { 4311 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", 4312 regno); 4313 return -EACCES; 4314 } 4315 err = check_helper_mem_access(env, regno - 1, 4316 reg->umax_value, 4317 zero_size_allowed, meta); 4318 if (!err) 4319 err = mark_chain_precision(env, regno); 4320 } else if (arg_type_is_alloc_size(arg_type)) { 4321 if (!tnum_is_const(reg->var_off)) { 4322 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n", 4323 regno); 4324 return -EACCES; 4325 } 4326 meta->mem_size = reg->var_off.value; 4327 } else if (arg_type_is_int_ptr(arg_type)) { 4328 int size = int_ptr_type_to_size(arg_type); 4329 4330 err = check_helper_mem_access(env, regno, size, false, meta); 4331 if (err) 4332 return err; 4333 err = check_ptr_alignment(env, reg, 0, size, true); 4334 } 4335 4336 return err; 4337 } 4338 4339 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id) 4340 { 4341 enum bpf_attach_type eatype = env->prog->expected_attach_type; 4342 enum bpf_prog_type type = resolve_prog_type(env->prog); 4343 4344 if (func_id != BPF_FUNC_map_update_elem) 4345 return false; 4346 4347 /* It's not possible to get access to a locked struct sock in these 4348 * contexts, so updating is safe. 4349 */ 4350 switch (type) { 4351 case BPF_PROG_TYPE_TRACING: 4352 if (eatype == BPF_TRACE_ITER) 4353 return true; 4354 break; 4355 case BPF_PROG_TYPE_SOCKET_FILTER: 4356 case BPF_PROG_TYPE_SCHED_CLS: 4357 case BPF_PROG_TYPE_SCHED_ACT: 4358 case BPF_PROG_TYPE_XDP: 4359 case BPF_PROG_TYPE_SK_REUSEPORT: 4360 case BPF_PROG_TYPE_FLOW_DISSECTOR: 4361 case BPF_PROG_TYPE_SK_LOOKUP: 4362 return true; 4363 default: 4364 break; 4365 } 4366 4367 verbose(env, "cannot update sockmap in this context\n"); 4368 return false; 4369 } 4370 4371 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env) 4372 { 4373 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64); 4374 } 4375 4376 static int check_map_func_compatibility(struct bpf_verifier_env *env, 4377 struct bpf_map *map, int func_id) 4378 { 4379 if (!map) 4380 return 0; 4381 4382 /* We need a two way check, first is from map perspective ... */ 4383 switch (map->map_type) { 4384 case BPF_MAP_TYPE_PROG_ARRAY: 4385 if (func_id != BPF_FUNC_tail_call) 4386 goto error; 4387 break; 4388 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4389 if (func_id != BPF_FUNC_perf_event_read && 4390 func_id != BPF_FUNC_perf_event_output && 4391 func_id != BPF_FUNC_skb_output && 4392 func_id != BPF_FUNC_perf_event_read_value && 4393 func_id != BPF_FUNC_xdp_output) 4394 goto error; 4395 break; 4396 case BPF_MAP_TYPE_RINGBUF: 4397 if (func_id != BPF_FUNC_ringbuf_output && 4398 func_id != BPF_FUNC_ringbuf_reserve && 4399 func_id != BPF_FUNC_ringbuf_submit && 4400 func_id != BPF_FUNC_ringbuf_discard && 4401 func_id != BPF_FUNC_ringbuf_query) 4402 goto error; 4403 break; 4404 case BPF_MAP_TYPE_STACK_TRACE: 4405 if (func_id != BPF_FUNC_get_stackid) 4406 goto error; 4407 break; 4408 case BPF_MAP_TYPE_CGROUP_ARRAY: 4409 if (func_id != BPF_FUNC_skb_under_cgroup && 4410 func_id != BPF_FUNC_current_task_under_cgroup) 4411 goto error; 4412 break; 4413 case BPF_MAP_TYPE_CGROUP_STORAGE: 4414 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: 4415 if (func_id != BPF_FUNC_get_local_storage) 4416 goto error; 4417 break; 4418 case BPF_MAP_TYPE_DEVMAP: 4419 case BPF_MAP_TYPE_DEVMAP_HASH: 4420 if (func_id != BPF_FUNC_redirect_map && 4421 func_id != BPF_FUNC_map_lookup_elem) 4422 goto error; 4423 break; 4424 /* Restrict bpf side of cpumap and xskmap, open when use-cases 4425 * appear. 4426 */ 4427 case BPF_MAP_TYPE_CPUMAP: 4428 if (func_id != BPF_FUNC_redirect_map) 4429 goto error; 4430 break; 4431 case BPF_MAP_TYPE_XSKMAP: 4432 if (func_id != BPF_FUNC_redirect_map && 4433 func_id != BPF_FUNC_map_lookup_elem) 4434 goto error; 4435 break; 4436 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4437 case BPF_MAP_TYPE_HASH_OF_MAPS: 4438 if (func_id != BPF_FUNC_map_lookup_elem) 4439 goto error; 4440 break; 4441 case BPF_MAP_TYPE_SOCKMAP: 4442 if (func_id != BPF_FUNC_sk_redirect_map && 4443 func_id != BPF_FUNC_sock_map_update && 4444 func_id != BPF_FUNC_map_delete_elem && 4445 func_id != BPF_FUNC_msg_redirect_map && 4446 func_id != BPF_FUNC_sk_select_reuseport && 4447 func_id != BPF_FUNC_map_lookup_elem && 4448 !may_update_sockmap(env, func_id)) 4449 goto error; 4450 break; 4451 case BPF_MAP_TYPE_SOCKHASH: 4452 if (func_id != BPF_FUNC_sk_redirect_hash && 4453 func_id != BPF_FUNC_sock_hash_update && 4454 func_id != BPF_FUNC_map_delete_elem && 4455 func_id != BPF_FUNC_msg_redirect_hash && 4456 func_id != BPF_FUNC_sk_select_reuseport && 4457 func_id != BPF_FUNC_map_lookup_elem && 4458 !may_update_sockmap(env, func_id)) 4459 goto error; 4460 break; 4461 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY: 4462 if (func_id != BPF_FUNC_sk_select_reuseport) 4463 goto error; 4464 break; 4465 case BPF_MAP_TYPE_QUEUE: 4466 case BPF_MAP_TYPE_STACK: 4467 if (func_id != BPF_FUNC_map_peek_elem && 4468 func_id != BPF_FUNC_map_pop_elem && 4469 func_id != BPF_FUNC_map_push_elem) 4470 goto error; 4471 break; 4472 case BPF_MAP_TYPE_SK_STORAGE: 4473 if (func_id != BPF_FUNC_sk_storage_get && 4474 func_id != BPF_FUNC_sk_storage_delete) 4475 goto error; 4476 break; 4477 case BPF_MAP_TYPE_INODE_STORAGE: 4478 if (func_id != BPF_FUNC_inode_storage_get && 4479 func_id != BPF_FUNC_inode_storage_delete) 4480 goto error; 4481 break; 4482 case BPF_MAP_TYPE_TASK_STORAGE: 4483 if (func_id != BPF_FUNC_task_storage_get && 4484 func_id != BPF_FUNC_task_storage_delete) 4485 goto error; 4486 break; 4487 default: 4488 break; 4489 } 4490 4491 /* ... and second from the function itself. */ 4492 switch (func_id) { 4493 case BPF_FUNC_tail_call: 4494 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) 4495 goto error; 4496 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) { 4497 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 4498 return -EINVAL; 4499 } 4500 break; 4501 case BPF_FUNC_perf_event_read: 4502 case BPF_FUNC_perf_event_output: 4503 case BPF_FUNC_perf_event_read_value: 4504 case BPF_FUNC_skb_output: 4505 case BPF_FUNC_xdp_output: 4506 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 4507 goto error; 4508 break; 4509 case BPF_FUNC_get_stackid: 4510 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) 4511 goto error; 4512 break; 4513 case BPF_FUNC_current_task_under_cgroup: 4514 case BPF_FUNC_skb_under_cgroup: 4515 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) 4516 goto error; 4517 break; 4518 case BPF_FUNC_redirect_map: 4519 if (map->map_type != BPF_MAP_TYPE_DEVMAP && 4520 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH && 4521 map->map_type != BPF_MAP_TYPE_CPUMAP && 4522 map->map_type != BPF_MAP_TYPE_XSKMAP) 4523 goto error; 4524 break; 4525 case BPF_FUNC_sk_redirect_map: 4526 case BPF_FUNC_msg_redirect_map: 4527 case BPF_FUNC_sock_map_update: 4528 if (map->map_type != BPF_MAP_TYPE_SOCKMAP) 4529 goto error; 4530 break; 4531 case BPF_FUNC_sk_redirect_hash: 4532 case BPF_FUNC_msg_redirect_hash: 4533 case BPF_FUNC_sock_hash_update: 4534 if (map->map_type != BPF_MAP_TYPE_SOCKHASH) 4535 goto error; 4536 break; 4537 case BPF_FUNC_get_local_storage: 4538 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE && 4539 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE) 4540 goto error; 4541 break; 4542 case BPF_FUNC_sk_select_reuseport: 4543 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY && 4544 map->map_type != BPF_MAP_TYPE_SOCKMAP && 4545 map->map_type != BPF_MAP_TYPE_SOCKHASH) 4546 goto error; 4547 break; 4548 case BPF_FUNC_map_peek_elem: 4549 case BPF_FUNC_map_pop_elem: 4550 case BPF_FUNC_map_push_elem: 4551 if (map->map_type != BPF_MAP_TYPE_QUEUE && 4552 map->map_type != BPF_MAP_TYPE_STACK) 4553 goto error; 4554 break; 4555 case BPF_FUNC_sk_storage_get: 4556 case BPF_FUNC_sk_storage_delete: 4557 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE) 4558 goto error; 4559 break; 4560 case BPF_FUNC_inode_storage_get: 4561 case BPF_FUNC_inode_storage_delete: 4562 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE) 4563 goto error; 4564 break; 4565 case BPF_FUNC_task_storage_get: 4566 case BPF_FUNC_task_storage_delete: 4567 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE) 4568 goto error; 4569 break; 4570 default: 4571 break; 4572 } 4573 4574 return 0; 4575 error: 4576 verbose(env, "cannot pass map_type %d into func %s#%d\n", 4577 map->map_type, func_id_name(func_id), func_id); 4578 return -EINVAL; 4579 } 4580 4581 static bool check_raw_mode_ok(const struct bpf_func_proto *fn) 4582 { 4583 int count = 0; 4584 4585 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) 4586 count++; 4587 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) 4588 count++; 4589 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) 4590 count++; 4591 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) 4592 count++; 4593 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) 4594 count++; 4595 4596 /* We only support one arg being in raw mode at the moment, 4597 * which is sufficient for the helper functions we have 4598 * right now. 4599 */ 4600 return count <= 1; 4601 } 4602 4603 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr, 4604 enum bpf_arg_type arg_next) 4605 { 4606 return (arg_type_is_mem_ptr(arg_curr) && 4607 !arg_type_is_mem_size(arg_next)) || 4608 (!arg_type_is_mem_ptr(arg_curr) && 4609 arg_type_is_mem_size(arg_next)); 4610 } 4611 4612 static bool check_arg_pair_ok(const struct bpf_func_proto *fn) 4613 { 4614 /* bpf_xxx(..., buf, len) call will access 'len' 4615 * bytes from memory 'buf'. Both arg types need 4616 * to be paired, so make sure there's no buggy 4617 * helper function specification. 4618 */ 4619 if (arg_type_is_mem_size(fn->arg1_type) || 4620 arg_type_is_mem_ptr(fn->arg5_type) || 4621 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) || 4622 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) || 4623 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) || 4624 check_args_pair_invalid(fn->arg4_type, fn->arg5_type)) 4625 return false; 4626 4627 return true; 4628 } 4629 4630 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id) 4631 { 4632 int count = 0; 4633 4634 if (arg_type_may_be_refcounted(fn->arg1_type)) 4635 count++; 4636 if (arg_type_may_be_refcounted(fn->arg2_type)) 4637 count++; 4638 if (arg_type_may_be_refcounted(fn->arg3_type)) 4639 count++; 4640 if (arg_type_may_be_refcounted(fn->arg4_type)) 4641 count++; 4642 if (arg_type_may_be_refcounted(fn->arg5_type)) 4643 count++; 4644 4645 /* A reference acquiring function cannot acquire 4646 * another refcounted ptr. 4647 */ 4648 if (may_be_acquire_function(func_id) && count) 4649 return false; 4650 4651 /* We only support one arg being unreferenced at the moment, 4652 * which is sufficient for the helper functions we have right now. 4653 */ 4654 return count <= 1; 4655 } 4656 4657 static bool check_btf_id_ok(const struct bpf_func_proto *fn) 4658 { 4659 int i; 4660 4661 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) { 4662 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i]) 4663 return false; 4664 4665 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i]) 4666 return false; 4667 } 4668 4669 return true; 4670 } 4671 4672 static int check_func_proto(const struct bpf_func_proto *fn, int func_id) 4673 { 4674 return check_raw_mode_ok(fn) && 4675 check_arg_pair_ok(fn) && 4676 check_btf_id_ok(fn) && 4677 check_refcount_ok(fn, func_id) ? 0 : -EINVAL; 4678 } 4679 4680 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END] 4681 * are now invalid, so turn them into unknown SCALAR_VALUE. 4682 */ 4683 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env, 4684 struct bpf_func_state *state) 4685 { 4686 struct bpf_reg_state *regs = state->regs, *reg; 4687 int i; 4688 4689 for (i = 0; i < MAX_BPF_REG; i++) 4690 if (reg_is_pkt_pointer_any(®s[i])) 4691 mark_reg_unknown(env, regs, i); 4692 4693 bpf_for_each_spilled_reg(i, state, reg) { 4694 if (!reg) 4695 continue; 4696 if (reg_is_pkt_pointer_any(reg)) 4697 __mark_reg_unknown(env, reg); 4698 } 4699 } 4700 4701 static void clear_all_pkt_pointers(struct bpf_verifier_env *env) 4702 { 4703 struct bpf_verifier_state *vstate = env->cur_state; 4704 int i; 4705 4706 for (i = 0; i <= vstate->curframe; i++) 4707 __clear_all_pkt_pointers(env, vstate->frame[i]); 4708 } 4709 4710 enum { 4711 AT_PKT_END = -1, 4712 BEYOND_PKT_END = -2, 4713 }; 4714 4715 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open) 4716 { 4717 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 4718 struct bpf_reg_state *reg = &state->regs[regn]; 4719 4720 if (reg->type != PTR_TO_PACKET) 4721 /* PTR_TO_PACKET_META is not supported yet */ 4722 return; 4723 4724 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end. 4725 * How far beyond pkt_end it goes is unknown. 4726 * if (!range_open) it's the case of pkt >= pkt_end 4727 * if (range_open) it's the case of pkt > pkt_end 4728 * hence this pointer is at least 1 byte bigger than pkt_end 4729 */ 4730 if (range_open) 4731 reg->range = BEYOND_PKT_END; 4732 else 4733 reg->range = AT_PKT_END; 4734 } 4735 4736 static void release_reg_references(struct bpf_verifier_env *env, 4737 struct bpf_func_state *state, 4738 int ref_obj_id) 4739 { 4740 struct bpf_reg_state *regs = state->regs, *reg; 4741 int i; 4742 4743 for (i = 0; i < MAX_BPF_REG; i++) 4744 if (regs[i].ref_obj_id == ref_obj_id) 4745 mark_reg_unknown(env, regs, i); 4746 4747 bpf_for_each_spilled_reg(i, state, reg) { 4748 if (!reg) 4749 continue; 4750 if (reg->ref_obj_id == ref_obj_id) 4751 __mark_reg_unknown(env, reg); 4752 } 4753 } 4754 4755 /* The pointer with the specified id has released its reference to kernel 4756 * resources. Identify all copies of the same pointer and clear the reference. 4757 */ 4758 static int release_reference(struct bpf_verifier_env *env, 4759 int ref_obj_id) 4760 { 4761 struct bpf_verifier_state *vstate = env->cur_state; 4762 int err; 4763 int i; 4764 4765 err = release_reference_state(cur_func(env), ref_obj_id); 4766 if (err) 4767 return err; 4768 4769 for (i = 0; i <= vstate->curframe; i++) 4770 release_reg_references(env, vstate->frame[i], ref_obj_id); 4771 4772 return 0; 4773 } 4774 4775 static void clear_caller_saved_regs(struct bpf_verifier_env *env, 4776 struct bpf_reg_state *regs) 4777 { 4778 int i; 4779 4780 /* after the call registers r0 - r5 were scratched */ 4781 for (i = 0; i < CALLER_SAVED_REGS; i++) { 4782 mark_reg_not_init(env, regs, caller_saved[i]); 4783 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 4784 } 4785 } 4786 4787 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn, 4788 int *insn_idx) 4789 { 4790 struct bpf_verifier_state *state = env->cur_state; 4791 struct bpf_func_info_aux *func_info_aux; 4792 struct bpf_func_state *caller, *callee; 4793 int i, err, subprog, target_insn; 4794 bool is_global = false; 4795 4796 if (state->curframe + 1 >= MAX_CALL_FRAMES) { 4797 verbose(env, "the call stack of %d frames is too deep\n", 4798 state->curframe + 2); 4799 return -E2BIG; 4800 } 4801 4802 target_insn = *insn_idx + insn->imm; 4803 subprog = find_subprog(env, target_insn + 1); 4804 if (subprog < 0) { 4805 verbose(env, "verifier bug. No program starts at insn %d\n", 4806 target_insn + 1); 4807 return -EFAULT; 4808 } 4809 4810 caller = state->frame[state->curframe]; 4811 if (state->frame[state->curframe + 1]) { 4812 verbose(env, "verifier bug. Frame %d already allocated\n", 4813 state->curframe + 1); 4814 return -EFAULT; 4815 } 4816 4817 func_info_aux = env->prog->aux->func_info_aux; 4818 if (func_info_aux) 4819 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 4820 err = btf_check_func_arg_match(env, subprog, caller->regs); 4821 if (err == -EFAULT) 4822 return err; 4823 if (is_global) { 4824 if (err) { 4825 verbose(env, "Caller passes invalid args into func#%d\n", 4826 subprog); 4827 return err; 4828 } else { 4829 if (env->log.level & BPF_LOG_LEVEL) 4830 verbose(env, 4831 "Func#%d is global and valid. Skipping.\n", 4832 subprog); 4833 clear_caller_saved_regs(env, caller->regs); 4834 4835 /* All global functions return SCALAR_VALUE */ 4836 mark_reg_unknown(env, caller->regs, BPF_REG_0); 4837 4838 /* continue with next insn after call */ 4839 return 0; 4840 } 4841 } 4842 4843 callee = kzalloc(sizeof(*callee), GFP_KERNEL); 4844 if (!callee) 4845 return -ENOMEM; 4846 state->frame[state->curframe + 1] = callee; 4847 4848 /* callee cannot access r0, r6 - r9 for reading and has to write 4849 * into its own stack before reading from it. 4850 * callee can read/write into caller's stack 4851 */ 4852 init_func_state(env, callee, 4853 /* remember the callsite, it will be used by bpf_exit */ 4854 *insn_idx /* callsite */, 4855 state->curframe + 1 /* frameno within this callchain */, 4856 subprog /* subprog number within this prog */); 4857 4858 /* Transfer references to the callee */ 4859 err = transfer_reference_state(callee, caller); 4860 if (err) 4861 return err; 4862 4863 /* copy r1 - r5 args that callee can access. The copy includes parent 4864 * pointers, which connects us up to the liveness chain 4865 */ 4866 for (i = BPF_REG_1; i <= BPF_REG_5; i++) 4867 callee->regs[i] = caller->regs[i]; 4868 4869 clear_caller_saved_regs(env, caller->regs); 4870 4871 /* only increment it after check_reg_arg() finished */ 4872 state->curframe++; 4873 4874 /* and go analyze first insn of the callee */ 4875 *insn_idx = target_insn; 4876 4877 if (env->log.level & BPF_LOG_LEVEL) { 4878 verbose(env, "caller:\n"); 4879 print_verifier_state(env, caller); 4880 verbose(env, "callee:\n"); 4881 print_verifier_state(env, callee); 4882 } 4883 return 0; 4884 } 4885 4886 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx) 4887 { 4888 struct bpf_verifier_state *state = env->cur_state; 4889 struct bpf_func_state *caller, *callee; 4890 struct bpf_reg_state *r0; 4891 int err; 4892 4893 callee = state->frame[state->curframe]; 4894 r0 = &callee->regs[BPF_REG_0]; 4895 if (r0->type == PTR_TO_STACK) { 4896 /* technically it's ok to return caller's stack pointer 4897 * (or caller's caller's pointer) back to the caller, 4898 * since these pointers are valid. Only current stack 4899 * pointer will be invalid as soon as function exits, 4900 * but let's be conservative 4901 */ 4902 verbose(env, "cannot return stack pointer to the caller\n"); 4903 return -EINVAL; 4904 } 4905 4906 state->curframe--; 4907 caller = state->frame[state->curframe]; 4908 /* return to the caller whatever r0 had in the callee */ 4909 caller->regs[BPF_REG_0] = *r0; 4910 4911 /* Transfer references to the caller */ 4912 err = transfer_reference_state(caller, callee); 4913 if (err) 4914 return err; 4915 4916 *insn_idx = callee->callsite + 1; 4917 if (env->log.level & BPF_LOG_LEVEL) { 4918 verbose(env, "returning from callee:\n"); 4919 print_verifier_state(env, callee); 4920 verbose(env, "to caller at %d:\n", *insn_idx); 4921 print_verifier_state(env, caller); 4922 } 4923 /* clear everything in the callee */ 4924 free_func_state(callee); 4925 state->frame[state->curframe + 1] = NULL; 4926 return 0; 4927 } 4928 4929 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type, 4930 int func_id, 4931 struct bpf_call_arg_meta *meta) 4932 { 4933 struct bpf_reg_state *ret_reg = ®s[BPF_REG_0]; 4934 4935 if (ret_type != RET_INTEGER || 4936 (func_id != BPF_FUNC_get_stack && 4937 func_id != BPF_FUNC_probe_read_str && 4938 func_id != BPF_FUNC_probe_read_kernel_str && 4939 func_id != BPF_FUNC_probe_read_user_str)) 4940 return; 4941 4942 ret_reg->smax_value = meta->msize_max_value; 4943 ret_reg->s32_max_value = meta->msize_max_value; 4944 ret_reg->smin_value = -MAX_ERRNO; 4945 ret_reg->s32_min_value = -MAX_ERRNO; 4946 __reg_deduce_bounds(ret_reg); 4947 __reg_bound_offset(ret_reg); 4948 __update_reg_bounds(ret_reg); 4949 } 4950 4951 static int 4952 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4953 int func_id, int insn_idx) 4954 { 4955 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4956 struct bpf_map *map = meta->map_ptr; 4957 4958 if (func_id != BPF_FUNC_tail_call && 4959 func_id != BPF_FUNC_map_lookup_elem && 4960 func_id != BPF_FUNC_map_update_elem && 4961 func_id != BPF_FUNC_map_delete_elem && 4962 func_id != BPF_FUNC_map_push_elem && 4963 func_id != BPF_FUNC_map_pop_elem && 4964 func_id != BPF_FUNC_map_peek_elem) 4965 return 0; 4966 4967 if (map == NULL) { 4968 verbose(env, "kernel subsystem misconfigured verifier\n"); 4969 return -EINVAL; 4970 } 4971 4972 /* In case of read-only, some additional restrictions 4973 * need to be applied in order to prevent altering the 4974 * state of the map from program side. 4975 */ 4976 if ((map->map_flags & BPF_F_RDONLY_PROG) && 4977 (func_id == BPF_FUNC_map_delete_elem || 4978 func_id == BPF_FUNC_map_update_elem || 4979 func_id == BPF_FUNC_map_push_elem || 4980 func_id == BPF_FUNC_map_pop_elem)) { 4981 verbose(env, "write into map forbidden\n"); 4982 return -EACCES; 4983 } 4984 4985 if (!BPF_MAP_PTR(aux->map_ptr_state)) 4986 bpf_map_ptr_store(aux, meta->map_ptr, 4987 !meta->map_ptr->bypass_spec_v1); 4988 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr) 4989 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON, 4990 !meta->map_ptr->bypass_spec_v1); 4991 return 0; 4992 } 4993 4994 static int 4995 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta, 4996 int func_id, int insn_idx) 4997 { 4998 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx]; 4999 struct bpf_reg_state *regs = cur_regs(env), *reg; 5000 struct bpf_map *map = meta->map_ptr; 5001 struct tnum range; 5002 u64 val; 5003 int err; 5004 5005 if (func_id != BPF_FUNC_tail_call) 5006 return 0; 5007 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) { 5008 verbose(env, "kernel subsystem misconfigured verifier\n"); 5009 return -EINVAL; 5010 } 5011 5012 range = tnum_range(0, map->max_entries - 1); 5013 reg = ®s[BPF_REG_3]; 5014 5015 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) { 5016 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5017 return 0; 5018 } 5019 5020 err = mark_chain_precision(env, BPF_REG_3); 5021 if (err) 5022 return err; 5023 5024 val = reg->var_off.value; 5025 if (bpf_map_key_unseen(aux)) 5026 bpf_map_key_store(aux, val); 5027 else if (!bpf_map_key_poisoned(aux) && 5028 bpf_map_key_immediate(aux) != val) 5029 bpf_map_key_store(aux, BPF_MAP_KEY_POISON); 5030 return 0; 5031 } 5032 5033 static int check_reference_leak(struct bpf_verifier_env *env) 5034 { 5035 struct bpf_func_state *state = cur_func(env); 5036 int i; 5037 5038 for (i = 0; i < state->acquired_refs; i++) { 5039 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n", 5040 state->refs[i].id, state->refs[i].insn_idx); 5041 } 5042 return state->acquired_refs ? -EINVAL : 0; 5043 } 5044 5045 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx) 5046 { 5047 const struct bpf_func_proto *fn = NULL; 5048 struct bpf_reg_state *regs; 5049 struct bpf_call_arg_meta meta; 5050 bool changes_data; 5051 int i, err; 5052 5053 /* find function prototype */ 5054 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { 5055 verbose(env, "invalid func %s#%d\n", func_id_name(func_id), 5056 func_id); 5057 return -EINVAL; 5058 } 5059 5060 if (env->ops->get_func_proto) 5061 fn = env->ops->get_func_proto(func_id, env->prog); 5062 if (!fn) { 5063 verbose(env, "unknown func %s#%d\n", func_id_name(func_id), 5064 func_id); 5065 return -EINVAL; 5066 } 5067 5068 /* eBPF programs must be GPL compatible to use GPL-ed functions */ 5069 if (!env->prog->gpl_compatible && fn->gpl_only) { 5070 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n"); 5071 return -EINVAL; 5072 } 5073 5074 if (fn->allowed && !fn->allowed(env->prog)) { 5075 verbose(env, "helper call is not allowed in probe\n"); 5076 return -EINVAL; 5077 } 5078 5079 /* With LD_ABS/IND some JITs save/restore skb from r1. */ 5080 changes_data = bpf_helper_changes_pkt_data(fn->func); 5081 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) { 5082 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n", 5083 func_id_name(func_id), func_id); 5084 return -EINVAL; 5085 } 5086 5087 memset(&meta, 0, sizeof(meta)); 5088 meta.pkt_access = fn->pkt_access; 5089 5090 err = check_func_proto(fn, func_id); 5091 if (err) { 5092 verbose(env, "kernel subsystem misconfigured func %s#%d\n", 5093 func_id_name(func_id), func_id); 5094 return err; 5095 } 5096 5097 meta.func_id = func_id; 5098 /* check args */ 5099 for (i = 0; i < 5; i++) { 5100 err = check_func_arg(env, i, &meta, fn); 5101 if (err) 5102 return err; 5103 } 5104 5105 err = record_func_map(env, &meta, func_id, insn_idx); 5106 if (err) 5107 return err; 5108 5109 err = record_func_key(env, &meta, func_id, insn_idx); 5110 if (err) 5111 return err; 5112 5113 /* Mark slots with STACK_MISC in case of raw mode, stack offset 5114 * is inferred from register state. 5115 */ 5116 for (i = 0; i < meta.access_size; i++) { 5117 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, 5118 BPF_WRITE, -1, false); 5119 if (err) 5120 return err; 5121 } 5122 5123 if (func_id == BPF_FUNC_tail_call) { 5124 err = check_reference_leak(env); 5125 if (err) { 5126 verbose(env, "tail_call would lead to reference leak\n"); 5127 return err; 5128 } 5129 } else if (is_release_function(func_id)) { 5130 err = release_reference(env, meta.ref_obj_id); 5131 if (err) { 5132 verbose(env, "func %s#%d reference has not been acquired before\n", 5133 func_id_name(func_id), func_id); 5134 return err; 5135 } 5136 } 5137 5138 regs = cur_regs(env); 5139 5140 /* check that flags argument in get_local_storage(map, flags) is 0, 5141 * this is required because get_local_storage() can't return an error. 5142 */ 5143 if (func_id == BPF_FUNC_get_local_storage && 5144 !register_is_null(®s[BPF_REG_2])) { 5145 verbose(env, "get_local_storage() doesn't support non-zero flags\n"); 5146 return -EINVAL; 5147 } 5148 5149 /* reset caller saved regs */ 5150 for (i = 0; i < CALLER_SAVED_REGS; i++) { 5151 mark_reg_not_init(env, regs, caller_saved[i]); 5152 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 5153 } 5154 5155 /* helper call returns 64-bit value. */ 5156 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG; 5157 5158 /* update return register (already marked as written above) */ 5159 if (fn->ret_type == RET_INTEGER) { 5160 /* sets type to SCALAR_VALUE */ 5161 mark_reg_unknown(env, regs, BPF_REG_0); 5162 } else if (fn->ret_type == RET_VOID) { 5163 regs[BPF_REG_0].type = NOT_INIT; 5164 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL || 5165 fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5166 /* There is no offset yet applied, variable or fixed */ 5167 mark_reg_known_zero(env, regs, BPF_REG_0); 5168 /* remember map_ptr, so that check_map_access() 5169 * can check 'value_size' boundary of memory access 5170 * to map element returned from bpf_map_lookup_elem() 5171 */ 5172 if (meta.map_ptr == NULL) { 5173 verbose(env, 5174 "kernel subsystem misconfigured verifier\n"); 5175 return -EINVAL; 5176 } 5177 regs[BPF_REG_0].map_ptr = meta.map_ptr; 5178 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) { 5179 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE; 5180 if (map_value_has_spin_lock(meta.map_ptr)) 5181 regs[BPF_REG_0].id = ++env->id_gen; 5182 } else { 5183 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; 5184 } 5185 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) { 5186 mark_reg_known_zero(env, regs, BPF_REG_0); 5187 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL; 5188 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) { 5189 mark_reg_known_zero(env, regs, BPF_REG_0); 5190 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL; 5191 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) { 5192 mark_reg_known_zero(env, regs, BPF_REG_0); 5193 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL; 5194 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) { 5195 mark_reg_known_zero(env, regs, BPF_REG_0); 5196 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL; 5197 regs[BPF_REG_0].mem_size = meta.mem_size; 5198 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL || 5199 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) { 5200 const struct btf_type *t; 5201 5202 mark_reg_known_zero(env, regs, BPF_REG_0); 5203 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL); 5204 if (!btf_type_is_struct(t)) { 5205 u32 tsize; 5206 const struct btf_type *ret; 5207 const char *tname; 5208 5209 /* resolve the type size of ksym. */ 5210 ret = btf_resolve_size(meta.ret_btf, t, &tsize); 5211 if (IS_ERR(ret)) { 5212 tname = btf_name_by_offset(meta.ret_btf, t->name_off); 5213 verbose(env, "unable to resolve the size of type '%s': %ld\n", 5214 tname, PTR_ERR(ret)); 5215 return -EINVAL; 5216 } 5217 regs[BPF_REG_0].type = 5218 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5219 PTR_TO_MEM : PTR_TO_MEM_OR_NULL; 5220 regs[BPF_REG_0].mem_size = tsize; 5221 } else { 5222 regs[BPF_REG_0].type = 5223 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ? 5224 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL; 5225 regs[BPF_REG_0].btf = meta.ret_btf; 5226 regs[BPF_REG_0].btf_id = meta.ret_btf_id; 5227 } 5228 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL || 5229 fn->ret_type == RET_PTR_TO_BTF_ID) { 5230 int ret_btf_id; 5231 5232 mark_reg_known_zero(env, regs, BPF_REG_0); 5233 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ? 5234 PTR_TO_BTF_ID : 5235 PTR_TO_BTF_ID_OR_NULL; 5236 ret_btf_id = *fn->ret_btf_id; 5237 if (ret_btf_id == 0) { 5238 verbose(env, "invalid return type %d of func %s#%d\n", 5239 fn->ret_type, func_id_name(func_id), func_id); 5240 return -EINVAL; 5241 } 5242 /* current BPF helper definitions are only coming from 5243 * built-in code with type IDs from vmlinux BTF 5244 */ 5245 regs[BPF_REG_0].btf = btf_vmlinux; 5246 regs[BPF_REG_0].btf_id = ret_btf_id; 5247 } else { 5248 verbose(env, "unknown return type %d of func %s#%d\n", 5249 fn->ret_type, func_id_name(func_id), func_id); 5250 return -EINVAL; 5251 } 5252 5253 if (reg_type_may_be_null(regs[BPF_REG_0].type)) 5254 regs[BPF_REG_0].id = ++env->id_gen; 5255 5256 if (is_ptr_cast_function(func_id)) { 5257 /* For release_reference() */ 5258 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id; 5259 } else if (is_acquire_function(func_id, meta.map_ptr)) { 5260 int id = acquire_reference_state(env, insn_idx); 5261 5262 if (id < 0) 5263 return id; 5264 /* For mark_ptr_or_null_reg() */ 5265 regs[BPF_REG_0].id = id; 5266 /* For release_reference() */ 5267 regs[BPF_REG_0].ref_obj_id = id; 5268 } 5269 5270 do_refine_retval_range(regs, fn->ret_type, func_id, &meta); 5271 5272 err = check_map_func_compatibility(env, meta.map_ptr, func_id); 5273 if (err) 5274 return err; 5275 5276 if ((func_id == BPF_FUNC_get_stack || 5277 func_id == BPF_FUNC_get_task_stack) && 5278 !env->prog->has_callchain_buf) { 5279 const char *err_str; 5280 5281 #ifdef CONFIG_PERF_EVENTS 5282 err = get_callchain_buffers(sysctl_perf_event_max_stack); 5283 err_str = "cannot get callchain buffer for func %s#%d\n"; 5284 #else 5285 err = -ENOTSUPP; 5286 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n"; 5287 #endif 5288 if (err) { 5289 verbose(env, err_str, func_id_name(func_id), func_id); 5290 return err; 5291 } 5292 5293 env->prog->has_callchain_buf = true; 5294 } 5295 5296 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack) 5297 env->prog->call_get_stack = true; 5298 5299 if (changes_data) 5300 clear_all_pkt_pointers(env); 5301 return 0; 5302 } 5303 5304 static bool signed_add_overflows(s64 a, s64 b) 5305 { 5306 /* Do the add in u64, where overflow is well-defined */ 5307 s64 res = (s64)((u64)a + (u64)b); 5308 5309 if (b < 0) 5310 return res > a; 5311 return res < a; 5312 } 5313 5314 static bool signed_add32_overflows(s64 a, s64 b) 5315 { 5316 /* Do the add in u32, where overflow is well-defined */ 5317 s32 res = (s32)((u32)a + (u32)b); 5318 5319 if (b < 0) 5320 return res > a; 5321 return res < a; 5322 } 5323 5324 static bool signed_sub_overflows(s32 a, s32 b) 5325 { 5326 /* Do the sub in u64, where overflow is well-defined */ 5327 s64 res = (s64)((u64)a - (u64)b); 5328 5329 if (b < 0) 5330 return res < a; 5331 return res > a; 5332 } 5333 5334 static bool signed_sub32_overflows(s32 a, s32 b) 5335 { 5336 /* Do the sub in u64, where overflow is well-defined */ 5337 s32 res = (s32)((u32)a - (u32)b); 5338 5339 if (b < 0) 5340 return res < a; 5341 return res > a; 5342 } 5343 5344 static bool check_reg_sane_offset(struct bpf_verifier_env *env, 5345 const struct bpf_reg_state *reg, 5346 enum bpf_reg_type type) 5347 { 5348 bool known = tnum_is_const(reg->var_off); 5349 s64 val = reg->var_off.value; 5350 s64 smin = reg->smin_value; 5351 5352 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { 5353 verbose(env, "math between %s pointer and %lld is not allowed\n", 5354 reg_type_str[type], val); 5355 return false; 5356 } 5357 5358 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { 5359 verbose(env, "%s pointer offset %d is not allowed\n", 5360 reg_type_str[type], reg->off); 5361 return false; 5362 } 5363 5364 if (smin == S64_MIN) { 5365 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n", 5366 reg_type_str[type]); 5367 return false; 5368 } 5369 5370 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { 5371 verbose(env, "value %lld makes %s pointer be out of bounds\n", 5372 smin, reg_type_str[type]); 5373 return false; 5374 } 5375 5376 return true; 5377 } 5378 5379 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) 5380 { 5381 return &env->insn_aux_data[env->insn_idx]; 5382 } 5383 5384 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, 5385 u32 *ptr_limit, u8 opcode, bool off_is_neg) 5386 { 5387 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) || 5388 (opcode == BPF_SUB && !off_is_neg); 5389 u32 off; 5390 5391 switch (ptr_reg->type) { 5392 case PTR_TO_STACK: 5393 /* Indirect variable offset stack access is prohibited in 5394 * unprivileged mode so it's not handled here. 5395 */ 5396 off = ptr_reg->off + ptr_reg->var_off.value; 5397 if (mask_to_left) 5398 *ptr_limit = MAX_BPF_STACK + off; 5399 else 5400 *ptr_limit = -off; 5401 return 0; 5402 case PTR_TO_MAP_VALUE: 5403 if (mask_to_left) { 5404 *ptr_limit = ptr_reg->umax_value + ptr_reg->off; 5405 } else { 5406 off = ptr_reg->smin_value + ptr_reg->off; 5407 *ptr_limit = ptr_reg->map_ptr->value_size - off; 5408 } 5409 return 0; 5410 default: 5411 return -EINVAL; 5412 } 5413 } 5414 5415 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, 5416 const struct bpf_insn *insn) 5417 { 5418 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K; 5419 } 5420 5421 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, 5422 u32 alu_state, u32 alu_limit) 5423 { 5424 /* If we arrived here from different branches with different 5425 * state or limits to sanitize, then this won't work. 5426 */ 5427 if (aux->alu_state && 5428 (aux->alu_state != alu_state || 5429 aux->alu_limit != alu_limit)) 5430 return -EACCES; 5431 5432 /* Corresponding fixup done in fixup_bpf_calls(). */ 5433 aux->alu_state = alu_state; 5434 aux->alu_limit = alu_limit; 5435 return 0; 5436 } 5437 5438 static int sanitize_val_alu(struct bpf_verifier_env *env, 5439 struct bpf_insn *insn) 5440 { 5441 struct bpf_insn_aux_data *aux = cur_aux(env); 5442 5443 if (can_skip_alu_sanitation(env, insn)) 5444 return 0; 5445 5446 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); 5447 } 5448 5449 static int sanitize_ptr_alu(struct bpf_verifier_env *env, 5450 struct bpf_insn *insn, 5451 const struct bpf_reg_state *ptr_reg, 5452 struct bpf_reg_state *dst_reg, 5453 bool off_is_neg) 5454 { 5455 struct bpf_verifier_state *vstate = env->cur_state; 5456 struct bpf_insn_aux_data *aux = cur_aux(env); 5457 bool ptr_is_dst_reg = ptr_reg == dst_reg; 5458 u8 opcode = BPF_OP(insn->code); 5459 u32 alu_state, alu_limit; 5460 struct bpf_reg_state tmp; 5461 bool ret; 5462 5463 if (can_skip_alu_sanitation(env, insn)) 5464 return 0; 5465 5466 /* We already marked aux for masking from non-speculative 5467 * paths, thus we got here in the first place. We only care 5468 * to explore bad access from here. 5469 */ 5470 if (vstate->speculative) 5471 goto do_sim; 5472 5473 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; 5474 alu_state |= ptr_is_dst_reg ? 5475 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; 5476 5477 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg)) 5478 return 0; 5479 if (update_alu_sanitation_state(aux, alu_state, alu_limit)) 5480 return -EACCES; 5481 do_sim: 5482 /* Simulate and find potential out-of-bounds access under 5483 * speculative execution from truncation as a result of 5484 * masking when off was not within expected range. If off 5485 * sits in dst, then we temporarily need to move ptr there 5486 * to simulate dst (== 0) +/-= ptr. Needed, for example, 5487 * for cases where we use K-based arithmetic in one direction 5488 * and truncated reg-based in the other in order to explore 5489 * bad access. 5490 */ 5491 if (!ptr_is_dst_reg) { 5492 tmp = *dst_reg; 5493 *dst_reg = *ptr_reg; 5494 } 5495 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); 5496 if (!ptr_is_dst_reg && ret) 5497 *dst_reg = tmp; 5498 return !ret ? -EFAULT : 0; 5499 } 5500 5501 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. 5502 * Caller should also handle BPF_MOV case separately. 5503 * If we return -EACCES, caller may want to try again treating pointer as a 5504 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. 5505 */ 5506 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, 5507 struct bpf_insn *insn, 5508 const struct bpf_reg_state *ptr_reg, 5509 const struct bpf_reg_state *off_reg) 5510 { 5511 struct bpf_verifier_state *vstate = env->cur_state; 5512 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 5513 struct bpf_reg_state *regs = state->regs, *dst_reg; 5514 bool known = tnum_is_const(off_reg->var_off); 5515 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, 5516 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; 5517 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, 5518 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; 5519 u32 dst = insn->dst_reg, src = insn->src_reg; 5520 u8 opcode = BPF_OP(insn->code); 5521 int ret; 5522 5523 dst_reg = ®s[dst]; 5524 5525 if ((known && (smin_val != smax_val || umin_val != umax_val)) || 5526 smin_val > smax_val || umin_val > umax_val) { 5527 /* Taint dst register if offset had invalid bounds derived from 5528 * e.g. dead branches. 5529 */ 5530 __mark_reg_unknown(env, dst_reg); 5531 return 0; 5532 } 5533 5534 if (BPF_CLASS(insn->code) != BPF_ALU64) { 5535 /* 32-bit ALU ops on pointers produce (meaningless) scalars */ 5536 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 5537 __mark_reg_unknown(env, dst_reg); 5538 return 0; 5539 } 5540 5541 verbose(env, 5542 "R%d 32-bit pointer arithmetic prohibited\n", 5543 dst); 5544 return -EACCES; 5545 } 5546 5547 switch (ptr_reg->type) { 5548 case PTR_TO_MAP_VALUE_OR_NULL: 5549 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n", 5550 dst, reg_type_str[ptr_reg->type]); 5551 return -EACCES; 5552 case CONST_PTR_TO_MAP: 5553 /* smin_val represents the known value */ 5554 if (known && smin_val == 0 && opcode == BPF_ADD) 5555 break; 5556 fallthrough; 5557 case PTR_TO_PACKET_END: 5558 case PTR_TO_SOCKET: 5559 case PTR_TO_SOCKET_OR_NULL: 5560 case PTR_TO_SOCK_COMMON: 5561 case PTR_TO_SOCK_COMMON_OR_NULL: 5562 case PTR_TO_TCP_SOCK: 5563 case PTR_TO_TCP_SOCK_OR_NULL: 5564 case PTR_TO_XDP_SOCK: 5565 verbose(env, "R%d pointer arithmetic on %s prohibited\n", 5566 dst, reg_type_str[ptr_reg->type]); 5567 return -EACCES; 5568 case PTR_TO_MAP_VALUE: 5569 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) { 5570 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n", 5571 off_reg == dst_reg ? dst : src); 5572 return -EACCES; 5573 } 5574 fallthrough; 5575 default: 5576 break; 5577 } 5578 5579 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. 5580 * The id may be overwritten later if we create a new variable offset. 5581 */ 5582 dst_reg->type = ptr_reg->type; 5583 dst_reg->id = ptr_reg->id; 5584 5585 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || 5586 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) 5587 return -EINVAL; 5588 5589 /* pointer types do not carry 32-bit bounds at the moment. */ 5590 __mark_reg32_unbounded(dst_reg); 5591 5592 switch (opcode) { 5593 case BPF_ADD: 5594 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5595 if (ret < 0) { 5596 verbose(env, "R%d tried to add from different maps or paths\n", dst); 5597 return ret; 5598 } 5599 /* We can take a fixed offset as long as it doesn't overflow 5600 * the s32 'off' field 5601 */ 5602 if (known && (ptr_reg->off + smin_val == 5603 (s64)(s32)(ptr_reg->off + smin_val))) { 5604 /* pointer += K. Accumulate it into fixed offset */ 5605 dst_reg->smin_value = smin_ptr; 5606 dst_reg->smax_value = smax_ptr; 5607 dst_reg->umin_value = umin_ptr; 5608 dst_reg->umax_value = umax_ptr; 5609 dst_reg->var_off = ptr_reg->var_off; 5610 dst_reg->off = ptr_reg->off + smin_val; 5611 dst_reg->raw = ptr_reg->raw; 5612 break; 5613 } 5614 /* A new variable offset is created. Note that off_reg->off 5615 * == 0, since it's a scalar. 5616 * dst_reg gets the pointer type and since some positive 5617 * integer value was added to the pointer, give it a new 'id' 5618 * if it's a PTR_TO_PACKET. 5619 * this creates a new 'base' pointer, off_reg (variable) gets 5620 * added into the variable offset, and we copy the fixed offset 5621 * from ptr_reg. 5622 */ 5623 if (signed_add_overflows(smin_ptr, smin_val) || 5624 signed_add_overflows(smax_ptr, smax_val)) { 5625 dst_reg->smin_value = S64_MIN; 5626 dst_reg->smax_value = S64_MAX; 5627 } else { 5628 dst_reg->smin_value = smin_ptr + smin_val; 5629 dst_reg->smax_value = smax_ptr + smax_val; 5630 } 5631 if (umin_ptr + umin_val < umin_ptr || 5632 umax_ptr + umax_val < umax_ptr) { 5633 dst_reg->umin_value = 0; 5634 dst_reg->umax_value = U64_MAX; 5635 } else { 5636 dst_reg->umin_value = umin_ptr + umin_val; 5637 dst_reg->umax_value = umax_ptr + umax_val; 5638 } 5639 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); 5640 dst_reg->off = ptr_reg->off; 5641 dst_reg->raw = ptr_reg->raw; 5642 if (reg_is_pkt_pointer(ptr_reg)) { 5643 dst_reg->id = ++env->id_gen; 5644 /* something was added to pkt_ptr, set range to zero */ 5645 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 5646 } 5647 break; 5648 case BPF_SUB: 5649 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0); 5650 if (ret < 0) { 5651 verbose(env, "R%d tried to sub from different maps or paths\n", dst); 5652 return ret; 5653 } 5654 if (dst_reg == off_reg) { 5655 /* scalar -= pointer. Creates an unknown scalar */ 5656 verbose(env, "R%d tried to subtract pointer from scalar\n", 5657 dst); 5658 return -EACCES; 5659 } 5660 /* We don't allow subtraction from FP, because (according to 5661 * test_verifier.c test "invalid fp arithmetic", JITs might not 5662 * be able to deal with it. 5663 */ 5664 if (ptr_reg->type == PTR_TO_STACK) { 5665 verbose(env, "R%d subtraction from stack pointer prohibited\n", 5666 dst); 5667 return -EACCES; 5668 } 5669 if (known && (ptr_reg->off - smin_val == 5670 (s64)(s32)(ptr_reg->off - smin_val))) { 5671 /* pointer -= K. Subtract it from fixed offset */ 5672 dst_reg->smin_value = smin_ptr; 5673 dst_reg->smax_value = smax_ptr; 5674 dst_reg->umin_value = umin_ptr; 5675 dst_reg->umax_value = umax_ptr; 5676 dst_reg->var_off = ptr_reg->var_off; 5677 dst_reg->id = ptr_reg->id; 5678 dst_reg->off = ptr_reg->off - smin_val; 5679 dst_reg->raw = ptr_reg->raw; 5680 break; 5681 } 5682 /* A new variable offset is created. If the subtrahend is known 5683 * nonnegative, then any reg->range we had before is still good. 5684 */ 5685 if (signed_sub_overflows(smin_ptr, smax_val) || 5686 signed_sub_overflows(smax_ptr, smin_val)) { 5687 /* Overflow possible, we know nothing */ 5688 dst_reg->smin_value = S64_MIN; 5689 dst_reg->smax_value = S64_MAX; 5690 } else { 5691 dst_reg->smin_value = smin_ptr - smax_val; 5692 dst_reg->smax_value = smax_ptr - smin_val; 5693 } 5694 if (umin_ptr < umax_val) { 5695 /* Overflow possible, we know nothing */ 5696 dst_reg->umin_value = 0; 5697 dst_reg->umax_value = U64_MAX; 5698 } else { 5699 /* Cannot overflow (as long as bounds are consistent) */ 5700 dst_reg->umin_value = umin_ptr - umax_val; 5701 dst_reg->umax_value = umax_ptr - umin_val; 5702 } 5703 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); 5704 dst_reg->off = ptr_reg->off; 5705 dst_reg->raw = ptr_reg->raw; 5706 if (reg_is_pkt_pointer(ptr_reg)) { 5707 dst_reg->id = ++env->id_gen; 5708 /* something was added to pkt_ptr, set range to zero */ 5709 if (smin_val < 0) 5710 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw)); 5711 } 5712 break; 5713 case BPF_AND: 5714 case BPF_OR: 5715 case BPF_XOR: 5716 /* bitwise ops on pointers are troublesome, prohibit. */ 5717 verbose(env, "R%d bitwise operator %s on pointer prohibited\n", 5718 dst, bpf_alu_string[opcode >> 4]); 5719 return -EACCES; 5720 default: 5721 /* other operators (e.g. MUL,LSH) produce non-pointer results */ 5722 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n", 5723 dst, bpf_alu_string[opcode >> 4]); 5724 return -EACCES; 5725 } 5726 5727 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) 5728 return -EINVAL; 5729 5730 __update_reg_bounds(dst_reg); 5731 __reg_deduce_bounds(dst_reg); 5732 __reg_bound_offset(dst_reg); 5733 5734 /* For unprivileged we require that resulting offset must be in bounds 5735 * in order to be able to sanitize access later on. 5736 */ 5737 if (!env->bypass_spec_v1) { 5738 if (dst_reg->type == PTR_TO_MAP_VALUE && 5739 check_map_access(env, dst, dst_reg->off, 1, false)) { 5740 verbose(env, "R%d pointer arithmetic of map value goes out of range, " 5741 "prohibited for !root\n", dst); 5742 return -EACCES; 5743 } else if (dst_reg->type == PTR_TO_STACK && 5744 check_stack_access(env, dst_reg, dst_reg->off + 5745 dst_reg->var_off.value, 1)) { 5746 verbose(env, "R%d stack pointer arithmetic goes out of range, " 5747 "prohibited for !root\n", dst); 5748 return -EACCES; 5749 } 5750 } 5751 5752 return 0; 5753 } 5754 5755 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg, 5756 struct bpf_reg_state *src_reg) 5757 { 5758 s32 smin_val = src_reg->s32_min_value; 5759 s32 smax_val = src_reg->s32_max_value; 5760 u32 umin_val = src_reg->u32_min_value; 5761 u32 umax_val = src_reg->u32_max_value; 5762 5763 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) || 5764 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) { 5765 dst_reg->s32_min_value = S32_MIN; 5766 dst_reg->s32_max_value = S32_MAX; 5767 } else { 5768 dst_reg->s32_min_value += smin_val; 5769 dst_reg->s32_max_value += smax_val; 5770 } 5771 if (dst_reg->u32_min_value + umin_val < umin_val || 5772 dst_reg->u32_max_value + umax_val < umax_val) { 5773 dst_reg->u32_min_value = 0; 5774 dst_reg->u32_max_value = U32_MAX; 5775 } else { 5776 dst_reg->u32_min_value += umin_val; 5777 dst_reg->u32_max_value += umax_val; 5778 } 5779 } 5780 5781 static void scalar_min_max_add(struct bpf_reg_state *dst_reg, 5782 struct bpf_reg_state *src_reg) 5783 { 5784 s64 smin_val = src_reg->smin_value; 5785 s64 smax_val = src_reg->smax_value; 5786 u64 umin_val = src_reg->umin_value; 5787 u64 umax_val = src_reg->umax_value; 5788 5789 if (signed_add_overflows(dst_reg->smin_value, smin_val) || 5790 signed_add_overflows(dst_reg->smax_value, smax_val)) { 5791 dst_reg->smin_value = S64_MIN; 5792 dst_reg->smax_value = S64_MAX; 5793 } else { 5794 dst_reg->smin_value += smin_val; 5795 dst_reg->smax_value += smax_val; 5796 } 5797 if (dst_reg->umin_value + umin_val < umin_val || 5798 dst_reg->umax_value + umax_val < umax_val) { 5799 dst_reg->umin_value = 0; 5800 dst_reg->umax_value = U64_MAX; 5801 } else { 5802 dst_reg->umin_value += umin_val; 5803 dst_reg->umax_value += umax_val; 5804 } 5805 } 5806 5807 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg, 5808 struct bpf_reg_state *src_reg) 5809 { 5810 s32 smin_val = src_reg->s32_min_value; 5811 s32 smax_val = src_reg->s32_max_value; 5812 u32 umin_val = src_reg->u32_min_value; 5813 u32 umax_val = src_reg->u32_max_value; 5814 5815 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) || 5816 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) { 5817 /* Overflow possible, we know nothing */ 5818 dst_reg->s32_min_value = S32_MIN; 5819 dst_reg->s32_max_value = S32_MAX; 5820 } else { 5821 dst_reg->s32_min_value -= smax_val; 5822 dst_reg->s32_max_value -= smin_val; 5823 } 5824 if (dst_reg->u32_min_value < umax_val) { 5825 /* Overflow possible, we know nothing */ 5826 dst_reg->u32_min_value = 0; 5827 dst_reg->u32_max_value = U32_MAX; 5828 } else { 5829 /* Cannot overflow (as long as bounds are consistent) */ 5830 dst_reg->u32_min_value -= umax_val; 5831 dst_reg->u32_max_value -= umin_val; 5832 } 5833 } 5834 5835 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg, 5836 struct bpf_reg_state *src_reg) 5837 { 5838 s64 smin_val = src_reg->smin_value; 5839 s64 smax_val = src_reg->smax_value; 5840 u64 umin_val = src_reg->umin_value; 5841 u64 umax_val = src_reg->umax_value; 5842 5843 if (signed_sub_overflows(dst_reg->smin_value, smax_val) || 5844 signed_sub_overflows(dst_reg->smax_value, smin_val)) { 5845 /* Overflow possible, we know nothing */ 5846 dst_reg->smin_value = S64_MIN; 5847 dst_reg->smax_value = S64_MAX; 5848 } else { 5849 dst_reg->smin_value -= smax_val; 5850 dst_reg->smax_value -= smin_val; 5851 } 5852 if (dst_reg->umin_value < umax_val) { 5853 /* Overflow possible, we know nothing */ 5854 dst_reg->umin_value = 0; 5855 dst_reg->umax_value = U64_MAX; 5856 } else { 5857 /* Cannot overflow (as long as bounds are consistent) */ 5858 dst_reg->umin_value -= umax_val; 5859 dst_reg->umax_value -= umin_val; 5860 } 5861 } 5862 5863 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg, 5864 struct bpf_reg_state *src_reg) 5865 { 5866 s32 smin_val = src_reg->s32_min_value; 5867 u32 umin_val = src_reg->u32_min_value; 5868 u32 umax_val = src_reg->u32_max_value; 5869 5870 if (smin_val < 0 || dst_reg->s32_min_value < 0) { 5871 /* Ain't nobody got time to multiply that sign */ 5872 __mark_reg32_unbounded(dst_reg); 5873 return; 5874 } 5875 /* Both values are positive, so we can work with unsigned and 5876 * copy the result to signed (unless it exceeds S32_MAX). 5877 */ 5878 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) { 5879 /* Potential overflow, we know nothing */ 5880 __mark_reg32_unbounded(dst_reg); 5881 return; 5882 } 5883 dst_reg->u32_min_value *= umin_val; 5884 dst_reg->u32_max_value *= umax_val; 5885 if (dst_reg->u32_max_value > S32_MAX) { 5886 /* Overflow possible, we know nothing */ 5887 dst_reg->s32_min_value = S32_MIN; 5888 dst_reg->s32_max_value = S32_MAX; 5889 } else { 5890 dst_reg->s32_min_value = dst_reg->u32_min_value; 5891 dst_reg->s32_max_value = dst_reg->u32_max_value; 5892 } 5893 } 5894 5895 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg, 5896 struct bpf_reg_state *src_reg) 5897 { 5898 s64 smin_val = src_reg->smin_value; 5899 u64 umin_val = src_reg->umin_value; 5900 u64 umax_val = src_reg->umax_value; 5901 5902 if (smin_val < 0 || dst_reg->smin_value < 0) { 5903 /* Ain't nobody got time to multiply that sign */ 5904 __mark_reg64_unbounded(dst_reg); 5905 return; 5906 } 5907 /* Both values are positive, so we can work with unsigned and 5908 * copy the result to signed (unless it exceeds S64_MAX). 5909 */ 5910 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { 5911 /* Potential overflow, we know nothing */ 5912 __mark_reg64_unbounded(dst_reg); 5913 return; 5914 } 5915 dst_reg->umin_value *= umin_val; 5916 dst_reg->umax_value *= umax_val; 5917 if (dst_reg->umax_value > S64_MAX) { 5918 /* Overflow possible, we know nothing */ 5919 dst_reg->smin_value = S64_MIN; 5920 dst_reg->smax_value = S64_MAX; 5921 } else { 5922 dst_reg->smin_value = dst_reg->umin_value; 5923 dst_reg->smax_value = dst_reg->umax_value; 5924 } 5925 } 5926 5927 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, 5928 struct bpf_reg_state *src_reg) 5929 { 5930 bool src_known = tnum_subreg_is_const(src_reg->var_off); 5931 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 5932 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 5933 s32 smin_val = src_reg->s32_min_value; 5934 u32 umax_val = src_reg->u32_max_value; 5935 5936 /* Assuming scalar64_min_max_and will be called so its safe 5937 * to skip updating register for known 32-bit case. 5938 */ 5939 if (src_known && dst_known) 5940 return; 5941 5942 /* We get our minimum from the var_off, since that's inherently 5943 * bitwise. Our maximum is the minimum of the operands' maxima. 5944 */ 5945 dst_reg->u32_min_value = var32_off.value; 5946 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); 5947 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 5948 /* Lose signed bounds when ANDing negative numbers, 5949 * ain't nobody got time for that. 5950 */ 5951 dst_reg->s32_min_value = S32_MIN; 5952 dst_reg->s32_max_value = S32_MAX; 5953 } else { 5954 /* ANDing two positives gives a positive, so safe to 5955 * cast result into s64. 5956 */ 5957 dst_reg->s32_min_value = dst_reg->u32_min_value; 5958 dst_reg->s32_max_value = dst_reg->u32_max_value; 5959 } 5960 5961 } 5962 5963 static void scalar_min_max_and(struct bpf_reg_state *dst_reg, 5964 struct bpf_reg_state *src_reg) 5965 { 5966 bool src_known = tnum_is_const(src_reg->var_off); 5967 bool dst_known = tnum_is_const(dst_reg->var_off); 5968 s64 smin_val = src_reg->smin_value; 5969 u64 umax_val = src_reg->umax_value; 5970 5971 if (src_known && dst_known) { 5972 __mark_reg_known(dst_reg, dst_reg->var_off.value); 5973 return; 5974 } 5975 5976 /* We get our minimum from the var_off, since that's inherently 5977 * bitwise. Our maximum is the minimum of the operands' maxima. 5978 */ 5979 dst_reg->umin_value = dst_reg->var_off.value; 5980 dst_reg->umax_value = min(dst_reg->umax_value, umax_val); 5981 if (dst_reg->smin_value < 0 || smin_val < 0) { 5982 /* Lose signed bounds when ANDing negative numbers, 5983 * ain't nobody got time for that. 5984 */ 5985 dst_reg->smin_value = S64_MIN; 5986 dst_reg->smax_value = S64_MAX; 5987 } else { 5988 /* ANDing two positives gives a positive, so safe to 5989 * cast result into s64. 5990 */ 5991 dst_reg->smin_value = dst_reg->umin_value; 5992 dst_reg->smax_value = dst_reg->umax_value; 5993 } 5994 /* We may learn something more from the var_off */ 5995 __update_reg_bounds(dst_reg); 5996 } 5997 5998 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, 5999 struct bpf_reg_state *src_reg) 6000 { 6001 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6002 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6003 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6004 s32 smin_val = src_reg->s32_min_value; 6005 u32 umin_val = src_reg->u32_min_value; 6006 6007 /* Assuming scalar64_min_max_or will be called so it is safe 6008 * to skip updating register for known case. 6009 */ 6010 if (src_known && dst_known) 6011 return; 6012 6013 /* We get our maximum from the var_off, and our minimum is the 6014 * maximum of the operands' minima 6015 */ 6016 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); 6017 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6018 if (dst_reg->s32_min_value < 0 || smin_val < 0) { 6019 /* Lose signed bounds when ORing negative numbers, 6020 * ain't nobody got time for that. 6021 */ 6022 dst_reg->s32_min_value = S32_MIN; 6023 dst_reg->s32_max_value = S32_MAX; 6024 } else { 6025 /* ORing two positives gives a positive, so safe to 6026 * cast result into s64. 6027 */ 6028 dst_reg->s32_min_value = dst_reg->u32_min_value; 6029 dst_reg->s32_max_value = dst_reg->u32_max_value; 6030 } 6031 } 6032 6033 static void scalar_min_max_or(struct bpf_reg_state *dst_reg, 6034 struct bpf_reg_state *src_reg) 6035 { 6036 bool src_known = tnum_is_const(src_reg->var_off); 6037 bool dst_known = tnum_is_const(dst_reg->var_off); 6038 s64 smin_val = src_reg->smin_value; 6039 u64 umin_val = src_reg->umin_value; 6040 6041 if (src_known && dst_known) { 6042 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6043 return; 6044 } 6045 6046 /* We get our maximum from the var_off, and our minimum is the 6047 * maximum of the operands' minima 6048 */ 6049 dst_reg->umin_value = max(dst_reg->umin_value, umin_val); 6050 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6051 if (dst_reg->smin_value < 0 || smin_val < 0) { 6052 /* Lose signed bounds when ORing negative numbers, 6053 * ain't nobody got time for that. 6054 */ 6055 dst_reg->smin_value = S64_MIN; 6056 dst_reg->smax_value = S64_MAX; 6057 } else { 6058 /* ORing two positives gives a positive, so safe to 6059 * cast result into s64. 6060 */ 6061 dst_reg->smin_value = dst_reg->umin_value; 6062 dst_reg->smax_value = dst_reg->umax_value; 6063 } 6064 /* We may learn something more from the var_off */ 6065 __update_reg_bounds(dst_reg); 6066 } 6067 6068 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, 6069 struct bpf_reg_state *src_reg) 6070 { 6071 bool src_known = tnum_subreg_is_const(src_reg->var_off); 6072 bool dst_known = tnum_subreg_is_const(dst_reg->var_off); 6073 struct tnum var32_off = tnum_subreg(dst_reg->var_off); 6074 s32 smin_val = src_reg->s32_min_value; 6075 6076 /* Assuming scalar64_min_max_xor will be called so it is safe 6077 * to skip updating register for known case. 6078 */ 6079 if (src_known && dst_known) 6080 return; 6081 6082 /* We get both minimum and maximum from the var32_off. */ 6083 dst_reg->u32_min_value = var32_off.value; 6084 dst_reg->u32_max_value = var32_off.value | var32_off.mask; 6085 6086 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { 6087 /* XORing two positive sign numbers gives a positive, 6088 * so safe to cast u32 result into s32. 6089 */ 6090 dst_reg->s32_min_value = dst_reg->u32_min_value; 6091 dst_reg->s32_max_value = dst_reg->u32_max_value; 6092 } else { 6093 dst_reg->s32_min_value = S32_MIN; 6094 dst_reg->s32_max_value = S32_MAX; 6095 } 6096 } 6097 6098 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, 6099 struct bpf_reg_state *src_reg) 6100 { 6101 bool src_known = tnum_is_const(src_reg->var_off); 6102 bool dst_known = tnum_is_const(dst_reg->var_off); 6103 s64 smin_val = src_reg->smin_value; 6104 6105 if (src_known && dst_known) { 6106 /* dst_reg->var_off.value has been updated earlier */ 6107 __mark_reg_known(dst_reg, dst_reg->var_off.value); 6108 return; 6109 } 6110 6111 /* We get both minimum and maximum from the var_off. */ 6112 dst_reg->umin_value = dst_reg->var_off.value; 6113 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; 6114 6115 if (dst_reg->smin_value >= 0 && smin_val >= 0) { 6116 /* XORing two positive sign numbers gives a positive, 6117 * so safe to cast u64 result into s64. 6118 */ 6119 dst_reg->smin_value = dst_reg->umin_value; 6120 dst_reg->smax_value = dst_reg->umax_value; 6121 } else { 6122 dst_reg->smin_value = S64_MIN; 6123 dst_reg->smax_value = S64_MAX; 6124 } 6125 6126 __update_reg_bounds(dst_reg); 6127 } 6128 6129 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6130 u64 umin_val, u64 umax_val) 6131 { 6132 /* We lose all sign bit information (except what we can pick 6133 * up from var_off) 6134 */ 6135 dst_reg->s32_min_value = S32_MIN; 6136 dst_reg->s32_max_value = S32_MAX; 6137 /* If we might shift our top bit out, then we know nothing */ 6138 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) { 6139 dst_reg->u32_min_value = 0; 6140 dst_reg->u32_max_value = U32_MAX; 6141 } else { 6142 dst_reg->u32_min_value <<= umin_val; 6143 dst_reg->u32_max_value <<= umax_val; 6144 } 6145 } 6146 6147 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg, 6148 struct bpf_reg_state *src_reg) 6149 { 6150 u32 umax_val = src_reg->u32_max_value; 6151 u32 umin_val = src_reg->u32_min_value; 6152 /* u32 alu operation will zext upper bits */ 6153 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6154 6155 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6156 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val)); 6157 /* Not required but being careful mark reg64 bounds as unknown so 6158 * that we are forced to pick them up from tnum and zext later and 6159 * if some path skips this step we are still safe. 6160 */ 6161 __mark_reg64_unbounded(dst_reg); 6162 __update_reg32_bounds(dst_reg); 6163 } 6164 6165 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg, 6166 u64 umin_val, u64 umax_val) 6167 { 6168 /* Special case <<32 because it is a common compiler pattern to sign 6169 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are 6170 * positive we know this shift will also be positive so we can track 6171 * bounds correctly. Otherwise we lose all sign bit information except 6172 * what we can pick up from var_off. Perhaps we can generalize this 6173 * later to shifts of any length. 6174 */ 6175 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0) 6176 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32; 6177 else 6178 dst_reg->smax_value = S64_MAX; 6179 6180 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0) 6181 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32; 6182 else 6183 dst_reg->smin_value = S64_MIN; 6184 6185 /* If we might shift our top bit out, then we know nothing */ 6186 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { 6187 dst_reg->umin_value = 0; 6188 dst_reg->umax_value = U64_MAX; 6189 } else { 6190 dst_reg->umin_value <<= umin_val; 6191 dst_reg->umax_value <<= umax_val; 6192 } 6193 } 6194 6195 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg, 6196 struct bpf_reg_state *src_reg) 6197 { 6198 u64 umax_val = src_reg->umax_value; 6199 u64 umin_val = src_reg->umin_value; 6200 6201 /* scalar64 calc uses 32bit unshifted bounds so must be called first */ 6202 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val); 6203 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val); 6204 6205 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); 6206 /* We may learn something more from the var_off */ 6207 __update_reg_bounds(dst_reg); 6208 } 6209 6210 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg, 6211 struct bpf_reg_state *src_reg) 6212 { 6213 struct tnum subreg = tnum_subreg(dst_reg->var_off); 6214 u32 umax_val = src_reg->u32_max_value; 6215 u32 umin_val = src_reg->u32_min_value; 6216 6217 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6218 * be negative, then either: 6219 * 1) src_reg might be zero, so the sign bit of the result is 6220 * unknown, so we lose our signed bounds 6221 * 2) it's known negative, thus the unsigned bounds capture the 6222 * signed bounds 6223 * 3) the signed bounds cross zero, so they tell us nothing 6224 * about the result 6225 * If the value in dst_reg is known nonnegative, then again the 6226 * unsigned bounts capture the signed bounds. 6227 * Thus, in all cases it suffices to blow away our signed bounds 6228 * and rely on inferring new ones from the unsigned bounds and 6229 * var_off of the result. 6230 */ 6231 dst_reg->s32_min_value = S32_MIN; 6232 dst_reg->s32_max_value = S32_MAX; 6233 6234 dst_reg->var_off = tnum_rshift(subreg, umin_val); 6235 dst_reg->u32_min_value >>= umax_val; 6236 dst_reg->u32_max_value >>= umin_val; 6237 6238 __mark_reg64_unbounded(dst_reg); 6239 __update_reg32_bounds(dst_reg); 6240 } 6241 6242 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg, 6243 struct bpf_reg_state *src_reg) 6244 { 6245 u64 umax_val = src_reg->umax_value; 6246 u64 umin_val = src_reg->umin_value; 6247 6248 /* BPF_RSH is an unsigned shift. If the value in dst_reg might 6249 * be negative, then either: 6250 * 1) src_reg might be zero, so the sign bit of the result is 6251 * unknown, so we lose our signed bounds 6252 * 2) it's known negative, thus the unsigned bounds capture the 6253 * signed bounds 6254 * 3) the signed bounds cross zero, so they tell us nothing 6255 * about the result 6256 * If the value in dst_reg is known nonnegative, then again the 6257 * unsigned bounts capture the signed bounds. 6258 * Thus, in all cases it suffices to blow away our signed bounds 6259 * and rely on inferring new ones from the unsigned bounds and 6260 * var_off of the result. 6261 */ 6262 dst_reg->smin_value = S64_MIN; 6263 dst_reg->smax_value = S64_MAX; 6264 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val); 6265 dst_reg->umin_value >>= umax_val; 6266 dst_reg->umax_value >>= umin_val; 6267 6268 /* Its not easy to operate on alu32 bounds here because it depends 6269 * on bits being shifted in. Take easy way out and mark unbounded 6270 * so we can recalculate later from tnum. 6271 */ 6272 __mark_reg32_unbounded(dst_reg); 6273 __update_reg_bounds(dst_reg); 6274 } 6275 6276 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg, 6277 struct bpf_reg_state *src_reg) 6278 { 6279 u64 umin_val = src_reg->u32_min_value; 6280 6281 /* Upon reaching here, src_known is true and 6282 * umax_val is equal to umin_val. 6283 */ 6284 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val); 6285 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val); 6286 6287 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32); 6288 6289 /* blow away the dst_reg umin_value/umax_value and rely on 6290 * dst_reg var_off to refine the result. 6291 */ 6292 dst_reg->u32_min_value = 0; 6293 dst_reg->u32_max_value = U32_MAX; 6294 6295 __mark_reg64_unbounded(dst_reg); 6296 __update_reg32_bounds(dst_reg); 6297 } 6298 6299 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg, 6300 struct bpf_reg_state *src_reg) 6301 { 6302 u64 umin_val = src_reg->umin_value; 6303 6304 /* Upon reaching here, src_known is true and umax_val is equal 6305 * to umin_val. 6306 */ 6307 dst_reg->smin_value >>= umin_val; 6308 dst_reg->smax_value >>= umin_val; 6309 6310 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64); 6311 6312 /* blow away the dst_reg umin_value/umax_value and rely on 6313 * dst_reg var_off to refine the result. 6314 */ 6315 dst_reg->umin_value = 0; 6316 dst_reg->umax_value = U64_MAX; 6317 6318 /* Its not easy to operate on alu32 bounds here because it depends 6319 * on bits being shifted in from upper 32-bits. Take easy way out 6320 * and mark unbounded so we can recalculate later from tnum. 6321 */ 6322 __mark_reg32_unbounded(dst_reg); 6323 __update_reg_bounds(dst_reg); 6324 } 6325 6326 /* WARNING: This function does calculations on 64-bit values, but the actual 6327 * execution may occur on 32-bit values. Therefore, things like bitshifts 6328 * need extra checks in the 32-bit case. 6329 */ 6330 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, 6331 struct bpf_insn *insn, 6332 struct bpf_reg_state *dst_reg, 6333 struct bpf_reg_state src_reg) 6334 { 6335 struct bpf_reg_state *regs = cur_regs(env); 6336 u8 opcode = BPF_OP(insn->code); 6337 bool src_known; 6338 s64 smin_val, smax_val; 6339 u64 umin_val, umax_val; 6340 s32 s32_min_val, s32_max_val; 6341 u32 u32_min_val, u32_max_val; 6342 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; 6343 u32 dst = insn->dst_reg; 6344 int ret; 6345 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64); 6346 6347 smin_val = src_reg.smin_value; 6348 smax_val = src_reg.smax_value; 6349 umin_val = src_reg.umin_value; 6350 umax_val = src_reg.umax_value; 6351 6352 s32_min_val = src_reg.s32_min_value; 6353 s32_max_val = src_reg.s32_max_value; 6354 u32_min_val = src_reg.u32_min_value; 6355 u32_max_val = src_reg.u32_max_value; 6356 6357 if (alu32) { 6358 src_known = tnum_subreg_is_const(src_reg.var_off); 6359 if ((src_known && 6360 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) || 6361 s32_min_val > s32_max_val || u32_min_val > u32_max_val) { 6362 /* Taint dst register if offset had invalid bounds 6363 * derived from e.g. dead branches. 6364 */ 6365 __mark_reg_unknown(env, dst_reg); 6366 return 0; 6367 } 6368 } else { 6369 src_known = tnum_is_const(src_reg.var_off); 6370 if ((src_known && 6371 (smin_val != smax_val || umin_val != umax_val)) || 6372 smin_val > smax_val || umin_val > umax_val) { 6373 /* Taint dst register if offset had invalid bounds 6374 * derived from e.g. dead branches. 6375 */ 6376 __mark_reg_unknown(env, dst_reg); 6377 return 0; 6378 } 6379 } 6380 6381 if (!src_known && 6382 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { 6383 __mark_reg_unknown(env, dst_reg); 6384 return 0; 6385 } 6386 6387 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops. 6388 * There are two classes of instructions: The first class we track both 6389 * alu32 and alu64 sign/unsigned bounds independently this provides the 6390 * greatest amount of precision when alu operations are mixed with jmp32 6391 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD, 6392 * and BPF_OR. This is possible because these ops have fairly easy to 6393 * understand and calculate behavior in both 32-bit and 64-bit alu ops. 6394 * See alu32 verifier tests for examples. The second class of 6395 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy 6396 * with regards to tracking sign/unsigned bounds because the bits may 6397 * cross subreg boundaries in the alu64 case. When this happens we mark 6398 * the reg unbounded in the subreg bound space and use the resulting 6399 * tnum to calculate an approximation of the sign/unsigned bounds. 6400 */ 6401 switch (opcode) { 6402 case BPF_ADD: 6403 ret = sanitize_val_alu(env, insn); 6404 if (ret < 0) { 6405 verbose(env, "R%d tried to add from different pointers or scalars\n", dst); 6406 return ret; 6407 } 6408 scalar32_min_max_add(dst_reg, &src_reg); 6409 scalar_min_max_add(dst_reg, &src_reg); 6410 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); 6411 break; 6412 case BPF_SUB: 6413 ret = sanitize_val_alu(env, insn); 6414 if (ret < 0) { 6415 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst); 6416 return ret; 6417 } 6418 scalar32_min_max_sub(dst_reg, &src_reg); 6419 scalar_min_max_sub(dst_reg, &src_reg); 6420 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); 6421 break; 6422 case BPF_MUL: 6423 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); 6424 scalar32_min_max_mul(dst_reg, &src_reg); 6425 scalar_min_max_mul(dst_reg, &src_reg); 6426 break; 6427 case BPF_AND: 6428 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); 6429 scalar32_min_max_and(dst_reg, &src_reg); 6430 scalar_min_max_and(dst_reg, &src_reg); 6431 break; 6432 case BPF_OR: 6433 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); 6434 scalar32_min_max_or(dst_reg, &src_reg); 6435 scalar_min_max_or(dst_reg, &src_reg); 6436 break; 6437 case BPF_XOR: 6438 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off); 6439 scalar32_min_max_xor(dst_reg, &src_reg); 6440 scalar_min_max_xor(dst_reg, &src_reg); 6441 break; 6442 case BPF_LSH: 6443 if (umax_val >= insn_bitness) { 6444 /* Shifts greater than 31 or 63 are undefined. 6445 * This includes shifts by a negative number. 6446 */ 6447 mark_reg_unknown(env, regs, insn->dst_reg); 6448 break; 6449 } 6450 if (alu32) 6451 scalar32_min_max_lsh(dst_reg, &src_reg); 6452 else 6453 scalar_min_max_lsh(dst_reg, &src_reg); 6454 break; 6455 case BPF_RSH: 6456 if (umax_val >= insn_bitness) { 6457 /* Shifts greater than 31 or 63 are undefined. 6458 * This includes shifts by a negative number. 6459 */ 6460 mark_reg_unknown(env, regs, insn->dst_reg); 6461 break; 6462 } 6463 if (alu32) 6464 scalar32_min_max_rsh(dst_reg, &src_reg); 6465 else 6466 scalar_min_max_rsh(dst_reg, &src_reg); 6467 break; 6468 case BPF_ARSH: 6469 if (umax_val >= insn_bitness) { 6470 /* Shifts greater than 31 or 63 are undefined. 6471 * This includes shifts by a negative number. 6472 */ 6473 mark_reg_unknown(env, regs, insn->dst_reg); 6474 break; 6475 } 6476 if (alu32) 6477 scalar32_min_max_arsh(dst_reg, &src_reg); 6478 else 6479 scalar_min_max_arsh(dst_reg, &src_reg); 6480 break; 6481 default: 6482 mark_reg_unknown(env, regs, insn->dst_reg); 6483 break; 6484 } 6485 6486 /* ALU32 ops are zero extended into 64bit register */ 6487 if (alu32) 6488 zext_32_to_64(dst_reg); 6489 6490 __update_reg_bounds(dst_reg); 6491 __reg_deduce_bounds(dst_reg); 6492 __reg_bound_offset(dst_reg); 6493 return 0; 6494 } 6495 6496 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max 6497 * and var_off. 6498 */ 6499 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, 6500 struct bpf_insn *insn) 6501 { 6502 struct bpf_verifier_state *vstate = env->cur_state; 6503 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 6504 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg; 6505 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; 6506 u8 opcode = BPF_OP(insn->code); 6507 int err; 6508 6509 dst_reg = ®s[insn->dst_reg]; 6510 src_reg = NULL; 6511 if (dst_reg->type != SCALAR_VALUE) 6512 ptr_reg = dst_reg; 6513 else 6514 /* Make sure ID is cleared otherwise dst_reg min/max could be 6515 * incorrectly propagated into other registers by find_equal_scalars() 6516 */ 6517 dst_reg->id = 0; 6518 if (BPF_SRC(insn->code) == BPF_X) { 6519 src_reg = ®s[insn->src_reg]; 6520 if (src_reg->type != SCALAR_VALUE) { 6521 if (dst_reg->type != SCALAR_VALUE) { 6522 /* Combining two pointers by any ALU op yields 6523 * an arbitrary scalar. Disallow all math except 6524 * pointer subtraction 6525 */ 6526 if (opcode == BPF_SUB && env->allow_ptr_leaks) { 6527 mark_reg_unknown(env, regs, insn->dst_reg); 6528 return 0; 6529 } 6530 verbose(env, "R%d pointer %s pointer prohibited\n", 6531 insn->dst_reg, 6532 bpf_alu_string[opcode >> 4]); 6533 return -EACCES; 6534 } else { 6535 /* scalar += pointer 6536 * This is legal, but we have to reverse our 6537 * src/dest handling in computing the range 6538 */ 6539 err = mark_chain_precision(env, insn->dst_reg); 6540 if (err) 6541 return err; 6542 return adjust_ptr_min_max_vals(env, insn, 6543 src_reg, dst_reg); 6544 } 6545 } else if (ptr_reg) { 6546 /* pointer += scalar */ 6547 err = mark_chain_precision(env, insn->src_reg); 6548 if (err) 6549 return err; 6550 return adjust_ptr_min_max_vals(env, insn, 6551 dst_reg, src_reg); 6552 } 6553 } else { 6554 /* Pretend the src is a reg with a known value, since we only 6555 * need to be able to read from this state. 6556 */ 6557 off_reg.type = SCALAR_VALUE; 6558 __mark_reg_known(&off_reg, insn->imm); 6559 src_reg = &off_reg; 6560 if (ptr_reg) /* pointer += K */ 6561 return adjust_ptr_min_max_vals(env, insn, 6562 ptr_reg, src_reg); 6563 } 6564 6565 /* Got here implies adding two SCALAR_VALUEs */ 6566 if (WARN_ON_ONCE(ptr_reg)) { 6567 print_verifier_state(env, state); 6568 verbose(env, "verifier internal error: unexpected ptr_reg\n"); 6569 return -EINVAL; 6570 } 6571 if (WARN_ON(!src_reg)) { 6572 print_verifier_state(env, state); 6573 verbose(env, "verifier internal error: no src_reg\n"); 6574 return -EINVAL; 6575 } 6576 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); 6577 } 6578 6579 /* check validity of 32-bit and 64-bit arithmetic operations */ 6580 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) 6581 { 6582 struct bpf_reg_state *regs = cur_regs(env); 6583 u8 opcode = BPF_OP(insn->code); 6584 int err; 6585 6586 if (opcode == BPF_END || opcode == BPF_NEG) { 6587 if (opcode == BPF_NEG) { 6588 if (BPF_SRC(insn->code) != 0 || 6589 insn->src_reg != BPF_REG_0 || 6590 insn->off != 0 || insn->imm != 0) { 6591 verbose(env, "BPF_NEG uses reserved fields\n"); 6592 return -EINVAL; 6593 } 6594 } else { 6595 if (insn->src_reg != BPF_REG_0 || insn->off != 0 || 6596 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || 6597 BPF_CLASS(insn->code) == BPF_ALU64) { 6598 verbose(env, "BPF_END uses reserved fields\n"); 6599 return -EINVAL; 6600 } 6601 } 6602 6603 /* check src operand */ 6604 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6605 if (err) 6606 return err; 6607 6608 if (is_pointer_value(env, insn->dst_reg)) { 6609 verbose(env, "R%d pointer arithmetic prohibited\n", 6610 insn->dst_reg); 6611 return -EACCES; 6612 } 6613 6614 /* check dest operand */ 6615 err = check_reg_arg(env, insn->dst_reg, DST_OP); 6616 if (err) 6617 return err; 6618 6619 } else if (opcode == BPF_MOV) { 6620 6621 if (BPF_SRC(insn->code) == BPF_X) { 6622 if (insn->imm != 0 || insn->off != 0) { 6623 verbose(env, "BPF_MOV uses reserved fields\n"); 6624 return -EINVAL; 6625 } 6626 6627 /* check src operand */ 6628 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6629 if (err) 6630 return err; 6631 } else { 6632 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6633 verbose(env, "BPF_MOV uses reserved fields\n"); 6634 return -EINVAL; 6635 } 6636 } 6637 6638 /* check dest operand, mark as required later */ 6639 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6640 if (err) 6641 return err; 6642 6643 if (BPF_SRC(insn->code) == BPF_X) { 6644 struct bpf_reg_state *src_reg = regs + insn->src_reg; 6645 struct bpf_reg_state *dst_reg = regs + insn->dst_reg; 6646 6647 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6648 /* case: R1 = R2 6649 * copy register state to dest reg 6650 */ 6651 if (src_reg->type == SCALAR_VALUE && !src_reg->id) 6652 /* Assign src and dst registers the same ID 6653 * that will be used by find_equal_scalars() 6654 * to propagate min/max range. 6655 */ 6656 src_reg->id = ++env->id_gen; 6657 *dst_reg = *src_reg; 6658 dst_reg->live |= REG_LIVE_WRITTEN; 6659 dst_reg->subreg_def = DEF_NOT_SUBREG; 6660 } else { 6661 /* R1 = (u32) R2 */ 6662 if (is_pointer_value(env, insn->src_reg)) { 6663 verbose(env, 6664 "R%d partial copy of pointer\n", 6665 insn->src_reg); 6666 return -EACCES; 6667 } else if (src_reg->type == SCALAR_VALUE) { 6668 *dst_reg = *src_reg; 6669 /* Make sure ID is cleared otherwise 6670 * dst_reg min/max could be incorrectly 6671 * propagated into src_reg by find_equal_scalars() 6672 */ 6673 dst_reg->id = 0; 6674 dst_reg->live |= REG_LIVE_WRITTEN; 6675 dst_reg->subreg_def = env->insn_idx + 1; 6676 } else { 6677 mark_reg_unknown(env, regs, 6678 insn->dst_reg); 6679 } 6680 zext_32_to_64(dst_reg); 6681 } 6682 } else { 6683 /* case: R = imm 6684 * remember the value we stored into this reg 6685 */ 6686 /* clear any state __mark_reg_known doesn't set */ 6687 mark_reg_unknown(env, regs, insn->dst_reg); 6688 regs[insn->dst_reg].type = SCALAR_VALUE; 6689 if (BPF_CLASS(insn->code) == BPF_ALU64) { 6690 __mark_reg_known(regs + insn->dst_reg, 6691 insn->imm); 6692 } else { 6693 __mark_reg_known(regs + insn->dst_reg, 6694 (u32)insn->imm); 6695 } 6696 } 6697 6698 } else if (opcode > BPF_END) { 6699 verbose(env, "invalid BPF_ALU opcode %x\n", opcode); 6700 return -EINVAL; 6701 6702 } else { /* all other ALU ops: and, sub, xor, add, ... */ 6703 6704 if (BPF_SRC(insn->code) == BPF_X) { 6705 if (insn->imm != 0 || insn->off != 0) { 6706 verbose(env, "BPF_ALU uses reserved fields\n"); 6707 return -EINVAL; 6708 } 6709 /* check src1 operand */ 6710 err = check_reg_arg(env, insn->src_reg, SRC_OP); 6711 if (err) 6712 return err; 6713 } else { 6714 if (insn->src_reg != BPF_REG_0 || insn->off != 0) { 6715 verbose(env, "BPF_ALU uses reserved fields\n"); 6716 return -EINVAL; 6717 } 6718 } 6719 6720 /* check src2 operand */ 6721 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 6722 if (err) 6723 return err; 6724 6725 if ((opcode == BPF_MOD || opcode == BPF_DIV) && 6726 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { 6727 verbose(env, "div by zero\n"); 6728 return -EINVAL; 6729 } 6730 6731 if ((opcode == BPF_LSH || opcode == BPF_RSH || 6732 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { 6733 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; 6734 6735 if (insn->imm < 0 || insn->imm >= size) { 6736 verbose(env, "invalid shift %d\n", insn->imm); 6737 return -EINVAL; 6738 } 6739 } 6740 6741 /* check dest operand */ 6742 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 6743 if (err) 6744 return err; 6745 6746 return adjust_reg_min_max_vals(env, insn); 6747 } 6748 6749 return 0; 6750 } 6751 6752 static void __find_good_pkt_pointers(struct bpf_func_state *state, 6753 struct bpf_reg_state *dst_reg, 6754 enum bpf_reg_type type, int new_range) 6755 { 6756 struct bpf_reg_state *reg; 6757 int i; 6758 6759 for (i = 0; i < MAX_BPF_REG; i++) { 6760 reg = &state->regs[i]; 6761 if (reg->type == type && reg->id == dst_reg->id) 6762 /* keep the maximum range already checked */ 6763 reg->range = max(reg->range, new_range); 6764 } 6765 6766 bpf_for_each_spilled_reg(i, state, reg) { 6767 if (!reg) 6768 continue; 6769 if (reg->type == type && reg->id == dst_reg->id) 6770 reg->range = max(reg->range, new_range); 6771 } 6772 } 6773 6774 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate, 6775 struct bpf_reg_state *dst_reg, 6776 enum bpf_reg_type type, 6777 bool range_right_open) 6778 { 6779 int new_range, i; 6780 6781 if (dst_reg->off < 0 || 6782 (dst_reg->off == 0 && range_right_open)) 6783 /* This doesn't give us any range */ 6784 return; 6785 6786 if (dst_reg->umax_value > MAX_PACKET_OFF || 6787 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) 6788 /* Risk of overflow. For instance, ptr + (1<<63) may be less 6789 * than pkt_end, but that's because it's also less than pkt. 6790 */ 6791 return; 6792 6793 new_range = dst_reg->off; 6794 if (range_right_open) 6795 new_range--; 6796 6797 /* Examples for register markings: 6798 * 6799 * pkt_data in dst register: 6800 * 6801 * r2 = r3; 6802 * r2 += 8; 6803 * if (r2 > pkt_end) goto <handle exception> 6804 * <access okay> 6805 * 6806 * r2 = r3; 6807 * r2 += 8; 6808 * if (r2 < pkt_end) goto <access okay> 6809 * <handle exception> 6810 * 6811 * Where: 6812 * r2 == dst_reg, pkt_end == src_reg 6813 * r2=pkt(id=n,off=8,r=0) 6814 * r3=pkt(id=n,off=0,r=0) 6815 * 6816 * pkt_data in src register: 6817 * 6818 * r2 = r3; 6819 * r2 += 8; 6820 * if (pkt_end >= r2) goto <access okay> 6821 * <handle exception> 6822 * 6823 * r2 = r3; 6824 * r2 += 8; 6825 * if (pkt_end <= r2) goto <handle exception> 6826 * <access okay> 6827 * 6828 * Where: 6829 * pkt_end == dst_reg, r2 == src_reg 6830 * r2=pkt(id=n,off=8,r=0) 6831 * r3=pkt(id=n,off=0,r=0) 6832 * 6833 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) 6834 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) 6835 * and [r3, r3 + 8-1) respectively is safe to access depending on 6836 * the check. 6837 */ 6838 6839 /* If our ids match, then we must have the same max_value. And we 6840 * don't care about the other reg's fixed offset, since if it's too big 6841 * the range won't allow anything. 6842 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. 6843 */ 6844 for (i = 0; i <= vstate->curframe; i++) 6845 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type, 6846 new_range); 6847 } 6848 6849 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode) 6850 { 6851 struct tnum subreg = tnum_subreg(reg->var_off); 6852 s32 sval = (s32)val; 6853 6854 switch (opcode) { 6855 case BPF_JEQ: 6856 if (tnum_is_const(subreg)) 6857 return !!tnum_equals_const(subreg, val); 6858 break; 6859 case BPF_JNE: 6860 if (tnum_is_const(subreg)) 6861 return !tnum_equals_const(subreg, val); 6862 break; 6863 case BPF_JSET: 6864 if ((~subreg.mask & subreg.value) & val) 6865 return 1; 6866 if (!((subreg.mask | subreg.value) & val)) 6867 return 0; 6868 break; 6869 case BPF_JGT: 6870 if (reg->u32_min_value > val) 6871 return 1; 6872 else if (reg->u32_max_value <= val) 6873 return 0; 6874 break; 6875 case BPF_JSGT: 6876 if (reg->s32_min_value > sval) 6877 return 1; 6878 else if (reg->s32_max_value < sval) 6879 return 0; 6880 break; 6881 case BPF_JLT: 6882 if (reg->u32_max_value < val) 6883 return 1; 6884 else if (reg->u32_min_value >= val) 6885 return 0; 6886 break; 6887 case BPF_JSLT: 6888 if (reg->s32_max_value < sval) 6889 return 1; 6890 else if (reg->s32_min_value >= sval) 6891 return 0; 6892 break; 6893 case BPF_JGE: 6894 if (reg->u32_min_value >= val) 6895 return 1; 6896 else if (reg->u32_max_value < val) 6897 return 0; 6898 break; 6899 case BPF_JSGE: 6900 if (reg->s32_min_value >= sval) 6901 return 1; 6902 else if (reg->s32_max_value < sval) 6903 return 0; 6904 break; 6905 case BPF_JLE: 6906 if (reg->u32_max_value <= val) 6907 return 1; 6908 else if (reg->u32_min_value > val) 6909 return 0; 6910 break; 6911 case BPF_JSLE: 6912 if (reg->s32_max_value <= sval) 6913 return 1; 6914 else if (reg->s32_min_value > sval) 6915 return 0; 6916 break; 6917 } 6918 6919 return -1; 6920 } 6921 6922 6923 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode) 6924 { 6925 s64 sval = (s64)val; 6926 6927 switch (opcode) { 6928 case BPF_JEQ: 6929 if (tnum_is_const(reg->var_off)) 6930 return !!tnum_equals_const(reg->var_off, val); 6931 break; 6932 case BPF_JNE: 6933 if (tnum_is_const(reg->var_off)) 6934 return !tnum_equals_const(reg->var_off, val); 6935 break; 6936 case BPF_JSET: 6937 if ((~reg->var_off.mask & reg->var_off.value) & val) 6938 return 1; 6939 if (!((reg->var_off.mask | reg->var_off.value) & val)) 6940 return 0; 6941 break; 6942 case BPF_JGT: 6943 if (reg->umin_value > val) 6944 return 1; 6945 else if (reg->umax_value <= val) 6946 return 0; 6947 break; 6948 case BPF_JSGT: 6949 if (reg->smin_value > sval) 6950 return 1; 6951 else if (reg->smax_value < sval) 6952 return 0; 6953 break; 6954 case BPF_JLT: 6955 if (reg->umax_value < val) 6956 return 1; 6957 else if (reg->umin_value >= val) 6958 return 0; 6959 break; 6960 case BPF_JSLT: 6961 if (reg->smax_value < sval) 6962 return 1; 6963 else if (reg->smin_value >= sval) 6964 return 0; 6965 break; 6966 case BPF_JGE: 6967 if (reg->umin_value >= val) 6968 return 1; 6969 else if (reg->umax_value < val) 6970 return 0; 6971 break; 6972 case BPF_JSGE: 6973 if (reg->smin_value >= sval) 6974 return 1; 6975 else if (reg->smax_value < sval) 6976 return 0; 6977 break; 6978 case BPF_JLE: 6979 if (reg->umax_value <= val) 6980 return 1; 6981 else if (reg->umin_value > val) 6982 return 0; 6983 break; 6984 case BPF_JSLE: 6985 if (reg->smax_value <= sval) 6986 return 1; 6987 else if (reg->smin_value > sval) 6988 return 0; 6989 break; 6990 } 6991 6992 return -1; 6993 } 6994 6995 /* compute branch direction of the expression "if (reg opcode val) goto target;" 6996 * and return: 6997 * 1 - branch will be taken and "goto target" will be executed 6998 * 0 - branch will not be taken and fall-through to next insn 6999 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value 7000 * range [0,10] 7001 */ 7002 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode, 7003 bool is_jmp32) 7004 { 7005 if (__is_pointer_value(false, reg)) { 7006 if (!reg_type_not_null(reg->type)) 7007 return -1; 7008 7009 /* If pointer is valid tests against zero will fail so we can 7010 * use this to direct branch taken. 7011 */ 7012 if (val != 0) 7013 return -1; 7014 7015 switch (opcode) { 7016 case BPF_JEQ: 7017 return 0; 7018 case BPF_JNE: 7019 return 1; 7020 default: 7021 return -1; 7022 } 7023 } 7024 7025 if (is_jmp32) 7026 return is_branch32_taken(reg, val, opcode); 7027 return is_branch64_taken(reg, val, opcode); 7028 } 7029 7030 static int flip_opcode(u32 opcode) 7031 { 7032 /* How can we transform "a <op> b" into "b <op> a"? */ 7033 static const u8 opcode_flip[16] = { 7034 /* these stay the same */ 7035 [BPF_JEQ >> 4] = BPF_JEQ, 7036 [BPF_JNE >> 4] = BPF_JNE, 7037 [BPF_JSET >> 4] = BPF_JSET, 7038 /* these swap "lesser" and "greater" (L and G in the opcodes) */ 7039 [BPF_JGE >> 4] = BPF_JLE, 7040 [BPF_JGT >> 4] = BPF_JLT, 7041 [BPF_JLE >> 4] = BPF_JGE, 7042 [BPF_JLT >> 4] = BPF_JGT, 7043 [BPF_JSGE >> 4] = BPF_JSLE, 7044 [BPF_JSGT >> 4] = BPF_JSLT, 7045 [BPF_JSLE >> 4] = BPF_JSGE, 7046 [BPF_JSLT >> 4] = BPF_JSGT 7047 }; 7048 return opcode_flip[opcode >> 4]; 7049 } 7050 7051 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg, 7052 struct bpf_reg_state *src_reg, 7053 u8 opcode) 7054 { 7055 struct bpf_reg_state *pkt; 7056 7057 if (src_reg->type == PTR_TO_PACKET_END) { 7058 pkt = dst_reg; 7059 } else if (dst_reg->type == PTR_TO_PACKET_END) { 7060 pkt = src_reg; 7061 opcode = flip_opcode(opcode); 7062 } else { 7063 return -1; 7064 } 7065 7066 if (pkt->range >= 0) 7067 return -1; 7068 7069 switch (opcode) { 7070 case BPF_JLE: 7071 /* pkt <= pkt_end */ 7072 fallthrough; 7073 case BPF_JGT: 7074 /* pkt > pkt_end */ 7075 if (pkt->range == BEYOND_PKT_END) 7076 /* pkt has at last one extra byte beyond pkt_end */ 7077 return opcode == BPF_JGT; 7078 break; 7079 case BPF_JLT: 7080 /* pkt < pkt_end */ 7081 fallthrough; 7082 case BPF_JGE: 7083 /* pkt >= pkt_end */ 7084 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END) 7085 return opcode == BPF_JGE; 7086 break; 7087 } 7088 return -1; 7089 } 7090 7091 /* Adjusts the register min/max values in the case that the dst_reg is the 7092 * variable register that we are working on, and src_reg is a constant or we're 7093 * simply doing a BPF_K check. 7094 * In JEQ/JNE cases we also adjust the var_off values. 7095 */ 7096 static void reg_set_min_max(struct bpf_reg_state *true_reg, 7097 struct bpf_reg_state *false_reg, 7098 u64 val, u32 val32, 7099 u8 opcode, bool is_jmp32) 7100 { 7101 struct tnum false_32off = tnum_subreg(false_reg->var_off); 7102 struct tnum false_64off = false_reg->var_off; 7103 struct tnum true_32off = tnum_subreg(true_reg->var_off); 7104 struct tnum true_64off = true_reg->var_off; 7105 s64 sval = (s64)val; 7106 s32 sval32 = (s32)val32; 7107 7108 /* If the dst_reg is a pointer, we can't learn anything about its 7109 * variable offset from the compare (unless src_reg were a pointer into 7110 * the same object, but we don't bother with that. 7111 * Since false_reg and true_reg have the same type by construction, we 7112 * only need to check one of them for pointerness. 7113 */ 7114 if (__is_pointer_value(false, false_reg)) 7115 return; 7116 7117 switch (opcode) { 7118 case BPF_JEQ: 7119 case BPF_JNE: 7120 { 7121 struct bpf_reg_state *reg = 7122 opcode == BPF_JEQ ? true_reg : false_reg; 7123 7124 /* JEQ/JNE comparison doesn't change the register equivalence. 7125 * r1 = r2; 7126 * if (r1 == 42) goto label; 7127 * ... 7128 * label: // here both r1 and r2 are known to be 42. 7129 * 7130 * Hence when marking register as known preserve it's ID. 7131 */ 7132 if (is_jmp32) 7133 __mark_reg32_known(reg, val32); 7134 else 7135 ___mark_reg_known(reg, val); 7136 break; 7137 } 7138 case BPF_JSET: 7139 if (is_jmp32) { 7140 false_32off = tnum_and(false_32off, tnum_const(~val32)); 7141 if (is_power_of_2(val32)) 7142 true_32off = tnum_or(true_32off, 7143 tnum_const(val32)); 7144 } else { 7145 false_64off = tnum_and(false_64off, tnum_const(~val)); 7146 if (is_power_of_2(val)) 7147 true_64off = tnum_or(true_64off, 7148 tnum_const(val)); 7149 } 7150 break; 7151 case BPF_JGE: 7152 case BPF_JGT: 7153 { 7154 if (is_jmp32) { 7155 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1; 7156 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32; 7157 7158 false_reg->u32_max_value = min(false_reg->u32_max_value, 7159 false_umax); 7160 true_reg->u32_min_value = max(true_reg->u32_min_value, 7161 true_umin); 7162 } else { 7163 u64 false_umax = opcode == BPF_JGT ? val : val - 1; 7164 u64 true_umin = opcode == BPF_JGT ? val + 1 : val; 7165 7166 false_reg->umax_value = min(false_reg->umax_value, false_umax); 7167 true_reg->umin_value = max(true_reg->umin_value, true_umin); 7168 } 7169 break; 7170 } 7171 case BPF_JSGE: 7172 case BPF_JSGT: 7173 { 7174 if (is_jmp32) { 7175 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1; 7176 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32; 7177 7178 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax); 7179 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin); 7180 } else { 7181 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1; 7182 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval; 7183 7184 false_reg->smax_value = min(false_reg->smax_value, false_smax); 7185 true_reg->smin_value = max(true_reg->smin_value, true_smin); 7186 } 7187 break; 7188 } 7189 case BPF_JLE: 7190 case BPF_JLT: 7191 { 7192 if (is_jmp32) { 7193 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1; 7194 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32; 7195 7196 false_reg->u32_min_value = max(false_reg->u32_min_value, 7197 false_umin); 7198 true_reg->u32_max_value = min(true_reg->u32_max_value, 7199 true_umax); 7200 } else { 7201 u64 false_umin = opcode == BPF_JLT ? val : val + 1; 7202 u64 true_umax = opcode == BPF_JLT ? val - 1 : val; 7203 7204 false_reg->umin_value = max(false_reg->umin_value, false_umin); 7205 true_reg->umax_value = min(true_reg->umax_value, true_umax); 7206 } 7207 break; 7208 } 7209 case BPF_JSLE: 7210 case BPF_JSLT: 7211 { 7212 if (is_jmp32) { 7213 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1; 7214 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32; 7215 7216 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin); 7217 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax); 7218 } else { 7219 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1; 7220 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval; 7221 7222 false_reg->smin_value = max(false_reg->smin_value, false_smin); 7223 true_reg->smax_value = min(true_reg->smax_value, true_smax); 7224 } 7225 break; 7226 } 7227 default: 7228 return; 7229 } 7230 7231 if (is_jmp32) { 7232 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off), 7233 tnum_subreg(false_32off)); 7234 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off), 7235 tnum_subreg(true_32off)); 7236 __reg_combine_32_into_64(false_reg); 7237 __reg_combine_32_into_64(true_reg); 7238 } else { 7239 false_reg->var_off = false_64off; 7240 true_reg->var_off = true_64off; 7241 __reg_combine_64_into_32(false_reg); 7242 __reg_combine_64_into_32(true_reg); 7243 } 7244 } 7245 7246 /* Same as above, but for the case that dst_reg holds a constant and src_reg is 7247 * the variable reg. 7248 */ 7249 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, 7250 struct bpf_reg_state *false_reg, 7251 u64 val, u32 val32, 7252 u8 opcode, bool is_jmp32) 7253 { 7254 opcode = flip_opcode(opcode); 7255 /* This uses zero as "not present in table"; luckily the zero opcode, 7256 * BPF_JA, can't get here. 7257 */ 7258 if (opcode) 7259 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32); 7260 } 7261 7262 /* Regs are known to be equal, so intersect their min/max/var_off */ 7263 static void __reg_combine_min_max(struct bpf_reg_state *src_reg, 7264 struct bpf_reg_state *dst_reg) 7265 { 7266 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, 7267 dst_reg->umin_value); 7268 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, 7269 dst_reg->umax_value); 7270 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, 7271 dst_reg->smin_value); 7272 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, 7273 dst_reg->smax_value); 7274 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, 7275 dst_reg->var_off); 7276 /* We might have learned new bounds from the var_off. */ 7277 __update_reg_bounds(src_reg); 7278 __update_reg_bounds(dst_reg); 7279 /* We might have learned something about the sign bit. */ 7280 __reg_deduce_bounds(src_reg); 7281 __reg_deduce_bounds(dst_reg); 7282 /* We might have learned some bits from the bounds. */ 7283 __reg_bound_offset(src_reg); 7284 __reg_bound_offset(dst_reg); 7285 /* Intersecting with the old var_off might have improved our bounds 7286 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), 7287 * then new var_off is (0; 0x7f...fc) which improves our umax. 7288 */ 7289 __update_reg_bounds(src_reg); 7290 __update_reg_bounds(dst_reg); 7291 } 7292 7293 static void reg_combine_min_max(struct bpf_reg_state *true_src, 7294 struct bpf_reg_state *true_dst, 7295 struct bpf_reg_state *false_src, 7296 struct bpf_reg_state *false_dst, 7297 u8 opcode) 7298 { 7299 switch (opcode) { 7300 case BPF_JEQ: 7301 __reg_combine_min_max(true_src, true_dst); 7302 break; 7303 case BPF_JNE: 7304 __reg_combine_min_max(false_src, false_dst); 7305 break; 7306 } 7307 } 7308 7309 static void mark_ptr_or_null_reg(struct bpf_func_state *state, 7310 struct bpf_reg_state *reg, u32 id, 7311 bool is_null) 7312 { 7313 if (reg_type_may_be_null(reg->type) && reg->id == id && 7314 !WARN_ON_ONCE(!reg->id)) { 7315 /* Old offset (both fixed and variable parts) should 7316 * have been known-zero, because we don't allow pointer 7317 * arithmetic on pointers that might be NULL. 7318 */ 7319 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || 7320 !tnum_equals_const(reg->var_off, 0) || 7321 reg->off)) { 7322 __mark_reg_known_zero(reg); 7323 reg->off = 0; 7324 } 7325 if (is_null) { 7326 reg->type = SCALAR_VALUE; 7327 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) { 7328 const struct bpf_map *map = reg->map_ptr; 7329 7330 if (map->inner_map_meta) { 7331 reg->type = CONST_PTR_TO_MAP; 7332 reg->map_ptr = map->inner_map_meta; 7333 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { 7334 reg->type = PTR_TO_XDP_SOCK; 7335 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP || 7336 map->map_type == BPF_MAP_TYPE_SOCKHASH) { 7337 reg->type = PTR_TO_SOCKET; 7338 } else { 7339 reg->type = PTR_TO_MAP_VALUE; 7340 } 7341 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) { 7342 reg->type = PTR_TO_SOCKET; 7343 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) { 7344 reg->type = PTR_TO_SOCK_COMMON; 7345 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) { 7346 reg->type = PTR_TO_TCP_SOCK; 7347 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) { 7348 reg->type = PTR_TO_BTF_ID; 7349 } else if (reg->type == PTR_TO_MEM_OR_NULL) { 7350 reg->type = PTR_TO_MEM; 7351 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) { 7352 reg->type = PTR_TO_RDONLY_BUF; 7353 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) { 7354 reg->type = PTR_TO_RDWR_BUF; 7355 } 7356 if (is_null) { 7357 /* We don't need id and ref_obj_id from this point 7358 * onwards anymore, thus we should better reset it, 7359 * so that state pruning has chances to take effect. 7360 */ 7361 reg->id = 0; 7362 reg->ref_obj_id = 0; 7363 } else if (!reg_may_point_to_spin_lock(reg)) { 7364 /* For not-NULL ptr, reg->ref_obj_id will be reset 7365 * in release_reg_references(). 7366 * 7367 * reg->id is still used by spin_lock ptr. Other 7368 * than spin_lock ptr type, reg->id can be reset. 7369 */ 7370 reg->id = 0; 7371 } 7372 } 7373 } 7374 7375 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id, 7376 bool is_null) 7377 { 7378 struct bpf_reg_state *reg; 7379 int i; 7380 7381 for (i = 0; i < MAX_BPF_REG; i++) 7382 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null); 7383 7384 bpf_for_each_spilled_reg(i, state, reg) { 7385 if (!reg) 7386 continue; 7387 mark_ptr_or_null_reg(state, reg, id, is_null); 7388 } 7389 } 7390 7391 /* The logic is similar to find_good_pkt_pointers(), both could eventually 7392 * be folded together at some point. 7393 */ 7394 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno, 7395 bool is_null) 7396 { 7397 struct bpf_func_state *state = vstate->frame[vstate->curframe]; 7398 struct bpf_reg_state *regs = state->regs; 7399 u32 ref_obj_id = regs[regno].ref_obj_id; 7400 u32 id = regs[regno].id; 7401 int i; 7402 7403 if (ref_obj_id && ref_obj_id == id && is_null) 7404 /* regs[regno] is in the " == NULL" branch. 7405 * No one could have freed the reference state before 7406 * doing the NULL check. 7407 */ 7408 WARN_ON_ONCE(release_reference_state(state, id)); 7409 7410 for (i = 0; i <= vstate->curframe; i++) 7411 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null); 7412 } 7413 7414 static bool try_match_pkt_pointers(const struct bpf_insn *insn, 7415 struct bpf_reg_state *dst_reg, 7416 struct bpf_reg_state *src_reg, 7417 struct bpf_verifier_state *this_branch, 7418 struct bpf_verifier_state *other_branch) 7419 { 7420 if (BPF_SRC(insn->code) != BPF_X) 7421 return false; 7422 7423 /* Pointers are always 64-bit. */ 7424 if (BPF_CLASS(insn->code) == BPF_JMP32) 7425 return false; 7426 7427 switch (BPF_OP(insn->code)) { 7428 case BPF_JGT: 7429 if ((dst_reg->type == PTR_TO_PACKET && 7430 src_reg->type == PTR_TO_PACKET_END) || 7431 (dst_reg->type == PTR_TO_PACKET_META && 7432 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7433 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */ 7434 find_good_pkt_pointers(this_branch, dst_reg, 7435 dst_reg->type, false); 7436 mark_pkt_end(other_branch, insn->dst_reg, true); 7437 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7438 src_reg->type == PTR_TO_PACKET) || 7439 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7440 src_reg->type == PTR_TO_PACKET_META)) { 7441 /* pkt_end > pkt_data', pkt_data > pkt_meta' */ 7442 find_good_pkt_pointers(other_branch, src_reg, 7443 src_reg->type, true); 7444 mark_pkt_end(this_branch, insn->src_reg, false); 7445 } else { 7446 return false; 7447 } 7448 break; 7449 case BPF_JLT: 7450 if ((dst_reg->type == PTR_TO_PACKET && 7451 src_reg->type == PTR_TO_PACKET_END) || 7452 (dst_reg->type == PTR_TO_PACKET_META && 7453 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7454 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */ 7455 find_good_pkt_pointers(other_branch, dst_reg, 7456 dst_reg->type, true); 7457 mark_pkt_end(this_branch, insn->dst_reg, false); 7458 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7459 src_reg->type == PTR_TO_PACKET) || 7460 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7461 src_reg->type == PTR_TO_PACKET_META)) { 7462 /* pkt_end < pkt_data', pkt_data > pkt_meta' */ 7463 find_good_pkt_pointers(this_branch, src_reg, 7464 src_reg->type, false); 7465 mark_pkt_end(other_branch, insn->src_reg, true); 7466 } else { 7467 return false; 7468 } 7469 break; 7470 case BPF_JGE: 7471 if ((dst_reg->type == PTR_TO_PACKET && 7472 src_reg->type == PTR_TO_PACKET_END) || 7473 (dst_reg->type == PTR_TO_PACKET_META && 7474 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7475 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */ 7476 find_good_pkt_pointers(this_branch, dst_reg, 7477 dst_reg->type, true); 7478 mark_pkt_end(other_branch, insn->dst_reg, false); 7479 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7480 src_reg->type == PTR_TO_PACKET) || 7481 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7482 src_reg->type == PTR_TO_PACKET_META)) { 7483 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */ 7484 find_good_pkt_pointers(other_branch, src_reg, 7485 src_reg->type, false); 7486 mark_pkt_end(this_branch, insn->src_reg, true); 7487 } else { 7488 return false; 7489 } 7490 break; 7491 case BPF_JLE: 7492 if ((dst_reg->type == PTR_TO_PACKET && 7493 src_reg->type == PTR_TO_PACKET_END) || 7494 (dst_reg->type == PTR_TO_PACKET_META && 7495 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) { 7496 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */ 7497 find_good_pkt_pointers(other_branch, dst_reg, 7498 dst_reg->type, false); 7499 mark_pkt_end(this_branch, insn->dst_reg, true); 7500 } else if ((dst_reg->type == PTR_TO_PACKET_END && 7501 src_reg->type == PTR_TO_PACKET) || 7502 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) && 7503 src_reg->type == PTR_TO_PACKET_META)) { 7504 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */ 7505 find_good_pkt_pointers(this_branch, src_reg, 7506 src_reg->type, true); 7507 mark_pkt_end(other_branch, insn->src_reg, false); 7508 } else { 7509 return false; 7510 } 7511 break; 7512 default: 7513 return false; 7514 } 7515 7516 return true; 7517 } 7518 7519 static void find_equal_scalars(struct bpf_verifier_state *vstate, 7520 struct bpf_reg_state *known_reg) 7521 { 7522 struct bpf_func_state *state; 7523 struct bpf_reg_state *reg; 7524 int i, j; 7525 7526 for (i = 0; i <= vstate->curframe; i++) { 7527 state = vstate->frame[i]; 7528 for (j = 0; j < MAX_BPF_REG; j++) { 7529 reg = &state->regs[j]; 7530 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7531 *reg = *known_reg; 7532 } 7533 7534 bpf_for_each_spilled_reg(j, state, reg) { 7535 if (!reg) 7536 continue; 7537 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id) 7538 *reg = *known_reg; 7539 } 7540 } 7541 } 7542 7543 static int check_cond_jmp_op(struct bpf_verifier_env *env, 7544 struct bpf_insn *insn, int *insn_idx) 7545 { 7546 struct bpf_verifier_state *this_branch = env->cur_state; 7547 struct bpf_verifier_state *other_branch; 7548 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs; 7549 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL; 7550 u8 opcode = BPF_OP(insn->code); 7551 bool is_jmp32; 7552 int pred = -1; 7553 int err; 7554 7555 /* Only conditional jumps are expected to reach here. */ 7556 if (opcode == BPF_JA || opcode > BPF_JSLE) { 7557 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode); 7558 return -EINVAL; 7559 } 7560 7561 if (BPF_SRC(insn->code) == BPF_X) { 7562 if (insn->imm != 0) { 7563 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7564 return -EINVAL; 7565 } 7566 7567 /* check src1 operand */ 7568 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7569 if (err) 7570 return err; 7571 7572 if (is_pointer_value(env, insn->src_reg)) { 7573 verbose(env, "R%d pointer comparison prohibited\n", 7574 insn->src_reg); 7575 return -EACCES; 7576 } 7577 src_reg = ®s[insn->src_reg]; 7578 } else { 7579 if (insn->src_reg != BPF_REG_0) { 7580 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n"); 7581 return -EINVAL; 7582 } 7583 } 7584 7585 /* check src2 operand */ 7586 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 7587 if (err) 7588 return err; 7589 7590 dst_reg = ®s[insn->dst_reg]; 7591 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32; 7592 7593 if (BPF_SRC(insn->code) == BPF_K) { 7594 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32); 7595 } else if (src_reg->type == SCALAR_VALUE && 7596 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) { 7597 pred = is_branch_taken(dst_reg, 7598 tnum_subreg(src_reg->var_off).value, 7599 opcode, 7600 is_jmp32); 7601 } else if (src_reg->type == SCALAR_VALUE && 7602 !is_jmp32 && tnum_is_const(src_reg->var_off)) { 7603 pred = is_branch_taken(dst_reg, 7604 src_reg->var_off.value, 7605 opcode, 7606 is_jmp32); 7607 } else if (reg_is_pkt_pointer_any(dst_reg) && 7608 reg_is_pkt_pointer_any(src_reg) && 7609 !is_jmp32) { 7610 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode); 7611 } 7612 7613 if (pred >= 0) { 7614 /* If we get here with a dst_reg pointer type it is because 7615 * above is_branch_taken() special cased the 0 comparison. 7616 */ 7617 if (!__is_pointer_value(false, dst_reg)) 7618 err = mark_chain_precision(env, insn->dst_reg); 7619 if (BPF_SRC(insn->code) == BPF_X && !err && 7620 !__is_pointer_value(false, src_reg)) 7621 err = mark_chain_precision(env, insn->src_reg); 7622 if (err) 7623 return err; 7624 } 7625 if (pred == 1) { 7626 /* only follow the goto, ignore fall-through */ 7627 *insn_idx += insn->off; 7628 return 0; 7629 } else if (pred == 0) { 7630 /* only follow fall-through branch, since 7631 * that's where the program will go 7632 */ 7633 return 0; 7634 } 7635 7636 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, 7637 false); 7638 if (!other_branch) 7639 return -EFAULT; 7640 other_branch_regs = other_branch->frame[other_branch->curframe]->regs; 7641 7642 /* detect if we are comparing against a constant value so we can adjust 7643 * our min/max values for our dst register. 7644 * this is only legit if both are scalars (or pointers to the same 7645 * object, I suppose, but we don't support that right now), because 7646 * otherwise the different base pointers mean the offsets aren't 7647 * comparable. 7648 */ 7649 if (BPF_SRC(insn->code) == BPF_X) { 7650 struct bpf_reg_state *src_reg = ®s[insn->src_reg]; 7651 7652 if (dst_reg->type == SCALAR_VALUE && 7653 src_reg->type == SCALAR_VALUE) { 7654 if (tnum_is_const(src_reg->var_off) || 7655 (is_jmp32 && 7656 tnum_is_const(tnum_subreg(src_reg->var_off)))) 7657 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7658 dst_reg, 7659 src_reg->var_off.value, 7660 tnum_subreg(src_reg->var_off).value, 7661 opcode, is_jmp32); 7662 else if (tnum_is_const(dst_reg->var_off) || 7663 (is_jmp32 && 7664 tnum_is_const(tnum_subreg(dst_reg->var_off)))) 7665 reg_set_min_max_inv(&other_branch_regs[insn->src_reg], 7666 src_reg, 7667 dst_reg->var_off.value, 7668 tnum_subreg(dst_reg->var_off).value, 7669 opcode, is_jmp32); 7670 else if (!is_jmp32 && 7671 (opcode == BPF_JEQ || opcode == BPF_JNE)) 7672 /* Comparing for equality, we can combine knowledge */ 7673 reg_combine_min_max(&other_branch_regs[insn->src_reg], 7674 &other_branch_regs[insn->dst_reg], 7675 src_reg, dst_reg, opcode); 7676 if (src_reg->id && 7677 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) { 7678 find_equal_scalars(this_branch, src_reg); 7679 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]); 7680 } 7681 7682 } 7683 } else if (dst_reg->type == SCALAR_VALUE) { 7684 reg_set_min_max(&other_branch_regs[insn->dst_reg], 7685 dst_reg, insn->imm, (u32)insn->imm, 7686 opcode, is_jmp32); 7687 } 7688 7689 if (dst_reg->type == SCALAR_VALUE && dst_reg->id && 7690 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) { 7691 find_equal_scalars(this_branch, dst_reg); 7692 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]); 7693 } 7694 7695 /* detect if R == 0 where R is returned from bpf_map_lookup_elem(). 7696 * NOTE: these optimizations below are related with pointer comparison 7697 * which will never be JMP32. 7698 */ 7699 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K && 7700 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && 7701 reg_type_may_be_null(dst_reg->type)) { 7702 /* Mark all identical registers in each branch as either 7703 * safe or unknown depending R == 0 or R != 0 conditional. 7704 */ 7705 mark_ptr_or_null_regs(this_branch, insn->dst_reg, 7706 opcode == BPF_JNE); 7707 mark_ptr_or_null_regs(other_branch, insn->dst_reg, 7708 opcode == BPF_JEQ); 7709 } else if (!try_match_pkt_pointers(insn, dst_reg, ®s[insn->src_reg], 7710 this_branch, other_branch) && 7711 is_pointer_value(env, insn->dst_reg)) { 7712 verbose(env, "R%d pointer comparison prohibited\n", 7713 insn->dst_reg); 7714 return -EACCES; 7715 } 7716 if (env->log.level & BPF_LOG_LEVEL) 7717 print_verifier_state(env, this_branch->frame[this_branch->curframe]); 7718 return 0; 7719 } 7720 7721 /* verify BPF_LD_IMM64 instruction */ 7722 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) 7723 { 7724 struct bpf_insn_aux_data *aux = cur_aux(env); 7725 struct bpf_reg_state *regs = cur_regs(env); 7726 struct bpf_reg_state *dst_reg; 7727 struct bpf_map *map; 7728 int err; 7729 7730 if (BPF_SIZE(insn->code) != BPF_DW) { 7731 verbose(env, "invalid BPF_LD_IMM insn\n"); 7732 return -EINVAL; 7733 } 7734 if (insn->off != 0) { 7735 verbose(env, "BPF_LD_IMM64 uses reserved fields\n"); 7736 return -EINVAL; 7737 } 7738 7739 err = check_reg_arg(env, insn->dst_reg, DST_OP); 7740 if (err) 7741 return err; 7742 7743 dst_reg = ®s[insn->dst_reg]; 7744 if (insn->src_reg == 0) { 7745 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; 7746 7747 dst_reg->type = SCALAR_VALUE; 7748 __mark_reg_known(®s[insn->dst_reg], imm); 7749 return 0; 7750 } 7751 7752 if (insn->src_reg == BPF_PSEUDO_BTF_ID) { 7753 mark_reg_known_zero(env, regs, insn->dst_reg); 7754 7755 dst_reg->type = aux->btf_var.reg_type; 7756 switch (dst_reg->type) { 7757 case PTR_TO_MEM: 7758 dst_reg->mem_size = aux->btf_var.mem_size; 7759 break; 7760 case PTR_TO_BTF_ID: 7761 case PTR_TO_PERCPU_BTF_ID: 7762 dst_reg->btf = aux->btf_var.btf; 7763 dst_reg->btf_id = aux->btf_var.btf_id; 7764 break; 7765 default: 7766 verbose(env, "bpf verifier is misconfigured\n"); 7767 return -EFAULT; 7768 } 7769 return 0; 7770 } 7771 7772 map = env->used_maps[aux->map_index]; 7773 mark_reg_known_zero(env, regs, insn->dst_reg); 7774 dst_reg->map_ptr = map; 7775 7776 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) { 7777 dst_reg->type = PTR_TO_MAP_VALUE; 7778 dst_reg->off = aux->map_off; 7779 if (map_value_has_spin_lock(map)) 7780 dst_reg->id = ++env->id_gen; 7781 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 7782 dst_reg->type = CONST_PTR_TO_MAP; 7783 } else { 7784 verbose(env, "bpf verifier is misconfigured\n"); 7785 return -EINVAL; 7786 } 7787 7788 return 0; 7789 } 7790 7791 static bool may_access_skb(enum bpf_prog_type type) 7792 { 7793 switch (type) { 7794 case BPF_PROG_TYPE_SOCKET_FILTER: 7795 case BPF_PROG_TYPE_SCHED_CLS: 7796 case BPF_PROG_TYPE_SCHED_ACT: 7797 return true; 7798 default: 7799 return false; 7800 } 7801 } 7802 7803 /* verify safety of LD_ABS|LD_IND instructions: 7804 * - they can only appear in the programs where ctx == skb 7805 * - since they are wrappers of function calls, they scratch R1-R5 registers, 7806 * preserve R6-R9, and store return value into R0 7807 * 7808 * Implicit input: 7809 * ctx == skb == R6 == CTX 7810 * 7811 * Explicit input: 7812 * SRC == any register 7813 * IMM == 32-bit immediate 7814 * 7815 * Output: 7816 * R0 - 8/16/32-bit skb data converted to cpu endianness 7817 */ 7818 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) 7819 { 7820 struct bpf_reg_state *regs = cur_regs(env); 7821 static const int ctx_reg = BPF_REG_6; 7822 u8 mode = BPF_MODE(insn->code); 7823 int i, err; 7824 7825 if (!may_access_skb(resolve_prog_type(env->prog))) { 7826 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); 7827 return -EINVAL; 7828 } 7829 7830 if (!env->ops->gen_ld_abs) { 7831 verbose(env, "bpf verifier is misconfigured\n"); 7832 return -EINVAL; 7833 } 7834 7835 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || 7836 BPF_SIZE(insn->code) == BPF_DW || 7837 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { 7838 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n"); 7839 return -EINVAL; 7840 } 7841 7842 /* check whether implicit source operand (register R6) is readable */ 7843 err = check_reg_arg(env, ctx_reg, SRC_OP); 7844 if (err) 7845 return err; 7846 7847 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as 7848 * gen_ld_abs() may terminate the program at runtime, leading to 7849 * reference leak. 7850 */ 7851 err = check_reference_leak(env); 7852 if (err) { 7853 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n"); 7854 return err; 7855 } 7856 7857 if (env->cur_state->active_spin_lock) { 7858 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n"); 7859 return -EINVAL; 7860 } 7861 7862 if (regs[ctx_reg].type != PTR_TO_CTX) { 7863 verbose(env, 7864 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); 7865 return -EINVAL; 7866 } 7867 7868 if (mode == BPF_IND) { 7869 /* check explicit source operand */ 7870 err = check_reg_arg(env, insn->src_reg, SRC_OP); 7871 if (err) 7872 return err; 7873 } 7874 7875 err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); 7876 if (err < 0) 7877 return err; 7878 7879 /* reset caller saved regs to unreadable */ 7880 for (i = 0; i < CALLER_SAVED_REGS; i++) { 7881 mark_reg_not_init(env, regs, caller_saved[i]); 7882 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); 7883 } 7884 7885 /* mark destination R0 register as readable, since it contains 7886 * the value fetched from the packet. 7887 * Already marked as written above. 7888 */ 7889 mark_reg_unknown(env, regs, BPF_REG_0); 7890 /* ld_abs load up to 32-bit skb data. */ 7891 regs[BPF_REG_0].subreg_def = env->insn_idx + 1; 7892 return 0; 7893 } 7894 7895 static int check_return_code(struct bpf_verifier_env *env) 7896 { 7897 struct tnum enforce_attach_type_range = tnum_unknown; 7898 const struct bpf_prog *prog = env->prog; 7899 struct bpf_reg_state *reg; 7900 struct tnum range = tnum_range(0, 1); 7901 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 7902 int err; 7903 const bool is_subprog = env->cur_state->frame[0]->subprogno; 7904 7905 /* LSM and struct_ops func-ptr's return type could be "void" */ 7906 if (!is_subprog && 7907 (prog_type == BPF_PROG_TYPE_STRUCT_OPS || 7908 prog_type == BPF_PROG_TYPE_LSM) && 7909 !prog->aux->attach_func_proto->type) 7910 return 0; 7911 7912 /* eBPF calling convetion is such that R0 is used 7913 * to return the value from eBPF program. 7914 * Make sure that it's readable at this time 7915 * of bpf_exit, which means that program wrote 7916 * something into it earlier 7917 */ 7918 err = check_reg_arg(env, BPF_REG_0, SRC_OP); 7919 if (err) 7920 return err; 7921 7922 if (is_pointer_value(env, BPF_REG_0)) { 7923 verbose(env, "R0 leaks addr as return value\n"); 7924 return -EACCES; 7925 } 7926 7927 reg = cur_regs(env) + BPF_REG_0; 7928 if (is_subprog) { 7929 if (reg->type != SCALAR_VALUE) { 7930 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n", 7931 reg_type_str[reg->type]); 7932 return -EINVAL; 7933 } 7934 return 0; 7935 } 7936 7937 switch (prog_type) { 7938 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: 7939 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || 7940 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG || 7941 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME || 7942 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME || 7943 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME || 7944 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME) 7945 range = tnum_range(1, 1); 7946 break; 7947 case BPF_PROG_TYPE_CGROUP_SKB: 7948 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) { 7949 range = tnum_range(0, 3); 7950 enforce_attach_type_range = tnum_range(2, 3); 7951 } 7952 break; 7953 case BPF_PROG_TYPE_CGROUP_SOCK: 7954 case BPF_PROG_TYPE_SOCK_OPS: 7955 case BPF_PROG_TYPE_CGROUP_DEVICE: 7956 case BPF_PROG_TYPE_CGROUP_SYSCTL: 7957 case BPF_PROG_TYPE_CGROUP_SOCKOPT: 7958 break; 7959 case BPF_PROG_TYPE_RAW_TRACEPOINT: 7960 if (!env->prog->aux->attach_btf_id) 7961 return 0; 7962 range = tnum_const(0); 7963 break; 7964 case BPF_PROG_TYPE_TRACING: 7965 switch (env->prog->expected_attach_type) { 7966 case BPF_TRACE_FENTRY: 7967 case BPF_TRACE_FEXIT: 7968 range = tnum_const(0); 7969 break; 7970 case BPF_TRACE_RAW_TP: 7971 case BPF_MODIFY_RETURN: 7972 return 0; 7973 case BPF_TRACE_ITER: 7974 break; 7975 default: 7976 return -ENOTSUPP; 7977 } 7978 break; 7979 case BPF_PROG_TYPE_SK_LOOKUP: 7980 range = tnum_range(SK_DROP, SK_PASS); 7981 break; 7982 case BPF_PROG_TYPE_EXT: 7983 /* freplace program can return anything as its return value 7984 * depends on the to-be-replaced kernel func or bpf program. 7985 */ 7986 default: 7987 return 0; 7988 } 7989 7990 if (reg->type != SCALAR_VALUE) { 7991 verbose(env, "At program exit the register R0 is not a known value (%s)\n", 7992 reg_type_str[reg->type]); 7993 return -EINVAL; 7994 } 7995 7996 if (!tnum_in(range, reg->var_off)) { 7997 char tn_buf[48]; 7998 7999 verbose(env, "At program exit the register R0 "); 8000 if (!tnum_is_unknown(reg->var_off)) { 8001 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); 8002 verbose(env, "has value %s", tn_buf); 8003 } else { 8004 verbose(env, "has unknown scalar value"); 8005 } 8006 tnum_strn(tn_buf, sizeof(tn_buf), range); 8007 verbose(env, " should have been in %s\n", tn_buf); 8008 return -EINVAL; 8009 } 8010 8011 if (!tnum_is_unknown(enforce_attach_type_range) && 8012 tnum_in(enforce_attach_type_range, reg->var_off)) 8013 env->prog->enforce_expected_attach_type = 1; 8014 return 0; 8015 } 8016 8017 /* non-recursive DFS pseudo code 8018 * 1 procedure DFS-iterative(G,v): 8019 * 2 label v as discovered 8020 * 3 let S be a stack 8021 * 4 S.push(v) 8022 * 5 while S is not empty 8023 * 6 t <- S.pop() 8024 * 7 if t is what we're looking for: 8025 * 8 return t 8026 * 9 for all edges e in G.adjacentEdges(t) do 8027 * 10 if edge e is already labelled 8028 * 11 continue with the next edge 8029 * 12 w <- G.adjacentVertex(t,e) 8030 * 13 if vertex w is not discovered and not explored 8031 * 14 label e as tree-edge 8032 * 15 label w as discovered 8033 * 16 S.push(w) 8034 * 17 continue at 5 8035 * 18 else if vertex w is discovered 8036 * 19 label e as back-edge 8037 * 20 else 8038 * 21 // vertex w is explored 8039 * 22 label e as forward- or cross-edge 8040 * 23 label t as explored 8041 * 24 S.pop() 8042 * 8043 * convention: 8044 * 0x10 - discovered 8045 * 0x11 - discovered and fall-through edge labelled 8046 * 0x12 - discovered and fall-through and branch edges labelled 8047 * 0x20 - explored 8048 */ 8049 8050 enum { 8051 DISCOVERED = 0x10, 8052 EXPLORED = 0x20, 8053 FALLTHROUGH = 1, 8054 BRANCH = 2, 8055 }; 8056 8057 static u32 state_htab_size(struct bpf_verifier_env *env) 8058 { 8059 return env->prog->len; 8060 } 8061 8062 static struct bpf_verifier_state_list **explored_state( 8063 struct bpf_verifier_env *env, 8064 int idx) 8065 { 8066 struct bpf_verifier_state *cur = env->cur_state; 8067 struct bpf_func_state *state = cur->frame[cur->curframe]; 8068 8069 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)]; 8070 } 8071 8072 static void init_explored_state(struct bpf_verifier_env *env, int idx) 8073 { 8074 env->insn_aux_data[idx].prune_point = true; 8075 } 8076 8077 enum { 8078 DONE_EXPLORING = 0, 8079 KEEP_EXPLORING = 1, 8080 }; 8081 8082 /* t, w, e - match pseudo-code above: 8083 * t - index of current instruction 8084 * w - next instruction 8085 * e - edge 8086 */ 8087 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env, 8088 bool loop_ok) 8089 { 8090 int *insn_stack = env->cfg.insn_stack; 8091 int *insn_state = env->cfg.insn_state; 8092 8093 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) 8094 return DONE_EXPLORING; 8095 8096 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) 8097 return DONE_EXPLORING; 8098 8099 if (w < 0 || w >= env->prog->len) { 8100 verbose_linfo(env, t, "%d: ", t); 8101 verbose(env, "jump out of range from insn %d to %d\n", t, w); 8102 return -EINVAL; 8103 } 8104 8105 if (e == BRANCH) 8106 /* mark branch target for state pruning */ 8107 init_explored_state(env, w); 8108 8109 if (insn_state[w] == 0) { 8110 /* tree-edge */ 8111 insn_state[t] = DISCOVERED | e; 8112 insn_state[w] = DISCOVERED; 8113 if (env->cfg.cur_stack >= env->prog->len) 8114 return -E2BIG; 8115 insn_stack[env->cfg.cur_stack++] = w; 8116 return KEEP_EXPLORING; 8117 } else if ((insn_state[w] & 0xF0) == DISCOVERED) { 8118 if (loop_ok && env->bpf_capable) 8119 return DONE_EXPLORING; 8120 verbose_linfo(env, t, "%d: ", t); 8121 verbose_linfo(env, w, "%d: ", w); 8122 verbose(env, "back-edge from insn %d to %d\n", t, w); 8123 return -EINVAL; 8124 } else if (insn_state[w] == EXPLORED) { 8125 /* forward- or cross-edge */ 8126 insn_state[t] = DISCOVERED | e; 8127 } else { 8128 verbose(env, "insn state internal bug\n"); 8129 return -EFAULT; 8130 } 8131 return DONE_EXPLORING; 8132 } 8133 8134 /* Visits the instruction at index t and returns one of the following: 8135 * < 0 - an error occurred 8136 * DONE_EXPLORING - the instruction was fully explored 8137 * KEEP_EXPLORING - there is still work to be done before it is fully explored 8138 */ 8139 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env) 8140 { 8141 struct bpf_insn *insns = env->prog->insnsi; 8142 int ret; 8143 8144 /* All non-branch instructions have a single fall-through edge. */ 8145 if (BPF_CLASS(insns[t].code) != BPF_JMP && 8146 BPF_CLASS(insns[t].code) != BPF_JMP32) 8147 return push_insn(t, t + 1, FALLTHROUGH, env, false); 8148 8149 switch (BPF_OP(insns[t].code)) { 8150 case BPF_EXIT: 8151 return DONE_EXPLORING; 8152 8153 case BPF_CALL: 8154 ret = push_insn(t, t + 1, FALLTHROUGH, env, false); 8155 if (ret) 8156 return ret; 8157 8158 if (t + 1 < insn_cnt) 8159 init_explored_state(env, t + 1); 8160 if (insns[t].src_reg == BPF_PSEUDO_CALL) { 8161 init_explored_state(env, t); 8162 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, 8163 env, false); 8164 } 8165 return ret; 8166 8167 case BPF_JA: 8168 if (BPF_SRC(insns[t].code) != BPF_K) 8169 return -EINVAL; 8170 8171 /* unconditional jump with single edge */ 8172 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env, 8173 true); 8174 if (ret) 8175 return ret; 8176 8177 /* unconditional jmp is not a good pruning point, 8178 * but it's marked, since backtracking needs 8179 * to record jmp history in is_state_visited(). 8180 */ 8181 init_explored_state(env, t + insns[t].off + 1); 8182 /* tell verifier to check for equivalent states 8183 * after every call and jump 8184 */ 8185 if (t + 1 < insn_cnt) 8186 init_explored_state(env, t + 1); 8187 8188 return ret; 8189 8190 default: 8191 /* conditional jump with two edges */ 8192 init_explored_state(env, t); 8193 ret = push_insn(t, t + 1, FALLTHROUGH, env, true); 8194 if (ret) 8195 return ret; 8196 8197 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true); 8198 } 8199 } 8200 8201 /* non-recursive depth-first-search to detect loops in BPF program 8202 * loop == back-edge in directed graph 8203 */ 8204 static int check_cfg(struct bpf_verifier_env *env) 8205 { 8206 int insn_cnt = env->prog->len; 8207 int *insn_stack, *insn_state; 8208 int ret = 0; 8209 int i; 8210 8211 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8212 if (!insn_state) 8213 return -ENOMEM; 8214 8215 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL); 8216 if (!insn_stack) { 8217 kvfree(insn_state); 8218 return -ENOMEM; 8219 } 8220 8221 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ 8222 insn_stack[0] = 0; /* 0 is the first instruction */ 8223 env->cfg.cur_stack = 1; 8224 8225 while (env->cfg.cur_stack > 0) { 8226 int t = insn_stack[env->cfg.cur_stack - 1]; 8227 8228 ret = visit_insn(t, insn_cnt, env); 8229 switch (ret) { 8230 case DONE_EXPLORING: 8231 insn_state[t] = EXPLORED; 8232 env->cfg.cur_stack--; 8233 break; 8234 case KEEP_EXPLORING: 8235 break; 8236 default: 8237 if (ret > 0) { 8238 verbose(env, "visit_insn internal bug\n"); 8239 ret = -EFAULT; 8240 } 8241 goto err_free; 8242 } 8243 } 8244 8245 if (env->cfg.cur_stack < 0) { 8246 verbose(env, "pop stack internal bug\n"); 8247 ret = -EFAULT; 8248 goto err_free; 8249 } 8250 8251 for (i = 0; i < insn_cnt; i++) { 8252 if (insn_state[i] != EXPLORED) { 8253 verbose(env, "unreachable insn %d\n", i); 8254 ret = -EINVAL; 8255 goto err_free; 8256 } 8257 } 8258 ret = 0; /* cfg looks good */ 8259 8260 err_free: 8261 kvfree(insn_state); 8262 kvfree(insn_stack); 8263 env->cfg.insn_state = env->cfg.insn_stack = NULL; 8264 return ret; 8265 } 8266 8267 static int check_abnormal_return(struct bpf_verifier_env *env) 8268 { 8269 int i; 8270 8271 for (i = 1; i < env->subprog_cnt; i++) { 8272 if (env->subprog_info[i].has_ld_abs) { 8273 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n"); 8274 return -EINVAL; 8275 } 8276 if (env->subprog_info[i].has_tail_call) { 8277 verbose(env, "tail_call is not allowed in subprogs without BTF\n"); 8278 return -EINVAL; 8279 } 8280 } 8281 return 0; 8282 } 8283 8284 /* The minimum supported BTF func info size */ 8285 #define MIN_BPF_FUNCINFO_SIZE 8 8286 #define MAX_FUNCINFO_REC_SIZE 252 8287 8288 static int check_btf_func(struct bpf_verifier_env *env, 8289 const union bpf_attr *attr, 8290 union bpf_attr __user *uattr) 8291 { 8292 const struct btf_type *type, *func_proto, *ret_type; 8293 u32 i, nfuncs, urec_size, min_size; 8294 u32 krec_size = sizeof(struct bpf_func_info); 8295 struct bpf_func_info *krecord; 8296 struct bpf_func_info_aux *info_aux = NULL; 8297 struct bpf_prog *prog; 8298 const struct btf *btf; 8299 void __user *urecord; 8300 u32 prev_offset = 0; 8301 bool scalar_return; 8302 int ret = -ENOMEM; 8303 8304 nfuncs = attr->func_info_cnt; 8305 if (!nfuncs) { 8306 if (check_abnormal_return(env)) 8307 return -EINVAL; 8308 return 0; 8309 } 8310 8311 if (nfuncs != env->subprog_cnt) { 8312 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n"); 8313 return -EINVAL; 8314 } 8315 8316 urec_size = attr->func_info_rec_size; 8317 if (urec_size < MIN_BPF_FUNCINFO_SIZE || 8318 urec_size > MAX_FUNCINFO_REC_SIZE || 8319 urec_size % sizeof(u32)) { 8320 verbose(env, "invalid func info rec size %u\n", urec_size); 8321 return -EINVAL; 8322 } 8323 8324 prog = env->prog; 8325 btf = prog->aux->btf; 8326 8327 urecord = u64_to_user_ptr(attr->func_info); 8328 min_size = min_t(u32, krec_size, urec_size); 8329 8330 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN); 8331 if (!krecord) 8332 return -ENOMEM; 8333 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN); 8334 if (!info_aux) 8335 goto err_free; 8336 8337 for (i = 0; i < nfuncs; i++) { 8338 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size); 8339 if (ret) { 8340 if (ret == -E2BIG) { 8341 verbose(env, "nonzero tailing record in func info"); 8342 /* set the size kernel expects so loader can zero 8343 * out the rest of the record. 8344 */ 8345 if (put_user(min_size, &uattr->func_info_rec_size)) 8346 ret = -EFAULT; 8347 } 8348 goto err_free; 8349 } 8350 8351 if (copy_from_user(&krecord[i], urecord, min_size)) { 8352 ret = -EFAULT; 8353 goto err_free; 8354 } 8355 8356 /* check insn_off */ 8357 ret = -EINVAL; 8358 if (i == 0) { 8359 if (krecord[i].insn_off) { 8360 verbose(env, 8361 "nonzero insn_off %u for the first func info record", 8362 krecord[i].insn_off); 8363 goto err_free; 8364 } 8365 } else if (krecord[i].insn_off <= prev_offset) { 8366 verbose(env, 8367 "same or smaller insn offset (%u) than previous func info record (%u)", 8368 krecord[i].insn_off, prev_offset); 8369 goto err_free; 8370 } 8371 8372 if (env->subprog_info[i].start != krecord[i].insn_off) { 8373 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n"); 8374 goto err_free; 8375 } 8376 8377 /* check type_id */ 8378 type = btf_type_by_id(btf, krecord[i].type_id); 8379 if (!type || !btf_type_is_func(type)) { 8380 verbose(env, "invalid type id %d in func info", 8381 krecord[i].type_id); 8382 goto err_free; 8383 } 8384 info_aux[i].linkage = BTF_INFO_VLEN(type->info); 8385 8386 func_proto = btf_type_by_id(btf, type->type); 8387 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto))) 8388 /* btf_func_check() already verified it during BTF load */ 8389 goto err_free; 8390 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL); 8391 scalar_return = 8392 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type); 8393 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) { 8394 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n"); 8395 goto err_free; 8396 } 8397 if (i && !scalar_return && env->subprog_info[i].has_tail_call) { 8398 verbose(env, "tail_call is only allowed in functions that return 'int'.\n"); 8399 goto err_free; 8400 } 8401 8402 prev_offset = krecord[i].insn_off; 8403 urecord += urec_size; 8404 } 8405 8406 prog->aux->func_info = krecord; 8407 prog->aux->func_info_cnt = nfuncs; 8408 prog->aux->func_info_aux = info_aux; 8409 return 0; 8410 8411 err_free: 8412 kvfree(krecord); 8413 kfree(info_aux); 8414 return ret; 8415 } 8416 8417 static void adjust_btf_func(struct bpf_verifier_env *env) 8418 { 8419 struct bpf_prog_aux *aux = env->prog->aux; 8420 int i; 8421 8422 if (!aux->func_info) 8423 return; 8424 8425 for (i = 0; i < env->subprog_cnt; i++) 8426 aux->func_info[i].insn_off = env->subprog_info[i].start; 8427 } 8428 8429 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \ 8430 sizeof(((struct bpf_line_info *)(0))->line_col)) 8431 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE 8432 8433 static int check_btf_line(struct bpf_verifier_env *env, 8434 const union bpf_attr *attr, 8435 union bpf_attr __user *uattr) 8436 { 8437 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0; 8438 struct bpf_subprog_info *sub; 8439 struct bpf_line_info *linfo; 8440 struct bpf_prog *prog; 8441 const struct btf *btf; 8442 void __user *ulinfo; 8443 int err; 8444 8445 nr_linfo = attr->line_info_cnt; 8446 if (!nr_linfo) 8447 return 0; 8448 8449 rec_size = attr->line_info_rec_size; 8450 if (rec_size < MIN_BPF_LINEINFO_SIZE || 8451 rec_size > MAX_LINEINFO_REC_SIZE || 8452 rec_size & (sizeof(u32) - 1)) 8453 return -EINVAL; 8454 8455 /* Need to zero it in case the userspace may 8456 * pass in a smaller bpf_line_info object. 8457 */ 8458 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info), 8459 GFP_KERNEL | __GFP_NOWARN); 8460 if (!linfo) 8461 return -ENOMEM; 8462 8463 prog = env->prog; 8464 btf = prog->aux->btf; 8465 8466 s = 0; 8467 sub = env->subprog_info; 8468 ulinfo = u64_to_user_ptr(attr->line_info); 8469 expected_size = sizeof(struct bpf_line_info); 8470 ncopy = min_t(u32, expected_size, rec_size); 8471 for (i = 0; i < nr_linfo; i++) { 8472 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size); 8473 if (err) { 8474 if (err == -E2BIG) { 8475 verbose(env, "nonzero tailing record in line_info"); 8476 if (put_user(expected_size, 8477 &uattr->line_info_rec_size)) 8478 err = -EFAULT; 8479 } 8480 goto err_free; 8481 } 8482 8483 if (copy_from_user(&linfo[i], ulinfo, ncopy)) { 8484 err = -EFAULT; 8485 goto err_free; 8486 } 8487 8488 /* 8489 * Check insn_off to ensure 8490 * 1) strictly increasing AND 8491 * 2) bounded by prog->len 8492 * 8493 * The linfo[0].insn_off == 0 check logically falls into 8494 * the later "missing bpf_line_info for func..." case 8495 * because the first linfo[0].insn_off must be the 8496 * first sub also and the first sub must have 8497 * subprog_info[0].start == 0. 8498 */ 8499 if ((i && linfo[i].insn_off <= prev_offset) || 8500 linfo[i].insn_off >= prog->len) { 8501 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n", 8502 i, linfo[i].insn_off, prev_offset, 8503 prog->len); 8504 err = -EINVAL; 8505 goto err_free; 8506 } 8507 8508 if (!prog->insnsi[linfo[i].insn_off].code) { 8509 verbose(env, 8510 "Invalid insn code at line_info[%u].insn_off\n", 8511 i); 8512 err = -EINVAL; 8513 goto err_free; 8514 } 8515 8516 if (!btf_name_by_offset(btf, linfo[i].line_off) || 8517 !btf_name_by_offset(btf, linfo[i].file_name_off)) { 8518 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i); 8519 err = -EINVAL; 8520 goto err_free; 8521 } 8522 8523 if (s != env->subprog_cnt) { 8524 if (linfo[i].insn_off == sub[s].start) { 8525 sub[s].linfo_idx = i; 8526 s++; 8527 } else if (sub[s].start < linfo[i].insn_off) { 8528 verbose(env, "missing bpf_line_info for func#%u\n", s); 8529 err = -EINVAL; 8530 goto err_free; 8531 } 8532 } 8533 8534 prev_offset = linfo[i].insn_off; 8535 ulinfo += rec_size; 8536 } 8537 8538 if (s != env->subprog_cnt) { 8539 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n", 8540 env->subprog_cnt - s, s); 8541 err = -EINVAL; 8542 goto err_free; 8543 } 8544 8545 prog->aux->linfo = linfo; 8546 prog->aux->nr_linfo = nr_linfo; 8547 8548 return 0; 8549 8550 err_free: 8551 kvfree(linfo); 8552 return err; 8553 } 8554 8555 static int check_btf_info(struct bpf_verifier_env *env, 8556 const union bpf_attr *attr, 8557 union bpf_attr __user *uattr) 8558 { 8559 struct btf *btf; 8560 int err; 8561 8562 if (!attr->func_info_cnt && !attr->line_info_cnt) { 8563 if (check_abnormal_return(env)) 8564 return -EINVAL; 8565 return 0; 8566 } 8567 8568 btf = btf_get_by_fd(attr->prog_btf_fd); 8569 if (IS_ERR(btf)) 8570 return PTR_ERR(btf); 8571 env->prog->aux->btf = btf; 8572 8573 err = check_btf_func(env, attr, uattr); 8574 if (err) 8575 return err; 8576 8577 err = check_btf_line(env, attr, uattr); 8578 if (err) 8579 return err; 8580 8581 return 0; 8582 } 8583 8584 /* check %cur's range satisfies %old's */ 8585 static bool range_within(struct bpf_reg_state *old, 8586 struct bpf_reg_state *cur) 8587 { 8588 return old->umin_value <= cur->umin_value && 8589 old->umax_value >= cur->umax_value && 8590 old->smin_value <= cur->smin_value && 8591 old->smax_value >= cur->smax_value; 8592 } 8593 8594 /* Maximum number of register states that can exist at once */ 8595 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 8596 struct idpair { 8597 u32 old; 8598 u32 cur; 8599 }; 8600 8601 /* If in the old state two registers had the same id, then they need to have 8602 * the same id in the new state as well. But that id could be different from 8603 * the old state, so we need to track the mapping from old to new ids. 8604 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent 8605 * regs with old id 5 must also have new id 9 for the new state to be safe. But 8606 * regs with a different old id could still have new id 9, we don't care about 8607 * that. 8608 * So we look through our idmap to see if this old id has been seen before. If 8609 * so, we require the new id to match; otherwise, we add the id pair to the map. 8610 */ 8611 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) 8612 { 8613 unsigned int i; 8614 8615 for (i = 0; i < ID_MAP_SIZE; i++) { 8616 if (!idmap[i].old) { 8617 /* Reached an empty slot; haven't seen this id before */ 8618 idmap[i].old = old_id; 8619 idmap[i].cur = cur_id; 8620 return true; 8621 } 8622 if (idmap[i].old == old_id) 8623 return idmap[i].cur == cur_id; 8624 } 8625 /* We ran out of idmap slots, which should be impossible */ 8626 WARN_ON_ONCE(1); 8627 return false; 8628 } 8629 8630 static void clean_func_state(struct bpf_verifier_env *env, 8631 struct bpf_func_state *st) 8632 { 8633 enum bpf_reg_liveness live; 8634 int i, j; 8635 8636 for (i = 0; i < BPF_REG_FP; i++) { 8637 live = st->regs[i].live; 8638 /* liveness must not touch this register anymore */ 8639 st->regs[i].live |= REG_LIVE_DONE; 8640 if (!(live & REG_LIVE_READ)) 8641 /* since the register is unused, clear its state 8642 * to make further comparison simpler 8643 */ 8644 __mark_reg_not_init(env, &st->regs[i]); 8645 } 8646 8647 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) { 8648 live = st->stack[i].spilled_ptr.live; 8649 /* liveness must not touch this stack slot anymore */ 8650 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE; 8651 if (!(live & REG_LIVE_READ)) { 8652 __mark_reg_not_init(env, &st->stack[i].spilled_ptr); 8653 for (j = 0; j < BPF_REG_SIZE; j++) 8654 st->stack[i].slot_type[j] = STACK_INVALID; 8655 } 8656 } 8657 } 8658 8659 static void clean_verifier_state(struct bpf_verifier_env *env, 8660 struct bpf_verifier_state *st) 8661 { 8662 int i; 8663 8664 if (st->frame[0]->regs[0].live & REG_LIVE_DONE) 8665 /* all regs in this state in all frames were already marked */ 8666 return; 8667 8668 for (i = 0; i <= st->curframe; i++) 8669 clean_func_state(env, st->frame[i]); 8670 } 8671 8672 /* the parentage chains form a tree. 8673 * the verifier states are added to state lists at given insn and 8674 * pushed into state stack for future exploration. 8675 * when the verifier reaches bpf_exit insn some of the verifer states 8676 * stored in the state lists have their final liveness state already, 8677 * but a lot of states will get revised from liveness point of view when 8678 * the verifier explores other branches. 8679 * Example: 8680 * 1: r0 = 1 8681 * 2: if r1 == 100 goto pc+1 8682 * 3: r0 = 2 8683 * 4: exit 8684 * when the verifier reaches exit insn the register r0 in the state list of 8685 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch 8686 * of insn 2 and goes exploring further. At the insn 4 it will walk the 8687 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ. 8688 * 8689 * Since the verifier pushes the branch states as it sees them while exploring 8690 * the program the condition of walking the branch instruction for the second 8691 * time means that all states below this branch were already explored and 8692 * their final liveness markes are already propagated. 8693 * Hence when the verifier completes the search of state list in is_state_visited() 8694 * we can call this clean_live_states() function to mark all liveness states 8695 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state' 8696 * will not be used. 8697 * This function also clears the registers and stack for states that !READ 8698 * to simplify state merging. 8699 * 8700 * Important note here that walking the same branch instruction in the callee 8701 * doesn't meant that the states are DONE. The verifier has to compare 8702 * the callsites 8703 */ 8704 static void clean_live_states(struct bpf_verifier_env *env, int insn, 8705 struct bpf_verifier_state *cur) 8706 { 8707 struct bpf_verifier_state_list *sl; 8708 int i; 8709 8710 sl = *explored_state(env, insn); 8711 while (sl) { 8712 if (sl->state.branches) 8713 goto next; 8714 if (sl->state.insn_idx != insn || 8715 sl->state.curframe != cur->curframe) 8716 goto next; 8717 for (i = 0; i <= cur->curframe; i++) 8718 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite) 8719 goto next; 8720 clean_verifier_state(env, &sl->state); 8721 next: 8722 sl = sl->next; 8723 } 8724 } 8725 8726 /* Returns true if (rold safe implies rcur safe) */ 8727 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, 8728 struct idpair *idmap) 8729 { 8730 bool equal; 8731 8732 if (!(rold->live & REG_LIVE_READ)) 8733 /* explored state didn't use this */ 8734 return true; 8735 8736 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0; 8737 8738 if (rold->type == PTR_TO_STACK) 8739 /* two stack pointers are equal only if they're pointing to 8740 * the same stack frame, since fp-8 in foo != fp-8 in bar 8741 */ 8742 return equal && rold->frameno == rcur->frameno; 8743 8744 if (equal) 8745 return true; 8746 8747 if (rold->type == NOT_INIT) 8748 /* explored state can't have used this */ 8749 return true; 8750 if (rcur->type == NOT_INIT) 8751 return false; 8752 switch (rold->type) { 8753 case SCALAR_VALUE: 8754 if (rcur->type == SCALAR_VALUE) { 8755 if (!rold->precise && !rcur->precise) 8756 return true; 8757 /* new val must satisfy old val knowledge */ 8758 return range_within(rold, rcur) && 8759 tnum_in(rold->var_off, rcur->var_off); 8760 } else { 8761 /* We're trying to use a pointer in place of a scalar. 8762 * Even if the scalar was unbounded, this could lead to 8763 * pointer leaks because scalars are allowed to leak 8764 * while pointers are not. We could make this safe in 8765 * special cases if root is calling us, but it's 8766 * probably not worth the hassle. 8767 */ 8768 return false; 8769 } 8770 case PTR_TO_MAP_VALUE: 8771 /* If the new min/max/var_off satisfy the old ones and 8772 * everything else matches, we are OK. 8773 * 'id' is not compared, since it's only used for maps with 8774 * bpf_spin_lock inside map element and in such cases if 8775 * the rest of the prog is valid for one map element then 8776 * it's valid for all map elements regardless of the key 8777 * used in bpf_map_lookup() 8778 */ 8779 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && 8780 range_within(rold, rcur) && 8781 tnum_in(rold->var_off, rcur->var_off); 8782 case PTR_TO_MAP_VALUE_OR_NULL: 8783 /* a PTR_TO_MAP_VALUE could be safe to use as a 8784 * PTR_TO_MAP_VALUE_OR_NULL into the same map. 8785 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- 8786 * checked, doing so could have affected others with the same 8787 * id, and we can't check for that because we lost the id when 8788 * we converted to a PTR_TO_MAP_VALUE. 8789 */ 8790 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) 8791 return false; 8792 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) 8793 return false; 8794 /* Check our ids match any regs they're supposed to */ 8795 return check_ids(rold->id, rcur->id, idmap); 8796 case PTR_TO_PACKET_META: 8797 case PTR_TO_PACKET: 8798 if (rcur->type != rold->type) 8799 return false; 8800 /* We must have at least as much range as the old ptr 8801 * did, so that any accesses which were safe before are 8802 * still safe. This is true even if old range < old off, 8803 * since someone could have accessed through (ptr - k), or 8804 * even done ptr -= k in a register, to get a safe access. 8805 */ 8806 if (rold->range > rcur->range) 8807 return false; 8808 /* If the offsets don't match, we can't trust our alignment; 8809 * nor can we be sure that we won't fall out of range. 8810 */ 8811 if (rold->off != rcur->off) 8812 return false; 8813 /* id relations must be preserved */ 8814 if (rold->id && !check_ids(rold->id, rcur->id, idmap)) 8815 return false; 8816 /* new val must satisfy old val knowledge */ 8817 return range_within(rold, rcur) && 8818 tnum_in(rold->var_off, rcur->var_off); 8819 case PTR_TO_CTX: 8820 case CONST_PTR_TO_MAP: 8821 case PTR_TO_PACKET_END: 8822 case PTR_TO_FLOW_KEYS: 8823 case PTR_TO_SOCKET: 8824 case PTR_TO_SOCKET_OR_NULL: 8825 case PTR_TO_SOCK_COMMON: 8826 case PTR_TO_SOCK_COMMON_OR_NULL: 8827 case PTR_TO_TCP_SOCK: 8828 case PTR_TO_TCP_SOCK_OR_NULL: 8829 case PTR_TO_XDP_SOCK: 8830 /* Only valid matches are exact, which memcmp() above 8831 * would have accepted 8832 */ 8833 default: 8834 /* Don't know what's going on, just say it's not safe */ 8835 return false; 8836 } 8837 8838 /* Shouldn't get here; if we do, say it's not safe */ 8839 WARN_ON_ONCE(1); 8840 return false; 8841 } 8842 8843 static bool stacksafe(struct bpf_func_state *old, 8844 struct bpf_func_state *cur, 8845 struct idpair *idmap) 8846 { 8847 int i, spi; 8848 8849 /* walk slots of the explored stack and ignore any additional 8850 * slots in the current stack, since explored(safe) state 8851 * didn't use them 8852 */ 8853 for (i = 0; i < old->allocated_stack; i++) { 8854 spi = i / BPF_REG_SIZE; 8855 8856 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) { 8857 i += BPF_REG_SIZE - 1; 8858 /* explored state didn't use this */ 8859 continue; 8860 } 8861 8862 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) 8863 continue; 8864 8865 /* explored stack has more populated slots than current stack 8866 * and these slots were used 8867 */ 8868 if (i >= cur->allocated_stack) 8869 return false; 8870 8871 /* if old state was safe with misc data in the stack 8872 * it will be safe with zero-initialized stack. 8873 * The opposite is not true 8874 */ 8875 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC && 8876 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO) 8877 continue; 8878 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != 8879 cur->stack[spi].slot_type[i % BPF_REG_SIZE]) 8880 /* Ex: old explored (safe) state has STACK_SPILL in 8881 * this stack slot, but current has STACK_MISC -> 8882 * this verifier states are not equivalent, 8883 * return false to continue verification of this path 8884 */ 8885 return false; 8886 if (i % BPF_REG_SIZE) 8887 continue; 8888 if (old->stack[spi].slot_type[0] != STACK_SPILL) 8889 continue; 8890 if (!regsafe(&old->stack[spi].spilled_ptr, 8891 &cur->stack[spi].spilled_ptr, 8892 idmap)) 8893 /* when explored and current stack slot are both storing 8894 * spilled registers, check that stored pointers types 8895 * are the same as well. 8896 * Ex: explored safe path could have stored 8897 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} 8898 * but current path has stored: 8899 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} 8900 * such verifier states are not equivalent. 8901 * return false to continue verification of this path 8902 */ 8903 return false; 8904 } 8905 return true; 8906 } 8907 8908 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur) 8909 { 8910 if (old->acquired_refs != cur->acquired_refs) 8911 return false; 8912 return !memcmp(old->refs, cur->refs, 8913 sizeof(*old->refs) * old->acquired_refs); 8914 } 8915 8916 /* compare two verifier states 8917 * 8918 * all states stored in state_list are known to be valid, since 8919 * verifier reached 'bpf_exit' instruction through them 8920 * 8921 * this function is called when verifier exploring different branches of 8922 * execution popped from the state stack. If it sees an old state that has 8923 * more strict register state and more strict stack state then this execution 8924 * branch doesn't need to be explored further, since verifier already 8925 * concluded that more strict state leads to valid finish. 8926 * 8927 * Therefore two states are equivalent if register state is more conservative 8928 * and explored stack state is more conservative than the current one. 8929 * Example: 8930 * explored current 8931 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) 8932 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) 8933 * 8934 * In other words if current stack state (one being explored) has more 8935 * valid slots than old one that already passed validation, it means 8936 * the verifier can stop exploring and conclude that current state is valid too 8937 * 8938 * Similarly with registers. If explored state has register type as invalid 8939 * whereas register type in current state is meaningful, it means that 8940 * the current state will reach 'bpf_exit' instruction safely 8941 */ 8942 static bool func_states_equal(struct bpf_func_state *old, 8943 struct bpf_func_state *cur) 8944 { 8945 struct idpair *idmap; 8946 bool ret = false; 8947 int i; 8948 8949 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); 8950 /* If we failed to allocate the idmap, just say it's not safe */ 8951 if (!idmap) 8952 return false; 8953 8954 for (i = 0; i < MAX_BPF_REG; i++) { 8955 if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) 8956 goto out_free; 8957 } 8958 8959 if (!stacksafe(old, cur, idmap)) 8960 goto out_free; 8961 8962 if (!refsafe(old, cur)) 8963 goto out_free; 8964 ret = true; 8965 out_free: 8966 kfree(idmap); 8967 return ret; 8968 } 8969 8970 static bool states_equal(struct bpf_verifier_env *env, 8971 struct bpf_verifier_state *old, 8972 struct bpf_verifier_state *cur) 8973 { 8974 int i; 8975 8976 if (old->curframe != cur->curframe) 8977 return false; 8978 8979 /* Verification state from speculative execution simulation 8980 * must never prune a non-speculative execution one. 8981 */ 8982 if (old->speculative && !cur->speculative) 8983 return false; 8984 8985 if (old->active_spin_lock != cur->active_spin_lock) 8986 return false; 8987 8988 /* for states to be equal callsites have to be the same 8989 * and all frame states need to be equivalent 8990 */ 8991 for (i = 0; i <= old->curframe; i++) { 8992 if (old->frame[i]->callsite != cur->frame[i]->callsite) 8993 return false; 8994 if (!func_states_equal(old->frame[i], cur->frame[i])) 8995 return false; 8996 } 8997 return true; 8998 } 8999 9000 /* Return 0 if no propagation happened. Return negative error code if error 9001 * happened. Otherwise, return the propagated bit. 9002 */ 9003 static int propagate_liveness_reg(struct bpf_verifier_env *env, 9004 struct bpf_reg_state *reg, 9005 struct bpf_reg_state *parent_reg) 9006 { 9007 u8 parent_flag = parent_reg->live & REG_LIVE_READ; 9008 u8 flag = reg->live & REG_LIVE_READ; 9009 int err; 9010 9011 /* When comes here, read flags of PARENT_REG or REG could be any of 9012 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need 9013 * of propagation if PARENT_REG has strongest REG_LIVE_READ64. 9014 */ 9015 if (parent_flag == REG_LIVE_READ64 || 9016 /* Or if there is no read flag from REG. */ 9017 !flag || 9018 /* Or if the read flag from REG is the same as PARENT_REG. */ 9019 parent_flag == flag) 9020 return 0; 9021 9022 err = mark_reg_read(env, reg, parent_reg, flag); 9023 if (err) 9024 return err; 9025 9026 return flag; 9027 } 9028 9029 /* A write screens off any subsequent reads; but write marks come from the 9030 * straight-line code between a state and its parent. When we arrive at an 9031 * equivalent state (jump target or such) we didn't arrive by the straight-line 9032 * code, so read marks in the state must propagate to the parent regardless 9033 * of the state's write marks. That's what 'parent == state->parent' comparison 9034 * in mark_reg_read() is for. 9035 */ 9036 static int propagate_liveness(struct bpf_verifier_env *env, 9037 const struct bpf_verifier_state *vstate, 9038 struct bpf_verifier_state *vparent) 9039 { 9040 struct bpf_reg_state *state_reg, *parent_reg; 9041 struct bpf_func_state *state, *parent; 9042 int i, frame, err = 0; 9043 9044 if (vparent->curframe != vstate->curframe) { 9045 WARN(1, "propagate_live: parent frame %d current frame %d\n", 9046 vparent->curframe, vstate->curframe); 9047 return -EFAULT; 9048 } 9049 /* Propagate read liveness of registers... */ 9050 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); 9051 for (frame = 0; frame <= vstate->curframe; frame++) { 9052 parent = vparent->frame[frame]; 9053 state = vstate->frame[frame]; 9054 parent_reg = parent->regs; 9055 state_reg = state->regs; 9056 /* We don't need to worry about FP liveness, it's read-only */ 9057 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) { 9058 err = propagate_liveness_reg(env, &state_reg[i], 9059 &parent_reg[i]); 9060 if (err < 0) 9061 return err; 9062 if (err == REG_LIVE_READ64) 9063 mark_insn_zext(env, &parent_reg[i]); 9064 } 9065 9066 /* Propagate stack slots. */ 9067 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && 9068 i < parent->allocated_stack / BPF_REG_SIZE; i++) { 9069 parent_reg = &parent->stack[i].spilled_ptr; 9070 state_reg = &state->stack[i].spilled_ptr; 9071 err = propagate_liveness_reg(env, state_reg, 9072 parent_reg); 9073 if (err < 0) 9074 return err; 9075 } 9076 } 9077 return 0; 9078 } 9079 9080 /* find precise scalars in the previous equivalent state and 9081 * propagate them into the current state 9082 */ 9083 static int propagate_precision(struct bpf_verifier_env *env, 9084 const struct bpf_verifier_state *old) 9085 { 9086 struct bpf_reg_state *state_reg; 9087 struct bpf_func_state *state; 9088 int i, err = 0; 9089 9090 state = old->frame[old->curframe]; 9091 state_reg = state->regs; 9092 for (i = 0; i < BPF_REG_FP; i++, state_reg++) { 9093 if (state_reg->type != SCALAR_VALUE || 9094 !state_reg->precise) 9095 continue; 9096 if (env->log.level & BPF_LOG_LEVEL2) 9097 verbose(env, "propagating r%d\n", i); 9098 err = mark_chain_precision(env, i); 9099 if (err < 0) 9100 return err; 9101 } 9102 9103 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { 9104 if (state->stack[i].slot_type[0] != STACK_SPILL) 9105 continue; 9106 state_reg = &state->stack[i].spilled_ptr; 9107 if (state_reg->type != SCALAR_VALUE || 9108 !state_reg->precise) 9109 continue; 9110 if (env->log.level & BPF_LOG_LEVEL2) 9111 verbose(env, "propagating fp%d\n", 9112 (-i - 1) * BPF_REG_SIZE); 9113 err = mark_chain_precision_stack(env, i); 9114 if (err < 0) 9115 return err; 9116 } 9117 return 0; 9118 } 9119 9120 static bool states_maybe_looping(struct bpf_verifier_state *old, 9121 struct bpf_verifier_state *cur) 9122 { 9123 struct bpf_func_state *fold, *fcur; 9124 int i, fr = cur->curframe; 9125 9126 if (old->curframe != fr) 9127 return false; 9128 9129 fold = old->frame[fr]; 9130 fcur = cur->frame[fr]; 9131 for (i = 0; i < MAX_BPF_REG; i++) 9132 if (memcmp(&fold->regs[i], &fcur->regs[i], 9133 offsetof(struct bpf_reg_state, parent))) 9134 return false; 9135 return true; 9136 } 9137 9138 9139 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) 9140 { 9141 struct bpf_verifier_state_list *new_sl; 9142 struct bpf_verifier_state_list *sl, **pprev; 9143 struct bpf_verifier_state *cur = env->cur_state, *new; 9144 int i, j, err, states_cnt = 0; 9145 bool add_new_state = env->test_state_freq ? true : false; 9146 9147 cur->last_insn_idx = env->prev_insn_idx; 9148 if (!env->insn_aux_data[insn_idx].prune_point) 9149 /* this 'insn_idx' instruction wasn't marked, so we will not 9150 * be doing state search here 9151 */ 9152 return 0; 9153 9154 /* bpf progs typically have pruning point every 4 instructions 9155 * http://vger.kernel.org/bpfconf2019.html#session-1 9156 * Do not add new state for future pruning if the verifier hasn't seen 9157 * at least 2 jumps and at least 8 instructions. 9158 * This heuristics helps decrease 'total_states' and 'peak_states' metric. 9159 * In tests that amounts to up to 50% reduction into total verifier 9160 * memory consumption and 20% verifier time speedup. 9161 */ 9162 if (env->jmps_processed - env->prev_jmps_processed >= 2 && 9163 env->insn_processed - env->prev_insn_processed >= 8) 9164 add_new_state = true; 9165 9166 pprev = explored_state(env, insn_idx); 9167 sl = *pprev; 9168 9169 clean_live_states(env, insn_idx, cur); 9170 9171 while (sl) { 9172 states_cnt++; 9173 if (sl->state.insn_idx != insn_idx) 9174 goto next; 9175 if (sl->state.branches) { 9176 if (states_maybe_looping(&sl->state, cur) && 9177 states_equal(env, &sl->state, cur)) { 9178 verbose_linfo(env, insn_idx, "; "); 9179 verbose(env, "infinite loop detected at insn %d\n", insn_idx); 9180 return -EINVAL; 9181 } 9182 /* if the verifier is processing a loop, avoid adding new state 9183 * too often, since different loop iterations have distinct 9184 * states and may not help future pruning. 9185 * This threshold shouldn't be too low to make sure that 9186 * a loop with large bound will be rejected quickly. 9187 * The most abusive loop will be: 9188 * r1 += 1 9189 * if r1 < 1000000 goto pc-2 9190 * 1M insn_procssed limit / 100 == 10k peak states. 9191 * This threshold shouldn't be too high either, since states 9192 * at the end of the loop are likely to be useful in pruning. 9193 */ 9194 if (env->jmps_processed - env->prev_jmps_processed < 20 && 9195 env->insn_processed - env->prev_insn_processed < 100) 9196 add_new_state = false; 9197 goto miss; 9198 } 9199 if (states_equal(env, &sl->state, cur)) { 9200 sl->hit_cnt++; 9201 /* reached equivalent register/stack state, 9202 * prune the search. 9203 * Registers read by the continuation are read by us. 9204 * If we have any write marks in env->cur_state, they 9205 * will prevent corresponding reads in the continuation 9206 * from reaching our parent (an explored_state). Our 9207 * own state will get the read marks recorded, but 9208 * they'll be immediately forgotten as we're pruning 9209 * this state and will pop a new one. 9210 */ 9211 err = propagate_liveness(env, &sl->state, cur); 9212 9213 /* if previous state reached the exit with precision and 9214 * current state is equivalent to it (except precsion marks) 9215 * the precision needs to be propagated back in 9216 * the current state. 9217 */ 9218 err = err ? : push_jmp_history(env, cur); 9219 err = err ? : propagate_precision(env, &sl->state); 9220 if (err) 9221 return err; 9222 return 1; 9223 } 9224 miss: 9225 /* when new state is not going to be added do not increase miss count. 9226 * Otherwise several loop iterations will remove the state 9227 * recorded earlier. The goal of these heuristics is to have 9228 * states from some iterations of the loop (some in the beginning 9229 * and some at the end) to help pruning. 9230 */ 9231 if (add_new_state) 9232 sl->miss_cnt++; 9233 /* heuristic to determine whether this state is beneficial 9234 * to keep checking from state equivalence point of view. 9235 * Higher numbers increase max_states_per_insn and verification time, 9236 * but do not meaningfully decrease insn_processed. 9237 */ 9238 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) { 9239 /* the state is unlikely to be useful. Remove it to 9240 * speed up verification 9241 */ 9242 *pprev = sl->next; 9243 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) { 9244 u32 br = sl->state.branches; 9245 9246 WARN_ONCE(br, 9247 "BUG live_done but branches_to_explore %d\n", 9248 br); 9249 free_verifier_state(&sl->state, false); 9250 kfree(sl); 9251 env->peak_states--; 9252 } else { 9253 /* cannot free this state, since parentage chain may 9254 * walk it later. Add it for free_list instead to 9255 * be freed at the end of verification 9256 */ 9257 sl->next = env->free_list; 9258 env->free_list = sl; 9259 } 9260 sl = *pprev; 9261 continue; 9262 } 9263 next: 9264 pprev = &sl->next; 9265 sl = *pprev; 9266 } 9267 9268 if (env->max_states_per_insn < states_cnt) 9269 env->max_states_per_insn = states_cnt; 9270 9271 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES) 9272 return push_jmp_history(env, cur); 9273 9274 if (!add_new_state) 9275 return push_jmp_history(env, cur); 9276 9277 /* There were no equivalent states, remember the current one. 9278 * Technically the current state is not proven to be safe yet, 9279 * but it will either reach outer most bpf_exit (which means it's safe) 9280 * or it will be rejected. When there are no loops the verifier won't be 9281 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx) 9282 * again on the way to bpf_exit. 9283 * When looping the sl->state.branches will be > 0 and this state 9284 * will not be considered for equivalence until branches == 0. 9285 */ 9286 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); 9287 if (!new_sl) 9288 return -ENOMEM; 9289 env->total_states++; 9290 env->peak_states++; 9291 env->prev_jmps_processed = env->jmps_processed; 9292 env->prev_insn_processed = env->insn_processed; 9293 9294 /* add new state to the head of linked list */ 9295 new = &new_sl->state; 9296 err = copy_verifier_state(new, cur); 9297 if (err) { 9298 free_verifier_state(new, false); 9299 kfree(new_sl); 9300 return err; 9301 } 9302 new->insn_idx = insn_idx; 9303 WARN_ONCE(new->branches != 1, 9304 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx); 9305 9306 cur->parent = new; 9307 cur->first_insn_idx = insn_idx; 9308 clear_jmp_history(cur); 9309 new_sl->next = *explored_state(env, insn_idx); 9310 *explored_state(env, insn_idx) = new_sl; 9311 /* connect new state to parentage chain. Current frame needs all 9312 * registers connected. Only r6 - r9 of the callers are alive (pushed 9313 * to the stack implicitly by JITs) so in callers' frames connect just 9314 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to 9315 * the state of the call instruction (with WRITTEN set), and r0 comes 9316 * from callee with its full parentage chain, anyway. 9317 */ 9318 /* clear write marks in current state: the writes we did are not writes 9319 * our child did, so they don't screen off its reads from us. 9320 * (There are no read marks in current state, because reads always mark 9321 * their parent and current state never has children yet. Only 9322 * explored_states can get read marks.) 9323 */ 9324 for (j = 0; j <= cur->curframe; j++) { 9325 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) 9326 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i]; 9327 for (i = 0; i < BPF_REG_FP; i++) 9328 cur->frame[j]->regs[i].live = REG_LIVE_NONE; 9329 } 9330 9331 /* all stack frames are accessible from callee, clear them all */ 9332 for (j = 0; j <= cur->curframe; j++) { 9333 struct bpf_func_state *frame = cur->frame[j]; 9334 struct bpf_func_state *newframe = new->frame[j]; 9335 9336 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) { 9337 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE; 9338 frame->stack[i].spilled_ptr.parent = 9339 &newframe->stack[i].spilled_ptr; 9340 } 9341 } 9342 return 0; 9343 } 9344 9345 /* Return true if it's OK to have the same insn return a different type. */ 9346 static bool reg_type_mismatch_ok(enum bpf_reg_type type) 9347 { 9348 switch (type) { 9349 case PTR_TO_CTX: 9350 case PTR_TO_SOCKET: 9351 case PTR_TO_SOCKET_OR_NULL: 9352 case PTR_TO_SOCK_COMMON: 9353 case PTR_TO_SOCK_COMMON_OR_NULL: 9354 case PTR_TO_TCP_SOCK: 9355 case PTR_TO_TCP_SOCK_OR_NULL: 9356 case PTR_TO_XDP_SOCK: 9357 case PTR_TO_BTF_ID: 9358 case PTR_TO_BTF_ID_OR_NULL: 9359 return false; 9360 default: 9361 return true; 9362 } 9363 } 9364 9365 /* If an instruction was previously used with particular pointer types, then we 9366 * need to be careful to avoid cases such as the below, where it may be ok 9367 * for one branch accessing the pointer, but not ok for the other branch: 9368 * 9369 * R1 = sock_ptr 9370 * goto X; 9371 * ... 9372 * R1 = some_other_valid_ptr; 9373 * goto X; 9374 * ... 9375 * R2 = *(u32 *)(R1 + 0); 9376 */ 9377 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev) 9378 { 9379 return src != prev && (!reg_type_mismatch_ok(src) || 9380 !reg_type_mismatch_ok(prev)); 9381 } 9382 9383 static int do_check(struct bpf_verifier_env *env) 9384 { 9385 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 9386 struct bpf_verifier_state *state = env->cur_state; 9387 struct bpf_insn *insns = env->prog->insnsi; 9388 struct bpf_reg_state *regs; 9389 int insn_cnt = env->prog->len; 9390 bool do_print_state = false; 9391 int prev_insn_idx = -1; 9392 9393 for (;;) { 9394 struct bpf_insn *insn; 9395 u8 class; 9396 int err; 9397 9398 env->prev_insn_idx = prev_insn_idx; 9399 if (env->insn_idx >= insn_cnt) { 9400 verbose(env, "invalid insn idx %d insn_cnt %d\n", 9401 env->insn_idx, insn_cnt); 9402 return -EFAULT; 9403 } 9404 9405 insn = &insns[env->insn_idx]; 9406 class = BPF_CLASS(insn->code); 9407 9408 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { 9409 verbose(env, 9410 "BPF program is too large. Processed %d insn\n", 9411 env->insn_processed); 9412 return -E2BIG; 9413 } 9414 9415 err = is_state_visited(env, env->insn_idx); 9416 if (err < 0) 9417 return err; 9418 if (err == 1) { 9419 /* found equivalent state, can prune the search */ 9420 if (env->log.level & BPF_LOG_LEVEL) { 9421 if (do_print_state) 9422 verbose(env, "\nfrom %d to %d%s: safe\n", 9423 env->prev_insn_idx, env->insn_idx, 9424 env->cur_state->speculative ? 9425 " (speculative execution)" : ""); 9426 else 9427 verbose(env, "%d: safe\n", env->insn_idx); 9428 } 9429 goto process_bpf_exit; 9430 } 9431 9432 if (signal_pending(current)) 9433 return -EAGAIN; 9434 9435 if (need_resched()) 9436 cond_resched(); 9437 9438 if (env->log.level & BPF_LOG_LEVEL2 || 9439 (env->log.level & BPF_LOG_LEVEL && do_print_state)) { 9440 if (env->log.level & BPF_LOG_LEVEL2) 9441 verbose(env, "%d:", env->insn_idx); 9442 else 9443 verbose(env, "\nfrom %d to %d%s:", 9444 env->prev_insn_idx, env->insn_idx, 9445 env->cur_state->speculative ? 9446 " (speculative execution)" : ""); 9447 print_verifier_state(env, state->frame[state->curframe]); 9448 do_print_state = false; 9449 } 9450 9451 if (env->log.level & BPF_LOG_LEVEL) { 9452 const struct bpf_insn_cbs cbs = { 9453 .cb_print = verbose, 9454 .private_data = env, 9455 }; 9456 9457 verbose_linfo(env, env->insn_idx, "; "); 9458 verbose(env, "%d: ", env->insn_idx); 9459 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks); 9460 } 9461 9462 if (bpf_prog_is_dev_bound(env->prog->aux)) { 9463 err = bpf_prog_offload_verify_insn(env, env->insn_idx, 9464 env->prev_insn_idx); 9465 if (err) 9466 return err; 9467 } 9468 9469 regs = cur_regs(env); 9470 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9471 prev_insn_idx = env->insn_idx; 9472 9473 if (class == BPF_ALU || class == BPF_ALU64) { 9474 err = check_alu_op(env, insn); 9475 if (err) 9476 return err; 9477 9478 } else if (class == BPF_LDX) { 9479 enum bpf_reg_type *prev_src_type, src_reg_type; 9480 9481 /* check for reserved fields is already done */ 9482 9483 /* check src operand */ 9484 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9485 if (err) 9486 return err; 9487 9488 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); 9489 if (err) 9490 return err; 9491 9492 src_reg_type = regs[insn->src_reg].type; 9493 9494 /* check that memory (src_reg + off) is readable, 9495 * the state of dst_reg will be updated by this func 9496 */ 9497 err = check_mem_access(env, env->insn_idx, insn->src_reg, 9498 insn->off, BPF_SIZE(insn->code), 9499 BPF_READ, insn->dst_reg, false); 9500 if (err) 9501 return err; 9502 9503 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9504 9505 if (*prev_src_type == NOT_INIT) { 9506 /* saw a valid insn 9507 * dst_reg = *(u32 *)(src_reg + off) 9508 * save type to validate intersecting paths 9509 */ 9510 *prev_src_type = src_reg_type; 9511 9512 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) { 9513 /* ABuser program is trying to use the same insn 9514 * dst_reg = *(u32*) (src_reg + off) 9515 * with different pointer types: 9516 * src_reg == ctx in one branch and 9517 * src_reg == stack|map in some other branch. 9518 * Reject it. 9519 */ 9520 verbose(env, "same insn cannot be used with different pointers\n"); 9521 return -EINVAL; 9522 } 9523 9524 } else if (class == BPF_STX) { 9525 enum bpf_reg_type *prev_dst_type, dst_reg_type; 9526 9527 if (BPF_MODE(insn->code) == BPF_XADD) { 9528 err = check_xadd(env, env->insn_idx, insn); 9529 if (err) 9530 return err; 9531 env->insn_idx++; 9532 continue; 9533 } 9534 9535 /* check src1 operand */ 9536 err = check_reg_arg(env, insn->src_reg, SRC_OP); 9537 if (err) 9538 return err; 9539 /* check src2 operand */ 9540 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9541 if (err) 9542 return err; 9543 9544 dst_reg_type = regs[insn->dst_reg].type; 9545 9546 /* check that memory (dst_reg + off) is writeable */ 9547 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9548 insn->off, BPF_SIZE(insn->code), 9549 BPF_WRITE, insn->src_reg, false); 9550 if (err) 9551 return err; 9552 9553 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; 9554 9555 if (*prev_dst_type == NOT_INIT) { 9556 *prev_dst_type = dst_reg_type; 9557 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) { 9558 verbose(env, "same insn cannot be used with different pointers\n"); 9559 return -EINVAL; 9560 } 9561 9562 } else if (class == BPF_ST) { 9563 if (BPF_MODE(insn->code) != BPF_MEM || 9564 insn->src_reg != BPF_REG_0) { 9565 verbose(env, "BPF_ST uses reserved fields\n"); 9566 return -EINVAL; 9567 } 9568 /* check src operand */ 9569 err = check_reg_arg(env, insn->dst_reg, SRC_OP); 9570 if (err) 9571 return err; 9572 9573 if (is_ctx_reg(env, insn->dst_reg)) { 9574 verbose(env, "BPF_ST stores into R%d %s is not allowed\n", 9575 insn->dst_reg, 9576 reg_type_str[reg_state(env, insn->dst_reg)->type]); 9577 return -EACCES; 9578 } 9579 9580 /* check that memory (dst_reg + off) is writeable */ 9581 err = check_mem_access(env, env->insn_idx, insn->dst_reg, 9582 insn->off, BPF_SIZE(insn->code), 9583 BPF_WRITE, -1, false); 9584 if (err) 9585 return err; 9586 9587 } else if (class == BPF_JMP || class == BPF_JMP32) { 9588 u8 opcode = BPF_OP(insn->code); 9589 9590 env->jmps_processed++; 9591 if (opcode == BPF_CALL) { 9592 if (BPF_SRC(insn->code) != BPF_K || 9593 insn->off != 0 || 9594 (insn->src_reg != BPF_REG_0 && 9595 insn->src_reg != BPF_PSEUDO_CALL) || 9596 insn->dst_reg != BPF_REG_0 || 9597 class == BPF_JMP32) { 9598 verbose(env, "BPF_CALL uses reserved fields\n"); 9599 return -EINVAL; 9600 } 9601 9602 if (env->cur_state->active_spin_lock && 9603 (insn->src_reg == BPF_PSEUDO_CALL || 9604 insn->imm != BPF_FUNC_spin_unlock)) { 9605 verbose(env, "function calls are not allowed while holding a lock\n"); 9606 return -EINVAL; 9607 } 9608 if (insn->src_reg == BPF_PSEUDO_CALL) 9609 err = check_func_call(env, insn, &env->insn_idx); 9610 else 9611 err = check_helper_call(env, insn->imm, env->insn_idx); 9612 if (err) 9613 return err; 9614 9615 } else if (opcode == BPF_JA) { 9616 if (BPF_SRC(insn->code) != BPF_K || 9617 insn->imm != 0 || 9618 insn->src_reg != BPF_REG_0 || 9619 insn->dst_reg != BPF_REG_0 || 9620 class == BPF_JMP32) { 9621 verbose(env, "BPF_JA uses reserved fields\n"); 9622 return -EINVAL; 9623 } 9624 9625 env->insn_idx += insn->off + 1; 9626 continue; 9627 9628 } else if (opcode == BPF_EXIT) { 9629 if (BPF_SRC(insn->code) != BPF_K || 9630 insn->imm != 0 || 9631 insn->src_reg != BPF_REG_0 || 9632 insn->dst_reg != BPF_REG_0 || 9633 class == BPF_JMP32) { 9634 verbose(env, "BPF_EXIT uses reserved fields\n"); 9635 return -EINVAL; 9636 } 9637 9638 if (env->cur_state->active_spin_lock) { 9639 verbose(env, "bpf_spin_unlock is missing\n"); 9640 return -EINVAL; 9641 } 9642 9643 if (state->curframe) { 9644 /* exit from nested function */ 9645 err = prepare_func_exit(env, &env->insn_idx); 9646 if (err) 9647 return err; 9648 do_print_state = true; 9649 continue; 9650 } 9651 9652 err = check_reference_leak(env); 9653 if (err) 9654 return err; 9655 9656 err = check_return_code(env); 9657 if (err) 9658 return err; 9659 process_bpf_exit: 9660 update_branch_counts(env, env->cur_state); 9661 err = pop_stack(env, &prev_insn_idx, 9662 &env->insn_idx, pop_log); 9663 if (err < 0) { 9664 if (err != -ENOENT) 9665 return err; 9666 break; 9667 } else { 9668 do_print_state = true; 9669 continue; 9670 } 9671 } else { 9672 err = check_cond_jmp_op(env, insn, &env->insn_idx); 9673 if (err) 9674 return err; 9675 } 9676 } else if (class == BPF_LD) { 9677 u8 mode = BPF_MODE(insn->code); 9678 9679 if (mode == BPF_ABS || mode == BPF_IND) { 9680 err = check_ld_abs(env, insn); 9681 if (err) 9682 return err; 9683 9684 } else if (mode == BPF_IMM) { 9685 err = check_ld_imm(env, insn); 9686 if (err) 9687 return err; 9688 9689 env->insn_idx++; 9690 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt; 9691 } else { 9692 verbose(env, "invalid BPF_LD mode\n"); 9693 return -EINVAL; 9694 } 9695 } else { 9696 verbose(env, "unknown insn class %d\n", class); 9697 return -EINVAL; 9698 } 9699 9700 env->insn_idx++; 9701 } 9702 9703 return 0; 9704 } 9705 9706 /* replace pseudo btf_id with kernel symbol address */ 9707 static int check_pseudo_btf_id(struct bpf_verifier_env *env, 9708 struct bpf_insn *insn, 9709 struct bpf_insn_aux_data *aux) 9710 { 9711 const struct btf_var_secinfo *vsi; 9712 const struct btf_type *datasec; 9713 const struct btf_type *t; 9714 const char *sym_name; 9715 bool percpu = false; 9716 u32 type, id = insn->imm; 9717 s32 datasec_id; 9718 u64 addr; 9719 int i; 9720 9721 if (!btf_vmlinux) { 9722 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n"); 9723 return -EINVAL; 9724 } 9725 9726 if (insn[1].imm != 0) { 9727 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n"); 9728 return -EINVAL; 9729 } 9730 9731 t = btf_type_by_id(btf_vmlinux, id); 9732 if (!t) { 9733 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id); 9734 return -ENOENT; 9735 } 9736 9737 if (!btf_type_is_var(t)) { 9738 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", 9739 id); 9740 return -EINVAL; 9741 } 9742 9743 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off); 9744 addr = kallsyms_lookup_name(sym_name); 9745 if (!addr) { 9746 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n", 9747 sym_name); 9748 return -ENOENT; 9749 } 9750 9751 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu", 9752 BTF_KIND_DATASEC); 9753 if (datasec_id > 0) { 9754 datasec = btf_type_by_id(btf_vmlinux, datasec_id); 9755 for_each_vsi(i, datasec, vsi) { 9756 if (vsi->type == id) { 9757 percpu = true; 9758 break; 9759 } 9760 } 9761 } 9762 9763 insn[0].imm = (u32)addr; 9764 insn[1].imm = addr >> 32; 9765 9766 type = t->type; 9767 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL); 9768 if (percpu) { 9769 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID; 9770 aux->btf_var.btf = btf_vmlinux; 9771 aux->btf_var.btf_id = type; 9772 } else if (!btf_type_is_struct(t)) { 9773 const struct btf_type *ret; 9774 const char *tname; 9775 u32 tsize; 9776 9777 /* resolve the type size of ksym. */ 9778 ret = btf_resolve_size(btf_vmlinux, t, &tsize); 9779 if (IS_ERR(ret)) { 9780 tname = btf_name_by_offset(btf_vmlinux, t->name_off); 9781 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n", 9782 tname, PTR_ERR(ret)); 9783 return -EINVAL; 9784 } 9785 aux->btf_var.reg_type = PTR_TO_MEM; 9786 aux->btf_var.mem_size = tsize; 9787 } else { 9788 aux->btf_var.reg_type = PTR_TO_BTF_ID; 9789 aux->btf_var.btf = btf_vmlinux; 9790 aux->btf_var.btf_id = type; 9791 } 9792 return 0; 9793 } 9794 9795 static int check_map_prealloc(struct bpf_map *map) 9796 { 9797 return (map->map_type != BPF_MAP_TYPE_HASH && 9798 map->map_type != BPF_MAP_TYPE_PERCPU_HASH && 9799 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || 9800 !(map->map_flags & BPF_F_NO_PREALLOC); 9801 } 9802 9803 static bool is_tracing_prog_type(enum bpf_prog_type type) 9804 { 9805 switch (type) { 9806 case BPF_PROG_TYPE_KPROBE: 9807 case BPF_PROG_TYPE_TRACEPOINT: 9808 case BPF_PROG_TYPE_PERF_EVENT: 9809 case BPF_PROG_TYPE_RAW_TRACEPOINT: 9810 return true; 9811 default: 9812 return false; 9813 } 9814 } 9815 9816 static bool is_preallocated_map(struct bpf_map *map) 9817 { 9818 if (!check_map_prealloc(map)) 9819 return false; 9820 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta)) 9821 return false; 9822 return true; 9823 } 9824 9825 static int check_map_prog_compatibility(struct bpf_verifier_env *env, 9826 struct bpf_map *map, 9827 struct bpf_prog *prog) 9828 9829 { 9830 enum bpf_prog_type prog_type = resolve_prog_type(prog); 9831 /* 9832 * Validate that trace type programs use preallocated hash maps. 9833 * 9834 * For programs attached to PERF events this is mandatory as the 9835 * perf NMI can hit any arbitrary code sequence. 9836 * 9837 * All other trace types using preallocated hash maps are unsafe as 9838 * well because tracepoint or kprobes can be inside locked regions 9839 * of the memory allocator or at a place where a recursion into the 9840 * memory allocator would see inconsistent state. 9841 * 9842 * On RT enabled kernels run-time allocation of all trace type 9843 * programs is strictly prohibited due to lock type constraints. On 9844 * !RT kernels it is allowed for backwards compatibility reasons for 9845 * now, but warnings are emitted so developers are made aware of 9846 * the unsafety and can fix their programs before this is enforced. 9847 */ 9848 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) { 9849 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) { 9850 verbose(env, "perf_event programs can only use preallocated hash map\n"); 9851 return -EINVAL; 9852 } 9853 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 9854 verbose(env, "trace type programs can only use preallocated hash map\n"); 9855 return -EINVAL; 9856 } 9857 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n"); 9858 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n"); 9859 } 9860 9861 if (map_value_has_spin_lock(map)) { 9862 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) { 9863 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n"); 9864 return -EINVAL; 9865 } 9866 9867 if (is_tracing_prog_type(prog_type)) { 9868 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n"); 9869 return -EINVAL; 9870 } 9871 9872 if (prog->aux->sleepable) { 9873 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n"); 9874 return -EINVAL; 9875 } 9876 } 9877 9878 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) && 9879 !bpf_offload_prog_map_match(prog, map)) { 9880 verbose(env, "offload device mismatch between prog and map\n"); 9881 return -EINVAL; 9882 } 9883 9884 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) { 9885 verbose(env, "bpf_struct_ops map cannot be used in prog\n"); 9886 return -EINVAL; 9887 } 9888 9889 if (prog->aux->sleepable) 9890 switch (map->map_type) { 9891 case BPF_MAP_TYPE_HASH: 9892 case BPF_MAP_TYPE_LRU_HASH: 9893 case BPF_MAP_TYPE_ARRAY: 9894 if (!is_preallocated_map(map)) { 9895 verbose(env, 9896 "Sleepable programs can only use preallocated hash maps\n"); 9897 return -EINVAL; 9898 } 9899 break; 9900 default: 9901 verbose(env, 9902 "Sleepable programs can only use array and hash maps\n"); 9903 return -EINVAL; 9904 } 9905 9906 return 0; 9907 } 9908 9909 static bool bpf_map_is_cgroup_storage(struct bpf_map *map) 9910 { 9911 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE || 9912 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE); 9913 } 9914 9915 /* find and rewrite pseudo imm in ld_imm64 instructions: 9916 * 9917 * 1. if it accesses map FD, replace it with actual map pointer. 9918 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var. 9919 * 9920 * NOTE: btf_vmlinux is required for converting pseudo btf_id. 9921 */ 9922 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env) 9923 { 9924 struct bpf_insn *insn = env->prog->insnsi; 9925 int insn_cnt = env->prog->len; 9926 int i, j, err; 9927 9928 err = bpf_prog_calc_tag(env->prog); 9929 if (err) 9930 return err; 9931 9932 for (i = 0; i < insn_cnt; i++, insn++) { 9933 if (BPF_CLASS(insn->code) == BPF_LDX && 9934 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { 9935 verbose(env, "BPF_LDX uses reserved fields\n"); 9936 return -EINVAL; 9937 } 9938 9939 if (BPF_CLASS(insn->code) == BPF_STX && 9940 ((BPF_MODE(insn->code) != BPF_MEM && 9941 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { 9942 verbose(env, "BPF_STX uses reserved fields\n"); 9943 return -EINVAL; 9944 } 9945 9946 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { 9947 struct bpf_insn_aux_data *aux; 9948 struct bpf_map *map; 9949 struct fd f; 9950 u64 addr; 9951 9952 if (i == insn_cnt - 1 || insn[1].code != 0 || 9953 insn[1].dst_reg != 0 || insn[1].src_reg != 0 || 9954 insn[1].off != 0) { 9955 verbose(env, "invalid bpf_ld_imm64 insn\n"); 9956 return -EINVAL; 9957 } 9958 9959 if (insn[0].src_reg == 0) 9960 /* valid generic load 64-bit imm */ 9961 goto next_insn; 9962 9963 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) { 9964 aux = &env->insn_aux_data[i]; 9965 err = check_pseudo_btf_id(env, insn, aux); 9966 if (err) 9967 return err; 9968 goto next_insn; 9969 } 9970 9971 /* In final convert_pseudo_ld_imm64() step, this is 9972 * converted into regular 64-bit imm load insn. 9973 */ 9974 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD && 9975 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) || 9976 (insn[0].src_reg == BPF_PSEUDO_MAP_FD && 9977 insn[1].imm != 0)) { 9978 verbose(env, 9979 "unrecognized bpf_ld_imm64 insn\n"); 9980 return -EINVAL; 9981 } 9982 9983 f = fdget(insn[0].imm); 9984 map = __bpf_map_get(f); 9985 if (IS_ERR(map)) { 9986 verbose(env, "fd %d is not pointing to valid bpf_map\n", 9987 insn[0].imm); 9988 return PTR_ERR(map); 9989 } 9990 9991 err = check_map_prog_compatibility(env, map, env->prog); 9992 if (err) { 9993 fdput(f); 9994 return err; 9995 } 9996 9997 aux = &env->insn_aux_data[i]; 9998 if (insn->src_reg == BPF_PSEUDO_MAP_FD) { 9999 addr = (unsigned long)map; 10000 } else { 10001 u32 off = insn[1].imm; 10002 10003 if (off >= BPF_MAX_VAR_OFF) { 10004 verbose(env, "direct value offset of %u is not allowed\n", off); 10005 fdput(f); 10006 return -EINVAL; 10007 } 10008 10009 if (!map->ops->map_direct_value_addr) { 10010 verbose(env, "no direct value access support for this map type\n"); 10011 fdput(f); 10012 return -EINVAL; 10013 } 10014 10015 err = map->ops->map_direct_value_addr(map, &addr, off); 10016 if (err) { 10017 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n", 10018 map->value_size, off); 10019 fdput(f); 10020 return err; 10021 } 10022 10023 aux->map_off = off; 10024 addr += off; 10025 } 10026 10027 insn[0].imm = (u32)addr; 10028 insn[1].imm = addr >> 32; 10029 10030 /* check whether we recorded this map already */ 10031 for (j = 0; j < env->used_map_cnt; j++) { 10032 if (env->used_maps[j] == map) { 10033 aux->map_index = j; 10034 fdput(f); 10035 goto next_insn; 10036 } 10037 } 10038 10039 if (env->used_map_cnt >= MAX_USED_MAPS) { 10040 fdput(f); 10041 return -E2BIG; 10042 } 10043 10044 /* hold the map. If the program is rejected by verifier, 10045 * the map will be released by release_maps() or it 10046 * will be used by the valid program until it's unloaded 10047 * and all maps are released in free_used_maps() 10048 */ 10049 bpf_map_inc(map); 10050 10051 aux->map_index = env->used_map_cnt; 10052 env->used_maps[env->used_map_cnt++] = map; 10053 10054 if (bpf_map_is_cgroup_storage(map) && 10055 bpf_cgroup_storage_assign(env->prog->aux, map)) { 10056 verbose(env, "only one cgroup storage of each type is allowed\n"); 10057 fdput(f); 10058 return -EBUSY; 10059 } 10060 10061 fdput(f); 10062 next_insn: 10063 insn++; 10064 i++; 10065 continue; 10066 } 10067 10068 /* Basic sanity check before we invest more work here. */ 10069 if (!bpf_opcode_in_insntable(insn->code)) { 10070 verbose(env, "unknown opcode %02x\n", insn->code); 10071 return -EINVAL; 10072 } 10073 } 10074 10075 /* now all pseudo BPF_LD_IMM64 instructions load valid 10076 * 'struct bpf_map *' into a register instead of user map_fd. 10077 * These pointers will be used later by verifier to validate map access. 10078 */ 10079 return 0; 10080 } 10081 10082 /* drop refcnt of maps used by the rejected program */ 10083 static void release_maps(struct bpf_verifier_env *env) 10084 { 10085 __bpf_free_used_maps(env->prog->aux, env->used_maps, 10086 env->used_map_cnt); 10087 } 10088 10089 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ 10090 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) 10091 { 10092 struct bpf_insn *insn = env->prog->insnsi; 10093 int insn_cnt = env->prog->len; 10094 int i; 10095 10096 for (i = 0; i < insn_cnt; i++, insn++) 10097 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) 10098 insn->src_reg = 0; 10099 } 10100 10101 /* single env->prog->insni[off] instruction was replaced with the range 10102 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying 10103 * [0, off) and [off, end) to new locations, so the patched range stays zero 10104 */ 10105 static int adjust_insn_aux_data(struct bpf_verifier_env *env, 10106 struct bpf_prog *new_prog, u32 off, u32 cnt) 10107 { 10108 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; 10109 struct bpf_insn *insn = new_prog->insnsi; 10110 u32 prog_len; 10111 int i; 10112 10113 /* aux info at OFF always needs adjustment, no matter fast path 10114 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the 10115 * original insn at old prog. 10116 */ 10117 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1); 10118 10119 if (cnt == 1) 10120 return 0; 10121 prog_len = new_prog->len; 10122 new_data = vzalloc(array_size(prog_len, 10123 sizeof(struct bpf_insn_aux_data))); 10124 if (!new_data) 10125 return -ENOMEM; 10126 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); 10127 memcpy(new_data + off + cnt - 1, old_data + off, 10128 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); 10129 for (i = off; i < off + cnt - 1; i++) { 10130 new_data[i].seen = env->pass_cnt; 10131 new_data[i].zext_dst = insn_has_def32(env, insn + i); 10132 } 10133 env->insn_aux_data = new_data; 10134 vfree(old_data); 10135 return 0; 10136 } 10137 10138 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len) 10139 { 10140 int i; 10141 10142 if (len == 1) 10143 return; 10144 /* NOTE: fake 'exit' subprog should be updated as well. */ 10145 for (i = 0; i <= env->subprog_cnt; i++) { 10146 if (env->subprog_info[i].start <= off) 10147 continue; 10148 env->subprog_info[i].start += len - 1; 10149 } 10150 } 10151 10152 static void adjust_poke_descs(struct bpf_prog *prog, u32 len) 10153 { 10154 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab; 10155 int i, sz = prog->aux->size_poke_tab; 10156 struct bpf_jit_poke_descriptor *desc; 10157 10158 for (i = 0; i < sz; i++) { 10159 desc = &tab[i]; 10160 desc->insn_idx += len - 1; 10161 } 10162 } 10163 10164 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, 10165 const struct bpf_insn *patch, u32 len) 10166 { 10167 struct bpf_prog *new_prog; 10168 10169 new_prog = bpf_patch_insn_single(env->prog, off, patch, len); 10170 if (IS_ERR(new_prog)) { 10171 if (PTR_ERR(new_prog) == -ERANGE) 10172 verbose(env, 10173 "insn %d cannot be patched due to 16-bit range\n", 10174 env->insn_aux_data[off].orig_idx); 10175 return NULL; 10176 } 10177 if (adjust_insn_aux_data(env, new_prog, off, len)) 10178 return NULL; 10179 adjust_subprog_starts(env, off, len); 10180 adjust_poke_descs(new_prog, len); 10181 return new_prog; 10182 } 10183 10184 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env, 10185 u32 off, u32 cnt) 10186 { 10187 int i, j; 10188 10189 /* find first prog starting at or after off (first to remove) */ 10190 for (i = 0; i < env->subprog_cnt; i++) 10191 if (env->subprog_info[i].start >= off) 10192 break; 10193 /* find first prog starting at or after off + cnt (first to stay) */ 10194 for (j = i; j < env->subprog_cnt; j++) 10195 if (env->subprog_info[j].start >= off + cnt) 10196 break; 10197 /* if j doesn't start exactly at off + cnt, we are just removing 10198 * the front of previous prog 10199 */ 10200 if (env->subprog_info[j].start != off + cnt) 10201 j--; 10202 10203 if (j > i) { 10204 struct bpf_prog_aux *aux = env->prog->aux; 10205 int move; 10206 10207 /* move fake 'exit' subprog as well */ 10208 move = env->subprog_cnt + 1 - j; 10209 10210 memmove(env->subprog_info + i, 10211 env->subprog_info + j, 10212 sizeof(*env->subprog_info) * move); 10213 env->subprog_cnt -= j - i; 10214 10215 /* remove func_info */ 10216 if (aux->func_info) { 10217 move = aux->func_info_cnt - j; 10218 10219 memmove(aux->func_info + i, 10220 aux->func_info + j, 10221 sizeof(*aux->func_info) * move); 10222 aux->func_info_cnt -= j - i; 10223 /* func_info->insn_off is set after all code rewrites, 10224 * in adjust_btf_func() - no need to adjust 10225 */ 10226 } 10227 } else { 10228 /* convert i from "first prog to remove" to "first to adjust" */ 10229 if (env->subprog_info[i].start == off) 10230 i++; 10231 } 10232 10233 /* update fake 'exit' subprog as well */ 10234 for (; i <= env->subprog_cnt; i++) 10235 env->subprog_info[i].start -= cnt; 10236 10237 return 0; 10238 } 10239 10240 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off, 10241 u32 cnt) 10242 { 10243 struct bpf_prog *prog = env->prog; 10244 u32 i, l_off, l_cnt, nr_linfo; 10245 struct bpf_line_info *linfo; 10246 10247 nr_linfo = prog->aux->nr_linfo; 10248 if (!nr_linfo) 10249 return 0; 10250 10251 linfo = prog->aux->linfo; 10252 10253 /* find first line info to remove, count lines to be removed */ 10254 for (i = 0; i < nr_linfo; i++) 10255 if (linfo[i].insn_off >= off) 10256 break; 10257 10258 l_off = i; 10259 l_cnt = 0; 10260 for (; i < nr_linfo; i++) 10261 if (linfo[i].insn_off < off + cnt) 10262 l_cnt++; 10263 else 10264 break; 10265 10266 /* First live insn doesn't match first live linfo, it needs to "inherit" 10267 * last removed linfo. prog is already modified, so prog->len == off 10268 * means no live instructions after (tail of the program was removed). 10269 */ 10270 if (prog->len != off && l_cnt && 10271 (i == nr_linfo || linfo[i].insn_off != off + cnt)) { 10272 l_cnt--; 10273 linfo[--i].insn_off = off + cnt; 10274 } 10275 10276 /* remove the line info which refer to the removed instructions */ 10277 if (l_cnt) { 10278 memmove(linfo + l_off, linfo + i, 10279 sizeof(*linfo) * (nr_linfo - i)); 10280 10281 prog->aux->nr_linfo -= l_cnt; 10282 nr_linfo = prog->aux->nr_linfo; 10283 } 10284 10285 /* pull all linfo[i].insn_off >= off + cnt in by cnt */ 10286 for (i = l_off; i < nr_linfo; i++) 10287 linfo[i].insn_off -= cnt; 10288 10289 /* fix up all subprogs (incl. 'exit') which start >= off */ 10290 for (i = 0; i <= env->subprog_cnt; i++) 10291 if (env->subprog_info[i].linfo_idx > l_off) { 10292 /* program may have started in the removed region but 10293 * may not be fully removed 10294 */ 10295 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt) 10296 env->subprog_info[i].linfo_idx -= l_cnt; 10297 else 10298 env->subprog_info[i].linfo_idx = l_off; 10299 } 10300 10301 return 0; 10302 } 10303 10304 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt) 10305 { 10306 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10307 unsigned int orig_prog_len = env->prog->len; 10308 int err; 10309 10310 if (bpf_prog_is_dev_bound(env->prog->aux)) 10311 bpf_prog_offload_remove_insns(env, off, cnt); 10312 10313 err = bpf_remove_insns(env->prog, off, cnt); 10314 if (err) 10315 return err; 10316 10317 err = adjust_subprog_starts_after_remove(env, off, cnt); 10318 if (err) 10319 return err; 10320 10321 err = bpf_adj_linfo_after_remove(env, off, cnt); 10322 if (err) 10323 return err; 10324 10325 memmove(aux_data + off, aux_data + off + cnt, 10326 sizeof(*aux_data) * (orig_prog_len - off - cnt)); 10327 10328 return 0; 10329 } 10330 10331 /* The verifier does more data flow analysis than llvm and will not 10332 * explore branches that are dead at run time. Malicious programs can 10333 * have dead code too. Therefore replace all dead at-run-time code 10334 * with 'ja -1'. 10335 * 10336 * Just nops are not optimal, e.g. if they would sit at the end of the 10337 * program and through another bug we would manage to jump there, then 10338 * we'd execute beyond program memory otherwise. Returning exception 10339 * code also wouldn't work since we can have subprogs where the dead 10340 * code could be located. 10341 */ 10342 static void sanitize_dead_code(struct bpf_verifier_env *env) 10343 { 10344 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10345 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1); 10346 struct bpf_insn *insn = env->prog->insnsi; 10347 const int insn_cnt = env->prog->len; 10348 int i; 10349 10350 for (i = 0; i < insn_cnt; i++) { 10351 if (aux_data[i].seen) 10352 continue; 10353 memcpy(insn + i, &trap, sizeof(trap)); 10354 } 10355 } 10356 10357 static bool insn_is_cond_jump(u8 code) 10358 { 10359 u8 op; 10360 10361 if (BPF_CLASS(code) == BPF_JMP32) 10362 return true; 10363 10364 if (BPF_CLASS(code) != BPF_JMP) 10365 return false; 10366 10367 op = BPF_OP(code); 10368 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL; 10369 } 10370 10371 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env) 10372 { 10373 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10374 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10375 struct bpf_insn *insn = env->prog->insnsi; 10376 const int insn_cnt = env->prog->len; 10377 int i; 10378 10379 for (i = 0; i < insn_cnt; i++, insn++) { 10380 if (!insn_is_cond_jump(insn->code)) 10381 continue; 10382 10383 if (!aux_data[i + 1].seen) 10384 ja.off = insn->off; 10385 else if (!aux_data[i + 1 + insn->off].seen) 10386 ja.off = 0; 10387 else 10388 continue; 10389 10390 if (bpf_prog_is_dev_bound(env->prog->aux)) 10391 bpf_prog_offload_replace_insn(env, i, &ja); 10392 10393 memcpy(insn, &ja, sizeof(ja)); 10394 } 10395 } 10396 10397 static int opt_remove_dead_code(struct bpf_verifier_env *env) 10398 { 10399 struct bpf_insn_aux_data *aux_data = env->insn_aux_data; 10400 int insn_cnt = env->prog->len; 10401 int i, err; 10402 10403 for (i = 0; i < insn_cnt; i++) { 10404 int j; 10405 10406 j = 0; 10407 while (i + j < insn_cnt && !aux_data[i + j].seen) 10408 j++; 10409 if (!j) 10410 continue; 10411 10412 err = verifier_remove_insns(env, i, j); 10413 if (err) 10414 return err; 10415 insn_cnt = env->prog->len; 10416 } 10417 10418 return 0; 10419 } 10420 10421 static int opt_remove_nops(struct bpf_verifier_env *env) 10422 { 10423 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0); 10424 struct bpf_insn *insn = env->prog->insnsi; 10425 int insn_cnt = env->prog->len; 10426 int i, err; 10427 10428 for (i = 0; i < insn_cnt; i++) { 10429 if (memcmp(&insn[i], &ja, sizeof(ja))) 10430 continue; 10431 10432 err = verifier_remove_insns(env, i, 1); 10433 if (err) 10434 return err; 10435 insn_cnt--; 10436 i--; 10437 } 10438 10439 return 0; 10440 } 10441 10442 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env, 10443 const union bpf_attr *attr) 10444 { 10445 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4]; 10446 struct bpf_insn_aux_data *aux = env->insn_aux_data; 10447 int i, patch_len, delta = 0, len = env->prog->len; 10448 struct bpf_insn *insns = env->prog->insnsi; 10449 struct bpf_prog *new_prog; 10450 bool rnd_hi32; 10451 10452 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32; 10453 zext_patch[1] = BPF_ZEXT_REG(0); 10454 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0); 10455 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32); 10456 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX); 10457 for (i = 0; i < len; i++) { 10458 int adj_idx = i + delta; 10459 struct bpf_insn insn; 10460 10461 insn = insns[adj_idx]; 10462 if (!aux[adj_idx].zext_dst) { 10463 u8 code, class; 10464 u32 imm_rnd; 10465 10466 if (!rnd_hi32) 10467 continue; 10468 10469 code = insn.code; 10470 class = BPF_CLASS(code); 10471 if (insn_no_def(&insn)) 10472 continue; 10473 10474 /* NOTE: arg "reg" (the fourth one) is only used for 10475 * BPF_STX which has been ruled out in above 10476 * check, it is safe to pass NULL here. 10477 */ 10478 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) { 10479 if (class == BPF_LD && 10480 BPF_MODE(code) == BPF_IMM) 10481 i++; 10482 continue; 10483 } 10484 10485 /* ctx load could be transformed into wider load. */ 10486 if (class == BPF_LDX && 10487 aux[adj_idx].ptr_type == PTR_TO_CTX) 10488 continue; 10489 10490 imm_rnd = get_random_int(); 10491 rnd_hi32_patch[0] = insn; 10492 rnd_hi32_patch[1].imm = imm_rnd; 10493 rnd_hi32_patch[3].dst_reg = insn.dst_reg; 10494 patch = rnd_hi32_patch; 10495 patch_len = 4; 10496 goto apply_patch_buffer; 10497 } 10498 10499 if (!bpf_jit_needs_zext()) 10500 continue; 10501 10502 zext_patch[0] = insn; 10503 zext_patch[1].dst_reg = insn.dst_reg; 10504 zext_patch[1].src_reg = insn.dst_reg; 10505 patch = zext_patch; 10506 patch_len = 2; 10507 apply_patch_buffer: 10508 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len); 10509 if (!new_prog) 10510 return -ENOMEM; 10511 env->prog = new_prog; 10512 insns = new_prog->insnsi; 10513 aux = env->insn_aux_data; 10514 delta += patch_len - 1; 10515 } 10516 10517 return 0; 10518 } 10519 10520 /* convert load instructions that access fields of a context type into a 10521 * sequence of instructions that access fields of the underlying structure: 10522 * struct __sk_buff -> struct sk_buff 10523 * struct bpf_sock_ops -> struct sock 10524 */ 10525 static int convert_ctx_accesses(struct bpf_verifier_env *env) 10526 { 10527 const struct bpf_verifier_ops *ops = env->ops; 10528 int i, cnt, size, ctx_field_size, delta = 0; 10529 const int insn_cnt = env->prog->len; 10530 struct bpf_insn insn_buf[16], *insn; 10531 u32 target_size, size_default, off; 10532 struct bpf_prog *new_prog; 10533 enum bpf_access_type type; 10534 bool is_narrower_load; 10535 10536 if (ops->gen_prologue || env->seen_direct_write) { 10537 if (!ops->gen_prologue) { 10538 verbose(env, "bpf verifier is misconfigured\n"); 10539 return -EINVAL; 10540 } 10541 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, 10542 env->prog); 10543 if (cnt >= ARRAY_SIZE(insn_buf)) { 10544 verbose(env, "bpf verifier is misconfigured\n"); 10545 return -EINVAL; 10546 } else if (cnt) { 10547 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); 10548 if (!new_prog) 10549 return -ENOMEM; 10550 10551 env->prog = new_prog; 10552 delta += cnt - 1; 10553 } 10554 } 10555 10556 if (bpf_prog_is_dev_bound(env->prog->aux)) 10557 return 0; 10558 10559 insn = env->prog->insnsi + delta; 10560 10561 for (i = 0; i < insn_cnt; i++, insn++) { 10562 bpf_convert_ctx_access_t convert_ctx_access; 10563 10564 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || 10565 insn->code == (BPF_LDX | BPF_MEM | BPF_H) || 10566 insn->code == (BPF_LDX | BPF_MEM | BPF_W) || 10567 insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) 10568 type = BPF_READ; 10569 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || 10570 insn->code == (BPF_STX | BPF_MEM | BPF_H) || 10571 insn->code == (BPF_STX | BPF_MEM | BPF_W) || 10572 insn->code == (BPF_STX | BPF_MEM | BPF_DW)) 10573 type = BPF_WRITE; 10574 else 10575 continue; 10576 10577 if (type == BPF_WRITE && 10578 env->insn_aux_data[i + delta].sanitize_stack_off) { 10579 struct bpf_insn patch[] = { 10580 /* Sanitize suspicious stack slot with zero. 10581 * There are no memory dependencies for this store, 10582 * since it's only using frame pointer and immediate 10583 * constant of zero 10584 */ 10585 BPF_ST_MEM(BPF_DW, BPF_REG_FP, 10586 env->insn_aux_data[i + delta].sanitize_stack_off, 10587 0), 10588 /* the original STX instruction will immediately 10589 * overwrite the same stack slot with appropriate value 10590 */ 10591 *insn, 10592 }; 10593 10594 cnt = ARRAY_SIZE(patch); 10595 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); 10596 if (!new_prog) 10597 return -ENOMEM; 10598 10599 delta += cnt - 1; 10600 env->prog = new_prog; 10601 insn = new_prog->insnsi + i + delta; 10602 continue; 10603 } 10604 10605 switch (env->insn_aux_data[i + delta].ptr_type) { 10606 case PTR_TO_CTX: 10607 if (!ops->convert_ctx_access) 10608 continue; 10609 convert_ctx_access = ops->convert_ctx_access; 10610 break; 10611 case PTR_TO_SOCKET: 10612 case PTR_TO_SOCK_COMMON: 10613 convert_ctx_access = bpf_sock_convert_ctx_access; 10614 break; 10615 case PTR_TO_TCP_SOCK: 10616 convert_ctx_access = bpf_tcp_sock_convert_ctx_access; 10617 break; 10618 case PTR_TO_XDP_SOCK: 10619 convert_ctx_access = bpf_xdp_sock_convert_ctx_access; 10620 break; 10621 case PTR_TO_BTF_ID: 10622 if (type == BPF_READ) { 10623 insn->code = BPF_LDX | BPF_PROBE_MEM | 10624 BPF_SIZE((insn)->code); 10625 env->prog->aux->num_exentries++; 10626 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) { 10627 verbose(env, "Writes through BTF pointers are not allowed\n"); 10628 return -EINVAL; 10629 } 10630 continue; 10631 default: 10632 continue; 10633 } 10634 10635 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; 10636 size = BPF_LDST_BYTES(insn); 10637 10638 /* If the read access is a narrower load of the field, 10639 * convert to a 4/8-byte load, to minimum program type specific 10640 * convert_ctx_access changes. If conversion is successful, 10641 * we will apply proper mask to the result. 10642 */ 10643 is_narrower_load = size < ctx_field_size; 10644 size_default = bpf_ctx_off_adjust_machine(ctx_field_size); 10645 off = insn->off; 10646 if (is_narrower_load) { 10647 u8 size_code; 10648 10649 if (type == BPF_WRITE) { 10650 verbose(env, "bpf verifier narrow ctx access misconfigured\n"); 10651 return -EINVAL; 10652 } 10653 10654 size_code = BPF_H; 10655 if (ctx_field_size == 4) 10656 size_code = BPF_W; 10657 else if (ctx_field_size == 8) 10658 size_code = BPF_DW; 10659 10660 insn->off = off & ~(size_default - 1); 10661 insn->code = BPF_LDX | BPF_MEM | size_code; 10662 } 10663 10664 target_size = 0; 10665 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 10666 &target_size); 10667 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || 10668 (ctx_field_size && !target_size)) { 10669 verbose(env, "bpf verifier is misconfigured\n"); 10670 return -EINVAL; 10671 } 10672 10673 if (is_narrower_load && size < target_size) { 10674 u8 shift = bpf_ctx_narrow_access_offset( 10675 off, size, size_default) * 8; 10676 if (ctx_field_size <= 4) { 10677 if (shift) 10678 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, 10679 insn->dst_reg, 10680 shift); 10681 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, 10682 (1 << size * 8) - 1); 10683 } else { 10684 if (shift) 10685 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 10686 insn->dst_reg, 10687 shift); 10688 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, 10689 (1ULL << size * 8) - 1); 10690 } 10691 } 10692 10693 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 10694 if (!new_prog) 10695 return -ENOMEM; 10696 10697 delta += cnt - 1; 10698 10699 /* keep walking new program and skip insns we just inserted */ 10700 env->prog = new_prog; 10701 insn = new_prog->insnsi + i + delta; 10702 } 10703 10704 return 0; 10705 } 10706 10707 static int jit_subprogs(struct bpf_verifier_env *env) 10708 { 10709 struct bpf_prog *prog = env->prog, **func, *tmp; 10710 int i, j, subprog_start, subprog_end = 0, len, subprog; 10711 struct bpf_map *map_ptr; 10712 struct bpf_insn *insn; 10713 void *old_bpf_func; 10714 int err, num_exentries; 10715 10716 if (env->subprog_cnt <= 1) 10717 return 0; 10718 10719 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10720 if (insn->code != (BPF_JMP | BPF_CALL) || 10721 insn->src_reg != BPF_PSEUDO_CALL) 10722 continue; 10723 /* Upon error here we cannot fall back to interpreter but 10724 * need a hard reject of the program. Thus -EFAULT is 10725 * propagated in any case. 10726 */ 10727 subprog = find_subprog(env, i + insn->imm + 1); 10728 if (subprog < 0) { 10729 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n", 10730 i + insn->imm + 1); 10731 return -EFAULT; 10732 } 10733 /* temporarily remember subprog id inside insn instead of 10734 * aux_data, since next loop will split up all insns into funcs 10735 */ 10736 insn->off = subprog; 10737 /* remember original imm in case JIT fails and fallback 10738 * to interpreter will be needed 10739 */ 10740 env->insn_aux_data[i].call_imm = insn->imm; 10741 /* point imm to __bpf_call_base+1 from JITs point of view */ 10742 insn->imm = 1; 10743 } 10744 10745 err = bpf_prog_alloc_jited_linfo(prog); 10746 if (err) 10747 goto out_undo_insn; 10748 10749 err = -ENOMEM; 10750 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL); 10751 if (!func) 10752 goto out_undo_insn; 10753 10754 for (i = 0; i < env->subprog_cnt; i++) { 10755 subprog_start = subprog_end; 10756 subprog_end = env->subprog_info[i + 1].start; 10757 10758 len = subprog_end - subprog_start; 10759 /* BPF_PROG_RUN doesn't call subprogs directly, 10760 * hence main prog stats include the runtime of subprogs. 10761 * subprogs don't have IDs and not reachable via prog_get_next_id 10762 * func[i]->aux->stats will never be accessed and stays NULL 10763 */ 10764 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER); 10765 if (!func[i]) 10766 goto out_free; 10767 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start], 10768 len * sizeof(struct bpf_insn)); 10769 func[i]->type = prog->type; 10770 func[i]->len = len; 10771 if (bpf_prog_calc_tag(func[i])) 10772 goto out_free; 10773 func[i]->is_func = 1; 10774 func[i]->aux->func_idx = i; 10775 /* the btf and func_info will be freed only at prog->aux */ 10776 func[i]->aux->btf = prog->aux->btf; 10777 func[i]->aux->func_info = prog->aux->func_info; 10778 10779 for (j = 0; j < prog->aux->size_poke_tab; j++) { 10780 u32 insn_idx = prog->aux->poke_tab[j].insn_idx; 10781 int ret; 10782 10783 if (!(insn_idx >= subprog_start && 10784 insn_idx <= subprog_end)) 10785 continue; 10786 10787 ret = bpf_jit_add_poke_descriptor(func[i], 10788 &prog->aux->poke_tab[j]); 10789 if (ret < 0) { 10790 verbose(env, "adding tail call poke descriptor failed\n"); 10791 goto out_free; 10792 } 10793 10794 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1; 10795 10796 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map; 10797 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux); 10798 if (ret < 0) { 10799 verbose(env, "tracking tail call prog failed\n"); 10800 goto out_free; 10801 } 10802 } 10803 10804 /* Use bpf_prog_F_tag to indicate functions in stack traces. 10805 * Long term would need debug info to populate names 10806 */ 10807 func[i]->aux->name[0] = 'F'; 10808 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth; 10809 func[i]->jit_requested = 1; 10810 func[i]->aux->linfo = prog->aux->linfo; 10811 func[i]->aux->nr_linfo = prog->aux->nr_linfo; 10812 func[i]->aux->jited_linfo = prog->aux->jited_linfo; 10813 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx; 10814 num_exentries = 0; 10815 insn = func[i]->insnsi; 10816 for (j = 0; j < func[i]->len; j++, insn++) { 10817 if (BPF_CLASS(insn->code) == BPF_LDX && 10818 BPF_MODE(insn->code) == BPF_PROBE_MEM) 10819 num_exentries++; 10820 } 10821 func[i]->aux->num_exentries = num_exentries; 10822 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable; 10823 func[i] = bpf_int_jit_compile(func[i]); 10824 if (!func[i]->jited) { 10825 err = -ENOTSUPP; 10826 goto out_free; 10827 } 10828 cond_resched(); 10829 } 10830 10831 /* Untrack main program's aux structs so that during map_poke_run() 10832 * we will not stumble upon the unfilled poke descriptors; each 10833 * of the main program's poke descs got distributed across subprogs 10834 * and got tracked onto map, so we are sure that none of them will 10835 * be missed after the operation below 10836 */ 10837 for (i = 0; i < prog->aux->size_poke_tab; i++) { 10838 map_ptr = prog->aux->poke_tab[i].tail_call.map; 10839 10840 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux); 10841 } 10842 10843 /* at this point all bpf functions were successfully JITed 10844 * now populate all bpf_calls with correct addresses and 10845 * run last pass of JIT 10846 */ 10847 for (i = 0; i < env->subprog_cnt; i++) { 10848 insn = func[i]->insnsi; 10849 for (j = 0; j < func[i]->len; j++, insn++) { 10850 if (insn->code != (BPF_JMP | BPF_CALL) || 10851 insn->src_reg != BPF_PSEUDO_CALL) 10852 continue; 10853 subprog = insn->off; 10854 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) - 10855 __bpf_call_base; 10856 } 10857 10858 /* we use the aux data to keep a list of the start addresses 10859 * of the JITed images for each function in the program 10860 * 10861 * for some architectures, such as powerpc64, the imm field 10862 * might not be large enough to hold the offset of the start 10863 * address of the callee's JITed image from __bpf_call_base 10864 * 10865 * in such cases, we can lookup the start address of a callee 10866 * by using its subprog id, available from the off field of 10867 * the call instruction, as an index for this list 10868 */ 10869 func[i]->aux->func = func; 10870 func[i]->aux->func_cnt = env->subprog_cnt; 10871 } 10872 for (i = 0; i < env->subprog_cnt; i++) { 10873 old_bpf_func = func[i]->bpf_func; 10874 tmp = bpf_int_jit_compile(func[i]); 10875 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) { 10876 verbose(env, "JIT doesn't support bpf-to-bpf calls\n"); 10877 err = -ENOTSUPP; 10878 goto out_free; 10879 } 10880 cond_resched(); 10881 } 10882 10883 /* finally lock prog and jit images for all functions and 10884 * populate kallsysm 10885 */ 10886 for (i = 0; i < env->subprog_cnt; i++) { 10887 bpf_prog_lock_ro(func[i]); 10888 bpf_prog_kallsyms_add(func[i]); 10889 } 10890 10891 /* Last step: make now unused interpreter insns from main 10892 * prog consistent for later dump requests, so they can 10893 * later look the same as if they were interpreted only. 10894 */ 10895 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10896 if (insn->code != (BPF_JMP | BPF_CALL) || 10897 insn->src_reg != BPF_PSEUDO_CALL) 10898 continue; 10899 insn->off = env->insn_aux_data[i].call_imm; 10900 subprog = find_subprog(env, i + insn->off + 1); 10901 insn->imm = subprog; 10902 } 10903 10904 prog->jited = 1; 10905 prog->bpf_func = func[0]->bpf_func; 10906 prog->aux->func = func; 10907 prog->aux->func_cnt = env->subprog_cnt; 10908 bpf_prog_free_unused_jited_linfo(prog); 10909 return 0; 10910 out_free: 10911 for (i = 0; i < env->subprog_cnt; i++) { 10912 if (!func[i]) 10913 continue; 10914 10915 for (j = 0; j < func[i]->aux->size_poke_tab; j++) { 10916 map_ptr = func[i]->aux->poke_tab[j].tail_call.map; 10917 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux); 10918 } 10919 bpf_jit_free(func[i]); 10920 } 10921 kfree(func); 10922 out_undo_insn: 10923 /* cleanup main prog to be interpreted */ 10924 prog->jit_requested = 0; 10925 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) { 10926 if (insn->code != (BPF_JMP | BPF_CALL) || 10927 insn->src_reg != BPF_PSEUDO_CALL) 10928 continue; 10929 insn->off = 0; 10930 insn->imm = env->insn_aux_data[i].call_imm; 10931 } 10932 bpf_prog_free_jited_linfo(prog); 10933 return err; 10934 } 10935 10936 static int fixup_call_args(struct bpf_verifier_env *env) 10937 { 10938 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10939 struct bpf_prog *prog = env->prog; 10940 struct bpf_insn *insn = prog->insnsi; 10941 int i, depth; 10942 #endif 10943 int err = 0; 10944 10945 if (env->prog->jit_requested && 10946 !bpf_prog_is_dev_bound(env->prog->aux)) { 10947 err = jit_subprogs(env); 10948 if (err == 0) 10949 return 0; 10950 if (err == -EFAULT) 10951 return err; 10952 } 10953 #ifndef CONFIG_BPF_JIT_ALWAYS_ON 10954 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) { 10955 /* When JIT fails the progs with bpf2bpf calls and tail_calls 10956 * have to be rejected, since interpreter doesn't support them yet. 10957 */ 10958 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n"); 10959 return -EINVAL; 10960 } 10961 for (i = 0; i < prog->len; i++, insn++) { 10962 if (insn->code != (BPF_JMP | BPF_CALL) || 10963 insn->src_reg != BPF_PSEUDO_CALL) 10964 continue; 10965 depth = get_callee_stack_depth(env, insn, i); 10966 if (depth < 0) 10967 return depth; 10968 bpf_patch_call_args(insn, depth); 10969 } 10970 err = 0; 10971 #endif 10972 return err; 10973 } 10974 10975 /* fixup insn->imm field of bpf_call instructions 10976 * and inline eligible helpers as explicit sequence of BPF instructions 10977 * 10978 * this function is called after eBPF program passed verification 10979 */ 10980 static int fixup_bpf_calls(struct bpf_verifier_env *env) 10981 { 10982 struct bpf_prog *prog = env->prog; 10983 bool expect_blinding = bpf_jit_blinding_enabled(prog); 10984 struct bpf_insn *insn = prog->insnsi; 10985 const struct bpf_func_proto *fn; 10986 const int insn_cnt = prog->len; 10987 const struct bpf_map_ops *ops; 10988 struct bpf_insn_aux_data *aux; 10989 struct bpf_insn insn_buf[16]; 10990 struct bpf_prog *new_prog; 10991 struct bpf_map *map_ptr; 10992 int i, ret, cnt, delta = 0; 10993 10994 for (i = 0; i < insn_cnt; i++, insn++) { 10995 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || 10996 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 10997 insn->code == (BPF_ALU | BPF_MOD | BPF_X) || 10998 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 10999 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; 11000 struct bpf_insn mask_and_div[] = { 11001 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 11002 /* Rx div 0 -> 0 */ 11003 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2), 11004 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg), 11005 BPF_JMP_IMM(BPF_JA, 0, 0, 1), 11006 *insn, 11007 }; 11008 struct bpf_insn mask_and_mod[] = { 11009 BPF_MOV32_REG(insn->src_reg, insn->src_reg), 11010 /* Rx mod 0 -> Rx */ 11011 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1), 11012 *insn, 11013 }; 11014 struct bpf_insn *patchlet; 11015 11016 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || 11017 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { 11018 patchlet = mask_and_div + (is64 ? 1 : 0); 11019 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0); 11020 } else { 11021 patchlet = mask_and_mod + (is64 ? 1 : 0); 11022 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0); 11023 } 11024 11025 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); 11026 if (!new_prog) 11027 return -ENOMEM; 11028 11029 delta += cnt - 1; 11030 env->prog = prog = new_prog; 11031 insn = new_prog->insnsi + i + delta; 11032 continue; 11033 } 11034 11035 if (BPF_CLASS(insn->code) == BPF_LD && 11036 (BPF_MODE(insn->code) == BPF_ABS || 11037 BPF_MODE(insn->code) == BPF_IND)) { 11038 cnt = env->ops->gen_ld_abs(insn, insn_buf); 11039 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11040 verbose(env, "bpf verifier is misconfigured\n"); 11041 return -EINVAL; 11042 } 11043 11044 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11045 if (!new_prog) 11046 return -ENOMEM; 11047 11048 delta += cnt - 1; 11049 env->prog = prog = new_prog; 11050 insn = new_prog->insnsi + i + delta; 11051 continue; 11052 } 11053 11054 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || 11055 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { 11056 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; 11057 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; 11058 struct bpf_insn insn_buf[16]; 11059 struct bpf_insn *patch = &insn_buf[0]; 11060 bool issrc, isneg; 11061 u32 off_reg; 11062 11063 aux = &env->insn_aux_data[i + delta]; 11064 if (!aux->alu_state || 11065 aux->alu_state == BPF_ALU_NON_POINTER) 11066 continue; 11067 11068 isneg = aux->alu_state & BPF_ALU_NEG_VALUE; 11069 issrc = (aux->alu_state & BPF_ALU_SANITIZE) == 11070 BPF_ALU_SANITIZE_SRC; 11071 11072 off_reg = issrc ? insn->src_reg : insn->dst_reg; 11073 if (isneg) 11074 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11075 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1); 11076 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); 11077 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); 11078 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); 11079 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); 11080 if (issrc) { 11081 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, 11082 off_reg); 11083 insn->src_reg = BPF_REG_AX; 11084 } else { 11085 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg, 11086 BPF_REG_AX); 11087 } 11088 if (isneg) 11089 insn->code = insn->code == code_add ? 11090 code_sub : code_add; 11091 *patch++ = *insn; 11092 if (issrc && isneg) 11093 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); 11094 cnt = patch - insn_buf; 11095 11096 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11097 if (!new_prog) 11098 return -ENOMEM; 11099 11100 delta += cnt - 1; 11101 env->prog = prog = new_prog; 11102 insn = new_prog->insnsi + i + delta; 11103 continue; 11104 } 11105 11106 if (insn->code != (BPF_JMP | BPF_CALL)) 11107 continue; 11108 if (insn->src_reg == BPF_PSEUDO_CALL) 11109 continue; 11110 11111 if (insn->imm == BPF_FUNC_get_route_realm) 11112 prog->dst_needed = 1; 11113 if (insn->imm == BPF_FUNC_get_prandom_u32) 11114 bpf_user_rnd_init_once(); 11115 if (insn->imm == BPF_FUNC_override_return) 11116 prog->kprobe_override = 1; 11117 if (insn->imm == BPF_FUNC_tail_call) { 11118 /* If we tail call into other programs, we 11119 * cannot make any assumptions since they can 11120 * be replaced dynamically during runtime in 11121 * the program array. 11122 */ 11123 prog->cb_access = 1; 11124 if (!allow_tail_call_in_subprogs(env)) 11125 prog->aux->stack_depth = MAX_BPF_STACK; 11126 prog->aux->max_pkt_offset = MAX_PACKET_OFF; 11127 11128 /* mark bpf_tail_call as different opcode to avoid 11129 * conditional branch in the interpeter for every normal 11130 * call and to prevent accidental JITing by JIT compiler 11131 * that doesn't support bpf_tail_call yet 11132 */ 11133 insn->imm = 0; 11134 insn->code = BPF_JMP | BPF_TAIL_CALL; 11135 11136 aux = &env->insn_aux_data[i + delta]; 11137 if (env->bpf_capable && !expect_blinding && 11138 prog->jit_requested && 11139 !bpf_map_key_poisoned(aux) && 11140 !bpf_map_ptr_poisoned(aux) && 11141 !bpf_map_ptr_unpriv(aux)) { 11142 struct bpf_jit_poke_descriptor desc = { 11143 .reason = BPF_POKE_REASON_TAIL_CALL, 11144 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state), 11145 .tail_call.key = bpf_map_key_immediate(aux), 11146 .insn_idx = i + delta, 11147 }; 11148 11149 ret = bpf_jit_add_poke_descriptor(prog, &desc); 11150 if (ret < 0) { 11151 verbose(env, "adding tail call poke descriptor failed\n"); 11152 return ret; 11153 } 11154 11155 insn->imm = ret + 1; 11156 continue; 11157 } 11158 11159 if (!bpf_map_ptr_unpriv(aux)) 11160 continue; 11161 11162 /* instead of changing every JIT dealing with tail_call 11163 * emit two extra insns: 11164 * if (index >= max_entries) goto out; 11165 * index &= array->index_mask; 11166 * to avoid out-of-bounds cpu speculation 11167 */ 11168 if (bpf_map_ptr_poisoned(aux)) { 11169 verbose(env, "tail_call abusing map_ptr\n"); 11170 return -EINVAL; 11171 } 11172 11173 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11174 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, 11175 map_ptr->max_entries, 2); 11176 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, 11177 container_of(map_ptr, 11178 struct bpf_array, 11179 map)->index_mask); 11180 insn_buf[2] = *insn; 11181 cnt = 3; 11182 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 11183 if (!new_prog) 11184 return -ENOMEM; 11185 11186 delta += cnt - 1; 11187 env->prog = prog = new_prog; 11188 insn = new_prog->insnsi + i + delta; 11189 continue; 11190 } 11191 11192 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup 11193 * and other inlining handlers are currently limited to 64 bit 11194 * only. 11195 */ 11196 if (prog->jit_requested && BITS_PER_LONG == 64 && 11197 (insn->imm == BPF_FUNC_map_lookup_elem || 11198 insn->imm == BPF_FUNC_map_update_elem || 11199 insn->imm == BPF_FUNC_map_delete_elem || 11200 insn->imm == BPF_FUNC_map_push_elem || 11201 insn->imm == BPF_FUNC_map_pop_elem || 11202 insn->imm == BPF_FUNC_map_peek_elem)) { 11203 aux = &env->insn_aux_data[i + delta]; 11204 if (bpf_map_ptr_poisoned(aux)) 11205 goto patch_call_imm; 11206 11207 map_ptr = BPF_MAP_PTR(aux->map_ptr_state); 11208 ops = map_ptr->ops; 11209 if (insn->imm == BPF_FUNC_map_lookup_elem && 11210 ops->map_gen_lookup) { 11211 cnt = ops->map_gen_lookup(map_ptr, insn_buf); 11212 if (cnt == -EOPNOTSUPP) 11213 goto patch_map_ops_generic; 11214 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) { 11215 verbose(env, "bpf verifier is misconfigured\n"); 11216 return -EINVAL; 11217 } 11218 11219 new_prog = bpf_patch_insn_data(env, i + delta, 11220 insn_buf, cnt); 11221 if (!new_prog) 11222 return -ENOMEM; 11223 11224 delta += cnt - 1; 11225 env->prog = prog = new_prog; 11226 insn = new_prog->insnsi + i + delta; 11227 continue; 11228 } 11229 11230 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem, 11231 (void *(*)(struct bpf_map *map, void *key))NULL)); 11232 BUILD_BUG_ON(!__same_type(ops->map_delete_elem, 11233 (int (*)(struct bpf_map *map, void *key))NULL)); 11234 BUILD_BUG_ON(!__same_type(ops->map_update_elem, 11235 (int (*)(struct bpf_map *map, void *key, void *value, 11236 u64 flags))NULL)); 11237 BUILD_BUG_ON(!__same_type(ops->map_push_elem, 11238 (int (*)(struct bpf_map *map, void *value, 11239 u64 flags))NULL)); 11240 BUILD_BUG_ON(!__same_type(ops->map_pop_elem, 11241 (int (*)(struct bpf_map *map, void *value))NULL)); 11242 BUILD_BUG_ON(!__same_type(ops->map_peek_elem, 11243 (int (*)(struct bpf_map *map, void *value))NULL)); 11244 patch_map_ops_generic: 11245 switch (insn->imm) { 11246 case BPF_FUNC_map_lookup_elem: 11247 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) - 11248 __bpf_call_base; 11249 continue; 11250 case BPF_FUNC_map_update_elem: 11251 insn->imm = BPF_CAST_CALL(ops->map_update_elem) - 11252 __bpf_call_base; 11253 continue; 11254 case BPF_FUNC_map_delete_elem: 11255 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) - 11256 __bpf_call_base; 11257 continue; 11258 case BPF_FUNC_map_push_elem: 11259 insn->imm = BPF_CAST_CALL(ops->map_push_elem) - 11260 __bpf_call_base; 11261 continue; 11262 case BPF_FUNC_map_pop_elem: 11263 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) - 11264 __bpf_call_base; 11265 continue; 11266 case BPF_FUNC_map_peek_elem: 11267 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) - 11268 __bpf_call_base; 11269 continue; 11270 } 11271 11272 goto patch_call_imm; 11273 } 11274 11275 if (prog->jit_requested && BITS_PER_LONG == 64 && 11276 insn->imm == BPF_FUNC_jiffies64) { 11277 struct bpf_insn ld_jiffies_addr[2] = { 11278 BPF_LD_IMM64(BPF_REG_0, 11279 (unsigned long)&jiffies), 11280 }; 11281 11282 insn_buf[0] = ld_jiffies_addr[0]; 11283 insn_buf[1] = ld_jiffies_addr[1]; 11284 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0, 11285 BPF_REG_0, 0); 11286 cnt = 3; 11287 11288 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, 11289 cnt); 11290 if (!new_prog) 11291 return -ENOMEM; 11292 11293 delta += cnt - 1; 11294 env->prog = prog = new_prog; 11295 insn = new_prog->insnsi + i + delta; 11296 continue; 11297 } 11298 11299 patch_call_imm: 11300 fn = env->ops->get_func_proto(insn->imm, env->prog); 11301 /* all functions that have prototype and verifier allowed 11302 * programs to call them, must be real in-kernel functions 11303 */ 11304 if (!fn->func) { 11305 verbose(env, 11306 "kernel subsystem misconfigured func %s#%d\n", 11307 func_id_name(insn->imm), insn->imm); 11308 return -EFAULT; 11309 } 11310 insn->imm = fn->func - __bpf_call_base; 11311 } 11312 11313 /* Since poke tab is now finalized, publish aux to tracker. */ 11314 for (i = 0; i < prog->aux->size_poke_tab; i++) { 11315 map_ptr = prog->aux->poke_tab[i].tail_call.map; 11316 if (!map_ptr->ops->map_poke_track || 11317 !map_ptr->ops->map_poke_untrack || 11318 !map_ptr->ops->map_poke_run) { 11319 verbose(env, "bpf verifier is misconfigured\n"); 11320 return -EINVAL; 11321 } 11322 11323 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux); 11324 if (ret < 0) { 11325 verbose(env, "tracking tail call prog failed\n"); 11326 return ret; 11327 } 11328 } 11329 11330 return 0; 11331 } 11332 11333 static void free_states(struct bpf_verifier_env *env) 11334 { 11335 struct bpf_verifier_state_list *sl, *sln; 11336 int i; 11337 11338 sl = env->free_list; 11339 while (sl) { 11340 sln = sl->next; 11341 free_verifier_state(&sl->state, false); 11342 kfree(sl); 11343 sl = sln; 11344 } 11345 env->free_list = NULL; 11346 11347 if (!env->explored_states) 11348 return; 11349 11350 for (i = 0; i < state_htab_size(env); i++) { 11351 sl = env->explored_states[i]; 11352 11353 while (sl) { 11354 sln = sl->next; 11355 free_verifier_state(&sl->state, false); 11356 kfree(sl); 11357 sl = sln; 11358 } 11359 env->explored_states[i] = NULL; 11360 } 11361 } 11362 11363 /* The verifier is using insn_aux_data[] to store temporary data during 11364 * verification and to store information for passes that run after the 11365 * verification like dead code sanitization. do_check_common() for subprogram N 11366 * may analyze many other subprograms. sanitize_insn_aux_data() clears all 11367 * temporary data after do_check_common() finds that subprogram N cannot be 11368 * verified independently. pass_cnt counts the number of times 11369 * do_check_common() was run and insn->aux->seen tells the pass number 11370 * insn_aux_data was touched. These variables are compared to clear temporary 11371 * data from failed pass. For testing and experiments do_check_common() can be 11372 * run multiple times even when prior attempt to verify is unsuccessful. 11373 */ 11374 static void sanitize_insn_aux_data(struct bpf_verifier_env *env) 11375 { 11376 struct bpf_insn *insn = env->prog->insnsi; 11377 struct bpf_insn_aux_data *aux; 11378 int i, class; 11379 11380 for (i = 0; i < env->prog->len; i++) { 11381 class = BPF_CLASS(insn[i].code); 11382 if (class != BPF_LDX && class != BPF_STX) 11383 continue; 11384 aux = &env->insn_aux_data[i]; 11385 if (aux->seen != env->pass_cnt) 11386 continue; 11387 memset(aux, 0, offsetof(typeof(*aux), orig_idx)); 11388 } 11389 } 11390 11391 static int do_check_common(struct bpf_verifier_env *env, int subprog) 11392 { 11393 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2); 11394 struct bpf_verifier_state *state; 11395 struct bpf_reg_state *regs; 11396 int ret, i; 11397 11398 env->prev_linfo = NULL; 11399 env->pass_cnt++; 11400 11401 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); 11402 if (!state) 11403 return -ENOMEM; 11404 state->curframe = 0; 11405 state->speculative = false; 11406 state->branches = 1; 11407 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL); 11408 if (!state->frame[0]) { 11409 kfree(state); 11410 return -ENOMEM; 11411 } 11412 env->cur_state = state; 11413 init_func_state(env, state->frame[0], 11414 BPF_MAIN_FUNC /* callsite */, 11415 0 /* frameno */, 11416 subprog); 11417 11418 regs = state->frame[state->curframe]->regs; 11419 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) { 11420 ret = btf_prepare_func_args(env, subprog, regs); 11421 if (ret) 11422 goto out; 11423 for (i = BPF_REG_1; i <= BPF_REG_5; i++) { 11424 if (regs[i].type == PTR_TO_CTX) 11425 mark_reg_known_zero(env, regs, i); 11426 else if (regs[i].type == SCALAR_VALUE) 11427 mark_reg_unknown(env, regs, i); 11428 } 11429 } else { 11430 /* 1st arg to a function */ 11431 regs[BPF_REG_1].type = PTR_TO_CTX; 11432 mark_reg_known_zero(env, regs, BPF_REG_1); 11433 ret = btf_check_func_arg_match(env, subprog, regs); 11434 if (ret == -EFAULT) 11435 /* unlikely verifier bug. abort. 11436 * ret == 0 and ret < 0 are sadly acceptable for 11437 * main() function due to backward compatibility. 11438 * Like socket filter program may be written as: 11439 * int bpf_prog(struct pt_regs *ctx) 11440 * and never dereference that ctx in the program. 11441 * 'struct pt_regs' is a type mismatch for socket 11442 * filter that should be using 'struct __sk_buff'. 11443 */ 11444 goto out; 11445 } 11446 11447 ret = do_check(env); 11448 out: 11449 /* check for NULL is necessary, since cur_state can be freed inside 11450 * do_check() under memory pressure. 11451 */ 11452 if (env->cur_state) { 11453 free_verifier_state(env->cur_state, true); 11454 env->cur_state = NULL; 11455 } 11456 while (!pop_stack(env, NULL, NULL, false)); 11457 if (!ret && pop_log) 11458 bpf_vlog_reset(&env->log, 0); 11459 free_states(env); 11460 if (ret) 11461 /* clean aux data in case subprog was rejected */ 11462 sanitize_insn_aux_data(env); 11463 return ret; 11464 } 11465 11466 /* Verify all global functions in a BPF program one by one based on their BTF. 11467 * All global functions must pass verification. Otherwise the whole program is rejected. 11468 * Consider: 11469 * int bar(int); 11470 * int foo(int f) 11471 * { 11472 * return bar(f); 11473 * } 11474 * int bar(int b) 11475 * { 11476 * ... 11477 * } 11478 * foo() will be verified first for R1=any_scalar_value. During verification it 11479 * will be assumed that bar() already verified successfully and call to bar() 11480 * from foo() will be checked for type match only. Later bar() will be verified 11481 * independently to check that it's safe for R1=any_scalar_value. 11482 */ 11483 static int do_check_subprogs(struct bpf_verifier_env *env) 11484 { 11485 struct bpf_prog_aux *aux = env->prog->aux; 11486 int i, ret; 11487 11488 if (!aux->func_info) 11489 return 0; 11490 11491 for (i = 1; i < env->subprog_cnt; i++) { 11492 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL) 11493 continue; 11494 env->insn_idx = env->subprog_info[i].start; 11495 WARN_ON_ONCE(env->insn_idx == 0); 11496 ret = do_check_common(env, i); 11497 if (ret) { 11498 return ret; 11499 } else if (env->log.level & BPF_LOG_LEVEL) { 11500 verbose(env, 11501 "Func#%d is safe for any args that match its prototype\n", 11502 i); 11503 } 11504 } 11505 return 0; 11506 } 11507 11508 static int do_check_main(struct bpf_verifier_env *env) 11509 { 11510 int ret; 11511 11512 env->insn_idx = 0; 11513 ret = do_check_common(env, 0); 11514 if (!ret) 11515 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth; 11516 return ret; 11517 } 11518 11519 11520 static void print_verification_stats(struct bpf_verifier_env *env) 11521 { 11522 int i; 11523 11524 if (env->log.level & BPF_LOG_STATS) { 11525 verbose(env, "verification time %lld usec\n", 11526 div_u64(env->verification_time, 1000)); 11527 verbose(env, "stack depth "); 11528 for (i = 0; i < env->subprog_cnt; i++) { 11529 u32 depth = env->subprog_info[i].stack_depth; 11530 11531 verbose(env, "%d", depth); 11532 if (i + 1 < env->subprog_cnt) 11533 verbose(env, "+"); 11534 } 11535 verbose(env, "\n"); 11536 } 11537 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d " 11538 "total_states %d peak_states %d mark_read %d\n", 11539 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS, 11540 env->max_states_per_insn, env->total_states, 11541 env->peak_states, env->longest_mark_read_walk); 11542 } 11543 11544 static int check_struct_ops_btf_id(struct bpf_verifier_env *env) 11545 { 11546 const struct btf_type *t, *func_proto; 11547 const struct bpf_struct_ops *st_ops; 11548 const struct btf_member *member; 11549 struct bpf_prog *prog = env->prog; 11550 u32 btf_id, member_idx; 11551 const char *mname; 11552 11553 btf_id = prog->aux->attach_btf_id; 11554 st_ops = bpf_struct_ops_find(btf_id); 11555 if (!st_ops) { 11556 verbose(env, "attach_btf_id %u is not a supported struct\n", 11557 btf_id); 11558 return -ENOTSUPP; 11559 } 11560 11561 t = st_ops->type; 11562 member_idx = prog->expected_attach_type; 11563 if (member_idx >= btf_type_vlen(t)) { 11564 verbose(env, "attach to invalid member idx %u of struct %s\n", 11565 member_idx, st_ops->name); 11566 return -EINVAL; 11567 } 11568 11569 member = &btf_type_member(t)[member_idx]; 11570 mname = btf_name_by_offset(btf_vmlinux, member->name_off); 11571 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type, 11572 NULL); 11573 if (!func_proto) { 11574 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n", 11575 mname, member_idx, st_ops->name); 11576 return -EINVAL; 11577 } 11578 11579 if (st_ops->check_member) { 11580 int err = st_ops->check_member(t, member); 11581 11582 if (err) { 11583 verbose(env, "attach to unsupported member %s of struct %s\n", 11584 mname, st_ops->name); 11585 return err; 11586 } 11587 } 11588 11589 prog->aux->attach_func_proto = func_proto; 11590 prog->aux->attach_func_name = mname; 11591 env->ops = st_ops->verifier_ops; 11592 11593 return 0; 11594 } 11595 #define SECURITY_PREFIX "security_" 11596 11597 static int check_attach_modify_return(unsigned long addr, const char *func_name) 11598 { 11599 if (within_error_injection_list(addr) || 11600 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1)) 11601 return 0; 11602 11603 return -EINVAL; 11604 } 11605 11606 /* list of non-sleepable functions that are otherwise on 11607 * ALLOW_ERROR_INJECTION list 11608 */ 11609 BTF_SET_START(btf_non_sleepable_error_inject) 11610 /* Three functions below can be called from sleepable and non-sleepable context. 11611 * Assume non-sleepable from bpf safety point of view. 11612 */ 11613 BTF_ID(func, __add_to_page_cache_locked) 11614 BTF_ID(func, should_fail_alloc_page) 11615 BTF_ID(func, should_failslab) 11616 BTF_SET_END(btf_non_sleepable_error_inject) 11617 11618 static int check_non_sleepable_error_inject(u32 btf_id) 11619 { 11620 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id); 11621 } 11622 11623 int bpf_check_attach_target(struct bpf_verifier_log *log, 11624 const struct bpf_prog *prog, 11625 const struct bpf_prog *tgt_prog, 11626 u32 btf_id, 11627 struct bpf_attach_target_info *tgt_info) 11628 { 11629 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT; 11630 const char prefix[] = "btf_trace_"; 11631 int ret = 0, subprog = -1, i; 11632 const struct btf_type *t; 11633 bool conservative = true; 11634 const char *tname; 11635 struct btf *btf; 11636 long addr = 0; 11637 11638 if (!btf_id) { 11639 bpf_log(log, "Tracing programs must provide btf_id\n"); 11640 return -EINVAL; 11641 } 11642 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf; 11643 if (!btf) { 11644 bpf_log(log, 11645 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n"); 11646 return -EINVAL; 11647 } 11648 t = btf_type_by_id(btf, btf_id); 11649 if (!t) { 11650 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id); 11651 return -EINVAL; 11652 } 11653 tname = btf_name_by_offset(btf, t->name_off); 11654 if (!tname) { 11655 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id); 11656 return -EINVAL; 11657 } 11658 if (tgt_prog) { 11659 struct bpf_prog_aux *aux = tgt_prog->aux; 11660 11661 for (i = 0; i < aux->func_info_cnt; i++) 11662 if (aux->func_info[i].type_id == btf_id) { 11663 subprog = i; 11664 break; 11665 } 11666 if (subprog == -1) { 11667 bpf_log(log, "Subprog %s doesn't exist\n", tname); 11668 return -EINVAL; 11669 } 11670 conservative = aux->func_info_aux[subprog].unreliable; 11671 if (prog_extension) { 11672 if (conservative) { 11673 bpf_log(log, 11674 "Cannot replace static functions\n"); 11675 return -EINVAL; 11676 } 11677 if (!prog->jit_requested) { 11678 bpf_log(log, 11679 "Extension programs should be JITed\n"); 11680 return -EINVAL; 11681 } 11682 } 11683 if (!tgt_prog->jited) { 11684 bpf_log(log, "Can attach to only JITed progs\n"); 11685 return -EINVAL; 11686 } 11687 if (tgt_prog->type == prog->type) { 11688 /* Cannot fentry/fexit another fentry/fexit program. 11689 * Cannot attach program extension to another extension. 11690 * It's ok to attach fentry/fexit to extension program. 11691 */ 11692 bpf_log(log, "Cannot recursively attach\n"); 11693 return -EINVAL; 11694 } 11695 if (tgt_prog->type == BPF_PROG_TYPE_TRACING && 11696 prog_extension && 11697 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY || 11698 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) { 11699 /* Program extensions can extend all program types 11700 * except fentry/fexit. The reason is the following. 11701 * The fentry/fexit programs are used for performance 11702 * analysis, stats and can be attached to any program 11703 * type except themselves. When extension program is 11704 * replacing XDP function it is necessary to allow 11705 * performance analysis of all functions. Both original 11706 * XDP program and its program extension. Hence 11707 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is 11708 * allowed. If extending of fentry/fexit was allowed it 11709 * would be possible to create long call chain 11710 * fentry->extension->fentry->extension beyond 11711 * reasonable stack size. Hence extending fentry is not 11712 * allowed. 11713 */ 11714 bpf_log(log, "Cannot extend fentry/fexit\n"); 11715 return -EINVAL; 11716 } 11717 } else { 11718 if (prog_extension) { 11719 bpf_log(log, "Cannot replace kernel functions\n"); 11720 return -EINVAL; 11721 } 11722 } 11723 11724 switch (prog->expected_attach_type) { 11725 case BPF_TRACE_RAW_TP: 11726 if (tgt_prog) { 11727 bpf_log(log, 11728 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n"); 11729 return -EINVAL; 11730 } 11731 if (!btf_type_is_typedef(t)) { 11732 bpf_log(log, "attach_btf_id %u is not a typedef\n", 11733 btf_id); 11734 return -EINVAL; 11735 } 11736 if (strncmp(prefix, tname, sizeof(prefix) - 1)) { 11737 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n", 11738 btf_id, tname); 11739 return -EINVAL; 11740 } 11741 tname += sizeof(prefix) - 1; 11742 t = btf_type_by_id(btf, t->type); 11743 if (!btf_type_is_ptr(t)) 11744 /* should never happen in valid vmlinux build */ 11745 return -EINVAL; 11746 t = btf_type_by_id(btf, t->type); 11747 if (!btf_type_is_func_proto(t)) 11748 /* should never happen in valid vmlinux build */ 11749 return -EINVAL; 11750 11751 break; 11752 case BPF_TRACE_ITER: 11753 if (!btf_type_is_func(t)) { 11754 bpf_log(log, "attach_btf_id %u is not a function\n", 11755 btf_id); 11756 return -EINVAL; 11757 } 11758 t = btf_type_by_id(btf, t->type); 11759 if (!btf_type_is_func_proto(t)) 11760 return -EINVAL; 11761 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11762 if (ret) 11763 return ret; 11764 break; 11765 default: 11766 if (!prog_extension) 11767 return -EINVAL; 11768 fallthrough; 11769 case BPF_MODIFY_RETURN: 11770 case BPF_LSM_MAC: 11771 case BPF_TRACE_FENTRY: 11772 case BPF_TRACE_FEXIT: 11773 if (!btf_type_is_func(t)) { 11774 bpf_log(log, "attach_btf_id %u is not a function\n", 11775 btf_id); 11776 return -EINVAL; 11777 } 11778 if (prog_extension && 11779 btf_check_type_match(log, prog, btf, t)) 11780 return -EINVAL; 11781 t = btf_type_by_id(btf, t->type); 11782 if (!btf_type_is_func_proto(t)) 11783 return -EINVAL; 11784 11785 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) && 11786 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type || 11787 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type)) 11788 return -EINVAL; 11789 11790 if (tgt_prog && conservative) 11791 t = NULL; 11792 11793 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel); 11794 if (ret < 0) 11795 return ret; 11796 11797 if (tgt_prog) { 11798 if (subprog == 0) 11799 addr = (long) tgt_prog->bpf_func; 11800 else 11801 addr = (long) tgt_prog->aux->func[subprog]->bpf_func; 11802 } else { 11803 addr = kallsyms_lookup_name(tname); 11804 if (!addr) { 11805 bpf_log(log, 11806 "The address of function %s cannot be found\n", 11807 tname); 11808 return -ENOENT; 11809 } 11810 } 11811 11812 if (prog->aux->sleepable) { 11813 ret = -EINVAL; 11814 switch (prog->type) { 11815 case BPF_PROG_TYPE_TRACING: 11816 /* fentry/fexit/fmod_ret progs can be sleepable only if they are 11817 * attached to ALLOW_ERROR_INJECTION and are not in denylist. 11818 */ 11819 if (!check_non_sleepable_error_inject(btf_id) && 11820 within_error_injection_list(addr)) 11821 ret = 0; 11822 break; 11823 case BPF_PROG_TYPE_LSM: 11824 /* LSM progs check that they are attached to bpf_lsm_*() funcs. 11825 * Only some of them are sleepable. 11826 */ 11827 if (bpf_lsm_is_sleepable_hook(btf_id)) 11828 ret = 0; 11829 break; 11830 default: 11831 break; 11832 } 11833 if (ret) { 11834 bpf_log(log, "%s is not sleepable\n", tname); 11835 return ret; 11836 } 11837 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) { 11838 if (tgt_prog) { 11839 bpf_log(log, "can't modify return codes of BPF programs\n"); 11840 return -EINVAL; 11841 } 11842 ret = check_attach_modify_return(addr, tname); 11843 if (ret) { 11844 bpf_log(log, "%s() is not modifiable\n", tname); 11845 return ret; 11846 } 11847 } 11848 11849 break; 11850 } 11851 tgt_info->tgt_addr = addr; 11852 tgt_info->tgt_name = tname; 11853 tgt_info->tgt_type = t; 11854 return 0; 11855 } 11856 11857 static int check_attach_btf_id(struct bpf_verifier_env *env) 11858 { 11859 struct bpf_prog *prog = env->prog; 11860 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 11861 struct bpf_attach_target_info tgt_info = {}; 11862 u32 btf_id = prog->aux->attach_btf_id; 11863 struct bpf_trampoline *tr; 11864 int ret; 11865 u64 key; 11866 11867 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING && 11868 prog->type != BPF_PROG_TYPE_LSM) { 11869 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n"); 11870 return -EINVAL; 11871 } 11872 11873 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 11874 return check_struct_ops_btf_id(env); 11875 11876 if (prog->type != BPF_PROG_TYPE_TRACING && 11877 prog->type != BPF_PROG_TYPE_LSM && 11878 prog->type != BPF_PROG_TYPE_EXT) 11879 return 0; 11880 11881 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info); 11882 if (ret) 11883 return ret; 11884 11885 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) { 11886 /* to make freplace equivalent to their targets, they need to 11887 * inherit env->ops and expected_attach_type for the rest of the 11888 * verification 11889 */ 11890 env->ops = bpf_verifier_ops[tgt_prog->type]; 11891 prog->expected_attach_type = tgt_prog->expected_attach_type; 11892 } 11893 11894 /* store info about the attachment target that will be used later */ 11895 prog->aux->attach_func_proto = tgt_info.tgt_type; 11896 prog->aux->attach_func_name = tgt_info.tgt_name; 11897 11898 if (tgt_prog) { 11899 prog->aux->saved_dst_prog_type = tgt_prog->type; 11900 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type; 11901 } 11902 11903 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) { 11904 prog->aux->attach_btf_trace = true; 11905 return 0; 11906 } else if (prog->expected_attach_type == BPF_TRACE_ITER) { 11907 if (!bpf_iter_prog_supported(prog)) 11908 return -EINVAL; 11909 return 0; 11910 } 11911 11912 if (prog->type == BPF_PROG_TYPE_LSM) { 11913 ret = bpf_lsm_verify_prog(&env->log, prog); 11914 if (ret < 0) 11915 return ret; 11916 } 11917 11918 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id); 11919 tr = bpf_trampoline_get(key, &tgt_info); 11920 if (!tr) 11921 return -ENOMEM; 11922 11923 prog->aux->dst_trampoline = tr; 11924 return 0; 11925 } 11926 11927 struct btf *bpf_get_btf_vmlinux(void) 11928 { 11929 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 11930 mutex_lock(&bpf_verifier_lock); 11931 if (!btf_vmlinux) 11932 btf_vmlinux = btf_parse_vmlinux(); 11933 mutex_unlock(&bpf_verifier_lock); 11934 } 11935 return btf_vmlinux; 11936 } 11937 11938 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr, 11939 union bpf_attr __user *uattr) 11940 { 11941 u64 start_time = ktime_get_ns(); 11942 struct bpf_verifier_env *env; 11943 struct bpf_verifier_log *log; 11944 int i, len, ret = -EINVAL; 11945 bool is_priv; 11946 11947 /* no program is valid */ 11948 if (ARRAY_SIZE(bpf_verifier_ops) == 0) 11949 return -EINVAL; 11950 11951 /* 'struct bpf_verifier_env' can be global, but since it's not small, 11952 * allocate/free it every time bpf_check() is called 11953 */ 11954 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); 11955 if (!env) 11956 return -ENOMEM; 11957 log = &env->log; 11958 11959 len = (*prog)->len; 11960 env->insn_aux_data = 11961 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len)); 11962 ret = -ENOMEM; 11963 if (!env->insn_aux_data) 11964 goto err_free_env; 11965 for (i = 0; i < len; i++) 11966 env->insn_aux_data[i].orig_idx = i; 11967 env->prog = *prog; 11968 env->ops = bpf_verifier_ops[env->prog->type]; 11969 is_priv = bpf_capable(); 11970 11971 bpf_get_btf_vmlinux(); 11972 11973 /* grab the mutex to protect few globals used by verifier */ 11974 if (!is_priv) 11975 mutex_lock(&bpf_verifier_lock); 11976 11977 if (attr->log_level || attr->log_buf || attr->log_size) { 11978 /* user requested verbose verifier output 11979 * and supplied buffer to store the verification trace 11980 */ 11981 log->level = attr->log_level; 11982 log->ubuf = (char __user *) (unsigned long) attr->log_buf; 11983 log->len_total = attr->log_size; 11984 11985 ret = -EINVAL; 11986 /* log attributes have to be sane */ 11987 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 || 11988 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK) 11989 goto err_unlock; 11990 } 11991 11992 if (IS_ERR(btf_vmlinux)) { 11993 /* Either gcc or pahole or kernel are broken. */ 11994 verbose(env, "in-kernel BTF is malformed\n"); 11995 ret = PTR_ERR(btf_vmlinux); 11996 goto skip_full_check; 11997 } 11998 11999 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); 12000 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) 12001 env->strict_alignment = true; 12002 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT) 12003 env->strict_alignment = false; 12004 12005 env->allow_ptr_leaks = bpf_allow_ptr_leaks(); 12006 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access(); 12007 env->bypass_spec_v1 = bpf_bypass_spec_v1(); 12008 env->bypass_spec_v4 = bpf_bypass_spec_v4(); 12009 env->bpf_capable = bpf_capable(); 12010 12011 if (is_priv) 12012 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ; 12013 12014 if (bpf_prog_is_dev_bound(env->prog->aux)) { 12015 ret = bpf_prog_offload_verifier_prep(env->prog); 12016 if (ret) 12017 goto skip_full_check; 12018 } 12019 12020 env->explored_states = kvcalloc(state_htab_size(env), 12021 sizeof(struct bpf_verifier_state_list *), 12022 GFP_USER); 12023 ret = -ENOMEM; 12024 if (!env->explored_states) 12025 goto skip_full_check; 12026 12027 ret = check_subprogs(env); 12028 if (ret < 0) 12029 goto skip_full_check; 12030 12031 ret = check_btf_info(env, attr, uattr); 12032 if (ret < 0) 12033 goto skip_full_check; 12034 12035 ret = check_attach_btf_id(env); 12036 if (ret) 12037 goto skip_full_check; 12038 12039 ret = resolve_pseudo_ldimm64(env); 12040 if (ret < 0) 12041 goto skip_full_check; 12042 12043 ret = check_cfg(env); 12044 if (ret < 0) 12045 goto skip_full_check; 12046 12047 ret = do_check_subprogs(env); 12048 ret = ret ?: do_check_main(env); 12049 12050 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux)) 12051 ret = bpf_prog_offload_finalize(env); 12052 12053 skip_full_check: 12054 kvfree(env->explored_states); 12055 12056 if (ret == 0) 12057 ret = check_max_stack_depth(env); 12058 12059 /* instruction rewrites happen after this point */ 12060 if (is_priv) { 12061 if (ret == 0) 12062 opt_hard_wire_dead_code_branches(env); 12063 if (ret == 0) 12064 ret = opt_remove_dead_code(env); 12065 if (ret == 0) 12066 ret = opt_remove_nops(env); 12067 } else { 12068 if (ret == 0) 12069 sanitize_dead_code(env); 12070 } 12071 12072 if (ret == 0) 12073 /* program is valid, convert *(u32*)(ctx + off) accesses */ 12074 ret = convert_ctx_accesses(env); 12075 12076 if (ret == 0) 12077 ret = fixup_bpf_calls(env); 12078 12079 /* do 32-bit optimization after insn patching has done so those patched 12080 * insns could be handled correctly. 12081 */ 12082 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) { 12083 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr); 12084 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret 12085 : false; 12086 } 12087 12088 if (ret == 0) 12089 ret = fixup_call_args(env); 12090 12091 env->verification_time = ktime_get_ns() - start_time; 12092 print_verification_stats(env); 12093 12094 if (log->level && bpf_verifier_log_full(log)) 12095 ret = -ENOSPC; 12096 if (log->level && !log->ubuf) { 12097 ret = -EFAULT; 12098 goto err_release_maps; 12099 } 12100 12101 if (ret == 0 && env->used_map_cnt) { 12102 /* if program passed verifier, update used_maps in bpf_prog_info */ 12103 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, 12104 sizeof(env->used_maps[0]), 12105 GFP_KERNEL); 12106 12107 if (!env->prog->aux->used_maps) { 12108 ret = -ENOMEM; 12109 goto err_release_maps; 12110 } 12111 12112 memcpy(env->prog->aux->used_maps, env->used_maps, 12113 sizeof(env->used_maps[0]) * env->used_map_cnt); 12114 env->prog->aux->used_map_cnt = env->used_map_cnt; 12115 12116 /* program is valid. Convert pseudo bpf_ld_imm64 into generic 12117 * bpf_ld_imm64 instructions 12118 */ 12119 convert_pseudo_ld_imm64(env); 12120 } 12121 12122 if (ret == 0) 12123 adjust_btf_func(env); 12124 12125 err_release_maps: 12126 if (!env->prog->aux->used_maps) 12127 /* if we didn't copy map pointers into bpf_prog_info, release 12128 * them now. Otherwise free_used_maps() will release them. 12129 */ 12130 release_maps(env); 12131 12132 /* extension progs temporarily inherit the attach_type of their targets 12133 for verification purposes, so set it back to zero before returning 12134 */ 12135 if (env->prog->type == BPF_PROG_TYPE_EXT) 12136 env->prog->expected_attach_type = 0; 12137 12138 *prog = env->prog; 12139 err_unlock: 12140 if (!is_priv) 12141 mutex_unlock(&bpf_verifier_lock); 12142 vfree(env->insn_aux_data); 12143 err_free_env: 12144 kfree(env); 12145 return ret; 12146 } 12147