xref: /openbmc/linux/kernel/bpf/verifier.c (revision 77ab8d5d)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26 
27 #include "disasm.h"
28 
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 	[_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37 
38 /* bpf_check() is a static code analyzer that walks eBPF program
39  * instruction by instruction and updates register/stack state.
40  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41  *
42  * The first pass is depth-first-search to check that the program is a DAG.
43  * It rejects the following programs:
44  * - larger than BPF_MAXINSNS insns
45  * - if loop is present (detected via back-edge)
46  * - unreachable insns exist (shouldn't be a forest. program = one function)
47  * - out of bounds or malformed jumps
48  * The second pass is all possible path descent from the 1st insn.
49  * Since it's analyzing all pathes through the program, the length of the
50  * analysis is limited to 64k insn, which may be hit even if total number of
51  * insn is less then 4K, but there are too many branches that change stack/regs.
52  * Number of 'branches to be analyzed' is limited to 1k
53  *
54  * On entry to each instruction, each register has a type, and the instruction
55  * changes the types of the registers depending on instruction semantics.
56  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57  * copied to R1.
58  *
59  * All registers are 64-bit.
60  * R0 - return register
61  * R1-R5 argument passing registers
62  * R6-R9 callee saved registers
63  * R10 - frame pointer read-only
64  *
65  * At the start of BPF program the register R1 contains a pointer to bpf_context
66  * and has type PTR_TO_CTX.
67  *
68  * Verifier tracks arithmetic operations on pointers in case:
69  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71  * 1st insn copies R10 (which has FRAME_PTR) type into R1
72  * and 2nd arithmetic instruction is pattern matched to recognize
73  * that it wants to construct a pointer to some element within stack.
74  * So after 2nd insn, the register R1 has type PTR_TO_STACK
75  * (and -20 constant is saved for further stack bounds checking).
76  * Meaning that this reg is a pointer to stack plus known immediate constant.
77  *
78  * Most of the time the registers have SCALAR_VALUE type, which
79  * means the register has some value, but it's not a valid pointer.
80  * (like pointer plus pointer becomes SCALAR_VALUE type)
81  *
82  * When verifier sees load or store instructions the type of base register
83  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84  * types recognized by check_mem_access() function.
85  *
86  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87  * and the range of [ptr, ptr + map's value_size) is accessible.
88  *
89  * registers used to pass values to function calls are checked against
90  * function argument constraints.
91  *
92  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93  * It means that the register type passed to this function must be
94  * PTR_TO_STACK and it will be used inside the function as
95  * 'pointer to map element key'
96  *
97  * For example the argument constraints for bpf_map_lookup_elem():
98  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99  *   .arg1_type = ARG_CONST_MAP_PTR,
100  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
101  *
102  * ret_type says that this function returns 'pointer to map elem value or null'
103  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104  * 2nd argument should be a pointer to stack, which will be used inside
105  * the helper function as a pointer to map element key.
106  *
107  * On the kernel side the helper function looks like:
108  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109  * {
110  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111  *    void *key = (void *) (unsigned long) r2;
112  *    void *value;
113  *
114  *    here kernel can access 'key' and 'map' pointers safely, knowing that
115  *    [key, key + map->key_size) bytes are valid and were initialized on
116  *    the stack of eBPF program.
117  * }
118  *
119  * Corresponding eBPF program may look like:
120  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
121  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
123  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124  * here verifier looks at prototype of map_lookup_elem() and sees:
125  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127  *
128  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130  * and were initialized prior to this call.
131  * If it's ok, then verifier allows this BPF_CALL insn and looks at
132  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134  * returns ether pointer to map value or NULL.
135  *
136  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137  * insn, the register holding that pointer in the true branch changes state to
138  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139  * branch. See check_cond_jmp_op().
140  *
141  * After the call R0 is set to return type of the function and registers R1-R5
142  * are set to NOT_INIT to indicate that they are no longer readable.
143  */
144 
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 	/* verifer state is 'st'
148 	 * before processing instruction 'insn_idx'
149 	 * and after processing instruction 'prev_insn_idx'
150 	 */
151 	struct bpf_verifier_state st;
152 	int insn_idx;
153 	int prev_insn_idx;
154 	struct bpf_verifier_stack_elem *next;
155 };
156 
157 #define BPF_COMPLEXITY_LIMIT_INSNS	131072
158 #define BPF_COMPLEXITY_LIMIT_STACK	1024
159 
160 #define BPF_MAP_PTR_UNPRIV	1UL
161 #define BPF_MAP_PTR_POISON	((void *)((0xeB9FUL << 1) +	\
162 					  POISON_POINTER_DELTA))
163 #define BPF_MAP_PTR(X)		((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
164 
165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
166 {
167 	return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
168 }
169 
170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
171 {
172 	return aux->map_state & BPF_MAP_PTR_UNPRIV;
173 }
174 
175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
176 			      const struct bpf_map *map, bool unpriv)
177 {
178 	BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
179 	unpriv |= bpf_map_ptr_unpriv(aux);
180 	aux->map_state = (unsigned long)map |
181 			 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
182 }
183 
184 struct bpf_call_arg_meta {
185 	struct bpf_map *map_ptr;
186 	bool raw_mode;
187 	bool pkt_access;
188 	int regno;
189 	int access_size;
190 	s64 msize_smax_value;
191 	u64 msize_umax_value;
192 };
193 
194 static DEFINE_MUTEX(bpf_verifier_lock);
195 
196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 		       va_list args)
198 {
199 	unsigned int n;
200 
201 	n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
202 
203 	WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 		  "verifier log line truncated - local buffer too short\n");
205 
206 	n = min(log->len_total - log->len_used - 1, n);
207 	log->kbuf[n] = '\0';
208 
209 	if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 		log->len_used += n;
211 	else
212 		log->ubuf = NULL;
213 }
214 
215 /* log_level controls verbosity level of eBPF verifier.
216  * bpf_verifier_log_write() is used to dump the verification trace to the log,
217  * so the user can figure out what's wrong with the program
218  */
219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 					   const char *fmt, ...)
221 {
222 	va_list args;
223 
224 	if (!bpf_verifier_log_needed(&env->log))
225 		return;
226 
227 	va_start(args, fmt);
228 	bpf_verifier_vlog(&env->log, fmt, args);
229 	va_end(args);
230 }
231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232 
233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234 {
235 	struct bpf_verifier_env *env = private_data;
236 	va_list args;
237 
238 	if (!bpf_verifier_log_needed(&env->log))
239 		return;
240 
241 	va_start(args, fmt);
242 	bpf_verifier_vlog(&env->log, fmt, args);
243 	va_end(args);
244 }
245 
246 static bool type_is_pkt_pointer(enum bpf_reg_type type)
247 {
248 	return type == PTR_TO_PACKET ||
249 	       type == PTR_TO_PACKET_META;
250 }
251 
252 /* string representation of 'enum bpf_reg_type' */
253 static const char * const reg_type_str[] = {
254 	[NOT_INIT]		= "?",
255 	[SCALAR_VALUE]		= "inv",
256 	[PTR_TO_CTX]		= "ctx",
257 	[CONST_PTR_TO_MAP]	= "map_ptr",
258 	[PTR_TO_MAP_VALUE]	= "map_value",
259 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
260 	[PTR_TO_STACK]		= "fp",
261 	[PTR_TO_PACKET]		= "pkt",
262 	[PTR_TO_PACKET_META]	= "pkt_meta",
263 	[PTR_TO_PACKET_END]	= "pkt_end",
264 };
265 
266 static void print_liveness(struct bpf_verifier_env *env,
267 			   enum bpf_reg_liveness live)
268 {
269 	if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
270 	    verbose(env, "_");
271 	if (live & REG_LIVE_READ)
272 		verbose(env, "r");
273 	if (live & REG_LIVE_WRITTEN)
274 		verbose(env, "w");
275 }
276 
277 static struct bpf_func_state *func(struct bpf_verifier_env *env,
278 				   const struct bpf_reg_state *reg)
279 {
280 	struct bpf_verifier_state *cur = env->cur_state;
281 
282 	return cur->frame[reg->frameno];
283 }
284 
285 static void print_verifier_state(struct bpf_verifier_env *env,
286 				 const struct bpf_func_state *state)
287 {
288 	const struct bpf_reg_state *reg;
289 	enum bpf_reg_type t;
290 	int i;
291 
292 	if (state->frameno)
293 		verbose(env, " frame%d:", state->frameno);
294 	for (i = 0; i < MAX_BPF_REG; i++) {
295 		reg = &state->regs[i];
296 		t = reg->type;
297 		if (t == NOT_INIT)
298 			continue;
299 		verbose(env, " R%d", i);
300 		print_liveness(env, reg->live);
301 		verbose(env, "=%s", reg_type_str[t]);
302 		if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
303 		    tnum_is_const(reg->var_off)) {
304 			/* reg->off should be 0 for SCALAR_VALUE */
305 			verbose(env, "%lld", reg->var_off.value + reg->off);
306 			if (t == PTR_TO_STACK)
307 				verbose(env, ",call_%d", func(env, reg)->callsite);
308 		} else {
309 			verbose(env, "(id=%d", reg->id);
310 			if (t != SCALAR_VALUE)
311 				verbose(env, ",off=%d", reg->off);
312 			if (type_is_pkt_pointer(t))
313 				verbose(env, ",r=%d", reg->range);
314 			else if (t == CONST_PTR_TO_MAP ||
315 				 t == PTR_TO_MAP_VALUE ||
316 				 t == PTR_TO_MAP_VALUE_OR_NULL)
317 				verbose(env, ",ks=%d,vs=%d",
318 					reg->map_ptr->key_size,
319 					reg->map_ptr->value_size);
320 			if (tnum_is_const(reg->var_off)) {
321 				/* Typically an immediate SCALAR_VALUE, but
322 				 * could be a pointer whose offset is too big
323 				 * for reg->off
324 				 */
325 				verbose(env, ",imm=%llx", reg->var_off.value);
326 			} else {
327 				if (reg->smin_value != reg->umin_value &&
328 				    reg->smin_value != S64_MIN)
329 					verbose(env, ",smin_value=%lld",
330 						(long long)reg->smin_value);
331 				if (reg->smax_value != reg->umax_value &&
332 				    reg->smax_value != S64_MAX)
333 					verbose(env, ",smax_value=%lld",
334 						(long long)reg->smax_value);
335 				if (reg->umin_value != 0)
336 					verbose(env, ",umin_value=%llu",
337 						(unsigned long long)reg->umin_value);
338 				if (reg->umax_value != U64_MAX)
339 					verbose(env, ",umax_value=%llu",
340 						(unsigned long long)reg->umax_value);
341 				if (!tnum_is_unknown(reg->var_off)) {
342 					char tn_buf[48];
343 
344 					tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345 					verbose(env, ",var_off=%s", tn_buf);
346 				}
347 			}
348 			verbose(env, ")");
349 		}
350 	}
351 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 		if (state->stack[i].slot_type[0] == STACK_SPILL) {
353 			verbose(env, " fp%d",
354 				(-i - 1) * BPF_REG_SIZE);
355 			print_liveness(env, state->stack[i].spilled_ptr.live);
356 			verbose(env, "=%s",
357 				reg_type_str[state->stack[i].spilled_ptr.type]);
358 		}
359 		if (state->stack[i].slot_type[0] == STACK_ZERO)
360 			verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361 	}
362 	verbose(env, "\n");
363 }
364 
365 static int copy_stack_state(struct bpf_func_state *dst,
366 			    const struct bpf_func_state *src)
367 {
368 	if (!src->stack)
369 		return 0;
370 	if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
371 		/* internal bug, make state invalid to reject the program */
372 		memset(dst, 0, sizeof(*dst));
373 		return -EFAULT;
374 	}
375 	memcpy(dst->stack, src->stack,
376 	       sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
377 	return 0;
378 }
379 
380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
381  * make it consume minimal amount of memory. check_stack_write() access from
382  * the program calls into realloc_func_state() to grow the stack size.
383  * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
384  * which this function copies over. It points to previous bpf_verifier_state
385  * which is never reallocated
386  */
387 static int realloc_func_state(struct bpf_func_state *state, int size,
388 			      bool copy_old)
389 {
390 	u32 old_size = state->allocated_stack;
391 	struct bpf_stack_state *new_stack;
392 	int slot = size / BPF_REG_SIZE;
393 
394 	if (size <= old_size || !size) {
395 		if (copy_old)
396 			return 0;
397 		state->allocated_stack = slot * BPF_REG_SIZE;
398 		if (!size && old_size) {
399 			kfree(state->stack);
400 			state->stack = NULL;
401 		}
402 		return 0;
403 	}
404 	new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
405 				  GFP_KERNEL);
406 	if (!new_stack)
407 		return -ENOMEM;
408 	if (copy_old) {
409 		if (state->stack)
410 			memcpy(new_stack, state->stack,
411 			       sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
412 		memset(new_stack + old_size / BPF_REG_SIZE, 0,
413 		       sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
414 	}
415 	state->allocated_stack = slot * BPF_REG_SIZE;
416 	kfree(state->stack);
417 	state->stack = new_stack;
418 	return 0;
419 }
420 
421 static void free_func_state(struct bpf_func_state *state)
422 {
423 	if (!state)
424 		return;
425 	kfree(state->stack);
426 	kfree(state);
427 }
428 
429 static void free_verifier_state(struct bpf_verifier_state *state,
430 				bool free_self)
431 {
432 	int i;
433 
434 	for (i = 0; i <= state->curframe; i++) {
435 		free_func_state(state->frame[i]);
436 		state->frame[i] = NULL;
437 	}
438 	if (free_self)
439 		kfree(state);
440 }
441 
442 /* copy verifier state from src to dst growing dst stack space
443  * when necessary to accommodate larger src stack
444  */
445 static int copy_func_state(struct bpf_func_state *dst,
446 			   const struct bpf_func_state *src)
447 {
448 	int err;
449 
450 	err = realloc_func_state(dst, src->allocated_stack, false);
451 	if (err)
452 		return err;
453 	memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 	return copy_stack_state(dst, src);
455 }
456 
457 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
458 			       const struct bpf_verifier_state *src)
459 {
460 	struct bpf_func_state *dst;
461 	int i, err;
462 
463 	/* if dst has more stack frames then src frame, free them */
464 	for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
465 		free_func_state(dst_state->frame[i]);
466 		dst_state->frame[i] = NULL;
467 	}
468 	dst_state->curframe = src->curframe;
469 	dst_state->parent = src->parent;
470 	for (i = 0; i <= src->curframe; i++) {
471 		dst = dst_state->frame[i];
472 		if (!dst) {
473 			dst = kzalloc(sizeof(*dst), GFP_KERNEL);
474 			if (!dst)
475 				return -ENOMEM;
476 			dst_state->frame[i] = dst;
477 		}
478 		err = copy_func_state(dst, src->frame[i]);
479 		if (err)
480 			return err;
481 	}
482 	return 0;
483 }
484 
485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
486 		     int *insn_idx)
487 {
488 	struct bpf_verifier_state *cur = env->cur_state;
489 	struct bpf_verifier_stack_elem *elem, *head = env->head;
490 	int err;
491 
492 	if (env->head == NULL)
493 		return -ENOENT;
494 
495 	if (cur) {
496 		err = copy_verifier_state(cur, &head->st);
497 		if (err)
498 			return err;
499 	}
500 	if (insn_idx)
501 		*insn_idx = head->insn_idx;
502 	if (prev_insn_idx)
503 		*prev_insn_idx = head->prev_insn_idx;
504 	elem = head->next;
505 	free_verifier_state(&head->st, false);
506 	kfree(head);
507 	env->head = elem;
508 	env->stack_size--;
509 	return 0;
510 }
511 
512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
513 					     int insn_idx, int prev_insn_idx)
514 {
515 	struct bpf_verifier_state *cur = env->cur_state;
516 	struct bpf_verifier_stack_elem *elem;
517 	int err;
518 
519 	elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
520 	if (!elem)
521 		goto err;
522 
523 	elem->insn_idx = insn_idx;
524 	elem->prev_insn_idx = prev_insn_idx;
525 	elem->next = env->head;
526 	env->head = elem;
527 	env->stack_size++;
528 	err = copy_verifier_state(&elem->st, cur);
529 	if (err)
530 		goto err;
531 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
532 		verbose(env, "BPF program is too complex\n");
533 		goto err;
534 	}
535 	return &elem->st;
536 err:
537 	free_verifier_state(env->cur_state, true);
538 	env->cur_state = NULL;
539 	/* pop all elements and return */
540 	while (!pop_stack(env, NULL, NULL));
541 	return NULL;
542 }
543 
544 #define CALLER_SAVED_REGS 6
545 static const int caller_saved[CALLER_SAVED_REGS] = {
546 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
547 };
548 
549 static void __mark_reg_not_init(struct bpf_reg_state *reg);
550 
551 /* Mark the unknown part of a register (variable offset or scalar value) as
552  * known to have the value @imm.
553  */
554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
555 {
556 	reg->id = 0;
557 	reg->var_off = tnum_const(imm);
558 	reg->smin_value = (s64)imm;
559 	reg->smax_value = (s64)imm;
560 	reg->umin_value = imm;
561 	reg->umax_value = imm;
562 }
563 
564 /* Mark the 'variable offset' part of a register as zero.  This should be
565  * used only on registers holding a pointer type.
566  */
567 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
568 {
569 	__mark_reg_known(reg, 0);
570 }
571 
572 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
573 {
574 	__mark_reg_known(reg, 0);
575 	reg->off = 0;
576 	reg->type = SCALAR_VALUE;
577 }
578 
579 static void mark_reg_known_zero(struct bpf_verifier_env *env,
580 				struct bpf_reg_state *regs, u32 regno)
581 {
582 	if (WARN_ON(regno >= MAX_BPF_REG)) {
583 		verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
584 		/* Something bad happened, let's kill all regs */
585 		for (regno = 0; regno < MAX_BPF_REG; regno++)
586 			__mark_reg_not_init(regs + regno);
587 		return;
588 	}
589 	__mark_reg_known_zero(regs + regno);
590 }
591 
592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
593 {
594 	return type_is_pkt_pointer(reg->type);
595 }
596 
597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
598 {
599 	return reg_is_pkt_pointer(reg) ||
600 	       reg->type == PTR_TO_PACKET_END;
601 }
602 
603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
605 				    enum bpf_reg_type which)
606 {
607 	/* The register can already have a range from prior markings.
608 	 * This is fine as long as it hasn't been advanced from its
609 	 * origin.
610 	 */
611 	return reg->type == which &&
612 	       reg->id == 0 &&
613 	       reg->off == 0 &&
614 	       tnum_equals_const(reg->var_off, 0);
615 }
616 
617 /* Attempts to improve min/max values based on var_off information */
618 static void __update_reg_bounds(struct bpf_reg_state *reg)
619 {
620 	/* min signed is max(sign bit) | min(other bits) */
621 	reg->smin_value = max_t(s64, reg->smin_value,
622 				reg->var_off.value | (reg->var_off.mask & S64_MIN));
623 	/* max signed is min(sign bit) | max(other bits) */
624 	reg->smax_value = min_t(s64, reg->smax_value,
625 				reg->var_off.value | (reg->var_off.mask & S64_MAX));
626 	reg->umin_value = max(reg->umin_value, reg->var_off.value);
627 	reg->umax_value = min(reg->umax_value,
628 			      reg->var_off.value | reg->var_off.mask);
629 }
630 
631 /* Uses signed min/max values to inform unsigned, and vice-versa */
632 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
633 {
634 	/* Learn sign from signed bounds.
635 	 * If we cannot cross the sign boundary, then signed and unsigned bounds
636 	 * are the same, so combine.  This works even in the negative case, e.g.
637 	 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
638 	 */
639 	if (reg->smin_value >= 0 || reg->smax_value < 0) {
640 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
641 							  reg->umin_value);
642 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
643 							  reg->umax_value);
644 		return;
645 	}
646 	/* Learn sign from unsigned bounds.  Signed bounds cross the sign
647 	 * boundary, so we must be careful.
648 	 */
649 	if ((s64)reg->umax_value >= 0) {
650 		/* Positive.  We can't learn anything from the smin, but smax
651 		 * is positive, hence safe.
652 		 */
653 		reg->smin_value = reg->umin_value;
654 		reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
655 							  reg->umax_value);
656 	} else if ((s64)reg->umin_value < 0) {
657 		/* Negative.  We can't learn anything from the smax, but smin
658 		 * is negative, hence safe.
659 		 */
660 		reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
661 							  reg->umin_value);
662 		reg->smax_value = reg->umax_value;
663 	}
664 }
665 
666 /* Attempts to improve var_off based on unsigned min/max information */
667 static void __reg_bound_offset(struct bpf_reg_state *reg)
668 {
669 	reg->var_off = tnum_intersect(reg->var_off,
670 				      tnum_range(reg->umin_value,
671 						 reg->umax_value));
672 }
673 
674 /* Reset the min/max bounds of a register */
675 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
676 {
677 	reg->smin_value = S64_MIN;
678 	reg->smax_value = S64_MAX;
679 	reg->umin_value = 0;
680 	reg->umax_value = U64_MAX;
681 }
682 
683 /* Mark a register as having a completely unknown (scalar) value. */
684 static void __mark_reg_unknown(struct bpf_reg_state *reg)
685 {
686 	reg->type = SCALAR_VALUE;
687 	reg->id = 0;
688 	reg->off = 0;
689 	reg->var_off = tnum_unknown;
690 	reg->frameno = 0;
691 	__mark_reg_unbounded(reg);
692 }
693 
694 static void mark_reg_unknown(struct bpf_verifier_env *env,
695 			     struct bpf_reg_state *regs, u32 regno)
696 {
697 	if (WARN_ON(regno >= MAX_BPF_REG)) {
698 		verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
699 		/* Something bad happened, let's kill all regs except FP */
700 		for (regno = 0; regno < BPF_REG_FP; regno++)
701 			__mark_reg_not_init(regs + regno);
702 		return;
703 	}
704 	__mark_reg_unknown(regs + regno);
705 }
706 
707 static void __mark_reg_not_init(struct bpf_reg_state *reg)
708 {
709 	__mark_reg_unknown(reg);
710 	reg->type = NOT_INIT;
711 }
712 
713 static void mark_reg_not_init(struct bpf_verifier_env *env,
714 			      struct bpf_reg_state *regs, u32 regno)
715 {
716 	if (WARN_ON(regno >= MAX_BPF_REG)) {
717 		verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
718 		/* Something bad happened, let's kill all regs except FP */
719 		for (regno = 0; regno < BPF_REG_FP; regno++)
720 			__mark_reg_not_init(regs + regno);
721 		return;
722 	}
723 	__mark_reg_not_init(regs + regno);
724 }
725 
726 static void init_reg_state(struct bpf_verifier_env *env,
727 			   struct bpf_func_state *state)
728 {
729 	struct bpf_reg_state *regs = state->regs;
730 	int i;
731 
732 	for (i = 0; i < MAX_BPF_REG; i++) {
733 		mark_reg_not_init(env, regs, i);
734 		regs[i].live = REG_LIVE_NONE;
735 	}
736 
737 	/* frame pointer */
738 	regs[BPF_REG_FP].type = PTR_TO_STACK;
739 	mark_reg_known_zero(env, regs, BPF_REG_FP);
740 	regs[BPF_REG_FP].frameno = state->frameno;
741 
742 	/* 1st arg to a function */
743 	regs[BPF_REG_1].type = PTR_TO_CTX;
744 	mark_reg_known_zero(env, regs, BPF_REG_1);
745 }
746 
747 #define BPF_MAIN_FUNC (-1)
748 static void init_func_state(struct bpf_verifier_env *env,
749 			    struct bpf_func_state *state,
750 			    int callsite, int frameno, int subprogno)
751 {
752 	state->callsite = callsite;
753 	state->frameno = frameno;
754 	state->subprogno = subprogno;
755 	init_reg_state(env, state);
756 }
757 
758 enum reg_arg_type {
759 	SRC_OP,		/* register is used as source operand */
760 	DST_OP,		/* register is used as destination operand */
761 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
762 };
763 
764 static int cmp_subprogs(const void *a, const void *b)
765 {
766 	return ((struct bpf_subprog_info *)a)->start -
767 	       ((struct bpf_subprog_info *)b)->start;
768 }
769 
770 static int find_subprog(struct bpf_verifier_env *env, int off)
771 {
772 	struct bpf_subprog_info *p;
773 
774 	p = bsearch(&off, env->subprog_info, env->subprog_cnt,
775 		    sizeof(env->subprog_info[0]), cmp_subprogs);
776 	if (!p)
777 		return -ENOENT;
778 	return p - env->subprog_info;
779 
780 }
781 
782 static int add_subprog(struct bpf_verifier_env *env, int off)
783 {
784 	int insn_cnt = env->prog->len;
785 	int ret;
786 
787 	if (off >= insn_cnt || off < 0) {
788 		verbose(env, "call to invalid destination\n");
789 		return -EINVAL;
790 	}
791 	ret = find_subprog(env, off);
792 	if (ret >= 0)
793 		return 0;
794 	if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
795 		verbose(env, "too many subprograms\n");
796 		return -E2BIG;
797 	}
798 	env->subprog_info[env->subprog_cnt++].start = off;
799 	sort(env->subprog_info, env->subprog_cnt,
800 	     sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
801 	return 0;
802 }
803 
804 static int check_subprogs(struct bpf_verifier_env *env)
805 {
806 	int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
807 	struct bpf_subprog_info *subprog = env->subprog_info;
808 	struct bpf_insn *insn = env->prog->insnsi;
809 	int insn_cnt = env->prog->len;
810 
811 	/* Add entry function. */
812 	ret = add_subprog(env, 0);
813 	if (ret < 0)
814 		return ret;
815 
816 	/* determine subprog starts. The end is one before the next starts */
817 	for (i = 0; i < insn_cnt; i++) {
818 		if (insn[i].code != (BPF_JMP | BPF_CALL))
819 			continue;
820 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
821 			continue;
822 		if (!env->allow_ptr_leaks) {
823 			verbose(env, "function calls to other bpf functions are allowed for root only\n");
824 			return -EPERM;
825 		}
826 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
827 			verbose(env, "function calls in offloaded programs are not supported yet\n");
828 			return -EINVAL;
829 		}
830 		ret = add_subprog(env, i + insn[i].imm + 1);
831 		if (ret < 0)
832 			return ret;
833 	}
834 
835 	/* Add a fake 'exit' subprog which could simplify subprog iteration
836 	 * logic. 'subprog_cnt' should not be increased.
837 	 */
838 	subprog[env->subprog_cnt].start = insn_cnt;
839 
840 	if (env->log.level > 1)
841 		for (i = 0; i < env->subprog_cnt; i++)
842 			verbose(env, "func#%d @%d\n", i, subprog[i].start);
843 
844 	/* now check that all jumps are within the same subprog */
845 	subprog_start = subprog[cur_subprog].start;
846 	subprog_end = subprog[cur_subprog + 1].start;
847 	for (i = 0; i < insn_cnt; i++) {
848 		u8 code = insn[i].code;
849 
850 		if (BPF_CLASS(code) != BPF_JMP)
851 			goto next;
852 		if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
853 			goto next;
854 		off = i + insn[i].off + 1;
855 		if (off < subprog_start || off >= subprog_end) {
856 			verbose(env, "jump out of range from insn %d to %d\n", i, off);
857 			return -EINVAL;
858 		}
859 next:
860 		if (i == subprog_end - 1) {
861 			/* to avoid fall-through from one subprog into another
862 			 * the last insn of the subprog should be either exit
863 			 * or unconditional jump back
864 			 */
865 			if (code != (BPF_JMP | BPF_EXIT) &&
866 			    code != (BPF_JMP | BPF_JA)) {
867 				verbose(env, "last insn is not an exit or jmp\n");
868 				return -EINVAL;
869 			}
870 			subprog_start = subprog_end;
871 			cur_subprog++;
872 			if (cur_subprog < env->subprog_cnt)
873 				subprog_end = subprog[cur_subprog + 1].start;
874 		}
875 	}
876 	return 0;
877 }
878 
879 static
880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
881 				       const struct bpf_verifier_state *state,
882 				       struct bpf_verifier_state *parent,
883 				       u32 regno)
884 {
885 	struct bpf_verifier_state *tmp = NULL;
886 
887 	/* 'parent' could be a state of caller and
888 	 * 'state' could be a state of callee. In such case
889 	 * parent->curframe < state->curframe
890 	 * and it's ok for r1 - r5 registers
891 	 *
892 	 * 'parent' could be a callee's state after it bpf_exit-ed.
893 	 * In such case parent->curframe > state->curframe
894 	 * and it's ok for r0 only
895 	 */
896 	if (parent->curframe == state->curframe ||
897 	    (parent->curframe < state->curframe &&
898 	     regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
899 	    (parent->curframe > state->curframe &&
900 	       regno == BPF_REG_0))
901 		return parent;
902 
903 	if (parent->curframe > state->curframe &&
904 	    regno >= BPF_REG_6) {
905 		/* for callee saved regs we have to skip the whole chain
906 		 * of states that belong to callee and mark as LIVE_READ
907 		 * the registers before the call
908 		 */
909 		tmp = parent;
910 		while (tmp && tmp->curframe != state->curframe) {
911 			tmp = tmp->parent;
912 		}
913 		if (!tmp)
914 			goto bug;
915 		parent = tmp;
916 	} else {
917 		goto bug;
918 	}
919 	return parent;
920 bug:
921 	verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
922 	verbose(env, "regno %d parent frame %d current frame %d\n",
923 		regno, parent->curframe, state->curframe);
924 	return NULL;
925 }
926 
927 static int mark_reg_read(struct bpf_verifier_env *env,
928 			 const struct bpf_verifier_state *state,
929 			 struct bpf_verifier_state *parent,
930 			 u32 regno)
931 {
932 	bool writes = parent == state->parent; /* Observe write marks */
933 
934 	if (regno == BPF_REG_FP)
935 		/* We don't need to worry about FP liveness because it's read-only */
936 		return 0;
937 
938 	while (parent) {
939 		/* if read wasn't screened by an earlier write ... */
940 		if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
941 			break;
942 		parent = skip_callee(env, state, parent, regno);
943 		if (!parent)
944 			return -EFAULT;
945 		/* ... then we depend on parent's value */
946 		parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
947 		state = parent;
948 		parent = state->parent;
949 		writes = true;
950 	}
951 	return 0;
952 }
953 
954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
955 			 enum reg_arg_type t)
956 {
957 	struct bpf_verifier_state *vstate = env->cur_state;
958 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
959 	struct bpf_reg_state *regs = state->regs;
960 
961 	if (regno >= MAX_BPF_REG) {
962 		verbose(env, "R%d is invalid\n", regno);
963 		return -EINVAL;
964 	}
965 
966 	if (t == SRC_OP) {
967 		/* check whether register used as source operand can be read */
968 		if (regs[regno].type == NOT_INIT) {
969 			verbose(env, "R%d !read_ok\n", regno);
970 			return -EACCES;
971 		}
972 		return mark_reg_read(env, vstate, vstate->parent, regno);
973 	} else {
974 		/* check whether register used as dest operand can be written to */
975 		if (regno == BPF_REG_FP) {
976 			verbose(env, "frame pointer is read only\n");
977 			return -EACCES;
978 		}
979 		regs[regno].live |= REG_LIVE_WRITTEN;
980 		if (t == DST_OP)
981 			mark_reg_unknown(env, regs, regno);
982 	}
983 	return 0;
984 }
985 
986 static bool is_spillable_regtype(enum bpf_reg_type type)
987 {
988 	switch (type) {
989 	case PTR_TO_MAP_VALUE:
990 	case PTR_TO_MAP_VALUE_OR_NULL:
991 	case PTR_TO_STACK:
992 	case PTR_TO_CTX:
993 	case PTR_TO_PACKET:
994 	case PTR_TO_PACKET_META:
995 	case PTR_TO_PACKET_END:
996 	case CONST_PTR_TO_MAP:
997 		return true;
998 	default:
999 		return false;
1000 	}
1001 }
1002 
1003 /* Does this register contain a constant zero? */
1004 static bool register_is_null(struct bpf_reg_state *reg)
1005 {
1006 	return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1007 }
1008 
1009 /* check_stack_read/write functions track spill/fill of registers,
1010  * stack boundary and alignment are checked in check_mem_access()
1011  */
1012 static int check_stack_write(struct bpf_verifier_env *env,
1013 			     struct bpf_func_state *state, /* func where register points to */
1014 			     int off, int size, int value_regno, int insn_idx)
1015 {
1016 	struct bpf_func_state *cur; /* state of the current function */
1017 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1018 	enum bpf_reg_type type;
1019 
1020 	err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1021 				 true);
1022 	if (err)
1023 		return err;
1024 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1025 	 * so it's aligned access and [off, off + size) are within stack limits
1026 	 */
1027 	if (!env->allow_ptr_leaks &&
1028 	    state->stack[spi].slot_type[0] == STACK_SPILL &&
1029 	    size != BPF_REG_SIZE) {
1030 		verbose(env, "attempt to corrupt spilled pointer on stack\n");
1031 		return -EACCES;
1032 	}
1033 
1034 	cur = env->cur_state->frame[env->cur_state->curframe];
1035 	if (value_regno >= 0 &&
1036 	    is_spillable_regtype((type = cur->regs[value_regno].type))) {
1037 
1038 		/* register containing pointer is being spilled into stack */
1039 		if (size != BPF_REG_SIZE) {
1040 			verbose(env, "invalid size of register spill\n");
1041 			return -EACCES;
1042 		}
1043 
1044 		if (state != cur && type == PTR_TO_STACK) {
1045 			verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1046 			return -EINVAL;
1047 		}
1048 
1049 		/* save register state */
1050 		state->stack[spi].spilled_ptr = cur->regs[value_regno];
1051 		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1052 
1053 		for (i = 0; i < BPF_REG_SIZE; i++) {
1054 			if (state->stack[spi].slot_type[i] == STACK_MISC &&
1055 			    !env->allow_ptr_leaks) {
1056 				int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1057 				int soff = (-spi - 1) * BPF_REG_SIZE;
1058 
1059 				/* detected reuse of integer stack slot with a pointer
1060 				 * which means either llvm is reusing stack slot or
1061 				 * an attacker is trying to exploit CVE-2018-3639
1062 				 * (speculative store bypass)
1063 				 * Have to sanitize that slot with preemptive
1064 				 * store of zero.
1065 				 */
1066 				if (*poff && *poff != soff) {
1067 					/* disallow programs where single insn stores
1068 					 * into two different stack slots, since verifier
1069 					 * cannot sanitize them
1070 					 */
1071 					verbose(env,
1072 						"insn %d cannot access two stack slots fp%d and fp%d",
1073 						insn_idx, *poff, soff);
1074 					return -EINVAL;
1075 				}
1076 				*poff = soff;
1077 			}
1078 			state->stack[spi].slot_type[i] = STACK_SPILL;
1079 		}
1080 	} else {
1081 		u8 type = STACK_MISC;
1082 
1083 		/* regular write of data into stack */
1084 		state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1085 
1086 		/* only mark the slot as written if all 8 bytes were written
1087 		 * otherwise read propagation may incorrectly stop too soon
1088 		 * when stack slots are partially written.
1089 		 * This heuristic means that read propagation will be
1090 		 * conservative, since it will add reg_live_read marks
1091 		 * to stack slots all the way to first state when programs
1092 		 * writes+reads less than 8 bytes
1093 		 */
1094 		if (size == BPF_REG_SIZE)
1095 			state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1096 
1097 		/* when we zero initialize stack slots mark them as such */
1098 		if (value_regno >= 0 &&
1099 		    register_is_null(&cur->regs[value_regno]))
1100 			type = STACK_ZERO;
1101 
1102 		for (i = 0; i < size; i++)
1103 			state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1104 				type;
1105 	}
1106 	return 0;
1107 }
1108 
1109 /* registers of every function are unique and mark_reg_read() propagates
1110  * the liveness in the following cases:
1111  * - from callee into caller for R1 - R5 that were used as arguments
1112  * - from caller into callee for R0 that used as result of the call
1113  * - from caller to the same caller skipping states of the callee for R6 - R9,
1114  *   since R6 - R9 are callee saved by implicit function prologue and
1115  *   caller's R6 != callee's R6, so when we propagate liveness up to
1116  *   parent states we need to skip callee states for R6 - R9.
1117  *
1118  * stack slot marking is different, since stacks of caller and callee are
1119  * accessible in both (since caller can pass a pointer to caller's stack to
1120  * callee which can pass it to another function), hence mark_stack_slot_read()
1121  * has to propagate the stack liveness to all parent states at given frame number.
1122  * Consider code:
1123  * f1() {
1124  *   ptr = fp - 8;
1125  *   *ptr = ctx;
1126  *   call f2 {
1127  *      .. = *ptr;
1128  *   }
1129  *   .. = *ptr;
1130  * }
1131  * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1132  * to mark liveness at the f1's frame and not f2's frame.
1133  * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1134  * to propagate liveness to f2 states at f1's frame level and further into
1135  * f1 states at f1's frame level until write into that stack slot
1136  */
1137 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1138 				 const struct bpf_verifier_state *state,
1139 				 struct bpf_verifier_state *parent,
1140 				 int slot, int frameno)
1141 {
1142 	bool writes = parent == state->parent; /* Observe write marks */
1143 
1144 	while (parent) {
1145 		if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1146 			/* since LIVE_WRITTEN mark is only done for full 8-byte
1147 			 * write the read marks are conservative and parent
1148 			 * state may not even have the stack allocated. In such case
1149 			 * end the propagation, since the loop reached beginning
1150 			 * of the function
1151 			 */
1152 			break;
1153 		/* if read wasn't screened by an earlier write ... */
1154 		if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1155 			break;
1156 		/* ... then we depend on parent's value */
1157 		parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1158 		state = parent;
1159 		parent = state->parent;
1160 		writes = true;
1161 	}
1162 }
1163 
1164 static int check_stack_read(struct bpf_verifier_env *env,
1165 			    struct bpf_func_state *reg_state /* func where register points to */,
1166 			    int off, int size, int value_regno)
1167 {
1168 	struct bpf_verifier_state *vstate = env->cur_state;
1169 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 	int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1171 	u8 *stype;
1172 
1173 	if (reg_state->allocated_stack <= slot) {
1174 		verbose(env, "invalid read from stack off %d+0 size %d\n",
1175 			off, size);
1176 		return -EACCES;
1177 	}
1178 	stype = reg_state->stack[spi].slot_type;
1179 
1180 	if (stype[0] == STACK_SPILL) {
1181 		if (size != BPF_REG_SIZE) {
1182 			verbose(env, "invalid size of register spill\n");
1183 			return -EACCES;
1184 		}
1185 		for (i = 1; i < BPF_REG_SIZE; i++) {
1186 			if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1187 				verbose(env, "corrupted spill memory\n");
1188 				return -EACCES;
1189 			}
1190 		}
1191 
1192 		if (value_regno >= 0) {
1193 			/* restore register state from stack */
1194 			state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1195 			/* mark reg as written since spilled pointer state likely
1196 			 * has its liveness marks cleared by is_state_visited()
1197 			 * which resets stack/reg liveness for state transitions
1198 			 */
1199 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1200 		}
1201 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1202 				     reg_state->frameno);
1203 		return 0;
1204 	} else {
1205 		int zeros = 0;
1206 
1207 		for (i = 0; i < size; i++) {
1208 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1209 				continue;
1210 			if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1211 				zeros++;
1212 				continue;
1213 			}
1214 			verbose(env, "invalid read from stack off %d+%d size %d\n",
1215 				off, i, size);
1216 			return -EACCES;
1217 		}
1218 		mark_stack_slot_read(env, vstate, vstate->parent, spi,
1219 				     reg_state->frameno);
1220 		if (value_regno >= 0) {
1221 			if (zeros == size) {
1222 				/* any size read into register is zero extended,
1223 				 * so the whole register == const_zero
1224 				 */
1225 				__mark_reg_const_zero(&state->regs[value_regno]);
1226 			} else {
1227 				/* have read misc data from the stack */
1228 				mark_reg_unknown(env, state->regs, value_regno);
1229 			}
1230 			state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1231 		}
1232 		return 0;
1233 	}
1234 }
1235 
1236 /* check read/write into map element returned by bpf_map_lookup_elem() */
1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1238 			      int size, bool zero_size_allowed)
1239 {
1240 	struct bpf_reg_state *regs = cur_regs(env);
1241 	struct bpf_map *map = regs[regno].map_ptr;
1242 
1243 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1244 	    off + size > map->value_size) {
1245 		verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1246 			map->value_size, off, size);
1247 		return -EACCES;
1248 	}
1249 	return 0;
1250 }
1251 
1252 /* check read/write into a map element with possible variable offset */
1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1254 			    int off, int size, bool zero_size_allowed)
1255 {
1256 	struct bpf_verifier_state *vstate = env->cur_state;
1257 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
1258 	struct bpf_reg_state *reg = &state->regs[regno];
1259 	int err;
1260 
1261 	/* We may have adjusted the register to this map value, so we
1262 	 * need to try adding each of min_value and max_value to off
1263 	 * to make sure our theoretical access will be safe.
1264 	 */
1265 	if (env->log.level)
1266 		print_verifier_state(env, state);
1267 	/* The minimum value is only important with signed
1268 	 * comparisons where we can't assume the floor of a
1269 	 * value is 0.  If we are using signed variables for our
1270 	 * index'es we need to make sure that whatever we use
1271 	 * will have a set floor within our range.
1272 	 */
1273 	if (reg->smin_value < 0) {
1274 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1275 			regno);
1276 		return -EACCES;
1277 	}
1278 	err = __check_map_access(env, regno, reg->smin_value + off, size,
1279 				 zero_size_allowed);
1280 	if (err) {
1281 		verbose(env, "R%d min value is outside of the array range\n",
1282 			regno);
1283 		return err;
1284 	}
1285 
1286 	/* If we haven't set a max value then we need to bail since we can't be
1287 	 * sure we won't do bad things.
1288 	 * If reg->umax_value + off could overflow, treat that as unbounded too.
1289 	 */
1290 	if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1291 		verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1292 			regno);
1293 		return -EACCES;
1294 	}
1295 	err = __check_map_access(env, regno, reg->umax_value + off, size,
1296 				 zero_size_allowed);
1297 	if (err)
1298 		verbose(env, "R%d max value is outside of the array range\n",
1299 			regno);
1300 	return err;
1301 }
1302 
1303 #define MAX_PACKET_OFF 0xffff
1304 
1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1306 				       const struct bpf_call_arg_meta *meta,
1307 				       enum bpf_access_type t)
1308 {
1309 	switch (env->prog->type) {
1310 	case BPF_PROG_TYPE_LWT_IN:
1311 	case BPF_PROG_TYPE_LWT_OUT:
1312 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1313 		/* dst_input() and dst_output() can't write for now */
1314 		if (t == BPF_WRITE)
1315 			return false;
1316 		/* fallthrough */
1317 	case BPF_PROG_TYPE_SCHED_CLS:
1318 	case BPF_PROG_TYPE_SCHED_ACT:
1319 	case BPF_PROG_TYPE_XDP:
1320 	case BPF_PROG_TYPE_LWT_XMIT:
1321 	case BPF_PROG_TYPE_SK_SKB:
1322 	case BPF_PROG_TYPE_SK_MSG:
1323 		if (meta)
1324 			return meta->pkt_access;
1325 
1326 		env->seen_direct_write = true;
1327 		return true;
1328 	default:
1329 		return false;
1330 	}
1331 }
1332 
1333 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1334 				 int off, int size, bool zero_size_allowed)
1335 {
1336 	struct bpf_reg_state *regs = cur_regs(env);
1337 	struct bpf_reg_state *reg = &regs[regno];
1338 
1339 	if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1340 	    (u64)off + size > reg->range) {
1341 		verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1342 			off, size, regno, reg->id, reg->off, reg->range);
1343 		return -EACCES;
1344 	}
1345 	return 0;
1346 }
1347 
1348 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1349 			       int size, bool zero_size_allowed)
1350 {
1351 	struct bpf_reg_state *regs = cur_regs(env);
1352 	struct bpf_reg_state *reg = &regs[regno];
1353 	int err;
1354 
1355 	/* We may have added a variable offset to the packet pointer; but any
1356 	 * reg->range we have comes after that.  We are only checking the fixed
1357 	 * offset.
1358 	 */
1359 
1360 	/* We don't allow negative numbers, because we aren't tracking enough
1361 	 * detail to prove they're safe.
1362 	 */
1363 	if (reg->smin_value < 0) {
1364 		verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1365 			regno);
1366 		return -EACCES;
1367 	}
1368 	err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1369 	if (err) {
1370 		verbose(env, "R%d offset is outside of the packet\n", regno);
1371 		return err;
1372 	}
1373 	return err;
1374 }
1375 
1376 /* check access to 'struct bpf_context' fields.  Supports fixed offsets only */
1377 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1378 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
1379 {
1380 	struct bpf_insn_access_aux info = {
1381 		.reg_type = *reg_type,
1382 	};
1383 
1384 	if (env->ops->is_valid_access &&
1385 	    env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1386 		/* A non zero info.ctx_field_size indicates that this field is a
1387 		 * candidate for later verifier transformation to load the whole
1388 		 * field and then apply a mask when accessed with a narrower
1389 		 * access than actual ctx access size. A zero info.ctx_field_size
1390 		 * will only allow for whole field access and rejects any other
1391 		 * type of narrower access.
1392 		 */
1393 		*reg_type = info.reg_type;
1394 
1395 		env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1396 		/* remember the offset of last byte accessed in ctx */
1397 		if (env->prog->aux->max_ctx_offset < off + size)
1398 			env->prog->aux->max_ctx_offset = off + size;
1399 		return 0;
1400 	}
1401 
1402 	verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1403 	return -EACCES;
1404 }
1405 
1406 static bool __is_pointer_value(bool allow_ptr_leaks,
1407 			       const struct bpf_reg_state *reg)
1408 {
1409 	if (allow_ptr_leaks)
1410 		return false;
1411 
1412 	return reg->type != SCALAR_VALUE;
1413 }
1414 
1415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1416 {
1417 	return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1418 }
1419 
1420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1421 {
1422 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1423 
1424 	return reg->type == PTR_TO_CTX;
1425 }
1426 
1427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1428 {
1429 	const struct bpf_reg_state *reg = cur_regs(env) + regno;
1430 
1431 	return type_is_pkt_pointer(reg->type);
1432 }
1433 
1434 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1435 				   const struct bpf_reg_state *reg,
1436 				   int off, int size, bool strict)
1437 {
1438 	struct tnum reg_off;
1439 	int ip_align;
1440 
1441 	/* Byte size accesses are always allowed. */
1442 	if (!strict || size == 1)
1443 		return 0;
1444 
1445 	/* For platforms that do not have a Kconfig enabling
1446 	 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1447 	 * NET_IP_ALIGN is universally set to '2'.  And on platforms
1448 	 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1449 	 * to this code only in strict mode where we want to emulate
1450 	 * the NET_IP_ALIGN==2 checking.  Therefore use an
1451 	 * unconditional IP align value of '2'.
1452 	 */
1453 	ip_align = 2;
1454 
1455 	reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1456 	if (!tnum_is_aligned(reg_off, size)) {
1457 		char tn_buf[48];
1458 
1459 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1460 		verbose(env,
1461 			"misaligned packet access off %d+%s+%d+%d size %d\n",
1462 			ip_align, tn_buf, reg->off, off, size);
1463 		return -EACCES;
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1470 				       const struct bpf_reg_state *reg,
1471 				       const char *pointer_desc,
1472 				       int off, int size, bool strict)
1473 {
1474 	struct tnum reg_off;
1475 
1476 	/* Byte size accesses are always allowed. */
1477 	if (!strict || size == 1)
1478 		return 0;
1479 
1480 	reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1481 	if (!tnum_is_aligned(reg_off, size)) {
1482 		char tn_buf[48];
1483 
1484 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1485 		verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1486 			pointer_desc, tn_buf, reg->off, off, size);
1487 		return -EACCES;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 static int check_ptr_alignment(struct bpf_verifier_env *env,
1494 			       const struct bpf_reg_state *reg, int off,
1495 			       int size, bool strict_alignment_once)
1496 {
1497 	bool strict = env->strict_alignment || strict_alignment_once;
1498 	const char *pointer_desc = "";
1499 
1500 	switch (reg->type) {
1501 	case PTR_TO_PACKET:
1502 	case PTR_TO_PACKET_META:
1503 		/* Special case, because of NET_IP_ALIGN. Given metadata sits
1504 		 * right in front, treat it the very same way.
1505 		 */
1506 		return check_pkt_ptr_alignment(env, reg, off, size, strict);
1507 	case PTR_TO_MAP_VALUE:
1508 		pointer_desc = "value ";
1509 		break;
1510 	case PTR_TO_CTX:
1511 		pointer_desc = "context ";
1512 		break;
1513 	case PTR_TO_STACK:
1514 		pointer_desc = "stack ";
1515 		/* The stack spill tracking logic in check_stack_write()
1516 		 * and check_stack_read() relies on stack accesses being
1517 		 * aligned.
1518 		 */
1519 		strict = true;
1520 		break;
1521 	default:
1522 		break;
1523 	}
1524 	return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1525 					   strict);
1526 }
1527 
1528 static int update_stack_depth(struct bpf_verifier_env *env,
1529 			      const struct bpf_func_state *func,
1530 			      int off)
1531 {
1532 	u16 stack = env->subprog_info[func->subprogno].stack_depth;
1533 
1534 	if (stack >= -off)
1535 		return 0;
1536 
1537 	/* update known max for given subprogram */
1538 	env->subprog_info[func->subprogno].stack_depth = -off;
1539 	return 0;
1540 }
1541 
1542 /* starting from main bpf function walk all instructions of the function
1543  * and recursively walk all callees that given function can call.
1544  * Ignore jump and exit insns.
1545  * Since recursion is prevented by check_cfg() this algorithm
1546  * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1547  */
1548 static int check_max_stack_depth(struct bpf_verifier_env *env)
1549 {
1550 	int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1551 	struct bpf_subprog_info *subprog = env->subprog_info;
1552 	struct bpf_insn *insn = env->prog->insnsi;
1553 	int ret_insn[MAX_CALL_FRAMES];
1554 	int ret_prog[MAX_CALL_FRAMES];
1555 
1556 process_func:
1557 	/* round up to 32-bytes, since this is granularity
1558 	 * of interpreter stack size
1559 	 */
1560 	depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1561 	if (depth > MAX_BPF_STACK) {
1562 		verbose(env, "combined stack size of %d calls is %d. Too large\n",
1563 			frame + 1, depth);
1564 		return -EACCES;
1565 	}
1566 continue_func:
1567 	subprog_end = subprog[idx + 1].start;
1568 	for (; i < subprog_end; i++) {
1569 		if (insn[i].code != (BPF_JMP | BPF_CALL))
1570 			continue;
1571 		if (insn[i].src_reg != BPF_PSEUDO_CALL)
1572 			continue;
1573 		/* remember insn and function to return to */
1574 		ret_insn[frame] = i + 1;
1575 		ret_prog[frame] = idx;
1576 
1577 		/* find the callee */
1578 		i = i + insn[i].imm + 1;
1579 		idx = find_subprog(env, i);
1580 		if (idx < 0) {
1581 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1582 				  i);
1583 			return -EFAULT;
1584 		}
1585 		frame++;
1586 		if (frame >= MAX_CALL_FRAMES) {
1587 			WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1588 			return -EFAULT;
1589 		}
1590 		goto process_func;
1591 	}
1592 	/* end of for() loop means the last insn of the 'subprog'
1593 	 * was reached. Doesn't matter whether it was JA or EXIT
1594 	 */
1595 	if (frame == 0)
1596 		return 0;
1597 	depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1598 	frame--;
1599 	i = ret_insn[frame];
1600 	idx = ret_prog[frame];
1601 	goto continue_func;
1602 }
1603 
1604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1605 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1606 				  const struct bpf_insn *insn, int idx)
1607 {
1608 	int start = idx + insn->imm + 1, subprog;
1609 
1610 	subprog = find_subprog(env, start);
1611 	if (subprog < 0) {
1612 		WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1613 			  start);
1614 		return -EFAULT;
1615 	}
1616 	return env->subprog_info[subprog].stack_depth;
1617 }
1618 #endif
1619 
1620 /* truncate register to smaller size (in bytes)
1621  * must be called with size < BPF_REG_SIZE
1622  */
1623 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1624 {
1625 	u64 mask;
1626 
1627 	/* clear high bits in bit representation */
1628 	reg->var_off = tnum_cast(reg->var_off, size);
1629 
1630 	/* fix arithmetic bounds */
1631 	mask = ((u64)1 << (size * 8)) - 1;
1632 	if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1633 		reg->umin_value &= mask;
1634 		reg->umax_value &= mask;
1635 	} else {
1636 		reg->umin_value = 0;
1637 		reg->umax_value = mask;
1638 	}
1639 	reg->smin_value = reg->umin_value;
1640 	reg->smax_value = reg->umax_value;
1641 }
1642 
1643 /* check whether memory at (regno + off) is accessible for t = (read | write)
1644  * if t==write, value_regno is a register which value is stored into memory
1645  * if t==read, value_regno is a register which will receive the value from memory
1646  * if t==write && value_regno==-1, some unknown value is stored into memory
1647  * if t==read && value_regno==-1, don't care what we read from memory
1648  */
1649 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1650 			    int off, int bpf_size, enum bpf_access_type t,
1651 			    int value_regno, bool strict_alignment_once)
1652 {
1653 	struct bpf_reg_state *regs = cur_regs(env);
1654 	struct bpf_reg_state *reg = regs + regno;
1655 	struct bpf_func_state *state;
1656 	int size, err = 0;
1657 
1658 	size = bpf_size_to_bytes(bpf_size);
1659 	if (size < 0)
1660 		return size;
1661 
1662 	/* alignment checks will add in reg->off themselves */
1663 	err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1664 	if (err)
1665 		return err;
1666 
1667 	/* for access checks, reg->off is just part of off */
1668 	off += reg->off;
1669 
1670 	if (reg->type == PTR_TO_MAP_VALUE) {
1671 		if (t == BPF_WRITE && value_regno >= 0 &&
1672 		    is_pointer_value(env, value_regno)) {
1673 			verbose(env, "R%d leaks addr into map\n", value_regno);
1674 			return -EACCES;
1675 		}
1676 
1677 		err = check_map_access(env, regno, off, size, false);
1678 		if (!err && t == BPF_READ && value_regno >= 0)
1679 			mark_reg_unknown(env, regs, value_regno);
1680 
1681 	} else if (reg->type == PTR_TO_CTX) {
1682 		enum bpf_reg_type reg_type = SCALAR_VALUE;
1683 
1684 		if (t == BPF_WRITE && value_regno >= 0 &&
1685 		    is_pointer_value(env, value_regno)) {
1686 			verbose(env, "R%d leaks addr into ctx\n", value_regno);
1687 			return -EACCES;
1688 		}
1689 		/* ctx accesses must be at a fixed offset, so that we can
1690 		 * determine what type of data were returned.
1691 		 */
1692 		if (reg->off) {
1693 			verbose(env,
1694 				"dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1695 				regno, reg->off, off - reg->off);
1696 			return -EACCES;
1697 		}
1698 		if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1699 			char tn_buf[48];
1700 
1701 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1702 			verbose(env,
1703 				"variable ctx access var_off=%s off=%d size=%d",
1704 				tn_buf, off, size);
1705 			return -EACCES;
1706 		}
1707 		err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1708 		if (!err && t == BPF_READ && value_regno >= 0) {
1709 			/* ctx access returns either a scalar, or a
1710 			 * PTR_TO_PACKET[_META,_END]. In the latter
1711 			 * case, we know the offset is zero.
1712 			 */
1713 			if (reg_type == SCALAR_VALUE)
1714 				mark_reg_unknown(env, regs, value_regno);
1715 			else
1716 				mark_reg_known_zero(env, regs,
1717 						    value_regno);
1718 			regs[value_regno].id = 0;
1719 			regs[value_regno].off = 0;
1720 			regs[value_regno].range = 0;
1721 			regs[value_regno].type = reg_type;
1722 		}
1723 
1724 	} else if (reg->type == PTR_TO_STACK) {
1725 		/* stack accesses must be at a fixed offset, so that we can
1726 		 * determine what type of data were returned.
1727 		 * See check_stack_read().
1728 		 */
1729 		if (!tnum_is_const(reg->var_off)) {
1730 			char tn_buf[48];
1731 
1732 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1733 			verbose(env, "variable stack access var_off=%s off=%d size=%d",
1734 				tn_buf, off, size);
1735 			return -EACCES;
1736 		}
1737 		off += reg->var_off.value;
1738 		if (off >= 0 || off < -MAX_BPF_STACK) {
1739 			verbose(env, "invalid stack off=%d size=%d\n", off,
1740 				size);
1741 			return -EACCES;
1742 		}
1743 
1744 		state = func(env, reg);
1745 		err = update_stack_depth(env, state, off);
1746 		if (err)
1747 			return err;
1748 
1749 		if (t == BPF_WRITE)
1750 			err = check_stack_write(env, state, off, size,
1751 						value_regno, insn_idx);
1752 		else
1753 			err = check_stack_read(env, state, off, size,
1754 					       value_regno);
1755 	} else if (reg_is_pkt_pointer(reg)) {
1756 		if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1757 			verbose(env, "cannot write into packet\n");
1758 			return -EACCES;
1759 		}
1760 		if (t == BPF_WRITE && value_regno >= 0 &&
1761 		    is_pointer_value(env, value_regno)) {
1762 			verbose(env, "R%d leaks addr into packet\n",
1763 				value_regno);
1764 			return -EACCES;
1765 		}
1766 		err = check_packet_access(env, regno, off, size, false);
1767 		if (!err && t == BPF_READ && value_regno >= 0)
1768 			mark_reg_unknown(env, regs, value_regno);
1769 	} else {
1770 		verbose(env, "R%d invalid mem access '%s'\n", regno,
1771 			reg_type_str[reg->type]);
1772 		return -EACCES;
1773 	}
1774 
1775 	if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1776 	    regs[value_regno].type == SCALAR_VALUE) {
1777 		/* b/h/w load zero-extends, mark upper bits as known 0 */
1778 		coerce_reg_to_size(&regs[value_regno], size);
1779 	}
1780 	return err;
1781 }
1782 
1783 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1784 {
1785 	int err;
1786 
1787 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1788 	    insn->imm != 0) {
1789 		verbose(env, "BPF_XADD uses reserved fields\n");
1790 		return -EINVAL;
1791 	}
1792 
1793 	/* check src1 operand */
1794 	err = check_reg_arg(env, insn->src_reg, SRC_OP);
1795 	if (err)
1796 		return err;
1797 
1798 	/* check src2 operand */
1799 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1800 	if (err)
1801 		return err;
1802 
1803 	if (is_pointer_value(env, insn->src_reg)) {
1804 		verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1805 		return -EACCES;
1806 	}
1807 
1808 	if (is_ctx_reg(env, insn->dst_reg) ||
1809 	    is_pkt_reg(env, insn->dst_reg)) {
1810 		verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1811 			insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1812 			"context" : "packet");
1813 		return -EACCES;
1814 	}
1815 
1816 	/* check whether atomic_add can read the memory */
1817 	err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1818 			       BPF_SIZE(insn->code), BPF_READ, -1, true);
1819 	if (err)
1820 		return err;
1821 
1822 	/* check whether atomic_add can write into the same memory */
1823 	return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1824 				BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1825 }
1826 
1827 /* when register 'regno' is passed into function that will read 'access_size'
1828  * bytes from that pointer, make sure that it's within stack boundary
1829  * and all elements of stack are initialized.
1830  * Unlike most pointer bounds-checking functions, this one doesn't take an
1831  * 'off' argument, so it has to add in reg->off itself.
1832  */
1833 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1834 				int access_size, bool zero_size_allowed,
1835 				struct bpf_call_arg_meta *meta)
1836 {
1837 	struct bpf_reg_state *reg = cur_regs(env) + regno;
1838 	struct bpf_func_state *state = func(env, reg);
1839 	int off, i, slot, spi;
1840 
1841 	if (reg->type != PTR_TO_STACK) {
1842 		/* Allow zero-byte read from NULL, regardless of pointer type */
1843 		if (zero_size_allowed && access_size == 0 &&
1844 		    register_is_null(reg))
1845 			return 0;
1846 
1847 		verbose(env, "R%d type=%s expected=%s\n", regno,
1848 			reg_type_str[reg->type],
1849 			reg_type_str[PTR_TO_STACK]);
1850 		return -EACCES;
1851 	}
1852 
1853 	/* Only allow fixed-offset stack reads */
1854 	if (!tnum_is_const(reg->var_off)) {
1855 		char tn_buf[48];
1856 
1857 		tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1858 		verbose(env, "invalid variable stack read R%d var_off=%s\n",
1859 			regno, tn_buf);
1860 		return -EACCES;
1861 	}
1862 	off = reg->off + reg->var_off.value;
1863 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1864 	    access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1865 		verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1866 			regno, off, access_size);
1867 		return -EACCES;
1868 	}
1869 
1870 	if (meta && meta->raw_mode) {
1871 		meta->access_size = access_size;
1872 		meta->regno = regno;
1873 		return 0;
1874 	}
1875 
1876 	for (i = 0; i < access_size; i++) {
1877 		u8 *stype;
1878 
1879 		slot = -(off + i) - 1;
1880 		spi = slot / BPF_REG_SIZE;
1881 		if (state->allocated_stack <= slot)
1882 			goto err;
1883 		stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1884 		if (*stype == STACK_MISC)
1885 			goto mark;
1886 		if (*stype == STACK_ZERO) {
1887 			/* helper can write anything into the stack */
1888 			*stype = STACK_MISC;
1889 			goto mark;
1890 		}
1891 err:
1892 		verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1893 			off, i, access_size);
1894 		return -EACCES;
1895 mark:
1896 		/* reading any byte out of 8-byte 'spill_slot' will cause
1897 		 * the whole slot to be marked as 'read'
1898 		 */
1899 		mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1900 				     spi, state->frameno);
1901 	}
1902 	return update_stack_depth(env, state, off);
1903 }
1904 
1905 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1906 				   int access_size, bool zero_size_allowed,
1907 				   struct bpf_call_arg_meta *meta)
1908 {
1909 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1910 
1911 	switch (reg->type) {
1912 	case PTR_TO_PACKET:
1913 	case PTR_TO_PACKET_META:
1914 		return check_packet_access(env, regno, reg->off, access_size,
1915 					   zero_size_allowed);
1916 	case PTR_TO_MAP_VALUE:
1917 		return check_map_access(env, regno, reg->off, access_size,
1918 					zero_size_allowed);
1919 	default: /* scalar_value|ptr_to_stack or invalid ptr */
1920 		return check_stack_boundary(env, regno, access_size,
1921 					    zero_size_allowed, meta);
1922 	}
1923 }
1924 
1925 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1926 {
1927 	return type == ARG_PTR_TO_MEM ||
1928 	       type == ARG_PTR_TO_MEM_OR_NULL ||
1929 	       type == ARG_PTR_TO_UNINIT_MEM;
1930 }
1931 
1932 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1933 {
1934 	return type == ARG_CONST_SIZE ||
1935 	       type == ARG_CONST_SIZE_OR_ZERO;
1936 }
1937 
1938 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1939 			  enum bpf_arg_type arg_type,
1940 			  struct bpf_call_arg_meta *meta)
1941 {
1942 	struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1943 	enum bpf_reg_type expected_type, type = reg->type;
1944 	int err = 0;
1945 
1946 	if (arg_type == ARG_DONTCARE)
1947 		return 0;
1948 
1949 	err = check_reg_arg(env, regno, SRC_OP);
1950 	if (err)
1951 		return err;
1952 
1953 	if (arg_type == ARG_ANYTHING) {
1954 		if (is_pointer_value(env, regno)) {
1955 			verbose(env, "R%d leaks addr into helper function\n",
1956 				regno);
1957 			return -EACCES;
1958 		}
1959 		return 0;
1960 	}
1961 
1962 	if (type_is_pkt_pointer(type) &&
1963 	    !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1964 		verbose(env, "helper access to the packet is not allowed\n");
1965 		return -EACCES;
1966 	}
1967 
1968 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
1969 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
1970 		expected_type = PTR_TO_STACK;
1971 		if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1972 		    type != expected_type)
1973 			goto err_type;
1974 	} else if (arg_type == ARG_CONST_SIZE ||
1975 		   arg_type == ARG_CONST_SIZE_OR_ZERO) {
1976 		expected_type = SCALAR_VALUE;
1977 		if (type != expected_type)
1978 			goto err_type;
1979 	} else if (arg_type == ARG_CONST_MAP_PTR) {
1980 		expected_type = CONST_PTR_TO_MAP;
1981 		if (type != expected_type)
1982 			goto err_type;
1983 	} else if (arg_type == ARG_PTR_TO_CTX) {
1984 		expected_type = PTR_TO_CTX;
1985 		if (type != expected_type)
1986 			goto err_type;
1987 	} else if (arg_type_is_mem_ptr(arg_type)) {
1988 		expected_type = PTR_TO_STACK;
1989 		/* One exception here. In case function allows for NULL to be
1990 		 * passed in as argument, it's a SCALAR_VALUE type. Final test
1991 		 * happens during stack boundary checking.
1992 		 */
1993 		if (register_is_null(reg) &&
1994 		    arg_type == ARG_PTR_TO_MEM_OR_NULL)
1995 			/* final test in check_stack_boundary() */;
1996 		else if (!type_is_pkt_pointer(type) &&
1997 			 type != PTR_TO_MAP_VALUE &&
1998 			 type != expected_type)
1999 			goto err_type;
2000 		meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2001 	} else {
2002 		verbose(env, "unsupported arg_type %d\n", arg_type);
2003 		return -EFAULT;
2004 	}
2005 
2006 	if (arg_type == ARG_CONST_MAP_PTR) {
2007 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2008 		meta->map_ptr = reg->map_ptr;
2009 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2010 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
2011 		 * check that [key, key + map->key_size) are within
2012 		 * stack limits and initialized
2013 		 */
2014 		if (!meta->map_ptr) {
2015 			/* in function declaration map_ptr must come before
2016 			 * map_key, so that it's verified and known before
2017 			 * we have to check map_key here. Otherwise it means
2018 			 * that kernel subsystem misconfigured verifier
2019 			 */
2020 			verbose(env, "invalid map_ptr to access map->key\n");
2021 			return -EACCES;
2022 		}
2023 		err = check_helper_mem_access(env, regno,
2024 					      meta->map_ptr->key_size, false,
2025 					      NULL);
2026 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2027 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
2028 		 * check [value, value + map->value_size) validity
2029 		 */
2030 		if (!meta->map_ptr) {
2031 			/* kernel subsystem misconfigured verifier */
2032 			verbose(env, "invalid map_ptr to access map->value\n");
2033 			return -EACCES;
2034 		}
2035 		err = check_helper_mem_access(env, regno,
2036 					      meta->map_ptr->value_size, false,
2037 					      NULL);
2038 	} else if (arg_type_is_mem_size(arg_type)) {
2039 		bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2040 
2041 		/* remember the mem_size which may be used later
2042 		 * to refine return values.
2043 		 */
2044 		meta->msize_smax_value = reg->smax_value;
2045 		meta->msize_umax_value = reg->umax_value;
2046 
2047 		/* The register is SCALAR_VALUE; the access check
2048 		 * happens using its boundaries.
2049 		 */
2050 		if (!tnum_is_const(reg->var_off))
2051 			/* For unprivileged variable accesses, disable raw
2052 			 * mode so that the program is required to
2053 			 * initialize all the memory that the helper could
2054 			 * just partially fill up.
2055 			 */
2056 			meta = NULL;
2057 
2058 		if (reg->smin_value < 0) {
2059 			verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2060 				regno);
2061 			return -EACCES;
2062 		}
2063 
2064 		if (reg->umin_value == 0) {
2065 			err = check_helper_mem_access(env, regno - 1, 0,
2066 						      zero_size_allowed,
2067 						      meta);
2068 			if (err)
2069 				return err;
2070 		}
2071 
2072 		if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2073 			verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2074 				regno);
2075 			return -EACCES;
2076 		}
2077 		err = check_helper_mem_access(env, regno - 1,
2078 					      reg->umax_value,
2079 					      zero_size_allowed, meta);
2080 	}
2081 
2082 	return err;
2083 err_type:
2084 	verbose(env, "R%d type=%s expected=%s\n", regno,
2085 		reg_type_str[type], reg_type_str[expected_type]);
2086 	return -EACCES;
2087 }
2088 
2089 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2090 					struct bpf_map *map, int func_id)
2091 {
2092 	if (!map)
2093 		return 0;
2094 
2095 	/* We need a two way check, first is from map perspective ... */
2096 	switch (map->map_type) {
2097 	case BPF_MAP_TYPE_PROG_ARRAY:
2098 		if (func_id != BPF_FUNC_tail_call)
2099 			goto error;
2100 		break;
2101 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2102 		if (func_id != BPF_FUNC_perf_event_read &&
2103 		    func_id != BPF_FUNC_perf_event_output &&
2104 		    func_id != BPF_FUNC_perf_event_read_value)
2105 			goto error;
2106 		break;
2107 	case BPF_MAP_TYPE_STACK_TRACE:
2108 		if (func_id != BPF_FUNC_get_stackid)
2109 			goto error;
2110 		break;
2111 	case BPF_MAP_TYPE_CGROUP_ARRAY:
2112 		if (func_id != BPF_FUNC_skb_under_cgroup &&
2113 		    func_id != BPF_FUNC_current_task_under_cgroup)
2114 			goto error;
2115 		break;
2116 	/* devmap returns a pointer to a live net_device ifindex that we cannot
2117 	 * allow to be modified from bpf side. So do not allow lookup elements
2118 	 * for now.
2119 	 */
2120 	case BPF_MAP_TYPE_DEVMAP:
2121 		if (func_id != BPF_FUNC_redirect_map)
2122 			goto error;
2123 		break;
2124 	/* Restrict bpf side of cpumap and xskmap, open when use-cases
2125 	 * appear.
2126 	 */
2127 	case BPF_MAP_TYPE_CPUMAP:
2128 	case BPF_MAP_TYPE_XSKMAP:
2129 		if (func_id != BPF_FUNC_redirect_map)
2130 			goto error;
2131 		break;
2132 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2133 	case BPF_MAP_TYPE_HASH_OF_MAPS:
2134 		if (func_id != BPF_FUNC_map_lookup_elem)
2135 			goto error;
2136 		break;
2137 	case BPF_MAP_TYPE_SOCKMAP:
2138 		if (func_id != BPF_FUNC_sk_redirect_map &&
2139 		    func_id != BPF_FUNC_sock_map_update &&
2140 		    func_id != BPF_FUNC_map_delete_elem &&
2141 		    func_id != BPF_FUNC_msg_redirect_map)
2142 			goto error;
2143 		break;
2144 	case BPF_MAP_TYPE_SOCKHASH:
2145 		if (func_id != BPF_FUNC_sk_redirect_hash &&
2146 		    func_id != BPF_FUNC_sock_hash_update &&
2147 		    func_id != BPF_FUNC_map_delete_elem &&
2148 		    func_id != BPF_FUNC_msg_redirect_hash)
2149 			goto error;
2150 		break;
2151 	default:
2152 		break;
2153 	}
2154 
2155 	/* ... and second from the function itself. */
2156 	switch (func_id) {
2157 	case BPF_FUNC_tail_call:
2158 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2159 			goto error;
2160 		if (env->subprog_cnt > 1) {
2161 			verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2162 			return -EINVAL;
2163 		}
2164 		break;
2165 	case BPF_FUNC_perf_event_read:
2166 	case BPF_FUNC_perf_event_output:
2167 	case BPF_FUNC_perf_event_read_value:
2168 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2169 			goto error;
2170 		break;
2171 	case BPF_FUNC_get_stackid:
2172 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2173 			goto error;
2174 		break;
2175 	case BPF_FUNC_current_task_under_cgroup:
2176 	case BPF_FUNC_skb_under_cgroup:
2177 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2178 			goto error;
2179 		break;
2180 	case BPF_FUNC_redirect_map:
2181 		if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2182 		    map->map_type != BPF_MAP_TYPE_CPUMAP &&
2183 		    map->map_type != BPF_MAP_TYPE_XSKMAP)
2184 			goto error;
2185 		break;
2186 	case BPF_FUNC_sk_redirect_map:
2187 	case BPF_FUNC_msg_redirect_map:
2188 	case BPF_FUNC_sock_map_update:
2189 		if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2190 			goto error;
2191 		break;
2192 	case BPF_FUNC_sk_redirect_hash:
2193 	case BPF_FUNC_msg_redirect_hash:
2194 	case BPF_FUNC_sock_hash_update:
2195 		if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2196 			goto error;
2197 		break;
2198 	default:
2199 		break;
2200 	}
2201 
2202 	return 0;
2203 error:
2204 	verbose(env, "cannot pass map_type %d into func %s#%d\n",
2205 		map->map_type, func_id_name(func_id), func_id);
2206 	return -EINVAL;
2207 }
2208 
2209 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2210 {
2211 	int count = 0;
2212 
2213 	if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2214 		count++;
2215 	if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2216 		count++;
2217 	if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2218 		count++;
2219 	if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2220 		count++;
2221 	if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2222 		count++;
2223 
2224 	/* We only support one arg being in raw mode at the moment,
2225 	 * which is sufficient for the helper functions we have
2226 	 * right now.
2227 	 */
2228 	return count <= 1;
2229 }
2230 
2231 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2232 				    enum bpf_arg_type arg_next)
2233 {
2234 	return (arg_type_is_mem_ptr(arg_curr) &&
2235 	        !arg_type_is_mem_size(arg_next)) ||
2236 	       (!arg_type_is_mem_ptr(arg_curr) &&
2237 		arg_type_is_mem_size(arg_next));
2238 }
2239 
2240 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2241 {
2242 	/* bpf_xxx(..., buf, len) call will access 'len'
2243 	 * bytes from memory 'buf'. Both arg types need
2244 	 * to be paired, so make sure there's no buggy
2245 	 * helper function specification.
2246 	 */
2247 	if (arg_type_is_mem_size(fn->arg1_type) ||
2248 	    arg_type_is_mem_ptr(fn->arg5_type)  ||
2249 	    check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2250 	    check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2251 	    check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2252 	    check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2253 		return false;
2254 
2255 	return true;
2256 }
2257 
2258 static int check_func_proto(const struct bpf_func_proto *fn)
2259 {
2260 	return check_raw_mode_ok(fn) &&
2261 	       check_arg_pair_ok(fn) ? 0 : -EINVAL;
2262 }
2263 
2264 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2265  * are now invalid, so turn them into unknown SCALAR_VALUE.
2266  */
2267 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2268 				     struct bpf_func_state *state)
2269 {
2270 	struct bpf_reg_state *regs = state->regs, *reg;
2271 	int i;
2272 
2273 	for (i = 0; i < MAX_BPF_REG; i++)
2274 		if (reg_is_pkt_pointer_any(&regs[i]))
2275 			mark_reg_unknown(env, regs, i);
2276 
2277 	for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2278 		if (state->stack[i].slot_type[0] != STACK_SPILL)
2279 			continue;
2280 		reg = &state->stack[i].spilled_ptr;
2281 		if (reg_is_pkt_pointer_any(reg))
2282 			__mark_reg_unknown(reg);
2283 	}
2284 }
2285 
2286 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2287 {
2288 	struct bpf_verifier_state *vstate = env->cur_state;
2289 	int i;
2290 
2291 	for (i = 0; i <= vstate->curframe; i++)
2292 		__clear_all_pkt_pointers(env, vstate->frame[i]);
2293 }
2294 
2295 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2296 			   int *insn_idx)
2297 {
2298 	struct bpf_verifier_state *state = env->cur_state;
2299 	struct bpf_func_state *caller, *callee;
2300 	int i, subprog, target_insn;
2301 
2302 	if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2303 		verbose(env, "the call stack of %d frames is too deep\n",
2304 			state->curframe + 2);
2305 		return -E2BIG;
2306 	}
2307 
2308 	target_insn = *insn_idx + insn->imm;
2309 	subprog = find_subprog(env, target_insn + 1);
2310 	if (subprog < 0) {
2311 		verbose(env, "verifier bug. No program starts at insn %d\n",
2312 			target_insn + 1);
2313 		return -EFAULT;
2314 	}
2315 
2316 	caller = state->frame[state->curframe];
2317 	if (state->frame[state->curframe + 1]) {
2318 		verbose(env, "verifier bug. Frame %d already allocated\n",
2319 			state->curframe + 1);
2320 		return -EFAULT;
2321 	}
2322 
2323 	callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2324 	if (!callee)
2325 		return -ENOMEM;
2326 	state->frame[state->curframe + 1] = callee;
2327 
2328 	/* callee cannot access r0, r6 - r9 for reading and has to write
2329 	 * into its own stack before reading from it.
2330 	 * callee can read/write into caller's stack
2331 	 */
2332 	init_func_state(env, callee,
2333 			/* remember the callsite, it will be used by bpf_exit */
2334 			*insn_idx /* callsite */,
2335 			state->curframe + 1 /* frameno within this callchain */,
2336 			subprog /* subprog number within this prog */);
2337 
2338 	/* copy r1 - r5 args that callee can access */
2339 	for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2340 		callee->regs[i] = caller->regs[i];
2341 
2342 	/* after the call regsiters r0 - r5 were scratched */
2343 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2344 		mark_reg_not_init(env, caller->regs, caller_saved[i]);
2345 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2346 	}
2347 
2348 	/* only increment it after check_reg_arg() finished */
2349 	state->curframe++;
2350 
2351 	/* and go analyze first insn of the callee */
2352 	*insn_idx = target_insn;
2353 
2354 	if (env->log.level) {
2355 		verbose(env, "caller:\n");
2356 		print_verifier_state(env, caller);
2357 		verbose(env, "callee:\n");
2358 		print_verifier_state(env, callee);
2359 	}
2360 	return 0;
2361 }
2362 
2363 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2364 {
2365 	struct bpf_verifier_state *state = env->cur_state;
2366 	struct bpf_func_state *caller, *callee;
2367 	struct bpf_reg_state *r0;
2368 
2369 	callee = state->frame[state->curframe];
2370 	r0 = &callee->regs[BPF_REG_0];
2371 	if (r0->type == PTR_TO_STACK) {
2372 		/* technically it's ok to return caller's stack pointer
2373 		 * (or caller's caller's pointer) back to the caller,
2374 		 * since these pointers are valid. Only current stack
2375 		 * pointer will be invalid as soon as function exits,
2376 		 * but let's be conservative
2377 		 */
2378 		verbose(env, "cannot return stack pointer to the caller\n");
2379 		return -EINVAL;
2380 	}
2381 
2382 	state->curframe--;
2383 	caller = state->frame[state->curframe];
2384 	/* return to the caller whatever r0 had in the callee */
2385 	caller->regs[BPF_REG_0] = *r0;
2386 
2387 	*insn_idx = callee->callsite + 1;
2388 	if (env->log.level) {
2389 		verbose(env, "returning from callee:\n");
2390 		print_verifier_state(env, callee);
2391 		verbose(env, "to caller at %d:\n", *insn_idx);
2392 		print_verifier_state(env, caller);
2393 	}
2394 	/* clear everything in the callee */
2395 	free_func_state(callee);
2396 	state->frame[state->curframe + 1] = NULL;
2397 	return 0;
2398 }
2399 
2400 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2401 				   int func_id,
2402 				   struct bpf_call_arg_meta *meta)
2403 {
2404 	struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2405 
2406 	if (ret_type != RET_INTEGER ||
2407 	    (func_id != BPF_FUNC_get_stack &&
2408 	     func_id != BPF_FUNC_probe_read_str))
2409 		return;
2410 
2411 	ret_reg->smax_value = meta->msize_smax_value;
2412 	ret_reg->umax_value = meta->msize_umax_value;
2413 	__reg_deduce_bounds(ret_reg);
2414 	__reg_bound_offset(ret_reg);
2415 }
2416 
2417 static int
2418 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2419 		int func_id, int insn_idx)
2420 {
2421 	struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2422 
2423 	if (func_id != BPF_FUNC_tail_call &&
2424 	    func_id != BPF_FUNC_map_lookup_elem)
2425 		return 0;
2426 	if (meta->map_ptr == NULL) {
2427 		verbose(env, "kernel subsystem misconfigured verifier\n");
2428 		return -EINVAL;
2429 	}
2430 
2431 	if (!BPF_MAP_PTR(aux->map_state))
2432 		bpf_map_ptr_store(aux, meta->map_ptr,
2433 				  meta->map_ptr->unpriv_array);
2434 	else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2435 		bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2436 				  meta->map_ptr->unpriv_array);
2437 	return 0;
2438 }
2439 
2440 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2441 {
2442 	const struct bpf_func_proto *fn = NULL;
2443 	struct bpf_reg_state *regs;
2444 	struct bpf_call_arg_meta meta;
2445 	bool changes_data;
2446 	int i, err;
2447 
2448 	/* find function prototype */
2449 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2450 		verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2451 			func_id);
2452 		return -EINVAL;
2453 	}
2454 
2455 	if (env->ops->get_func_proto)
2456 		fn = env->ops->get_func_proto(func_id, env->prog);
2457 	if (!fn) {
2458 		verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2459 			func_id);
2460 		return -EINVAL;
2461 	}
2462 
2463 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
2464 	if (!env->prog->gpl_compatible && fn->gpl_only) {
2465 		verbose(env, "cannot call GPL only function from proprietary program\n");
2466 		return -EINVAL;
2467 	}
2468 
2469 	/* With LD_ABS/IND some JITs save/restore skb from r1. */
2470 	changes_data = bpf_helper_changes_pkt_data(fn->func);
2471 	if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2472 		verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2473 			func_id_name(func_id), func_id);
2474 		return -EINVAL;
2475 	}
2476 
2477 	memset(&meta, 0, sizeof(meta));
2478 	meta.pkt_access = fn->pkt_access;
2479 
2480 	err = check_func_proto(fn);
2481 	if (err) {
2482 		verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2483 			func_id_name(func_id), func_id);
2484 		return err;
2485 	}
2486 
2487 	/* check args */
2488 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2489 	if (err)
2490 		return err;
2491 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2492 	if (err)
2493 		return err;
2494 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2495 	if (err)
2496 		return err;
2497 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2498 	if (err)
2499 		return err;
2500 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2501 	if (err)
2502 		return err;
2503 
2504 	err = record_func_map(env, &meta, func_id, insn_idx);
2505 	if (err)
2506 		return err;
2507 
2508 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
2509 	 * is inferred from register state.
2510 	 */
2511 	for (i = 0; i < meta.access_size; i++) {
2512 		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2513 				       BPF_WRITE, -1, false);
2514 		if (err)
2515 			return err;
2516 	}
2517 
2518 	regs = cur_regs(env);
2519 	/* reset caller saved regs */
2520 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
2521 		mark_reg_not_init(env, regs, caller_saved[i]);
2522 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2523 	}
2524 
2525 	/* update return register (already marked as written above) */
2526 	if (fn->ret_type == RET_INTEGER) {
2527 		/* sets type to SCALAR_VALUE */
2528 		mark_reg_unknown(env, regs, BPF_REG_0);
2529 	} else if (fn->ret_type == RET_VOID) {
2530 		regs[BPF_REG_0].type = NOT_INIT;
2531 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2532 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2533 		/* There is no offset yet applied, variable or fixed */
2534 		mark_reg_known_zero(env, regs, BPF_REG_0);
2535 		regs[BPF_REG_0].off = 0;
2536 		/* remember map_ptr, so that check_map_access()
2537 		 * can check 'value_size' boundary of memory access
2538 		 * to map element returned from bpf_map_lookup_elem()
2539 		 */
2540 		if (meta.map_ptr == NULL) {
2541 			verbose(env,
2542 				"kernel subsystem misconfigured verifier\n");
2543 			return -EINVAL;
2544 		}
2545 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
2546 		regs[BPF_REG_0].id = ++env->id_gen;
2547 	} else {
2548 		verbose(env, "unknown return type %d of func %s#%d\n",
2549 			fn->ret_type, func_id_name(func_id), func_id);
2550 		return -EINVAL;
2551 	}
2552 
2553 	do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2554 
2555 	err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2556 	if (err)
2557 		return err;
2558 
2559 	if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2560 		const char *err_str;
2561 
2562 #ifdef CONFIG_PERF_EVENTS
2563 		err = get_callchain_buffers(sysctl_perf_event_max_stack);
2564 		err_str = "cannot get callchain buffer for func %s#%d\n";
2565 #else
2566 		err = -ENOTSUPP;
2567 		err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2568 #endif
2569 		if (err) {
2570 			verbose(env, err_str, func_id_name(func_id), func_id);
2571 			return err;
2572 		}
2573 
2574 		env->prog->has_callchain_buf = true;
2575 	}
2576 
2577 	if (changes_data)
2578 		clear_all_pkt_pointers(env);
2579 	return 0;
2580 }
2581 
2582 static bool signed_add_overflows(s64 a, s64 b)
2583 {
2584 	/* Do the add in u64, where overflow is well-defined */
2585 	s64 res = (s64)((u64)a + (u64)b);
2586 
2587 	if (b < 0)
2588 		return res > a;
2589 	return res < a;
2590 }
2591 
2592 static bool signed_sub_overflows(s64 a, s64 b)
2593 {
2594 	/* Do the sub in u64, where overflow is well-defined */
2595 	s64 res = (s64)((u64)a - (u64)b);
2596 
2597 	if (b < 0)
2598 		return res < a;
2599 	return res > a;
2600 }
2601 
2602 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2603 				  const struct bpf_reg_state *reg,
2604 				  enum bpf_reg_type type)
2605 {
2606 	bool known = tnum_is_const(reg->var_off);
2607 	s64 val = reg->var_off.value;
2608 	s64 smin = reg->smin_value;
2609 
2610 	if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2611 		verbose(env, "math between %s pointer and %lld is not allowed\n",
2612 			reg_type_str[type], val);
2613 		return false;
2614 	}
2615 
2616 	if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2617 		verbose(env, "%s pointer offset %d is not allowed\n",
2618 			reg_type_str[type], reg->off);
2619 		return false;
2620 	}
2621 
2622 	if (smin == S64_MIN) {
2623 		verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2624 			reg_type_str[type]);
2625 		return false;
2626 	}
2627 
2628 	if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2629 		verbose(env, "value %lld makes %s pointer be out of bounds\n",
2630 			smin, reg_type_str[type]);
2631 		return false;
2632 	}
2633 
2634 	return true;
2635 }
2636 
2637 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2638  * Caller should also handle BPF_MOV case separately.
2639  * If we return -EACCES, caller may want to try again treating pointer as a
2640  * scalar.  So we only emit a diagnostic if !env->allow_ptr_leaks.
2641  */
2642 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2643 				   struct bpf_insn *insn,
2644 				   const struct bpf_reg_state *ptr_reg,
2645 				   const struct bpf_reg_state *off_reg)
2646 {
2647 	struct bpf_verifier_state *vstate = env->cur_state;
2648 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
2649 	struct bpf_reg_state *regs = state->regs, *dst_reg;
2650 	bool known = tnum_is_const(off_reg->var_off);
2651 	s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2652 	    smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2653 	u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2654 	    umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2655 	u8 opcode = BPF_OP(insn->code);
2656 	u32 dst = insn->dst_reg;
2657 
2658 	dst_reg = &regs[dst];
2659 
2660 	if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2661 	    smin_val > smax_val || umin_val > umax_val) {
2662 		/* Taint dst register if offset had invalid bounds derived from
2663 		 * e.g. dead branches.
2664 		 */
2665 		__mark_reg_unknown(dst_reg);
2666 		return 0;
2667 	}
2668 
2669 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
2670 		/* 32-bit ALU ops on pointers produce (meaningless) scalars */
2671 		verbose(env,
2672 			"R%d 32-bit pointer arithmetic prohibited\n",
2673 			dst);
2674 		return -EACCES;
2675 	}
2676 
2677 	if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2678 		verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2679 			dst);
2680 		return -EACCES;
2681 	}
2682 	if (ptr_reg->type == CONST_PTR_TO_MAP) {
2683 		verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2684 			dst);
2685 		return -EACCES;
2686 	}
2687 	if (ptr_reg->type == PTR_TO_PACKET_END) {
2688 		verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2689 			dst);
2690 		return -EACCES;
2691 	}
2692 
2693 	/* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2694 	 * The id may be overwritten later if we create a new variable offset.
2695 	 */
2696 	dst_reg->type = ptr_reg->type;
2697 	dst_reg->id = ptr_reg->id;
2698 
2699 	if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2700 	    !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2701 		return -EINVAL;
2702 
2703 	switch (opcode) {
2704 	case BPF_ADD:
2705 		/* We can take a fixed offset as long as it doesn't overflow
2706 		 * the s32 'off' field
2707 		 */
2708 		if (known && (ptr_reg->off + smin_val ==
2709 			      (s64)(s32)(ptr_reg->off + smin_val))) {
2710 			/* pointer += K.  Accumulate it into fixed offset */
2711 			dst_reg->smin_value = smin_ptr;
2712 			dst_reg->smax_value = smax_ptr;
2713 			dst_reg->umin_value = umin_ptr;
2714 			dst_reg->umax_value = umax_ptr;
2715 			dst_reg->var_off = ptr_reg->var_off;
2716 			dst_reg->off = ptr_reg->off + smin_val;
2717 			dst_reg->range = ptr_reg->range;
2718 			break;
2719 		}
2720 		/* A new variable offset is created.  Note that off_reg->off
2721 		 * == 0, since it's a scalar.
2722 		 * dst_reg gets the pointer type and since some positive
2723 		 * integer value was added to the pointer, give it a new 'id'
2724 		 * if it's a PTR_TO_PACKET.
2725 		 * this creates a new 'base' pointer, off_reg (variable) gets
2726 		 * added into the variable offset, and we copy the fixed offset
2727 		 * from ptr_reg.
2728 		 */
2729 		if (signed_add_overflows(smin_ptr, smin_val) ||
2730 		    signed_add_overflows(smax_ptr, smax_val)) {
2731 			dst_reg->smin_value = S64_MIN;
2732 			dst_reg->smax_value = S64_MAX;
2733 		} else {
2734 			dst_reg->smin_value = smin_ptr + smin_val;
2735 			dst_reg->smax_value = smax_ptr + smax_val;
2736 		}
2737 		if (umin_ptr + umin_val < umin_ptr ||
2738 		    umax_ptr + umax_val < umax_ptr) {
2739 			dst_reg->umin_value = 0;
2740 			dst_reg->umax_value = U64_MAX;
2741 		} else {
2742 			dst_reg->umin_value = umin_ptr + umin_val;
2743 			dst_reg->umax_value = umax_ptr + umax_val;
2744 		}
2745 		dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2746 		dst_reg->off = ptr_reg->off;
2747 		if (reg_is_pkt_pointer(ptr_reg)) {
2748 			dst_reg->id = ++env->id_gen;
2749 			/* something was added to pkt_ptr, set range to zero */
2750 			dst_reg->range = 0;
2751 		}
2752 		break;
2753 	case BPF_SUB:
2754 		if (dst_reg == off_reg) {
2755 			/* scalar -= pointer.  Creates an unknown scalar */
2756 			verbose(env, "R%d tried to subtract pointer from scalar\n",
2757 				dst);
2758 			return -EACCES;
2759 		}
2760 		/* We don't allow subtraction from FP, because (according to
2761 		 * test_verifier.c test "invalid fp arithmetic", JITs might not
2762 		 * be able to deal with it.
2763 		 */
2764 		if (ptr_reg->type == PTR_TO_STACK) {
2765 			verbose(env, "R%d subtraction from stack pointer prohibited\n",
2766 				dst);
2767 			return -EACCES;
2768 		}
2769 		if (known && (ptr_reg->off - smin_val ==
2770 			      (s64)(s32)(ptr_reg->off - smin_val))) {
2771 			/* pointer -= K.  Subtract it from fixed offset */
2772 			dst_reg->smin_value = smin_ptr;
2773 			dst_reg->smax_value = smax_ptr;
2774 			dst_reg->umin_value = umin_ptr;
2775 			dst_reg->umax_value = umax_ptr;
2776 			dst_reg->var_off = ptr_reg->var_off;
2777 			dst_reg->id = ptr_reg->id;
2778 			dst_reg->off = ptr_reg->off - smin_val;
2779 			dst_reg->range = ptr_reg->range;
2780 			break;
2781 		}
2782 		/* A new variable offset is created.  If the subtrahend is known
2783 		 * nonnegative, then any reg->range we had before is still good.
2784 		 */
2785 		if (signed_sub_overflows(smin_ptr, smax_val) ||
2786 		    signed_sub_overflows(smax_ptr, smin_val)) {
2787 			/* Overflow possible, we know nothing */
2788 			dst_reg->smin_value = S64_MIN;
2789 			dst_reg->smax_value = S64_MAX;
2790 		} else {
2791 			dst_reg->smin_value = smin_ptr - smax_val;
2792 			dst_reg->smax_value = smax_ptr - smin_val;
2793 		}
2794 		if (umin_ptr < umax_val) {
2795 			/* Overflow possible, we know nothing */
2796 			dst_reg->umin_value = 0;
2797 			dst_reg->umax_value = U64_MAX;
2798 		} else {
2799 			/* Cannot overflow (as long as bounds are consistent) */
2800 			dst_reg->umin_value = umin_ptr - umax_val;
2801 			dst_reg->umax_value = umax_ptr - umin_val;
2802 		}
2803 		dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2804 		dst_reg->off = ptr_reg->off;
2805 		if (reg_is_pkt_pointer(ptr_reg)) {
2806 			dst_reg->id = ++env->id_gen;
2807 			/* something was added to pkt_ptr, set range to zero */
2808 			if (smin_val < 0)
2809 				dst_reg->range = 0;
2810 		}
2811 		break;
2812 	case BPF_AND:
2813 	case BPF_OR:
2814 	case BPF_XOR:
2815 		/* bitwise ops on pointers are troublesome, prohibit. */
2816 		verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2817 			dst, bpf_alu_string[opcode >> 4]);
2818 		return -EACCES;
2819 	default:
2820 		/* other operators (e.g. MUL,LSH) produce non-pointer results */
2821 		verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2822 			dst, bpf_alu_string[opcode >> 4]);
2823 		return -EACCES;
2824 	}
2825 
2826 	if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2827 		return -EINVAL;
2828 
2829 	__update_reg_bounds(dst_reg);
2830 	__reg_deduce_bounds(dst_reg);
2831 	__reg_bound_offset(dst_reg);
2832 	return 0;
2833 }
2834 
2835 /* WARNING: This function does calculations on 64-bit values, but the actual
2836  * execution may occur on 32-bit values. Therefore, things like bitshifts
2837  * need extra checks in the 32-bit case.
2838  */
2839 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2840 				      struct bpf_insn *insn,
2841 				      struct bpf_reg_state *dst_reg,
2842 				      struct bpf_reg_state src_reg)
2843 {
2844 	struct bpf_reg_state *regs = cur_regs(env);
2845 	u8 opcode = BPF_OP(insn->code);
2846 	bool src_known, dst_known;
2847 	s64 smin_val, smax_val;
2848 	u64 umin_val, umax_val;
2849 	u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2850 
2851 	smin_val = src_reg.smin_value;
2852 	smax_val = src_reg.smax_value;
2853 	umin_val = src_reg.umin_value;
2854 	umax_val = src_reg.umax_value;
2855 	src_known = tnum_is_const(src_reg.var_off);
2856 	dst_known = tnum_is_const(dst_reg->var_off);
2857 
2858 	if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2859 	    smin_val > smax_val || umin_val > umax_val) {
2860 		/* Taint dst register if offset had invalid bounds derived from
2861 		 * e.g. dead branches.
2862 		 */
2863 		__mark_reg_unknown(dst_reg);
2864 		return 0;
2865 	}
2866 
2867 	if (!src_known &&
2868 	    opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2869 		__mark_reg_unknown(dst_reg);
2870 		return 0;
2871 	}
2872 
2873 	switch (opcode) {
2874 	case BPF_ADD:
2875 		if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2876 		    signed_add_overflows(dst_reg->smax_value, smax_val)) {
2877 			dst_reg->smin_value = S64_MIN;
2878 			dst_reg->smax_value = S64_MAX;
2879 		} else {
2880 			dst_reg->smin_value += smin_val;
2881 			dst_reg->smax_value += smax_val;
2882 		}
2883 		if (dst_reg->umin_value + umin_val < umin_val ||
2884 		    dst_reg->umax_value + umax_val < umax_val) {
2885 			dst_reg->umin_value = 0;
2886 			dst_reg->umax_value = U64_MAX;
2887 		} else {
2888 			dst_reg->umin_value += umin_val;
2889 			dst_reg->umax_value += umax_val;
2890 		}
2891 		dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2892 		break;
2893 	case BPF_SUB:
2894 		if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2895 		    signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2896 			/* Overflow possible, we know nothing */
2897 			dst_reg->smin_value = S64_MIN;
2898 			dst_reg->smax_value = S64_MAX;
2899 		} else {
2900 			dst_reg->smin_value -= smax_val;
2901 			dst_reg->smax_value -= smin_val;
2902 		}
2903 		if (dst_reg->umin_value < umax_val) {
2904 			/* Overflow possible, we know nothing */
2905 			dst_reg->umin_value = 0;
2906 			dst_reg->umax_value = U64_MAX;
2907 		} else {
2908 			/* Cannot overflow (as long as bounds are consistent) */
2909 			dst_reg->umin_value -= umax_val;
2910 			dst_reg->umax_value -= umin_val;
2911 		}
2912 		dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2913 		break;
2914 	case BPF_MUL:
2915 		dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2916 		if (smin_val < 0 || dst_reg->smin_value < 0) {
2917 			/* Ain't nobody got time to multiply that sign */
2918 			__mark_reg_unbounded(dst_reg);
2919 			__update_reg_bounds(dst_reg);
2920 			break;
2921 		}
2922 		/* Both values are positive, so we can work with unsigned and
2923 		 * copy the result to signed (unless it exceeds S64_MAX).
2924 		 */
2925 		if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2926 			/* Potential overflow, we know nothing */
2927 			__mark_reg_unbounded(dst_reg);
2928 			/* (except what we can learn from the var_off) */
2929 			__update_reg_bounds(dst_reg);
2930 			break;
2931 		}
2932 		dst_reg->umin_value *= umin_val;
2933 		dst_reg->umax_value *= umax_val;
2934 		if (dst_reg->umax_value > S64_MAX) {
2935 			/* Overflow possible, we know nothing */
2936 			dst_reg->smin_value = S64_MIN;
2937 			dst_reg->smax_value = S64_MAX;
2938 		} else {
2939 			dst_reg->smin_value = dst_reg->umin_value;
2940 			dst_reg->smax_value = dst_reg->umax_value;
2941 		}
2942 		break;
2943 	case BPF_AND:
2944 		if (src_known && dst_known) {
2945 			__mark_reg_known(dst_reg, dst_reg->var_off.value &
2946 						  src_reg.var_off.value);
2947 			break;
2948 		}
2949 		/* We get our minimum from the var_off, since that's inherently
2950 		 * bitwise.  Our maximum is the minimum of the operands' maxima.
2951 		 */
2952 		dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2953 		dst_reg->umin_value = dst_reg->var_off.value;
2954 		dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2955 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2956 			/* Lose signed bounds when ANDing negative numbers,
2957 			 * ain't nobody got time for that.
2958 			 */
2959 			dst_reg->smin_value = S64_MIN;
2960 			dst_reg->smax_value = S64_MAX;
2961 		} else {
2962 			/* ANDing two positives gives a positive, so safe to
2963 			 * cast result into s64.
2964 			 */
2965 			dst_reg->smin_value = dst_reg->umin_value;
2966 			dst_reg->smax_value = dst_reg->umax_value;
2967 		}
2968 		/* We may learn something more from the var_off */
2969 		__update_reg_bounds(dst_reg);
2970 		break;
2971 	case BPF_OR:
2972 		if (src_known && dst_known) {
2973 			__mark_reg_known(dst_reg, dst_reg->var_off.value |
2974 						  src_reg.var_off.value);
2975 			break;
2976 		}
2977 		/* We get our maximum from the var_off, and our minimum is the
2978 		 * maximum of the operands' minima
2979 		 */
2980 		dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2981 		dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2982 		dst_reg->umax_value = dst_reg->var_off.value |
2983 				      dst_reg->var_off.mask;
2984 		if (dst_reg->smin_value < 0 || smin_val < 0) {
2985 			/* Lose signed bounds when ORing negative numbers,
2986 			 * ain't nobody got time for that.
2987 			 */
2988 			dst_reg->smin_value = S64_MIN;
2989 			dst_reg->smax_value = S64_MAX;
2990 		} else {
2991 			/* ORing two positives gives a positive, so safe to
2992 			 * cast result into s64.
2993 			 */
2994 			dst_reg->smin_value = dst_reg->umin_value;
2995 			dst_reg->smax_value = dst_reg->umax_value;
2996 		}
2997 		/* We may learn something more from the var_off */
2998 		__update_reg_bounds(dst_reg);
2999 		break;
3000 	case BPF_LSH:
3001 		if (umax_val >= insn_bitness) {
3002 			/* Shifts greater than 31 or 63 are undefined.
3003 			 * This includes shifts by a negative number.
3004 			 */
3005 			mark_reg_unknown(env, regs, insn->dst_reg);
3006 			break;
3007 		}
3008 		/* We lose all sign bit information (except what we can pick
3009 		 * up from var_off)
3010 		 */
3011 		dst_reg->smin_value = S64_MIN;
3012 		dst_reg->smax_value = S64_MAX;
3013 		/* If we might shift our top bit out, then we know nothing */
3014 		if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3015 			dst_reg->umin_value = 0;
3016 			dst_reg->umax_value = U64_MAX;
3017 		} else {
3018 			dst_reg->umin_value <<= umin_val;
3019 			dst_reg->umax_value <<= umax_val;
3020 		}
3021 		dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3022 		/* We may learn something more from the var_off */
3023 		__update_reg_bounds(dst_reg);
3024 		break;
3025 	case BPF_RSH:
3026 		if (umax_val >= insn_bitness) {
3027 			/* Shifts greater than 31 or 63 are undefined.
3028 			 * This includes shifts by a negative number.
3029 			 */
3030 			mark_reg_unknown(env, regs, insn->dst_reg);
3031 			break;
3032 		}
3033 		/* BPF_RSH is an unsigned shift.  If the value in dst_reg might
3034 		 * be negative, then either:
3035 		 * 1) src_reg might be zero, so the sign bit of the result is
3036 		 *    unknown, so we lose our signed bounds
3037 		 * 2) it's known negative, thus the unsigned bounds capture the
3038 		 *    signed bounds
3039 		 * 3) the signed bounds cross zero, so they tell us nothing
3040 		 *    about the result
3041 		 * If the value in dst_reg is known nonnegative, then again the
3042 		 * unsigned bounts capture the signed bounds.
3043 		 * Thus, in all cases it suffices to blow away our signed bounds
3044 		 * and rely on inferring new ones from the unsigned bounds and
3045 		 * var_off of the result.
3046 		 */
3047 		dst_reg->smin_value = S64_MIN;
3048 		dst_reg->smax_value = S64_MAX;
3049 		dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3050 		dst_reg->umin_value >>= umax_val;
3051 		dst_reg->umax_value >>= umin_val;
3052 		/* We may learn something more from the var_off */
3053 		__update_reg_bounds(dst_reg);
3054 		break;
3055 	case BPF_ARSH:
3056 		if (umax_val >= insn_bitness) {
3057 			/* Shifts greater than 31 or 63 are undefined.
3058 			 * This includes shifts by a negative number.
3059 			 */
3060 			mark_reg_unknown(env, regs, insn->dst_reg);
3061 			break;
3062 		}
3063 
3064 		/* Upon reaching here, src_known is true and
3065 		 * umax_val is equal to umin_val.
3066 		 */
3067 		dst_reg->smin_value >>= umin_val;
3068 		dst_reg->smax_value >>= umin_val;
3069 		dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3070 
3071 		/* blow away the dst_reg umin_value/umax_value and rely on
3072 		 * dst_reg var_off to refine the result.
3073 		 */
3074 		dst_reg->umin_value = 0;
3075 		dst_reg->umax_value = U64_MAX;
3076 		__update_reg_bounds(dst_reg);
3077 		break;
3078 	default:
3079 		mark_reg_unknown(env, regs, insn->dst_reg);
3080 		break;
3081 	}
3082 
3083 	if (BPF_CLASS(insn->code) != BPF_ALU64) {
3084 		/* 32-bit ALU ops are (32,32)->32 */
3085 		coerce_reg_to_size(dst_reg, 4);
3086 		coerce_reg_to_size(&src_reg, 4);
3087 	}
3088 
3089 	__reg_deduce_bounds(dst_reg);
3090 	__reg_bound_offset(dst_reg);
3091 	return 0;
3092 }
3093 
3094 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3095  * and var_off.
3096  */
3097 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3098 				   struct bpf_insn *insn)
3099 {
3100 	struct bpf_verifier_state *vstate = env->cur_state;
3101 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3102 	struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3103 	struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3104 	u8 opcode = BPF_OP(insn->code);
3105 
3106 	dst_reg = &regs[insn->dst_reg];
3107 	src_reg = NULL;
3108 	if (dst_reg->type != SCALAR_VALUE)
3109 		ptr_reg = dst_reg;
3110 	if (BPF_SRC(insn->code) == BPF_X) {
3111 		src_reg = &regs[insn->src_reg];
3112 		if (src_reg->type != SCALAR_VALUE) {
3113 			if (dst_reg->type != SCALAR_VALUE) {
3114 				/* Combining two pointers by any ALU op yields
3115 				 * an arbitrary scalar. Disallow all math except
3116 				 * pointer subtraction
3117 				 */
3118 				if (opcode == BPF_SUB){
3119 					mark_reg_unknown(env, regs, insn->dst_reg);
3120 					return 0;
3121 				}
3122 				verbose(env, "R%d pointer %s pointer prohibited\n",
3123 					insn->dst_reg,
3124 					bpf_alu_string[opcode >> 4]);
3125 				return -EACCES;
3126 			} else {
3127 				/* scalar += pointer
3128 				 * This is legal, but we have to reverse our
3129 				 * src/dest handling in computing the range
3130 				 */
3131 				return adjust_ptr_min_max_vals(env, insn,
3132 							       src_reg, dst_reg);
3133 			}
3134 		} else if (ptr_reg) {
3135 			/* pointer += scalar */
3136 			return adjust_ptr_min_max_vals(env, insn,
3137 						       dst_reg, src_reg);
3138 		}
3139 	} else {
3140 		/* Pretend the src is a reg with a known value, since we only
3141 		 * need to be able to read from this state.
3142 		 */
3143 		off_reg.type = SCALAR_VALUE;
3144 		__mark_reg_known(&off_reg, insn->imm);
3145 		src_reg = &off_reg;
3146 		if (ptr_reg) /* pointer += K */
3147 			return adjust_ptr_min_max_vals(env, insn,
3148 						       ptr_reg, src_reg);
3149 	}
3150 
3151 	/* Got here implies adding two SCALAR_VALUEs */
3152 	if (WARN_ON_ONCE(ptr_reg)) {
3153 		print_verifier_state(env, state);
3154 		verbose(env, "verifier internal error: unexpected ptr_reg\n");
3155 		return -EINVAL;
3156 	}
3157 	if (WARN_ON(!src_reg)) {
3158 		print_verifier_state(env, state);
3159 		verbose(env, "verifier internal error: no src_reg\n");
3160 		return -EINVAL;
3161 	}
3162 	return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3163 }
3164 
3165 /* check validity of 32-bit and 64-bit arithmetic operations */
3166 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3167 {
3168 	struct bpf_reg_state *regs = cur_regs(env);
3169 	u8 opcode = BPF_OP(insn->code);
3170 	int err;
3171 
3172 	if (opcode == BPF_END || opcode == BPF_NEG) {
3173 		if (opcode == BPF_NEG) {
3174 			if (BPF_SRC(insn->code) != 0 ||
3175 			    insn->src_reg != BPF_REG_0 ||
3176 			    insn->off != 0 || insn->imm != 0) {
3177 				verbose(env, "BPF_NEG uses reserved fields\n");
3178 				return -EINVAL;
3179 			}
3180 		} else {
3181 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3182 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3183 			    BPF_CLASS(insn->code) == BPF_ALU64) {
3184 				verbose(env, "BPF_END uses reserved fields\n");
3185 				return -EINVAL;
3186 			}
3187 		}
3188 
3189 		/* check src operand */
3190 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3191 		if (err)
3192 			return err;
3193 
3194 		if (is_pointer_value(env, insn->dst_reg)) {
3195 			verbose(env, "R%d pointer arithmetic prohibited\n",
3196 				insn->dst_reg);
3197 			return -EACCES;
3198 		}
3199 
3200 		/* check dest operand */
3201 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3202 		if (err)
3203 			return err;
3204 
3205 	} else if (opcode == BPF_MOV) {
3206 
3207 		if (BPF_SRC(insn->code) == BPF_X) {
3208 			if (insn->imm != 0 || insn->off != 0) {
3209 				verbose(env, "BPF_MOV uses reserved fields\n");
3210 				return -EINVAL;
3211 			}
3212 
3213 			/* check src operand */
3214 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3215 			if (err)
3216 				return err;
3217 		} else {
3218 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3219 				verbose(env, "BPF_MOV uses reserved fields\n");
3220 				return -EINVAL;
3221 			}
3222 		}
3223 
3224 		/* check dest operand */
3225 		err = check_reg_arg(env, insn->dst_reg, DST_OP);
3226 		if (err)
3227 			return err;
3228 
3229 		if (BPF_SRC(insn->code) == BPF_X) {
3230 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3231 				/* case: R1 = R2
3232 				 * copy register state to dest reg
3233 				 */
3234 				regs[insn->dst_reg] = regs[insn->src_reg];
3235 				regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3236 			} else {
3237 				/* R1 = (u32) R2 */
3238 				if (is_pointer_value(env, insn->src_reg)) {
3239 					verbose(env,
3240 						"R%d partial copy of pointer\n",
3241 						insn->src_reg);
3242 					return -EACCES;
3243 				}
3244 				mark_reg_unknown(env, regs, insn->dst_reg);
3245 				coerce_reg_to_size(&regs[insn->dst_reg], 4);
3246 			}
3247 		} else {
3248 			/* case: R = imm
3249 			 * remember the value we stored into this reg
3250 			 */
3251 			regs[insn->dst_reg].type = SCALAR_VALUE;
3252 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
3253 				__mark_reg_known(regs + insn->dst_reg,
3254 						 insn->imm);
3255 			} else {
3256 				__mark_reg_known(regs + insn->dst_reg,
3257 						 (u32)insn->imm);
3258 			}
3259 		}
3260 
3261 	} else if (opcode > BPF_END) {
3262 		verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3263 		return -EINVAL;
3264 
3265 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
3266 
3267 		if (BPF_SRC(insn->code) == BPF_X) {
3268 			if (insn->imm != 0 || insn->off != 0) {
3269 				verbose(env, "BPF_ALU uses reserved fields\n");
3270 				return -EINVAL;
3271 			}
3272 			/* check src1 operand */
3273 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
3274 			if (err)
3275 				return err;
3276 		} else {
3277 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3278 				verbose(env, "BPF_ALU uses reserved fields\n");
3279 				return -EINVAL;
3280 			}
3281 		}
3282 
3283 		/* check src2 operand */
3284 		err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3285 		if (err)
3286 			return err;
3287 
3288 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3289 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3290 			verbose(env, "div by zero\n");
3291 			return -EINVAL;
3292 		}
3293 
3294 		if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3295 			verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3296 			return -EINVAL;
3297 		}
3298 
3299 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3300 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3301 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3302 
3303 			if (insn->imm < 0 || insn->imm >= size) {
3304 				verbose(env, "invalid shift %d\n", insn->imm);
3305 				return -EINVAL;
3306 			}
3307 		}
3308 
3309 		/* check dest operand */
3310 		err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3311 		if (err)
3312 			return err;
3313 
3314 		return adjust_reg_min_max_vals(env, insn);
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3321 				   struct bpf_reg_state *dst_reg,
3322 				   enum bpf_reg_type type,
3323 				   bool range_right_open)
3324 {
3325 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3326 	struct bpf_reg_state *regs = state->regs, *reg;
3327 	u16 new_range;
3328 	int i, j;
3329 
3330 	if (dst_reg->off < 0 ||
3331 	    (dst_reg->off == 0 && range_right_open))
3332 		/* This doesn't give us any range */
3333 		return;
3334 
3335 	if (dst_reg->umax_value > MAX_PACKET_OFF ||
3336 	    dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3337 		/* Risk of overflow.  For instance, ptr + (1<<63) may be less
3338 		 * than pkt_end, but that's because it's also less than pkt.
3339 		 */
3340 		return;
3341 
3342 	new_range = dst_reg->off;
3343 	if (range_right_open)
3344 		new_range--;
3345 
3346 	/* Examples for register markings:
3347 	 *
3348 	 * pkt_data in dst register:
3349 	 *
3350 	 *   r2 = r3;
3351 	 *   r2 += 8;
3352 	 *   if (r2 > pkt_end) goto <handle exception>
3353 	 *   <access okay>
3354 	 *
3355 	 *   r2 = r3;
3356 	 *   r2 += 8;
3357 	 *   if (r2 < pkt_end) goto <access okay>
3358 	 *   <handle exception>
3359 	 *
3360 	 *   Where:
3361 	 *     r2 == dst_reg, pkt_end == src_reg
3362 	 *     r2=pkt(id=n,off=8,r=0)
3363 	 *     r3=pkt(id=n,off=0,r=0)
3364 	 *
3365 	 * pkt_data in src register:
3366 	 *
3367 	 *   r2 = r3;
3368 	 *   r2 += 8;
3369 	 *   if (pkt_end >= r2) goto <access okay>
3370 	 *   <handle exception>
3371 	 *
3372 	 *   r2 = r3;
3373 	 *   r2 += 8;
3374 	 *   if (pkt_end <= r2) goto <handle exception>
3375 	 *   <access okay>
3376 	 *
3377 	 *   Where:
3378 	 *     pkt_end == dst_reg, r2 == src_reg
3379 	 *     r2=pkt(id=n,off=8,r=0)
3380 	 *     r3=pkt(id=n,off=0,r=0)
3381 	 *
3382 	 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3383 	 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3384 	 * and [r3, r3 + 8-1) respectively is safe to access depending on
3385 	 * the check.
3386 	 */
3387 
3388 	/* If our ids match, then we must have the same max_value.  And we
3389 	 * don't care about the other reg's fixed offset, since if it's too big
3390 	 * the range won't allow anything.
3391 	 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3392 	 */
3393 	for (i = 0; i < MAX_BPF_REG; i++)
3394 		if (regs[i].type == type && regs[i].id == dst_reg->id)
3395 			/* keep the maximum range already checked */
3396 			regs[i].range = max(regs[i].range, new_range);
3397 
3398 	for (j = 0; j <= vstate->curframe; j++) {
3399 		state = vstate->frame[j];
3400 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3401 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3402 				continue;
3403 			reg = &state->stack[i].spilled_ptr;
3404 			if (reg->type == type && reg->id == dst_reg->id)
3405 				reg->range = max(reg->range, new_range);
3406 		}
3407 	}
3408 }
3409 
3410 /* Adjusts the register min/max values in the case that the dst_reg is the
3411  * variable register that we are working on, and src_reg is a constant or we're
3412  * simply doing a BPF_K check.
3413  * In JEQ/JNE cases we also adjust the var_off values.
3414  */
3415 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3416 			    struct bpf_reg_state *false_reg, u64 val,
3417 			    u8 opcode)
3418 {
3419 	/* If the dst_reg is a pointer, we can't learn anything about its
3420 	 * variable offset from the compare (unless src_reg were a pointer into
3421 	 * the same object, but we don't bother with that.
3422 	 * Since false_reg and true_reg have the same type by construction, we
3423 	 * only need to check one of them for pointerness.
3424 	 */
3425 	if (__is_pointer_value(false, false_reg))
3426 		return;
3427 
3428 	switch (opcode) {
3429 	case BPF_JEQ:
3430 		/* If this is false then we know nothing Jon Snow, but if it is
3431 		 * true then we know for sure.
3432 		 */
3433 		__mark_reg_known(true_reg, val);
3434 		break;
3435 	case BPF_JNE:
3436 		/* If this is true we know nothing Jon Snow, but if it is false
3437 		 * we know the value for sure;
3438 		 */
3439 		__mark_reg_known(false_reg, val);
3440 		break;
3441 	case BPF_JGT:
3442 		false_reg->umax_value = min(false_reg->umax_value, val);
3443 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3444 		break;
3445 	case BPF_JSGT:
3446 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3447 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3448 		break;
3449 	case BPF_JLT:
3450 		false_reg->umin_value = max(false_reg->umin_value, val);
3451 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3452 		break;
3453 	case BPF_JSLT:
3454 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3455 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3456 		break;
3457 	case BPF_JGE:
3458 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3459 		true_reg->umin_value = max(true_reg->umin_value, val);
3460 		break;
3461 	case BPF_JSGE:
3462 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3463 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3464 		break;
3465 	case BPF_JLE:
3466 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3467 		true_reg->umax_value = min(true_reg->umax_value, val);
3468 		break;
3469 	case BPF_JSLE:
3470 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3471 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3472 		break;
3473 	default:
3474 		break;
3475 	}
3476 
3477 	__reg_deduce_bounds(false_reg);
3478 	__reg_deduce_bounds(true_reg);
3479 	/* We might have learned some bits from the bounds. */
3480 	__reg_bound_offset(false_reg);
3481 	__reg_bound_offset(true_reg);
3482 	/* Intersecting with the old var_off might have improved our bounds
3483 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3484 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3485 	 */
3486 	__update_reg_bounds(false_reg);
3487 	__update_reg_bounds(true_reg);
3488 }
3489 
3490 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3491  * the variable reg.
3492  */
3493 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3494 				struct bpf_reg_state *false_reg, u64 val,
3495 				u8 opcode)
3496 {
3497 	if (__is_pointer_value(false, false_reg))
3498 		return;
3499 
3500 	switch (opcode) {
3501 	case BPF_JEQ:
3502 		/* If this is false then we know nothing Jon Snow, but if it is
3503 		 * true then we know for sure.
3504 		 */
3505 		__mark_reg_known(true_reg, val);
3506 		break;
3507 	case BPF_JNE:
3508 		/* If this is true we know nothing Jon Snow, but if it is false
3509 		 * we know the value for sure;
3510 		 */
3511 		__mark_reg_known(false_reg, val);
3512 		break;
3513 	case BPF_JGT:
3514 		true_reg->umax_value = min(true_reg->umax_value, val - 1);
3515 		false_reg->umin_value = max(false_reg->umin_value, val);
3516 		break;
3517 	case BPF_JSGT:
3518 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3519 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3520 		break;
3521 	case BPF_JLT:
3522 		true_reg->umin_value = max(true_reg->umin_value, val + 1);
3523 		false_reg->umax_value = min(false_reg->umax_value, val);
3524 		break;
3525 	case BPF_JSLT:
3526 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3527 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3528 		break;
3529 	case BPF_JGE:
3530 		true_reg->umax_value = min(true_reg->umax_value, val);
3531 		false_reg->umin_value = max(false_reg->umin_value, val + 1);
3532 		break;
3533 	case BPF_JSGE:
3534 		true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3535 		false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3536 		break;
3537 	case BPF_JLE:
3538 		true_reg->umin_value = max(true_reg->umin_value, val);
3539 		false_reg->umax_value = min(false_reg->umax_value, val - 1);
3540 		break;
3541 	case BPF_JSLE:
3542 		true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3543 		false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3544 		break;
3545 	default:
3546 		break;
3547 	}
3548 
3549 	__reg_deduce_bounds(false_reg);
3550 	__reg_deduce_bounds(true_reg);
3551 	/* We might have learned some bits from the bounds. */
3552 	__reg_bound_offset(false_reg);
3553 	__reg_bound_offset(true_reg);
3554 	/* Intersecting with the old var_off might have improved our bounds
3555 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3556 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3557 	 */
3558 	__update_reg_bounds(false_reg);
3559 	__update_reg_bounds(true_reg);
3560 }
3561 
3562 /* Regs are known to be equal, so intersect their min/max/var_off */
3563 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3564 				  struct bpf_reg_state *dst_reg)
3565 {
3566 	src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3567 							dst_reg->umin_value);
3568 	src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3569 							dst_reg->umax_value);
3570 	src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3571 							dst_reg->smin_value);
3572 	src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3573 							dst_reg->smax_value);
3574 	src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3575 							     dst_reg->var_off);
3576 	/* We might have learned new bounds from the var_off. */
3577 	__update_reg_bounds(src_reg);
3578 	__update_reg_bounds(dst_reg);
3579 	/* We might have learned something about the sign bit. */
3580 	__reg_deduce_bounds(src_reg);
3581 	__reg_deduce_bounds(dst_reg);
3582 	/* We might have learned some bits from the bounds. */
3583 	__reg_bound_offset(src_reg);
3584 	__reg_bound_offset(dst_reg);
3585 	/* Intersecting with the old var_off might have improved our bounds
3586 	 * slightly.  e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3587 	 * then new var_off is (0; 0x7f...fc) which improves our umax.
3588 	 */
3589 	__update_reg_bounds(src_reg);
3590 	__update_reg_bounds(dst_reg);
3591 }
3592 
3593 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3594 				struct bpf_reg_state *true_dst,
3595 				struct bpf_reg_state *false_src,
3596 				struct bpf_reg_state *false_dst,
3597 				u8 opcode)
3598 {
3599 	switch (opcode) {
3600 	case BPF_JEQ:
3601 		__reg_combine_min_max(true_src, true_dst);
3602 		break;
3603 	case BPF_JNE:
3604 		__reg_combine_min_max(false_src, false_dst);
3605 		break;
3606 	}
3607 }
3608 
3609 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3610 			 bool is_null)
3611 {
3612 	struct bpf_reg_state *reg = &regs[regno];
3613 
3614 	if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3615 		/* Old offset (both fixed and variable parts) should
3616 		 * have been known-zero, because we don't allow pointer
3617 		 * arithmetic on pointers that might be NULL.
3618 		 */
3619 		if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3620 				 !tnum_equals_const(reg->var_off, 0) ||
3621 				 reg->off)) {
3622 			__mark_reg_known_zero(reg);
3623 			reg->off = 0;
3624 		}
3625 		if (is_null) {
3626 			reg->type = SCALAR_VALUE;
3627 		} else if (reg->map_ptr->inner_map_meta) {
3628 			reg->type = CONST_PTR_TO_MAP;
3629 			reg->map_ptr = reg->map_ptr->inner_map_meta;
3630 		} else {
3631 			reg->type = PTR_TO_MAP_VALUE;
3632 		}
3633 		/* We don't need id from this point onwards anymore, thus we
3634 		 * should better reset it, so that state pruning has chances
3635 		 * to take effect.
3636 		 */
3637 		reg->id = 0;
3638 	}
3639 }
3640 
3641 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3642  * be folded together at some point.
3643  */
3644 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3645 			  bool is_null)
3646 {
3647 	struct bpf_func_state *state = vstate->frame[vstate->curframe];
3648 	struct bpf_reg_state *regs = state->regs;
3649 	u32 id = regs[regno].id;
3650 	int i, j;
3651 
3652 	for (i = 0; i < MAX_BPF_REG; i++)
3653 		mark_map_reg(regs, i, id, is_null);
3654 
3655 	for (j = 0; j <= vstate->curframe; j++) {
3656 		state = vstate->frame[j];
3657 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3658 			if (state->stack[i].slot_type[0] != STACK_SPILL)
3659 				continue;
3660 			mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3661 		}
3662 	}
3663 }
3664 
3665 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3666 				   struct bpf_reg_state *dst_reg,
3667 				   struct bpf_reg_state *src_reg,
3668 				   struct bpf_verifier_state *this_branch,
3669 				   struct bpf_verifier_state *other_branch)
3670 {
3671 	if (BPF_SRC(insn->code) != BPF_X)
3672 		return false;
3673 
3674 	switch (BPF_OP(insn->code)) {
3675 	case BPF_JGT:
3676 		if ((dst_reg->type == PTR_TO_PACKET &&
3677 		     src_reg->type == PTR_TO_PACKET_END) ||
3678 		    (dst_reg->type == PTR_TO_PACKET_META &&
3679 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3680 			/* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3681 			find_good_pkt_pointers(this_branch, dst_reg,
3682 					       dst_reg->type, false);
3683 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3684 			    src_reg->type == PTR_TO_PACKET) ||
3685 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3686 			    src_reg->type == PTR_TO_PACKET_META)) {
3687 			/* pkt_end > pkt_data', pkt_data > pkt_meta' */
3688 			find_good_pkt_pointers(other_branch, src_reg,
3689 					       src_reg->type, true);
3690 		} else {
3691 			return false;
3692 		}
3693 		break;
3694 	case BPF_JLT:
3695 		if ((dst_reg->type == PTR_TO_PACKET &&
3696 		     src_reg->type == PTR_TO_PACKET_END) ||
3697 		    (dst_reg->type == PTR_TO_PACKET_META &&
3698 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3699 			/* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3700 			find_good_pkt_pointers(other_branch, dst_reg,
3701 					       dst_reg->type, true);
3702 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3703 			    src_reg->type == PTR_TO_PACKET) ||
3704 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3705 			    src_reg->type == PTR_TO_PACKET_META)) {
3706 			/* pkt_end < pkt_data', pkt_data > pkt_meta' */
3707 			find_good_pkt_pointers(this_branch, src_reg,
3708 					       src_reg->type, false);
3709 		} else {
3710 			return false;
3711 		}
3712 		break;
3713 	case BPF_JGE:
3714 		if ((dst_reg->type == PTR_TO_PACKET &&
3715 		     src_reg->type == PTR_TO_PACKET_END) ||
3716 		    (dst_reg->type == PTR_TO_PACKET_META &&
3717 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3718 			/* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3719 			find_good_pkt_pointers(this_branch, dst_reg,
3720 					       dst_reg->type, true);
3721 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3722 			    src_reg->type == PTR_TO_PACKET) ||
3723 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3724 			    src_reg->type == PTR_TO_PACKET_META)) {
3725 			/* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3726 			find_good_pkt_pointers(other_branch, src_reg,
3727 					       src_reg->type, false);
3728 		} else {
3729 			return false;
3730 		}
3731 		break;
3732 	case BPF_JLE:
3733 		if ((dst_reg->type == PTR_TO_PACKET &&
3734 		     src_reg->type == PTR_TO_PACKET_END) ||
3735 		    (dst_reg->type == PTR_TO_PACKET_META &&
3736 		     reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3737 			/* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3738 			find_good_pkt_pointers(other_branch, dst_reg,
3739 					       dst_reg->type, false);
3740 		} else if ((dst_reg->type == PTR_TO_PACKET_END &&
3741 			    src_reg->type == PTR_TO_PACKET) ||
3742 			   (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3743 			    src_reg->type == PTR_TO_PACKET_META)) {
3744 			/* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3745 			find_good_pkt_pointers(this_branch, src_reg,
3746 					       src_reg->type, true);
3747 		} else {
3748 			return false;
3749 		}
3750 		break;
3751 	default:
3752 		return false;
3753 	}
3754 
3755 	return true;
3756 }
3757 
3758 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3759 			     struct bpf_insn *insn, int *insn_idx)
3760 {
3761 	struct bpf_verifier_state *this_branch = env->cur_state;
3762 	struct bpf_verifier_state *other_branch;
3763 	struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3764 	struct bpf_reg_state *dst_reg, *other_branch_regs;
3765 	u8 opcode = BPF_OP(insn->code);
3766 	int err;
3767 
3768 	if (opcode > BPF_JSLE) {
3769 		verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3770 		return -EINVAL;
3771 	}
3772 
3773 	if (BPF_SRC(insn->code) == BPF_X) {
3774 		if (insn->imm != 0) {
3775 			verbose(env, "BPF_JMP uses reserved fields\n");
3776 			return -EINVAL;
3777 		}
3778 
3779 		/* check src1 operand */
3780 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3781 		if (err)
3782 			return err;
3783 
3784 		if (is_pointer_value(env, insn->src_reg)) {
3785 			verbose(env, "R%d pointer comparison prohibited\n",
3786 				insn->src_reg);
3787 			return -EACCES;
3788 		}
3789 	} else {
3790 		if (insn->src_reg != BPF_REG_0) {
3791 			verbose(env, "BPF_JMP uses reserved fields\n");
3792 			return -EINVAL;
3793 		}
3794 	}
3795 
3796 	/* check src2 operand */
3797 	err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3798 	if (err)
3799 		return err;
3800 
3801 	dst_reg = &regs[insn->dst_reg];
3802 
3803 	/* detect if R == 0 where R was initialized to zero earlier */
3804 	if (BPF_SRC(insn->code) == BPF_K &&
3805 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3806 	    dst_reg->type == SCALAR_VALUE &&
3807 	    tnum_is_const(dst_reg->var_off)) {
3808 		if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3809 		    (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3810 			/* if (imm == imm) goto pc+off;
3811 			 * only follow the goto, ignore fall-through
3812 			 */
3813 			*insn_idx += insn->off;
3814 			return 0;
3815 		} else {
3816 			/* if (imm != imm) goto pc+off;
3817 			 * only follow fall-through branch, since
3818 			 * that's where the program will go
3819 			 */
3820 			return 0;
3821 		}
3822 	}
3823 
3824 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3825 	if (!other_branch)
3826 		return -EFAULT;
3827 	other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3828 
3829 	/* detect if we are comparing against a constant value so we can adjust
3830 	 * our min/max values for our dst register.
3831 	 * this is only legit if both are scalars (or pointers to the same
3832 	 * object, I suppose, but we don't support that right now), because
3833 	 * otherwise the different base pointers mean the offsets aren't
3834 	 * comparable.
3835 	 */
3836 	if (BPF_SRC(insn->code) == BPF_X) {
3837 		if (dst_reg->type == SCALAR_VALUE &&
3838 		    regs[insn->src_reg].type == SCALAR_VALUE) {
3839 			if (tnum_is_const(regs[insn->src_reg].var_off))
3840 				reg_set_min_max(&other_branch_regs[insn->dst_reg],
3841 						dst_reg, regs[insn->src_reg].var_off.value,
3842 						opcode);
3843 			else if (tnum_is_const(dst_reg->var_off))
3844 				reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3845 						    &regs[insn->src_reg],
3846 						    dst_reg->var_off.value, opcode);
3847 			else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3848 				/* Comparing for equality, we can combine knowledge */
3849 				reg_combine_min_max(&other_branch_regs[insn->src_reg],
3850 						    &other_branch_regs[insn->dst_reg],
3851 						    &regs[insn->src_reg],
3852 						    &regs[insn->dst_reg], opcode);
3853 		}
3854 	} else if (dst_reg->type == SCALAR_VALUE) {
3855 		reg_set_min_max(&other_branch_regs[insn->dst_reg],
3856 					dst_reg, insn->imm, opcode);
3857 	}
3858 
3859 	/* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3860 	if (BPF_SRC(insn->code) == BPF_K &&
3861 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3862 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3863 		/* Mark all identical map registers in each branch as either
3864 		 * safe or unknown depending R == 0 or R != 0 conditional.
3865 		 */
3866 		mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3867 		mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3868 	} else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3869 					   this_branch, other_branch) &&
3870 		   is_pointer_value(env, insn->dst_reg)) {
3871 		verbose(env, "R%d pointer comparison prohibited\n",
3872 			insn->dst_reg);
3873 		return -EACCES;
3874 	}
3875 	if (env->log.level)
3876 		print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3877 	return 0;
3878 }
3879 
3880 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3881 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3882 {
3883 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3884 
3885 	return (struct bpf_map *) (unsigned long) imm64;
3886 }
3887 
3888 /* verify BPF_LD_IMM64 instruction */
3889 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3890 {
3891 	struct bpf_reg_state *regs = cur_regs(env);
3892 	int err;
3893 
3894 	if (BPF_SIZE(insn->code) != BPF_DW) {
3895 		verbose(env, "invalid BPF_LD_IMM insn\n");
3896 		return -EINVAL;
3897 	}
3898 	if (insn->off != 0) {
3899 		verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3900 		return -EINVAL;
3901 	}
3902 
3903 	err = check_reg_arg(env, insn->dst_reg, DST_OP);
3904 	if (err)
3905 		return err;
3906 
3907 	if (insn->src_reg == 0) {
3908 		u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3909 
3910 		regs[insn->dst_reg].type = SCALAR_VALUE;
3911 		__mark_reg_known(&regs[insn->dst_reg], imm);
3912 		return 0;
3913 	}
3914 
3915 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3916 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3917 
3918 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3919 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3920 	return 0;
3921 }
3922 
3923 static bool may_access_skb(enum bpf_prog_type type)
3924 {
3925 	switch (type) {
3926 	case BPF_PROG_TYPE_SOCKET_FILTER:
3927 	case BPF_PROG_TYPE_SCHED_CLS:
3928 	case BPF_PROG_TYPE_SCHED_ACT:
3929 		return true;
3930 	default:
3931 		return false;
3932 	}
3933 }
3934 
3935 /* verify safety of LD_ABS|LD_IND instructions:
3936  * - they can only appear in the programs where ctx == skb
3937  * - since they are wrappers of function calls, they scratch R1-R5 registers,
3938  *   preserve R6-R9, and store return value into R0
3939  *
3940  * Implicit input:
3941  *   ctx == skb == R6 == CTX
3942  *
3943  * Explicit input:
3944  *   SRC == any register
3945  *   IMM == 32-bit immediate
3946  *
3947  * Output:
3948  *   R0 - 8/16/32-bit skb data converted to cpu endianness
3949  */
3950 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3951 {
3952 	struct bpf_reg_state *regs = cur_regs(env);
3953 	u8 mode = BPF_MODE(insn->code);
3954 	int i, err;
3955 
3956 	if (!may_access_skb(env->prog->type)) {
3957 		verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3958 		return -EINVAL;
3959 	}
3960 
3961 	if (!env->ops->gen_ld_abs) {
3962 		verbose(env, "bpf verifier is misconfigured\n");
3963 		return -EINVAL;
3964 	}
3965 
3966 	if (env->subprog_cnt > 1) {
3967 		/* when program has LD_ABS insn JITs and interpreter assume
3968 		 * that r1 == ctx == skb which is not the case for callees
3969 		 * that can have arbitrary arguments. It's problematic
3970 		 * for main prog as well since JITs would need to analyze
3971 		 * all functions in order to make proper register save/restore
3972 		 * decisions in the main prog. Hence disallow LD_ABS with calls
3973 		 */
3974 		verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3975 		return -EINVAL;
3976 	}
3977 
3978 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3979 	    BPF_SIZE(insn->code) == BPF_DW ||
3980 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3981 		verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3982 		return -EINVAL;
3983 	}
3984 
3985 	/* check whether implicit source operand (register R6) is readable */
3986 	err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3987 	if (err)
3988 		return err;
3989 
3990 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3991 		verbose(env,
3992 			"at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3993 		return -EINVAL;
3994 	}
3995 
3996 	if (mode == BPF_IND) {
3997 		/* check explicit source operand */
3998 		err = check_reg_arg(env, insn->src_reg, SRC_OP);
3999 		if (err)
4000 			return err;
4001 	}
4002 
4003 	/* reset caller saved regs to unreadable */
4004 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
4005 		mark_reg_not_init(env, regs, caller_saved[i]);
4006 		check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4007 	}
4008 
4009 	/* mark destination R0 register as readable, since it contains
4010 	 * the value fetched from the packet.
4011 	 * Already marked as written above.
4012 	 */
4013 	mark_reg_unknown(env, regs, BPF_REG_0);
4014 	return 0;
4015 }
4016 
4017 static int check_return_code(struct bpf_verifier_env *env)
4018 {
4019 	struct bpf_reg_state *reg;
4020 	struct tnum range = tnum_range(0, 1);
4021 
4022 	switch (env->prog->type) {
4023 	case BPF_PROG_TYPE_CGROUP_SKB:
4024 	case BPF_PROG_TYPE_CGROUP_SOCK:
4025 	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4026 	case BPF_PROG_TYPE_SOCK_OPS:
4027 	case BPF_PROG_TYPE_CGROUP_DEVICE:
4028 		break;
4029 	default:
4030 		return 0;
4031 	}
4032 
4033 	reg = cur_regs(env) + BPF_REG_0;
4034 	if (reg->type != SCALAR_VALUE) {
4035 		verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4036 			reg_type_str[reg->type]);
4037 		return -EINVAL;
4038 	}
4039 
4040 	if (!tnum_in(range, reg->var_off)) {
4041 		verbose(env, "At program exit the register R0 ");
4042 		if (!tnum_is_unknown(reg->var_off)) {
4043 			char tn_buf[48];
4044 
4045 			tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4046 			verbose(env, "has value %s", tn_buf);
4047 		} else {
4048 			verbose(env, "has unknown scalar value");
4049 		}
4050 		verbose(env, " should have been 0 or 1\n");
4051 		return -EINVAL;
4052 	}
4053 	return 0;
4054 }
4055 
4056 /* non-recursive DFS pseudo code
4057  * 1  procedure DFS-iterative(G,v):
4058  * 2      label v as discovered
4059  * 3      let S be a stack
4060  * 4      S.push(v)
4061  * 5      while S is not empty
4062  * 6            t <- S.pop()
4063  * 7            if t is what we're looking for:
4064  * 8                return t
4065  * 9            for all edges e in G.adjacentEdges(t) do
4066  * 10               if edge e is already labelled
4067  * 11                   continue with the next edge
4068  * 12               w <- G.adjacentVertex(t,e)
4069  * 13               if vertex w is not discovered and not explored
4070  * 14                   label e as tree-edge
4071  * 15                   label w as discovered
4072  * 16                   S.push(w)
4073  * 17                   continue at 5
4074  * 18               else if vertex w is discovered
4075  * 19                   label e as back-edge
4076  * 20               else
4077  * 21                   // vertex w is explored
4078  * 22                   label e as forward- or cross-edge
4079  * 23           label t as explored
4080  * 24           S.pop()
4081  *
4082  * convention:
4083  * 0x10 - discovered
4084  * 0x11 - discovered and fall-through edge labelled
4085  * 0x12 - discovered and fall-through and branch edges labelled
4086  * 0x20 - explored
4087  */
4088 
4089 enum {
4090 	DISCOVERED = 0x10,
4091 	EXPLORED = 0x20,
4092 	FALLTHROUGH = 1,
4093 	BRANCH = 2,
4094 };
4095 
4096 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4097 
4098 static int *insn_stack;	/* stack of insns to process */
4099 static int cur_stack;	/* current stack index */
4100 static int *insn_state;
4101 
4102 /* t, w, e - match pseudo-code above:
4103  * t - index of current instruction
4104  * w - next instruction
4105  * e - edge
4106  */
4107 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4108 {
4109 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4110 		return 0;
4111 
4112 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4113 		return 0;
4114 
4115 	if (w < 0 || w >= env->prog->len) {
4116 		verbose(env, "jump out of range from insn %d to %d\n", t, w);
4117 		return -EINVAL;
4118 	}
4119 
4120 	if (e == BRANCH)
4121 		/* mark branch target for state pruning */
4122 		env->explored_states[w] = STATE_LIST_MARK;
4123 
4124 	if (insn_state[w] == 0) {
4125 		/* tree-edge */
4126 		insn_state[t] = DISCOVERED | e;
4127 		insn_state[w] = DISCOVERED;
4128 		if (cur_stack >= env->prog->len)
4129 			return -E2BIG;
4130 		insn_stack[cur_stack++] = w;
4131 		return 1;
4132 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4133 		verbose(env, "back-edge from insn %d to %d\n", t, w);
4134 		return -EINVAL;
4135 	} else if (insn_state[w] == EXPLORED) {
4136 		/* forward- or cross-edge */
4137 		insn_state[t] = DISCOVERED | e;
4138 	} else {
4139 		verbose(env, "insn state internal bug\n");
4140 		return -EFAULT;
4141 	}
4142 	return 0;
4143 }
4144 
4145 /* non-recursive depth-first-search to detect loops in BPF program
4146  * loop == back-edge in directed graph
4147  */
4148 static int check_cfg(struct bpf_verifier_env *env)
4149 {
4150 	struct bpf_insn *insns = env->prog->insnsi;
4151 	int insn_cnt = env->prog->len;
4152 	int ret = 0;
4153 	int i, t;
4154 
4155 	ret = check_subprogs(env);
4156 	if (ret < 0)
4157 		return ret;
4158 
4159 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4160 	if (!insn_state)
4161 		return -ENOMEM;
4162 
4163 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4164 	if (!insn_stack) {
4165 		kfree(insn_state);
4166 		return -ENOMEM;
4167 	}
4168 
4169 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4170 	insn_stack[0] = 0; /* 0 is the first instruction */
4171 	cur_stack = 1;
4172 
4173 peek_stack:
4174 	if (cur_stack == 0)
4175 		goto check_state;
4176 	t = insn_stack[cur_stack - 1];
4177 
4178 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4179 		u8 opcode = BPF_OP(insns[t].code);
4180 
4181 		if (opcode == BPF_EXIT) {
4182 			goto mark_explored;
4183 		} else if (opcode == BPF_CALL) {
4184 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4185 			if (ret == 1)
4186 				goto peek_stack;
4187 			else if (ret < 0)
4188 				goto err_free;
4189 			if (t + 1 < insn_cnt)
4190 				env->explored_states[t + 1] = STATE_LIST_MARK;
4191 			if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4192 				env->explored_states[t] = STATE_LIST_MARK;
4193 				ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4194 				if (ret == 1)
4195 					goto peek_stack;
4196 				else if (ret < 0)
4197 					goto err_free;
4198 			}
4199 		} else if (opcode == BPF_JA) {
4200 			if (BPF_SRC(insns[t].code) != BPF_K) {
4201 				ret = -EINVAL;
4202 				goto err_free;
4203 			}
4204 			/* unconditional jump with single edge */
4205 			ret = push_insn(t, t + insns[t].off + 1,
4206 					FALLTHROUGH, env);
4207 			if (ret == 1)
4208 				goto peek_stack;
4209 			else if (ret < 0)
4210 				goto err_free;
4211 			/* tell verifier to check for equivalent states
4212 			 * after every call and jump
4213 			 */
4214 			if (t + 1 < insn_cnt)
4215 				env->explored_states[t + 1] = STATE_LIST_MARK;
4216 		} else {
4217 			/* conditional jump with two edges */
4218 			env->explored_states[t] = STATE_LIST_MARK;
4219 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
4220 			if (ret == 1)
4221 				goto peek_stack;
4222 			else if (ret < 0)
4223 				goto err_free;
4224 
4225 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4226 			if (ret == 1)
4227 				goto peek_stack;
4228 			else if (ret < 0)
4229 				goto err_free;
4230 		}
4231 	} else {
4232 		/* all other non-branch instructions with single
4233 		 * fall-through edge
4234 		 */
4235 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
4236 		if (ret == 1)
4237 			goto peek_stack;
4238 		else if (ret < 0)
4239 			goto err_free;
4240 	}
4241 
4242 mark_explored:
4243 	insn_state[t] = EXPLORED;
4244 	if (cur_stack-- <= 0) {
4245 		verbose(env, "pop stack internal bug\n");
4246 		ret = -EFAULT;
4247 		goto err_free;
4248 	}
4249 	goto peek_stack;
4250 
4251 check_state:
4252 	for (i = 0; i < insn_cnt; i++) {
4253 		if (insn_state[i] != EXPLORED) {
4254 			verbose(env, "unreachable insn %d\n", i);
4255 			ret = -EINVAL;
4256 			goto err_free;
4257 		}
4258 	}
4259 	ret = 0; /* cfg looks good */
4260 
4261 err_free:
4262 	kfree(insn_state);
4263 	kfree(insn_stack);
4264 	return ret;
4265 }
4266 
4267 /* check %cur's range satisfies %old's */
4268 static bool range_within(struct bpf_reg_state *old,
4269 			 struct bpf_reg_state *cur)
4270 {
4271 	return old->umin_value <= cur->umin_value &&
4272 	       old->umax_value >= cur->umax_value &&
4273 	       old->smin_value <= cur->smin_value &&
4274 	       old->smax_value >= cur->smax_value;
4275 }
4276 
4277 /* Maximum number of register states that can exist at once */
4278 #define ID_MAP_SIZE	(MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4279 struct idpair {
4280 	u32 old;
4281 	u32 cur;
4282 };
4283 
4284 /* If in the old state two registers had the same id, then they need to have
4285  * the same id in the new state as well.  But that id could be different from
4286  * the old state, so we need to track the mapping from old to new ids.
4287  * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4288  * regs with old id 5 must also have new id 9 for the new state to be safe.  But
4289  * regs with a different old id could still have new id 9, we don't care about
4290  * that.
4291  * So we look through our idmap to see if this old id has been seen before.  If
4292  * so, we require the new id to match; otherwise, we add the id pair to the map.
4293  */
4294 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4295 {
4296 	unsigned int i;
4297 
4298 	for (i = 0; i < ID_MAP_SIZE; i++) {
4299 		if (!idmap[i].old) {
4300 			/* Reached an empty slot; haven't seen this id before */
4301 			idmap[i].old = old_id;
4302 			idmap[i].cur = cur_id;
4303 			return true;
4304 		}
4305 		if (idmap[i].old == old_id)
4306 			return idmap[i].cur == cur_id;
4307 	}
4308 	/* We ran out of idmap slots, which should be impossible */
4309 	WARN_ON_ONCE(1);
4310 	return false;
4311 }
4312 
4313 /* Returns true if (rold safe implies rcur safe) */
4314 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4315 		    struct idpair *idmap)
4316 {
4317 	bool equal;
4318 
4319 	if (!(rold->live & REG_LIVE_READ))
4320 		/* explored state didn't use this */
4321 		return true;
4322 
4323 	equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4324 
4325 	if (rold->type == PTR_TO_STACK)
4326 		/* two stack pointers are equal only if they're pointing to
4327 		 * the same stack frame, since fp-8 in foo != fp-8 in bar
4328 		 */
4329 		return equal && rold->frameno == rcur->frameno;
4330 
4331 	if (equal)
4332 		return true;
4333 
4334 	if (rold->type == NOT_INIT)
4335 		/* explored state can't have used this */
4336 		return true;
4337 	if (rcur->type == NOT_INIT)
4338 		return false;
4339 	switch (rold->type) {
4340 	case SCALAR_VALUE:
4341 		if (rcur->type == SCALAR_VALUE) {
4342 			/* new val must satisfy old val knowledge */
4343 			return range_within(rold, rcur) &&
4344 			       tnum_in(rold->var_off, rcur->var_off);
4345 		} else {
4346 			/* We're trying to use a pointer in place of a scalar.
4347 			 * Even if the scalar was unbounded, this could lead to
4348 			 * pointer leaks because scalars are allowed to leak
4349 			 * while pointers are not. We could make this safe in
4350 			 * special cases if root is calling us, but it's
4351 			 * probably not worth the hassle.
4352 			 */
4353 			return false;
4354 		}
4355 	case PTR_TO_MAP_VALUE:
4356 		/* If the new min/max/var_off satisfy the old ones and
4357 		 * everything else matches, we are OK.
4358 		 * We don't care about the 'id' value, because nothing
4359 		 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4360 		 */
4361 		return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4362 		       range_within(rold, rcur) &&
4363 		       tnum_in(rold->var_off, rcur->var_off);
4364 	case PTR_TO_MAP_VALUE_OR_NULL:
4365 		/* a PTR_TO_MAP_VALUE could be safe to use as a
4366 		 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4367 		 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4368 		 * checked, doing so could have affected others with the same
4369 		 * id, and we can't check for that because we lost the id when
4370 		 * we converted to a PTR_TO_MAP_VALUE.
4371 		 */
4372 		if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4373 			return false;
4374 		if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4375 			return false;
4376 		/* Check our ids match any regs they're supposed to */
4377 		return check_ids(rold->id, rcur->id, idmap);
4378 	case PTR_TO_PACKET_META:
4379 	case PTR_TO_PACKET:
4380 		if (rcur->type != rold->type)
4381 			return false;
4382 		/* We must have at least as much range as the old ptr
4383 		 * did, so that any accesses which were safe before are
4384 		 * still safe.  This is true even if old range < old off,
4385 		 * since someone could have accessed through (ptr - k), or
4386 		 * even done ptr -= k in a register, to get a safe access.
4387 		 */
4388 		if (rold->range > rcur->range)
4389 			return false;
4390 		/* If the offsets don't match, we can't trust our alignment;
4391 		 * nor can we be sure that we won't fall out of range.
4392 		 */
4393 		if (rold->off != rcur->off)
4394 			return false;
4395 		/* id relations must be preserved */
4396 		if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4397 			return false;
4398 		/* new val must satisfy old val knowledge */
4399 		return range_within(rold, rcur) &&
4400 		       tnum_in(rold->var_off, rcur->var_off);
4401 	case PTR_TO_CTX:
4402 	case CONST_PTR_TO_MAP:
4403 	case PTR_TO_PACKET_END:
4404 		/* Only valid matches are exact, which memcmp() above
4405 		 * would have accepted
4406 		 */
4407 	default:
4408 		/* Don't know what's going on, just say it's not safe */
4409 		return false;
4410 	}
4411 
4412 	/* Shouldn't get here; if we do, say it's not safe */
4413 	WARN_ON_ONCE(1);
4414 	return false;
4415 }
4416 
4417 static bool stacksafe(struct bpf_func_state *old,
4418 		      struct bpf_func_state *cur,
4419 		      struct idpair *idmap)
4420 {
4421 	int i, spi;
4422 
4423 	/* if explored stack has more populated slots than current stack
4424 	 * such stacks are not equivalent
4425 	 */
4426 	if (old->allocated_stack > cur->allocated_stack)
4427 		return false;
4428 
4429 	/* walk slots of the explored stack and ignore any additional
4430 	 * slots in the current stack, since explored(safe) state
4431 	 * didn't use them
4432 	 */
4433 	for (i = 0; i < old->allocated_stack; i++) {
4434 		spi = i / BPF_REG_SIZE;
4435 
4436 		if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4437 			/* explored state didn't use this */
4438 			continue;
4439 
4440 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4441 			continue;
4442 		/* if old state was safe with misc data in the stack
4443 		 * it will be safe with zero-initialized stack.
4444 		 * The opposite is not true
4445 		 */
4446 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4447 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4448 			continue;
4449 		if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4450 		    cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4451 			/* Ex: old explored (safe) state has STACK_SPILL in
4452 			 * this stack slot, but current has has STACK_MISC ->
4453 			 * this verifier states are not equivalent,
4454 			 * return false to continue verification of this path
4455 			 */
4456 			return false;
4457 		if (i % BPF_REG_SIZE)
4458 			continue;
4459 		if (old->stack[spi].slot_type[0] != STACK_SPILL)
4460 			continue;
4461 		if (!regsafe(&old->stack[spi].spilled_ptr,
4462 			     &cur->stack[spi].spilled_ptr,
4463 			     idmap))
4464 			/* when explored and current stack slot are both storing
4465 			 * spilled registers, check that stored pointers types
4466 			 * are the same as well.
4467 			 * Ex: explored safe path could have stored
4468 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4469 			 * but current path has stored:
4470 			 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4471 			 * such verifier states are not equivalent.
4472 			 * return false to continue verification of this path
4473 			 */
4474 			return false;
4475 	}
4476 	return true;
4477 }
4478 
4479 /* compare two verifier states
4480  *
4481  * all states stored in state_list are known to be valid, since
4482  * verifier reached 'bpf_exit' instruction through them
4483  *
4484  * this function is called when verifier exploring different branches of
4485  * execution popped from the state stack. If it sees an old state that has
4486  * more strict register state and more strict stack state then this execution
4487  * branch doesn't need to be explored further, since verifier already
4488  * concluded that more strict state leads to valid finish.
4489  *
4490  * Therefore two states are equivalent if register state is more conservative
4491  * and explored stack state is more conservative than the current one.
4492  * Example:
4493  *       explored                   current
4494  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4495  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4496  *
4497  * In other words if current stack state (one being explored) has more
4498  * valid slots than old one that already passed validation, it means
4499  * the verifier can stop exploring and conclude that current state is valid too
4500  *
4501  * Similarly with registers. If explored state has register type as invalid
4502  * whereas register type in current state is meaningful, it means that
4503  * the current state will reach 'bpf_exit' instruction safely
4504  */
4505 static bool func_states_equal(struct bpf_func_state *old,
4506 			      struct bpf_func_state *cur)
4507 {
4508 	struct idpair *idmap;
4509 	bool ret = false;
4510 	int i;
4511 
4512 	idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4513 	/* If we failed to allocate the idmap, just say it's not safe */
4514 	if (!idmap)
4515 		return false;
4516 
4517 	for (i = 0; i < MAX_BPF_REG; i++) {
4518 		if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4519 			goto out_free;
4520 	}
4521 
4522 	if (!stacksafe(old, cur, idmap))
4523 		goto out_free;
4524 	ret = true;
4525 out_free:
4526 	kfree(idmap);
4527 	return ret;
4528 }
4529 
4530 static bool states_equal(struct bpf_verifier_env *env,
4531 			 struct bpf_verifier_state *old,
4532 			 struct bpf_verifier_state *cur)
4533 {
4534 	int i;
4535 
4536 	if (old->curframe != cur->curframe)
4537 		return false;
4538 
4539 	/* for states to be equal callsites have to be the same
4540 	 * and all frame states need to be equivalent
4541 	 */
4542 	for (i = 0; i <= old->curframe; i++) {
4543 		if (old->frame[i]->callsite != cur->frame[i]->callsite)
4544 			return false;
4545 		if (!func_states_equal(old->frame[i], cur->frame[i]))
4546 			return false;
4547 	}
4548 	return true;
4549 }
4550 
4551 /* A write screens off any subsequent reads; but write marks come from the
4552  * straight-line code between a state and its parent.  When we arrive at an
4553  * equivalent state (jump target or such) we didn't arrive by the straight-line
4554  * code, so read marks in the state must propagate to the parent regardless
4555  * of the state's write marks. That's what 'parent == state->parent' comparison
4556  * in mark_reg_read() and mark_stack_slot_read() is for.
4557  */
4558 static int propagate_liveness(struct bpf_verifier_env *env,
4559 			      const struct bpf_verifier_state *vstate,
4560 			      struct bpf_verifier_state *vparent)
4561 {
4562 	int i, frame, err = 0;
4563 	struct bpf_func_state *state, *parent;
4564 
4565 	if (vparent->curframe != vstate->curframe) {
4566 		WARN(1, "propagate_live: parent frame %d current frame %d\n",
4567 		     vparent->curframe, vstate->curframe);
4568 		return -EFAULT;
4569 	}
4570 	/* Propagate read liveness of registers... */
4571 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4572 	/* We don't need to worry about FP liveness because it's read-only */
4573 	for (i = 0; i < BPF_REG_FP; i++) {
4574 		if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4575 			continue;
4576 		if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4577 			err = mark_reg_read(env, vstate, vparent, i);
4578 			if (err)
4579 				return err;
4580 		}
4581 	}
4582 
4583 	/* ... and stack slots */
4584 	for (frame = 0; frame <= vstate->curframe; frame++) {
4585 		state = vstate->frame[frame];
4586 		parent = vparent->frame[frame];
4587 		for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4588 			    i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4589 			if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4590 				continue;
4591 			if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4592 				mark_stack_slot_read(env, vstate, vparent, i, frame);
4593 		}
4594 	}
4595 	return err;
4596 }
4597 
4598 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4599 {
4600 	struct bpf_verifier_state_list *new_sl;
4601 	struct bpf_verifier_state_list *sl;
4602 	struct bpf_verifier_state *cur = env->cur_state;
4603 	int i, j, err;
4604 
4605 	sl = env->explored_states[insn_idx];
4606 	if (!sl)
4607 		/* this 'insn_idx' instruction wasn't marked, so we will not
4608 		 * be doing state search here
4609 		 */
4610 		return 0;
4611 
4612 	while (sl != STATE_LIST_MARK) {
4613 		if (states_equal(env, &sl->state, cur)) {
4614 			/* reached equivalent register/stack state,
4615 			 * prune the search.
4616 			 * Registers read by the continuation are read by us.
4617 			 * If we have any write marks in env->cur_state, they
4618 			 * will prevent corresponding reads in the continuation
4619 			 * from reaching our parent (an explored_state).  Our
4620 			 * own state will get the read marks recorded, but
4621 			 * they'll be immediately forgotten as we're pruning
4622 			 * this state and will pop a new one.
4623 			 */
4624 			err = propagate_liveness(env, &sl->state, cur);
4625 			if (err)
4626 				return err;
4627 			return 1;
4628 		}
4629 		sl = sl->next;
4630 	}
4631 
4632 	/* there were no equivalent states, remember current one.
4633 	 * technically the current state is not proven to be safe yet,
4634 	 * but it will either reach outer most bpf_exit (which means it's safe)
4635 	 * or it will be rejected. Since there are no loops, we won't be
4636 	 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4637 	 * again on the way to bpf_exit
4638 	 */
4639 	new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4640 	if (!new_sl)
4641 		return -ENOMEM;
4642 
4643 	/* add new state to the head of linked list */
4644 	err = copy_verifier_state(&new_sl->state, cur);
4645 	if (err) {
4646 		free_verifier_state(&new_sl->state, false);
4647 		kfree(new_sl);
4648 		return err;
4649 	}
4650 	new_sl->next = env->explored_states[insn_idx];
4651 	env->explored_states[insn_idx] = new_sl;
4652 	/* connect new state to parentage chain */
4653 	cur->parent = &new_sl->state;
4654 	/* clear write marks in current state: the writes we did are not writes
4655 	 * our child did, so they don't screen off its reads from us.
4656 	 * (There are no read marks in current state, because reads always mark
4657 	 * their parent and current state never has children yet.  Only
4658 	 * explored_states can get read marks.)
4659 	 */
4660 	for (i = 0; i < BPF_REG_FP; i++)
4661 		cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4662 
4663 	/* all stack frames are accessible from callee, clear them all */
4664 	for (j = 0; j <= cur->curframe; j++) {
4665 		struct bpf_func_state *frame = cur->frame[j];
4666 
4667 		for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4668 			frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4669 	}
4670 	return 0;
4671 }
4672 
4673 static int do_check(struct bpf_verifier_env *env)
4674 {
4675 	struct bpf_verifier_state *state;
4676 	struct bpf_insn *insns = env->prog->insnsi;
4677 	struct bpf_reg_state *regs;
4678 	int insn_cnt = env->prog->len, i;
4679 	int insn_idx, prev_insn_idx = 0;
4680 	int insn_processed = 0;
4681 	bool do_print_state = false;
4682 
4683 	state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4684 	if (!state)
4685 		return -ENOMEM;
4686 	state->curframe = 0;
4687 	state->parent = NULL;
4688 	state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4689 	if (!state->frame[0]) {
4690 		kfree(state);
4691 		return -ENOMEM;
4692 	}
4693 	env->cur_state = state;
4694 	init_func_state(env, state->frame[0],
4695 			BPF_MAIN_FUNC /* callsite */,
4696 			0 /* frameno */,
4697 			0 /* subprogno, zero == main subprog */);
4698 	insn_idx = 0;
4699 	for (;;) {
4700 		struct bpf_insn *insn;
4701 		u8 class;
4702 		int err;
4703 
4704 		if (insn_idx >= insn_cnt) {
4705 			verbose(env, "invalid insn idx %d insn_cnt %d\n",
4706 				insn_idx, insn_cnt);
4707 			return -EFAULT;
4708 		}
4709 
4710 		insn = &insns[insn_idx];
4711 		class = BPF_CLASS(insn->code);
4712 
4713 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4714 			verbose(env,
4715 				"BPF program is too large. Processed %d insn\n",
4716 				insn_processed);
4717 			return -E2BIG;
4718 		}
4719 
4720 		err = is_state_visited(env, insn_idx);
4721 		if (err < 0)
4722 			return err;
4723 		if (err == 1) {
4724 			/* found equivalent state, can prune the search */
4725 			if (env->log.level) {
4726 				if (do_print_state)
4727 					verbose(env, "\nfrom %d to %d: safe\n",
4728 						prev_insn_idx, insn_idx);
4729 				else
4730 					verbose(env, "%d: safe\n", insn_idx);
4731 			}
4732 			goto process_bpf_exit;
4733 		}
4734 
4735 		if (need_resched())
4736 			cond_resched();
4737 
4738 		if (env->log.level > 1 || (env->log.level && do_print_state)) {
4739 			if (env->log.level > 1)
4740 				verbose(env, "%d:", insn_idx);
4741 			else
4742 				verbose(env, "\nfrom %d to %d:",
4743 					prev_insn_idx, insn_idx);
4744 			print_verifier_state(env, state->frame[state->curframe]);
4745 			do_print_state = false;
4746 		}
4747 
4748 		if (env->log.level) {
4749 			const struct bpf_insn_cbs cbs = {
4750 				.cb_print	= verbose,
4751 				.private_data	= env,
4752 			};
4753 
4754 			verbose(env, "%d: ", insn_idx);
4755 			print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4756 		}
4757 
4758 		if (bpf_prog_is_dev_bound(env->prog->aux)) {
4759 			err = bpf_prog_offload_verify_insn(env, insn_idx,
4760 							   prev_insn_idx);
4761 			if (err)
4762 				return err;
4763 		}
4764 
4765 		regs = cur_regs(env);
4766 		env->insn_aux_data[insn_idx].seen = true;
4767 		if (class == BPF_ALU || class == BPF_ALU64) {
4768 			err = check_alu_op(env, insn);
4769 			if (err)
4770 				return err;
4771 
4772 		} else if (class == BPF_LDX) {
4773 			enum bpf_reg_type *prev_src_type, src_reg_type;
4774 
4775 			/* check for reserved fields is already done */
4776 
4777 			/* check src operand */
4778 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4779 			if (err)
4780 				return err;
4781 
4782 			err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4783 			if (err)
4784 				return err;
4785 
4786 			src_reg_type = regs[insn->src_reg].type;
4787 
4788 			/* check that memory (src_reg + off) is readable,
4789 			 * the state of dst_reg will be updated by this func
4790 			 */
4791 			err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4792 					       BPF_SIZE(insn->code), BPF_READ,
4793 					       insn->dst_reg, false);
4794 			if (err)
4795 				return err;
4796 
4797 			prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4798 
4799 			if (*prev_src_type == NOT_INIT) {
4800 				/* saw a valid insn
4801 				 * dst_reg = *(u32 *)(src_reg + off)
4802 				 * save type to validate intersecting paths
4803 				 */
4804 				*prev_src_type = src_reg_type;
4805 
4806 			} else if (src_reg_type != *prev_src_type &&
4807 				   (src_reg_type == PTR_TO_CTX ||
4808 				    *prev_src_type == PTR_TO_CTX)) {
4809 				/* ABuser program is trying to use the same insn
4810 				 * dst_reg = *(u32*) (src_reg + off)
4811 				 * with different pointer types:
4812 				 * src_reg == ctx in one branch and
4813 				 * src_reg == stack|map in some other branch.
4814 				 * Reject it.
4815 				 */
4816 				verbose(env, "same insn cannot be used with different pointers\n");
4817 				return -EINVAL;
4818 			}
4819 
4820 		} else if (class == BPF_STX) {
4821 			enum bpf_reg_type *prev_dst_type, dst_reg_type;
4822 
4823 			if (BPF_MODE(insn->code) == BPF_XADD) {
4824 				err = check_xadd(env, insn_idx, insn);
4825 				if (err)
4826 					return err;
4827 				insn_idx++;
4828 				continue;
4829 			}
4830 
4831 			/* check src1 operand */
4832 			err = check_reg_arg(env, insn->src_reg, SRC_OP);
4833 			if (err)
4834 				return err;
4835 			/* check src2 operand */
4836 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4837 			if (err)
4838 				return err;
4839 
4840 			dst_reg_type = regs[insn->dst_reg].type;
4841 
4842 			/* check that memory (dst_reg + off) is writeable */
4843 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4844 					       BPF_SIZE(insn->code), BPF_WRITE,
4845 					       insn->src_reg, false);
4846 			if (err)
4847 				return err;
4848 
4849 			prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4850 
4851 			if (*prev_dst_type == NOT_INIT) {
4852 				*prev_dst_type = dst_reg_type;
4853 			} else if (dst_reg_type != *prev_dst_type &&
4854 				   (dst_reg_type == PTR_TO_CTX ||
4855 				    *prev_dst_type == PTR_TO_CTX)) {
4856 				verbose(env, "same insn cannot be used with different pointers\n");
4857 				return -EINVAL;
4858 			}
4859 
4860 		} else if (class == BPF_ST) {
4861 			if (BPF_MODE(insn->code) != BPF_MEM ||
4862 			    insn->src_reg != BPF_REG_0) {
4863 				verbose(env, "BPF_ST uses reserved fields\n");
4864 				return -EINVAL;
4865 			}
4866 			/* check src operand */
4867 			err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4868 			if (err)
4869 				return err;
4870 
4871 			if (is_ctx_reg(env, insn->dst_reg)) {
4872 				verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4873 					insn->dst_reg);
4874 				return -EACCES;
4875 			}
4876 
4877 			/* check that memory (dst_reg + off) is writeable */
4878 			err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4879 					       BPF_SIZE(insn->code), BPF_WRITE,
4880 					       -1, false);
4881 			if (err)
4882 				return err;
4883 
4884 		} else if (class == BPF_JMP) {
4885 			u8 opcode = BPF_OP(insn->code);
4886 
4887 			if (opcode == BPF_CALL) {
4888 				if (BPF_SRC(insn->code) != BPF_K ||
4889 				    insn->off != 0 ||
4890 				    (insn->src_reg != BPF_REG_0 &&
4891 				     insn->src_reg != BPF_PSEUDO_CALL) ||
4892 				    insn->dst_reg != BPF_REG_0) {
4893 					verbose(env, "BPF_CALL uses reserved fields\n");
4894 					return -EINVAL;
4895 				}
4896 
4897 				if (insn->src_reg == BPF_PSEUDO_CALL)
4898 					err = check_func_call(env, insn, &insn_idx);
4899 				else
4900 					err = check_helper_call(env, insn->imm, insn_idx);
4901 				if (err)
4902 					return err;
4903 
4904 			} else if (opcode == BPF_JA) {
4905 				if (BPF_SRC(insn->code) != BPF_K ||
4906 				    insn->imm != 0 ||
4907 				    insn->src_reg != BPF_REG_0 ||
4908 				    insn->dst_reg != BPF_REG_0) {
4909 					verbose(env, "BPF_JA uses reserved fields\n");
4910 					return -EINVAL;
4911 				}
4912 
4913 				insn_idx += insn->off + 1;
4914 				continue;
4915 
4916 			} else if (opcode == BPF_EXIT) {
4917 				if (BPF_SRC(insn->code) != BPF_K ||
4918 				    insn->imm != 0 ||
4919 				    insn->src_reg != BPF_REG_0 ||
4920 				    insn->dst_reg != BPF_REG_0) {
4921 					verbose(env, "BPF_EXIT uses reserved fields\n");
4922 					return -EINVAL;
4923 				}
4924 
4925 				if (state->curframe) {
4926 					/* exit from nested function */
4927 					prev_insn_idx = insn_idx;
4928 					err = prepare_func_exit(env, &insn_idx);
4929 					if (err)
4930 						return err;
4931 					do_print_state = true;
4932 					continue;
4933 				}
4934 
4935 				/* eBPF calling convetion is such that R0 is used
4936 				 * to return the value from eBPF program.
4937 				 * Make sure that it's readable at this time
4938 				 * of bpf_exit, which means that program wrote
4939 				 * something into it earlier
4940 				 */
4941 				err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4942 				if (err)
4943 					return err;
4944 
4945 				if (is_pointer_value(env, BPF_REG_0)) {
4946 					verbose(env, "R0 leaks addr as return value\n");
4947 					return -EACCES;
4948 				}
4949 
4950 				err = check_return_code(env);
4951 				if (err)
4952 					return err;
4953 process_bpf_exit:
4954 				err = pop_stack(env, &prev_insn_idx, &insn_idx);
4955 				if (err < 0) {
4956 					if (err != -ENOENT)
4957 						return err;
4958 					break;
4959 				} else {
4960 					do_print_state = true;
4961 					continue;
4962 				}
4963 			} else {
4964 				err = check_cond_jmp_op(env, insn, &insn_idx);
4965 				if (err)
4966 					return err;
4967 			}
4968 		} else if (class == BPF_LD) {
4969 			u8 mode = BPF_MODE(insn->code);
4970 
4971 			if (mode == BPF_ABS || mode == BPF_IND) {
4972 				err = check_ld_abs(env, insn);
4973 				if (err)
4974 					return err;
4975 
4976 			} else if (mode == BPF_IMM) {
4977 				err = check_ld_imm(env, insn);
4978 				if (err)
4979 					return err;
4980 
4981 				insn_idx++;
4982 				env->insn_aux_data[insn_idx].seen = true;
4983 			} else {
4984 				verbose(env, "invalid BPF_LD mode\n");
4985 				return -EINVAL;
4986 			}
4987 		} else {
4988 			verbose(env, "unknown insn class %d\n", class);
4989 			return -EINVAL;
4990 		}
4991 
4992 		insn_idx++;
4993 	}
4994 
4995 	verbose(env, "processed %d insns (limit %d), stack depth ",
4996 		insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4997 	for (i = 0; i < env->subprog_cnt; i++) {
4998 		u32 depth = env->subprog_info[i].stack_depth;
4999 
5000 		verbose(env, "%d", depth);
5001 		if (i + 1 < env->subprog_cnt)
5002 			verbose(env, "+");
5003 	}
5004 	verbose(env, "\n");
5005 	env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5006 	return 0;
5007 }
5008 
5009 static int check_map_prealloc(struct bpf_map *map)
5010 {
5011 	return (map->map_type != BPF_MAP_TYPE_HASH &&
5012 		map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5013 		map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5014 		!(map->map_flags & BPF_F_NO_PREALLOC);
5015 }
5016 
5017 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5018 					struct bpf_map *map,
5019 					struct bpf_prog *prog)
5020 
5021 {
5022 	/* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5023 	 * preallocated hash maps, since doing memory allocation
5024 	 * in overflow_handler can crash depending on where nmi got
5025 	 * triggered.
5026 	 */
5027 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5028 		if (!check_map_prealloc(map)) {
5029 			verbose(env, "perf_event programs can only use preallocated hash map\n");
5030 			return -EINVAL;
5031 		}
5032 		if (map->inner_map_meta &&
5033 		    !check_map_prealloc(map->inner_map_meta)) {
5034 			verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5035 			return -EINVAL;
5036 		}
5037 	}
5038 
5039 	if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5040 	    !bpf_offload_dev_match(prog, map)) {
5041 		verbose(env, "offload device mismatch between prog and map\n");
5042 		return -EINVAL;
5043 	}
5044 
5045 	return 0;
5046 }
5047 
5048 /* look for pseudo eBPF instructions that access map FDs and
5049  * replace them with actual map pointers
5050  */
5051 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5052 {
5053 	struct bpf_insn *insn = env->prog->insnsi;
5054 	int insn_cnt = env->prog->len;
5055 	int i, j, err;
5056 
5057 	err = bpf_prog_calc_tag(env->prog);
5058 	if (err)
5059 		return err;
5060 
5061 	for (i = 0; i < insn_cnt; i++, insn++) {
5062 		if (BPF_CLASS(insn->code) == BPF_LDX &&
5063 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5064 			verbose(env, "BPF_LDX uses reserved fields\n");
5065 			return -EINVAL;
5066 		}
5067 
5068 		if (BPF_CLASS(insn->code) == BPF_STX &&
5069 		    ((BPF_MODE(insn->code) != BPF_MEM &&
5070 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5071 			verbose(env, "BPF_STX uses reserved fields\n");
5072 			return -EINVAL;
5073 		}
5074 
5075 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5076 			struct bpf_map *map;
5077 			struct fd f;
5078 
5079 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
5080 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5081 			    insn[1].off != 0) {
5082 				verbose(env, "invalid bpf_ld_imm64 insn\n");
5083 				return -EINVAL;
5084 			}
5085 
5086 			if (insn->src_reg == 0)
5087 				/* valid generic load 64-bit imm */
5088 				goto next_insn;
5089 
5090 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5091 				verbose(env,
5092 					"unrecognized bpf_ld_imm64 insn\n");
5093 				return -EINVAL;
5094 			}
5095 
5096 			f = fdget(insn->imm);
5097 			map = __bpf_map_get(f);
5098 			if (IS_ERR(map)) {
5099 				verbose(env, "fd %d is not pointing to valid bpf_map\n",
5100 					insn->imm);
5101 				return PTR_ERR(map);
5102 			}
5103 
5104 			err = check_map_prog_compatibility(env, map, env->prog);
5105 			if (err) {
5106 				fdput(f);
5107 				return err;
5108 			}
5109 
5110 			/* store map pointer inside BPF_LD_IMM64 instruction */
5111 			insn[0].imm = (u32) (unsigned long) map;
5112 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
5113 
5114 			/* check whether we recorded this map already */
5115 			for (j = 0; j < env->used_map_cnt; j++)
5116 				if (env->used_maps[j] == map) {
5117 					fdput(f);
5118 					goto next_insn;
5119 				}
5120 
5121 			if (env->used_map_cnt >= MAX_USED_MAPS) {
5122 				fdput(f);
5123 				return -E2BIG;
5124 			}
5125 
5126 			/* hold the map. If the program is rejected by verifier,
5127 			 * the map will be released by release_maps() or it
5128 			 * will be used by the valid program until it's unloaded
5129 			 * and all maps are released in free_used_maps()
5130 			 */
5131 			map = bpf_map_inc(map, false);
5132 			if (IS_ERR(map)) {
5133 				fdput(f);
5134 				return PTR_ERR(map);
5135 			}
5136 			env->used_maps[env->used_map_cnt++] = map;
5137 
5138 			fdput(f);
5139 next_insn:
5140 			insn++;
5141 			i++;
5142 			continue;
5143 		}
5144 
5145 		/* Basic sanity check before we invest more work here. */
5146 		if (!bpf_opcode_in_insntable(insn->code)) {
5147 			verbose(env, "unknown opcode %02x\n", insn->code);
5148 			return -EINVAL;
5149 		}
5150 	}
5151 
5152 	/* now all pseudo BPF_LD_IMM64 instructions load valid
5153 	 * 'struct bpf_map *' into a register instead of user map_fd.
5154 	 * These pointers will be used later by verifier to validate map access.
5155 	 */
5156 	return 0;
5157 }
5158 
5159 /* drop refcnt of maps used by the rejected program */
5160 static void release_maps(struct bpf_verifier_env *env)
5161 {
5162 	int i;
5163 
5164 	for (i = 0; i < env->used_map_cnt; i++)
5165 		bpf_map_put(env->used_maps[i]);
5166 }
5167 
5168 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5169 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5170 {
5171 	struct bpf_insn *insn = env->prog->insnsi;
5172 	int insn_cnt = env->prog->len;
5173 	int i;
5174 
5175 	for (i = 0; i < insn_cnt; i++, insn++)
5176 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5177 			insn->src_reg = 0;
5178 }
5179 
5180 /* single env->prog->insni[off] instruction was replaced with the range
5181  * insni[off, off + cnt).  Adjust corresponding insn_aux_data by copying
5182  * [0, off) and [off, end) to new locations, so the patched range stays zero
5183  */
5184 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5185 				u32 off, u32 cnt)
5186 {
5187 	struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5188 	int i;
5189 
5190 	if (cnt == 1)
5191 		return 0;
5192 	new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5193 	if (!new_data)
5194 		return -ENOMEM;
5195 	memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5196 	memcpy(new_data + off + cnt - 1, old_data + off,
5197 	       sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5198 	for (i = off; i < off + cnt - 1; i++)
5199 		new_data[i].seen = true;
5200 	env->insn_aux_data = new_data;
5201 	vfree(old_data);
5202 	return 0;
5203 }
5204 
5205 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5206 {
5207 	int i;
5208 
5209 	if (len == 1)
5210 		return;
5211 	/* NOTE: fake 'exit' subprog should be updated as well. */
5212 	for (i = 0; i <= env->subprog_cnt; i++) {
5213 		if (env->subprog_info[i].start < off)
5214 			continue;
5215 		env->subprog_info[i].start += len - 1;
5216 	}
5217 }
5218 
5219 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5220 					    const struct bpf_insn *patch, u32 len)
5221 {
5222 	struct bpf_prog *new_prog;
5223 
5224 	new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5225 	if (!new_prog)
5226 		return NULL;
5227 	if (adjust_insn_aux_data(env, new_prog->len, off, len))
5228 		return NULL;
5229 	adjust_subprog_starts(env, off, len);
5230 	return new_prog;
5231 }
5232 
5233 /* The verifier does more data flow analysis than llvm and will not
5234  * explore branches that are dead at run time. Malicious programs can
5235  * have dead code too. Therefore replace all dead at-run-time code
5236  * with 'ja -1'.
5237  *
5238  * Just nops are not optimal, e.g. if they would sit at the end of the
5239  * program and through another bug we would manage to jump there, then
5240  * we'd execute beyond program memory otherwise. Returning exception
5241  * code also wouldn't work since we can have subprogs where the dead
5242  * code could be located.
5243  */
5244 static void sanitize_dead_code(struct bpf_verifier_env *env)
5245 {
5246 	struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5247 	struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5248 	struct bpf_insn *insn = env->prog->insnsi;
5249 	const int insn_cnt = env->prog->len;
5250 	int i;
5251 
5252 	for (i = 0; i < insn_cnt; i++) {
5253 		if (aux_data[i].seen)
5254 			continue;
5255 		memcpy(insn + i, &trap, sizeof(trap));
5256 	}
5257 }
5258 
5259 /* convert load instructions that access fields of 'struct __sk_buff'
5260  * into sequence of instructions that access fields of 'struct sk_buff'
5261  */
5262 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5263 {
5264 	const struct bpf_verifier_ops *ops = env->ops;
5265 	int i, cnt, size, ctx_field_size, delta = 0;
5266 	const int insn_cnt = env->prog->len;
5267 	struct bpf_insn insn_buf[16], *insn;
5268 	struct bpf_prog *new_prog;
5269 	enum bpf_access_type type;
5270 	bool is_narrower_load;
5271 	u32 target_size;
5272 
5273 	if (ops->gen_prologue) {
5274 		cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5275 					env->prog);
5276 		if (cnt >= ARRAY_SIZE(insn_buf)) {
5277 			verbose(env, "bpf verifier is misconfigured\n");
5278 			return -EINVAL;
5279 		} else if (cnt) {
5280 			new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5281 			if (!new_prog)
5282 				return -ENOMEM;
5283 
5284 			env->prog = new_prog;
5285 			delta += cnt - 1;
5286 		}
5287 	}
5288 
5289 	if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5290 		return 0;
5291 
5292 	insn = env->prog->insnsi + delta;
5293 
5294 	for (i = 0; i < insn_cnt; i++, insn++) {
5295 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5296 		    insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5297 		    insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5298 		    insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5299 			type = BPF_READ;
5300 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5301 			 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5302 			 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5303 			 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5304 			type = BPF_WRITE;
5305 		else
5306 			continue;
5307 
5308 		if (type == BPF_WRITE &&
5309 		    env->insn_aux_data[i + delta].sanitize_stack_off) {
5310 			struct bpf_insn patch[] = {
5311 				/* Sanitize suspicious stack slot with zero.
5312 				 * There are no memory dependencies for this store,
5313 				 * since it's only using frame pointer and immediate
5314 				 * constant of zero
5315 				 */
5316 				BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5317 					   env->insn_aux_data[i + delta].sanitize_stack_off,
5318 					   0),
5319 				/* the original STX instruction will immediately
5320 				 * overwrite the same stack slot with appropriate value
5321 				 */
5322 				*insn,
5323 			};
5324 
5325 			cnt = ARRAY_SIZE(patch);
5326 			new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5327 			if (!new_prog)
5328 				return -ENOMEM;
5329 
5330 			delta    += cnt - 1;
5331 			env->prog = new_prog;
5332 			insn      = new_prog->insnsi + i + delta;
5333 			continue;
5334 		}
5335 
5336 		if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5337 			continue;
5338 
5339 		ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5340 		size = BPF_LDST_BYTES(insn);
5341 
5342 		/* If the read access is a narrower load of the field,
5343 		 * convert to a 4/8-byte load, to minimum program type specific
5344 		 * convert_ctx_access changes. If conversion is successful,
5345 		 * we will apply proper mask to the result.
5346 		 */
5347 		is_narrower_load = size < ctx_field_size;
5348 		if (is_narrower_load) {
5349 			u32 off = insn->off;
5350 			u8 size_code;
5351 
5352 			if (type == BPF_WRITE) {
5353 				verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5354 				return -EINVAL;
5355 			}
5356 
5357 			size_code = BPF_H;
5358 			if (ctx_field_size == 4)
5359 				size_code = BPF_W;
5360 			else if (ctx_field_size == 8)
5361 				size_code = BPF_DW;
5362 
5363 			insn->off = off & ~(ctx_field_size - 1);
5364 			insn->code = BPF_LDX | BPF_MEM | size_code;
5365 		}
5366 
5367 		target_size = 0;
5368 		cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5369 					      &target_size);
5370 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5371 		    (ctx_field_size && !target_size)) {
5372 			verbose(env, "bpf verifier is misconfigured\n");
5373 			return -EINVAL;
5374 		}
5375 
5376 		if (is_narrower_load && size < target_size) {
5377 			if (ctx_field_size <= 4)
5378 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5379 								(1 << size * 8) - 1);
5380 			else
5381 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5382 								(1 << size * 8) - 1);
5383 		}
5384 
5385 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5386 		if (!new_prog)
5387 			return -ENOMEM;
5388 
5389 		delta += cnt - 1;
5390 
5391 		/* keep walking new program and skip insns we just inserted */
5392 		env->prog = new_prog;
5393 		insn      = new_prog->insnsi + i + delta;
5394 	}
5395 
5396 	return 0;
5397 }
5398 
5399 static int jit_subprogs(struct bpf_verifier_env *env)
5400 {
5401 	struct bpf_prog *prog = env->prog, **func, *tmp;
5402 	int i, j, subprog_start, subprog_end = 0, len, subprog;
5403 	struct bpf_insn *insn;
5404 	void *old_bpf_func;
5405 	int err = -ENOMEM;
5406 
5407 	if (env->subprog_cnt <= 1)
5408 		return 0;
5409 
5410 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5411 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5412 		    insn->src_reg != BPF_PSEUDO_CALL)
5413 			continue;
5414 		subprog = find_subprog(env, i + insn->imm + 1);
5415 		if (subprog < 0) {
5416 			WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5417 				  i + insn->imm + 1);
5418 			return -EFAULT;
5419 		}
5420 		/* temporarily remember subprog id inside insn instead of
5421 		 * aux_data, since next loop will split up all insns into funcs
5422 		 */
5423 		insn->off = subprog;
5424 		/* remember original imm in case JIT fails and fallback
5425 		 * to interpreter will be needed
5426 		 */
5427 		env->insn_aux_data[i].call_imm = insn->imm;
5428 		/* point imm to __bpf_call_base+1 from JITs point of view */
5429 		insn->imm = 1;
5430 	}
5431 
5432 	func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5433 	if (!func)
5434 		return -ENOMEM;
5435 
5436 	for (i = 0; i < env->subprog_cnt; i++) {
5437 		subprog_start = subprog_end;
5438 		subprog_end = env->subprog_info[i + 1].start;
5439 
5440 		len = subprog_end - subprog_start;
5441 		func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5442 		if (!func[i])
5443 			goto out_free;
5444 		memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5445 		       len * sizeof(struct bpf_insn));
5446 		func[i]->type = prog->type;
5447 		func[i]->len = len;
5448 		if (bpf_prog_calc_tag(func[i]))
5449 			goto out_free;
5450 		func[i]->is_func = 1;
5451 		/* Use bpf_prog_F_tag to indicate functions in stack traces.
5452 		 * Long term would need debug info to populate names
5453 		 */
5454 		func[i]->aux->name[0] = 'F';
5455 		func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5456 		func[i]->jit_requested = 1;
5457 		func[i] = bpf_int_jit_compile(func[i]);
5458 		if (!func[i]->jited) {
5459 			err = -ENOTSUPP;
5460 			goto out_free;
5461 		}
5462 		cond_resched();
5463 	}
5464 	/* at this point all bpf functions were successfully JITed
5465 	 * now populate all bpf_calls with correct addresses and
5466 	 * run last pass of JIT
5467 	 */
5468 	for (i = 0; i < env->subprog_cnt; i++) {
5469 		insn = func[i]->insnsi;
5470 		for (j = 0; j < func[i]->len; j++, insn++) {
5471 			if (insn->code != (BPF_JMP | BPF_CALL) ||
5472 			    insn->src_reg != BPF_PSEUDO_CALL)
5473 				continue;
5474 			subprog = insn->off;
5475 			insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5476 				func[subprog]->bpf_func -
5477 				__bpf_call_base;
5478 		}
5479 
5480 		/* we use the aux data to keep a list of the start addresses
5481 		 * of the JITed images for each function in the program
5482 		 *
5483 		 * for some architectures, such as powerpc64, the imm field
5484 		 * might not be large enough to hold the offset of the start
5485 		 * address of the callee's JITed image from __bpf_call_base
5486 		 *
5487 		 * in such cases, we can lookup the start address of a callee
5488 		 * by using its subprog id, available from the off field of
5489 		 * the call instruction, as an index for this list
5490 		 */
5491 		func[i]->aux->func = func;
5492 		func[i]->aux->func_cnt = env->subprog_cnt;
5493 	}
5494 	for (i = 0; i < env->subprog_cnt; i++) {
5495 		old_bpf_func = func[i]->bpf_func;
5496 		tmp = bpf_int_jit_compile(func[i]);
5497 		if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5498 			verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5499 			err = -EFAULT;
5500 			goto out_free;
5501 		}
5502 		cond_resched();
5503 	}
5504 
5505 	/* finally lock prog and jit images for all functions and
5506 	 * populate kallsysm
5507 	 */
5508 	for (i = 0; i < env->subprog_cnt; i++) {
5509 		bpf_prog_lock_ro(func[i]);
5510 		bpf_prog_kallsyms_add(func[i]);
5511 	}
5512 
5513 	/* Last step: make now unused interpreter insns from main
5514 	 * prog consistent for later dump requests, so they can
5515 	 * later look the same as if they were interpreted only.
5516 	 */
5517 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5518 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5519 		    insn->src_reg != BPF_PSEUDO_CALL)
5520 			continue;
5521 		insn->off = env->insn_aux_data[i].call_imm;
5522 		subprog = find_subprog(env, i + insn->off + 1);
5523 		insn->imm = subprog;
5524 	}
5525 
5526 	prog->jited = 1;
5527 	prog->bpf_func = func[0]->bpf_func;
5528 	prog->aux->func = func;
5529 	prog->aux->func_cnt = env->subprog_cnt;
5530 	return 0;
5531 out_free:
5532 	for (i = 0; i < env->subprog_cnt; i++)
5533 		if (func[i])
5534 			bpf_jit_free(func[i]);
5535 	kfree(func);
5536 	/* cleanup main prog to be interpreted */
5537 	prog->jit_requested = 0;
5538 	for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5539 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5540 		    insn->src_reg != BPF_PSEUDO_CALL)
5541 			continue;
5542 		insn->off = 0;
5543 		insn->imm = env->insn_aux_data[i].call_imm;
5544 	}
5545 	return err;
5546 }
5547 
5548 static int fixup_call_args(struct bpf_verifier_env *env)
5549 {
5550 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5551 	struct bpf_prog *prog = env->prog;
5552 	struct bpf_insn *insn = prog->insnsi;
5553 	int i, depth;
5554 #endif
5555 	int err;
5556 
5557 	err = 0;
5558 	if (env->prog->jit_requested) {
5559 		err = jit_subprogs(env);
5560 		if (err == 0)
5561 			return 0;
5562 	}
5563 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5564 	for (i = 0; i < prog->len; i++, insn++) {
5565 		if (insn->code != (BPF_JMP | BPF_CALL) ||
5566 		    insn->src_reg != BPF_PSEUDO_CALL)
5567 			continue;
5568 		depth = get_callee_stack_depth(env, insn, i);
5569 		if (depth < 0)
5570 			return depth;
5571 		bpf_patch_call_args(insn, depth);
5572 	}
5573 	err = 0;
5574 #endif
5575 	return err;
5576 }
5577 
5578 /* fixup insn->imm field of bpf_call instructions
5579  * and inline eligible helpers as explicit sequence of BPF instructions
5580  *
5581  * this function is called after eBPF program passed verification
5582  */
5583 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5584 {
5585 	struct bpf_prog *prog = env->prog;
5586 	struct bpf_insn *insn = prog->insnsi;
5587 	const struct bpf_func_proto *fn;
5588 	const int insn_cnt = prog->len;
5589 	struct bpf_insn_aux_data *aux;
5590 	struct bpf_insn insn_buf[16];
5591 	struct bpf_prog *new_prog;
5592 	struct bpf_map *map_ptr;
5593 	int i, cnt, delta = 0;
5594 
5595 	for (i = 0; i < insn_cnt; i++, insn++) {
5596 		if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5597 		    insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5598 		    insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5599 		    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5600 			bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5601 			struct bpf_insn mask_and_div[] = {
5602 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5603 				/* Rx div 0 -> 0 */
5604 				BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5605 				BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5606 				BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5607 				*insn,
5608 			};
5609 			struct bpf_insn mask_and_mod[] = {
5610 				BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5611 				/* Rx mod 0 -> Rx */
5612 				BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5613 				*insn,
5614 			};
5615 			struct bpf_insn *patchlet;
5616 
5617 			if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5618 			    insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5619 				patchlet = mask_and_div + (is64 ? 1 : 0);
5620 				cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5621 			} else {
5622 				patchlet = mask_and_mod + (is64 ? 1 : 0);
5623 				cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5624 			}
5625 
5626 			new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5627 			if (!new_prog)
5628 				return -ENOMEM;
5629 
5630 			delta    += cnt - 1;
5631 			env->prog = prog = new_prog;
5632 			insn      = new_prog->insnsi + i + delta;
5633 			continue;
5634 		}
5635 
5636 		if (BPF_CLASS(insn->code) == BPF_LD &&
5637 		    (BPF_MODE(insn->code) == BPF_ABS ||
5638 		     BPF_MODE(insn->code) == BPF_IND)) {
5639 			cnt = env->ops->gen_ld_abs(insn, insn_buf);
5640 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5641 				verbose(env, "bpf verifier is misconfigured\n");
5642 				return -EINVAL;
5643 			}
5644 
5645 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5646 			if (!new_prog)
5647 				return -ENOMEM;
5648 
5649 			delta    += cnt - 1;
5650 			env->prog = prog = new_prog;
5651 			insn      = new_prog->insnsi + i + delta;
5652 			continue;
5653 		}
5654 
5655 		if (insn->code != (BPF_JMP | BPF_CALL))
5656 			continue;
5657 		if (insn->src_reg == BPF_PSEUDO_CALL)
5658 			continue;
5659 
5660 		if (insn->imm == BPF_FUNC_get_route_realm)
5661 			prog->dst_needed = 1;
5662 		if (insn->imm == BPF_FUNC_get_prandom_u32)
5663 			bpf_user_rnd_init_once();
5664 		if (insn->imm == BPF_FUNC_override_return)
5665 			prog->kprobe_override = 1;
5666 		if (insn->imm == BPF_FUNC_tail_call) {
5667 			/* If we tail call into other programs, we
5668 			 * cannot make any assumptions since they can
5669 			 * be replaced dynamically during runtime in
5670 			 * the program array.
5671 			 */
5672 			prog->cb_access = 1;
5673 			env->prog->aux->stack_depth = MAX_BPF_STACK;
5674 
5675 			/* mark bpf_tail_call as different opcode to avoid
5676 			 * conditional branch in the interpeter for every normal
5677 			 * call and to prevent accidental JITing by JIT compiler
5678 			 * that doesn't support bpf_tail_call yet
5679 			 */
5680 			insn->imm = 0;
5681 			insn->code = BPF_JMP | BPF_TAIL_CALL;
5682 
5683 			aux = &env->insn_aux_data[i + delta];
5684 			if (!bpf_map_ptr_unpriv(aux))
5685 				continue;
5686 
5687 			/* instead of changing every JIT dealing with tail_call
5688 			 * emit two extra insns:
5689 			 * if (index >= max_entries) goto out;
5690 			 * index &= array->index_mask;
5691 			 * to avoid out-of-bounds cpu speculation
5692 			 */
5693 			if (bpf_map_ptr_poisoned(aux)) {
5694 				verbose(env, "tail_call abusing map_ptr\n");
5695 				return -EINVAL;
5696 			}
5697 
5698 			map_ptr = BPF_MAP_PTR(aux->map_state);
5699 			insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5700 						  map_ptr->max_entries, 2);
5701 			insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5702 						    container_of(map_ptr,
5703 								 struct bpf_array,
5704 								 map)->index_mask);
5705 			insn_buf[2] = *insn;
5706 			cnt = 3;
5707 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5708 			if (!new_prog)
5709 				return -ENOMEM;
5710 
5711 			delta    += cnt - 1;
5712 			env->prog = prog = new_prog;
5713 			insn      = new_prog->insnsi + i + delta;
5714 			continue;
5715 		}
5716 
5717 		/* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5718 		 * handlers are currently limited to 64 bit only.
5719 		 */
5720 		if (prog->jit_requested && BITS_PER_LONG == 64 &&
5721 		    insn->imm == BPF_FUNC_map_lookup_elem) {
5722 			aux = &env->insn_aux_data[i + delta];
5723 			if (bpf_map_ptr_poisoned(aux))
5724 				goto patch_call_imm;
5725 
5726 			map_ptr = BPF_MAP_PTR(aux->map_state);
5727 			if (!map_ptr->ops->map_gen_lookup)
5728 				goto patch_call_imm;
5729 
5730 			cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5731 			if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5732 				verbose(env, "bpf verifier is misconfigured\n");
5733 				return -EINVAL;
5734 			}
5735 
5736 			new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5737 						       cnt);
5738 			if (!new_prog)
5739 				return -ENOMEM;
5740 
5741 			delta += cnt - 1;
5742 
5743 			/* keep walking new program and skip insns we just inserted */
5744 			env->prog = prog = new_prog;
5745 			insn      = new_prog->insnsi + i + delta;
5746 			continue;
5747 		}
5748 
5749 		if (insn->imm == BPF_FUNC_redirect_map) {
5750 			/* Note, we cannot use prog directly as imm as subsequent
5751 			 * rewrites would still change the prog pointer. The only
5752 			 * stable address we can use is aux, which also works with
5753 			 * prog clones during blinding.
5754 			 */
5755 			u64 addr = (unsigned long)prog->aux;
5756 			struct bpf_insn r4_ld[] = {
5757 				BPF_LD_IMM64(BPF_REG_4, addr),
5758 				*insn,
5759 			};
5760 			cnt = ARRAY_SIZE(r4_ld);
5761 
5762 			new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5763 			if (!new_prog)
5764 				return -ENOMEM;
5765 
5766 			delta    += cnt - 1;
5767 			env->prog = prog = new_prog;
5768 			insn      = new_prog->insnsi + i + delta;
5769 		}
5770 patch_call_imm:
5771 		fn = env->ops->get_func_proto(insn->imm, env->prog);
5772 		/* all functions that have prototype and verifier allowed
5773 		 * programs to call them, must be real in-kernel functions
5774 		 */
5775 		if (!fn->func) {
5776 			verbose(env,
5777 				"kernel subsystem misconfigured func %s#%d\n",
5778 				func_id_name(insn->imm), insn->imm);
5779 			return -EFAULT;
5780 		}
5781 		insn->imm = fn->func - __bpf_call_base;
5782 	}
5783 
5784 	return 0;
5785 }
5786 
5787 static void free_states(struct bpf_verifier_env *env)
5788 {
5789 	struct bpf_verifier_state_list *sl, *sln;
5790 	int i;
5791 
5792 	if (!env->explored_states)
5793 		return;
5794 
5795 	for (i = 0; i < env->prog->len; i++) {
5796 		sl = env->explored_states[i];
5797 
5798 		if (sl)
5799 			while (sl != STATE_LIST_MARK) {
5800 				sln = sl->next;
5801 				free_verifier_state(&sl->state, false);
5802 				kfree(sl);
5803 				sl = sln;
5804 			}
5805 	}
5806 
5807 	kfree(env->explored_states);
5808 }
5809 
5810 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5811 {
5812 	struct bpf_verifier_env *env;
5813 	struct bpf_verifier_log *log;
5814 	int ret = -EINVAL;
5815 
5816 	/* no program is valid */
5817 	if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5818 		return -EINVAL;
5819 
5820 	/* 'struct bpf_verifier_env' can be global, but since it's not small,
5821 	 * allocate/free it every time bpf_check() is called
5822 	 */
5823 	env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5824 	if (!env)
5825 		return -ENOMEM;
5826 	log = &env->log;
5827 
5828 	env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5829 				     (*prog)->len);
5830 	ret = -ENOMEM;
5831 	if (!env->insn_aux_data)
5832 		goto err_free_env;
5833 	env->prog = *prog;
5834 	env->ops = bpf_verifier_ops[env->prog->type];
5835 
5836 	/* grab the mutex to protect few globals used by verifier */
5837 	mutex_lock(&bpf_verifier_lock);
5838 
5839 	if (attr->log_level || attr->log_buf || attr->log_size) {
5840 		/* user requested verbose verifier output
5841 		 * and supplied buffer to store the verification trace
5842 		 */
5843 		log->level = attr->log_level;
5844 		log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5845 		log->len_total = attr->log_size;
5846 
5847 		ret = -EINVAL;
5848 		/* log attributes have to be sane */
5849 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5850 		    !log->level || !log->ubuf)
5851 			goto err_unlock;
5852 	}
5853 
5854 	env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5855 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5856 		env->strict_alignment = true;
5857 
5858 	ret = replace_map_fd_with_map_ptr(env);
5859 	if (ret < 0)
5860 		goto skip_full_check;
5861 
5862 	if (bpf_prog_is_dev_bound(env->prog->aux)) {
5863 		ret = bpf_prog_offload_verifier_prep(env);
5864 		if (ret)
5865 			goto skip_full_check;
5866 	}
5867 
5868 	env->explored_states = kcalloc(env->prog->len,
5869 				       sizeof(struct bpf_verifier_state_list *),
5870 				       GFP_USER);
5871 	ret = -ENOMEM;
5872 	if (!env->explored_states)
5873 		goto skip_full_check;
5874 
5875 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5876 
5877 	ret = check_cfg(env);
5878 	if (ret < 0)
5879 		goto skip_full_check;
5880 
5881 	ret = do_check(env);
5882 	if (env->cur_state) {
5883 		free_verifier_state(env->cur_state, true);
5884 		env->cur_state = NULL;
5885 	}
5886 
5887 skip_full_check:
5888 	while (!pop_stack(env, NULL, NULL));
5889 	free_states(env);
5890 
5891 	if (ret == 0)
5892 		sanitize_dead_code(env);
5893 
5894 	if (ret == 0)
5895 		ret = check_max_stack_depth(env);
5896 
5897 	if (ret == 0)
5898 		/* program is valid, convert *(u32*)(ctx + off) accesses */
5899 		ret = convert_ctx_accesses(env);
5900 
5901 	if (ret == 0)
5902 		ret = fixup_bpf_calls(env);
5903 
5904 	if (ret == 0)
5905 		ret = fixup_call_args(env);
5906 
5907 	if (log->level && bpf_verifier_log_full(log))
5908 		ret = -ENOSPC;
5909 	if (log->level && !log->ubuf) {
5910 		ret = -EFAULT;
5911 		goto err_release_maps;
5912 	}
5913 
5914 	if (ret == 0 && env->used_map_cnt) {
5915 		/* if program passed verifier, update used_maps in bpf_prog_info */
5916 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5917 							  sizeof(env->used_maps[0]),
5918 							  GFP_KERNEL);
5919 
5920 		if (!env->prog->aux->used_maps) {
5921 			ret = -ENOMEM;
5922 			goto err_release_maps;
5923 		}
5924 
5925 		memcpy(env->prog->aux->used_maps, env->used_maps,
5926 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
5927 		env->prog->aux->used_map_cnt = env->used_map_cnt;
5928 
5929 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
5930 		 * bpf_ld_imm64 instructions
5931 		 */
5932 		convert_pseudo_ld_imm64(env);
5933 	}
5934 
5935 err_release_maps:
5936 	if (!env->prog->aux->used_maps)
5937 		/* if we didn't copy map pointers into bpf_prog_info, release
5938 		 * them now. Otherwise free_used_maps() will release them.
5939 		 */
5940 		release_maps(env);
5941 	*prog = env->prog;
5942 err_unlock:
5943 	mutex_unlock(&bpf_verifier_lock);
5944 	vfree(env->insn_aux_data);
5945 err_free_env:
5946 	kfree(env);
5947 	return ret;
5948 }
5949