xref: /openbmc/linux/kernel/bpf/verifier.c (revision 77a87824)
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2  * Copyright (c) 2016 Facebook
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/filter.h>
18 #include <net/netlink.h>
19 #include <linux/file.h>
20 #include <linux/vmalloc.h>
21 
22 /* bpf_check() is a static code analyzer that walks eBPF program
23  * instruction by instruction and updates register/stack state.
24  * All paths of conditional branches are analyzed until 'bpf_exit' insn.
25  *
26  * The first pass is depth-first-search to check that the program is a DAG.
27  * It rejects the following programs:
28  * - larger than BPF_MAXINSNS insns
29  * - if loop is present (detected via back-edge)
30  * - unreachable insns exist (shouldn't be a forest. program = one function)
31  * - out of bounds or malformed jumps
32  * The second pass is all possible path descent from the 1st insn.
33  * Since it's analyzing all pathes through the program, the length of the
34  * analysis is limited to 32k insn, which may be hit even if total number of
35  * insn is less then 4K, but there are too many branches that change stack/regs.
36  * Number of 'branches to be analyzed' is limited to 1k
37  *
38  * On entry to each instruction, each register has a type, and the instruction
39  * changes the types of the registers depending on instruction semantics.
40  * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
41  * copied to R1.
42  *
43  * All registers are 64-bit.
44  * R0 - return register
45  * R1-R5 argument passing registers
46  * R6-R9 callee saved registers
47  * R10 - frame pointer read-only
48  *
49  * At the start of BPF program the register R1 contains a pointer to bpf_context
50  * and has type PTR_TO_CTX.
51  *
52  * Verifier tracks arithmetic operations on pointers in case:
53  *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
54  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
55  * 1st insn copies R10 (which has FRAME_PTR) type into R1
56  * and 2nd arithmetic instruction is pattern matched to recognize
57  * that it wants to construct a pointer to some element within stack.
58  * So after 2nd insn, the register R1 has type PTR_TO_STACK
59  * (and -20 constant is saved for further stack bounds checking).
60  * Meaning that this reg is a pointer to stack plus known immediate constant.
61  *
62  * Most of the time the registers have UNKNOWN_VALUE type, which
63  * means the register has some value, but it's not a valid pointer.
64  * (like pointer plus pointer becomes UNKNOWN_VALUE type)
65  *
66  * When verifier sees load or store instructions the type of base register
67  * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
68  * types recognized by check_mem_access() function.
69  *
70  * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
71  * and the range of [ptr, ptr + map's value_size) is accessible.
72  *
73  * registers used to pass values to function calls are checked against
74  * function argument constraints.
75  *
76  * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
77  * It means that the register type passed to this function must be
78  * PTR_TO_STACK and it will be used inside the function as
79  * 'pointer to map element key'
80  *
81  * For example the argument constraints for bpf_map_lookup_elem():
82  *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
83  *   .arg1_type = ARG_CONST_MAP_PTR,
84  *   .arg2_type = ARG_PTR_TO_MAP_KEY,
85  *
86  * ret_type says that this function returns 'pointer to map elem value or null'
87  * function expects 1st argument to be a const pointer to 'struct bpf_map' and
88  * 2nd argument should be a pointer to stack, which will be used inside
89  * the helper function as a pointer to map element key.
90  *
91  * On the kernel side the helper function looks like:
92  * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
93  * {
94  *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
95  *    void *key = (void *) (unsigned long) r2;
96  *    void *value;
97  *
98  *    here kernel can access 'key' and 'map' pointers safely, knowing that
99  *    [key, key + map->key_size) bytes are valid and were initialized on
100  *    the stack of eBPF program.
101  * }
102  *
103  * Corresponding eBPF program may look like:
104  *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR
105  *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
106  *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP
107  *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
108  * here verifier looks at prototype of map_lookup_elem() and sees:
109  * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
110  * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
111  *
112  * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
113  * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
114  * and were initialized prior to this call.
115  * If it's ok, then verifier allows this BPF_CALL insn and looks at
116  * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
117  * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
118  * returns ether pointer to map value or NULL.
119  *
120  * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
121  * insn, the register holding that pointer in the true branch changes state to
122  * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
123  * branch. See check_cond_jmp_op().
124  *
125  * After the call R0 is set to return type of the function and registers R1-R5
126  * are set to NOT_INIT to indicate that they are no longer readable.
127  */
128 
129 struct reg_state {
130 	enum bpf_reg_type type;
131 	union {
132 		/* valid when type == CONST_IMM | PTR_TO_STACK | UNKNOWN_VALUE */
133 		s64 imm;
134 
135 		/* valid when type == PTR_TO_PACKET* */
136 		struct {
137 			u32 id;
138 			u16 off;
139 			u16 range;
140 		};
141 
142 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
143 		 *   PTR_TO_MAP_VALUE_OR_NULL
144 		 */
145 		struct bpf_map *map_ptr;
146 	};
147 };
148 
149 enum bpf_stack_slot_type {
150 	STACK_INVALID,    /* nothing was stored in this stack slot */
151 	STACK_SPILL,      /* register spilled into stack */
152 	STACK_MISC	  /* BPF program wrote some data into this slot */
153 };
154 
155 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
156 
157 /* state of the program:
158  * type of all registers and stack info
159  */
160 struct verifier_state {
161 	struct reg_state regs[MAX_BPF_REG];
162 	u8 stack_slot_type[MAX_BPF_STACK];
163 	struct reg_state spilled_regs[MAX_BPF_STACK / BPF_REG_SIZE];
164 };
165 
166 /* linked list of verifier states used to prune search */
167 struct verifier_state_list {
168 	struct verifier_state state;
169 	struct verifier_state_list *next;
170 };
171 
172 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
173 struct verifier_stack_elem {
174 	/* verifer state is 'st'
175 	 * before processing instruction 'insn_idx'
176 	 * and after processing instruction 'prev_insn_idx'
177 	 */
178 	struct verifier_state st;
179 	int insn_idx;
180 	int prev_insn_idx;
181 	struct verifier_stack_elem *next;
182 };
183 
184 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
185 
186 /* single container for all structs
187  * one verifier_env per bpf_check() call
188  */
189 struct verifier_env {
190 	struct bpf_prog *prog;		/* eBPF program being verified */
191 	struct verifier_stack_elem *head; /* stack of verifier states to be processed */
192 	int stack_size;			/* number of states to be processed */
193 	struct verifier_state cur_state; /* current verifier state */
194 	struct verifier_state_list **explored_states; /* search pruning optimization */
195 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
196 	u32 used_map_cnt;		/* number of used maps */
197 	bool allow_ptr_leaks;
198 };
199 
200 #define BPF_COMPLEXITY_LIMIT_INSNS	65536
201 #define BPF_COMPLEXITY_LIMIT_STACK	1024
202 
203 struct bpf_call_arg_meta {
204 	struct bpf_map *map_ptr;
205 	bool raw_mode;
206 	int regno;
207 	int access_size;
208 };
209 
210 /* verbose verifier prints what it's seeing
211  * bpf_check() is called under lock, so no race to access these global vars
212  */
213 static u32 log_level, log_size, log_len;
214 static char *log_buf;
215 
216 static DEFINE_MUTEX(bpf_verifier_lock);
217 
218 /* log_level controls verbosity level of eBPF verifier.
219  * verbose() is used to dump the verification trace to the log, so the user
220  * can figure out what's wrong with the program
221  */
222 static __printf(1, 2) void verbose(const char *fmt, ...)
223 {
224 	va_list args;
225 
226 	if (log_level == 0 || log_len >= log_size - 1)
227 		return;
228 
229 	va_start(args, fmt);
230 	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
231 	va_end(args);
232 }
233 
234 /* string representation of 'enum bpf_reg_type' */
235 static const char * const reg_type_str[] = {
236 	[NOT_INIT]		= "?",
237 	[UNKNOWN_VALUE]		= "inv",
238 	[PTR_TO_CTX]		= "ctx",
239 	[CONST_PTR_TO_MAP]	= "map_ptr",
240 	[PTR_TO_MAP_VALUE]	= "map_value",
241 	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
242 	[FRAME_PTR]		= "fp",
243 	[PTR_TO_STACK]		= "fp",
244 	[CONST_IMM]		= "imm",
245 	[PTR_TO_PACKET]		= "pkt",
246 	[PTR_TO_PACKET_END]	= "pkt_end",
247 };
248 
249 static void print_verifier_state(struct verifier_state *state)
250 {
251 	struct reg_state *reg;
252 	enum bpf_reg_type t;
253 	int i;
254 
255 	for (i = 0; i < MAX_BPF_REG; i++) {
256 		reg = &state->regs[i];
257 		t = reg->type;
258 		if (t == NOT_INIT)
259 			continue;
260 		verbose(" R%d=%s", i, reg_type_str[t]);
261 		if (t == CONST_IMM || t == PTR_TO_STACK)
262 			verbose("%lld", reg->imm);
263 		else if (t == PTR_TO_PACKET)
264 			verbose("(id=%d,off=%d,r=%d)",
265 				reg->id, reg->off, reg->range);
266 		else if (t == UNKNOWN_VALUE && reg->imm)
267 			verbose("%lld", reg->imm);
268 		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
269 			 t == PTR_TO_MAP_VALUE_OR_NULL)
270 			verbose("(ks=%d,vs=%d)",
271 				reg->map_ptr->key_size,
272 				reg->map_ptr->value_size);
273 	}
274 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
275 		if (state->stack_slot_type[i] == STACK_SPILL)
276 			verbose(" fp%d=%s", -MAX_BPF_STACK + i,
277 				reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
278 	}
279 	verbose("\n");
280 }
281 
282 static const char *const bpf_class_string[] = {
283 	[BPF_LD]    = "ld",
284 	[BPF_LDX]   = "ldx",
285 	[BPF_ST]    = "st",
286 	[BPF_STX]   = "stx",
287 	[BPF_ALU]   = "alu",
288 	[BPF_JMP]   = "jmp",
289 	[BPF_RET]   = "BUG",
290 	[BPF_ALU64] = "alu64",
291 };
292 
293 static const char *const bpf_alu_string[16] = {
294 	[BPF_ADD >> 4]  = "+=",
295 	[BPF_SUB >> 4]  = "-=",
296 	[BPF_MUL >> 4]  = "*=",
297 	[BPF_DIV >> 4]  = "/=",
298 	[BPF_OR  >> 4]  = "|=",
299 	[BPF_AND >> 4]  = "&=",
300 	[BPF_LSH >> 4]  = "<<=",
301 	[BPF_RSH >> 4]  = ">>=",
302 	[BPF_NEG >> 4]  = "neg",
303 	[BPF_MOD >> 4]  = "%=",
304 	[BPF_XOR >> 4]  = "^=",
305 	[BPF_MOV >> 4]  = "=",
306 	[BPF_ARSH >> 4] = "s>>=",
307 	[BPF_END >> 4]  = "endian",
308 };
309 
310 static const char *const bpf_ldst_string[] = {
311 	[BPF_W >> 3]  = "u32",
312 	[BPF_H >> 3]  = "u16",
313 	[BPF_B >> 3]  = "u8",
314 	[BPF_DW >> 3] = "u64",
315 };
316 
317 static const char *const bpf_jmp_string[16] = {
318 	[BPF_JA >> 4]   = "jmp",
319 	[BPF_JEQ >> 4]  = "==",
320 	[BPF_JGT >> 4]  = ">",
321 	[BPF_JGE >> 4]  = ">=",
322 	[BPF_JSET >> 4] = "&",
323 	[BPF_JNE >> 4]  = "!=",
324 	[BPF_JSGT >> 4] = "s>",
325 	[BPF_JSGE >> 4] = "s>=",
326 	[BPF_CALL >> 4] = "call",
327 	[BPF_EXIT >> 4] = "exit",
328 };
329 
330 static void print_bpf_insn(struct bpf_insn *insn)
331 {
332 	u8 class = BPF_CLASS(insn->code);
333 
334 	if (class == BPF_ALU || class == BPF_ALU64) {
335 		if (BPF_SRC(insn->code) == BPF_X)
336 			verbose("(%02x) %sr%d %s %sr%d\n",
337 				insn->code, class == BPF_ALU ? "(u32) " : "",
338 				insn->dst_reg,
339 				bpf_alu_string[BPF_OP(insn->code) >> 4],
340 				class == BPF_ALU ? "(u32) " : "",
341 				insn->src_reg);
342 		else
343 			verbose("(%02x) %sr%d %s %s%d\n",
344 				insn->code, class == BPF_ALU ? "(u32) " : "",
345 				insn->dst_reg,
346 				bpf_alu_string[BPF_OP(insn->code) >> 4],
347 				class == BPF_ALU ? "(u32) " : "",
348 				insn->imm);
349 	} else if (class == BPF_STX) {
350 		if (BPF_MODE(insn->code) == BPF_MEM)
351 			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
352 				insn->code,
353 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
354 				insn->dst_reg,
355 				insn->off, insn->src_reg);
356 		else if (BPF_MODE(insn->code) == BPF_XADD)
357 			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
358 				insn->code,
359 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 				insn->dst_reg, insn->off,
361 				insn->src_reg);
362 		else
363 			verbose("BUG_%02x\n", insn->code);
364 	} else if (class == BPF_ST) {
365 		if (BPF_MODE(insn->code) != BPF_MEM) {
366 			verbose("BUG_st_%02x\n", insn->code);
367 			return;
368 		}
369 		verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
370 			insn->code,
371 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
372 			insn->dst_reg,
373 			insn->off, insn->imm);
374 	} else if (class == BPF_LDX) {
375 		if (BPF_MODE(insn->code) != BPF_MEM) {
376 			verbose("BUG_ldx_%02x\n", insn->code);
377 			return;
378 		}
379 		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
380 			insn->code, insn->dst_reg,
381 			bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
382 			insn->src_reg, insn->off);
383 	} else if (class == BPF_LD) {
384 		if (BPF_MODE(insn->code) == BPF_ABS) {
385 			verbose("(%02x) r0 = *(%s *)skb[%d]\n",
386 				insn->code,
387 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
388 				insn->imm);
389 		} else if (BPF_MODE(insn->code) == BPF_IND) {
390 			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
391 				insn->code,
392 				bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
393 				insn->src_reg, insn->imm);
394 		} else if (BPF_MODE(insn->code) == BPF_IMM) {
395 			verbose("(%02x) r%d = 0x%x\n",
396 				insn->code, insn->dst_reg, insn->imm);
397 		} else {
398 			verbose("BUG_ld_%02x\n", insn->code);
399 			return;
400 		}
401 	} else if (class == BPF_JMP) {
402 		u8 opcode = BPF_OP(insn->code);
403 
404 		if (opcode == BPF_CALL) {
405 			verbose("(%02x) call %d\n", insn->code, insn->imm);
406 		} else if (insn->code == (BPF_JMP | BPF_JA)) {
407 			verbose("(%02x) goto pc%+d\n",
408 				insn->code, insn->off);
409 		} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
410 			verbose("(%02x) exit\n", insn->code);
411 		} else if (BPF_SRC(insn->code) == BPF_X) {
412 			verbose("(%02x) if r%d %s r%d goto pc%+d\n",
413 				insn->code, insn->dst_reg,
414 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
415 				insn->src_reg, insn->off);
416 		} else {
417 			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
418 				insn->code, insn->dst_reg,
419 				bpf_jmp_string[BPF_OP(insn->code) >> 4],
420 				insn->imm, insn->off);
421 		}
422 	} else {
423 		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
424 	}
425 }
426 
427 static int pop_stack(struct verifier_env *env, int *prev_insn_idx)
428 {
429 	struct verifier_stack_elem *elem;
430 	int insn_idx;
431 
432 	if (env->head == NULL)
433 		return -1;
434 
435 	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
436 	insn_idx = env->head->insn_idx;
437 	if (prev_insn_idx)
438 		*prev_insn_idx = env->head->prev_insn_idx;
439 	elem = env->head->next;
440 	kfree(env->head);
441 	env->head = elem;
442 	env->stack_size--;
443 	return insn_idx;
444 }
445 
446 static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx,
447 					 int prev_insn_idx)
448 {
449 	struct verifier_stack_elem *elem;
450 
451 	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL);
452 	if (!elem)
453 		goto err;
454 
455 	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
456 	elem->insn_idx = insn_idx;
457 	elem->prev_insn_idx = prev_insn_idx;
458 	elem->next = env->head;
459 	env->head = elem;
460 	env->stack_size++;
461 	if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
462 		verbose("BPF program is too complex\n");
463 		goto err;
464 	}
465 	return &elem->st;
466 err:
467 	/* pop all elements and return */
468 	while (pop_stack(env, NULL) >= 0);
469 	return NULL;
470 }
471 
472 #define CALLER_SAVED_REGS 6
473 static const int caller_saved[CALLER_SAVED_REGS] = {
474 	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
475 };
476 
477 static void init_reg_state(struct reg_state *regs)
478 {
479 	int i;
480 
481 	for (i = 0; i < MAX_BPF_REG; i++) {
482 		regs[i].type = NOT_INIT;
483 		regs[i].imm = 0;
484 	}
485 
486 	/* frame pointer */
487 	regs[BPF_REG_FP].type = FRAME_PTR;
488 
489 	/* 1st arg to a function */
490 	regs[BPF_REG_1].type = PTR_TO_CTX;
491 }
492 
493 static void mark_reg_unknown_value(struct reg_state *regs, u32 regno)
494 {
495 	BUG_ON(regno >= MAX_BPF_REG);
496 	regs[regno].type = UNKNOWN_VALUE;
497 	regs[regno].imm = 0;
498 }
499 
500 enum reg_arg_type {
501 	SRC_OP,		/* register is used as source operand */
502 	DST_OP,		/* register is used as destination operand */
503 	DST_OP_NO_MARK	/* same as above, check only, don't mark */
504 };
505 
506 static int check_reg_arg(struct reg_state *regs, u32 regno,
507 			 enum reg_arg_type t)
508 {
509 	if (regno >= MAX_BPF_REG) {
510 		verbose("R%d is invalid\n", regno);
511 		return -EINVAL;
512 	}
513 
514 	if (t == SRC_OP) {
515 		/* check whether register used as source operand can be read */
516 		if (regs[regno].type == NOT_INIT) {
517 			verbose("R%d !read_ok\n", regno);
518 			return -EACCES;
519 		}
520 	} else {
521 		/* check whether register used as dest operand can be written to */
522 		if (regno == BPF_REG_FP) {
523 			verbose("frame pointer is read only\n");
524 			return -EACCES;
525 		}
526 		if (t == DST_OP)
527 			mark_reg_unknown_value(regs, regno);
528 	}
529 	return 0;
530 }
531 
532 static int bpf_size_to_bytes(int bpf_size)
533 {
534 	if (bpf_size == BPF_W)
535 		return 4;
536 	else if (bpf_size == BPF_H)
537 		return 2;
538 	else if (bpf_size == BPF_B)
539 		return 1;
540 	else if (bpf_size == BPF_DW)
541 		return 8;
542 	else
543 		return -EINVAL;
544 }
545 
546 static bool is_spillable_regtype(enum bpf_reg_type type)
547 {
548 	switch (type) {
549 	case PTR_TO_MAP_VALUE:
550 	case PTR_TO_MAP_VALUE_OR_NULL:
551 	case PTR_TO_STACK:
552 	case PTR_TO_CTX:
553 	case PTR_TO_PACKET:
554 	case PTR_TO_PACKET_END:
555 	case FRAME_PTR:
556 	case CONST_PTR_TO_MAP:
557 		return true;
558 	default:
559 		return false;
560 	}
561 }
562 
563 /* check_stack_read/write functions track spill/fill of registers,
564  * stack boundary and alignment are checked in check_mem_access()
565  */
566 static int check_stack_write(struct verifier_state *state, int off, int size,
567 			     int value_regno)
568 {
569 	int i;
570 	/* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
571 	 * so it's aligned access and [off, off + size) are within stack limits
572 	 */
573 
574 	if (value_regno >= 0 &&
575 	    is_spillable_regtype(state->regs[value_regno].type)) {
576 
577 		/* register containing pointer is being spilled into stack */
578 		if (size != BPF_REG_SIZE) {
579 			verbose("invalid size of register spill\n");
580 			return -EACCES;
581 		}
582 
583 		/* save register state */
584 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
585 			state->regs[value_regno];
586 
587 		for (i = 0; i < BPF_REG_SIZE; i++)
588 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
589 	} else {
590 		/* regular write of data into stack */
591 		state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
592 			(struct reg_state) {};
593 
594 		for (i = 0; i < size; i++)
595 			state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
596 	}
597 	return 0;
598 }
599 
600 static int check_stack_read(struct verifier_state *state, int off, int size,
601 			    int value_regno)
602 {
603 	u8 *slot_type;
604 	int i;
605 
606 	slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
607 
608 	if (slot_type[0] == STACK_SPILL) {
609 		if (size != BPF_REG_SIZE) {
610 			verbose("invalid size of register spill\n");
611 			return -EACCES;
612 		}
613 		for (i = 1; i < BPF_REG_SIZE; i++) {
614 			if (slot_type[i] != STACK_SPILL) {
615 				verbose("corrupted spill memory\n");
616 				return -EACCES;
617 			}
618 		}
619 
620 		if (value_regno >= 0)
621 			/* restore register state from stack */
622 			state->regs[value_regno] =
623 				state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
624 		return 0;
625 	} else {
626 		for (i = 0; i < size; i++) {
627 			if (slot_type[i] != STACK_MISC) {
628 				verbose("invalid read from stack off %d+%d size %d\n",
629 					off, i, size);
630 				return -EACCES;
631 			}
632 		}
633 		if (value_regno >= 0)
634 			/* have read misc data from the stack */
635 			mark_reg_unknown_value(state->regs, value_regno);
636 		return 0;
637 	}
638 }
639 
640 /* check read/write into map element returned by bpf_map_lookup_elem() */
641 static int check_map_access(struct verifier_env *env, u32 regno, int off,
642 			    int size)
643 {
644 	struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
645 
646 	if (off < 0 || off + size > map->value_size) {
647 		verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
648 			map->value_size, off, size);
649 		return -EACCES;
650 	}
651 	return 0;
652 }
653 
654 #define MAX_PACKET_OFF 0xffff
655 
656 static bool may_write_pkt_data(enum bpf_prog_type type)
657 {
658 	switch (type) {
659 	case BPF_PROG_TYPE_XDP:
660 		return true;
661 	default:
662 		return false;
663 	}
664 }
665 
666 static int check_packet_access(struct verifier_env *env, u32 regno, int off,
667 			       int size)
668 {
669 	struct reg_state *regs = env->cur_state.regs;
670 	struct reg_state *reg = &regs[regno];
671 
672 	off += reg->off;
673 	if (off < 0 || off + size > reg->range) {
674 		verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
675 			off, size, regno, reg->id, reg->off, reg->range);
676 		return -EACCES;
677 	}
678 	return 0;
679 }
680 
681 /* check access to 'struct bpf_context' fields */
682 static int check_ctx_access(struct verifier_env *env, int off, int size,
683 			    enum bpf_access_type t, enum bpf_reg_type *reg_type)
684 {
685 	if (env->prog->aux->ops->is_valid_access &&
686 	    env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
687 		/* remember the offset of last byte accessed in ctx */
688 		if (env->prog->aux->max_ctx_offset < off + size)
689 			env->prog->aux->max_ctx_offset = off + size;
690 		return 0;
691 	}
692 
693 	verbose("invalid bpf_context access off=%d size=%d\n", off, size);
694 	return -EACCES;
695 }
696 
697 static bool is_pointer_value(struct verifier_env *env, int regno)
698 {
699 	if (env->allow_ptr_leaks)
700 		return false;
701 
702 	switch (env->cur_state.regs[regno].type) {
703 	case UNKNOWN_VALUE:
704 	case CONST_IMM:
705 		return false;
706 	default:
707 		return true;
708 	}
709 }
710 
711 static int check_ptr_alignment(struct verifier_env *env, struct reg_state *reg,
712 			       int off, int size)
713 {
714 	if (reg->type != PTR_TO_PACKET) {
715 		if (off % size != 0) {
716 			verbose("misaligned access off %d size %d\n", off, size);
717 			return -EACCES;
718 		} else {
719 			return 0;
720 		}
721 	}
722 
723 	switch (env->prog->type) {
724 	case BPF_PROG_TYPE_SCHED_CLS:
725 	case BPF_PROG_TYPE_SCHED_ACT:
726 	case BPF_PROG_TYPE_XDP:
727 		break;
728 	default:
729 		verbose("verifier is misconfigured\n");
730 		return -EACCES;
731 	}
732 
733 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
734 		/* misaligned access to packet is ok on x86,arm,arm64 */
735 		return 0;
736 
737 	if (reg->id && size != 1) {
738 		verbose("Unknown packet alignment. Only byte-sized access allowed\n");
739 		return -EACCES;
740 	}
741 
742 	/* skb->data is NET_IP_ALIGN-ed */
743 	if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
744 		verbose("misaligned packet access off %d+%d+%d size %d\n",
745 			NET_IP_ALIGN, reg->off, off, size);
746 		return -EACCES;
747 	}
748 	return 0;
749 }
750 
751 /* check whether memory at (regno + off) is accessible for t = (read | write)
752  * if t==write, value_regno is a register which value is stored into memory
753  * if t==read, value_regno is a register which will receive the value from memory
754  * if t==write && value_regno==-1, some unknown value is stored into memory
755  * if t==read && value_regno==-1, don't care what we read from memory
756  */
757 static int check_mem_access(struct verifier_env *env, u32 regno, int off,
758 			    int bpf_size, enum bpf_access_type t,
759 			    int value_regno)
760 {
761 	struct verifier_state *state = &env->cur_state;
762 	struct reg_state *reg = &state->regs[regno];
763 	int size, err = 0;
764 
765 	if (reg->type == PTR_TO_STACK)
766 		off += reg->imm;
767 
768 	size = bpf_size_to_bytes(bpf_size);
769 	if (size < 0)
770 		return size;
771 
772 	err = check_ptr_alignment(env, reg, off, size);
773 	if (err)
774 		return err;
775 
776 	if (reg->type == PTR_TO_MAP_VALUE) {
777 		if (t == BPF_WRITE && value_regno >= 0 &&
778 		    is_pointer_value(env, value_regno)) {
779 			verbose("R%d leaks addr into map\n", value_regno);
780 			return -EACCES;
781 		}
782 		err = check_map_access(env, regno, off, size);
783 		if (!err && t == BPF_READ && value_regno >= 0)
784 			mark_reg_unknown_value(state->regs, value_regno);
785 
786 	} else if (reg->type == PTR_TO_CTX) {
787 		enum bpf_reg_type reg_type = UNKNOWN_VALUE;
788 
789 		if (t == BPF_WRITE && value_regno >= 0 &&
790 		    is_pointer_value(env, value_regno)) {
791 			verbose("R%d leaks addr into ctx\n", value_regno);
792 			return -EACCES;
793 		}
794 		err = check_ctx_access(env, off, size, t, &reg_type);
795 		if (!err && t == BPF_READ && value_regno >= 0) {
796 			mark_reg_unknown_value(state->regs, value_regno);
797 			if (env->allow_ptr_leaks)
798 				/* note that reg.[id|off|range] == 0 */
799 				state->regs[value_regno].type = reg_type;
800 		}
801 
802 	} else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
803 		if (off >= 0 || off < -MAX_BPF_STACK) {
804 			verbose("invalid stack off=%d size=%d\n", off, size);
805 			return -EACCES;
806 		}
807 		if (t == BPF_WRITE) {
808 			if (!env->allow_ptr_leaks &&
809 			    state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
810 			    size != BPF_REG_SIZE) {
811 				verbose("attempt to corrupt spilled pointer on stack\n");
812 				return -EACCES;
813 			}
814 			err = check_stack_write(state, off, size, value_regno);
815 		} else {
816 			err = check_stack_read(state, off, size, value_regno);
817 		}
818 	} else if (state->regs[regno].type == PTR_TO_PACKET) {
819 		if (t == BPF_WRITE && !may_write_pkt_data(env->prog->type)) {
820 			verbose("cannot write into packet\n");
821 			return -EACCES;
822 		}
823 		if (t == BPF_WRITE && value_regno >= 0 &&
824 		    is_pointer_value(env, value_regno)) {
825 			verbose("R%d leaks addr into packet\n", value_regno);
826 			return -EACCES;
827 		}
828 		err = check_packet_access(env, regno, off, size);
829 		if (!err && t == BPF_READ && value_regno >= 0)
830 			mark_reg_unknown_value(state->regs, value_regno);
831 	} else {
832 		verbose("R%d invalid mem access '%s'\n",
833 			regno, reg_type_str[reg->type]);
834 		return -EACCES;
835 	}
836 
837 	if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
838 	    state->regs[value_regno].type == UNKNOWN_VALUE) {
839 		/* 1 or 2 byte load zero-extends, determine the number of
840 		 * zero upper bits. Not doing it fo 4 byte load, since
841 		 * such values cannot be added to ptr_to_packet anyway.
842 		 */
843 		state->regs[value_regno].imm = 64 - size * 8;
844 	}
845 	return err;
846 }
847 
848 static int check_xadd(struct verifier_env *env, struct bpf_insn *insn)
849 {
850 	struct reg_state *regs = env->cur_state.regs;
851 	int err;
852 
853 	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
854 	    insn->imm != 0) {
855 		verbose("BPF_XADD uses reserved fields\n");
856 		return -EINVAL;
857 	}
858 
859 	/* check src1 operand */
860 	err = check_reg_arg(regs, insn->src_reg, SRC_OP);
861 	if (err)
862 		return err;
863 
864 	/* check src2 operand */
865 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
866 	if (err)
867 		return err;
868 
869 	/* check whether atomic_add can read the memory */
870 	err = check_mem_access(env, insn->dst_reg, insn->off,
871 			       BPF_SIZE(insn->code), BPF_READ, -1);
872 	if (err)
873 		return err;
874 
875 	/* check whether atomic_add can write into the same memory */
876 	return check_mem_access(env, insn->dst_reg, insn->off,
877 				BPF_SIZE(insn->code), BPF_WRITE, -1);
878 }
879 
880 /* when register 'regno' is passed into function that will read 'access_size'
881  * bytes from that pointer, make sure that it's within stack boundary
882  * and all elements of stack are initialized
883  */
884 static int check_stack_boundary(struct verifier_env *env, int regno,
885 				int access_size, bool zero_size_allowed,
886 				struct bpf_call_arg_meta *meta)
887 {
888 	struct verifier_state *state = &env->cur_state;
889 	struct reg_state *regs = state->regs;
890 	int off, i;
891 
892 	if (regs[regno].type != PTR_TO_STACK) {
893 		if (zero_size_allowed && access_size == 0 &&
894 		    regs[regno].type == CONST_IMM &&
895 		    regs[regno].imm  == 0)
896 			return 0;
897 
898 		verbose("R%d type=%s expected=%s\n", regno,
899 			reg_type_str[regs[regno].type],
900 			reg_type_str[PTR_TO_STACK]);
901 		return -EACCES;
902 	}
903 
904 	off = regs[regno].imm;
905 	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
906 	    access_size <= 0) {
907 		verbose("invalid stack type R%d off=%d access_size=%d\n",
908 			regno, off, access_size);
909 		return -EACCES;
910 	}
911 
912 	if (meta && meta->raw_mode) {
913 		meta->access_size = access_size;
914 		meta->regno = regno;
915 		return 0;
916 	}
917 
918 	for (i = 0; i < access_size; i++) {
919 		if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
920 			verbose("invalid indirect read from stack off %d+%d size %d\n",
921 				off, i, access_size);
922 			return -EACCES;
923 		}
924 	}
925 	return 0;
926 }
927 
928 static int check_func_arg(struct verifier_env *env, u32 regno,
929 			  enum bpf_arg_type arg_type,
930 			  struct bpf_call_arg_meta *meta)
931 {
932 	struct reg_state *reg = env->cur_state.regs + regno;
933 	enum bpf_reg_type expected_type;
934 	int err = 0;
935 
936 	if (arg_type == ARG_DONTCARE)
937 		return 0;
938 
939 	if (reg->type == NOT_INIT) {
940 		verbose("R%d !read_ok\n", regno);
941 		return -EACCES;
942 	}
943 
944 	if (arg_type == ARG_ANYTHING) {
945 		if (is_pointer_value(env, regno)) {
946 			verbose("R%d leaks addr into helper function\n", regno);
947 			return -EACCES;
948 		}
949 		return 0;
950 	}
951 
952 	if (arg_type == ARG_PTR_TO_MAP_KEY ||
953 	    arg_type == ARG_PTR_TO_MAP_VALUE) {
954 		expected_type = PTR_TO_STACK;
955 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
956 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
957 		expected_type = CONST_IMM;
958 	} else if (arg_type == ARG_CONST_MAP_PTR) {
959 		expected_type = CONST_PTR_TO_MAP;
960 	} else if (arg_type == ARG_PTR_TO_CTX) {
961 		expected_type = PTR_TO_CTX;
962 	} else if (arg_type == ARG_PTR_TO_STACK ||
963 		   arg_type == ARG_PTR_TO_RAW_STACK) {
964 		expected_type = PTR_TO_STACK;
965 		/* One exception here. In case function allows for NULL to be
966 		 * passed in as argument, it's a CONST_IMM type. Final test
967 		 * happens during stack boundary checking.
968 		 */
969 		if (reg->type == CONST_IMM && reg->imm == 0)
970 			expected_type = CONST_IMM;
971 		meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
972 	} else {
973 		verbose("unsupported arg_type %d\n", arg_type);
974 		return -EFAULT;
975 	}
976 
977 	if (reg->type != expected_type) {
978 		verbose("R%d type=%s expected=%s\n", regno,
979 			reg_type_str[reg->type], reg_type_str[expected_type]);
980 		return -EACCES;
981 	}
982 
983 	if (arg_type == ARG_CONST_MAP_PTR) {
984 		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */
985 		meta->map_ptr = reg->map_ptr;
986 	} else if (arg_type == ARG_PTR_TO_MAP_KEY) {
987 		/* bpf_map_xxx(..., map_ptr, ..., key) call:
988 		 * check that [key, key + map->key_size) are within
989 		 * stack limits and initialized
990 		 */
991 		if (!meta->map_ptr) {
992 			/* in function declaration map_ptr must come before
993 			 * map_key, so that it's verified and known before
994 			 * we have to check map_key here. Otherwise it means
995 			 * that kernel subsystem misconfigured verifier
996 			 */
997 			verbose("invalid map_ptr to access map->key\n");
998 			return -EACCES;
999 		}
1000 		err = check_stack_boundary(env, regno, meta->map_ptr->key_size,
1001 					   false, NULL);
1002 	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1003 		/* bpf_map_xxx(..., map_ptr, ..., value) call:
1004 		 * check [value, value + map->value_size) validity
1005 		 */
1006 		if (!meta->map_ptr) {
1007 			/* kernel subsystem misconfigured verifier */
1008 			verbose("invalid map_ptr to access map->value\n");
1009 			return -EACCES;
1010 		}
1011 		err = check_stack_boundary(env, regno,
1012 					   meta->map_ptr->value_size,
1013 					   false, NULL);
1014 	} else if (arg_type == ARG_CONST_STACK_SIZE ||
1015 		   arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1016 		bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1017 
1018 		/* bpf_xxx(..., buf, len) call will access 'len' bytes
1019 		 * from stack pointer 'buf'. Check it
1020 		 * note: regno == len, regno - 1 == buf
1021 		 */
1022 		if (regno == 0) {
1023 			/* kernel subsystem misconfigured verifier */
1024 			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1025 			return -EACCES;
1026 		}
1027 		err = check_stack_boundary(env, regno - 1, reg->imm,
1028 					   zero_size_allowed, meta);
1029 	}
1030 
1031 	return err;
1032 }
1033 
1034 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1035 {
1036 	if (!map)
1037 		return 0;
1038 
1039 	/* We need a two way check, first is from map perspective ... */
1040 	switch (map->map_type) {
1041 	case BPF_MAP_TYPE_PROG_ARRAY:
1042 		if (func_id != BPF_FUNC_tail_call)
1043 			goto error;
1044 		break;
1045 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1046 		if (func_id != BPF_FUNC_perf_event_read &&
1047 		    func_id != BPF_FUNC_perf_event_output)
1048 			goto error;
1049 		break;
1050 	case BPF_MAP_TYPE_STACK_TRACE:
1051 		if (func_id != BPF_FUNC_get_stackid)
1052 			goto error;
1053 		break;
1054 	case BPF_MAP_TYPE_CGROUP_ARRAY:
1055 		if (func_id != BPF_FUNC_skb_in_cgroup)
1056 			goto error;
1057 		break;
1058 	default:
1059 		break;
1060 	}
1061 
1062 	/* ... and second from the function itself. */
1063 	switch (func_id) {
1064 	case BPF_FUNC_tail_call:
1065 		if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1066 			goto error;
1067 		break;
1068 	case BPF_FUNC_perf_event_read:
1069 	case BPF_FUNC_perf_event_output:
1070 		if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1071 			goto error;
1072 		break;
1073 	case BPF_FUNC_get_stackid:
1074 		if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1075 			goto error;
1076 		break;
1077 	case BPF_FUNC_skb_in_cgroup:
1078 		if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1079 			goto error;
1080 		break;
1081 	default:
1082 		break;
1083 	}
1084 
1085 	return 0;
1086 error:
1087 	verbose("cannot pass map_type %d into func %d\n",
1088 		map->map_type, func_id);
1089 	return -EINVAL;
1090 }
1091 
1092 static int check_raw_mode(const struct bpf_func_proto *fn)
1093 {
1094 	int count = 0;
1095 
1096 	if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1097 		count++;
1098 	if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1099 		count++;
1100 	if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1101 		count++;
1102 	if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1103 		count++;
1104 	if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1105 		count++;
1106 
1107 	return count > 1 ? -EINVAL : 0;
1108 }
1109 
1110 static void clear_all_pkt_pointers(struct verifier_env *env)
1111 {
1112 	struct verifier_state *state = &env->cur_state;
1113 	struct reg_state *regs = state->regs, *reg;
1114 	int i;
1115 
1116 	for (i = 0; i < MAX_BPF_REG; i++)
1117 		if (regs[i].type == PTR_TO_PACKET ||
1118 		    regs[i].type == PTR_TO_PACKET_END)
1119 			mark_reg_unknown_value(regs, i);
1120 
1121 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1122 		if (state->stack_slot_type[i] != STACK_SPILL)
1123 			continue;
1124 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1125 		if (reg->type != PTR_TO_PACKET &&
1126 		    reg->type != PTR_TO_PACKET_END)
1127 			continue;
1128 		reg->type = UNKNOWN_VALUE;
1129 		reg->imm = 0;
1130 	}
1131 }
1132 
1133 static int check_call(struct verifier_env *env, int func_id)
1134 {
1135 	struct verifier_state *state = &env->cur_state;
1136 	const struct bpf_func_proto *fn = NULL;
1137 	struct reg_state *regs = state->regs;
1138 	struct reg_state *reg;
1139 	struct bpf_call_arg_meta meta;
1140 	bool changes_data;
1141 	int i, err;
1142 
1143 	/* find function prototype */
1144 	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1145 		verbose("invalid func %d\n", func_id);
1146 		return -EINVAL;
1147 	}
1148 
1149 	if (env->prog->aux->ops->get_func_proto)
1150 		fn = env->prog->aux->ops->get_func_proto(func_id);
1151 
1152 	if (!fn) {
1153 		verbose("unknown func %d\n", func_id);
1154 		return -EINVAL;
1155 	}
1156 
1157 	/* eBPF programs must be GPL compatible to use GPL-ed functions */
1158 	if (!env->prog->gpl_compatible && fn->gpl_only) {
1159 		verbose("cannot call GPL only function from proprietary program\n");
1160 		return -EINVAL;
1161 	}
1162 
1163 	changes_data = bpf_helper_changes_skb_data(fn->func);
1164 
1165 	memset(&meta, 0, sizeof(meta));
1166 
1167 	/* We only support one arg being in raw mode at the moment, which
1168 	 * is sufficient for the helper functions we have right now.
1169 	 */
1170 	err = check_raw_mode(fn);
1171 	if (err) {
1172 		verbose("kernel subsystem misconfigured func %d\n", func_id);
1173 		return err;
1174 	}
1175 
1176 	/* check args */
1177 	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1178 	if (err)
1179 		return err;
1180 	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1181 	if (err)
1182 		return err;
1183 	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1184 	if (err)
1185 		return err;
1186 	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1187 	if (err)
1188 		return err;
1189 	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1190 	if (err)
1191 		return err;
1192 
1193 	/* Mark slots with STACK_MISC in case of raw mode, stack offset
1194 	 * is inferred from register state.
1195 	 */
1196 	for (i = 0; i < meta.access_size; i++) {
1197 		err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1198 		if (err)
1199 			return err;
1200 	}
1201 
1202 	/* reset caller saved regs */
1203 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1204 		reg = regs + caller_saved[i];
1205 		reg->type = NOT_INIT;
1206 		reg->imm = 0;
1207 	}
1208 
1209 	/* update return register */
1210 	if (fn->ret_type == RET_INTEGER) {
1211 		regs[BPF_REG_0].type = UNKNOWN_VALUE;
1212 	} else if (fn->ret_type == RET_VOID) {
1213 		regs[BPF_REG_0].type = NOT_INIT;
1214 	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1215 		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1216 		/* remember map_ptr, so that check_map_access()
1217 		 * can check 'value_size' boundary of memory access
1218 		 * to map element returned from bpf_map_lookup_elem()
1219 		 */
1220 		if (meta.map_ptr == NULL) {
1221 			verbose("kernel subsystem misconfigured verifier\n");
1222 			return -EINVAL;
1223 		}
1224 		regs[BPF_REG_0].map_ptr = meta.map_ptr;
1225 	} else {
1226 		verbose("unknown return type %d of func %d\n",
1227 			fn->ret_type, func_id);
1228 		return -EINVAL;
1229 	}
1230 
1231 	err = check_map_func_compatibility(meta.map_ptr, func_id);
1232 	if (err)
1233 		return err;
1234 
1235 	if (changes_data)
1236 		clear_all_pkt_pointers(env);
1237 	return 0;
1238 }
1239 
1240 static int check_packet_ptr_add(struct verifier_env *env, struct bpf_insn *insn)
1241 {
1242 	struct reg_state *regs = env->cur_state.regs;
1243 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1244 	struct reg_state *src_reg = &regs[insn->src_reg];
1245 	struct reg_state tmp_reg;
1246 	s32 imm;
1247 
1248 	if (BPF_SRC(insn->code) == BPF_K) {
1249 		/* pkt_ptr += imm */
1250 		imm = insn->imm;
1251 
1252 add_imm:
1253 		if (imm <= 0) {
1254 			verbose("addition of negative constant to packet pointer is not allowed\n");
1255 			return -EACCES;
1256 		}
1257 		if (imm >= MAX_PACKET_OFF ||
1258 		    imm + dst_reg->off >= MAX_PACKET_OFF) {
1259 			verbose("constant %d is too large to add to packet pointer\n",
1260 				imm);
1261 			return -EACCES;
1262 		}
1263 		/* a constant was added to pkt_ptr.
1264 		 * Remember it while keeping the same 'id'
1265 		 */
1266 		dst_reg->off += imm;
1267 	} else {
1268 		if (src_reg->type == PTR_TO_PACKET) {
1269 			/* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1270 			tmp_reg = *dst_reg;  /* save r7 state */
1271 			*dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1272 			src_reg = &tmp_reg;  /* pretend it's src_reg state */
1273 			/* if the checks below reject it, the copy won't matter,
1274 			 * since we're rejecting the whole program. If all ok,
1275 			 * then imm22 state will be added to r7
1276 			 * and r7 will be pkt(id=0,off=22,r=62) while
1277 			 * r6 will stay as pkt(id=0,off=0,r=62)
1278 			 */
1279 		}
1280 
1281 		if (src_reg->type == CONST_IMM) {
1282 			/* pkt_ptr += reg where reg is known constant */
1283 			imm = src_reg->imm;
1284 			goto add_imm;
1285 		}
1286 		/* disallow pkt_ptr += reg
1287 		 * if reg is not uknown_value with guaranteed zero upper bits
1288 		 * otherwise pkt_ptr may overflow and addition will become
1289 		 * subtraction which is not allowed
1290 		 */
1291 		if (src_reg->type != UNKNOWN_VALUE) {
1292 			verbose("cannot add '%s' to ptr_to_packet\n",
1293 				reg_type_str[src_reg->type]);
1294 			return -EACCES;
1295 		}
1296 		if (src_reg->imm < 48) {
1297 			verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1298 				src_reg->imm);
1299 			return -EACCES;
1300 		}
1301 		/* dst_reg stays as pkt_ptr type and since some positive
1302 		 * integer value was added to the pointer, increment its 'id'
1303 		 */
1304 		dst_reg->id++;
1305 
1306 		/* something was added to pkt_ptr, set range and off to zero */
1307 		dst_reg->off = 0;
1308 		dst_reg->range = 0;
1309 	}
1310 	return 0;
1311 }
1312 
1313 static int evaluate_reg_alu(struct verifier_env *env, struct bpf_insn *insn)
1314 {
1315 	struct reg_state *regs = env->cur_state.regs;
1316 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1317 	u8 opcode = BPF_OP(insn->code);
1318 	s64 imm_log2;
1319 
1320 	/* for type == UNKNOWN_VALUE:
1321 	 * imm > 0 -> number of zero upper bits
1322 	 * imm == 0 -> don't track which is the same as all bits can be non-zero
1323 	 */
1324 
1325 	if (BPF_SRC(insn->code) == BPF_X) {
1326 		struct reg_state *src_reg = &regs[insn->src_reg];
1327 
1328 		if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1329 		    dst_reg->imm && opcode == BPF_ADD) {
1330 			/* dreg += sreg
1331 			 * where both have zero upper bits. Adding them
1332 			 * can only result making one more bit non-zero
1333 			 * in the larger value.
1334 			 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1335 			 *     0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1336 			 */
1337 			dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1338 			dst_reg->imm--;
1339 			return 0;
1340 		}
1341 		if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1342 		    dst_reg->imm && opcode == BPF_ADD) {
1343 			/* dreg += sreg
1344 			 * where dreg has zero upper bits and sreg is const.
1345 			 * Adding them can only result making one more bit
1346 			 * non-zero in the larger value.
1347 			 */
1348 			imm_log2 = __ilog2_u64((long long)src_reg->imm);
1349 			dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1350 			dst_reg->imm--;
1351 			return 0;
1352 		}
1353 		/* all other cases non supported yet, just mark dst_reg */
1354 		dst_reg->imm = 0;
1355 		return 0;
1356 	}
1357 
1358 	/* sign extend 32-bit imm into 64-bit to make sure that
1359 	 * negative values occupy bit 63. Note ilog2() would have
1360 	 * been incorrect, since sizeof(insn->imm) == 4
1361 	 */
1362 	imm_log2 = __ilog2_u64((long long)insn->imm);
1363 
1364 	if (dst_reg->imm && opcode == BPF_LSH) {
1365 		/* reg <<= imm
1366 		 * if reg was a result of 2 byte load, then its imm == 48
1367 		 * which means that upper 48 bits are zero and shifting this reg
1368 		 * left by 4 would mean that upper 44 bits are still zero
1369 		 */
1370 		dst_reg->imm -= insn->imm;
1371 	} else if (dst_reg->imm && opcode == BPF_MUL) {
1372 		/* reg *= imm
1373 		 * if multiplying by 14 subtract 4
1374 		 * This is conservative calculation of upper zero bits.
1375 		 * It's not trying to special case insn->imm == 1 or 0 cases
1376 		 */
1377 		dst_reg->imm -= imm_log2 + 1;
1378 	} else if (opcode == BPF_AND) {
1379 		/* reg &= imm */
1380 		dst_reg->imm = 63 - imm_log2;
1381 	} else if (dst_reg->imm && opcode == BPF_ADD) {
1382 		/* reg += imm */
1383 		dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1384 		dst_reg->imm--;
1385 	} else if (opcode == BPF_RSH) {
1386 		/* reg >>= imm
1387 		 * which means that after right shift, upper bits will be zero
1388 		 * note that verifier already checked that
1389 		 * 0 <= imm < 64 for shift insn
1390 		 */
1391 		dst_reg->imm += insn->imm;
1392 		if (unlikely(dst_reg->imm > 64))
1393 			/* some dumb code did:
1394 			 * r2 = *(u32 *)mem;
1395 			 * r2 >>= 32;
1396 			 * and all bits are zero now */
1397 			dst_reg->imm = 64;
1398 	} else {
1399 		/* all other alu ops, means that we don't know what will
1400 		 * happen to the value, mark it with unknown number of zero bits
1401 		 */
1402 		dst_reg->imm = 0;
1403 	}
1404 
1405 	if (dst_reg->imm < 0) {
1406 		/* all 64 bits of the register can contain non-zero bits
1407 		 * and such value cannot be added to ptr_to_packet, since it
1408 		 * may overflow, mark it as unknown to avoid further eval
1409 		 */
1410 		dst_reg->imm = 0;
1411 	}
1412 	return 0;
1413 }
1414 
1415 static int evaluate_reg_imm_alu(struct verifier_env *env, struct bpf_insn *insn)
1416 {
1417 	struct reg_state *regs = env->cur_state.regs;
1418 	struct reg_state *dst_reg = &regs[insn->dst_reg];
1419 	struct reg_state *src_reg = &regs[insn->src_reg];
1420 	u8 opcode = BPF_OP(insn->code);
1421 
1422 	/* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1423 	 * Don't care about overflow or negative values, just add them
1424 	 */
1425 	if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1426 		dst_reg->imm += insn->imm;
1427 	else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1428 		 src_reg->type == CONST_IMM)
1429 		dst_reg->imm += src_reg->imm;
1430 	else
1431 		mark_reg_unknown_value(regs, insn->dst_reg);
1432 	return 0;
1433 }
1434 
1435 /* check validity of 32-bit and 64-bit arithmetic operations */
1436 static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn)
1437 {
1438 	struct reg_state *regs = env->cur_state.regs, *dst_reg;
1439 	u8 opcode = BPF_OP(insn->code);
1440 	int err;
1441 
1442 	if (opcode == BPF_END || opcode == BPF_NEG) {
1443 		if (opcode == BPF_NEG) {
1444 			if (BPF_SRC(insn->code) != 0 ||
1445 			    insn->src_reg != BPF_REG_0 ||
1446 			    insn->off != 0 || insn->imm != 0) {
1447 				verbose("BPF_NEG uses reserved fields\n");
1448 				return -EINVAL;
1449 			}
1450 		} else {
1451 			if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1452 			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1453 				verbose("BPF_END uses reserved fields\n");
1454 				return -EINVAL;
1455 			}
1456 		}
1457 
1458 		/* check src operand */
1459 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1460 		if (err)
1461 			return err;
1462 
1463 		if (is_pointer_value(env, insn->dst_reg)) {
1464 			verbose("R%d pointer arithmetic prohibited\n",
1465 				insn->dst_reg);
1466 			return -EACCES;
1467 		}
1468 
1469 		/* check dest operand */
1470 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1471 		if (err)
1472 			return err;
1473 
1474 	} else if (opcode == BPF_MOV) {
1475 
1476 		if (BPF_SRC(insn->code) == BPF_X) {
1477 			if (insn->imm != 0 || insn->off != 0) {
1478 				verbose("BPF_MOV uses reserved fields\n");
1479 				return -EINVAL;
1480 			}
1481 
1482 			/* check src operand */
1483 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1484 			if (err)
1485 				return err;
1486 		} else {
1487 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1488 				verbose("BPF_MOV uses reserved fields\n");
1489 				return -EINVAL;
1490 			}
1491 		}
1492 
1493 		/* check dest operand */
1494 		err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1495 		if (err)
1496 			return err;
1497 
1498 		if (BPF_SRC(insn->code) == BPF_X) {
1499 			if (BPF_CLASS(insn->code) == BPF_ALU64) {
1500 				/* case: R1 = R2
1501 				 * copy register state to dest reg
1502 				 */
1503 				regs[insn->dst_reg] = regs[insn->src_reg];
1504 			} else {
1505 				if (is_pointer_value(env, insn->src_reg)) {
1506 					verbose("R%d partial copy of pointer\n",
1507 						insn->src_reg);
1508 					return -EACCES;
1509 				}
1510 				regs[insn->dst_reg].type = UNKNOWN_VALUE;
1511 				regs[insn->dst_reg].map_ptr = NULL;
1512 			}
1513 		} else {
1514 			/* case: R = imm
1515 			 * remember the value we stored into this reg
1516 			 */
1517 			regs[insn->dst_reg].type = CONST_IMM;
1518 			regs[insn->dst_reg].imm = insn->imm;
1519 		}
1520 
1521 	} else if (opcode > BPF_END) {
1522 		verbose("invalid BPF_ALU opcode %x\n", opcode);
1523 		return -EINVAL;
1524 
1525 	} else {	/* all other ALU ops: and, sub, xor, add, ... */
1526 
1527 		if (BPF_SRC(insn->code) == BPF_X) {
1528 			if (insn->imm != 0 || insn->off != 0) {
1529 				verbose("BPF_ALU uses reserved fields\n");
1530 				return -EINVAL;
1531 			}
1532 			/* check src1 operand */
1533 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1534 			if (err)
1535 				return err;
1536 		} else {
1537 			if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1538 				verbose("BPF_ALU uses reserved fields\n");
1539 				return -EINVAL;
1540 			}
1541 		}
1542 
1543 		/* check src2 operand */
1544 		err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1545 		if (err)
1546 			return err;
1547 
1548 		if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1549 		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1550 			verbose("div by zero\n");
1551 			return -EINVAL;
1552 		}
1553 
1554 		if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1555 		     opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1556 			int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1557 
1558 			if (insn->imm < 0 || insn->imm >= size) {
1559 				verbose("invalid shift %d\n", insn->imm);
1560 				return -EINVAL;
1561 			}
1562 		}
1563 
1564 		/* check dest operand */
1565 		err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1566 		if (err)
1567 			return err;
1568 
1569 		dst_reg = &regs[insn->dst_reg];
1570 
1571 		/* pattern match 'bpf_add Rx, imm' instruction */
1572 		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1573 		    dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1574 			dst_reg->type = PTR_TO_STACK;
1575 			dst_reg->imm = insn->imm;
1576 			return 0;
1577 		} else if (opcode == BPF_ADD &&
1578 			   BPF_CLASS(insn->code) == BPF_ALU64 &&
1579 			   (dst_reg->type == PTR_TO_PACKET ||
1580 			    (BPF_SRC(insn->code) == BPF_X &&
1581 			     regs[insn->src_reg].type == PTR_TO_PACKET))) {
1582 			/* ptr_to_packet += K|X */
1583 			return check_packet_ptr_add(env, insn);
1584 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1585 			   dst_reg->type == UNKNOWN_VALUE &&
1586 			   env->allow_ptr_leaks) {
1587 			/* unknown += K|X */
1588 			return evaluate_reg_alu(env, insn);
1589 		} else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1590 			   dst_reg->type == CONST_IMM &&
1591 			   env->allow_ptr_leaks) {
1592 			/* reg_imm += K|X */
1593 			return evaluate_reg_imm_alu(env, insn);
1594 		} else if (is_pointer_value(env, insn->dst_reg)) {
1595 			verbose("R%d pointer arithmetic prohibited\n",
1596 				insn->dst_reg);
1597 			return -EACCES;
1598 		} else if (BPF_SRC(insn->code) == BPF_X &&
1599 			   is_pointer_value(env, insn->src_reg)) {
1600 			verbose("R%d pointer arithmetic prohibited\n",
1601 				insn->src_reg);
1602 			return -EACCES;
1603 		}
1604 
1605 		/* mark dest operand */
1606 		mark_reg_unknown_value(regs, insn->dst_reg);
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static void find_good_pkt_pointers(struct verifier_env *env,
1613 				   struct reg_state *dst_reg)
1614 {
1615 	struct verifier_state *state = &env->cur_state;
1616 	struct reg_state *regs = state->regs, *reg;
1617 	int i;
1618 	/* r2 = r3;
1619 	 * r2 += 8
1620 	 * if (r2 > pkt_end) goto somewhere
1621 	 * r2 == dst_reg, pkt_end == src_reg,
1622 	 * r2=pkt(id=n,off=8,r=0)
1623 	 * r3=pkt(id=n,off=0,r=0)
1624 	 * find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1625 	 * so that range of bytes [r3, r3 + 8) is safe to access
1626 	 */
1627 	for (i = 0; i < MAX_BPF_REG; i++)
1628 		if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1629 			regs[i].range = dst_reg->off;
1630 
1631 	for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1632 		if (state->stack_slot_type[i] != STACK_SPILL)
1633 			continue;
1634 		reg = &state->spilled_regs[i / BPF_REG_SIZE];
1635 		if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
1636 			reg->range = dst_reg->off;
1637 	}
1638 }
1639 
1640 static int check_cond_jmp_op(struct verifier_env *env,
1641 			     struct bpf_insn *insn, int *insn_idx)
1642 {
1643 	struct reg_state *regs = env->cur_state.regs, *dst_reg;
1644 	struct verifier_state *other_branch;
1645 	u8 opcode = BPF_OP(insn->code);
1646 	int err;
1647 
1648 	if (opcode > BPF_EXIT) {
1649 		verbose("invalid BPF_JMP opcode %x\n", opcode);
1650 		return -EINVAL;
1651 	}
1652 
1653 	if (BPF_SRC(insn->code) == BPF_X) {
1654 		if (insn->imm != 0) {
1655 			verbose("BPF_JMP uses reserved fields\n");
1656 			return -EINVAL;
1657 		}
1658 
1659 		/* check src1 operand */
1660 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1661 		if (err)
1662 			return err;
1663 
1664 		if (is_pointer_value(env, insn->src_reg)) {
1665 			verbose("R%d pointer comparison prohibited\n",
1666 				insn->src_reg);
1667 			return -EACCES;
1668 		}
1669 	} else {
1670 		if (insn->src_reg != BPF_REG_0) {
1671 			verbose("BPF_JMP uses reserved fields\n");
1672 			return -EINVAL;
1673 		}
1674 	}
1675 
1676 	/* check src2 operand */
1677 	err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1678 	if (err)
1679 		return err;
1680 
1681 	dst_reg = &regs[insn->dst_reg];
1682 
1683 	/* detect if R == 0 where R was initialized to zero earlier */
1684 	if (BPF_SRC(insn->code) == BPF_K &&
1685 	    (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1686 	    dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
1687 		if (opcode == BPF_JEQ) {
1688 			/* if (imm == imm) goto pc+off;
1689 			 * only follow the goto, ignore fall-through
1690 			 */
1691 			*insn_idx += insn->off;
1692 			return 0;
1693 		} else {
1694 			/* if (imm != imm) goto pc+off;
1695 			 * only follow fall-through branch, since
1696 			 * that's where the program will go
1697 			 */
1698 			return 0;
1699 		}
1700 	}
1701 
1702 	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
1703 	if (!other_branch)
1704 		return -EFAULT;
1705 
1706 	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */
1707 	if (BPF_SRC(insn->code) == BPF_K &&
1708 	    insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
1709 	    dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1710 		if (opcode == BPF_JEQ) {
1711 			/* next fallthrough insn can access memory via
1712 			 * this register
1713 			 */
1714 			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1715 			/* branch targer cannot access it, since reg == 0 */
1716 			mark_reg_unknown_value(other_branch->regs,
1717 					       insn->dst_reg);
1718 		} else {
1719 			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
1720 			mark_reg_unknown_value(regs, insn->dst_reg);
1721 		}
1722 	} else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
1723 		   dst_reg->type == PTR_TO_PACKET &&
1724 		   regs[insn->src_reg].type == PTR_TO_PACKET_END) {
1725 		find_good_pkt_pointers(env, dst_reg);
1726 	} else if (is_pointer_value(env, insn->dst_reg)) {
1727 		verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
1728 		return -EACCES;
1729 	}
1730 	if (log_level)
1731 		print_verifier_state(&env->cur_state);
1732 	return 0;
1733 }
1734 
1735 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
1736 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
1737 {
1738 	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
1739 
1740 	return (struct bpf_map *) (unsigned long) imm64;
1741 }
1742 
1743 /* verify BPF_LD_IMM64 instruction */
1744 static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn)
1745 {
1746 	struct reg_state *regs = env->cur_state.regs;
1747 	int err;
1748 
1749 	if (BPF_SIZE(insn->code) != BPF_DW) {
1750 		verbose("invalid BPF_LD_IMM insn\n");
1751 		return -EINVAL;
1752 	}
1753 	if (insn->off != 0) {
1754 		verbose("BPF_LD_IMM64 uses reserved fields\n");
1755 		return -EINVAL;
1756 	}
1757 
1758 	err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1759 	if (err)
1760 		return err;
1761 
1762 	if (insn->src_reg == 0)
1763 		/* generic move 64-bit immediate into a register */
1764 		return 0;
1765 
1766 	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
1767 	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
1768 
1769 	regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
1770 	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
1771 	return 0;
1772 }
1773 
1774 static bool may_access_skb(enum bpf_prog_type type)
1775 {
1776 	switch (type) {
1777 	case BPF_PROG_TYPE_SOCKET_FILTER:
1778 	case BPF_PROG_TYPE_SCHED_CLS:
1779 	case BPF_PROG_TYPE_SCHED_ACT:
1780 		return true;
1781 	default:
1782 		return false;
1783 	}
1784 }
1785 
1786 /* verify safety of LD_ABS|LD_IND instructions:
1787  * - they can only appear in the programs where ctx == skb
1788  * - since they are wrappers of function calls, they scratch R1-R5 registers,
1789  *   preserve R6-R9, and store return value into R0
1790  *
1791  * Implicit input:
1792  *   ctx == skb == R6 == CTX
1793  *
1794  * Explicit input:
1795  *   SRC == any register
1796  *   IMM == 32-bit immediate
1797  *
1798  * Output:
1799  *   R0 - 8/16/32-bit skb data converted to cpu endianness
1800  */
1801 static int check_ld_abs(struct verifier_env *env, struct bpf_insn *insn)
1802 {
1803 	struct reg_state *regs = env->cur_state.regs;
1804 	u8 mode = BPF_MODE(insn->code);
1805 	struct reg_state *reg;
1806 	int i, err;
1807 
1808 	if (!may_access_skb(env->prog->type)) {
1809 		verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
1810 		return -EINVAL;
1811 	}
1812 
1813 	if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
1814 	    BPF_SIZE(insn->code) == BPF_DW ||
1815 	    (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
1816 		verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
1817 		return -EINVAL;
1818 	}
1819 
1820 	/* check whether implicit source operand (register R6) is readable */
1821 	err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
1822 	if (err)
1823 		return err;
1824 
1825 	if (regs[BPF_REG_6].type != PTR_TO_CTX) {
1826 		verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
1827 		return -EINVAL;
1828 	}
1829 
1830 	if (mode == BPF_IND) {
1831 		/* check explicit source operand */
1832 		err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1833 		if (err)
1834 			return err;
1835 	}
1836 
1837 	/* reset caller saved regs to unreadable */
1838 	for (i = 0; i < CALLER_SAVED_REGS; i++) {
1839 		reg = regs + caller_saved[i];
1840 		reg->type = NOT_INIT;
1841 		reg->imm = 0;
1842 	}
1843 
1844 	/* mark destination R0 register as readable, since it contains
1845 	 * the value fetched from the packet
1846 	 */
1847 	regs[BPF_REG_0].type = UNKNOWN_VALUE;
1848 	return 0;
1849 }
1850 
1851 /* non-recursive DFS pseudo code
1852  * 1  procedure DFS-iterative(G,v):
1853  * 2      label v as discovered
1854  * 3      let S be a stack
1855  * 4      S.push(v)
1856  * 5      while S is not empty
1857  * 6            t <- S.pop()
1858  * 7            if t is what we're looking for:
1859  * 8                return t
1860  * 9            for all edges e in G.adjacentEdges(t) do
1861  * 10               if edge e is already labelled
1862  * 11                   continue with the next edge
1863  * 12               w <- G.adjacentVertex(t,e)
1864  * 13               if vertex w is not discovered and not explored
1865  * 14                   label e as tree-edge
1866  * 15                   label w as discovered
1867  * 16                   S.push(w)
1868  * 17                   continue at 5
1869  * 18               else if vertex w is discovered
1870  * 19                   label e as back-edge
1871  * 20               else
1872  * 21                   // vertex w is explored
1873  * 22                   label e as forward- or cross-edge
1874  * 23           label t as explored
1875  * 24           S.pop()
1876  *
1877  * convention:
1878  * 0x10 - discovered
1879  * 0x11 - discovered and fall-through edge labelled
1880  * 0x12 - discovered and fall-through and branch edges labelled
1881  * 0x20 - explored
1882  */
1883 
1884 enum {
1885 	DISCOVERED = 0x10,
1886 	EXPLORED = 0x20,
1887 	FALLTHROUGH = 1,
1888 	BRANCH = 2,
1889 };
1890 
1891 #define STATE_LIST_MARK ((struct verifier_state_list *) -1L)
1892 
1893 static int *insn_stack;	/* stack of insns to process */
1894 static int cur_stack;	/* current stack index */
1895 static int *insn_state;
1896 
1897 /* t, w, e - match pseudo-code above:
1898  * t - index of current instruction
1899  * w - next instruction
1900  * e - edge
1901  */
1902 static int push_insn(int t, int w, int e, struct verifier_env *env)
1903 {
1904 	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
1905 		return 0;
1906 
1907 	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
1908 		return 0;
1909 
1910 	if (w < 0 || w >= env->prog->len) {
1911 		verbose("jump out of range from insn %d to %d\n", t, w);
1912 		return -EINVAL;
1913 	}
1914 
1915 	if (e == BRANCH)
1916 		/* mark branch target for state pruning */
1917 		env->explored_states[w] = STATE_LIST_MARK;
1918 
1919 	if (insn_state[w] == 0) {
1920 		/* tree-edge */
1921 		insn_state[t] = DISCOVERED | e;
1922 		insn_state[w] = DISCOVERED;
1923 		if (cur_stack >= env->prog->len)
1924 			return -E2BIG;
1925 		insn_stack[cur_stack++] = w;
1926 		return 1;
1927 	} else if ((insn_state[w] & 0xF0) == DISCOVERED) {
1928 		verbose("back-edge from insn %d to %d\n", t, w);
1929 		return -EINVAL;
1930 	} else if (insn_state[w] == EXPLORED) {
1931 		/* forward- or cross-edge */
1932 		insn_state[t] = DISCOVERED | e;
1933 	} else {
1934 		verbose("insn state internal bug\n");
1935 		return -EFAULT;
1936 	}
1937 	return 0;
1938 }
1939 
1940 /* non-recursive depth-first-search to detect loops in BPF program
1941  * loop == back-edge in directed graph
1942  */
1943 static int check_cfg(struct verifier_env *env)
1944 {
1945 	struct bpf_insn *insns = env->prog->insnsi;
1946 	int insn_cnt = env->prog->len;
1947 	int ret = 0;
1948 	int i, t;
1949 
1950 	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1951 	if (!insn_state)
1952 		return -ENOMEM;
1953 
1954 	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
1955 	if (!insn_stack) {
1956 		kfree(insn_state);
1957 		return -ENOMEM;
1958 	}
1959 
1960 	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
1961 	insn_stack[0] = 0; /* 0 is the first instruction */
1962 	cur_stack = 1;
1963 
1964 peek_stack:
1965 	if (cur_stack == 0)
1966 		goto check_state;
1967 	t = insn_stack[cur_stack - 1];
1968 
1969 	if (BPF_CLASS(insns[t].code) == BPF_JMP) {
1970 		u8 opcode = BPF_OP(insns[t].code);
1971 
1972 		if (opcode == BPF_EXIT) {
1973 			goto mark_explored;
1974 		} else if (opcode == BPF_CALL) {
1975 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
1976 			if (ret == 1)
1977 				goto peek_stack;
1978 			else if (ret < 0)
1979 				goto err_free;
1980 			if (t + 1 < insn_cnt)
1981 				env->explored_states[t + 1] = STATE_LIST_MARK;
1982 		} else if (opcode == BPF_JA) {
1983 			if (BPF_SRC(insns[t].code) != BPF_K) {
1984 				ret = -EINVAL;
1985 				goto err_free;
1986 			}
1987 			/* unconditional jump with single edge */
1988 			ret = push_insn(t, t + insns[t].off + 1,
1989 					FALLTHROUGH, env);
1990 			if (ret == 1)
1991 				goto peek_stack;
1992 			else if (ret < 0)
1993 				goto err_free;
1994 			/* tell verifier to check for equivalent states
1995 			 * after every call and jump
1996 			 */
1997 			if (t + 1 < insn_cnt)
1998 				env->explored_states[t + 1] = STATE_LIST_MARK;
1999 		} else {
2000 			/* conditional jump with two edges */
2001 			ret = push_insn(t, t + 1, FALLTHROUGH, env);
2002 			if (ret == 1)
2003 				goto peek_stack;
2004 			else if (ret < 0)
2005 				goto err_free;
2006 
2007 			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2008 			if (ret == 1)
2009 				goto peek_stack;
2010 			else if (ret < 0)
2011 				goto err_free;
2012 		}
2013 	} else {
2014 		/* all other non-branch instructions with single
2015 		 * fall-through edge
2016 		 */
2017 		ret = push_insn(t, t + 1, FALLTHROUGH, env);
2018 		if (ret == 1)
2019 			goto peek_stack;
2020 		else if (ret < 0)
2021 			goto err_free;
2022 	}
2023 
2024 mark_explored:
2025 	insn_state[t] = EXPLORED;
2026 	if (cur_stack-- <= 0) {
2027 		verbose("pop stack internal bug\n");
2028 		ret = -EFAULT;
2029 		goto err_free;
2030 	}
2031 	goto peek_stack;
2032 
2033 check_state:
2034 	for (i = 0; i < insn_cnt; i++) {
2035 		if (insn_state[i] != EXPLORED) {
2036 			verbose("unreachable insn %d\n", i);
2037 			ret = -EINVAL;
2038 			goto err_free;
2039 		}
2040 	}
2041 	ret = 0; /* cfg looks good */
2042 
2043 err_free:
2044 	kfree(insn_state);
2045 	kfree(insn_stack);
2046 	return ret;
2047 }
2048 
2049 /* the following conditions reduce the number of explored insns
2050  * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2051  */
2052 static bool compare_ptrs_to_packet(struct reg_state *old, struct reg_state *cur)
2053 {
2054 	if (old->id != cur->id)
2055 		return false;
2056 
2057 	/* old ptr_to_packet is more conservative, since it allows smaller
2058 	 * range. Ex:
2059 	 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2060 	 * old(off=0,r=10) means that with range=10 the verifier proceeded
2061 	 * further and found no issues with the program. Now we're in the same
2062 	 * spot with cur(off=0,r=20), so we're safe too, since anything further
2063 	 * will only be looking at most 10 bytes after this pointer.
2064 	 */
2065 	if (old->off == cur->off && old->range < cur->range)
2066 		return true;
2067 
2068 	/* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2069 	 * since both cannot be used for packet access and safe(old)
2070 	 * pointer has smaller off that could be used for further
2071 	 * 'if (ptr > data_end)' check
2072 	 * Ex:
2073 	 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2074 	 * that we cannot access the packet.
2075 	 * The safe range is:
2076 	 * [ptr, ptr + range - off)
2077 	 * so whenever off >=range, it means no safe bytes from this pointer.
2078 	 * When comparing old->off <= cur->off, it means that older code
2079 	 * went with smaller offset and that offset was later
2080 	 * used to figure out the safe range after 'if (ptr > data_end)' check
2081 	 * Say, 'old' state was explored like:
2082 	 * ... R3(off=0, r=0)
2083 	 * R4 = R3 + 20
2084 	 * ... now R4(off=20,r=0)  <-- here
2085 	 * if (R4 > data_end)
2086 	 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2087 	 * ... the code further went all the way to bpf_exit.
2088 	 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2089 	 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2090 	 * goes further, such cur_R4 will give larger safe packet range after
2091 	 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2092 	 * so they will be good with r=30 and we can prune the search.
2093 	 */
2094 	if (old->off <= cur->off &&
2095 	    old->off >= old->range && cur->off >= cur->range)
2096 		return true;
2097 
2098 	return false;
2099 }
2100 
2101 /* compare two verifier states
2102  *
2103  * all states stored in state_list are known to be valid, since
2104  * verifier reached 'bpf_exit' instruction through them
2105  *
2106  * this function is called when verifier exploring different branches of
2107  * execution popped from the state stack. If it sees an old state that has
2108  * more strict register state and more strict stack state then this execution
2109  * branch doesn't need to be explored further, since verifier already
2110  * concluded that more strict state leads to valid finish.
2111  *
2112  * Therefore two states are equivalent if register state is more conservative
2113  * and explored stack state is more conservative than the current one.
2114  * Example:
2115  *       explored                   current
2116  * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2117  * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2118  *
2119  * In other words if current stack state (one being explored) has more
2120  * valid slots than old one that already passed validation, it means
2121  * the verifier can stop exploring and conclude that current state is valid too
2122  *
2123  * Similarly with registers. If explored state has register type as invalid
2124  * whereas register type in current state is meaningful, it means that
2125  * the current state will reach 'bpf_exit' instruction safely
2126  */
2127 static bool states_equal(struct verifier_state *old, struct verifier_state *cur)
2128 {
2129 	struct reg_state *rold, *rcur;
2130 	int i;
2131 
2132 	for (i = 0; i < MAX_BPF_REG; i++) {
2133 		rold = &old->regs[i];
2134 		rcur = &cur->regs[i];
2135 
2136 		if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2137 			continue;
2138 
2139 		if (rold->type == NOT_INIT ||
2140 		    (rold->type == UNKNOWN_VALUE && rcur->type != NOT_INIT))
2141 			continue;
2142 
2143 		if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2144 		    compare_ptrs_to_packet(rold, rcur))
2145 			continue;
2146 
2147 		return false;
2148 	}
2149 
2150 	for (i = 0; i < MAX_BPF_STACK; i++) {
2151 		if (old->stack_slot_type[i] == STACK_INVALID)
2152 			continue;
2153 		if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2154 			/* Ex: old explored (safe) state has STACK_SPILL in
2155 			 * this stack slot, but current has has STACK_MISC ->
2156 			 * this verifier states are not equivalent,
2157 			 * return false to continue verification of this path
2158 			 */
2159 			return false;
2160 		if (i % BPF_REG_SIZE)
2161 			continue;
2162 		if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2163 			   &cur->spilled_regs[i / BPF_REG_SIZE],
2164 			   sizeof(old->spilled_regs[0])))
2165 			/* when explored and current stack slot types are
2166 			 * the same, check that stored pointers types
2167 			 * are the same as well.
2168 			 * Ex: explored safe path could have stored
2169 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -8}
2170 			 * but current path has stored:
2171 			 * (struct reg_state) {.type = PTR_TO_STACK, .imm = -16}
2172 			 * such verifier states are not equivalent.
2173 			 * return false to continue verification of this path
2174 			 */
2175 			return false;
2176 		else
2177 			continue;
2178 	}
2179 	return true;
2180 }
2181 
2182 static int is_state_visited(struct verifier_env *env, int insn_idx)
2183 {
2184 	struct verifier_state_list *new_sl;
2185 	struct verifier_state_list *sl;
2186 
2187 	sl = env->explored_states[insn_idx];
2188 	if (!sl)
2189 		/* this 'insn_idx' instruction wasn't marked, so we will not
2190 		 * be doing state search here
2191 		 */
2192 		return 0;
2193 
2194 	while (sl != STATE_LIST_MARK) {
2195 		if (states_equal(&sl->state, &env->cur_state))
2196 			/* reached equivalent register/stack state,
2197 			 * prune the search
2198 			 */
2199 			return 1;
2200 		sl = sl->next;
2201 	}
2202 
2203 	/* there were no equivalent states, remember current one.
2204 	 * technically the current state is not proven to be safe yet,
2205 	 * but it will either reach bpf_exit (which means it's safe) or
2206 	 * it will be rejected. Since there are no loops, we won't be
2207 	 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2208 	 */
2209 	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER);
2210 	if (!new_sl)
2211 		return -ENOMEM;
2212 
2213 	/* add new state to the head of linked list */
2214 	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2215 	new_sl->next = env->explored_states[insn_idx];
2216 	env->explored_states[insn_idx] = new_sl;
2217 	return 0;
2218 }
2219 
2220 static int do_check(struct verifier_env *env)
2221 {
2222 	struct verifier_state *state = &env->cur_state;
2223 	struct bpf_insn *insns = env->prog->insnsi;
2224 	struct reg_state *regs = state->regs;
2225 	int insn_cnt = env->prog->len;
2226 	int insn_idx, prev_insn_idx = 0;
2227 	int insn_processed = 0;
2228 	bool do_print_state = false;
2229 
2230 	init_reg_state(regs);
2231 	insn_idx = 0;
2232 	for (;;) {
2233 		struct bpf_insn *insn;
2234 		u8 class;
2235 		int err;
2236 
2237 		if (insn_idx >= insn_cnt) {
2238 			verbose("invalid insn idx %d insn_cnt %d\n",
2239 				insn_idx, insn_cnt);
2240 			return -EFAULT;
2241 		}
2242 
2243 		insn = &insns[insn_idx];
2244 		class = BPF_CLASS(insn->code);
2245 
2246 		if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2247 			verbose("BPF program is too large. Proccessed %d insn\n",
2248 				insn_processed);
2249 			return -E2BIG;
2250 		}
2251 
2252 		err = is_state_visited(env, insn_idx);
2253 		if (err < 0)
2254 			return err;
2255 		if (err == 1) {
2256 			/* found equivalent state, can prune the search */
2257 			if (log_level) {
2258 				if (do_print_state)
2259 					verbose("\nfrom %d to %d: safe\n",
2260 						prev_insn_idx, insn_idx);
2261 				else
2262 					verbose("%d: safe\n", insn_idx);
2263 			}
2264 			goto process_bpf_exit;
2265 		}
2266 
2267 		if (log_level && do_print_state) {
2268 			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2269 			print_verifier_state(&env->cur_state);
2270 			do_print_state = false;
2271 		}
2272 
2273 		if (log_level) {
2274 			verbose("%d: ", insn_idx);
2275 			print_bpf_insn(insn);
2276 		}
2277 
2278 		if (class == BPF_ALU || class == BPF_ALU64) {
2279 			err = check_alu_op(env, insn);
2280 			if (err)
2281 				return err;
2282 
2283 		} else if (class == BPF_LDX) {
2284 			enum bpf_reg_type src_reg_type;
2285 
2286 			/* check for reserved fields is already done */
2287 
2288 			/* check src operand */
2289 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2290 			if (err)
2291 				return err;
2292 
2293 			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2294 			if (err)
2295 				return err;
2296 
2297 			src_reg_type = regs[insn->src_reg].type;
2298 
2299 			/* check that memory (src_reg + off) is readable,
2300 			 * the state of dst_reg will be updated by this func
2301 			 */
2302 			err = check_mem_access(env, insn->src_reg, insn->off,
2303 					       BPF_SIZE(insn->code), BPF_READ,
2304 					       insn->dst_reg);
2305 			if (err)
2306 				return err;
2307 
2308 			if (BPF_SIZE(insn->code) != BPF_W) {
2309 				insn_idx++;
2310 				continue;
2311 			}
2312 
2313 			if (insn->imm == 0) {
2314 				/* saw a valid insn
2315 				 * dst_reg = *(u32 *)(src_reg + off)
2316 				 * use reserved 'imm' field to mark this insn
2317 				 */
2318 				insn->imm = src_reg_type;
2319 
2320 			} else if (src_reg_type != insn->imm &&
2321 				   (src_reg_type == PTR_TO_CTX ||
2322 				    insn->imm == PTR_TO_CTX)) {
2323 				/* ABuser program is trying to use the same insn
2324 				 * dst_reg = *(u32*) (src_reg + off)
2325 				 * with different pointer types:
2326 				 * src_reg == ctx in one branch and
2327 				 * src_reg == stack|map in some other branch.
2328 				 * Reject it.
2329 				 */
2330 				verbose("same insn cannot be used with different pointers\n");
2331 				return -EINVAL;
2332 			}
2333 
2334 		} else if (class == BPF_STX) {
2335 			enum bpf_reg_type dst_reg_type;
2336 
2337 			if (BPF_MODE(insn->code) == BPF_XADD) {
2338 				err = check_xadd(env, insn);
2339 				if (err)
2340 					return err;
2341 				insn_idx++;
2342 				continue;
2343 			}
2344 
2345 			/* check src1 operand */
2346 			err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2347 			if (err)
2348 				return err;
2349 			/* check src2 operand */
2350 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2351 			if (err)
2352 				return err;
2353 
2354 			dst_reg_type = regs[insn->dst_reg].type;
2355 
2356 			/* check that memory (dst_reg + off) is writeable */
2357 			err = check_mem_access(env, insn->dst_reg, insn->off,
2358 					       BPF_SIZE(insn->code), BPF_WRITE,
2359 					       insn->src_reg);
2360 			if (err)
2361 				return err;
2362 
2363 			if (insn->imm == 0) {
2364 				insn->imm = dst_reg_type;
2365 			} else if (dst_reg_type != insn->imm &&
2366 				   (dst_reg_type == PTR_TO_CTX ||
2367 				    insn->imm == PTR_TO_CTX)) {
2368 				verbose("same insn cannot be used with different pointers\n");
2369 				return -EINVAL;
2370 			}
2371 
2372 		} else if (class == BPF_ST) {
2373 			if (BPF_MODE(insn->code) != BPF_MEM ||
2374 			    insn->src_reg != BPF_REG_0) {
2375 				verbose("BPF_ST uses reserved fields\n");
2376 				return -EINVAL;
2377 			}
2378 			/* check src operand */
2379 			err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2380 			if (err)
2381 				return err;
2382 
2383 			/* check that memory (dst_reg + off) is writeable */
2384 			err = check_mem_access(env, insn->dst_reg, insn->off,
2385 					       BPF_SIZE(insn->code), BPF_WRITE,
2386 					       -1);
2387 			if (err)
2388 				return err;
2389 
2390 		} else if (class == BPF_JMP) {
2391 			u8 opcode = BPF_OP(insn->code);
2392 
2393 			if (opcode == BPF_CALL) {
2394 				if (BPF_SRC(insn->code) != BPF_K ||
2395 				    insn->off != 0 ||
2396 				    insn->src_reg != BPF_REG_0 ||
2397 				    insn->dst_reg != BPF_REG_0) {
2398 					verbose("BPF_CALL uses reserved fields\n");
2399 					return -EINVAL;
2400 				}
2401 
2402 				err = check_call(env, insn->imm);
2403 				if (err)
2404 					return err;
2405 
2406 			} else if (opcode == BPF_JA) {
2407 				if (BPF_SRC(insn->code) != BPF_K ||
2408 				    insn->imm != 0 ||
2409 				    insn->src_reg != BPF_REG_0 ||
2410 				    insn->dst_reg != BPF_REG_0) {
2411 					verbose("BPF_JA uses reserved fields\n");
2412 					return -EINVAL;
2413 				}
2414 
2415 				insn_idx += insn->off + 1;
2416 				continue;
2417 
2418 			} else if (opcode == BPF_EXIT) {
2419 				if (BPF_SRC(insn->code) != BPF_K ||
2420 				    insn->imm != 0 ||
2421 				    insn->src_reg != BPF_REG_0 ||
2422 				    insn->dst_reg != BPF_REG_0) {
2423 					verbose("BPF_EXIT uses reserved fields\n");
2424 					return -EINVAL;
2425 				}
2426 
2427 				/* eBPF calling convetion is such that R0 is used
2428 				 * to return the value from eBPF program.
2429 				 * Make sure that it's readable at this time
2430 				 * of bpf_exit, which means that program wrote
2431 				 * something into it earlier
2432 				 */
2433 				err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2434 				if (err)
2435 					return err;
2436 
2437 				if (is_pointer_value(env, BPF_REG_0)) {
2438 					verbose("R0 leaks addr as return value\n");
2439 					return -EACCES;
2440 				}
2441 
2442 process_bpf_exit:
2443 				insn_idx = pop_stack(env, &prev_insn_idx);
2444 				if (insn_idx < 0) {
2445 					break;
2446 				} else {
2447 					do_print_state = true;
2448 					continue;
2449 				}
2450 			} else {
2451 				err = check_cond_jmp_op(env, insn, &insn_idx);
2452 				if (err)
2453 					return err;
2454 			}
2455 		} else if (class == BPF_LD) {
2456 			u8 mode = BPF_MODE(insn->code);
2457 
2458 			if (mode == BPF_ABS || mode == BPF_IND) {
2459 				err = check_ld_abs(env, insn);
2460 				if (err)
2461 					return err;
2462 
2463 			} else if (mode == BPF_IMM) {
2464 				err = check_ld_imm(env, insn);
2465 				if (err)
2466 					return err;
2467 
2468 				insn_idx++;
2469 			} else {
2470 				verbose("invalid BPF_LD mode\n");
2471 				return -EINVAL;
2472 			}
2473 		} else {
2474 			verbose("unknown insn class %d\n", class);
2475 			return -EINVAL;
2476 		}
2477 
2478 		insn_idx++;
2479 	}
2480 
2481 	verbose("processed %d insns\n", insn_processed);
2482 	return 0;
2483 }
2484 
2485 /* look for pseudo eBPF instructions that access map FDs and
2486  * replace them with actual map pointers
2487  */
2488 static int replace_map_fd_with_map_ptr(struct verifier_env *env)
2489 {
2490 	struct bpf_insn *insn = env->prog->insnsi;
2491 	int insn_cnt = env->prog->len;
2492 	int i, j;
2493 
2494 	for (i = 0; i < insn_cnt; i++, insn++) {
2495 		if (BPF_CLASS(insn->code) == BPF_LDX &&
2496 		    (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
2497 			verbose("BPF_LDX uses reserved fields\n");
2498 			return -EINVAL;
2499 		}
2500 
2501 		if (BPF_CLASS(insn->code) == BPF_STX &&
2502 		    ((BPF_MODE(insn->code) != BPF_MEM &&
2503 		      BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
2504 			verbose("BPF_STX uses reserved fields\n");
2505 			return -EINVAL;
2506 		}
2507 
2508 		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
2509 			struct bpf_map *map;
2510 			struct fd f;
2511 
2512 			if (i == insn_cnt - 1 || insn[1].code != 0 ||
2513 			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
2514 			    insn[1].off != 0) {
2515 				verbose("invalid bpf_ld_imm64 insn\n");
2516 				return -EINVAL;
2517 			}
2518 
2519 			if (insn->src_reg == 0)
2520 				/* valid generic load 64-bit imm */
2521 				goto next_insn;
2522 
2523 			if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
2524 				verbose("unrecognized bpf_ld_imm64 insn\n");
2525 				return -EINVAL;
2526 			}
2527 
2528 			f = fdget(insn->imm);
2529 			map = __bpf_map_get(f);
2530 			if (IS_ERR(map)) {
2531 				verbose("fd %d is not pointing to valid bpf_map\n",
2532 					insn->imm);
2533 				return PTR_ERR(map);
2534 			}
2535 
2536 			/* store map pointer inside BPF_LD_IMM64 instruction */
2537 			insn[0].imm = (u32) (unsigned long) map;
2538 			insn[1].imm = ((u64) (unsigned long) map) >> 32;
2539 
2540 			/* check whether we recorded this map already */
2541 			for (j = 0; j < env->used_map_cnt; j++)
2542 				if (env->used_maps[j] == map) {
2543 					fdput(f);
2544 					goto next_insn;
2545 				}
2546 
2547 			if (env->used_map_cnt >= MAX_USED_MAPS) {
2548 				fdput(f);
2549 				return -E2BIG;
2550 			}
2551 
2552 			/* hold the map. If the program is rejected by verifier,
2553 			 * the map will be released by release_maps() or it
2554 			 * will be used by the valid program until it's unloaded
2555 			 * and all maps are released in free_bpf_prog_info()
2556 			 */
2557 			map = bpf_map_inc(map, false);
2558 			if (IS_ERR(map)) {
2559 				fdput(f);
2560 				return PTR_ERR(map);
2561 			}
2562 			env->used_maps[env->used_map_cnt++] = map;
2563 
2564 			fdput(f);
2565 next_insn:
2566 			insn++;
2567 			i++;
2568 		}
2569 	}
2570 
2571 	/* now all pseudo BPF_LD_IMM64 instructions load valid
2572 	 * 'struct bpf_map *' into a register instead of user map_fd.
2573 	 * These pointers will be used later by verifier to validate map access.
2574 	 */
2575 	return 0;
2576 }
2577 
2578 /* drop refcnt of maps used by the rejected program */
2579 static void release_maps(struct verifier_env *env)
2580 {
2581 	int i;
2582 
2583 	for (i = 0; i < env->used_map_cnt; i++)
2584 		bpf_map_put(env->used_maps[i]);
2585 }
2586 
2587 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
2588 static void convert_pseudo_ld_imm64(struct verifier_env *env)
2589 {
2590 	struct bpf_insn *insn = env->prog->insnsi;
2591 	int insn_cnt = env->prog->len;
2592 	int i;
2593 
2594 	for (i = 0; i < insn_cnt; i++, insn++)
2595 		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
2596 			insn->src_reg = 0;
2597 }
2598 
2599 /* convert load instructions that access fields of 'struct __sk_buff'
2600  * into sequence of instructions that access fields of 'struct sk_buff'
2601  */
2602 static int convert_ctx_accesses(struct verifier_env *env)
2603 {
2604 	struct bpf_insn *insn = env->prog->insnsi;
2605 	int insn_cnt = env->prog->len;
2606 	struct bpf_insn insn_buf[16];
2607 	struct bpf_prog *new_prog;
2608 	enum bpf_access_type type;
2609 	int i;
2610 
2611 	if (!env->prog->aux->ops->convert_ctx_access)
2612 		return 0;
2613 
2614 	for (i = 0; i < insn_cnt; i++, insn++) {
2615 		u32 insn_delta, cnt;
2616 
2617 		if (insn->code == (BPF_LDX | BPF_MEM | BPF_W))
2618 			type = BPF_READ;
2619 		else if (insn->code == (BPF_STX | BPF_MEM | BPF_W))
2620 			type = BPF_WRITE;
2621 		else
2622 			continue;
2623 
2624 		if (insn->imm != PTR_TO_CTX) {
2625 			/* clear internal mark */
2626 			insn->imm = 0;
2627 			continue;
2628 		}
2629 
2630 		cnt = env->prog->aux->ops->
2631 			convert_ctx_access(type, insn->dst_reg, insn->src_reg,
2632 					   insn->off, insn_buf, env->prog);
2633 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
2634 			verbose("bpf verifier is misconfigured\n");
2635 			return -EINVAL;
2636 		}
2637 
2638 		new_prog = bpf_patch_insn_single(env->prog, i, insn_buf, cnt);
2639 		if (!new_prog)
2640 			return -ENOMEM;
2641 
2642 		insn_delta = cnt - 1;
2643 
2644 		/* keep walking new program and skip insns we just inserted */
2645 		env->prog = new_prog;
2646 		insn      = new_prog->insnsi + i + insn_delta;
2647 
2648 		insn_cnt += insn_delta;
2649 		i        += insn_delta;
2650 	}
2651 
2652 	return 0;
2653 }
2654 
2655 static void free_states(struct verifier_env *env)
2656 {
2657 	struct verifier_state_list *sl, *sln;
2658 	int i;
2659 
2660 	if (!env->explored_states)
2661 		return;
2662 
2663 	for (i = 0; i < env->prog->len; i++) {
2664 		sl = env->explored_states[i];
2665 
2666 		if (sl)
2667 			while (sl != STATE_LIST_MARK) {
2668 				sln = sl->next;
2669 				kfree(sl);
2670 				sl = sln;
2671 			}
2672 	}
2673 
2674 	kfree(env->explored_states);
2675 }
2676 
2677 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
2678 {
2679 	char __user *log_ubuf = NULL;
2680 	struct verifier_env *env;
2681 	int ret = -EINVAL;
2682 
2683 	if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
2684 		return -E2BIG;
2685 
2686 	/* 'struct verifier_env' can be global, but since it's not small,
2687 	 * allocate/free it every time bpf_check() is called
2688 	 */
2689 	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL);
2690 	if (!env)
2691 		return -ENOMEM;
2692 
2693 	env->prog = *prog;
2694 
2695 	/* grab the mutex to protect few globals used by verifier */
2696 	mutex_lock(&bpf_verifier_lock);
2697 
2698 	if (attr->log_level || attr->log_buf || attr->log_size) {
2699 		/* user requested verbose verifier output
2700 		 * and supplied buffer to store the verification trace
2701 		 */
2702 		log_level = attr->log_level;
2703 		log_ubuf = (char __user *) (unsigned long) attr->log_buf;
2704 		log_size = attr->log_size;
2705 		log_len = 0;
2706 
2707 		ret = -EINVAL;
2708 		/* log_* values have to be sane */
2709 		if (log_size < 128 || log_size > UINT_MAX >> 8 ||
2710 		    log_level == 0 || log_ubuf == NULL)
2711 			goto free_env;
2712 
2713 		ret = -ENOMEM;
2714 		log_buf = vmalloc(log_size);
2715 		if (!log_buf)
2716 			goto free_env;
2717 	} else {
2718 		log_level = 0;
2719 	}
2720 
2721 	ret = replace_map_fd_with_map_ptr(env);
2722 	if (ret < 0)
2723 		goto skip_full_check;
2724 
2725 	env->explored_states = kcalloc(env->prog->len,
2726 				       sizeof(struct verifier_state_list *),
2727 				       GFP_USER);
2728 	ret = -ENOMEM;
2729 	if (!env->explored_states)
2730 		goto skip_full_check;
2731 
2732 	ret = check_cfg(env);
2733 	if (ret < 0)
2734 		goto skip_full_check;
2735 
2736 	env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
2737 
2738 	ret = do_check(env);
2739 
2740 skip_full_check:
2741 	while (pop_stack(env, NULL) >= 0);
2742 	free_states(env);
2743 
2744 	if (ret == 0)
2745 		/* program is valid, convert *(u32*)(ctx + off) accesses */
2746 		ret = convert_ctx_accesses(env);
2747 
2748 	if (log_level && log_len >= log_size - 1) {
2749 		BUG_ON(log_len >= log_size);
2750 		/* verifier log exceeded user supplied buffer */
2751 		ret = -ENOSPC;
2752 		/* fall through to return what was recorded */
2753 	}
2754 
2755 	/* copy verifier log back to user space including trailing zero */
2756 	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
2757 		ret = -EFAULT;
2758 		goto free_log_buf;
2759 	}
2760 
2761 	if (ret == 0 && env->used_map_cnt) {
2762 		/* if program passed verifier, update used_maps in bpf_prog_info */
2763 		env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
2764 							  sizeof(env->used_maps[0]),
2765 							  GFP_KERNEL);
2766 
2767 		if (!env->prog->aux->used_maps) {
2768 			ret = -ENOMEM;
2769 			goto free_log_buf;
2770 		}
2771 
2772 		memcpy(env->prog->aux->used_maps, env->used_maps,
2773 		       sizeof(env->used_maps[0]) * env->used_map_cnt);
2774 		env->prog->aux->used_map_cnt = env->used_map_cnt;
2775 
2776 		/* program is valid. Convert pseudo bpf_ld_imm64 into generic
2777 		 * bpf_ld_imm64 instructions
2778 		 */
2779 		convert_pseudo_ld_imm64(env);
2780 	}
2781 
2782 free_log_buf:
2783 	if (log_level)
2784 		vfree(log_buf);
2785 free_env:
2786 	if (!env->prog->aux->used_maps)
2787 		/* if we didn't copy map pointers into bpf_prog_info, release
2788 		 * them now. Otherwise free_bpf_prog_info() will release them.
2789 		 */
2790 		release_maps(env);
2791 	*prog = env->prog;
2792 	kfree(env);
2793 	mutex_unlock(&bpf_verifier_lock);
2794 	return ret;
2795 }
2796